
1

www.allitebooks.com

http://www.allitebooks.org

Xamarin Mobile
Development for
Android Cookbook

Over 80 hands-on recipes to unleash the full potential
of Xamarin in the development and monetization of
feature-packed, real-world Android apps

Matthew Leibowitz

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Xamarin Mobile Development for
Android Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: November 2015

Production reference: 1191115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-857-6

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Matthew Leibowitz

Reviewers
Ole Falkerslev Kristensen

Frédéric Mauroy

Luca Zulian

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Reshma Raman

Content Development Editor
Dharmesh Parmar

Technical Editor
Abhishek R. Kotian

Copy Editor
Pranjali Chury

Project Coordinator
Paushali Desai

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Matthew Leibowitz is a professional software engineer living in South Africa, and
is currently working in a Xamarin development team. He has many years of professional
experience as a programmer in developing systems ranging from servers, to desktops, to
mobile devices.

He has a passion for programming and has recently been awarded Xamarin Certified Mobile
Developer certification for his work. He has written various articles on his blog and has
participated in several forums.

With his experience and great passion for development, Matthew spends his days continually
looking for new ways to create a better experience for users and other developers. Some of
his work is seen on GitHub under the username mattleibow. In addition to his public code,
Matthew is active on Twitter with the same username.

I would like to thank my family for enduring my late nights and putting up
with my strange behavior for the time it me took to put all this together. They
have been very encouraging and have inspired me to share my knowledge
with the world.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ole Falkerslev Kristensen was a software developer at Nokia Mobile phone for more
than 10 years, working with C, C++ and C#. He is now a professional Xamarin.Android
developer in a startup company with 4-5 employees for the last 3 years.

He has also developed Android Apps for A.M.O Professional Loyalty programs and events
apps. Also, he has also developed in Xamarin iOS.

Frédéric Mauroy discovered computers in the mid-80s and got his joy of programming
with Basic. This new-found passion naturally led him to pursue an education in IT, where he
learned C and C++. His first job allowed him to hone his skills in C, and he later sled towards
C# with the amazing .Net framework. Having mainly worked in ASP.Net, he also developed
Windows applications, and more recently, mobile applications for Android and iOS using
PhoneGap and Xamarin.

He has made mobile applications for Viashopia and Alert112. You can get more details at the
following links:

http://mauroy.eu

http://viashopia.com

http://alert112.com

Luca Zulian lives in Milan, Italy, and he is a skilled Microsoft .NET Framework developer,
specializing in patterns and practices. In his many years as developer, he worked with
numerous languages and technologies, and started with mobile development from a native
approach to land on the Xamarin world. Now, he is experienced in large-scale enterprise
applications along with a continuous phase of learning new languages and tools.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

i

Table of Contents
Preface	 v
Chapter 1: Working with Xamarin.Android	 1

Introduction	 1
Creating Xamarin.Android projects	 2
Creating user interface layouts	 7
Creating an options menu	 10
Supporting previous Android versions	 12
Adding an action bar	 15
Navigating with the action bar	 18
Adding action bar action items	 20
Creating contextual action mode menu	 21
Creating contextual action mode menus	 22
Sharing code with other platforms	 25

Chapter 2: Showing Views and Handling Fragments	 33
Introduction	 33
Using custom views with layouts	 34
Creating and using fragments	 38
Preserving view and fragment state	 42
Navigating between fragments	 47
Fragments and the action bar	 50
Animating fragment navigation	 52
Animating view and object properties	 55
Animating views on the UI	 59
Adding a navigation drawer with fragments	 61
Applying local styles and global themes	 66

Chapter 3: Managing App Data	 69
Introduction	 69
Storing data with SharedPreferences	 70

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Using files and the filesystem	 73
Reading bundled assets and resources	 76
Parsing, processing, and generating XML	 79
Accessing data with ADO.NET	 82
Accessing data with SQLite.NET	 86
Encrypting databases with SQLCipher	 89
Consuming content providers	 91
Creating content providers	 94
Backing up preferences and files to the cloud	 99
Backing up data to the cloud	 102

Chapter 4: Presenting App Data	 107
Introduction	 107
Implementing a ListView	 108
Using a SimpleAdapter	 110
Using custom ListView items	 112
Using a BaseAdapter with arbitrary data	 115
Using a CursorAdapter	 118
Optimizing the ListView	 120
Enabling fast scrolling	 123
Using section indexes	 125
Integrating app searchability	 127

Chapter 5: Communicating with the Outside World	 133
Introduction	 133
Consuming REST services with HttpClient	 134
Obtaining a network state	 138
Handling network state changes	 140
Using DownloadManager	 142
Accessing Bluetooth	 145
Transferring data via Bluetooth	 150
Receiving NFC events	 154
Writing NFC tags	 157
Transferring data via NFC	 160
Obtaining location coordinates and addresses	 162

Chapter 6: Using Background Tasks	 169
Introduction	 169
Asynchronous tasks	 170
Starting services	 174
Stopping services	 176
Handling simultaneous service requests	 178
Starting services automatically	 181

www.allitebooks.com

http://www.allitebooks.org

iii

Table of Contents

Communicating with running services	 183
Critical services	 187

Chapter 7: Notifying Users	 191
Introduction	 191
Toasts	 192
Alert dialogs	 194
Alert fragments	 196
Embedded alert fragments	 198
Selection alerts	 200
The notification builder	 202
Ongoing notifications	 207
Custom notification views	 208
Push notifications	 211

Chapter 8: Interacting with Other Apps	 221
Introduction	 221
Starting app components	 222
Launching other apps	 225
Obtaining data from activities	 228
Using BroadcastReceivers	 230
Scheduling tasks	 234
Making phone calls	 236
Intercepting phone calls	 238
Sending SMS messages	 240
Receiving SMS messages	 242

Chapter 9: Presenting Multimedia	 245
Introduction	 245
Playing audio	 246
Playing audio in the background	 250
Managing the audio volume	 256
Recording an audio	 260
Playing a video	 262
Custom video controls	 265
Using the camera	 271
Creating a camera app	 275
Handling high-resolution images	 282
Drawing on the canvas of a View	 286
Drawing on the canvas of a SurfaceView	 290

Chapter 10: Responding to the User	 295
Introduction	 295
Responding to simple touches	 296

www.allitebooks.com

http://www.allitebooks.org

iv

Table of Contents

Responding to scroll gestures	 299
Responding to manipulation gestures	 304
Detecting rotate gestures	 306
Responding to custom user gestures	 310
Listening to sensor data	 314
Listening for sensor triggers	 317
Discovering the environment	 319
Detecting device shakes	 320

Chapter 11: Connecting to Wearables	 323
Introduction	 323
Introducing wearable notifications	 324
Customizing wearable notifications	 326
Creating wearable apps	 328
Creating always-on wearable apps	 332
Creating dynamic always-on wearable apps	 335
Communicating with wearables	 339
Building watch faces	 347
Configuring watch faces	 356

Chapter 12: Adding In-App Billing	 361
Introduction	 361
Preparing for in-app billing	 362
Integrating in-app billing	 366
Listing available products	 369
Purchasing products	 371
Listing purchased products	 376
Consuming purchases	 377

Chapter 13: Publishing Apps	 381
Introduction	 381
Protecting the content	 382
Protecting the code	 389
Preparing the app package	 394
Shrinking the app package	 403
Creating the app package	 408
Uploading the app package	 416
Adding preview testers	 423
Releasing for production	 427
Updating the app	 429

Index	 433

v

Preface
With a rapid increase in the use of mobile devices everywhere, developing for Android takes
advantage of this trend to reach the widest market available to any mobile platform. Along
with creating awesome Android apps, Xamarin allows the use of the mature .NET Framework.
.NET is a massive framework that is supported on almost all platforms, including iOS,
Windows, Mac OS X, and Linux.

Developing apps with Xamarin.Android allows you to use and reuse your code and skills on
different platforms, making you more productive in any sort of development. Although not
a write-once-run-anywhere framework, Xamarin provides native platform integration and
optimizations. There is no middleware; Xamarin.Android talks directly to the system, taking
your C# and F# code directly to the low levels.

What this book covers
Chapter 1, Working with Xamarin.Android, allows us to create native Android apps with the
strengths of C# and .NET. Using C#, we can develop native Android apps and at the same
time have the ability to share code with other platforms.

Chapter 2, Showing Views and Handling Fragments, explores one of the most important parts
of Android apps—the user interface, as it is the most visible part of an app. When creating
apps for Android, there are numerous different ways available to create these interfaces.

Chapter 3, Managing App Data, consists of the program that almost all apps make use of to
process data. Android provides many ways to manage data, each being different and useful
for different purposes. Data can be stored in a file, a dictionary, or in a SQLite database.

Chapter 4, Presenting App Data, is only useful to a user if the user is able to view it. Android
has several means to present data, the most common being some form of list or collection.

Chapter 5, Communicating with the Outside World, explains communication, which is possibly
the most important part of interaction, both between humans and technology. Most Android
devices are built with Cellular, Wi-Fi, Bluetooth, or NFC communication technologies.

Preface

vi

Chapter 6, Using Background Tasks, is where the users expect mobile apps to be fluid,
dynamic, and most of all, responsive. Long-running tasks, even those running for a few
milliseconds, must be run in the background to keep an app responsive.

Chapter 7, Notifying Users, explains notifications, which draw the user's attention to let him/her
know something has happened. Android apps can present notifications in several ways, ranging
from a quick popup to a persistent message from a remote server.

Chapter 8, Interacting with Other Apps, explains that users have many apps installed on their
Android devices. By developing apps to be aware of other apps, our apps can communicate
and request data from these other apps.

Chapter 9, Presenting Multimedia, consists of an explanation of audio, video and photos,
the most vivid means to convey information to the user. By making use of Android's many
features, an app can present a user with dynamic images and sounds. This can be used to
provide a function or enhance other functionality.

Chapter 10, Responding to the User, explicates that a user can interact with Android apps in
many ways. The user can manipulate virtual objects using the device's touch screen, or trigger
the sensors by moving the device in the physical world.

Chapter 11, Connecting to Wearables, is one of the newest things with regard to technology;
it is the increase in wearable devices. Android Wear is a special version of Android that allows
device manufacturers to create wearables and permit typical Android apps to run on them.

Chapter 12, Adding In-App Billing, elucidates Android app developers can capitalize on the
fact that users are willing to pay for new or additional features in the app. This is especially
the case with mobile games that support purchasing virtual products or subscriptions.

Chapter 13, Publishing Apps, posits that once an Android app has been created, the next step
is to release it into the world. Google has created the Google Play store, which can be used
to distribute mobile and wearable apps. Before distribution, mobile apps can be compressed
and protected against malicious users.

What you need for this book
This book will provide you with the necessary knowledge and skills to be part of the mobile
development era using C#. Covering a wide range of recipes such as creating a simple
application and using device features effectively, it will be your companion during the
complete application development cycle.

Preface

vii

Starting from installing the necessary tools, you will be guided step-by-step on everything
you need to develop an application, ready to be deployed. You will learn best practices for
interacting with the device's hardware, such as the GPS, NFC, and Bluetooth. Furthermore,
you will be able to manage multimedia resources, such as photos and videos captured with
the device's camera, and much more!

Who this book is for
If you are a C#/.NET developer with no previous experience in Android development, or you
are a Java developer who wants to create complete Android applications in C# and deploy
them to the Play Store, then this book is ideal for you. Having no experience with Xamarin
will not hamper your interests.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code is set as follows:

[Activity(
 Label = "My App",
 MainLauncher = true,
 Icon = "@drawable/icon")]
public class MainActivity : Activity
{
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="buttonText">Hello World!</string>
</resources>

Preface

viii

Any command-line input or output is written as follows:

adb shell bmgr backup <android-package-name>

adb shell bmgr run

adb shell bmgr restore <android-package-name>

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "Click on the Download
Xamarin for Windows or Download Xamarin for OS X links, depending on the operating
system you are using."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Preface

ix

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

1

1
Working with

Xamarin.Android

In this chapter, we will cover the following recipes:

ff Creating Xamarin.Android projects

ff Creating user interface layouts

ff Creating an option menu

ff Supporting previous Android versions

ff Adding an action bar

ff Navigating with the action bar

ff Adding action bar action items

ff Creating contextual action mode menu

ff Sharing code with other platforms

Introduction
Xamarin.Android allows us to create native Android applications using the same UI controls we
would use in Java, with the flexibility of C#, the power of the .NET Base Class Library, and two
first-class IDEs.

Android development with Xamarin can be done on either Mac OS X or Windows, using either
Visual Studio or Xamarin Studio. This variety provides us with our choice of how we want to
work to create awesome apps.

Working with Xamarin.Android

2

This book will enable us, as developers, to create amazing, professional apps for the Android
ecosystem. This knowledge can be used on so many platforms, from TVs and smartphones to
watches, wearables, and many other Android-powered devices.

This chapter covers some of the most common tasks and steps to getting our app ready
for development. We will learn how to create a new app, add support for the old versions of
Android, and get started with the user interface used in all Android apps. We will also look
at just how powerful the Xamarin.Android platform is by looking how we can share code with
many other platforms, including Windows Phone, iOS, Windows, and Mac.

Creating Xamarin.Android projects
Before any apps can be created, the development environment has to be set up and the
software downloaded and installed.

Getting ready
Before we start creating any Android apps, we need to get our tools in place using the installer
from Xamarin.

1.	 Go to http://xamarin.com/download:

http://xamarin.com/download

Chapter 1

3

2.	 Enter your details for registration.

3.	 Click on the Download Xamarin for Windows or Download Xamarin for OS X links,
depending on the operating system you are using.

4.	 Once the download has completed, launch the installer, following the on-screen
instructions. Setup will continue to download and install all the required components:

www.allitebooks.com

http://www.allitebooks.org

Working with Xamarin.Android

4

5.	 Once the installer has finished, you should have a working installation of Xamarin
Studio, the IDE designed for cross-platform development.

How to do it...
Creating Xamarin.Android projects is very simple!

1.	 Open Xamarin Studio.

2.	 Select File, then New, and then Solution…:

Chapter 1

5

3.	 Select C#, then Android, and then Android Application:

4.	 Enter a name for your app, for example XamarinCookbook.

5.	 Click on OK.

6.	 We now have a fully functional Xamarin.Android app, which can be deployed to a
device or an emulator.

7.	 In the target device dropdown, select either an emulator or your device (if you have
attached an Android device).

8.	 Finally, click on Run and the app will install and launch.

How it works...
Xamarin.Android allows us to write native Android apps using .NET and C# or F#. Xamarin.
Android does not abstract or emulate any Android features. Rather, it is an alternate
programming language available for the development of Android apps.

Whatever can be done in Java, and much more, can be
done in C#.

Working with Xamarin.Android

6

Some of the benefits of using Xamarin.Android are found in the small things. For example, if we
are using Android Studio or Eclipse, we will have to make changes in AndroidManifest.xml.
If we are using Xamarin.Android, we can do much of this work by using the familiar attributes.

Various attributes can be used to provide the same functionality
that modifying the AndroidManifest.xml file would bring.

To add the <activity> element into the manifest with Xamarin.Android, we add the
[Activity] attribute on an activity as follows:

[Activity(
 Label = "My App",
 MainLauncher = true,
 Icon = "@drawable/icon")]
public class MainActivity : Activity
{
}

This will create a section in ApplicationManifest.xml at compile time, as highlighted in
the following code:

<activity android:label="My App"
 android:icon="@drawable/icon"
 android:name="mynamespace.MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

If we want to add permissions to our app, all we need to do is add this:

[assembly: UsesPermission(Manifest.Permission.Camera)]

There are many other attributes that help us build the manifest file, such as the [Service]
and [IntentFilter] attributes.

Chapter 1

7

Creating user interface layouts
All apps require some form of user interface for the user to input data or view the output
of information.

How to do it...
Creating an interface for our apps is very easy. There are two ways to create user interfaces,
with code or with XML:

ff If we are using code to create a button on the screen, we would do something similar
to this:
protected override void OnCreate(Bundle bundle)
{
 base.OnCreate(bundle);

 LinearLayout layout = new LinearLayout(this);
 layout.Orientation = Orientation.Vertical;

 Button button = new Button(this);
 button.Text = "Hello World!";
 layout.AddView(
 button,
 ViewGroup.LayoutParams.MatchParent,
 ViewGroup.LayoutParams.WrapContent);

 SetContentView(layout);
}

Both XML and code can be used to create equivalent UIs, but using XML, we have additional
capabilities:

ff The equivalent interface in XML would be created and stored in the layout
sub-folder of the Resources folder and reads as follows:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/layout"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">
 <Button
 android:id="@+id/button"

Working with Xamarin.Android

8

 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Hello World!" />
</LinearLayout>

Once we have created the interface in XML, we have to indicate to the activity which
layout file is to be used. This is done by invoking the SetContentView() method in
the OnCreate() method of the activity. For example, say we named our layout file
Main.axml:
protected override void OnCreate(Bundle bundle)
{
 base.OnCreate(bundle);

 // note the name "Main"
 SetContentView(Resource.Layout.Main);
}

Regardless of whether the layout was created in code or through XML files, we are able to
access the various controls similarly:

ff In order to access the control at runtime, we make use of the FindViewById
method on the activity or a view (use the View property of a fragment):
Button btn = FindViewById<Button>(Resource.Id.buttonId);

How it works...
Separating the UI from the code allows us to easily make changes for updates as well as to
support different screen configurations. The benefit of this is that it allows us to modify the UI
without updating the code. And part of this is the fact that the Android system can switch the
entire layout at runtime. Different layouts for different screen configurations can be selected
simply by changing the suffix of the layout folder name.

Fragments can be used in addition to layouts to create advanced
interfaces consisting of self-contained, reusable regions.

For example, if we want our Main layout to have the LinearLayout method to be vertical
in portrait orientation and horizontal in landscape orientation, all we have to do is create two
layout files with the same name in different folders as follows:

<project-root>/Resources/layout/<layout-file-name>.axml
<project-root>/Resources/layout-land/<layout-file-name>.axml

Chapter 1

9

There are many uses for the suffixes, and there are many different suffixes. Each of the
resource subfolders can have suffixes, including values, layout, menu, and drawable.
Each of the folders can have combinations of the suffixes for language or culture, screen
orientation, screen density, screen size, and platform version. More information can be
found online at https://developer.android.com/guide/topics/resources/
providing-resources.html#AlternativeResources.

The Android layout structure usually follows the structure of the type, with the element
name matching the type name and property names matching the attribute names. For
example, the Button type has a Text property; thus, the XML will have a <Button
android:text="..." /> element.

Although we can nest one or more layouts within another layout, we should strive to keep
our layout hierarchy as shallow as possible. The layout will be drawn faster if it has fewer
nested layouts.

A wide view hierarchy is better than a deep view hierarchy.

One of the most important attributes in layouts is the id attribute. This attribute is used to
uniquely identify a view within a tree. An ID need not be unique throughout the entire tree,
but it should be unique within the part of the tree that is being searched.

The ID need not be unique, but it's best to be completely
unique when possible so that the specific view can be found
in the hierarchy.

There's more...
Layout files are an easy way to create the UI separate from the code, and in the same way,
resource files can be used to separate the localizable text from the layout. This is achieved by
placing the strings into a resource file and then, referencing each the string from the layout.
Say we have a button that has some text:

<Button android:text="Hello World!" />

This value can be extracted and placed into a file under the values folder of the project
resources (<project-root>/Resources/values/<file-name>.xml):

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="buttonText">Hello World!</string>
</resources>

https://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources
https://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources

Working with Xamarin.Android

10

The layout file can then be updated to reference the value:

<Button android:text="@string/buttonText" />

Using this pattern, we are able to not only extract strings but any value for any attribute,
including layout information. An example would be to extract an element's padding and use a
larger padding for larger screens. These types of resources are placed in the values folder
with a suffix, such as -large for large screens.

See also
ff Chapter 2, Showing Views and Handling Fragments, Creating and using fragments

ff Providing Resources | Android Developers, https://developer.
android.com/guide/topics/resources/providing-resources.
html#AlternativeResources

Creating an options menu
Android provides the user with the ability to display a special type of menu that contains a set
of items that pertains to the entire app, instead of the current activity.

How to do it...
Adding an options menu to our app is very simple, and only two things are required: a menu
structure and code to connect the menu with the activity. In order to use a menu layout file,
a resource file needs to be added:

1.	 First, we create a new XML file with the name of the menu, for example Options.
xml, in the menu folder under the Resources folder.

2.	 Then, we create the menu structure in this file, for example, create three menu items:
refresh, settings, and about.
<?xml version="1.0" encoding="utf-8" ?>
<menu xmlns:android=
"http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/action_refresh"
 android:icon="@drawable/ic_action_refresh"
 android:title="@string/action_refresh" />
 <item
 android:id="@+id/action_settings"
 android:title="@string/action_settings" />
 <item
 android:id="@+id/action_about"
 android:title="@string/action_about"/>
</menu>

https://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources
https://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources
https://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources

Chapter 1

11

3.	 Once we have the structure, we override the OnCreateOptionsMenu() method
and inflate the resource:
public override bool OnCreateOptionsMenu(IMenu menu)
{
 MenuInflater.Inflate(Resource.Menu.Options, menu);
 return true;
}

4.	 If we want to respond to items being selected in that menu, all we need to do is
override the OnOptionsItemSelected() method:
public override bool OnOptionsItemSelected(IMenuItem item)
{
 if (item.ItemId == Resource.Id.action_refresh) {
 // do something here...
 return true; // we handled the event
 }
 return base.OnOptionsItemSelected(item);
}

How it works...
Menus, especially the options menu, are both simple and important to Android apps. The
Options menu contains items that are relevant to the current activity. They are important,
but they are often not commonly used and so don't have a dedicated space in the layout.

An Android screen with an options menu at the bottom

As with traditional layout files, using resource files for menus allows greater flexibility for the
many screen configurations as well as for simplifying customizations to menus.

Each menu item contains a unique ID, which allows the system to recognize the item when
the user selects it, and a title, which is used to present the item to the user. There are also
additional properties, the most commonly used of these being the icon. When using action
bars, this icon is used to display an image alongside, or in place of, the title.

Working with Xamarin.Android

12

Although not required, it is recommended that most
menu items include an icon.

The MenuInflater instance creates the menu structure from the resource file and inflates
it into the IMenu instance. All the menu items in the resource will be added as children to
the menu.

The OnCreateOptionsMenu() method should return true
if the menu is to be displayed. Returning false will result in the
menu not being displayed.

When we handle the menu item selections, the menu item that was selected is passed
into the OnOptionsItemSelected() method. If the event was handled, true should
be returned; otherwise, the system will keep on processing the event.

We can use any of the properties on the menu item, but one of the more commonly used ones
is ItemId, which contains the ID that was used in the resource file. This ID can be used to
determine which item was selected.

Supporting previous Android versions
As the Android operating system evolves, many new features are added and older devices are
often left behind.

How to do it...
In order to add the new features of the later versions of Android to the older versions of
Android, all we need to do is add a small package:

1.	 An Android app has three platform versions to be set. The first is the API features
that are available to code against. We set this to always be the latest in the Target
Framework dropdown of the project options.

2.	 The next version to set (via Minimum Android version) is the lowest version of the
OS that the app can be installed on. When using the support libraries, we can usually
target versions down to version 2.3.

3.	 Lastly, the Target Android version dropdown specifies how the app should behave
when installed on a later version of the OS. Typically, this should always be the latest
version so the app will always function as the user expects.

Chapter 1

13

If we want to add support for the new UI paradigm that uses fragments and action bars,
we need to install two of the Android support packages:

ff Create or open a project in Xamarin Studio.

1.	 Right-click on the project folder in the Solution Explorer list.

2.	 Select Add and then Add Packages….

3.	 In the Add Packages dialog that is displayed, search for Xamarin.Android.
Support.

4.	 Select both Xamarin Support Library v4 and Xamarin Support Library v7
AppCompat.

5.	 Click on Add Package.

There are several support library packages, each adding other types of forward compatibility,
but these two are the most commonly used.

1.	 Once the packages are installed, our activities can now inherit from the
AppCompatActivity type instead of the usual Activity type:
public class MyActivity : AppCompatActivity
{
}

2.	 Finally, we specify that the activity theme be one of the AppCompat derivatives using
the Theme property in the [Activity] attribute:
[Activity(..., Theme = "@style/Theme.AppCompat", ...)]

How it works...
As Android is developed, new features are being added and designs change. We want to
always provide the latest features to our users, but some users either haven't or can't upgrade
to the latest version of Android. By including the Android Support Libraries in our app, we can
make use of the new features, but still support the old versions.

Types from the Android Support Library are available to almost
all versions of Android currently in use.

Xamarin.Android provides three version numbers to specify what and how types can be used.
The target framework version specifies what types are available for consumption as well as
what toolset to use during compilation. This should be the latest as we always want to use the
latest tools.

www.allitebooks.com

http://www.allitebooks.org

Working with Xamarin.Android

14

However, this will make some types and members available to apps even if they aren't
actually available on the Android version that the user is using. For example, it will make the
ActionBar type available to apps running on Android version 2.3. If the user were to run the
app, it would probably crash.

In these instances, we can set the minimum Android version to be a version that supports
these types and members. But, this will then reduce the number of devices that we can install
our app on. This is why we use the support libraries; they allow the types to be used on most
versions of Android.

Setting the minimum Android version for an app will prevent the app
from being installed on devices with earlier versions of the OS.

The Android support libraries provide us with a type that we know we can use everywhere,
and then that base type manages the features to make sure they function as expected. For
example, we can use the ActionBar type on most versions of Android because the support
library made it available through the AppCompatActivity type.

Because the AppCompatActivity type is an adaptive extension for the traditional
Activity type, we have to use a different theme. This theme adjusts so that the
new look and feel of the UI gets carried all the way back to the old Android versions.

When using the AppCompatActivity type, the activity theme
must be one of the AppCompat theme variations.

There are a few differences when using the support library. With native support for the action
bar, the AppCompatActivity type has a property named ActionBar; however, in the
support library, the property is named SupportActionBar. This is just a property name
change, but the functionality is the same.

Sometimes, features have to be added to the existing types that are not in the support
libraries. In these cases, static methods are provided. The native support for custom views in
menu items includes a method named SetActionView:

menuItem.SetActionView(someView);

This method does not exist on the IMenuItem type for the older versions of Android, so we
make use of the static method on the MenuItemCompat type:

MenuItemCompat.SetActionView(menuItem, someView);

Chapter 1

15

There's more...
Besides using the Android Support Libraries to handle different versions, there is another way
to handle different versions at runtime. Android provides us with the version number of the
current operating system through the Build.VERSION type.

This type has a property, SdkInt, which we can use to detect the current version. It
represents the current API level of the version. Each version of Android has received a series
of updates and new features. For example, Android 4 has received numerous updates since
its initial release, new features being added each time.

Sometimes the support library cannot cover all the cases, and we will have to write specific
code for particular versions:

int apiLevel = (int)Build.VERSION.SdkInt;
if (Build.VERSION.SdkInt >= BuildVersionCodes.IceCreamSandwich) {
 // Android version 4.0 and above
} else {
 // Android versions below version 4.0
}

Although this can be done, it introduces spaghetti code and should be avoided. In addition to
different code, the app may behave differently on different versions, even if the support library
could have handled it. We will now have to manage these differences ourselves each time a
new version of Android is released.

Adding an action bar
Almost all apps require some form of commanding, usually being frequently used. As a result,
these commands should be presented in an easily consumed region of the screen, regardless
of differences in screen configuration.

How to do it...
Adding an action bar is very simple and does not need many changes to our app, even if they
are to run on the old versions of Android:

1.	 By default, on Android 4.0, apps will have an action bar. To access this, we can use
the ActionBar property on the Activity type:
ActionBar.Title = "Xamarin Cookbook";

Working with Xamarin.Android

16

To provide an action bar to previous versions of Android, we use the Android Support Libraries:

1.	 First, we need to install the Xamarin Support Library v7 AppCompat Component
or NuGet.

2.	 Then, we need to ensure our activities inherit from the AppCompatActivity type
instead of the usual Activity type:
public class MyActivity : AppCompatActivity
{
}

3.	 Next, we add the Theme property to the [Activity] attribute:
[Activity(..., Theme = "@style/Theme.AppCompat")]

4.	 Finally, if we need to access the ActionBar instance, it is available via the
SupportActionBar property on the activity:
SupportActionBar.Title = "Xamarin Cookbook";

How it works...
Certain commands are used very frequently in an app. These commands are often the
main set of actions available to the current app screen. Because these commands are so
important, they have a dedicated area in the app, often at the top of the screen. In a to-do list
app, this might be the action to add a new task. In a shopping app, this might be the option to
search for a product.

An Android screen with an action bar at the top

While adding an action bar on older Android versions, it is important to inherit it from the
AppCompatActivity type. This type includes all the logic required for including an action
bar in the app. It also provides many different methods and properties for accessing and
configuring the action bar. In newer versions of Android, all the features are included in the
Activity type.

Chapter 1

17

Although the functionality is the same, we do have to access the various pieces using
the support members when using the support libraries. An example would be to use the
SupportActionBar property instead of the ActionBar property. If we use the ActionBar
property, the app will crash on devices that don't natively support the ActionBar property.

In order to render the action bar, the activity needs to use a theme that contains a style for the
action bar or one that inherits from such a theme. For the older versions of Android, we can
use the AppCompat themes, such as Theme.AppCompat.

There's more...
With the release of Android version 5.0, Google introduced a new style of action bar. The new
Toolbar type performs the same function as the action bar but can be placed anywhere on the
screen. The action bar is always placed at the top of the screen, but toolbar is not restricted to
that location and can even be placed inside other layouts.

To make use of the Toolbar type, we can either use the native type, or we can use the
type found in the support libraries. Like any Android View, we can add the ToolBar type
to the layout:

<android.support.v7.widget.Toolbar
 android:id="@+id/my_toolbar"
 android:layout_width="match_parent"
 android:layout_height="?attr/actionBarSize"
 android:background="?attr/colorPrimary"
 android:elevation="4dp"
 android:theme="@style/ThemeOverlay.AppCompat.ActionBar"
 app:popupTheme="@style/ThemeOverlay.AppCompat.Light"/>

The difference is in how the activity is set up. First, as we are not going to be using the default
ActionBar property, we can use the Theme.AppCompat.NoActionBar theme. Then, we
have to let the activity know which view is the Toolbar type:

var toolbar = FindViewById<Toolbar>(Resource.Id.toolbar);
SetSupportActionBar(toolbar);

See also
ff The Supporting previous Android versions recipe

ff The Adding action bar action items recipe

Working with Xamarin.Android

18

Navigating with the action bar
The action bar is used to allow the user to navigate to a parent activity, as well as show the
user where they are in the app.

How to do it...
Navigation with the action bar is an upward navigation, rather than a backward navigation.
This navigation is very simple to add and involves only two steps. If we support versions of
Android versions below 4.1, we will make use of the support library.

1.	 First, we need to ensure that our source activity is accessible using a known name by
adding a [Register] attribute:
[Register("com.xamarincookbook.MainActivity")]
public class MainActivity : AppCompatActivity
{
}

2.	 Next, we let the system know which activity we want to navigate up to using a
[MetaData] attribute:
[MetaData(
 "android.support.PARENT_ACTIVITY",
 Value = "com.xamarincookbook.MainActivity")]
public class RecipeDetailsActivity : AppCompatActivity {
}

3.	 Then in the child activity, we let the action bar know that we want to allow
upward navigation:
SupportActionBar.SetDisplayHomeAsUpEnabled(true);

If the Android version is 4.1 and above, we use the native types and members:

1.	 First, we set the ParentActivity property on the [Activity] attribute:
[Activity (ParentActivity = typeof(MainActivity))]
public class RecipeDetailsActivity : Activity
{
}

2.	 Then, we let the child activity's action bar know that we want to allow upward navigation:
ActionBar.SetDisplayHomeAsUpEnabled(true);

Chapter 1

19

How it works...
The action bar can facilitate direct navigation in two ways: navigating up to the parent activity
and navigating down to a child activity. Navigating down is often done by adding action items
to the action bar.

Action bar automatically navigates up to the parent activity when the user taps the icon,
which is different from the traditional back navigation. The up navigation within an app is
based on the hierarchical relationships between activities, that is, navigation to the parent
activity. The back navigation is navigation back through the history of activities, in reverse
chronological order.

If an activity is the topmost one in an app and it does not have a
parent activity, it should not present an up button.

Sometimes the back navigation is the same as the up navigation. This happens when the
previously viewed screen is also the hierarchical parent of the current screen. However the up
navigation will keep the user in the app, but back navigation may return the user to the home
screen or another app.

When adding the [MetaData] attribute to the activity, we need to reference the final
compiled name of the parent activity. Xamarin.Android mangles the final name of the types to
avoid possible conflicts, so we have to let the compiler know exactly what name to use. We do
this using a [Register] attribute on the parent activity, and we then use the same value for
the value component of the metadata.

The action bar lets the user know where they are in the app by using the action bar's title,
which is usually the current activity's label. This can be customized by assigning a new
string value to the Title property on the ActionBar instance.

There's more...
Sometimes the up navigation will take the user to different parent activities, depending on
how the user arrived at the current activity. In these cases, we override several members
in our activity. If our app is not going to have the activity instantiated on any other apps, we
only need to override the SupportParentActivityIntent or ParentActivityIntent
properties:

public override Intent SupportParentActivityIntent {
 get {return new Intent(this, typeof(MainActivity));}
}

If our activity is going to be used by other apps, we also need to override the
OnCreateNavigateUpTaskStack() or OnCreateSupportNavigateUpTaskStack()
method.

Working with Xamarin.Android

20

See also
ff The Adding an action bar recipe

Adding action bar action items
The fundamental purpose of an action bar, besides navigation, is to present the user with a
set of actions that can be performed.

How to do it...
By simply using the action bar, all the action items are added to the overflow:

1.	 The XML for ActionBar items is exactly the same as the options menu:
<menu ... >
 <item
 android:id="@+id/action_refresh"
 android:icon="@drawable/ic_action_refresh"
 android:title="@string/action_refresh"/>
</menu>

However, we can customize what items are displayed, and how they are displayed:

1.	 To add action items with images to the actual ActionBar property, as well as more
complex items, all that is needed is an attribute in the XML, showAsAction:
<menu ... xmlns:app="http://schemas.android.com/apk/res-auto">
 <item ... app:showAsAction="ifRoom"/>
</menu>

2.	 If we wish to add custom views, such as a search box, to the action bar, we make use
of the actionViewClass attribute:
<menu ... xmlns:app="http://schemas.android.com/apk/res-auto">
 <item ...
 app:actionViewClass="android.support.v7.widget.SearchView"/>
</menu>

3.	 If the view is in a layout resource file, we use the actionLayout attribute:
<menu ... xmlns:app="http://schemas.android.com/apk/res-auto">
 <item ... app:actionLayout="@layout/action_rating"/>
</menu>

Chapter 1

21

4.	 Sometimes, we may wish to only display the icon initially and then, when the user
taps the icon, expand the item to display the action view:
<menu ... xmlns:app="http://schemas.android.com/apk/res-auto">
 <item ... app:showAsAction="ifRoom|collapseActionView"/>
</menu>

How it works...
Action item buttons are just traditional options menu items but are optionally always visible on
the action bar.

The underlying logic to handle item selections is the same as that for the traditional options
menu. No change is required to existing code inside the OnOptionsItemSelected() method.

The value of the showAsAction attribute can be ifRoom, never, or always. This value can
optionally be combined, using a pipe, with withText and/or collapseActionView.

Creating contextual action mode menu
Some controls or regions in the user interface allow for additional actions to be performed.
However, due to limited screen space, these actions need to be hidden until the user
requests them.

How to do it...
1.	 The first thing that needs to be done is to let the activity or fragment know that we

want to display a popup menu when the user long-taps on a view:
this.RegisterForContextMenu(someView);

2.	 Then, following the pattern of the options menu, we create or inflate the menu items
in the OnCreateContextMenu() method:
public override void OnCreateContextMenu(
 IContextMenu menu,
 View view,
 IContextMenuContextMenuInfo menuInfo) {
 base.OnCreateContextMenu(menu, view, menuInfo);
 MenuInflater.Inflate(Resource.Menu.Main_Options, menu);
}

3.	 Lastly, we can respond to item selections, as we did with the options menu, in the
OnContextItemSelected() method:
public override bool OnContextItemSelected(IMenuItem item) {
 if (item.ItemId == Resource.Id.action_refresh) {

Working with Xamarin.Android

22

 // do something here...
 return true;
 }
 return base.OnContextItemSelected(item);
}

How it works...
We can provide a context menu for any view, but they are most often used for items in
a list, grid, or other view collection. One way to show a contextual menu is to use a floating
or pop-up menu, and it is the recommended way for apps supporting versions of Android
below version 3.0.

If the views or list view is not registered with its activity or
fragment, the context menu will not be displayed, even if
the methods are implemented.

When the user long-taps on a view that has been registered for a context menu,
the activity or fragment attempts to display a menu that is created or inflated in the
OnCreateContextMenu() method.

After the user selects an item from the contextual menu, the OnContextItemSelected()
method on the activity or fragment is invoked. In this method, we initiate the desired operation
that was selected. We can identify the selected item using the ItemId property.

There's more...
Using the IContextMenu instance that is passed into the OnCreateContextMenu()
method, we can change or remove the header of the popup menu. The header could
be a combination of an icon and/or text or a separate custom view:

menu.SetHeaderTitle("My Context Menu Heading");

See also
ff The Creating an options menu recipe

ff The Creating contextual action mode menu recipe

Creating contextual action mode menus
The action bar provides the user with a set of actions; however, these actions are usually
just the most commonly used. Sometimes, the context of the app changes, so the presented
actions need to adjust to what is commonly used in the new context.

Chapter 1

23

How to do it...
There are a few steps to implementing a contextual action bar:

1.	 The first step is to implement the ActionMode.ICallback interface. This
interface can either be implemented in a new, separate class or on the actual
activity or fragment:
public class MainActivity :
 AppCompatActivity, ActionMode.ICallback {
 public bool OnCreateActionMode(
 ActionMode mode, IMenu menu) {
 }
 public bool OnPrepareActionMode(
 ActionMode mode, IMenu menu) {
 }
 public bool OnActionItemClicked(
 ActionMode mode,IMenuItem item) {
 }
 public void OnDestroyActionMode(ActionMode mode) {
 }
}

2.	 In the OnCreateActionMode() method, we create the menu as we would any
options menu:
public bool OnCreateActionMode(ActionMode mode, IMenu menu)
{
 mode.MenuInflater.Inflate(Resource.Menu.options, menu);
 return true;
}

3.	 Because we are not going to be updating the action mode once displayed, we can
return false in the OnPrepareActionMode() method:
public bool OnPrepareActionMode(
 ActionMode mode, IMenu menu) {
 return false;
}

4.	 We handle any item selections in the OnActionItemClicked() method:
public bool OnActionItemClicked(
 ActionMode mode,IMenuItem item) {
 if (item.ItemId == Resource.Id.action_refresh) {
 // do something here...
 return true;
 }
 return false;
}

Working with Xamarin.Android

24

5.	 We don't need to do anything when we leave action mode, so we leave the
OnDestroyActionMode() method empty:
public void OnDestroyActionMode(ActionMode mode) {
}

6.	 An instance of ActionMode.ICallback is passed to the
StartSupportActionMode() or StartActionMode() methods:
someView.LongClick += (sender, e) => {
 if (actionMode == null) {
 // start the action mode
 actionMode = StartSupportActionMode(this);
 someView.Selected = true;
 }
};

How it works...
The contextual action mode menu is actually a separate action bar-like UI element that
overlays but does not replace the actual action bar.

Contextual menu items do not need to have the showAsAction
attribute set in order to be displayed (it is ignored); by default,
everything is visible.

This menu provides a set of commands that can be displayed based on some context, usually
after a selection of an item on the screen. Selections are usually done after a long-tap, similar
to traditional context menus; however, instead of a popup, the action bar is transformed. This
provides a consistent interface without disrupting the flow of the task.

In order to enter action mode, we invoke the StartSupportActionMode() method. If we
are not using the support libraries, we invoke the StartActionMode() method. This will
return an ActionMode instance, which can then be used to customize the appearance of the
action mode overlay.

When entering action mode, the OnCreateActionMode() method is invoked. Here we
create the various action items that will be presented on the actions bar.

The OnPrepareActionMode() method is invoked whenever the action mode changes or
is invalidated. This method allows us to optionally modify the UI. We must return true if any
changes were made and false if nothing was modified.

When the user selects an action item, the OnActionItemClicked() method will be
invoked. The current action mode and the selected item are provided so that we can
perform the task.

Chapter 1

25

There's more...
If we are using lists and supporting Android 3.0 and above, there is an extra feature that
we can make use of: multiple selections. There is currently no native support for a similar
functionality on older versions of Android; however, there is no reason why we can't use this
feature on newer Android versions.

Implementing this requires a few extra steps but is actually an extension of the normal
contextual action mode. Instead of implementing the ActionMode.ICallback interface,
implement the AbsListView.IMultiChoiceModeListener interface (which actually
derives from ActionMode.ICallback). This adds one extra method:

public void OnItemCheckedStateChanged(
 ActionMode mode, int position, long id, bool isChecked) {
 // handle item selections and deselections
}

And finally, we let the list view know about the multiselect availability by passing the instance.
This is done instead of registering the context menu for floating menus:

listView.ChoiceMode = ChoiceMode.MultipleModal;
listView.SetMultiChoiceModeListener(this);

See also
ff The Adding action bar action items recipe

ff The Creating a contextual menu recipe

Sharing code with other platforms
One of the major reasons for using Xamarin.Android is the use of C# as the programming
language. But this is not the only benefit as that same C# code can be shared with other
platforms, such as iOS, Windows, or Mac OS.

How to do it...
First, we are going to create the project structure that we are going to use to create our
cross-platform app. In this example, we will only target Xamarin.Android and the Console,
but extra platforms can be added.

1.	 Open Xamarin Studio or Visual Studio and create an empty solution. For example, we
are going to call this one XamarinCodeSharing.

Working with Xamarin.Android

26

2.	 In this solution, create three projects:

�� An Android project named XamarinCodeSharing.Droid

�� A console application named XamarinCodeSharing.Desktop

�� A portable class library named XamarinCodeSharing.Core

3.	 Open the project settings for XamarinCodeSharing.Core. If you are using Xamarin
Studio, navigate to Build | General. Or if you are using Visual Studio, navigate to
Library and then click on Change under the Targeting section.

4.	 Note the various platform options available, including iOS, Android, Windows, and
several others, some with version options. Ensure that the .NET4.5 and the Xamarin.
Android boxes are selected as these are the platforms we are going to need.

5.	 To make things easier, we are going to use a NuGet package, Microsoft.Net.
Http, which simplifies the process of using HTTP and REST services. Install this
package into each of the three projects.

6.	 Add a project reference from XamarinCodeSharing.Droid
to XamarinCodeSharing.Core and a project reference from
XamarinCodeSharing.Desktop to XamarinCodeSharing.Core.

7.	 Now that we have our project structure in place, we are going to write some code
that will access the web service, and then see how that code is reused without
modification or even recompilation. What we are going to do next all takes place in
the XamarinCodeSharing.Core project.

8.	 To make things easy, we can just delete the file that the IDE created. Xamarin
Studio created a file named MyClass.cs, and Visual Studio created a file
named Class1.cs.

9.	 We can now create a new class named BlogItem, which will represent the actual
blog entries. This bit is very simple and is just a set of properties:
using System;

namespace XamarinCodeSharing.Core
{
 public class BlogItem
 {
 public string Title { get; set; }
 public string Link { get; set; }
 public DateTime PublishDate { get; set; }
 public string Description { get; set; }
 }
}

Chapter 1

27

10.	 In the same project, create another new class named XamarinBlog, which both
represents the blog as well as provides a means to download the blog:
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Net.Http;
using System.Threading.Tasks;
using System.Xml.Linq;
using System.Net;

namespace XamarinCodeSharing.Core {
 public class XamarinBlog {
 private const string BlogUrl =
 "http://blog.xamarin.com/feed";

 // blog metadata properties
 public string Title { get; set; }
 public string Link { get; set; }
 public List<BlogItem> Items { get; private set; }

 // Download the feed, parse it and return a blog object
 public static async Task<XamarinBlog> Download() {
 HttpClient client = new HttpClient();
 HttpResponseMessage response = await
 client.GetAsync(BlogUrl);

 // if all went well, read the feed, otherwise fail
 if(response.IsSuccessStatusCode) {
 return await ParseResponse(response.Content);
 }
 else {
 throw new Exception("There was a problem.");
 }
 }

 // Read the response out of the content and
 // create objects
 private static async Task<XamarinBlog>ParseResponse(
 HttpContent content) {
 XamarinBlog blog = new XamarinBlog();

 using(Stream stream = await
 content.ReadAsStreamAsync()) {

Working with Xamarin.Android

28

 XDocument doc = XDocument.Load(stream);
 XElement channel = doc.Root.Element("channel");

 // load the blog metadata out of the xml
 blog.Title = WebUtility.HtmlDecode(
 channel.Element("title").Value);
 blog.Link = WebUtility.HtmlDecode(
 channel.Element("link").Value);

 // load the blog items out of the xml
 var items = from item in channel.Elements("item")
 select new BlogItem {
 Title = WebUtility.HtmlDecode(
 item.Element("title").Value),
 Link = WebUtility.HtmlDecode(
 item.Element("link").Value),
 PublishDate = DateTime.Parse(
 WebUtility.HtmlDecode(
 item.Element("pubDate").Value)),
 Description = WebUtility.HtmlDecode(
 item.Element("description").Value),
 };
 blog.Items = items.ToList();
 }

 return blog;
 }
 }
}

There are several important points to note here. We are using the async and
await keywords to make asynchronous code easier to read, something which is not
available in Java. Another feature is LINQ to XML to make working with XML easier to
parse, another feature not available to Java. And finally, WebUtility.HtmlDecode
is used as all the data is HTML encoded inside the XML.

Chapter 1

29

Now that we have created the main logic of the app, we can look at those native
implementations. First, we will create the Console app that will run on almost any
desktop operating system, such as Windows, Mac OS, and most of the flavors of Linux:

1.	 To do this, we can just replace the code in the Program.cs file with the following:
using System;
using XamarinCodeSharing.Core;
using System.Threading.Tasks;

namespace XamarinCodeSharing.Desktop {
 class MainClass {
 public static void Main(string[] args) {
 GetBlogItems().Wait();

 Console.WriteLine("Press any key to quit.");
 Console.ReadKey();
 }

 private static async Task GetBlogItems() {
 Console.WriteLine("Downloading blog...");
 XamarinBlog blog = await XamarinBlog.Download();
 Console.WriteLine("Download finished.");
 Console.WriteLine();

 Console.WriteLine("{0} ({1} items)",
 blog.Title, blog.Items.Count);

 foreach (var item in blog.Items) {
 Console.WriteLine(item.Title);
 Console.WriteLine(
 item.PublishDate.ToString("d MMMM yyyy"));
 Console.WriteLine(item.Description);
 Console.WriteLine();
 }
 }
 }
}

Working with Xamarin.Android

30

If we run the desktop project now, the console will start up, download the blog feed, and then
display each entry along with a short summary. Last but not least, we want to get that mobile
version going. And what better platform to support first than Android?

1.	 Switching to the Xamarin.Android project, we can replace the code in the
MainActivity.cs file with the following:
using System.Collections.Generic;
using System.Linq;
using Android.App;
using Android.OS;
using Android.Runtime;
using Android.Widget;
using XamarinCodeSharing.Core;

namespace XamarinCodeSharing.Droid {
 [Activity(
 Label = "XamarinCodeSharing.Droid",
 MainLauncher = true,
 Icon = "@drawable/icon")]
 public class MainActivity : ListActivity {
 private const string TitleKey = "title";
 private const string SubtitleKey = "subtitle";

 protected async override void OnCreate(Bundle bundle) {
 base.OnCreate(bundle);

 var progress = new ProgressDialog(this);
 progress.SetTitle("Downloading blog...");
 progress.SetMessage(
 "Please wait while we download the Xamarin
 blog...");
 progress.Show();

 XamarinBlog blog = await XamarinBlog.Download();
 var items = from item in blog.Items
 select new JavaDictionary<string, object> {
 { TitleKey, item.Title },
 { SubtitleKey, item.Description }
 };

 ListAdapter = new SimpleAdapter(
 this,
 items.Cast<IDictionary<string, object>>().ToList(),
 Android.Resource.Layout.SimpleListItem2,

Chapter 1

31

 new []{ TitleKey, SubtitleKey },
 new []{ Android.Resource.Id.Text1,
 Android.Resource.Id.Text2 });

 progress.Dismiss();
 progress.Dispose();
 }
 }
}

If we run this Android app now, we shall get that app that downloads the latest Xamarin blog
posts and displays them in a neat list.

How it works...
Portable class libraries is one of the most important aspects of code reuse. Although there
are many different ways to reuse code, such as file linking or shared projects, none can match
the reliability and ease of simply reusing the compiled assembly. This assembly can be tested
and verified and then used and reused without fear of problems arising on different platforms.

Why? It is because each platform in each portable class library profile promises to support all
the features, for all platforms, in that profile, and all those features function exactly the same.

Using Xamarin.Android, we now have all the features of the .NET runtime available, the same
runtime that runs on almost all devices. Along with that same runtime, we can now build
libraries that run on that runtime, and those libraries will run on all platforms that have the
same runtime. Those platforms include iOS, Android, Windows Phone, Mac OS, Windows,
Linux, and even more, such as PlayStation!

Although we can never achieve 100 percent code reuse, as each platform has differences
(especially in the user interface), much of the code lives below the surface and can be reused.
And using the commonality of the runtime and languages, we can create abstractions that can
work around the platform differences, resulting in even more code reuse.

Although we only covered two platforms in this example, we can already see that it takes more
code to work with the data than it does to display it. Adding extra platforms, such as Windows
Phone and iOS, will result in this ultra-simple example app being able to support the major
mobile operating systems, with the only difference being the UI.

33

2
Showing Views and

Handling Fragments

In this chapter, we will cover the following recipes:

ff Using custom views with layouts

ff Creating and using fragments

ff Preserving view and fragment state

ff Navigating between fragments

ff Fragments and the action bar

ff Animating fragment navigation

ff Animating view and object properties

ff Animating views on the UI

ff Adding a navigation drawer with fragments

ff Applying local styles and global themes

Introduction
All apps have one thing in common: they all have some sort of user interface. Whether it is a
rich set of controls or just a simple notification that something happened, all apps present the
user with a means to consume information or provide data.

Users desire an interface that is easy to use and beautiful to look at. Often, the simplest way
to improve the interface is to add a transition between states. This provides a way to move the
user from one state to another, but without a sharp and sudden change.

www.allitebooks.com

http://www.allitebooks.org

Showing Views and Handling Fragments

34

In order to move the user between states or allow the user to initiate such a movement, the
app needs to provide a set of actions or navigation points. As navigation through the app is
often not the primary function of the app, these controls should be placed within easy reach
but should not obstruct the real functionality.

Animations and transitions do not change the functionality of an app, but they do make the
user experience more enjoyable. Navigation is often the most jarring change, and transitions
provide a smoother experience.

Not only do transitions improve navigation, but designing the user interface for navigation also
makes the experience better. Taking advantage of new and popular navigation concepts, the
app can become a pleasure to use.

Using custom views with layouts
One of the most important parts is the user interface, as it is the most visible part of an app.
When we create apps for Android devices, sometimes we may need to create custom views.

How to do it...
Creating a new UI control involves creating a new type, inheriting either directly or indirectly
from one of the View types. Here's how it's done:

1.	 If we want to create more advanced button control, we must create a new type
inheriting from the Button type. We also need to ensure that the namespace
is user friendly as it will be used in the layout files:
namespace XamarinCookbook.Views {
 public class TimedButton : Button {
 }
}

2.	 Now we can implement the functionality that this button provides:
public int Interval { get; set; }

private async void OnClicked(object sender, EventArgs e) {
 // disable the button for several seconds
 if (Interval > 0) {
 Enabled = false;
 await Task.Delay(Interval * 1000);
 Enabled = true;
 }
}

Chapter 2

35

3.	 As this control can be created in code, we must implement the constructor that
accepts a Context instance:
public TimedButton(Context context)
: base(context) {
 Interval = 5; // default
 Click += OnClicked;
}

4.	 Additionally, this control will be inflated from layout resource files, so we implement
the constructor that accepts an IAttributeSet instance:
public TimedButton(Context context, IAttributeSet attrs)
: base(context, attrs) {
 Interval = 5; // default
 Click += OnClicked;
}

To make use of the view in our UI layouts, we can either instantiate the control in code or we
can add them to our layout resource files.

1.	 Like any other control, we can instantiate the custom control:
var button = new TimedButton(this);

2.	 Similarly, we can add our custom control to layout resource files as well:
<xamarincookbook.views.TimedButton
 android:id="@+id/myButton"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello"/>

Although we can add properties to custom controls, we cannot set them in the layout resource
files. To do this, we must create an attributes file:

1.	 To set attributes in the XML files, we need to declare them by adding a value
resource (Resources/values/TimedButtonAttr.xml):
<?xml version="1.0" encoding="UTF-8" ?>
<resources>
 <declare-styleable name="TimedButton">
 <attr name="interval" format="integer" />
 </declare-styleable>
</resources>

Showing Views and Handling Fragments

36

2.	 Once we have this resource file, we need our custom button to actually use the values
specified in the XML attributes, and this just requires an update to the constructor
with the IAttributeSet parameter:
public TimedButton(Context context, IAttributeSet attrs)
: base(context, attrs) {
 // get our custom style
 TypedArray styled = context.Theme.ObtainStyledAttributes(
 attrs, Resource.Styleable.TimedButton, 0, 0);

 try {
 // set the property from the attribute
 Interval = styled.GetInt(
 Resource.Styleable.TimedButton_interval, 5);
 } finally {
 // clean up
 styled.Recycle();
 styled.Dispose();
 }

 Click += OnClicked;
}

3.	 Finally, we can add the custom attributes to the view instance in our layout
resource file:
<xamarincookbook.views.TimedButton
 ...
 xmlns:app="http://schemas.android.com/apk/res-auto"
 app:interval="3"/>

How it works...
Creating a custom view is no different from subclassing an existing type and adding
functionality. However, to use this new type, we have to add support for it so that it can
be used in layouts that will be inflated. This is just an extra, optional constructor, but it is
recommended to add an attributes resource file.

Using this view in a layout resource is no different from adding the standard Android views to
the layout. But we can see that we have to specify the full namespace of the button, and this
is lowercase. This is exactly the same as adding views from the Android support libraries.

Android requires that views provide the full namespace, in
lowercase, in the layout resource files. The type name should
keep original casing.

Chapter 2

37

All Android views require at least a constructor that accepts an instance of Context. This
allows the view to properly handle the various lifecycle events.

The additional constructor takes the usual Context property, but additionally, it also takes
the IAttributeSet parameter. This is used by the layout inflator to pass the attributes from
the XML to our custom view, which in turn we can use to initialize any members.

The attributes are declared in a resource, <declare-styleable>, so that they can be used
in code to retrieve the attribute values. This element will contain all the <attr> elements that
represent each available XML attribute that can be used in the layout.

Custom attributes are not prefixed with android: but with a local, app-specific namespace
from http://schemas.android.com/apk/res-auto.

When the view is inflated from an XML layout, all the attributes from that element are
passed to the constructor via IAttributeSet. Although it's possible to read values from
IAttributeSet directly, doing so does not allow resource values to be resolved, such as
when using string resources.

We can obtain the resolved and styled attributes from the result of the
ObtainStyledAttributes() method on the Context themes. This method returns
a TypedArray object, from which we can easily retrieve the values that we can use to
initialize members.

The TypedArray objects are a shared resource and must be
recycled after use.

There's more...
Sometimes we wish to create a new view that is actually just a collection of other views, with
some relationship between them. This is very easily done by simply subclassing a layout type,
such as LinearLayout, instead of a button. This allows us to add subviews that will make up
our new compound view.

See also
ff Preserving view and fragment state

http://schemas.android.com/apk/res-auto

Showing Views and Handling Fragments

38

Creating and using fragments
Sometimes normal layouts aren't dynamic enough or we may have to reuse sections of the UI
and its related code.

Getting ready
To add fragments to our app we need to be targeting Android version 3.0 and above; for versions
below that, we need to have installed the Xamarin.Android.Support.v4 package.

How to do it...
In order to make use of fragments in our apps, we need to create a new fragment type. Then,
either in the layout or in the code, we can insert the fragments into their appropriate places in
the UI. Let's take a look at the following steps:

1.	 To make a master-detail app, we need a menu or list of items to select. For the
menu fragment we are going to inherit from ListFragment, which is very similar
to ListActivity, and set the ListAdapter property:
public class MenuFragment : ListFragment {
 public override void OnStart() {
 base.OnStart();

 ListAdapter = new ArrayAdapter(
 Activity,
 Android.Resource.Layout.SimpleListItem1,
 new [] {"First", "Second", "Third", "Fourth"});
 }
}

2.	 The other part of a master-detail app is the details. This fragment is going to be a
normal fragment, and we will use a separate layout resource to define the UI structure:

1.	 The UI for this fragment can be any view hierarchy. Here it is defined in a
layout resource file named ContentFragment.axml:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:id="@+id/textView"
 android:text="Select an item to the left..."

Chapter 2

39

 android:gravity="center"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 style="@android:style/TextAppearance.Large" />
</LinearLayout>

2.	 The code for the content fragment inflates the resource in the
OnCreateView() method:
public class ContentFragment : Fragment {
 public override View OnCreateView(
 LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 return inflater.Inflate(
 Resource.Layout.ContentFragment, container, false);
 }
}

3.	 If we are going to update the UI from outside the fragment, we need to make
sure that the fragment provides a means to do so:
public void Update(string text) {
 var textView = Activity.FindViewById<TextView> (
 Resource.Id.textView);
 textView.Text = string.Format(
 "You have selected '{0}'...", text);
}

3.	 Now that our fragments are complete, we can start creating the app that will be using
these fragments:

1.	 We are going to create a layout for the main activity in a file named Main.
axml. The layout will display both fragments side by side, by setting the
orientation attribute to horizontal:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <fragment
 android:name="xamarincookbook.MenuFragment"
 android:id="@+id/menu"
 android:layout_weight="2"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

Showing Views and Handling Fragments

40

 <fragment
 android:name="xamarincookbook.ContentFragment"
 android:id="@+id/content"
 android:layout_weight="1"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
</LinearLayout>

2.	 We now have to set up the activity to load the layout using the
SetContentView() method:
protected override void OnCreate(Bundle bundle) {
 base.OnCreate(bundle);
 SetContentView(Resource.Layout.Main);
}

4.	 Once we have the basic structure set up for both the fragments and the activity, we
add the ability for the menu fragment to communicate with the parent activity, and in
turn, the content fragment. Let's take a look at the following steps:

1.	 The menu fragment only does one thing—it lets the activity know that the
user has selected an item—so we create an interface that represents a
contract between the fragment and the activity:
public interface IMenuSelected {
 void OnMenuSelected(string text);
}

2.	 Next, we ensure that the activity implements the IMenuSelected interface
and its OnMenuSelected() method. This method then retrieves the content
fragment and updates it. Let's take a look at the following code snippet:
public void OnMenuSelected(string text) {
 var contentFragment =
 SupportFragmentManager.FindFragmentById(
 Resource.Id.content) as ContentFragment;
 contentFragment.Update(text);
}

3.	 In the menu fragment, we need to get hold of the activity that we will be
communicating with. This can be done by overriding the OnAttach()
method of the menu fragment and keeping a reference to the parent activity:
private IMenuSelected menuSelected;

public override void OnAttach(Activity activity) {
 base.OnAttach(activity);
 menuSelected = activity as IMenuSelected;
}

Chapter 2

41

4.	 Then, to let the activity know when the user selects a menu item, we
subscribe to the list's select event and invoke the OnMenuSelected()
method of the activity:
public override void OnStart() {
 // ...
 ListView.ItemClick += (sender, e) => {
 if (menuSelected != null) {
 menuSelected.OnMenuSelected(items[e.Position]);
 }
 };
}

How it works...
A Fragment element represents a behaviour or section of the user interface in an activity
that can be reused across multiple activities and combined with other fragments. Fragments
can be viewed as a subactivity that is semi-self-contained and has its own lifecycle.

Fragments allow us to create more dynamic and more flexible interfaces. They can be
swapped and moved at runtime, without having to manage complex view hierarchies. They
should be designed as a modular component, without directly manipulating the activity or
other fragments. This makes them easier to reuse and maintain.

The activity containing the fragments needs to inherit from
AppCompatActivity when supporting Android versions below version 3.0.

As a fragment is usually used as part of the user interface with a layout, the interface can be
inflated or created in the OnCreateView() method of the fragment. This method should
return the view that is the root of the fragment's view hierarchy.

A subclass of ListFragment does not need to implement the
OnCreateView() method as it automatically has a ListView instance.

The OnCreateView() method has arguments that provide access to the view that is going
to be used as a parent as well as the Bundle type that contains saved data from the previous
instance of this fragment.

Fragments may be destroyed and re-created during the
lifetime of a single activity.

Showing Views and Handling Fragments

42

Fragments can be added to the activity either with code using fragment transactions or by
using the XML layout. In this recipe, we will look at the XML. Later, we will see how to use
code for dynamic layouts. This is very similar to adding traditional views, except we use the
<fragment> element and specify the type name in the name XML attribute, instead of using
the type name as the element name.

We can access fragments in the view hierarchy by making use of the
FragmentManager instance and its FindFragmentById() method.
If a fragment is added to an activity layout by defining the fragment in the
layout XML file, the fragment cannot be removed at runtime.

If a fragment wishes to communicate with the activity, an interface is used. This interface is
provided by the fragment and implemented by the activity. The fragment can then capture
a reference to the activity in the OnAttach() method—which will have the implemented
interface—and use that for communication. The fragment can then verify that the activity
implements the interface and make a decision on what to do with it. Communication is
performed by calling methods on the interface from the fragment.

Communication between fragments is done via the
activity and should not be done directly.

See also
ff Preserving view and fragment state

ff Navigation between fragments

Preserving view and fragment state
It is important to save the state of a view, fragment, or activity. Each has a limited lifetime and
may be stopped at any point, such as when the user closes the activity, navigates away from,
or even rotates the device.

How to do it...
In order to preserve the state across certain actions, such as when the user switches
between apps, we should save the state to the instance state parcel. Let's take a look
at the following steps:

1.	 Saving state for a view is done by inheriting from a type that implements the
IParcelable interface, such as BaseSavedState:
private class InstanceState : BaseSavedState {

Chapter 2

43

 public InstanceState(IParcelable superState)
 : base(superState) {
 }

 public InstanceState(Parcel parcel)
 : base(parcel) {
 Interval = parcel.ReadInt();
 }

 public int Interval { get; set; }

 public override void WriteToParcel(
 Parcel dest, ParcelableWriteFlags flags) {
 base.WriteToParcel(dest, flags);
 dest.WriteInt(Interval);
 }
}

2.	 Now, Android needs a way to construct the instance state. This is achieved by
providing an implementation of the IParcelableCreator instance:
private class InstanceStateCreator:
 Java.Lang.Object, IParcelableCreator {
 public Java.Lang.Object CreateFromParcel(
 Parcel source) {
 return new InstanceState(source);
 }
 public Java.Lang.Object[] NewArray(int size) {
 return new InstanceState[size];
 }
 }

3.	 Finally, we need to connect IParcelableCreator with IParcelable by creating
a special method in the IParcelable implementation:
[ExportField("CREATOR")]
private static InstanceStateCreator InitializeCreator() {
 return new InstanceStateCreator();
}

4.	 Next, to actually save the data, we need to provide the data in the
OnSaveInstanceState() method of the view:
public override IParcelable OnSaveInstanceState() {
 IParcelable state = base.OnSaveInstanceState();
 InstanceState instance = new InstanceState(state) {
 Interval = Interval

Showing Views and Handling Fragments

44

 };
 return instance;
}

5.	 To start the restore process, we override the OnRestoreInstanceState() method
and read the data out:
public override void OnRestoreInstanceState(
 IParcelable state) {
 InstanceState instance = state as InstanceState;
 if (instance == null) {
 base.OnRestoreInstanceState(state);
 }
 else {
 base.OnRestoreInstanceState(instance.SuperState);
 Interval = instance.Interval;
 }
 }

Preserving state for a fragment or an activity is much easier and can be done simply by saving
and restoring the values to the Bundle object that is passed around. Let's take a look at the
following steps:

1.	 Saving state happens in the OnSaveInstanceState() method:
public override void OnSaveInstanceState(Bundle outState) {
 base.OnSaveInstanceState(outState);
 outState.PutString("KEY", "VALUE");
}

2.	 To restore state, we can make use of the OnCreate() method, and additionally (for
fragments only), the OnCreateView() method:
public override void OnCreate(Bundle savedInstanceState) {
 base.OnCreate(savedInstanceState);
 if (savedInstanceState != null) {
 string value = savedInstanceState.GetString("KEY");
 }
}

The Bundle type may be null inside the OnCreate() and
OnCreateView() methods, so it needs to be checked first.

Chapter 2

45

3.	 For activities only, there is also the OnRestoreInstanceState() method:
protected override void OnRestoreInstanceState(
 Bundle savedInstanceState) {
 base.OnRestoreInstanceState(savedInstanceState);
 string value = savedInstanceState.GetString("KEY");
 }

The OnRestoreInstanceState() method of the activity is
only called when there is a bundle object to restore, so a null
check isn't necessary.

How it works...
Views are frequently created and destroyed in Android, and often we have to save the current
state of the view between these operations. One of the classic examples is the instance of the
device rotation; the entire activity is destroyed along with the fragments and views. Android
usually takes care of this for us, but sometimes, especially in the case of custom views, we
need to do this ourselves.

Views store their state in a Parcel object, and we can let Android know what to store in that
Parcel object by giving it an object that contains instructions on what to store and what to
retrieve. This object is an instance of IParcelable.

Instead of implementing all the bits from the IParcelable interface, we'd rather inherit from
BaseSavedSate, which has most features already implemented, allowing us to only have to
implement two members:

ff The WriteToParcel() method, which allows us to write values (using a simple
interface) to the Parcel object that will be persisted

ff The constructor which receives an instance of a Parcel object, which we can use to
read the previously saved values.

When a view is reconstructed from the values in the Parcel object, Android uses an instance
of an IParcelableCreator. This type contains members that allow Android to construct
our IParcelable instance, with which we can read the values that we had previously saved.
There are two methods that we need to implement:

ff The CreateFromParcel() method, which allows us to recreate our IParcelable
instance from the Parcel object

ff The NewArray() method, which allows Android to create a collection of our
IParcelable instance

Showing Views and Handling Fragments

46

An instance of IParcelableCreator must inherit from
Java.Lang.Object as the IParcelableCreator
interface inherits from the IJavaObject interface.

We have to let Android know which creator to use, so we provide a field in the IParcelable
instance. Android has a specific name for this field, CREATOR, and this is provided to Android
by means of the Xamarin.Android exports helpers using the [ExportField] attribute.

Once we have our IParcelable instance, our IParcelableCreator instance, and the
special field, CREATOR, we need to pass the state from our view into IParcelable. This is
done by simply creating an instance of IParcelable. We then wrap the state from the base
class, add any values we wish to save to our instance, and finally, pass it back to Android.

When Android tries to restore our view, it remembers which creator to use and constructs an
instance of IParcelable. We then read off the values from the Parcel object into our view.

In order to read and write values, we create properties in IParcelable that hold the values
from the view or from the Parcel object, depending on what direction the data is moving in.

Saving state for activities and fragments is much easier and only requires that we implement
the OnSaveInstanceState() method, in which we write values to Bundle, a simple type
of IParcelable.

To restore state in an activity or fragment, there are many areas we access the Bundle
object, such as in the OnCreate(), OnRestoreInstanceState(), or OnCreateView()
methods.

There's more...
We can use the Bundle type instead of creating the IParcelable and
IParcelalbleCreator instances. In order to do so, we must be sure to save the state from
the base into the bundle so that the base can restore its own state later on.

Although we don't have to create a custom type to store the view state, doing so makes it
easier to manage and more flexible. In addition to possible future flexibility, we can abstract
the state management a bit, keeping the view a bit cleaner.

See also
ff Using custom views with layouts

ff Creating and using fragments

Chapter 2

47

Navigating between fragments
Fragments can be navigated through and back, like activities. Sometimes we have a layout
that will be displayed when a user selects an option, and we want the back navigation to
be as seamless as pressing the back button.

How to do it...
When it comes to navigation with fragments, we do not insert the fragments into the layout.
Rather, we use an empty container layout. Then, at runtime, we insert the correct fragment:

1.	 First, we are going to add a new layout for portrait view. Landscape will be the
original two-pane layout, and the new portrait view will have the single pane, but with
swapping (Resources/layout-port/Main.axml):
<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/fragmentContainer"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>

2.	 Next, we need to initialize FrameLayout by loading the first fragment, MenuFragment,
at startup. If FrameLayout is obtainable, then we are in portrait mode, so we load the
menu fragment:
protected override void OnCreate(Bundle bundle) {
 //...
 FrameLayout container = FindViewById<FrameLayout>(
 Resource.Id.fragmentContainer);
 if (container != null) {
 Fragment menu =
 SupportFragmentManager.FindFragmentById(
 Resource.Id.menu);
 if (bundle == null || menu == null) {
 menu = new MenuFragment();
 SupportFragmentManager
 .BeginTransaction()
 .Add(Resource.Id.fragmentContainer, menu)
 .Commit();
 }
 }
}

Showing Views and Handling Fragments

48

3.	 Now we need to handle the menu selections and swap the menu out with the
content. If we are in portrait mode, we use a transaction to show the content
fragment with arguments. Otherwise, we just find the content fragment and update it:
public void OnMenuSelected(string text) {
 FrameLayout container = FindViewById<FrameLayout>(
 Resource.Id.fragmentContainer);

 if (container != null) {
 Bundle args = new Bundle();
 args.PutString(ContentFragment.ArgumentsKey, text);
 ContentFragment content = new ContentFragment();
 content.Arguments = args;

 SupportFragmentManager
 .BeginTransaction()
 .Replace(Resource.Id.fragmentContainer, content)
 .AddToBackStack(null)
 .Commit();
 }
 else {
 ContentFragment content =
 SupportFragmentManager.FindFragmentById(
 Resource.Id.content) as ContentFragment;
 content.Update(text);
 }
}

4.	 In order for the fragment to receive the updates from the activity, we need to read the
arguments that were passed in from the main activity. This we do in the OnStart()
method of the content fragment as the view will already be constructed, allowing us
to update it. Let's take a look at the following code snippet:
if (Arguments != null) {
 currentText = Arguments.GetString(ArgumentsKey);
}

How it works...
When creating dynamic layouts, we can sometimes just design several layout files, each with
variations based on the target screen configuration or device. However, greater flexibility can
be achieved if we use fragments and switch them around at runtime. Fragments can be used
to create dynamic and flexible interfaces and allow reuse of the layouts as well as the logic
behind it.

Chapter 2

49

Because we are going to load, unload, and replace fragments at runtime, we make use of
FragmentManager. This type provides access to the FragmentTransaction API, which
encapsulates changes to fragments—such as add, remove, and replace—into a single,
reversible operation.

In order to remove a fragment at runtime, it has to be created at runtime.
If it was inserted in the XML layout, it can't be removed.

Using this API, we can perform actions such as add or replace as well as assign transitions
with SetTransition and then apply the transaction with Commit. These changes can be
added to the back stack, using AddToBackStack, so that we can "roll back" to the previous
fragment when the user taps the Back button.

Fragment operations require a view that acts as a container for the fragments. Each Add,
Replace, and Remove operation in a transaction is passed the ID of the container as a
parameter along with the fragment.

When initializing the fragments in the OnCreate() method of an activity, we need to check to
see if the fragments don't already exist. Android will restore the state automatically, including
the fragments and fragment back stack, so we only have to set up the fragments initially.

If a fragment is removed without it's being added to the back stack, it is destroyed and is not
available when going back. If AddToBackStack is called, the current fragment is stopped but
then resumed when navigating back.

Fragment transactions have to be added to the back stack in
order to be able to pop back to it from a transaction.

In order to pass values using fragment navigation, we use the Arguments property, which
is a Bundle type. This allows us to pass values in key-value pairs to the fragment. Inside the
fragment, we can then query the Arguments property to read the values.

See also
ff Creating and using fragments

Showing Views and Handling Fragments

50

Fragments and the action bar
We can access the action bar from a fragment and make customizations to aid the user on
a per-fragment basis. Items can be added, and you can also customize the up navigation,
keeping a consistent structure with the rest of the app.

How to do it...
When a fragment is added to the activity, we can allow that fragment to add items to the action
bar. This is similar to providing items from the activity. Let's take a look at the following steps:

1.	 First, we want to add items to the action bar from the fragment, so we let the activity
know we have a menu:
public override void OnCreate(Bundle savedInstanceState) {
 base.OnCreate(savedInstanceState);
 SetHasOptionsMenu(true);
}

If the target Android version is below version 3.0, the
HasOptionsMenu property is used instead of the
SetHasOptionsMenu() method.

2.	 We then create the menu structure in the menu resource folder:
<menu
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:yourapp="http://schemas.android.com/apk/res-auto">
 <item android:id="@+id/action_share"
 android:icon="@android:drawable/ic_menu_share"
 yourapp:showAsAction="ifRoom"
 android:title="@string/action_share" />
</menu>

3.	 And finally inflate it in the OnCreateOptionsMenu() method of the fragment:
public override void OnCreateOptionsMenu(
 IMenu menu, MenuInflater inflater) {
 inflater.Inflate(Resource.Menu.ActionBarItems, menu);
 }

Chapter 2

51

Another thing we may want to do is to make the home button in the action bar and change to
an up button when we navigate down to a fragment:

1.	 To do this, we add logic to show the up arrow when there are items on the fragment
back stack:
private void OnBackStackChanged() {
 bool hasBack =
 SupportFragmentManager.BackStackEntryCount > 0;
 SupportActionBar.SetDisplayHomeAsUpEnabled(hasBack);
}

2.	 And then, we call that method to update the home button when the back stack
changes, also making sure to call it when the activity starts:
protected override void OnCreate(Bundle bundle) {
 ...
 SupportFragmentManager.BackStackChanged += delegate {
 OnBackStackChanged();
 };
 OnBackStackChanged();
}

3.	 Finally, we override the home button press so that we can pop the fragments:
public override bool OnSupportNavigateUp() {
 SupportFragmentManager.PopBackStack();
 return true;
}

How it works...
If a fragment wants to place items on the action bar, we have to let the activity know. The way
we do this is by setting the HasOptionsMenu property to true, or on Android versions 3.0
and above, by passing true to the SetHasOptionsMenu() method.

We can then go ahead and create and inflate the menu structure in the same manner as if we
were adding an options menu to an activity. There is an OnCreateOptionsMenu() method
in the fragment that performs the same function as the method on the activity.

Another useful thing for us to do is to make the home button into an up button after we
navigate to a child fragment. This is simple to add by subscribing to the BackStackChanged
event on the fragment manager. In this event, we can check to see if there is anything on the
back stack and update the home button.

Showing Views and Handling Fragments

52

The home button should be refreshed in the OnCreate() method
as the activity may have just been restored from a saved state, such
as after a device orientation change.

After adding the up arrow to the home button, we can override the OnSupportNavigateUp()
method or the OnNavigateUp() method to pop the back stack of the fragment manager.

See also
ff Navigating between fragments

Animating fragment navigation
Navigating between fragments is easy to do, but it appears very sharp and does not provide a
smooth user experience. We can improve this by adding transitions to the navigation.

How to do it...
When navigating between fragments, we can add an animation, or rather a transition to make
the overall change seem less sharp and more appealing:

1.	 One of the simplest ways to add animations to transitions is to simply make
use of the built-in animations, such as fade or open. This is set by calling the
SetTransition() method:
SupportFragmentManager
 .BeginTransaction()
 .SetTransition(FragmentTransaction.TransitFragmentOpen)
 .Replace(Resource.Id.fragmentContainer, content)
 .AddToBackStack(null)
 .Commit();

In order to create more fragment transitions, we have to create animations. This is a
relatively straightforward process, but it does differ depending on the Android version we are
supporting. Typically, we would create either two or four separate animations, for each stage
of the transition:

1.	 For Android versions below 3.0, we can make use of animation resource files, saved
in the anim resource folder. Here is an example of one of the required animations,
card_slide_in_bottom.xml:
<?xml version="1.0" encoding="utf-8"?>
<translate
xmlns:android="http://schemas.android.com/apk/res/android"

Chapter 2

53

android:interpolator="@android:anim/decelerate_interpolator"
 android:fromYDelta="50%p"
 android:toYDelta="0"
 android:duration="@android:integer/config_mediumAnimTime"/>

2.	 In order to use these custom animations in the actual navigation, specify the four
animation resources to use in the SetCustomAnimations() method:
SupportFragmentManager
 .BeginTransaction()
 .SetCustomAnimations(
 Resource.Animation.card_slide_in_bottom,
 Resource.Animation.card_slide_out_top,
 Resource.Animation.card_slide_in_top,
 Resource.Animation.card_slide_out_bottom)
 .Replace(Resource.Id.fragmentContainer, content)
 .AddToBackStack(null)
 .Commit();

Similar to using animations, on Android versions 3.0 and above, we have to make use of the
new ObjectAnimator and ValueAnimator types. Let's take a look at the following steps:

1.	 Here is an example of one resource, card_flip_left_in.xml, saved in the
animator resource folder:
<?xml version="1.0" encoding="utf-8"?>
<set
xmlns:android="http://schemas.android.com/apk/res/android"
>
 <objectAnimator
 android:valueFrom="1.0"
 android:valueTo="0.0"
 android:propertyName="alpha"
 android:duration="0"/>
 <objectAnimator
 android:valueFrom="-180"
 android:valueTo="0"
 android:propertyName="rotationY"
 android:interpolator=
 "@android:anim/accelerate_decelerate_interpolator"
 android:duration="@integer/card_flip_time_full"/>
 <objectAnimator
 android:valueFrom="0.0"
 android:valueTo="1.0"
 android:propertyName="alpha"

Showing Views and Handling Fragments

54

 android:startOffset="@integer/card_flip_time_half"
 android:duration="1" />
</set>

2.	 To add custom animations on Android versions 3.0 and above, we use these animators:
FragmentManager
 .BeginTransaction()
 .SetCustomAnimations(
 Resource.Animator.card_flip_right_in,
 Resource.Animator.card_flip_right_out,
 Resource.Animator.card_flip_left_out,
 Resource.Animator.card_flip_left_in)
 .Replace(Resource.Id.fragmentContainer, content)
 .AddToBackStack(null)
 .Commit();

How it works...
Setting animations between fragment navigations just requires that we invoke a single
method, with values of the various animation resources.

The simplest way to add an animation is to use one of the predefined transitions. These simple
animations are specified using the SetTransition() method and passing a value from
the FragmentTransaction type. The available animations are: TransitFragmentOpen,
TransitFragmentClose, and TransitFragmentFade. The first two are usually used by
the Android system; however, the last one can also be used by our app.

A more flexible means for specifying an animation is to use the SetCustomAnimations()
method. This method takes four parameters, push enter, push exit, pop enter, and pop
exit. Depending on the target Android version, we will either specify Animation resources
(Android versions below 3.0) or Animator resources (Android version 3.0 and above). The first
two animations apply to the transitions taking place when a new transaction is being placed on
the stack, and the last two are for when the transaction is popped off the stack.

A view animation, which is available from the versions of Android below 3.0, can perform a
series of simple transformations (position, size, rotation, and transparency) on the contents of
a View object. These animation resources are placed in the anim folder, and each resource
can contain combinations of the various transformations.

Property animators, introduced in Android version 3.0, provide a framework that allows us to
animate any object's properties over time, even if that object is not a view. These animation
resources are placed in the animator resource folder and are not available for the older
Android versions.

Chapter 2

55

The view animation system is relatively limited in that it only provides the ability to animate
View objects and only a few aspects of them. The view animation system also only modifies
where the view was drawn and not the actual view.

See also
ff Animating view and object properties

ff Animating views on the UI

Animating view and object properties
The property animation system provides a way for us to animate properties of any object, such
as its position or opacity. It is also able to animate properties of custom types.

How to do it...
The ValueAnimator type lets us animate values of some type for the duration of an
animation by specifying set values to animate through. Let's take a look at the following steps:

1.	 We obtain a ValueAnimator type by calling one of its factory methods, such as
OfInt, OfFloat, or OfObject. The instance is then used to tween a value from
one value to another:
ValueAnimator animator = ValueAnimator.OfInt(1, 1000);
animator.SetDuration(5000);
animator.SetInterpolator(new BounceInterpolator());
animator.Start();

2.	 We can also use the ObjectAnimator property to tween a property value from one
value to another, in this case the Alpha property:
ObjectAnimator animator = ObjectAnimator.OfFloat(
 myButton, "alpha", 1.0f, 0.0f, 1.0f);
animator.SetDuration(5000);
animator.SetInterpolator(new BounceInterpolator());
animator.Start();

3.	 If we want to create a custom object to animate, we have to add the [Export]
attributes and inherit from Java.Lang.Object:
public class MyType : Java.Lang.Object {
 int myValue;
 public int MyValue {

Showing Views and Handling Fragments

56

 [Export("getMyValue")]
 get {
 return myValue;
 }
 [Export("setMyValue")]
 set {
 myValue = value;
 }
 }
}

4.	 To animate custom properties, we use the camel case name of the property:
ObjectAnimator animator = ObjectAnimator.OfInt(
 myObject, "myValue", 0, 100);

We can extend the value animator with a custom type converter so that we can tween types
that are unknown to Android. Let's take a look at the following steps:

1.	 We implement the ITypeEvaluator interface, which has a single Evaluate()
method:
public class StringEvaluator :
 Java.Lang.Object, ITypeEvaluator {
 public Java.Lang.Object Evaluate(
 float fraction,
 Java.Lang.Object startValue,
 Java.Lang.Object endValue) {
 int level = (int)(fraction * 10);
 return string.Format ("Level {0}", level);
 }
 }

2.	 And then we pass an instance of the type converter to the ValueAnimator instance:
ValueAnimator animator = ValueAnimator.OfObject(
 new StringEvaluator(), 1, 1000);
animator.SetDuration(5000);
animator.SetInterpolator(new LinearInterpolator());
animator.Start();

Chapter 2

57

There is also the ability to create animation sequences in XML and use those instead of
creating it in code. Let's take a look at the following steps:

1.	 The animator resource XML is stored in the values resource folder:
<?xml version="1.0" encoding="UTF-8"?>
<set
xmlns:android="http://schemas.android.com/apk/res/android"
 android:ordering="sequentially">
 <objectAnimator
 android:propertyName="alpha"
 android:duration="2500"
 android:valueTo="0.0" />
 <objectAnimator
 android:propertyName="alpha"
 android:duration="2500"
 android:valueTo="1.0" />
</set>

2.	 Like views and menus, we inflate the animator by its resource ID:
Animator animator = AnimatorInflater.LoadAnimator(
 this, Resource.Animator.property);
animator.SetTarget(myButton);
animator.Start();

There are several events that we can subscribe to in order to be notified about important
events during the animation. Let's take a look at the following steps:

1.	 Some events are general, such as start and stop:
animator.AnimationStart += delegate {
};
animator.AnimationEnd += delegate {
};

2.	 And there is the event that fires for every frame for the ValueAnimator type:
valueAnimator.Update += (sender, e) => {
 Java.Lang.Object value = e.Animation.AnimatedValue;
 float fraction = e.Animation.AnimatedFraction;
};

Showing Views and Handling Fragments

58

How it works...
The property animation system is a robust framework that allows us to animate almost
anything. We can define an animation to change any object property over time, regardless of
whether it draws to the screen or not. A property animation changes a property's value over a
specified length of time.

The ValueAnimator class lets us animate values of some type for the duration of an
animation by specifying set values to animate through. We obtain a ValueAnimator class by
calling one of its factory methods, such as OfInt, OfFloat, or OfObject.

ObjectAnimator is a subclass of the ValueAnimator class, with the ability to animate
a named property of a target object. In order for an object to be animated, the object must
inherit from the Java.Lang.Object type.

This object must have getter() and setter() functions in the underlying Java. This is
usually not a problem for Android objects as they will have these methods. For our new C#
objects, we have to make sure that we tell the runtime what methods to generate. We can
create a property and annotate getter and setter with the [Export] attribute, passing
the name that it should generate in the Java.

TypeEvaluator is an object with a single method, Evaluate(), that allows us to return
an appropriate value based on the current point of the animation. This method receives a
fraction parameter, which is the current, interpolated fraction from the interpolator.
This fraction is then used to calculate the actual value of the animation from the start and
end values.

Animations have various events that we can subscribe to, such as the general animation
lifecycle events, and the actual frame update events. The general events, such as
AnimationStart, AnimationEnd, and AnimationRepeat, can be used to perform
actions when the state of the animation changes. The Update event is very powerful and is
used especially by the ValueAnimator class as it fires each time there is a change in the
animation frame. We can use this event to obtain the current animation position.

The property animation system also lets us declare property animations with XML instead
of doing it programmatically. By defining our animations in XML, we can easily reuse our
animations in multiple activities and more easily edit the animation sequence.

There's more...
Just like with type evaluators, we can also create custom interpolators. We do this by
implementing IInterpolator and the GetInterpolation() method. As this is an
object that will be passed to the Java API. It also needs to inherit from Java.Lang.Object.

Chapter 2

59

See also
ff Animating fragment navigation

ff Animating views on the UI

Animating views on the UI
View Animation is the older system and can only be used with views. It is relatively easy to set
up and offers enough capabilities to meet many application's needs.

How to do it...
We can add basic animations to simple view operations, such as hide and show. Let's take a
look at the following step:

1.	 This is done by adding the animateLayoutChanges attribute to the XML layout:
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:animateLayoutChanges="true">
</LinearLayout>

We can also create animations for views by using XML, which can then be used to
animate views. Let's take a look at the following steps:

1.	 This is similar to creating animators, but it works on all versions of Android and
resides in the anim resource folder:
<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android=
"http://schemas.android.com/apk/res/android"
android:interpolator=
"@android:anim/accelerate_decelerate_interpolator">
 <scale
 android:fromXScale="1.0"
 android:toXScale="0.0"
 android:fromYScale="1.0"
 android:toYScale="0.0"
 android:pivotX="50%"
 android:pivotY="50%"
 android:duration="500"
 android:fillBefore="false"/>
 <rotate

Showing Views and Handling Fragments

60

 android:fromDegrees="0"
 android:toDegrees="-45"
 android:toYScale="0.0"
 android:pivotX="50%"
 android:pivotY="50%"
 android:duration="500"/>
</set>

2.	 To use this animation, we just have to inflate it and start it:
Animation animation = AnimationUtils.LoadAnimation(
 this, Resource.Animation.hyperspace);
hyperButton.StartAnimation(animation);
animation.AnimationEnd += delegate {
 hyperButton.Visibility = ViewStates.Gone;
};

Animations can be created using code or resource files, but another way is to make use of the
fluent API:

ff To use the fluent API for animations on newer versions of Android, we can just invoke
the Animate() method:
apiButton.Animate()
 .ScaleX(0.0f)
 .ScaleY(0.0f)
 .SetDuration(500)
 .Rotation(-45f)
 .SetInterpolator(new DecelerateInterpolator());

ff As the Animate() method is only available to the later versions, we can make use of
the support library to prevent the app from crashing on older devices. Instead, we use
the ViewCompat type and invoke the static Animate() method:
ViewCompat.Animate(apiButton)
 .ScaleX(0.0f)
 .SetDuration(500)
 .Rotation(-45f);

How it works...
A layout animation is an animation that the system runs automatically each time there is a
layout configuration change. This easily sets the animateLayoutChanges attribute in the
XML layout. This will animate various layout changes, such as adding or removing views.

Chapter 2

61

For more advanced view animations, such as changing position, size, rotation, or transparency,
an animation sequence can be defined in a resource file. These files are placed in the anim
resource folder. Using animation resource files makes it easier to read and maintain.

The same animations that are performed using the resources can be performed using the
fluent API. The method chaining is started by calling the Animate() method on a view. We
can then start chaining transformations as well as duration and interpolators. This API is only
available on versions of Android above 3.1.

View animations are not applied to the view; the appearance
changes, but not any other properties or behaviors.

When using the fluent API to apply animations, we need to make sure that we use the
ViewCompat type on Android versions prior to 3.1. When running on older Android versions,
no animation will occur, but the app will be prevented from crashing.

It is important to apply the changes of view animations after the animation has completed.
Animations are not applied after an animation occurs, and although the view appears to be
removed or in a new position, the actual view is still in its original position. This view, although
not visible, can still be interacted with and will respond to events as if it were never animated.

There's more...
As an alternative to the StartAnimation() method, we can define a starting time for the
animation with the Animation.SetStartTime() method and then assign the animation to
the view with the View.Animation property.

Adding a navigation drawer with fragments
The navigation drawer is a panel that transitions in from the left edge of the screen and
displays the app's main navigation options.

How to do it...
We can add a navigation drawer to our app by setting the DrawerLayout type as the root
layout container, with the contents of the drawer and the main content as subviews:

1.	 The DrawerLayout type should be the root of our layout file, with two subviews:
the first is the main content and the second is the drawer. Let's take a look at the
following code snippet:
<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.widget.DrawerLayout
xmlns:android="http://schemas.android.com/apk/res/android"

Showing Views and Handling Fragments

62

 android:id="@+id/drawerLayout"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <FrameLayout
 android:id="@+id/drawerContent"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
 <ListView
 android:id="@+id/drawerList"
 android:layout_width="240dp"
 android:layout_height="match_parent"
 android:layout_gravity="start"
 android:choiceMode="singleChoice"
 android:divider="@android:color/transparent"
 android:dividerHeight="0dp"
 android:background="#111" />
</android.support.v4.widget.DrawerLayout>

2.	 Now we add an adapter to the list view that we are using and the event to handle
item clicks:
protected override void OnCreate(Bundle bundle) {
 base.OnCreate(bundle);
 SetContentView(Resource.Layout.Main);

 DrawerLayout drawerLayout =
 FindViewById<DrawerLayout>(Resource.Id.drawerLayout);
 FrameLayout drawerContent =
 FindViewById<FrameLayout>(Resource.Id.drawerContent);
 ListView drawerList =
 FindViewById<ListView>(Resource.Id.drawerList);

 drawerList.Adapter = new ArrayAdapter(
 this,
 Android.Resource.Layout.SimpleListItem1,
 new []{"First", "Second", "Third", "Fourth"});

 drawerList.ItemClick += (sender, e) => {
 ContentFragment content = new ContentFragment();
 Bundle args = new Bundle();
 args.PutInt(ContentFragment.ArgumentsKey, e.Position);
 content.Arguments = args;

 SupportFragmentManager

Chapter 2

63

 .BeginTransaction()
 .Replace(Resource.Id.drawerContent, content)
 .Commit();

 drawerList.SetItemChecked(e.Position, true);
 };
}

3.	 In order to know when the user opens or closes the drawer, we need a drawer toggle:
private class DrawerToggle : ActionBarDrawerToggle {
 public DrawerToggle(
 Activity activity, DrawerLayout drawerLayout)
 : base(
 activity, drawerLayout,
 Resource.String.drawer_open,
 Resource.String.drawer_close) {
 }

 public override void OnDrawerClosed(View drawerView) {
 base.OnDrawerClosed(drawerView);
 var handler = DrawerClosed;
 if (handler != null) {
 handler(this, EventArgs.Empty);
 }
 }

 public override void OnDrawerOpened(View drawerView) {
 base.OnDrawerOpened(drawerView);
 var handler = DrawerOpened;
 if (handler != null) {
 handler(this, EventArgs.Empty);
 }
 }

 public event EventHandler DrawerClosed;
 public event EventHandler DrawerOpened;
}

Showing Views and Handling Fragments

64

4.	 We then attach the drawer toggle to the drawer. When the drawer opens, we change
the title of the screen to be the app title, and when it closes, we set the title to be the
current page title:
private DrawerToggle drawerToggle;

protected override void OnCreate(Bundle bundle) {
 ...
 drawerList.ItemClick += (sender, e) => {
 ...
 drawerLayout.CloseDrawer(drawerList);
 };

 drawerToggle = new DrawerToggle(this, drawerLayout);
 drawerToggle.DrawerClosed += delegate {
 SupportActionBar.Title = "Xamarin Cookbook Item";
 };
 drawerToggle.DrawerOpened += delegate {
 SupportActionBar.Title = "Xamarin Cookbook";
 };
 drawerLayout.SetDrawerListener(drawerToggle);

 SupportActionBar.SetDisplayHomeAsUpEnabled(true);
 SupportActionBar.SetHomeButtonEnabled(true);
}

5.	 If we want to display the hamburger icon as the home button, we have to connect the
activity event methods to the drawer toggle:
protected override void OnPostCreate(
 Bundle savedInstanceState) {
 base.OnPostCreate(savedInstanceState);
 drawerToggle.SyncState();
 }

public override void OnConfigurationChanged(
 Configuration newConfig) {
 base.OnConfigurationChanged(newConfig);
 drawerToggle.OnConfigurationChanged(newConfig);
 }

Chapter 2

65

6.	 And if we want the drawer to open when the user taps the home button, we have to
connect the home button to the drawer toggle:
public override bool OnOptionsItemSelected(IMenuItem item)
{
 if (drawerToggle.OnOptionsItemSelected(item)) {
 return true;
 }
 return base.OnOptionsItemSelected(item);
}

7.	 Finally, we should hide the options menu items when the drawer is open. To do this,
we can invalidate the options menu when the drawer is opened or closed:
SupportInvalidateOptionsMenu();

8.	 To check if the drawer is open, we can use the IsDrawerOpen() method:
bool isOpen = drawerLayout.IsDrawerOpen(drawerList);

How it works...
The navigation drawer is a panel that displays the app's main navigation options on the left
edge of the screen. It is hidden most of the time but is revealed when the user swipes a finger
from the left edge of the screen or (while at the top level of the app) touches the app icon in
the action bar.

The drawer layout subviews can be of any type; however, there is usually some container for
the fragments and a list of options in the drawer. The order in which the views are added in
is important. To keep the drawer above the main content, it must be added after the main
content. It is also important for us to keep the drawer width a bit narrower than the screen to
ensure that there is always a bit of main content for the user to see.

In order to support RTL languages, the drawer's horizontal gravity
should be set to start instead of left.

Users can open and close the navigation drawer with a swipe gesture from or towards the
left edge of the screen, but if we're using the action bar, we should also allow users to
open and close it by touching the app icon. The app icon should also indicate the presence
of the navigation drawer with a special icon. We can implement all this by using the
ActionBarDrawerToggle.

We have to link the drawer toggle to the activity events in order for the drawer to respond
to various events. We let the action bar know that we want to show an icon in the
home button by enabling the home button and overriding the OnPostCreate() and
OnConfigurationChanged() methods.

Showing Views and Handling Fragments

66

By overriding the OnOptionsItemSelected() method, we can intercept taps to the home
button and pass it on to the drawer toggle, which will then show or hide the drawer.

The action bar should display the app title when the drawer opens
and a title for the current context when it closes.

In order to remove conflicting information from the screen, we should remove the action bar
items that do not apply to the drawer and any contextual action bar items when the drawer is
opened. The following image is the Android navigation drawer:

An app with an open navigation drawer over the main content.

See also
ff Creating and using fragments

Applying local styles and global themes
Themes are Android's mechanism for applying a consistent style to an app or activity. A style
specifies the visual properties of the elements that make up your user interface, such as
color, height, padding, and font size.

Chapter 2

67

How to do it...
1.	 We can create styles for views using the various attributes:

<TextView
 style="@android:style/TextAppearance.Medium"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textColor="#7F3300"
 android:typeface="monospace"
 android:gravity="center"
 android:text="Inline Styles" />

2.	 These styles can be extracted into a separate file so that they can be reused across
views, as with string resources. In this case, we inherit from the Android style
TextAppearance.Medium, but this is not always necessary. Let's take a look
at the following code snippet:
<?xml version="1.0" encoding="UTF-8"?>
<resources>
 <style name="MyStyle"
 parent="@android:style/TextAppearance.Medium">
 <item name="android:layout_width">match_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:textColor">#7F3300</item>
 <item name="android:typeface">monospace</item>
 <item name="android:gravity">center</item>
 </style>
</resources>

3.	 Using styles in a layout resource is done by using the style attribute:
<TextView style="@style/MyStyle" android:text="Styled" />

4.	 This can also be done for the actual activities, but in this case, we inherit from an
activity style, Theme.Light:
<?xml version="1.0" encoding="UTF-8"?>
<resources>
 <color name="mycolor">#007F0E</color>
 <style name="MyTheme" parent="android:Theme.Light">
 <item name="android:windowBackground">
 @color/mycolor </item>
 <item name="android:colorBackground">
 @color/mycolor</item>
 </style>
</resources>

Showing Views and Handling Fragments

68

How it works...
A style is a collection of properties that specify the look and format for a view or window. A
theme is a style applied to an entire activity or application, rather than an individual view.

Styles and themes are saved in the values resource folder
with the .xml extension.

Styles can be inherited and extended, meaning we can take an existing style and add a few
additional attributes and customizations. Inheritance is achieved by using the parent XML
attribute on the <style> element.

There is also a shortcut for inheriting our own styles by using a special naming system. If we
were to create a style named MyStyle.Bigger, this new style would inherit all the attributes
from the MyStyle style. This only applies to local styles and not Android styles.

Due to inheritance and the ability to have same-name resources in different folders, we
can create advanced styling that is based on various device configuration options, such as
orientation, screen size, or Android version. For example, we could have a larger padding for
larger screens and use new features on newer devices.

69

3
Managing App Data

In this chapter, we will cover the following recipes:

ff Storing data with SharedPreferences

ff Using files and the filesystem

ff Reading bundled assets and resources

ff Parsing, processing, and generating XML

ff Accessing data with ADO.NET

ff Accessing data with SQLite.NET

ff Encrypting databases with SQLCipher

ff Consuming content providers

ff Creating content providers

ff Backing up preferences and files to the cloud

ff Backing up data to the cloud

Introduction
Data is possibly the single most valuable entity in the world, whether it is personal data about
a user or person, or it is general data about the world. Companies spend billions collecting
this data, and it is sought after by other companies.

What makes data so valuable? Data is correct and accurate, and it can be used to make
decisions, which are both helpful as well as potentially lucrative. Data is valuable because
of what can be done with it.

Managing App Data

70

Companies spend billions collecting data and then spend billions more protecting it. Data can
lose some of its value when it becomes public knowledge; not that the data becomes less
valuable but rather the value from the decisions made. If the data becomes public, then other
companies can use it to get a competitive advantage.

In addition to losing competitive advantage, personal data can be used to compromise
personal security and privacy. The data can be used to impersonate a user, and possibly,
do harm.

Regardless of where the data came from or what it is used for, data needs to be stored
and processed. Data only attains its true value if it can be queried and then processed
into information.

Data can be stored in key-value pairs, structured files, and relational databases. There are
many other ways to store data, but the storage mechanism is chosen to best suit the querying
or processing requirements.

Mobile apps are no different; over time, they can collect data about users and their
preferences. This data is then stored locally or on the cloud. This data is backed up and
encrypted for security purposes.

Storing data with SharedPreferences
Sometimes, an app needs to store data after it closes so that it can be retrieved later. This
data is often very simple, so a database may be unnecessary.

How to do it...
There are two parts to using the ISharedPreferences instance: read and write. Both are
similar but write has a few extra steps. Let's take a look at the following extra steps included:

1.	 In order to either read from or write to the preferences, we have to first obtain the
preferences by name:
ISharedPreferences prefs = GetSharedPreferences(
 "MyPreferences", FileCreationMode.Private);

2.	 Once we have the preferences, we can simply query a value using a key along with a
default value:
if (prefs.Contains("MyKey")) {
 int myIntValue = prefs.GetInt("MyKey", 0);
}

Chapter 3

71

3.	 To write values to the preferences, we request the ability to edit it using the Edit()
method of the instance:
ISharedPreferences prefs = GetSharedPreferences(
 PreferencesName, FileCreationMode.Private);
ISharedPreferencesEditor editor = prefs.Edit();

4.	 Once we have the editor, we can write or update the values in the preferences
instance using one of the various "put" methods:
editor.PutInt("MyKey", myIntValue);

5.	 The last thing there is to do is to save the changes made with the editor:
editor.Commit();

How it works...
The ISharedPreferences type provides a general framework that allows us to save and
retrieve persistent key-value pairs of primitive data types. We can save any primitive data
types, such as bool, float, int, long, and string. This data will persist across user
sessions, even if our app is killed.

There are two basic ways to obtain an ISharedPreferences instance:

ff Using the GetSharedPreferences() method on a Context, which provides a
named preferences

ff Using the GetPreferences() method on an Activity, which provides an
activity-based preferences

When obtaining a preferences instance, there is an additional argument passed,
FileCreationMode. This argument determines where the preferences can be accessed
from. Usually only FileCreationMode.Private is needed.

When we want to write values to the preferences, all we have to do is obtain an
ISharedPreferencesEditor instance. We then use that editor to put our values, by key,
into the preferences, ensuring that we commit our changes.

We don't always have to write our changes every time something needs to be updated. We
can improve performance if we read out the values when the activity is created and only write
them back when the activity is stopped.

Performance can be improved by saving and retrieving values
from the preferences only when necessary.

Managing App Data

72

There's more...
Shared preferences are not strictly used for saving "user preferences," such as what ringtone
a user has chosen. If we need to include user preferences for our app, we can make use of
the PreferenceFragment or PreferenceFragmentCompat instances. This provides
a framework through which we can create user preferences, which will be automatically
persisted (using shared preferences).

When creating a preference activity, we first create the XML representation of the screen
hierarchy. In this case, it is just a single screen with a single preference, preferences.xml,
saved in the XML resource folder:

<PreferenceScreen xmlns:android=
"http://schemas.android.com/apk/res/android">
 <EditTextPreference
 android:defaultValue="anonymous"
 android:dialogTitle="User Name"
 android:key="UsernameKey"
 android:summary="Your user name."
 android:title="User Name"/>
</PreferenceScreen>

To support the older version of Android, we can use the Xamarin Support Library
Preference v7 Component or NuGet. We then create a fragment, which inherits from
the PreferenceFragmentCompat type, which will inflate the XML into a UI layout:

class SettingsFragment : PreferenceFragmentCompat {
 public override void OnCreatePreferences(Bundle b, string root)
 {
 AddPreferencesFromResource(Resource.Xml.preferences);
 }
}

We can now display that fragment in any activity, but typically we would create a settings
activity. One thing that we do need to do when using the support libraries is to ensure that
we specify the preferenceTheme value for the activity theme:

<resources>
 <style name="PrefsTheme" parent="@style/Theme.AppCompat">
 <item name="preferenceTheme">
 @style/PreferenceThemeOverlay</item>
 </style>
</resources>

Chapter 3

73

To make use of the preferences, we use the PreferenceManager type. This is similar to
getting an activity's shared preferences:

var prefs = PreferenceManager.GetDefaultSharedPreferences(this);
var username = prefs.GetString("UsernameKey", "anonymous");

A preference fragment is just an extension of the base Fragment type and can be used like
any other fragment. No UI is specified as the UI is created from the preference XML resource.
The activity that holds the fragment can be displayed as any other activity.

Using files and the filesystem
Many apps require access to the filesystem for accessing databases, reading content, and
many other reasons.

How to do it...
There are two main areas for storing files: internal storage and external storage. Making use
of the internal storage or app sandbox is very easy:

1.	 Writing files to the filesystem is very simple, and all that is required is the path to the
sandbox for our app:
string sandbox = FilesDir.AbsolutePath;

2.	 Once we have this path, we can use the types from the .NET BCL to manipulate
the files:
string file = Path.Combine(sandbox, "myFile.txt");
bool exists = File.Exists(file);
File.WriteAllText(file, "this is my value");
string value = File.ReadAllText(file);

3.	 Sometimes, we only need to store files temporarily. In such cases, we can make use
of the cache location:
string cache = CacheDir.AbsolutePath;

Using the external storage only has a few extra requirements. Typically, the way external
storage is used is the same as the way internal storage is used, except that we have a
different root folder:

1.	 If we wish to write to the external storage, we need to ask for permission to do so:
[assembly: UsesPermission(
 Manifest.Permission.WriteExternalStorage)]
[assembly: UsesPermission(
 Manifest.Permission.ReadExternalStorage)]

www.allitebooks.com

http://www.allitebooks.org

Managing App Data

74

2.	 Once we have the permission to access the filesystem, we will verify that the external
media is attached and writeable:
bool writeable =
 Android.OS.Environment.ExternalStorageState ==
 Android.OS.Environment.MediaMounted;

bool readable = writeable ||
 Android.OS.Environment.ExternalStorageState ==
 Android.OS.Environment.MediaMountedReadOnly;

3.	 We can obtain the path to the external location and then work as we would with the
internal storage filesystem:
string external = GetExternalFilesDir(null).AbsolutePath;
string externalCache = ExternalCacheDir.AbsolutePath;

4.	 There are also a few extra external locations, such as the public directories. This is where
Android places and reads files from things such as music, movies, and downloads:
string downloadsDir =
 Android.OS.Environment.GetExternalStoragePublicDirectory(
 Android.OS.Environment.DirectoryDownloads)
 .AbsolutePath;

5.	 We can also see how much space or free space is available by querying the
file location:
long freeSpace = FilesDir.FreeSpace;
long totalSpace = GetExternalFilesDir(null).TotalSpace;

How it works...
Working with the Android filesystem is similar to using the file systems on any .NET-supported
platform. We can make use of all the features in .NET, as well as many of the Java features.
However, Android does not allow access to all file locations on the device, especially the
system locations or other app sandboxes.

Usually an app will access its own internal sandbox location obtained from FilesDir and
possibly the app cache location obtained from CacheDir. Files saved to the internal storage
are private to our app and neither other apps nor the user can access them.

When the user uninstalls our app, the internal files are removed automatically. In addition, the
user may remove them through the device settings screens. As a result, we must first check
whether a file exists before trying to read it.

Files saved to the files and cache directories are deleted, and not
preserved in any way, when the app is uninstalled.

Chapter 3

75

Access to the external storage is no different but requires app permissions. Starting from
Android 4.4, these permissions are not required if the only external access is through the
GetExternalFilesDir() method and the ExternalCacheDir property. External files are
visible to the user, especially if the files connect it to a computer as a USB mass storage device.

Files saved to the cache, whether internal via CacheDir or external via ExternalCacheDir,
are meant to be temporary. Android may delete these files when the device starts to run out of
free space or if the app is uninstalled. However, we should not rely on the system to clean up
these files and maintain the cache ourselves.

It is very important to remember that external storage may become unavailable if the user
mounts the external storage on a computer or removes the media. As a result, it is essential
to check the availability of the external storage before use. In the Android.OS namespace,
the Environment type contains the properties, methods, and other types used to
determine the state of the external storage. The ExternalStorageState property may be
MediaMounted, which is writeable, or MediaMountedReadOnly, which is read only.

External storage mediums are not always available and
access should be verified before being used.

There are special public locations that are used by Android to hold the user's downloads—
photos, music, and other files. These locations are obtained by passing the desired directory
constant to the GetExternalStoragePublicDirectory() method on Environment.

We can see how much free space is available by using the FreeSpace or TotalSpace
properties on the Java File objects, such as the result from the FilesDir property. The
values returned aren't the exact space available, but a representation of how much free space
can be available. If there is a few extra MB over the size to be saved, then it is probably OK
to continue.

There's more...
The external storage may not actually be the SD card but rather a section of the device's
internal memory marked as external.

The actual SD card can be accessed using the result of GetExternalFilesDirs() or
ContextCompat.GetExternalFilesDir(), which is an array of the external storage
mediums available, one of which will be the actual SD card. Similarly for the cache, the
locations are found in the result of GetExternalCacheDir() or ContextCompat.
GetExternalCacheDir().

Managing App Data

76

Reading bundled assets and resources
Almost all apps include some sort of content with the app package; it can be a database,
image, or just plain text.

How to do it...
We can only get read-only access to bundled assets and resources but that is often all that is
needed, as most app data comes from other sources such as the Internet or device sensors.
We will create and add three basic types or resources by performing the following steps:

1.	 Starting with assets, create a folder named Assets at the root of the project.

2.	 Create a new file in the new Assets folder and save some text into that file, for
example, a file named MyAsset.txt with the following contents:
Hello Asset World!

3.	 Now, mark the file as an asset by selecting the file. In the Properties pane, select
AndroidAsset from the Build action dropdown.

4.	 Next, for raw resources, create a folder named raw in the Resources folder.

5.	 In the new raw folder, again create and save any text file, for example, a file named
MyRaw.txt with the following contents:
Hello Raw World!

6.	 Similar to marking a file as an asset, we select AndroidResource from the Build
action dropdown in the Properties pane.

7.	 Finally, for special resources, ensure that there is a folder named values under the
Resources folder.

8.	 In the values folder, create a new XML file with the Android-style resources, for
example, a file named MyResources.xml with the following content:
<?xml version="1.0" encoding="UTF-8" ?>
<resources>
 <string name="myString">Hello Resource World!</string>
</resources>

9.	 Again, we mark this file as AndroidResource in the Properties pane.

Chapter 3

77

Once we have the resources created, we can now start writing code to access them:

1.	 Starting with resources, we can access string resources using the Resources property:
string stringValue =
 Resources.GetString(Resource.String.myString);

2.	 Accessing raw files is a little more complicated as we use the Stream element:
using (Stream raw =
 Resources.OpenRawResource(Resource.Raw.MyRaw))
using (StreamReader reader = new StreamReader(raw)) {
 string rawValue = reader.ReadToEnd();
}

3.	 And the same with assets, we use a Stream instance:
using (Stream asset = Resources.Assets.Open("MyAsset.txt"))
using (StreamReader reader = new StreamReader(asset)) {
 string assetValue = reader.ReadToEnd();
}

How it works...
There are three main types of app content: assets, raw resources, and special resources.

Special resources, or resources, are the most common and easiest to use. These resources
can be accessed in layout files and in code. There are two main groups of special resources;
there are Android-specific resources, such as animations, layouts, and menus, and there are
value resources, such as strings, Booleans, and integers.

These value resources are accessed via various getter methods on the Resources property,
and they return the value of the resource directly. They are stored in the values resource
folder and are structured as basic XML elements with a name attribute.

Each resource folder can have a suffix that is used to determine the resource file that is to
be loaded. There are many different suffixes that can be used, and a full list can be found on
the Android developer website at http://developer.android.com/guide/topics/
resources/providing-resources.html.

If there are two folders with the same name and different suffixes, such as values and
values-land, Android will correctly select the appropriate file when the Resources
property is used. This feature is especially useful for creating alternative resources, such
as layouts, menus, and values based on the device characteristics, such as orientation and
screen size, as well as device settings, such as language or culture.

http://developer.android.com/guide/topics/resources/providing-resources.html
http://developer.android.com/guide/topics/resources/providing-resources.html

Managing App Data

78

Android resources can be used to provide alternative resources based
on both device configurations and user configurations, and they do not
require any special or additional logic in the code.

Another benefit of using resources is the fact that the compiler generates a type that
contains all the various resources. For example, if we create a string resource with the name
myString, the compiler will generate a field named myString in the String type nested
inside the Resource type. This provides compile time checking and resource validation
allowing us to write Resource.String.myString when accessing the string resource,
instead of having to use string keys.

All resource types, from animations to values, have the benefit of allowing the Android runtime
to select a variation of a resource, making resources very useful. The same is true for raw
resources, which are just a type of resource. One main difference is that raw resources allow
us to specify any resource type as a resource, such as the database files, binary data files,
and ZIP files. Although these types aren't used by Android, we can use them in our code.

We access raw resource files through the OpenRawResource() method on the Resources
property, passing in the ID of the raw resource. This method returns a stream with which we
can work as we would work on any other stream.

Assets, on the other hand, are quite different. They are simply are files that bundled in the app
package and stored in the Assets folder. Using assets allows us to dynamically load and list
the files at runtime, but we have to do the work ourselves. Assets can also be organized into a
folder hierarchy, which is not supported by resources.

Android assets can be used to hold any file type in a
hierarchical structure and can be accessed dynamically.

Also, some features are only available to assets; these features include using a custom
typeface or loading cascading style sheets. The reason for this is that assets actually have a
URI for accessing any particular file: file:///android_asset/<some-file-name> (note
the three slashes). We can load pages into the web browser component using this URI, and
the browser can resolve the resource paths automatically.

The assets folder hierarchy can be multiple levels deep,
something that cannot be done when using Android resources.

Accessing assets is done through the AssetManager instance, accessed either through the
Assets property or the Resources.Assets property. We use the Open() method and pass
in a path relative to the assets folder. Just as we did with raw resources, we obtain a stream
that we use to read the contents of a particular asset.

Chapter 3

79

See also
ff The Using files and the filesystem recipe

Parsing, processing, and generating XML
Some apps, especially apps used with existing systems, need to be able to parse and
generate XML.

Getting ready
For this recipe, we need to have an existing XML file stored in the Assets folder. The structure
of the XML file that we will use in this recipe is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<bookshelf>
 <book title="book title">
 <authors>
 <author firstname="name" lastname="surname"/>
 <author ... />
 </authors>
 </book>
 <book>...</book>
</bookshelf>

How to do it...
There are many ways to handle XML, but in this recipe, we will use Language-Integrated
Query (LINQ) to XML. One of the most common things to do with XML is to read it, usually
from a remote source. Let's take a look at the following steps:

1.	 Ensure that the project includes the System.Xml.Linq.dll reference.

2.	 In this instance, we will just read an asset and load it into an XDocument instance,
keeping a reference to the root XElement:
XElement root;
using (var asset = Resources.Assets.Open("bookshelf.xml"))
{
 XDocument doc = XDocument.Load(asset);
 root = doc.Root;
}

Managing App Data

80

3.	 If we wish to access the child elements with the name book, all we have to do is
execute the following code:
var books = root.Elements("book");

4.	 If we wish to select all the authors in all books (in this case, the elements three levels
deep), we chain the Elements() methods:
var authors = root
 .Elements("book")
 .Elements("authors")
 .Elements("author");

5.	 We can also do SQL-like queries, for example, list all the values from the title
attributes from all the books:
var titles = from book in root.Elements("book")
 from title in book.Attributes("title")
 select title.Value;

6.	 Even more advanced queries can be created using filtering, ordering, and
even grouping:
var longTitles =
 from title in root.Elements("book").Attributes("title")
 where title.Value.Length > 10
 orderby title.Value
 select title.Value;

In addition to parsing XML files, we can also easily create entire XML document structures
with LINQ to XML using the XDocument, XElement, and XAttribute types:

1.	 By chaining and nesting the various constructors, we can construct an XML document:
var doc = new XDocument(
 new XElement("bookshelf",
 new XElement("book",
 new XAttribute("title", "C# 5.0 in a Nutshell"),
 new XElement("authors",
 new XElement("author", "Joseph Albahari"),
 new XElement("author", "Ben Albahari")))));

2.	 We can also build entire documents by chaining constructors and nesting subqueries:
var generatedDoc = new XDocument(
 new XElement("bookshelf",
 from book in root.Elements("book")
 select new XElement ("book",
 new XAttribute("title",
 book.Attribute("title").Value),
 from author in

Chapter 3

81

 book.Elements("authors").Elements("author")
 select
 new XElement("author",
 author.Attribute("lastname").Value))));

How it works...
Working with XML on Android with Java is very similar to using the XmlReader or
XmlDocument type in the .NET world. It is relatively complex and does not always produce
neat and maintainable code. Using .NET, we can make use of LINQ and LINQ to XML. This
makes working with XML much easier when compared to what is needed when developing
with Java.

LINQ extends the .NET languages by adding query expressions, which are similar to SQL
statements and can be used to conveniently extract and process data from almost any
type of data collection.

As XML is basically a collection of elements and attributes, we can use LINQ when working
with XML. LINQ to XML enables us to query and modify XML documents from within any .NET
language. It provides a new way to work with XML, which is more lightweight and easier to
work with than the original XML readers and DOM models.

The most important advantage of LINQ to XML is that it enables us to write SQL-like queries
on the in-memory XML document. This ability allows us to retrieve collections of elements and
attributes, similar to what an XPath would allow us to do.

LINQ to XML allows the creation and parsing of entire XML documents
in memory in an easy-to-understand manner.

When working with LINQ to XML, an XDocument represents the entire document along with
the metadata. An XElement object is an element in the XML document that has a Value
object and has a collection of XAttribute and child XElement instances. We can access
these types using the corresponding methods. If we want to access the collection of child
elements, we use the Elements() method, which returns an IEnumerable instance
of XElement.

Using IEnumerable means that LINQ to XML can make use of deferred execution and
lazy evaluation. Deferred execution means that the evaluation of an expression or chain of
methods is delayed until the value is actually required, such as when iterating through the
collection. Deferred execution can greatly improve performance when we have to manipulate
large data collections, especially when there is a series of chained queries or manipulations.

Managing App Data

82

LINQ to XML makes use of deferred loading where possible, thus
improving performance on large documents and with complex queries.

Another advantage of LINQ to XML is the ability to use query results as parameters to
XElement and XAttribute constructors, enabling us to construct entire document trees
from queries and constructors. This approach of creating documents enables us to quickly
and easily transform one XML tree structure into a totally new structure.

There's more...
If the XML document uses a default namespace, we need to ensure that all our queries
include the namespace. For example, in a document without namespaces, we access
elements by calling the Elements() method with the name of the element:

var elements = root.Elements("book");

If the document uses a namespace for those book elements, we also use a namespace:

XNamespace ns = "http://www.cookbook.com/samples/v1";
var elements = root.Elements(ns + "book");

When creating elements, we can also specify the namespace:

XNamespace ns = "http://www.cookbook.com/samples/v1";
var element = new XElement(ns + "book");

Namespaces can be used with any XML node, such as elements or attributes.

See also
ff More information on LINQ can be found on the MSDN website:

http://msdn.microsoft.com/en-us/library/bb397926.aspx

ff More information on LINQ to XML can be found on the MSDN website:
http://msdn.microsoft.com/en-us/library/bb387098.aspx

Accessing data with ADO.NET
Many apps need to use databases, irrespective of whether the app is database-centric or
even just to store pieces of data in a structured form. Android provides SQLite as a database
engine and .NET provides ADO.NET as an interface.

http://msdn.microsoft.com/en-us/library/bb397926.aspx
http://msdn.microsoft.com/en-us/library/bb387098.aspx

Chapter 3

83

Getting ready...
This recipe demonstrates how we can make use of ADO.NET to interact with a SQLite
database using SQL. It is assumed that you have some SQL knowledge to construct queries.

How to do it...
Using ADO.NET with SQLite is easy and not much different from working with any ADO.NET
provider. It is fairly straightforward to create and interact with a SQLite database:

1.	 To start with, we need to add a reference to System.Data and Mono.Data.SQLite.

2.	 We can now start selecting what database file we will use. If a database file does not
exist, one will be created for us. To do this, we use a connection string:
var databasePath =
 Path.Combine(FilesDir.AbsolutePath, "database.sqlite");
var connectionString =
 string.Format("Data Source={0}", databasePath);

3.	 We can now create the connection to the database from the connection string. When
we open the connection, we initiate the process that allows us to communicate with
the database:
using (var conn = new SqliteConnection(connectionString)) {
 conn.Open();
 // use the database here
}

4.	 Using the open connection, we can start creating the database structure. To create a
simple table, we execute normal SQL commands:
string createTable = @"
 CREATE TABLE IF NOT EXISTS [MyTable] (
 id INTEGER PRIMARY KEY AUTOINCREMENT,
 firstName TEXT,
 lastName TEXT
);";

using (var cmd = new SqliteCommand(createTable, conn)) {
 cmd.ExecuteNonQuery();
}

Managing App Data

84

5.	 Once we have a table, we can insert values into the table by using commands
and parameters:
string insertQuery = @"
 INSERT INTO [MyTable] (firstName, lastName)
 VALUES (@firstName, @lastName);";

using (var cmd = new SqliteCommand(insertQuery, conn)) {
 cmd.Parameters.AddWithValue("@firstname", "Bill");
 cmd.Parameters.AddWithValue("@lastName", "Gates");
 cmd.ExecuteNonQuery();
}

6.	 In order to read the data in the database, we use commands and data readers:
string selectQuery = "SELECT * FROM [MyTable]";

List<string> names = new List<string>();
using (var cmd = new SqliteCommand(selectQuery, conn))
using (var reader = cmd.ExecuteReader()) {
 while (reader.Read()) {
 names.Add(reader ["lastname"].ToString ());
 }
}

7.	 If we have multiple operations that we need to perform on the database, we can
use transactions:
using (var trans = conn.BeginTransaction()) {
 // a series of operations
 trans.Commit();
}

How it works...
ADO.NET provides an interface for working with many different types of data sources, ranging
from databases to XML files. Using a means of abstraction, ADO.NET can handle almost any
type of database, from servers such as a SQL Server to embedded ones, such as SQLite.

More information about using ADO.NET can be found on the MSDN website:
https://msdn.microsoft.com/en-us/library/e80y5yhx.aspx.

https://msdn.microsoft.com/en-us/library/e80y5yhx.aspx

Chapter 3

85

When accessing a database, there are a few steps which open a connection, executing
commands, and iterating results with readers.

Making use of the using statements ensures that the connection,
command, or reader is correctly closed and disposed of in order to
free up objects and file locks.

When connecting to a database, we need to make use of a connection. A connection contains
all the information required to identify, locate, authenticate, and communicate with the
database. In the case of SQLite, we make use of a SqliteConnection type, passing in a
connection string that contains a path to the data source or database file.

Once we have a connection, we need to ensure that we open it. This initiates the connection
and prepares the connection for communication with the actual database.

Connections can be and should be closed as soon as they are no
longer in use so that they can be returned to the connection pool,
allowing ADO.NET to optimally manage and reuse the connections.

Once we have an open connection, we can start executing commands. A command, or a
SqliteCommand command in the case of SQLite, contains information about a particular
action that we wish to perform. The information includes a SQL query and, optionally,
parameters and values, which will be substituted during the execution.

Commands have three basic types of execution: readers, scalars, and nonqueries. For
example, when creating a table, no rows or values are returned, so we execute using the
ExecuteNonQuery() method as this is an instruction to the database to do something. If we
only expect a single value result, we can use the ExecuteScalar() method, which returns a
single primitive type. Often, we will request multiple rows from the database, for which we use
the ExecuteReader() method that gives us a result in the form of a data reader.

A data reader in the case of SQLite is an instance of the SqliteDataReader type.
This provides a means to iterate through the rows returned and handle them as we wish.
The reader has several methods that we use to access the data returned. A reader is a
forward-only, read-only stream of data that allows us to access data one row at a time. We
can check whether any rows are returned using the HasRows property, and we can also check
the number of rows returned using the RowsAffected property. As we step through the data
reader using the Read() method, we can access individual columns using the indexer or the
various getter methods.

When a command is going to be executed multiple times with different values,
parameters can be used. This allows the values to be swapped without having
to recreate the command, thus improving the performance.

Managing App Data

86

We can use transactions to group a series of commands into a single, reversible operation.
We use transactions to roll back any and all operations in a series, if any operation in that
set fails. Using transactions ensures that our database remains consistent even if there
is a failure in either the system or the app.

See also
ff The Accessing data with SQLite.NET recipe

ff The Encrypting SQLite databases with SQLCipher recipe

Accessing data with SQLite.NET
Many apps need to use databases, whether the app is database-centric or even just to store
pieces of data in a structured form. A lightweight ORM can be used to make data access easier.

How to do it...
Accessing the database is very easy when using SQLite.NET, especially since we don't have to
write a single line of SQL. Let's take a look at the following steps:

1.	 Before we can make use of SQLite.NET, we need to add the component. Right-click
on the Components folder in the project and click on Get More Components…. In the
dialog that appears, we search for and add the SQLite.NET component.

2.	 Once the component is downloaded, we can start creating the C# types that will
represent the tables:
public class MyTable {
 [AutoIncrement, PrimaryKey]
 public int Id { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

3.	 Now that we have our tables, we can choose where we want the database to be
created to or accessed from:
var databasePath = Path.Combine(
 FilesDir.AbsolutePath, "database.sqlite");

4.	 The next thing to do is to create and open a connection to the database using
the path:
using (var conn = new SQLiteConnection(databasePath)) {
 // connection is now open for use
}

Chapter 3

87

5.	 With our open connection, we can create the table without having to write a SQL query:
conn.CreateTable<MyTable>();

6.	 Now that we have a table, we can populate it, again without any SQL:
var row = new MyTable {
 FirstName = "Bill",
 LastName = "Gates"
};
conn.Insert(row);

7.	 Reading values from the table is just as easy, and still does not require any SQL:
List<MyTable> allRows = conn
 .Table<MyTable>()
 .ToList();

8.	 If we want to do filtering or ordering, we can use the normal IEnumerable extension
methods:
List<MyTable> filtered = conn
 .Table<MyTable>()
 .Where(r => r.LastName == lastName)
 .OrderBy(r => r.FirstName)
 .ToList();

9.	 When we need to use transactions, there are two ways to do this. We can use the
BeginTransaction(), Commit(), and Rollback() methods:
try {
 conn.BeginTransaction();
 // do something
 conn.Commit();
}
catch {
 conn.Rollback();
}

10.	 Alternatively, we can use the RunInTransaction() method:
conn.RunInTransaction(delegate {
 // do something
});

Managing App Data

88

How it works...
SQLite.NET is a lightweight ORM for SQLite, providing a means to map tables and rows to
objects. As this mapping takes place automatically, we have to write very few, if any, SQL
statements. SQLite.NET is not a fully featured ORM, but it is often sufficient to be used
in most mobile applications.

One of the main advantages of using an ORM is that there is greater type-safety as we don't
have to use string-based column names for each query. And, we don't have to use string
queries at all as this is generated automatically, making the code far neater and much
more maintainable.

Instead of creating SQL to generate a table in the database, we create a C# type that is
annotated with attributes to describe how the table is to be constructed in the database.
Column types and names are pulled from the object's properties automatically.

There are also several attributes that are used to describe how keys and indexes
will be created. Some of these attributes, such as [PrimaryKey], [Unique], and
[AutoIncrement], provide additional information on the column type. There are also the
[Table] and [Column] attributes that provide a means to override default names.

There are a few features of SQLite.NET that we can use to manage the database, such as
creating and dropping tables and indexes. These methods, such as CreateTable, are found
on the SQLiteConnection type. These methods allow us to manage the database without
having to write SQL.

Inserting rows into a table in the database is as simple as creating a new instance of an
object and passing it to the Insert() method. SQLite.NET will automatically discover the
correct table and add the values from the properties into a new row in that table. We can also
update and delete records in a table by passing the appropriate object to the Update() or
Delete() methods.

Reading values from the table is also easy and we can make use of LINQ. The query is started
by requesting a table from the connection using the Table() method and then we use LINQ
to build up our query from that object. The executions of these queries are deferred until we
actually start reading the values. We can make use of most of the typical LINQ commands,
such as Where, OrderBy, Skip, and Take, although joins aren't supported at this time.

We can also use transactions in two ways. We have the usual begin and commit actions when
using the BeginTransaction(), Commit(), and Rollback() methods. Also, we have a
helper method, RunInTransaction(), which takes a delegate or an action. This method
wraps the action in a transaction and automatically rolls it back in case of an exception.

Chapter 3

89

There's more...
SQLite.NET also has an asynchronous API. We access this using SQLiteAsyncConnection
instead of the SQLiteConnection type. The advantage of using the asynchronous API is
that the tasks can run on a different thread to the UI, making our apps more responsive.
This asynchronous API is very similar to the synchronous API, except that the names of the
methods end in Async.

For example, CreateTable becomes CreateTableAsync. Let's take a look at the following
commands:

using (var conn = new SQLiteAsyncConnection(databasePath)) {
 await conn.CreateTableAsync<MyTable>();
}

See also
ff The Accessing data with ADO.NET recipe

ff The Encrypting SQLite databases with SQLCipher recipe

Encrypting databases with SQLCipher
Encryption adds another level of security to our apps and data. If we have an app that
contains sensitive information, such as passwords or confidential data, then encryption
can help protect this data.

How to do it...
Adding encryption to our apps is as simple as adding a reference and creating a password or
encryption key. Let's take a look at the following steps:

1.	 Remove the Mono.Data.Sqlite reference if you are using ADO.NET, the SQLite.NET
component, or the NuGet package if we are using SQLite.NET.

2.	 Add the SQLCipher Android component to the project from the Xamarin Component
Store. This can be done by right-clicking on the Components folder under the project.
In the dialog that appears, we can search for SQLCipher and install the Android
package.

Managing App Data

90

3.	 Once the component is installed, we modify our code that opens the database
connection to include a password. If we use ADO.NET to access databases,
we can first set the password before opening the connection:
using (var conn = new SqliteConnection(connectionString)) {
 conn.SetPassword("StrongPasswordHere123");
 conn.Open ();

 // normal database access
}

4.	 If we use SQLite.NET to access the database, we modify the connection constructor
to include the password:
using (var conn = new SQLiteConnection(
 databasePath, "StrongPasswordHere123")) {

 // normal database access
}

How it works...
SQLCipher provides transparent and secure 256-bit AES encryption of SQLite database files;
all that we have to do is to specify a password. Passwords can be either a string or a byte array
passed to the connection.

If we use the ADO.NET API, we call the SetPassword() method; if we use the SQLite.NET
API; we pass the password in with the constructor. Other than this, there is no extra work for
us to do.

Avoid hardcoding the key, especially in plain text, within the app,
but rather encrypt or obfuscate the key. If the app is compromised,
the key will not be easily available.

SQLCipher works with the SQLite engine to transparently encrypt the pages before being
written to disk and decrypt them when read back into memory. Due to its small footprint and
great performance, it can be used to protect SQLite databases in embedded and mobile
environments, such as on Android devices.

SQLCipher includes its own build of SQLite as the native SQLite does not support all the
features required to handle transparent database encryption. However, there is very little
modification to the actual SQLite implementation and most changes are extensions to support
the encryption process.

Chapter 3

91

See also
ff More information on SQLCipher can be found on the Zetetic LLC website:

https://www.zetetic.net/sqlcipher

ff The Data access with ADO.NET recipe

ff The Data access with SQLite.NET recipe

Consuming content providers
The most common way for apps to share structured data is to use content providers. These
providers present data in a table-like form for easy consumption.

Getting ready...
If we are targeting an Android version earlier than 3.0, we will need to add the Xamarin
Android Support v4 NuGet package.

How to do it...
Content providers give us a way to access data from other apps and services on the device.
Here, we will view the contacts through an Android content provider. Let's take a look at the
following steps:

1.	 As we are going to access the contacts, we have to request permission to do so:
[assembly: UsesPermission(
 Manifest.Permission.ReadContacts)]

2.	 Now that we have the permission, we will need a URI that directs us to the contact
content provider:
string uri = ContactsContract.Contacts.ContentUri;

3.	 Next, we will request the contact ID and the display name using the column
constants. There are several columns that can be selected, and we can
request any combination of them:
string[] projection = {
 ContactsContract.Contacts.InterfaceConsts.Id,
 ContactsContract.Contacts.InterfaceConsts.DisplayName
};

https://www.zetetic.net/sqlcipher

Managing App Data

92

4.	 If we want to add a filter, we can do so. Here, we select all the contacts with the letter
e in their name:
string filter = string.Format("{0} like ?",
 ContactsContract.Contacts.InterfaceConsts.DisplayName);
string[] filterArgs = { "%e%" };

5.	 We can also apply a sort, or ordering, to our selection:
string sort = ContactsContract.Contacts.
InterfaceConsts.DisplayName;

6.	 Now that we have the target and the request data, we can use a CursorLoader type
to start the connection:
var loader = new CursorLoader(
 this, uri, projection, filter, filterArgs, sort);

7.	 Once we have the connection, we can connect and get a cursor to the data:
var cursor = (ICursor)loader.LoadInBackground();

8.	 We can move through the results provided by the cursor, similar to what we did with a
data reader in ADO.NET:
if (cursor.MoveToFirst()) {
 int idIdx = cursor.GetColumnIndex(projection[0]);
 int nameIdx = cursor.GetColumnIndex(projection[1]);
 do {
 long id = cursor.GetLong(idIdx);
 string name = cursor.GetString(nameIdx);
 }
 while (cursor.MoveToNext());
}

9.	 When we are finished with the cursor, we need to ensure that we close it:
cursor.Close();

How it works...
Using a ContentProvider type allows us to access data from both a central repository as
well as access data from other apps or services installed on the device. Content providers
offer a consistent and uniform interface for accessing data from any provider. They make
accessing any data type or structure similar to accessing tables from a database.

An app can access data from a content provider through a CursorLoader or
ContentResolver type. Both allow data queries, but a content resolver has additional
operations for inserting, updating, and deleting, and the loader supports background threads.

Chapter 3

93

Cursors should be released as soon as they are no longer in use
in order to free up any resources that are in use by the cursor.

The resolver's Query() method, or the loader's constructor, accepts several parameters
that provide the means to obtain data. The first parameter is the URI that determines which
and what content provider to access. The URI identifies the provider, or the authority, to be
accessed and the particular data in the provider or the path.

The next parameter is the projection, or the columns, to be returned in the resulting query.
This consists of a collection of the column names.

The next two relate to the where clause or the filter aspect. This consists of two parts, the first
being the actual textual statement and the second being the collection of parameter values.
The where clause should use a parameter—the ? character—which will be substituted with
the appropriate value from the array when the query is executed.

The final parameter is the column used to sort the resulting data and the name of the column
we wish to sort by.

In order to obtain the values from the result, we can make use of the several getter methods,
such as GetString() or GetLong(). There is also the GetColumnIndex() method, which
allows us to find columns by name instead of position.

There's more...
Using a CursorLoader allows us to make requests on a separate thread to the UI (however,
in this example we don't do that). We can also use the ContentResolver property on the
Context type. This gives us access to more actions, such as insert, update, and delete;
however, these operations occur on the UI thread.

In order to delete data, we construct a where clause and pass in an array of values to the
Delete() method, as we would when filtering the query. The items returned in the filter will
be removed.

In order to insert data, we pass a set of key-value pairs via a ContentValues object. Items
are added via the Put() method with the key being the column name.

Updating data is simply a combination of the delete and insert aspects. We pass a query and
arguments along with the collection of values to the Update() method. The items returned
by the filter are updated with the values provided.

See also
ff The Creating content providers recipe

Managing App Data

94

Creating content providers
If an app wants to allow its data to be available to other apps on the devices, it needs a way to
control access. Content providers can be used as a public endpoint to the data, but they allow
the app to maintain control over the data.

How to do it...
Creating content providers allows us to share data with other apps in a uniform manner. It is,
for the most part, straightforward. Let's take a look at the following steps:

1.	 First, we inherit from the ContentProvider base type:
public class NumberStringsContentProvider : ContentProvider
{
 public override bool OnCreate () {
 }
 public override string GetType (Uri uri) {
 }
 public override ICursor Query (
 Uri uri, string[] projection,
 string selection, string[] selectionArgs,
 string sortOrder) {
 }
 public override int Delete (
 Uri uri, string selection, string[] selectionArgs) {
 }
 public override Uri Insert (
 Uri uri, ContentValues values) {
 }
 public override int Update (
 Uri uri, ContentValues values,
 string selection, string[] selectionArgs) {
 }
}

2.	 Then, we set up the content URI and authority that is used to access our provider:
public const string Authority =
 "com.xamarincookbook.provider";
private const string BasePath = "numberstrings";
public static readonly Uri ContentUri =
 Uri.Parse("content://" + Authority + "/" + BasePath);

Chapter 3

95

3.	 Using that authority, we add an attribute to this type:
[ContentProvider(
 new [] { NumberStringsContentProvider.Authority })]

4.	 Given the authority, we can create the various URI patterns or data paths:
private enum Code {
 All,
 ByNumber,
 ByText
};
private static UriMatcher uriMatcher;
static NumberStringsContentProvider() {
 uriMatcher = new UriMatcher(UriMatcher.NoMatch);
 uriMatcher.AddURI(Authority, BasePath, (int)Code.All);
 uriMatcher.AddURI(Authority,
 string.Format("{0}/#", BasePath), (int)Code.ByNumber);
 uriMatcher.AddURI(Authority,
 string.Format("{0}/*", BasePath), (int)Code.ByText);
}

5.	 For each of the URI patterns, we define a MIME type:
public static class MimeTypesConsts {
 public static readonly string NumberStrings =
 string.Format("{0}/vnd.{1}.NumberStrings",
 ContentResolver.CursorDirBaseType, Authority);
 public static readonly string String =
 string.Format("{0}/vnd.{1}.NumberString",
 ContentResolver.CursorItemBaseType, Authority);
 public static readonly string Number =
 string.Format("{0}/vnd.{1}.NumberNumber",
 ContentResolver.CursorItemBaseType, Authority);
}

6.	 Now that we have our definitions in place, we can start the implementation. The first
thing to do is to return the correct MIME type for a particular URI pattern. This is done
by implementing the GetType() method:
public override string GetType(Uri uri) {
 switch ((Code)uriMatcher.Match(uri)) {
 case Code.All:
 return MimeTypesConsts.NumberStrings;
 case Code.ByNumber:
 return MimeTypesConsts.Number;
 case Code.ByText:
 return MimeTypesConsts.String;

Managing App Data

96

 default:
 throw new Java.Lang.IllegalArgumentException();
 }
}

7.	 As this provider is not going to do much, we can create an empty implementation for
the OnCreate() method:
public override bool OnCreate() {
 return true;
}

8.	 In this example, we will make a simple two-column table with one column for an
integer and another column for the string representation of that number:
private Tuple<int, string>[] data = {
 new Tuple<int, string>(0, "Zero"),
 new Tuple<int, string>(1, "One"),
 new Tuple<int, string>(2, "Two"),
 ...
};

9.	 We also need to create a set of columns for this provider to be used in projections:
public static class InterfaceConsts {
 public const string Number = "number";
 public const string Text = "text";

 public static string[] AllColumns = {
 InterfaceConsts.Number,
 InterfaceConsts.Text
 };
}

10.	 Using this, we can implement the Query type to return data based on the parameters
(in this example, we just assume the projection is AllColumns):
public override ICursor Query(
 Uri uri, string[] projection,
 string selection, string[] selectionArgs,
 string sortOrder) {
 Code code = (Code)uriMatcher.Match(uri);
 if (code == Code.All) {
 MatrixCursor cursor = new MatrixCursor(projection);
 foreach (var item in data) {
 var builder = cursor.NewRow();
 // create the row based on the projection
 builder.Add(item.Item1).Add(item.Item2);

Chapter 3

97

 }
 return cursor;
 }
 // handle the rest of the parameters
 }

11.	 Similarly, an implementation can be created for the Delete(), Insert(),
and Update() methods. We can implement them according to how we want the
provider to work with the requests. We read the parameters and decide on what
should be done.

How it works...
A content provider makes data available to other apps, which is why we create a content
provider if our app needs to share data with other apps. However, we can make content
providers even if we only wish to make the data available within our app. But, this does reduce
the amount of code that can be shared across other platforms. In order to increase code
sharing, our provider can just be a wrapper to the shared data.

Data is shared using a structure similar to a database table with the queries and commands
similar to that of SQL. Although requests aren't entirely text-based, the where clause is partially
string-based. This allows for a semi type-safe interface. The data requested is returned as a
cursor to the first row in the result and moved sequentially through the result set.

Content providers are accessed through a URI, which contains two main parts, the authority
which identifies the provider, and the path, which points to a specific resource in the provider.
The authority is usually similar to that of the app package name, being a unique, reverse
Internet domain name. The path is usually the table name or resource.

For example, if we have an app that has the app package name of com.cookbook.fungame,
and we have a provider that accesses some form of scoreboard, we can use the com.
cookbook.fungame.provider authority and the scores path. We can also include an ID
to a particular user, 22. In this case, our content URI will be content://com.cookbook.
fungame.provider/scores/22.

When responding to requests, we use a UriMatcher() method to distinguish the content
URI that was passed to the provider. We construct the matcher from a URI set consisting of
the authority, path, and, optionally for some entries, wildcards. Wildcards can be the asterisk,
*, for any string or the hash, #, for any series of digits.

The data that is shared can exist in any type or form. This is one of the reasons for using a
content provider: creating a uniform interface for any data type. Data can be from a database,
XML, or even from a remote, network-based data store.

Managing App Data

98

If we will be providing data in a tabular form, we should have a primary key or ID column to
identify a particular row or item. This column can have any name; however, the best choice
is to use the value of BaseColumns.ID. Using this name is required when linking a result
set to a list view, as one column is required to have the name _id. For these operations, we
implement the Query(), Insert(), Update(), and Delete() methods.

If we will be providing data in the form of files, we implement this by overriding the
OpenFile() method for arbitrary files or OpenAssetFile for assets. In these methods,
we open the file and return it to the consumer.

When creating our content provider, we inherit from the ContentProvider type and register
it with the Android system by applying the [ContentProvider] attribute, using the authority
URI as a parameter.

The provider is not automatically launched when the app is launched. When the provider is
first accessed by a consumer, only then is the OnCreate() method called.

Code executed in the OnCreate() method should do as little as
possible, and tasks should be deferred until they are actually needed.

The Query(), Insert(), Update(), and Delete() methods are each a varying
combination of parameters, including a projection, filter clause, value collections, and a sort
parameter. We use these parameters to build up and execute queries, which return the data
or some other result to the consumer. These methods need to be thread-safe as we can call
them multiple times on different threads.

The Query() method should always return an ICursor type. If an error occurs, throw an
exception, and if no data is available, return an empty cursor. The Insert() method should
add a new item to the data source and return the URI to that item. The Delete() and
Update() methods should return the number of items removed or updated, if any.

The GetType() method returns a string representing the MIME type of the data returned,
using Android's vendor-specific MIME format. There are two parts, the Android-specific part
and the provider-specific part, separated by a slash.

There are two options available for the Android-specific part. For multiple rows, we use the
vnd.android.cursor.dir or ContentResolver.CursorDirBaseType fields, and the
vnd.android.cursor.item or ContentResolver.CursorItemBaseType fields for
single row results. The next part is a combination of the provider authority and the specific
type. Continuing with the preceding example, we will use vnd.android.cursor.dir/
vnd.com.cookbook.fungame.provider.scores for multiple rows and vnd.android.
cursor.item/vnd.com.cookbook.fungame.provider.scores for a single row.

Chapter 3

99

See also
ff The Consuming content providers recipe

Backing up preferences and files to the
cloud

Most apps will need some sort of backup for the various customizations that the app permits,
especially if the app does not have a dedicated server to store those settings. The Android
Backup Service provides a simple means of preserving data.

How to do it...
Adding backup support for shared preferences and files is very easy and very simple. Let's
take a look at the following steps:

1.	 Before we start, we have to register our app with the Android Backup Service:
http://developer.android.com/google/backup/signup.html

On the form, enter the application package name and click on Register.

2.	 Make a note of the key that is provided and create a [MetaData] attribute in our
app with the value being the key:
[assembly: MetaData(
 "com.google.android.backup.api_key",
 Value = "AndroidBackupServiceKey")]

3.	 To create our backup agent, we need to inherit from BackupAgentHelper:
public class BackupHelper : BackupAgentHelper {
 public override void OnCreate() {
 }
}

4.	 Then, we need to register our agent with the Android application:
[assembly: Application(
 BackupAgent = typeof(XamarinCookbook.BackupHelper))]

http://developer.android.com/google/backup/signup.html

Managing App Data

100

5.	 The last thing that our agent needs is to know what to backup. In the OnCreate()
method, we add helpers:
AddHelper(
 "PrefsHelper",
 new SharedPreferencesBackupHelper(this, "GamePrefs"));
AddHelper(
 "FileHelpers",
 new FileBackupHelper(this, "scores.xml"));

6.	 All we have to do now is tell Android that a backup is needed whenever the
preferences or files change:
using (BackupManager bm = new BackupManager(this)) {
 bm.DataChanged();
}

How it works...
Most apps and games have some sort of data that should be preserved across devices or
app installs. It can be scores, progress, or app configurations. There are two types of backup
agents that we can create: a helper-based agent and a more comprehensive agent. This
recipe looks at the former and the next recipe looks at the latter.

There are two simple data types that can be backed up using helpers, almost without any
code: shared preferences and files. This backup API is only designed for small pieces of data,
less than one megabyte, and should not be used to store large data.

Each app requires a special Android Backup Service Key, which can be obtained from the
http://developer.android.com/google/backup/signup.html service. This key is
then added to the Android manifest by adding an assembly [MetaData] attribute.

We also have to register the backup agent with the app by passing the type of the agent to the
BackupAgent property of the [Application] attribute.

Creating an agent is as simple as inheriting from the BackupAgentHelper type and
implementing the OnCreate() method. In this method, we can add all the helpers
that we require.

Each helper is constructed with a list of files or a list of shared preferences that we need to
backup. After construction, we add each helper to the agent along with a unique key.

Once we have created and registered our backup agent, we need to let Android know every
time the data changes, so it can back it up. To do this, we instantiate a BackupManager and
call DataChanged. This does not run the backup immediately, but instead queues it up for
the most opportune time determined by the Android OS.

http://developer.android.com/google/backup/signup.html

Chapter 3

101

There is no way to programmatically start a backup or restore on demand.
Only requests to back up or restore can be queued with Android. Not all
devices support backup and restore, and there are no guarantees about
data security.

It is also very simple to test the backup process while developing our app. We can request a
backup to happen immediately by executing the following commands:

adb shell bmgr backup <android-package-name>

adb shell bmgr run

Once we have run the backup, we can either clear all data associated with the app or uninstall
and reinstall the app. Both actions can be done from the Settings app on the device. Once we
have done either of these, we can start the restore task:

adb shell bmgr restore <android-package-name>

We can then launch the app and check whether the app has the data that was backed up.
We can also override the OnBackup() and OnRestore() methods of the agent and insert
breakpoints. When we run the command lines, they will be hit accordingly.

Sometimes, Android does not think it should run the backup or restore process. This can
be for any number of reasons, but we can force the backup to occur by disabling and then
re-enabling it:

adb shell bmgr enable false

adb shell bmgr enable true

Once the agent has started, we can then request a backup as normal. The reason this works
is that when the backup agent is disabled, it wipes all the data from the service. As there is no
data anymore, it will always perform the backup.

There's more...
Although not usually necessary, we can request a restore. This, like requesting a backup,
is done through the BackupManager type and not performed immediately. To request a
backup, we call the RequestRestore() method.

See also
ff The Storing data with SharedPreferences recipe

ff The Using files and the filesystem recipe

ff The Backing up data to the cloud recipe

Managing App Data

102

Backing up data to the cloud
Often, an app will need to backup it's data, especially if the data took time, effort or money
to collect. The Android Backup Service provides a means of preserving data that is more
complex than simple shared preferences or files.

Getting ready...
In order to work with the backup API, we have to have registered our app package name with
the Android Backup Service.

We do this on http://developer.android.com/google/backup/signup.html.

How to do it...
In this recipe, we will save a value to a file and read from a file. This can be a far more
comprehensive set of actions on a larger dataset, but not necessary, for example:

1.	 Our app is not going to do much with the data, so we can save our single value to the
filesystem as a basic write operation:
File.WriteAllText(dataPath, clickCount.ToString());

2.	 Additionally, to read the data on the app start, we will do a basic read:
if (File.Exists(dataPath)) {
 clickCount = int.Parse(File.ReadAllText(dataPath));
}

Now that we have the data moving in our app, we need to hook up the backup. Although
this example uses a simple file stored locally, we can back up data in a database using
an algorithm to determine whether a backup needs to be done. Let's take a look at
the following steps:

1.	 Just as we did when we used backup helpers (refer to the previous recipe), we need
to register the agent with the application using the backup key:
[assembly: MetaData(
 "com.google.android.backup.api_key",
 Value = "AndroidBackupServiceKey")]

2.	 In the case of our agent, we inherit it from the base BackupAgent instance:
public class BackupHelper : BackupAgent {
 public override void OnBackup(
 ParcelFileDescriptor oldState,
 BackupDataOutput data,

http://developer.android.com/google/backup/signup.html

Chapter 3

103

 ParcelFileDescriptor newState) {
 // backup logic
 }
 public override void OnRestore(
 BackupDataInput data,
 int appVersionCode,
 ParcelFileDescriptor newState) {
 // restore logic
 }
}

3.	 We now need to create the logic that actually creates the backup logic. We do this
in the OnBackup() method in four main steps. First, we read the state or metadata
associated with the last backup, if any:
var stateDate = DateTime.MinValue;
if (oldState != null) {
 using (var descr = oldState.FileDescriptor)
 using (var file = new FileInputStream(descr))
 using (var invoker = new InputStreamInvoker(file))
 using (var stream = new DataInputStream(invoker)) {
 stateDate = DateTime.FromBinary(stream.ReadLong());
 }
}

4.	 Next, we get the state of the data that we need to backup, in our case, the file's last
write date:
var fileDate = DateTime.MinValue;
if (File.Exists(dataPath)) {
 fileDate = File.GetLastWriteTimeUtc(dataPath);
}
else {
 stateDate = DateTime.MinValue;
}

5.	 Now, we can compare the states, and if they differ, we perform the backup. Here,
we just back up the entire contents of the file, but we can back up any data or
subset of data:
if (stateDate != fileDate) {
 var buffer = File.ReadAllBytes(dataPath);
 data.WriteEntityHeader("DataHeader", buffer.Length);
 data.WriteEntityData(buffer, buffer.Length);
}

Managing App Data

104

6.	 Whether or not we do a backup, we now have to let the agent know what state we are
in, and in our case, just the last time the file was modified:
using (var descr = newState.FileDescriptor)
using (var file = new FileOutputStream(descr))
using (var invoker = new OutputStreamInvoker(file))
using (var stream = new DataOutputStream(invoker)) {
 stream.WriteLong(fileDate.ToBinary());
}

7.	 Now we need to work on the restore logic in the OnRestore() method. We first have
to go through all the bits of data that were backed up until we find the header we are
looking for, that is, what we know our is app saved:
while (data.ReadNextHeader()) {
 if (data.Key == "DataHeader") {
 var buffer = new byte[data.DataSize];
 data.ReadEntityData(buffer, 0, data.DataSize);
 File.WriteAllBytes(dataPath, buffer);
 break;
 }
 else {
 data.SkipEntityData();
 }
}

8.	 Lastly, we have to let the agent know about the current state of the backup, and
again in our case, just the time of the last modification of the file:
if (File.Exists(dataPath)) {
 using (var descr = newState.FileDescriptor)
 using (var file = new FileOutputStream(descr))
 using (var invoker = new OutputStreamInvoker(file))
 using (var stream = new DataOutputStream(invoker)) {
 var fileDate = File.GetLastWriteTimeUtc(dataPath);
 stream.WriteLong(fileDate.ToBinary());
 }
}

How it works...
We can easily back up shared preferences or entire files, but sometimes, we need to have more
flexibility or control. To do this, we can create an instance of the base BackupAgent instance.

Chapter 3

105

There are several advantages of using the base agent directly as opposed to the helpers. The
most notable advantage is the ability to version data and appropriately upgrade or downgrade
the data. There is also the powerful ability to back up and restore partial data, such as a
section of a larger file. We can also back up specific tables in a database. This will allow us to
better version the data as well as reduce the size by excluding static data.

There are two stages to any backup process: backup and restore. The backup stage consists
of four main steps:

1.	 The first step is to read the state or metadata associated with the last backup from
the oldState parameter. This state is used to identify the backed up data but is not
the data itself; it can be anything, even a simple, last-modified timestamp of the data.
If the state is null, then no backup or restore has been performed and we should
take a backup.

2.	 We now need to be able to make a decision to backup, so we need to obtain the state
of the data itself. If we are backing up data only if it has changed, we need to obtain
the timestamp of the last change. If we are backing up a database, we may use the
last login date.

3.	 Now that we have both the state of the backup and the state of the data, we can
determine whether a backup is needed. To perform a backup, we populate the
BackupDataOutput object with a set of key-value entities. We first write a header
using the WriteEntityHeader() method, and then the actual data using the
WriteEntityData() method. If we are backing up a database table, we can read
the contents into an XML document and then write that.

4.	 Finally, we have to let Android know the state of the backup in the newState
parameter. Even if nothing was backed up, we can still write a value representing the
fact that nothing was done, that is, the original value. This state is passed in as the
oldState parameter the next time a backup is run. If we are backing up a table, we
can write the last login date.

Performing a restore is a bit easier as we only have to execute two steps:

1.	 We have to first go through the data in the BackupDataInput object and
work with the keys we recognize. We can loop through the headers using the
ReadNextHeader() method, and if we are working with different app versions, we
may choose to ignore some using the SkipEntityData() method. If we want to
read the data, we use the ReadEntityData() method.

2.	 After we have restored the data, we now update the state of the data by writing
to the newState parameter. If we are restoring a section of a file, we can use the
timestamp. This state is passed in as the oldState parameter when a backup is run.

Managing App Data

106

The OnBackup() method is called when the backup manager decides that it is time to run
a backup. We can request a backup using the backup manager, but cannot control when
it is run. The OnRestore() method is called by the backup manager as well, but is also
automatically called when the app is installed. Like backups, we can request a restore but
cannot directly control when it happens.

There's more...
During a restore, we are provided an appVersionCode values that we can use to handle
restore data versioning. When the data is backed up, this value represents the version code
of the app that was used to create the backup.

See also
ff The Backing up preferences and files to the cloud recipe

107

4
Presenting App Data

In this chapter, we will cover the following recipes:

ff Implementing a ListView

ff Using a SimpleAdapter

ff Using custom ListView items

ff Using a BaseAdapter with arbitrary data

ff Using a CursorAdapter

ff Optimizing the ListView

ff Enabling fast scrolling

ff Using section indexes

ff Integrating app searchability

Introduction
Data is the most important feature of many apps, and the best way to use this data is often
to present it first. Data comes in many shapes and forms, but in order to be managed or
manipulated, it has to be presented.

Data can be in the form of images, text, or other forms, but often the most common way of
presenting data is in a list. Lists provide a structured way in which data can be quickly viewed
and compared.

There are many ways to present data in the form of a list. It can simply be presented as text
blocks one below the other; however, this is often difficult to read. If each chunk of data is
carefully arranged and presented, the data becomes more useful. Not only how the data is
arranged but also how the data is rendered aids viewing.

Presenting App Data

108

Humans can easily pick out patterns and identify specific items if the data is arranged
in a form that is both neat and clean. By spacing and ordering items, data becomes
easier to consume.

Another important aspect of data presentation is the ability to quickly locate or navigate to a
specific piece of data. This involves scrolling, but can be further enhanced by searching or the
ability to jump to a specific section in the larger data.

Data is important and, when arranged with navigational support, it becomes useful and useful
data is information.

Implementing a ListView
Almost all apps have some sort of collection of data that will be presented to the user, with
the easiest and most common way being some sort of list.

How to do it...
If we want to present a collection of items to the user, we can use a ListView instance:

1.	 In order to show a list, we need to add a ListView element to our layout resource
(we can do this in the code as well):
<ListView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:id="@+id/listView" />

2.	 We then get hold of the ListView instance in our code so that we can use it:
ListView listView = FindViewById<ListView>(
 Resource.Id.listView);

3.	 Now that we have the view, we need the data (which we will generate here):
IEnumerable<int> numbers = Enumerable.Range(1, 1000);
IEnumerable<string> strings = numbers.Select(
 i => string.Format("Item Number {0} Here!", i));
List<string> data = new List<string>(strings);

4.	 We then create an IListAdapter instance to connect the data to the view:
ArrayAdapter<string> adapter = new ArrayAdapter<string>(
 this, Android.Resource.Layout.SimpleListItem1, data);

5.	 We can then assign the adapter to the listView instance:
listView.Adapter = adapter;

Chapter 4

109

6.	 Finally, if we want to handle item selections, we attach the following code to the
ItemClick event:
listView.ItemClick += (sender, e) => {
 using (var dialog = new AlertDialog.Builder(this)) {
 int position = e.Position;
 string value = data[position];
 dialog.SetTitle("Item Selection");
 dialog.SetMessage(value);
 dialog.Show();
 }
};

How it works...
Presenting collections of data to a user is very common and is easily implemented using
a ListView type. There are a few other types of views that we can use to display data,
such as the Spinner and GridView type, but these are just variations of the list view.

The ListView type presents the data by applying a particular item template to each data item.
The data is rendered onto the view or collection of views and then displayed in a scrollable list.
The list view has many available customizations and can be styled to a great degree.

The list view makes use of adapter types that implement the IListAdapter interface, which
maps the data to the ListView items. The adapter takes each item in the data collection
and creates an item for the list view based on the provided template. In the case of our
example, we use a simple adapter, the ArrayAdapter<T> type, which takes a string data
item and renders it using the SimpleListItem1 item template, which happens to be a
single TextView element.

If we want to be able to handle item selections, we can subscribe to the ItemClick event.
This event provides an ItemClickEventArgs, which gives us access to several details
of the selected item, including the actual list item view and the position of the item in
the adapter.

There's more...
Lists are so common in mobile apps that there is a special class to display lists of data—the
ListActivity type. This class is simply an activity with a list view built in, so we don't have
to worry about a layout. To access the list view, we use the ListView property; to access the
adapter, we use the ListAdapter property.

Presenting App Data

110

When we want to handle item selections, there are two ways we can go about this. We
can either subscribe to the ItemClick event on the list view or we can override the
OnItemClick() method of the ListActivity type.

See also
ff The Using custom ListView items recipe

ff The Using a BaseAdapter with arbitrary data recipe

ff The Enabling fast scrolling recipe

Using a SimpleAdapter
If we want more control over the parts of the data to be rendered and how the data is
rendered for each item, we can use a different adapter and different item templates.

How to do it...
List views allow us to entirely customize each item view through item templates. Android has a
few predefined templates that we can use:

1.	 We can make use of the simple, single-line text items using the ArrayAdapter<T>
type and a simple string collection:
var adapter = new ArrayAdapter<string>(
 this, Android.Resource.Layout.SimpleListItem1, data);

2.	 Android also provides a means to handle more complex data. To do this, we use a
collection of the JavaDictionary<string, object> objects:
var data = new JavaList<IDictionary<string, object>>();

3.	 We can add items to this list like any other collection using the Add() method:
data.Add(new JavaDictionary<string, object> {
 { "name", "Bruce Banner" },
 { "status", "Bruce Banner feels like SMASHING!" }
});

4.	 With more complex data, we need to use the SimpleAdapter type, which allows us
to map a particular key in the dictionary to a view in the item:
var adapter = new SimpleAdapter(
 this, data, Android.Resource.Layout.SimpleListItem1,
 new[] { "name" }, new[] { Android.Resource.Id.Text1 });

Chapter 4

111

5.	 The SimpleAdapter type also allows us to map multiple keys to multiple views in
each item; to do this, we use a different item resource:
SimpleAdapter adapter = new SimpleAdapter(
 this, data, Android.Resource.Layout.SimpleListItem2,
 new[] {
 "name",
 "status"
 }, new[] {
 Android.Resource.Id.Text1,
 Android.Resource.Id.Text2
 });

6.	 There are also items that support checkboxes, or some other means of showing that
the item is selected:
var adapter = new SimpleAdapter(
 this, data, Android.Resource.Layout.SimpleListItemChecked,
 new[] { "name" }, new[] { Android.Resource.Id.Text1 });

7.	 In order to support selection, we have to ensure that the list view ChoiceMode is
either Multiple or Single:
listView.ChoiceMode = ChoiceMode.Single;

How it works...
Passing collections between .NET and Java is slightly more complex than it appears. When
we pass a collection to Java, only a copy of the collection is passed. This means that, if the
collection is modified by some object on the Java side, the changes are not reflected on
the .NET side. Xamarin.Android has a way of addressing this problem by providing various
Java collections, such as JavaList and JavaDictionary. These collections are simple
wrappers to the underlying Java collections.

When collections are passed to Java objects, a copy of the
collection is created in Java, and that copy is used instead
of the .NET collection.

There are advantages of using both types of collections. If we use the .NET collections,
the objects exist in .NET and a copy is passed to Java. This copy is not linked to the original,
and is managed separately by both the .NET and Java garbage collectors. The downside is
that the .NET collection is not updated when the Java collection is; however, this method
is not used very often.

Presenting App Data

112

If we use the Java collections, the collection is created in Java and a wrapper is created in
.NET. This allows a collection to be updated if the other one is. However, every time we wish to
access the items or update the collection, the item is passed to the underlying Java collection
and back again.

The .NET collections are useful when the operation is performed
in .NET. The Java collections are useful if the data will be updated
from the native Java.

The SimpleAdapter type allows us to easily map a slightly more complex datatype to a
structured view. When constructing the adapter, we provide the data along with two arrays
that are used to map an item property to a view.

The data is a collection of dictionaries, with each dictionary representing an item from the list.
The dictionary is used to label a value. Each of the dictionaries should contain the same set of
keys, as these represent the attributes of the data.

The last two parameters in the constructor, two arrays, are used together to map a dictionary
key to a view ID. The first array contains the collection of dictionary keys, and the second
contains a collection of IDs. The size of the arrays should be the same as each item
corresponds directly to the item in the same position in the other array.

The adapter iterates through the items in the arrays and, after obtaining the value from the
dictionary using the key in the first array, it updates the corresponding view using the ID in the
second array.

There's more...
As the SimpleArray type takes a resource ID for the item template as a parameter, we can
create our own item layouts and use those IDs instead of the Android ones. If we need to have
even more control over the adapter, we can create our own adapter by inheriting from the
BaseAdapter type.

See also
ff The Using custom ListView items recipe

ff The Using a BaseAdapter with arbitrary data recipe

Using custom ListView items
Using a list view, we can entirely customize the way each item looks. We don't have to stick to
a simple template, but rather provide a much more detailed view.

Chapter 4

113

How to do it...
All we need to do in order to create a custom item template is to create a custom layout, either
by code or in a layout resource:

1.	 First, we create the item template using normal layout files.

For example, we can create a layout named ListItemLayout.axml with three
content views—an image view and two text views:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <ImageView
 android:id="@+id/icon"
 android:layout_width="wrap_content"
 android:layout_height="match_parent"
 android:layout_weight="0" />
 <LinearLayout
 android:orientation="vertical"
 android:layout_weight="1"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:id="@+id/firstRow" />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:id="@+id/secondRow" />
 </LinearLayout>
</LinearLayout>

2.	 Assuming that we are going to use the SimpleAdapter type, we can construct our
data in the following form:
var data = new JavaList<IDictionary<string, object>>();
data.Add(new JavaDictionary<string, object> {
 { "name", "Bruce Banner" },
 { "status", "Bruce Banner feels like SMASHING!" }
 { "icon", Resource.Drawable.hulk }
});

Presenting App Data

114

3.	 Now that we have our data, we can create the adapter, which will do all the work to
update the view with the data:
var adapter = new SimpleAdapter(
 this, data, Resource.Layout.ListItemLayout,
 new[] {

 "name",
 "status",
 "icon"
 }, new[] {

 Resource.Id.firstRow,
 Resource.Id.secondRow,
 Resource.Id.icon
 });

How it works...
Many apps will want to customize the list view in order to have more complex items as well
as to continue using the same theme throughout the app. In order to achieve this, we create
custom items for the list view and style the list view itself. For example, consider the inbox
of the Gmail app or the results of the Google Now app; each is a list view, but each item has
been greatly customized and has many data points.

Custom list view items are simply normal views, such as an inflated layout, that are repeated
for each item. Each list view item can contain any view or any view structure, just like in an
activity layout. Although this is the case, we need to keep in mind that the item view is in a
scrollable list; thus, we shouldn't put another scrollable view inside a list view item.

Another thing we should remember is that the item view will be repeated many times, so we
should not create an overly complex view. We should strive to keep our list items as shallow
as possible to increase performance, especially as there will be many items and they will be
moving on the screen when the user scrolls.

The ListView items should be kept as shallow as
possible to increase performance.

There's more...
If we want to specify an actual custom type, such as from a SQLite.NET data type, then we can
create an instance of the BaseAdapter type. This provides a clean way to map any datatype
to any view with full control over each item. The SimpleAdapter type tries to handle several
view types, but is not designed for very complex items.

Chapter 4

115

See also
ff The Using a BaseAdapter with arbitrary data recipe

ff The Optimizing the ListView recipe

Using a BaseAdapter with arbitrary data
Sometimes, we need to have the flexibility to completely customize the way a datatype is
rendered for each item. To do this, we can make use of the BaseAdapter type and custom
item layouts.

How to do it...
If we want to specify an actual custom type, then we can create an adapter, derived from the
BaseAdapter type:

1.	 A list can bind to any data type collection, as long as we have an adapter that
understands how to present each item. For example, we can bind to an arbitrary type:
public class Person {
 public int Id { get; set; }
 public string Name {get;set;}
 public string Status {get;set;}
 public bool IsMale { get; set; }
}

2.	 The adapter that we will create can inherit from the generic BaseAdapter<T> adapter:
public class PeopleAdapter : BaseAdapter<Person> {
 public override int Count { get; }
 public override Person this[int index] { get; }

 public override long GetItemId(int position) {
 }
 public override View GetView(
 int position, View convertView, ViewGroup parent) {
 }
}

Presenting App Data

116

3.	 Next, we add a constructor that provides us with access to a context and the data
that we store in fields:
 private readonly Context context;
 private readonly List<Person> data;

 public PeopleAdapter(Context context, List<Person> data)
 {
 this.data = data;
 this.context = context;
 }

4.	 We can now implement the simple property, Count, which simply returns the size of
the collection, and the indexer, which returns the particular data item:
public override int Count {
 get { return data.Count; }
}
public override Person this[int index] {
 get { return data[index]; }
}

5.	 There is also the GetItemId() method, which we use to return an ID or just the
item's position:
public override long GetItemId(int position) {
 return data[position].Id;
}

6.	 Finally, we will implement the GetView() method. First, we get hold of the data item
for this list item:
Person person = data[position];

7.	 Now that we have the data, we start constructing the view. First, we check whether
we can reuse any old view from the convertView parameter, and if we can't, we
inflate or create a new view:
if (convertView == null) {
 var inflater = LayoutInflater.From(context);
 convertView = inflater.Inflate(
 Resource.Layout.ListItemLayout, parent, false);
}

Chapter 4

117

8.	 Once we have the view, we can put the values from the data item into the various
subviews in the item. We can access any subview of the item view just as we can for
any other view:
var firstRow = convertView.FindViewById<TextView>(
 Resource.Id.firstRow);
var icon = convertView.FindViewById<ImageView>(
 Resource.Id.icon);

9.	 Once we have the various views, we can assign the data to them:
int image = person.IsMale
 ? Resource.Drawable.male
 : Resource.Drawable.female;
icon.SetImageResource(image);
firstRow.Text = person.Name;

10.	 Lastly, we return the view:
return convertView;

How it works...
We can put any data into a list view, but we do need to let the list view know how to handle
as well as present the data. Our data can come from any source, such as a database, file, or
a collection. To do this, we use a list adapter, which inherits from IListAdapter, or more
specifically, the generic BaseAdapter<T> type.

This adapter has four members that we need to override, three of which are very simple and,
usually, require only a single line of code.

The Count property is very simple and it just returns the number of items that are in the data.
The indexer is also very simple and simply returns the data item for a particular position in the
data collection.

In the case of the GetItemId() method, we should try and return the item's ID. If the item
does not have an ID that we can use, we can just return the item's position, the method's
parameter.

A data item's position in the adapter can be used as the
ID if it does not have a specific ID.

The GetView() method is where we can translate the data item into a view for a list item.
Here, we can obtain the data item and display it in any form of our choice. Once we have the
data item, which we obtain using the position parameter, we need a view to display it in.

Presenting App Data

118

Instead of creating a new view for each item, we should try to reuse views. An old view comes
through to us via the convertView parameter. This view is actually one of the items that we
created previously but has scrolled off the screen. This view may be null, for example, when
the items are first rendered; so, we do have to construct the view before using it.

Reusing views reduces the amount of memory required to display the data as well as
improving performance, especially when scrolling, as the list view does not have to
reconstruct the view each time.

Views should be reused whenever possible to improve
performance and memory usage.

Once we have the view, either reused or created, we can then update the various subviews as
we wish using the data for that item. The process of updating a view is exactly the same as for
a normal view in the activity.

There's more...
We can also override the nongeneric BaseAdapter type. This type does not have the indexer,
but instead has a GetItem() method, which returns a Java.Lang.Object element. There
are a few steps in converting, or actually wrapping, a .NET object into a Java object, which the
GetItem() method on the generic adapter does for us. The generic adapter uses the value
returned by the indexer and wraps it in a Java.Lang.Object element.

See also
ff The Using custom ListView items recipe

ff The Optimizing the ListView recipe

ff The Using section indexes recipe

Using a CursorAdapter
Sometimes our data comes from a source that returns an ICursor element; thus, we
can make use of the SimpleCursorAdapter type without having to create a collection
of data objects.

Chapter 4

119

How to do it...
Using the SimpleCursorAdapter type with an ICursor instance is almost the same as
using the SimpleAdapter type with an object collection:

1.	 When using a CursorAdapter type, all we need is an ICursor instance from either
the ContentResolver or CursorLoader types:
var uri = ContactsContract.Contacts.ContentUri;
string[] projection = {
 ContactsContract.Contacts.InterfaceConsts.Id,
 ContactsContract.Contacts.InterfaceConsts.DisplayName,
 ContactsContract.Contacts.InterfaceConsts
 .ContactStatusLabel,
};
ICursor cursor = ContentResolver.Query(
 uri, projection, null, null, null);

2.	 Once we have the cursor, we can hand it over to the SimpleCursorAdapter type,
which is very similar to the SimpleAdapter type:
SimpleCursorAdapter adapter = new SimpleCursorAdapter(
 this, Android.Resource.Layout.SimpleListItem2, cursor,
 new[] {
 ContactsContract.Contacts.InterfaceConsts.DisplayName,
 ContactsContract.Contacts.InterfaceConsts
 .ContactStatusLabel
 }, new[] {
 Android.Resource.Id.Text1,
 Android.Resource.Id.Text2
 });

3.	 We can then assign this adapter to the list view as we would do for any other adapter:
listView.Adapter = adapter

How it works...
When our data comes from a content provider, we are presented with an ICursor instance.
In order to handle this type of result, we make use of the SimpleCursorAdapter type,
which is very similar to the SimpleAdapter type.

The main difference is that, instead of accepting a collection of items as data, the
SimpleCursorAdapter type accepts an ICursor instance. And, instead of using dictionary
keys to map data to a view resource ID, we use the column names from the projection.

Presenting App Data

120

This is very useful if we are trying to read data from an ICursor instance, but we don't need
to create an object collection just in order to bind to a list view. As content providers are used
to share content between apps, we may have to consume one at some time.

There's more...
If we want to have greater flexibility for more complex data, we can do something similar
to what we do when using a BaseAdapter<T> type. In order to have more control, we
inherit from the CursorAdapter type, which works with an ICursor instance instead
of a collection of data items.

The CursorAdapter type is different in that we don't have to implement the various data
members, such as GetItem(), GetItemId(), Count, and the indexer. The reason for
this is that the implementation of these members is handled by the CursorAdapter
automatically; comes from the cursor; all we have to do is work with the view.

Again, unlike the BaseAdapter type, we don't implement the GetView() method but rather
it is split into two more specific methods, NewView() and BindView(). In the GetView()
method, we will inflate or create the view and then assign the data to the view. With the
CursorAdapter type, we will inflate or create the view in the NewView() method and then
only assign the data to the view in the BindView() method. The actual implementation is
very similar, but it is split into two methods.

See also
ff The Implementing a ListView recipe

ff The Using a SimpleAdapter recipe

Optimizing the ListView
In order to make scrolling through out lists as smooth as possible, we need to ensure that the
construction and manipulation of the items run as fast and as efficiently as possible.

How to do it...
One way in which we can optimize the list items is to reuse the item view:

ff This is very easy to do, and all we need is to check is whether we can use the
convertView parameter before trying to create a new instance of the item:
if (convertView == null) {
 var inflater = LayoutInflater.From(context);
 convertView = inflater.Inflate(

Chapter 4

121

 Resource.Layout.ListItemLayout, parent, false);
}
var firstRow = convertView.FindViewById<TextView>(
 Resource.Id.firstRow);
firstRow.Text = person.Name;

Another way is to store references to the various subviews so that we don't have look for them
each time, as follows:

1.	 Create a type that will hold a reference to those subviews:
private class ViewHolder : Java.Lang.Object {
 public ImageView Icon;
 public TextView FirstRow;
 public TextView SecondRow;
}

2.	 Then, when we inflate the view for the first time, we search for the various views and
store them in the fields:
var viewHolder = new ViewHolder {
 Icon = convertView.FindViewById<ImageView>(
 Resource.Id.icon),
 FirstRow = convertView.FindViewById<TextView>(
 Resource.Id.firstRow),
 SecondRow = convertView.FindViewById<TextView>(
 Resource.Id.secondRow)
};

3.	 Once we have created the view holder object, we can assign it to the list item's view
using the Tag property:
convertView.Tag = viewHolder;

4.	 Next time we have to populate the view, we don't have to search for the various
subviews, but we can just get the references from the item:
var viewHolder = (ViewHolder)convertView.Tag;

5.	 When we want to update the item, all we have to do is use the viewHolder object:
viewHolder.FirstRow.Text = person.Name;

How it works...
As the user is able to scroll quite fast through a list, the list needs to be able to create and
update the items as fast as possible. If there is any delay, the user will notice it immediately
and this makes the experience less polished.

Presenting App Data

122

There are two very common, and incidentally, very expensive operations that we perform for
every item. These operations are inflating the views and locating the particular subviews.
Every item has to be created at some point, and in order to update, the text of one item will
have to find the view that will contain that text. Also, as there may be thousands of items, this
executes multiple times in a second.

The construction or inflation of views as well as searching for
views in a hierarchy are very expensive and some of the most
common operations performed by any app.

There are a few ways in which we can improve list and app performance, one being in the
construction of the view. Instead of reconstructing the view for each item, we need to try and
reuse the already existing view. An item scrolling off the screen is placed in a recycle bin in
order that the item may be reused at some point. This recycle bin allows Android to limit the
number of items constructed, improving both memory consumption as well as the number of
CPU operations.

Android provides an easy means to reuse a view in the GetView() method. One of the
parameters passed into this method, the convertView parameter, is an available view from
the recycle bin. We can then use this view and simply update the contents with the data from
the new item. As this view is actually an existing item that scrolled off the screen, we need to
ensure that we reset any values that we may have set. This pattern is called Virtualization.

View construction performance can be improved by
reusing old views.

Another way to improve performance is to reduce the number of times we search for a view
within the item. Even though we may only have a few views to update in the item, we need to
remember that there may be many items, and searching for a view requires that the entire
item hierarchy be searched.

We can limit the number of times we search for a view by saving the references to each view
item in the item itself. We can do this by creating an object that will hold the references to all
the views that we will update and then assign that object to the item. We assign the object to
the item by assigning the object to the Tag property of the item's view. We call this pattern the
View Holder pattern.

View finding performance can be improved by storing
references to the various subviews when they are found.

Chapter 4

123

There's more...
There are many other performance improvements that we can do for lists. We can cache
various pieces of data, such as images. We can also move expensive operations to another
thread. This can be further improved by ensuring that we don't run operations unnecessarily,
such as when the list is scrolling at high speed. We can also improve performance by ensuring
that some of the operations are done beforehand, and the results are cached.

See also
ff The Using custom ListView items recipe

ff The Using a BaseAdapter with arbitrary data recipe

ff The Enabling fast scrolling recipe

ff The Using section indexes recipe

Enabling fast scrolling
Locating a specific item in a large list is fairly difficult, so we should provide a means to help
the user get there quickly.

How to do it...
In order to help the user navigate through large lists, Android provides a few means to skip
large sections of data. One of these aids is Fast Scroll, or simply, using a scroll thumb.

ff In order to enable the thumb, we set the FastScrollEnabled property:
listView.FastScrollEnabled = true;

ff Alternatively, if we are using the layout resources, we can set the
FastScrollEnabled property as follows:
android:fastScrollEnabled="true"

ff If we are targeting Android versions 3.0 and later, and want the thumb to always be
visible, we can use the FastScrollAlwaysVisible property:
listView.FastScrollAlwaysVisible = true;

Presenting App Data

124

How it works...
Paging through large data collections does not provide a great user experience. Android
provides a few means to make the process of skipping over large sections of data easier
without the user having to fling the list repeatedly. The simplest way is to enable Fast Scroll,
which provides a scroll thumb that can be dragged, thus making it possible to scroll through
the list very rapidly.

Paging through large data collections is not very user-friendly,
and there should be a means for the user to jump closer to the
desired position.

The thumb is initially disabled, but we can enable it by setting the FastScrollEnabled
property to true. Once enabled, the thumb will appear if the list is large enough, usually
if the total number of items is four times the number that can fit on the screen.

We can also enable fast scroll from the layout resources. To do this, we set the
android:fastScrollEnabled attribute to true. This does exactly the same thing as the
FastScrollEnabled property, but we can keep all our view code inside the layout resource.

If we enable fast scroll, the thumb will only appear if the user is actually scrolling through the
list. In order to ensure that the thumb is always visible, even when not scrolling, we set the
FastScrollAlwaysVisible property to true.

Even though the scroll thumb is very simple, it is a quick means of improving the user
experience when we have large lists.

There's more...
When using the thumb, it is very difficult to see where in the list we are, so we can make use of
section indexes. This is a small popup that appears as we scroll, displaying an index, such as
the first letter of the items. The section index and the thumb make navigating through lists much
easier, as the user can skip to a section by dragging the thumb to the desired section.

See also
ff The Optimizing the ListView recipe

ff The Using section indexes recipe

Chapter 4

125

Using section indexes
Even if we have enabled fast scroll, it is still difficult to know where we are in the list. To get
around this, we make use of section indexes.

How to do it...
Making a list show a section index popup while scrolling is quite easy, requiring only that the
adapter implements the ISectionIndexer interface. Let's take a look at the following steps:

1.	 In order to enable the section index, we need to ensure that fast scroll is enabled on
the list view:
listView.FastScrollEnabled = true;

2.	 Then we ensure that the list adapter implements the ISectionIndexer interface:
public class PeopleAdapter :
 BaseAdapter<Person>, ISectionIndexer {
 public int GetPositionForSection(int section) {
 }
 public int GetSectionForPosition(int position) {
 }
 public Java.Lang.Object[] GetSections() {
 }
}

3.	 We can calculate all of these values on-the fly but, for performance reasons, we do
some of it in the constructor. Here, we group the data by the first letter of the name:
private readonly Context context;
private readonly List<Person> data;
private readonly Dictionary<string, List<Person>> sectionData;
private readonly List<string> sections;

public PeopleAdapter(Context context, List<Person> data) {
 this.data = data;
 this.context = context;

 sectionData = data
 .GroupBy(p => p.Name.Substring(0, 1).ToUpper()
 .ToDictionary(g => g.Key, g => g.ToList());
 sections = sectionData.Select(s => s.Key).ToList();
}

Presenting App Data

126

4.	 Once we have the main groups, we can start by implementing the GetSections()
method, which returns all the sections in the data:
public Java.Lang.Object[] GetSections() {
 return sections
 .Select(s => (Java.Lang.Object)s)
 .ToArray();
}

5.	 Next, we implement the method that returns the position of a section that contains a
particular data item:
public int GetSectionForPosition(int position) {
 Person person = data[position];
 string key = sectionData
 .First(g => g.Value.Contains(person))
 .Key;
 return sections.IndexOf(key);
}

6.	 Lastly, we implement the method that returns the position of the first item in a
particular section:
public int GetPositionForSection(int section) {
 string key = sections[section];
 Person person = sectionData[key].First();
 return data.IndexOf(person);
}

How it works...
Even if we have enabled fast scroll, it is still difficult to know where we are in the list as the items
are moving very quickly. We might not be able to see which items they are, so we have to stop
scrolling and check. We can add to the improvement of fast scroll by using a section index.

A section index is a simple popup that appears as we fast-scroll, displaying a value that we
choose representing the section of the list that the visible items are in. The section index
value can be anything as it is simply a grouping mechanism that we determine. For example,
it can be the first letter of the items.

The section index is a simple popup that appears in order to let
the user know the section of the list that they are in.

After enabling fast scroll, the only additional thing we need to do is ensure that our adapter
implements the ISectionIndexer interface. There are three methods to implement—two
provide a means for the list to find particular positions and one provides the indexes.

Chapter 4

127

The GetSection() method returns a simple array of all the indexes; this is only requested
once and can be precalculated to improve performance. In this method, we return an array of
the extracted indexes from the data. The order of the items is important as we will refer to a
particular item by position.

The GetSectionForPosition() method returns the position of a section that contains
the particular data item. This position refers to a position in the array returned by the
GetSection() method. In order to get this position, we are provided with the position of the
data item, which we can use to work backwards to obtain the section.

The GetPositionForSection() method returns the position of the first item in a particular
section. This position refers to a position in the original data collection. We are provided with
the position of a section and work forward to obtain the first item in that section.

There's more...
As the sections will only change if the data is changing, we can precalculate the entire set of
sections and indexes, and then just return the values from the respective methods.

Depending on the type of adapter we use, adding items to it may automatically let the list view
know that it needs to refresh the sections. If we are using a custom adapter, we will have to
manually do this by invoking the NotifyDataSetChanged() method on the adapter. This
will trigger the list view to obtain a new set of sections.

As the GetSections() method is only called once every time the data changes, we can
place the logic that precalculates the sections and indexes here, reducing the load on the
other methods to a simple lookup.

See also
ff The Using a BaseAdapter with arbitrary data recipe

ff The Optimizing the ListView recipe

ff The Enabling fast scrolling recipe

Integrating app searchability
Many apps work with collections of data, and users search through that data in order to find
what they are looking for. Android has several search mechanisms that are integrated with
the OS.

Presenting App Data

128

How to do it...
Integrating search into our app is very easy, only requiring a search activity and a few
attributes on the activities:

1.	 In order to handle searching, our app has to have an activity that will handle
search intents:
public class SearchActivity : Activity {
 protected override void OnCreate(Bundle bundle) {
 ...
 HandleIntent(Intent);
 }
 protected override void OnNewIntent(Intent intent) {
 HandleIntent(intent);
 }
 private void HandleIntent(Intent intent) {
 if (intent.Action == Intent.ActionSearch) {
 string query =
 intent.GetStringExtra(SearchManager.Query);
 }
 }
}

2.	 Because Xamarin.Android will hash the type namespaces when it generates the Java
code, we have to let it know what name we want for the search activity using the
[Register] attribute:
[Register("com.xamarincookbook.SearchActivity")]

3.	 Once we have the search activity, we need to add attributes to it to let Android know
that it can accept search intents:
[IntentFilter(new[] { Intent.ActionSearch })]

4.	 We now have to create an XML file, in the xml folder under Resources, that contains
various properties for the search metadata.

For example, the contents of the searchable.xml file can be as follows:
<?xml version="1.0" encoding="utf-8"?>
<searchable xmlns:android=
"http://schemas.android.com/apk/res/android"
 android:label="Xamarin Cookbook"
 android:hint="Search Xamarin Cookbook for code"
 android:voiceSearchMode=
 "showVoiceSearchButton|launchRecognizer">
</searchable>

Chapter 4

129

5.	 The XML file is associated with the search activity using an attribute with the key
android.app.searchable:

[MetaData(
 "android.app.searchable",
 Resource = "@xml/searchable")]

Our search activity is finished, so we can start building the activities that are searchable or
expose some search functionality:

1.	 We need to let the other activities know where to send their search intents. This can
be done in two ways, one of which is to add an attribute on each activity, as follows:
[MetaData(
 "android.app.default_searchable",
 Value = "com.xamarincookbook.SearchActivity")]

2.	 Or, add an assembly-level attribute for all activities:
[assembly: MetaData(
 "android.app.default_searchable",
 Value = "com.xamarincookbook.SearchActivity")]

3.	 Next, we add the search view to the menu resource, where we are using the support
library to provide the widget:
<item
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:id="@+id/searchItem"
 android:title="Search"
 android:icon="@android:drawable/ic_menu_search"
 app:actionViewClass="android.support.v7.widget.SearchView"
 app:showAsAction="always" />

4.	 When we inflate the action bar, we need to let the search view know about our search
properties, ensuring that we cast the ActionView to the support library search view:
public override bool OnCreateOptionsMenu(IMenu menu) {
 MenuInflater.Inflate(Resource.Menu.ActionBar, menu);

 var searchItem = menu.FindItem(Resource.Id.searchItem);
 var view = searchItem.ActionView.JavaCast<SearchView>();

 var manager = SearchManager.FromContext(this);
 var info = manager.GetSearchableInfo(ComponentName);

 view.SetSearchableInfo(info);

 return true;
}

Presenting App Data

130

How it works...
Most apps that provide collections of data need some way of searching through that data. This
is not just adding a filter to a list, but rather searching for a piece of data across the entire
app. For example, if we are making a social network app, we may want to search through the
people, places, and events from a single location.

The first thing we need is an activity that will be responsible for responding to search requests.
This activity is not special in any way, except that there should be some code that handles the
search intent. Intents are used by Android to pass data between various apps and activities.

To do this, we check the Action property of the activity's Intent property. If we are
searching from another activity, the Intent property can be read from the OnCreate()
method. If we are searching from the search activity, the activity is not reconstructed, so we
read the Intent property from the parameter in the OnNewIntent() method.

In order to obtain the search query from the Intent property, we use the GetStringExtra()
method and pass in the SearchManager.Query value. This will return a string representing
what the user requested.

The search query is read out of the Intent property extras using
the SearchManager.Query key.

Once we have the search activity set up, we need to add various attributes that describe how
the activity will receive the search intent. We add an [ActionFilter] attribute, with a value
of ActionSearch that lets Android know that we wish to receive the search intents. We
also add a [MetaData] attribute that points to the configuration of the search activity. This
configuration is a simple XML resource that describes various properties, such as the hint in
the search box or whether voice search is enabled.

The [ActionFilter] attributes are used to let the Android OS
know which intents an app can receive and understand.

Xamarin.Android tries to avoid any possible naming conflicts when it merges all the types in
the assemblies by hashing the generated namespaces. To avoid our search activity being lost
with a random name, we use the [Register] attribute to give it a specific name.

Now that our search activity is complete, we need to let Android know which activities can
make use of the search activity. This is done by adding a [MetaData] attribute to the various
activities, passing in the full name of the search activity.

We can either attribute each activity to use the search activity or we can apply a global
attribute for all activities. We can also use a combination of both, allowing us to override the
global attribute for a specific activity.

Chapter 4

131

If we want to start a search, we have several options depending on what version of Android we
are targeting. We can make use of the search dialog or overlay for all versions of Android. This
is simply requested by invoking the OnSearchRequested() method from any activity.

If we are targeting Android version 3.0 and later; we can make use of the SearchView option
in the action bar. This also is available to the older versions of Android if we are using the
support libraries.

The new SearchView action bar item can be used in
older Android versions through the support libraries.

When we inflate the action bar, we need to ensure that we attach the search configuration to
the search view, as we did with the [MetaData] attribute on the search activity.

There's more...
If we are supporting Android versions 4.1 and later, we can integrate with Google Now. First,
we add a new [IntentFilter] attribute to the search activity:

[IntentFilter(
 new[] { "com.google.android.gms.actions.SEARCH_ACTION" },
 Categories = new[] { Intent.CategoryDefault })]

Then, we need to extend our intent handling, such as in the OnCreate() method, to accept
the new intent from Google Now:

if (intent.Action == Intent.ActionSearch ||
 intent.Action == "com.google.android.gms.actions.SEARCH_ACTION") {
 string query = intent.GetStringExtra(SearchManager.Query);
}

Integrating with Google Now requires that the app
support the additional intent.

In order to test if our integration with Google Now is working, we have to first publish our app
to the Play Store. If we download our app and then search for something like: "Ok Google,
search for <search query> in <app package name>".

However, if we wish to make sure that our app launches correctly, we can launch it from the
command line using ADB:

adb shell am start -a com.google.android.gms.actions.SEARCH_ACTION -e
query "<search query>" <app package name here>

133

5
Communicating with

the Outside World

In this chapter, we will cover the following recipes:

ff Consuming REST services with HttpClient

ff Obtaining a network state

ff Handling network state changes

ff Using the DownloadManager element

ff Accessing Bluetooth

ff Transferring data via Bluetooth

ff Receiving NFC events

ff Writing NFC tags

ff Transferring data via NFC

ff Obtaining location coordinates and addresses

Introduction
Communication is one of the most important aspects of human existence. Everyone
communicates with someone else at some point in their lives.

We as humans speak, write, draw, and move to send a message or convey some sort of
message to someone else. Babies cry, children speak, and adults write to let someone else
know what they are doing or what they want the other person to do.

Communication can be an instruction to do something, or it can be an expression of feelings.
Communication can also be a means of sharing data or information.

www.allitebooks.com

http://www.allitebooks.org

Communicating with the Outside World

134

Mobile apps are very similar to humans when it comes to communication, not because apps
inherently want to share, but rather as a result of having a user. Users of the app want to
share or communicate, and thus the app is designed to share or communicate.

Not only do users want to share data they have communicated with the rest of the world,
such as through social media, they may also want to share data with a specific device. These
devices may belong to another person or to the user themselves.

Information can be shared over the Internet using Wi-Fi or mobile data, and sharing is really
only limited by the user's imagination. There are also various short range communication
technologies in the world.

Bluetooth and Near Field Communications (NFC) are very common, whether to play sound over
wireless speakers, or to identify an object. These forms of communication are often designed for
one-on-one interactions, thus making them more personalized means of communication.

Consuming REST services with HttpClient
If we have an app that displays data, the chances are that it comes from somewhere outside
the device, say somewhere like the Internet.

Getting ready
To work with JSON responses, we need to install the Newtonsoft.Json NuGet package or
the Json.NET component. This is an advanced JSON parser; however, we can make use of
the DataContractJsonSerializer type or any other serializer for JSON.

How to do it...
In order to obtain data from the Internet or a local network, we use HTTP requests. In this
recipe, we access data from http://jsonplaceholder.typicode.com/posts/1:

1.	 Access JSON data from the HTTP location in the form:
{
 "userId": 1,
 "id": 1,
 "title": "sunt aut facere repellat provident occaecati",
 "body": "quia et suscipit\nsuscipit recusandae conse"
}

2.	 For any Internet communication, we need to request permission from Android:
[assembly: UsesPermission(Manifest.Permission.Internet)]

http://jsonplaceholder.typicode.com/posts/1

Chapter 5

135

3.	 Then, to access the data from the remote source, we make use of HttpClient and
the GetStringAsync() method:
using (var client = new HttpClient()) {
 var uri = "http://jsonplaceholder.typicode.com/posts/1";
 var result = await client.GetStringAsync(uri);
}

4.	 We can try and parse the result ourselves, or we could create a .NET type that will be
used to deserialize it:
public class Post {
 public int Id { get; set; }
 public int UserId { get; set; }
 public string Title { get; set; }
 [JsonProperty("body")]
 public string Content { get; set; }
}

5.	 Now it is time to map the JSON string to the .NET type:
var post = JsonConvert.DeserializeObject<Post>(result);

If we want to send data to the server, we can do something similar, but instead of doing a GET,
we do a POST to http://jsonplaceholder.typicode.com/posts:

1.	 First, we have to create our object that we want to send:
var newPost = new Post {
 UserId = 12,
 Title = "My First Post",
 Content = "This is some real deep stuff in here!"
};

2.	 Once we have our data, we must serialize it into JSON:
var jsonData = JsonConvert.SerializeObject(newPost);

3.	 After that, we need to create the HTTP content and header that we are going
to send. Because we are sending JSON data, we specify the content type as
"application/json":
var content = new StringContent(
 jsonData, Encoding.UTF8, "application/json");

4.	 Finally, we send the serialized object:
var uri = "http://jsonplaceholder.typicode.com/posts";
var result = await client.PostAsync(uri, content);

http://jsonplaceholder.typicode.com/posts

Communicating with the Outside World

136

Doing a POST will return a result from the server, which we use to determine whether
everything went well:

1.	 We can use the EnsureSuccessStatusCode() method to throw an exception if
there is a problem:
result.EnsureSuccessStatusCode();

2.	 Or we can check the IsSuccessStatusCode property for a successful result:
var success = result.IsSuccessStatusCode;

3.	 If there is data in the content of the response, we can read it out of the
Content property:
var resultString =
 await result.Content.ReadAsStringAsync();
var post =
 JsonConvert.DeserializeObject<Post>(resultString);

How it works...
There are many ways for an app to communicate with the outside world. These include
technologies used on the Internet, such as HTTP and FTP, as well as via more local
technologies such as Bluetooth or NFC. However, one of the most common and most
frequently used is HTTP.

HTTP is a way in which two devices can communicate, often through a network such as
the Internet. Messages are sent out and received by a server. The server then responds
with another message. Data can be transferred via HTTP and is used to provide data from
a server to a local app, and vice versa.

The HttpClient property provides a very simple and easy-to-use
interface for sending and receiving data over HTTP or HTTPS.

If we want to send an HTTP message, we can make use of the HttpClient property
provided by .NET. To request data from a server, all we have to do is request it via the
GetStringAsync() method, passing the URI of the resource. There are other types that can
be received easily, such as byte arrays via the GetByteArrayAsync() method or a Stream
instance via the GetStreamAsync() method. If we want more control over how the request
is sent and handled, we can use the GetAsync() method. We can then process the result of
these methods using a serializer or parser.

If we want to send data to the server, we have several other methods such as the
PostAsync() method or the PutAsync() method. These methods take both the URI and
the content that needs to be sent. We typically use POST to send data to the server, but some
servers handle PUT messages differently, which we may want. We may want the server to do
something different when using PUT.

Chapter 5

137

The content sent to the server is wrapped in an HttpContent type. This type contains the
various headers as well as the actual body that we want to send to the server. Headers are
used to describe the content as well as how to handle the request. A header can include the
content type, content length, or any authorization requirements. The body is the data that we
wish to send. The body could be anything, but in most cases, we would serialize the data and
send it. We have to be sure that we send the data in a format that the server can understand,
for example in XML or JSON.

It is important that the HTTP content is in a format that is understood
by the server, otherwise the response will be an error code.

Once the server has received our message, whether through GET or POST, it will respond with
a code specifying whether there were errors or not. We can then use this code and respond to
the user accordingly.

It is important to remember that sending data over the network is very slow compared to
normal CPU operations. Thus, to avoid any app performance issues, we carry out network
operations on a separate thread. This is very easy to do with the async and await keywords
in C#. The compiler will automatically rewrite our code to start a new thread.

Sending data over a network is slow and should be done
on a separate thread.

As transferring data wirelessly requires battery, and possibly mobile data, it is important
that we try and cache what we can. Caching will reduce the need for communication, thus
reducing the load on the battery as well as the amount of data consumed.

Another battery-saving technique is prefetching. Prefetching requests data before it is actually
needed to reduce the number of requests it has to make later. Each time the wireless controller
is woken up, battery is consumed to restore the controller. If we bundle all our requests into a
single request, the controller only has to be woken once instead of multiple times.

Caching and prefetching can be used to reduce battery
consumption and data usage as well as improve app performance.

See also
ff The Obtaining a network state recipe

ff The Handling network state changes recipe

Communicating with the Outside World

138

Obtaining a network state
When we want to send or request data from a remote source, such as the Internet, we need to
make sure that we can access the network.

How to do it...
In order to access the state of the network, we make use of the ConnectivityManager
instance:

1.	 When we want to access the state of the network, we have to request permission
from Android first:
[assembly: UsesPermission(
 Manifest.Permission.AccessNetworkState)]

2.	 Now that we have permission, if we want the network state, we need to get hold of
the ConnectivityManager instance through the static FromContext() method:
var manager = ConnectivityManager.FromContext(this);

3.	 Once we have the manager, we can get hold of the current state:
var networkInfo = manager.ActiveNetworkInfo;

4.	 If the info is null, then we have no connection at all, but if there is a connection, we
can access various properties:
if (networkInfo != null) {
 var isConnected = networkInfo.IsConnected;
 var type = networkInfo.Type;
 var subtype = networkInfo.Subtype;
}

5.	 We can also request the state for a specific type connection, such as Wi-Fi:
var wifiInfo =
manager.GetNetworkInfo(ConnectivityType.Wifi);

6.	 Once we have the state, we can begin any network operations:
if (networkInfo != null && networkInfo.IsConnected) {
 // begin download
}

Chapter 5

139

How it works...
Before we attempt to transfer data across a network, we should verify that the network is
indeed available. This is especially so for mobile devices, as the user can disable the network
at any time as well as go out of range of network points.

On Android, we use the ConnectivityManager instance to obtain network information such
as the type of network and whether it is connected. Once we have the manager, we can obtain
information about the current connection, if there is one, using the ActiveNetworkInfo
property. This information allows us to make decisions on whether to actually try and
communicate, or maybe wait until a more opportune time.

Obviously, we can only send data when the connection is available, trying to do so otherwise
will result in an exception. If there is no connectivity, the client will attempt to send the data,
but as it cannot locate the remote host, it will probably throw a WebException exception with
a Status instance of NameResolutionFailure.

If we verify that the connection is available first, we can reduce the number of errors that the
app has to deal with. If we do not first check for an available connection, we do need to be
able to handle the exceptions that will be thrown when the connection fails.

Sending data over a network that is unavailable will throw
an exception. The network should be verified first or the
exceptions caught and handled correctly.

Even if there is a connection available, we need to first check to see whether this request will
cause problems for the user in other areas. For example, if the user is using mobile data, we
should not download large files, and if we need to do so, it should be confirmed with the user.

We can control when requests are made, and we should ensure that our app can adjust
according to the network type, speed, or limits. Data could be requested at a lower resolution,
or less frequently, when there is a slower connection. When the connection is faster or has
more bandwidth, we could prefetch data.

Data requests made by the app should adjust according
to the available connection.

There's more...
When we start a download, there may be an instance when the network goes down. We can
subscribe to various events and then pause the download, instead of the app crashing. To do
this, we register a BroadcastReceiver()method with the ConnectivityAction instance.

Communicating with the Outside World

140

See also
ff The Consuming REST services with HttpClient recipe

ff The Handling network state changes recipe

Handling network state changes
If we are busy transferring data to or from our device, we need to respond appropriately if the
network goes down or if it changes from Wi-Fi to mobile data for some reason.

How to do it...
In order to receive events from the ConnectivityManager instance, we register a
BroadcastReceiver instance with the current activity or service:

1.	 When we want to access the state of the network, we have to request permission
from Android first:
[assembly: UsesPermission(
 Manifest.Permission.AccessNetworkState)]

2.	 After obtaining permission, we create an instance of BroadcastReceiver that will
handle network events:
private class NetworkReceiver : BroadcastReceiver {
 public override void OnReceive(
 Context context, Intent intent) {
 }
}

3.	 In the OnReceive() method, we handle the network events:
var manager = ConnectivityManager.FromContext(context);
var networkInfo = manager.ActiveNetworkInfo;
if (networkInfo != null && networkInfo.IsConnected) {
 // we are connected, so resume a download
}
else {
 // no connection, so pause the download
}

Chapter 5

141

4.	 Once we have our receiver, we register it with the activity or service, filtering by the
ConnectivityAction action intent:
var filter = new IntentFilter(
 ConnectivityManager.ConnectivityAction);
receiver = new NetworkReceiver();
RegisterReceiver(receiver, filter);

5.	 We also have to make sure that we unregister it when we no longer need it:
if (receiver != null) {
 UnregisterReceiver(receiver);
}

How it works...
Network connections are unstable and change frequently, especially on a mobile device
where the device may have settings changed or physically moved around. The user may move
out of range of a hotspot, run out of data, or move from one cell tower to another. Our app
needs to handle these changes without impacting the user too much.

In order to handle system events such as network events, we use a BroadcastReceiver
instance.

Broadcast receivers are used by Android to send
messages across apps.

Implementing a BroadcastReceiver instance is easy, all we have to do is implement the
OnReceive() method. This method is invoked when the receiver gets a message from a
source, such as from another app or the operating system.

If a broadcast is detected and matches the intent filter, the OnReceive() method is invoked
on the broadcast receiver. When a broadcast is received, we can check the network state and
then adjust our app accordingly.

The broadcast receiver can be registered with the AndroidManifest.xml file or at runtime.
When we register the receiver in the manifest file, the app will receive incoming broadcasts
even if it is not running. If we only need to respond when the app is in the foreground; it is
better to register the receiver at runtime to reduce system load.

Broadcast receivers can be registered with the AndroidManifest.xml
file or at runtime.

Communicating with the Outside World

142

Registering receivers at runtime is done by invoking the RegisterReceiver() method with
an IntentFilter instance, and the BroadcastReceiver instance that will respond to
the actions in that filter. When the system broadcasts the action, it will not only instantiate our
receiver but will also invoke the OnReceive() method.

If we register a receiver at runtime, we need to be sure to unregister it when it is no longer
in use. If we register it in the OnResume() method of the activity, we should unregister it in
OnPause. We won't receive broadcasts when the app is paused, so unregistering it reduces
unnecessary system overhead.

If a receiver is registered when the activity is resumed, it should be
unregistered when the app is paused to reduce system overhead.

There's more...
If our app does not need fine control over how a file is downloaded, we can make use of the
DownloadManager instance. This provides a simple interface for managing downloads.

See also
ff The Obtaining a network state recipe

ff The Using DownloadManager recipe

Using DownloadManager
If we wish to download files or resources but do not need fine control over the actual
download, we can hand the task over to the DownloadManager instance.

How to do it...
We can use the DownloadManager instance to initiate, cancel, and query downloads:

1.	 As with normal HTTP requests, we need to request permission to access the Internet:
[assembly: UsesPermission(Manifest.Permission.Internet)]

2.	 Then, we get hold of DownloadManager so that we can work with it:
var manager = DownloadManager.FromContext(this);

3.	 Once we have the manager, we can start downloads using the Enqueue() method
with a DownloadManager.Request instance:
var request = new DownloadManager.Request(Uri.Parse(uri));
long downloadId = manager.Enqueue(request);

Chapter 5

143

4.	 We can also specify whether we only want the download to progress on Wi-Fi, mobile
data, or both by using the DownloadNetwork flags enumeration:
request.SetAllowedNetworkTypes(DownloadNetwork.Wifi);

5.	 If we want to cancel a download, we pass the download ID to the Remove() method:
var removed = manager.Remove(downloadId);

6.	 To obtain the progress or state of a download, we pass an instance of
DownloadManager.Query to the InvokeQuery() method:
var query = new DownloadManager.Query();
query.SetFilterById(downloadId);
ICursor cursor = manager.InvokeQuery(query);

7.	 Once we have the cursor, we can query the result just as we would with a
content provider:
if (cursor.MoveToFirst()) {
 var statusIndex = cursor.GetColumnIndex(
 DownloadManager.ColumnStatus);
 var soFarIndex = cursor.GetColumnIndex(
 DownloadManager.ColumnBytesDownloadedSoFar);
 var totalIndex = cursor.GetColumnIndex(
 DownloadManager.ColumnTotalSizeBytes);

 int status = (DownloadStatus)cursor.GetInt(statusIndex);
 double soFar = cursor.GetDouble(soFarIndex);
 double total = cursor.GetDouble(toitalIndex);
 string progress = (soFar / total).ToString("0.00 %");
}

If we want to be notified when the download is completed, is canceled, or fails, we register a
BroadcastReceiver instance with the activity or service:

1.	 We need to create an instance of BroadcastReceive that will handle the
download event:
private class DownloadReceiver : BroadcastReceiver {
 public override void OnReceive(
 Context context, Intent intent) {
 long downloadId = intent.GetLongExtra(
 DownloadManager.ExtraDownloadId, 0);
 }
}

Communicating with the Outside World

144

2.	 Once we have the download ID, we can query the DownloadManager instance
as we normally would:
var manager = DownloadManager.FromContext(context);
var query = new DownloadManager.Query();
query.SetFilterById(downloadId);
ICursor cursor = manager.InvokeQuery(query);
if (cursor.MoveToFirst()) {
 // handle the download
}

3.	 In order to register the receiver with the activity or service, we use the
RegisterReceiver() method:
var filter = new IntentFilter(
 DownloadManager.ActionDownloadComplete);
receiver = new DownloadReceiver();
RegisterReceiver(receiver, filter);

4.	 And we must make sure that we unregister it when we no longer need it:
if (receiver != null) {
 UnregisterReceiver(receiver);
}

We can also display the Android Downloads app, if our app downloads files that can be
accessed by the user directly:

1.	 If we want to open the native Downloads app, we use an Intent instance:
var intent = new Intent();
intent.SetAction(DownloadManager.ActionViewDownloads);
StartActivity(intent);

How it works...
If we have an app that downloads large files, we can use the DownloadManager instance.
The DownloadManager instance is useful because it will manage our downloads for us, for
example by retrying downloads after the network connection is lost or the device is restarted.
It will also broadcast an action when the download is completed.

The DownloadManager instance can be used to manage the
download process, including the handling of network issues,
and broadcast an action when it has completed.

Once we have the DownloadManager instance, we can start queuing up downloads using
the DownloadManager.Request type and the Enqueue() method. The request is
constructed with a URI, but can have several additional properties set.

Chapter 5

145

We could set the download to be invisible to the user by passing false to the
SetVisibleInDownloadsUi() method, or we can specify on which types of
network the download can run via the SetAllowedNetworkTypes() method.

Downloads can be hidden from the Downloads app as well as
prevented from displaying progress notifications.

When a download is queued, the Enqueue() method will return an ID for the download. We
can use the ID to find out the progress or state of the download. If we want to query the status
of a download, we construct a DownloadManager.Query instance and set the filter via the
SetFilterById() or SetFilterByStatus() methods.

Once we have a query, we can get results by invoking the InvokeQuery() method on the
download manager. Similar to querying a ContentProvider() method, we will receive an
ICursor instance that we can use. With the cursor, we read the progress, status, any errors,
and paths associated with a download.

Information on a download is returned through an ICursor
instance, similar to results from ContentProvider.

If we want to be notified when a download is complete, we can create a
BroadcastReceiver instance that will respond to the ActionDownloadComplete
broadcast. This broadcast will contain the ID of the download in the extras of the intent,
which we can use to update our app.

See also
ff The Handling network state changes recipe

Accessing Bluetooth
Data sometimes needs to be transferred to another device, but to one where there is
no network infrastructure. We may therefore want to integrate Bluetooth into our app to
transfer data or to interact with various devices that cannot be accessed via the Internet
or a local network.

Communicating with the Outside World

146

How to do it...
To interact with the various Bluetooth services, we need the BluetoothAdapter instance:

1.	 As with most hardware services, we need to request permission to access Bluetooth:
[assembly: UsesPermission(Manifest.Permission.Bluetooth)]

2.	 If we want to directly control the Bluetooth hardware, we need to specify an
additional permission:
[assembly: UsesPermission(
 Manifest.Permission.BluetoothAdmin)]

3.	 Once we have the permissions we need, we obtain the BluetoothAdapter instance:
var bluetooth = BluetoothAdapter.DefaultAdapter;
if (bluetooth == null) {
 // device does not support Bluetooth
}
else {
 State state = bluetooth.State;
}

4.	 If Bluetooth is not enabled, we can request the user to enable it:
const string RequestToEnableBluetooth = 1; // any ID
if (!bluetooth.IsEnabled) {
 var intent = new Intent(
 BluetoothAdapter.ActionRequestEnable);
 StartActivityForResult(intent, RequestToEnableBluetooth);
}

5.	 Once the Bluetooth activity has started and finished, we will get a callback to the
OnActivityResult() method:
protected override void OnActivityResult(
 int requestCode, Result resultCode, Intent data) {
 base.OnActivityResult(requestCode, resultCode, data);
 if (requestCode == RequestToEnableBluetooth) {
 bool success = resultCode == Result.Ok;
 }
}

Chapter 5

147

6.	 Once we have Bluetooth enabled, there are several things we can do with the
adapter, such as getting a list of paired devices:
var pairedDevices = bluetooth.BondedDevices;
foreach (var device in pairedDevices) {
 var name = device.Name;
}

7.	 We can also start listening for new Bluetooth devices:
bool started = bluetooth.StartDiscovery();

8.	 Once we have a device that we want, we can stop listening:
if (bluetooth.IsDiscovering) {
 bool canceled = bluetooth.CancelDiscovery();
}

9.	 If we want to make this device discoverable to other devices, we can request it for a
specified time interval:
int interval = 300; // seconds
var intent = new Intent(
 BluetoothAdapter.ActionRequestDiscoverable);
intent.PutExtra(
 BluetoothAdapter.ExtraDiscoverableDuration,
 interval);
StartActivity(intent);

If we want to listen for changes to the Bluetooth state or to be notified when a new device is
found, we register a broadcast receiver with the activity or service:

1.	 For this, we need the receiver that will handle events that we are interested in:
private class BluetoothReceiver : BroadcastReceiver {
 public override void OnReceive(
 Context context, Intent intent) {
 string action = intent.Action;
 if (action == BluetoothAdapter.ActionStateChanged) {
 var newState = (State)intent.GetIntExtra(
 BluetoothAdapter.ExtraState, 0);
 }
 if (action == BluetoothAdapter.ActionScanModeChanged) {
 var newScanMode = (ScanMode)intent.GetIntExtra(
 BluetoothAdapter.ExtraScanMode, 0);
 }
 if (action == BluetoothDevice.ActionFound) {

Communicating with the Outside World

148

 var newDevice = intent.GetParcelableExtra(
 BluetoothDevice.ExtraDevice) as BluetoothDevice;
 }
 }
}

2.	 We can then register the receiver for each action we are interested in:
receiver = new BluetoothReceiver();
RegisterReceiver(receiver,
 new IntentFilter(BluetoothAdapter.ActionStateChanged));
RegisterReceiver(receiver,
 new IntentFilter(BluetoothAdapter.ActionScanModeChanged));
RegisterReceiver(receiver,
 new IntentFilter(BluetoothDevice.ActionFound));

3.	 Finally, we have to be sure to unregister it when we no longer need it:
if (receiver != null) {
 UnregisterReceiver (receiver);
}

How it works...
Bluetooth is a wireless technology for transmitting and receiving data over short distances.
There are three classes of Bluetooth radios, each with a different range. Typically, Class 3
radios have a very short range of less than one meter, Class 2 radios have a range of
10 meters, and Class 3 radios about 100 meters.

More information on how Bluetooth works can be found on the official Bluetooth website:
http://www.bluetooth.com/Pages/Basics.aspx.

We can use the Android Bluetooth API to scan for and connect to other Bluetooth devices,
as well as to send data to other devices. But before we start using the Bluetooth adapter, we
need to request permission to do so from Android.

In order to control the Bluetooth adapter, we need admin permission.

If we want to interact with the Bluetooth adapter, we need to obtain the current adapter by
using the DefaultAdapter property on the BluetoothAdapter type. We need to first
verify that there is a Bluetooth adapter, and if there is one, that it is enabled.

We can request that the user enable the adapter by starting an activity with the
ActionRequestEnable action intent. This will display a popup requesting permission for
the app to enable Bluetooth.

http://www.bluetooth.com/Pages/Basics.aspx

Chapter 5

149

Once we have the adapter, we can view the paired devices as well as scan for other devices.
We use the StartDiscovery() method to scan for devices, and we make the device
discoverable using the ActionRequestDiscoverable action intent.

A device will only be discovered by other devices if that device has been made discoverable.
Before scanning for devices, it may be worth querying the collection of paired devices to see
if the device is already known.

A device may already be known, so querying the collection of
paired devices may be more advantageous than starting the
discovery scan.

When we want to discover other devices, we initiate the scan with the StartDiscovery()
method and then listen for an ActionFound action intent using a broadcast receiver. The
scan interval is usually short, around 12 seconds.

We can also make the device discoverable by starting an activity with the
ActionRequestDiscoverable action intent. A device can be made discoverable for a
slightly longer period than a scan. A value between 0 and 3,600 seconds can be specified by
the ExtraDiscoverableDuration intent extra. By default, and for any value outside those
bounds, the device will become discoverable for 120 seconds.

Similar to listening for network state changes, we can listen for events from the Bluetooth
adapter. We are able to listen to several events, including when the Bluetooth state has
changed, when the scan mode has changed, or when a new device has been discovered. In
each type of broadcast, we can access the relevant information in the extras of the intent.

There's more...
In addition to normal Bluetooth, the device may also support Bluetooth Low Energy (BLE).
BLE is available on Android versions 4.3 and above, and has lower power consumption
compared to classic Bluetooth. BLE is used for devices that have low power requirements
such as proximity sensors or health and fitness monitors.

To check to see if a device has BLE, we can ask the PackageManager instance:

bool hasBLE = PackageManager.HasSystemFeature(
 PackageManager.FeatureBluetoothLe);

Once we have determined that the device supports BLE, we can then use slightly different
mechanisms to scan, connect, and communicate. Instead of StartDiscovery, we would
invoke StartLeScan, and instead of the usual RFCOMM channel, we connect to a GATT server.

Communicating with the Outside World

150

See also
ff The Obtaining network state changes recipe

ff The Transferring data via Bluetooth recipe

ff The Receiving NFC events recipe

Transferring data via Bluetooth
We can transfer data to another device directly without having to use the Internet or any
network infrastructure outside another device. Bluetooth allows one device to directly
communicate with another device.

How to do it...
We can set up our app to listen for Bluetooth devices that we can communicate with:

1.	 As with normal Bluetooth access, we need to have the apropriate permissions, such
as Bluetooth and BluetoothAdmin, before we can transmit data via Bluetooth:
[assembly: UsesPermission(Manifest.Permission.Bluetooth)]
[assembly: UsesPermission(Manifest.Permission.BluetoothAdmin)]

2.	 Before we start the listener, we need to have a name that will be used to register it
with the system:
const string ServiceName = "XamarinCookbookBluetooth";

3.	 Before two apps can communicate, they need to know about each other. This is
achieved by providing a generated UUID that will be used by both devices:
const string Uuid = "25c0d296-0e78-4849-b70b-86f01f415add";

4.	 We start the listener with the ListenUsingRfcommWithServiceRecord()
method on the Bluetooth adapter, passing the service registration name and the
UUID for this app:
BluetoothServerSocket serverSocket = null;
BluetoothSocket serverClientSocket = null;
try {
 serverSocket =
 bluetooth.ListenUsingRfcommWithServiceRecord(
 ServiceName, UUID.FromString(Uuid));
 while (serverClientSocket == null) {
 serverClientSocket = await serverSocket.AcceptAsync();
 }
}

Chapter 5

151

catch (IOException ex) {
 // there was an error, such as no devices found
}

5.	 Once a device is found, we can stop the listener and get hold of the communication
streams:
if (serverClientSocket != null) {
 serverSocket.Close();
 var device = serverClientSocket.RemoteDevice;
 try {
 inputStream = socket.InputStream;
 outputStream = socket.OutputStream;
 }
 catch (IOException ex) {
 // handle errors
 }
}

Setting up the app to connect to another device that is listening is much the same, except we
request to connect to a specific device:

1.	 First, we need to get hold of the device we wish to connect to:
BluetoothDevice paired = bluetooth.BondedDevices.First();

2.	 Before we try and connect, we must make sure to cancel any discovery, as this slows
down the connection and we already have a device:
bluetooth.CancelDiscovery();

3.	 Then we request a connection, providing the specific UUID for the app we wish to
talk to:
BluetoothSocket clientSocket = null;
clientSocket = paired.CreateRfcommSocketToServiceRecord(
 UUID.FromString(Uuid));
await clientSocket.ConnectAsync();

4.	 Once a device is connected, we can get hold of the communication streams, just like
the server did:
try {
 inputStream = clientSocket.InputStream;
 outputStream = clientSocket.OutputStream;
}
catch (IOException ex) {
 // handle errors
}

Communicating with the Outside World

152

On both the server listener and the client, we can transfer data back and forth using the
two streams:

1.	 We can start reading the data off the input stream:
byte[] bytes = new byte[1024];
while (true) {
 try {
 var size = await inputStream.ReadAsync(
 bytes, 0, bytes.Length);
 var stringRead = Encoding.UTF8.GetString(
 bytes, 0, size);
 }
 catch (IOException ex) {
 // handle errors
 }
}

2.	 To send data, we just write to the output stream:
var stringToSend = "Hello World!";
var bytes = Encoding.UTF8.GetBytes(stringToSend);
try {
 await outputStream.WriteAsync(bytes, 0, bytes.Length);
}
catch (IOException ex) {
 // handle errors
}

How it works...
In order to send data from one device to another, both devices need to have an open stream.
One device will send data, and the other will listen for incoming data. Also, both devices
need to use an UUID that represents the connection from the client. The server listens for an
incoming connection with a particular UUID and then accepts it, if it is the expected one.

The UUID is app-specific in that it is controlled by the app. Some apps may randomly
generate UUIDs each time, and others may have a hardcoded value. This UUID can be
randomly generated by the app, or specified by some other source, such as a new UUID
for each major app version.

In order to connect two devices, both the server and the
client need to use the same UUID while connecting.

Chapter 5

153

More information on how Bluetooth actually transfers data can be found on the official
Bluetooth website: http://www.bluetooth.com/Pages/How-It-Works.aspx.

The server, or the listener, starts listening for incoming connections via the
ListenUsingRfcommWithServiceRecord() method on the Bluetooth adapter. This method
returns a BluetoothServerSocket with which we try and accept an incoming connection
using the AcceptAsync() method. As soon as an incoming client connection is accepted, the
method returns a BluetoothSocket instance, which represents an open connection.

Once we have an open connection to the client, we can stop listening for more connections
by invoking the Close() method on the BluetoothServerSocket instance. We can then
query the open client connection for the device by using the RemoteDevice property as well
as get the communication streams.

The connection has two streams, one for incoming data, from the InputStream property,
and one for outgoing data, from the OutputStream property. Both are basic Stream types
that support byte-based communication.

Before connecting to a server, the client should cancel
any ongoing device discovery as it may negatively impact
connection performance.

If we want to connect to a listening server, we first need a device to which we want to
connect. Once we have the device, either after a discovery or from an existing pair, we invoke
the CreateRfcommSocketToServiceRecord() method on the BluetoothDevice
instance. This method returns a BluetoothSocket instance, which represents a connection
to the server. In order to start communicating, we have to open the connection using the
ConnectAsync() method.

Once the connection to the server is opened, we can obtain the two streams just as we did
with the server. Again, the InputStream instance represents the incoming data channel and
the OutputStream represents the outgoing data channel.

Reading from and writing to the Bluetooth streams involves
only the usual .NET stream operations, either directly or
through a serializer.

Reading data from the input stream is simply a matter of continuously reading the data out
of the InputStream instance. To do this, we can invoke the ReadAsync() method, with
a buffer, and wait for a response. As soon as enough data is read, either when the buffer is
full or when there is no more to read, the method will return with the number of bytes read.
We can then convert those bytes into a stream. We could also read the data using a Stream
instance by passing the actual stream to a deserializer or any reader that accepts a Stream
instance such as XDocument.Load().

http://www.bluetooth.com/Pages/How-It-Works.aspx

Communicating with the Outside World

154

Sending data to the other device is simply a matter of writing bytes to the OutputStream
instance. We could write directly using the WriteAsync() method or we could use a
serializer, such as XDocument.Save(), which accepts a Stream instance.

There's more...
Just as we can communicate via Bluetooth, we can communicate via NFC, which is a shorter
range communication technology.

See also
ff The Accessing Bluetooth recipe

ff The Sending data via NFC recipe

Receiving NFC events
Sometimes we may wish to make use of NFC, a very short range communication technology,
to transfer data or to interact with NFC tags.

Getting ready
To develop for NFC, we need to have a device that includes NFC hardware.

How to do it…
We can query the NfcAdapter instance for the status of the hardware as well as to be
notified when a new tag is detected:

1.	 As with the other hardware features, we need permission to access NFC services:
[assembly: UsesPermission(Manifest.Permission.Nfc)]

2.	 Additionally, we need to specify that we are going to be using the NFC device feature.
If our app cannot run without NFC, we set the Required property to true:
[assembly: UsesFeature(
 PackageManager.FeatureNfc, Required = true)]

However, if our app runs fine on a device without NFC, we set the Required property
to false:
[assembly: UsesFeature(
 PackageManager.FeatureNfc, Required = false)]

Chapter 5

155

3.	 Now that we have permission, we can get the NfcAdapter instance:
adapter = NfcAdapter.GetDefaultAdapter(this);

4.	 If NFC is enabled and the app is in the foreground, we can start listening for NFC
events using the EnableForegroundDispatch() method:
if (adapter != null && adapter.IsEnabled) {
 var tagDetected = new IntentFilter(
 NfcAdapter.ActionTagDiscovered);
 var pendingIntent = PendingIntent.GetActivity(
 this, 0, new Intent(this, GetType()), 0);
 adapter.EnableForegroundDispatch(
 this, pendingIntent, new[]{ tagDetected }, null);
}

5.	 When the app goes into the background, we need to disable the listener:
adapter.DisableForegroundDispatch(this);

6.	 As soon as the device detects an NFC device or tag, it will notify our app via the
OnNewIntent() method. We will receive the type of technology detected via the
Tag extra:
protected override void OnNewIntent(Intent intent) {
 var tag = intent.GetParcelableExtra(
 NfcAdapter.ExtraTag) as Tag;
 if (tag != null) {
 string[] techs = tag.GetTechList();
 }
}

7.	 We can access the actual data in the tag or device message via the NdefMessages
extra:
var ndefMessages = intent.GetParcelableArrayExtra(
 NfcAdapter.ExtraNdefMessages);
if (ndefMessages != null) {
 foreach (var msg in ndefMessages.Cast<NdefMessage>()) {
 foreach (var record in msg.GetRecords()) {
 byte[] typeBytes = record.GetTypeInfo();
 byte[] payloadBytes = record.GetPayload()
 var type = Encoding.UTF8.GetString(typeBytes);
 var payload = Encoding.UTF8.GetString(payloadBytes);
 }
 }
}

Communicating with the Outside World

156

How it works...
Like Bluetooth, NFC is a wireless communication technology for use over short distances.
However, in the case of NFC, the distance is less than 10 centimeters. Unlike Bluetooth,
which uses radio transmissions, NFC uses electromagnetic radio fields to communicate.
More information on NFC and how it works can be found on the official NFC website:
http://www.nearfieldcommunication.org.

We can use the Android NFC API to do several things, including reading or writing to passive
tags and communicating with other devices.

Like any other hardware feature we want to use, we have to request permission to do so. There
is the usual NFC permission that we need to request as well as an additional feature that we
have to specify. The feature is used by the package manager to let the store know that we may
require a device that supports NFC. The feature can be set to required or optional.

If an app specifies that the NFC feature is optional, it has
to support devices without NFC hardware.

Before we can interact via NFC, we have to obtain the NfcAdapter instance from the current
context. Once we have the adapter, we start listening for NFC tags or devices using the
EnableForegroundDispatch() method. We provide the ActionTagDiscovered action
filter to this method and a PendingIntent instance that holds an Intent instance to return
to our activity. We could specify any activity here.

Once the listener is started, we need to make sure we stop it as soon as the app leaves the
foreground; otherwise, an exception will be thrown. We can cancel the NFC listener by invoking
the DisableForegroundDispatch() method.

We start listening for NFC when the activity is in the
foreground, and we stop listening when the activity is paused.

Because we specified that the listener should return to our activity, the OnNewIntent()
method is invoked, along with the Intent instance we specified in the PendingIntent
instance, as soon as a tag is detected.

The Intent instance contains extras describing the NFC tag,
including the technologies and the messages embedded within.

The Intent instance will contain the NFC extras that we can use to read the tags and
message. If we request the ExtraTag extra from the intent, we will obtain the Tag instance
that initiated the event. We can use this Tag instance to read various details out as well as to
write to the tag.

http://www.nearfieldcommunication.org

Chapter 5

157

We can also read any of the messages stored in the tag using the ExtraNdefMessages
extra. This extra is an array of NdefMessage types, each of which contains one or more
NdefRecord types. On each record, we can get type information, such as the MIME
type, from the GetTypeInfo() method. We can also get the actual payload using the
GetPayload() method.

There's more...
Some tags support being written to, and we can do this by creating NdefMessage and
NdefRecord instances. We can also use these messages to send data to another device.

See also
ff The Accessing Bluetooth recipe

ff The Writing NFC tags recipe

ff The Transferring data via NFC recipe

Writing NFC tags
We can use NFC tags for many things, such as storing tiny amounts of data, typically ranging
from a few bytes to a few megabytes, or using it to interact with other devices.

How to do it...
If we want to write to a tag, we need to obtain the tag and create a message to write:

1.	 In order to write to a Tag instance, we need to start listening for NFC tags:
var adapter = NfcAdapter.GetDefaultAdapter(this);
if (adapter != null && adapter.IsEnabled) {
 var tagDetected = new IntentFilter(
 NfcAdapter.ActionTagDiscovered);
 var pendingIntent = PendingIntent.GetActivity(
 this, 0, new Intent(this, GetType()), 0);
 adapter.EnableForegroundDispatch(
 this, pendingIntent, new[]{ tagDetected }, null);
}

2.	 Once the listener has started, we can wait for the tag to be discovered and passed to
the OnNewIntent() method:
protected override void OnNewIntent(Intent intent) {
 var tag = intent.GetParcelableExtra(
 NfcAdapter.ExtraTag) as Tag;
}

Communicating with the Outside World

158

3.	 Once we have obtained the Tag instance from the extras in the OnNewIntent()
method, we can start writing by creating the message. In this case, a custom data
tag will be created for our custom MIME type:
var payload = Encoding.UTF8.GetBytes("Xamarin Cookbook!");
string mimeType =
"application/vnd.xamarincoockbook.nfcrecipe";
var mimeBytes = Encoding.UTF8.GetBytes(mimeType);
var record = new NdefRecord(
 NdefRecord.TnfMimeMedia,
 mimeBytes,
 new byte[0],
 payload);
var message = new NdefMessage(new[] { record });

4.	 Now that we have our message, we can attempt to write to the tag:
var ndef = Ndef.Get(tag);
await ndef.ConnectAsync();
await ndef.WriteNdefMessageAsync(message);
ndef.Close();

5.	 If this fails for some reason, it could be that the tag is not formatted, so we can try
formatting the tag with the message:
var format = NdefFormatable.Get(tag);
await format.ConnectAsync();
await format.FormatAsync(message);
format.Close();

How it works...
NFC tags can be read by Android and can perform many actions such as opening apps,
changing settings, or starting services. NFC tags require no power as the radio is powered
solely by the RF field of the device. Not only do they not require power, but passive NFC tags
are tiny, lightweight, and paper thin.

NFC tags can be written using a special format, NDEF messages, or custom formats. Android
has the best support for tags written in the NDEF format. NDEF data is encapsulated inside
a message, an NdefMessage instance, which contains one or more records, NdefRecord.
Each record must be formed according to the type of record we want to create.

The same NDEF messages used to write to a tag can be
used to send data to another device.

Chapter 5

159

Each message can have multiple records, but the first record is used to determine how to
interpret all the records. Thus, the first record should contain several fields:

ff Type Name Format (TNF), which describes how to interpret the Variable Length
Type field, which could be a URI, a custom type, or a well-known type.

ff Type, which describes the type of record. If the tag is marked as a well-known type,
this field is used to specify the Record Type Definition (RTD) such as URI or text.

ff ID, which provides a unique identifier for the tag itself.

ff Payload, which contains the actual data of the tag.

Once we have created a properly formatted NDEF message, we can write it to the tag. In order
to do this, we have to first obtain the Ndef instance from a tag. The Ndef instance provides
access to NDEF content and operations.

With the Ndef instance, we can start writing to the tag. Before we start, we have to open
a connection. To do this, we invoke the ConnectAsync method. After the connection is
opened, we can write the data to the tag using the WriteNdefMessageAsync method.
When writing has completed, we need to close the connection in order to free up any
resources that may have been used. This is done via the Close method.

If, for some reason, the write fails, it may be due to the fact that the tag itself is incorrectly
formatted. If this is the case, we can format the tag with our message. As with writing a tag,
we need to obtain the formatter, the NdefFomatable type, from the tag.

Once we have the formatter, we can perform operations on the tag. As with the write process,
we have to connect to the tag using ConnectAsync. Then, instead of writing, we format
the tag via the FormatAsync method. Once the format has completed, we must close the
connection to the tag with the Close method.

Regardless of whether the tag is being written to or formatted,
the connection needs to be opened before operations are
performed and then closed after operations have completed.

There's more...
If our app is targeted at Android version 4.0 and above, we can write tags to launch other
apps. To do this, we write a special type of NdefRecord instance to the tag, an Android
Application Record:

NdefRecord.CreateApplicationRecord("com.xamarincookbook.example");

When a tag is scanned with this record, Android will try and launch the app. If the app is not
installed, Android will open the Play Store at the app's page.

Communicating with the Outside World

160

See also
ff The Receiving NFC events recipe

ff The Transferring data via NFC recipe

Transferring data via NFC
Chunks of data can be transferred from one device to another with NFC, using the same
messages used when writing to tags.

How to do it...
If we want to send messages from a device, we need to register a message with the NFC push
system. We could create a custom message, as in the previous recipe, but here we will just
send an HTTP URI to another device:

1.	 If we are targeting Android version 2.3 and above, we need to manually create the
correct NDEF message payload:
byte httpType = 0x01; // 'http://www.'
var theUri = Encoding.UTF8.GetBytes("xamarin.com");
var payload = new byte[theUri.Length + 1];
payload[0] = httpType;
Array.Copy(theUri, 0, payload, 1, theUri.Length);

2.	 Once we have the payload, we create the message:
var record = new NdefRecord(
 NdefRecord.TnfWellKnown,
 NdefRecord.RtdUri.ToArray(),
 new byte[0],
 payload);
var message = new NdefMessage(new[] { record });

3.	 If we are targeting Android version 4.0 and above, it is far easier to create the record:
var uri = "http://www.xamarin.com";
var record = NdefRecord.CreateUri(uri);
var message = new NdefMessage(new[] { record });

Now that we have the message, we need to let Android know that it needs to send it:

1.	 If we are targeting Android version 2.3 and above, we have to register the message
with the NFC adapter when the app is in the foreground:
adapter.EnableForegroundNdefPush(this, message);

Chapter 5

161

2.	 When the app leaves the foreground, we need to disable it:
adapter.DisableForegroundNdefPush(this);

3.	 Android version 4.0 and above does things a bit differently. We set the message once
and let Android take over:
adapter.SetNdefPushMessage(message, this);

4.	 If we want the message to be more dynamic, we can create the message on the fly
using the NfcAdapter.ICreateNdefMessageCallback interface on our activity:
public class MainActivity : Activity,
 NfcAdapter.ICreateNdefMessageCallback
{
 public NdefMessage CreateNdefMessage(NfcEvent e)
 {
 var message = ...
 return message;
 }
}

5.	 We then register this with the adapter as well:
adapter.SetNdefPushMessageCallback(this, this);

6.	 We can also be notified when the app has sent a message through the
NfcAdapter.IOnNdefPushCompleteCallback interface:
public class MainActivity : Activity,
 NfcAdapter.ICreateNdefMessageCallback
{
 public void OnNdefPushComplete(NfcEvent e)
 {
 // message sent
 }
}

7.	 Finally, we register this with the adapter:
adapter.SetOnNdefPushCompleteCallback(this, this);

How it works...
Sending data to another device using NFC is a two-step process: first, we create the message,
and then we register the message with the NFC adapter. This very simply makes the device an
NFC tag that can be read by another device.

Communicating with the Outside World

162

The way we register a message was changed in Android version 4.0 from a manual process
to one that is more automatic. If we are targeting Android version 2.3, we need to register the
message with the NFC adapter by using the EnableForegroundNdefPush() method. If we
are targeting Android version 4.0 and above, we use the SetNdefPushMessage() method.

Messages can only be sent from an app when the app is in the foreground. If the app
is paused, the message is removed (manually for Android version 2.3 and below and
automatically for Android version 4.0 and above). To manually remove the message on
Android version 2.3, we use the DisableForegroundNdefPush() method.

Android version 4.0 also introduces several other enhancements in the form of callbacks. If
we want our message to be created at the time the data is to be transferred, we register a
type that implements the NfcAdapter.ICreateNdefMessageCallback interface with
the adapter. This is done instead of using the SetNdefPushMessage() method. When
the message is needed, the CreateNdefMessage() method is invoked and we return the
message we want to transmit to the other device.

There is also a callback for when the message has been transferred. Similarly, we register a
type that implements the NfcAdapter.IOnNdefPushCompleteCallback interface using
the SetOnNdefPushCompleteCallback method. When the message has been sent, the
OnNdefPushComplete() method is invoked.

For both callbacks, we can just implement the interfaces on the actual activity. This allows us
to easily handle NFC operations.

Obtaining location coordinates and
addresses

Many devices have the ability for us to obtain the location of the user in a very precise
manner. Android provides a few means to access the location, including using the network
or using Global Positioning System (GPS).

How to do it...
If we are designing an app that requires the user's location, such as finding things nearby, we
can use LocationManager to get the user's current location:

1.	 If we are only interested in using the network provider, we only need to ask for
permission to use coarse location:
[assembly: UsesPermission(
 Manifest.Permission.AccessCoarseLocation)]

Chapter 5

163

2.	 If we want to use GPS, we need to use the fine location permission instead:
[assembly: UsesPermission(
 Manifest.Permission.AccessFineLocation)]

3.	 Once we have permission for location requests, we need to get LocationManager:
manager = LocationManager.FromContext(this);

4.	 We can check to see whether a specific provider, such as GPS, is enabled:
manager.IsProviderEnabled(
 LocationManager.GpsProvider);

5.	 We can also take the user to the settings in order to enable the location services:
var intent = new Intent(
 Settings.ActionLocationSourceSettings);
StartActivity(intent);

6.	 Before we start requesting new locations, we can use the cached location:
var cached = manager.GetLastKnownLocation(
 LocationManager.GpsProvider);

7.	 We need to provide a destination for the location results when requesting the
location, so we implement the ILocationListener interface:
public class MainActivity : Activity, ILocationListener
{
 public void OnLocationChanged(Location location)
 {
 }
 public void OnProviderDisabled(string provider)
 {
 }
 public void OnProviderEnabled(string provider)
 {
 }
 public void OnStatusChanged(
 string provider,
 Availability availability,
 Bundle extras)
 {
 }
}

Communicating with the Outside World

164

8.	 Once we receive a location, the OnLocationChanged method will be invoked and
we can access the various location properties:
double latitude = location.Latitude;
double longitude = location.Longitude;

9.	 Once we have implemented the interface, we can start requesting updates. If our app
only requires a single location request, such as to just get a one-off location, we can
use the RequestSingleUpdate method:
manager.RequestSingleUpdate(
 LocationManager.GpsProvider, this, null);

10.	 We can also register for a continuous stream of updates using the
RequestLocationUpdates method:
manager.RequestLocationUpdates(
 LocationManager.GpsProvider, 0, 0, this);

11.	 We can also request to get updates from multiple providers at the same time:
manager.RequestLocationUpdates(
 LocationManager.NetworkProvider, 0, 0, this);

12.	 We can then find the best location provider to use:
var criteria = new Criteria();
var provider = manager.GetBestProvider(criteria, false);

13.	 No matter how we register for updates, we can stop listening as well:
manager.RemoveUpdates(this);

We can also work backwards. If we have location coordinates, we can request information
about what is at that location using the Geocoder instance:

1.	 Before we start making requests, we need to be sure that Geocoder is available on
the device:
var isPresent = Geocoder.IsPresent;

2.	 If Geocoder is available, we can make a request based on latitude, longitude, and the
number of results that we want by using the GetFromLocationAsync() method:
var geocoder = new Geocoder(this);
var resultCount = 1;
var addresses = await geocoder.GetFromLocationAsync(
 currentLocation.Latitude,
 currentLocation.Longitude,
 resultCount);

Chapter 5

165

3.	 This method returns a collection of Address objects that represent places at the
given coordinates:
Address address = addresses.FirstOrDefault();
StringBuilder builder = new StringBuilder();
for (int i = 0; i < address.MaxAddressLineIndex; i++) {
 var line = address.GetAddressLine(i);
 if (!string.IsNullOrWhiteSpace(line))
 builder.AppendLine(line);
}
string addressLines = builder.ToString();

4.	 As well as requesting the address lines, we can obtain various bits of information
directly:
string houseNumber = address.SubThroughfare;
string roadName = address.Throughfare;
string suburb = address.SubLocality;
string city = address.Locality;

How it works...
LocationManager provides a uniform way to access a device's physical location from
various providers such as cell towers, Wi-Fi, GPS data from other apps and services, and the
GPS device itself. Different providers provide varying degrees of accuracy as well as differing
power requirements.

GPS is the most accurate but also requires the most power. The network provider, which uses
the cell towers and Wi-Fi, is less accurate but requires less power. Less accurate providers
can be used if the app does not require a constant stream of updates or needs to consume
minimal battery.

In order to access the location services, we need to ask for permission. There are two levels
of permissions, fine and coarse. Fine location permission is required for the GPS provider
and the passive provider, which uses GPS data collected by other apps. Coarse location
permission is used when using the cellular and Wi-Fi location data.

Before requesting location data, we need to be sure that the provider is available and is
enabled. We can request that the user enable certain providers if it is needed. Enabling
location services can be achieved by showing the settings activity.

When listening for location data, we subscribe to the updates with an interface. In order to
catch the updates, we implement the OnLocationChanged() method. This method will be
invoked each time there is a new location from one of the location providers. The Location
parameter contains several properties which we can use to determine the coordinates and
many other location attributes as well as the accuracy and time of the particular result.

Communicating with the Outside World

166

We can request updates in two ways: as a single response or as a continuous stream of new
location updates. If our app only requires the location once-off or infrequently, we can use the
RequestSingleUpdate() method. This will only request a single location result. If we need
a stream of updates, we use the RequestLocationUpdates() method.

Both methods require a provider to use when requesting updates. We can request updates
from multiple providers using the same receiver as each new location will contain details on
where the update came from.

If we are requesting a single update, we supply the provider, the callback, and the thread
we wish to invoke the callback on. If we want to use the current thread, we pass null.
Similarly, when requesting a stream of updates, we provide the same parameters, but with
an additional two. The first additional parameter specifies how frequently, in milliseconds,
to request a new update; passing a zero will return them as fast as possible. The second
specifies how far, in meters, the device needs to have moved before updating the location.

If we want to find out what provider is the best available, we can pass an instance of
Criteria to the GetBestProvider() method. This method tries to find the best provider
that matches the given criteria, excluding those that the app does not have permission for.
We can also specify what the criteria are for selecting a provider using the various properties
on the Criteria type. Some of these properties include Accuracy and Power as well as
AltitudeRequired and SpeedRequired.

Once we have the location we need or want to cancel updates, we can use the
RemoveUpdates method to stop listening on a particular ILocationListener instance.

We can get an accurate location from the sensors, but sometimes we need to get some idea
of what addresses are at or near that location. To do this, we use Geocoder.

Geocoder can provide a collection of Address types that represent the physical addresses
that are found near the provided location. There are two ways which we can request
addresses: by specific location coordinates using the GetFromLocationAsync() method or
by a string location name using GetFromLocationNameAsync().

Chapter 5

167

There's more...
Android provides an additional location provider through Google Play Services: Fused Location
Provider is an optional alternative to the standard Android Location Service that automatically
handles changes in provider status inside our app. It selects the best provider at any given
moment. It also provides the ability to create location-aware apps that use geo-fencing.

More information on using Fused Location Provider can be found at: http://developer.
xamarin.com/guides/android/platform_features/maps_and_location/
location/.

We can also embed a map directly into our app. This can be used to provide a visual
representation of the device's location as well as enable us to place markers on the
map showing the locations of various objects.

More information on including maps in an app can be found at: http://developer.
xamarin.com/guides/android/platform_features/maps_and_location/maps/
part_2_-_maps_api.

One of the requirements for using an embedded map is that we need a Google Maps API key.
More information on how to obtain one for our app can be found at: http://developer.
xamarin.com/guides/android/platform_features/maps_and_location/maps/
obtaining_a_google_maps_api_key/.

http://developer.xamarin.com/guides/android/platform_features/maps_and_location/location/
http://developer.xamarin.com/guides/android/platform_features/maps_and_location/location/
http://developer.xamarin.com/guides/android/platform_features/maps_and_location/location/
http://developer.xamarin.com/guides/android/platform_features/maps_and_location/maps/part_2_-_maps_api
http://developer.xamarin.com/guides/android/platform_features/maps_and_location/maps/part_2_-_maps_api
http://developer.xamarin.com/guides/android/platform_features/maps_and_location/maps/part_2_-_maps_api
http://developer.xamarin.com/guides/android/platform_features/maps_and_location/maps/obtaining_a_google_maps_api_key/
http://developer.xamarin.com/guides/android/platform_features/maps_and_location/maps/obtaining_a_google_maps_api_key/
http://developer.xamarin.com/guides/android/platform_features/maps_and_location/maps/obtaining_a_google_maps_api_key/

169

6
Using Background

Tasks

In this chapter, we will cover the following recipes:

ff Asynchronous tasks

ff Starting services

ff Stopping services

ff Handling simultaneous service requests

ff Starting services automatically

ff Communicating with running services

ff Critical tasks

Introduction
Multitasking is what computers do, and they do it amazingly well. In the case of mobile apps,
the user expects the app to always be responsive even if a complex task is being executed.

Most devices are fast enough to execute tasks as needed, but sometimes those tasks take
longer than a few milliseconds. If that task was to be executed on the main, or UI thread, then
the UI would freeze.

Users demand that not only an app be responsive when executing long-running tasks, but also
that animations and transitions run smoothly. In such a case, the task has to be moved into
the background so that the app continues to give the impression that it is waiting for the user,
when in fact, it is working hard.

Using Background Tasks

170

Some tasks are not work happing but rather managing the tasks being run by others. This can
include playing music or downloading a file. The app has already handed the task over to the
operating system, and all that the user cares about is starting a new app or task.

The device must remain responsive for the user while continuing the previous task in the
background, but it should still listen for the user to jump back into the previous task. In the
case of a file download, the user may decide that it is no longer needed and cancel the
download. The state should be restored and the task should be canceled without a delay.
After all this, the user will probably switch to another app.

The user is not as fast as a computer, but they will notice immediately if there are any delays.
As the computer is able to multitask at high speed, there is no real reason as to why an app
should freeze for any amount of time.

Asynchronous tasks
All apps need to perform tasks that may take longer than a few milliseconds. If a task blocks
the UI thread for longer than a few seconds, Android will terminate it, crashing the application.

How to do it...
If we want to do work in the background, we use a new thread. To do this, we make use of the
Task Parallel Library (TPL) and the async/await keywords:

1.	 The first thing that is needed is the method that we wish to execute:
public async Task DoWorkAsync() {
 await Task.Run(() => {
 // some long running task
 });
}

2.	 We then invoke it like a normal method, but just with the await keyword:
await DoWorkAsync();

3.	 We can also attach it to an event:
doWork.Click += async (sender, args) => {
 await DoWorkAsync();

}

Chapter 6

171

4.	 We can also override the void methods by simply inserting the async keyword
before the return type:
protected override async void OnCreate(Bundle bundle) {
 base.OnCreate(bundle);
 await DoWorkAsync();
}

5.	 If the method needs to return a value, we use Task<>:
public async Task<bool> DoWorkAsync() {
 await Task.Run(() => {
 // some long running task
 });
 return true;
}

6.	 We invoke the method as usual, storing the actual value returned:
var success = await DoWorkAsync();

7.	 If we want to update the UI from a background thread, we have two methods that we
can use. If we have an activity, we use the RunOnUiThread() method:
Activity.RunOnUiThread(() => {
 // UI interaction
});

8.	 Or if we have a view, we use the Post() method:
View.Post(() => {
 // UI interaction
});

How it works...
One of the most important areas to consider when creating the UI of an app is how it will
perform on the device. No matter how great we design the UI, if it freezes or hangs, the
Android OS may terminate the app or the user will uninstall it. This is because Android is
continually updating the UI and handling events. If we were to perform a long-running task,
the UI would have to wait for our task to complete.

If a long-running task is executed on the UI thread, the UI thread
will have to wait until the task is complete before it can refresh the
views. This results in the app freezing.

Using Background Tasks

172

The most common causes of a frozen UI are network or I/O operations. If we are opening a
file, then we can do so on a background thread. Although this operation is very quick, it may
not be quick enough for the app or user. By moving the task into the background, the file can
be opened in often less than a second but with no chance of the UI blocking.

In the case of network operations, such as downloading an image thumbnail, moving the
task into the background will allow the user to scroll through a list view at high speed. As the
images are downloaded, they can be displayed without causing the list to freeze until the
download is complete.

To prevent the UI freezing, we use threads or do the work in the background. There are several
ways to do this but the easiest and simplest is to let the compiler do all the work for us. When
we do this, we make use of the TPL and the async and await keywords. We mark methods
as asynchronous using the async keyword. Then, when we invoke the asynchronous method,
we use the await keyword.

When we use these keywords, the compiler will rewrite our code during the build process to
actually execute the method on a new thread. This is a great way to keep our code clean as
well as the app performing optimally.

The compiler rewrites the code when using async and await.
This allows the code to be neater and easier to maintain.

Using the async and await keywords doesn't automatically create a new thread unless we
specify what to execute on a new thread. We can await the Task.Run method to execute a
block of code in the background, or we can await another asynchronous method. When the
awaited code is to be executed, a new thread is created and used. When the execution is
finished, it is returned to the caller and back to the caller's thread.

Unlike the synchronous methods, if our method is to return a value, we have to use
the generic Task<> return type. This is because, although we are returning a value, the
compiler is writing additional code that requires additional members from our method.
If our asynchronous method does not return a value, we use the Task return type.

So, instead of simply returning the value, such as bool, we wrap it in the generic Task<bool>
tag. And, instead of void, we have a Task return type. When we use the await keyword, the
compiler rewrites the code to extract the returned value, which we then use.

There is a special case in which we can await tasks within a void method. For events,
this usually does not matter as the sender usually does not care what happens. For events
that may require a handled notification, we must set the properties before starting the
background work.

Chapter 6

173

Another special case is when overriding a method that returns void. As we cannot change
the return type, we have to work around it by ensuring that we invoke the base method before
awaiting any tasks. If we do not, then the method will return immediately without invoking the
base method, which, in the case of Android lifecycle events, is not valid.

If we want to update the UI from within a block of code that is executing on another thread, we
cannot do so from that thread. All UI operations must be performed on the UI thread. Android
provides two means of doing this, using an activity or the view itself.

The UI cannot be updated from a background thread as
the UI is not thread-safe.

We can update the UI from another thread if we have access to the activity that holds the
view, using the RunOnUiThread() method defined in the activity itself. Alternatively, we can
use the Post() method or the PostDelayed() method, defined on a view. These methods
accept an Action instance, or a block of code, which is then executed on the UI thread.

It is important to remember that the lifetime of a background thread is not related to the
lifetime of the caller. If an activity starts a new thread and then the activity is destroyed, the
thread will continue to execute in the background. This may cause undesired results or crash
the app. Thus, when creating a thread, it should be terminated when the caller is no longer
available. To avoid running into problems, we can use threads for shorter tasks and services
for longer tasks.

Background threads can be used for short tasks, but
services should be used for longer tasks.

There's more...
We do have the option to use .NET threads or the thread pool along with the Android
AsyncTask instance. However, this involves new types and more complex code:

private class DownloadFilesTask : AsyncTask<Uri, int, long> {
 protected override long DoInBackground(params Uri[] uris) {
 // on BACKGROUND thread
 foreach (var uri in uris) {
 if (IsCancelled)
 break;
 }
 return uris.Length;
 }
 protected override void OnProgressUpdate(params int[] progress)
 {

Using Background Tasks

174

 // on UI thread
 }
 protected override void OnPostExecute(long result) {
 // on UI thread
 }
}

And then to execute this logic, we will do the following:

new DownloadFilesTask().Execute(url1, url2, url3);

See also
ff The Starting services recipe

ff The Communicating with running services recipe

Starting services
Sometimes, we have to execute a task that must continue to run even if the user switches to
another app or activity.

How to do it...
To be able to execute a task, even if the user switches away, we use a Service instance:

1.	 First, we need an instance of Service, and in most cases, we can use an
IntentService instance:
[Service]
public class XamarinService : IntentService {
 protected override void OnHandleIntent(Intent intent) {
 // some long-running task
 }
}

2.	 In order to begin execution, we invoke the StartService() method on the
Context type:
StartService(new Intent(this, typeof(XamarinService)));

3.	 We can pass data to the service when we start it by adding data to the intent:
var intent = new Intent(this, typeof(XamarinService));
intent.PutExtra("MyKey", "MyValue");
StartService(intent);

Chapter 6

175

4.	 Additionally, in the service, we can retrieve the values from the intent's extras:
string value = null;
if (intent.HasExtra("MyKey"))
 value = intent.GetStringExtra("MyKey");

How it works...
Some tasks take fairly long to execute or may be a continuous execution. If normal threads
are used, they are not terminated and will be leaked if the activity is killed or paused.

Running threads are not automatically terminated and
will leak when the activity is killed.

Services are used as they are independent of other app components and have their
own lifecycle. They can be used to perform tasks and the various activities can interact
with them. Services stop automatically when they complete the task, or they can be
stopped by another component.

Some of the most common tasks performed by services are network or I/O operations. By
delegating downloads or file processing to a background service, the user and the app are
free to continue working. When the task has completed, the service can inform the user, who
can then decide to continue the last task.

Another task can be to play music. The service can be started with a playlist and then left to
go on ahead. When the user wants to control playback, messages can be sent to the service.
This frees up the app for navigation and filtering, without having to worry about playing audio.
The same goes for the service, which now no longer has to worry about any UI operations and
can focus on its task.

Services inherit from the Service type either directly or indirectly. For most simple cases of
executing a task in the background, we can use the IntentService instance. This type of
service starts from an Intent instance and runs the task in a new thread in the background.
As soon as the task is complete, the service is terminated.

This type of service is the best option if we don't need the service to handle multiple requests
simultaneously. If multiple requests come in, they are queued up and executed one at a time.
If the service is required to be able to handle simultaneous requests, we should inherit from
the base Service type.

The IntentService instance processes requests sequentially,
unlike the base Service type, which processes requests
simultaneously.

Using Background Tasks

176

All services must include the [Service] attribute as this declares the service with the
AndroidManifest.xml file. This is then registered by the Android OS so that we can start
the services using the StartService() method or the BindService() method. If we want
to prevent the service from being accessed by other apps, we can explicitly set the Exported
attribute property to false.

We override the OnHandleIntent() method to perform the task. This happens on a new
thread so we don't have to start our own. As soon as the task has completed and we exit the
method, the service is terminated. If there are other requests in the queue, the process
is repeated.

To start a service, we need to invoke the StartService() method on the Context type,
such as the Activity or BroadcastReceiver instances. We pass an Intent instance
that defines the service to start as well as any extra pieces of data we wish to pass to the
service. Data is passed via the extras mechanism of the Intent instance through the
PutExtra() method on the intent itself. In the service, we can extract the extra data from
the intent using the various GetXxxExtra() methods.

Data can be passed to the service through the extras on
the intent when starting the service.

There's more...
The IntentService instance does not process start requests simultaneously, but rather
queues them and executes them one at a time. To handle simultaneous execution, we need
to use the base Service type.

See also
ff The Stopping services recipe

ff The Handling simultaneous service requests recipe

Stopping services
As with most tasks, sometimes we have to stop doing them. This may be because it is no
longer necessary or because there are problems.

Chapter 6

177

How to do it...
In order to stop a Service instance, an instance needs to be executing a task, otherwise the
command will be ignored. Stopping a service can be done using a reference to the Context
instance or from within the service:

1.	 We first need a Service instance, such as an IntentService instance:
[Service]
public class XamarinService : IntentService {
 private bool stopping = false;
 protected override void OnHandleIntent(Intent intent) {
 // some long-running task
 while (!stopping) {
 }
 }
}

2.	 Then, we can start it as follows:
StartService(new Intent(this, typeof(XamarinService)))

3.	 Now, we can stop it in a very similar manner using the StopService() method on
the Context type:
StopService(new Intent(this, typeof(XamarinService)));

4.	 We can also stop the service from inside the service using the StopSelf() method:
StopSelf();

5.	 If we use either the StopService or StopSelf instance, the OnDestroy()
method is invoked on the service, which we use to clean up the service and stop
any running tasks:
public override void OnDestroy() {
 stopping = true;
 base.OnDestroy();
}

How it works...
As a service is not tied to the lifecycle of activities or other app components, we have to start
and stop them manually.

It is important that services are stopped in order to free
up memory and other resources.

Using Background Tasks

178

Services can be stopped in two ways, from within the service itself using the StopSelf()
method or from an external component using the StopService() method on a Context
instance. Some service types, such as the IntentService instance, will automatically stop
themselves when they no longer have any task to perform. Services which inherit from the
base Service type do not automatically stop, and we have to stop them manually.

If the service handles the simultaneous execution of requests, we need to ensure that we
do not stop the service if there are other requests running. When we handle requests in this
instance, we are provided a start ID, which we can use to keep track of the service that is
running. This ID is a sequential number representing the order in which the requests came in.

See also
ff The Starting services recipe

ff The Handling simultaneous service requests recipe

Handling simultaneous service requests
We may require a single service to be able to handle multiple requests from multiple
sources simultaneously.

How to do it...
If we want a service to be able to handle multiple requests simultaneously, we inherit from the
Service type, which provides the required features:

1.	 We first need a type that inherits from Service:
[Service]
public class XamarinService : Service {
 public override StartCommandResult OnStartCommand(
 Intent intent, StartCommandFlags flags, int startId) {
 return StartCommandResult.Sticky;
 }
 public override IBinder OnBind(Intent intent) {
 return null;
 }
}

Chapter 6

179

2.	 Now, we can create a method that handles multiple requests:
private int started = 0;
private async void ProcessRequest() {
 started++;
 await Task.Run (() => {
 // do the work for this particular request
 // ...
 StopSelf (startId);
 });
 started--;
 if (started == 0)
 StopSelf();
}

3.	 Each time the OnStartCommand() method is invoked, we can start a new batch
of work:
ProcessRequest();

4.	 Then, we can start the service multiple times if required:
StartService(new Intent(this, typeof(XamarinService));

How it works...
When we need our service to handle multiple requests simultaneously, we need to inherit
from the base Service type. Instead of the requests being queued and executed one at a
time, each request reaches the OnStartCommand() method immediately.

When handling an Intent instance in the OnStartCommand() method, we can decide to do
whatever we want. Usually, the task can be started in this method. But, where this differs from
a ServiceIntent instance is the creation of a new thread. The ServiceIntent instance
creates a new thread and executes the OnHandleIntent() method on that new thread. The
base Service instance does not do this, but rather executes on the UI thread. We have to
manually create a new thread for execution.

The OnStartCommand() method executes on the UI thread.
Unlike the OnHandleIntent() method, a new thread must
be created manually.

Using Background Tasks

180

The OnStartCommand() method returns a StartCommandResult instance value that
specifies what the system is to do in the event that the service is terminated before the
execution is complete. We can request that the service should not be restarted, or we can
request that the service is restarted with or without the original intent:

Return value Effect Use
NotSticky This does not restart the service if it

is terminated unless there are more
intents to still be delivered.

When the app can simply
restart any unfinished jobs.

Sticky This restarts the service, but uses
a null intent if there are no more
intents to deliver.

When the service is not
performing tasks but rather
waiting for incoming jobs.

RedeliverIntent This restarts the service with the
last intent.

When the service is performing
a task that needs to be
immediately retried.

If the service is performing specific tasks, it is important that the service is stopped using
StopSelf() when all the tasks are complete. We have to keep track of when services
start and finish and then stop the service when the work is done. We can make use of
the startId instance provided by the OnStartCommand() method and pass that to
StopSelf(). However, we still have to ensure that we do not invoke StopSelf() with
the most recent ID while some tasks are still being processed. If we do, the service will be
terminated anyway and the threads will be leaked.

The OnBind() method is not required to be implemented and can safely return null. This
method is used when connecting to the service directly. There is more information on this in
the Communicating with running services recipe.

We can start the service multiple times, and multiple threads will be created from the thread
pool. Each thread will perform the task and then stop. Once all the tasks have finished, the
service should be terminated.

See also
ff The Starting services recipe

ff The Communicating with running services recipe

Chapter 6

181

Starting services automatically
We might have a long-running task that we need to execute when the device starts. This may
be needed to set up some service or configuration for other services.

How to do it...
When we want to perform a task when the device starts up, we can start a service when we
receive the ActionBootComplete intent action:

1.	 As subscribing to the boot events is a privileged action, we have to request special
permission to do so:
[assembly: UsesPermission(
 Manifest.Permission.ReceiveBootCompleted)]

2.	 Before we can start our task, we need a Service instance that will perform the
actual task:
[Service]
public class XamarinService : IntentService {
 protected override void OnHandleIntent(Intent intent) {
 // some startup task
 }
}

3.	 Once we have the service and permission, we need to listen for the boot events using
a BroadcastReceiver instance:
[BroadcastReceiver]
[IntentFilter(new []{ Intent.ActionBootCompleted })]
public class ServiceStarter : BroadcastReceiver {
 public override void OnReceive(
 Context context, Intent intent) {
 var serviceIntent = new Intent(
 context, typeof(XamarinService));
 context.StartService(serviceIntent);
 }
}

4.	 Finally, to prevent the user from having to reboot the device just to start using the
app, we manually check whether the service has run when the app is launched:
var intent = new Intent(this, typeof(XamarinService));
StartService(intent);

Using Background Tasks

182

How it works...
If we want to perform any task as soon as the device starts up, for example to start a service
or to execute a configuration or security task, we need to register a broadcast receiver with the
Android OS.

Before we can register for the boot notification, we need to request permission to do so. This
is done by requesting the ReceiveBootCompleted permission. Another important aspect
to realize is that the app has to be launched manually by the user at least once before the
receiver is allowed to receive the intent. Also, if the user force stops the app from the device
settings, they will have to relaunch the app before the receiver is registered.

The app has to have been launched at least once before the receiver
is allowed to be registered for boot intents.

In order to listen for the ActionBootCompleted intent, we need to create a
BroadcastReceiver instance that filters the ActionBootCompleted action. As soon as the
device has finished booting, it will broadcast the intent and we will be able to perform a task.

As a BroadcastReceiver instance usually executes the OnReceive() method on the UI
thread, we need to execute the task on a new thread. However, we cannot use asynchronous
tasks in a broadcast receiver, because as soon as the OnReceive() method is returned, the
receiver is terminated, and if there are any threads, they will be leaked. Thus, we should use a
service with a broadcast receiver.

As the broadcast receiver does not support long-running or asynchronous
tasks, services can be started to perform those tasks.

As the intent is broadcasted when the device is booted, we need to ensure that even if the
user does not reboot the device, we still perform the tasks when the user launches the app.
For example, if we want to start a service when the device is booted, we have to ensure that if
the app is launched without rebooting, we start the service manually.

The app must be capable of its launch without the user
having to restart the device beforehand.

See also
ff The Starting services recipe

ff The Critical services recipe

Chapter 6

183

Communicating with running services
Sometimes, we have a long-running task in a service, but it needs to communicate with our app.
This can be needed to send data to the service or to be notified of an event from the service.

How to do it...
To communicate with a service, we need a connection. We use the connection to get a binder,
which holds a reference to the service. Let's take a look at the following steps:

1.	 Although not entirely necessary for very simple services, we will want an interface
that defines the public interface of the service:
public interface IXamarinService {
 event EventHandler SomeEvent;
 void SomeInstruction();
}

2.	 Next, we create an instance of IBinder, or rather Binder, which holds a reference
to the running service:
public class XamarinBinder : Binder {
 public IXamarinService Service { get; private set; }

 public XamarinBinder(IXamarinService service) {
 Service = service;
 }
}

3.	 Now that we have the binder instance, we can create the actual service
implementing the service interface. To support connections, we return an instance of
the binder in the OnBind() method:
[Service]
public class XamarinService : Service, IXamarinService {
 public event EventHandler SomeEvent;
 public void SomeInstruction() {
 }
}

4.	 To support incoming connections, we return an instance of the binder in the
OnBind() method:
public override IBinder OnBind(Intent intent) {
 return new XamarinBinder(this);
}

Using Background Tasks

184

5.	 Now, we can implement the service logic in the OnStartCommand() method, which
will start the task on a new thread, returning immediately with NotSticky so that
the service will be stopped automatically when the task is done:
public override StartCommandResult OnStartCommand(
 Intent intent, StartCommandFlags flags, int startId) {
 // do some work on a new thread
 // ...
 return StartCommandResult.NotSticky;
}

6.	 Once we have the service that supports binding, we need a connection that
implements the IServiceConnection interface:
public class XamarinConnection
 : Java.Lang.Object, IServiceConnection {
 private XamarinBinder binder;
 public void OnServiceConnected(
 ComponentName name, IBinder service) {
 binder = service as XamarinBinder;
 var handler = Connected;
 if (handler != null)
 handler(this, EventArgs.Empty);
 }
 public void OnServiceDisconnected(ComponentName name) {
 var handler = Disconnected;
 if (handler != null)
 handler(this, EventArgs.Empty);
 binder = null;
 }
 public event EventHandler Connected;
 public event EventHandler Disconnected;
 public IXamarinService Service {
 get {
 if (binder != null && binder.Service != null)
 return binder.Service;
 return null;
 }
 }
}

7.	 We start the service, although the service is not required, as follows:
var intent = new Intent(this, typeof(XamarinService));
StartService(intent);

Chapter 6

185

8.	 Whether or not the service is started, we can bind to it as follows:
var connection = new XamarinConnection();
BindService(intent, connection, Bind.AutoCreate);

9.	 We should ensure that we unbind from the service if the activity stops:
UnbindService(connection);

10.	 If we want to attach events to the service, we can subscribe to them when the
connection is made:
connection.Connected += delegate {
 connection.Service.SomeEvent += OnSomeEvent;
};
connection.Disconnected += delegate {
 connection.Service.SomeEvent -= OnSomeEvent;
};

11.	 And, we can also invoke methods on the service:
var service = connection.Service;
if (service != null) {
 service.SomeInstruction();
}

How it works...
Once we have started a service, we may wish to set up communication with it. This may
be to receive progress notifications or request a specific operation while it is performing
the tasks. To do this, we can connect to the service using an IBinder instance and an
IServiceConnection instance.

Usually, we would inherit our service from the base Service type and provide a public
interface for the service. We can use the service object directly instead of an interface,
but we would not be able to control how the service is used.

An interface can be used to define the public interface of the service.
This will prevent accidental or intentional misuse of the members on
the service.

After we have, optionally, created an interface that defines the public aspects of the service,
we create a binder. We can use the IBinder interface, but then we would have to implement
all the methods on that interface. Thus, we use the Binder type, which provides a standard
implementation of all the methods. For most local services, we do not even use the methods,
but rather just provide our own means of obtaining a reference to the running service.

Using Background Tasks

186

From the service, we override the OnBind() method and return an instance of our binder. We
can create a new instance each time or return the same instance each time.

We use an implementation of the IServiceConnection interface when
subscribing to a service, there are two methods we need to implement. The first is the
OnServiceConnected() method, which is invoked when a connection to the running
service is established. In this method of the connection, we are provided the binder that we
returned from the OnBind() method of the service. We can then use this binder and get hold
of the actual service.

The other method is the OnServiceDisconnected() method. This is invoked when
a connection to the service is lost, typically when the hosting process has crashed or is
terminated. The connection object is not destroyed and will reconnect when the service
becomes available again. If we subscribe to any events on the service when we connect,
we need to unsubscribe from them when the service is destroyed so that resources can
be disposed of.

When a service is destroyed, the OnServiceDisconnected()
method is invoked on any open connections. The connection objects
are not destroyed, and as soon as the service is re-created, the
OnServiceConnected() method is invoked on those connections.

We can connect, or bind, to a service whether it has started or not using the BindService
instance on the Context type. If we have not started the service, it will be created and
started. However, the OnStartCommand() method will not be invoked as no intent would
have been received. But, as the service has started, we can still invoke methods on that
service and subscribe to events.

A service does not have to be started before it can be
bound. If it is not started, it will be.

Once we have a connection to the service, we can obtain the service from the binder that
was provided to the connection. Once we have the service, we can directly invoke methods or
subscribe to events as we would do for any object.

To unbind from a service, we pass the open connection to the UnbindService() method
on the Context type. This disconnects the connection from the service and we will no longer
receive a notification if the service is started or stopped. If the service wasn't started with
StartService, it is now available to be terminated at any time by the Android OS. However,
this does not mean that it will be terminated immediately.

Disconnecting from a bound service does not mean that
it will be destroyed.

Chapter 6

187

There's more...
Using a separate connection object is not required. Instead of a separate object, the
activity can be used instead. Thus, when connecting to a service, we pass the activity
to the BindService() and UnbindService() methods.

See also
ff The Starting services recipe

ff The Handling simultaneous service requests recipe

Critical services
If we are running a task and it needs to complete as soon as possible, we can prevent the
device's CPU from going to sleep. This allows the task to finish without interruption.

How to do it...
To prevent the CPU from going to sleep, we can use a wake lock:

1.	 We will need to ensure that the Xamarin Support Library v4 NuGet or
component is installed into the project if we are going to be using the
WakefulBroadcastReceiver type.

2.	 Before we can prevent the CPU from going to sleep with a wake lock, we need
permission to do so:
[assembly: UsesPermission(Manifest.Permission.WakeLock)]

3.	 The recommended way to get hold of a wake lock is to use an instance of
WakefulBroadcastReceiver and invoke the StartWakefulService()
method:
[BroadcastReceiver]
public class CriticalReceiver : WakefulBroadcastReceiver {
 public override void OnReceive(
 Context context, Intent intent) {
 var serviceIntent = new Intent(
 context, typeof(CriticalService));
 StartWakefulService(context, serviceIntent);
 }
}

Using Background Tasks

188

4.	 The service will then perform the task and invoke the CompleteWakefulIntent()
method:
[Service]
public class CriticalService : IntentService {
 protected override void OnHandleIntent (Intent intent) {
 try {
 // perform the task
 }
 finally {
 WakefulBroadcastReceiver.CompleteWakefulIntent(
 intent);
 }
 }
};

5.	 If the receiver needs to be executed manually, we can do so with the
SendBroadcast() method on the activity:
SendBroadcast(new Intent(this, typeof(CriticalReceiver)));

6.	 There is also another way to obtain a wake lock, which is using the PowerManager
instance and requesting a lock with the NewWakeLock() method:
var manager = PowerManager.FromContext(this);
var wakeLock = manager.NewWakeLock(
 WakeLockFlags.Partial, "WakeLockTag");
wakeLock.Acquire();
try {
 // perform the task
}
finally {
 wakeLock.Release();

}

How it works...
Some tasks are critical and need to be finished as soon as possible and as fast as possible.
Normally, if the device is left idle, the screen and then the CPU turn off. Turning off various
pieces of hardware is a great way to preserve battery life, but it also prevents some important
tasks from completing until the CPU is awoken by the user.

If we have a task that is important to finish in a timely fashion, we can prevent the CPU from
turning off by obtaining a wake lock. This is done by either using the recommended way of
a WakefulBroadcastReceiver instance or by manually acquiring a wake lock from the
PowerManager instance.

Chapter 6

189

Using a WakefulBroadcastReceiver instance is very useful when the task comes from
push notifications, as this will wake the CPU so that the message can be handled before going
back to sleep. We just have to add the Xamarin Support Library v4 NuGet or component into
our project, and then instead of inheriting from BroadcastReceiver, we inherit from the
WakefulBroadcastReceiver type. This will automatically acquire a wake lock and we just
have to implement the task we want to perform.

As the WakefulBroadcastReceiver instance is just an extended BroadcastReceiver
instance, we cannot execute long-running or asynchronous tasks. If we wish to perform a
task, we start that task in a service using the static StartWakefulService() method.
We pass an Intent instance to this method, which specifies the service to start. Once the
service has completed, we invoke the static CompleteWakefulIntent() method on the
WakefulBroadcastReceiver type.

It is important to release the wake lock and to do it as soon as possible to avoid battery drain.
In the case of exceptions, wrapping the execution of the task in a try/finally block will
ensure that even if a problem occurs, the wake lock is released. This is important because
even if the user presses the power button when a wake lock is being held, the CPU will not go
to sleep.

The task should be wrapped in a try/finally block to ensure that
the wake lock is always released. This ensures that there will be no
unnecessary battery consumption due to an exception.

If the task does not need to be in a broadcast receiver or a service, we can acquire a wake
lock directly from the PowerManager instance. This is simple to implement by first obtaining
the PowerManager instance through the FromContext() method. Then, we request a new
wake lock using the NewWakeLock() method. This method takes two parameters, the wake
lock type and the tag that is used in debugging.

There are several types of wake locks, some of which keep the screen on. If we want to keep
just the CPU awake, we use the Partial value of the WakeLockFlag enumeration.

Once we have the wake lock, we have to acquire the actual lock by invoking the Acquire()
method. After invoking this method, the device's CPU is guaranteed not to turn off until we
invoke the Release() method. As the wake is not released until explicitly instructed, it is best
to wrap the task in a try/finally block to ensure that the wake lock will always be released.

Using Background Tasks

190

There's more...
Some critical services don't need to run continuously, but rather once every few minutes. We
can do this by setting up an alarm, and in this case, a repeating alarm, to broadcast an intent
for our broadcast receiver:

var intent = new Intent(this, typeof(CriticalReceiver));
intent.PutExtra(CriticalService.DataKey, "Using alarm manager.");
var pending = PendingIntent.GetBroadcast(
 ApplicationContext, 123, intent, 0);
var manager = AlarmManager.FromContext(this);
manager.SetRepeating(AlarmType.RtcWakeup, 0, 30*1000, pending);

When the alarm triggers, it will wake the device and broadcast the intent. The broadcast
receiver will then acquire a wake lock and start the service.

191

7
Notifying Users

In this chapter, we will cover the following topics:

ff Toasts

ff Alert dialogs

ff Alert fragments

ff Embedded alert fragments

ff Selection alerts

ff The notification builder

ff Ongoing notifications

ff Custom notification views

ff Push notifications

Introduction
A notification is something that draws someone's attention to let them know that something
has happened. Notifications exist in the real world as well as in the digital world. Without
notifications the user would have to keep checking to see if something has happened, and
since most probably nothing has, the whole exercise becomes a waste of time.

By relying on something to let the user know about an event, the user is free to work on
other things. Notifications must be easy to recognize and must be distinguishable from other
notifications. However, it is important that notifications don't become a distraction. Too many
notifications can become a hindrance to productivity. If the notification is overpowering, the
user will be forced to stop what they are doing.

Notifying Users

192

In contrast, some notifications cannot be ignored and require a user's immediate attention
and action. These types of notifications are very annoying as they usually appear at the worst
of times, but they are also very critical. Sometimes a decision has to be made, and there is no
avoiding it.

One of the features of a good notification is that it lets the user know that something has
happened but does so in a subtle way. The user is aware of it but can choose to ignore it.

Toasts
Sometimes we have to provide a small notification to the user to tell them that something
has happened. At the same time, we don't want to interrupt the user's task in any way. That's
where toast notifications come in. We can use toast notifications to display subtle notifications
in our app.

How to do it...
We can create toast notifications with the Toast type as follows:

1.	 A simple text toast is created through the MakeText() method, as shown here:
using (var toast = Toast.MakeText(
this, "This is a toast...", ToastLength.Short)) {
 toast.Show();
}

2.	 There are a few aspects we can customize using the various setter methods:
using (var toast = Toast.MakeText(
this, "This is another toast...", ToastLength.Short)) {
 toast.SetGravity(GravityFlags.Center, 0, 0);
 toast.SetMargin(24, 24);
 toast.Show();
}

3.	 We can also specify an entire view to use instead of the default text view through the
View property:
using (var toast = new Toast(ApplicationContext))
using (var image = new ImageView(this)) {
 image.SetImageResource(Resource.Drawable.Icon)
 toast.Duration = ToastLength.Short;
 toast.View = image;
 toast.Show();
}

Chapter 7

193

How it works...
Often an app needs to inform the user that something has happened, but the occurrence is
not important enough to merit a disruption or interruption of normal use. If we want to let the
user know about something, we can display a small text message somewhere in case the user
is interested.

Usually, these types of notifications do not require any response from the user and thus have
no intractable elements. For example, if the user is saving some settings, we don't need to
pop up a dialog to inform the user that the settings have been saved. We would use a small
notification that can be ignored.

We do this by using the toast notification system. One of the simplest ways is to simply invoke
the MakeText() method on the Toast type, through which we obtain a toast. To display it,
we invoke the Show() method on the result.

The MakeText() method requires the context, the text message, and the duration of the
toast. For additional properties, we can use the various setter methods. For example, the
SetGravity() and SetMargin() methods specify where on the screen and how large
the toast will be.

If we really need more advanced toasts, we can instantiate a Toast type through the
constructor. With this object, we specify a custom view with the View property. This could be
a simple view, such an ImageView instance, or it could be an entire view structure that was
inflated from a resource.

Regardless of what is displayed, we have to remember that the toast cannot be interacted
with and is timed. Also, it needs to be small and not invade the user's current task.

Toasts should be small and not require any action. They should
be easy to consume as they will soon disappear.

There's more...
Toasts can be displayed from anywhere as they don't require a User Interface (UI) to be
present. That means that they can be shown from a service or broadcast receiver. However,
they have to be displayed from the UI thread.

If we are working in the background, we can show a toast by using the Task Parallel Library
(TPL). First, we need to capture the UI scheduler when we are in the UI thread, say in the
OnStartCommand() method of a service:

uiScheduler = TaskScheduler.FromCurrentSynchronizationContext();

Notifying Users

194

Then, when we want to show the toast from the background, we start a Task instance using
this scheduler:

new Task(() => {
 // show toast
}).Start(uiScheduler);

Alert dialogs
In many apps, we will require some input from the user or a decision to be made. The decision
may require a response before the app can continue.

How to do it...
If we want a decision to be made, we can use a pop-up dialog. This is achieved by using the
AlertDialog.Builder type:

1.	 Alerts are easy to create using the AlertDialog.Builder type:
using (var dialog = new AlertDialog.Builder(this)) {
 dialog.SetTitle("Alert Title");
 dialog.SetMessage("Alert message text here...");
 dialog.Show();
}

2.	 We can also add buttons to the alert by using the SetPositiveButton(),
SetNegativeButton(), or SetNeutralButton() methods:
dialog.SetPositiveButton("Yes", delegate {
 // do something cool here
});
dialog.SetNegativeButton("No", delegate {
 // do something uncool here
});

3.	 Custom views can also be used with alerts through the SetView() method:
var layout = LayoutInflater.Inflate(
 Resource.Layout.DialogLayout, null);
dialog.SetView(layout);

Chapter 7

195

How it works...
An alert dialog is a pop-up window that appears and prompts the user to make a decision
or select from a series of options. It does not fill the screen but is a modal window, meaning
that although the user has to make a decision before proceeding, the current context hasn't
switched away. Alert dialogs are a specific dialog type, usually used to display a three-button
decision platter or a list of selectable items, but they can also have a totally custom layout.

Alert dialogs interrupt user activity and require a response,
so they should be used sparingly.

In order to create a dialog, we use the constructor of the AlertDialog.Builder type.
Once we have an instance, we can provide a title using the SetTitle() method and provide
a message using the SetMessage() method. The title is optional and should not be used if
the dialog only displays a simple question.

If we want to provide the user with a choice using a set of buttons, we use the
SetPositiveButton(), SetNegativeButton(), and SetNeutralButton() methods.
Each method allows us to specify a button caption and a delegate that can be used to attach
code to the button tap.

Each button type has a preferred purpose. The positive button should be used to accept or to
continue with an action, and the negative button should be used to cancel the operation. The
neutral button is used to provide an option that allows the user to neither accept nor cancel
an operation. Such an action could be to postpone the operation.

We can also customize the dialog entirely by replacing the view with a custom layout. This is
done by inflating a layout, or creating one, and assigning it to the dialog with the SetView()
method. This allows for far greater flexibility and can be used to create more advanced dialogs.

The Android support libraries also provide an AlertDialog
type, which is styled using the material design.

We can also make use of the Android support library to style our dialogs using the new material
design. This dialog functions in exactly the same way as the native dialog, only with a modern
theme. By using the AlertDialog type in the Android.Support.V7.App namespace, our
dialogs will be styled to match the AppCompatActivity and Fragment themes.

There's more...
There are also two other types of dialogs: DatePickerDialog and TimePickerDialog.
These dialogs have a predefined UI that allows the user to select a date or time.

Notifying Users

196

Dialogs can be used directly, but they should be used with a DialogFragment instance.
This fragment is specially designed as a container for the dialog and provides all the control
needed for creating and displaying dialogs.

Alert fragments
Traditional alert dialogs do not conform the lifecycle events when using fragments such as
correctly handling back button presses or device rotations.

Getting ready
If we are going to support Android versions prior to 3.0, we will have to install the Xamarin
Support Library v7 AppCompat NuGet or component into our project.

How to do it...
Using a dialog in a DialogFragment instance ensures that the dialog correctly handles the
lifecycle events. We override the OnCreateDialog() method to create the dialog:

1.	 To create an alert fragment, we inherit from DialogFragment and override the
OnCreateDialog() method. In this method, we create and return the dialog:
public class AlertFragment : DialogFragment {
 public override Dialog OnCreateDialog(Bundle savedState)
 {
 using (var alert = new AlertDialog.Builder(Activity)) {
 dialog.SetTitle("Alert Title");
 dialog.SetMessage("Alert message text here...");
 return alert.Create();
 }
 }
}

2.	 When it is going to be displayed in an activity, we create an instance of the fragment:
AlertFragment frag = new AlertFragment();

3.	 Finally, we invoke the Show() method on the fragment to display it:
frag.Show(SupportFragmentManager, "AlertFragment");

4.	 If we are only supporting Android versions 3.0 and above, we can use this:
frag.Show(FragmentManager, "AlertFragment");

Chapter 7

197

How it works...
Dialogs can be used directly, but when using fragments they should be used with a
DialogFragment instance. These fragments are designed to work with dialogs. They follow
the lifecycle of fragments but contain all that is needed for creating and displaying dialogs.

Using a DialogFragment instance allows us to embed the dialog into an activity just like any
other fragment. This gives us the extra flexibility to support embedding or popping up a dialog
depending on the screen size or any other criteria.

Dialogs should be used with a DialogFragment instance
to better integrate with the fragment lifecycle of modern
Android apps.

In order to use dialog fragments, we have to inherit from the more specific DialogFragment
instance, instead of Fragment, and override the OnCreateDialog() method. In this
method, we create the dialog as we would without fragments, but instead of invoking Show,
we return the actual dialog from the Create() method.

When we want to display the dialog in a DialogFragment instance, we invoke the
Show() method that is on the fragment, rather than the one on the dialog. We pass the
FragmentManager instance along with a tag to the Show() method. The tag is used
by the underlying fragment transaction.

There's more...
As the DialogFragment instance is just an extension of Fragment, we can interact with
the containing Activity instance just as we would when overriding the base Fragment
instance. For example, we can interact with the activity when the fragment is attached to the
activity. We can capture the instance of the activity by overriding the OnAttach() method.
When something happens in the dialog fragment, we can invoke methods or set properties on
the activity.

See also
ff Chapter 2, Showing Views and Handling Fragments, the Creating and using

fragments recipe

Notifying Users

198

Embedded alert fragments
Sometimes, we want more control over how the dialogs are displayed. We may want the dialog
to be a popup on a tablet, but to be displayed as a full page on a phone.

Getting ready
If we are going to support Android versions prior to 3.0, we will have to install the Xamarin
Support Library v7 AppCompat NuGet or component into our project.

How to do it...
We can use the DialogFragment instance to display either a pop-up dialog or embed it into
the activity fragment navigation by using the following steps:

1.	 If we want to embed a dialog into the view, we cannot use the alert builder but we
have to use normal layouts. Therefore, we inflate a layout in the OnCreateView()
method of the DialogFragment instance:
public class AlertFragment : AppCompatDialogFragment {
 public override View OnCreateView(
 LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 var view = inflater.Inflate(
 Resource.Layout.DialogLayout, container, false);
 return view;
 }
}

2.	 If we need to add additional features, such as a title for the dialog, we can override
the OnCreateDialog() method:
public override Dialog OnCreateDialog(Bundle savedState) {
 var dialog = base.OnCreateDialog(savedState);
 dialog.SetTitle("Cool Dialog");
 return dialog;
}

3.	 To display the dialog as a pop-up window, we use the Show() method on the fragment:
var fragment = new AlertFragment();
fragment.Show(SupportFragmentManager, "AlertFragment");

Chapter 7

199

4.	 To embed the fragment into a view, we follow the typical fragment steps:
var fragment = new AlertFragment();
SupportFragmentManager
 .BeginTransaction()
 .SetTransition(FragmentTransaction.TransitFragmentOpen)
 .Replace(Resource.Id.content, fragment)
 .AddToBackStack(null)
 .Commit();

How it works...
As Android devices have a wide variety of screen sizes, creating a UI involves designing for any
issues that may arise in a single design. On a small-screen device, such as a mobile phone, a
pop-up dialog may not be the best use of screen estate. We can make use of the flexibility of a
DialogFragment instance to have the dialog appear as a fullscreen fragment.

Because the DialogFragment instance is an extension of a Fragment instance, we still
have all the inherited functionality. We also get the added functionality of the view being
rendered in a pop-up dialog. However, if we want to be able to embed the dialog into the
normal fragment navigation, we cannot use the AlertDialog.Builder instance, or any
Dialog instance, to create the UI.

While creating pop-up dialogs using the DialogFragment instance, the theme that is
applied is that of the core operating system. So, when running on the older Android versions
with the support libraries, the dialog will look out of place. To rectify this, we rather inherit
from an extension of the base DialogFragment type, the AppCompatDialogFragment
type. This type will ensure that the dialog matches the theme of the app.

While using the support library, the AppCompatDialogFragment
type should be used if the AlertDialog.Builder type is not
being used to build the popup.

As with all fragments, we inflate or create the UI in the OnCreateView() method. When we
override the OnCreateView() method, we are only creating the UI for the main content of
the dialog.

If we are creating a pop-up dialog, we may have to change or remove some window features
such as the title. To do this, we override the OnCreateDialog() method. In this method, we
first call the base method that provides the dialog. We then use this to change the dialog in
the way we require.

Notifying Users

200

The OnCreateDialog() method is only invoked when the
fragment is going to be displayed as a pop-up dialog.

If we add the fragment to the activity using the FragmentTransaction instance, the
fragment will be embedded and will act as a normal fragment. If we invoke the Show()
method on the fragment, it will appear as a pop-up dialog.

There's more...
We can also combine both methods of embedded fragments and pop-up dialogs by creating
the dialog separately. We can override the OnCreateView() method for when the fragment
is embedded and override the OnCreateDialog() method for when the dialog is a popup.

In the OnCreateView() method, we inflate or create the view layout, but in the
OnCreateDialog() method, we use the AlertDialog.Builder instance instead
of calling the base method. We can also use the inflated UI in the dialog by invoking the
SetView() method with the result from the OnCreateView() method. By doing this, we
can provide the most flexible means of displaying the dialog, depending on how the dialog
is presented.

Selection alerts
Sometimes we have to ask the user to select one or more items from a larger collection. This
may be necessary as normal dialogs only have up to three buttons, but a fully customized UI
is unnecessary.

How to do it...
To provide a list of items in a dialog, we can specify the items in much the same way as a
simple message:

1.	 If we need to provide the user with a selection of items in a dialog, we can also use
the AlertDialog instance and the SetItems() method:
string[] items = new string[] { ... }
using (var dialog = new AlertDialog.Builder(this)) {
 dialog.SetTitle("Alert Title");
 dialog.SetPositiveButton("Close", delegate {
 });
 dialog.SetItems(items, (s, e) => {
 int index = e.Which;
 });
 dialog.Show();
}

Chapter 7

201

2.	 We can also use data adapters in a dialog, through the SetAdapter() method:
var adapter = new ArrayAdapter(
 this, Android.Resource.Layout.SimpleListItem1, items);
dialog.SetAdapter(adapter, (s, e) => {
 var index = e.Which;
});

3.	 If we want to support a single-select radio button list, we use the
SetSingleChoiceItems() method:
int selected = -1;
dialog.SetSingleChoiceItems(items, selected, (s, e) => {
 selected = e.Which;
});

4.	 We use the SetMultiChoiceItems() method if we want to support a
multi-select checklist:
bool[] selected = new bool[items.Length];
dialog.SetMultiChoiceItems(items, multiChecked,
 (s, e) => {
 int index = e.Which;
 bool isChecked = e.IsChecked;
 selected[index] = isChecked;
 });

How it works...
Using a dialog to display a list is very useful if switching context is to be avoided. A list in
a dialog provides great flexibility, such as providing an option to select multiple items or
none at all.

There are three types of lists that can appear in a dialog. First, there is the traditional
single-select dialog that will hide when an item is selected. Then, there is the radio list,
which also allows the user to select a single item. This list differs from the traditional list in
two ways: the dialog has to be dismissed manually, and the dialog allows us to specify which
item is selected when it appears. Finally, there is the check list, which is very similar to the
radio list but allows multiple items to be selected.

The list view in a dialog can be populated from a string array,
an adapter, a cursor, or a resource.

Notifying Users

202

There are several ways to populate the list in the dialog. We could use an array resource, a
string array, a ListAdapter instance, or a Cursor instance. The traditional list dialog
uses the SetItems() method to specify an array or resource, the SetAdapter() method
for a ListAdapter instance, and the SetCursor() method for a Cursor instance. All
these methods allow us to provide the list as well as a delegate that will get invoked when the
user selects an item.

If we want to use the radio list, we use the SetSingleChoiceItems() method. This
method allows us to specify the item collection, the index of the initially selected item, and the
delegate that will be invoked when an item is selected. If -1 is provided for the selected index,
nothing will be selected initially.

If we want to use the check list, we use the SetMultiChoiceItems() method. We can
specify the item collection, an array with the initially selected indexes, and the delegate that
will be invoked when an item is checked or unchecked. The selected items are determined
by a bool array, which will contain true at every index that should be selected. If null is
provided instead of an array, nothing will be selected initially. The bool array must be the
same size as the item collection.

The list view in a dialog can be a single select or multiselect.

In all the methods, the delegate will receive an EventArgs method that will contain
details about which item was selected. The EventArgs method contains a Which
property representing the index of the item that was selected. Additionally, the
SetMultiChoiceItems() method provides an extra property, IsChecked,
which holds a value representing whether the item was checked or unchecked.

The delegate is fired each time the user selects an item, not when
the dialog is dismissed.

The notification builder
Some tasks take a long time, or events may occur when the user is not using our app.
Because some tasks take a long time, we run them in the background. As a result, we
need to let the user know when a task is complete, or that some extra information is needed.

Getting ready
If we are going to support Android versions prior to 3.0, we will have to install the Xamarin
Support Library v4 NuGet or component into our project.

Chapter 7

203

How to do it...
If an event occurs when the user is not using our app, we can let the user know about it by
using a Notification instance from the following steps:

1.	 Create the notification using the NotificationCompat.Builder instance:
var builder = new NotificationCompat.Builder(this)
 .SetSmallIcon(Android.Resource.Drawable.StatNotifySync)
 .SetContentTitle("Simple Notification")
 .SetContentText("Hello World!")
 .SetAutoCancel(true);

2.	 Or, if only supporting Android versions 3.0 and above, use the Notification.
Builder instance:
var builder = new Notification.Builder(this)
 .SetSmallIcon(Android.Resource.Drawable.StatNotifySync)
 .SetContentTitle("Simple Notification")
 .SetContentText("Hello World!")
 .SetAutoCancel(true);

3.	 Before we display the notification, we need the NotificationManager type and an
ID used to reference this notification once displayed:
const int notificationId = 123;
var manager = NotificationManager.FromContext(this);

4.	 Now we create the actual notification using the Build() method and display it using
the Notify() method of the NotificationManager type:
manager.Notify(notificationId, builder.Build());

Often, we will want to navigate the user to a specific activity in our app, and for this we add a
content intent to the notification:

1.	 To launch our activity when we tap the notification, we create a PendingIntent
instance that holds the Intent instance to launch the activity:
var intent = new Intent(
 this, typeof(NotificationActivity));
var pendingIntent = PendingIntent.GetActivity(
 this, 0, intent, PendingIntentFlags.UpdateCurrent);

2.	 We then assign this pending intent to the notification by using the
SetContentIntent() method:
builder.SetContentIntent(pendingIntent);

Notifying Users

204

If we want to provide a back stack for when the user presses the back button once the
notification activity is shown, we can do so using the TaskStackBuilder type:

1.	 First, we need to let Android know what to go back to, and we do this by setting the
ParentActivity property of the [Activity] attribute for our notification activity:
[Activity(..., ParentActivity = typeof(MainActivity))]

2.	 If we are supporting versions of Android below 4.1, we also need to add a
[MetaData] attribute:
[MetaData(
 "android.support.PARENT_ACTIVITY",
 Value = "com.xamarincookbook.MainActivity")]

3.	 We have to make sure that we also register our parent activity with the same name
as the value of the metadata:
[Register("com.xamarincookbook.MainActivity")]

4.	 Finally, we can create the back stack to the Intent instance using the
AddNextIntentWithParentStack() method of the TaskStackBuilder type:
var intent = new Intent(
 this, typeof(NotificationActivity));
var backStack = TaskStackBuilder.Create(this)
 .AddNextIntentWithParentStack(intent);
var pendingIntent = backStack.GetPendingIntent(
 0, (int)PendingIntentFlags.UpdateCurrent);

How it works...
Some tasks take a long time and the user will switch to another app while such a task is
running. When the task is finished, we may want to let the user know. Or an event may occur
in the background while the user is using another app. Regardless of what the user is doing,
we can use a Notification instance to display information in the system status bar.

When the user decides that they want to respond to the notification, they can tap it and it will
launch right into the activity that relates to the notification. The whole notification could be
used as the entry point, with buttons that provide additional actions.

Notifications are used to display information in the notification area
and allow the user to respond whenever they want to, if at all.

Chapter 7

205

Almost all notifications provide an action, even if it is just to launch the app or an activity in
the app. To do this, we use a PendingIntent instance, which holds the actual Intent
instance that we wish to trigger. The PendingIntent instance can hold any Intent
instance with any amount of extras or back stacks that will be required to get the user directly
to the desired point. We can attach the intent using the SetContentIntent() method of
the builder.

Setting the intent is not required, but is both expected and recommended because the
user expects that something will happen after tapping the notification. However, if action
buttons are used, the intent does not have to be attached to the actual notification but to
the action buttons.

Although optional, an intent is used to launch the app
from the notification.

To create the actual Notification instance, we use the NotificationCompat.
Builder instance, or if we are only supporting Android versions 3.0 and above, we use
Notification.Builder. We construct an instance of the builder and use the many
setter methods to create the structure of the notification.

There are three required properties of a notification: the icon, set by SetSmallIcon; the
title, set by SetTitle; and the detail text, set by SetContentText. The user also expects
that the notification will be removed from the status bar when it is tapped. We could remove
this manually, but we can do this automatically by passing true to the SetAutoCancel()
method.

Using auto-cancel removes the need for any extra code
to cancel the notification when it is tapped.

When we are ready to display the notification, we use the NotificationManager instance.
To obtain the actual notification that is to be displayed, we invoke the Build() method on
the builder. We then invoke the Notify() method on the manager with both an ID and the
notification. The ID allows us to locate, update, or remove a notification once it has been
displayed, if need be.

Unless the notification takes the user to a special activity, we should also specify a back stack
on the intent. Without a back stack, the notification will launch the activity, and when the
user presses back, the activity will close and return the user to exactly where they were. By
specifying a back stack, we can allow the user to navigate upwards, just as if they had entered
the app from the home screen.

The advantage of a back stack is that the navigation path
through the app is maintained regardless of the entry point.

Notifying Users

206

The back stack is created by setting the parent activity for the notification activity. We do
this by adding attributes to the notification activity, which describe how to get to the parent
activity. Typically, we would provide the type of the parent activity for the ParentActivity
property of the [Activity] attribute. Because we are supporting versions of Android prior
to 4.1, we also add a [MetaData] attribute. This attribute has a string value of the full name
of the parent activity as it appears to Android. In order to know what the compiler will use
as the name, we need to specify exactly what we want. By adding a [Register] attribute
to the parent activity, we can control what the name will be. We then use this name in our
notification activity's metadata.

Both the ParentActivity property of the [Activity] attribute
and a [MetaData] attribute must be applied to support the back
stack on all versions of Android.

When creating the back stack, we use the TaskStackBuilder type. This type has been
around since Android version 3.0, but we use the type from the support library instead. If
we do not, the app will crash on older Android versions. Both types work the same, and we
use the AddNextIntentWithParentStack() method to attach the intents for both the
destination activity and its parents. One difference is that on Android versions prior to 3.0, the
back stack is ignored.

The support library provides the TaskStackBuilder type so the
app does not crash, but it does not add any functionality.

Once we have built our back stack, we get the PendingIntent instance using the
GetPendingIntent() method. We can then pass this pending intent to the notification
builder using the SetContentIntent() method.

There's more...
We can also add many features to the notification, such as action buttons using the
AddAction() method. To do this, we provide an icon, some text, and a PendingIntent
instance. The PendingIntent instance is triggered when the user has tapped a button and
we then respond when we receive it. We can also add various extra features such as tickers
and vibrations, as well as more information to notifications. All these features can be added
using the various setter methods on the Builder object.

Chapter 7

207

Ongoing notifications
Some notifications are used to display a task that is underway and may even include
information on progress or state.

Getting ready
If we are going to support Android versions prior to 3.0, we will have to install the Xamarin
Support Library v4 NuGet or component into our project.

How to do it...
To show progress in a notification, we can use a progress bar and update the notification as
progress is made:

1.	 Most ongoing notifications are not going to be dismissed when tapped, so instead of
using SetAutoCancel() method, we use SetOngoing() method:
var notification = new NotificationCompat.Builder(this)
 .SetSmallIcon(Android.Resource.Drawable.StatNotifySync)
 .SetContentTitle("Simple Notification")
 .SetContentText("Starting Work!")
 .SetOngoing(true);

2.	 We can also have a progress bar in the notification. This could be indeterminate:
notification.SetProgress(0, 0, true);

3.	 Or the progress bar could display a specific value:
notification.SetProgress(100, 27, false);

4.	 We can update notifications simply by notifying the NotificationManager
instance with the same notification ID:
manager.Notify(notificationId, notification.Build());

5.	 If, for some reason, we have to cancel the notification and remove it from the status
bar, we use the Cancel() method with the notification ID:
manager.Cancel(notificationId);

How it works...
Because tasks take some time to complete, we may want to report the progress or the state of
the task. Notifications provide a few means of showing such progress. We could use a normal
text message to display the state, or we could use a progress bar to show the progress.

Notifying Users

208

To display a progress bar, we use the SetProgress() method. The progress bar can either
have a specific progress or be indeterminate. For a specific progress, we specify the maximum
and progress values along with false. For indeterminate progress, we pass 0 to both the
maximum and progress parameters, but true for indeterminate.

A progress bar could be indeterminate, such as before
real progress is made, or have a specific value.

To prevent the notification from being dismissed by the user, we do not specify the
SetAutoCancel() method as true, but rather the SetOngoing() method. This will
prevent the notification from being dismissed by the user, even when they swipe the
notification out of the notification drawer.

The notification can be prevented from being dismissed, even
manually, by passing true to the SetOngoing() method.

To update the notification once displayed, we simply have to invoke the Notify() method
again. We must pass the same notification ID; otherwise, a new notification will be created.
Every time the notification changes, we invoke the Notify() method.

The same ID must be used for updating notifications;
otherwise, a new notification will be created.

Once the task has completed, we can update the notification with a dismissible notification, or
we can manually remove the notification from the notification drawer. Cancelation is done by
invoking the Cancel() method on the NotificationManager instance, providing the ID of
the notification that we want to cancel.

Custom notification views
Sometimes notifications created by the builder just don't provide enough flexibility compared
to what is required. Sometimes notifications created by the builder just don't provide enough
flexibility or customization. As a result, an entirely custom notification layout is needed to
provide this level of customization.

Getting ready
If we are going to support Android versions prior to 3.0, we will have to install the Xamarin
Support Library v4 NuGet or component into our project.

Chapter 7

209

How to do it...
We can use RemoteViews with a layout file to provide a custom layout for a notification:

1.	 We can also display an entirely custom view in a notification. To do this, we create a
RemoteViews object, passing the resource ID of the layout:
var view = new RemoteViews(
 PackageName, Resource.Layout.NotificationLayout);

2.	 We can then update the various sub views using the various setter methods, such as
SetTextViewText(), SetProgressBar(), and SetImageViewResource():
view.SetTextViewText(Resource.Id.title, "Title Text");
view.SetProgressBar(Resource.Id.progress, 100, 25, false);
view.SetImageViewResource(
 Resource.Id.state, Resource.Drawable.state);

3.	 Once we have the view, we can create the Intent instance for the notification:
var intent = new Intent(this, typeof(MainActivity));
var pendingIntent = PendingIntent.GetActivity(
 this, 0, intent, PendingIntentFlags.UpdateCurrent);

4.	 Then we can create the notification using the builder:
var notification = new NotificationCompat.Builder(this)
 .SetSmallIcon(Android.Resource.Drawable.StatNotifySync)
 .SetAutoCancel(true)
 .SetContentIntent(pendingIntent)
 .SetContent(view);

5.	 Finally, we display the notification:
manager.Notify(CustomId, notification.Build());

6.	 We can update the notification by updating the RemoteViews object and notifying
the NotificationManager instance:
view.SetTextViewText(Resource.Id.title, "Updated!");
manager.Notify(SimpleId, notification.Build());

How it works...
Some notifications require a custom layout, especially if they have to present advanced data.
The notification builder provides many features, but sometimes this is not flexible enough to
present the required data to the user.

Notifying Users

210

To display a custom layout, we first define the layout in a resource file just like any other layout.
However, not all view elements can be used easily as the views are not exposed publicly. The
views are accessed by various setter methods instead of directly. Views such as TextView
and ImageView can be used, but custom views with complex properties or methods cannot
be modified.

To build the notification view, we construct an instance of RemoteViews, providing a package
name and the layout resource ID in that package. Usually, we will use the current package
name and a resource in our app.

Custom notification layouts are just normal layouts
inflated in a notification.

We can update the notification view and set any properties using the methods on the
RemoteViews object. The values set are stored and then applied when the notification is
presented. There are various methods that are available, such as SetTextViewText()
or SetProgressBar(), that make updating certain types of views easy. Properties are
set by providing the view ID and the value. There are also the type setter methods, such as
SetString() and SetInt(), that can be used to set arbitrary properties of a view.

Elements of the layout are updated by their IDs through
the RemoteViews object.

To create the notification, we still create an instance of the notification builder, but the
difference now is to set the content. Instead of setting the title or content text, we rather
just set the SetContent() method with the RemoteViews object.

At the time of writing, there is a bug in the Android support library, which prevents the custom
view from loading on Android versions prior to 3.0. A workaround is to set the content view on
the built notification:

var notification = notificationBuilder.Build();
if (Build.VERSION.SdkInt < BuildVersionCodes.Honeycomb) {
 notification.ContentView = remoteViews;
}

To update the notification, we just need to update the RemoteViews object and invoke the
Notify() method again.

Chapter 7

211

There's more...
We can also create notifications using RemoteViews directly without having to use the
notification builder or the Android support library. This is similar to using the builder, but
instead of creating an instance of the builder, we construct an instance of Notification. We
then set the various properties on the notification, such as Title, Icon, ContentIntent,
and ContentView.

Although possible, this is often unnecessary and introduces complications. One such
complication is that the notification will not be synchronized with any paired wearables.

Push notifications
There may be times where we create an app that needs to receive messages or events from
a remote server. Instead of polling the server for updates, we want the server to let our app
know directly.

Getting ready
Push notifications allow a remote server to send a message directly to a specific device. To
implement push notifications, we will need a project number and an API key from the Google
Developers Console (https://cloud.google.com/console):

1.	 First, we have to set up a project on the Google Developers Console if we do not
have one already. When logged in, click on Create Project and enter a project
name and ID:

The Create Project dialog

https://cloud.google.com/console

Notifying Users

212

2.	 Once we have created or selected an existing project, we need to make a note of the
Project Number. This is used to be able to receive messages:

The Project Number

3.	 Select the APIs option under the APIs & auth section in the left-hand menu and
make sure that the Google Cloud Messaging for Android option is on:

Enabling Google Cloud Messaging for Android

4.	 Then, select the Credentials option under the APIs & auth section from the
left-hand menu. In the Public API access section, click on Create New Key
and then on Server Key:

Creating a new server key

Chapter 7

213

5.	 Enter the server's IP address—for testing we will use 0.0.0.0/0—and click on Create:

Entering the servers IP address

6.	 On the new page, under the Public API access section, make a note of the API key.
This is used to send messages with Google Cloud Messaging:

The API key

How to do it...
After we have obtained the required keys, we can start implementing the client. The client
registers with the cloud service and then is able to receive push notifications:

1.	 We will need to ensure that the Xamarin Google Play Services - Google Cloud
Messaging (GCM) NuGet or component is installed into the project. This library
contains the code needed to interact with Google Cloud Messaging.

Notifying Users

214

2.	 We will need several permissions in order to use push notifications:
[assembly: UsesPermission(Manifest.Permission.Internet)]
[assembly: UsesPermission(Manifest.Permission.GetAccounts)]
[assembly: UsesPermission(Manifest.Permission.WakeLock)]
[assembly: UsesPermission(
 "com.google.android.c2dm.permission.RECEIVE")]

3.	 There is also a special permission that we have to add, and this is the app package
name with .permission.C2D_MESSAGE appended. Instead of hardcoding the
package name, we use the @PACKAGE_NAME@ value:
[assembly: UsesPermission(
 "@PACKAGE_NAME@.permission.C2D_MESSAGE")]

4.	 There are several things we need. The first is to make sure that Google Play Services
is available on the device:
private bool CheckPlayServices() {
 var play = GoogleApiAvailability.Instance;
 var result = play.IsGooglePlayServicesAvailable(this);
 if (result == ConnectionResult.Success)
 return true;

 if (play.IsUserResolvableError(result)) {
 play.GetErrorDialog(this, result, 0)).Show();
 }
 else {
 Finish();
 }
 return false;
}

5.	 Next, using the project number from the Google Developers Console, we get our token
from Google Play Services. Once we have obtained a token, we might want to send it
to a server that will be sending messages to our app:
private Task<string> GetRegistrationAsync() {
 return Task.Run(() => {
 string token = null;
 try {
 var instanceId = InstanceID.GetInstance(this);
 token = instanceId.GetToken(
 "PROJECT_NUMBER",
 GoogleCloudMessaging.InstanceIdScope);
 // send the token to the server that sends messages
 }
 catch (Exception ex) {

Chapter 7

215

 // handle/log the error and let the user try again
 }
 return token;
 });
}

6.	 When we load our activity, we can check for Google Play Services and then load the
registration in the OnCreate() method:
if (CheckPlayServices()) {
 registrationId = await GetRegistrationAsync();
}

7.	 To make sure that the app doesn't launch if Google Play Services is not installed, we
can request the user installs it each time the app is resumed in OnResume:
CheckPlayServices();

Now that we have the connection set up and the device registered with the cloud service, we
need to get the receiver in place so that we can actually receive incoming messages:

1.	 We create a GcmReceiver instance that will receive incoming push notifications. It
doesn't do anything except allow us to attach attributes:
[BroadcastReceiver(
 Permission = "com.google.android.c2dm.permission.SEND",
 Exported = true)]
[IntentFilter(
 new []{
 "com.google.android.c2dm.intent.RECEIVE",
 "com.google.android.c2dm.intent.REGISTRATION" },
 Categories = new[]{ "@PACKAGE_NAME@" })]
public class NotificationReceiver : GcmReceiver {
}

2.	 The receiver will redirect any messages to a service for processing. The service
inherits from GcmListenerService and has a specific intent filter. We can then
process the message in the OnMessageReceived() method:
[Service]
[IntentFilter(new []{
 "com.google.android.c2dm.intent.RECEIVE })]
public class NotificationService : GcmListenerService {
 public override void OnMessageReceived(
 string from, Bundle data) {
 // process the data bundle
 var message = data.GetString("cookbook_message");
 }
}

Notifying Users

216

Sometimes the token becomes invalid, for example if the server or Google decide to refresh
the tokens. When this happens, our app will be notified:

1.	 To handle token refresh events, we create an interface that inherits from the
InstanceIDListenerService type:
[Service]
[IntentFilter(
new []{ "com.google.android.gms.iid.InstanceID" })]
public class InstanceIdService : InstanceIDListenerService
{
 public override void OnTokenRefresh() {
 var instanceId = InstanceID.GetInstance(this);
 var token = instanceId.GetToken(
 "PROJECT_NUMBER",
 GoogleCloudMessaging.InstanceIdScope);
 }
}

In order for a device to receive messages, they have to be sent from our server to the cloud
service. There are several ways to do this, but here we use HTTP requests:

1.	 We can send a message to the cloud service using JSON, specifying a message and a
device registration token:
var server = "https://android.googleapis.com/gcm/send";
var message = string.Format(
 "{{" +
 " \"registration_ids\": [\"{0}\"]" +
 " \"data\": {{" +
 " \"cookbook_message\": \"Hello World!\"" +
 " }}" +
 "}}", registrationId);
var bytes = Encoding.UTF8.GetBytes(message);
var request = WebRequest.CreateHttp(server);
request.Method = "POST";
request.ContentType = "application/json";
request.ContentLength = bytes.Length;
var stream = await request.GetRequestStreamAsync();
stream.Write(bytes, 0, bytes.Length);
stream.Close();

2.	 We have to authorize the request using the API key we got from the Google
Developers Console:
request.Headers.Add(
 HttpRequestHeader.Authorization, "key=API_KEY");
await request.GetResponseAsync();

Chapter 7

217

How it works...
Push notifications are very useful for many types of apps. They allow a remote server to send
a message directly to the phone and our app, without the app having to continually poll the
server. The app registers with GCM and waits for the cloud service to send messages. Once a
message is received, the service broadcasts the message, which the app can then handle.

Sending messages to a device is not done directly but
rather through GCM.

A server that wants to send a message to a device actually sends the message to GCM but
specifies which device should receive it. Once GCM receives the message, it is relayed to the
actual device.

The advantage of using GCM is that our app does not have to query the server or maintain
connections to the server. If each app tried to connect to servers just to check if there was
a message, the battery would drain quickly. Using a centralized connection, the service can
open and maintain connections instead of each app. This also reduces much of the code that
would be needed to maintain connections to a server as well as actually maintaining an actual
server for the device to connect to.

Using GCM reduces the number of open connections,
thus reducing battery usage.

As there is a lot of work going on underneath, we have to include the Google Play Services
library to do the work for us. This library contains all the logic needed to interact with GCM on
an Android device.

Along with this library, we have to request several permissions for the app. First, we will need
the Internet and GetAccounts permissions. Because we are going to use GCM to receive
messages, we need the com.google.android.c2dm.permission.RECEIVE permission.
As the device may be asleep when a message comes through, we need the WakeLock
permission so that we can wake the device to process the incoming message.

Finally, we need to request an app-specific permission. This permission is the package name
appended with .permission.C2D_MESSAGE. Instead of hardcoding the package name, we
make use of the @PACKAGE_NAME@ value. This value is then replaced at compile time with
the actual package name.

Notifying Users

218

Before we can interact with GCM, we have to first make sure that Google Play Services is
installed on the device. This is a separate package from the Play Store that we can ask
the user to install. First, we make sure that Google Play Services is installed by invoking
the IsGooglePlayServicesAvailable() method on the GoogleApiAvailability
instance. The result is a description of the error. If everything is in place, the result will
be ConnectionResult.Success. Sometimes there is an issue that the user can fix,
such as when the services are disabled or not installed. We check for this using the
IsUserResolvableError() method. If this method returns true, we can display a
dialog that will allow the user to rectify the problem. We get the dialog as a result of the
GetErrorDialog() method. If there is any other problem, we can either close the app or
allow the user to use the app without GCM, depending on what is required or supported.

The Google Play Services package needs to be installed from the store
before push notifications can be used. However, on most devices it is
already installed.

If there are no errors and everything is installed, we can register with GCM and obtain an
instance token that identifies the instance of the app on a device. To do this, we first need an
instance of the InstanceID type, which we obtain by invoking the GetInstance() method.
With the result, we can invoke the GetToken() method. This method requires that we have a
valid Project Number, and, because we are going to be using the messaging APIs; we specify
the GoogleCloudMessaging.InstanceIdScope method as the scope. The result of this
method is a string instance token for the device. The Project Number is obtained from the
Google Developers Console. As this is an input and output operation across a network, we
must run this on a background thread.

Registration for push notifications must happen on a
background thread as the method does not return immediately.

Once we have registered, we need to send the token to whatever server will be sending
notifications to our app. In the case of this example, the server will be the device. Our device
will now receive any messages from the GCM server. However, in order to be able to handle
these messages, we have to create a broadcast receiver. Because the device may be sleeping
when a message is received, we use a GcmReceiver instance to ensure that the message is
handled before going back to sleep.

The device may be asleep when a push notification is received.

Chapter 7

219

The receiver is usually very simple and just passes the incoming intent on to a service. But
in order for the receiver to receive messages, we have to specify what messages we want to
receive. We use the [BroadcastReceiver] attribute to specify that this receiver only accepts
broadcasts from GCM services. To do this, we set the Permission property to com.google.
android.c2dm.permission.SEND. Finally, we have to let the system know we are only
interested in messages sent to this app from the GCM server. In order to ignore other messages,
we specify an [IntentFilter] attribute with the action set to com.google.android.
c2dm.permission.SEND and the Categories property set to the app package name.

Specific permissions and filters are used on the receiver to ensure that
the app can and only will receive messages sent to that specific app.

Once a message is received, it will get redirected to a service that has the com.google.
android.c2dm.intent.RECEIVE intent filter. The easiest way to handle these messages
is to create a service that inherits from the GcmListenerService type. We can read
the message using the bundle provided to the OnMessageReceived() method. How the
message is processed depends on how the message was structured when it was sent.

The InstanceID type is used to get a token when implementing push notifications, but
this token may change over time, although often not frequently. Tokens may be reset, and
when this happens, our app must request a new token. By creating a service that inherits
from InstanceIDListenerService and has the com.google.android.gms.iid.
InstanceID intent filter, we can handle this.

One of the ways to send a message to the GCM server is to use the HTTP server located at the
address https://android.googleapis.com/gcm/send. We can send a JSON message
to this server using an HTTP POST request:

{
 "registration_ids": ["DEVICE_REGISTRATION_ID"],
 "data": {
 "JSON-KEY": "JSON-VALUE"
 }
}

The HTTP message needs to be authorized with the API key from the Google Developers
Console. The key=API_KEY value is used in the authorization header. This is because
all servers will send messages to the same server, so they are distinguished using the
authorization header.

https://android.googleapis.com/gcm/send

Notifying Users

220

There's more...
Push notifications can be used to reduce the number of times an app needs to communicate
with a server. If all messages are sent directly to the device, there will be no need to check
for messages on the server. However, if the device goes offline, for example if it is turned off,
there is a limit to how many messages will be stored. Currently, the limit is 100 messages.
If the limit is reached, all the stored messages are discarded and replaced with a special
message that indicates a full sync is needed.

It is important to remember that only a tiny amount of data can be sent via push. Currently,
the maximum message size is 4 KB. To send larger messages, we can send a message that
indicates that the app should sync its data.

221

8
Interacting with

Other Apps

In this chapter, we will cover the following recipes:

ff Starting app components

ff Launching other apps

ff Obtaining data from activities

ff Using BroadcastReceivers

ff Scheduling tasks

ff Making phone calls

ff Intercepting phone calls

ff Sending SMS messages

ff Receiving SMS messages

Introduction
No app is developed or run in a vacuum. All users will have multiple apps installed on their
devices, and we can take advantage of that to make our apps great.

If our app is an encyclopedia for a specific topic, we may want to share something. We can
create mini Twitter, Facebook, and Google+ activities to interact with these social networks.
We can create mini e-mail and SMS sections to support sharing in those formats. Alternatively,
we can just use the user's favorite app that is installed on their device.

Interacting with Other Apps

222

Using other apps that the user has installed on their device allows us to write smaller and
more specific apps. We can then focus on our app and let the other developers improve their
apps. This leads to a generally better app ecosystem. Also, if we use the app that the user
prefers, we make our app friendlier to that user.

We may want our app to respond to system events and then change the way we work. For
example, if the device loses connectivity, we can pause downloads and wait for the connection
to return. If the battery runs low, we can make our app download fewer resources and maybe
try stopping some background tasks. If the device reports an incoming call, we can pause the
music or video so that the sound does not interfere with the call.

Responding to changes in the system allows the app to improve the user experience as the
system changes. This leads to an app that makes the user feel like it is working with them to
achieve a common goal.

Starting app components
All apps have several components that make up the app. These can be screens, chunks of
work, and listeners that wait for an event to happen somewhere.

How to do it...
There are three basic components to any app: the Activity, the Service, and the
BroadcastReceiver component:

1.	 The most common and most visible component is the Activity component:
[Activity]
public class DestinationActivity : Activity {
 protected override void OnCreate(Bundle savedState) {
 base.OnCreate(savedState);
 }
}

2.	 To start or display an activity, we simply invoke the StartActivity() method,
as follows:
var intent = new Intent(this, typeof(DestinationActivity));
StartActivity(intent);

3.	 The next component that we use is a Service, or the chunk of work:
[Service]
public class DestinationService : IntentService {
 protected override void OnHandleIntent(Intent intent) {
 }
}

Chapter 8

223

4.	 Similar to activities, we start a Service using the StartService() method:
var intent = new Intent(this, typeof(DestinationService));
StartService(intent);

5.	 Finally, there is the BroadcastReceiver, which is a listener for global events:
[BroadcastReceiver]
public class DestinationReceiver : BroadcastReceiver {
 public override void OnReceive(
 Context context, Intent intent) {
 }
}

6.	 The broadcast receiver can be started or reached using the SendBroadcast()
method, as follows:
var intent = new Intent(this, typeof(DestinationReceiver));
SendBroadcast(intent);

Data can be passed to each of the components using the intents that are used to start them:

1.	 To attach data to an Intent instance, we make use of the extras feature:
intent.PutExtra("SomeKey", "Some String Value");
intent.PutExtra("AnotherKey", 123);

2.	 Once in a component, we can access the data using the various getter methods:
if (Intent.HasExtra("SomeKey")) {
 var text = Intent.GetStringExtra("SomeKey");
}
if (Intent.HasExtra("AnotherKey")) {
 var integer = Intent.GetIntExtra("AnotherKey");
}

How it works...
Each of the three main app components is used for very specific tasks. The Activity
represents a single screen in an app. The activities are loosely bound to each other to create the
visual aspect of an app. The Service represents a long-running, background task that can still
run when the activities are terminated. The BroadcastReceiver is registered with the system
and then waits for a specific event or message to be sent out.

Usually, a BroadcastReceiver will simply start a
Service, which does the actual work.

Interacting with Other Apps

224

Activities, services, and broadcast receivers are registered with the Android system using
various attributes. Activities require the [Activity] attribute, services require the
[Service] attribute, and broadcast receivers require the [BroadcastReceiver] attribute.

Attributes can be applied to the app components instead of manually
updating the AndroidManifest.xml file.

Each component can be started directly using various methods found on the Context type.
Activities are displayed using the StartActivity() method. However, if a result is desired
from an activity, we use the StartActivityForResult() method instead. Services are
started using the StartService() method. Broadcast receivers are initiated from either the
SendBroadcast(), SendOrderedBroadcast(), or SendStickyBroadcast() methods.

When starting any app component, we provide an Intent instance. This intent holds the
information that lets the Android system know which component to start and what data is
required for it to start.

An Intent instance can hold any extra data that needs to be passed
to the app component that is going to be started.

In order to pass data into a component when it is started, we add the data to the intent. Data
is added using the extras mechanism. Each piece of simple data is added as a key-value
pair through the PutExtra() method. The data is usually primitive data types or arrays of
primitive data types, but there is the option to add IParcelable objects such as another
Bundle instance.

When we wish to retrieve data from the intent, we make use of the getter methods. These
methods are named in the form Get<Type>Extra. For example, to obtain a string or an
integer, we use the GetStringExtra() or GetIntExtra() methods respectively.

There's more...
When intents specify the exact type of the component to start, we call them explicit intents.
These intents are usually used to start components within the app.

If we want to launch a component in another app, we cannot use explicit intents. This is
because we may not know the fully-qualified name of the component or the user may not have
installed the particular app. To get around this, we use implicit intents. These intents specify a
general action and then hand it off to the system. This allows either the user, or the system, to
specify a particular app to use with that action.

Chapter 8

225

Explicit intents are created using a specific type to start a specific
component. Implicit intents are created to initiate a general action.

Launching other apps
Often, we have to integrate our apps with existing apps on the user's device. This is simply
because we will never be able to cover all the possible actions a user may wish to perform.

How to do it...
Using Intents, we can launch specific activities in other apps:

1.	 We can start other activities, such as the default map app, using the ActionView
intent and a URI, as follows:
var uri = Uri.Parse("geo:37.797786,-122.401855");
var intent = new Intent(Intent.ActionView, uri);
StartActivity(intent);

2.	 Some activities require that a type be specified instead of a URI; which is done as
shown here:
var intent = new Intent(Intent.ActionSend);
intent.SetType("text/plain");
intent.PutExtra(
 Intent.ExtraEmail, new[]{"user@example.com"});
intent.PutExtra(
 Intent.ExtraSubject, "Email Subject");
intent.PutExtra(
 Intent.ExtraText, "Email message text here...");
StartActivity(intent);

3.	 If the user has selected a default app for a particular intent, for example when the
user chooses to always open pictures in a specific app, the app chooser will not be
displayed. We can force the chooser to always be displayed using the following lines
of code:
Intent intent = ...;
var chooser = Intent.CreateChooser(intent, "Open...");
StartActivity(chooser);

Interacting with Other Apps

226

4.	 If we want to get a list of all the available activities for an intent, we use the
QueryIntentActivities() method:
Intent intent = ...;
IList<ResolveInfo> activities =
PackageManager.QueryIntentActivities(intent, 0);
foreach (var activity in activities) {
 var name = activity.ActivityInfo.Name;
}

We can also make our activities available in the chooser for other apps to launch:

ff To make our app visible, we add the [IntentFilter] attribute to our activity and
set the DataScheme property to the scheme of the data URI:
[IntentFilter(
 new []{ Intent.ActionView },
 DataScheme = "geo",
 Categories = new[]{ Intent.CategoryDefault })]

ff There is also an option to launch activities with an intent MIME type, which is filtered
with the DataMimeType property:
[IntentFilter(
 new []{ Intent.ActionSend },
 DataMimeType = "text/plain",
 Categories = new[]{ Intent.CategoryDefault })]

ff If we want to launch from an intent with both a MIME type and a data URI, we filter
with both properties:
[IntentFilter(
 new []{ Intent.ActionSend },
 DataScheme = "geo",
 DataMimeType = "text/plain",
 Categories = new[]{ Intent.CategoryDefault })]

How it works...
Sometimes, we have to send data to, or open an activity from, another app. As we may not
know the exact fully qualified name of the activity, or the user may be using an alternative app
to handle the action, we have to use a more generic intent. These intents specify a generic
action such as "share data" or "show map coordinates". The Android system searches through
the list of registered activities to find the ones that can handle the intent. This type of intent is
called an implicit intent.

Chapter 8

227

Implicit intents specify a general action and the Android system displays
a list of activities that are able to handle that action.

Some implicit intents are created with an action and a URI to be used with the action. An
example of an action can be viewing or editing a specified URI. For example, when viewing a
map coordinate, we specify the view intent action and then specify the geolocation as the URI.

Another form of implicit intent is to specify the action and the MIME type of the data we wish
to view or edit. An example of an action can be sharing some data with a specific type. For
example, we can share plain text data using the MIME type "text/plain" or share image data
using the "image/jpeg" MIME type.

The data URI can be specified either in the constructor or using the SetData() method. To
specify a MIME type, we use the SetType() method. If we want to specify both the URI and
the MIME type, we use the SetDataAndType() method. The Android system uses these
pieces of data to obtain a list of activities that support interaction with that intent.

Implicit intents can start activities using a data URI, a MIME type, or both.

Once the system has obtained a list of all the activities that can interact with the intent, it
may display the chooser to the user. The chooser allows the user to specify the actual activity
that they wish to use. If there is only one activity, or the user has specified a default activity,
the system will automatically launch that one. To always display the chooser, we wrap the real
intent in a chooser intent, and then display that chooser intent instead of the real intent. The
chooser intent is created from the actual intent along with a title, which is to be displayed on
the chooser dialog. We use the static CreateChooser() method on the Intent type.

The activity chooser will not be displayed if either a default app is selected
for the intent or none of the apps can handle the intent.

If there are no activities that support the intent, then an ActivityNotFoundException
exception will be thrown. We can either catch this exception or first verify that an
activity does exist for the intent. To do this, we query the package manager using the
QueryIntentActivities() method. The result is a collection of information regarding the
available activities.

We may want one of our activities to appear in the chooser for other apps to launch. We may
be creating an app that can handle map coordinates or an app that displays images. To let the
Android system know that our app can be used in this manner, we use the [IntentFilter]
attributes on the types that we wish to make available.

Interacting with Other Apps

228

To let Android know that an activity should appear in the chooser,
the [IntentFilter] attribute should be applied with
parameters specifying what intents it can handle.

The intent filter describes which intents are able to launch this activity. When applying this
attribute, we are required to specify the action that can launch this activity. Along with the
action, we can specify which URI scheme starts this activity using the DataScheme property.
Also, we can specify what MIME type is supported using the DataMimeType property. We
can use either one or both of these properties to further restrict the intents that can launch
this activity.

Finally, we can specify the category that is associated with the component. Categories are
used to provide information about what kind of component should handle the intent. If we
want our activity to appear in the chooser, we must specify the CategoryDefault category.
Another category that can be used to allow a web browser to launch the activity is the
CategoryBrowsable category. If we apply the CategoryLauncher category, the activity
will appear in the top-level list of apps. This is automatically applied to activities when we set
the MainLauncher property of the [Activity] attribute.

There's more...
We can specify custom icons and descriptions for activities that appear in the chooser dialog by
setting the Icon and Label parameters on the [IntentFilter] attribute. This is especially
useful when a single activity has multiple entry points based on different requirements.

For example, if a single activity can be used to view or to share a data element, we may wish
to specify two intent filters. This way we can provide a customized icon and label that more
accurately describes the action associated with the entry in the chooser.

Obtaining data from activities
We may want to show the user a new screen in order to obtain some feedback before the
current task can be completed.

How to do it...
Starting an activity so that we can get feedback is done through the
StartActivityForResult() method:

1.	 First, we start the activity using the StartActivityForResult() method:
var intent = new Intent(this, typeof(ResultsActivity));
StartActivityForResult(intent, 1234);

Chapter 8

229

2.	 Then, when that activity is finished, we handle the result in the
OnActivityResult() method:
protected override void OnActivityResult(
int requestCode, Result resultCode, Intent data) {
 base.OnActivityResult(requestCode, resultCode, data);

 if (requestCode == 1234) {
 if (resultCode == Result.Ok) {
 var value = data.GetStringExtra ("Key");
 }
 else {
 // canceled
 }
 }
}

3.	 In the new activity, we specify the result data to be passed back to the calling activity
through the SetResult() method:
var result = new Intent();
result.PutExtra("Key", "Some Value");
SetResult(Result.Ok, result);
Finish();

How it works...
Sometimes, we require feedback from an activity that was just displayed. To get this feedback,
we have to launch the activity while letting the Android system know that we wish to be
notified of the outcome of the user's actions.

Similar to launching activities just to display another screen, we create an intent
that will launch the activity. But, instead of calling StartActivity, we invoke the
StartActivityForResult() method along with an integer code. This code will
be used to associate the start operation with the result of the new activity.

The StartActivityForResult() method should not be used
to start activities that do not return a result.

The user can then select an option or perform an operation on the second activity. Once the
user has returned from the second activity, we will be notified of this in the first activity. In
order to respond to these notifications, we override the OnActivityResult() method.

Interacting with Other Apps

230

In this method, we are provided with three pieces of data that we use to determine what
happened in the activity that was just closed. The first piece is the request code, or the
code that was specified when starting the activity. It is the value that was passed to the
StartActivityForResult() method. We use this to associate the result logic with
the initial logic.

The request code value provided by the OnActivityResult()
method when an activity is closed is the value that was passed to
the StartActivityForResult() method when that activity
was started.

The next piece of data is the result code. This represents a value showing whether the activity
was successful, canceled, or an error occurred. If the result code is Ok, then the operation
was successful and data was returned. If the result code is Canceled, then either the user
canceled the operation or an error occurred.

Finally, the last piece of data represents an intent that was specified by the second activity.
This intent can be used to hold any data we wish either in the Data property or in the
various extras.

The result code and the intent are values passed back from
the closed activity.

If we want to create an activity that can be used in this manner, we just need to set the result
code and, optionally, an intent before the activity is terminated. This is done by passing a
result code and an intent to the SetResult() method.

This is usually followed by the Finish() method to let the Android system know that the
activity should now be terminated. If no result is specified before the activity is terminated,
then the result is automatically set to Canceled.

If no result is set before the activity is closed, the result that the
caller will receive is a Canceled value.

Using BroadcastReceivers
There may be several instances when we would want to listen for the occurrence of events as
they occur on the running Android system.

Chapter 8

231

How to do it...
To listen for broadcast system events, we make use of a BroadcastReceiver instance:

1.	 To listen for events, we need an instance of BroadcastReceiver:
public class WorkReceiver : BroadcastReceiver {
 public override void OnReceive(
 Context context, Intent intent) {
 }
}

2.	 Often, broadcast receivers don't do much except starting a service, which does the
work on a background thread:
var service = new Intent(context, typeof(WorkService));
context.StartService(service);

Once we have a broadcast receiver, we need to register it with the Android system. There are
three ways to do this:

ff We can automatically register the receiver when the app is installed using the
[BroadcastReceiver] attribute:
[BroadcastReceiver]
[IntentFilter(new []{ "xamarincookbook.Work" })]

ff We can also manually register the receiver using the RegisterReceiver() method
when we need to start listening:
receiver = new WorkReceiver();
var filter = new IntentFilter("xamarincookbook.Work");
RegisterReceiver(receiver, filter);

ff And then we can unregister it when we are finished:
UnregisterReceiver(receiver);

ff Regardless if it was installed automatically or manually, we can broadcast an intent to
these receivers using the SendBroadcast() method:
var intent = new Intent("xamarincookbook.Work");
SendBroadcast(intent);

Interacting with Other Apps

232

If we are going to be listening for messages that are only broadcast from within our app, we
can use the LocalBroadcastManager instance:

1.	 The LocalBroadcastManager instance is available in the Xamarin Support
Library v4 NuGet or component, so we have to install that first.

2.	 Similar to manually registered receivers, we register the receiver with the local
broadcast manager:
receiver = new WorkReceiver();
var filter = new IntentFilter("xamarincookbook.Work");
var manager = LocalBroadcastManager.GetInstance(this);
manager.RegisterReceiver(receiver, filter);

3.	 We can unregister the receiver when we are finished:
var manager = LocalBroadcastManager.GetInstance(this);
manager.UnregisterReceiver(receiver);

4.	 However, we have to broadcast a message through the local broadcast manager
instead of the global broadcast manager:
var intent = new Intent("xamarincookbook.Work");
var manager = LocalBroadcastManager.GetInstance(this);
manager.SendBroadcast(intent);

How it works...
A BroadcastReceiver instance is essentially an app component that listens for a specific
global event to occur. Such events can be a change in Wi-Fi state, battery level, or the device
booting up. Regardless of the event, broadcast receivers are very simple and only live as long
as it takes to complete the execution of the OnReceive() method.

The OnReceive() method should be as short as possible and, and as a result, any
long-running task should be assigned to a service instead of being executed directly. As soon
as the method has completed, the receiver is marked as finished and ready to be disposed of.
This is important when running asynchronous tasks. As the method will probably return before
the background task has completed, the thread may be leaked or terminated unexpectedly.

A BroadcastReceiver instance only lives as long as it
takes for the OnReceive() method to return. Any running
threads will be leaked.

We can register the receiver automatically when the user installs the app. This is especially
useful for events that we want to listen for, even when the app is not running. To do this,
we apply the [BroadcastReceiver] attribute to the receiver. Then, we apply the
[IntentFilter] attribute to inform the Android system about the broadcast messages that
we are waiting for.

Chapter 8

233

However, this may not be necessary as we might only be listening for a message for a short
period of time. This can be while downloading a file, or when we are interested in pausing
the download when the user is no longer connected to Wi-Fi. In this case, we can dynamically
register the receiver using the RegisterReceiver() method.

When we do this, we do not apply the attributes, but instead pass an instance of the receiver
along with an instance of IntentFilter to the RegisterReceiver() method. We need to
keep a reference to the receiver so that we can unregister it when we are finished.

A single instance of a broadcast receiver can be registered multiple
times, each time with a different intent filter.

As soon as we no longer require the receiver to listen for messages, we unregister it by
passing the instance of the receiver to the UnregisterReceiver() method. When we
unregister a receiver, all registrations of that receiver are removed.

A broadcast receiver that is registered in the OnResume() method of
an activity should be unregistered in the OnPause() method.

If we are only listening for internal broadcasts, we can further cut down on system resources
by registering with the LocalBroadcastManager. This implementation is more efficient, but
we can only respond to internally broadcast messages.

In order to use the LocalBroadcastManager, we have to install the Android Support v4
library. This is found in either the Xamarin Support Library v4 NuGet or Component.

When we want to register a receiver with the local manager, we have to first obtain an
instance of the manager using the static GetInstance() method. Once we have an
instance, we can invoke the RegisterReceiver() and UnregisterReceiver()
methods just as would invoke them on the Context type.

Unregistering receivers when they are not needed helps
reduce the impact on system resources.

Finally, we can broadcast messages using the SendBroadcast() method. We simply pass
an intent to this method, and each of the registered receivers will receive them. We can also
add any data to the intent using the extras mechanism. When the receiver responds to the
message, it can obtain the values from the intent.

If we have registered the receiver using the local broadcast manager, we have to broadcast
the intents using the manager. Receivers registered with the local broadcast manager will
not receive globally broadcast intents and globally registered receivers will not receive locally
broadcast messages.

Interacting with Other Apps

234

Using the LocalBroadcastManager to broadcast intents
increases app security as data that is broadcast never leaves
the app.

Scheduling tasks
Some tasks need to be performed at a particular time in the future, some may even be
required to recur.

How to do it...
We can schedule tasks for the future using the AlarmManager instance:

1.	 As scheduling tasks involves running code when the app is closed by the user, we
have to get permission to do this:
[assembly: UsesPermission(Manifest.Permission.SetAlarm)]

2.	 Then, we need a broadcast receiver that will receive a notification when the
alarm is triggered:
[BroadcastReceiver]
[IntentFilter(new[] { "xamarincookbook.Alarm" })]
public class AlarmReceiver : BroadcastReceiver {
 public override void OnReceive(
 Context context, Intent intent) {
 // alarm has triggered
 }
}

3.	 When we want to schedule a task, we set an alarm for a specific time and then
provide an intent that should be broadcast when the time expires:
var ringTime = JavaSystem.CurrentTimeMillis() +
(long)TimeSpan.FromSeconds(5).TotalMilliseconds;
var intent = new Intent("xamarincookbook.Alarm");
var alarm = PendingIntent.GetBroadcast(this, 0, intent, 0);
var manager = AlarmManager.FromContext(this);
manager.Set(AlarmType.RtcWakeup, ringTime, alarm);

How it works...
Sometimes, there is a need for a specific task to be performed after an interval, either
once or repeatedly. This may be to check for data updates or to synchronize settings.
To create a task that will execute later in the future, we use the AlarmManager instance.

Chapter 8

235

Before we can use the AlarmManager instance, we need to request the SetAlarm
permission. Next, we create a broadcast receiver that will be used to receive an intent once
the alarm is triggered. The intent action that we specify in the intent filter is the action that will
be broadcast once the alarm is triggered.

In order to schedule an alarm, we have to first obtain an instance of the manager using the
static FromContext() method on the AlarmManager type. To set an alarm, we invoke the
Set() method. This method takes three parameters, the type of alarm, the time, and the
intent to broadcast when the alarm is triggered.

We specify that we want to use real time and we want to wake the device using the
RtcWakeup alarm type. As the alarm may be triggered when the device is asleep, the
manager holds a wake lock until the OnReceive() method is complete. This guarantees
that the device will wake when the alarm is triggered and may go back to sleep as soon
as it is finished executing.

If the AlarmType does not specify that it will wake the device,
the intent will wait until the device is woken before broadcasting
the intent. This may not be desired if the intent needs to be
broadcast at a specific time.

Then, we specify the alarm time in the number of milliseconds since the Unix epoch.
In order to calculate the alarm time, we first obtain the current time as the number of
milliseconds since the Unix epoch by using the static CurrentTimeMillis() method on
JavaSystem. We then add to that the number of milliseconds between the current time and
the desired time.

Unix, or Java, time starts from January 1, 1970, but .NET or C#
time starts from January 1, 2001.

The last parameter is the PendingIntent instance that holds the Intent instance that will
be broadcast when the alarm expires.

There is also the option to repeat the operation after a certain interval. To do this, we can use
the SetRepeating() method instead of the Set() method. This will allow us to specify an
additional parameter, which is the number of milliseconds between alarm triggers.

When using the repeating alarm, the interval must be greater than or
equal to 60 seconds. If not, the interval will be adjusted. For shorter
intervals, an exact alarm can be used, with a manual reschedule.

Interacting with Other Apps

236

There's more...
There are two main types of alarms: real time and boot time. Each type has an option to wake
the device when the alarm is triggered. The real time clock uses the current system time of
the device and the boot time starts from the time the device is booted.

To specify real time, we use the Rtc or RtcWakeup instances, and to specify boot time, we
use ElapsedRealtime or ElapsedRealtimeWakeup.

The wake-up variants specify that the device should wake up and execute the broadcast. If
this is not necessary, the manager will wait until the device is woken before broadcasting.
If the device is not woken, the broadcasts are not queued up, and when the device finally
wakes, only one broadcast will be sent.

Making phone calls
Our app may need to initiate a phone call from within the app without the user having to leave
the current context.

How to do it...
To initiate a call directly from within our app, we use an Intent instance:

1.	 We first need to ensure that the device has telephony features. There are two ways to
do this; one way is to use attributes:
[assembly: UsesFeature(
 Android.Content.PM.PackageManager.FeatureTelephony)]

Alternatively, we can check for the telephony feature using the
HasSystemFeature() method at runtime:
var hasTelephony = PackageManager.HasSystemFeature(
 Android.Content.PM.PackageManager.FeatureTelephony);
if (hasTelephony) {
 // do something
}

2.	 If we are running on a device with telephony features, we still need to request
permissions to start phone calls:
[assembly: UsesPermission(Manifest.Permission.CallPhone)]

Chapter 8

237

3.	 Finally, we can make the phone call using the ActionCall action intent:
var number = "0123456789";
var intent = new Intent(Intent.ActionCall);
intent.SetData(Uri.Parse("tel:" + number));
StartActivity(intent);

How it works...
We may want to allow the user to start a call directly from our app, and we can do this very
easily. This is useful if we want the app to start calling immediately without the user having to
press the call button on the phone's dialer.

As some devices, such as Wi-Fi tablets, do not actually have telephony features, we need
to ensure that the device has the desired features first. There are two ways to check for
the availability of specific features.

We can ensure that the app cannot be installed on a device without telephony features.
For this, we use the [UsesFeature] attribute, which will add an entry into the
AndroidManifest.xml file. Alternatively, we can check for the availability of specific features
at runtime using the HasSystemFeature() method on the PackageManager type.

To prevent an app from being installed on a device without a
certain feature, the [UsesFeature] attribute is used. If the app
can still function without the feature, the HasSystemFeature()
method can be used at runtime.

We first need to request permission to start calls directly as this may cost the user. So, we
request the CallPhone permission.

To place the call, all we need to do is create an intent with the ActionCall intent action. We
then specify the number using the SetData mechanism. When we call StartActivity, the
phone will begin calling the number.

If multiple phone apps exist on the device, such as Skype and the default dialer, the chooser
will be displayed. If there are multiple apps, but the user has selected a default, then the
default will be used automatically.

There's more...
If we want to call numbers from our app, without getting the CallPhone permission but only
a confirmation from the user to receive the call, we can open the dialer.

To open the dialer we use the ActionDial intent action instead of ActionCall. This will
display the dialer with the telephone number already entered, but this will not start the call.

Interacting with Other Apps

238

Intercepting phone calls
An app might need to keep track of, or be notified of, incoming and outgoing phone calls.

How to do it...
In order to intercept incoming and outgoing phone calls, we listen for broadcasts:

1.	 First, we require the permissions to intercept phone calls:
[assembly: UsesPermission(
 Manifest.Permission.ReadPhoneState)]
[assembly: UsesPermission(
 Manifest.Permission.ProcessOutgoingCalls)]

2.	 Next, we need to create a broadcast receiver that can handle phone state changes
and call events:
[BroadcastReceiver]
[IntentFilter(new[] {
 TelephonyManager.ActionPhoneStateChanged,
 Intent.ActionNewOutgoingCall })]
public class PhoneCallReceiver : BroadcastReceiver {
 public override void OnReceive(
 Context context, Intent intent) {
 }
}

3.	 Now, in order to intercept incoming calls, we listen for phone state changes:
if (intent.Action ==
TelephonyManager.ActionPhoneStateChanged) {
 var number = intent.GetStringExtra(
 TelephonyManager.ExtraIncomingNumber);
 if (!string.IsNullOrEmpty(number)) {
 // incoming call
 }
}

4.	 We can also intercept outgoing calls by listening for the ActionNewOutgoingCall
intent action:
if (intent.Action == Intent.ActionNewOutgoingCall) {
 var number =
 intent.GetStringExtra(Intent.ExtraPhoneNumber);
 if (!string.IsNullOrEmpty(number)) {
 // outgoing call
 }
}

Chapter 8

239

How it works...
If we wish to be notified when a call is made or there is a new incoming call, we can listen for
these events using a broadcast receiver.

It will be useful to first verify that the telephony features are
supported on the device before attempting to use them.

Before we can interact with the phone aspects of the device, we have to request permission
to do so. We will need the ReadPhoneState permission if we want to be notified of incoming
calls, and we will need the ProcessOutgoingCalls permission if we want to be notified of
outgoing calls.

Now, we can create the broadcast receivers that will handle the phone events. We can create
two separate receivers, each listening for a specific broadcast, but this is not required. When
creating a receiver that listens for multiple messages, we can combine the intent actions in
the array passed to the [IntentFilter] attribute.

Broadcast receivers can listen for multiple intents if they are registered
using multiple action intents with the intent filter.

We should listen for the TelephonyManager.ActionPhoneStateChanged intent if we
want to be notified of incoming calls and the Intent.ActionNewOutgoingCall intent if
we want to be notified of outgoing calls.

The TelephonyManager.ActionPhoneStateChanged action is broadcast for various
reasons as the phone state changes, but we are only interested in the event if the
ExtraIncomingNumber extra is there. The existence of this extra means that there is an
incoming call.

If the incoming call is from a private number, the value
of the extra will be a negative integer.

To intercept outgoing calls, we respond to the Intent.ActionNewOutgoingCall
intent action. When we receive this action, we can obtain the phone number using the
ExtraPhoneNumber extra.

Interacting with Other Apps

240

There's more...
We can cancel an outgoing call by setting the ResultData property of the broadcast receiver
to null. And, we can change the number that is called by setting the ResultData property
of the broadcast receiver as the new number. This, however, only applies to normal numbers.
Emergency numbers cannot be manipulated or canceled.

Sending SMS messages
We may be creating an app that requires the user to send an SMS message to a specific number.

How to do it...
To send an SMS message, we make use of the SmsManager instance:

1.	 Before we can work with the SmsManager instance, we require a permission:
[assembly: UsesPermission(Manifest.Permission.SendSms)]

2.	 To send the SMS, we only require a single method—SendTextMessage:
var number = "0123456789";
var message = "SMS Message Text...";
var manager = SmsManager.Default;
manager.SendTextMessage(number, null, message, null, null);

If we need to verify that the message was sent successfully, we can use intents that will be
broadcast with the operation status:

1.	 First, we have to send the message providing the intents that will be broadcast when
the message is sent and delivered:
var sentIntent = PendingIntent.GetBroadcast(
 this, 0, new Intent("xamarincookbook.Send"), 0);
var deliveredIntent = PendingIntent.GetBroadcast(
 this, 0, new Intent("xamarincookbook.Delivered"), 0);
manager.SendTextMessage(
 number, null, message, sentIntent, deliveredIntent);

2.	 We then create a broadcast receiver that will listen for these intents:
public class SmsSentReceiver : BroadcastReceiver {
 public override void OnReceive(
 Context context, Intent intent) {
 if (intent.Action == "xamarincookbook.Send") {
 var sendSuccess = ResultCode == Result.Ok;
 }

Chapter 8

241

 if (intent.Action == "xamarincookbook.Delivered") {
 var deliverySuccess = ResultCode == Result.Ok;
 }
 }
}

3.	 The broadcast receiver can be registered dynamically as it will only be needed for a
short while:
receiver = new SmsSentReceiver();
RegisterReceiver(
 receiver, new IntentFilter("xamarincookbook.Send"));
RegisterReceiver(
 receiver, new IntentFilter("xamarincookbook.Delivered"));

4.	 The broadcast receiver can then be unregistered when the message has been
delivered successfully:
UnregisterReceiver(receiver);

How it works...
Sending SMS messages can be done from within an Android app without user intervention.

Like phone calls, working with SMS messages requires
that the device supports the telephony features.

To send SMS messages, we first need to request the SendSms permission. This is required
because sending an SMS message involves a cost for the user.

Once we have the permission, we can then obtain an instance of the SmsManager instance.
We then pass the destination number and message to the SendTextMessage() method.

To confirm that a message was delivered to a recipient, an intent
can be provided to the SendTextMessage() method. When the
message is delivered, the intent will be broadcast.

The second last parameter of the SendTextMessage() method is a PendingIntent
instance that will be broadcast if the message is successfully sent out or if there is an error
in sending. The ResultCode will either be Ok if it is successful, or another value if there is
an error.

To confirm that the SMS is delivered to the recipient, we provide a PendingIntent instance
to the last parameter. This intent will be broadcast when the message has been delivered.

Interacting with Other Apps

242

There's more...
If the message is going to be too long for a single message, we can use the DivideMessage()
method on the SmsManager instance to break the message up into fragments.

The fragments are then sent to a recipient using the SendMultipartTextMessage()
method. We pass the collection of fragments along with a collection of pending intents
that should be broadcast as each fragment is sent and delivered.

Receiving SMS messages
Our app may be using SMS messages to verify the phone number that the user has specified.
If we want to do this, we may want to listen for an incoming SMS message.

How to do it...
To listen for incoming SMS messages, we will use a broadcast receiver:

1.	 First, we will need a permission to receive SMS messages:
[assembly: UsesPermission(Manifest.Permission.ReceiveSms)]

2.	 Next, we will need a broadcast receiver that listens for incoming messages:
[BroadcastReceiver]
[IntentFilter(
 new[] { "android.provider.Telephony.SMS_RECEIVED" })]
public class SmsReceiver : BroadcastReceiver {
 public override void OnReceive(
 Context context, Intent intent) {
 }
}

3.	 Finally, we process the incoming intent and read the SMS message:
if (intent.HasExtra("pdus")) {
 var smsArray =
 (Java.Lang.Object[])intent.Extras.Get("pdus");
 string address = "";
 string message = "";
 foreach (var item in smsArray) {
 var sms = SmsMessage.CreateFromPdu((byte[])item);
 message += sms.MessageBody;
 address = sms.OriginatingAddress;
 }
}

Chapter 8

243

How it works...
Listening for incoming SMS messages is useful, especially as we can use them to verify
the existence of a device. We can have an app requires that the user to have a valid mobile
number. It can request that a server sends an SMS to the device, and when the message is
received, allow the user to log in.

Before we can listen for incoming SMS messages, we require the ReceiveSms permission.

We can receive events for incoming SMS messages if we register a broadcast receiver for the
android.provider.Telephony.SMS_RECEIVED intent action.

When the device receives an SMS message, we can read the message out of the pdus extra.
The extra contains an array of one or more message parts. Each part is an array of bytes that
can be used to create a SmsMessage object instance.

The incoming SMS intent represents a single message, but each
intent may contain multiple parts of the message.

Once we have created a SmsMessage instance using the static CreateFromPdu() method,
we can then read various properties to obtain information on each part.

As the message may be broken up into parts, we have to concatenate the message text
obtained from the MessageBody property. We can use the OriginatingAddress property
to obtain the number that the message was sent from.

There's more...
If, for some reason, we do not wish to display the SMS notification on the device, we can stop
the broadcast from being propagated to the default SMS app.

To do this, we use the InvokeAbortBroadcast() method on the receiver. This will prevent
the message from reaching the default SMS app, therefore, we need to be very careful when
doing this.

We may have to ensure that our app receives the SMS before the default app, otherwise
the abort operation will do nothing. To ensure this, we set the Priority property in the
[IntentFilter] attribute as IntentFilterPriority.HighPriority.

245

9
Presenting Multimedia

In this chapter, we will cover the following recipes:

ff Playing audio

ff Playing audio in the background

ff Managing the audio volume

ff Recording an audio

ff Playing a video

ff Custom video controls

ff Using the camera

ff Creating a camera app

ff Handling high-resolution images

ff Drawing on the canvas of a View

ff Drawing on the canvas of SurfaceView

Introduction
Multimedia is one of the most commonly used mechanisms for attracting users to mobile
apps and games. No matter how great an app, if it is not designed well, it will not be well
received by the users. Users not only want to be amazed by great designs, but they also
want to be entertained.

Adding audio and sound effects to a game really makes the game seem more complete.
By simply adding feedback sound effects, the app seems to be responding more rapidly.
Sound effects can range from short sounds when a button is tapped to a looping background
track while the app is open. Even game menus have sounds, and although it should not be
overdone, sounds add depth to many types of apps.

Presenting Multimedia

246

Not only sound, but also visual effects and feedback. By simply displaying a small change
when the user interacts with an onscreen element, the user already feels that the app is
responding. Visual enhancements can go all the way to including videos. Almost all content
can be described by static text and images, but a video provides a far greater means to
present data, as well as to draw a user into an app. Videos can range from a simple looping
background all the way to longer, more detailed videos.

If the user wants to be entertained, making use of the camera allows the user to interact with
the real world through the device. This can range from taking a photo and adding a message
and effects all the way to providing an augmented reality experience. Allowing the user to
capture a moment and then adding to it or sharing it supports the reason why social networks
exist. People want to be able to interact with others, and, by taking the user's world and
showing it on the device with more information, in real time, further makes the device and the
app more real. This information can simply be real world information, such as mapping or face
recognition, all the way to games that require the user to move in the real world in order to be
able to move in the game.

One of the most common form of multimedia, after videos, is games. Games provide the user
with a greater experience as compared to a video. The user is immersed in an entire world,
where they are in control. This immersion allows the user to be a part of an alternate reality.
As a result of this experience, users will continue to buy games so they can remain in the
virtual world and do things that may be impossible in the real world.

Playing audio
Many apps, especially games, have sounds. This can just be a feedback sound or one that
enhances the navigation or interaction of the game. Games usually have background music
playing on a loop.

How to do it...
The MediaPlayer type is used to play a sound from a content provider, a URI or a resource:

1.	 To play a sound from included resources or a Uri instance, we use the static
Create() method on MediaPlayer:
var mediaPlayer = MediaPlayer.Create(
 this, Resource.Raw.SoundResource);

Chapter 9

247

2.	 Then, because we need to be able to clean up after the sound is finished, we
subscribe to the Completion event and release the player:
mediaPlayer.Completion += delegate {
 mediaPlayer.Release();
 mediaPlayer = null;
};

3.	 To begin playing, either from a paused or prepared state, we invoke the Start()
method:
mediaPlayer.Start();

4.	 Finally, we can control the player using the Pause() and Stop() methods:
mediaPlayer.Pause();
mediaPlayer.Stop();

If we want to stream sound from an asset or a remote URI, we construct a new MediaPlayer
object, which sets various options before starting:

1.	 For more control over how and what is played, we use the MediaPlayer constructor:
var mediaPlayer = new MediaPlayer();

2.	 Before we can play sound, we have to specify what type of sound will be played.
The most common is Music, so lets execute the following code to add sound in
our project:
mediaPlayer.SetAudioStreamType(Stream.Music);

3.	 We can play a file out of the app assets by passing the FileDescriptor to the
SetDataSource() method:
var fd = Assets.OpenFd("SoundAsset.mp3");
mediaPlayer.SetDataSource(
 fd.FileDescriptor, fd.StartOffset, fd.Length);
fd.Close();

Alternatively, we could play a file from a content provider or remote URI using the
SetDataSource() method as well:
var uri = "http://example.org/audio.mp3");
mediaPlayer.SetDataSource(uri);

4.	 Again, we may want to clean up the player when the playback is complete, if we aren't
going to use it again:
mediaPlayer.Completion += delegate {
 mediaPlayer.Release();
 mediaPlayer = null;
};

Presenting Multimedia

248

5.	 In case of any errors, we will have to reset the player before we can use it again:
mediaPlayer.Error += delegate {
 mediaPlayer.Reset();
};

6.	 Before the audio can be played, it has to be prepared. As this takes some time, it has
to be done on a separate thread, using the PrepareAsync() method. When the
preparation is complete, the playback can be started:
mediaPlayer.Prepared += delegate {
 mediaPlayer.Start();
};
mediaPlayer.PrepareAsync();

7.	 If we are already on another thread, we can just invoke the synchronous Prepare()
method and then use the Start() method to begin the playback:
mediaPlayer.Prepare();
mediaPlayer.Start();

How it works...
If we want to play audio, we make use of the MediaPlayer type, which provides all the tools
needed to play media. Media can be streamed from local sources, such as the file system,
and remote sources, such as internet streaming.

The MediaPlayer type can play both video and audio from
either local or remote sources.

For the most simplest of cases, we can just make use of the convenient static Create()
method overloads. This method will automatically prepare the player, and once the method
returns, we can start playing the audio. The Create() method can load and prepare local
audio, for example a packaged resource or a URI, such as that from a content provider or the
file system.

The Create() method will automatically prepare the media player.

The MediaPlayer object is quite expensive and should be disposed of as soon as we are
finished with it. We let the system know that it should clean up the resources by invoking the
Release() method. If we are creating a sound that will be played once, we can attach an
event handler to the Completion event, which will allow us to clean up as soon as the event
is fired. If the player is stopped before the end of the file, the Completion event will not be
triggered, and we will have to release the player ourselves.

Chapter 9

249

We can control the player through the various methods available. The most basic is Start,
which will start the player, and Stop, which will stop the playback. If we stop the playback, we
will have to prepare the player before we can start playing again. If we invoke the Pause()
method, playback is paused and can be resumed by the Start() method without having to
prepare the player.

If the player is stopped, the Completion event will not be triggered
and the player will have to be prepared again before resuming.

If we want to jump to a specific location in the playback, we can use the SeekTo()
method. This method is asynchronous and moves the playback to the specified millisecond
location. If we want to be notified about the completion of the seek, we can subscribe to the
SeekCompleted event. Seeking is asynchronous as we may have to wait for the buffer to
load enough data before playing.

The SeekTo() method is asynchronous as the media
may be streaming over a network.

To have greater control over what, and how, audio is played, we can use the default
MediaPlayer constructor. This provides us with a player that is not already set up
and ready to play. If we use the constructor, we will have to set the audio type using the
SetAudioStreamType() method. The audio stream type can be, but is not limited to,
Stream.Music, Stream.Alarm, or Stream.Notification, depending on what we will
play. For most cases, Stream.Music will be used.

Creating the MediaPlayer instance through the constructor allows us to play files from
stream-based locations, such as the assets or a remote URL. To play a file from the assets,
we can open the FileDescriptor instance and then pass it to the SetDataSource()
method. Similarly, we can pass either a string or an Uri instance to the SetDataSource()
method to specify what should be played.

The default constructor does not prepare the player and
has to be done manually.

As there may be a problem during the execution of asynchronous methods, we can subscribe
to the Error event. This allows us to receive notifications when an error occurs. If there is
an error, the player goes into an invalid state and will have to be reset using the Reset()
method before we can perform any other operations.

Before we can play the audio, we have to prepare the player. We can do this either
asynchronously or synchronously. If we prepare the player synchronously, it will block the
current thread. If the player is streaming from a remote source, this may take some time;
thus, it should always be done on a separate thread.

Presenting Multimedia

250

If we prepare the player asynchronously, it will not block the UI and will trigger the Prepared
event on completion. We can use this event to start the audio playback immediately, or
we can delay the playback until a later time. To prepare asynchronously, we invoke the
PrepareAsync() method, and to prepare synchronously, we invoke the Prepare() method.

Preparing the player may take some time, especially if the source is on a
network. Thus, PrepareAsync should always be used on the UI thread.

There's more...
The SoundPool instance can also be used for small audio clips. It can repeat or play several
sounds simultaneously. Sounds are loaded asynchronously, but should not exceed 1 MB.

Sounds are loaded using the Load() method, which returns an ID that is used by the Play()
method to start the playback of that sound. The Play() method returns another ID, which we
use to control the playback through the Pause() and Resume() methods.

Playing audio in the background
Sometimes, we may want to be able to play audio in the background after the user has closed
the app. We may be creating a media player app, or we may just want to allow various media
to be played without requiring an activity to be displayed on the screen.

How to do it...
We can play audio in the background if we play it from a Service instance:

1.	 First, we will create a service that will be responsible for playing music. Here, we have
methods that will be expanded in the following code snippet:
[Service]
public class MediaService : Service {
 public const string ActionPlay = "ActionPlay";
 public const string ActionPause = "ActionPause";
 public const string ActionStop = "ActionStop";

 private MediaPlayer mediaPlayer;
 private bool isPrepared = false;

 public override void OnDestroy() {
 base.OnDestroy();
 CleanUpPlayer();
 }
 public override StartCommandResult OnStartCommand(

Chapter 9

251

 Intent intent, StartCommandFlags flags, int startId) {
 switch (intent.Action) {
 case ActionPlay:
 StartPlaying();
 break;
 case ActionPause:
 PausePlaying();
 break;
 case ActionStop:
 StopPlaying();
 CleanUpPlayer();
 break;
 }
 return StartCommandResult.Sticky;
 }
 public override IBinder OnBind(Intent intent) {
 return null;
 }

2.	 When the activity starts, we can launch the service using the StartService()
method:
StartService(new Intent(this, typeof(MediaService)));

3.	 When we want to control the player, we can send intents to the service using the
StartService() method with an intent action:
StartService(new Intent(MediaService.ActionPlay,
 null, this, typeof(MediaService)));
StartService(new Intent(MediaService.ActionPause,
 null, this, typeof(MediaService)));
StartService(new Intent(MediaService.ActionStop,
 null, this, typeof(MediaService)));

Once we have our service created, we need to go ahead and implement the various methods
that control the underlying MediaPlayer instance:

1.	 When we want to play the music, we need to create a MediaPlayer instance. We do
this in our StartPlaying() method:
if (mediaPlayer == null) {
 isPrepared = false;
 mediaPlayer = new MediaPlayer();
 // ... set up the media player ...
 mediaPlayer.Prepared += delegate {
 isPrepared = true;
 mediaPlayer.Start();
 };
 mediaPlayer.PrepareAsync();

Presenting Multimedia

252

}
else if (isPrepared && !mediaPlayer.IsPlaying) {
 mediaPlayer.Start();
}

2.	 To pause music, we can just use the Pause() method. We do this in our
PausePlaying() method:
if (isPrepared) {
 mediaPlayer.Pause();
}

3.	 If we want to stop the player, we can also simply invoke the Stop() method. This is
done in our StopPlaying() method:
if (isPrepared) {
 mediaPlayer.Stop();
}

4.	 Finally, we should implement the CleanUpPlayer instance to free resources:
if (mediaPlayer != null) {
 mediaPlayer.Release();
 mediaPlayer = null;
}
isPrepared = false;

The Android system may decide that our service is not important as it is only running in the
background, and it may terminate the service. We can avoid this in two ways, wake locks or
foreground services.

Way 1:

1.	 We can tell the media player to acquire a wake lock while it is playing music, preventing
the CPU from going to sleep. We do this through the SetWakeMode() method:
mediaPlayer.SetWakeMode(
 ApplicationContext, WakeLockFlags.Partial);

2.	 In order to use the wake locks, we need to request for a permission to do so:
[assembly: UsesPermission(Manifest.Permission.WakeLock)]

3.	 If we are streaming audio over Wi-Fi, we can also acquire a WifiLock instance,
which will prevent the Wi-Fi hardware from going to sleep:
manager = WifiManager.FromContext(ApplicationContext);
wifiLock = manager.CreateWifiLock(WifiMode.Full, "tag");

4.	 We then release the lock when the playback stops or pauses:
wifiLock.Release();

Chapter 9

253

Way 2:

1.	 Also, we can specify that our service should be treated as a foreground component.
For this, we pass a Notification instance to the StartForeground() method:
var context = ApplicationContext;
var activity = new Intent(context, typeof(MainActivity));
var pending = PendingIntent.GetActivity(
 context, 0, activity, PendingIntentFlags.UpdateCurrent);
var notification = new NotificationCompat.Builder(context)
 .SetSmallIcon(Android.Resource.Drawable.IcMediaPlay)
 .SetContentTitle("Music Player Sample")
 .SetContentText("Playing music...")
 .SetOngoing(true)
 .SetContentIntent(pending)
 .Build();
StartForeground(MediaNotificationId, notification);

2.	 We may want to move the service into the background when the music is paused, but
we may not want to remove the notification. This is done using the following line of code:
StopForeground(false);

3.	 When the music stops, we can move the service into the background and remove
the notification:
StopForeground(true);

How it works...
There may be cases where we would like to play audio across activities or fragments,
especially if we are creating a media player app. To do this, we can play the audio from a
background service and is fairly similar to playing audio in an Activity attribute. This is
required if we want the audio to continue even when the user has closed the app or if another
app is in use.

A MediaPlayer instance should be released when an Activity
attribute is paused. To continue playing audio, even when the app is
closed, a Service instance is used.

The main thing that needs to be done is to create a service that will handle requests to
control the playback. We inherit from Service and implement the control methods in the
StartCommandResult() method and the cleanup in OnDestroy.

In the StartCommandResult() method, we can interact with our MediaPlayer object as
we would from an Activity instance. For a MediaPlayer service, we might want to specify
Sticky or RedeliverIntent to ensure that the service is restarted if the system decides
to stop it. Similar to releasing a player when the activity is paused, we would want to release
the MediaPlayer instance in the OnDestroy() method.

Presenting Multimedia

254

As the service actually runs on the main thread, we can start a new thread that does the work.
The service will just receive an Intent instance and pass it on to the thread which would
control the player. Or, we can take advantage of the asynchronous methods of the media player,
such as PrepareAsync() and SetDataSourceAsync(). Setting up a media player in a
service is exactly the same as in an activity, except that it is not limited to the life of an activity.

The service that controls a media player can either create a new thread
to prepare the player or make use of the asynchronous methods.

We use Intents to control the media player in the service. The action can specify what we
would like to do and then make use of the extras to provide information needed to do it. For
example, if we were creating a media player app, we can send the play intent action and
provide the track ID in the extras. Another example is if the user has updated the playback
type from loop all audio to loop a single track, we can use a more general settings action, but
then provide the actual type of action as an extra.

Android may stop background services when the device goes to sleep,
so a media player service should be moved to the foreground.

As the service runs as a background process, the Android may decide to stop services when
the device goes to sleep. This is a result of an attempt of the Android system to preserve the
battery life when not in use. As a media player should not stop playing when the screen is
turned off, we need to let the system know that we want our service to be treated as if it was a
foreground app even when the device is sleeping.

To do this, we first have to tell the MediaPlayer instance to acquire a wake lock when music
is playing. This is easy to do and we just need to let the player know what wake lock to use.
As wake locks are a privileged feature, we need to ensure that we requested the WakeLock
permission for the app.

Then, to specify that the player should acquire a wake lock, we pass the app context and the
wake lock type to the SetWakeMode() method on the player. The wake lock is automatically
managed by the player and it will acquire a wake lock when audio begins playing. As soon as
the playback stops due to a pause, stop, or when the audio reaches the end, the wake lock
is released.

Wake locks are automatically managed by the media
player, and only held while there is media playback.

Chapter 9

255

If we are streaming audio over Wi-Fi, we can also acquire a WifiLock to prevent the Wi-Fi
hardware from going to sleep and stopping the playback. This is simple to do and we only
need the WifiManager instance, which we get from the app context. Once we have the
manager, we invoke the CreateWifiLock() method, passing the lock type and a tag used
for debugging purposes. When the playback stops or is paused, we can then Release() the
lock to conserve battery life.

Unlike wake locks, Wi-Fi locks have to be managed manually.

Even if we hold a wake lock and a Wi-Fi lock, the Android system may still determine that
the service can be stopped. This is because although the service holds locks, it is still in the
background. This may occur if the user starts some activity that requires a lot of resources,
and as the service is in the background, it is considered to be less important than the
foreground activity.

Android may stop a background service even if it holds wake locks.

To avoid our service being treated as a background service, we can move it to the foreground.
Foreground services require a user-visible notification that is displayed while the service
remains in the foreground. Notifications used with foreground services are just normal
notifications and are created as we would create any notification. We can also update these
notifications to display the service progress. To move the service into the foreground, we pass
the notification that will be shown and a notification ID to the StartForeground() method.

When the service is in the foreground, it will almost never be stopped
by the Android system.

To move a service out of the foreground, such as when audio is finished, stopped, or paused,
we can use the StopForeground() method. This method requires a bool value. If we
specify true, the notification that was passed to StartForeground() will be removed. If
we specify false, the notification will remain, but it will be automatically removed when the
service is destroyed.

There's more...
When we are playing audio in a service, we must ensure that our app does not interfere with
any other app that wants to play audio. When our app is not in the foreground, other apps take
priority. To allow other apps to take priority, we make use of the audio focus features of the
AudioManager instance.

Presenting Multimedia

256

Managing the audio volume
When we play music, for example in a media player or game, we need to be able to control the
volume based on what the user is doing. For example, if the user receives a call, the music
should be paused. If there is an alarm, the volume should drop.

How to do it...
We can respond to various system requests to reduce the volume of media. One instance of
this is when the headphones are removed, we may wish to pause the playback so as to avoid
unexpected loud sounds:

1.	 If we want to pause music when the headphones are removed, we can respond to the
ActionAudioBecomingNoisy instance broadcast and pause the playback:
[BroadcastReceiver]
[IntentFilter(
 new[]{ AudioManager.ActionAudioBecomingNoisy })]
public class MediaReceiver : BroadcastReceiver {
 public override void OnReceive(
 Context context, Intent intent) {
 context.StartService(new Intent(
 MediaService.ActionPause, null, context,
 typeof(MediaService)));
 }
}

Also, we can respond to requests from other apps to reduce the sound volume, or request
other apps reduce their volume for our app:

1.	 We can listen for audio focus changes by registering with the AudioManager
instance. First, the AudioManager.IOnAudioFocusChangeListener interface
needs to be implemented, allowing us to be notified of focus changes:
public class MediaService : Service,
AudioManager.IOnAudioFocusChangeListener {
 public void OnAudioFocusChange(AudioFocus focusChange) {
 }
}

2.	 Next, we will need a reference to the AudioManager instance:
manager = AudioManager.FromContext(ApplicationContext);

Chapter 9

257

3.	 Then, when we start playing music, we pass the interface implementation to the
RequestAudioFocus() method on AudioManager. We use the AudioFocus.
Gain value to indicate that we want to gain focus, as follows:
var request = manager.RequestAudioFocus(
 this, Stream.Music, AudioFocus.Gain);
if (request != AudioFocusRequest.Granted) {
 // handle any failed requests
}

4.	 Similarly, we can release audio focus by passing the same interface implementation
to the AbandonAudioFocus() method, as follows:
var abandon = manager.AbandonAudioFocus(this);
if (abandon != AudioFocusRequest.Granted) {
 // handle any failed requests
}

5.	 As soon as another app, such as the dialer during an incoming call, requests focus,
we can respond through the OnAudioFocusChange() method:
switch (audioFocus) {
 case AudioFocus.Gain:
 mediaPlayer.SetVolume(1.0f, 1.0f);
 break;
 case AudioFocus.Loss:
 StopPlaying();
 CleanUpPlayer();
 break;
 case AudioFocus.LossTransient:
 PausePlaying();
 break;
 case AudioFocus.LossTransientCanDuck:
 mediaPlayer.SetVolume(0.25f, 0.25f);
 break;
}

How it works...
Playing audio, whether in the background or in the foreground, needs to work with other apps
on the device as well as with the users in their environments.

Presenting Multimedia

258

An example of working with the user is to ensure that the audio stays at the same level with
regards to the environment. If the user is using headphones, the actual environment has
no sound as all the sound is contained inside the headphones. When the user removes the
headphone jack, the environment should not suddenly receive additional loud audio from the
device. We can do this by stopping the playback when the Android system determines that the
current state of audio will affect the environment. To be notified of such events, we have to
listen for the ActionAudioBecomingNoisy broadcast.

The ActionAudioBecomingNoisy broadcast can be used
to pause the playback if the headphones are removed from
the device, preserving the audio level of the environment.

In the case of working with other apps on the device, we can ensure that the user is notified,
or the user's attention is shifted from our activity to one that is more important. An example
would be to shift the user's attention to an incoming call or an important notification.

This is done by requesting and listening for requests to shift audio focus. Shifting audio
focus means that when there is a more important audio that needs to be played, we either
lower the volume of our audio or we stop our audio completely. Determining whether we
can lower the volume, or if we should just stop the playback is determined by the type
of audio focus requested.

To start receiving audio focus messages, we first need to request focus. When we request
focus, we need to provide the AudioManager instance with an implementation of the
IOnAudioFocusChangeListener interface. We pass this to the RequestAudioFocus()
method along with two other parameters. The second parameter specifies the type of audio
that will be affected by the focus shift. The last parameter specifies the type of focus that is to
be obtained. There are several focus types:

Type Description Example Usage
Gain This gets focus for an unknown

duration
Music

GainTransient This gets focus for a short period Driving directions
GainTransientMayDuck This gets focus for a short period,

but the other audio does not have to
stop, only lower their volume

Notifications

GainTransientExclusive This gets focus for a short period,
and the system will not play any
sounds

Speech recognition

Chapter 9

259

If we request the Gain audio focus, the other apps will stop their audio as we
might be requesting focus for a long time. By requesting GainTransient or
GainTransientExclusive, other apps will stop their audio, but still hold
onto their resources as we would be releasing the focus shortly. By requesting
GainTransientExclusive, the system will also stop its audio. When we request
GainTransientMayDuck, other apps will simply lower their volume so that ours can be
heard more clearly.

If we have focus, we should release the focus once we have completed our playback, for
example, when the player is stopped or paused by the user. Releasing focus is done using the
AbandonAudioFocus() method and allows the other apps to resume or continue with what
ever they were doing before we requested focus.

The IOnAudioFocusChangeListener interface has a single method,
OnAudioFocusChange, which will receive one of the incoming audio focus request types:

Focus Request Type Description
Gain This indicates that we have received audio focus
Loss This indicates that we have lost audio focus for an unknown

duration
LossTransient This indicates that we have lost audio focus for a short period
LossTransientMayDuck This indicates that we have lost audio focus, but we may just

lower our volume

If we receive the Loss audio focus message, we should stop and release the player resources
as we may not get the focus back for a long time. When we receive the LossTransient
message, we can just pause the player as we may resume in a very short period of time.
The LossTransientMayDuck message means that we can continue to play but at a lower
volume. We can lower the volume of our player by passing a value in the 1.0 to 0.0 range to
the SetVolume() method, with 1.0 representing full volume.

There's more...
Requesting focus is very useful if will be recording audio or video. We don't want the sound
from the device to override the incoming sound from the microphone. Also, if we are going
to make use of the text-to-speech features, we don't want the music to hinder the listener's
ability to understand what is being read out.

Presenting Multimedia

260

Recording an audio
There may be several reasons to record an audio in an app. We could be processing the audio
for speech recognition or we could just be making a game that requires some phrase from
the user.

How to do it...
Our app can record audio using the MediaRecorder type, which can capture audio from a
variety of sources and in various formats:

1.	 Recording any part of the user's surroundings, such as the audio, requires
a permission:
[assembly: UsesPermission(Manifest.Permission.RecordAudio)]

2.	 To record audio, we need a MediaRecorder instance with the audio source set to
the microphone:
var recorder = new MediaRecorder();
recorder.SetAudioSource(AudioSource.Mic);

3.	 Then, we must specify in the format in which we want to persist the audio file:
recorder.SetOutputFormat(OutputFormat.ThreeGpp);
recorder.SetAudioEncoder(AudioEncoder.Default);

4.	 Next, we specify where to save the audio file using the SetOutputFile method:
var path = FilesDir.AbsolutePath;
path = Path.Combine(path, "Recording", "audio.3gp");
recorder.SetOutputFile(path);

5.	 Finally, we start the recorder after preparing it:
recorder.Prepare();
recorder.Start();

6.	 In order to stop the recorder, use the following line of code:
recorder.Stop();

7.	 If we aren't going to use the recorder again, we will free any resources that are used:
recorder.Release();
recorder = null;

Chapter 9

261

How it works...
Recording an audio is useful when creating an app that will send voice messages, or if the
app has to perform speech or music analysis.

The actual process of recording an audio is very simple and only has a few steps. Before we
record an audio, we will require the RecordAudio permission. If we have the permission,
setting up the recorder is done in just three steps.

The first is to specify the locations of the audio source. Using the SetAudioSource() method,
we can specify that the audio should be captured from various sources. These sources include
the microphone, which can be specified using the Mic value, the camera microphone using the
Camcorder value, or even a voice call using the VoiceCall value.

Next, we specify the type of audio that we are going to record, and this is a combination of
the format and the encoder. The format is set using the SetOutputFormat() method and
can be MPEG4 using Mpeg4, 3GPP using ThreeGpp, or another format from the available
options. The encoder is set using the SetAudioEncoder() method, and it can be AAC, using
the Aac value, or one of the other encoders. Both the format and encoder allow us to specify
Default, which allows the system to decide the best values. The audio source has to be set
prior to setting the output audio format.

Android version 5.0 supports recording an Ogg Vorbis audio in a
WebM container using the Webm output format and the Vorbis
audio encoder.

Finally, we specify the save location of the recorded file. This can be a string or a
FileDescriptor with the desired location of the audio file. This is done by passing the
desired location to the SetOutputFile() method.

The location should be set after setting the output audio format.

Once we have set up our recorder, we can start the recording process. The first thing we do is
to prepare the recorder, which gets the recorder ready using the specified options. Once the
recorder is prepared, we can start the record process using the Start() method.

We can stop the recording at any time using the Stop() method. Before we can reuse the
recorder, we will have to reset it. If no data was actually recorded before it was stopped, the
Stop() method will throw a RuntimeException exception. We can catch this exception and
then clean up any empty files.

Presenting Multimedia

262

The Stop() method will throw an exception if no data
was recorded, allowing the empty files to be removed.

After stopping the recorder, if we aren't going to use it again, we should release it so that
resources can be freed. If the activity goes into the background, we should stop and release
the recorder in the OnPause() or OnStop() methods.

We can use the MediaRecorder instance in a Service to
record audio across activities.

There's more...
When recording an audio, we have great control over what and how the audio is recorded.

We can specify the number of audio channels using the SetAudioChannels() method, the
encoding bitrate using the SetAudioEncodingBitRate() method, and the sampling rate
using the SetAudioSamplingRate() method.

We can also specify duration for which the recording has to be done using the
SetMaxDuration() method, and we can specify how large the file can be using the
SetMaxFileSize() method.

If we specify the maximums, the recorder will raise the Info event upon reaching them.
If a maximum file size was specified, the What property will be MaxFilesizeReached,
otherwise, it will be MaxDurationReached.

When the Info event is received, it is not guaranteed
that the recording has actually finished yet.

Playing a video
Videos allow complex information to be presented to a user. This can just be a background, or
it can be an information animation. Regardless of the exact reason, videos can enhance apps.

Chapter 9

263

How to do it...
One of the simplest ways to display a video is to use a VideoView instance, which wraps an
underlying SurfaceView and a MediaPlayer:

1.	 The first thing we add to the layout is a VideoView instance, using either code or the
layout resources:
<VideoView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="center"
 android:id="@+id/videoView" />

2.	 If we are using a layout resource, we get hold of the VideoView from the layout:
var videoView =
 FindViewById<VideoView>(Resource.Id.videoView);

3.	 Once we have the VideoView property, we can set the source of the video.
This can either be from a remote source, or from a local resource, such as
one of the app resources:
var path = string.Format(
 "android.resource://{0}/{1}",
 PackageName,
 Resource.Raw.big_buck_bunny);
videoView.SetVideoPath(path);

4.	 Next, we may want to display the onscreen video controls, such as the play and pause
buttons. If we want this, we set a MediaController instance:
videoView.SetMediaController(new MediaController(this));

5.	 Now that everything is set, we can play the video using the Start() method:
videoView.Start();

6.	 If we want to skip to a position in the video, we can use the SeekTo() method:
videoView.SeekTo(position);

When the activity is recreated for some reason, for example following a rotate, we have to
ensure that the player is returned to its previous position. These set of steps shows one
way in which to preserve the playback position following an activity re-creation:

1.	 To save the current position, we override the OnSaveInstanceState() method
and add the video player's state to the Bundle object:
outState.PutBoolean("isPlaying", videoView.IsPlaying);
outState.PutInt("position", videoView.CurrentPosition);

Presenting Multimedia

264

2.	 Then, in OnCreate, we restore the state from the Bundle object:
if (savedInstanceState != null) {
 if (savedInstanceState.GetBoolean("isPlaying", false)) {
 var pos = savedInstanceState.GetInt("position", 0);
 videoView.SeekTo(pos);
 }
}

3.	 We also have the option to prevent Android from destroying and recreating the activity
using the ConfigurationChanges property of the [Activity] attribute:
[Activity(
 ..., ConfigurationChanges = ConfigChanges.Orientation)]

How it works...
The ability to play a video in an app is very useful. We can just be providing a beautiful
snippet as a background or header, or we can be playing a longer video as part of the
app's core functionality.

Similar to playing audio, playing video is also straightforward. Instead of creating a
MediaPlayer object, we use a VideoView control. The control can be created and added
from code or it can be placed in the layout resource files.

Once we have the video view, we can set it up to play the video. All we need to do is set the
location to the actual video that we want to play. To do this, we pass a string path to the
SetVideoPath() method or a URI to the SetVideoURI() method. This location can be a
local path, such as a resource or the local filesystem, or a remote path to a server. If we are
using a URI, we can even provide additional headers in the request to the server.

The VideoView can play a video from either local or
remote sources.

As soon as we set the video source, the underlying media player will be automatically
prepared. This means that we can invoke the Start() method as soon as we wish to. The
playback can be controlled using the Pause(), Resume(), and StopPlayback() methods.
We can also use the SeekTo() method to jump to a specific location in the video.

The VideoView is automatically prepared when the video source is
set, allowing playback to begin immediately.

Chapter 9

265

We may choose to present media controls on a VideoView but are not required to do
so. These controls will allow the user to directly control the playback. They include: a seek
bar, a play/pause button, and skip buttons. If the video is streamed, a buffer progress
will also be shown. To display these controls, we can provide the view with an instance of
MediaController using the SetMediaController() method.

A MediaController instance does not have to be set in
order to play a video. If one is not provided, playback cannot
be controlled by the user.

If a VideoView goes into the background or is destroyed, it will not restore its state when
it is recreated, we have to do this manually. The simplest way is to record the states, for
example IsPlaying and CurrentPosition, when the view is about to be destroyed. We
can do this in the OnSaveInstanceState() or OnPause() methods, and then when the
view is reconstructed, we can restore the state in the OnRestoreInstanceState() or
OnCreate() methods.

If the device is rotated, the activity is usually destroyed and recreated. This presents a
problem as the video will have to be prepared again and this may cause a delay in the
playback. This is even more a problem when the video comes from a remote source,
as it will have to buffer again.

Another way to get around this is to ensure that the activity is not destroyed when the
device orientation changes. We add the ConfigChanges.Orientation flag to the
ConfigurationChanges property on the [Activity] attribute. By setting this property,
the activity is not destroyed, but it also means that the usual orientation-specific layouts
will not be switched automatically. We will now have to take care of this ourselves in the
OnConfigurationChanged() method of the activity.

There's more...
Before we start seeking to a position in the video, we need to ensure that the source supports
seeking in that direction. We can check for support using the CanSeekForward() and
CanSeekBackward() methods.

Custom video controls
The VideoView is great for displaying videos with a basic set of controls; however, we may
require more flexibility and control over how the video is played.

Presenting Multimedia

266

How to do it...
We can play a video onto a SurfaceView using a MediaPlayer instance if we need fine
control over what we can do or if we want custom video controls:

1.	 First, when using a SurfaceView instance, we need to implement the
ISurfaceHolderCallback interface, ensuring that we keep track of the surface:
public class MainActivity :
 Activity, ISurfaceHolderCallback {
 private ISurfaceHolder surfaceHolder;
 public void SurfaceChanged(
 ISurfaceHolder holder, Format format,
 int width, int height) {
 }
 public void SurfaceCreated(ISurfaceHolder holder) {
 surfaceHolder = holder;
 }
 public void SurfaceDestroyed(ISurfaceHolder holder) {
 surfaceHolder = null;
 }
}

2.	 Then, in the OnCreate() method, we want to get hold of the ISurfaceHolder
instance using the Holder property of the SurfaceView instance:
var holder = surfaceView.Holder;
holder.SetType(SurfaceType.PushBuffers);

3.	 Next, we pass the instance of ISurfaceHolderCallback to the AddCallback()
method:
holder.AddCallback(this);

4.	 Before we have a playing surface, we can start setting up our MediaPlayer instance
that will play the video:
mediaPlayer = new MediaPlayer();
mediaPlayer.SetDataSource(this, videoUri);
mediaPlayer.SetAudioStreamType(Stream.Music);

5.	 When the surface is created, we pass it to the media player using SetDisplay:
mediaPlayer.SetDisplay(surfaceHolder);

6.	 We will also want to subscribe to the VideoSizeChanged event, which will provide
us with the video size:
mediaPlayer.VideoSizeChanged += (sender, e) => {
 surfaceHolder.SetFixedSize(e.Width, e.Height);
};

Chapter 9

267

7.	 To begin playing, we prepare the player asynchronously and then start the playback:
mediaPlayer.Prepared += (sender, e) => {
 mediaPlayer.Start();
};
mediaPlayer.PrepareAsync();

8.	 Finally, we need to ensure that when the activity is paused, we release the resources
used by the media player:
if (mediaPlayer != null) {
 mediaPlayer.Release();
 mediaPlayer = null;
}

9.	 If the surface is destroyed or created while the video is playing, we can assign the
new surface, or null surface, to the player:
if (mediaPlayer != null) {
 mediaPlayer.SetDisplay(surfaceHolder);
}

Once our video is playing in the surface view, we can add the video controls. Here, we will
toggle visibility when the surface is tapped:

1.	 First, we will need a Handler instance that will do the work of managing the visibility
of the video controls:
const int WhatHideControls = 1;
handler = new Handler(message => {
 if (message.What == WhatHideControls) {
 videoController.Visibility = ViewStates.Gone;
 }
});

2.	 We will attach logic that will show the controls when the surface is tapped, and add a
message in the Handler instance to hide them after a few seconds:
const int HideTimeout = 5000;
surfaceView.Click += delegate {
 videoController.Visibility = ViewStates.Visible;
 handler.SendEmptyMessageDelayed(
 WhatHideControls, HideTimeout);
};

3.	 Then, when the surface is tapped again, it should hide the controls, ensuring that it
removes any existing messages in the Handler instance:
handler.RemoveMessages(WhatHideControls);
videoController.Visibility = ViewStates.Gone;

Presenting Multimedia

268

4.	 Before we show the controls, we need to ensure that we update the controls to match
the media player's state:
if (mediaPlayer.IsPlaying) {
 playPauseButton.SetImageResource(
 Android.Resource.Drawable.IcMediaPause);
}
else {
 playPauseButton.SetImageResource(
 Android.Resource.Drawable.IcMediaPlay);
}

5.	 If we want to update the progress in the controls, we can add a new message to the
Handler instance that fires every second:
const int WhatProgress = 2;
if (message.What == WhatProgress) {
 if (mediaPlayer != null && mediaPlayer.IsPlaying) {
 var pos = mediaPlayer.CurrentPosition;
 var next = 1000 - (pos % 1000);
 progressBar.Progress = pos;
 handler.SendEmptyMessageDelayed(WhatProgress, next);
 }
 else {
 progressBar.Progress = 0;
 }
}

6.	 Then, when the controls are going to be shown, we start updating the progress by
adding the update message to the Handler instance:
progressBar.Max = mediaPlayer.Duration;
handler.SendEmptyMessage(WhatProgress);

How it works...
We can play a video in a VideoView instance, but this is fairly limited in what we can do. We
can create a custom media controller, but it is still limited by the small API exposed by the
VideoView instance. If we want to create a more advanced player, we will have to create it
from scratch.

This is not as difficult as it may initially appear to be, as there are only three main parts
to the view. There is the underlying MediaPlayer instance that will render a video on a
SurfaceView instance and be controlled by a set of buttons or other controls.

Chapter 9

269

Using a MediaPlayer instance to play a video is the same as when
playing audio, except that the display surface needs to be set using the
SetDisplay() method.

In order to play a video, we will need an instance of MediaPlayer. We work with this in a very
similar manner to playing an audio. The only difference is that as the player will be rendering
a video, we need to let it know about the surface it can render onto. We do this by passing the
surface to the SetDisplay()or SetSurface() method. As the video size may not be the
same as the surface size, we can use the VideoSizeChanged event to be notified of when
the video size is known or changed. Other than those two extra members, we set up the data
source and audio stream as we would for a normal audio file.

The VideoSizeChanged event is used to obtain the
dimensions of the video being played.

To actually display the video, we will have to set up and use a SurfaceView instance.
A SurfaceView instance is a special kind of view that provides a dedicated drawing
surface to another object. The actual drawing is done using the SurfaceView instance's
ISurfaceHolder, which is obtained from the Holder property. We do not directly control
the creation and destruction of a surface, but rather listen for an event that lets us know that
the surface is ready for drawing.

To start using the surface, we need to obtain the ISurfaceHolder implementation from
the SurfaceView instance, using the Holder property. Then, we pass an implementation of
the ISurfaceHolderCallback interface to the AddCallback() method of the holder. On
devices running Android versions below 3.0, we must also specify the type of surface using
the SetType() method. For videos, we just use the SurfaceType.PushBuffers value.

A surface is not created on demand, but rather constructed
when a SurfaceView instance becomes visible.

When the surface is ready, the SurfaceCreated() callback method is invoked with a
reference to a valid surface holder instance. We keep a reference to this surface holder and
use it to display the video. At some point, such as when the app is paused, the surface may
be destroyed. This will result in the SurfaceDestroyed() callback method being invoked.
When this happens, the surface is no longer available for drawing and we should update the
media player's display surface.

Once we receive the surface, we can pass it on to the media player using the SetDisplay()
method. Doing this will result in the player rendering the video in the view. If the surface is
destroyed, we can remove the surface from the player by passing null to SetDisplay. This
will cause the video to stop, but the audio will continue playing. To stop the audio, we will have
to stop or pause the player.

Presenting Multimedia

270

When the media player is provided a null display, the video
will not be visible, but the audio will continue playing.

If we are going to create a custom video player, we will need to provide the user with a means
to control the playback. To do this, we can create a view, which contains the various controls
that will overlay the video. One option to show the controls is to wait for the user to tap the
video, after which the controls will be shown. After a few seconds, we can hide the controls
and only show the video.

To update the controls with the video progress or buffer options, we need to query the media
player each time. There are no events on the player, so we will have to check every second or
more. An easy way to do this is to make use of a Handler type, which is a queue that allows
us the scheduling of the messages to be handled on a particular thread. We can use this
mechanism to schedule a message to update the various controls every second.

A Handler type can be used to queue messages to be
actioned by another thread either immediately or after a delay.

Using a handler is very simple and all we have to do is create an instance of the Handler
type. The constructor allows us to pass in a delegate that will be executed when a message
needs to be handled. Messages can be handled immediately after it is sent to the handler, or
after some delay. When the delegate is executed, we are provided with the Message instance
that was queued. We can use this message to perform any action based on the data in the
message. One of the most important pieces of information in a Message instance is the What
data, which is a custom ID that we use to identify what the message is about.

We can enqueue a message in the Handler instance either with an empty message or with
a populated message. To send an empty message, we can use the SendEmptyMessage()
method and pass in the What value. To post a more complex message, we can first create
one using the Obtain() method on the Handler. The result is a Message instance that we
populate and then enqueue using the SendMessage() method.

If we want to enqueue a message that should be dequeued at a point in the later future, we
can send a delayed message. This is the same as sending a normal message, but we use the
SendEmptyMessageDelayed() and SendMessageDelayed() methods instead. These
methods take an additional parameter—the delay in milliseconds before the message is
actually dequeued.

To remove a message, regardless of how it was enqueued, we can pass the What value to the
RemoveMessages() method. This will dequeue all the messages with the specified What
value, but will not execute the Handler delegate.

Chapter 9

271

Using the camera
Making use of the camera allows the user to interact with the real world through the device.
This can range from taking a photo and adding a message and effects all the way to providing
an augmented reality experience.

How to do it...
If our app requires a photo, we can make use of the camera to record an image. However, we
need to first ensure that there is a camera available on the device for us to use:

1.	 If our app requires the camera and cannot function without it, we can enforce this by
specifying that there must be a camera on the device in the features:
[assembly: UsesFeature(PackageManager.FeatureCamera)]
[assembly: UsesFeature(PackageManager.FeatureCameraFront)]

2.	 If the feature is not required, we can indicate that it is optional by adding the
Required property to the [UsesFeature] attribute:
[assembly: UsesFeature(..., Required = false)]

3.	 Then, we can check when the app starts if the feature is available and adjust
functionality accordingly:
if (!PackageManager.HasSystemFeature(
Android.Content.PM.PackageManager.FeatureCamera) {
 // we don't have a rear camera
}

4.	 Finally, as we are going to rely on the existence of a camera app, we need to check
whether it exists:
var activities = PackageManager.QueryIntentActivities(
 new Intent(MediaStore.ActionImageCapture),
 PackageInfoFlags.MatchDefaultOnly);
if (activities.Count == 0) {
 // handle no camera apps
}

Once we know there is a camera app on the device, we need a place for the photos to be
stored by the camera:

1.	 As we can't ask another app to store photos into our app sandbox, we have to use a
shared location, such as the external storage photos directory:
var root = Environment.GetExternalStoragePublicDirectory(
 Environment.DirectoryPictures);

Presenting Multimedia

272

2.	 We can then get the location of the file that we will use to store the photo:
root = new Java.IO.File(root, "XamarinCookbook");
if (!root.Exists()) {
 root.Mkdirs();
}
var imageFile = new Java.IO.File(root, "image.jpg");

3.	 As we need to use a Uri instance to specify the location, we convert the File
into a Uri instance using the FromFile() method:
var imageUri = Android.Net.Uri.FromFile(imageFile);

Now that we know we have a camera app and a place to store the photo, we can launch
the camera:

1.	 First, we will start the camera using the MediaStore.ActionImageCapture
intent action:
const int TakePhotoCode = 1;
var intent = new Intent(MediaStore.ActionImageCapture);
intent.PutExtra(MediaStore.ExtraOutput, imageUri);
StartActivityForResult(intent, TakePhotoCode);

2.	 We will then override the OnActivityResult() method of the activity to handle
the response:
if (requestCode == TakePhotoCode) {
 if (resultCode == Result.Ok) {
 // display the picture found at imageUri
 }
 else {
 // photo intent was canceled
 }
}

Recording videos using an intent is just as easy; all we need is a different intent action:

1.	 To start the camera app to record video, we use the MediaStore.
ActionVideoCapture intent action:
var intent = new Intent (MediaStore.ActionVideoCapture);
intent.PutExtra(MediaStore.ExtraOutput, videoUri);
StartActivityForResult (intent, TakeVideoCode);

2.	 Then, in OnActivityResult(), we can read the video file as we would for an image:
if (requestCode == TakeVideoCode) {
 if (resultCode == Result.Ok) {
 // display the video found at videoUri
 }

Chapter 9

273

 else {
 // video capture intent was canceled
 }
}

How it works...
The camera is a very powerful piece of hardware on a user's device. It can capture a moment
that was powerful enough to compel that person to take a photo in the first place. Adding the
ability to capture, share, store, or react to a moment of the user's life can make our app even
more personal.

We don't have to go on to create a brand new camera app; instead, we can just use
the existing camera app and ask it to take a photo for us. To do this, we use the
normal way of communicating between activities using an Intent instance with the
StartActivityForResult() and OnActivityResult() methods.

Not everything has to be recreated, making use of other apps installed
on the device allows the user to install preferred applications to do a
specific task.

Before trying to access the camera app, we have to ensure that there is a camera on the
device and that there is a camera app installed. Usually, if there is a camera, the device
manufacturer will have made sure there is a camera app installed. But, the user might have
uninstalled it for some reason.

The first check is to ensure that there is an actual camera on the device. To prevent our app
from appearing in Google Play if the user is using a device without a camera, we can make
use of the feature filtering support of Google Play. We use the [UsesFeature] attribute
to indicate what feature the app requires, and in the case of a camera, we can specify
FeatureCamera and/or FeatureCameraFront to indicate that we require a camera.

Before using some hardware, it should be verified that
the device includes it.

If the app does not require a camera, but rather it is optional, we can specify this using
the Required property on the [UsesFeature] attribute. If we set this to false, we will
have to check at runtime for a camera. We can check for features at runtime using the
HasSystemFeature() method of the PackageManager class. We obtain the current
package manager from the PackageManager property of an Activity or Service. Similar
to the attribute, we use FeatureCamera and/or FeatureCameraFront as a parameter
when checking for the existence of a camera.

Presenting Multimedia

274

If the camera is only accessed using an Intent instance, then
the app does not require the camera permissions.

Once we know there is a camera on the device, we can check whether there are any
camera apps on the device. To do this, we query the PackageManager class for a list
activities that support the camera intent. To launch a camera app, we create an Intent
instance with the ActionImageCapture action. We then pass this intent to the
QueryIntentActivities() method of the package manager, which will return a list of all
the activities that can take a photo. If there are any items in the list, we know that there is at
least one camera app.

Before starting an activity with an intent, it should be verified
that there is an app on the device that can handle it.

Now that we know the device has a camera and at least one camera app, we can ask one of
these activities to take a photo. This requires setting up an intent that will start an activity. The
only thing we need is to specify where the camera app should place the file for us to read. As
the camera app cannot access our app's private content and we cannot access the camera's
private content, we have to specify a shared location.

Usually, we can use the result of GetExternalStoragePublicDirectory, with the
DirectoryPictures parameter. This will provide us with a location to the public location of
all photos. We then pass a Uri instance of that location as an extra on the intent, with a key
of ExtraOutput and the value being the Uri.

To start the camera app to take a photo, the ActionImageCapture
intent action is used; for videos, the ActionVideoCapture intent
action is used.

To start the camera app, we pass the Intent instance, along with a code to identify the
action, to the StartActivityForResult() method. The camera app will launch and allow
the user to take a photo. Once the user takes a photo, the camera will close and take us back
to our app. We are informed about this through the OnActivityResult() method, which
we override.

In the OnActivityResult() method, we can use the request code to identify the
camera action, which will be the value passed to the StartActivityForResult()
method. Also, to determine whether the user took a photo or canceled the camera, we use
the result code. If the user took a photo, the result code will be Ok and we can then handle
reading the image. The image will be located at the same location that we specified when
creating the Intent instance.

Chapter 9

275

Recording a video is exactly the same, but instead we specify a different intent action. In
the case of a video, we use the ActionVideoCapture intent action. We then set the
location extra and pass the intent to the StartActivtyForResult() method. In the
OnActivityResult() method, we can read the video file if the result is Ok.

Creating a camera app
Sometimes the basic camera intents aren't enough, or we are creating an augmented reality
game, and we want to process the images as the camera streams them.

How to do it...
To create a camera app, or some other app that displays a live preview from the camera
hardware, we need to set up several things similar to playing a video, we must implement
the ISurfaceHolderCallback interface, which will manage the live preview:

1.	 As with using intents to start the camera, we need to check for the existence of a
camera on the device. Additionally, we will need to request permission to manage
the camera, as follows:
[assembly: UsesPermission(Manifest.Permission.Camera)]

2.	 Next, we will need a surface to display the camera preview, and to do this, we will
need an instance of the ISurfaceHolderCallback interface:
public class MainActivity :
 Activity, ISurfaceHolderCallback {
 private ISurfaceHolder surfaceHolder;
 public void SurfaceChanged(
 ISurfaceHolder holder, Format format,
 int width, int height) {
 }
 public void SurfaceCreated(ISurfaceHolder holder) {
 surfaceHolder = holder;
 }
 public void SurfaceDestroyed(ISurfaceHolder holder) {
 surfaceHolder = null;
 }
}

3.	 Then, we pass this instance as the callback of the SurfaceView instance's Holder
property:
var holder = surfaceView.Holder;
holder.SetType(SurfaceType.PushBuffers);
holder.AddCallback(this);

Presenting Multimedia

276

Now that we have our surface for the preview, we can get hold of the cameras and start
setting one of them up:

1.	 We need to get hold of the cameras on the device so that we can use one of them:
var cameraCount = Camera.NumberOfCameras;
var cameras = new Camera.CameraInfo[cameraCount];
var backIndex = 0;
for (int index = 0; index < cameraCount; index++) {
 cameras[index] = new Camera.CameraInfo();
 Camera.GetCameraInfo(index, cameras[index]);
 if (cameras[index].Facing == CameraFacing.Back) {
 backIndex = index;
 }
}

2.	 We then need to open the camera so that we can get the preview. We should do this
on a background thread as it may take some time to complete:
await Task.Run(() => {
 try {
 camera = Camera.Open(backIndex);
 }
 catch (Exception ex) {
 // handle the camera being used
 }
});

3.	 Now that we have our camera, we can get the supported preview sizes:
var parameters = camera.GetParameters();
var previewSizes = parameters.SupportedPreviewSizes;

4.	 Next, we tell the camera to use the size with the best resolution:
var best = previewSizes[0];
parameters.SetPreviewSize(best.Width, best.Height);
camera.SetParameters(parameters);

Now we can set up the camera to preview onto our new surface either after the camera is
opened or after the surface is created:

1.	 Once we have the preview sizes, we need to resize the surface to avoid stretching
the preview:
var scale = Math.Min(
 container.Width / (float)best.Width,
container.Height / (float)best.Height);
var width = best.Width * scale;
var height = best.Height * scale;
surfaceHolder.SetFixedSize((int)width, (int)height);

Chapter 9

277

2.	 Next, we have to let the camera know where to display the preview:
camera.SetPreviewDisplay(surfaceHolder);

3.	 Then, we tell the camera to start the preview:
camera.StartPreview();

The next step is to manage the camera after the destruction of either the surface or the
actual activity:

1.	 When the surface is destroyed, we can just stop the preview in
SurfaceDestroyed() as we will be starting it when a new surface is created:
camera.StopPreview();

2.	 When the activity is paused, we should release the camera as soon as we can:
camera.StopPreview();
camera.Release();
camera = null;

To implement the logic to take a photo, we will need to implement two Camera interfaces:

1.	 To take a photo, we will need an implementation of the Camera.
IPictureCallback interface:
public class MainActivity : Camera.IPictureCallback {
 public void OnPictureTaken(byte[] data, Camera camera) {
 }
}

2.	 In the OnPictureTaken() method, we can save the bytes to a file or process them
in some way:
File.WriteAllBytes(imagePath, data);

3.	 We have to ensure that we start the preview again as taking a photo stops the preview:
camera.StartPreview();

4.	 If we want to play a shutter sound, we need an instance of the Camera.
IShutterCallback interface:
public class MainActivity : Camera.IShutterCallback {
 public void OnShutter() {
 // an empty method plays the default shutter sound
 }
}

Presenting Multimedia

278

5.	 To actually take a photo, we invoke the TakePicture() method on the camera,
the first parameter being the shutter callback and the last being the picture taken
callback. If we pass a null value for the shutter callback, no sound will be played:
camera.TakePicture(this, null, this);

To record a video, we use a MediaRecorder instance and set various parameters to indicate
what camera and audio to record.

1.	 As we are going to record audio, we will have to request an additional permission:
[assembly: UsesPermission(Manifest.Permission.RecordAudio)]

2.	 To allow the recorder to access the camera, we have to allow the camera to be shared
with the recorder:
camera.Unlock();

3.	 Then, we create a MediaRecorder instance and set the audio and video source to
be the camera:
recorder = new MediaRecorder();
recorder.SetCamera(camera);
recorder.SetAudioSource(AudioSource.Camcorder);
recorder.SetVideoSource(VideoSource.Camera);
recorder.SetProfile(
 CamcorderProfile.Get(CamcorderQuality.High));

4.	 Next, we specify where to create the video file:
recorder.SetOutputFile("video.mp4");

5.	 We have to ensure that we tell the recorder to preview on the surface:
recorder.SetPreviewDisplay(surfaceHolder.Surface);

6.	 Finally, we can prepare the recorder and start the recording:
recorder.Prepare();
recorder.Start();

7.	 To stop the recorder, either by user request or when the activity is paused, we invoke
the Stop() method:
recorder.Stop();
recorder.Reset();
recorder.Release();
recorder = null;

8.	 Once we are finished with the recorder, we need to lock the camera again:
camera.Reconnect();

Chapter 9

279

How it works...
If we want to take a photo, we can use the default camera app. But, this app may not provide
the required functionality that we need. We can be creating an actual camera app, or an app
that provides augmented reality with real-time image effects or image overlays. Alternatively, it
can be to provide image analysis, such as a QR reader or face detection.

Using the default camera app prevents us from modifying or overlaying the preview image in
real-time, as we are only presented with the final captured image. If we need to access the
real-time camera stream, we can request the data directly from the camera and display it
on a surface.

As we are accessing the camera hardware directly, we need to request the Camera
permission. If we are going to record videos, we need to request the additional RecordAudio
permission to record the audio as well.

When using intents to take photos, the Camera permission
is not required. When controlling the camera hardware,
permission is required.

Once we have the permission to use the camera, we need to set up a surface to render the
camera's preview. For this, we can use a SurfaceView instance. To set up the surface, we
can request the ISurfaceHolder instance using the Holder property on the SurfaceView
instance. Like when setting up to play a video, we need to add a callback that we use to monitor
the life of the surface. The callback implements the ISurfaceHolderCallback interface and
provides methods that relate to the life of a surface. We will stop the preview if the surface is
destroyed, and start it again when it is created.

After the surface is set up, we need to set up the camera that we are going to use. Before
we can use a camera, we need to get hold of the cameras on the device. To get the
cameras, we use the Camera type. We can iterate over the cameras on the device using the
NumberOfCameras property and the GetCameraInfo() method. The NumberOfCameras
property returns the number of cameras available on the device. The GetCameraInfo()
method is a method that allows us to obtain information about a particular camera.

We use the GetCameraInfo() method with a Camera.CameraInfo object instance. To
obtain information about a single camera, we pass the index of the camera we want the
information on and a CameraInfo object that will be populated with the information. To find
a specific camera, we can use the Facing property, which can be either Back or Front.

In order to begin using the camera, we have to open it. To do this, we pass the index of
the camera we wish to use to the Open() method. This gives us exclusive access to the
camera hardware, but if another app has opened the camera, this method will throw a
RuntimeException exception. As the camera can only be opened once, as soon as our
activity is paused, we must release the camera using the Release() method. If we do not
release the camera, no other app will be able to use it.

Presenting Multimedia

280

When opening a camera, it may take some time on some
devices. Thus, a background thread should be used to avoid
blocking the UI thread.

Now that we have the camera open, we need to start the preview on our surface. Before we
start the preview, we have to resize the surface to the aspect ratio of the camera preview to
avoid the preview stretching. We also have to specify the desired size of the preview to the
camera. We cannot use any arbitrary size but only the one that is supported by the camera.

To get the supported sizes, we first get the camera parameters using the
GetParameters() method. We then query the Parameters object for the sizes using
the SupportedPreviewSizes property. This will provide a list of supported sizes, in
descending order of size, which we use to select a specific size. The Parameters object has
a SetPreviewSize() method, which allows us to specify a width and height of a preview
size from the list. To actually set the preview size, we assign the Parameters instance back
to the camera using the SetParameters() method.

Only a size from the SupportedPreviewSizes property can
be used when setting the camera preview size, other sizes may
result in an exception.

When the surface becomes available, or when the camera is opened, we have to let the
camera know that it should preview on the surface. First, we must ensure that the surface
aspect ratio is the same as that of the camera preview to avoid the preview stretching. Then,
we pass the surface to the SetPreviewDisplay() method of the open camera. Finally, we
start the preview using the StartPreview() method.

As the preview only works when there is a surface, as soon as it is destroyed, we must stop
the preview. We do this using the StopPreview() method. When the activity is paused, we
need to release the camera as it is a shared resource that we can only hold when our app is in
the foreground. We can open the camera again once our app has resumed.

The camera can only be held when the activity is in the foreground.
As soon as the activity is paused, the camera should be released.

If we want to take a photo, all we need is an instance that implements the Camera.
IPictureCallback interface. We then pass this instance as the last parameter of the
TakePicture() method. This is an asynchronous method that will return immediately, but
the callback method will only be invoked once the image has been captured. The callback
method, OnPictureTaken(), gives us access to a byte array that represents the image. We
can either process or save the image to disk.

Chapter 9

281

The image data that is provided, when using the last parameter, is the compressed JPEG data.
If we use the second parameter, we will obtain the raw image data from the camera sensor.
We can use either one or both, of the picture callbacks to obtain the image data. If we do not
wish to provide a callback for a particular type, we can pass null instead.

To play the shutter sound, an instance of Camera.IShutterCallback
must be passed to TakePicture.

By default, the capture process does not play a shutter sound. To get a sound to play, we
specify a callback that will fire on the shutter operation. This callback must implement the
Camera.IShutterCallback interface. We can leave the callback method, OnShutter(),
empty if we wish to play the default camera shutter sound. This method is not guaranteed
to be called exactly when the photo is captured, but as soon as possible after the capture.
Typically, the shutter sound will play after the capture was triggered, but before the image
data is available. We pass the shutter callback instance as the first parameter of the
TakePicture() method.

The camera preview must be started before capturing an image.
Once an image has been captured, the preview must be started
again as taking a photo stops the preview.

If we want to record a video, we use a MediaRecorder instance. Before we can record,
we have to ensure that we have the RecordAudio permission as well as the Camera
permission. Then, in order for the recorder to be able to access the camera, we have to
unlock it. We do this using the Unlock() method. This is required as the camera is a
shared resource, and once opened, cannot be accessed by anything else.

Unlocking the camera allows the recorder to be able to access
the camera hardware.

Once the camera is unlocked, we can set up the MediaRecorder instance. First, we set
the camera that the recorder will use, then we set the audio and video source. The audio
source must be Camcorder and the video source must be Camera. Next, we specify a
profile to use, which can be High or Low. This is obtained using the Get() method on the
CamcorderProfile type. Then, we set the output file location and the preview surface.
The preview surface must be the same surface that was specified when setting the preview
surface on the camera. Finally, we prepare the recorder and start it.

As soon as we want to stop recording, we invoke the Stop() method. Then, we must reset
the recorder using the Reset() method. Next, we must release the resources held by the
recorder using the Release() method. Finally, we must lock the camera again using the
Reconnect() method. This prevents access to the camera from other apps while we are
using it.

Presenting Multimedia

282

The camera must be unlocked using Unlock before recording, and
locked again using Reconnect when recording is finished.

There's more...
With Android version 5.0, an entire new namespace was created for working with
cameras. This namespace is Android.Hardware.Camera2. Cameras are accessed
using the CameraManager and CameraDevice types. Photos are captured using a
CameraCaptureSession instance.

Although this new API is much more powerful, it is only available to devices running Android
version 5.0 and above. Although the old API is deprecated, it is still supported and fully
functional. This is very useful if we are going to support older devices.

Handling high-resolution images
Working with images often requires the app to be able to load very large images. Photos are
especially large due to modern cameras producing high resolution images from excellent
camera hardware.

How to do it...
We can easily load images from files, resources, or remote sources using the
BitmapFactory type:

1.	 All we need in order to load a bitmap is the path or stream and one of the decode
methods, such as DecodeStreamAsync:
using (var stream = Assets.Open("bigimage.png"))
using (var bitmap = await
BitmapFactory.DecodeStreamAsync(stream)) {
 imageView.SetImageBitmap(bitmap);
}

As images can be quite large, both in resolution and in memory size, it is often better to
reduce them using subsampling:

1.	 When using subsampling, we need to provide extra options to the decode methods.
This requires the use of the BitmapFactory.Options type:
var options = new BitmapFactory.Options();

Chapter 9

283

2.	 Once we have the options, we can set various properties. If we want to load just the
dimensions of the image, we can request the following:
options.InJustDecodeBounds = true;

3.	 If the InJustDecodeBounds property is set to true, decoding the image
only loads the image dimensions, not the actual image data:
using (var stream = Assets.Open("bigimage.png")) {
 await BitmapFactory.DecodeStreamAsync(stream));
}

4.	 Once the decoding has finished, we can access the image dimensions using
the OutWidth and OutHeight properties:
var height = options.OutHeight;
var width = options.OutWidth;

5.	 To reduce the image size when loading the actual data, we make use of the
InSampleSize property. This takes any value in powers of two:
options.InSampleSize = 4;

6.	 If we are reusing the same options instance, we need to remember to set the
InJustDecodeBounds property to false as we want to load the image data:
options.InJustDecodeBounds = false;

7.	 Then to load the image, we can make use of the same decode method, but
this time, we keep a reference to the returned decoded Bitmap instance:
Bitmap bitmap;
using (var stream = Assets.Open("bigimage.png")) {
 bitmap = await BitmapFactory.DecodeStreamAsync(stream);
}

8.	 Finally, we can assign the bitmap to an ImageView instance or draw it onto a
Canvas instance:
imageView.SetImageBitmap(bitmap);

Images take up large amounts of memory on a device, and may even cause the device to run
out of memory altogether. To avoid this, we have to dispose of the resources as soon as we no
longer need them:

1.	 If we are no longer going to reference the image from .NET, we can dispose
the handle:
bitmap.Dispose();

Presenting Multimedia

284

2.	 When we are finished with the image, and we never going to display it again, we can
dispose the actual image data:
bitmap.Recycle();

3.	 If we want to replace an image inside an ImageView instance, we can also dispose
of the old image currently displayed:
var old = imageView.Drawable as BitmapDrawable;
imageView.SetImageBitmap(null);
if (old != null) {
 old.Bitmap.Recycle();
}

How it works...
Working with images often requires the app to be able to load very large images. Photos are
especially large due to modern cameras producing high resolution images from excellent
camera hardware. If we try and load images with very high resolutions, especially if there
are multiple images to load, we may cause the device to run out of memory.

Although the device may have a large amount of memory, only a small amount is allowed
to be used by the app. Some devices, especially the older ones, only permit a maximum
of 24 MB per application.

Images require a fairly large amount of memory and may quickly
consume the memory available to the app.

Additionally, even the images with small file sizes still consume large amounts of memory. This
is due to file compression, which results in the image being decompressed into memory. Even
though this limitation is not always a problem, we can have issues when developing an image-
intensive app, such as an image gallery. There would be no point in loading a 3 MB file, which
might decompress into 30 MB, if we were just going to show a 100 x 100 pixel thumbnail. The
memory cost and processor usage would be wasted.

Subsampling allows the app to decode a large image file but only load a reduced image
with a smaller memory size. To make use of subsampling, we use the BitmapFactory and
BitmapFactory.Options types.

Android provides a way to load a reduced image using subsampling.

Chapter 9

285

When loading bitmaps, we are usually able to make use of the various decode methods,
such as DecodeStreamAsync, DecodeFileAsync, or DecodeResourceAsync. When
loading subsampled images, we still use these methods, but we use the overload that takes
a BitmapFactory.Options instance. Providing options to the decode method allows us to
specify a subsampling size.

A new BitmapFactory.Options instance is obtained using
the default constructor.

Before subsampling, we probably would want to check the size of the original image. There
is no point in reducing the size of the image if it is already smaller than what we want it to
be. To query the size of an image without having to decode the entire image, we set the
InJustDecodeBounds property to true on the options instance. If we were going to decode
a stream, we would use the DecodeStreamAsync() method and pass the stream as the
first parameter and the options as the second. When the method returns, the OutWidth and
OutHeight properties on the options instance will contain the image's width and height,
respectively. We can use these values to calculate an optimal sampling value.

Setting the InJustDecodeBounds property to true results in
only the image dimensions and MIME type being loaded, not the
image data.

We can use the image width and height to calculate the optimal subsampling size in powers
of two. Once we have a size, we set the InSampleSize property to that value, ensuring that
we have set the InJustDecodeBounds instance back to false. When the decode method
returns, it will have loaded a subsampled, or smaller, version of the image that takes up far
less space in memory. This is especially useful when we want to load many images into a list
view. We can quickly load many large images and only consume a small amount of memory.

However, even the smaller images take up space, and if not disposed correctly, they will
eventually use all the available space. In the case of a list view, this can quickly happen if the
user scrolls faster than the garbage collector, which is often the case. As Xamarin.Android
involves using two garbage collectors, one for .NET and one for Java, we need to ensure that
we allow both to work optimally.

The bitmap data only exists in the Java world, and .NET only retains
a reference to it. Disposing the .NET handle does not dispose the
actual bitmap data, only the handle.

Presenting Multimedia

286

If we are going to assign an image to an ImageView instance or some other Java type, after
which we won't need to access the bitmap data again, we can tell the .NET collector that it can
collect the .NET handle. This is done by calling the Dispose() method on the object. This
will release the bitmap data into the Java world. If we ever want to access the bitmap data
again, we will have to query Java for a new reference. For example, to access the bitmap in an
ImageView instance, we would use the Drawable property on the ImageView instance.

The Recycle() method is used to destroy the bitmap data, allowing
the Java garbage collector to clean up.

If we are going to need to reference the image again, we can retain a reference, but we need
to ensure that we let the Java collector know when it can collect it. This is done by making use
of the Recycle() method. We need to ensure that we aren't using the image anywhere when
recycling the bitmap, as whatever tries to display the image after the image was recycled will
throw an exception.

Drawing on the canvas of a View
Sometimes using the animation and shape APIs are not enough to create the image or app
that we want to create. This may be to create a game or draw a complex image.

How to do it...
Drawing to a canvas can be easily done by creating a new view that derives from View, and
then overriding the OnDraw() method:

1.	 First, we will need our custom View instance that implements the constructors that
allow us to instantiate the view from either code or a layout file:
public class CustomView : View
{
 public CustomView(Context context)
 : base(context) {
 }
 public CustomView(Context context, IAttributeSet attrs)
 : base(context, attrs) {
 }
 public CustomView(
 Context context, IAttributeSet attrs, int defStyle)
 : base (context, attrs, defStyle) {
 }
}

Chapter 9

287

2.	 Next, we override the OnDraw() method. This method draws the actual frame and
will be called each time the view needs refreshing:
protected override void OnDraw(Canvas canvas) {
 base.OnDraw(canvas);
}

3.	 Drawing on a canvas requires a Paint object, and as this is expensive to
create, we create it only once in a field:
private Paint paint = new Paint();

4.	 To avoid objects appearing too large or too small on different devices, we make use
of the Density property of the DisplayMetrics object:
float density = Resources.DisplayMetrics.Density;

Now, we can start the actual drawing process. We specify a series of operations on the
Canvas object, which is passed into the OnDraw() method:

1.	 As we will be reusing the Paint object each time we draw, we can reset any
properties using the Reset() method:
paint.Reset();

2.	 As drawing round shapes may result in jagged edges, we can enable anti-aliasing:
paint.AntiAlias = true;

3.	 To start off drawing, we could paint or clear the entire view using a single color:
canvas.DrawColor(Color.CornflowerBlue);

4.	 If we want to draw a shape, such as a solid green circle, we set the
properties on the Paint object, and then use the DrawCircle() method:
paint.SetStyle(Paint.Style.Fill);
paint.Color = Color.DarkGreen;
canvas.DrawCircle(centerX, centerY, radius*density, paint);

5.	 We can draw a border on the circle at the setting by the paint style to
Stroke and then redrawing the circle:
paint.SetStyle(Paint.Style.Stroke);
paint.StrokeWidth = 2*density;
paint.Color = Color.Black;
canvas.DrawCircle(centerX, centerY, radius, paint);

Presenting Multimedia

288

6.	 We can also draw text, in this case, centered and at the top, on the screen:
paint.TextAlign = Paint.Align.Center;
paint.SetStyle(Paint.Style.Fill);
paint.TextSize = 20*density;
Rect measureRect = new Rect();
paint.GetTextBounds(text, 0, text.Length, measureRect);
var textHeight = measureRect.Height();
canvas.DrawText(text, Width / 2f, textHeight, paint);

7.	 If we are making a game, we can request that the view be updated again as soon as
possible using the Invalidate() method:
Invalidate();

How it works...
Sometimes using the animation and shape APIs are not enough to create the image or app
that we want to create. This may be required to create a game or draw a complex image. To
draw a custom image, we make use of a View instance and its Canvas attribute. This is
especially useful for games or apps that need to update a portion of the screen, or the entire
screen, very frequently.

This is easy to do as all it requires is that we inherit from View and override the OnDraw()
method. This method is provided a Canvas instance onto which we draw our graphics. Each
time that Android determines that the view needs to be redrawn, this method will be called.

Android will only redraw a View instance when it determines that it has
changed. To force a redraw as soon as possible, the Invalidate()
method can be invoked.

We can also request that the view be redrawn by invoking the Invalidate() method on
the View instance. This will cause the entire view to be refreshed and redrawn. If we only
want a partial area to be redrawn, we can pass the rectangle bounds to an overload. The
Invalidate() method must be called from the UI thread; all other threads must use the
PostInvalidate() methods.

If we were going to make a game, we could update the game state and then draw the
game out onto the canvas provided by the OnDraw() method. Then, we can request a
new update of the view by invoking Invalidate from the OnDraw() method. This will
create the update-draw loop required in some games.

Most, if not all, drawing operations onto a Canvas require a Paint instance.

Chapter 9

289

A Paint instance holds the information of how to draw the particular request, and it
ultimately controls what the resulting image will look like. The paint object also provides a few
extra properties that allow us to enhance the drawing, such as antialiasing using through the
AntiAlias property.

Creating an instance of Paint is quite expensive and should probably be done once and
reused for all drawing operations. To prevent previous property values of Paint being
accidentally used, we can reset the entire object to its initial state using the Reset() method.

When drawing on a canvas, we need to keep in mind that different devices have different
screen densities. This is essential if we want images to appear with similar sizes on all
devices. On devices with high densities, everything will appear much smaller than expected,
and possibly too small for the user to work with. We can obtain the screen density using the
Density property on the DisplayMetrics instance returned by the view's Resources
property. We can use this property to multiply our calculations by in order to get similar sized
images, even on devices with very high densities.

Because devices have different screen densities, drawing operations
should account for higher density screens to avoid things appearing
too small.

Once we have our Paint instance and the Canvas, we can start drawing our image. Every
time the OnDraw() method is called, we are provided with a blank, transparent canvas to
draw on. To prevent other controls or views from showing through, we can clear the canvas
using the DrawColor() method. This method accepts a color, which will then be used to fill
the entire canvas.

The only thing left to do is to draw our image onto the canvas. This takes place by setting the
paint properties and then drawing something. For example, to draw a solid green circle, we
first set the paint to fill using the SetStyle() method with the Paint.Style.Fill value.
Then, we set the color using the Color property and use the Color.DarkGreen value.
As Color is a type, we are not limited to the predefined colors, but can construct any color
we wish.

Now, we can draw the actual circle using the DrawCircle() method of the canvas. All the
draw methods take parameters of the image we want to draw and then the paint instance,
in this case, the center's X and Y coordinates, the radius of the circle, and finally the Paint
instance. We need to remember to multiply the radius by the screen density to avoid the circle
being tiny on high density devices.

To draw a circle outline, instead of a filled circle, we can use the SetStyle() method on
Paint and pass in Paint.Style.Stroke. Then, we call the same DrawCircle() method
passing the same parameters. As the paint object has changed properties, the result will be
different. If we want to draw a circle with a border, we first draw the solid circle, then draw the
circle stroke.

Presenting Multimedia

290

There are many methods for drawing geometric shapes, such as DrawRect() and
DrawPath(), as well as methods for drawing whole images such as DrawBitmap() or
DrawPicture(). We can also write text using the DrawText() method. Drawing text is very
much the same as drawing anything, but we should remember to first set the font size using
the TextSize property. Again, we need to remember to multiply the screen density. There
is also the TextAlign property that enables us to align text to the left, right, or center of
drawing a rectangle.

The origin of a rectangle is at the top-left corner, that of a circle is at
the center, and for text is, it is at the baseline. The baseline is below
the text, but above the descent.

Often, we would like to position text more precisely, such as below or above an object.
As text is not positioned from the usual top-left corner, but rather from the baseline,
we have to ensure that we take into account the fact that most of the text will be
above the specified coordinates.

We can measure the size of the text bounding box using the GetTextBounds() method of
Paint. Measuring a string, or portion of a string, allows us to position the text and take into
consideration the different origin. The text measurements are taken using the styles and
properties set on the Paint object.

There's more...
We can make use of the ability to draw on a Canvas instance when making an app or game
that provides augmented reality. We can overlay the SurfaceView instance used by the
camera with a transparent View instance. Then, we process the camera image stream and
draw onto the View instance, providing the illusion that we are drawing onto the camera
stream, or rather revealing something that was otherwise hidden in the real world.

Drawing on the canvas of a SurfaceView
Even after inheriting from View for custom drawing code, we are limited to Android's
determination and frequency to actually redraw the view.

Chapter 9

291

How to do it...
Drawing on a View instance requires that the drawing occurs within the UI update cycles
as well as on the UI thread. This provides limitations that can be avoided by drawing on a
SurfaceView instance from another thread:

1.	 In order to draw on a SurfaceView instance, we need a Surface instance to draw
on. Thus, we need to know when the surface is created and destroyed:
public class MainActivity :
 Activity, ISurfaceHolderCallback {
 private ISurfaceHolder surfaceHolder;
 public void SurfaceChanged(
 ISurfaceHolder holder, Format format,
 int width, int height) {
 }
 public void SurfaceCreated(ISurfaceHolder holder) {
 surfaceHolder = holder;
 }
 public void SurfaceDestroyed(ISurfaceHolder holder) {
 surfaceHolder = null
 }
}

2.	 Then, we need to get hold of the ISurfaceHolder instance when the
activity is created:
var holder = surfaceView.Holder;
holder.AddCallback(this);

3.	 Once we have a surface to draw on, we can start a new thread to draw on the
Canvas as frequently as we need:
cancellation = new CancellationTokenSource();
var token = cancellation.Token;
Task.Run(() => {
 while (!token.IsCancellationRequested) {
 // ... draw on the canvas ...
 }
}, cancellation.Token);

4.	 In order to obtain a canvas, we use the LockCanvas() method. We can
then draw as usual. When we are finished, we must ensure that we write the Canvas
instance to the Surface instance using the UnlockCanvasAndPost() method:
Canvas canvas = null;
try {
 canvas = holder.LockCanvas();

Presenting Multimedia

292

 // ... draw as normal with the canvas ...
}
catch (Exception ex) {
 // handle errors
}
finally {
 if (canvas != null) {
 holder.UnlockCanvasAndPost(canvas);
 }
}

5.	 When the surface is destroyed, we must stop the draw thread:
cancellation.Cancel();

How it works...
If we want to create a game or app that requires high performance and frequent updates to a
view, we can simply inherit from View and override the OnDraw() method. However, we are
limited to Android's determination and frequency to update the view. Invoking Invalidate()
does not guarantee that the view will be immediately refreshed. Also, we can only draw on the
canvas from the UI thread.

The Invalidate() method does not guarantee that the View
will immediately be redrawn, rather it is a request to redraw as
soon as possible.

If we want to have a dedicated thread and surface for drawing on, we must use a
SurfaceView instance instead. Drawing on a surface is very similar to drawing on a view
in that we execute the same logic for drawing on a Canvas, but differs in where we get the
Canvas from. When we inherit from a View instance, we override the OnDraw() method
and make use of the canvas argument. When we draw on a Surface instance, we request a
canvas from the ISurfaceHolder instance.

Just like when we want to render a video or camera preview, we need a Surface instance
to draw on, we can either add a SurfaceView instance to the layout, or we can inherit from
SurfaceView and add an instance of the new type to the layout. We then need an instance
of the surface holder, which we obtain from the Holder property of the surface. We attach
an implementation of ISurfaceHolderCallback, which will provide us with the actual
surface holder.

As usual, when working with surfaces, we need to keep a reference of the holder
from the SurfaceCreated() method and ensure that we stop the drawing in the
SurfaceDestroyed() method.

Chapter 9

293

One of the main features of drawing on a surface is the ability
to draw from a thread other than the UI thread.

When we have a surface holder, we can request a canvas using the LockCanvas()
method. We can only request, and lock, one canvas instance at a time. If LockCanvas()
is invoked again before the canvas is released, this method will throw an exception. To
release the canvas, and at the same time draw the canvas onto the surface, we invoke the
UnlockCanvasAndPost() method with the canvas returned by the LockCanvas() method.

If we were making a game, or some app that required high-performance updates, we would
start a new thread and initiate a loop that would continuously update and draw on the canvas
acquired from the surface holder.

There's more...
Instead of drawing 2D images on a canvas, we can draw in 3D using OpenGL. OpenGL ES is
a graphics library that support for high-performance 2D and 3D graphics. Instead of drawing
on a SurfaceView instance, we draw on a GLSurfaceView instance, which inherits from
SurfaceView, through a renderer. We use GLSurfaceView.Renderer to draw a frame
instead of a canvas. Drawing with OpenGL is very different to drawing on a canvas, only similar
in that drawing occurs on a surface instead of a View instance. However, for 3D games,
OpenGL must be used.

We can also draw in 3D using a framework that uses OpenGL. An example would be to make
use of MonoGame. This is a game engine that makes it easier to make games as well as
provide cross-platform support. Games written using MonoGame can usually run without
much, if any, modification on iOS, Windows Phone, Windows, Mac OS X, and Linux.

295

10
Responding to the User

In this chapter, we will cover the following recipes:

ff Responding to simple touches

ff Responding to scroll gestures

ff Responding to manipulation gestures

ff Detecting rotate gestures

ff Responding to custom user gestures

ff Listening to sensor data

ff Listening for sensor triggers

ff Discovering the environment

ff Detecting device shakes

Introduction
Apps would not be useful if there was no way for either the user or the system to input data. The
very definition of an app is to fulfil a purpose for the user, and the only way to let the app know
what to do is to provide it with input. Almost all apps require some input, ranging from word
processors with hundreds of key strokes and mouse clicks to screensavers, which close as soon
as the mouse moves. All apps take input, process it, and output the result in some form.

For modern mobile devices, the primary form of input is touch, and on some devices, there is
only one hardware button, the power button. Initially, Android devices were built with keypads,
but now, almost all devices are built with a large touchscreens.

Responding to the User

296

A touchscreen is actually very limited, because they can only respond to input when a user
actually touches the screen. This makes processing the touch events the real source of input.
Depending on the pressure the user applies, how many fingers the user uses, and how the
user moves those fingers, we can determine what the user is doing.

If the user taps a single finger to the screen for a few milliseconds, it is a simple tap. If the
user presses and holds for a few seconds, then it is a long press. When the user presses
and drags a finger across the screen, it can be a scroll. If the user places multiple fingers on
the screen, there is a whole new set of events that need to be processed. But that is not all,
because mobile devices are so portable, they can actually be moved in their environment,
providing another source of input data. The multitude of sensors built into the device allow
the app to detect whether the device is being moved, rotated, shaken, or even that the user is
walking with it. There are also many sensors to detect what is happening around the device.
This provides yet another source of input data. These sensors can detect the amount of light
or even the air pressure around the device.

In the same way that touch events are processed to provide the real input, the sensor
data also needs to be processed to determine what the user is doing with the device. The
touchscreen and the sensor simply provide raw data to the app, which then processes it into
useful input data.

With all these forms of input, the mobile device ends up having far more sources of input than
the typical desktop computer. This allows mobile apps to be more natural and more exciting to
use. This allows us as developers to create great user experiences when designing apps.

Responding to simple touches
One of the primary means for the user to interact with the device is through touch.
Often, this is the only way as there is no keyboard or mouse, and other methods might
be unavailable or undesirable.

How to do it...
All views provide access to the two most common forms of touch input: single taps and long
presses. We respond to these events using either listeners or event handlers:

1.	 We respond to taps using the Click event:
view.Click += (sender, e) => {
 // the user tapped the view
};

Chapter 10

297

2.	 In the same way, we respond to long presses using the LongClick event. To prevent
the Click event from also being triggered, we ensure that the Handled property of
the EventArgs is set to true:
view.LongClick += (sender, e) => {
 // the user long-pressed on the view
 e.Handled = true;
};

Both the Click and LongClick events can also be subscribed to using listeners:

1.	 To use a listener with the Click event, we ensure that we implement the View.
IOnClickListener interface:
public class MyView : View, View.IOnClickListener {
 public void OnClick(View view) {
 // the user tapped the view
 }
}

2.	 To subscribe using the listener, we make use of the SetOnClickListener()
method:
SetOnClickListener(this);

3.	 Similarly, the LongClick events can also be subscribed to using listeners. To do this,
we implement the View.IOnLongClickListener interface:
public class MyView : View, View.IOnLongClickListener {
 public bool OnLongClick(View view) {
 // the user long-pressed the view
 return true;
 }
}

4.	 Again, we set the listener using the SetOnLongClickListener() method:
SetOnLongClickListener(this);

How it works...
There are many ways to interact with apps running on a device. One of the most common
ways is touch. Most Android smartphones are built with large, touchscreens which are the
primary source of input.

Touch input can range from simple, single taps all the way to multifinger gestures. The
simplest and most common are single taps and longpresses. Both forms are very easy to
implement, requiring only logic to be attached to the Click event, for single taps, and the
LongClick event, for longpress gestures.

Responding to the User

298

Both events will fire as soon as the user completes the touch, but in the case of a long-press,
we have to ensure that we let the event system know that we are handling a longpress instead
of a single tap.

A long-press is just a tap, but with a longer contact duration.

We let the system know that we are handling the long-press by setting the value of the
Handled property on the LongClickEventArgs parameter of the LongClick event
to true. If we do not do this, the Click event will also be raised, possibly resulting in
unexpected behavior.

Both the Click and LongClick events can also be handled using Java-style listeners.
The listener interface for the Click event is View.IOnClickListener and View.
IOnLongClickListener for the LongClick event. Instances of classes implementing the
interfaces are passed to the SetOnClickListener() and SetOnLongClickListener()
methods.

Because the events actually use the listeners under the covers, attaching a handler to the
event will disconnect the listeners. Also, assigning a listener to the view will detach the events.
As a result, only one form of handler can be used at a time.

Either the C#-style events or the Java-style listeners can
be used, but not both at the same time.

There's more...
Sometimes, we need more advanced touch events, such as the number of fingers on
the screen and their position on the screen. We get all the touch data by overriding the
OnTouchEvent() method and accessing the MotionEvent argument:

public class MyView : View {
 public override bool OnTouchEvent(MotionEvent e) {
 return base.OnTouchEvent(e);
 }
}

Every time a touch event is triggered, we can access the data related to the touch using
the MotionEvent argument. This instance contains data such as the number of fingers
touching the screen, in the PointerCount property, and the location of each finger, through
the GetX() and GetY() methods. We use the ActionMasked property to determine what
raised the event. Possible reasons for touch events could be that a finger was either added,
removed, or moved over the screen.

Chapter 10

299

We can use this data to interpret gestures such as zoom, rotate, or drag. Here, we store all the
fingers in a dictionary, along with their position on the screen:

var pointerIndex = e.ActionIndex;
var pointerId = e.GetPointerId(pointerIndex);
switch (e.ActionMasked) {
 case MotionEventActions.Down:
 case MotionEventActions.PointerDown:
 pointers[pointerId] =
 new PointF(e.GetX(pointerIndex), e.GetY(pointerIndex));
 break;
 case MotionEventActions.Move:
 for (int i = 0; i < e.PointerCount; i++) {
 var id = e.GetPointerId(i);
 pointers[id] = new PointF(e.GetX(i), e.GetY(i));
 }
 break;
 case MotionEventActions.Up:
 case MotionEventActions.PointerUp:
 case MotionEventActions.Cancel:
 pointers.Remove(id);
 break;
}

Responding to scroll gestures
There are many more ways for a user to interact with the device when using a single finger.
These interactions include scrolling, flinging, and various kinds of tapping.

How to do it…
To receive the events from the gesture detector, we must implement the nested interface in
the GestureDetector type and pass the instance to the gesture detector:

1.	 For most gestures, we implement the IOnGestureListener interface. As we
are going to implement scrolling and flicking, we return true for the OnDown(),
OnFling(), and OnScroll() methods. Because we are not concerned with the
screen taps, we return false for the OnSingleTapUp() method:
public class MyView : View,
 GestureDetector.IOnGestureListener {
 public bool OnDown(MotionEvent e) {
 return true;
 }

Responding to the User

300

 public bool OnFling(MotionEvent e1, MotionEvent e2,
 float velocityX, float velocityY) {
 return true;
 }
 public bool OnScroll(MotionEvent e1, MotionEvent e2,
 float distanceX, float distanceY) {
 return true;
 }
 public void OnLongPress(MotionEvent e) {
 }
 public void OnShowPress(MotionEvent e) {
 }
 public bool OnSingleTapUp(MotionEvent e) {
 return false;
 }
 }

2.	 Once we have implemented the interface, we will need an instance of
GestureDetector:
gestureDetector = new GestureDetector(Context, this);

3.	 Then, we need to override the OnTouchEvent() method of the view to pass the
events to the gesture detector:
public override bool OnTouchEvent(MotionEvent e) {
 var handled = gestureDetector.OnTouchEvent(e);
 return handled || base.OnTouchEvent(e);
}

Now, we start implementing the logic that should be executed when the gesture detector
detects a scroll or fling:

1.	 If we want to support a fling action, we will need a scroller instance, which is used
to track scrolling. This can either be a Scroller instance or an OverScroller:
scroller = new OverScroller(Context);

2.	 Next, we implement the OnFling() method to pass the fling event values to the
scroller instance, along with the current scroll offset, view bounds, and, if we are
using the OverScroller, the maximum over-scroll amount:
public bool OnFling(MotionEvent e1, MotionEvent e2,
float velocityX, float velocityY) {
 scroller.Fling(
 (int)ScrollX, (int)ScrollY,
 (int)-velocityX, (int)-velocityY,
 minimumX, maximumX,

Chapter 10

301

 minimumY, maximumY,
 overscrollAmount, overscrollAmount);
 return true;
}

3.	 To actually scroll the view, we need to override the ComputeScroll() method and
invoke the ScrollTo() method:
public override void ComputeScroll() {
 base.ComputeScroll();
 if (scroller.ComputeScrollOffset()) {
 ScrollTo(scroller.CurrX, scroller.CurrY);
 }
}

4.	 To implement scrolling as the user drags a finger across the screen, we implement
the OnScroll() method:
public bool OnScroll(MotionEvent e1, MotionEvent e2,
float distanceX, float distanceY) {
 scroller.ForceFinished(true);
 var offsetX = (int)(ScrollX + distance);
 offsetX = Clamp(minimumX, offsetX, maximumX);
 var offsetY = (int)(ScrollY + distance);
 offsetY = Clamp(minimumY, offsetY, maximumY);
 ScrollTo(offsetX, offsetY);
 return true;
}

How it works...
Using only a single tap or long-press for touch input may not be enough. Often, the device
screen is smaller than the content to be displayed, resulting in the requirement for the content
to be scrolled. We can scroll through the content on the screen either by dragging the content
or by performing a fling gesture.

Adding support for scrolling content is built into many of the views; however, sometimes
custom views are created and scrolling needs to be added. We do this by making use of
a gesture detector, which raises events when a scroll of fling gesture is detected.

To implement a GestureDetector object, we first need to implement the
IOnGestureListener interface. Some of the methods in this interface return a bool value.
This value lets the event chain know about what events are handled and what events should
be bubbled up to the parent or other gesture detectors.

Responding to the User

302

If false is returned from the OnDown() method, the gesture detector does not process
any further events. If true is returned, then the gesture detector will process the event and
then invoke the other methods, depending on what the user does. In a similar fashion, the
OnScroll() and OnFling() methods should return true if the event was handled so that
the event chain can be correctly processed.

The OnDown() method should return true before the
gesture detector starts processing further events.

Once the interface is implemented, we pass the instance to a new GestureDetector object.
Then, we override the OnTouchEvent() method of the view and pass the MotionEvent
instance to the gesture detector. This allows the gesture detector to process the events and
make a decision on whether there was a tap, scroll, fling, or some other gesture.

The MotionEvent instance is passed to the OnTouchEvent() method of the gesture
detector, which will then return a bool value indicating whether the view should continue to
process events or not. If the method returns false, we should allow the view to process its
own events by invoking the base OnTouchEvent() method.

When implementing a fling gesture, we need to handle the cases when the fling results
in the content being over scrolled when too much force is applied. This is not required and
we can stop scrolling as soon as the boundary of the content is reached; however, this often
looks unnatural.

A fling gesture can overscroll the content, before returning the
content to the correct position. A scroll gesture should stop as
soon as the content is on the screen.

Regardless of whether over-scrolling is desired or not, we use a scroller instance to
translate a fling gesture into a series of scroll gestures. This is because once the user
performs a fling, no further fingers are going to be on the screen to send scroll events.

A fling gesture is processed by passing the velocity of the fling and the boundaries of the
view to an instance of either a Scroller instance or an OverScroller instance. In the
case of the OverScroller, we need to pass in a value indicating how far the view can
over-scroll.

Then, we need to override the ComputeScroll() method of the view. This method is used
by the parent view to request that the view update its ScrollX and ScrollY properties.
When this method is invoked, we ask the scroller instance if there is a scroll currently
being performed using the ComputeScrollOffset() method. This method will return true
if a scroll needs to be performed. In that case, we request for the view to be scrolled on its
own using the ScrollTo() method passing in the new scroll values from the scroller
instance. These values are obtained using the CurrX and CurrY properties.

Chapter 10

303

When implementing the drag-to-scroll gesture, we do so by simply requesting that the view
scroll to the new coordinates. If there is currently a scroll underway from a fling gesture,
we should cancel it first using the ForceFinished() method. This will result in the scroll
being stopped at the current position. When scrolling a view, we need to ensure that we do
not over-scroll the content.

There's more...
The gesture detector also provides a means to detect whether a single tap or a double tap
has been performed. If we know we are not going to be listening to double taps at all, we can
respond to single taps in the OnSingleTapUp() method of the IOnGestureListener
interface:

public bool OnSingleTapUp(MotionEvent e) {
 // handle single tap
 return true;
}

If we want to respond to double taps as well, we have to implement the
IOnDoubleTapListener interface. Because we are interested in completed single taps
and double taps, we return true for the OnDoubleTap() and OnSingleTapConfirmed()
method:

public class MyView : View,
GestureDetector.IOnDoubleTapListener {
 public bool OnDoubleTap(MotionEvent e) {
 // handle double tap
 return true;
 }
 public bool OnDoubleTapEvent(MotionEvent e) {
 return false;
 }
 public bool OnSingleTapConfirmed(MotionEvent e) {
 // handle single tap
 return true;
 }
}

Then, we let the gesture detector know that we are listening for the double tap events using
the SetOnDoubleTapListener() method:

gestureDetector.SetOnDoubleTapListener(this);

Responding to the User

304

Responding to manipulation gestures
In some cases, an object needs to be manipulated on the screen. This can be done using the
stretch action, and the most natural way to do this is to simply use a two-finger pinch gesture.

How to do it...
Adding support for pinch-to-zoom is just a matter of passing the touch events to an instance of
ScaleGestureDetector and implementing the IOnScaleGestureListener interface:

1.	 To support the pinch-to-zoom gesture, we need to first implement the
ScaleGestureDetector.IOnScaleGestureListener interface:
public class MyView : View,
ScaleGestureDetector.IOnScaleGestureListener {
 public bool OnScaleBegin(ScaleGestureDetector detector) {
 return true;
 }
 public bool OnScale(ScaleGestureDetector detector) {
 return true;
 }
 public void OnScaleEnd(ScaleGestureDetector detector) {
 }
}

2.	 Then, we create an instance of the ScaleGestureDetector type:
scaleDetector = new ScaleGestureDetector(Context, this);

3.	 Next, we need to override the OnTouchEvent() method to pass the event to the
scale gesture detector:
public override bool OnTouchEvent(MotionEvent e) {
 var handled = scaleDetector.OnTouchEvent(e);
 return handled || base.OnTouchEvent(e);
}

4.	 Finally, we can implement the OnScale() method to handle the actual gesture:
public bool OnScale(ScaleGestureDetector detector) {
 scale *= scaleDetector.ScaleFactor;
 return true;
}

Chapter 10

305

How it works...
Just as a user can touch the screen with one finger, gestures can be performed using multiple
fingers. This creates an entirely new set of gestures that can now be performed. Some of
these gestures can be pinches and twists, which are used to zoom or rotate respectively.

Using multitouch gestures allows the user to interact with the device in a more natural manner,
and the app translates those gestures into the action that the user is trying to achieve.

Often, multitouch gestures are more natural for the user
than other forms of touch input.

Once such gesture is the pinch-to-zoom gesture. This is performed by making use of a
ScaleGestureDetector instance.

At the time of implementing the GestureDetector object, we need to implement the
IOnScaleGestureListener interface. We then pass the implementation of the interface
to a new instance of ScaleGestureDetector.

The OnScaleBegin() and OnScale() methods on the interface should return true when
we are handling the event. When the user starts the scale gesture, the OnScaleBegin()
method is invoked. If we return false here, the scale gesture will be canceled. This is useful
if there is only a small region of the view that should be scaled. This allows us to make a
decision to start a scale gesture if the user is touching the appropriate region.

The OnScaleBegin() method should return true to
continue the gesture, and false to cancel it.

To process the touch events, we override the OnTouchEvent() method of the view and pass
the MotionEvent argument to the OnTouchEvent() method of the gesture detector. This
allows the gesture detector to invoke the various methods when a scale gesture is detected.
Like with the simple gesture detector, the result of the gesture detector's OnTouchEvent()
method is used to determine whether the base OnTouchEvent() method of the view should
be invoked.

Once a scale gesture has commenced, the OnScale() method will be invoked every time
the user moves their fingers across the screen. In this method, we can obtain the values
from the gesture detector using the various properties. The most important of these is the
ScaleFactor property, which is the amount scaled since the last time the method was
invoked. The others include the FocusX and FocusY properties, which represent the focal
point coordinates between the fingers, and the CurrentSpan property, which represents the
linear distance between the two fingers.

Responding to the User

306

Detecting rotate gestures
A common gesture for manipulating objects on the screen is to use the twist or rotate gesture.
This is often more natural than entering a rotation value or dragging a cursor.

How to do it...
Another multifinger gesture that is very common is the rotate gesture. For a two-finger
rotate, we can do something very similar to what we would do when implementing
the ScaleGestureDetector instance. However, we do have to create a
RotateGestureDetector instance ourselves as this is not currently provided by the
framework. We will create RotateGestureDetector by preforming the following steps:

1.	 First, we need an interface that represents our gesture detector's events:
public interface IOnRotateGestureListener {
 bool OnRotateBegin(RotateGestureDetector detector);
 void OnRotate(RotateGestureDetector detector);
 void OnRotateEnd(RotateGestureDetector detector);
}

2.	 Then, we create the gesture detector type:
public class RotateGestureDetector {
 private float oldX2, oldY2, oldX1, oldY1;
 private int pointerId1, pointerId2;
 private IOnRotateGestureListener listener;

 public RotateGestureDetector(
 IOnRotateGestureListener listener) {
 this.listener = listener;
 pointerId1 = -1;
 pointerId2 = -1;
 }

 public bool IsInProgress { get; private set; }
 public float Angle { get; private set; }
 public float FocusX { get; private set; }
 public float FocusY { get; private set; }

 public bool OnTouchEvent(MotionEvent e) {
 return true;
 }
}

Chapter 10

307

Once we have the structure in place, we can now implement the logic that will process the
touch events from the view. It is important to ensure that we return the correct bool value
when we handle the event to let any other gesture detectors know that it has been handled:

ff After the interface has been defined, we implement the OnTouchEvent() method
so that we can process the rotate gesture:
public bool OnTouchEvent(MotionEvent e) {
 var pointerIndex = e.ActionIndex;
 var pointerId = e.GetPointerId(pointerIndex);

 switch (e.ActionMasked) {
 case MotionEventActions.Down:
 pointerId1 = pointerId;
 pointerId2 = -1;
 IsInProgress = false;
 break;
 case MotionEventActions.PointerDown:
 if (pointerId1 != -1 && pointerId2 == -1) {
 pointerId2 = pointerId;
 var index1 = e.FindPointerIndex(pointerId1);
 var index2 = e.FindPointerIndex(pointerId2);
 oldX1 = e.GetX(index1);
 oldY1 = e.GetY(index1);
 oldX2 = e.GetX(index2);
 oldY2 = e.GetY(index2);

 FocusX = (oldX1 + oldX2) / 2f;
 FocusY = (oldY1 + oldY2) / 2f;
 Angle = 0;

 if (listener != null) {
 IsInProgress = listener.OnRotateBegin(this);
 }
 }
 break;
 case MotionEventActions.Move:
 if (IsInProgress) {
 float newX2, newY2, newX1, newY1;
 var index1 = e.FindPointerIndex(pointerId1);
 var index2 = e.FindPointerIndex(pointerId2);
 newX1 = e.GetX(index1);
 newY1 = e.GetY(index1);
 newX2 = e.GetX(index2);

Responding to the User

308

 newY2 = e.GetY(index2);

 FocusX = (newX1 + newX2) / 2f;
 FocusY = (newY1 + newY2) / 2f;

 var oldA = Math.Atan2(oldY1 - oldY2, oldX1 - oldX2);
 var newA = Math.Atan2(newY1 - newY2, newX1 - newX2);
 var angle = (float)(oldA - newA);
 Angle = angle * 180.0f / (float)Math.PI;

 oldX1 = newX1;
 oldY1 = newY1;
 oldX2 = newX2;
 oldY2 = newY2;

 if (listener != null) {
 listener.OnRotate(this);
 }
 }
 break;
 case MotionEventActions.Up:
 case MotionEventActions.PointerUp:
 if (IsInProgress) {
 if (pointerId == pointerId1) {
 pointerId1 = pointerId2;
 pointerId2 = -1;
 }
 else if (pointerId == pointerId2) {
 pointerId2 = -1;
 }
 if (pointerId1 == -1 || pointerId2 == -1) {
 IsInProgress = false;

 if (listener != null) {
 listener.OnRotateEnd(this);
 }
 }
 }
 break;
 }
 return true;
}

Chapter 10

309

Now that we have completed our rotate gesture detector, we can use it to perform a rotation:

1.	 Just like we did when implementing the scale gesture detector, we must implement
the IOnRotateGestureListener interface:
public class MyView : View, IOnRotateGestureListener {
 public bool OnRotateBegin(RotateGestureDetector detector)
 {
 return true;
 }
 public void OnRotate(RotateGestureDetector detector) {
 }
 public void OnRotateEnd(RotateGestureDetector detector) {
 }
}

2.	 Then, we create an instance of RotateGestureDetector:
rotateDetector = new RotateGestureDetector(this);

3.	 Next, we need to override the OnTouchEvent() method to pass the event to the
rotate gesture detector:
public override bool OnTouchEvent(MotionEvent e) {
 var handled = rotateDetector.OnTouchEvent(e);
 return handled || base.OnTouchEvent(e);
}

4.	 Lastly, in the OnRotate() method, we can read the rotation angle since the
last update:
public void OnRotate(RotateGestureDetector detector) {
 rotation = (rotation + detector.Angle) % 360f;
}

How it works...
Using touch as input is one of the easiest forms of input. Whether it be a stretch, twist, or
fling, the user will always find it easier to actually interact with the objects on the screen.

Android provides many of the common forms of gesture detection, but not everything that may
be needed has been added to the framework. However, there is no reason why we cannot
create custom gesture detectors to make it easier for the user to work with our app.

Custom gesture detectors can be created to add functionality to
an app when a native gesture detector is not available.

Responding to the User

310

We can implement touch event processing in many ways, but following the patterns of the
Android framework makes it easier to reuse the code in other apps as well as to make it
easier to maintain in the future.

Custom gesture detectors are simple to create, requiring an interface that defines the events
of the gesture detector, and the gesture detector itself. The gesture detector receives all
the touch events from the view, which are processed. When the gesture actually occurs,
the appropriate method on the interface is invoked.

Gesture detectors consist of an interface defining the
events and the gesture detector type.

In the case of our rotate gesture detector, as soon as the user places two fingers on the
screen, we initiate the rotate gesture. As the user moves their fingers across the screen, we
calculate the size of the angle that the fingers have moved in. The angle is calculated from the
lines formed from the location of the two fingers on the screen. When the user lifts a finger off
the screen, we complete the rotate gesture.

Like with the scale gesture detector, we implement the interface on our view and create an
instance of the RotateGetureDetector instance. Then, we override the OnTouchEvent()
method, passing the touch event data to the gesture detector. This will result in the interface
methods being invoked when a rotate gesture is detected.

We can prevent the rotate gesture from being performed for some reason by returning false
from the OnRotateBegin() method. This is useful when we want to allow objects to be
rotated on the screen, but only when both fingers are actually touching the object.

Responding to custom user gestures
There are other types of gestures that the user can perform, such as drawing letters or other
shapes. These gestures may be more complex than a twist or drag, so we cannot just rely on
simple finger tracking, but rather we need shape recognition.

How to do it...
We can store, recognize, and visualize shape gestures using a GestureLibrary instance:

1.	 We access a particular GestureLibrary by requesting one through the
GestureLibraries type:
GestureLibrary library =
 GestureLibraries.FromPrivateFile(this, "gestures");

Chapter 10

311

2.	 When we want to load the gestures, or refresh the library, we invoke the Load()
method:
library.Load();

3.	 Then, we can list all the gestures in the library using the GestureEntries property:
string[] entries = library.GestureEntries.ToArray();

4.	 To read the data about a specific gesture, we use the GetGestures() method:
Gesture gesture = library.GetGestures("my gesture")[0];

5.	 With the gesture, we can visualize the pattern as a Bitmap instance:
var bitmap = gesture.ToBitmap(100, 100, 0, Color.Yellow);

6.	 We can also visualize the gesture strokes as a Path instance:
var path = gesture.ToPath();

If we want to create a new gesture, we can make use of the GestureOverlayView instance
and save the gesture to the library:

1.	 First, we add a <android.gesture.GestureOverlayView> element to
the layout:
<android.gesture.GestureOverlayView
 android:id="@+id/overlay"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

Then we can access the overlay using the FindViewById() method:
var overlay =
 FindViewById<GestureOverlayView>(Resource.Id.overlay);

Alternatively, we can create and add a GestureOverlayView from code:
var overlay = new GestureOverlayView(this);

2.	 To prevent the drawn gesture from disappearing as soon as the user has finished, we
can set the GestureStrokeType to Multiple:
overlay.GestureStrokeType = GestureStrokeType.Multiple;

3.	 After the user has drawn the gesture on the overlay, we can save the gesture to
the library:
gestureLibrary.AddGesture("name", overlay.Gesture);
gestureLibrary.Save();

4.	 To allow a new gesture to be drawn, we can clean up the overlay:
overlay.Clear(false);

Responding to the User

312

When we want to respond to a user's gesture, we can place a GestureOverlayView
parameter on the UI and wait for the user to draw on it:

1.	 To respond to a gesture that the user has drawn, we can attach a handler to the
GesturePerformed event:
overlay.GesturePerformed += (sender, e) => {
}

2.	 Then, we check the gesture against the library:
var recognitions = gestureLibrary.Recognize(e.Gesture);

3.	 In the result, we can find the best guess:
var guess = recognitions.FirstOrDefault(r => r.Score > 1);

How it works...
Simple gesture recognition involves tracking the movement of one or more fingers across
the device screen. This data is used to update the screen or manipulate objects in real time.
These gestures are limited to the data that is provided every few milliseconds and usually
doesn't track the entire gesture.

More advanced gestures require the entire gesture to be performed before it can be processed.
These types of gestures are delayed and do not perform any direct manipulations. However,
feedback to the user may be required in the form of a path being traced onto the screen.

Some gestures are more complex and require the entire
gesture to be drawn before it can be processed.

Android provides an easy way to both record and recognize gestures through the
GestureLibrary type. A GestureLibrary type can be obtained through one of the
methods on the GestureLibraries type, either from a raw resource of from a file on
the file system.

When we have created the gesture library instance, we load or reload the gestures into
memory using the Load() method. And, if we update the library, we can persist the
changes using the Save() method.

Both the Load() and Save() methods need to be invoked
manually in order to load and save the gesture library, respectively.

Chapter 10

313

Once loaded, we can list the gestures loaded using the GestureEntries property, or
query specific gestures using the GetGestures() method. After we have queried a specific
gesture, we can make use of the various methods to convert a gesture into a visual Path or
Bitmap parameters.

In order to build up the library of gestures, we can either load an existing library file, or we
can create and add new gestures to the library. Regardless of how gestures are created, we
add them to the library using the AddGesture() method. We pass the gesture, along with a
name, to this method. After adding gestures, we need to ensure that we save the library.

Adding multiple gestures with the same name can improve the
chances of the drawn gesture being correctly recognized.

Gestures can be created by building a collection of timestamped coordinates. A series
of GesturePoints are added to a GestureStroke instance, which in turn are added
to a gesture.

Another means of creating gestures is via the GestureOverlayView instance. When
displayed, the user can trace the gesture, which we can then read and save into a library.
Some gestures require multiple strokes, thus we need to set the GestureStrokeType
property to Multiple. This prevents the view from clearing the surface as soon as the user
lifts all their fingers off the view.

When adding the GestureOverlayView instance to the .axml file,
the fully qualified name, android.gesture.GestureOverlayView,
must be used as it is not part of the usual Android.Widget namespace.

Now that we have a collection of gestures in a gesture library, we need to be able to recognize
user gestures. This is done by passing the gesture to be recognized to the Recognize()
method of the library. The Recognize() method returns a collection of scored predictions
or matches.

Each prediction is provided a score or match rating, and the match collection is ordered by
score from the highest match to the lowest. Predictions with scores above 1.0 indicate good
matches, and scores below 1.0 are poor matches. However, any threshold can be used to
determine the desired match.

Gesture predictions with a score of above 1.0 usually
indicate good matches.

When using the GestureOverlayView instance to draw gestures, there are several events
that we can subscribe to. One of the most common events is GesturePerformed, which is
raised as soon as the view detects that the user has finished drawing a gesture.

Responding to the User

314

There's more...
The GestureOverlayView instance can also be used to overlay regular views, and detect
gestures when the user interacts with those views. As the GestureOverlayView instance
is simply a FrameLayout instance, child views can be added to it in the same way views are
added to other layouts.

As child views also will be processing events, we need to ensure that as soon as the gesture
overlay view detects a gesture, it prevents the child views from processing touch events. This
is done by setting the EventsInterceptionEnabled property to true. This is useful when
the child view is a scrollable view, as the GestureOverlay view prevents the scrollable view
from scrolling during gestures.

If the child view is scrollable, we need to indicate to the gesture overlay view what direction the
view scrolls in. We do this by setting the Orientation property to the child view scroll direction.
This allows scroll gestures to be correctly recognized as scrolling and not a custom gesture.

Listening to sensor data
Just as touching a device screen is input, so is rotating and moving the actual physical device
in its environment. Most devices are built with several sensors that can be used to read the
state of the device in its environment.

How to do it...
We can access all the available sensors and the sensor data on the device through the
SensorManager type:

1.	 The instance of the SensorManager type is obtained from the current context:
var manager = SensorManager.FromContext(this);

2.	 Once we have the manager, we check whether a particular sensor exists, and return
the instance of it using the GetDefaultSensor() method:
var type = SensorType.Accelerometer;
var accelerometer = manager.GetDefaultSensor(type);
if (accelerometer == null) {
 // handle no acceleromenter
}

3.	 In order to be able to receive sensor data, we must implement the
ISensorEventListener interface:
public class MyActivity : Activity, ISensorEventListener {
 public void OnAccuracyChanged(
 Sensor sensor, SensorStatus accuracy) {

Chapter 10

315

 }
 public void OnSensorChanged(SensorEvent e) {
 }
}

4.	 To start receiving data from a sensor, we register it along with the listener instance
and data update rate via the RegisterListener() method:
manager.RegisterListener(
 this, accelerometer, SensorDelay.Fastest);

5.	 Once we are finished with the sensor, we unregister the listener:
manager.UnregisterListener(this);

The data from sensors can be used for many different purposes, ranging from making
decisions to drawing on the screen. For example, we can make use of the accelerometer
data in the OnSensorChanged() method to create a level or plumb line:

1.	 First, we will need fields to hold data across events:
private float rotationX;
private float rotationY;

2.	 Then, we will filter the raw event data to prevent rapid fluctuations of the values:
const float Filter = 0.05f;
var x = e.Values[0];
var y = e.Values[1];
rotationX = (x * Filter) + (rotationX * (1f - Filter));
rotationY = (y * Filter) + (rotationY * (1f - Filter));

3.	 Now that we have the filtered values, we can convert this into a 2D angle:
var rotation2d = (float)Math.Atan2(rotationY, rotationX);
var degrees = -rotation2d * (180f / (float)Math.PI);

4.	 Finally, we can apply the rotation to a view:
levelView.Rotation = degrees + 90f;

How it works...
Many devices are built with multiple sensors. This can range from accelerometers and
gyroscopes to proximity sensors and step counters. All of these sensors constantly stream
data of where and how the device is situated in the environment. All this data can be used to
both enhance as well as provide core functionality to an app.

For example, the accelerometer and gyroscope can be used to create a game that allows the
user to control a player based on how the device is rotated. Or, the step counter sensor can be
used to provide data to a health or fitness app.

Responding to the User

316

However, not all devices have all the sensors. Before a sensor can be used by our app, we
need to ensure that it exists on the device and that we can access the data. This is done using
the SensorManager instance. Once we have obtained the instance of the sensor manager,
we are able to query the existence of a particular sensor using the GetDefaultSensor()
method.

Not all devices may have a particular sensor, thus checks need
to be performed before using it.

The GetDefaultSensor() method returns either the sensor that was requested or
null if the device does not support that sensor. As sensors are queried by type, there may
be multiple versions of a sensor by different vendors. If this is the case, we can use the
GetSensorList() method instead. This will provide a collection of sensors that match the
requested sensor type.

There may be multiple versions of a sensor type on a device.

We can find out about a particular sensor using the various properties on the Sensor type.
These properties include the Version and Vendor properties, as well as the characteristics
of the sensor, such as Power for the power requirements.

Once we have the desired sensor, we can start reading the data stream. To do this, we need to
implement the ISensorEventListener interface, and register it with the sensor manager.
Registering for data requires that we provide the sensor manager with the listener, sensor,
and sampling rate of the RegisterListener() method.

After the listener is registered, we will receive the sensor data in the OnSensorChanged()
method. This method receives the data from the sensor, which includes the accuracy, time,
and the actual data values. The values from the sensor are provided via the Values property
on the SensorEvent type. This property is an array of type float, and the elements vary
across sensor types.

The number of values provided by the OnSensorChanged()
method may vary from sensor to sensor.

For example, the accelerometer sensor has three elements, the first being the force along the
x axis, the second being the force along the y axis, and the third being the force along the z
axis. The step counter sensor only has one element, which is the number of steps taken since
the device boot.

Chapter 10

317

As the OnSensorChanged() method may be invoked at a high rate, we should avoid
blocking its return. If filtering or processing of the data is required, we should move it out
from the current method and into another method. Also, when registering the listener, we can
possibly select a lower rate of data if a high rate is not required. This will preserve both battery
and system resources.

The OnSensorChanged() method should not block its return.

As having a listener registered to a sensor consumes battery, we should unregister
the sensor as soon as it is no longer needed. We do this by passing the listener to the
UnregisterListener() method. If the sensor is used to update the UI, then as soon
as the activity leaves the foreground, we can unregister it in the OnPause() method and
reregister it in the OnResume() method.

Listening for sensor triggers
Some sensors do not provide a continuous stream of data, but rather raise an event when
something happens.

How to do it...
To use trigger-based sensors, we also make use of the sensor manager. Unlike stream-based
sensors, we inherit from the TriggerEventListener type:

1.	 First, we need the instance of the SensorManager type:
var manager = SensorManager.FromContext(this);

2.	 Next, we get a reference to the sensor. If the sensor is null, then it is not available
on the device:
var type = SensorType.SignificantMotion;
var motion = manager.GetDefaultSensor(type);
if (motion == null) {
 // handle no significant motion sensor
}

3.	 Then, we create inherit from the TriggerEventListener type:
private class MyListener : TriggerEventListener {
 public override void OnTrigger(TriggerEvent e) {
 // handle significant motion
 }

}

Responding to the User

318

4.	 We create an instance of this trigger event listener:
listener = new MyListener();

5.	 Once we have the listener, we register it with the sensor manager along with
the sensor:
manager.RequestTriggerSensor(listener, motion);

6.	 When we no longer need the trigger, we unregister it:
manager.CancelTriggerSensor(listener, motion);

How it works...
Devices have many sensors, some providing a stream of data to apps and others providing
data when certain events occur. These events might be triggered when the user takes a step
or when the user moves to a new location.

These sensors work by only enabling when a listener is attached, then as soon as the event it
raised, the trigger is invoked and the listener detached. In order for the trigger to be invoked
when the event occurs again, we need to reregister the listener.

Trigger-based sensors automatically unregister when the
event occurs.

Just like when accessing all other sensors, we need to use the SensorManager instance.
Once we have obtained the sensor manager, we need to ensure that the particular sensor
exists on the device. As with all sensors, we use the GetDefaultSensor() method to
do this.

Once we have the sensor, we need an instance of the TriggerEventListener type. Unlike
other sensors, this is not an interface to be implemented. Instead, it is a type that we inherit
from and override the OnTrigger() method.

Trigger-based sensors do not require the implementation of
an interface but rather an instance of a type inheriting from
TriggerEventListener.

The OnTrigger() method has a single TriggerEvent argument, which provides access
to the timestamp of the event and the actual sensor data. The sensor data is provided in the
form of a float array property named Values.

When we want to register the listener with the sensor, we pass an instance of the listener and
the sensor to the RequestTriggerSensor() method on the sensor manager. As soon as
the event is raised, the OnTrigger() method will be invoked and the listener automatically
unregistered. If the trigger needs to be invoked again, it will have to be reregistered.

Chapter 10

319

Once we no longer need the sensor to invoke our trigger, we can cancel the listener by
passing both the listener and the sensor to the CancelTriggerSensor() method
on the sensor manager.

Discovering the environment
Not all sensors are used to access the state of the device. Some are used to describe the
world in which the device exists.

How to do it...
The environment sensors are the same as most of the sensors, in that they require an
implementation of the sensor event listener interface to be registered with the sensor manager:

1.	 As with all sensors, we have to use the SensorManager instance to access the sensor:
var manager = SensorManager.FromContext(this);

2.	 When we have the sensor manager, we obtain the specific sensor:
var type = SensorType.Light;
var light = manager.GetDefaultSensor(type);
if (light == null) {
 // handle no significant motion sensor
}

3.	 Next, we implement the ISensorEventListener interface:
public class MyActivity : Activity, ISensorEventListener {
 public void OnAccuracyChanged(
 Sensor sensor, SensorStatus accuracy) {
 }
 public void OnSensorChanged(SensorEvent e) {
 }
}

4.	 Then, we implement the OnSensorChanged() method to read the single value from
the sensor:
var lx = e.Values[0];

5.	 To start receiving events, we register the listener along with the desired update rate:
manager.RegisterListener(
 this, accelerometer, SensorDelay.Fastest);

6.	 Once we are finished with the sensor, we unregister it:
manager.UnregisterListener(this);

Responding to the User

320

How it works...
Touch describes how the user interacts with the device and sensors describe how the device
exists in the world. But, another form of input that we can utilize is the data from the actual
environment that the device is in. This data can be the amount of light in the environment or
the air pressure, moisture, and temperature.

The four sensors currently available are the relative ambient humidity sensor, the illuminance
sensor, the ambient pressure sensor, and the ambient temperature sensor. There are actually
two temperature sensors: the Temperature sensor type and the AmbientTemerature
instance. The first sensor measures the actual device CPU temperature and the second
measures the ambient temperature near the device.

There are two temperature sensors—one measures the temperature of
the CPU and the other measures the air temperature.

Although these sensors are not as common as the others, such as the accelerometer, we
can still use these to enhance an app. The light or illuminance sensor is the most commonly
available sensor in most devices, because it is used to control the display brightness.

Although they are functionally the same as the other sensors, the environment sensors
only return a single sensor value from the Values property on the SensorEvent argument.
Also, this value does not require filtering to reduce noise, and it can be consumed directly
from the event.

Environment sensors only have a single sensor value,
which does not need filtering.

Detecting device shakes
A fairly common gesture that can be implemented using sensors is the shake gesture. This
can be used to shuffle cards in a game or tracks in a playlist.

How to do it...
To detect a shake, we will need to record the data from the accelerometer and determine
whether a shake has occurred:

1.	 First, we implement the ISensorEventListener interface, and register it with the
manager:
var manager = SensorManager.FromContext(this);
var type = SensorType.Accelerometer;

Chapter 10

321

var accelerometer = manager.GetDefaultSensor(type);
manager.RegisterListener(
 this, accelerometer, SensorDelay.Fastest);

2.	 Then, we will need a few fields that will store the values across the accelerometer
events:
private int lastUpdate;
private float lastX;
private float lastY;
private float lastZ;

3.	 As we are also going to process shakes, we will need a field to hold the shake
related data:
private int lastShake;

4.	 In the OnSensorChanged() method, we ensure that we only process the events
after a reasonable interval of time has passed:
const int EventTimeLimit = 100;
var current = System.Environment.TickCount;
var updateDelta = current - lastUpdate;
if (updateDelta < EventTimeLimit) {
 return;
}

5.	 Then, we calculate the distance by which the device has moved to detect a
shake gesture:
const int ShakeThreshold = 350;
var x = e.Values[0];
var y = e.Values[1];
var z = e.Values[2];
var delta = x + y + z - lastX - lastY – lastZ;
var speed = Math.Abs(delta) / updateDelta * 1000;
if (speed > ShakeThreshold) {
 lastShake = current;
 // there was a shake
}

6.	 We ensure that we update the fields with the latest values from the sensor so that we
can start checking for another shake:
lastUpdate = current;
lastX = x;
lastY = y;
lastZ = z;

Responding to the User

322

How it works...
Just like we can process touch events to detect touch gestures, we can process sensor data to
detect device gestures. One gesture can be that when the user shakes the device, we shuffle
tracks in a playlist or move on-screen objects.

Encapsulating touch or device gesture detection logic allows the logic to
be reused across apps and helps reduce maintenance efforts.

If we want to implement a shake detector, we make use of the accelerometer, and track the
amount of change the device experiences every few milliseconds. If the direction changes
rapidly, then the user is shaking the device.

The way we detect this is by storing the old accelerometer values and then comparing the
new values. When the difference between the values over a time period reaches a certain
threshold, then we record a shake.

There's more...
We can extend this model to only record a shake gesture after a few shakes have already
occurred. This reduces the chance of incorrectly detecting a shake if the user makes a sudden
movement. To do this, we count the number of shakes every time the device is shaken, and
after a certain number of times, we actually record the shake.

First, we change the shake detection logic to rather count the shakes, reporting only after it
reaches a certain number:

const int ShakesRequired = 3;
if (speed > ShakeThreshold) {
 lastShake = current;
 shakeCount++;
 if (shakeCount > ShakesRequired) {
 // there was a shake
 shakeCount = 0;
 }
}

To prevent the number of shakes from growing continuously, we can reset the counter after a
short period of no shakes:

const int ShakeTimeLimit = 500;
if (shakeDelta > ShakeTimeLimit) {
 shakeCount = 0;
}

323

11
Connecting to

Wearables

In this chapter, we will cover the following recipes:

ff Introducing wearable notifications

ff Customizing wearable notifications

ff Creating wearable apps

ff Creating always-on wearable apps

ff Creating dynamic always-on wearable apps

ff Communicating with wearables

ff Building watch faces

ff Configuring watch faces

Introduction
Whether it is something that makes life a little easier or just for fun, everybody enjoys cool
gadgets and small things. Wearables are all the rage with many companies trying to produce
watches and bands in various forms.

Whether a wearable is an enhanced watch, a fitness band, or a fully digital watch with app
support, all the wearables have one thing in common—they provide users an enhanced
experience and are easily worn on the wrists.

Connecting to Wearables

324

Most devices worn on the wrist are watches and, even with modern mobile phones, watches
remain the primary mobile timekeeping means. They are light, fashionable, and reliable.
Wearables can be deemed to be devices that not only keep these basic requirements, but
also provide additional features.

Wearables not only display the accurate time, but they also provide a constant stream of
current, relevant, and useful information. Thus, the information is relevant to the user's
current location, time, and environment.

Wearables often extend a mobile phone's experience, such as providing a user with
notifications from the mobile device or letting users easily view any of the upcoming events.

With all the great aspects of the many wearables, these tiny devices are now becoming more
and more prevalent and will continue to become so in the future. Similar to the time when
mobile phones first became commonplace, wearables will soon be on everyone's wrist.
By preparing apps for the future now, developers can equip themselves to help the user's
experience reach to an entirely new level.

Introducing wearable notifications
Wearable devices are very useful for apps as they allow users to read notifications without
having to reach for a handheld.

Getting ready
To make use of notifications on a wearable, we need to have the Android Support Library v4
Component or the Xamarin.Android.Support.v4 NuGet installed on our handheld project.

How to do it...
We can make notifications automatically appear on a wearable if we manage our app's
notifications using the NotificationCompat type:

1.	 To display typical notifications on a wearable, we will build and display them using the
NotificationCompat and NotificationManagerCompat types:
var notification = new NotificationCompat.Builder(this)
 .SetSmallIcon(Android.Resource.Drawable.StatSysDownload)
 .SetContentTitle("Wearable Notifications")
 .SetContentText("This is a notification from a device.")
 .SetContentIntent(pendingIntent)
 .Build();
var manager = NotificationManagerCompat.From(this);
manager.Notify(NotificationId, notification);

Chapter 11

325

2.	 If we have specified a style for the notification, the wearable notification will also
adhere to this style:
var expandedStyle = new NotificationCompat.BigTextStyle();
expandedStyle.BigText("This is the extended text...");
var notification = new NotificationCompat.Builder(this)
 ...
 .SetStyle(expandedStyle)
 .Build();

3.	 If we want to display buttons on the notification on both handheld and wearable, then
we will use the SetAction() method of the notification builder:
var action = new NotificationCompat.Action.Builder(
 iconResource, "Open Maps", pendingIntent)
 .Build();
var notification = new NotificationCompat.Builder(this)
 ...
 .AddAction(action)
 .Build();

How it works...
When an Android wearable device is connected to a handheld device, the handheld
device automatically synchronizes notifications to this wearable. This allows users to read
notifications without having to reach for the handheld. This hands-free ability is what makes
this wearable device such a great convenience. Although not as powerful as a handheld, the
wearable can often provide an overall improved user experience.

To provide notifications on the wearable, no extra code or configuration is required. All that
needs to be done is to show the notification using the NotificationCompat type. This
type() functions exactly similar to the Notification type and supports all the Android
versions from Android 2.0.

To show a notification, we will create it using the NotificationCompat.Builder
type. Once we have set all the properties, we will build it using the Build() method.
Then, to show the built notification, we will pass it to the Notify()method on the
NotificationManagerCompat type.

In addition to displaying notifications, we can customize their appearance using various
styles and actions. Each component of the notification is rendered differently and more
appropriately on each type of device. Whether it is the handheld or wearable, the notification
will be displayed in an easy-to-consume manner.

Connecting to Wearables

326

Customizing wearable notifications
Notifications displayed on the wearable offer a hands-free experience for using apps; however,
it is often desirable to provide the user with a wearable-specific experience.

How to do it...
Notifications from a handheld device can be easily displayed on wearables, but we can also
provide special features for notifications that will only appear on a wearable:

1.	 We can customize the appearance of notifications using extenders, such as
NotificationCompat.WearableExtender for wearable devices:
var background = BitmapFactory.DecodeResource(
 Resources, Resource.Drawable.notificationBackground);
var extender = new NotificationCompat.WearableExtender()
 .SetHintHideIcon(true)
 .SetBackground(background);

2.	 We can also use extenders to provide specific action buttons for the wearable,
instead of just using the actions from a handheld:
var icon = Android.Resource.Drawable.IcDialogDialer;
var action = new NotificationCompat.Action(
 icon, "Make Call", pendingIntent);
extender.AddAction(action);

3.	 To apply the customizations of the extenders, we will attach the extender using the
Extend() method:
var notification = new NotificationCompat.Builder(this)
 ...
 .Extend(extender)
 .Build();

4.	 Then, we can show the notification normally, and the extender will render the
additional content on the wearable:
var manager = NotificationManagerCompat.From(this);
manager.Notify(NotificationId, notification);

5.	 Once we have created the notification, we can read the extended values through the
same extender type:
var extender =
 new NotificationCompat.WearableExtender(notification);
var isIconHidden = extender.HintHideIcon;

Chapter 11

327

How it works...
Android automatically synchronizes notifications to the wearable, which is often
enough. However, we can provide an improved experience for the wearable using the
NotificationCompat.WearableExtender type.

The WearableExtender type can be used to provide wearable-specific
features and functionality to synchronized notifications.

This type provides the means to override and customize the default notification functionality
and appearance on the wearable device. Usually, the notification has an app icon in the
corner of the notification, but we may wish to use a different look for our app.

If we create an instance of the WearableExtender type, we can use it to modify the
notification. We will use the SetHintHideIcon() method to let the wearable know
not to render the icon. Then, we set a background behind the content card using the
SetBackground() method. In addition to removing the icon, we can also change its position
or use an icon that is different from the app icon.

The bitmap that we use with the SetBackground() method should have a resolution
of 400 × 400 for non-scrolling backgrounds and 640 × 400 for scrolling backgrounds.
These images should be placed in the drawable-nodpi resource folder. Other image
resources for wearable notifications, such as icons, should be placed in the drawable-hdpi
resource folder.

When using the WearableExtender type, a custom
set of actions can be provided for the wearable.

Another method to override functionality is to provide a different set of actions for the
wearable. When not providing actions via the extender, all the actions on the notification are
available on the wearable. We may want to provide a more useful set of actions designed for a
hands-free device. One such improvement would be to provide a reply by typing a response on
the handheld; but on the wearable, we would provide a reply by a voice input.

To provide custom actions on a wearable, we can create the action using the
NotificationCompat.Action type. Then, instead of adding the action to the notification,
we add the action to the wearable extender using the AddAction() method.

If the actions are added to the WearableExtender type,
they replace all actions for the wearable, resulting in a
different set of actions for each device.

Connecting to Wearables

328

There's more...
Notifications using RemoteViews are stripped of custom layouts, and the wearable will only
display the text and icons. However, we can create the appearance custom notifications by
creating an app that runs on the wearable device.

If the standard notification styles don't provide the required features or appearance, we can
display a custom activity with a custom layout. Then, we can request for the wearable to issue
a notification and set the activity as the display intent.

Notifications displayed from the wearable are not synchronized
to the handheld, but notifications on the handheld are
synchronized to the wearable.

We can use normal mechanisms to display a notification from a wearable because the
wearable is actually just a smaller Android device. Displaying a notification from the
wearable is the same as displaying a notification on the handheld.

Creating wearable apps
Synchronizing notifications to the wearable provides an easy means to extend an app to the
wearable; however, sometimes, an entirely customized or fully-featured wearable experience
is required.

Getting ready
All the wearable apps require an app to first be installed on the handheld. Here, we can
assume that we have an existing project to which we are adding a wearable companion.
Although, automatically installed when creating a new Android Wear project, we do need
to have the Xamarin.Android.Wear NuGet installed in the wearable project.

How to do it...
Wearable apps require a companion app on the handheld. Usually, we already have an
existing app to which we can simply add a new wearable app:

1.	 In the open solution, right-click on the solution node, select Add, and then select Add
New Project....

2.	 In the wizard that appears, create a new Android Wear App project just as we
would for any other app. The only thing that we need to do is to ensure that the
Identifier field exactly matches that of the companion app.

Chapter 11

329

Once the wearable app is created, we need to add it as a project reference to the handheld
companion app:

1.	 To do this, right-click on the References folder under the handheld app project, and
select Edit References….

2.	 In the dialog that appears, select the Projects tab, check the box next to the
wearable app project, and then click on OK.

Once the project references are set up, we can run the app on the handheld and the wearable:

1.	 Set the configuration to Release, and run the handheld app.

2.	 After the app has been installed on the handheld, the OS will begin copying the
wearable app to the wearable device.

3.	 In a few moments, the wearable will get a notification that a new app has
been installed.

Because some devices have round screens and others have square, we need to be able to
specify different layouts for each screen type:

1.	 In the Main.axml layout file, we will create a proxy layout using WatchViewStub,
and use the rectLayout and roundLayout attributes to specify the real layout to
load depending on the screen type:
<android.support.wearable.view.WatchViewStub
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:id="@+id/watch_view_stub"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:rectLayout="@layout/RectangleMain"
 app:roundLayout="@layout/RoundMain" />

2.	 Then, we can create the different RectangleMain.axml and RoundMain.axml
layout files for the app in the layout folder:
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 <Button
 android:id="@+id/myButton"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:text="Click Me!" />
</LinearLayout>

Connecting to Wearables

330

3.	 Finally, we can access various controls in the LayoutInflated event of
WatchViewStub:
protected override void OnCreate(Bundle bundle) {
 // load normally
 base.OnCreate(bundle);
 SetContentView(Resource.Layout.Main);

 // wait until the stub loads the real layout
 var id = Resource.Id.watch_view_stub;
 var stub = FindViewById<WatchViewStub>(id);
 stub.LayoutInflated += delegate {
 // now we can access the button
 var buttonId = Resource.Id.myButton;
 var button = FindViewById<Button>(buttonId);
 };
}

How it works...
An Android Wear app is the most powerful method to provide a wearable experience for
Android users. These apps are fully-featured Android apps that run on a wearable device
with only a few differences.

One of the most notable things is the design and usability. Although running on Android,
the wearable has a much smaller screen size as well as more limited hardware. Due to
these limitations, wearable apps are often reduced in functionality and complement the
handheld apps.

Android Wear devices are much smaller and less powerful, and
thus, these apps are usually not as comprehensive.

Wearable apps are not distributed via Google Play directly, but are embedded within a
handheld app. To install an app on the wearable, the handheld must have the wearable app
package embedded as a raw resource. When the app is installed on the handheld, Android
copies the embedded package onto the wearable.

When creating a wearable app, we just need to select the Android Wear App project
template. This template is very similar to the normal app template, but has a few extra
packages installed by default. We can, in fact, create a normal app and use it as a wearable
app, but as we are starting out, using the template is simpler.

Chapter 11

331

Wearable apps are exactly the same as the handheld
apps, and follow the same app lifecycles.

One extra difference is that instead of a single layout file, it provides the proxy layout via the
WatchViewStub type. This is not required and can usually just be replaced with the normal
layout files. The WatchViewStub type is a special view that loads another layout depending
on the screen shape. The two typical screen shapes are square and round, and often the
layout has to be slightly adjusted for each.

When we use the WatchViewStub type, instead of handling the initialization logic in the
OnCreate() method, we attach it to the LayoutInflated event. Then, when the view
is initialized by Android, this event is fired, allowing us to perform the remainder of the
initialization logic. Using the WatchViewStub type is, in fact, similar to what would happen
when creating different layout resources for different device configurations.

Wearable apps can either use special adaptive layouts or
separate layouts via the WatchViewStub layout.

Once we have the wearable app project created (or if we chose to use a normal app project),
we can then set it as a wearable app for the main app. We can do this by simply adding it as a
project reference, just as we would for any other library project. The difference happens during
the compile time when the compiler packages the app. Instead of including the wearable app
as a reference, it adds it as a wearable app resource. No extra logic is required; and when the
handheld app is deployed to a device, the wearable app is deployed to the wearable.

Android apps become wearable apps when they are
added as project references to another Android app.

When debugging wearable apps, we can simply deploy the wearable app directly to the
wearable device via a USB cable. This is simple to do and usually works; however, if the
wearable device does not support a USB debugging, we can forward the ports used to
debug the wearable through the Android Wear app.

More information on forwarding the port can be found on the Google website, available at
http://developer.android.com/training/wearables/apps/bt-debugging.
html.

http://developer.android.com/training/wearables/apps/bt-debugging.html
http://developer.android.com/training/wearables/apps/bt-debugging.html

Connecting to Wearables

332

There's more...
Sometimes, the layouts for the round and square screens are so similar that creating
multiple screens using the WatchViewStub type is not even necessary. We can make use
of various other views that will adjust depending on the screen type. One such view is the
BoxInsetLayout view:

<android.support.wearable.view.BoxInsetLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:background="@drawable/background"
 android:layout_height="match_parent"
 android:layout_width="match_parent">
 <FrameLayout
 android:id="@+id/frame_layout"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layout_box="bottom" />
</android.support.wearable.view.BoxInsetLayout>

Whatever we place inside the FrameLayout view will automatically receive the correct
padding to ensure that the content is not outside of the visible screen area. Sometimes, the
views are so simple we can just use one of the pre-defined template layouts, such as the
CardFragment instance. This is a special Fragment instance that renders content in the
Card format:

var cardFragment = CardFragment.Create(
 "The Title",
 "This is a nice description for the cool title.");
FragmentManager.BeginTransaction()
 .Add(Resource.Id.frame_layout, cardFragment)
 .Commit();

There are a few other views that can be used to automatically adjust its appearance
depending on the wearable's screen. Other views include the CardScrollView view and
the CardFrame instance. For other layout types, there is the WearableListView type with
WearableListItemLayout view for each item, or the GridViewPager instance. There are
also many activities such as the ConfirmationActivity instance.

Creating always-on wearable apps
The ability to create fully-featured apps for Android wearables is a great way to provide a
hands-free experience. However, to preserve battery, Android will quickly put the device to
sleep, resulting in the experience being lost.

Chapter 11

333

How to do it...
Sometimes, we want to be able to display content on the screen, even when the wearable
goes to sleep or enters the ambient mode:

1.	 The first thing that we need to do is add the wake lock permission requirement. We
need to add this to both, wearable and handheld, as the wearable cannot have any
permission that the handheld does not have:
[assembly: UsesPermission(Manifest.Permission.WakeLock)]

2.	 Next, in the wearable app, we need to specify that we are going to be using the
wearable library if it is available:
[assembly: UsesLibrary(
 "com.google.android.wearable", false)]

3.	 Now, we can begin implementing the always-on activity. Instead of inheriting from
Activity, we can inherit from WearableActivity:
public class MainActivity : WearableActivity

4.	 Then, we can request to be notified when the ambient mode changes, by invoking the
SetAmbientEnabled() method:
protected override void OnCreate(Bundle bundle) {
 base.OnCreate(bundle);
 SetAmbientEnabled();
}

5.	 Finally, we can override the OnEnterAmbient() and OnExitAmbient() methods
to perform the desired actions when the ambient mode changes:
public override void OnEnterAmbient(Bundle ambientDetails) {
 base.OnEnterAmbient(ambientDetails);
}
public override void OnExitAmbient() {
 base.OnExitAmbient();
}

6.	 We can detect whether the device is in ambient mode using the IsAmbient property:
boo linAmbientMode = IsAmbient;

7.	 There is also a special method that will trigger once every minute so that we can
update the UI when in ambient mode:
public override void OnUpdateAmbient() {
 base.OnUpdateAmbient();
}

Connecting to Wearables

334

How it works...
Sometimes, we create an app that we would like to use to display data on the screen, even
after the device goes to sleep. This is most useful for a watch face; but it is also used in other
apps, such as a fitness app. It is unnecessary for the device to be running at full power if the
screen is going to be updated only in every few seconds or even minutes.

These types of apps are useful when only we want to allow the user to always be able to see
the information, but when we do not want to keep the device awake all the time. When the
device is awake, battery gets consumed. So having an app that can run in low-power ambient
mode preserves battery as well as functioning as an always-on display.

The ambient mode is a low-power mode that allows an app to run
when the device goes to sleep, but with more limited capacity.

The first thing that needs to be done is to get the permission of keeping the display awake.
However, only the wearable app, and not the handheld, requires the permission. The handheld
app must have the same or more permissions than the wearable app, because the wearable
app cannot exceed the permissions of the handheld app. If we forget to add the permission to
the handheld, the wearable app will not be installed.

A wearable app can only have a subset of the permissions
of the handheld app.

To be able to use the always-on activity on the wearable, we must specify that we are going to
use the com.google.android.wearable library. If we want our app to be installed on the
wearables running Android versions prior to version 5.1, we need to specify that the library
is not required by passing false as the second parameter. If the device is not running the
appropriate version of Android or does not support the ambient mode, then the activity will
function as a normal activity.

For utilizing the activity that is aware of the ambient mode, our activity should inherit from
WearableActivity instead of Activity. This type provides features that inform us
about when the devices enter or leave the ambient mode. To be notified of these events,
we need to request that the activity to runs in ambient mode. We do this by invoking the
SetAmbientEnabled() method in OnCreate.

As soon as the device enters the ambient mode or goes to sleep, the activity's
OnEnterAmbient() method will be invoked. Conversely, when the device leaves the ambient
mode or wakes up, the OnExitAmbient() method is invoked. We can override these
methods to handle the transitions, allowing our app to adjust. If we need to verify that we are
in the ambient mode, we can easily do so using the value of the IsAmbient property.

Chapter 11

335

When in the ambient mode, the activity will invoke the OnUpdateAmbient() method once
in a minute so that we can update the screen with information for the user. Although, we can
update the screen more frequently using alarms, we should not exceed an update once every
ten seconds.

When in the ambient mode, the device should not be
woken up more than once in every 10 seconds.

When updating the screen in the ambient mode, we should reduce the amount of processing
and colors displayed to reduce the battery consumption. Usually, we would specify a black
background and minimal white graphics or text. Since the ambient mode does not receive
events, we can disable any kind of interactive element.

Creating dynamic always-on wearable apps
An always-on app provides the user with the ability to view information at any time, without
having to wake the device; however, the visible information may become stale if the actual
information changes more frequently than once in a minute.

How to do it...
We may need to update the content on the wearable more frequently than once in a minute;
thus, we can schedule an alarm to trigger an update outside the one-minute interval:

1.	 We will need the wake lock permission on both, the handheld and wearable:
[assembly: UsesPermission(Manifest.Permission.WakeLock)]

2.	 If we want to support older wearables, we will need to set the wearable library
as optional:
[assembly: UsesLibrary(
 "com.google.android.wearable", false)]

3.	 Next, we need to inherit it from WearableActivity:
public class MainActivity : WearableActivity

4.	 We are going to use the alarm manager to send us an Intent instance, which we
will respond to by updating the UI. As the intent will try to launch a new instance of
our activity, we will specify that we only want a single instance of our activity using the
LaunchMode property of the [Activity] attribute on our activity:
[Activity(..., LaunchMode = LaunchMode.SingleInstance)]

Connecting to Wearables

336

Now that the activity is set up, we schedule the alarm for several seconds in the future when
we are in the ambient mode:

1.	 In OnCreate, we request ambient mode notifications by invoking the
SetAmbientEnabled() method:
SetAmbientEnabled();

2.	 As we need to schedule an alarm, we get an instance of AlarmManager:
alarmManager = AlarmManager.FromContext(this);

3.	 Because we are just going to request that the alarm sends an Intent instance to
our activity, we create the PendingIntent instance for the alarm manager:
var alarmIntent = new Intent(
 ApplicationContext, typeof(MainActivity));
alarmPendingIntent = PendingIntent.GetActivity(
 ApplicationContext,
 0,
 alarmIntent,
 PendingIntentFlags.UpdateCurrent);

4.	 Now, we create a method to schedule our once-off alarm to fire several seconds in
the future. We use the IsAmbient property to ensure that we only schedule the
alarm when in the ambient mode:
private void ScheduleAlarm() {
 if (IsAmbient) {
 long alarmInterval = 15 * 1000; // 15 seconds
 long time = JavaSystem.CurrentTimeMillis();
 long delay = alarmInterval- (time % alarmInterval);
 long trigger = time + delay;
 alarmManager.SetExact(
 AlarmType.RtcWakeup, trigger, alarmPendingIntent);
 }
}

5.	 When we enter the ambient mode, we schedule the alarm:
public override void OnEnterAmbient(Bundle ambientDetails)
{
 base.OnEnterAmbient(ambientDetails);
 ScheduleAlarm();
}

Chapter 11

337

6.	 After the alarm manager sends the intent, we will receive it in the OnNewIntent()
method. As this type of alarm is a once-off alarm, we will have to reschedule when
it fires:
protected override void OnNewIntent(Intent intent) {
 base.OnNewIntent(intent);
 Intent = intent;
 if (IsAmbient) {
 // update the ambient UI
 }
 ScheduleAlarm();
}

7.	 When we leave the ambient mode, we must make sure to cancel the alarm:
public override void OnExitAmbient() {
 base.OnExitAmbient();
 alarmManager.Cancel(alarmPendingIntent);
}

8.	 We need to do the same for OnDestroy so that we cancel the alarm when the user
exits the app:
protected override void OnDestroy() {
 base.OnDestroy();
 alarmManager.Cancel(alarmPendingIntent);
}

Although, this is all that is needed to update the UI every few seconds while in the ambient
mode, we can add a further improvement to take into consideration the default one-minute
update provided by the framework:

ff To avoid unnecessary wake operations, we can move the scheduled alarm to the
next interval:
public override void OnUpdateAmbient() {
 base.OnUpdateAmbient();
 // update the ambient UI
 ScheduleAlarm();
}

How it works...
Although, the Android Wear provides the WearableActivity type to allow us to neatly
create always-on apps, the default update interval of one minute may not be frequent enough.
This maybe the case for a fitness app or some other app where we want the user to be able to
glance at the information, which is updated fairly rapidly.

Connecting to Wearables

338

Creating a more dynamic always-on app is more of an extension of a typical always-on app.
We still require the activity inherit from WearableActivity, and we do need other various
events that this type brings. What we add is a timer or alarm that triggers additional updates
more frequently. Because we are still creating a traditional always-on app, we still need
to specify the wake lock permission and the com.google.android.wearable library
requirement. Also, we must request that the activity be allowed to enter the ambient mode
using the SetAmbientEnabled() method in OnCreate.

The simplest method to update the screen could just be to relaunch the activity. We can do
this as Android provides us with a means to skip the actual launch if the activity is already
visible, which will be the case. To prevent multiple instances of our activity, we can set the
LaunchMode property on the [Activity] attribute to LaunchMode.SingleInstance.
Then, when the alarm fires, a new activity will not be created, but just the OnNewIntent()
method will be invoked on the existing activity.

If an activity is set to only exist as a single instance, any
attempt to start a new instance will get redirected to the
OnNewIntent() method of this activity.

In OnCreate, we set up the AlarmManager instance using the static FromContext()
method. And, as we don't need a dynamic intent, we can create the PendingIntent
instance that will hold the Intent instance to launch our activity.

When the wearable enters the ambient mode, the OnEnterAmbient() method will be
invoked. Here, we will schedule the pending intent for several seconds into the future. We
should make sure that we do not wake the device up more frequently than once in every
10 seconds. Waking up the device requires much more power than keeping the device awake.
So, if we need the screen to get updated more frequently, we should rather not allow the
device to enter the ambient mode.

When in the ambient mode, the device should not be woken up more
than once every 10 seconds, but should rather acquire a normal
wakelock to prevent the device from going to sleep altogether.

To avoid unnecessary events, we should ensure that the device is in the ambient mode using
the IsAmbient property, before we schedule the alarm. Then, we must schedule an exact
alarm for several seconds into the future. We can't use a repeating alarm as Android does not
permit a more frequent alarm than once in a minute. Also, we must ensure that we use the
RtcWakeup alarm type so that the device will wake up when the alarm fires.

Chapter 11

339

For intervals that are shorter than one minute, an exact
alarm must be scheduled instead of a repeating alarm.

When the device wakes, the OnExitAmbient() method will be invoked. To ensure that the
alarm does not fire unnecessarily, we cancel it using the same pending intent that we used to
schedule the alarm with. To prevent the activity from being relaunched when the user exits our
app, we must make sure to cancel the alarm in the OnDestroy() method.

The OnNewIntent() method is invoked when the alarm fires. What actually happens is that
the alarm fires and Android tries to launch the activity intent contained in the pending intent.
When it sees that the activity is already visible, it then just invokes the OnNewIntent()
method.

The first thing we can do is to update the Intent property of the activity to be the intent we
just received. Then, we can update the screen with the information that we want to present
to the user. Just before we allow the device to go back to sleep, we need to re-schedule the
alarm as an exact alarm is only a once-off alarm.

One additional thing we can do to further optimize the app is to ensure that we don't allow
the alarm to fire too soon after Android invokes the OnUpdateAmbient() method. The
OnUpdateAmbient() method is still invoked every minute, because we have just added
an additional mechanism to wake the device. In this method, we can update the screen and
reschedule the alarm, just as we would in the OnNewIntent() method.

Communicating with wearables
Wearable apps provide a great way to extend handheld devices; however, sometimes,
a wearable is not powerful enough to perform a task on its own, or it needs information
from the handheld.

Getting ready
As we are going to be communicating between the devices using Google Play services, we
need to install the Xamarin.GooglePlayServices.Wearable NuGet before we start.

Connecting to Wearables

340

How to do it...
Apps running on wearables can communicate with apps running on the handheld devices
using the Google Play services. To implement data communication between the handheld
and the wearable, we can actually use the same code:

1.	 We are going to make use of the Google Play services' Data API to synchronize data
between the devices. First, we need to implement the IDataApiDataListener
interface in our activity:
public class MainActivity : Activity, IDataApiDataListener {
 public void OnDataChanged(DataEventBuffer dataEvents) {
 }
}

2.	 Then, we need to create an instance of the Google Play services' API client, usually in
the OnCreate() method of the activity. We use various callbacks to add and remove
the Data API listener:
apiClient = new GoogleApiClientBuilder(this)
 .AddConnectionCallbacks(bundle => {
 // attach the data listener
 WearableClass.DataApi.AddListener(apiClient, this);
 }, cause => {
 // detach the listener
 WearableClass.DataApi.RemoveListener(apiClient, this);
 })
 .AddOnConnectionFailedListener(result => {
 // handle errors
 })
 .AddApi(WearableClass.API)
 .Build();

3.	 Now that we have the client, we can initiate the connection to the backing service
by invoking the Connect() method of the client. This is typically done in the
OnResume() method of the activity when we are in the foreground:
protected override void OnResume() {
 base.OnResume();

 apiClient.Connect();
}

Chapter 11

341

4.	 To ensure that we clean up when the user exits our app, we remove the Data API
listener and disconnect it from the services in the OnPause() method:
protected override void OnPause(){
 if (apiClient != null &&apiClient.IsConnected) {
 WearableClass.DataApi.RemoveListener(apiClient, this);
 apiClient.Disconnect();
 }

 base.OnPause();
}

Once we are connected, we can start updating our app's data using the Data API. These
updates are then synchronized with the handheld and wearable:

1.	 Data is synchronized using a set of key-value pairs at a virtual location. We need to
specify a string key for the data member, and a string path to the entire data object:
private const string CountKey ="keys.count";
private const string CounterPath = "/games/counter";

2.	 To create the data request that will be sent over the Data API, we make use of the
DataMap and PutDataMapRequest types:
var mapRequest = PutDataMapRequest.Create(CounterPath);
mapRequest.DataMap.PutInt(CountKey, count);

3.	 Then, we send the new DataMap instance over the Data API using the
PutDataItemAsync() method:
var dataRequest = mapRequest.AsPutDataRequest();
var dataApi = WearableClass.DataApi;
await dataApi.PutDataItemAsync(apiClient, dataRequest);

4.	 As soon as the data has synchronized, we will receive an event on the other device
via the OnDataChanged() method of the IDataApiDataListener interface:
public void OnDataChanged(DataEventBuffer dataEvents) {
 if (dataEvents.Status.IsSuccess) {
 // get the value from the event
 foreach (var dataEvent in dataEvents) {
 if (dataEvent.Type == DataEvent.TypeChanged) {
 var item = dataEvent.DataItem;
 if (item.Uri.Path == CounterPath) {
 var map = DataMapItem.FromDataItem(item).DataMap;
 count = map.GetInt(CountKey);
 break;
 }
 }

Connecting to Wearables

342

 }

 // make sure we update on the UI thread
 RunOnUiThread(() => {
 // update the UI
 });
 } else {
 // handle errors
 }
}

5.	 When we start the app for the first time after the connection has succeeded, we
might want to get hold of the existing data:
var dataApi = WearableClass.DataApi;
var dataItems = await dataApi.GetDataItemsAsync(apiClient);
foreach (var item in dataItems) {
 if (item.Uri.Path == CounterPath) {
 var dataMap = DataMapItem.FromDataItem(item).DataMap;
 count = dataMap.GetInt(CountKey);
 break;
 }
}

How it works...
Creating a wearable app is a great way to extend the handheld and provide an additional user
experience. However, the device is often much more limited in hardware, most certainly so
with regards to the screen size.

One of the great ways we can extend the handheld experience, but without losing on
the power of the handheld, is by establishing communication between the devices. By
communicating with a handheld, the wearable is able to offload any intensive or complex
tasks to a more capable device.

Wearable apps can communicate with their handheld
counterparts in many ways.

The devices can communicate using several methods, and one of the easiest and most
common methods is to synchronize the data, such as app settings or user preferences. This
type of communication or synchronization uses the Google Play services' Data API.

Chapter 11

343

The Data API not only synchronizes data between the wearable and handheld, but also with
the cloud and any other devices connected to the cloud. To use the Data API in an Android
wearable app, we must first install the Xamarin.GooglePlayServices.Wearable NuGet, which
will install the prerequisites.

By storing the data on the cloud, our app can preserve its data when the user gets new
devices, as well as provide a persistent storage option for the app data. Another benefit of
cloud storage is that if the wearable loses its connectivity temporarily, the wearable can
retrieve the data from the cloud when it reconnects.

Google Play services synchronize data with all the connected
devices, both those connected directly and those connected
through the cloud.

To communicate between devices, we need to set up the Google API client. This client
manages the connections and events, providing a simple, listener-based notification system.
In addition to the Data API events, we are notified of connection events, such as when the
connection is established or if it goes down temporarily.

The Data API has an event to notify listeners when new data is synchronized or changed on
one of the devices. Since we want to know when the handheld or wearable changes the data,
we must implement the IDataApiDataListener interface. It is not necessary to create a
new object for this, and therefore, the current activity can be used.

The IDataApiDataListener interface has a single method—OnDataChanged(). This
method is invoked as soon as the client is informed about another device changing the
data. If the wearable is connected via Bluetooth, then the data and events come through the
Bluetooth stack. Other devices receive events through the cloud, possibly over Wi-Fi.

The IDataApiDataListener interface is used when listening
for making changes to the data.

Before we can transfer data, we need to connect to the Google Play services. To create the
client, we instantiate a new GoogleApiClientBuilder instance.

Because we care about the connection status, we need to pass two delegates to the
AddConnectionCallbacks() method. The first method is invoked when the client
connection succeeds. Here, we make sure to attach our IDataApiDataListener interface
instance to the Data API. The second delegate is invoked when the connection is suspended.
In this delegate, we make sure to detach our interface instance so that no memory is leaked.

The other connection event method is the AddOnConnectionFailedListener() method.
This method allows us to attach a delegate that will be invoked if the connection fails.

Connecting to Wearables

344

The Google Play services client uses callbacks to notify
about connection status changes.

Finally, before we create the client instance, we specify that we are going to be using the
wearable APIs for communication with the wearable. We do this by passing the value of the
API property of the WearableClass to the AddApi() method. The WearableClass type
contains various properties that are used to access various APIs used for communication with
wearables. The API property contains a token used by the client to set up the wearable APIs.

After a client has been connected, we can use the DataApi property of the WearableClass
type to access the data APIs for wearables. The DataApi property returns an instance of
the IDataApi interface, which we can use to attach and detach the listeners relating to the
wearable Data API.

The WearableClass type contains various properties
that are used to communicate with wearables.

The IDataApi interface has several methods, but we only need the AddListener() and
RemoveListener() methods. We pass the current client and the listener instance to
each of these methods, making sure to attach the listener when the client connects, and
detaching it when the connection is suspended.

We invoke the Connect() method of the client in OnResume, as we want to connect only
when our activity is in the foreground. Conversely, we invoke the Disconnect() method
when we leave the foreground or when the OnPause() method is invoked. We should detach
the listener before we disconnect so that we do not leak any memory.

Once we are connected, we can start sending data to the service. The service will then
process and synchronize the data to various devices and the cloud. The easiest way to
manage the data is using the DataMap type. A DataMap instance is stored at a specific path
and consists of key-value pairs. There are various put and get methods, such as PutString
and GetString, which are used to store and retrieve data.

Even though we are using the DataMap type to store our data, the Data API expects the
DataItem types. When storing and retrieving data, the DataMap type is serialized and
deserialized into a DataItem type, which stores the DataMap type as a byte array.

The Data API handles the DataItem types, which are
deserialized into and serialized from the DataMap types.

Chapter 11

345

When we want to store a new data map, we create an instance of PutDataMapRequest
using the static Create() method. The PutDataMapRequest instance is a container type
for a DataMap instance and the path to the data map. To access or update the data map that
will be stored, we use the DataMap property.

The Create() method requires that we specify the path where we are going to store the data
map. The path is similar to a Unix-based, file-system path. It uses forward slashes and must
begin with a forward slash. Although similar to a file system, it is not actually stored at this
location on the local file system.

The PutDataMapRequest.Create() method requires
that the path start with a forward slash.

Before we can synchronize our data map, we must obtain the data item from our
PutDataMapRequest using the AsPutDataRequest() method. This method returns
another container object, a PutDataRequest instance, which now contains the serialized
byte array that was once a DataMap type.

We can now pass the new PutDataRequest instance to the PutDataItemAsync()
method of the Data API, along with an open API client. We can verify that the operation was
successful using the result of this method, which returns an IDataApiDataItemResult
instance. This type contains both the data item that was saved and the status of the
operation. The data item is obtained through the DataItem property and the status through
the Status property.

After the data is passed to the Data API, it will be passed on to any attached wearables or
other devices. Because we attached an instance of IDataApiDataListener to the Data
API, the OnDataChanged() method of this listener will be invoked. The data has been
received on another thread, so we have to make sure that when we update the UI, we do so
on the UI thread. We can easily do this by using the RunOnUiThread() method.

The OnDataChanged() method of the IDataApiDataListener
instance is invoked on a background thread, thus all UI operations must
be forwarded to the UI thread.

The OnDataChanged() method has one argument—a DataEventBuffer instance.
This type inherits from IEnumerable<IDataEvent> with an additional Status property.
We can iterate through the IDataEvent items and process them accordingly by taking
advantage of LINQ.

Connecting to Wearables

346

Each IDataEvent item has a Type property, which is either DataEvent.TypeChanged or
DataEvent.TypeDeleted. Since we only process data that has not been deleted, we will
first check the Type property. Another property that is used to identify the data is the Uri
property, which contains the path that was specified when the data was created. If there are
multiple sources of data, which might be the case in some apps, we must first verify that it is
the data we are expecting.

Once we have determined that we are going to process the item, we can read the associated
data using the DataItem property. This property has a type of IDataItem, which contains
the serialized DataMap instance.

As a result of using a DataMap type to synchronize data, we have to convert the IDataItem
type back into DataMap. This is done using the DataMapItem type. This type has a
static FromDataItem() method, which accepts an IDataItem instance and returns a
DataMapItem instance. This type also has a Uri property that we could read, but, as we have
already read the value from the IDataItem type, we can move on to the DataMap property.

The DataMap property returns the deserialized DataMap instance that was originally passed
to the Data API from another device. We can now read the data map using the various get
methods, such as GetString() or GetBoolean(). Each get method has two overloads:
one that returns a system default, if no value is found for the specified key; and another that
returns a provided default.

When our app starts, we want to be able to read any previously synchronized data. Instead
of waiting for the data to be sent over the Data API, we can request the current data that
uses the GetDataItemsAsync() method of the wearable Data API. The return type of
this method is DataItemBuffer, which inherits from IEnumerable<IDataItem> with
an additional Status property. We can use the Status property to determine if the
request was successful, and then iterate through the result. Similar to items obtained from
a DataEventBuffer instance, we read the Uri property and convert each item into a
DataMap property. Then, we process the data map accordingly.

There's more...
In any case where we don't want to synchronize the data, but rather send it directly to another
device, we can use the Message API instead of the Data API.

1.	 We need to make sure that we implement the IMessageApiMessageListener
interface on the activity:
public class MainActivity :
Activity, IMessageApiMessageListener {
 public void OnMessageReceived(IMessageEvent messageEvent) {
 }
}

Chapter 11

347

2.	 Then, we add the listener instance to the Message API:
WearableClass.MessageApi.AddListenerAsync(client, this);

3.	 In order to communicate, we need a node to communicate with. We can use the
GetConnectedNodesAsync() method to fetch all the connected nodes, making
sure that the node is available for communication using the IsNearby property:
await WearableClass.NodeApi.GetConnectedNodesAsync(client);
var node = result.Nodes.FirstOrDefault(n => n.IsNearby);

4.	 For sending data to another device, we pass the node ID, along with the path and
data, to the SendMessageAsync() method:
var bytes = BitConverter.GetBytes(count);
await WearableClass.MessageApi.SendMessageAsync(
 client, node.Id, CounterPath, bytes);

5.	 On another device, the OnMessageReceived() method will be invoked, and we can
read the data using the GetData() method:
public void OnMessageReceived(IMessageEvent messageEvent) {
 var bytes = messageEvent.GetData();
 if (bytes != null && bytes.Length> 0) {
 count = BitConverter.ToInt32(bytes, 0);
 }
 }

Building watch faces
Android wearables are far more than just watches, but they still need to perform the basic
task of presenting the user with the current time.

Getting ready
Although, automatically installed when creating a new Android Wear project, we do need to
have the Xamarin.Android.Wear NuGet installed in the wearable project.

Connecting to Wearables

348

How to do it...
Creating a watch face consists of creating two parts. The first is the rendering engine,
which inherits from one of the WatchFaceService.Engine types, and the other is
WatchFaceService, which manages it:

1.	 We need to specify the permissions for both the handheld and wearable apps.
The handheld does not require any activities, but just requires the permissions
to be set:
[assembly: UsesPermission(Manifest.Permission.WakeLock)]
[assembly: UsesPermission(
 "com.google.android.permission.PROVIDE_BACKGROUND")]

2.	 For our watch face, we use CanvasWatchFaceService.Engine as our base type.
In the constructor, we keep a reference to CanvasWatchFaceService because we
will need it for creating the watch face:
class WatchFaceEngine : CanvasWatchFaceService.Engine {
 private readonly CanvasWatchFaceService service;
 public WatchFaceEngine(CanvasWatchFaceService service)
 : base (service) {
 this.service = service;
 }
 public override void OnCreate(ISurfaceHolder surface) {
 base.OnCreate(surface);
 }
 public override void OnTimeTick() {
 base.OnTimeTick();
 }
 public override void OnVisibilityChanged(bool visible) {
 base.OnVisibilityChanged(visible);
 }
 public override void OnAmbientModeChanged(bool isAmbient) {
 base.OnAmbientModeChanged(isAmbient);
 }
 public override void OnSurfaceChanged(
 ISurfaceHolder holder, Format format,
 int width, int height) {
 base.OnSurfaceChanged(holder, format, width, height);
 }
 public override void OnDraw(Canvas canvas, Rect bounds) {
 base.OnDraw(canvas, bounds);
 }
}

Chapter 11

349

3.	 In the constructor, we set up a Handler instance to trigger at every second so that
we can draw the second hand:
private const int MessageId = 123;
private const long Interval = 1000;

tickHandler = new Handler(message => {
 var timerEnabled = IsVisible&&!IsInAmbientMode;
 if (message.What == MessageId&&timerEnabled) {
 Invalidate();
 long time = Java.Lang.JavaSystem.CurrentTimeMillis();
 long delay = Interval - (time % Interval);
 tickHandler.SendEmptyMessageDelayed(MessageId, delay);
 }
});

4.	 Because we are going to be painting every second, we initialize the Paint instances
in the OnCreate() method to reduce the overhead:
hourPaint = new Paint();
hourPaint.SetARGB(255, 200, 200, 200);
hourPaint.StrokeWidth = 5.0f;
hourPaint.AntiAlias = true;
hourPaint.StrokeCap = Paint.Cap.Round;
minutePaint = new Paint();
minutePaint.SetARGB(255, 200, 200, 200);
minutePaint.StrokeWidth = 3.0f;
minutePaint.AntiAlias = true;
minutePaint.StrokeCap = Paint.Cap.Round;
secondPaint = new Paint();
secondPaint.SetARGB(255, 200, 200, 200);
secondPaint.StrokeWidth = 4.0f;
secondPaint.AntiAlias = true;
secondPaint.StrokeCap = Paint.Cap.Round;

5.	 Also in the OnCreate() method, we set the WatchFaceStyle instance for our
watch face, using a reference to the watch face service:
var style = new WatchFaceStyle.Builder(service)
 .SetCardPeekMode(WatchFaceStyle.PeekModeShort)
 .SetBackgroundVisibility(
 WatchFaceStyle.BackgroundVisibilityInterruptive)
 .SetShowSystemUiTime(false)
 .Build();
SetWatchFaceStyle(style);

Connecting to Wearables

350

6.	 Every minute, Android will automatically invoke the OnTimeTick() method, so we
can simply request for the view to be redrawn:
Invalidate();

7.	 In the OnVisibilityChanged() and OnAmbientModeChanged() methods, we
need to request for the face to be redrawn, as well as making sure the second-hand
timer is enabled or disabled, depending on the visibility and ambient values:
Invalidate();
tickHandler.RemoveMessages(UpdateMessageId);
if (IsVisible&&!IsInAmbientMode) {
 tickHandler.SendEmptyMessage(UpdateMessageId);
}

8.	 Before we draw, the OnSurfaceChanged view may be invoked indicating that the
drawing surface has changed, so we can adjust our drawing parameters there:
centerX = width / 2f;
centerY = height / 2f;
secondHandLength = centerX * 0.875f;
minuteHandLength = centerX * 0.75f;
hourHandLength = centerX * 0.5f;

9.	 Finally, in the OnDraw() method, we draw the watch face onto the screen, drawing
as little as possible in the ambient mode:
// background color
if (IsInAmbientMode) {
 canvas.DrawColor(Color.Black);
}
else {
 canvas.DrawColor(Color.DarkGreen);
}
// hand rotations
var time = DateTime.Now.TimeOfDay;
float seconds = time.Seconds;
float secRot = seconds / 60f * (float)Math.PI * 2f;
float minutes = time.Minutes + seconds / 60f;
float minRot = minutes / 60f * (float)Math.PI * 2f;
float hours = time.Hours + minutes / 60f;
float hrRot = hours / 12f * (float)Math.PI * 2f;
// hour hand
float hrX = (float)Math.Sin(hrRot) * hourHandLength;
float hrY = (float)-Math.Cos(hrRot) * hourHandLength;
canvas.DrawLine(
 centerX, centerY,
 centerX + hrX, centerY + hrY,

Chapter 11

351

 hourPaint);
// minute hand
float minX = (float)Math.Sin(minRot) * minuteHandLength;
float minY = (float)-Math.Cos(minRot) * minuteHandLength;
canvas.DrawLine(
 centerX, centerY,
 centerX + minX, centerY + minY,
 minutePaint);
// second hand only in interactive mode.
if (!IsInAmbientMode) {
 float secX = (float)Math.Sin(secRot) * secondHandLength;
 float secY = (float)-Math.Cos(secRot) * secondHandLength;
 canvas.DrawLine(
 centerX, centerY,
 centerX + secX, centerY + secY,
 secondPaint);
}

Our watch face engine is complete. So now, we set up the wearable app to have a watch face
service. We don't need any activities in either project, but just a service in the wearable project:

1.	 Our watch face service will inherit from a WatchFaceService type, such as
CanvasWatchFaceService. We override the OnCreateEngine() method to
return a new instance of our watch face engine:
public class WatchFaceService : CanvasWatchFaceService {
 public override WallpaperService.EngineOnCreateEngine() {
 return new WatchFaceEngine(this);
 }
}

2.	 The watch face service has a set of attributes that will be used to describe the
service to the Android device. The first is declaring our type as a service by adding
a [Service] attribute:
[Service(
 Label = "XamarinCookbook",
 Permission = Android.Manifest.Permission.BindWallpaper)]

3.	 Next, we specify that this service is started as a watch face using an
[IntentFilter] attribute:
[IntentFilter(new [] {
 Android.Service.Wallpaper.WallpaperService.
 ServiceInterface

Connecting to Wearables

352

}, Categories = new [] {
 "com.google.android.wearable.watchface.
 category.WATCH_FACE"
})]

4.	 Then, in the wearable's resources, we add an XML resource named watch_face.xml:
<?xml version="1.0" encoding="UTF-8"?>
<wallpaper
xmlns:android="http://schemas.android.com/apk/res/android"
/>

5.	 Then, we add this resource to the service using a [MetaData] attribute:
[MetaData(
 Android.Service.Wallpaper.WallpaperService.
 ServiceMetaData,
 Resource = "@xml/watch_face")]

6.	 Similarly, we provide a preview image for the Android Wear companion app using two
images. One should be a round preview and the other should be a square preview of
the watch face. In our case, we save the images as preview.png and preview_
round.png in the drawable resource folder.

7.	 Finally, we add these preview images to the watch face by also using the
[MetaData] attributes:
[MetaData(
 "com.google.android.wearable.watchface.preview",
 Resource = "@drawable/preview")]
[MetaData(
 "com.google.android.wearable.watchface.preview_circular",
 Resource = "@drawable/preview_round")]

How it works...
Although we call them wearables, they were originally called smartwatches. The name
changed to wearables after they grew to surpass the watch features. Wearables are much
more than a smartwatch, but they still keep the basic idea of a watch, and one of the most
important features of a watch, or rather, the only important feature of a watch, is to display
the current time to the wearer.

Android wear is more than a watch operating system, but it is still a watch. And as a watch, it
needs to display the current time. It does this by utilizing a special wallpaper that can handle
displaying the current time when the device is awake, and when the device goes to sleep or
enters the ambient mode.

Watch faces exist as a special type of service that are managed by the Android Wear
companion app installed on the handheld.

Chapter 11

353

An app that provides a watch face does not need to have any
activities, but one might exist for configuration purposes.

When creating a watch face, we need to ensure that we design for both, square and round
devices, as well as support the ambient mode properly. For the battery to last long, we need
to ensure that when drawing in the ambient mode, we draw as little as possible.

Unlike traditional apps that support the ambient mode, watch faces cannot be closed by the
user and are always displayed. As watch faces run continuously, we need to ensure that all
the work is kept to a minimum, and network operations are done as little as possible.

Because a watch face supports the ambient mode and is also a wallpaper, we need to specify
the wake lock and the com.google.android.permission.PROVIDE_BACKGROUND
permissions.

Creating a watch face consists of two parts: the engine that
processes events and draws the face, and the service that
instantiates and manages the watch face.

The watch face engine inherits from the WatchFaceService.Engine type. There are two
types to inherit from: the 2D, canvas-based CanvasWatchFaceService.Engine and the
3D, OpenGL-based Gles2WatchFaceService.Engine.

Most watch faces can be created using the canvas-based drawing mechanism. In this case,
we only need to override several watch face lifecycle methods to do so. Although, the watch
face engine methods cover most of the events, we do need to create the mechanism that
redraws the screen every second.

The simplest way to redraw the screen every second is to create a Handler instance and
post delayed messages. As we want the screen to be redrawn every second, we use a delay
of 1 second. We must make sure that we only use the handler when the device is not in the
ambient mode and is actually visible on the screen. The base type provides two properties to
test these cases: the IsInAmbientMode and IsVisible properties.

The watch face engine does not provide a mechanism for updating
these on hand position, this must be created soon.

To reduce any kind of overhead when drawing on the screen, we should initialize as much as
we can in the OnCreate() method. This includes any drawing mechanisms, such as Paint
instances and bitmaps.

Connecting to Wearables

354

Because the operating system needs to draw all the UI elements, such as battery indicators at
the top of the watch face, we need to specify where and how to draw them. We do this in the
OnCreate() method using the SetWatchFaceStyle() method. We pass in an instance of
a WatchFaceStyle instance created using the WatchFaceStyle.Builder type.

Once we have set up all the pieces required to draw our watch face, we can start overriding
the lifecycle events. Watch faces have a default update interval of one minute and at that
time, the OnTimeTick() method is invoked. As we don't need to do anything special, we can
simply request that the screen be redrawn by invoking the Invalidate() method. We use
the OnTimeTick() method instead of using the handler to redraw the screen when in the
ambient mode.

In the OnVisibilityChanged() and OnAmbientModeChanged() methods, we can also
just request a redraw. We can even invoke the Invalidate() method here. However, as
the device may be going to sleep or an app launching over the watch, we need to stop the
Handler instance from requesting redraws. The device may also be waking up, so we may
also need to start the Handler instance again.

The second hand should not be drawn when in the ambient mode,
and thus, the mechanism to update them can be disabled.

In addition to responding to ambient changes, we might need to handle cases where
the screen has a reduced color mode. We can override the OnPropertiesChanged()
method and read the Bundle argument. The Boolean bundle value for the
PropertyLowBitAmbient key indicates whether the screen supports fewer bits for each
color. So, we should disable the anti-aliasing and bitmap filtering. Also, the Boolean value for
the PropertyBurnInProtection key indicates whether we need to avoid large areas of
white pixels or drawing near the edges of the screen when in the ambient mode.

Some devices have extra requirements when drawing in
the ambient mode.

During initialization, and if the drawing surface changes for some reason, the
OnSurfaceChanged() method is invoked. We can use this method to update any
screen-related drawing parameters, such as the surface size. This method is useful for
performing any kind of image scaling or size calculations. It is better to only perform these
tasks once rather than to do them each time the face is drawn.

The last thing to do with the watch face is to draw it. We draw our watch face in the OnDraw()
method using all the normal drawing tools. However, we do need to ensure that we check to
see if the device is in the ambient mode using the IsInAmbientMode property. If so, then
we should draw as little as possible and on a black background. We also need to keep in mind
that in the ambient mode, drawing only occurs once every minute.

Chapter 11

355

In the ambient mode, the background should be black, but this
is more of a recommendation rather than a requirement.

Once the watch face engine is complete, we can create the watch face service and its
metadata. The service is run on the wearable device, and the metadata is used when
listing the watch face in the Android Wear companion app.

The watch face service is very simple; all we do is override the OnCreateEngine() method.
Here, we return a new instance of our watch face engine. The service should inherit from
the appropriate watch face type, such as the CanvasWatchFaceService type or the
Gles2WatchFaceService type, depending on what our drawing engine is used for.

As the watch face service is just a specialized service, we need to add the [Service]
attribute to it. We also need to add set the Permission property of the attribute to android.
permission.BIND_WALLPAPER. Then, we need to add an [IntentFilter] attribute,
and set the Action property to android.service.wallpaper.WallpaperService and
the Categories property to com.google.android.wearable.watchface.category.
WATCH_FACE.

We also need to add a [MetaData] attribute pointing to an XML resource. The XML resource
should contain a <Wallpaper> element and be stored in the xml resource folder. The
attribute Name should be android.service.wallpaper and Resource should point
to the XML resource. If our XML is in a file named watch_face.xml, then the Resource
property would be @xml/watch_face.

The code for the watch face service consists of one method with
most of the work done through attributes on the service.

The last thing needed to list the watch face in the companion app is a preview. A preview for
both, the round and square faces, should be provided in the drawable resource folder. We
specify the previews for the service using a[MetaData] attribute. The metadata Name for
a square preview is com.google.android.wearable.watchface.preview, and for a
round preview is com.google.android.wearable.watchface.preview_circular.
The resource for each of these would be set using the metadata Resource property. In the
case of a square face, we might have a value of @drawable/preview_square and for a
round face, @drawable/preview_round.

If no preview is specified, then the watch face will not
appear in the picker.

Connecting to Wearables

356

When the app is installed on the wearable, both the companion app and the wearable will
receive a new entry in the watch face picker. The user will then be able to select it as they
would any other watch face. The preview images specified by the [MetaData] data attributes
will be used as the picker item.

There's more...
In addition to displaying the current time, the watch face can also present information to the
user. Such information could be of any upcoming events on the calendar, any unread emails, or
fitness information. Similar to creating a Handler instance to redraw the screen every second,
we can create a Handler instance to retrieve data from a calendar or inbox very so often.

Watch faces can also respond to tap events. To receive tap events, we need to specify that we
handle these events when creating the WatchFaceStyle instance. The WatchFaceStyle.
Builder type has a method, SetAcceptsTapEvents(),which is used to perform this. If
we pass true into this method, when the user taps the watch face, the OnTapCommand()
method of the watch face engine will be invoked. We can override this method to process the
tap event.

Configuring watch faces
Awesome watch faces can be created to delight the wearer; however, users enjoy the ability to
customize the final appearance of any personal technology.

How to do it...
Similar to communicating with wearables, our watch face configuration activity manages
settings by synchronizing setting selections from the activities to the watch face service:

1.	 We need to create the configuration activity, and apply an [IntentFilter]
attribute with a specification value that will be used to associate the watch face
with this activity:
[Activity]
[IntentFilter(
 new[] { "com.xamarincookbook.wearables.CONFIG" },
 Categories = new[] {
 "com.google.android.wearable.watchface.category.
 WEARABLE_CONFIGURATION",
 Android.Content.Intent.CategoryDefault })]
public class WearableConfigurationActivity : Activity {
}

Chapter 11

357

2.	 Then, to associate the activity with the watch face service, we apply a [MetaData]
attribute using the activities action value as the metadata value:
[MetaData(
 "com.google.android.wearable.watchface.
 wearableConfigurationAction",
 Value = "com.xamarincookbook.wearables.CONFIG")]

Typically, we would use one of the Google Play services to synchronize the configuration
between the activity and the watch face:

1.	 To receive Data API events, we implement the IDataApiDataListener interface
on the watch face engine:
class WatchFaceEngine : IDataApiDataListener{
 public void OnDataChanged(DataEventBufferdataEvents) {
 // update variables
 }
}

2.	 We connect to, and disconnect from, the client in the OnVisibilityChanged()
method of the watch face engine, making sure to remove the data listener before
disconnecting:
if (visible) {
 client.Connect();
}
else if (client != null &&client.IsConnected) {
 WearableClass.DataApi.RemoveListener(client, this);
 client.Disconnect();
}

How it works...
Watch faces are great additions to any wearable, but sometimes, we want to provide fewer
options so that the user can customize the final appearance. This is very easy to do and
requires for us to create an activity that will be launched when the user wants to configure
the watch face.

If we create a configuration activity for the wearable device, then a configure button will
appear next to the watch face when picking a watch face. Similarly, there is an option to
configure the watch face when picking one using the companion app.

Typically, the configuration activity is not launched directly by the user, but rather through the
watch face picker. Thus, when adding the [Activity] attribute to our configuration activity,
we can set the MainLauncher property to false (or leave it out altogether as false is the
default value).

Connecting to Wearables

358

A watch face configuration activity does not need to appear in
the app drawer of the device, because it is launched from the
watch face picker.

To link a configuration activity with a watch face, we add attributes to both the configuration
activity and the watch face service. Slightly different values will be used if the configuration
activity is available on the handheld or wearable.

The configuration activity on the wearable requires us to add an [IntentFilter] attribute.
The Actions value should be a name prefixed with the package name. For example, if our
package name is com.xamarincookbook.wearables, then the action could be com.
xamarincookbook.wearables.CONFIG. The Categories property requires two values
to be provided; the first being com.google.android.wearable.watchface.category.
WEARABLE_CONFIGURATION; and the second being android.intent.category.DEFAULT.

If the configuration activity is on the handheld, then the first category will instead be com.
google.android.wearable.watchface.category.COMPANION_CONFIGURATION. The
difference is in the last part, with the wearable value ending in WEARABLE_CONFIGURATION
and the handheld value ending in COMPANION_CONFIGURATION.

For the watch face service, we specify the wearable configuration activity using a [MetaData]
attribute. The Name parameter should be com.google.android.wearable.watchface.
wearableConfigurationAction; Value being the value used for the configuration activity's
Action value. In our case, the Value will be com.xamarincookbook.wearables.CONFIG.

The value provided as the action for the configuration activity
must match the value given to the metadata value for the watch
face service.

Similar to the[IntentFilter] attribute, we need a slightly different Name value if the
configuration activity is on the handheld. The Name parameter in this case will be com.google.
android.wearable.watchface.companionConfigurationAction. Again, the difference
is in the last part with the wearable value ending in wearableConfigurationAction, and
the handheld value ending in companionConfigurationAction.

Once the service and configuration have their attributes, we can create the configuration
activity as we would for any other activity. To send the configuration to the watch face, we
usually make use of the Google Play services' Data API. The configuration activity will read
the configuration when it is created, and then synchronize any option that a user selects.

Chapter 11

359

Watch face configuration activities are just normal activities
launched by the watch face picker.

One difference between the wearable and handheld configuration activities is what is displayed.
As the wearable has a much smaller screen size, we only display the minimum required options.
If there are many options, we should rather use the handheld configuration activity.

Configuration activities can be provided on both
wearable and handheld.

A wearable configuration activity is usually very simple with only a few options, such as
to select a new background. As a result, we can further enhance the user experience by
automatically closing the activity once an option is selected. Then, the user will return to
the watch face to see the change without having to manually close the activity.

If the Google Play service is used to manage the watch face settings, then the watch
face service can be set up to receive these changes. Just like when we implement the
IDataApiDataListener interface for communicating between the wearable and the
handheld, we implement the interface on the service. Then, regardless of whether the
configuration activity is on the handheld or on the wearable, the watch face service will
receive the new data once the user makes changes.

When using the Google Play service with watch faces, we should connect and disconnect the
client in the OnVisibilityChanged() method of the service. If the configuration changes
when the watch face is invisible, we can always load the changes when the watch face
becomes visible again.

There's more...
It is also possible to provide a configuration activity for a watch face on the handheld.
This activity is shown when the user configures the watch face from the Android Wear
companion app:

1.	 Our activity implementation is exactly the same, except we use a different Category
value with the [IntentFilter] attribute:
[IntentFilter(
 new[] { "com.xamarincookbook.wearables.CONFIG" },
 Categories = new[] {
 "com.google.android.wearable.watchface.category.
 COMPANION_CONFIGURATION",
 Android.Content.Intent.CategoryDefault })]

Connecting to Wearables

360

2.	 Similarly, we register a different Value for the [MetaData] attribute on the watch
face service:
[MetaData(
 "com.google.android.wearable.watchface.
 companionConfigurationAction",
 Value = "com.xamarincookbook.wearables.CONFIG")]

361

12
Adding In-App Billing

In this chapter, we will cover the following recipes:

ff Preparing for in-app billing

ff Integrating in-app billing

ff Listing available products

ff Purchasing products

ff Listing purchased products

ff Consuming purchases

Introduction
Everybody likes to go shopping—getting something new and shiny to play with is a great
feeling. Unfortunately, shopping requires money, and nobody likes to give that up. However, in
the end, people will go to work, earn money, and then go shopping anyway—whether it be to
provide food to survive or things for entertainment, everybody goes shopping.

App developers can capitalize on this fact not only to provide users with cool features and
apps for their devices but also to make money. One approach to making money is by asking
the users to pay for the app before they can use it. Although this is very common, many users
do not like the fact that they are required to spend money before getting to use the product.

Another approach is to give the app to the users for free, and then either restrict functionality
until the user pays or give the user extra functionality when they pay. Either approach results
in the user getting more when they pay. The app can keep giving them more as they pay more.

When selling an app, the price is fixed, and thus, it is usually fairly high for a virtual product.
However, if the app is available for free with in-app purchases, the user often doesn't realize
that they are in fact paying more than what they would if they had paid a once-off amount.

Adding In-App Billing

362

In-app purchases are advantageous for both parties. The user may not actually require all the
features, and thus can use the app for free, or the user may only want some of the features
and is willing to then pay a little bit only for the required features. The developer gains from
having a larger install base due to the app being free of cost and thus having a larger market
of people that may potentially spend money once they start using the app.

Another great approach to making money, is to publish the app with ads and then provide a
method for the user to remove the ads for a small cost. This way, the developer gets money
from the advertising and from the purchase.

Preparing for in-app billing
When implementing in-app billing, there needs to be a selection of products or subscriptions
available for the user to purchase.

Getting ready
Before we can develop and implement in-app billing, we will require two Google accounts.
One will be the merchant account, which will publish the app to the Play Store and provide
the products. The other will be used for development and testing of purchases.

Two accounts are required for testing because Google does not allow
purchases to be made from the merchant account.

The merchant account should be registered as a Google developer (http://play.google.
com/apps/publish) and linked to Google Wallet (http://www.google.com/wallet/
merchants.html). The other account only needs to be a Google account.

How to do it...
Before we prepare the Play Store app listing, we need to prepare the app package for upload:

1.	 We can either create a new, empty Xamarin.Android app project or use an
existing project.

2.	 We then need to add the billing permission to the app:
[assembly: UsesPermission("com.android.vending.BILLING")]

3.	 Finally, we need to build and sign the app package, ensuring that the package name
and keystore is that of the final app. (Refer to Chapter 13, Publishing Apps)

http://play.google.com/apps/publish
http://play.google.com/apps/publish
http://www.google.com/wallet/merchants.html
http://www.google.com/wallet/merchants.html

Chapter 12

363

Once we have our app package, we need to upload it to Google Play using the merchant account:

1.	 We need to upload the package we just created to the Alpha channel. (Refer to
Chapter 13, Publishing Apps).

2.	 Then, we must ensure that we have added the developer/tester account to the
uploaded package. (Refer to Chapter 13, Publishing Apps).

3.	 Lastly, we must publish the app.

Once the app is uploaded, we start creating the products that we will be providing to the user:

1.	 Select the In-app Products section in the console and click on the Add new product
button at the top of the page.

2.	 Next, select the Managed product button, enter a product ID, and click on Continue:

Adding a new product

3.	 On the next page, we now enter the rest of the product details, such as the title,
description, and price.

Adding In-App Billing

364

4.	 Finally, at the top of the page, we click on the Save button, and then activate the
product using the adjacent dropdown:

Save and activate the product

5.	 Similar to the process of adding products to purchase, we can also add recurring
subscriptions by selecting the Subscription option in the dialog:

Adding a new subscription

6.	 On the next page, we complete the fields, just like we do with normal products, and
with the additional billing and trial periods.

Chapter 12

365

How it works...
Google has a few requirements before in-app billing can be implemented. The first is that the
app be published to one of the channels on the merchant account. Then, the developer and
the testers can use their own accounts to test the app.

Two accounts are required for testing as Google does not allow
purchases to be made from the merchant account.

The app must be signed and must include the com.android.vending.BILLING permission.
This permission is required so that the app can communicate with Google Play Services.

If the app is not available to be published, an empty app can be used as
a placeholder.
If the com.android.vending.BILLING permission is not specified
in the app, then products cannot be added to the app listing.

Once the app is uploaded and published, we can start adding the various products that
are going to be available to the app. Adding products is easy and is done from the In-app
Products section on the console. When adding new products, we can choose from either a
managed product or a subscription.

Managed products are items that can be bought once and optionally consumed, so they can
be repurchased. Subscriptions are recurring products that are periodically repurchased. In
terms of a racing game, a nonconsumable product could be a new car, a consumable product
could be fuel, and a subscription could be a club membership.

Providing products that can be purchased repeatedly is
achieved by consuming the product immediately after the
purchase completes.

Both products and subscriptions require a product ID, which cannot be changed or reused.
This ID is used when purchasing the item as well as when searching for items to buy. Although
similar, both have various details that are used differently.

A product has a title, description, and a price, all of which can be localized to the user's
region. Not all regions support in-app billing, so this must be considered if one of those
regions is the target market.

Not all regions support in-app billing because some regions
do not support Google Wallet.

Adding In-App Billing

366

Subscriptions also have a title and description but they differ in how the pricing works. In
addition to a price, they have a billing, trial, and grace period. The billing period is how often
the user will be charged for the product. This can range from a week to a year, as well as a
custom seasonal date range.

Because pricing cannot be changed for a subscription, a new subscription
can be created and used in the app instead. Existing users will be charged
according to the old price, and new users will be charged the new price.

The trial period is useful for providing the user with the subscription for a short period before
charging the user. The user can then use the subscription for free and can cancel at any time
within that period to avoid any charges. The user is charged only after the trial period is over. If
the user cancels the subscription, then it expires immediately even though there may be days
remaining in the trial period.

Grace periods are slightly different; they come into effect if there are problems with the user's
payment method. This allows us to provide a short period before Google automatically cancels
the subscription due to nonpayment.

Integrating in-app billing
When Google Play is set up to handle in-app billing, the app must first connect to the Google
Play service before it can request product details and make purchases.

Getting ready
Before the app can connect to Google Play, we need to create an app listing on the Google
Play Developer Console (http://play.google.com/apps/publish).

How to do it...
Our first requirement before adding in-app billing to our app is the app's public key from
Google Play:

1.	 We need to copy the Base64-encoded public key from the console under the app's
Services & APIs section:

http://play.google.com/apps/publish

Chapter 12

367

The public app license key

2.	 Then, we paste that key into our app. For testing purposes, we can just store it in a
field, but we should always obfuscate this key:
private const string PublicKey = "<app-license-key>";

Next, we will integrate the in-app billing library into our app:

1.	 To integrate the in-app billing library into our app, we first install the Xamarin.
InAppBilling Component from the Xamarin Component Store.

2.	 Then, we create an instance of the InAppBillingServiceConnection instance,
passing in the public key from Google Play and the current Activity instance:
connection = new InAppBillingServiceConnection(
 this, PublicKey);

3.	 If there are any errors during the connection attempt, we would want to be notified.
Use the following code to enable error messages:
connection.OnInAppBillingError += (error, message) => {
 // there was an error with the service
};

4.	 We would also want to be notified when the connection succeeds:
connection.OnConnected += () => {
 // app is connected
};

5.	 Finally, we will initiate the connection using the Connect() method:
connection.Connect();

Adding In-App Billing

368

6.	 Once connected, all operations are performed through the BillingHandler
property; thus, we need to get the following instance:
connection.OnConnected += () => {
 billing = connection.BillingHandler;
};

7.	 If an unknown error occurs while using the InAppBillingHandler instance, the
InAppBillingProcesingError event is raised using the following code:
billing.InAppBillingProcesingError += (message) => {
 // unknown error processing a request
};

8.	 As soon as we are finished with our products and purchases, we will ensure that we
release resources using the Disconnect() method:
connection.Disconnect();

How it works...
To support in-app billing, we need to have created the products and/or subscriptions on the
Google Play Developer Console. This will require that the com.android.vending.BILLING
permission be specified and the app be published to one of the channels.

Once this is done, we can start integrating the connection to the Google Play service. To do
this, we will need the license key from the console. This allows the service connection to verify
that the communication is really from the store and has not been tampered with. This key is
found on the console under the app's Services & APIs section. The key should be obfuscated
to prevent a malicious user from replacing the public key with another key and thereby
removing one form of security.

Google Play signs the responses with a private key, and the public
key is used to verify the signature.

All logic needed to interact with Google Play is in the Xamarin.InAppBilling Component
from the Xamarin Component Store. This library handles product listing, purchases, and
purchase management. The library does not actually perform the tasks itself, but rather
delegates the requests to the running Google Play service.

Once we have the key and library installed, we can now connect to the Google Play service.
To do this, we create an instance of the InAppBillingServiceConnection type, passing
in the Activity instance and the public key. Since the connection is asynchronously
established, we must attach an event handler to the OnConnected event. This event is raised
when a connection is successful. If there are any errors, the OnInAppBillingError event
is raised instead. To actually initiate the connection, we invoke the Connect() method.

Chapter 12

369

Connecting to Google Play requires a visible Activity instance
because this is where the purchase events are sent to.

As soon as the connection is successfully completed, the OnConnected event is raised and
we can get hold of the InAppBillingHandler instance through the BillingHandler
property on the connection. This handler is then used to perform all further purchases
and requests.

If there are any errors while making requests or processing responses, the
InAppBillingProcesingError event on InAppBillingHandler will be raised. We can
then handle these cases.

Even though the InAppBillingProcesingError event exists,
specific events for specific processing errors will be raised, such as
the BuyProductError event.

As soon as the interaction with the store is complete, the purchases are made and the
products are consumed, we must disconnect from the service. This requests that any
resources that are being held be released and is done through the Disconnect() method
on the connection. Disconnecting also destroys the billing handler; thus, we have to reconnect
before interacting with it again.

Listing available products
We need to present the details about what products or subscriptions are available for
purchase so that the users can verify what they want before making any purchases.

How to do it...
We can request a list of Product instances using the QueryInventoryAsync() method:

1.	 The QueryInventoryAsync() method returns the product details when invoked
with the desired product IDs and the Product ItemType instance:
var productIds = new string[] {
 "managed.one",
 "managed.two"
};
var products = await billing.QueryInventoryAsync(
 productIds, ItemType.Product);

Adding In-App Billing

370

2.	 If we have any subscriptions, we can repeat the same process but we will use the
Subscription ItemType type this time:
var productIds = new string[] {
 "subscription.one"
};
var subscriptions = await billing.QueryInventoryAsync(
 productIds, ItemType.Subscription);

3.	 Similar to do the process for all the requests, errors may occur, such as when there is
no connectivity. We can respond to these errors using the QueryInventoryError
event:
billing.QueryInventoryError += (code, details) => {
 // there was an error querying the inventory
};

4.	 Irrespective of whether it is a managed product or a subscription, each returned
product has a set of properties that can be used to present the product to the user:
string id = product.ProductId; // managed.one
string title = product.Title; // Managed Product One
string description = product.Description; // ...
string price = product.Price; // R 10.00

How it works...
Once we are connected to the Google Play service, we can begin our product interaction.
The first thing we will probably want to do is to present the user with a list of available
items to purchase.

Obtaining a list of products is done through the QueryInventoryAsync() method, which is
asynchronous and must be awaited. We provide a list of product IDs for which we want to get
the product information. If we are requesting information about managed products, we use
the Product item type. For subscriptions, we use the Subscription item type.

The QueryInventoryAsync() method returns the product
information for a set of product IDs rather than returning a list
of available products.

We need this product list because it will now contain the names, description, and localized
prices for the product or subscription. This information can then be presented to the user
before making a purchase.

Chapter 12

371

The price received from the server contains both the currency
code as well as the number value, and can thus be presented
directly to the user.

Google Play caches the result from the server, so we don't have to implement our own caching
mechanism. Each time we need the product details, we can simply get it from the billing
handler. We can locally cache when the app launches so that we don't have to keep the
connection open, but it is not necessary to persist the cache between app launches.

Because Google Play caches responses, subsequent
requests do not involve network requests.

There's more...
There are also special products that are always available for testing purposes. No actual
transaction takes place, but all the appropriate purchase events occur:

var productIds = new string[] {
 ReservedTestProductIDs.Canceled,
 ReservedTestProductIDs.Purchased,
 ReservedTestProductIDs.Unavailable
};
var products = await billing.QueryInventoryAsync(
 productIds, ItemType.Product);

In the case of Canceled, Google Play responds as though the purchase was canceled. This
can occur when an error is encountered in the order process, such as an invalid credit card.
For Purchased, the transaction always succeeds, representing a successful purchase.
Finally, Unavailable acts as if the user has purchased an invalid item.

Purchasing products
Once the user has selected a product for purchase, we can start the checkout process.

Adding In-App Billing

372

How to do it...
When we have obtained a list of products, we can present the user with the opportunity to
make a purchase. There are two ways to make a purchase, either using a Product instance
or just the product ID:

1.	 The QueryInventoryAsync() method returns a list of:
var products = await billing.QueryInventoryAsync(
 new [] { "managed.one" }, ItemType.Product);
var product = products[0];
billing.BuyProduct(product);

2.	 This method also has an overload that accepts a string payload that will be
included with any server responses:
billing.BuyProduct(product, "DeveloperPayload");

3.	 Another way to purchase a product is to simply pass the product ID to the
BuyProduct() method along with the product type and an optional payload:
billing.BuyProduct(
 "managed.one", ItemType.Product, "DeveloperPayload");

After the purchase has been made, we will be notified about the success, or failure, of the
purchase. This is done through the use of several events:

1.	 Before any events are raised, we need to override the OnActivityResult()
method on the Activity instance to pass the response to the billing handler:
protected override void OnActivityResult(
int requestCode, Result result, Intent data) {
 billing.HandleActivityResult(requestCode, result, data);
}

2.	 Then, we can use the OnProductPurchased event to read any payload data that
was passed to the BuyProduct() method:
billing.OnProductPurchased += (resp, purch, data, sig) => {
 // product was purchased successfully
 var payload = purch.DeveloperPayload;
};

3.	 As with all transactions, there may be a time when something fails for a valid reason.
We can respond to these failures using the various error events:
billing.BuyProductError += (code, sku) => {
 // error attempting to purchase
};

Chapter 12

373

billing.OnPurchaseFailedValidation += (purch, data, sig) =>
{
 // error validating the purchase
};
billing.OnUserCanceled += () => {
 // user canceled the purchase
};

Purchases made using the ReservedTestProductIDs.Purchased product will always
succeed and can be used for testing the purchase workflow. However, when we want to test
the app making actual product purchases, we have to ensure that the app is signed using the
same keystore as the app that was uploaded to Google Play:

1.	 We can archive the app for publishing, sign the package and then manually install it
on the device using the following command:
adb install path/to/signed.apk

2.	 However, if we have access to the keystore, we can add the credentials to the
project file:

Adding the keystore and credentials to the project file

3.	 As with any password, we should never store this into any public location or check it
in to a source control.

Adding In-App Billing

374

How it works...
Once the user has selected the desired product, we need to initiate the purchase request.
There are two methods to do this. We can specify the Product instance that we obtained
from the result of the QueryInventoryAsync() method, or we can just use the product ID
and product type.

The BuyProduct instance accepts either a Product
instance or a product ID and product type.

When we specify the product by the product ID, we additionally provide a payload. When
we use the Product instance, there is an overload method that accepts a payload. This
payload can be any string and is always distributed with the Purchase instance when it is
returned from the server. This occurs as part of the response to the purchase request as well
as when requesting the list of purchased products. The payload is passed as an argument to
BuyProduct and returned in the DeveloperPayload property on the Purchase instance.

The purchase payload can be used to verify that the
current user did indeed make the purchase.

To receive the purchase events, whether a success or an error, we need to catch the result
from the purchase activity. As soon as the purchase completes, the response will be received
and deserialized from the intent data and into a Purchase instance.

To do this, we override the OnActivityResult() method on the requesting
activity. Then, we pass the OnActivityResult() method parameter values to the
HandleActivityResult() method of the InAppBillingHandler instance. We must
override the OnActivityResult() method because the purchase process is performed
outside the activity, and the result is then passed to the activity via this method.

As the response is processed, various events are raised depending on the result. If
the purchase is successful, the deserialized Purchase instance is provided in the
OnProductPurchased event. In the case of an error, one of the several events is
raised. If there is an error making the purchase, then the BuyProductError event is
raised. If there is an error validating the signature on the purchase product, then the
OnPurchaseFailedValidation event is raised. If the user cancels the purchase,
then the OnUserCanceled event is raised.

Purchasing the ReservedTestProductIDs.Purchased product
can be used to test a complete successful purchase operation.

Chapter 12

375

Testing purchases can be performed in two ways—either using a test product ID or by making
a purchase from a test account. The ReservedTestProductIDs.Purchased reserved ID
can be used to test a successful purchase without having to run the app as a signed package
from the App Store. This is useful when testing the workflow of a purchase, with the other
reserved product IDs being used to test error cases.

Once the purchase workflow is complete and a specific purchase is to be tested, we can
purchase the product using a signed app package. We don't have to upload each build, but
we do have to ensure that we sign the package with the same keystore as the one already
uploaded. Another requirement is that the package name, version name, and version code
match exactly.

In addition to the package matching the uploaded package, the user must be a tester that is
not the merchant. Also, the user must have been added to the Gmail accounts with testing
access section in the console settings. If the user is the owner of the console, then this
happens automatically and does not need to be added.

When installing the app on the device, we can download the app from the store, or we can
build a custom version during development. We should ensure that the package is still signed
with the same keystore, but it can be a Debug build. One way to install the app is to build,
archive, and sign the app. The final package can then be installed via ADB.

Another way is to add the credentials into the project file. This is done under the Android
Package Signing section of the project options. However, all the values, including the
passwords, are stored in plain text in the project file and should not be checked into
source control.

There's more...
As the Product instance is nothing special, we can also just construct our own instance
without having to first query the server:

var product = new Product {
 ProductId = "managed.one",
 Type = ItemType.Product
};
billing.BuyProduct(product);

This will work; however, we will be bypassing the initial confirmation that the product exists
that we get from QueryInventoryAsync. Further, this might not be a problem if we are sure
that the product exists. The advantage is that we do not have to first query the service before
making a purchase.

Adding In-App Billing

376

Listing purchased products
After the user has purchased products or subscriptions, we need to be able to adjust the app
accordingly when the app is launched the next time.

How to do it...
We can access the list of purchased products through the GetPurchases() method:

1.	 We list purchased products by passing the Product item type to the
GetPurchases() method:
var prods = billing.GetPurchases(ItemType.Product);

2.	 To list purchased subscriptions, we pass the Subscription item type instead:
var subs = billing.GetPurchases(ItemType.Subscription);

3.	 The GetPurchases() method returns a collection of Purchase instances, each of
which contain data that describe the purchase:
Purchase purchase = prods[0];
string id = purchase.ProductId;
string token = purchase.PurchaseToken;
string payload = purchase.DeveloperPayload;

4.	 If there are any errors processing the request, we can handle them in the error events:
billing.OnGetProductsError += (code, bundle) => {
 // error loading the purchased items
};
billing.OnInvalidOwnedItemsBundleReturned += (bundle) => {
 // error validating the purchased items
};

How it works...
Once the user has purchased products or subscriptions, they will want to be able to view
those purchases. When the app begins, we might want to display the additional features on
the basis of the purchase. We can do this by requesting the list of purchased products using
the GetPurchases() method.

As Google Play caches the list of purchases on the device,
multiple queries should be made to the handler instead of
implementing a custom cache.

Chapter 12

377

The GetPurchases() method returns a list of Purchase instances, which we can use in
our app. When we want to access the list of products, we pass the Product item type as a
parameter, and for subscriptions, we use the Subscription item type.

The Purchase instances will contain details such as the product ID and purchase
token. These values are stored in the ProductId and PurchaseToken properties,
respectively. If we want to access other details, such as the title and price, we can
invoke the QueryInventoryAsync() method by passing the product ID.

The Purchase instance only contains the product ID, so the
QueryInventoryAsync() method can be used to fetch
the Product instance.

In addition to the product ID and purchase token, there is the DeveloperPayload property.
This payload is the same data that was provided when the purchase was originally made. This
data can be used to verify a purchase or perform some other form of validation.

In the event of any error, there are various events that can be raised. The
OnGetProductsError event is raised if a valid error code from the Google Play service
is received. If there is a problem validating the result data in the case of a successful
response, the OnInvalidOwnedItemsBundleReturned event is raised. If there are
any errors deserializing the result, outside the instance of an invalid service response, the
InAppBillingProcessingError event will be raised.

The OnGetProductsError and
OnInvalidOwnedItemsBundleReturned
events correspond to Google Play service errors, while
InAppBillingProcessingError corresponds to library errors.

Consuming purchases
Some purchases are used to indicate additional features that are not initially available to the
user. Other products are consumable products and only provide a once-off feature, which will
have to be re-purchased to be re-used. These products are consumable products and only
provide a once-off feature.

How to do it...
Some products are meant to be consumed, or exhausted, when used; the user is required to
purchase them again before they can be reused:

1.	 To consume a product, we pass the purchase to the ConsumePurchase() method:
var success = billing.ConsumePurchase(purchase);

Adding In-App Billing

378

2.	 We don't really require the Purchase instance but rather just the purchase token.
When a product is purchased, we can just store the purchase token and use that:
var token = purchase.PurchaseToken;
var success = billing.ConsumePurchase(token);

3.	 If the consumption is successful, we can use the return value, or make use of the
OnPurchaseConsumed event:
billing.OnPurchaseConsumed += (token) => {
 // consumed product
};

4.	 Similarly, if there are any errors, we can use the return value, or the
OnPurchaseConsumedError event:
billing.OnPurchaseConsumedError += (code, token) => {
 // error consuming the purchase
};

How it works...
Besides subscriptions, there are two main types of products: consumables and
nonconsumables. Consumable products are meant to be purchased and then used once. To
make use of the product again, they have to be repurchased. Nonconsumable products are
only bought once and can be reused without having to be repurchased. If we want the user to
repurchase the product, we have to first consume it.

Products can be consumed, subscriptions cannot be consumed.

A nonconsumable product is a product that is bought once and never expires. An example of
this type of product would be a feature, such as the removal of ads. Although it is possible to
consume this product, we wouldn't.

Product consumption can be done after a period from the time of being bought or directly
after the purchase. An example of a consumable purchase would be in-game money, where
we would want the user to be able to buy the same amount multiple times.

Consumable products should be consumed when the app is
launched so that they can be purchased again.

In the case of money, we would actually consume the purchase immediately but track the
total amount separately. Then, as the player uses the money, we would subtract from the
local wallet. To protect against data loss, we would also backup or sync the wallet to an online
storage. This will also allow the user to resume the game from a new device.

Chapter 12

379

To consume a purchase, we can either pass the Purchase instance or the purchase token
to the ConsumePurchase() method. This method will return true if the purchase is
successful, or false if there is an error.

It is a good practice to only perform the specified operation when a
successful result is obtained from a consumption request.

In addition to the return value, the OnPurchaseConsumed event will be raised when
the consumption is successful. If there is an error, the OnPurchaseConsumedError
will be raised.

381

13
Publishing Apps

In this chapter, we will cover the following recipes:

ff Protecting the content

ff Protecting the code

ff Preparing the app package

ff Shrinking the app package

ff Creating the app package

ff Uploading the app package

ff Adding preview testers

ff Releasing for production

ff Updating the app

Introduction
Even the greatest of apps will have no value if nobody can use them. All apps get their true
value through the fact that they help users to perform a task. Great apps are a delight to use
and provide the functionality to perform a task well. However, if no user has access to the app,
the app is pointless.

The process of publishing an app on an app store is not just a matter of uploading the
package for the users to download. Publishing involves adding polish to the finer, and not
necessarily functional or even directly related, areas of the app.

Publishing Apps

382

An app can provide all the functionality to perform a task well. It can run well on the user's
device. But, if the app only supports a single language or a single type of device, the app is
actually very limited. Not all users speak the same language, and not all users use the same
device. Android is one of the most popular operating systems because it runs on millions of
different devices, and users expect the app to both look great and run well on all of them.

Publishing an app takes great code, releasing it onto users' devices, while continuing to
maintain and grow the experience as time passes. If apps were just launched and then
forgotten, the users would soon start looking for different apps as their requirements change.

In order for many apps to be economical for developers, they have to protect their app and its
content. If an app provides content that requires the users to have bought the app, then the
developer must ensure that the content is only accessible to those customers. Users will be
unhappy if they have had to pay for the content, and then found out that they can access it for
free somewhere else.

Just like protecting the content, the code must also be protected. There are many tools out
there that can take an Android app and decompile it down to the source code. Because of
this, nefarious developers might not only steal the content but also the code. This poses a
risk, as there will now be a clone on the app store that will cause confusion for the users.
And not only this, the clone may pretend to be the original and steal private data from
unsuspecting users.

Once the content has been secured, the code protected, and the app packaged, the
developer now needs to upload the app to an app store. This is not just a simple upload, but
it involves creating marketing media. Users will not download an app without an icon, without
screenshots, or without a decent description. This is why it is essential to spend time making
the app desirable even before installation.

The final, and most important, part of publishing an app is the testing phase. No matter how
great the app is, if it fails to meet the user's requirements or crashes, it will be uninstalled.
Testing an app with real users, or a testing team, ensures that all the features that the app
provides work, and work well.

Only once the app has been produced, protected, packaged, proved, and promoted, can it be
said that the app has been published.

Protecting the content
When an app is published on Google Play, anyone can download and install it. This is great
when the user has purchased the app. However, we need a way to prevent users from
accessing the app if they have managed to get hold of the app without purchasing it.

Chapter 13

383

Getting ready
Before we can add licensing to our app, we will need the app's public key from the Play
Store app listing, which is created on the Google Play Developer Console (https://play.
google.com/apps/publish).

How to do it...
One of the ways to prevent unauthorized access to our app's content is by adding Google Play
licensing to our app. Then, when the app is launched, we can verify the user with Google Play.

The first thing that we will need to do before adding licensing to our app is to get the app's
public key from Google Play:

1.	 We need to copy the Base64-encoded public key from the console under the app's
Services & APIs section:

The public app license key

2.	 Then, we will paste that key into our app. For testing purposes, we can just store it in
a field, but we should always obfuscate this key:
private const string PublicKey = "<app-license-key>";

https://play.google.com/apps/publish
https://play.google.com/apps/publish

Publishing Apps

384

Now that we have the public key, we set up our app so that we can perform the license check
once the app has been launched:

1.	 First, we will need to install the Android License Verification Library NuGet.

2.	 Next, we need to add the licensing check permission to the app:
[assembly: UsesPermission(
 "com.android.vending.CHECK_LICENSE")]

3.	 Then, we implement the ILicenseCheckerCallback interface:
public class MainActivity : Activity,
 ILicenseCheckerCallback {
 public void Allow(PolicyServerResponse response) {
 }
 public void DontAllow(PolicyServerResponse response) {
 }
 public void ApplicationError(CallbackErrorCode errorCode)
 {
 }
}

The next thing that we need to do is to set up the license checker requirements:

1.	 First, we collect the unique information about the device, which we require when we
will encrypt the server responses:
string deviceId = Settings.Secure.GetString(
 ContentResolver, Settings.Secure.AndroidId);
string appId = this.PackageName;
byte[] salt = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };

2.	 Next, we create an instance of AesObfuscator, which will be used to encrypt
the response:
var obfuscator = new AesObfuscator(salt, appId, deviceId);

3.	 Then, we create an instance of ServerManagedPolicy, which will process the
server response to determine whether the user is authorized to use our app:
var policy = new ServerManagedPolicy(this, obfuscator);

4.	 Finally, we create an instance of LicenseChecker, making use of the public key:
checker = new LicenseChecker(this, policy, PublicKey);

Chapter 13

385

Now, after the app is launched and we want to ensure that the user is authorized to access
the app, we initiate the license check:

1.	 To start a check, or to retry a failed check, we invoke the CheckAccess() method of
the license checker:
checker.CheckAccess(this);

2.	 When a result comes back from Google Play, we are notified through the various
methods of the ILicenseCheckerCallback interface. The Allow() method will
be called if the user is licensed:
public void Allow(PolicyServerResponse response) {
 // we are licensed
}

3.	 If the user is not licensed, or there is a recoverable error, the DontAllow() method
is invoked:
public void DontAllow(PolicyServerResponse response) {
 if (response == PolicyServerResponse.Retry) {
 // we can retry the license check
 }
 else {
 // confirmed unlicensed user
 }
}

4.	 If there is an app error, the ApplicationError() method is invoked:
public void ApplicationError(CallbackErrorCode errorCode) {
 // handle the specific error code
}

5.	 When we are finished with the checks, we clean up the resources using the
OnDestroy() method:
checker.OnDestroy();

Publishing Apps

386

As the publishing process usually takes a few days, we can test our implementation by
specifying the server response manually:

1.	 First, we navigate to the Account details section of the developer console
settings page.

2.	 Then, at the bottom of the page, we select LICENSED from the Test License
Response dropdown, and click on the Save button:

The steps to set the server response to Licensed

3.	 We will now receive the Licensed response in our app, and the Allow() method
will be invoked.

How it works...
Some apps contain contents that we would like only legitimate users to be able to access.
Although this is usually not the case with free apps, we almost always want to prevent access
if the user has not purchase the app.

Usually, only paid apps require licensing to be implemented.

Google Play provides a licensing service, which we can use to verify that the user did actually
download the app from Google Play, either after purchasing the app or because the app was
free. We use this service by querying Google Play at runtime to obtain a licensing status. Then
we can determine, based on the response, whether the user is allowed to continue using the
app, or should download the app.

Google Play provides a licensing service only to apps distributed
via Google Play. Other stores use other licensing mechanisms.

Chapter 13

387

The only thing we need in order to get started is the public key from the Google Play Developer
Console. We can either create a new app listing or use the existing app listing from a previous
release. This key is also used when handling in-app billing, so we should always keep this key
secure. One way to secure the key would be to obfuscate or encrypt the key.

Once we have the key, we start with the licensing implementation. We first need to install the
Android License Verification Library NuGet, which contains the required assemblies. Once
installed, we will need to add the com.android.vending.CHECK_LICENSE permission to
our app.

Even though the license check requires Internet access,
the only permission that is required is com.android.
vending.CHECK_LICENSE.

In order to handle the responses from the licensing sever, we need to implement the
ILicenseCheckerCallback interface. This interface has three methods, one of which
is invoked depending on what the response from the server is. The Allow() method
corresponds to a confirmed licensed user. The DontAllow() method corresponds to
a confirmed unlicensed user, or if there is a problem and we should retry. In the case
of a retry, the PolicyServerResponse parameter value will be Retry. Also, the
ApplicationError() method provides us with the CallbackErrorCode parameter in
the case of an error when retrieving the license status.

Before we can initiate the license check, we will need an implementation of IPolicy,
such as ServerManagedPolicy. Policies are used to determine whether the user with a
given license is allowed to use the app. They contain the logic for allowing or disallowing user
access based on the result of the license check. The ServerManagedPolicy instance uses
server-provided settings and cached server responses to manage access to the app. Because
this policy caches responses, the user can use the app even if the network goes down.

As the ServerManagedPolicy instance caches the server responses on the device, we
need to encrypt the response to prevent unauthorized access to this response. To do this, we
need to provide the policy an implementation of IObfuscator, such as AesObfuscator.
This obfuscator uses the device ID, the app ID, and a random salt to encrypt the responses.

Not all policies cache the response, such as StrictPolicy,
thus, they do not require encryption or an obfuscator.

To actually perform the check, we create an instance of LicenseChecker, providing the
policy and the public key from Google Play. Then, we invoke the CheckAccess() method,
passing in the ILicenseCheckerCallback instance. As soon as the server responds, the
provided policy will determine whether the user should be able to access the app, and invoke
one of the methods of the ILicenseCheckerCallback instance.

Publishing Apps

388

Once we have determined whether or not the user can access the app, we must clean up any
resources used by the license checker. This we do through the OnDestroy() method of the
license checker.

Once the license checker has been cleaned up, a new
instance needs to be created to perform the check again.

To test our implementation against the various responses from the server, we will need to
ensure that the app has been published, and is not just in the saved draft state. We need to
publish our app even though it is not yet complete; this is because when we do the license
check, we will need Google Play to know about our package name. The app only needs to be
published to the Alpha channel, and does not even have to be a complete app. We should add
a (see Uploading the app package recipe) bit here so that we don't have to go into detail until
much later. We can just create an empty app, with our package name, and signed with the
keystore that we will use for the final app.

In order to test licensing, an app with the same package name, which is
signed with the same keystore, must be published to Google Play.

After we have published our app to one of the channels, we do have to wait for a few days
before the app can be tested with actual responses. But, we can also ask Google Play to
respond with simulated responses. To simulate the various responses that we might receive,
we select each response from the console settings. On the Settings page, under the Account
details section and at the bottom of the page, we select the response from the License Test
Response dropdown.

There's more...
There is also the StrictPolicy instance that we can use instead of
ServerManagedPolicy. This policy does not persist the result from the server but instead
just keeps it in memory. This results in the app checking with the server each time the app is
launched. We might want to do this if we want to ensure that the user is licensed at the time
of use. However, this comes at a cost in which the user has to be connected to the Internet
each time the app is launched.

In the case where we need greater flexibility or control over the license checking, we can also
create our own policy entirely. As the license checker only requires that the IPolicy interface
be implemented, we can implement our own instance of that interface:

public class MyPolicy : IPolicy {
 public bool AllowAccess() {
 }
 public void ProcessServerResponse(

Chapter 13

389

 PolicyServerResponse response, ResponseData rawData) {
 }
}

We can also create our own obfuscator for an existing policy, such as the
ServerManagedPolicy instance, by implementing the IObfuscator interface:

public interface IObfuscator {
 string Obfuscate (string original, string key) {
 }
 string Unobfuscate (string obfuscated, string key) {
 }
}

Protecting the code
As Android app packages are just ZIP files that contain the assemblies and metadata, the
assemblies can easily be decompiled. As a result, we need a way to make it very difficult to
understand the decompiled code, or even prevent it from happening altogether.

Getting ready
In this recipe, we will make use of the Babel for .NET obfuscator (https://babelfor.net/
products/obfuscator). This is a commercial product, but they do have a demo version
that can be used for free. The demo version does have a few limitations, and the obfuscated
apps only run for a period of time, however this does not prevent us from using it.

There aren't many Mac/Linux obfuscators for .NET, and Babel for .NET is no different. We will
also need a Windows machine to use the obfuscator, but we can use the MSBuild task to
integrate with the build process for Xamarin.Android. As the MSBuild task does not have any
specific IDE requirements, it will work with Xamarin Studio or Visual Studio.

https://babelfor.net/products/obfuscator
https://babelfor.net/products/obfuscator

Publishing Apps

390

How to do it...
Once we have installed Babel for .NET, we add the MSBuild task to our project file:

1.	 Open your solution in Xamarin Studio, and from the Solution panel, right-click on the
project node and select Unload:

Unloading the project file

2.	 Then, right-click on the unloaded project and navigate to Tools | Edit File:

Editing the project file by hand

3.	 We now need to add the required <UsingTask> element into the project file as a
child of the <Project> element:
<Project>
 <UsingTask
 TaskName="Babel"
 AssemblyName="Babel.Build, Version=8.0.0.0,
 Culture=neutral, PublicKeyToken=138d17b5bd621ab7" />
</Project>

Chapter 13

391

4.	 Then, we add the <Babel> task element as a child of the <Target
Name="AfterBuild"> element:
<Target Name="AfterBuild">
 <Babel
 InputFile="$(TargetPath)"
 OutputFile="$(TargetPath)"
 VerboseLevel="5"
 ObfuscateTypes="true"
 ObfuscateEvents="true"
 ObfuscateMethods="true"
 ObfuscateProperties="true"
 ObfuscateFields="true"
 VirtualFunctions="true"
 FlattenNamespaces="false"
 UnicodeNormalization="false"
 SuppressIldasm="true"
 ControlFlowObfuscation=
 "goto=on;if=on;switch=on;case=on;call=on"
 ILIterations="5"/>
</Target>

5.	 To ensure that obfuscation only happens in the Release configuration, we can use
the Condition attribute:
<Babel Condition="'$(Configuration)'=='Release'" ... />

6.	 Save the changes made to the project file and reload:

Reloading the project file

7.	 Now, we can switch to the release build and rebuild the solution. Xamarin Studio will
create the app using the obfuscated assembly during the build process.

Publishing Apps

392

Some types and members shouldn't be obfuscated. This can be because we are using
reflection or serialization to access them. As obfuscation might rename a type to something
that we cannot use, we need tell the obfuscator to ignore or skip certain types and members.
We do this by performing the following steps:

1.	 We first create an XML rules file that describes how and what to do. In our case, we
name the file BabelRules.xml:
<?xml version="1.0" encoding="UTF-8"?>
<Rules
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 version="2.0">
 <Rule name="Serializable types" exclude="true">
 <Target>Fields, StaticFields</Target>
 <Pattern><![CDATA[*]]></Pattern>
 <HasAttribute onEnclosingType="true">
 System.SerializableAttribute
 </HasAttribute>
 <Description>
 Skip fields of serializable types.
 </Description>
 </Rule>
</Rules>

2.	 Then, we add the RulesFiles attribute to the babel build task, setting it to be the
name of the rules file:
<Babel RulesFiles="BabelRules.xml" ... />

How it works...
Even though we add licensing checks to ensure that unauthorized users cannot access our
app, they might be able to tamper with the package to bypass the license checks. It is not
possible to avoid this completely, but we can make it much more difficult to do so.

There are several ways in which we can prevent or detect tampering, and one of them is
to obfuscate the assemblies. Obfuscation removes unused code and renames types and
members with semantically obscure names. It can also perform control flow obfuscation,
which produces spaghetti logic that can be very difficult for a cracker to analyze. The result
is a smaller sized app package file that is more difficult to reverse engineer. As almost all the
app logic resides in the managed .NET assemblies, this is what we must obfuscate.

As Xamarin.Android assemblies are just normal .NET assemblies,
most commercial .NET obfuscators can be used.

Chapter 13

393

One such obfuscator that we can use, is babel for .NET. This obfuscator is great for Xamarin.
Android projects because it provides a MSBuild task, which we use to easily integrate with the
build process. There aren't many good obfuscators for non-Windows machines, and babel for
.NET is one of the many that only run on Windows. But, it does work with both Xamarin Studio
and Visual Studio as a result of its integration with MSBuild.

In order to integrate babel for .NET into our app's build, we do have to modify our project
file manually in two places. The first is to add a reference to the build task that we want to
include. This requires us to add the <UsingTask TaskName="Babel"> element as a child
of the <Project> element. This new element requires us to provide either the GAC-registered
assembly name or the file path to the Babel.Build assembly. We provide the GAC-registered
assembly name using the AssemblyName attribute, or the file path to the assembly using the
AssemblyFile attribute.

The next place we modify the project file is in the <Target Name="AfterBuild"> element.
This target executes directly after the assembly is compiled, but before the app is packaged.
In this element, we add a <Babel> child element and set the various obfuscator properties
using attributes.

The two most important properties are set using the InputFile and OutputFile attributes.
For both attributes, we must use the $(TargetPath) variable. This variable points to the
final output file of the compiled project. The obfuscator will load the input file and then save
the obfuscated file back in the same place. We need to do this in order to preserve the
existing build process.

Both the InputFile and OutputFile attribute values
must be the $(TargetPath) variable.

We can also specify that the obfuscation only occurs when building with the release
configuration. To do this, we set the Condition attribute to be the value "'$(Configurati
on)'=='Release'". This makes use of the project variables and will only include the babel
task when the Configuration variable's value is Release.

The remainder of the attributes are used to set which assemblies are obfuscated and how
it is done. Some attributes, such as UnicodeNormalization and FlattenNamespaces,
do not work well with Xamarin.Android and must be set to false. For example, if we enable
UnicodeNormalization, then the types will be renamed with Unicode characters, which is
not valid for the generated Java types or file names.

As Unicode characters are not valid for the Java packager, the value of
the UnicodeNormalization attribute must be false.

Publishing Apps

394

There might be instances where the obfuscation process renames a type or member that is
used in reflection or serialization. At run time, the app will crash as it will not be able to find
that type or member. In this case, we tell the obfuscator to ignore these types or members
using the rules file.

Once we have the rules file created, we specify that we want to use it by specifying the
path to the file using the RulesFiles attribute. Rule files are just XML files that follow
a specific structure.

Preparing the app package
Once we have created an Android app, we may want to be able to upload it to Google Play
for the users to download. This is no small task as there are many things that we can do to
improve user reach and acceptance.

How to do it...
One of the first things we can do to get our app ready for the store is to ensure that we have
all the textual translations ready for all the regions that we are going to release to:

1.	 We can specify our default resources in the values/strings.xml resource file.
For example, if the English language is the default language, our resource file
would contain:
<resources>
 <string name="message">English Text</string>
 <string name="popup">English Popup</string>
</resources>

2.	 We can provide a French translation in the values-fr/strings.xml resource
directory:
<resources>
 <string name="message">Texte Français</string>
 <string name="popup">Popup Français</string>
</resources>

3.	 This can then be used in the layout files:
<Button android:text="@string/message" />

4.	 Alternatively, we can access the string from the code:
var text = Resources.GetString(Resource.String.popup);

Chapter 13

395

Another way to enhance the experience on the wide variety of devices is to provide different
image resources for the different screen resolutions and sizes:

ff If our app icon is 72 x 72 pixels for high-density screens, we would store this in the
drawable-hdpi resource folder.

ff Then, to provide a scaled image for very high resolution devices, we would store the
scaled up icon of 180 x 180 pixels in the drawable-xxhdpi resource folder.

ff In a similar fashion, we can provide alternate layouts depending on the screen size.
For a phone, we could store the layout in the layout or the layout-sw320dp
resource folders.

ff And for the tablets, we might store the alternate layout in the layout-600dp
resource folder.

Although there are many other ways to improve the experience for different devices and users,
we will only look at one more. We will make use of the Android Support Libraries to bring the
modern styles, such as the material design, and functionality, such as toolbars, from the latest
version of Android down to the older versions:

1.	 The first thing that we must do is install the Xamarin Support Library v7 AppCompat
NuGet or Component into our app.

2.	 Then, we set the Minimum Android version to the older 2.3 and the Target Android
version to the latest available, which is currently 5.0:

The Target and Minimum Android version options

Publishing Apps

396

3.	 Once the library is installed, we can make use of the various support types, such as
AppCompatActivity, and apply the Theme.AppCompat themes:
[Activity(Theme = "@style/Theme.AppCompat.Light")]
public class MainActivity : AppCompatActivity {
}

Besides the Android versions, the language differences and the varying screen resolutions, we
also need to consider the different hardware architectures of the various devices. There are
a few different CPU architectures available, ranging from the older ARMv6 to the new ARMv8
to the Intel x86. As we do not know which users have which devices, we need to support as
many as possible:

1.	 To ensure that our app runs on all of these different architectures, we specify that the
compiler produce binaries for all the available ABIs:

The supported Android ABI options

Chapter 13

397

The next area to look at is the app packaging and the code itself. What we want to do here
is to remove all the unnecessary, or debug-only, code as well as get the package ready for
building in the Release configuration:

1.	 If we are making use of the [UsesFeature] attributes, we should remove any
unnecessary [UsesFeature] attributes from our code.

2.	 Similarly, we remove all the unnecessary permissions. If we are using these attributes
in code, we ensure that there are no unnecessary [UsesPermission] attributes.

3.	 If we are using the project options to edit the AndroidManifest.xml file, we
ensure that we uncheck the unnecessary permission items:

Specify the required permissions

Publishing Apps

398

As this app will be running on many devices that run many other apps, we don't want to waste
CPU resources filling up the log file with all our debug information. We can now start removing
the various debug logging:

1.	 We can start off by removing any unnecessary logging methods, such as Log.Debug
or Console.WriteLine:
Log.Debug("TAG", "message");
Console.WriteLine("message");

2.	 Alternatively, we can use the Debug.WriteLine() methods, which are only
included at compile time when building in the debug configuration:
Debug.WriteLine("message");

3.	 Another way to do this is by simply wrapping chunks of code in preprocessor
directives with the DEBUG conditional. This prevents the compiler from including this
code when building in the release configuration:
#if DEBUG
WriteOutLogging();
#endif

As the code is now mostly clean and ready for release, we can turn off the debugging
permissions on the final app. We do this as it is possible to gain full access to the Java
process and execute arbitrary code in the context of the application, if this debug state
is not disabled:

1.	 One way to do this from the code using the [Application] assembly attribute:
#if DEBUG
[assembly: Application(Debuggable = true)]
#else
[assembly: Application(Debuggable = false)]
#endif

2.	 Alternatively, we can add the android:debuggable attribute to the
<application> element in the AndroidManifest.xml file:
<application android:debuggable="false">

Chapter 13

399

3.	 Finally, we need to specify that the app do not use the shared Mono runtime with the
app, as it will not exist on the user's device:

Don't use the shared Mono runtime package

How it works...
When releasing an app to the store, we want to be able to reach the widest possible audience.
One of the things we can do is to make sure that we have created localized translations of the
interface resources in the app. Often, this does not require any code changes, but makes the
experience more delightful for users in other countries.

Publishing Apps

400

In order to do this, we need to ensure that we have extracted all the strings from the layout
and code into a resource file for each culture. Android automatically selects the correct
resource file depending on the device language that the user has set. We must ensure that
there is a default resource for all resources so that Android can fall back to the default value if
we miss a resource translation.

When localizing resources, there should always be a default resource for
every resource value. If there is none, the app may crash.

To make use of a string resource in the layout files, we replace the actual string value with
a reference to the string resource. To access the resources from the code, we use the
GetString() method on the Resources property of the Context instance.

In a very similar manner to strings, we can localize images and most other resource types. To
create the localized resources, we add a suffix to the resource folders; for example, to localize
strings to French, we use the values-fr resource folder. To localize images to Japanese, we
use the drawable-ja resource folder.

Just like we can localize resources for different languages, we can customize resources based
on the screen resolution or size. We do this so that we can provide higher resolution images
for devices with higher resolution displays, or so that we can provide larger images for devices
with more screen estate.

Resources can be customized for any resource type, such as images and
layouts, and in many different ways, such as languages and screen sizes.

Instead of adding the language code as a suffix to the resource folders, we add the display
resource qualifiers. There are a few ways we can do this; one way is based on the screen
density. Some values are low, high, or extra-extra-high. The resource folders for images at
these densities would be drawable-ldpi, drawable-hdpi, and drawable-xxhdpi,
respectively. Another way we can do this is by screen size, using the width of the smallest
screen dimension. For small devices, such as phones, we would place the layout resources in
the layout-sw320dp attribute, and for a 7-inch tablet, we would use the layout-sw600dp
resource folder.

Chapter 13

401

One of the first resources that we must always create multiple resolutions of is the launcher
icon. This is the first thing that the user sees, and it represents the entire app. A good
launcher icon provides a good first impression. In the following table are the common icon
dimensions and relative resolutions:

Density Name Resource Qualifier Approximate DPI Size Multiplier Pixel Size
Low ldpi ~120dpi 0.75x 36x36
Medium mdpi ~160dpi 1.0x 48x48
High hdpi ~240dpi 1.5x 72x72
Extra High xhdpi ~320dpi 2.0x 96x96
Extra Extra
High

xxhdpi ~480dpi 3.0x 180x180

Extra Extra
Extra High

xxxhdpi ~640dpi 4.0x 192x192

The xxxhdpi qualifier only applies to launcher icons, and is not necessary for other images
such as toolbar icons or app graphics.

Another area in which we can make the app more enjoyable to use is the overall theme or
style. Each version of Android received a theme update, and they usually look nicer each time.
Not all users will be running the latest Android version on their device, and not all devices
will receive the latest updates. In order to ensure that our app always looks the best on all
devices, we can make use of the Android Support Libraries.

After installing the Xamarin Support Library v7 AppCompat Component or NuGet into our
app, we will get the libraries required to be able to use the latest styles on both the latest
Android version as well as the older versions.

We let Android know what version to use as the base for the styles by setting the target
Android version to be the latest available, and the minimum Android version to be the lowest
we want to support. Android will then bring the functionality and features from the target
version of Android to the minimum Android version.

Then, to use the features in the older Android versions, we need to ensure that we are using
the types from the support libraries instead of the default types. For example, instead of
inheriting from the Activity type, we inherit from the AppCompatActivity type. And,
for themes, we apply or inherit from the Theme.AppCompat variants instead of the default
Theme variants.

The Android Support Libraries can be used to bring back both styles and
functionality from the latest Android versions to the older versions.

Publishing Apps

402

Not only do we want to support older versions of Android, but we also want to support the
various hardware configurations. The two main variations are the x86 and the ARM CPU
architectures. The ARM architectures also have several variations from the older ARMv6
to the new 64-bit ARMv8.

To support the widest variety of device hardware, we ensure that we select all the desired ABI
options for the app. This does increase the total size of the package by about 1.5 MB per ABI
option, but this means that the app will run on almost all hardware configurations. The size
increase is a result of the native Mono runtime being included for each ABI option. However,
the actual managed assemblies are only included once.

Now that we have support for many devices and many device configurations, we must clean
up any unnecessary requirements. The first thing to do is to remove all the unnecessary
permissions and feature requirements. This is done by removing the [UsesPermission]
and [UsesFeature] attributes that we do not require. We should also ensure that we have
not included any unnecessary <uses-permission> or <uses-feature> elements in the
AndroidManifest.xml file.

Unnecessary permissions will not cause any problems with an
Android app, but users may not install it if they see that the app
requires too many permissions.

We should also remove all the debug logging from our app. Logging consumes CPU resources
and can be detrimental to our app's performance. However, we should not remove any logging
that we will need to debug errors or exceptions that may occur once we have released our
app. Although we want to remove as much debug logging as possible, we still need to be able
to solve problems when our users experience them.

There are a few ways to remove the unnecessary debug logging, the simplest being the
removal of any Log.Debug or Console.WriteLine statements. If we want to keep these
logging in our code for when we are developing further, we can use the Debug.WriteLine()
method instead. When the compiler encounters these methods, it will automatically remove
them when building in the release configuration. As these statements are removed entirely,
any evaluations that happen as part of the statement will also be removed. Another way
to remove statements when building for release is to wrap them with the #if DEBUG
preprocessor directives. This allows us to remove entire blocks of code at compile time.

Chapter 13

403

The debugging of an app is performed with the use of the Java Debug Wire Protocol (JDWP),
which communicates with a JVM. While JDWP is important during development, it can pose
a security risk for the released app. Thus, we must always disable debugging for released
apps. We do this by setting the Debuggable property to false on the [Application]
attribute in our code, or we can set the android:debuggable attribute to false on the
<application> element in the AndroidManifest.xml file.

When developing apps with Xamarin.Android, we want the process of building and
deploying to the device to be as quick as possible. As copying and installing a package on a
device is a relatively slow operation, we want the package size to be as small as possible. One
way to do this is to use the linker, but this is also very slow.

Instead, the app is broken into the Shared Runtime package, the shared platform and our
app package. The Shared Runtime package contains the Mono runtime and BCL, the shared
platform contains the Android APIs, and our app package just contains the libraries referenced
by our project. The Shared Runtime and Shared Platform packages are only copied once
to the device, but our app assemblies are updated each time we build and deploy.

As a result, the app package will not include the runtime and Android APIs, but are installed
separately. However, as we will not have these packages installed on the users' devices, we
need to specify that it should be included with our app by unchecking the Use shared Mono
runtime checkbox in the project options.

When releasing apps, debugging support must always be disabled
and the shared Mono runtime cannot be used.

Shrinking the app package
No app uses all the features of all the included libraries. The .NET libraries are quite big,
and we often only use a tiny subset. To reduce the size of an app, we need to remove any
unnecessary code or libraries that exist in it.

Publishing Apps

404

How to do it...
To reduce the overall size of the app, we enable the linker. This is used to remove any unused
code from our app, or from any assemblies that are used:

1.	 We select either the Link SDK assemblies only option or the Link all assemblies
option from the Linker behavior dropdown:

The linker options

2.	 When we link assemblies, types and members are removed. To prevent members
from being removed, we can add the [Preserve] attribute to those members:
public class MyClass {
 [Preserve]
 public string MyMember() {
 }
}

Chapter 13

405

3.	 We can also request that the linker skip all the members on an entire type:
[Preserve(AllMembers = true)]
public class MyClass {
}

4.	 If we can't, or don't, want to use the [Preserve] attribute, we can provide a block of
code that prevents the linker from removing the referenced members:
public class MyActivity : Activity {
 static bool falseflag = false;
 static MyActivity() {
 if (falseflag) {
 var ignore = new MyClass();
 }
 }
}

5.	 The last thing we can do to stop the linker, is to specify which assemblies it must
not process:

Specify which assemblies to skip

Publishing Apps

406

6.	 Once the linker is enabled for the .NET assemblies, we enable ProGuard to remove
the unnecessary Java bytecode:

The option to enable ProGuard

How it works...
Most apps contain libraries, or parts of libraries, that aren't being used by the app at all. If the
app never connects to the Internet, the entire networking stack is unused and can be removed.
As a result of removing the unnecessary code, the final size of the assemblies is much smaller
than the initial size. To remove unnecessary code from our app, we use the linker.

Chapter 13

407

Using a linker with Xamarin.Android is essential, as we are including the entire Mono
framework and runtime, which is over 40 MB. As Google Play only allows up to a maximum of
50 MB for the app package, we will be severely limited in the amount of extra resources we
can add. And, users will not want to download a very simple app if the app has a very large
download size.

When we enable the linker, we can reduce the total size of the app package to around 5 MB
for simple apps. This is far more desirable, and usually, only extra resources increase the
app size.

Enabling the linker is essential for almost all apps, as
this significantly reduces the final app size.

There are two ways in which we can enable the linker. We can select the Link SDK assemblies
only option, which specifies that the linker should only processes the Xamarin.Android
platform and the runtime assemblies. This will reduce the size of only the framework, but will
leave any additional assemblies as is.

However, we can rather select the Link all assemblies option, which will try and remove any
unused code from all assemblies, including from any referenced libraries. Removing code
from referenced assemblies is very useful if we are making use of many, or large, libraries.

When we link assemblies, some types and members will be removed. This sometimes causes
problems if we are accessing these types through reflection or serialization. These members
are removed as a result of the linker not being able to see where they are being referenced in
the code.

The linker may sometimes remove the code that is actually being used.
When this happens, steps can be taken to prevent it for occurring.

There are several ways to prevent the linker from removing types and members. One way to do
this is by adding the [Preserve] attribute to those members. In the cases where we can't, or
don't, want to use the [Preserve] attribute, we can provide a block of code that causes the
linker to think that the members are used, but in fact, they aren't used at runtime.

Another way we can prevent the linker from processing certain assemblies, is to specify
in the project options the list of assemblies to ignore. This method is very useful if there
is an assembly that is being used specifically for serialization, or if there are many types that
need to be preserved. However, this results in the entire assembly being skipped, which is
mostly unnecessary.

Publishing Apps

408

With Xamarin.Android, there are two sets of libraries, the .NET assemblies and the Java
libraries. For example, if we create an app that uses the Android Support Libraries, the actual
.NET assembly that gets referenced is actually just a wrapper for the underlying Java library.
Thus, when we link the .NET assembly, we are only linking a tiny wrapper instead of the large
Java library.

As many Xamarin.Android apps make use of many Java libraries, we need a way to link the
underlying Java libraries as well. When compiling our app, there is the option to use ProGuard,
which is the Java linker and obfuscator.

ProGuard will link only the Java libraries, and is used together
with the managed linker, which links only the managed code.

ProGuard is similar to the managed linker, and it will remove the unused Java code. However,
it is also an obfuscator. This means that it will also obfuscate and optimize the generated and
included Java code.

There's more...
The maximum size for a package published on Google Play is 50 MB. If an app exceeds that
size, Google Play will allow extra assets to be delivered through APK Expansion files. Android
Expansion Files permit the app to have two additional files, with each being up to 2 GB in size.
Google Play will host and distribute these files at no cost.

To use these expansion files, we must install the Android APK Expansion Downloader NuGet.
We create a service that inherits from DownloaderService and also implements the
IDownloaderClient interface. Although not as simple as this, we connect to the service
and start the download.

Creating the app package
Now that our app is finally finished, we can get started creating the final app package. We
need to ensure that the actual package meets Google Play's requirements and is signed with
a key from a keystore.

How to do it...
Before we can create the app package, we need to ensure that the package will be accepted
by Google Play and the metadata describes the app correctly. To do this, we use the app's
project settings to provide the correct values for the packaging process:

1.	 We first need to provide a name that will be used when listing the app on the device.
This should be a string resource, but can be a normal string:

Chapter 13

409

The application name field

2.	 Next, we will provide a unique package name, which is the ID that is used to identify
our app on Google Play:

The package name field

Publishing Apps

410

3.	 We now specify the Application icon, which represents the default image used for
the app. We can do this using the [Application] attribute:
[assembly: Application(Icon = "@drawable/iconit is just an
alternati")]

4.	 Also, we can set the Application icon in the AndroidManifest.xml file, using the
project options:

The application icon field

Chapter 13

411

5.	 Then, we provide versioning information. The Version number text box is an integer
used internally by Android, and the Version name text box is a user-facing string:

The version number and version name fields

Publishing Apps

412

6.	 Finally, we specify the preferred install location of the app on the device:

The install location field

Now that the package is ready to be created, we can switch to the release configuration and
start the build process:

1.	 First, ensure that we are on the Release configuration.

2.	 Next, we must package the app. In Xamarin Studio, we select the Build | Archive for
Publishing menu item. In Visual Studio, this step is not required:

Chapter 13

413

Archive for publishing

3.	 After the project has been archived in Xamarin Studio, we select the archive that was
just created and click on the Sign and Distribute button:

Publishing Apps

414

4.	 In the case of Visual Studio, we navigate to Tools | Android | Publish Android App...
menu item. This performs both the archive and sign steps in a single wizard:

5.	 In either case, the packaging and signing wizard will appear and we just have
to follow the onscreen instructions. The wizard will ask us to select a key from a
keystore, and a location to save the final app package. If we don't have a keystore yet,
we will create one in the wizard.

How it works...
Once an app's code is complete and the various compiler options have been set, we will
create the final package that will be uploaded to Google Play. Just before we build the
package, we need to first check that the packaging options are correct for this release of the
app. These options are used to display and categorize the app of both the device as well as
Google Play.

Chapter 13

415

The first option is the Application name, which is used as the title for the app on Google Play.
Once the app is installed, the name that appears on the launcher will actually be the name
of the activity. In the same way, the Application icon option is also only used on Google
Play, and the activity icon used on the device launcher. As these two fields are user-visible
resources, they should be localized. The Application name field can be a plain string, but
this is not recommended.

The app icon can also be provided using the Icon
property of the [Application] attribute.

The Package name field is really the ID that is used to identify our app on Google Play.
This has to be unique across the entire store and cannot be changed once the app has
been published. As a result, it is important that we select a name that will remain relevant
throughout our app's lifetime.

The package name must be unique across the store and
cannot be changed.

The next important part of the package is the version. Versioning consists of the internal,
integer number representing our app's version. Every release must receive a higher number,
and this is used by Google Play to determine whether the app needs to be updated on the
user's device.

The other component to the version, is the user-friendly Version name. This can be any string
that we want to present to the user, and it is not used by Google Play. Usually, this is in the
form <major>.<minor>.<point>, or in the case of .NET versioning, <major>.<minor>.<
build>.<revision>.

The version number is an internally-used integer, and
the version name is a publicly-visible string.

The last packaging option to set, is the install location. Here, we specify where to try and
install to. We can request that we install to the external storage, or specify that we must
always, and only, install to the internal storage. If the app is quite large, we should prefer the
external storage.

When we want to actually create the app package, that is, the .APK file that we upload to
Google Play, we must build the release configuration. When using Xamarin Studio, we must
archive the app before signing the package for distribution. In Visual Studio, we do both steps
when we publish the app.

Publishing Apps

416

An APK file is the name given to the final Android application package,
which is uploaded to an Android app store, such as Google Play.

When signing, we use a key, or certificate, from a keystore. This key is used by Android to verify
the author of the app. We can reuse an existing keystore, or we can create a new one in the
wizard. However, we must use a keystore that only expires after October 22, 2033.

All versions of the same app must be signed with the same key, otherwise Google Play can't
verify that the app update was created by the same author. A new key will make it necessary
for us to create a totally new app with a new package name. Although not required for many
apps, only those signed with the same key can run in the same process and share code.

The same key must be used to sign each version of the app, otherwise
the app cannot be updated seamlessly.

There's more...
Maintaining the security of our keystore is of critical importance, both for us as developers
and for the user. The keys can be used to impersonate the publisher and access users'
private data.

The keystore is required for signing all future versions of our app. If we lose or misplace our
keystore, we will not be able to publish updates to our existing app. This is because we cannot
regenerate a previously generated key.

Uploading the app package
After the app has been developed and packaged, we want to be able to release it into
the wild. There are many different Android app stores available, such as Google Play or
Amazon Appstore.

Getting ready
To distribute our app through Google Play, we need to have created a developer account on
the Google Play Developer Console (https://play.google.com/apps/publish). This
only needs to be performed once, and involves a one-time fee of $25 USD.

https://play.google.com/apps/publish

Chapter 13

417

If we are going to distribute paid apps or apps that have in-app billing, we need to link the
developer account to a Google Wallet account (http://www.google.com/wallet/
merchants.html). Google Wallet is only available in certain countries, so we need to ensure
that we have created the merchant account in one of them (https://support.google.
com/googleplay/android-developer/table/3539140).

How to do it...
Once we have signed the app package, we can prepare the Google Play app listing for the
upload process as follows:

1.	 When logged into the console, click on the Add new application button, enter the
new app's title, and click on Prepare Store Listing:

The Add New Application dialog

http://www.google.com/wallet/merchants.html
http://www.google.com/wallet/merchants.html
https://support.google.com/googleplay/android-developer/table/3539140
https://support.google.com/googleplay/android-developer/table/3539140

Publishing Apps

418

2.	 When the listing has been created, we upload the package to the Alpha channel.
We first select the APK section on the left-hand side. Then, under the Alpha Testing
tab, click on the Upload your first APK to Alpha button, which can be seen in the
following screenshot:

Uploading the first APK to Google Play

3.	 In the dialog that appears, browse to and select the package that we just packaged
using our IDE.

The upload APK dialog

Chapter 13

419

4.	 When the upload completes, we can select the package item in the list and review
the details and add release notes.

The APK details dialog

Publishing Apps

420

5.	 After the APK has been uploaded, we now complete the fields required in the various
sections. As we complete each section, we click on the Save draft button at the top of
the page. Once all the required fields are completed in each section, the check mark
next to the section turns green:

The Google Play package sections

6.	 The first section after the APK section is Store Listing. All of these fields can be
localized, and are used to describe the package as it appears in Google Play.

7.	 One of the fields in the Store Listing section is New content rating. We specify a
rating here by completing the questionnaire in the Content Rating section.

8.	 The last section we need to complete is the Pricing & Distribution section. Here,
we specify whether the app is paid or free, and which countries the app will be
available in.

9.	 Once all the fields are filled in, we can click on the Publish app button at the top of
the page. It usually takes a few days before the app will appear on the store.

10.	 If the button is not enabled, we can click on the Why can't I publish? link above the
publish button:

The link to view outstanding fields

Chapter 13

421

11.	 This will show a dialog that lists all the fields that still need completion:

The fields that still need to be completed

How it works...
Google Play requires that there be metadata describing the app and its content. This is the
app listing, which is used for categorization and filtering. This information ranges from the
description and icon to the content rating and supported platforms.

When creating a store listing, we start off by specifying just the app title. The package name
and version numbers are obtained from the upload package. Uploading of a package is
performed on the APK section of the listing. Here, we specify the channel to which the app is
to be released on, which should initially be one of the testing channels.

Testing channels are used to provide phased rollouts of new app versions to only a subset
of the users. Then, based on those users' feedback, we can improve the package before we
release it to everyone. This is important, as even though the app may run smoothly, the users
may not enjoy some of the functionality.

The testing channels can be used to test the app before it is released
to production, potentially avoiding bad reviews.

Publishing Apps

422

After we have uploaded a package, we get the opportunity to review the package details. We
do this to ensure that we have not accidentally included unnecessary permissions or features.
Also, we can confirm that we are supporting the desired platforms and languages.

Another important thing that we can do is to add release notes. Release notes is a way in
which we are able to advertise new features in our app, as well as point out any bug fixes.

Once the package has been uploaded, we complete the required fields in the various sections.
As we complete each section, we save the changes using the Save draft button at the top
of the page. As required fields are completed in each section, the check mark next to that
section goes green. Once all the sections are green, we will be able to publish the app.

The first section after the APK section is Store Listing. All of these fields can be localized, and
are used to describe the package as it will appear in Google Play. The first three fields are the
textual descriptions of the app, the app title, a short description and a longer, full description.

All the values under the Store Listing section should be
localized for the regions in which the app is released.

The next set of fields are the graphic assets and video fields. These include the various
screenshots, icons, and other promotional graphics. Screenshots can be provided for
phones, tablets, and TVs. At least two screenshots are required, but we don't have to provide
screenshots for all displays. Other graphics include a high resolution icon used on the website,
along with some promotional graphics.

After the graphics, we fill in categorization fields. These are used when organizing the apps in
Google Play. One of the fields here is New content rating, which we specify by completing the
questionnaire in the Content Rating section.

The final fields in the Store Listing section are the contact details and any privacy policy
information. Although optional, we should provide a privacy policy that discloses the ways in
which our app gathers and manages user data.

The next section, Content Rating, is a questionnaire that Google uses to provide a rating of
the app content. Then, consumers, such as parents, can decide whether an app is suitable for
the intended audience.

The content rating field in the Store Listing section is populated
by applying a questionnaire in the Content Rating section.

Next, we will complete the Pricing & Distribution section. This section controls where and
how the package is distributed to the many countries. Here is where we specify whether the
app is a paid app or a free app. This is an important step as once the app is free, we cannot
change it back to a paid app. If we select paid, we must enter a default price, and any specific
regional prices.

Chapter 13

423

After the pricing fields, we are provided a checklist with all the countries that we can distribute
to. Here, we check all the countries in which we want our app to be available. If this is a paid
app, we can adjust any local pricing here. Usually, we would want to distribute the app to as
many regions as possible, but we may want to restrict the initial release to fewer regions.

The various prices can be changed once the app has been published,
but a free app cannot become a paid app.

The next group of fields is where we select the distribution areas, such as for Android Wear,
TV, Auto, or work. And, we have to indicate that our app complies with the content guidelines
and US export laws.

The last two sections, In-app Products and Services & APIs, are used when we are going to
be adding in-app billing or licensing into the app. These are not required for many of the apps
we will create, so we can skip them.

Once all the fields are filled in, our app is ready to be published. We can check whether the
check marks next to each section are all green. If they aren't, or the Publish app button at the
top of the page is disabled, we can click on the Why can't I publish? link above the publish
button. This will show a dialog that lists all the fields that still need completion.

Finally, once all the requirements are met, we click on the Publish app button at the top of
the page. Once we have published the app, it usually takes a few days before it will appear on
the store. This is because Google will process the package to ensure that it conforms to their
guidelines and does not infringe on any copyrights.

The publishing process usually takes a few days.

Adding preview testers
It's always valuable to get real-world feedback from users, especially before we release the
app. Google Play allows us to distribute preview versions of our app test groups.

How to do it...
To add testers to the Alpha or Beta channels, we have to create a Google group, to which we
are going to add all the developers and testers:

1.	 First, we log into Google Groups (https://groups.google.com) with the publisher
account credentials, and create a new group using the Create Group button.

https://groups.google.com

Publishing Apps

424

2. Then, in the create group page, we fill in the fields, ensuring that we make note of the
group e-mail address (alpha-testers-channel@googlegroups.com):

The Create Group page

3. A captcha dialog will appear, where we just enter the characters and click on
Continue to create the group.

4. Now that we have the group created, we can start adding the testers to it. To do this,
we click on the Manage link next to the group name.

5. When the page opens, we select the Invite members section, enter the testers' and
developers' e-mail addresses, and then click on the Send invites button:

The Invite Members page

Chapter 13

425

Now that we have our group of testers, we must assign this group to either the Alpha or the
Beta channels by following these steps:

1.	 On either the Alpha Testing or Beta Testing tabs of the APK section, depending on
where the app was released to, select the Manage list of testers link:

The link to add the testers group

2.	 In the dialog that appears, enter the e-mail address of the group, click on Add, and
then click on Close. We can copy the link at the bottom of the dialog and send it to
the testers:

The dialog for adding testers

3.	 All users in the testers group will be able to navigate to the testing URL and download
our app.

Publishing Apps

426

How it works...
Being able to release apps to the Alpha and Beta channels is a great way to test our app
before we release it to production. However, these channels are not publicly accessible, and
if we are working in a team, the testers will not be able to access the app. By default, only the
publisher can view the app when it is in Alpha or Beta stage. This is especially limiting if we
were adding in-app billing to our app, as the publisher cannot buy any products.

Testing groups are required when testing in-app billing,
as the publisher cannot make purchases.

Google Play provides a way to add groups of testers to a specific channel, so that all members
of those groups can access the app. There are two types of groups, Google Groups and
Google+ Communities.

If we are using Google Groups to organize the testers, we have to create a new Google Group
and invite the testers. We can manage Google Groups on the website (https://groups.
google.com) using the publisher account credentials.

We assign the new group to either the Alpha or the Beta channel, using the Google Group
e-mail address that was created when we created the group. Both the Alpha and Beta
channels have a Manage list of testers link that allows us to add the various groups of
testers to a specific channel.

In the dialog that we are using to add the groups to the channel, there is a URL that we can
send to the testers. This URL will take the tester to a page where they are provided with a
download URL, which will install the app on their device.

There's more...
We can also make use of Google+ Communities (https://plus.google.com/
communities) to organize the groups of testers. In a similar manner to creating
Google Groups, we can create a community and add the URL to the testers list.

https://groups.google.com
https://groups.google.com
https://plus.google.com/communities
https://plus.google.com/communities

Chapter 13

427

Releasing for production
After a period of our app being in the preview stages, we would want to release it to everyone.
Or, we might just be going straight to a full public release. Either way, we want to move the app
from the Alpha cannel and into the Production channel.

Getting ready
Before we can release an app to the Production channel, we will need to have uploaded an
app the either the Alpha or Beta channels. We can upload directly to Production, but this is
not recommended.

How to do it...
Moving an app from Alpha or Beta into Production, is just a matter of a few clicks:

1.	 First, we navigate to the APK section on the Developer Console.

2.	 Next, we navigate to either the Alpha or Beta tab, depending on where our current
release package is.

3.	 Then, we click on the Promote… dropdown on the APK that we want to push to the
production channel, and select the Promote to Prod item:

Pushing an APK to a new release channel

Publishing Apps

428

4.	 In the dialog that appears, ensure that we have completed any release notes, and
then click on the Move and publish button, which can be seen here:

The promote APK dialog

5.	 This publishes our APK to production, where all Google Play users can view it. The
publication process may take a few hours to propagate through Google Play, so the
app may not appear immediately.

How it works...
When we release a new version of our app to Google Play, we want to first do some user
acceptance testing. After internal testing, which ensures that the app runs smoothly, we can
start the rollout to a smaller subset of the users through the use of the testing channels. As
new features are added and existing features changed, it is important that the users like the
changes. The subset of the users that will be testing the app in the real world can use the
testing channel to provide valuable feedback, before the app is published to the general public.

Once the testing phase is complete, we want to take that app and move it from a testing
channel into the production channel. With Google Play, this is easy to do, and only requires a
few console actions.

We can select any package, from either the Alpha or Beta channels, and move it to the
production channel. We can also move the package from the Alpha channel into the Beta
channel and perform more testing for a different set of users. This way, we can provide a
phased rollout through first the Alpha, then the Beta, and then the Production channels.

Chapter 13

429

Updating the app
Once an app has been released, we will want to provide additional features or fix any bugs. We
can easily do this by uploading a later version of our app to Google Play.

Getting ready
When we want to update an app, we will need to ensure that our new app will have the same
package name and can be signed by the same keystore.

How to do it...
Releasing updates to an existing app on Google Play is straightforward, only requiring that the
version numbers be increased besides any code changes:

1.	 The Version number field needs to be a greater integer value than the current
release, and the Version name field should be a higher semantic version:

Increasing the app version numbers

Publishing Apps

430

2.	 Next, we must archive and sign the app package in the same manner as with the
previous release.

3.	 Then, we go to the APK section in the dashboard of the app we want to update. On
the Alpha tab, click on the Upload new APK to Alpha button.

4.	 In the dialog that appears, browse to and select the APK that we just packaged using
our IDE.

The upload new APK dialog

Chapter 13

431

5.	 Once the upload is complete, enter any release notes before clicking on the Publish
now to Alpha button:

The upload new APK dialog

Publishing Apps

432

How it works...
App updates are very important, as they let the user know that we are still supporting them,
especially if this was a paid app. The actual release process is just the package and upload
steps. We do not have to create a new store listing or new keystores.

Once the app update has been developed, we just package and sign the app. We must ensure
that the package name is the same as the previous version, the version numbers have been
increased, and the final package is signed with the same key.

When the package is created, we then go ahead and upload the new package to any one of
the channels. Usually, we would want to upload to a testing channel so that the new package
can be tested before the final release.

Release notes let the users know about new features
that they may have otherwise missed.

Testing updates is important as we may have an app with a high rating, but a poor update can
result in a drop in the ratings. Also, testing an app with a few users allows us to make changes
before the app goes to production and to the rest of the users.

433

Index
A
action bar action items

adding 20, 21
action bar property

adding 15-17
and fragments 50-52
navigating with 18, 19

activities
data, obtaining from 228-230

ADO.NET
URL 84
used, for accessing data 82-85

alert dialogs 194-196
alert fragments

about 196, 197
embedded 198-200

always-on wearable apps
creating 332-334
dynamic always-on wearable apps,

creating 335-339
Android

previous versions, supporting 12-15
resources, URL 9, 10

Android Backup Service Key
URL 100

app
components, starting 222-225
launching 225-228
updating 429-432

app package
creating 408-416
preparing 394-403
shrinking 403-408
uploading 416-423

arbitrary data
BaseAdapter element, using 115-118

asynchronous tasks 170-174
audio

playing 246-250
playing, in background 250-255
recording 260-262
volume, managing 256-259

B
Babel

URL 389
background

audio, playing in 250-255
BaseAdapter

using, with arbitrary data 115-118
Bluetooth

accessing 145-149
used, for transferring data 150-154

BroadcastReceivers
using 230-234

bundled assets
reading 76-78

C
camera

app, creating 275-281
using 271-275

canvas, drawing on
of SurfaceView instance 290-293
of View instance 286-290

cloud
data, backing up 102-106
files, backing up 99-101
preferences, backing up 99-101

434

code
protecting 389-394
sharing, with other platforms 25-31

content
protecting 382-389

content providers
consuming 91-93
creating 94-98

contextual action mode menu
creating 21-25

CursorAdapter
using 118-120

custom attributes
URL 37

custom ListView items
using 112, 113

custom user gestures
responding to 310-313

custom views
using, with layouts 34-37

D
data

about 69, 70
accessing, ADO.NET used 82-86
accessing, SQLite.NET used 86-89
backing up, to cloud 102-106
obtaining, from activities 228-230
storing, SharedPreferences used 70-72
transferring, Bluetooth used 150-154
transferring, NFC used 160-162

databases
encrypting, SQLCipher used 89-91

device shakes
detecting 320-322

DownloadManager
using 142-145

E
environment

discovering 319, 320

F
fast scrolling

enabling 123, 124

files
backing up, to cloud 99-101
using 73-75

filesystem
using 73-75

fragments
and action bar property 50-52
creating 38-42
navigating between 47-49
navigation, animating 52-55
state, preserving 42-46
used, for adding navigation drawer 61-66
using 38-42
view, preserving 42-46

G
Global Positioning System (GPS) 162
global themes

applying 66-68
Google Cloud Messaging (GCM) 213
Google+ Communities 426
Google developer

URL 362
Google Developers Console

URL 211
Google Groups

URL 423, 426
Google Wallet

URL 362

H
high-resolution images

handling 282-285
HttpClient

REST services, consuming 134-137
HTTP requests

URL 134

I
implicit intent 226
in-app billing

integrating 366
integrating, into app 367-369
preparing for 362-366

435

J
Java Debug Wire Protocol (JDWP) 403

L
Language-Integrated Query (LINQ)

about 79
to XML, URL 82
URL 82

layouts
custom views, using 34-37

ListView
implementing 108-110
optimizing 120-123

local styles
applying 66-68

Location Coordinates and Addresses
obtaining 162-167

M
manipulation gestures

responding to 304, 305
multimedia 245, 246

N
navigation drawer

adding, fragments used 61-66
Near Field Communications (NFC)

about 134
events, receiving 154-157
tags, writing 157-159
used, for transferring data 160-162

network state
changes, handling 140-142
obtaining 138-140

notifications
about 191, 192
builder 202-206
custom notification views 208-211
ongoing 207, 208
push notifications 211-220

O
object properties 55, 59

options menu
creating 10-12

P
phone calls

intercepting 238-240
making 236, 237

port forwarding
URL 331

preferences
backing up, to cloud 99-101

preview testers
adding 423-426

production
releasing for 427, 428

products
available products, listing 369-371
purchased products, listing 376, 377
purchasing 371-375

purchases
consuming 377-379

push notifications 211-220

R
resources

reading 76, 78
URL 77

REST services
consuming, with HttpClient 134-137

rotate gestures
detecting 306-310

S
scroll gestures

responding to 299-303
search

integrating 127-131
section indexes

using 125-127
selection alerts 200-202
sensor data

listening to 314-317
sensor triggers

listening for 317, 318

436

services
critical services 187-189
running services 183-187
simultaneous service requests,

handling 178-180
starting 174-176
starting, automatically 181, 182
stopping 176-178

SharedPreferences
used, for storing data 70-73

SimpleAdapter
using 110-112

SMS messages
receiving 242, 243
sending 240-242

SQLCipher
used, for encrypting databases 89-91

SQLite.NET
used, for accessing data 86-89

SurfaceView instance
canvas, drawing on 290-293

T
Task Parallel Library (TPL) 170
tasks

scheduling 234-236
toasts

about 192
notifications, creating 192-194

touches
responding to 296-298

U
UI

views, animating 59-61
User Interface layouts

creating 7-10

V
video

custom video controls 265-270
playing 262-265

view
animating 55-59
animating, on UI 59-61

View instance
canvas, drawing on 286-290

W
watch faces

building 347-355
configuring 356-359

wearable notifications
about 324, 325
customizing 326-328

wearables
about 324
apps, creating 328-332
communicating with 339-347

X
Xamarin.Android projects

about 1, 2
creating 2-6
URL 2

XML
generating 79-82
parsing 79-82
processing 79-82

Z
Zetetic LLC

URL 91

Thank you for buying
Xamarin Mobile Development
for Android Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Xamarin Essentials
ISBN: 978-1-78355-083-8 Paperback: 234 pages

Learn how to efficiently develop Android and iOS apps
for deployment using the Xamarin platform

1.	 Explore the Xamarin platform and understand
the architecture behind Xamarin.iOS and
Xamarin.Android.

2.	 Learn how to build and run iOS and Android apps
using Xamarin Studio and Visual Studio.

3.	 This is a practical tutorial with a clear and concise
approach that teaches you how to create, share,
and reuse code across your iOS and Android apps.

Xamarin Mobile Application
Development for iOS
ISBN: 978-1-78355-918-3 Paperback: 222 pages

If you know C# and have an iOS device, learn to use one
language for multiple devices with Xamarin

1.	 A clear and concise look at how to create your own
apps building on what you already know of C#.

2.	 Create advanced and elegant apps by yourself.

3.	 Ensure that the majority of your code can also be
used with Android and Windows Mobile 8 devices.

Please check www.PacktPub.com for information on our titles

Learning Xamarin Studio
ISBN: 978-1-78355-081-4 Paperback: 248 pages

Learn how to build high-performance native applications
using the power of Xamarin Studio

1.	 Get a full introduction to the key features and
components of the Xamarin 3 IDE and framework,
including Xamarin.Forms and iOS visual designer.

2.	 Install, integrate and utilise Xamarin Studio
with the tools required for building amazing
cross-platform applications for iOS and Android.

3.	 Create, test, and deploy apps for your business
and for the app store.

Xamarin Mobile Application
Development for Android
ISBN: 978-1-78355-916-9 Paperback: 168 pages

Learn to develop full featured Android apps using your
existing C# skills with Xamarin.Android

1.	 Gain an understanding of both the Android and
Xamarin platforms.

2.	 Build a working multi-view Android app
incrementally throughout the book.

3.	 Work with device capabilities such as location
sensors and the camera.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Working with
Xamarin.Android
	Introduction
	Creating Xamarin.Android projects
	Creating user interface layouts
	Creating an options menu
	Supporting previous Android versions
	Adding an action bar
	Navigating with the action bar
	Adding action bar action items
	Creating contextual action mode menu
	Creating contextual action mode menus
	Sharing code with other platforms

	Chapter 2: Showing Views and Handling Fragments
	Introduction
	Using custom views with layouts
	Creating and using fragments
	Preserving view and fragment state
	Navigating between fragments
	Fragments and the action bar
	Animating fragment navigation
	Animating view and object properties
	Animating views on the UI
	Adding a navigation drawer with fragments
	Applying local styles and global themes

	Chapter 3: Managing App Data
	Introduction
	Storing data with SharedPreferences
	Using files and the filesystem
	Reading bundled assets and resources
	Parsing, processing, and generating XML
	Accessing data with ADO.NET
	Accessing data with SQLite.NET
	Encrypting databases with SQLCipher
	Consuming content providers
	Creating content providers
	Backing up preferences and files to the cloud
	Backing up data to the cloud

	Chapter 4: Presenting App Data
	Introduction
	Implementing a ListView
	Using a SimpleAdapter
	Using custom ListView items
	Using a BaseAdapter with arbitrary data
	Using a CursorAdapter
	Optimizing the ListView
	Enabling fast scrolling
	Using section indexes
	Integrating app searchability

	Chapter 5: Communicating with the Outside World
	Introduction
	Consuming REST services with HttpClient
	Obtaining a network state
	Handling network state changes
	Using DownloadManager
	Accessing Bluetooth
	Transferring data via Bluetooth
	Receiving NFC events
	Writing NFC tags
	Transferring data via NFC
	Obtaining location coordinates and addresses

	Chapter 6: Using Background Tasks
	Introduction
	Asynchronous tasks
	Starting services
	Stopping services
	Handling simultaneous service requests
	Starting services automatically
	Communicating with running services
	Critical services

	Chapter 7: Notifying Users
	Introduction
	Toasts
	Alert dialogs
	Alert fragments
	Embedded alert fragments
	Selection alerts
	The notification builder
	Ongoing notifications
	Custom notification views
	Push notifications

	Chapter 8: Interacting with
Other Apps
	Introduction
	Starting app components
	Launching other apps
	Obtaining data from activities
	Using BroadcastReceivers
	Scheduling tasks
	Making phone calls
	Intercepting phone calls
	Sending SMS messages
	Receiving SMS messages

	Chapter 9: Presenting Multimedia
	Introduction
	Playing audio
	Playing audio in the background
	Managing the audio volume
	Recording an audio
	Playing a video
	Custom video controls
	Using the camera
	Creating a camera app
	Handling high-resolution images
	Drawing on the canvas of a View
	Drawing on the canvas of a SurfaceView

	Chapter 10: Responding to the User
	Introduction
	Responding to simple touches
	Responding to scroll gestures
	Responding to manipulation gestures
	Detecting rotate gestures
	Responding to custom user gestures
	Listening to sensor data
	Listening for sensor triggers
	Discovering the environment
	Detecting device shakes

	Chapter 11: Connecting to Wearables
	Introduction
	Introducing wearable notifications
	Customizing wearable notifications
	Creating wearable apps
	Creating always-on wearable apps
	Creating dynamic always-on wearable apps
	Communicating with wearables
	Building watch faces
	Configuring watch faces

	Chapter 12: Adding In-App Billing
	Introduction
	Preparing for in-app billing
	Integrating in-app billing
	Listing available products
	Purchasing products
	Listing purchased products
	Consuming purchases

	Chapter 13: Publishing Apps
	Introduction
	Protecting the content
	Protecting the code
	Preparing the app package
	Shrinking the app package
	Creating the app package
	Uploading the app package
	Adding preview testers
	Releasing for production
	Updating the app

	Index

