
The Definitive
Guide to Spring
Batch

Modern Finite Batch Processing in the Cloud
—
Second Edition
—
Michael T. Minella
Foreword by Dave Syer, Spring Batch Project Founder

www.allitebooks.com

http://www.allitebooks.org

The Definitive Guide to
Spring Batch

Modern Finite Batch Processing in the Cloud

Second Edition

Michael T. Minella

Foreword by Dave Syer, Spring Batch Project Founder

www.allitebooks.com

http://www.allitebooks.org

The Definitive Guide to Spring Batch: Modern Finite Batch Processing in the Cloud

Michael T. Minella
Chicago, IL, USA

ISBN-13 (pbk): 978-1-4842-3723-6 ISBN-13 (electronic): 978-1-4842-3724-3
https://doi.org/10.1007/978-1-4842-3724-3

Copyright © 2019 by Michael T. Minella

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio
rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/9781484237236. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3724-3
www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:editorial@apress.com
mailto:bookpermissions@springernature.com
http://www.apress.com/bulk-sales
www.apress.com/9781484237236
http://www.apress.com/source-code
http://www.allitebooks.org

To my daughter, Addison. If Daddy can do this, you can do anything.

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author ��� xiii

About the Technical Reviewers ���xv

Acknowledgments ���xvii

Foreword ��xix

 ■Chapter 1: Batch and Spring ��� 1

A History of Batch Processing �� 2

Batch Challenges ��� 3

Why Do Batch Processing in Java? �� 4

Other Uses for Spring Batch ��� 5

The Spring Batch Framework ��� 8

Defining Jobs with Spring �� 9

Managing Jobs ��� 10

Local and Remote Parallelization ��� 10

Standardizing I/O �� 10

The Rest of the Spring Batch Ecosystem �� 10

And All the Features of Spring �� 11

How This Book Works ��� 11

Summary �� 12

 ■Chapter 2: Spring Batch 101 ��� 13

The Architecture of Batch ��� 13

Examining Jobs and Steps ��� 14

Job Execution ��� 15

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vi

Parallelization ��� 17

Documentation ��� 20

Project Setup �� 21

Obtaining Spring Batch ��� 21

It’s the Law: Hello, World! ��� 24

Running Your Job ��� 27

Summary �� 28

 ■Chapter 3: Sample Job �� 29

Understanding Agile Development ��� 29

Capturing Requirements with User Stories �� 30

Capturing Design with Test-Driven Development ��� 32

Using a Version-Control System ��� 32

Working with a True Development Environment ��� 32

Understanding the Requirements of the Statement Job �� 32

Designing a Batch Job ��� 38

Job Description ��� 39

Understanding the Data Model ��� 40

Summary �� 41

 ■Chapter 4: Understanding Jobs and Steps �� 43

Introducing a Job ��� 43

Tracing a Job’s Lifecycle �� 44

Configuring a Job ��� 46

Basic Job Configuration �� 46

Job Parameters �� 47

Working with Job Listeners �� 61

ExecutionContext �� 64

Manipulating the ExecutionContext �� 65

Working with Steps �� 69

Tasklet vs� Chunk Processing ��� 69

Step Configuration �� 70

■ Contents

vii

Understanding the Other Types of Tasklets��� 71

Step Flow �� 88

Summary �� 105

 ■Chapter 5: JobRepository and Metadata ��� 107

What Is the Job Repository?��� 107

Using a Relational Database ��� 107

The In-Memory Job Repository �� 111

Configuring the Batch Infrastructure �� 112

The BatchConfigurer Interface �� 112

Customizing the JobRepository �� 112

Customizing the TransactionManager �� 114

Customizing the JobExplorer �� 115

Customizing the JobLauncher �� 116

Database Configuration �� 117

Using Job Metadata ��� 118

The JobExplorer �� 118

Summary �� 122

 ■Chapter 6: Running a Job �� 123

Starting a Job with Spring Boot ��� 123

Launching a Job via REST �� 125

Scheduling with Quartz �� 130

Stopping a Job ��� 134

The Natural End �� 134

Programmatic Ending ��� 135

Error Handling ��� 148

Controlling Restart ��� 150

Preventing a Job from Being Rerun �� 150

Configuring the Number of Restarts ��� 151

Rerunning a Complete Step �� 152

Summary �� 153

■ Contents

viii

 ■Chapter 7: ItemReaders ��� 155

The ItemReader Interface ��� 155

File Input �� 156

Flat Files ��� 156

XML ��� 183

JSON��� 188

Database Input ��� 191

JDBC ��� 191

Hibernate �� 198

JPA �� 202

Stored Procedures �� 204

Spring Data ��� 206

Existing Services �� 211

Custom Input �� 213

Error Handling �� 218

Skipping Records �� 218

Logging Invalid Records ��� 220

Dealing with No Input ��� 222

Summary �� 223

 ■Chapter 8: ItemProcessors �� 225

Introduction to ItemProcessors �� 225

Using Spring Batch’s ItemProcessors �� 227

ValidatingItemProcessor ��� 227

ItemProcessorAdapter �� 234

ScriptItemProcessor ��� 236

CompositeItemProcessor �� 237

Writing Your Own ItemProcessor �� 242

Filtering Items ��� 242

Summary �� 244

■ Contents

ix

 ■Chapter 9: ItemWriters �� 245

Introduction to ItemWriters �� 246

File-Based ItemWriters ��� 247

FlatFileItemWriter ��� 247

StaxEventItemWriter ��� 259

Database-Based ItemWriters ��� 263

JdbcBatchItemWriter �� 263

HibernateItemWriter ��� 270

JpaItemWriter ��� 275

Spring Data ItemWriters ��� 279

MongoDB �� 279

Neo4J ��� 282

Pivotal Gemfire and Apache Geode ��� 286

Repository �� 291

Alternative Output Destination ItemWriters �� 294

ItemWriterAdapter �� 294

PropertyExtractingDelegatingItemWriter �� 297

JmsItemWriter �� 299

SimpleMailMessageItemWriter ��� 304

Multipart ItemWriters ��� 310

MultiResourceItemWriter �� 310

CompositeItemWriter �� 319

ClassifierCompositeItemWriter ��� 322

Summary �� 326

 ■Chapter 10: Sample Application �� 327

Reviewing the Statement Job �� 327

Setting Up a New Project ��� 328

Importing Customer Updates ��� 330

Validating Customer ID ��� 338

Writing Customer Updates �� 339

■ Contents

x

Importing Transactions ��� 343

Reading Transactions ��� 345

Writing Transactions ��� 346

Applying Transactions to Current Balance �� 347

Reading the Transaction Data ��� 348

Updating the Account Balance �� 349

Generating Monthly Statement��� 349

Reading the Statement Data ��� 350

Enrich the Statement with Accounts �� 353

Writing Statements ��� 355

Summary �� 359

 ■Chapter 11: Scaling and Tuning ��� 361

Profiling Your Batch Process �� 361

A Tour of VisualVM �� 362

Profiling Spring Batch Applications �� 366

Scaling a Job �� 374

Multithreaded Steps ��� 374

Parallel Steps �� 376

AsyncItemProcessor and AsyncItemWriter ��� 381

Partitioning ��� 384

Remote Chunking ��� 399

Summary �� 405

 ■Chapter 12: Cloud Native Batch ��� 407

Twelve Factor Applications ��� 408

Codebase �� 408

Dependencies ��� 408

Config ��� 409

Backing Services �� 409

Build, Release, Run ��� 409

Processes ��� 409

■ Contents

xi

Port Binding �� 409

Concurrency�� 410

Disposability ��� 410

Dev/Prod Parity ��� 410

Logs �� 410

Admin Processes �� 411

A Simple Batch Job �� 411

Circuit Breaker ��� 417

Externalizing Configuration �� 420

Spring Cloud Config �� 421

Service Binding via Eureka ��� 423

Orchestrating Batch Processes �� 427

Spring Cloud Data Flow �� 427

Spring Cloud Task ��� 429

Registering and Running a Task ��� 430

Summary �� 434

 ■Chapter 13: Testing Batch Processes �� 435

Unit Tests with JUnit and Mockito �� 435

JUnit ��� 436

Mock Objects �� 438

Mockito ��� 439

Integration Tests with Spring Classes �� 443

General Integration Testing with Spring ��� 443

Testing Spring Batch ��� 445

Summary �� 454

Index ��� 455

xiii

About the Author

Michael T. Minella is a software engineer, author, and speaker with over
18 years of professional experience. Michael is a Director of Software
Engineering, leading the Spring Batch and Spring Cloud Task projects for
Pivotal. He was also on the expert group for JSR-352 (Java Batch). He is a
Java Champion and JavaOne Rockstar having spoken internationally at
many different Java conferences.

Outside his normal day job, Michael serves as the “curmudgeon at
large” on the regular podcast OffHeap (https://www.javaoffheap.com).
He also has a personal passion for InfoSec topics. With hobbies including
photography (https://500px.com/michael160) and woodworking, the
most important jobs in Michael’s life are as husband to Erica and father to
Addison.

https://www.javaoffheap.com/
https://500px.com/michael160

xv

About the Technical Reviewers

Wayne Lund was one of the original creators of Spring Batch while
working in the global architecture group for Accenture and delivered
Spring Batch to the Java community at JavaOne 2007. While at Accenture,
he served as a Master Technology Architect and worked in a global
architecture group focused on OSS projects helping clients adopt Spring
as a platform of choice for abstracting away JEE and preferring lightweight
frameworks. After Spring was purchased by VMWare, he joined the
vFabric group (now part of Pivotal services) that supported Spring Source,
RabbitMQ, Gemfire, and other OSS lightweight frameworks in the sales
channel. He is currently working as an Advisory Platform Architect
for Pivotal Data Services where he helps provide solutions for Spring-
enabled data products that include Spring Cloud Data Flow (Spring Cloud
Stream, Spring Cloud Task, and Spring Batch), Spring Cloud Stream, and
messaging with RabbitMQ and Kafka.

Felipe Gutierrez is a solutions software architect, with bachelor’s and
master’s degrees in computer science from Instituto Tecnologico y de
Estudios Superiores de Monterrey Campus Ciudad de Mexico. Gutierrez
has over 20 years of IT experience and has developed programs for
companies in multiple vertical industries, such as government, retail,
healthcare, education, and banking. He is currently working as a Platform
and Solutions Architect for Pivotal, specializing in Cloud Foundry PAS
and PKS, Spring Framework, Spring Cloud Native Applications, Groovy,
and RabbitMQ, among other technologies. He has worked as a solutions
architect for big companies like Nokia, Apple, Redbox, Qualcomm, and
others. He is also the author of Spring Boot Messaging and Introducing
Spring Framework, both published by Apress Media, LLC.

xvii

Acknowledgments

When I take a moment and look back between the writing of my first book and now, a lot has changed in my
life, much of which has had material impacts on my career, allowing me to be in the position to write this
second book on Spring Batch. I’d like to take this space to do what little I can to show my appreciation for
those who have made some of those impacts.

First, I’d like to thank Dave Syer, not only as the founder of this framework that I have been fortunate
enough to be the steward of for the past 6+ years and write two books about, but as someone I can look up
to as an open source practitioner. Looking back, it was right after I wrote my first book that I met him to give
him a copy. He told me about the efforts by the Java Community Process (JCP) to create a Java Specification
Request (JSR) around batch processing (JSR-352), which leads me to the next person I’d like to thank.

One of the original members of the team and one of the tech editors for this book, Wayne Lund is largely
responsible for me being in the position I am today. It was on the JSR-352 expert group that we met and
worked together to improve the design of the Java batch specification based on our experience with Spring
Batch. During our time working on the JSR, Wayne let me know that the Spring team was looking for a new
lead for the Spring Batch project and asked if I was interested. I still believe that most of my non-technical
family and friends do not understand what being asked to join the Spring team meant. I’ve never been
happier in a position than I am working on the Spring engineering team. Thank you, Wayne, for your initial
belief in me and your continued support.

I’d also like to thank my manager at Pivotal, Brian Dussault. I have had the privilege of working for a
number of amazing managers in my career, many of whom I’d work for or with again in a heartbeat. But
none have been able to give me the support and trusted me at the level that Brian has. They say you don’t
leave companies, you leave managers. If that is the case, Brian may be stuck with me for a very long time.

There are two other groups of people I’d like to thank here. The first is the team at Apress. Steve Anglin
and Mark Powers both have been amazingly understanding during this long process. I’m sure I haven’t been
the easiest author to work with; however, I am fortunate to have had them as my editors on this project.
Without their continued support throughout this project, it wouldn’t have been possible. I’d also like to
thank my second technical editor, Felipe Guiterrez. His reviews and encouragement on the book have both
made a world of difference on the final results.

Finally, and above all, my family. Anyone who has written a book knows that the process takes a toll on
everyone involved. The author dedicates time, energy, and emotion to the project. Those same authors are
human and have only finite amounts of those three things to give. It is our families that provide the much-
needed support in order for us to make these books possible. To my daughter Addison who inspires me
every day with her passion to help others, endless curiousity, and caring personality. And to my wife Erica
who really pushed me through this book. I would have given up on it half way through if it wasn’t for her
steady encouragement and support. To both of them, you mean the world to me and thank you.

xix

Foreword

Spring Batch was the first open source project that I was more than peripherally involved in. I guess your
first child is always special in some ways, and it was a bit like that with Spring Batch. It was a tad longer in
gestation than we had thought it might be—more of an elephant in the end than a mouse—but it always
behaved well and was a credit to its parents. I like to think we were at least partly responsible for that; after
all, nurture has to beat nature sometimes. As I remember it, there were two things that dragged out the
delivery of 1.0: one was to make extra sure that the quality of service features actually worked in the field,
and the other was the level of care lavished on the API design. Mistakes were inevitably made anyway, but I
think we can at least say we gave it our best shot at a good start in life.

If we were to look at the genealogy of Spring Batch, we would find, of course, that it has its origins in the
field, born of the long and repetitive invention and re-invention of all the features in many businesses around
the world. The first time I saw any of the code in 2006, it was a tiny prototype that Rob Harrop had written while
he was on a consulting gig at one of the banks in London. Those pieces eventually landed in Spring Retry, after
we split out some of the useful features of Spring Batch to be shared across other projects. The bulk of the rest
of Spring Batch, and its state-machine-oriented view of the world, came from the collaboration with Accenture.
There are too many contributors from that time to list them all, but Lucas Ward deserves a special mention as
the other parent and main carer in the early years. Also I remember Robert Kasanicky and Dan Garrette were
heavily invested in the success in the years before leading up to the launch in 2008.

They were also instrumental in the release of Spring Batch 2.0 in 2010, where we introduced the concept
of a “chunk,” as well as features to support distributed processing, parallel processing, and new language
features from Java 5. I can still hear Lucas telling me “we can’t call it a ‘chunk,’” citing Wayne’s World as prior
art, but he never came up with a better name so it stuck. A chunk is a group of items that can be processed
together, allowing excellent opportunities for increased efficiency and scalability. Spring Batch 2.0 was the
state of the art for quite a while and fed into the JSR-352 specification when that work kicked off. Wayne
Lund from Accenture was involved in the Spring Batch project from the early days, also sat on the JSR-352
Expert Group, and now works as a Platform Architect at Pivotal.

Michael Minella was a Young Turk in those days; also on the Expert Group, he had used Spring Batch a
lot in real life and actually written a book on it. When he joined the Spring team in 2012, it was just in time to
start work on the 3.0 release, which was where we first saw the “@EnableBatchProcessing” annotation and
a shift of emphasis from XML configuration to Java. He quickly took over as project lead and shepherded
the project through the 3.x series and on through to 4.0 where Java 8 became the baseline, and some new
fluent-style configuration builders were added. The connection with Spring Cloud Data Flow and the
industrialization of distributed processing also took place in this period. In early 2018, Mahmoud Ben
Hassine came on board as the new project co-lead, and he has been helping Michael to drive the project and
listen carefully to feedback from the many users.

So at the time of writing, Spring Batch has just turned 10 years old and has some proud new parents. Or
is it some other relation? I don’t know. Anyway the old parents, and grandparents if that’s what they are, are
equally proud of the way she turned out and of the new guardians. She surely has a lot more to give in the
years to come, because batch processing never seems to go away. Funny how that works.

Dave Syer, Spring Batch Project Founder
London 2019

1© Michael T. Minella 2019
M. T. Minella, The Definitive Guide to Spring Batch, https://doi.org/10.1007/978-1-4842-3724-3_1

CHAPTER 1

Batch and Spring

If you read the latest press, the topic of batch processing will hardly come up. A quick scan of the largest Java
conferences will have virtually zero talks dedicated to the topic outright. Rooms are filled with attendees
learning about stream processing. Data science talks gather large crowds. Blog posts on cloud native
applications focused on web-based systems (REST, etc.) get the highest number of views. However, under all
of it all, batch is still there.

Your bank and 401k statements are all generated via batch processes. The e-mails you receive from your
favorite stores with coupons in them? Probably sent via batch processes. Even the order in which the repair
guy comes to your house to fix your laundry machine is determined by batch processing. Those data science
models that recommend what products to show in the associated products on sites like Amazon, generated
via batch processing. Orchestrating big data tasks, that’s batch too. In a time when we get our news from
Twitter, Google thinks that waiting for a page refresh takes too long to provide search results, and YouTube
can make someone a household name overnight, why do we need batch processing at all?

There are a number of good reasons:

•	 You don’t always have all the required information immediately. Batch processing
allows you to collect information required for a given process before starting the
required processing. Take your monthly bank statement as an example. Does it make
sense to generate the file format for your printed statement after every transaction? It
makes more sense to wait until the end of the month and look back at a vetted list of
transactions from which to build the statement.

•	 Sometimes it makes good business sense. Although most people would love to have
what they buy online put on a delivery truck the second they click Buy, that may not
be the best course of action for the retailer. If a customer changes their mind and
wants to cancel an order, it’s much cheaper to cancel if it hasn’t shipped yet. Giving
the customer a few extra hours and batching the shipping together can save the
retailer large amounts of money

•	 It can be a better use of resources. Data science use cases are a good example here.
Typically, data model processing is broken up into two phases. The first is the
generation of the model. This requires intensive mathematical processing of large
volumes of data, which can take time. The second phase is evaluating or scoring
new data against that generated model. The second phase is extremely fast. The first
phase makes sense to do outside of a streaming use case via batch with the results of
the batch process (the data model) to be utilized by a streaming system real-time.

This book is about batch processing with the framework Spring Batch. This chapter looks at the history
of batch processing, calls out the challenges in developing batch jobs, makes a case for developing batch
using Java and Spring Batch, and finally provides a high-level overview of the framework and its features.

https://doi.org/10.1007//978-1-4842-3724-3_1

Chapter 1 ■ BatCh and Spring

2

A History of Batch Processing
A look at the history of batch processing is really a look into the history of computing itself.

The time was 1951. The UNIVAC became the first commercially produced computer. Prior to this
point, computers were each unique, custom-built machines designed for a specific function (e.g., in 1946
the military commissioned a computer to calculate the trajectories of artillery shells, the ENIAC, at a cost
of about $5 million in 2017 dollars). The UNIVAC consisted of 5,200 vacuum tubes, weighed at over
14 tons, had a blazing speed of 2.25 MHz (compared to the iPhone 7, which has a 2.34 GHz processor) and
ran programs that were loaded from tape drives. Pretty fast for its day, the UNIVAC was considered the first
commercially available batch processor.

Before going any further into history, we should define what, exactly, batch processing is. Most of
the applications you develop have an element of interaction, whether it’s a user clicking a link in a web
app, typing information into a form on a thick client, receiving a message via middleware of some kind,
or tapping around on phone and tablet apps. Batch processing is the exact opposite of those types of
applications. Batch processing, for this book’s purposes, is defined as the processing of a finite amount of
data without interaction or interruption. Once started, a batch process runs to some form of completion
without any intervention.

Four years passed in the evolution of computers and data processing before the next big change: high-
level languages. They were first introduced with Lisp and Fortran on the IBM 704, but it was the Common
Business Oriented Language (COBOL) that has since become the 800-pound gorilla in the batch-processing
world. Developed in 1959 and revised in 1968, 1974, 1985, 2002, and 2014, COBOL still runs batch processing
in modern business. A ComputerWorld survey1 in 2012 stated that over 53% of those enterprises surveyed
used COBOL for new business development. That’s interesting when the same survey also noted that the
average age of their COBOL developers is between 45 and 55 years old.

COBOL hasn’t seen a significant revision that has been widely adopted in a quarter of a century.2
The number of schools that teach COBOL and its related technologies has declined significantly in favor of
newer technologies like Java and .NET. The hardware is expensive, and resources are becoming scarce.

Mainframe computers aren’t the only places that batch processing occurs. Those e-mails I mentioned
previously are sent via batch processes that probably aren’t run on mainframes. And the download of data
from the point-of-sale terminal at your favorite fast food chain is batch, too. But there is a significant difference
between the batch processes you find on a mainframe and those typically written for other environments
(C++ and UNIX, for example). Each of those batch processes is custom developed, and they have very little in
common. Since the takeover by COBOL, there has been very little in the way of new tools or techniques. Yes,
cron jobs have kicked off custom-developed processes on UNIX servers and scheduled tasks on Microsoft
Windows servers, but there have been no new industry-accepted tools for doing batch processes.

Until Spring. In 2007, driven by Accenture’s rich mainframe and batch processing practices, Accenture
partnered with Interface21 (the original authors of the Spring Framework, now part of Pivotal) to create an
open source framework for enterprise batch processing. Inspired by concepts that had been considered a
mainstay of Accenture architecture for years,3 the collaboration yielded what would become the de facto
standard for batch processing on the JVM.

As Accenture’s first formal foray into the open source world,4 it chose to combine its expertise in
batch processing with Spring’s popularity and feature set to create a robust, easy-to-use framework.
At the end of March 2008, the Spring Batch 1.0.0 release was made available to the public; it represented

1http://www.computerworld.com/article/2502430/data-center/cobol-brain-drain--survey-results.html
2There have been revisions in COBOL 2002 (including object oriented COBOL) and 2014 COBOL, but their adoption
has been significantly less than for previous versions.
3The reference architecture that was used was from the book Netcentric and Client/Server Computing: A Practical Guide,
1999. Key components within the book included scheduling, restart/recovery, batch balancing, reporting, driver program
(job), batch logging systems, and more.
4https://www.cnet.com/news/accenture-jumps-into-open-source-in-a-big-way/

http://www.computerworld.com/article/2502430/data-center/cobol-brain-drain--survey-results.html
https://www.cnet.com/news/accenture-jumps-into-open-source-in-a-big-way/

Chapter 1 ■ BatCh and Spring

3

the first standards-based approach to batch processing in the Java world. Slightly more than a year later,
in April 2009, Spring Batch went 2.0.0, adding features like replacing support for JDK 1.4 with JDK 1.5+,
chunk-based processing, improved configuration options, and significant additions to the scalability
options within the framework. 3.0.0 came along in the spring of 2014, bringing with it the implementation
of the new Java batch standard, JSR-352. Finally 4.0.0 embracing Java-based configuration in a Spring Boot
world.

Batch Challenges
You’re undoubtedly familiar with the challenges of GUI-based programming (thick clients and web apps
alike). Security issues. Data validation. User-friendly error handling. Unpredictable usage patterns causing
spikes in resource utilization (have a link from a blog post you write go viral on Twitter to see what I mean
here). All of these are by-products of the same thing: the ability of users to interact with your software.

However, batch is different. I said earlier that a batch process is a process that can run without
additional interaction to some form of completion. Because of that, most of the issues with GUI applications
are no longer valid. Yes, there are security concerns, and data validation is required, but spikes in usage and
friendly error handling either are predictable or may not even apply to your batch processes. You can predict
the load during a process and design accordingly. You can fail quickly and loudly with only solid logging and
notifications as feedback, because technical resources address any issues.

So everything in the batch world is a piece of cake and there are no challenges, right? Sorry to burst
your bubble, but batch processing presents its own unique twist on many common software development
challenges. Software architecture commonly includes a number of ilities: maintainability, usability,
scalability, etc. These and other ilities are all relevant to batch processes, just in different ways.

The first three ilities—usability, maintainability, and extensibility—are related. With batch, you don’t
have a user interface to worry about, so usability isn’t about pretty GUIs and cool animations. No, in a batch
process, usability is about the code: both its error handling and its maintainability. Can you extend common
components easily to add new features? Is it covered well in unit tests so that when you change an existing
component, you know the effects across the system? When the job fails, do you know when, where, and why
without having to spend a long time debugging? These are all aspects of usability that have an impact on
batch processes.

Next is scalability. Time for a reality check: When was the last time you worked on a web site that truly
had a million visitors a day? How about 100,000? Let’s be honest: most web sites developed in the enterprise
aren’t viewed nearly that many times. However, it’s not a stretch to have a batch process that needs to process
a million or more transactions in a night. Let’s consider 8 seconds to load a web page to be a solid average.5
If it takes that long to process a transaction via batch, then processing 100,000 transactions will take more
than 9 days (and over 3 months for 1 million). That isn’t practical for any system in the modern enterprise.
The bottom line is that the scale that batch processes need to be able to handle is often one or more orders of
magnitude larger than that of the web or thick-client applications you’ve developed in the past.

Third is availability. Again, this is different from the web or thick-client applications you may be used to.
Batch processes typically aren’t 24/7. In fact, they typically have an appointment. Most enterprises schedule a
job to run at a given time when they know the required resources (hardware, data, and so on) are available.
For example, take the need to build statements for retirement accounts. Although you can run the job at any
point in the day, it’s probably best to run it some time after the market has closed, so you can use the closing
fund prices to calculate balances. Can you run when you need to? Can you get the job done in the time allotted
so you don’t impact other systems? These and other questions affect the availability of your batch system.

Finally you must consider security. Typically, in the batch world, security doesn’t revolve around people
hacking into the system and breaking things. The role a batch process plays in security is in keeping data
secure. Are sensitive database fields encrypted? Are you logging personal information by accident? How

5https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-benchmarks.pdf

https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-benchmarks.pdf

Chapter 1 ■ BatCh and Spring

4

about access to external systems—do they need credentials, and are you securing those in the appropriate
manner? Data validation is also part of security. Generally, the data being processed has already been vetted,
but you still should be sure that rules are followed.

As you can see, plenty of technological challenges are involved in developing batch processes. From the
large scale of most systems to security, batch has it all. That’s part of the fun of developing batch processes:
you get to focus more on solving technical issues than debugging the latest JavaScript front end framework.
The question is, with the existing infrastructures on mainframes and all the risks of adopting a new platform,
why do batch in Java?

Why Do Batch Processing in Java?
With all the challenges just listed, why choose Java and an open source tool like Spring Batch to develop
batch processes? I can think of six reasons to use Java and open source for your batch processes:
maintainability, flexibility, scalability, development resources, support, and cost.

Maintainability is first. When you think about batch processing, you have to consider maintenance.
This code typically has a much longer life than your other applications. There’s a reason for that: no one sees
batch code. Unlike a web or client application that has to stay up with the current trends and styles, a batch
process exists to crunch numbers and build static output. As long as it does its job, most people just get to
enjoy the output of their work. Because of this, you need to build the code in such a way that it can be easily
modified without incurring large risks.

Enter the Spring framework. Spring was designed for a couple of things you can take advantage of:
testability and abstractions. The decoupling of objects that the Spring framework enables with dependency
injection and the extra testing tools the Spring portfolio provides allow you to build a robust test suite to
minimize the risk of maintenance down the line. And without yet digging into the way Spring and Spring
Batch work, Spring provides facilities to do things like file and database I/O declaratively. You don’t have
to write JDBC code or manage the nightmare that is the file I/O API in Java. Spring Batch brings things like
transactions and commit counts to your application, so you don’t have to manage where you are in the
process and what to do when something fails. These are just some of the maintainability advantages that
Spring Batch and Java provide for you.

The flexibility of Java and Spring Batch is another reason to use them. In the mainframe world, you have
one option: run COBOL or CICS a mainframe. That’s it. Another common platform for batch processing is
C++ on UNIX. This ends up being a very custom solution because there are no industry-accepted batch-
processing frameworks. Neither the mainframe nor the C++/UNIX approach provides the flexibility of
the JVM for deployments and the feature set of Spring Batch. Want to run your batch process on a server,
desktop, or mainframe with *nix or Windows? It doesn’t matter. Want to deploy it to an application server,
Docker containers, the cloud? Choose the one that fits your needs. Thin WAR, fat JAR, or whatever the next
new hotness is down the line? All are okay by Spring Batch.

However, the “write once, run anywhere” nature of Java isn’t the only flexibility that comes with the
Spring Batch approach. Another aspect of flexibility is the ability to share code from system to system. You can
use the same services that already are tested and debugged in your web applications right in your batch
processes. In fact, the ability to access business logic that was once locked up on some other platform is one
of the greatest wins of moving to this platform. By using POJOs to implement your business logic, you can use
them in your web applications, in your batch processes—literally anywhere you use Java for development.

Spring Batch’s flexibility also goes toward the ability to scale a batch process written in Java. Let’s look at
the options for scaling batch processes:

•	 Mainframe: The mainframe has limited additional capacity for scalability. The only
true way to accomplish things in parallel is to run full programs in parallel on the
single piece of hardware. This approach is limited by the fact that you need to write
and maintain code to manage the parallel processing and the difficulties associated
with it, such as error handling and state management across programs. In addition,
you’re limited by the resources of a single machine.

Chapter 1 ■ BatCh and Spring

5

•	 Custom processing: Starting from scratch, even in Java, is a daunting task. Getting
scalability and reliability correct for large amounts of data is very difficult. Once
again, you have the same issue of coding for load balancing. You also have large
infrastructure complexities when you begin to distribute across physical devices or
virtual machines. You must be concerned with how communication works between
pieces. And you have issues of data reliability. What happens when one of your
custom-written workers goes down? The list goes on. I’m not saying it can’t be done;
I’m saying that your time is probably better spent writing business logic instead of
reinventing the wheel.

•	 Java and Spring Batch: Although Java by itself has the facilities to handle most of the
elements in the previous item, putting the pieces together in a maintainable way
is very difficult. Spring Batch has taken care of that for you. Want to run the batch
process in a single JVM on a single server? No problem. Your business is growing and
now needs to divide the work of bill calculation across five different nodes to get it all
done overnight? You’re covered. Have a spike once a month and want to be able to
scale on that one day using cloud resources? Check. Data reliability? With little more
than some configuration and keeping some key principles in mind, you can have
transaction rollback and commit counts completely handled.

As you will see as you dig into the Spring Batch framework and its related ecosystem, the issues that
plague the previous options for batch processing can be mitigated with well-designed and tested solutions.
Up to now, this chapter has talked about technical reasons for choosing Java and open source for your
batch processing. However, technical issues aren’t the only reasons for a decision like this. The ability to
find qualified development resources to code and maintain a system is important. As mentioned earlier,
the code in batch processes tends to have a significantly longer lifespan than the web apps you may be
developing right now. Because of this, finding people who understand the technologies involved is just as
important as the abilities of the technologies themselves. Spring Batch is based on the extremely popular
Spring framework. It follows Spring’s conventions and uses Spring’s tools as well as any other Spring-based
application. It is a part of Spring Boot. So, any developer who has Spring experience will be able to pick
up Spring Batch with a minimal learning curve. But will you be able to find Java and, specifically, Spring
resources?

One of the arguments for doing many things in Java is the community support available. The Spring
family of frameworks enjoy a large and very active community online through Github, StackOverflow, and
related resources. The Spring Batch project in that family has a mature community around it. Couple that
with the strong advantages associated with having access to the source code and the ability to purchase
support if required, and all support bases are covered with this option.

Finally you come to the cost. Many costs are associated with any software project: hardware, software
licenses, salaries, consulting fees, support contracts, and more. However, not only is a Spring Batch solution
the most bang for your buck, but it’s also the cheapest overall. Using cloud resources and open source
frameworks, the only recurring costs are for development salaries, support contracts, and infrastructure—
much less than the recurring licensing costs and hardware support contracts related to other options.

I think the evidence is clear. Not only is using Spring Batch the most sound route technically, but it’s
also the most cost-effective approach. Enough with the sales pitch: let’s start to understand exactly what
Spring Batch is.

Other Uses for Spring Batch
I bet by now you’re wondering if replacing the mainframe is all Spring Batch is good for. When you think
about the projects you face on an ongoing basis, it isn’t every day that you’re ripping out COBOL code. If that
was all this framework was good for, it wouldn’t be a very helpful framework. However, this framework can
help you with many other use cases.

Chapter 1 ■ BatCh and Spring

6

The most common use case for Spring Batch is probably ETL processing or extract, transform, load.
Moving data around from one format to another is a large part of enterprise data processing. Spring Batch’s
chunk-based processing and extreme scaling capabilities make it a natural fit for ETL workloads.

Another use case is data migration. As you rewrite systems, you typically end up migrating data from
one form to another. The risk is that you may write one-off solutions that are poorly tested and don’t have
the data-integrity controls that your regular development has. However, when you think about the features
of Spring Batch, it seems like a natural fit. You don’t have to do a lot of coding to get a simple batch job up
and running, yet Spring Batch provides things like commit counts and rollback functionality that most data
migrations should include but rarely do.

A third common use case for Spring Batch is any process that requires parallel processing. As chipmakers
approach the limits of Moore’s Law, developers realize that the only way to continue to increase the
performance of apps is not to process single operations faster, but to process more operations in parallel.
Many frameworks have recently been released that assist in parallel processing. Most of the big data
platforms like Apache Spark, YARN, GridGain, Hazlecast, and others have come out in recent years to
attempt to take advantage of both multicore processors and the numerous servers available via the cloud.
However, frameworks like Apache Spark require you to alter your code and data to fit their algorithms or
data structures. Spring Batch provides the ability to scale your process across multiple cores or servers
(as shown in Figure 1-1 with master/worker step configurations) and still be able to use the same objects
and datasources that your web applications use.

Step 1

Step 2 Worker Step 2 Worker Step 2 Worker

Step 3Step 2 Master

Figure 1-1. Simplifying parallel processing

Orchestration of workloads is another common use case for Spring Batch. Typically an enterprise batch
process isn’t just a single step. It requires the coordination of many, decoupled, steps to be orchestrated.
Perhaps a file needs to be loaded, then two independent types of processing on that data occurs, followed
up by a single export of the results. The orchestration of these tasks is a use case that Spring Batch addresses
well. An example of that is Spring Cloud Data Flow and its use of Spring Batch to handle “composed tasks.”
Here, Spring Batch calls Spring Cloud Data Flow to launch other functionality and keeps track of what is
done and what still needs to be done. Figure 1-2 illustrates the drag-and-drop user interface provided by
Spring Cloud Data Flow for constructing “composed tasks.”

Chapter 1 ■ BatCh and Spring

7

Finally you come to constant or 24/7 processing. In many use cases, systems receive a constant or
near-constant feed of data. Although accepting this data at the rate it comes in is necessary for preventing
backlogs, when you look at the processing of that data, it may be more performant to batch the data into
chunks to be processed at once (as shown in Figure 1-2). Spring Batch provides tools that let you do this
type of processing in a reliable, scalable way. Using the framework’s features, you can do things like read
messages from a queue, batch them into chunks, and process them together in a never-ending loop. Thus
you can increase throughput in high-volume situations without having to understand the complex nuances
of developing such a solution from scratch.

Figure 1-2. Orchestrating tasks via Spring Cloud Data Flow

Chapter 1 ■ BatCh and Spring

8

As you can see, Spring Batch is a framework that, although designed for mainframe-like processing, can
be used to simplify a variety of development problems. With everything in mind about what batch is and
why you should use Spring Batch, let’s finally begin looking at the framework itself.

The Spring Batch Framework
The Spring Batch framework (Spring Batch) was developed as a collaboration between Accenture and
SpringSource as a standards-based way to implement common batch patterns and paradigms.

Features implemented by Spring Batch include data validation, formatting of output, the ability to
implement complex business rules in a reusable way, and the ability to handle large data sets. You’ll find
as you dig through the examples in this book that if you’re familiar at all with Spring, Spring Batch just
makes sense.

Let’s start at the 30,000-foot view of the framework, as shown in Figure 1-4.

Application

Core

Infrastructure

Figure 1-4. The Spring Batch architecture

Read Message

Read Message

Read Message

Process Chunk

Write Results

Write to database

Message Queue Database ItemReader ItemProcessor ItemWriter

Figure 1-3. Batching message processing to increase throughput

Spring Batch consists of three tiers assembled in a layered configuration. At the top is the application
layer, which consists of all the custom code and configuration used to build out your batch processes.
Your business logic, services, and so on, as well as the configuration of how you structure your jobs, are
all considered the application. Notice that the application layer doesn’t sit on top of but instead wraps the

Chapter 1 ■ BatCh and Spring

9

other two layers, core and infrastructure. The reason is that although most of what you develop consists of
the application layer working with the core layer, sometimes you write custom infrastructure pieces such as
custom readers and writers.

The application layer spends most of its time interacting with the next layer, the core. The core layer
contains all the pieces that define the batch domain. Elements of the core component include the Job and
Step interfaces as well as the interfaces used to execute a Job: JobLauncher and JobParameters.

Below all this is the infrastructure layer. In order to do any processing, you need to read and write from
files, databases, and so on. You must be able to handle what to do when a job is retried after a failure. These
pieces are considered common infrastructure and live in the infrastructure component of the framework.

 ■ Note a common misconception is that Spring Batch is or has a scheduler. it doesn’t. there is no way within
the framework to schedule a job to run at a given time or based on a given event. there are a number of ways
to launch a job, from a simple cron script to Quartz or even an enterprise scheduler like Control-M, but none
within the framework itself. Chapter 4 covers launching a job.

Let’s walk through some features of Spring Batch.

Defining Jobs with Spring
Batch processes have a number of different domain-specific concepts. A job is a process that executes from
start to finish without interruption or interaction. A job can consist of a number of steps. There may be input
and output related to each step. When a step fails, it may or may not be repeatable. The flow of a job may be
conditional (e.g., execute the bonus calculation step only if the revenue calculation step returns revenue over
$1,000,000). Spring Batch provides classes, interfaces, XML schemas, and Java configuration utilities that
define these concepts using Java to divide concerns appropriately and wire them together in a way familiar
to those who have used Spring. Listing 1-1, for example, shows a basic Spring Batch job configured in Java
configuration. The result is a framework for batch processing that you can pick up very quickly with only a
basic understanding of Spring as a prerequisite.

Listing 1-1. Sample Spring Batch Job Definition

@Bean
public AccountTasklet accountTasklet() {
 return new AccountTasklet();
}

@Bean
public Job accountJob() {
 Step accountStep =
 this.stepBuilderFactory
 .get("accountStep")
 .tasklet(accountTasklet())
 .build();

 return this.jobBuilderFactory
 .get("accountJob")
 .start(accountStep)
 .build();
}

Chapter 1 ■ BatCh and Spring

10

In the configuration listed in Listing 1-1, two beans are created. The first is an AccountTasklet. The
AccountTasklet is a custom component where the business logic for the step will live. Spring Batch will call
its single method (execute) over and over, each call in a new transaction, until the AccountTasklet indicates
that it is done.

The second bean is the actual Spring Batch Job. In this bean definition, we create a single Step out of
the AccountTasklet we just defined using the builders provided by the factory. We then use the builders
provided to create a Job out of the Step. Spring Boot will find this Job and execute it automatically on the
startup of our application.

Managing Jobs
It’s one thing to be able to write a Java program that processes some data once and never runs again.
But mission-critical processes require a more robust approach. The ability to keep the state of a job for
re-execution, maintaining data integrity when a job fails through transaction management and saving
performance metrics of past job executions for trending, are features that you expect in an enterprise batch
system. These features are included in Spring Batch, and most of them are turned on by default; they require
only minimal tweaking for performance and requirements as you develop your process.

Local and Remote Parallelization
As discussed earlier, the scale of batch jobs and the need to be able to scale them is vital to any enterprise
batch solution. Spring Batch provides the ability to approach this in a number of different ways. From a
simple thread-based implementation, where each commit interval is processed in its own thread of a thread
pool, to running full steps in parallel, to configuring a grid of workers that are fed units of work from a remote
master via partitioning, Spring Batch and its related ecosystem provide a collection of different options,
including parallel chunk/step processing, remote chunk processing, and partitioning.

Standardizing I/O
Reading in from flat files with complex formats, XML files (XML is streamed, never loaded as a whole),
databases or NoSQL stores, or writing to files or XML can be done with only simple configuration. The ability
to abstract things like file and database input and output from your code is an attribute of the maintainability
of jobs written in Spring Batch.

The Rest of the Spring Batch Ecosystem
Like most projects within the Spring portfolio, Spring Batch does not sit in isolation. It is part of an
ecosystem where other projects extend and complement it to provide a more robust solution. Some of the
other projects in the portfolio that work with Spring Batch are as follows.

Spring Boot
Introduced in 2014, Spring Boot takes an opinionated approach to developing Spring applications.
Now virtually the standard way of developing Spring applications, Spring Boot provides facilities for easily
packaging, deploying, and launching all Spring workloads including batch. It also serves as a pillar in the
cloud native story provided by Spring Cloud. As such, Spring Boot will be the primary method for developing
batch applications for this book.

Chapter 1 ■ BatCh and Spring

11

Spring Cloud Task
Spring Cloud Task is a project under the Spring Cloud umbrella that provides facilities for the execution
of finite tasks in a cloud environment. As a framework that targets finite workloads, batch processing is
a processing style that integrates well with Spring Cloud Task. Spring Cloud Task provides a number of
extensions to Spring Batch including the publishing of informational messages (a job starts/finishes, a step
starts/finishes, etc.), as well as the ability to scale batch jobs dynamically (instead of the various static ways
provided by Spring Batch directly).

The Spring Cloud Data Flow
Writing your own batch-processing framework doesn’t just mean having to redevelop the performance,
scalability, and reliability features you get out of the box with Spring Batch. You also need some form of
administration and orchestration toolset to do things like start and stop jobs and view the statistics of
previous job runs. However, if you use Spring Batch, it includes all that functionality as well as a newer
addition: the Spring Cloud Data Flow project. The Spring Cloud Data Flow project is a tool for orchestrating
microservices on a cloud platform (CloudFoundry, Kubernetes, or Local). Developing your batch
applications as microservices will allow you to deploy them in a dynamic way using Spring Cloud Data Flow.

And All the Features of Spring
Even with the impressive list of features that Spring Batch includes, the greatest thing is that it’s built
on Spring. With the exhaustive list of features that Spring provides for any Java application, including
dependency injection, aspect-oriented programming (AOP), transaction management, and templates/
helpers for most common tasks (JDBC, JMS, e-mail, and so on), building an enterprise batch process on a
Spring framework offers virtually everything a developer needs.

As you can see, Spring Batch brings a lot to the table for developers. The proven development model
of the Spring framework, scalability, and reliability features as well as an administration application are all
available for you to get a batch process running quickly with Spring Batch.

How This Book Works
After going over the what and why of batch processing and Spring Batch, I’m sure you’re chomping at the bit
to dig into some code and learn what building batch processes with this framework is all about. Chapter 2
goes over the domain of a batch job, defines some of the terms I’ve already begun to use (job, step, and so on),
and walks you through setting up your first Spring Batch project. You honor the computer science gods by
writing a “Hello, World!” batch job and see what happens when you run it.

One of my main goals for this book is to not only provide an in-depth look at how the Spring Batch
framework works, but also show you how to apply those tools in a realistic example. Chapter 3 provides the
requirements and technical architecture for a project that you implement in Chapter 10.

The code examples for this book can be found on Github. I encourage you to download that repository
and refernce it as you work your way through this book. It can be found at https://github.com/Apress/
def-guide-spring-batch.

https://github.com/Apress/def-guide-spring-batch
https://github.com/Apress/def-guide-spring-batch

Chapter 1 ■ BatCh and Spring

12

Summary
This chapter walked through a history of batch processing. It covered some of the challenges a developer
of a batch process faces as well as justified the use of Java and open source technologies to conquer those
challenges. Finally, you began an overview of the Spring Batch framework by examining its high-level
components and features. By now, you should have a good view of what you’re up against and understand
that the tools to meet the challenges exist in Spring Batch. Now, all you need to do is learn how. Let’s
get started.

13© Michael T. Minella 2019
M. T. Minella, The Definitive Guide to Spring Batch, https://doi.org/10.1007/978-1-4842-3724-3_2

CHAPTER 2

Spring Batch 101

Assembling a computer is an easy task. Many developers do it at some point in their careers. But it’s really
only easy once you understand what each part does and how it fits into the larger system. If I gave a bag of
computer parts to someone that didn’t know what a computer did and told them to put it together, things
may not go so well.

In the enterprise Java world, there are many domains that transfer well. The MVC pattern common
in most web frameworks is an example. Once you know one MVC framework, picking up another is just a
matter of understanding the syntax for the various pieces. However, there are not many batch frameworks
out there. Because of that, this domain may be a bit new to you. You may not know what a job or a step is. Or
how an ItemReader relates to an ItemWriter. And what the heck is a Tasklet anyways?

This chapter should answer those questions. In it, we’ll walk through the following topics:

•	 The architecture of batch: This section begins to dig a bit deeper into what makes up
a batch process and defines terms that you’ll see throughout the rest of the book.

•	 Project setup: I learn by doing. This book is assembled in a way that shows you
examples of how the Spring Batch framework functions, explains why it works the
way it does, and gives you the opportunity to code along. This section covers the
basic setup for a Maven-based Spring Batch project.

•	 Hello, World! The first law of thermodynamics talks about conserving energy.
The first law of motion deals with how objects at rest tend to stay at rest unless
acted upon by an outside force. The first law of computer science seems to be that
whatever new technology you learn, you must write a “Hello, World!” program using
said technology. Here we will obey that law.

•	 Running a job: How to execute your first job may not be immediately apparent, so I’ll
walk you through how jobs are executed as well as how to pass in basic parameters.

With all of that in mind, what is a job, anyway?

The Architecture of Batch
The last chapter spent some time talking about the three layers of the Spring Batch framework: the
application layer, the core layer, and the infrastructure layer. The application layer represents the code
you develop, which for the most part interfaces with the core layer. The core layer consists of the actual
components that make up the batch domain. Finally, the infrastructure layer includes item readers and
writers as well as the required classes and interfaces to address things like restartability.

https://doi.org/10.1007//978-1-4842-3724-3_2

Chapter 2 ■ Spring BatCh 101

14

This section goes deeper into the architecture of Spring Batch and defines some of the concepts referred
to in the last chapter. You then learn about some of the scalability options that are key to batch processing
and what makes Spring Batch so powerful. Finally, the chapter discusses outline administration options as
well as where to find answers to your questions about Spring Batch in the documentation. You start with the
architecture of batch processes, looking at the components of the core layer.

Examining Jobs and Steps
Figure 2-1 shows the essence of a job. Configured via Java or XML, a batch job is a collection of states and
transitions from one to the next. In essence, a Spring Batch job is nothing more than a state machine. Since
steps are the most common form of state used in Spring Batch, we’ll focus on them for now.

Using the use case of the nightly processing of a user’s bank account as an example, step 1 could be
to load in a file of transactions received from another system. Step 2 would apply all credits to the account.
Finally, step 3 would apply all debits to the account. The job represents the overall process of applying
transactions to the user’s account.

Step 1

ItemProcessor

ItemReader

ItemWriter

Step 2

ItemProcessor

ItemReader

ItemWriter

Step 3

ItemProcessor

ItemReader

ItemWriter

Figure 2-1. A batch job

When you look deeper at an individual step, you see a self-contained unit of work that is the main
building block of a job. There are two main types of steps: a tasklet step and a chunk based step. A
tasklet-based step is the more simple of the two. It takes a Tasklet implementation and runs its execute
(StepContribution contribution, ChunkContext chunkContext) method within the scope of a transaction
over and over until the execute method tells the step to stop (each call to the execute method gets its
own transaction). It’s commonly used for things like initialization, running a stored procedure, sending
notifications, and so on.

A chunk-based step is a bit more rigid in its structure, but is intended for item-based processing.
Each chunk-based step has up to three main parts: an ItemReader, an ItemProcessor, and an
ItemWriter. Note that I stated a step has up to three parts. A step isn’t required to have an ItemProcessor.
It is okay to have a step that consists of just an ItemReader and an ItemWriter (common in data-migration
jobs, for example). Table 2-1 walks through the interfaces that Spring Batch provides to represent
these concepts.

Chapter 2 ■ Spring BatCh 101

15

One of the advantages of the way Spring has structured a job is that it decouples each step into its own
independent processor. Each step is responsible for obtaining its own data, applying the required business
logic to it, and then writing the data to the appropriate location. This decoupling provides a number of
features:

•	 Flexibility: The ability to configure complex flows of work based on complex logic is
something that is difficult to implement on your own in a reusable way. Yet Spring
Batch provides a nice set of builders to do just that. The ability to use its fluent Java
API as well as traditional XML to configure your batch applications is a powerful tool.

•	 Maintainability: With the code for each step decoupled from the steps before and
after it, steps are easy to unit-test, debug, and update with virtually no impact on
other steps. Decoupled steps also make it possible to reuse steps in multiple jobs. As
you’ll see in upcoming chapters, steps are nothing more than Spring beans and can
be reused just like any other bean in Spring.

•	 Scalability: Independent steps in a job provide a number of options to scale your jobs.
You can execute steps in parallel. You can divide the work within a step across threads
and execute the code of a single step in parallel. Any of these abilities lets you meet
the scalability needs of your business with minimum direct impact on your code.

•	 Reliability: The different phases of a step (reading via the ItemReader, processing via
the ItemProcessor, etc.) all allow for facilities to do things like retrying an operation
or skipping an item if an exception is thrown providing robust error handling
options.

Job Execution
When a job is executed, a number of components interact to provide the resiliency that Spring Batch
provides. Let’s take a look at those components at a high level and how they interact.

We can begin with the main shared piece of the architecture, the JobRepository. Shown in Figure 2-2,
this component is responsible for maintaining the state of a job as well as various processing metrics
(start time, end time, status, number of reads/writes, etc.). Typically backed by a relational database, this
component is shared by virtually all of the main components within Spring Batch.

Table 2-1. The Interfaces That Make Up a Batch Job

Interface Description

org.springframework.batch.core.Job The object representing the job, as configured within the
ApplicationContext.

org.springframework.batch.core.Step Like the job, represents the step as configured.

org.springframework.batch.core.step.
tasklet.Tasklet

A strategy interface that provides the ability to execute logic
within the scope of a transaction.

org.springframework.batch.item.
ItemReader<T>

A strategy interface for providing the input of a step.

org.springframework.batch.item.
ItemProcessor<I,O>

A facility to apply business logic, validation, etc. to an
individual item as provided.

org.springframework.batch.item.
ItemWriter<T>

A strategy interface for the persistence of items within a step.

Chapter 2 ■ Spring BatCh 101

16

Next is the JobLauncher. This is responsible for the execution of a Job. Tasks the JobLauncher does
beyond just calling Job.execute can include things like validating that restarting a job is valid (not all jobs
are restartable), how to execute the job (on the current thread, via a thread pool, etc.), validating parameters,
and so on. All of these tasks, however, are dependent on the implementation. In the Spring Boot world, this
is a component that you typically do not need to directly work with because Spring Boot provides facilities of
launching a job out of the box. We’ll see this in action a bit later.

Once a Job is launched, the Job executes each Step. As each Step is executed, the JobRepository
is updated with the current state. What Step is executed, its current status, how many items were read,
processed, written, and so on, are all stored in the JobRepository.

The processing of a Job and a Step are very similar. A Job goes through the list of Steps it has been
configured to run, executing each one. As a chunk of items within a Step completes, Spring Batch updates
the JobExecution or StepExecution in the repository with the current state. A Step goes through a list of
items as read in by the ItemReader. As the Step processes each chunk of items, the StepExecution in the
repository is updated with where it is in the Step. Things like current commit count, start and end times,
and other information are stored in the repository. When a Job or Step is complete, the related execution is
updated in the repository with the final status.

We’ve mentioned the JobExecution and StepExecution a few times now, so let’s take a minute to
understand what those are and how they relate. Figure 2-3 illustrates the components in this relationship.
A JobInstance is a logical execution of a Spring Batch job. It’s identified by the job name and the unique
set of identifying parameters that are provided for that job’s logical execution. If we use a statement-
generating job named statementGenerator as an example, a new JobInstance would be created
every time the statementGenerator job is launched with the same parameters. So in this case, running
statementGenerator with a date of May 7, 2017, as a parameter would create a new JobInstance.

JobLauncher Job Step

ItemReader

ItemProcessor

ItemWriter

Job Repository

Figure 2-2. The job components and their relationships

Chapter 2 ■ Spring BatCh 101

17

A JobExecution is a physical execution of a Spring Batch job. Every time you launch a Job, you’ll get a
new JobExecution. You may not get a new JobInstance. The obvious example for this is restarting a failed
job. When a job is run the first time, you get a new JobInstance and a JobExecution. If that execution fails,
on the restart, you won’t get a new JobInstance since it’s still the same logical run (executed with the same
identifying parameters). However, you will get a new JobExecution to track the second physical run. So a
JobInstance can have multiple JobExecutions within it.

Finally a StepExecution is the physical execution of a Step. There is no concept of a StepInstance in
Spring Batch. A JobExecution can (and usually does) have multiple StepExecution instances associated
with it.

Parallelization
A simple batch process’s architecture consists of a single-threaded process that executes a job’s steps in
order from start to finish. However, Spring Batch provides a number of parallelization options that you
should be aware of as you move forward (Chapter 11 covers these options in detail). There are five different
ways to parallelize your work: dividing work via multithreaded steps, parallel execution of full steps,
asynchronous ItemProcessor/ItemWriter configurations, remote chunking, and partitioning.

Multithreaded Steps
The first approach to achieving parallelization is the division of work via multithreaded steps. In Spring
Batch, a job is configured to process work in blocks called chunks, each chunk being wrapped within its own
transaction. Normally, each chunk is processed in series. If you have 10,000 records, and the commit count
is set at 50 records, your job will process records 1 to 50 and then commit, process 51 to 100 and commit, and
so on, until all 10,000 records have been processed. Spring Batch allows you to execute chunks of work in
parallel to improve performance. With three threads, you can increase your theoretical throughput threefold,
as shown in Figure 2-4.1

*

*

End of day Job

The End of day Job for June 9th, 2017

The first attempt at the End of day Job
for June 9th, 2017

Job

JobInstance

JobExecution

Figure 2-3. Relationship of JobInstance, JobExecution, and StepExecution

1This is a theoretical throughput increase. Many factors can prevent the ability of a process to achieve linear parallelization
like this.

Chapter 2 ■ Spring BatCh 101

18

Parallel Steps
The next approach you have available for parallelization is the ability to execute steps in parallel, as shown in
Figure 2-5. Let’s say you have two steps, each of which loads an input file into your database, but there is no
relationship between the steps. Does it make sense to have to wait until one file has been loaded before the
next one is loaded? Of course not, which is why this is a classic example of when to use the ability to process
steps in parallel.

Step1 Step4

Step2

Step3

Figure 2-5. Parallel step processing

Step1

Step2

Chunk 1

Chunk 2

Chunk 3

Step3

Figure 2-4. Multithreaded steps

Asynchronous ItemProcessor/ItemWriter
In some use cases, the ItemProcessor within a step can be the bottleneck. For example, you may have a
complex math calculation that needs to be done or remote services to call to enrich the data the ItemReader
provided. The ability to parallelize that piece of the step can be useful. The AsynchonousItemProcessor is
a decorator for an ItemProcessor implementation that executes each call to the ItemProcessor in its own
thread. Instead of returning the result of the ItemProcessor call, the AsynchronousItemProcessor returns a
java.util.concurrent.Future for each call. The list of Futures returned within the current chunk are then
handed off to the AsynchronousItemWriter. This ItemWriter, also a decorator for the ItemWriter your Step
actually needs to use, will unwrap the Future and pass the real results to the delegating ItemWriter.

Chapter 2 ■ Spring BatCh 101

19

Remote Chunking
The last two approaches to parallelization allow you to spread processing across multiple JVMs. In all cases
previously, the processing was performed in a single JVM, which can seriously hinder the scalability options.
When you can scale any part of your process horizontally across multiple JVMs, the ability to keep up with
large demands increases.

The first remote-processing option is remote chunking. In this approach, input is performed using
a standard ItemReader in a master node; the input is then sent via a form of durable communication
(a message broker like RabbitMQ or ActiveMQ, for example) to a remote worker ItemProcessor that is
configured as a message-driven POJO. When the processing is complete, the worker either sends the
updated item back to the master for writing or writes it itself. Because this approach reads the data at the
master, processes it at the worker, and then sends it back, it’s important to note that it can be very network
intensive. This approach is good for scenarios where the cost of I/O is small compared to the actual
processing.

Partitioning
The final method for parallelization within Spring Batch is partitioning, shown in Figure 2-6. Spring Batch
supports both remote (master and remote workers) and local partitioning (using threads for the workers).
Two key differences between remote partitioning and remote chunking are that with remote partitioning,
you don’t need a durable method of communication, and the master serves only as a controller for a
collection of worker steps. In this case, each of your worker steps is self-contained and configured the
same as if it was locally deployed. The only difference is that the worker steps receive their work from the
master node instead of the job itself. When all the workers have completed their work, the master step
is considered complete. This configuration doesn’t require durable communication with guaranteed
delivery because the JobRepository guarantees that no work is duplicated and all work is completed—
unlike the remote-chunking approach, in which the JobRepository has no knowledge of the state of the
distributed work.

Step1 Step2 Master

Step2 Worker Step2 Worker Step2 Worker

Step3

Figure 2-6. Partitioning work

Chapter 2 ■ Spring BatCh 101

20

Documentation
While I appreciate your reading this book, an open source project is only as good as its documentation.
We’ve tried hard to create not only a comprehensive set of docs, but also a full suite of samples that
demonstrate how to execute a Spring Batch job using many of the concepts within the framework.
Table 2-2 provides a list of the samples included within the framework and what they do.

Table 2-2. Sample Batch Jobs

Batch Job Description

adhocLoopJob An infinite loop used to demonstrate the exposing of elements via JMX and the
running of the job in a background thread (instead of the main JobLauncher thread).

amqpExampleJob A job that demonstrates using AMQP as both the input and output data for the job.

beanWrapperMapper
SampleJob

A job with two steps that is used to demonstrate the mapping of file fields to
domain objects as well as validation of file-based input.

compositeItemWriter
SampleJob

A step can have only one reader and writer. The CompositeWriter is the way
around this. This sample job demonstrates how.

customerFilterJob Uses an ItemProcessor to filter out customers that aren’t valid. This job also
updates the filter count field of the step execution.

delegatingJob Using the ItemReaderAdapter, delegates the reading of input to a configured
method of a POJO.

footballJob A football statistics job. After loading two input files, one with player data and
one with game data, the job generates a selection of summary statistics for the
players and games and writes them to the log file.

groovyJob Uses Groovy (a dynamic JVM language) to script the unzipping and zipping of a file.

headerFooterSample Using callbacks, adds the ability to render a header and footer on the output.

hibernateJob Spring Batch readers and writers don’t use Hibernate by default. This job shows
how to integrate Hibernate into your job.

infiniteLoopJob Just a job with an infinite loop, used to demonstrate stop and restart scenarios.

ioSampleJob Provides examples of a number of different I/O options including delimited and
fix-width files, multiline records, XML, and JDBC integration.

jobSampleJob Demonstrates the execution of a job from another job.

loopFlowSample Using the decision tag, demonstrates how to control execution flow
programmatically.

mailJob Uses the SimpleMailMessageItemWriter to send e-mails as the form of output
for each item.

multilineJob Treats groups of file records as a list that represents a single item.

multilineOrder As an expansion of the multiline input concept, reads in a file with multiline
nested records using a custom reader. The output is also multiline, using
standard writers.

parallelJob Reads records into a staging table, where a multithreaded step processes them.

partitionFileJob Uses the MultiResourcePartitioner to process a collection of files in parallel.

(continued)

Chapter 2 ■ Spring BatCh 101

21

Project Setup
Up to this point, you’ve looked at why you’d use Spring Batch and examined the components of the
framework. However, looking at diagrams and learning new lingo will only take you so far. At some point,
you need to dig into the code: so, grab an editor, and let’s start digging.

In this section, you build your first batch job. You walk through the setup of a Spring Batch project,
including obtaining the required files from Spring. You then configure a job and code the “Hello, World!”
version of Spring Batch. Finally, you learn how to launch a batch job from the command line.

Obtaining Spring Batch
Before you begin writing batch processes, you need to obtain the Spring Batch framework. There are a
number of ways to get it, including grabbing the code from Github, using Maven or Gradle, and so on.
However, for the purposes of this book, since we’re going to focus on Spring Boot–based batch jobs, we’ll
start with Spring Initializr. Spring Initailizr is a service provided by the Spring team that allows you to
generate the shell of a project with a set of validated dependencies.

In order to use Spring Initializr, you need one of two things: either an IDE that supports integration
with Initializr directly (Spring Tool Suite and IntelliJ are two examples of this) or a web browser. Let’s walk
through each of those options. Going forward, each of the examples within this book will assume you have a
clean Spring Boot–based project.

The Web Site
To use the Spring Initializr web site, we begin by navigating to https://start.spring.io as seen in
Figure 2-7. There you are presented with a UI that allows you to define some basic parameters about your
project including

•	 Build system: Maven or Gradle are both supported at the time of this book.

•	 Language: Spring has robust support for Java, Groovy, and Kotlin so Spring Initializr
allows you to choose from these.

•	 Spring Boot version: Some features differ from version to version so Spring Initializr
allows you to select which version you use.

Table 2-2. (continued)

Batch Job Description

partitionJdbcJob Instead of looking for multiple files and processing each one in parallel, divides
the number of records in the database for parallel processing.

restartSampleJob Throws a fake exception when processing has begun, to demonstrate the ability
to restart a job that has errored and have it begin again where it left off.

retrySample Using some interesting logic shows how Spring Batch can attempt to process an
item multiple times before giving up and throwing an error.

skipSampleJob Based on the tradeJob example. In this job, however, one of the records fails
validation and is skipped.

taskletJob The most basic use of Spring Batch is the Tasklet. This example shows how any
existing method can be used as tasklets via the MethodInvokingTaskletAdapter.

tradeJob Models a real-world scenario. This three-step job imports trade information into
a database, updates customer accounts, and generates reports.

https://start.spring.io

Chapter 2 ■ Spring BatCh 101

22

•	 Artifact coordinates: This allows your POM or gradle.build file to be generated with
the correct coordinates prepopulated.

•	 Dependencies: This allows you to specify the Spring Boot starters you’ll want
included in your project.

The UI provides two options for adding dependencies. If you know what you want, you can just type
them into the search box to the right. If you don’t know what you want, you can click the “Switch to the full
version” link, which exposes a checkbox for each of the options available in Spring Initializr. In every project
we create in this book, you’ll be choosing the Batch Spring Boot starter as a minimum.

Once you have entered all the relevant data, click the “Generate Project” button. A zip file will be
downloaded with a full project shell ready to add your code to. This project can then be imported directly
into your favorite IDE for the rest of your development.

Spring Tool Suite
Spring Tool Suite (STS) is an Eclipse-based IDE maintained by the Spring team that provides added features
around the Spring Framework and developing of microservices. It can be obtained either as an independent
download or as a plug-in to add to your existing Eclipse installation. It can be obtained from the Spring
website for free at https://spring.io/tools.

Figure 2-7. The defaults for start.spring.io

https://spring.io/tools

Chapter 2 ■ Spring BatCh 101

23

With STS installed, go to File ➤ New ➤ Spring Starter Project. You’ll be presented with a window that
looks like Figure 2-8.

Figure 2-8. The defaults for the Spring Tool Suite project setup

The only differences between the website and this window are the location of the service (we’ll still use
https://start.spring.io), a location field for where to place the project locally, and the ability to add it to
an Eclipse working set. Once the values for this window are configured, click the next button at the bottom.
This will take you to a window that allows you to chose the Spring Boot starters you want to include in your
project similar to how the checkboxes are made available on the website. Once the dependencies you want
have been selected, you can click Finish and STS will download and import the new project for you.

https://start.spring.io

Chapter 2 ■ Spring BatCh 101

24

IntelliJ IDEA
IntelliJ IDEA is another popular IDE for Java development that provides excellent integration with the Spring
functionality including a similar experience using the Spring Initializr. With IDEA installed, go to File ➤ New
➤ Project… Along the left side of the dialog box you’ll see Spring Initializr. Once selected, you’ll see a screen
like in Figure 2-9.

We can use the defaults for this discussion in that window. From here, click Next. From here, you’ll be
presented with the options that are available on the website. Click Next once they are filled out. The next
screen will display the different Spring Boot starters available with the Spring Intiailizr instance you are
looking at. Once you have selected the options you want, click Next. The final screen in the wizard will let
you chose the name of your project and where to put it. Enter the values you want and click Finish. IDEA will
download the appropriate project and import it for you.

It’s the Law: Hello, World!
The laws of computer science are clear. Any time you learn a new technology, you must create a “Hello,
World!” program using the said technology, so let’s get started. Don’t feel like you need to understand all the
moving parts of this example. Future chapters go into each piece in greater detail.

To get started with our Hello, World Spring Batch job, we’ll need to create a new project. Use whichever
method you prefer from the previous section to create a new project, naming it hello-world. As you go through
the wizard in Spring Initializr (via whatever means you choose), you’ll want to make the following selections:

•	 Group ID: io.spring.batch

•	 Artifact ID: hello-world

•	 Build System: Maven

Figure 2-9. The defaults for IntelliJ IDEA project setup

Chapter 2 ■ Spring BatCh 101

25

•	 Language: Java 8+2

•	 Packaging: Jar

•	 Version: 0.0.1-SNAPSHOT

•	 Spring Boot Version: 2.1.23

•	 Dependencies: Batch, H2, and JDBC

For the dependences, batch should be obvious. H2 is used as an in-memory database for our job
repository. Finally JDBC is added for the database support (DataSource, etc.). Once you’ve imported your
project into your IDE, you should be left with a project structure that looks like what is found in Figure 2-10.4

Figure 2-10. Imported project structure

2Any version Java 8 or higher should work with all examples in this book.
3As of the writing of this book, Spring Boot 2.1.2 is the latest version. However, any version greater than 2.1 should work
for the examples in this book.
4This project uses Maven as the build system. Your layout will differ slightly if you use Gradle.

Chapter 2 ■ Spring BatCh 101

26

With our project imported, we can take a look at the different pieces. Really, a Spring Initializr project
only consists of four main pieces:

 1. A build system (I’ll be using Maven throughout the book, but you can use
whichever you choose.)

 2. A source file to bootstrap Spring Boot (located in /src/main/java/your/package/
name/HelloWorldApplication.java)

 3. A test file that simply bootstraps your context to see if it works (located in /src/
test/java/your/package/name/HelloWorldApplicationTests.java)

 4. An application.properties for configuring your application (located in /src/main/
resources)

For this hello-world project, we’ll focus on the HelloWorldApplication class. In Listing 2-1, is all the
code needed to run your first batch job (minus imports).

Listing 2-1. The “Hello, World!” Job

@EnableBatchProcessing
@SpringBootApplication
public class HelloWorldApplication {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Step step() {
 return this.stepBuilderFactory.get("step1")
 .tasklet(new Tasklet() {
 @Override
 public RepeatStatus execute(StepContribution contribution,
 ChunkContext

chunkContext) {
 System.out.println("Hello, World!");
 return RepeatStatus.FINISHED;
 }
 }).build();
 }

 @Bean
 public Job job() {
 return this.jobBuilderFactory.get("job")
 .start(step())
 .build();
 }

 public static void main(String[] args) {
 SpringApplication.run(HelloWorldApplication.class, args);
 }
}

Chapter 2 ■ Spring BatCh 101

27

If you read through the code in Listing 2-1, it should sound vaguely familiar from a high level. It’s
really just the Java representation of what is discussed in Examining Jobs and Steps section earlier in
this chapter. However, if we break it down, it really consists of three main pieces that we added to the
generated HelloWorldApplication class: the @EnableBatchProcessing annotation, the injection of the
JobBuilderFactory and StepBuilderFactory, the definition of the step, and the definition of our job.

Working from the top down, our job begins with the @EnableBatchPocessing annotation. This
annotation is provided by Spring Batch and is used to bootstrap the batch infrastructure. It provides Spring
bean definitions for most of the batch infrastructure so you don’t have to, including:

•	 A JobRepository: Used to record the state of the job as it runs

•	 A JobLauncher: Used to launch the job

•	 A JobExplorer: Used to perform read only operations with the JobRepository

•	 A JobRegistry: Used to find jobs when using certain launcher implementations

•	 A PlatformTransactionManager: Handles transactionality over the course of your job

•	 A JobBuilderFactory: A fluent builder for creating jobs

•	 A StepBuilderFactory: A fluent builder for creating steps

As you can see, that one annotation does a lot for us. It does have one requirement though, which is
to provide it with a DataSource. The JobRepository and PlatformTransactionManager use it as they each
require. Spring Boot handles that for us by having HSQLDB on the classpath. It detects it and creates an
embedded DataSource for us on startup.

As we move down the class, the next thing is the @SpringBootApplication annotation. This is really
a meta-annotation that combines @ComponentScan with @EnableAutoConfiguration. It triggers the
autoconfiguration that will create our DataSource as well as any other Spring Boot–based autoconfigs that
make sense.

After the class definition we autowire in two builders provided by Spring Batch: one for building Jobs
and one for building Steps. Each one is automatically provided via the @EnableBatchProcessing annotation
so all we need to do is have Spring inject them into our configuration class.

Next we create our Step. This job consists of only a single step so we simply name it step. It’s configured
as a Spring Bean and in this simple example, only requires two elements, a name and a Tasklet. The
Tasklet, implemented inline here5, is what does the actual work in our job. In this example, we have it just
call System.out.println("Hello, World!") and then returning RepeatStatus.FINISHED.

Returning RepeatStatus.FINISHED indicates to Spring Batch that you are done with this Tasklet. The
other option to return is RepeatStatus.CONTINUABLE. In this case, Spring Batch will call your Tasklet again.
If you were to return RepeatStatus.CONTINUABLE here, the result would be an infinite loop.

Once our Step is configured, we can use it to create our Job. As mentioned earlier, a Job is composed
of one or more Step instances. In this case, it’s just our one Step. We configure our Job using the same
paradigm we used for our Step via the JobBuilderFactory. We configure the name of the Job, and the Step
to start at. In this simple example, that’s all there is to it.

With all of that configured, you have defined your first Spring Batch job! Now, let’s see it in action.

Running Your Job
That’s really it. Let’s try building and running the job. To compile it (assuming you’re using Maven), run
mvn clean package from the root of the project. When the build is successful, run the job. Spring Boot, by
default, will run any Job it finds within the configured ApplicationContext on startup. You can configure

5The Tasklet here could also be defined as a lambda; however, this approach was selected here for clarity.

Chapter 2 ■ Spring BatCh 101

28

this behavior via properties as needed. Since the default behavior is actually what we want, all you need to
do is go to the target directory of the project and execute java -jar hello-world-0.0.1-SNAPSHOT.jar.
Spring Boot will do the rest to launch your job.

After you’ve run the job, notice that in traditional Spring Boot style, there is quite a bit of output
(including some pretty awesome ASCII art) for a simple “Hello, World!” But if you look closely (around line
23 of the output), there it is:

2010-12-01 23:15:42,442 DEBUG 2017-05-22 21:15:04.274 INFO 2829 --- [main]
o.s.batch.core.job.SimpleStepHandler : Executing step: [step1]
Hello, World!
2017-05-22 21:15:04.293 INFO 2829 --- [main] o.s.b.c.l.support.
SimpleJobLauncher : Job: [SimpleJob: [name=job]] completed with the following
parameters: [{}] and the following status: [COMPLETED]

Congratulations! You just ran your first Spring Batch job. So, what actually happened? Spring Boot
has a component called the JobLauncherCommandLineRunner. This component is loaded at startup when
Spring Batch is found on the classpath and it uses our JobLauncher to run any Job definitions found in the
ApplicationContext. So when we bootstrapped Spring Boot in our main method, the ApplicationContext
was created, the JobLauncherCommandLineRunner was executed, and our Job was run.

Our Job executed the first Step which, in turn, started a transaction, executed our Tasklet, and
updated the JobRepository with the results. We will look in more detail at what the results that ended up the
JobRepository were later in this book.

Summary
In this chapter, you got your feet wet with Spring Batch. You walked through the batch domain covering what
a Job and Step are and how they interact through the job repository. You learned about the different features
of the framework, including the ability to map batch concepts in Java, robust parallelization options, and the
formal documentation (including a list of the available sample jobs).

From there, you wrote the Spring Batch version of “Hello, World!”. You learned the various ways to get
started using Spring Initializr. When you had your project set up, you created your Job in Java and executed
your Job.

I want to point out that you’ve barely taken a peek into what Spring Batch can do. The next chapter
walks through the design of a sample application that you’ll build later in this book and outlines how Spring
Batch addresses issues that you’d have to deal with yourself without it.

29© Michael T. Minella 2019
M. T. Minella, The Definitive Guide to Spring Batch, https://doi.org/10.1007/978-1-4842-3724-3_3

CHAPTER 3

Sample Job

This book is designed to not only explain how the many features of Spring Batch work but also demonstrate
them in detail. Each chapter includes a number of examples that show how each feature works. However,
examples designed to communicate individual concepts and techniques may not be the best for
demonstrating how those techniques work together in a real-world example. So, in Chapter 10, you create a
sample application that is intended to emulate a real-world scenario.

The scenario I chose is simplified: a domain you can easily understand but that provides sufficient
complexity so that using Spring Batch makes sense. Bank statements are an example of common batch
processing. Run nightly, these processes generate statements based on the previous month’s transactions.
The batch process we’ll create will apply transactions to an existing set of accounts and then generate a
statement for each account. It will illustrate a number of important batch concepts:

•	 Various input and output options: Among the most significant features of Spring
Batch are the well-abstracted options for reading and writing from a variety of
sources. The bank statements job will obtain input from flat files and a database.
On the output side, you write to databases as well as flat files. A variety of readers and
writers are utilized.

•	 Error handling: The worst part about maintaining batch processes is that when they
break, it’s typically at 2:00 a.m., and you’re the one getting the phone call to fix the
problem. Because of this, robust error handling is a must. The example statement
generation process covers a number of different scenarios including logging,
skipping records with errors, and retry logic.

•	 Scalability: In the real world, batch processes need to be able to accommodate large
amounts of data. Later in this book, you use the scalability features of Spring Batch to
tune the batch process so it can process literally millions of customers.

In order to build our batch job we will want a set of requirements to work from. Since we will be using
user stories to define our requirements, we will take a look at the agile development process as a whole in
the next section.

Understanding Agile Development
Before this chapter digs into the individual requirements of the batch process you develop in Chapter 10,
let’s spend a little time going over the approach you use to do so. A lot has been said in our industry about
various agile processes; so instead of banking on any previous knowledge you may have of the subject, let’s
start by establishing a base of what agile and the development process will mean for this book.

https://doi.org/10.1007//978-1-4842-3724-3_3

Chapter 3 ■ Sample Job

30

The agile process has 12 tenets that virtually all of its variants prescribe. They are as follows:

•	 Customer satisfaction comes from quick delivery of working software.

•	 Change is welcome regardless of the stage of development.

•	 Deliver working software frequently.

•	 Business and development must work hand in hand daily.

•	 Build projects with motivated teams. Give them the tools and trust them to get the
job done.

•	 Face-to-face communication is the most effective form.

•	 Working software is the number one measure of success.

•	 Strive for sustainable development. All members of the team should be able to
maintain the pace of development indefinitely.

•	 Continue to strive for technical excellence and good design.

•	 Minimizing waste by eliminating unnecessary work.

•	 Self-organizing teams generate the best requirements, architectures, and designs.

•	 At regular intervals, have the team reflect to determine how to improve.

It doesn’t matter if you’re using Extreme Programming (XP), Scrum, or any other currently hip variant.
The point is that these dozen tenets still apply.

Notice that not all of them will necessarily apply in your case. It’s pretty hard to work face to face with
a book. You’ll probably be working by yourself through the examples, so the aspects of team motivation
don’t exactly apply either. However, there are pieces that do apply. An example is quick delivery of working
software. This will drive you through out the book. You’ll accomplish it by building small pieces of the
application, validating that they work with unit tests, and then adding onto them.

Even with the exceptions, the tenets of agile provide a solid framework for any development project,
and this book applies as many of them as possible. Let’s get started looking at how they’re applied by
examining the way you document the requirements for the sample job: user stories.

Capturing Requirements with User Stories
User stories are the agile method for documenting requirements. Written as a customer’s take on what the
application should do, a story’s goal is to communicate the how a user will interact with the system and
document testable results of that interaction. A user story has three main parts:

•	 The title: The title should be a simple and concise statement of what the story is
about. Load transaction file. Generate print file. All of these are good examples of
story titles. You notice that these titles aren’t GUI specific. Just because you don’t
have a GUI doesn’t mean you can’t have interactions between users. In this case, the
user is the batch process you’re documenting or any external system you interface
with.

•	 The narrative: This is a short description of the interaction you’re documenting,
written from the perspective of the user. Typically, the format is something like
“Given the situation Y, X does something, and something else happens.” You see
in the upcoming sections how to approach stories for batch processes (given that
they’re purely technical in nature).

Chapter 3 ■ Sample Job

31

•	 Acceptance criteria: The acceptance criteria are testable requirements that can
be used to identify when a story is complete. The important word in the previous
statement is testable. In order for an acceptance criterion to be useful, it must be able
to be verified in some way. These aren’t subjective requirements but hard items that
the developer can use to say, “Yes it does do that” or “No it doesn’t.”

Let’s look at a user story for a universal remote control as an example:

•	 Title: Turn on Television.

•	 Narrative: As a user, with the television, receiver, and cable box off, I will be able to
press the power button on my universal remote. The remote will then power on the
television, receiver, and cable box and configure them to view a television show.

•	 Acceptance criteria:

•	 Have a power button on the universal remote.

•	 When the user presses the power button, the following will occur:

 1. The television will power on.

 2. The AV receiver will power on.

 3. The cable box will power on.

 4. The cable box will be set to channel 187.

 5. The AV receiver will be set to the SAT input.

 6. The television will be set to the Video 1 input.

The Turn on Television user story begins with a title—Turn on Television—that is short and descriptive.
It continues with a narrative. In this case, the narrative provides a description of what happens when
the user presses the power button. Finally, the acceptance criteria list the testable requirements for the
developers and QA. Notice that each criterion is something the developers can easily check: they can look at
their developed product and say yes or no, what they wrote does or doesn’t do what the criteria state.

USER STORIES VS. USE CASES

Use cases are another familiar form of requirements documentation. Similar to user stories, they’re
actor centric. Use cases were the documentation form of choice for the rational Unified process (rUp).
they’re intended to document every aspect of the interaction between an actor and a system. because
of this, their overly documentation-centric focus (writing documents for the sake of documents), and
their bloated format, use cases have fallen out of favor and been replaced with user stories in agile
development.

User stories mark the beginning of the development cycle. Let’s continue by looking at a few of the other
tools used over the rest of the cycle.

Chapter 3 ■ Sample Job

32

Capturing Design with Test-Driven Development
Test-driven development (TDD) is another agile practice. When using TDD, a developer first writes a test that
fails and then implements the code to make the test pass. Designed to require that developers think about
what they’re trying to code before they code it, TDD (also called test-first development) has been proven to
make developers more productive, use their debuggers less, and end up with cleaner code.

Another advantage of TDD is that tests serve as executable documentation. Unlike user stories or other
forms of documentation that become stale due to lack of maintenance, automated tests are always updated
as part of the ongoing maintenance of the code. If you want to understand how a piece of code is intended to
work, you can look at the unit tests for a complete picture of the scenarios in which the developers intended
their code to be used.

Although TDD has a number of positives, you won’t use it much in this book. It’s a great tool for
development, but it isn’t the best for explaining how things work. However, Chapter 13 looks at testing of
all types, from unit testing to functional testing, using open source tools including JUnit, Mockito, and the
testing additions in Spring.

Using a Version-Control System
Although it isn’t a requirement by any means, you’re strongly encouraged to use a source-control system
for all your development. Whether you choose to use git and Github or some other form of version control
system, the features that source control provides are essential for productive programming.

You’re probably thinking, “Why would I use source control for code that I’m going to throw away while
I’m learning?” That is the strongest reason I can think of to use it. By using a version-control system, you give
yourself a safety net to try things. Commit your working code; try something that may not work. If it does,
commit the new revision. If not, roll back to the previous revision with no harm done. Think about the last
time you learned a new technology and did so without version control. I’m sure there were times when you
coded your way down a path that didn’t pan out and were then stuck to debug your way out of it because you
didn’t have a previously working copy. Save yourself the headache and allow yourself to make mistakes in a
controlled environment by using version control.

Working with a True Development Environment
There are many other pieces to development in an agile environment. Get yourself a good IDE. Because this
book is purposely written to be IDE agnostic, it won’t go into pros and cons of each. However, be sure you
have a good one, and learn it well, including the keyboard shortcuts.

Although spending a lot of time setting up a continuous integration environment may not make sense
for you while you learn a given technology, it may be worth setting one up to use in general for your personal
development. You never know when that widget you’re developing on the side will be the next big thing,
and you’d hate to have to go back and set up source control and continuous integration (CI) when things
are starting to get exciting. There are many options for setting up a CI environment. One option when using
a service like Github is to use another cloud service called Travis CI (https://travis-ci.org/). Travis
provides seamless integration with Github via their webhooks API so you just need to provide some simple
configuration to enable CI on your projects.

Understanding the Requirements of the Statement Job
Now that you’ve seen the pieces of the development process you’re encouraged to use as you learn Spring
Batch, let’s look at what you’ll develop in this book. Figure 3-1 shows what you expect to see online from
your bank each month as your bank statement. While many people receive their statements online, we’ll use
a printed statement for our example batch job.

https://travis-ci.org/

Chapter 3 ■ Sample Job

33

If you break down how the statement is created, there are really two pieces to it. The first is nothing
more than a pretty piece of paper on which the second piece is printed. It’s the second piece, shown in
Figure 3-2, that you create in this book.

Figure 3-1. Bank statement, formatted and printed on letterhead

Chapter 3 ■ Sample Job

34

Typically, statements are created as follows. A batch process creates a print file consisting of a little more
than text.1 That print file is then sent to a printer that prints the text onto the decorated paper, producing the
final statement. The print file is the piece you create using Spring Batch. Your batch process will perform the
following functions:

 1. Update customer information based on a file provided.

 2. Import transactions for all customers in the database.

 3. Update the account table with the account balance.

 4. Print the file for the bank account for the past month.

Figure 3-2. Plain-text bank statement

1Another approach is to have the batch process generate PDF files for printing which is out of the scope of this book.

Chapter 3 ■ Sample Job

35

Let’s look at what each of these features entails. Your job is provided with a customer flat file that
consists of information about existing customers that needs to be updated. For example, a customer’s
address may have changed. This file will provide details about that address update. Our batch job will read
this file and apply the updates to the existing customer data in our database.

The next feature our batch job needs to have is to import transactions for all customers. This data is
made available via an XML file that we’ll import into the existing database.

Once the transactions have been imported, we can update the account table that keeps a record of
what a customer’s current balance is. This is the value used to determine what their balance is without
needing to re-evaluate all the transactions from the beginning of time every time we need to know the
current balance.

With all the database updates complete, we can extract the print file consisting of the customer’s
information, a list of transactions, and a summary of their account.

This list of features is intended to provide a complete view into how Spring Batch is used in a real-world
problem. Throughout the book, you learn about the features Spring Batch provides to help you develop
batch processes like the one required for this scenario. In Chapter 10, you implement the batch job to meet
the requirements outlined in the following user stories:

Update Customer Information: As the batch process, I will import the customer
information and use it to update existing customer records. Acceptance criteria:

•	 The batch job will read the CSV based customer update file.

•	 The updates will be applied to the customer records based on the type of update
(each type will have its own record format).

 a. A record type of 1 will indicate a name change.

 b. A record type of 2 will indicate a mailing address change.

 c. A record type of 3 will indicate a contact information change.

The record formats are as follows:

Record type 1

Name Required Format

Record Type ID True \d

Customer ID True \d{9}

Customer First Name False \w+

Customer Middle Name False \w+

Customer Last Name False \w+

Chapter 3 ■ Sample Job

36

A record type 1 record will look like the following:

1,123456789,John,Middle,Doe

Record type 2

Name Required Format

Record Type Id True \d

Customer Id True \d{9}

Address1 False \w+

Address2 False \w+

City False \w+

State False \w{2}

Postal Code False \d{5}

A record type 2 record will look like the following:

2,123456789,123 4th Street,Unit 5,Chicago,IL,60606

Record type 3

Name Required Format

Record Type ID True \d

Customer ID True \d{9}

Email Address False \w+

Home Phone False \d{3}-\d{3}-\d{4}

Cell Phone False \d{3}-\d{3}-\d{4}

Work Phone False \d{3}-\d{3}-\d{4}

Notification Preference False \d

A record type 3 record will look like the following:

3,123456789,foo@bar.com,123-456-7890,123-456-7890,123-456-7890,2

Records with validation errors should be written to an error file for future validation and reprocessing.

Import transactions: As the batch process, I will import all new transactions
provided via an XML input file. Acceptance criteria:

•	 The process will read in the XML file of transactions.

•	 Each transaction will create a new record in the transaction table.

•	 Each record in the file will have the following fields:

Chapter 3 ■ Sample Job

37

Name Required Format

Transaction ID True \d{9}

Account Id True \d{9}

Credit False \d+\.\d{2}

Debit False \d+\.\d{2}

Timestamp True yyyy-MM-dd HH:mm:ss.ssss

An example of the data the transaction file consists of is as follows (either credit
or debit will be filled out in each record):

<transactions>
 <transaction>
 <transactionId>123456789</ transactionId>
 <accountId>987654321</accountId>
 <description>Paycheck</description>
 <credit>500.00</credit>
 <debit/>
 <timestamp>2017-07-20 15:38:57.480</timestamp>
 </transaction>
 ...
</transactions>

Apply transaction updates to account table: As the batch process, I will update the
account table with the latest balance. Acceptance criteria:

•	 The account table will have a balance field that will be updated with all
transactions inserted in the most recent import.

Print Statement Header: As the batch process, at the top of each page I will print a
header. This will provide generic information about the customer and the bank.
Acceptance criteria:

•	 The header is all static text except for the customer’s address.

•	 Following is an example of the header, where the Michael Minella name and
address are the customer’s name and address:

 Customer Service Number
 (800) 867-5309
 Available 24/7

Michael Minella Apress Banking
1313 Mockingbird Lane 1060 West Addison St.
Chicago, IL 60606

Chapter 3 ■ Sample Job

38

Print Account Summary: As the batch process, after all calculations have been
completed, I will print out a summary for each customer. This summary will provide
an overview of the customer’s account and a breakdown of what makes up the total
value of their accounts. Acceptance criteria:

•	 The process will generate a single file for each customer.

•	 The summary will begin with a line that states the following, fully justified

Your Account Summary Statement Period:<BEGIN_DATE> to <END_DATE>

where BEGIN_DATE is the first calendar date after the last statement date in the account
table and END_DATE is the date the job is being run.After the summary title, there will
be a header line for each account the customer has.

•	 After the account header, there will be a list of transactions made against the account.

•	 After the list of transactions, there will be a line for the total amount of credits and
total amount of debits within the statement period.

•	 Finally there will be a line with the current balance for the account.

•	 The account header, list of transactions, and balance line all will repeat for each
account associated with the customer.

•	 Here is an example with one account:

Your Account Summary Statement Period: 07/20/2017 to 08/20/2017

Account Number 123456789

Beginning balance $1256.34
Paycheck $500.00
Amazon.com - $23.95
Mariano’s - $165.29
Mobile - $55.23
 Total Debit: $244.47
 Total Credit: $500.00
 Balance: $1511.87

That does it for the requirements. If your head is spinning about now, that’s okay. In the next section,
you begin to outline how to tackle this statement process with Spring Batch. Then, over the rest of this book,
you learn how to implement the various pieces required to make it work.

Designing a Batch Job
As stated before, the goal of this project is to take a real-world example and work through it using the
features that Spring Batch provides to create a robust, scalable, and maintainable solution. In order to
accomplish this goal, the example includes elements that may seem a bit complex right now, such as
headers, multiple file format imports, and complex output including subheadings. The reason is that Spring
Batch provides facilities exactly for these features. Let’s dig into how you structure this batch process by
outlining the job and describing its steps.

Chapter 3 ■ Sample Job

39

Job Description
In order to implement the statement-generation process, you build a single job with four steps. Figure 3-3
shows the flow of the batch job for this process, and the following sections describe the steps.

Import Customer
Updates

Import
Transactions

Calculate
Current

Balances

Generate
Statements

Figure 3-3. Bank statement jobflow

Importing Customer Data
To start the job, you begin by importing the customer updates. Contained in a flat file, this data has a
complex format consisting of three record types as mentioned earlier. Spring Batch provides the ability to
handle multiple record formats in a single file which we’ll take advantage of in this step. Once we can read
the data, we’ll validate it using an ItemProcessor so that we can minimize errors in the write stage. From
there, we’ll use the appropriate ItemWriter implementation to do the correct update based on the record
type. A sample of the input we’ll be working with in this step can be found in Listing 3-1.

Listing 3-1. Customer Input File

2,3,"P.O. Box 554, 6423 Integer Street",,Provo,UT,10886
2,65,"2374 Aliquet, Street", ,Bellevue,WA,83841
3,73,Nullam@fames.net,,1-611-704-0026,1-119-888-1484,4
2,26,985 Malesuada. Avenue,P.O. Box 585,Aurora,IL,73863
2,23,686-1088 Porttitor Avenue,,Stamford,CT,89593
1,36,Zia,,Strong
2,60,313-8010 Commodo St.,,West Jordan,UT,26634
2,17,"P.O. Box 519, 3778 Vel Rd.",,Birmingham,AL,36907

Importing Transaction Data
Once the customer data has been imported, the transaction data import is next. Again, Spring Batch
provides a robust set of ItemReader and ItemWriter implementations so we’ll be able to use the
implementations for reading XML and writing to a database within this step. Again for this step, we will
validate the input and do an insert into the database for each record parsed. An example of the input for the
transaction XML file is listed in Listing 3-2.

Listing 3-2. Transaction Input File

<?xml version="1.0" encoding="UTF-8" ?>
<transactions>
 <transaction>
 <transactionId>1</transactionId>
 <accountId>15</accountId>
 <credit>5.62</credit>
 <debit>1.95</debit>

Chapter 3 ■ Sample Job

40

 <timestamp>2017-07-12 12:05:21</timestamp>
 </transaction>
 <transaction>
 <transactionId>2</transactionId>
 <accountId>68</accountId>
 <credit>5.27</credit>
 <debit>6.26</debit>
 <timestamp>2017-07-23 16:28:37</timestamp>
 </transaction>
...
</transactions>

Calculating Current Balance
Once the data has been imported, we’ll need to update the balance in the account table. This is
precalculated for online accounts but is also what we’ll use for statement generation. In order to do this,
we’ll use the driving query pattern (to be discussed later) to iterate over each account and calculate the
impact of the current transactions are to the current balance. We’ll then update the balance accordingly in
the account table.

Generating Customer Monthly Statements
The last step is the most complex. In this step we’ll generate one print file per account that contains the
customer’s statement. Similar to how we calculate the current balance via the driving query pattern, this step
will work the same way. By using an ItemReader that reads the customers from the database, sending those
customers to an ItemProcessor for enrichment where we’ll add all the data required for each statement,
and sending those items to a file based ItemWriter, we’ll be able to address all the requirements for the
statement generation using minimal custom code.

All of this sounds great in theory but leaves a lot of questions to be answered. That’s good. You’ll
spend the rest of the book working through how these features are implemented in the processes as well as
examining things like exception handling, restart/retry logic, and addressing scalability concerns. One final
item you should be familiar with before you move on, though, is the data model. That will help clear the air
regarding how this system is structured. Let’s take a look.

Understanding the Data Model
Data being the lifeblood of any application, exploring the data model you’ll be working with is a great
way to begin to understand how a system works. This section looks at the data model used for the sample
application.

Figure 3-4 outlines the application-specific tables for this batch process. To be clear, this diagram
doesn’t encompass all the tables required for this batch job to run. We’ll take a look at those in a later
chapter; however, all of those tables will exist in addition to these in your database.

Chapter 3 ■ Sample Job

41

For the batch application, you have four tables: CUSTOMER, ACCOUNT, TRANSACTION, and CUSTOMER_
ACCOUNT. When you look at the data in the tables, notice that you aren’t storing all the required fields to
generate the statement. There are fields (such as the total debits and total credits) that you calculate during
processing. Other than that, the data model should appear relatively straightforward:

•	 Customer: This record contains all the customer-specific information, including
name and contact information.

•	 Account: For every customer, an account is maintained. For your purposes, each
account has a number and the current balance.

•	 CustomerAccount: This is a join table. Since an account can have many customers
associated with it, and a customer can have many accounts, this addresses the many
to many relationship between the two.

•	 Transaction. This contains all of the transactions that have occurred against a given
account.

Summary
This chapter discussed the agile development process and how you can apply it to batch development.
The chapter continued along those lines by defining requirements via user stories for the sample
application you build in this book. From this point, the book switches from the “what” and “why” of
Spring Batch to the “how.”

In the next chapter, you take a deep dive into Spring Batch’s concepts of jobs and steps and look at a
number of other specific examples.

Figure 3-4. Sample application data model

43© Michael T. Minella 2019
M. T. Minella, The Definitive Guide to Spring Batch, https://doi.org/10.1007/978-1-4842-3724-3_4

CHAPTER 4

Understanding Jobs and Steps

In Chapter 2, you created your first job. You walked through the configuration of a job and steps, executed the
job, and configured a database to store your job repository. In that “Hello, World!” example, you began to scratch
the surface of what jobs and steps are in Spring Batch. This chapter continues to explore jobs and steps at a
much deeper level. You begin by learning what a job and a step are in relation to the Spring Batch framework.

From there, you dive into great detail about what happens when jobs or steps are executed, from
loading them and validating that they’re valid to running all the way through their completion. Then, you dig
into some code, see the various parts of jobs and steps that you can configure, and learn best practices along
the way. Finally, you see how different pieces of the batch puzzle can pass data to each other via the various
scopes involved in a Spring Batch process.

Although you dive deep into steps in this chapter, the largest parts of a step are their readers and
writers, which aren’t covered here. Chapters 7 and 9 explore the input and output functionality available in
Spring Batch. This chapter keeps the I/O aspects of each step as simple as possible so you can focus on the
intricacies of steps in a job.

Introducing a Job
There are many different types of workloads a modern developer will see within an enterprise. Web
applications, integration applications, big data, and others, all have some common paradigms. One of them
is the idea that there is a logic flow that needs to occur to provide the business value your application is
intended to provide. For example, in a web application, you may have a shopping cart flow where a user adds
items to a shopping cart, provides a shipping address, provides payment information, and finally confirms
their order. In an integration style application, a message may go through a number of transformers, filters,
and so on, all before reaching the end of its flow.

A job is similar to those flows. We’ll define a job as a unique, ordered, list of steps that can be executed
from start to finish independently. Let’s break down this definition, so you can get a better understanding of
what you’re working with:

•	 Unique: Jobs in Spring Batch are configured via Java or XML in the same way as to how
beans are configured using the core Spring framework and are reusable as a result.
You can execute a job as many times as you need to with the same configuration.
Because of this there is no reason to define the same job multiple times.

•	 Ordered list of steps:1 Going back to the checkout flow example, the order of the steps
matter. You can’t confirm your order if you haven’t provided a shipping address.
You can’t execute the checkout process if your shopping cart is empty. The order of

1Although most jobs consist of an ordered list of steps, Spring Batch does support the ability to execute steps in parallel
and conditionally. These features are discussed later.

https://doi.org/10.1007//978-1-4842-3724-3_4

Chapter 4 ■ Understanding Jobs and steps

44

steps in your job is important. You can’t generate a customer’s statement until their
transactions have been imported into your system. You can’t calculate the balance of
an account until you’ve applied the transactions to the balance. You structure jobs in
a sequence that allows all steps to be executed in a logical order.

•	 Can be executed from start to finish: Chapter 1 defined a batch process as a process
that can run without additional interaction to some form of completion. A job is a
series of steps that can be executed without external interactions. You don’t structure
a job so that the third step is to wait until a file is sent to a directory to be processed.
Instead, you have a job begin when the file has arrived.

•	 Independently: Each batch job should be able to execute without external
dependencies affecting it. This doesn’t mean a job can’t have dependencies. On
the contrary, there are not many practical jobs (except “Hello, World”) that don’t
have external dependencies. However, the job should be able to manage those
dependencies. If a file isn’t there, it handles the error gracefully. It doesn’t wait for
a file to be delivered (that’s the responsibility of a scheduler, and so on). A job can
handle all elements of the process it’s defined to do.

As you can see in Figure 4-1, a batch process is executed with all of the input available for it as it runs.
There are no user interactions. Each step is executed to completion before the next step is executed. Before
you dig deeply into how to configure the various features of a job in Spring Batch, let’s talk about a job’s
execution lifecycle.

Import Customer
Updates

Import
Transactions

Calculate
Current

Balances

Generate
Statements

Figure 4-1. Steps in a batch job

Tracing a Job’s Lifecycle
When a job is executed, it goes through a lifecycle. Knowledge of this lifecycle is important as you structure
your jobs and understand what is happening as they run. When you define a job, what you’re really doing
is providing the blueprint for a job. Just like writing the code for a Java class is like defining a blueprint for
the JVM from which to create an instance, your definition of a job is a blueprint for Spring Batch to create an
instance of your job.

The execution of a job begins with a job runner. The job runner is intended to execute the job requested
by name with the parameters passed. Spring Batch provides two job runners:

•	 CommandLineJobRunner: This job runner is intended to be used from a script or
directly from the command line. When used, the CommandLineJobRunner bootstraps
Spring and executes the job requested with the parameters passed.

•	 JobRegistryBackgroundJobRunner: When using a scheduler like Quartz or
a JMX hook to execute a job, typically Spring is bootstrapped and the Java
process is live before the job is to be executed. In this case, a JobRegistry is
created when Spring is bootstrapped containing the jobs available to run. The
JobRegistryBackgroundJobRunner is used to create the JobRegistry.

Chapter 4 ■ Understanding Jobs and steps

45

CommandLineJobRunner and JobRegistryBackgroundJobRunner (both located in the org.
springframework.batch.core.launch.support package) are the two job runners provided by Spring Batch.
Spring Boot provides yet another way to launch your jobs via the JobLauncherCommandLineRunner. This
CommandLineRunner implementation looks for all beans of type Job defined in your ApplicaitonContext
and executes them on startup (unless configured otherwise). We will be using this mechanism to launch all
of our jobs throughout this book.

Although the job runner is what you use to interface with Spring Batch, it’s not a standard piece
of the framework. There is no JobRunner interface because each scenario would require a different
implementation (although both of the two job runners provided by Spring Batch use main methods to start).
Instead, the true entrance into the framework’s execute is an implementation of the org.springframework.
batch.core.launch.JobLauncher interface.

Spring Batch provides a single JobLauncher, the org.springframework.batch.core.launch.
support.SimpleJobLauncher. This class, used internally by the CommandLineJobRunner and the
JobLauncherCommandLineRunner, uses the TaskExecutor interface from Core Spring to execute
the requested job. You see in a bit at how this is configured, but it’s important to note that there are
multiple ways to configure the org.springframework.core.task.TaskExecutor in Spring. If an org.
springframework.core.task.SyncTaskExecutor is used, the job is executed in the same thread as the
JobLauncher. Any other option executes the job in its own thread.

When a batch job is run, an org.springframework.batch.core.JobInstance is created. A JobInstance
represents a logical run of the job and is identified by the job name and the identifying parameters passed to
the job for this run. A run of the job is different than an attempt at executing the job. If you have a job that is
expected to run daily, you would have it configured once. Each day you would have a new run or JobInstance
because you pass a new set of parameters into the job (one being the date, for example). Each JobInstance
would be considered complete when it has an attempt or JobExecution that has successfully completed.
Figure 4-2 illustrates the relationship between the Job, JobInstance and JobExecution.

Job JobInstance JobExecution

Figure 4-2. The relationship between a Job, JobInstance, and JobExecution

 ■ Note a JobInstance can only be executed once to a successful completion. because a JobInstance is
identified by the job name and identifying parameters passed in, this means you can only run a job once with
the same identifying parameters.

You are probably wondering how Spring Batch knows the state of a JobInstance from attempt to
attempt. In Chapter 4 we’ll take a deeper look; however, in the database used by the JobRepository, there
is a BATCH_JOB_INSTANCE table. This table is the base from which all other tables are derived. It’s the BATCH_
JOB_INSTANCE and BATCH_JOB_EXECUTION_PARAMS that identify a JobInstance (the BATCH_JOB_INSTANCE.
JOB_KEY is actually a hash of the name and identifying parameters).

A JobExecution is an actual attempt to run the job. If a job runs from start to finish the first time, there is
only one JobExecution related to a given JobInstance. If a job ends in an error state after the first run, a new
JobExecution is created each time an attempt is made to run the JobInstance (by passing in the same identifying
parameters to the same job). For each JobExecution that Spring Batch creates for your job, a record in the
BATCH_JOB_EXECUTION table is created. As the JobExecution executes, its state is maintained in the BATCH_JOB_
EXECUTION_CONTEXT as well. This allows Spring Batch to restart a job at the correct point if an error occurs.

Chapter 4 ■ Understanding Jobs and steps

46

Configuring a Job
Enough about theory. Let’s get into some code. This section digs into the various ways to configure a job.
As mentioned in Chapter 2, as with all of Spring, Spring Batch configurations are done via XML or Java.
We'll be using Java configuration for our examples.

Basic Job Configuration
To start, let’s take a simple Spring Batch job. Functionally, this job will be the same as the HelloWorld job in
Chapter 2. However, we’ll simplify things by putting all the code in a single class. We also won’t use an in-
memory database for our job repository. The reason for that is that we are going to look at some features that
span executions and to do that, we need our data to persist. I’ll be using MySQL for these examples, but any
JDBC-supported database will do.

Let’s begin by creating a new project from Spring Initializr using all of the defaults and selecting the
following dependencies: batch, jdbc, MySQL. We can name the project Chatper04 for the time being.
Once you’ve imported the new project into your IDE, we will need to make two updates. The first is to
configure our database connection properties in the application.properties that is provided by Spring Boot.
Listing 4-1 illustrates the properties we’ll need.

Listing 4-1. application.properties

spring.datasource.driverClassName=com.mysql.cj.jdbc.Driver
spring.datasource.url=jdbc:mysql://localhost:3306/spring_batch
spring.datasource.username=root
spring.datasource.password=p@ssw0rd
spring.batch.initialize-schema=always

In Listing 4-1, we’ve configured Spring Boot to create a DataSource that uses the MySQL driver,
and pointed it at our local MySQL instance with the appropriate credentials. We’ve also configured the
application to automatically create the batch schema if it isn’t there.2

Once we have our database configured, we can create our application code. Listing 4-2 illustrates a
simple HelloWorld job for us to discuss.

Listing 4-2. HelloWorld.java

...
@EnableBatchProcessing
@SpringBootApplication
public class HelloWorldJob {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

2Spring Boot will always try to create the batch schema when configured this way. If it is already created, the script will
fail. By default, this failure is ignored on subsequent runs.

Chapter 4 ■ Understanding Jobs and steps

47

 @Bean
 public Job job() {
 return this.jobBuilderFactory.get("basicJob")
 .start(step1())
 .build();
 }

 @Bean
 public Step step1() {
 return this.stepBuilderFactory.get("step1")
 .tasklet((contribution, chunkContext) -> {
 System.out.println("Hello, world!");
 return RepeatStatus.FINISHED;
 }).build();
 }

 public static void main(String[] args) {
 SpringApplication.run(HelloWorldJob.class, args);
 }
}

The first piece of the configuration is adding the @EnableBatchProcessing annotation. This annotation
is only needed once within your application and provides the infrastructure needed to run batch jobs as
discussed in Chapter 2. After that we have the @SpringBootApplication annotation bootstrapping the
Spring Boot magic. By default, Spring Boot considers this a configuration class as well so we do not need
to add the @Configuration annotation to it explicitly. Using Spring Boot, this class will be picked up via
classpath scanning in most cases.

After the class declaration, we autowire in a JobBuilderFactory and a StepBuilderFactory. These
factories are for creating JobBuilder and StepBuilder instances, which we will use to create our actual
Spring Batch jobs and steps. With our factory wired in, we define a bean-named job of type Job. This factory
method will return our fully configured Spring Batch Job. Constructing the job itself is done via the builders
provided by Spring Batch. Passing the name of our job to the JobBuilderFactory.get(String name) call,
we get a JobBuilder back, which we can use to configure the Job. We specify the step to start with and since
this is a single step job, we call JobBuilder.build() to generate the actual Job.

The last bean definition in our configuration is the Step. We create a method that returns type Step
and use the StepBuilderFactory to construct it. Calling the get() method and passing it a name returns a
StepBuilder that we can then use to define our step. This step will use a Tasklet so we pass in a lambda to
represent our Tasklet implementation. In this case, we just do a simple System.out.println, then return
that our Tasklet is complete. We finish by calling build(). The last bit of code in this class is the same as in
any Spring Boot application, the main method used to bootstrap Spring.

With regard to configuration, 90% of the configuration of a job is the configuration of the steps and the
transitions from one to the next, which is covered later in this chapter.

Job Parameters
You’ve read a few times that a JobInstance is identified by the job name and the identifying parameters
passed into the job. You also know that because of that, you can’t run the same job more than once with
the same identifying parameters. If you do, you receive an org.springframework.batch.core.launch.
JobInstanceAlreadyCompleteException telling you that if you’d like to run the job again, you need to
change the parameters. We can see this in action by executing our job twice with the same parameters. If
we build our application then execute it once with the command java -jar target/Chapter04-0.0.1-
SNAPSHOT.jar foo=bar, we see the normal log files as shown in Listing 4-3.

Chapter 4 ■ Understanding Jobs and steps

48

Listing 4-3. The First Execution with Parameters

...
2019-01-16 11:09:29.562 INFO 74578 --- [main] o.s.b.a.b.JobLauncherCommandLine
Runner : Running default command line with: [foo=bar]
2019-01-16 11:09:29.669 INFO 74578 --- [main] o.s.b.c.l.support.SimpleJob
Launcher : Job: [SimpleJob: [name=basicJob]] launched with the following parameters:
[{foo=bar}]
2019-01-16 11:09:29.714 INFO 74578 --- [main] o.s.batch.core.job.SimpleStep
Handler : Executing step: [step1]
Hello, world!
2019-01-16 11:09:29.793 INFO 74578 --- [main] o.s.b.c.l.support.SimpleJob
Launcher : Job: [SimpleJob: [name=basicJob]] completed with the following parameters:
[{foo=bar}] and the following status: [COMPLETED]
...

Now, if we execute the same command again we get a very different outcome as shown in Listing 4-4.

Listing 4-4. What Happens When You Try to Run a Job Twice with the Same Parameters

...
2019-01-16 11:09:34.250 INFO 74588 --- [main] o.s.b.a.b.JobLauncherCommandLine
Runner : Running default command line with: [foo=bar]
2019-01-16 11:09:34.436 INFO 74588 --- [main] ConditionEvaluationReport
LoggingListener :

Error starting ApplicationContext. To display the conditions report re-run your application
with 'debug' enabled.
2019-01-16 11:09:34.447 ERROR 74588 --- [main] o.s.boot.SpringApplication :
Application run failed

java.lang.IllegalStateException: Failed to execute CommandLineRunner
 at org.springframework.boot.SpringApplication.callRunner(SpringApplication.java:816)

[spring-boot-2.1.2.RELEASE.jar!/:2.1.2.RELEASE]
 ...
Caused by: org.springframework.batch.core.repository.JobInstanceAlreadyCompleteException:
A job instance already exists and is complete for parameters={foo=bar}. If you want to run
this job again, change the parameters.
 at org.springframework.batch.core.repository.support.SimpleJobRepository.createJob

Execution(SimpleJobRepository.java:132) ~[spring-batch-core-4.1.1.RELEASE.jar!/:
4.1.1.RELEASE]

...

So how do you pass parameters to your jobs? Spring Batch allows you not only to pass parameters to
your jobs but also to automatically increment them3 or validate them before your job runs. You start by
looking at how to pass parameters to your jobs.

Passing parameters to your job depends on how you’re calling your job. One of the functions of the
job runner is to create an instance of org.springframework.batch.core.JobParameters and pass it to the
JobLauncher for execution. This makes sense because the way you pass parameters is different if you launch
a job from a command line than if you launch your job from a Quartz scheduler. Because you’ve been using
Spring Boot’s JobLauncherCommandLineRunner up to now, let’s start there.

Chapter 4 ■ Understanding Jobs and steps

49

Passing parameters to JobLauncherCommandLineRunner is as simple as passing key=value pairs on the
command line as we did in the previous example. Listing 4-5 shows how to pass parameters to a job using
the way you’ve been calling jobs up to this point.

Listing 4-5. Passing Parameters to the CommandLineJobRunner

java –jar demo.jar name=Michael

In Listing 4-5, you pass one parameter, name. When you pass a parameter into your batch job, your job
runner creates an instance of JobParameters, which serves as a container for all the parameters the job
received.

 ■ Note spring batch’s JobParameters are different than configuring properties via spring boot’s command
line capabilities. as such, job parameters are not passed in with a -- prefix.

spring batch’s JobParameters are different than system properties and should not be passed to the batch
application via -D arguments on the command line.

JobParameters isn’t much more than a wrapper for a java.util.Map<String, JobParameter>
object. Notice that although you’re passing in Strings in this example, the value of the Map is an
org.springframework.batch.core.JobParameter instance. The reason for this is type. Spring Batch
provides for type conversion of parameters, and with that, type-specific accessors on the JobParameter class.
If you specify the type of parameter to be a long, it’s available as a java.lang.Long. String, Double, and
java.util.Date are all available out of the box for conversion. In order to utilize the conversions, you tell
Spring Batch the parameter type in parentheses after the parameter name, as shown in Listing 4-6. Notice
that Spring Batch requires that the name of each be all lowercase.

Listing 4-6. Specifying the Type of a Parameter

java –jar demo.jar executionDate(date)=2017/11/28

To view what parameters have been passed into your job, you can look in the job repository. In the
database schema for the job repository, there is a table BATCH_JOB_EXECUTION_PARAMS. If you explore this
table after executing the examples in Listing 4-6, you should see what is shown in Table 4-1 (columns
LONG_VAL and DOUBLE_VAL are removed for brevity).

3It may make sense to have a parameter that is incremented for each JobInstance. For example, if the date the job is
run is one of its parameters, this can be addressed automatically via a parameter incrementer.

Table 4-1. Contents of BATCH_JOB_EXECUTION_PARAMS

JOB_EXECUTION_ID TYPE_CD KEY_NAME STRING_VAL DATE_VAL IDENTIFYING

1 DATE executionDate 2017-11-28
00:00:00

Y

Chapter 4 ■ Understanding Jobs and steps

50

Up to this point, I’ve been repeatedly specifying that identifying parameters are what contribute to a
job instance’s identity. That must imply that there are nonidentifying parameters as well. And there are.
Since Spring Batch 2.2, users were given the option to indicate if a job parameter will contribute to that
identity. This is useful, for example, when you have a job that uses an execution date that is consistent for
the job instance (and therefore should be identifying), but you want to be able to modify at runtime other
parameters based on various conditions that can change from job execution to job execution (an input
file name for example). To indicate that a job parameter is non-identifying, you provide a “–” as a prefix as
shown in Listing 4-7.

Listing 4-7. Identifying a Job Parameter as Nonidentifying

java –jar demo.jar executionDate(date)=2017/11/28 -name=Michael

In Listing 4-7, the job parameter executionDate is identifying so it’s what will be used to determine if
the run is part of an existing job instance of if it triggers creating a new one. However, name is not identifying.
If the first job execution for the execution Date 2017/11/28 fails, we can relaunch the job using the same
executionDate but changing the name to John and Spring Batch will create a new job execution under the
existing job instance.

Accessing Job Parameters
Now that you know how to get parameters into your batch jobs, how do you access them once you have
them? If you take a quick look at the ItemReader, ItemProcessor, ItemWriter, and Tasklet interfaces,
you quickly notice that all the methods of interest don’t receive a JobParameters instance as one of
their parameters. There are a few different options depending on where you’re attempting to access
the parameter:

•	 ChunkContext: If you look at the HelloWorld Tasklet, you see that the execute
method receives two parameters. The first parameter is org.springframework.
batch.core.StepContribution, which contains information about the current
transaction that has not been committed yet (write count, read count, and so on).
The second parameter is an instance of ChunkContext. It provides the state of the job
at the point of execution. If you’re in a Tasklet, it contains any information about
the chunk you’re processing. Information about that chunk includes information
about the step and job. As you might guess, ChunkContext has a reference to org.
springframework.batch.core.scope.context.StepContext, which contains your
JobParameters.

•	 Late binding: For any piece of the framework that isn’t a step or a job, the easiest
way to get a handle on a parameter is to inject it via the Spring configuration. Given
that JobParameters are immutable, binding them during bootstrapping makes
perfect sense.

Listing 4-8 shows an updated HelloWorld job that utilizes a name parameter in the output as an example
of how to access parameters from ChunkContext.

Chapter 4 ■ Understanding Jobs and steps

51

Listing 4-8. Accessing JobParameters in a Spring Configuration

...
@EnableBatchProcessing
@SpringBootApplication
public class HelloWorldJob {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Job job() {
 return this.jobBuilderFactory.get("basicJob")
 .start(step1())
 .build();
 }

 @Bean
 public Step step1() {
 return this.stepBuilderFactory.get("step1")
 .tasklet(helloWorldTasklet())
 .build();
 }

 @Bean
 public Tasklet helloWorldTasklet() {

 return (contribution, chunkContext) -> {
 String name = (String) chunkContext.getStepContext()
 .getJobParameters()
 .get("name");

 System.out.println(String.format("Hello, %s!", name));
 return RepeatStatus.FINISHED;
 };
 }

 public static void main(String[] args) {
 SpringApplication.run(HelloWorldJob.class, args);
 }
}

Although Spring Batch stores the job parameters in an instance of the JobParameter class, when you
obtain the parameters this way getJobParameters() returns a Map<String, Object>. Because of this, the
previous cast is required.

Listing 4-9 shows how to use Spring’s late binding to inject job parameters into components without
having to reference any of the JobParameters code. Besides the use of Spring’s EL (Expression Language) to
pass in the value, any bean that is going to be configured with late binding is required to have the scope set
to step or job.

Chapter 4 ■ Understanding Jobs and steps

52

Listing 4-9. Obtaining Job Parameters via Late Binding

...
@EnableBatchProcessing
@SpringBootApplication
public class HelloWorldJob {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Job job() {
 return this.jobBuilderFactory.get("basicJob")
 .start(step1())
 .build();
 }

 @Bean
 public Step step1() {
 return this.stepBuilderFactory.get("step1")
 .tasklet(helloWorldTasklet(null))
 .build();
 }

 @StepScope
 @Bean
 public Tasklet helloWorldTasklet(
 @Value("#{jobParameters['name']}") String name) {

 return (contribution, chunkContext) -> {
 System.out.println(String.format("Hello, %s!", name));
 return RepeatStatus.FINISHED;
 };
 }

 public static void main(String[] args) {
 SpringApplication.run(HelloWorldJob.class, args);
 }
}

The configuration for the step-scoped version of this bean (which is what allows for the late binding) is
shown in Listing 4-10.

Chapter 4 ■ Understanding Jobs and steps

53

Listing 4-10. Step Scoped Bean Configuration

...
@StepScope
@Bean
public Tasklet helloWorldTasklet(
 @Value("#{jobParameters['name']}") String name) {

 return (contribution, chunkContext) -> {
 System.out.println(String.format("Hello, %s!", name));
 return RepeatStatus.FINISHED;
 };
}
...

The custom step and job scopes included in Spring Batch are what facilitate the late binding
capabilities. What each of these does is delay the creation of the bean until you are in the scope of an
executing step (for step scope) or job (for job scope). This allows job parameters to be ingested from the
command line or other sources and be available for injection when the bean is created.

With the ability to pass parameters into your jobs as well as put them to use, two parameter-specific
pieces of functionality are built into the Spring Batch framework that the chapter discusses next: parameter
validation and the ability to increment a given parameter with each run. Let’s start with parameter validation
because it’s been alluded to in previous examples.

Validating Job Parameters
Whenever a piece of software obtains outside input, it’s a good idea to be sure the input is valid for what
you’re expecting. The web world uses client-side JavaScript as well as various server-side frameworks to
validate user input, and the validation of batch parameters is no different. Fortunately, Spring has made it
very easy to validate job parameters. To do so, you just need to implement the org.springframework.batch.
core.JobParametersValidator interface and configure your implementation in your job. Listing 4-11 shows
an example of a job parameter validator in Spring Batch.

Listing 4-11. A Parameter Validator That Validates the File Name Is a .csv

...
public class ParameterValidator implements JobParametersValidator {

 @Override
 public void validate(JobParameters parameters) throws JobParametersInvalidException {
 String fileName = parameters.getString("fileName");

 if(!StringUtils.hasText(fileName)) {
 throw new JobParametersInvalidException("fileName parameter is missing");
 }
 else if(!StringUtils.endsWithIgnoreCase(fileName, "csv")) {
 throw new JobParametersInvalidException("fileName parameter does " +
 "not use the csv file extension");
 }
 }
}

Chapter 4 ■ Understanding Jobs and steps

54

As you can see, the method of consequence is the validation method. Because this method is void, the
validation is considered passing as long as a JobParametersInvalidException isn’t thrown. In this example,
if the fileName parameter is missing or does not end in a .csv, the exception is thrown and the job is never
executed.

In addition to implementing your own custom parameter validator as you did earlier, Spring Batch
offers a validator to confirm that all the required parameters have been passed: org.springframework.
batch.core.job.DefaultJobParametersValidator. To use it, you configure it the same way you would
your custom validator. DefaultJobParametersValidator has two optional dependencies: requiredKeys
and optionalKeys. Both are String arrays that take in a list of parameter names that are either
required or are the only optional parameters allowed. Listing 4-12 shows a sample configuration for the
DefaultJobParametersValidator.

Listing 4-12. DefaultJobParametersValidator Configuration in BatchConfiguration.java

...
@Bean
public JobParametersValidator validator() {
 DefaultJobParametersValidator validator = new DefaultJobParametersValidator();

 validator.setRequiredKeys(new String[] {"fileName"});
 validator.setOptionalKeys(new String[] {"name"});

 return validator;
}
…

In Listing 4-12, the DefaultJobParametersValidator has the executionDate configured as a required
parameter. As such, if the job is attempted to be executed without the fileName being passed as a job
parameter, the validation will fail. We have also configured an optional key, name. By doing so, the only two
parameters that can be passed to this job are executionDate and name. If any other parameters are passed,
validation will also fail. If no optional keys are configured (only required keys are configured), you can pass
any combination of keys in addition to the required keys and pass validation. It’s important to note that no
validation other than the parameter’s existence is done via the DefaultJobParametersValidator. Any more
robust logic must be done via a custom implementation of the JobParametersValidator.

In order to actually put these two validators in place, we need to configure our job to use
them. Going back to the HelloWorld job we’ve been working with in this chapter, we can add our
JobParametersValidators to the job and Spring Batch will execute them at the start of our job. However,
there is a small problem. We have two validators we want to use and the method on the JobBuilder that
we use to configure a validator only takes one JobParameterValidator instance. Fortunately, Spring
Batch provides a CompositeJobParametersValidator for just this use case. Listing 4-13 shows our job
configuration updated to use our validators.

Listing 4-13. Configured Job with JobParameters Validation

...
@EnableBatchProcessing
@SpringBootApplication
public class HelloWorldJob {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

Chapter 4 ■ Understanding Jobs and steps

55

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public CompositeJobParametersValidator validator() {
 CompositeJobParametersValidator validator =
 new CompositeJobParametersValidator();

 DefaultJobParametersValidator defaultJobParametersValidator =
 new DefaultJobParametersValidator(
 new String[] {"fileName"},
 new String[] {"name"});

 defaultJobParametersValidator.afterPropertiesSet();

 validator.setValidators(
 Arrays.asList(new ParameterValidator(),
 defaultJobParametersValidator));

 return validator;
 }

 @Bean
 public Job job() {
 return this.jobBuilderFactory.get("basicJob")
 .start(step1())
 .validator(validator())
 .build();
 }

 @Bean
 public Step step1() {
 return this.stepBuilderFactory.get("step1")
 .tasklet(helloWorldTasklet(null, null))
 .build();
 }

 @StepScope
 @Bean
 public Tasklet helloWorldTasklet(
 @Value("#{jobParameters['name']}") String name,
 @Value("#{jobParameters['fileName']}") String fileName) {

 return (contribution, chunkContext) -> {

 System.out.println(
 String.format("Hello, %s!", name));
 System.out.println(
 String.format("fileName = %s", fileName));

Chapter 4 ■ Understanding Jobs and steps

56

 return RepeatStatus.FINISHED;
 };
 }

 public static void main(String[] args) {
 SpringApplication.run(HelloWorldJob.class, args);
 }
}

After building this application, if we execute it without the required parameter fileName or if the
fileName parameter is misformatted (leaving off the csv at the end of the file name), an exception will
be thrown and the job won’t be executed. We can see the output of executing the command java -jar
target/Chapter04-0.0.1-SNAPSHOT.jar in Listing 4-14.

Listing 4-14. JobParameters Validation Failure Output

...
2019-01-16 15:48:20.638 INFO 4023 --- [main] o.s.b.a.b.JobLauncherCommandLine
Runner : Running default command line with: []
2019-01-16 15:48:20.689 INFO 4023 --- [main]
ConditionEvaluationReportLoggingListener :

Error starting ApplicationContext. To display the conditions report re-run your application
with 'debug' enabled.
2019-01-16 15:48:20.696 ERROR 4023 --- [main] o.s.boot.SpringApplication :
Application run failed

java.lang.IllegalStateException: Failed to execute CommandLineRunner
 at org.springframework.boot.SpringApplication.callRunner(SpringApplication.java:816)

[spring-boot-2.1.2.RELEASE.jar!/:2.1.2.RELEASE]
 at
...
Caused by: org.springframework.batch.core.JobParametersInvalidException: fileName parameter
is missing
 at com.example.Chapter04.batch.ParameterValidator.validate(ParameterValidator.java:33)

~[classes!/:0.0.1-SNAPSHOT]
 at org.springframework.batch.core.job.CompositeJobParametersValidator.validate(Composite

JobParametersValidator.java:49) ~[spring-batch-core-4.1.1.RELEASE.jar!/:4.1.1.RELEASE]
 at
...

If we take the same code and execute it by passing just the required parameter, the job will still run, but the
System.out we have in our Tasklet that says Hello, will output null. We need to provide both parameters via
the command java -jar target/Chapter04-0.0.1-SNAPSHOT.jar fileName=foo.csv name=Michael to have
everything work as expected. Listing 4-15 illustrates the final output with all job parameters provided.

Listing 4-15. Output with all parameters provided

...
2019-01-16 15:48:41.124 INFO 4044 --- [main] o.s.b.a.b.JobLauncherCommandLine
Runner : Running default command line with: [fileName=foo.csv, name=bar]

Chapter 4 ■ Understanding Jobs and steps

57

2019-01-16 15:48:41.216 INFO 4044 --- [main] o.s.b.c.l.support.SimpleJob
Launcher : Job: [SimpleJob: [name=basicJob]] launched with the following parameters:
[{name=bar, fileName=foo.csv}]
2019-01-16 15:48:41.249 INFO 4044 --- [main] o.s.batch.core.job.SimpleStep
Handler : Executing step: [step1]
Hello, bar!
fileName = foo.csv!
2019-01-16 15:48:41.320 INFO 4044 --- [main] o.s.b.c.l.support.
SimpleJobLauncher : Job: [SimpleJob: [name=basicJob]] completed with the following
parameters: [{name=bar, fileName=foo.csv}] and the following status: [COMPLETED]
...

Incrementing Job Parameters
Up to now, you’ve been running under the limitation that a job can only be run once with a given set of
identifying parameters. If you’ve been following along with the examples, you’ve probably hit what happens
if you attempt to run the same job twice with the same parameters as shown in Listing 4-4. However, there is
a small loophole: using JobParametersIncrementer.

org.springframework.batch.core.JobParametersIncrementer is an interface that Spring Batch
provides to allow you to uniquely generate parameters for a given job. You can add a timestamp to each run.
You may have some other business logic that requires a parameter to be incremented with each run. The
framework provides a single implementation of the interface, which increments a single long parameter with
the default name run.id.

Listing 4-16 shows how to configure a JobParametersIncrementer for your job by adding the reference
to the job we have been working on in this chapter.

Listing 4-16. Using a JobParametersIncrementer in a Job

...
@Bean
public CompositeJobParametersValidator validator() {
 CompositeJobParametersValidator validator =
 new CompositeJobParametersValidator();

 DefaultJobParametersValidator defaultJobParametersValidator =
 new DefaultJobParametersValidator(
 new String[] {"fileName"},
 new String[] {"name", "run.id"});

 defaultJobParametersValidator.afterPropertiesSet();

 validator.setValidators(
 Arrays.asList(new ParameterValidator(),
 defaultJobParametersValidator));

 return validator;
}

Chapter 4 ■ Understanding Jobs and steps

58

@Bean
public Job job() {
 return this.jobBuilderFactory.get("basicJob")
 .start(step1())
 .validator(validator())
 .incrementer(new RunIdIncrementer())
 .build();
}
...

You’ll notice that in our example job we had to configure more than just our job to accept the
RunIdIncrementer. We also had to update our JobParametersValidator to allow for the new parameter it
would introduce.

Once you’ve configured JobParametersIncrementer (the framework provides org.springframework.
batch.core.launch.support.RunIdIncrementer in this case), you can run your job as many times as you
want with the same parameters passed in as shown in Listing 4-17.

Listing 4-17. Command to Run a Job and Increment Parameters

java -jar target/Chapter04-0.0.1-SNAPSHOT.jar fileName=foo.csv name=Michael

In fact, go ahead and give it a try. When you’ve run the job three or four times, look in the BATCH_JOB_
EXECUTION_PARAMS table and see how Spring Batch is executing your job with three parameters: one String
named name with the value Michael, one String named fileName with the value foo.csv, and one long
named run.id. run.id’s value changes each time, increasing by one with each execution as shown in
Listing 4-18.

Listing 4-18. The Results of the RunIdIncrementer After Three Executions

mysql> select job_execution_id as id, type_cd as type, key_name as name, string_val,
long_val, identifying from SPRING_BATCH.BATCH_JOB_EXECUTION_PARAMS;
+----+--------+----------+------------+----------+-------------+
| id | type | name | string_val | long_val | identifying |
+----+--------+----------+------------+----------+-------------+
1	STRING	name	Michael	0	Y
1	LONG	run.id		1	Y
1	STRING	fileName	foo.csv	0	Y
2	STRING	name	Michael	0	Y
2	STRING	fileName	foo.csv	0	Y
2	LONG	run.id		2	Y
3	STRING	name	Michael	0	Y
3	STRING	fileName	foo.csv	0	Y
3	LONG	run.id		3	Y
+----+--------+----------+------------+----------+-------------+
9 rows in set (0.00 sec)

You saw earlier that you may want to have a parameter be a timestamp with each run of the job.
This is common in jobs that run once a day. To do so, you need to create your own implementation of
JobParametersIncrementer. The configuration and execution are the same as before. However, instead of
using RunIdIncrementer, you use DailyJobTimestamper, the code for which is in Listing 4-19.

Chapter 4 ■ Understanding Jobs and steps

59

Listing 4-19. DailyJobTimestamper.java

...
public class DailyJobTimestamper implements JobParametersIncrementer {
 @Override
 public JobParameters getNext(JobParameters parameters) {

 return new JobParametersBuilder(parameters)
 .addDate("currentDate", new Date())
 .toJobParameters();
 }
}

Once the incrementer has been created, we need to add it to our job. We also need to update our
parameter validation to handle the removal of the RunIdIncrementer and the addition of the new
currentDate parameter our incrementer will introduce. Listing 4-20 illustrates the updated job configuration.

Listing 4-20. Updated Job to Use DailyJobTimestamper

@EnableBatchProcessing
@SpringBootApplication
public class HelloWorldJob {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public CompositeJobParametersValidator validator() {
 CompositeJobParametersValidator validator =
 new CompositeJobParametersValidator();

 DefaultJobParametersValidator defaultJobParametersValidator =
 new DefaultJobParametersValidator(
 new String[] {"fileName"},
 new String[] {"name", "currentDate"});

 defaultJobParametersValidator.afterPropertiesSet();

 validator.setValidators(
 Arrays.asList(new ParameterValidator(),
 defaultJobParametersValidator));

 return validator;
 }

 @Bean
 public Job job() {
 return this.jobBuilderFactory.get("basicJob")
 .start(step1())

Chapter 4 ■ Understanding Jobs and steps

60

 .validator(validator())
 .incrementer(new DailyJobTimestamper())
 .build();
 }

 @Bean
 public Step step1() {
 return this.stepBuilderFactory.get("step1")
 .tasklet(helloWorldTasklet(null, null))
 .build();
 }

 @StepScope
 @Bean
 public Tasklet helloWorldTasklet(
 @Value("#{jobParameters['name']}") String name,
 @Value("#{jobParameters['fileName']}") String fileName) {

 return (contribution, chunkContext) -> {

 System.out.println(
 String.format("Hello, %s!", name));
 System.out.println(
 String.format("fileName = %s", fileName));

 return RepeatStatus.FINISHED;
 };
 }

 public static void main(String[] args) {
 SpringApplication.run(HelloWorldJob.class, args);
 }
}

Once built, we can execute this job with the same command we used previously: java -jar target/
Chapter04-0.0.1-SNAPSHOT.jar fileName=foo.csv name=Michael, and in an empty database, see the
results of our new JobParameterIncrementer as shown in Listing 4-21.

Listing 4-21. BATCH_JOB_EXECUTION_PARAMS after using the DailyJobTimestamper

mysql> select job_execution_id as id, type_cd as type, key_name as name, string_val as s_
val, date_val as d_val, identifying from SPRING_BATCH.BATCH_JOB_EXECUTION_PARAMS;
+----+--------+-------------+---------+---------------------+-------------+
| id | type | name | s_val | d_val | identifying |
+----+--------+-------------+---------+---------------------+-------------+
1	STRING	name	Michael	1969-12-31 18:00:00	Y
1	DATE	currentDate		2019-01-16 16:40:55	Y
1	STRING	fileName	foo.csv	1969-12-31 18:00:00	Y
+----+--------+-------------+---------+---------------------+-------------+
3 rows in set (0.00 sec)

Chapter 4 ■ Understanding Jobs and steps

61

It’s pretty obvious that job parameters are an important part of the framework. They allow you to specify
values at runtime for your job. They also are used to uniquely identify a run of your job. You use them more
throughout the book for things like configuring the dates for which to run the job and reprocessing error
files. For now, let’s look at another powerful feature at the job level: job listeners.

Working with Job Listeners
Every job has a lifecycle. In fact, just about every aspect of Spring Batch has a well-defined lifecycle.
This allows us to provide hooks into the different phases of that lifecycle to add additional logic. In
the case of a job execution, we have the JobExecutionListener. This interface provides two methods,
beforeJob(JobExecution jobExecution) and afterJob(JobExecution jobExecution). Each of these
callbacks are executed as early and late, respectively, as possible in the lifecycle of your jobs. This allows you
to utilize these callbacks for a number of different use cases:

•	 Notifications: Spring Cloud Task4 provides a JobExecutionListener that emits
messages over a message queue notifying other systems that a job has started or
ended.

•	 Initialization: If there are some preparations that need to occur prior to the
execution of the job, the beforeJob is a good place to execute that logic.

•	 Cleanup: Many jobs have cleanup that needs to occur after it has run (delete or
archive files, etc.). This cleanup shouldn’t impact the success/failure indications of
the job, but still need to be executed. The afterJob is a perfect place to handle these
use cases.

There are two ways to create a job listener. The first is by implementing the org.springframework.
batch.core.JobExecutionListener interface. This interface has two methods of consequence: beforeJob
and afterJob. Each takes JobExecution as a parameter, and they’re executed—you guessed it, before
the job executes and after the job executes, respectively. One important thing to note about the afterJob
method is that it’s called regardless of the status the job finishes in. Because of this, you may need to evaluate
the status in which the job ended to determine what to do. Listing 4-22 has an example of a simple listener
that prints out some information about the job being run before and after as well as the status of the job
when it completed.

Listing 4-22. JobLoggerListener.java

...
public class JobLoggerListener implements JobExecutionListener {

 private static String START_MESSAGE = "%s is beginning execution";
 private static String END_MESSAGE =
 "%s has completed with the status %s";

 @Override
 public void beforeJob(JobExecution jobExecution) {
 System.out.println(String.format(START_MESSAGE,
 jobExecution.getJobInstance().getJobName()));
 }

4We’ll discuss Spring Cloud Task in more detail later in this book.

Chapter 4 ■ Understanding Jobs and steps

62

 @Override
 public void afterJob(JobExecution jobExecution) {
 System.out.println(String.format(END_MESSAGE,
 jobExecution.getJobInstance().getJobName(),
 jobExecution.getStatus()));
 }
}

To configure your job to use this new listener, we simply call the .listener method on our JobBuilder
as shown in Listing 4-23.

Listing 4-23. Job using the JobLoggerListener

...
@Bean
public Job job() {

 return this.jobBuilderFactory.get("basicJob")
 .start(step1())
 .validator(validator())
 .incrementer(new DailyJobTimestamper())
 .listener(new JobLoggerListener())
 .build();
}
...

When we execute the updated code, Spring Batch automatically calls the beforeJob method before
any additional processing occurs in our job and once all other processing is complete within our job, the
afterJob method is called. Listing 4-24 illustrates the updated output.

Listing 4-24. JobExecutionListener Output

...
019-01-16 21:22:25.094 INFO 9006 --- [main] o.s.b.a.b.JobLauncherCommandLine
Runner : Running default command line with: [fileName=foo.csv, name=Michael]
2019-01-16 21:22:25.186 INFO 9006 --- [main] o.s.b.c.l.support.SimpleJob
Launcher : Job: [SimpleJob: [name=basicJob]] launched with the following parameters:
[{name=Michael, currentDate=1547695345140, fileName=foo.csv}]
basicJob is beginning execution
2019-01-16 21:22:25.217 INFO 9006 --- [main] o.s.batch.core.job.SimpleStep
Handler : Executing step: [step1]
Hello, Michael!
fileName = foo.csv
basicJob has completed with the status COMPLETED
2019-01-16 21:22:25.281 INFO 9006 --- [main] o.s.b.c.l.support.SimpleJob
Launcher : Job: [SimpleJob: [name=basicJob]] completed with the following parameters:
[{name=Michael, currentDate=1547695345140, fileName=foo.csv}] and the following status:
[COMPLETED]
...

Chapter 4 ■ Understanding Jobs and steps

63

As with just about everything in Spring these days, if you can implement an interface for something,
there are probably annotations that will make your life easier. Creating listeners is no exception to
that. Spring Batch provides the @BeforeJob and @AfterJob annotations just for that use. When using
the annotations, the only difference, as shown in Listing 4-25, is that you don’t need to implement the
JobExecutionListener interface.

Listing 4-25. JobLoggerListener.java

...
public class JobLoggerListener {

 private static String START_MESSAGE = "%s is beginning execution";

 private static String END_MESSAGE = "%s has completed with the status %s";

 @BeforeJob
 public void beforeJob(JobExecution jobExecution) {
 System.out.println(String.format(START_MESSAGE,
 jobExecution.getJobInstance().getJobName()));
 }

 @AfterJob
 public void afterJob(JobExecution jobExecution) {
 System.out.println(String.format(END_MESSAGE,
 jobExecution.getJobInstance().getJobName(),
 jobExecution.getStatus()));
 }
}

The configuration of the annotation option is slightly different. Spring Batch needs to wrap the listener
for us to inject it into our job. To do so, we use the JobListenerFactoryBean as shown in Listing 4-26,
resulting in the same output as our previous execution.

Listing 4-26. Configuring Job Listeners in BatchConfiguration.java

...
@Bean
public Job job() {

 return this.jobBuilderFactory.get("basicJob")
 .start(step1())
 .validator(validator())
 .incrementer(new DailyJobTimestamper())
 .listener(JobListenerFactoryBean.getListener(
 new JobLoggerListener()))
 .build();
}
...

Chapter 4 ■ Understanding Jobs and steps

64

Listeners are a useful tool to be able to execute logic at certain points of your job. Listeners are also
available for many other pieces of the batch puzzle, such as steps, readers, writers, and so on. You see each
of those as you cover their respective components later in the book. For now, there is just one more piece to
cover that pertains to jobs: ExecutionContext.

ExecutionContext
Batch processes are stateful by their nature. They need to know what step they’re on. They need to know how
many records they have processed within that step. These and other stateful elements are vital to not only the
ongoing processing for any batch process but also restarting it if the process failed before. For example, suppose
a batch process that processes a million transactions a night goes down after processing 900,000 of those
records. Even with periodic commits along the way, how do you know where to pick back up when you restart?
The idea of reestablishing that execution state can be daunting, which is why Spring Batch handles it for you.

You read earlier about how a JobExecution represents an actual attempt at executing the job. This is
one level where state needs to be maintained. As a JobExecution progresses through a job or step, the state
changes. This state for a job is maintained in the job execution’s ExecutionContext.

If you think about how web applications store state, typically it’s through the HttpSession.5
ExecutionContext is essentially the session for your batch job. Holding nothing more than simple key-value
pairs, ExecutionContext provides a way to store state within your job in a safe way. One difference between a
web application’s session and ExecutionContext is that you actually have multiple ExecutionContexts over
the course of your job. JobExecution has an ExecutionContext, as does each StepExecution (which you’ll
see later in this chapter). This allows data to be scoped at the appropriate level (either data-specific for the
step or global data for the entire job). Figure 4-3 shows how these elements are related.

ExecutionContext provides a “safe” way to store data. The storage is safe because everything that goes
into an ExecutionContext is persisted in the job repository. Let’s look at how to add data to and retrieve data
from the ExecutionContext and what it looks like in the database when you do.

JobExecution ExecutionContext

StepExecution ExecutionContext

Figure 4-3. The relationship between ExecutionContexts

5We ignore web frameworks that maintain state in some form of client form (cookies, thick client, and so on).

Chapter 4 ■ Understanding Jobs and steps

65

Manipulating the ExecutionContext
The ExecutionContext is part of the JobExecution or StepExecution as mentioned earlier. Because of this,
to get a handle on the ExecutionContext, you obtain it from the JobExecution or StepExecution based
on which you want to use. Listing 4-27 shows how to get a handle on ExecutionContext in the HelloWorld
Tasklet and add to the context the name of the person you’re saying hello to.

Listing 4-27. Adding a Name to the Job’s ExecutionContext

...
public class HelloWorld implements Tasklet {
 private static final String HELLO_WORLD = "Hello, %s";

 public RepeatStatus execute(StepContribution step,
 ChunkContext context) throws Exception {
 String name = (String) context.getStepContext()
 .getJobParameters()
 .get("name");

 ExecutionContext jobContext = context.getStepContext()
 .getStepExecution()
 .getJobExecution()
 .getExecutionContext();
 jobContext.put(“user.name", name);

 System.out.println(String.format(HELLO_WORLD, name));
 return RepeatStatus.FINISHED;
 }
}

Notice that you have to do a bit of traversal to get to the job’s ExecutionContext. All you’re doing
in this case is going from the chunk to the step to the job, working your way up the tree of scopes. If you
look at the API for StepContext, you see that there is a getJobExecutionContext() method. This method
returns a Map<String, Object> that represents the current state of the job’s ExecutionContext. Although
this is a handy way to get access to the current values, it has one limiting factor in its use: updates made
to the Map returned by the StepContext.getJobExecutionContext() method aren’t persisted to the
actual ExecutionContext. Thus any changes you make to that Map that aren’t also made to the real
ExecutionContext are lost in the event of an error.

Listing 4-27’s example showed using the job’s ExecutionContext, but the ability to obtain and
manipulate the step’s ExecutionContext works the same way. In that case, you get the ExecutionContext
directly from the StepExecution instead of the JobExecution. Listing 4-28 shows the code updated to use
the step’s ExecutionContext instead of the job’s.

Listing 4-28. Adding a Name to the Job’s ExecutionContext

...
public class HelloWorld implements Tasklet {
 private static final String HELLO_WORLD = "Hello, %s";

Chapter 4 ■ Understanding Jobs and steps

66

 public RepeatStatus execute(StepContribution step,
 ChunkContext context) throws Exception {
 String name =
 (String) context.getStepContext()
 .getJobParameters()
 .get("name");

 ExecutionContext jobContext = context.getStepContext()
 .getStepExecution()
 .getExecutionContext();
 jobContext.put(“user.name", name);

 System.out.println(String.format(HELLO_WORLD, name));
 return RepeatStatus.FINISHED;
 }
}

Another way to manipulate the job execution’s ExecutionContext is via promoting keys from the step
execution’s ExecutionContext to the job execution’s ExecutionContext. This can be useful if there is data
you want to share between steps but don’t want it shared unless the first step is successful. The mechanism
to do this promotion is via the ExecutionContextPromotionListener. Listing 4-29 shows the configuration
of this listener in a batch job to promote the name key assuming it was put in the step’s ExecutionContext.

Listing 4-29. Adding a Name to the Job’s ExecutionContext

...
public class BatchConfiguration {

 @Autowired
 public JobBuilderFactory jobBuilderFactory;

 @Autowired
 public StepBuilderFactory stepBuilderFactory;

 @Bean
 public Job job() {
 return this.jobBuilderFactory.get("job")
 .start(step1())
 .next(step2())
 .build();
 }

 @Bean
 public Step step1() {
 this.stepBuilderFactory.get("step1")
 .tasklet(new HelloTasklet())
 .listener(promotionListener())
 .build();
 }

Chapter 4 ■ Understanding Jobs and steps

67

 @Bean
 public Step step2() {
 this.stepBuilderFactory.get("step2")
 .tasklet(new GoodByeTasklet())
 .build();
 }

 @Bean
 public StepExecutionListener promotionListener() {
 ExecutionContextPromotionListener listener = new
 ExecutionContextPromotionListener();

 listener.setKeys(new String[] {"name"});

 return listener;
 }
}

The promotionListner configured in Listing 4-29 will look for the key “name” in the step’s
ExecutionContext and if it is found after the step has successfully completed, it will be copied into the
job execution’s ExecutionContext. By default if it’s not found, nothing will happen but the listener can be
configured to throw an exception if the key isn’t found as well.

The final way to access the ExecutionContext is via the ItemStream interface. This will be covered later
in this book.

ExecutionContext Persistence
As your jobs process, Spring Batch persists your state as part of committing each chunk. Part of that
persistence is the saving of the job and current step’s ExecutionContexts. Chapter 2 went over the layout
of the tables. Let’s take the job in Listing 4-30 and execute it to see what the values look like persisted in the
database.

Listing 4-30. Adding a Name to the Job’s ExecutionContext

...
@EnableBatchProcessing
@Configuration
public class BatchConfiguration {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Job job() {
 return this.jobBuilderFactory.get("job")
 .start(step1())
 .build();
 }

Chapter 4 ■ Understanding Jobs and steps

68

 @Bean
 public Step step1() {
 return this.stepBuilderFactory.get("step1")
 .tasklet(helloWorldTasklet())
 .build();
 }

 @Bean
 public Tasklet helloWorldTasklet() {
 return new HelloWorld();
 }

 public static class HelloWorld implements Tasklet {
 private static final String HELLO_WORLD = "Hello, %s";

 public RepeatStatus execute(StepContribution step,
 ChunkContext context) throws Exception {
 String name =
 (String) context.getStepContext()
 .getJobParameters()
 .get("name");

 ExecutionContext jobContext = context.getStepContext()
 .getStepExecution()
 .getExecutionContext();
 jobContext.put("name", name);

 System.out.println(String.format(HELLO_WORLD, name));

 return RepeatStatus.FINISHED;
 }
 }
}

Table 4-2 shows what the BATCH_JOB_EXECUTION_CONTEXT table has in it after a single run with the name
parameter set as Michael.

Table 4-2. Contents of BATCH_JOB_EXECUTION_CONTEXT

JOB_EXECUTION_ID SHORT_CONTEXT SERIALIZED_CONTEXT

1 {"batch.taskletType":"io.spring.batch.
demo.configuration.BatchConfiguration
$HelloWorld","name":"Michael","batch.
stepType":"org.springframework.batch.
core.step.tasklet.TaskletStep"}

NULL

Table 4-2 consists of three columns. The first is a reference to the JobExecution that this
ExecutionContext is related to. The second is a JSON representation of the Job’s ExecutionContext. This
field is updated as processing occurs. Finally, the SERIALIZED_CONTEXT field contains a serialized Java object.
The SERIALIZED_CONTEXT is only populated while a job is running or when it has failed.

Chapter 4 ■ Understanding Jobs and steps

69

You’ll notice in the SHORT_CONTEXT field there is the "name" : "Michael" String in there as well as other
fields. The other fields ("batch.taskletType" and "batch.stepType") are both values used by Spring Cloud
Data Flow, an orchestration tool we’ll look at later in this book.

This section of the chapter has gone through different pieces of what a job is in Spring Batch. In order
for a job to be valid, however, it requires at least one step, which brings you to the next major piece of the
Spring Batch framework: steps.

Working with Steps
If a job defines the entire process, a step is the building block of a job. It is an independent, sequential
batch processor. I call it a batch processor for a reason. A step contains all of the pieces a unit of work
requires. It handles its own input. It can have its own processor. It handles its own output. Transactions are
self-contained within a step. It’s by design that steps are as disjointed. This allows you as the developer to
structure your job as freely as needed.

In this section you take the same style deep dive into steps that you did with jobs in the previous
section. You cover the way Spring Batch breaks processing down in a step by chunks and how transactions
are handled within that style of execution. You also look at a number of examples on how to configure steps
within your job including how to control the flow from step to step and conditional step execution. Finally
you configure the steps required for your statement job. With all of this in mind, let’s start looking at steps by
looking at how steps process data.

Tasklet vs. Chunk Processing
Batch processes in general are about processing data. Some work within a batch job just requires the
execution of a single command. Maybe a shell script to cleanup a directory or single SQL statement to delete
the contents of a staging table. Other work requires the iteration over a large collection of data, reading it a
record or item at a time, performing some type of logic on it, then writing it out to a data store of some kind.
Spring Batch supports both processing models.

The first model is what we’ve used so far in our batch jobs, the Tasklet model. The Tasklet interface
that we have used up to this point allows a developer to create a block of code that is executed within the
scope of a transaction repeatedly until the Tasklet.execute method returns RepeatStatus.FINISHED.6

The second model is chunk-based processing. A chunk-based step consists of at least two and up to
three main components: an ItemReader, an optional ItemProcessor, and an ItemWriter. Using these
components, Spring Batch processes records in chunks, or groups of records. Each chunk is executed
within its own transaction allowing Spring Batch to restart after the last successful transaction after a
failure.

Using these three components, the framework performs three loops. The first loop is with the
ItemReader. It reads all the records to be processed within this chunk into memory. The second loop is with
the optional ItemProcessor. If an ItemProcessor is configured, the items that were read into memory will
be looped over, each one being passed through the ItemProcessor. Finally all of the items are passed in a
single call to the ItemWriter where they can be written out at once. This single call to the ItemWriter allows
for IO optimizations by batching the physical write. Figure 4-4 shows a sequence diagram of how chunk-
based processing works.

6Each of our examples up to this point using a Tasklet have returned RepeatStatus.FINISHED after the first execution, so
we haven’t demonstrated the possibility of iterating with a Tasklet.

Chapter 4 ■ Understanding Jobs and steps

70

As you learn more about steps, readers, writers, and scalability throughout the book, keep in mind the
chunk-based processing that Spring Batch is based on. Let’s move on by digging into how to configure the
building blocks of your jobs: steps.

Step Configuration
By now, you’ve identified that a job is really not much more than container for steps that transition from one
to another via configured transitions. Does that paradigm sound familiar? It’s a state machine. Spring Batch
fundamentally is a state machine where steps represent the states with a collection of transitions that can be
made from one state to the next. Let’s start looking at steps by taking a look at the most commonly used step
type, the Tasklet step.

Tasklet Step
The tasklet step is one of the two main styles of step in Spring Batch. It should also be the most familiar to
you, because it’s what you used in virtually every job up to now. The way it’s different is that in this case,
you’re writing your own code to be executed as the tasklet. Using MethodInvokingTaskletAdapter is one
way to define a tasklet step. In that case, you allow Spring to forward the processing to your code. This lets
you develop regular POJOs and use them as steps.

Framework ItemReader ItemProcessor ItemWriter

Until commit interval is met

For each chunk

read()

Process()

write()

For each item read by the ItemReader

Figure 4-4. Chunk-based processing

Chapter 4 ■ Understanding Jobs and steps

71

The other way to create a tasklet step is to implement the Tasklet interface as you did when you created
the HelloWorld Tasklet in Chapter 2. There, you implement the execute method required in the interface
and return a RepeatStatus object to tell Spring Batch what to do after you completed processing. Since the
Tasklet interface is technically a functional interface, you also can implement your Tasklet as a lambda.
Listing 4-31 illustrates the configuration of a lambda as a Tasklet.

Listing 4-31. HelloWorld Tasklet

@EnableBatchProcessing
@Configuration
public class BatchConfiguration {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Job job() {
 return this.jobBuilderFactory.get("job")
 .start(step1())
 .build();
 }

 @Bean
 public Step step1() {
 return this.stepBuilderFactory.get("step1")
 .tasklet((stepContribution, chunkContext) -> {
 System.out.println("Hello, World!");
 return RepeatStatus.FINISHED;
 })
 .build();
 }
}

When processing is complete in your Tasklet implementation, you return an org.springframework.
batch.repeat.RepeatStatus object. There are two options with this: RepeatStatus.CONTINUABLE and
RepeatStatus.FINISHED. These two values can be confusing at first glance. If you return RepeatStatus.
CONTINUABLE, you aren’t saying that the job can continue. You’re telling Spring Batch to run the Tasklet
again. Say, for example, that you wanted to execute a particular Tasklet in a loop until a given condition
was met, yet you still wanted to use Spring Batch to keep track of how many times the Tasklet was executed,
transactions, and so on. Your Tasklet could return RepeatStatus.CONTINUABLE until the condition was met.
If you return RepeatStatus.FINISHED, that means the processing for this Tasklet is complete (regardless of
success) and to continue with the next piece of processing.

Understanding the Other Types of Tasklets
While each of our samples up to this point have used custom implementations of the Tasklet
interface, custom implementations of the Tasklet interface are not the only way to use the Tasklet
step. Spring Batch provides three other implementations of Tasklet: CallableTaskletAdapter,
MethodInvokingTaskletAdapter, and SystemCommandTasklet. Let’s look at CallableTaskletAdapter first.

Chapter 4 ■ Understanding Jobs and steps

72

CallableTaskletAdapter
org.springframework.batch.core.step.tasklet.CallableTaskletAdapter is an adapter that allows you
to configure an implementation of the java.util.concurrent.Callable<RepeatStatus> interface. If you’re
unfamiliar with this interface, the Callable<V> interface is similar to the java.lang.Runnable interface in
that it’s intended to be run in a new thread. However, unlike the Runnable interface, which doesn’t return a
value and can’t throw checked exceptions, the Callable interface can return a value (a RepeatStatus, in this
case) and can throw checked exceptions.

The adapter is actually extremely simple in its implementation. It calls the call() method on your
Callable object and returns the value that the call() method returns. That’s it. Obviously you would
use this if you wanted to execute the logic of your step in another thread than the thread in which the
step is being executed. If you look at Listing 4-32, you can see that to use this adapter, you configure
the CallableTaskletAdapter as a normal Spring Bean, then register it as the Tasklet in your step. The
CallableTaskletAdapter does have a single dependency, the callable object itself.

Listing 4-32. Using CallableTaskletAdapter

...
@EnableBatchProcessing
@SpringBootApplication
public class CallableTaskletConfiguration {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Job callableJob() {
 return this.jobBuilderFactory.get("callableJob")
 .start(callableStep())
 .build();
 }

 @Bean
 public Step callableStep() {
 return this.stepBuilderFactory.get("callableStep")
 .tasklet(tasklet())
 .build();
 }

 @Bean
 public Callable<RepeatStatus> callableObject() {
 return () -> {
 System.out.println("This was executed in another thread");

 return RepeatStatus.FINISHED;
 };
 }

Chapter 4 ■ Understanding Jobs and steps

73

 @Bean
 public CallableTaskletAdapter tasklet() {
 CallableTaskletAdapter callableTaskletAdapter =
 new CallableTaskletAdapter();

 callableTaskletAdapter.setCallable(callableObject());

 return callableTaskletAdapter;
 }

 public static void main(String[] args) {
 SpringApplication.run(CallableTaskletConfiguration.class, args);
 }
}

One thing to note with CallableTaskletAdapter is that although the tasklet is executed in a different
thread than the step itself, this doesn’t parallelize your step execution. The execution of this step won’t
be considered complete until the Callable object returns a valid RepeatStatus object. Until this step is
considered complete, no other steps in the flow in which this step is configured will execute. You see how to
parallelize processing in a number of ways, including executing steps in parallel, later in this book.

MethodInvokingTaskletAdapter
The next Tasklet implementation is org.springframework.batch.core.step.tasklet.
MethodInvokingTaskletAdapter. This class is similar to a number of utility classes available in the Spring
framework. It allows you to execute a preexisting method on another class as a tasklet in your job. Say
for example you already have a service that does a piece of logic that you want to run once in your batch
job. Instead of writing an implementation of the Tasklet interface that really just wraps that method call,
you can use MethodInvokingTaskletAdapter to call the method. Listing 4-33 shows an example of the
configuration for MethodInvokingTaskletAdapter.

Listing 4-33. Using MethodInvokingTaskletAdapter

...
@EnableBatchProcessing
@SpringBootApplication
public class MethodInvokingTaskletConfiguration {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Job methodInvokingJob() {
 return this.jobBuilderFactory.get("methodInvokingJob")
 .start(methodInvokingStep())
 .build();
 }

Chapter 4 ■ Understanding Jobs and steps

74

 @Bean
 public Step methodInvokingStep() {
 return this.stepBuilderFactory.get("methodInvokingStep")
 .tasklet(methodInvokingTasklet())
 .build();
 }

 @Bean
 public MethodInvokingTaskletAdapter methodInvokingTasklet() {
 MethodInvokingTaskletAdapter methodInvokingTaskletAdapter =
 new MethodInvokingTaskletAdapter();

 methodInvokingTaskletAdapter.setTargetObject(service());
 methodInvokingTaskletAdapter.setTargetMethod("serviceMethod");

 return methodInvokingTaskletAdapter;
 }

 @Bean
 public CustomService service() {
 return new CustomService();
 }

 public static void main(String[] args) {
 SpringApplication.run(MethodInvokingTaskletConfiguration.class, args);
 }
}

The CustomService referenced in Listing 4-33 is nothing more than a simple POJO that does a System.
out.println stating that it was called as shown in Listing 4-34.

Listing 4-34. CustomService

...
public class CustomService {

 public void serviceMethod() {
 System.out.println("Service method was called");
 }
}

The example shown in Listing 4-33 specifies an object and a method. With this configuration, the
adapter calls the method with no parameters and returns an ExitStatus.COMPLETED result unless the
method specified also returns the type org.springframework.batch.core.ExitStatus. If it does return an
ExitStatus, the value returned by the method is returned from the Tasklet. If you want to configure a static
set of parameters, you can use the late-binding method of passing job parameters that you read about earlier
in this chapter, as shown in Listing 4-35.

Chapter 4 ■ Understanding Jobs and steps

75

Listing 4-35. Using MethodInvokingTaskletAdapter with Parameters

...
@EnableBatchProcessing
@SpringBootApplication
public class MethodInvokingTaskletConfiguration {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Job methodInvokingJob() {
 return this.jobBuilderFactory.get("methodInvokingJob")
 .start(methodInvokingStep())
 .build();
 }

 @Bean
 public Step methodInvokingStep() {
 return this.stepBuilderFactory.get("methodInvokingStep")
 .tasklet(methodInvokingTasklet(null))
 .build();
 }

 @StepScope
 @Bean
 public MethodInvokingTaskletAdapter methodInvokingTasklet(
 @Value("#{jobParameters['message']}") String message) {

 MethodInvokingTaskletAdapter methodInvokingTaskletAdapter =
 new MethodInvokingTaskletAdapter();

 methodInvokingTaskletAdapter.setTargetObject(service());
 methodInvokingTaskletAdapter.setTargetMethod("serviceMethod");
 methodInvokingTaskletAdapter.setArguments(new String[] {message});

 return methodInvokingTaskletAdapter;
 }

 @Bean
 public CustomService service() {
 return new CustomService();
 }

 public static void main(String[] args) {
 SpringApplication.run(MethodInvokingTaskletConfiguration.class, args);
 }
}

Chapter 4 ■ Understanding Jobs and steps

76

For the code in Listing 4-35 to work, we need to update the CustomService as well to accept and print
out a message. Listing 4-36 illustrates those updates.

Listing 4-36. CustomService with a Parameter

...
public class CustomService {

 public void serviceMethod(String message) {
 System.out.println(message);
 }
}

SystemCommandTasklet
The last type of Tasklet implementation that Spring Batch provides is org.springframework.batch.
core.step.tasklet.SystemCommandTasklet. This Tasklet is used to—you guessed it—execute a system
command! The system command specified is executed asynchronously. Because of this, the timeout value
(in milliseconds) as shown in Listing 4-37 is important. The interruptOnCancel attribute in the listing is
optional but indicates to Spring Batch whether to kill the thread the system process is associated with if the
job exits abnormally.

Listing 4-37. Using SystemCommandTasklet

...
@EnableBatchProcessing
@SpringBootApplication
public class SystemCommandJob {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Job job() {
 return this.jobBuilderFactory.get("systemCommandJob")
 .start(systemCommandStep())
 .build();
 }

 @Bean
 public Step systemCommandStep() {
 return this.stepBuilderFactory.get("systemCommandStep")
 .tasklet(systemCommandTasklet())
 .build();
 }

Chapter 4 ■ Understanding Jobs and steps

77

 @Bean
 public SystemCommandTasklet systemCommandTasklet() {
 SystemCommandTasklet systemCommandTasklet = new SystemCommandTasklet();

 systemCommandTasklet.setCommand("rm -rf /tmp.txt");
 systemCommandTasklet.setTimeout(5000);
 systemCommandTasklet.setInterruptOnCancel(true);

 return systemCommandTasklet;
 }

 public static void main(String[] args) {
 SpringApplication.run(SystemCommandJob.class, args);
 }
}

SystemCommandTasklet allows you to configure a number of parameters that can have an effect on
how a system command executes. Listing 4-38 shows a more robust example.

Listing 4-38. Using SystemCommandTasklet with Full Environment Configuration

...
@EnableBatchProcessing
@SpringBootApplication
public class AdvancedSystemCommandJob {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Job job() {
 return this.jobBuilderFactory.get("systemCommandJob")
 .start(systemCommandStep())
 .build();
 }

 @Bean
 public Step systemCommandStep() {
 return this.stepBuilderFactory.get("systemCommandStep")
 .tasklet(systemCommandTasklet())
 .build();
 }

 @Bean
 public SystemCommandTasklet systemCommandTasklet() {
 SystemCommandTasklet tasklet = new SystemCommandTasklet();

Chapter 4 ■ Understanding Jobs and steps

78

 tasklet.setCommand("touch tmp.txt");
 tasklet.setTimeout(5000);
 tasklet.setInterruptOnCancel(true);

 // Change this directory to something appropriate for your environment
 tasklet.setWorkingDirectory("/Users/mminella/spring-batch");

 tasklet.setSystemProcessExitCodeMapper(touchCodeMapper());
 tasklet.setTerminationCheckInterval(5000);
 tasklet.setTaskExecutor(new SimpleAsyncTaskExecutor());
 tasklet.setEnvironmentParams(new String[] {
 "JAVA_HOME=/java",
 "BATCH_HOME=/Users/batch"});

 return tasklet;
 }

 @Bean
 public SimpleSystemProcessExitCodeMapper touchCodeMapper() {
 return new SimpleSystemProcessExitCodeMapper();
 }

 public static void main(String[] args) {
 SpringApplication.run(AdvancedSystemCommandJob.class, args) ;
 }
}

Listing 4-38 includes five more optional parameters in the configuration:

•	 workingDirectory: This is the directory from which to execute the command. In this
example, it’s the equivalent of executing cd ~/spring-batch before executing the
actual command.

•	 systemProcessExitCodeMapper: System codes may mean different things
depending on the command you’re executing. This property allows you to use
an implementation of the org.springframework.batch.core.step.tasklet.
SystemProcessExitCodeMapper interface to map what system-return codes go
with what Spring Batch status values. Spring provides two implementations of
this interface by default: org.springframework.batch.core.step.tasklet.
ConfigurableSystemProcessExitCodeMapper, which allows you to configure the
mapping in your configuration, and org.springframework.batch.core.step.
tasklet.SimpleSystemProcessExitCodeMapper, which returns ExitStatus.
FINISHED if the return code was 0 and ExitStatus.FAILED if it was anything else.

•	 terminationCheckInterval: Because the system command is executed in an
asynchronous way by default, the tasklet checks periodically to see if it has
completed. By default, this value is set to 1 second, but you can configure it to any
value you wish in milliseconds.

•	 taskExecutor: This allows you to configure your own TaskExecutor to execute the
system command. You’re highly discouraged from configuring a synchronous task
executor due to the potential of locking up your job if the system command causes
problems.

Chapter 4 ■ Understanding Jobs and steps

79

•	 environmentParams: This is a list of environment parameters you can set prior to the
execution of your command.

You’ve seen over the previous section that many different tasklet types are available in Spring Batch.
Now let’s take a look at the other most commonly used step type, the chunk-based step.

Chunk-Based Step
As you saw earlier, chunks are defined by their commit intervals. If the commit interval is set to 50 items,
then your job reads in 50 items, processes 50 items, and then writes out 50 items at once. Listing 4-39 shows
how to configure a basic step for chunk-oriented processing.

Listing 4-39. BatchConfiguration.java

...
@EnableBatchProcessing
@Configuration
public class BatchConfiguration {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Job job() {
 return this.jobBuilderFactory.get("job")
 .start(step1())
 .build();
 }

 @Bean
 public Step step1() {
 return this.stepBuilderFactory.get("step1")
 .<String, String>chunk(10)
 .reader(itemReader(null))
 .writer(itemWriter(null))
 .build();
 }

 @Bean
 @StepScope
 public FlatFileItemReader<String> itemReader(
 @Value("#{jobParameters['inputFile']}") Resource inputFile) {

 return new FlatFileItemReaderBuilder<String>()
 .name("itemReader")
 .resource(inputFile)
 .lineMapper(new PassThroughLineMapper())
 .build();
 }

Chapter 4 ■ Understanding Jobs and steps

80

 @Bean
 @StepScope
 public FlatFileItemWriter<String> itemWriter(
 @Value("#{jobParameters['outputFile']}") Resource outputFile) {

 return new FlatFileItemWriterBuilder<String>()
 .name("itemWtiter")
 .resource(outputFile)
 .lineAggregator(new PassThroughLineAggregator<>())
 .build();
 }
}

Listing 4-39 may look intimidating, but let’s focus on the job and step configuration at the top. The rest
of the file is the configuration of a basic ItemReader and ItemWriter, which are covered in Chapters 7 and 9,
respectively. When you look through the job in Listing 4-39, you see that the step begins with getting a
StepBuilder from the StepBuilderFactory. We then identify it as a chunk-based step via the chunk method.
The 10 we pass to it is the configuration for the commit interval so in this example, the job will commit after
processing 10 records. The chunk-based step takes a reader (an implementation of the ItemReader interface)
and a writer (an implementation of the ItemWriter interface) before the build method is called.

It’s important to note the commit interval. It’s set at 10 in the example. This means no records will be
written until 10 records are read and processed. If an error occurs after processing nine items, Spring Batch
will roll back the current chunk (transaction) and mark the job as failed. If you were to set the commit interval
value to 1, your job would read in a single item, process that item, and then write that item. Essentially, you
would be going back to item-based processing. The issue with this is that there is more than just that single
item being persisted at the commit interval. The state of the job is being updated in the job repository as well.
You experiment with the commit interval later in this book but you needed to know now that it’s important to
set commit interval as high as reasonably possible to get the best performance on the write side.

We will look at the components of a chunk-based step in detail next.

Chunk-Size Configuration
Because chunk-based processing is the foundation of Spring Batch, it’s important to understand how to
configure its various options to take full advantage of this important feature. This section covers the two
options for configuring the size of a chunk: a static commit count and a CompletionPolicy implementation.
All other chunk configuration options relate to error handling and are discussed in that section.

To start looking at chunk configuration, Listing 4-40 has a basic example of nothing more than a reader,
writer, and commit-interval configured. The reader is an implementation of the ItemReader interface, and
the writer an implementation of ItemWriter. Each of these interfaces has its own dedicated chapter later in
the book, so this section doesn’t go into detail about them. All you need to know is that they supply input
and output, respectively, for the step. The commit interval defines how many items make up a chunk (10
items, in this case).

Listing 4-40. A Basic Chunk Configuration

...
@EnableBatchProcessing
@SpringBootApplication
public class ChunkJob {

Chapter 4 ■ Understanding Jobs and steps

81

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Job chunkBasedJob() {
 return this.jobBuilderFactory.get("chunkBasedJob")
 .start(chunkStep())
 .build();
 }

 @Bean
 public Step chunkStep() {
 return this.stepBuilderFactory.get("chunkStep")
 .<String, String>chunk(1000)
 .reader(itemReader())
 .writer(itemWriter())
 .build();
 }

 @Bean
 public ListItemReader<String> itemReader() {
 List<String> items = new ArrayList<>(100000);

 for (int i = 0; i < 100000; i++) {
 items.add(UUID.randomUUID().toString());
 }

 return new ListItemReader<>(items);
 }

 @Bean
 public ItemWriter<String> itemWriter() {
 return items -> {
 for (String item : items) {
 System.out.println(">> current item = " + item);
 }
 };
 }

 public static void main(String[] args) {
 SpringApplication.run(ChunkJob.class, args);
 }
}

Although typically you define the size of a chunk based on a hard number configured via a commit
interval as configured in Listing 4-40, that isn’t always a robust enough option. Say that you have a job that
needs to process chunks that aren’t all the same size (processing all transactions for an account in a single
transaction, for example). Spring Batch provides the ability to programmatically define when a chunk is
complete via an implementation of the org.springframework.batch.repeat.CompletionPolicy interface.

Chapter 4 ■ Understanding Jobs and steps

82

The CompletionPolicy interface allows the implementation of decision logic to decide if a given chunk
is complete. Spring Batch comes with a number of implementations of this interface. By default it uses org.
springframework.batch.repeat.policy.SimpleCompletionPolicy, which counts the number of items
processed and flags a chunk complete when the configured threshold is reached. Another out-of-the-box
implementation is org.springframework.batch.repeat.policy.TimeoutTerminationPolicy. This allows
you to configure a timeout on a chunk so that it may exit gracefully after a given amount of time. What does
“exit gracefully” mean in this context? It means that the chunk is considered complete and all transaction
processing continues normally.

As you can undoubtedly deduce, there are few times when a timeout by itself is enough to determine
when a chunk of processing will be complete. TimeoutTerminationPolicy is more likely to be used
as part of org.springframework.batch.repeat.policy.CompositeCompletionPolicy. This policy
lets you configure multiple policies that determine whether a chunk has completed. When you use
CompositeCompletionPolicy, if any of the policies consider a chunk complete, then the chunk is flagged as
complete. Listing 4-41 shows an example of using a timeout of 3 milliseconds along with the normal commit
count of 200 items to determine if a chunk is complete.

Listing 4-41. Using a Timeout Along with a Regular Commit Count

...
@EnableBatchProcessing
@SpringBootApplication
public class ChunkJob {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Job chunkBasedJob() {
 return this.jobBuilderFactory.get("chunkBasedJob")
 .start(chunkStep())
 .build();
 }

 @Bean
 public Step chunkStep() {
 return this.stepBuilderFactory.get("chunkStep")
 .<String, String>chunk(completionPolicy())
 .reader(itemReader())
 .writer(itemWriter())
 .build();
 }

 @Bean
 public ListItemReader<String> itemReader() {
 List<String> items = new ArrayList<>(100000);

 for (int i = 0; i < 100000; i++) {
 items.add(UUID.randomUUID().toString());
 }

Chapter 4 ■ Understanding Jobs and steps

83

 return new ListItemReader<>(items);
 }

 @Bean
 public ItemWriter<String> itemWriter() {
 return items -> {
 for (String item : items) {
 System.out.println(">> current item = " + item);
 }
 };
 }

 @Bean
 public CompletionPolicy completionPolicy() {
 CompositeCompletionPolicy policy =
new CompositeCompletionPolicy();

 policy.setPolicies(
 new CompletionPolicy[] {
 new TimeoutTerminationPolicy(3),
 new SimpleCompletionPolicy(1000)});

 return policy;
 }

 public static void main(String[] args) {
 SpringApplication.run(ChunkJob.class, args);
 }
}

You will notice that if you execute both of the previous two examples, by the looks of things,
everything occurred exactly the same. However, that isn’t the case. The first example (the one listed in
Listing 4-40), you get 101 commits (100000/1000 + 1 for the empty transaction at the end). However, in the
second example (from Listing 4-41), you get something around 191 commits,7 showing the impact of the
TimeoutTerminationPolicy being added to the mix.

Using the implementations of the CompletionPolicy interface isn’t your only option to determine how
large a chunk is. You can also implement it yourself. Before you look at an implementation, let’s go over the
interface.

The CompletionPolicy interface requires four methods: two versions of isComplete, start, and
update. If you look at this through the lifecycle of the class, first the start method is called first. This method
initializes the policy so that it knows the chunk is starting. It’s important to note that an implementation
of the CompletionPolicy interface is intended to be stateful and should be able to determine if a chunk
has been completed by its own internal state. The start method resets this internal state to whatever
is required by the implementation at the beginning of the chunk. Using SimpleCompletionPolicy as
an example, the start method resets an internal counter to 0 at the beginning of a chunk. The update
method is called once for each item that has been processed to update the internal state. Going back to
the SimpleCompletionPolicy example, update increments the internal counter by one after each item.
Finally, there are two isComplete methods. The first isComplete method signature accepts a RepeatContext

7Due to the time-based nature of the TimeoutTerminationPolicy, the number of commits here will vary based on the
environment the job is run in.

Chapter 4 ■ Understanding Jobs and steps

84

as its parameter. This implementation is intended to use its internal state to determine if the chunk has
completed. The second signature takes the RepeatContext and also the RepeatStatus as parameters. This
implementation is expected to determine based on the status whether a chunk has completed. Listing 4-42
shows an example of a CompletionPolicy implementation that considers a chunk complete once a random
number of items fewer than 20 have been processed; Listing 4-42 showing the configuration.

Listing 4-42. Random Chunk Size CompletionPolicy Implementation

...
public class RandomChunkSizePolicy implements CompletionPolicy {

 private int chunksize;
 private int totalProcessed;
 private Random random = new Random();

 @Override
 public boolean isComplete(RepeatContext context,
 RepeatStatus result) {

 if(RepeatStatus.FINISHED == result) {
 return true;
 }
 else {
 return isComplete(context);
 }
 }

 @Override
 public boolean isComplete(RepeatContext context) {
 return this.totalProcessed >= chunksize;
 }

 @Override
 public RepeatContext start(RepeatContext parent) {
 this.chunksize = random.nextInt(20);
 this.totalProcessed = 0;

 System.out.println("The chunk size has been set to " +
 this.chunksize);

 return parent;
 }

 @Override
 public void update(RepeatContext context) {
 this.totalProcessed++;
 }
}

Chapter 4 ■ Understanding Jobs and steps

85

Listing 4-43. Configuring RandomChunkSizePolicy

...
@EnableBatchProcessing
@SpringBootApplication
public class ChunkJob {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Job chunkBasedJob() {
 return this.jobBuilderFactory.get("chunkBasedJob")
 .start(chunkStep())
 .build();
 }

 @Bean
 public Step chunkStep() {
 return this.stepBuilderFactory.get("chunkStep")
 .<String, String>chunk(randomCompletionPolicy())
 .reader(itemReader())
 .writer(itemWriter())
 .build();
 }

 @Bean
 public ListItemReader<String> itemReader() {
 List<String> items = new ArrayList<>(100000);

 for (int i = 0; i < 100000; i++) {
 items.add(UUID.randomUUID().toString());
 }

 return new ListItemReader<>(items);
 }

 @Bean
 public ItemWriter<String> itemWriter() {
 return items -> {
 for (String item : items) {
 System.out.println(">> current item = " + item);
 }
 };
 }

Chapter 4 ■ Understanding Jobs and steps

86

 @Bean
 public CompletionPolicy randomCompletionPolicy() {
 return new RandomChunkSizePolicy();
 }

 public static void main(String[] args) {
 SpringApplication.run(ChunkJob.class, args);
 }
}

Executing the job in Listing 4-43, you will see scattered throughout your output the chunk size printed
out as each new chunk starts as well as you can count the number of items between each of those output
lines to see the impact the CompletionPolicy has on the chunk size.

You explore the rest of chunk configuration when you get to error handling. That section covers retry
and skip logic, which the majority of the remaining options center around. The next pieces of a step this
chapter looks at also carry over from a job: listeners.

Step Listeners
When you looked at job listeners, earlier this chapter, you saw the two events they can fire on: the start and
end of a job. Step listeners cover the same types of events (start and end), but for individual steps instead
of an entire job. This section covers the org.springframework.batch.core.StepExecutionListener and
org.springframework.batch.core.ChunkListener interfaces, both of which allow the processing of logic
at the beginning and end of a step and chunk respectively. Notice that the Step’s listener is named the
StepExecutionListener and not just StepListener. There actually is a StepListener interface; however. it’s
just a marker interface that all step-related listeners extend.

Both the StepExecutionListener and ChunkListener provide methods that are similar to the ones
in the JobExecutionListener interface. StepExecutionListener has a beforeStep and an afterStep,
and ChunkListener has a beforeChunk and an afterChunk, as you would expect. All of these methods are
void except afterStep. afterStep returns an ExitStatus because the listener is allowed to modify the
ExitStatus that was returned by the step itself prior to it being returned to the job. This feature can be
useful when a job requires more than just knowing whether an operation was successful to determine if the
processing was successful. An example would be doing some basic integrity checks after importing a file
(whether the correct number of records were written to the database, and so on). The ability to configure
listeners via annotations also continues to be consistent, with Spring Batch providing @BeforeStep,
@AfterStep, @BeforeChunk, and @AfterChunk annotations to simplify the implementation. Listing 4-44
shows a StepExecutionListener that uses annotations to identify the methods.

Listing 4-44. Logging Step Start and Stop Listeners

...
public class LoggingStepStartStopListener {

 @BeforeStep
 public void beforeStep(StepExecution stepExecution) {
 System.out.println(stepExecution.getStepName() + " has begun!");
 }

Chapter 4 ■ Understanding Jobs and steps

87

 @AfterStep
 public ExitStatus afterStep(StepExecution stepExecution) {
 System.out.println(stepExecution.getStepName() + " has ended!");

 return stepExecution.getExitStatus();
 }
}

The configuration for all the step listeners is combined into a single list in the step configuration.
Listing 4-45 configures the LoggingStepStartStopListener that you coded earlier.

Listing 4-45. Configuring LoggingStepStartStopListener

...
@EnableBatchProcessing
@SpringBootApplication
public class ChunkJob {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Job chunkBasedJob() {
 return this.jobBuilderFactory.get("chunkBasedJob")
 .start(chunkStep())
 .build();
 }

 @Bean
 public Step chunkStep() {
 return this.stepBuilderFactory.get("chunkStep")
 .<String, String>chunk(1000)
 .reader(itemReader())
 .writer(itemWriter())
 .listener(new LoggingStepStartStopListener())
 .build();
 }

 @Bean
 public ListItemReader<String> itemReader() {
 List<String> items = new ArrayList<>(100000);

 for (int i = 0; i < 100000; i++) {
 items.add(UUID.randomUUID().toString());
 }

 return new ListItemReader<>(items);
 }

Chapter 4 ■ Understanding Jobs and steps

88

 @Bean
 public ItemWriter<String> itemWriter() {
 return items -> {
 for (String item : items) {
 System.out.println(">> current item = " + item);
 }
 };
 }

 @Bean
 public CompletionPolicy randomCompletionPolicy() {
 return new RandomChunkSizePolicy();
 }

 public static void main(String[] args) {
 SpringApplication.run(ChunkJob.class, args);
 }
}

As you can see, listeners are available at just about every level of the Spring Batch framework to allow
you to hang processing off your batch jobs. They’re commonly used not only to perform some form of
preprocessing before a component or evaluate the result of a component but also in error handling, as you
see in a bit.

The next section covers the flow of steps. Although all your steps up to this point have been processed
sequentially, that isn’t a requirement in Spring Batch. You learn how to perform simple logic to determine
what step to execute next and how to externalize flows for reuse.

Step Flow
A single file line: that is what your jobs have looked like up to this point. You’ve lined up the steps and
allowed them to execute one after another. However, if that were the only way you could execute steps,
Spring Batch would be very limited. Instead, the authors of the framework provided a robust collection of
options for customizing the flow of your jobs.

To start, let’s look at how you can decide what step to execute next or even if you execute a given
step at all. This occurs using Spring Batch’s conditional logic.

Conditional Logic
Within a job in Spring Batch, steps are executed in the order you specify using the next method on the
StepBuilder. If you want to execute steps in a different order, it’s quite easy: you configure transitions.
As Listing 4-46 shows, you can use the builders to direct a job to go from firstStep to successStep if things
go okay or to failureStep if step1 returns an ExitStatus of FAILED.

Listing 4-46. If/Else Logic in Step Execution

...
@EnableBatchProcessing
@SpringBootApplication
public class ConditionalJob {

Chapter 4 ■ Understanding Jobs and steps

89

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Tasklet passTasklet() {
 return (contribution, chunkContext) -> {
 return RepeatStatus.FINISHED;
 // throw new RuntimeException("This is a failure");
 };
 }

 @Bean
 public Tasklet successTasklet() {
 return (contribution, context) -> {
 System.out.println("Success!");
 return RepeatStatus.FINISHED;
 };
 }

 @Bean
 public Tasklet failTasklet() {
 return (contribution, context) -> {
 System.out.println("Failure!");
 return RepeatStatus.FINISHED;
 };
 }

 @Bean
 public Job job() {
 return this.jobBuilderFactory.get("conditionalJob")
 .start(firstStep())
 .on("FAILED").to(failureStep())
 .from(firstStep()).on("*").to(successStep())
 .end()
 .build();
 }

 @Bean
 public Step firstStep() {
 return this.stepBuilderFactory.get("firstStep")
 .tasklet(passTasklet())
 .build();
 }

Chapter 4 ■ Understanding Jobs and steps

90

 @Bean
 public Step successStep() {
 return this.stepBuilderFactory.get("successStep")
 .tasklet(successTasklet())
 .build();
 }

 @Bean
 public Step failureStep() {
 return this.stepBuilderFactory.get("failureStep")
 .tasklet(failTasklet())
 .build();
 }

 public static void main(String[] args) {
 SpringApplication.run(ConditionalJob.class, args);
 }
}

The on method configures Spring Batch to evaluate the ExitStatus of the step and determine what to do.
It’s important to note that you’ve seen both org.springframework.batch.core.ExitStatus and org.
springframework.batch.core.BatchStatus over the course of this chapter. BatchStatus is an attribute
of the JobExecution or StepExecution that identifies the current state of the job or step. ExitStatus is the
value returned to Spring Batch at the end of a job or step. Spring Batch evaluates the ExitStatus for its
transitions. So, the example in Listing 4-46 is the equivalent of saying, “If the exit code of firstStep doesn’t
equal FAILED, go to successStep, else go to failureStep.”

Because the values of the ExitStatus are really just Strings, the ability to use wildcards can make
things interesting. Spring Batch allows for two wildcards in on criteria:

•	 * matches zero or more characters. For example, C* matches C, COMPLETE, and
CORRECT.

•	 ? matches a single character. In this case, ?AT matches CAT or KAT but not THAT.

Although evaluating the ExitStatus gets you started in determining what to do next, it may not take
you all the way. For example, what if you didn’t want to execute a step if you skipped any records in the
current step? You wouldn’t know that from the ExitStatus alone.

 ■ Note spring batch helps you when it comes to configuring transitions. it automatically orders the
transitions from most to least restrictive and applies them in that order.

Spring Batch has provided a programmatic way to determine what to do next. You do this by creating
an implementation of the org.springframework.batch.core.job.flow.JobExecutionDecider interface.
This interface has a single method, decide, that takes both the JobExecution and the StepExecution
and returns a FlowExecutionStatus (a wrapper for a BatchStatus/ExitStatus pair). With both the
JobExecution and StepExecution available for evaluation, all information should be available to you to
make the appropriate decision about what your job should do next. Listing 4-47 shows an implementation
of the JobExecutionDecider that randomly decides what the next step should be.

Chapter 4 ■ Understanding Jobs and steps

91

Listing 4-47. RandomDecider

...
public class RandomDecider implements JobExecutionDecider {

 private Random random = new Random();

 public FlowExecutionStatus decide(JobExecution jobExecution,
 StepExecution stepExecution) {

 if (random.nextBoolean()) {
 return new
 FlowExecutionStatus(FlowExecutionStatus.COMPLETED.getName());
 } else {
 return new
 FlowExecutionStatus(FlowExecutionStatus.FAILED.getName());
 }
 }
}

To use RandomDecider, you configure an extra attribute on your step called decider. This attribute refers
to the Spring bean that implements JobExecutionDecider. Listing 4-48 shows RandomDecider configured.
You can see that the configuration maps the values you return in the decider to steps available to execute.

Listing 4-48. If/Else Logic in Step Execution

...
@EnableBatchProcessing
@SpringBootApplication
public class ConditionalJob {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Tasklet passTasklet() {
 return (contribution, chunkContext) -> RepeatStatus.FINISHED;
 }

 @Bean
 public Tasklet successTasklet() {
 return (contribution, context) -> {
 System.out.println("Success!");
 return RepeatStatus.FINISHED;
 };
 }

Chapter 4 ■ Understanding Jobs and steps

92

 @Bean
 public Tasklet failTasklet() {
 return (contribution, context) -> {
 System.out.println("Failure!");
 return RepeatStatus.FINISHED;
 };
 }

 @Bean
 public Job job() {
 return this.jobBuilderFactory.get("conditionalJob")
 .start(firstStep())
 .next(decider())
 .from(decider())
 .on("FAILED").to(failureStep())
 .from(decider())
 .on("*").to(successStep())
 .end()
 .build();
 }

 @Bean
 public Step firstStep() {
 return this.stepBuilderFactory.get("firstStep")
 .tasklet(passTasklet())
 .build();
 }

 @Bean
 public Step successStep() {
 return this.stepBuilderFactory.get("successStep")
 .tasklet(successTasklet())
 .build();
 }

 @Bean
 public Step failureStep() {
 return this.stepBuilderFactory.get("failureStep")
 .tasklet(failTasklet())
 .build();
 }

 @Bean
 public JobExecutionDecider decider() {
 return new RandomDecider();
 }

 public static void main(String[] args) {
 SpringApplication.run(ConditionalJob.class, args);
 }
}

Chapter 4 ■ Understanding Jobs and steps

93

Because you now know how to direct your processing from step to step either sequentially or via logic,
you won’t always want to just go to another step. You may want to end or pause the job. The next section
covers how to handle those scenarios.

Ending a Job
You learned earlier that a JobInstance can’t be executed more than once to a successful completion and
that a JobInstance is identified by the job name and the parameters passed into it. Because of this, you need
to be aware of the state in which you end your job if you do it programmatically. In reality, there are three
states in which you can programmatically end a job in Spring Batch:

•	 Completed: This end state tells Spring Batch that processing has ended in a
successful way. When a JobInstance is completed, it isn’t allowed to be rerun with
the same parameters.

•	 Failed: In this case, the job has not run successfully to completion. Spring Batch
allows a job in the failed state to be rerun with the same parameters.

•	 Stopped: In the stopped state, the job can be restarted. The interesting part about a
job that is stopped is that the job can be restarted from where it left off, although no
error has occurred. This state is very useful in scenarios when human intervention or
some other check or handling is required between steps.

It’s important to note that these states are identified by Spring Batch evaluating the ExitStatus of the
step to determine what BatchStatus to persist in the JobRepository. ExitStatus can be returned from
a step, chunk, or job. BatchStatus is maintained in StepExecution or JobExecution and persisted in the
JobRepository. Let’s begin looking at how to end the job in each state with the completed state.

To configure a job to end in the completed state based on the exit status of a step, you use the builder’s
end method. In this state, you can’t execute the same job again with the same parameters. Listing 4-49
shows that the end tag has a single attribute that declares the ExitStatus value that triggers the job to end.

Listing 4-49. Ending a Job in the Completed State

...
@EnableBatchProcessing
@SpringBootApplication
public class ConditionalJob {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Tasklet passTasklet() {
 return (contribution, chunkContext) -> {
 return RepeatStatus.FINISHED;
// throw new RuntimeException("Causing a failure");
 };
 }

Chapter 4 ■ Understanding Jobs and steps

94

 @Bean
 public Tasklet successTasklet() {
 return (contribution, context) -> {
 System.out.println("Success!");
 return RepeatStatus.FINISHED;
 };
 }

 @Bean
 public Tasklet failTasklet() {
 return (contribution, context) -> {
 System.out.println("Failure!");
 return RepeatStatus.FINISHED;
 };
 }

 @Bean
 public Job job() {
 return this.jobBuilderFactory.get("conditionalJob")
 .start(firstStep())
 .on("FAILED").end()
 .from(firstStep()).on("*").to(successStep())
 .end()
 .build();
 }

 @Bean
 public Step firstStep() {
 return this.stepBuilderFactory.get("firstStep")
 .tasklet(passTasklet())
 .build();
 }

 @Bean
 public Step successStep() {
 return this.stepBuilderFactory.get("successStep")
 .tasklet(successTasklet())
 .build();
 }

 @Bean
 public Step failureStep() {
 return this.stepBuilderFactory.get("failureStep")
 .tasklet(failTasklet())
 .build();
 }

 @Bean
 public JobExecutionDecider decider() {
 return new RandomDecider();
 }

Chapter 4 ■ Understanding Jobs and steps

95

 public static void main(String[] args) {
 SpringApplication.run(ConditionalJob.class, args);
 }
}

Once you run conditionalJob, as you would expect, the BATCH_STEP_EXECUTION table contains the
ExitStatus returned by the step, and BATCH_JOB_EXECUTION contains COMPLETED regardless of the path
taken.

For the failed state, which allows you to rerun the job with the same parameters, the configuration looks
similar. Instead of using the end method, you use the fail method. Listing 4-50 shows this configuration.

Listing 4-50. Ending a Job in the Failed State

...
@EnableBatchProcessing
@SpringBootApplication
public class ConditionalJob {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Tasklet passTasklet() {
 return (contribution, chunkContext) -> {
// return RepeatStatus.FINISHED;
 throw new RuntimeException("Causing a failure");
 };
 }

 @Bean
 public Tasklet successTasklet() {
 return (contribution, context) -> {
 System.out.println("Success!");
 return RepeatStatus.FINISHED;
 };
 }

 @Bean
 public Tasklet failTasklet() {
 return (contribution, context) -> {
 System.out.println("Failure!");
 return RepeatStatus.FINISHED;
 };
 }

 @Bean
 public Job job() {
 return this.jobBuilderFactory.get("conditionalJob")
 .start(firstStep())

Chapter 4 ■ Understanding Jobs and steps

96

 .on("FAILED").fail()
 .from(firstStep()).on("*").to(successStep())
 .end()
 .build();
 }

 @Bean
 public Step firstStep() {
 return this.stepBuilderFactory.get("firstStep")
 .tasklet(passTasklet())
 .build();
 }

 @Bean
 public Step successStep() {
 return this.stepBuilderFactory.get("successStep")
 .tasklet(successTasklet())
 .build();
 }

 @Bean
 public Step failureStep() {
 return this.stepBuilderFactory.get("failureStep")
 .tasklet(failTasklet())
 .build();
 }

 @Bean
 public JobExecutionDecider decider() {
 return new RandomDecider();
 }

 public static void main(String[] args) {
 SpringApplication.run(ConditionalJob.class, args);
 }
}

When you rerun conditionalJob with the configuration in Listing 4-50, the results are a bit different.
This time, if firstStep ends with the ExitStatus FAILURE, the job is identified in the jobRepository as
failed, which allows it to be re-executed with the same parameters.

The last state you can leave a job in when you end it programmatically is the stopped state. In this case,
you can restart the job; and when you do, it restarts at the step you configure. Listing 4-51 shows an example.

Listing 4-51. Ending a Job in the Stopped State

...
@EnableBatchProcessing
@SpringBootApplication
public class ConditionalJob {

Chapter 4 ■ Understanding Jobs and steps

97

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Tasklet passTasklet() {
 return (contribution, chunkContext) -> {
// return RepeatStatus.FINISHED;
 throw new RuntimeException("Causing a failure");
 };
 }

 @Bean
 public Tasklet successTasklet() {
 return (contribution, context) -> {
 System.out.println("Success!");
 return RepeatStatus.FINISHED;
 };
 }

 @Bean
 public Tasklet failTasklet() {
 return (contribution, context) -> {
 System.out.println("Failure!");
 return RepeatStatus.FINISHED;
 };
 }

 @Bean
 public Job job() {
 return this.jobBuilderFactory.get("conditionalJob")
 .start(firstStep())
 .on("FAILED").stopAndRestart(successStep())
 .from(firstStep())
 .on("*").to(successStep())
 .end()
 .build();
 }

 @Bean
 public Step firstStep() {
 return this.stepBuilderFactory.get("firstStep")
 .tasklet(passTasklet())
 .build();
 }

Chapter 4 ■ Understanding Jobs and steps

98

 @Bean
 public Step successStep() {
 return this.stepBuilderFactory.get("successStep")
 .tasklet(successTasklet())
 .build();
 }

 @Bean
 public Step failureStep() {
 return this.stepBuilderFactory.get("failureStep")
 .tasklet(failTasklet())
 .build();
 }

 @Bean
 public JobExecutionDecider decider() {
 return new RandomDecider();
 }

 public static void main(String[] args) {
 SpringApplication.run(ConditionalJob.class, args);
 }
}

Executing conditionalJob with this final configuration, as in Listing 4-51, allows you to rerun the
job with the same parameters. However, this time, if the FAILED path is chosen, when the job is restarted
execution begins at successStep.

The flow from one step to the next isn’t just another layer of configuration you’re adding to potentially
complex job configurations; it’s also configurable in a reusable component. The next section discusses how
to encapsulate flows of steps into reusable components.

Externalizing Flows
You’ve already identified that a step can be defined as a bean. This lets you extract the definition of your
steps from a given job into reusable components. The same goes for the order of steps. In Spring Batch,
there are three options for how to externalize the order of steps. The first is to create a flow, which is an
independent sequence of steps. The second is to use the flow step; although the configuration is very similar,
the state persistence in the JobRepository is slightly different. The last way is to actually call another job
from within your job. This section covers how all three of these options work.

A flow looks a lot like a job. It’s configured in a similar way. Listing 4-52 shows how to define a flow using
the flow builder, giving it an id and then referencing it in your job.

Listing 4-52. Defining a Flow

...
@EnableBatchProcessing
@SpringBootApplication
public class FlowJob {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

Chapter 4 ■ Understanding Jobs and steps

99

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Tasklet loadStockFile() {
 return (contribution, chunkContext) -> {
 System.out.println("The stock file has been loaded");
 return RepeatStatus.FINISHED;
 };
 }

 @Bean
 public Tasklet loadCustomerFile() {
 return (contribution, chunkContext) -> {
 System.out.println("The customer file has been loaded");
 return RepeatStatus.FINISHED;
 };
 }

 @Bean
 public Tasklet updateStart() {
 return (contribution, chunkContext) -> {
 System.out.println("The start has been updated");
 return RepeatStatus.FINISHED;
 };
 }

 @Bean
 public Tasklet runBatchTasklet() {
 return (contribution, chunkContext) -> {
 System.out.println("The batch has been run");
 return RepeatStatus.FINISHED;
 };
 }

 @Bean
 public Flow preProcessingFlow() {
 return new FlowBuilder<Flow>("preProcessingFlow").start(loadFileStep())
 .next(loadCustomerStep())
 .next(updateStartStep())
 .build();
 }

 @Bean
 public Job conditionalStepLogicJob() {
 return this.jobBuilderFactory.get("conditionalStepLogicJob")
 .start(preProcessingFlow())
 .next(runBatch())
 .end()
 .build();
 }

Chapter 4 ■ Understanding Jobs and steps

100

 @Bean
 public Step loadFileStep() {
 return this.stepBuilderFactory.get("loadFileStep")
 .tasklet(loadStockFile())
 .build();
 }

 @Bean
 public Step loadCustomerStep() {
 return this.stepBuilderFactory.get("loadCustomerStep")
 .tasklet(loadCustomerFile())
 .build();
 }

 @Bean
 public Step updateStartStep() {
 return this.stepBuilderFactory.get("updateStartStep")
 .tasklet(updateStart())
 .build();
 }

 @Bean
 public Step runBatch() {
 return this.stepBuilderFactory.get("runBatch")
 .tasklet(runBatchTasklet())
 .build();
 }

 public static void main(String[] args) {
 SpringApplication.run(HelloWorldJob.class, args);
 }
}

When you execute a flow as part of a job and look at the JobRepository, you see the steps from the flow
recorded as part of the job as if they were configured there in the first place. In the end, there is no difference
between using a flow and configuring the steps within the job itself from a JobRepository perspective.

The next option for externalizing steps is to use the FlowStep. With this technique, the configuration
of a flow is the same. But instead of configuring the execution of your flow by passing it to the JobBuilder,
you wrap that flow in a step and pass the step to the JobBuilder. Listing 4-53 demonstrates how to use a
FlowStep to configure the same example Listing 4-52 used.

Listing 4-53. Using a Flow Step

...
@EnableBatchProcessing
@SpringBootApplication
public class FlowJob {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

Chapter 4 ■ Understanding Jobs and steps

101

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Tasklet loadStockFile() {
 return (contribution, chunkContext) -> {
 System.out.println("The stock file has been loaded");
 return RepeatStatus.FINISHED;
 };
 }

 @Bean
 public Tasklet loadCustomerFile() {
 return (contribution, chunkContext) -> {
 System.out.println("The customer file has been loaded");
 return RepeatStatus.FINISHED;
 };
 }

 @Bean
 public Tasklet updateStart() {
 return (contribution, chunkContext) -> {
 System.out.println("The start has been updated");
 return RepeatStatus.FINISHED;
 };
 }

 @Bean
 public Tasklet runBatchTasklet() {
 return (contribution, chunkContext) -> {
 System.out.println("The batch has been run");
 return RepeatStatus.FINISHED;
 };
 }

 @Bean
 public Flow preProcessingFlow() {
 return new FlowBuilder<Flow>("preProcessingFlow").start(loadFileStep())
 .next(loadCustomerStep())
 .next(updateStartStep())
 .build();
 }

 @Bean
 public Job conditionalStepLogicJob() {
 return this.jobBuilderFactory.get("conditionalStepLogicJob")
 .start(intializeBatch())
 .next(runBatch())
 .build();
 }

Chapter 4 ■ Understanding Jobs and steps

102

 @Bean
 public Step intializeBatch() {
 return this.stepBuilderFactory.get("initalizeBatch")
 .flow(preProcessingFlow())
 .build();
 }

 @Bean
 public Step loadFileStep() {
 return this.stepBuilderFactory.get("loadFileStep")
 .tasklet(loadStockFile())
 .build();
 }

 @Bean
 public Step loadCustomerStep() {
 return this.stepBuilderFactory.get("loadCustomerStep")
 .tasklet(loadCustomerFile())
 .build();
 }

 @Bean
 public Step updateStartStep() {
 return this.stepBuilderFactory.get("updateStartStep")
 .tasklet(updateStart())
 .build();
 }

 @Bean
 public Step runBatch() {
 return this.stepBuilderFactory.get("runBatch")
 .tasklet(runBatchTasklet())
 .build();
 }

 public static void main(String[] args) {
 SpringApplication.run(HelloWorldJob.class, args);
 }
}

What is the difference between passing the Flow to the JobBuilder and the FlowStep? It comes down to
what happens in the JobRepository. Using the flow method on the JobBuilder yields the same results as if
you configured the steps in your job. Using a FlowStep adds an additional entry. When you use a FlowStep,
Spring Batch records the step that includes the flow as a separate step. Why is this a good thing? The main
benefit is for monitoring and reporting purposes. Using a FlowStep allows you to see the impact of the flow
as a whole instead of having to aggregate the individual steps.

The last way to externalize the order in which steps occur is to not externalize them at all. In
this case, instead of creating a flow, you call a job from within another job. Similar to the FlowStep,
which creates a StepExecutionContext for the execution of the flow and each step within it, the
JobStep creates a JobExecutionContext for the step that calls the external job. Listing 4-54 shows the
configuration of a JobStep.

Chapter 4 ■ Understanding Jobs and steps

103

Listing 4-54. Using a Job Step

...
@EnableBatchProcessing
@SpringBootApplication
public class JobJob {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Tasklet loadStockFile() {
 return (contribution, chunkContext) -> {
 System.out.println("The stock file has been loaded");
 return RepeatStatus.FINISHED;
 };
 }

 @Bean
 public Tasklet loadCustomerFile() {
 return (contribution, chunkContext) -> {
 System.out.println("The customer file has been loaded");
 return RepeatStatus.FINISHED;
 };
 }

 @Bean
 public Tasklet updateStart() {
 return (contribution, chunkContext) -> {
 System.out.println("The start has been updated");
 return RepeatStatus.FINISHED;
 };
 }

 @Bean
 public Tasklet runBatchTasklet() {
 return (contribution, chunkContext) -> {
 System.out.println("The batch has been run");
 return RepeatStatus.FINISHED;
 };
 }

 @Bean
 public Job preProcessingJob() {
 return this.jobBuilderFactory.get("preProcessingJob")
 .start(loadFileStep())
 .next(loadCustomerStep())

Chapter 4 ■ Understanding Jobs and steps

104

 .next(updateStartStep())
 .build();
 }

 @Bean
 public Job conditionalStepLogicJob() {
 return this.jobBuilderFactory.get("conditionalStepLogicJob")
 .start(intializeBatch())
 .next(runBatch())
 .build();
 }

 @Bean
 public Step intializeBatch() {
 return this.stepBuilderFactory.get("initalizeBatch")
 .job(preProcessingJob())
 .parametersExtractor(new DefaultJobParametersExtractor())
 .build();
 }

 @Bean
 public Step loadFileStep() {
 return this.stepBuilderFactory.get("loadFileStep")
 .tasklet(loadStockFile())
 .build();
 }

 @Bean
 public Step loadCustomerStep() {
 return this.stepBuilderFactory.get("loadCustomerStep")
 .tasklet(loadCustomerFile())
 .build();
 }

 @Bean
 public Step updateStartStep() {
 return this.stepBuilderFactory.get("updateStartStep")
 .tasklet(updateStart())
 .build();
 }

 @Bean
 public Step runBatch() {
 return this.stepBuilderFactory.get("runBatch")
 .tasklet(runBatchTasklet())
 .build();
 }

 public static void main(String[] args) {
 SpringApplication.run(HelloWorldJob.class, args);
 }
}

Chapter 4 ■ Understanding Jobs and steps

105

You might be wondering about the jobParametersExtractor bean in Listing 4-54. When you
launch a job, it’s identified by the job name and the job parameters. In this case, you aren’t passing
the parameters to your sub-job, preProcessingJob, by hand. Instead, you define a class to extract
the parameters from either the JobParameters of the parent job or the ExecutionContext (the
DefaultJobParameterExtractor checks both places) and pass those parameters to the child job. Your
extractor pulls the values from the job.stockFile and job.customerFile job parameters and passes
those as parameters to preProcessingJob.

When preProcessingJob executes, it’s identified in the JobRepository just like any other job. It has its
own job instance, execution context, and related database records.

 ■ Note in order to run the example in Listing 4-54, the property spring.batch.job.
names=conditionalStepLogicJob must be configured in your application.properties to prevent spring boot
from executing preProcessingJob automatically on startup.

A word of caution about using the JobStep approach: this may seem like a good way to handle job
dependencies. Creating individual jobs and being able to then string them together with a master job
is a powerful feature. However, this can severely limit the control of the process as it executes. It isn’t
uncommon in the real world to need to pause a batch cycle or skip jobs based on external factors (another
department can’t get you a file in time to have the process finished in the required window, and so on).
However, the ability to manage jobs exists at a single job level. Managing entire trees of jobs that could
be created using this functionality is problematic and should be avoided. Linking jobs together in this
manner and executing them as one master job severely limits the capability to handle these types of
situations and should also be avoided.

Summary
This chapter covered a large amount of material. You learned what a job is and saw its lifecycle. You
looked at how to configure a job and how to interact with it via job parameters. You wrote and configured
listeners to execute logic at the beginning and end of a job, and you worked with the ExecutionContext
for a job and step.

You began looking at the building blocks of a job: its steps. As you looked at steps, you explored one
of the most important concepts in Spring Batch: chunk-based processing. You learned how to configure
chunks and some of the more advanced ways to control them (through things like policies). You learned
about listeners and how to use them to execute logic at the start and end of a step. Finally, you walked
through how to order steps either using basic ordering or logic to determine what step to execute next.

The job and step are structural components of the Spring Batch framework. They’re used to lay out a
process. The majority of the book from here on covers all the different things that go into the structure laid
out by these pieces.

107© Michael T. Minella 2019
M. T. Minella, The Definitive Guide to Spring Batch, https://doi.org/10.1007/978-1-4842-3724-3_5

CHAPTER 5

JobRepository and Metadata

When you look into writing a finite process, the ability to execute processes without a UI in a stand-alone
manner isn’t that hard. Spring Boot’s CommandLineRunner allows a developer to write a Spring Boot
application that executes a single function that implements any business logic you could think of and
completes. You don’t need Spring Batch to do that.

Where things get interesting, however, is where things go wrong. If your batch job is running and an
error occurs, how do you recover? How does your job know where it was in processing when the error
occurred, and what should happen when the job is restarted? State management is an important part of
processing large volumes of data. This is one of the key features that Spring Batch brings to the table. Spring
Batch, as discussed previously in this book, maintains the state of a job as it executes in a job repository.
It then uses this information when a job is restarted or an item is retried to determine how to continue.
The power of this feature can’t be overstated.

Another aspect of batch processing in which the job repository is helpful is monitoring. The ability to
see how far a job is in its processing as well as trend elements such as how long operations take or how many
items were retried due to errors is vital in the enterprise environment. The fact that Spring Batch does the
number gathering for you makes this type of trending much easier.

This chapter covers job repositories in detail. It goes over ways to configure a job repository for most
environments by using either a database or an in-memory repository. After you have the job repository
configured, you learn how to put the job information stored by the job repository to use using the
JobExplorer and the JobOperator.

What Is the Job Repository?
When referring to the job repository within the context of Spring Batch, you can be referring to one of two
things: the interface JobRepository or the data store that is used by the implementation of that interface
to persist the data. Since the user should almost never need to interact with the interface itself beyond
potentially configuring an instance of it, this section is going to focus on the data stores provided by Spring
Batch used by a JobRepository implementation. The two data stores provided out of the box by Spring
Batch to use within a batch job, in memory and a relational database. We will look at the relational database
option first.

Using a Relational Database
A relational database is the default option for the job repository in Spring Batch. This option utilizes a set of
database tables provided by Spring Batch to persist the batch meta data. Let’s take a look at the schema in
Figure 5-1.

https://doi.org/10.1007//978-1-4842-3724-3_5

Chapter 5 ■ Jobrepository and Metadata

108

As you can see in Figure 5-1, there are six tables in the job repository:

•	 BATCH_JOB_INSTANCE

•	 BATCH_JOB_EXECUTION

•	 BATCH_JOB_EXECUTION_PARAMS

•	 BATCH_JOB_EXECUTION_CONTEXT

•	 BATCH_STEP_EXECUTION

•	 BATCH_STEP_EXECUTION_CONTEXT

The schema really begins at the BATCH_JOB_INSTANCE table. As we saw earlier, a single job instance
is created when the job is executed for the first time with a unique set of identifying job parameters. This
record represents the logical run of a job. Table 5-1 illustrates what makes up the BATCH_JOB_INSTANCE table.

Figure 5-1. The job repository schema

Chapter 5 ■ Jobrepository and Metadata

109

From there the BATCH_JOB_EXECUTION table represents each of the physical runs of a batch job. Every
time a job is launched, a new record will be created here and be updated periodically as the job progresses.
Table 5-2 walks through the columns of the BATCH_JOB_EXECUTION table.

Table 5-1. BATCH_JOB_INSTANCE Table

Field Description

JOB_EXECUTION_ID Primary key of the table

VERSION The version1 for the record used for optimistic locking

JOB_NAME The name of the job executed

JOB_KEY A hash of the job name and identifying parameters used to uniquely identify a
job instance

Table 5-2. BATCH_JOB_EXECUTION Table

Field Description

JOB_EXECUTION_ID Primary key of the table

VERSION The version2 for the record used for optimistic locking

JOB_INSTANCE_ID Foreign key to the BATCH_JOB_INSTANCE table

CREATE_TIME The time the record was created

START_TIME The time the job execution was started

END_TIME The time the job execution finished

STATUS The batch status of the job execution

EXIT_CODE The exit code of the job execution

EXIT_MESSAGE The message (potentially a stack trace) associated with the EXIT_CODE

LAST_UPDATED The last time this record was updated

Table 5-3. BATCH_JOB_EXECUTION_CONTEXT Table

Field Description

JOB_EXECUTION_ID Primary key of the table

SHORT_CONTEXT A trimmed version of the SERIALIZED_CONTEXT

SERIALIZED_CONTEXT The actual serialized ExecutionContext

There are three tables that are associated with the BATCH_JOB_EXECUTION table. The first one we’ll look
at is the BATCH_JOB_EXECUTION_CONTEXT table. We looked at the idea of the ExecutionContext and how
components use it to store state in it in the previous chapter. However, in order for it to be useful across
executions (on restarts, for example), Spring Batch needs to persist it and the BATCH_JOB_EXECUTION_CONTEXT is
where the JobExecution’s ExecutionContext is persisted. Table 5-3 has the details about this table.

1To learn more about the versions and entities in domain-driven design, read Domain Driven Design by Eric Evans
(Addison-Wesley, 2003).
2To learn more about the versions and entities in domain-driven design, read Domain Driven Design by Eric Evans
(Addison-Wesley, 2003).

Chapter 5 ■ Jobrepository and Metadata

110

I should note that there are a few options for ways to serialize the ExecutionContext. Before Spring
Batch 4, XStream’s JSON facilities were the preferred method and what the framework used by default.
However, as of when Spring Batch 4 came out, XStream’s JSON support wasn’t fully capable for what Spring
Batch needed so the default was changed to use Jackson 2. We’ll cover how to customize the configuration of
the ExecutionContext’s serialization later in this chapter.

The second table that associated with the BATCH_JOB_EXECUTION table is the BATCH_JOB_EXECUTION_
PARAMS table. This table is where the job parameters are stored for each execution. We talked before about
how identifying job parameters are used to determine if a run requires a new job instance or not. However,
the table actually stores all parameters passed to the job. On a restart, only the identifying ones are passed in
automatically. Table 5-4 describes the BATCH_JOB_EXECUTION_PARAMS table.

Table 5-4. BATCH_JOB_EXECUTION_PARAMS Table

Field Description

JOB_EXECUTION_ID Primary key of the table

TYPE_CODE A String indicating the type the value of this parameter is

KEY_NAME The name of the parameter

STRING_VAL The value of the parameter if the type is a String

DATE_VAL The value of the parameter if the type is a Date

LONG_VAL The value of the parameter if the type is a long

DOUBLE_VAL The value of the parameter if the type is a double

IDENTIFYING A flag that indicates if a parameter is identifying

Table 5-5. BATCH_STEP_EXECUTION Table

Field Description

STEP_EXECUTION_ID Primary key of the table

VERSION The version3 for the record used for optimistic locking

STEP_NAME The name of the step

JOB_EXECUTION_ID A foreign key to the BATCH_JOB_EXECUTION table

START_TIME The time the step execution began

END_TIME The time the step execution completed

STATUS The batch status of the step

(continued)

Beyond all the tables used to define the metadata for the job, two additional tables are used in the job
repository. These tables are used to store the metadata for a step. The first is the BATCH_STEP_EXECUTION.
This table is not only responsible for maintaining metadata about start, finish, and status of a step in the
same way the BATCH_JOB_EXECUTION does for the job, but it also is used to persist various counts to provide
analytics of the step. Data points like read counts, process counts, write counts, skip counts, and more are all
persisted as well. Table 5-5 identifies all of the data points stored in the BATCH_STEP_EXECUTION table.

3To learn more about the versions and entities in domain-driven design, read Domain Driven Design by Eric Evans
(Addison-Wesley, 2003).

Chapter 5 ■ Jobrepository and Metadata

111

The final table in the job repository is the BATCH_STEP_EXECUTION_CONTEXT. Just as the JobExecution
has an ExecutionContext that is used to store the state of components, the StepExecution also has an
ExecutionContext that is used for the same purpose. The StepExecution’s ExecutionContext is used
to store state of components at a step level. We’ll look at its use in great detail as we dig deeper into
components like ItemReaders and ItemWriters but for now, Table 5-6 outlines the columns of the BATCH_
STEP_EXECUTION_CONTEXT table.

Table 5-5. (continued)

Field Description

COMMIT_COUNT The number of transactions that committed during the execution of the step

READ_COUNT The number of items read

FILTER_COUNT The number of items that were filtered out by the ItemProcessor returning null

WRITE_COUNT The number of items written

READ_SKIP_COUNT The number of items skipped due to an exception thrown in the ItemReader

PROCESS_SKIP_COUNT The number of items skipped due to an exception thrown in the ItemProcessor

WRITE_SKIP_COUNT The number of items skipped due to an exception thrown in the ItemWriter

ROLLBACK_COUNT The number of transactions that were rolled back over the step execution

EXIT_CODE The exit code for the step

EXIT_MESSAGE The message or stack trace returned by the step execution

LAST_UPDATED The last time the record was updated

Table 5-6. BATCH_STEP_EXECUTION_CONTEXT Table

Field Description

STEP_EXECUTION_ID Primary key of the table

SHORT_CONTEXT A trimmed version of the SERIALIZED_CONTEXT

SERIALIZED_CONTEXT The actual serialized ExecutionContext

This section has reviewed what the components of the relational database implementation of a job
repository consists of. However, Spring Batch does provide another option for use in development or testing
use cases. That is an in-memory job repository. The next section will look at that.

The In-Memory Job Repository
When developing a Spring Batch job or running unit tests, configuring an external database may be more
trouble than it’s worth. Because of that, Spring Batch provides an implementation of the JobRepository that
utilizes java.util.Map instances as the datastore. In the next section we’ll look at how to configure this type
of JobRepository as well as how to customize the configuration of a JobRepository.

 ■ Note the Map-based JobRepository is not intended for production use. if you wish to run a batch job
without an external database, use an in-memory database like h2 or hsQLdb which has better support for
things like multithreading and transactions.

Chapter 5 ■ Jobrepository and Metadata

112

Configuring the Batch Infrastructure
With the use of the @EnableBatchProcessing annotation, Spring Batch provides a JobRepository out of
the box with no additional configuration required. However, there are plenty of times when customization
of that JobRepository is needed. In this section we’ll look at the customization of all of the Spring Batch
infrastructure including the JobRepository via the BatchConfigurer interface.

The BatchConfigurer Interface
The BatchConfigurer interface is a strategy interface that provides the ability to customize the configuration
of the Spring Batch infrastructure components. Spring Batch uses it to obtain instances of each of the
infrastructure components used by the framework when using the @EnableBatchProcessing annotation.
In essence, the addition of the beans that annotation provides is a two-step process. First they are
created via the BatchConfigurer implementation, then added to the Spring ApplicationContext
via the SimpleBatchConfiguration. In the vast majority of cases, you won’t need to touch the
SimpleBatchConfiguration. However, customizing the components it exposes is done via the
BatchConfigurer and that is a common place to need customization. Let’s start by looking at the interface
itself in Listing 5-1.

Listing 5-1. The BatchConfigurer Interface

public interface BatchConfigurer {

 JobRepository getJobRepository() throws Exception;

 PlatformTransactionManager getTransactionManager() throws Exception;

 JobLauncher getJobLauncher() throws Exception;

 JobExplorer getJobExplorer() throws Exception;
}

Each of the methods provides one of the main components for the Spring Batch infrastructure. We’ve
talked about what the JobRepository and JobLauncher are. The PlatformTransactionManager provided via
this interface is used by Spring Batch in all of the transaction management the framework provides. Finally,
the JobExplorer provides a read-only view into the data in the job repository.

Most of the time, you won’t need to implement the entire interface yourself. Spring Batch uses
a DefaultBatchConfigurer to provide all of the default options for these components. Typical use
cases only require you to override the configuration of one or two of the components so extending the
DefaultBatchConfigurer and overriding the appropriate methods is usually an easier option. Let’s take a look
at some common ways each of the components provided via the BatchConfigurer are customized and why.

Customizing the JobRepository
The JobRepository is created via a FactoryBean, not surprisingly named the JobRepositoryFactoryBean.
This FactoryBean provides the ability to customize each of the attributes specified in Table 5-7.

Chapter 5 ■ Jobrepository and Metadata

113

The most common scenario where you’d need to extend DefaultBatchConfigurer and override its
createJobRepository() method is when you have more than one DataSource in your ApplicationContext.
For example, if you have one DataSource for your business data and one for your JobRepository, you’ll need
to explicitly configure which DataSource is used with the JobRepository. Listing 5-2 shows an example
of a JobRepository being customized by extending the DefaultBatchConfigurer and overriding the
createJobRepository() method.

Table 5-7. JobRepositoryFactoryBean Customizations

Setter Name Description

setClobType(int type) Takes a java.sql.Type value to indicate the type to be used
for CLOB columns.

setDatabaseType(String dbType) Configures the database type. Not typically needed to be set
since Spring Batch attempts to identify the type automatically.

setDataSource(DataSource dataSource) The DataSource to be used with the JobRepository.

setIncrementerFactory
(DataFieldMaxValueIncrementerFactory
incrementerFactory)

A factory for an incrementer used to increment the primary
keys for most tables.

setIsolationLevelForCreate
(String isoltationLevelForCreate)

Transaction serialization level used when JobExecution
entities are created. Defaults to ISOLATION_SERIALIZABLE.

setJdbcOperations(JdbcOperations
jdbcTemplate)

A setter for a JdbcOperations instance. If one is not
provided, one will be created with the DataSource provided
in the related setter.

setLobHandler(LobHandler lobHandler) Really only needed for old versions of Oracle where special
handling of LOBs was required.

setMaxVarCharLength(int maxLength) Used to trim the length of the exit message (step and job) as
well as the short execution context columns. Should not be
set unless the schema has been modified from what Spring
Batch provides.

setSerializer
(ExecutionContextSerializer
serializer)

Configures what implementation of the
ExecutionContextSerializer to use to serialize and
deserialize both the JobExecution’s ExecutionContext and
the StepExecution’s ExecutionContext.

setTablePrefix(String tablePrefix) Allows a user to configure a new prefix for all the tables
besides the “BATCH_” used by default.

setTransactionManager
(PlatformTransactionManager
transactionManager)

When using multiple databases, a transaction manager
that supports two phase commits is necessary to keep both
databases in sync.

setValidateTransactionState(boolean
validateTransactionState)

Flag that indicates if an existing transaction when a
JobExecution is created. Defaults to true since this usually is
a mistake.

Chapter 5 ■ Jobrepository and Metadata

114

Listing 5-2. Customizing the JobRepository

...
public class CustomBatchConfigurer extends DefaultBatchConfigurer {

 @Autowired
 @Qualifier("repositoryDataSource")
 private DataSource dataSource;

 @Override
 protected JobRepository createJobRepository() throws Exception {
 JobRepositoryFactoryBean factoryBean = new JobRepositoryFactoryBean();

 factoryBean.setDatabaseType(DatabaseType.MYSQL.getProductName());
 factoryBean.setTablePrefix("FOO_");
 factoryBean.setIsolationLevelForCreate("ISOLATION_REPEATABLE_READ");
 factoryBean.setDataSource(this.dataSource);

 factoryBean.afterPropertiesSet();

 return factoryBean.getObject();
 }
}

If we walk through Listing 5-2, we see that CustomBatchConfigurer extends DefaultBatchConfigurer,
freeing us from the need to reimplement everything the interface requires. We autowire in a DataSource
called repositoryDataSource. It is assumed in this listing that somewhere within the ApplicationContext
there is a bean of type DataSource named repositoryDataSource that can be autowired in. From there,
we can see that the DefaultBatchConfigurer#createJobRepository() method is overridden. This is the
method used by the DefaultBatchConfigurer to actually create the JobRepository. In our implementation,
we also create a JobRepository but we customize some of the default settings. Specifically we specify the
database type, configure our table prefix to be “FOO_” instead of the default “BATCH_”, set the transaction
isolation level for create to be “ISOLATION_REPEATABLE_READ” instead of the default of “ISOLATION_
SERIALIZED”, and finally set the DataSource we autowired earlier.

It’s important to note that none of the create* methods found on the DefaultBatchConfigurer are
called by the Spring container directly as bean definitions. Because of that, it’s our responsibility to call
InitializingBean#afterPropertiesSet() and FactoryBean#getObject() (two things that the Spring
container would normally do for us).

The JobRepository isn’t the only thing you can customize via the BatchConfigurer mechanism.
Typically the TransactionManager used for your batch application is provided by Spring Boot so there
isn’t much to do with that. However if you do want to customize it or if your application has multiple
TransactionManagers, you’ll want to use the BatchConfigurer to specify which one to use. The next
section will look at how that works.

Customizing the TransactionManager
Spring Batch is heavily transactional. It uses transactions as a core component of the framework, so the
TransactionManager is a key component within the framework. Going through all the configuration options
for various TransactionManager options is outside the scope of this book. However, Listing 5-3 illustrates
how extending the DefaultBatchConfigurer to specify what TransactionManager is returned can be useful.

Chapter 5 ■ Jobrepository and Metadata

115

Listing 5-3. Customizing the TransactionManager

...
public class CustomBatchConfigurer extends DefaultBatchConfigurer {

 @Autowired
 @Qualifier("batchTransactionManager")
 private PlatformTransactionManager transactionManager;

 @Override
 public PlatformTransactionManager getTransactionManager() {
 return this.transactionManager;
 }
}

In Listing 5-3, a PlatformTransactionManager defined elsewhere that is intended to be used by our batch
processing is explicitly returned for the call to BatchConfigurer#getTransactionManager(). You’ll notice that this
didn’t override a protected method in the DefaultBatchConfigurer. This is because the DefaultBatchConfigurer
by default creates a DataSourceTransactionManager in the setter of the DataSource if one has not already been
created. This is the only component exposed by the BatchConfigurer that is handled like this.

The next component to look at customization options is the JobExplorer. The next section looks at its
options.

Customizing the JobExplorer
The JobRepository provides an API for persisting and retrieving the data from the underlying data store
used to store a batch job’s state. However, there are use cases where you want to only expose a read-only
view of that data. The JobExplorer provides that read only view into the batch metadata.

Since the JobExplorer is a read-only view into the same data that the JobRepository manipulates, the
underlying data access layer is actually the same, a common set of DAOs shared between the JobRepository
and the JobExplorer. Because of this, the customization options for the JobRepository and JobExplorer
are the same for all attributes that are involved in reading from the database. Table 5-8 walks through the
options on the JobExplorerFactoryBean.

Table 5-8. JobExplorerFactoryBean Customizations

Setter Name Description

setDataSource(DataSource dataSource) The DataSource to be used with the JobRepository.

setJdbcOperations(JdbcOperations
jdbcTemplate)

A setter for a JdbcOperations instance. If one is not provided,
one will be created with the DataSource provided in the
related setter.

setLobHandler(LobHandler lobHandler) Really only needed for old versions of Oracle where special
handling of LOBs was required.

setSerializer
(ExecutionContextSerializer
serializer)

Configures what implementation of the
ExecutionContextSerializer to use to serialize and
deserialize both the JobExecution’s ExecutionContext and
the StepExecution’s ExecutionContext.

setTablePrefix(String tablePrefix) Allows a user to configure a new prefix for all the tables
besides the “BATCH_” used by default.

Chapter 5 ■ Jobrepository and Metadata

116

Listing 5-4 shows an example of customizing a JobExplorer to match a JobRepository configured as in
Listing 5-2.

Listing 5-4. Customizing the JobExplorer

...
public class CustomBatchConfigurer extends DefaultBatchConfigurer {

 @Autowired
 @Qualifier("batchTransactionManager")
 private DataSource dataSource;

 @Override
 protected JobExplorer createJobExplorer() throws Exception {
 JobExplorerFactoryBean factoryBean = new JobExplorerFactoryBean();

 factoryBean.setDataSource(this.dataSource);
 factoryBean.setTablePrefix("FOO_");

 factoryBean.afterPropertiesSet();

 return factoryBean.getObject();
 }
}

Just like when we customized the behavior in the JobRepository in Listing 5-2, Listing 5-4
illustrates that we configure the same things: DataSource, serializer, and table prefix. Again, since the
BatchConfigurer’s methods are not directly exposed to the Spring container, we need to call Initializer
Bean#afterPropertiesSet() and FactoryBean#getObject().

 ■ Note since the JobRepository and JobExplorer use the same underlying data store, it’s good practice to
customize both if you customize only one so that they are in sync.

The last piece of the Spring Batch infrastructure that is customizable via the BatchConfigurer
mechanisms is a JobLauncher. The next section will walk through customizing it.

Customizing the JobLauncher
The JobLauncher is the entry point for launching a Spring Batch job. In most cases, you won’t need to
customize it when running jobs via Spring Boot’s default mechanisms using the SimpleJobLauncher
provided by Spring Batch. However, if you want to expose the ability to launch a job another way (say via
a Controller as part of a Spring MVC application), you may want to tweak how the SimpleJobLauncher
works. Table 5-9 walks through the various options for configuring a JobLauncher.

Chapter 5 ■ Jobrepository and Metadata

117

With all of the components the BatchConfigurer can be used to customize (JobRepository,
PlatformTransactionManager, JobLauncher, and JobExplorer), each is an interface that you can
implement yourself as well. This chapter has covered how to customize the implementations that are
provided out of the box by Spring Batch. However, there is one other aspect of the Spring Batch infrastructure
that we need to learn to configure—the database. Both configuring the connection information as well as
how to initialize the Spring Batch database schema are required. The next section will look into how Spring
Boot can be used to accomplish this.

Database Configuration
Spring Boot makes doing simple things extra simple. Configuring a database is one example of this. In
order to configure a database to use with Spring Boot, all you need to do is add your database driver to your
classpath and configure the appropriate properties. In this book, we’ll be using either HSQLDB for in-
memory use cases and MySQL for use cases that require an external database.

Once you’ve added your database driver to your project, there are a list of properties you need to configure
via one of the mechanisms Spring Boot supports: via the application.properties, application.yml, environment
variables, or command line arguments. For this book, we’re going to use application.yml for most of the
configuration options. Listing 5-5 shows how to configure a MySQL database using Spring Boot properties.

Listing 5-5. Configuring a Database

spring:
 datasource:
 driverClassName: com.mysql.cj.jdbc.Driver
 url: jdbc:mysql://localhost:3306/spring_batch
 username: 'root'
 password: 'myPassword'
 batch:
 initialize-schema: always

The first four properties are pretty self-explanatory, driver class name, url, username, and password. These
are standard configurations for any database. The last property, spring.batch.initalize-schema: always is
used to tell Spring Boot to execute the Spring Batch schema script. This property has three possible values:

•	 always: This will run the script every time you run your application. Since errors are
ignored if they occur and there are no drop statements in the Spring Batch SQL files,
this is the easiest option for development environments.

•	 never: This will never run the script.

•	 embedded: This will only run the script when using an embedded database under the
assumption that if you are, you are starting with a clean database instance on each
start.

Table 5-9. JobLauncher Customizations

Setter Name Description

setJobRepository(JobRepository
jobRepository)

Configures the JobRepository to be used.

setTaskExecutor(TaskExecutor
taskExecutor)

Sets the TaskExecutor to be used for this JobLauncher. Defaults to
the SyncTaskExecutor.

Chapter 5 ■ Jobrepository and Metadata

118

In this section we looked at how to configure the infrastructure of Spring Batch. Most of that
infrastructure exists to manage and query batch metadata. However, all the metadata in the world is useless
unless you have a way to use it. In the next section we’ll take a look at an example for using a job’s metadata.

Using Job Metadata
Although Spring Batch accesses the job repository tables through a collection of DAOs, they expose a much
more practical API for the use of the framework and for you to use. This section you look at how Spring Batch
exposes the data in the job repository. We’ve already learned how to configure it, but the main method for
accessing the metadata provided by Spring Batch is the JobExplorer so let’s dig into it.

The JobExplorer
The org.springframework.batch.core.explore.JobExplorer interface is the starting point for all access
to historical and active data in the job repository. Figure 5-2 shows that although most of the framework
accesses the information stored about job execution through the JobRepository, the JobExplorer accesses
it directly from the database itself.

JobOperator JobLauncher JobExplorer JobRepository Database

calls to start/stop/restart a job

calls to get job information

calls to update a job’s status

calls to obtain job information

obtains job metadata and state from

Figure 5-2. The relationship between the job administration components

Table 5-10. Methods of the JobExplorer

Method Description

java.util.Set<JobExecution>findRunningjob
Executions(java.lang.String jobName)

Returns all JobExecutions without an end time.

List<JobInstance>
findJobInstancesByName(java.lang.String
name, int start, int count)

Returns a page of JobInstances with the name
provided.

JobExecution getJobExecution(java.lang.
Long executionId)

Returns the JobExecution identified by the supplied id
and null if not found.

java.util.List<JobExecution>
getJobExecutions(JobInstance instance)

Returns a list of all JobExecutions related to the
JobInstance supplied.

The underlying purpose of the JobExplorer is to provide read-only access to the data in the job
repository. The interface provides seven methods you can use to obtain information about job instances and
executions. Table 5-10 lists the available methods and their use.

(continued)

Chapter 5 ■ Jobrepository and Metadata

119

As you can see, the entire job repository is available from the methods exposed by the JobExplorer
interface. To see how the JobExplorer works, you can inject it into a Tasklet and do some exploring with it.
From there, you can see what you can use the JobExplorer for. In Listing 5-6, you configure the new Tasklet
with the JobExplorer injected.

Listing 5-6. Configuration of an ExploringTasklet Tasklet and JobExplorer

...
@EnableBatchProcessing
@SpringBootApplication
public class DemoApplication {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Autowired
 private JobExplorer jobExplorer;

 @Bean
 public Tasklet explorerTasklet() {
 return new ExploringTasklet(this.jobExplorer);
 }

 @Bean
 public Step explorerStep() {
 return this.stepBuilderFactory.get("explorerStep")
 .tasklet(explorerTasklet())
 .build();
 }

Method Description

JobInstance getJobInstance(java.lang.Long
instanceId)

Returns the JobInstance identified by the supplied id
or null if none is found.

java.util.List<JobInstance>
getJobInstances(java.lang.String
jobName, int start, int count)

Returns a range of JobInstances starting with the index
specified (the start parameter). The final parameter
specifies the maximum number of JobInstances to
return.

int getJobInstanceCount(String jobName) Returns the number of JobInstances that have been
created for a given job name.

java.util.List<java.lang.String>
getJobNames()

Returns all unique job names from the job repository in
alphabetical order.

StepExecution getStepExecution(java.
lang.Long jobExecutionId, java.lang.Long
stepExecutionId)

Returns the specified StepExecution based on the
id of the StepExecution and the id of its parent
JobExecution.

Table 5-10. (continued)

Chapter 5 ■ Jobrepository and Metadata

120

 @Bean
 public Job explorerJob() {
 return this.jobBuilderFactory.get("explorerJob")
 .start(explorerStep())
 .build();
 }

 public static void main(String[] args) {
 SpringApplication.run(DemoApplication.class, args);
 }

}

With the JobExplorer configured, there are a number of things you can do with it. Within the Spring
Batch framework, you can use the JobExplorer in the RunIdIncrementer you looked at in Chapter 4 to look
up the previous run.id parameter value. Another place it’s used is in the Spring Cloud Data Flow server
to determine whether a job is currently running before launching a new instance. We will look at that in
Chapter 12. In this example, we’ll generate a simple report to standard out that illustrates how many job
instances have been run for this job, how many executions they had, and what their results were.

Listing 5-7. ExploringTasklet

...
public class ExploringTasklet implements Tasklet {

 private JobExplorer explorer;

 public ExploringTasklet(JobExplorer explorer) {
 this.explorer = explorer;
 }

 public RepeatStatus execute(StepContribution stepContribution,
 ChunkContext chunkContext) {

 String jobName = chunkContext.getStepContext().getJobName();

 List<JobInstance> instances =
 explorer.getJobInstances(jobName,
 0,
 Integer.MAX_VALUE);

 System.out.println(
 String.format("There are %d job instances for the job %s",
 instances.size(),
 jobName));

 System.out.println("They have had the following results");
 System.out.println("************************************");

 for (JobInstance instance : instances) {
 List<JobExecution> jobExecutions =
 this.explorer.getJobExecutions(instance);

Chapter 5 ■ Jobrepository and Metadata

121

 System.out.println(
 String.format("Instance %d had %d executions",
 instance.getInstanceId(),
 jobExecutions.size()));

 for (JobExecution jobExecution : jobExecutions) {
 System.out.println(
 String.format("\tExecution %d resulted in Exit

Status %s",
 jobExecution.getId(),
 jobExecution.getExitStatus()));
 }
 }

 return RepeatStatus.FINISHED;
 }
}

The code in Listing 5-7 begins by getting the current job’s name. From there, it looks up all the
JobInstances that have been run. It is important to realize that the current JobInstance will be returned
by this call. We then print out the number of JobInstances that were returned for this job. Then, for each
JobInstance, we use the JobExplorer to find all the JobExecutions associated with it and display their results.

With the code and configuration in place, run the job a few times and you will begin to see output like
what is displayed in Listing 5-8.

Listing 5-8. ExplorerJob Output

2019-01-18 00:01:27.392 INFO 35356 --- [main] o.s.b.c.l.support.
SimpleJobLauncher : Job: [SimpleJob: [name=explorerJob]] launched with the following
parameters: [{1=1}]
2019-01-18 00:01:27.423 INFO 35356 --- [main] o.s.batch.core.job.
SimpleStepHandler : Executing step: [explorerStep]
There are 2 job instances for the job explorerJob
They have had the following results

Instance 2 had 1 executions
 Execution 2 resulted in Exit Status exitCode=UNKNOWN;exitDescription=
Instance 1 had 1 executions
 Execution 1 resulted in Exit Status exitCode=COMPLETED;exitDescription=
2019-01-18 00:01:27.517 INFO 35356 --- [main] o.s.b.c.l.support.
SimpleJobLauncher : Job: [SimpleJob: [name=explorerJob]] completed with the following
parameters: [{1=1}] and the following status: [COMPLETED]
2

This section looked at how to access data in the job repository via the JobExplorer. You use APIs like
the JobExplorer to access the data to use it in a safe way.

Chapter 5 ■ Jobrepository and Metadata

122

Summary
Spring Batch’s ability to manage metadata about a job as well as maintain the state of the job as it runs for
error handling is one of the primary reasons, if not the primary reason, to use Spring Batch for enterprise
batch processing. Not only does it provide the ability for robust error handling, but it also allows processes to
make decisions about what to do based on what has happened elsewhere in the job. In the next chapter, you
put this metadata to further use as you take a deep look at how to start, stop, and restart jobs in a variety of
environments.

123© Michael T. Minella 2019
M. T. Minella, The Definitive Guide to Spring Batch, https://doi.org/10.1007/978-1-4842-3724-3_6

CHAPTER 6

Running a Job

It is pretty amazing how Spring Boot has changed how we look at running Java applications. Before Spring
Boot, were you going to run your application in a servlet container or on an application server? Maybe
you were going to deploy your application as an executable jar file. If you went that route, you either had
to deal with building your classpath via some script or use something like the Shade Maven plug-in. With
the introduction of Spring Boot, that decision has mostly been marginalized. Now most applications are
bootstrapped via the launching of the executable jar file Spring Boot generates.

Spring Boot also provides facilities for running Spring Batch jobs. In this chapter we’ll walk through
how Spring Boot makes running Spring Batch jobs easy. However, the default facilities are not the only way
to launch a Spring Batch job so we’ll explore the components that go into running a batch job so you can
develop your own mechanisms for launching a job.

Why would you want to write your own code to launch a job when Spring Boot can handle it for you?
Well, Spring Boot only handles the most simple of use cases, executing your batch job on startup. However,
there are a list of other use cases where that may not work out. For example, it’s common for a batch job
to need to execute at a given time based on a schedule. Integration with various schedulers would require
custom code (we’ll get to why later in this chapter). You may also want to launch a job based on some form
of event as a reaction to an external system.

Starting your Spring Batch job isn’t the only part of being able to run a job. Being able to stop a running
job is another important piece of the execution puzzle. If your job fails, being able to restart it is also a critical
piece of being able to execute production grade batch processes. You wouldn’t want a job that is expected
to take hours processing millions of records to have to start back at the beginning if a failure occurs. Spring
Batch provides restart functionality that allows for it to pick up where it left off. We’ll cover both stopping and
restarting your batch jobs in this chapter.

Let’s get started by looking at how Spring Boot handles launching your batch jobs for you.

Starting a Job with Spring Boot
We’ve been launching our jobs via the native functionality within Spring Boot exclusively up to this point in
the book. However, we haven’t really taken a look at how it actually works. In this section, we’ll look at how
Spring Boot launches your jobs for you on startup.

Spring Boot has two mechanisms for running logic at startup, a CommandLineRunner and an
ApplicationRunner. Both interfaces provide a single method called after the ApplicationContext is
refreshed and ready to run to allow for your application to execute code. When using Spring Boot with
Spring Batch, a special CommandLineRunner is used, the JobLauncherCommandLineRunner.

The JobLauncherCommandLineRunner uses Spring Batch’s JobLauncher to execute your job.
We’ll look at the JobLauncher interface in more depth later in this chapter. For now, just know that
it knows how to launch a Spring Batch job. When Spring Boot executes all the CommandLineRunners
configured in the ApplicationContext, if you have the spring-boot-starter-batch on your classpath, the

https://doi.org/10.1007//978-1-4842-3724-3_6

Chapter 6 ■ running a Job

124

JobLauncherCommandLineRunner will run any Job definitions it finds in the context. This is the mechanism
we’ve used for every example up to this point to run our batch jobs. However, Spring Boot does provide a few
configuration options worth looking at.

The first is to define what jobs are launched at startup. A Spring Boot uber jar may contain more than
one job. For example, if you plan on having your batch job executed as the result of something like a REST
call or an event of some kind, you probably don’t want that job to execute when the application is started up.
To set this behavior, Spring Boot exposes the property spring.batch.job.enabled equal to false in your
application.yml (this property is set to true by default). Listing 6-1 shows an example of this in action. When
you execute that code with the spring.batch.job.enabled set to false, you’ll see that no job is run. The
context is created then immediately shut down.

Listing 6-1. A Job That Doesn’t Run

@EnableBatchProcessing
@SpringBootApplication
public class NoRunJob {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Job job() {
 return this.jobBuilderFactory.get("job")
 .start(step1())
 .build();
 }

 @Bean
 public Step step1() {
 return this.stepBuilderFactory.get("step1")
 .tasklet((stepContribution, chunkContext) -> {
 System.out.println("step1 ran!");
 return RepeatStatus.FINISHED;
 }).build();
 }

 public static void main(String[] args) {
 SpringApplication application = new SpringApplication(NoRunJob.class);

 Properties properties = new Properties();
 properties.put("spring.batch.job.enabled", false);
 application.setDefaultProperties(properties);

 application.run(args);
 }
}

While Listing 6-1 has a job configured to run, Spring Boot hasn’t run it because we have configured it
not to run on startup.

Chapter 6 ■ running a Job

125

Another use case that can occur when using Spring Boot is having multiple jobs defined within the
context and only wanting specific ones executed on startup. An example of where this is useful is when you
have a job that launches other jobs. In that case, you’d want only the parent or master job to be kicked off
by Spring Boot since the others will be orchestrated by your parent job. Spring Boot supports this use case
by allowing you to configure what jobs are run at startup by using the spring.batch.job.names to identify
the names of the jobs to be executed on startup. Spring Boot will take this comma-delimited list and execute
them in order.

Spring Boot isn’t the only way to execute a job. You can write your own mechanisms to trigger the
execution of your jobs. In the next section, we’ll take a look at how to execute a batch job via a REST API.

Launching a Job via REST
REST APIs are the most popular way to expose functionality these days. They can easily be used to launch a
batch job as well. However, there is no REST API available to launch batch jobs out of the box,1 which means
we will have to write our own. But how do we launch a Spring Batch job programmatically? The JobLauncher
provides this capability so let’s take a look.

The JobLauncher interface is an interface that, well, launches jobs. It has a single method,
run(Job job, JobParameters jobParameters), which takes two arguments: the Job to be executed and the
JobParameters to be passed to the Job. Listing 6-2 illustrates the interface.

Listing 6-2. The JobLauncher Interface

public interface JobLauncher {

 public JobExecution run(Job job, JobParameters jobParameters) throws
 JobExecutionAlreadyRunningException,
 JobRestartException,
 JobInstanceAlreadyCompleteException,
 JobParametersInvalidException;

}

Out of the box, Spring Batch provides one JobLauncher implementation, the SimpleJobLauncher.
In the vast majority of cases, this JobLauncher will address all of the launching requirements you have.
It handles the determination of whether the run is part of an existing JobInstance or a new one and acts
accordingly.

 ■ Note the SimpleJobLauncher does not manipulate the provided JobParameters. So if your job is
using a JobParametersIncrementer, that needs to be applied before the parameters are passed to the
SimpleJobLauncher.

The JobLauncher interface does not have any specific prescription as to whether the job it is running is
synchronous or asynchronously nor does it have any strong opinion on the matter. It allows you to choose how the
jobs it run are executed by allowing you to configure the TaskExecutor it uses. By default, it uses a synchronous
TaskExecutor so the jobs are executed synchronously by the SimpleJobLauncher (in the same thread as the caller).
However, if you’d like to free up the existing thread (e.g., if you wanted to return a REST call once the job has been
started), then one of the asynchronous TaskExecutor implementations may be a better option.

1Spring Cloud Data Flow offers this feature, but it’s a bit of a different animal. We’ll look at Data Flow later in this book.

Chapter 6 ■ running a Job

126

To get started with our REST API launching application, we need to create a new project. Our new
project will come from Spring Initializr with the following dependencies selected:

•	 Batch

•	 MySQL

•	 JDBC

•	 Web

Once we have our project in place, we’ll need to configure our application.yml to not run our batch
jobs on startup (since we only want them to run when we call the REST API, as well as our database
configuration). Listing 6-3 illustrates the contents of the application.yml required for our new application.

Listing 6-3. application.yml

spring:
 batch:
 job:
 enabled: false
 initialize-schema: always
 datasource:
 driverClassName: com.mysql.cj.jdbc.Driver
 url: jdbc:mysql://localhost:3306/spring_batch
 username: 'root'
 password: 'p@ssw0rd'
 platform: mysql

We’ll use the SimpleJobLauncher when we create our REST API to launch our job. Conveniently, when
using the @EnableBatchProcessing annotation, Spring Batch provides a SimpleJobLauncher for you out of
the box so we don’t need to do anything to get one. Given that’s really all we need to launch a job, let’s take
a look at a controller that would accept a job name and job parameters as request parameters and launches
the appropriate job. Listing 6-4 shows the complete application.

Listing 6-4. The JobLaunchingController Application

...
@EnableBatchProcessing
@SpringBootApplication
public class RestApplication {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Job job() {
 return this.jobBuilderFactory.get("job")
 .incrementer(new RunIdIncrementer())
 .start(step1())
 .build();
 }

Chapter 6 ■ running a Job

127

 @Bean
 public Step step1() {
 return this.stepBuilderFactory.get("step1")
 .tasklet((stepContribution, chunkContext) -> {
 System.out.println("step1 ran today!");
 return RepeatStatus.FINISHED;
 }).build();
 }
 @RestController
 public static class JobLaunchingController {

 @Autowired
 private JobLauncher jobLauncher;

 @Autowired
 private ApplicationContext context;

 @PostMapping(path = "/run")
 public ExitStatus runJob(@RequestBody JobLaunchRequest request) throws Exception {
 Job job = this.context.getBean(request.getName(), Job.class);

 return this.jobLauncher.run(job, request.getJobParameters()).
getExitStatus();

 }
 }

 public static class JobLaunchRequest {
 private String name;

 private Properties jobParameters;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public Properties getJobParamsProperties() {
 return jobParameters;
 }

 public void setJobParamsProperties(Properties jobParameters) {
 this.jobParameters = jobParameters;
 }
 public JobParameters getJobParameters() {
 Properties properties = new Properties();
 properties.putAll(this.jobParameters);

Chapter 6 ■ running a Job

128

 return new JobParametersBuilder(properties)
 .toJobParameters();
 }
 }

 public static void main(String[] args) {
 new SpringApplication(RestApplication.class).run(args);
 }
}

There is a lot in Listing 6-4, but most of the pieces should be familiar. Starting at the top, we have our
normal annotations for a Spring Boot application running Spring Batch (@SpringBootApplication and
@EnableBatchProcessing). The next section is the building of our batch job. It’s a simple, single step job
that emits a "step1 ran!". The goal here isn’t to see something complex from Spring Batch, but just
to prove that our job did run. This example has two inner classes. The reason for the inner classes is just
to make the example self-contained. In a normal application, these would be broken out. The first inner
class is the Controller itself. Here we are autowiring in the JobLauncher that @EnableBatchProcessing
provides as well as the current ApplicationContext so that we can retrieve the Job bean to be executed
within our request.

The @PostMapping allows us to map the URL our HTTP POST needs to go to in order to be called,
/run in our case. The body of the post will have two main components, the name of the job to execute
and a Map of any parameters to be passed to the job. That structure is modeled in the next inner
class, JobLaunchRequest. We’ll call our API passing it a JSON payload that Spring will map for us to a
JobLaunchRequest instance.

Within the runJob method of our controller, we do two things. The first is we get the Job to be executed.
We do that by asking the ApplicationContext for it. Once we have our Job and JobParameters, we can
execute the Job by passing both to the JobLauncher. By default, the JobLauncher will execute the job
synchronously so we can return the ExitStatus to the user. It’s important to note that most batch jobs don’t
run this fast due to the amount of processing involved. Because of this, running them asynchronously in this
case would be a better fit (in which case, we’d just return the JobExecution’s id).

The final section of this example is the main method used to bootstrap it. Just like in Listing 6-1, we
configure the batch job to not run since we don’t want to run it on startup, we want it to launch when the API
is called. Listing 6-5 contains an example of how to launch the job in Listing 6-4 via curl.

Listing 6-5. Curl Command and Output for Listing 6-4

$ curl -H "Content-Type: application/json" -X POST -d '{"name":"job", "jobParameters":
{"foo":"bar", "baz":"quix"}}' http://localhost:8080/run
{"exitCode":"COMPLETED","exitDescription":"","running":false}

Listing 6-5 does a HTTP POST of the included JSON to http://localhost:8080/run with the Content-
Type header set to application/json. If you run the application in Listing 6-4 and execute the curl
command in Listing 6-5, you’ll see the output in Listing 6-6.

Chapter 6 ■ running a Job

129

Listing 6-6. REST API Output

2018-02-08 12:07:56.327 INFO 22104 --- [nio-8080-exec-1] o.s.b.c.l.support.SimpleJob
Launcher : Job: [SimpleJob: [name=job]] launched with the following parameters:
[{baz=quix, foo=bar}]
2018-02-08 12:07:56.345 INFO 22104 --- [nio-8080-exec-1] o.s.batch.core.job.SimpleStep
Handler : Executing step: [step1]
step1 ran!
2018-02-08 12:07:56.362 INFO 22104 --- [nio-8080-exec-1] o.s.b.c.l.support.SimpleJob
Launcher : Job: [SimpleJob: [name=job]] completed with the following parameters:
[{baz=quix, foo=bar}] and the following status: [COMPLETED]

It’s important to note that we did not include any logic around restarting a job, handling job parameter
incrementing, and so on in our API. We’ll look at restarting a job later in this chapter. But before we move off
of this API, let’s look at how to handle incrementing job parameters for subsequent runs.

When using a JobParametersIncrementer, it is the caller of the JobLauncher’s responsibility to apply
those changes to the parameters. Once parameters have made it to the Job, they are immutable. Spring
Batch provides a convenient method on the JobParametersBuilder for incrementing the parameters,
getNextJobParameters(Job job). Listing 6-7 shows the controller from our previous application updated
with the use of the JobParametersBuilder#getNextJobParameters call.

Listing 6-7. Incrementing Job Parameters Before a Launch

...
@Bean
public Job job() {
 return this.jobBuilderFactory.get("job")
 .incrementer(new RunIdIncrementer())
 .start(step1())
 .build();
}
...
@RestController
public static class JobLaunchingController {

 @Autowired
 private JobLauncher jobLauncher;

 @Autowired
 private ApplicationContext context;

 @Autowired
 private JobExplorer jobExplorer;

 @PostMapping(path = "/run")
 public ExitStatus runJob(@RequestBody JobLaunchRequest request) throws Exception
{
 Job job = this.context.getBean(request.getName(), Job.class);

Chapter 6 ■ running a Job

130

 JobParameters jobParameters =
 new JobParametersBuilder(request.getJobParameters(),
 this.jobExplorer)
 .getNextJobParameters(job)
 .toJobParameters();

 return this.jobLauncher.run(job, jobParameters).getExitStatus();
 }
}
...

Listing 6-7 starts off with our job definition. This is identical to the previous listing; however, in our
previous example, the RunIdIncrementer was not actually being activated. That’s where the updates to our
controller come in.

In the controller, we have a new line. We create a new JobParameters instance that adds the run.id to it
by calling the JobParametersBuilder#getNextJobParameters(job) method. This method looks at the Job
and determines if there is a JobParametersIncrementer on it. If so, it applies it to the JobParameters used in
the last JobExecution. It also determines if this execution is a restart or not and handles the JobParameters
appropriately. If neither of these scenarios exist, nothing is changed.

With the changes in Listing 6-7, if we run our application and call it again, we get something slightly
different in our console. Listing 6-8 illustrates that we get a new parameter added to our output, run.id=1
has been added to the JobParameters. If we run it again, we’ll see run.id=2. This is an important change.
If we tried the same thing in the first version of this example, we would have gotten an exception about the
JobInstance for those parameters has already been completed.

Listing 6-8. Output of Running the Job with RunIdIncrementer

2018-02-08 16:21:34.658 INFO 22990 --- [nio-8080-exec-1] o.s.b.c.l.support.SimpleJob
Launcher : Job: [SimpleJob: [name=job]] launched with the following parameters:
[{baz=quix, foo=bar, run.id=1}]
2018-02-08 16:21:34.669 INFO 22990 --- [nio-8080-exec-1] o.s.batch.core.job.SimpleStep
Handler : Executing step: [step1]
step1 ran today!
2018-02-08 16:21:34.679 INFO 22990 --- [nio-8080-exec-1] o.s.b.c.l.support.SimpleJob
Launcher : Job: [SimpleJob: [name=job]] completed with the following parameters:
[{baz=quix, foo=bar, run.id=1}] and the following status: [COMPLETED]

Launching jobs on demand either via executing the java –jar command for the uber jar or via a REST
API are both useful ways of doing things; however, in most enterprises, batch processing is executed via a
schedule. In the next section, we’ll take a look at integrating the execution of a Spring Batch job with a third-
party library, in this case, Quartz.

Scheduling with Quartz
Many enterprise schedulers are available. They range from the crude but very effective crontab to enterprise
automation platforms that can run into the millions of dollars. The scheduler we will use here is an open
source scheduler called Quartz (www.quartz-scheduler.org/). This scheduler is commonly used in Java
environments of all sizes. In addition to its power and solid community support, it has an established history
of Spring integration including Spring Boot support that is helpful in executing jobs.

http://www.quartz-scheduler.org/

Chapter 6 ■ running a Job

131

Given the scope of Quartz, this book won’t cover all of it here. However, a brief introduction to how it
works and how it integrates with Spring is warranted. Figure 6-1 shows the components of Quartz and their
relationships.

Scheduler Trigger Job

Figure 6-1. The Quartz scheduler

As you can see, scheduling via Quartz has three main components: a scheduler, a trigger, and a job. A
scheduler, which is obtained from a SchedulerFactory, serves as a registry of JobDetails (a reference to a
Quartz job) and triggers and is responsible for executing a job when its associated trigger fires. A job is a unit
of work that can be executed. A trigger defines when a job is to be run. When a trigger fires, telling Quartz to
execute a job, a JobDetails object is created to define the individual execution of the job.

Does this sound familiar? It should. The model of defining a Job and a JobDetails object is very similar
to the way Spring Batch defines a Job and a JobInstance. In order to integrate Quartz with your Spring Batch
process, you need to do the following:

•	 Create a project from Spring Initializr with the correct starters.

•	 Write a Spring Batch Job.

•	 Write your own Quartz Job to launch your job using Spring’s QuartzJobBean.

•	 Configure a JobDetailBean provided by Spring to create a Quartz JobDetail.

•	 Configure a trigger to define when your job should run.

To show how Quartz can be used to periodically execute a job, we’ll start by creating a new project from
https://start.spring.io. We’ll select the Batch, MySQL, JDBC, and Quartz Scheduler dependencies. This
will provide us with what we need. Quartz does have the option to store metadata in a database, but that is
outside the scope of this book.

With the new project loaded in our IDE, the next step is to create our Spring Batch Job. We’re going to
keep it simple here. Listing 6-9 shows the configuration for the Job we’ll schedule.

Listing 6-9. Our Scheduled Job

...
@Configuration
public class BatchConfiguration {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Job job() {

https://start.spring.io

Chapter 6 ■ running a Job

132

 return this.jobBuilderFactory.get("job")
 .incrementer(new RunIdIncrementer())
 .start(step1())
 .build();
 }

 @Bean
 public Step step1() {
 return this.stepBuilderFactory.get("step1")
 .tasklet((stepContribution, chunkContext) -> {
 System.out.println("step1 ran!");
 return RepeatStatus.FINISHED;
 }).build();
 }
}

Nothing in Listing 6-9 should be new. We have a single-step job that will print to the console “step1
ran!”. It is important to note that we are using an incrementer here. That is basically a requirement since
we’ll be running a job multiple times without the ability to provide unique job parameters in another way.

With a job defined, we now need to create a Quartz Job. This will be the piece of code that does the
mechanics of launching our Job when the schedule event fires. The code within it should look familiar...it’s
the same code we used in our REST controller to launch a job. Listing 6-10 shows our BatchScheduledJob.

Listing 6-10. BatchScheduledJob

...
public class BatchScheduledJob extends QuartzJobBean {

 @Autowired
 private Job job;

 @Autowired
 private JobExplorer jobExplorer;

 @Autowired
 private JobLauncher jobLauncher;

 @Override
 protected void executeInternal(JobExecutionContext context) {
 JobParameters jobParameters = new JobParametersBuilder(this.jobExplorer)
 .getNextJobParameters(this.job)
 .toJobParameters();

 try {
 this.jobLauncher.run(this.job, jobParameters);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Chapter 6 ■ running a Job

133

Listing 6-10 is a class that extends Spring’s QuartzJobBean class. This class handles most of the boiler
plate required for running a Quartz Job. We extend it for our own purposes by overriding the executeInternal
(JobExecutionContext context) method. This is the place where we add the same code we used in our
REST controller to launch our job. The only real difference is that we don’t need to dynamically choose what
job we’re going to run so we can just autowire it into the Quartz Job. Our executeInternal method will be
called once each time the scheduled event fires. All that is left is to configure that schedule.

To configure that schedule, we need to do two things. The first is to configure a bean for our Quartz
Job. Quartz provides a org.quartz.JobBuilder to help us do that. Using that builder, we provide the Job
class we created (BatchScheduledJob in our case), we tell Quartz to not delete the job definition if it is not
associated with a trigger (since we’ll use Spring to configure the trigger independently), and tell it to build
our JobDetail.

Once our JobDetail is created, we can create a trigger and schedule it. We’ll use Quartz’s org.quartz.
SimpleScheduleBuilder to define a schedule that will launch our job once every 5 seconds and repeat four
times (for a total of five executions). A JobDetail is the meta data around a Quartz Job to run. A Schedule is
how often to run a JobDetail. A Trigger is the association of the two and the final thing we need to create.
Using Quartz’s TriggerBuilder, we create new Trigger, passing it the Job and Schedule. Listing 6-11 shows
the full configuration for our Quartz components.

Listing 6-11. Quartz Configuration

...
@Configuration
public class QuartzConfiguration {

 @Bean
 public JobDetail quartzJobDetail() {
 return JobBuilder.newJob(BatchScheduledJob.class)
 .storeDurably()
 .build();
 }

 @Bean
 public Trigger jobTrigger() {
 SimpleScheduleBuilder scheduleBuilder = SimpleScheduleBuilder.simpleSchedule()
 .withIntervalInSeconds(5).withRepeatCount(4);

 return TriggerBuilder.newTrigger()
 .forJob(quartzJobDetail())
 .withSchedule(scheduleBuilder)
 .build();
 }
}

With this configuration added to our project, we have all that we need to run our job. When we run our
Spring Boot application, we’ll see the output in Listing 6-12 repeated five times.

Chapter 6 ■ running a Job

134

Listing 6-12. Quartz Output

...
2018-02-16 12:00:13.723 INFO 78906 --- [main] i.s.b.quartzdemo.QuartzDemo
Application : Started QuartzDemoApplication in 1.577 seconds (JVM running for 2.05)
2018-02-16 12:00:13.759 INFO 78906 --- [eduler_Worker-1] o.s.b.c.l.support.SimpleJob
Launcher : Job: [SimpleJob: [name=job]] launched with the following parameters: [{run.id=1}]
2018-02-16 12:00:13.769 INFO 78906 --- [eduler_Worker-1] o.s.batch.core.job.SimpleStep
Handler : Executing step: [step1]
step1 ran!
2018-02-16 12:00:13.779 INFO 78906 --- [eduler_Worker-1] o.s.b.c.l.support.SimpleJob
Launcher : Job: [SimpleJob: [name=job]] completed with the following parameters: [{run.
id=1}] and the following status: [COMPLETED]
...

Starting a job isn’t the only aspect of the job execution lifecycle. While ideally we want our jobs to come
to a natural end, there are scenarios where that may not be the case. We may need to stop them. In the next
section, we’ll look at various mechanisms for stopping a running batch job.

Stopping a Job
A job can stop for a number of reasons, each of which has its own effect on what happens next. It can run
to completion naturally (as all the examples have up to this point). You can programmatically stop the
execution of a job during processing for some reason. You can stop a job externally (say, someone realizes
something is wrong, and they need to stop the job to fix it). And of course, although you may never admit it,
errors can occur that cause a job to stop execution. This section looks at how each of these scenarios plays
out using Spring Batch and your options for what to do when each occurs. Let’s begin with the most basic: a
job running to its natural completion.

The Natural End
Up to this point, all of your jobs have run to their natural completion. That is, each Job has run all of its Steps
until they returned a COMPLETED status and the Job itself returned an exit code of COMPLETED. What does this
mean for a Job?

As you’ve seen, a Job can’t be executed with the same parameter values more than once successfully.
This is the successful part of that statement. When a Job has been run to the COMPLETED BatchStatus, a
new JobInstance can’t be created using the same JobParameters again. This is important to note because
it dictates how you execute jobs. You’ve used the JobParametersIncrementer to increment parameters
based on their run, which is a good idea, especially in jobs that are run based on a schedule of some kind.
For example, if you have a job that is run daily, developing a JobParametersIncrementer implementation
that increments a timestamp as a parameter makes sense. That way, each time the job is executed via the
schedule, the job is incremented accordingly as we saw in the previous section.

Not all jobs execute to their natural ending every time. There are situations when you want to stop a
job based on something that happens during processing (an integrity check at the end of a step fails, for
example). In cases like this, you want to stop the job programmatically. The next section goes over this
technique.

Chapter 6 ■ running a Job

135

Programmatic Ending
Batch processing requires a series of checks and balances to be effective. When you’re dealing with large
amounts of data, you need to be able to validate what is happening as things are processing. It’s one
thing for a user to update their profile with the wrong address on a web application. That affects one user.
However, what if your job is to import a file containing one million records, and the import step completes
after importing only 10,000? Something is wrong, and you need to fix it before the job goes any further. This
section looks at how to stop a job programmatically. First you look at a more real-world example of using the
stop transition introduced in Chapter 4; you join its use with some new attributes in order to restart the job.
You also look at how to set a flag to end a job.

Using the Stop Transition
To begin, let’s look at constructing a job that is configured to stop using the stop transition and how where to
restart is addressed. Let’s create a three-step job to see this in action:

 1. Import a simple transaction file (transaction.csv). Each transaction consists of
an account number, a timestamp, and an amount (positive is a credit, negative
is a debit). The file ends with a single summary record containing the number of
records in the file.

 2. After importing the transactions into a transaction table, apply them to a
separate account summary table that consists of the account number and the
current account balance.

 3. Generate a summary file (summary.csv) that lists the account number and
balance for each account.

Looking at these steps from a design perspective, you want to validate that the number of records
you import matches the summary record before applying the transactions to each user’s account. This
integrity check can save you many hours of recovery and reprocessing when dealing with large amounts
of data.

To start this job, let’s look at the file formats and data model. The file format for this job is simple
comma-separated value (CSV) files. This lets you easily configure the appropriate readers and writers with
no code. Listing 6-13 shows example record formats for each of the two files you’re using (transaction.csv
and summary.csv, respectively).

Listing 6-13. Sample Records for Each of the Two Files

Transaction file:
3985729387,2010-01-08 12:15:26,523.65
3985729387,2010-01-08 1:28:58,-25.93
2

Summary File:
3985729387,497.72

For this example, you also keep the data model simple, consisting of only two tables: TRANSACTION and
ACCOUNT_SUMMARY. Figure 6-2 shows the data model.

Chapter 6 ■ running a Job

136

To create the Job, we’ll begin with a fresh project from Spring Initializr loaded into our IDE with Batch,
JDBC, and MySQL dependencies selected. With that in place, we can create a configuration containing all
we need for our Steps in the Job.

To start, configure application.yml to use the MySQL as we have in previous examples (Listing 6-3, for
example). There are a few custom components we’ll need for this Job. Specifically, a custom ItemReader,
a custom ItemProcessor, two domain objects, and a data access object (DAO). Let’s walk through each of
these before assembling them (and other components) into our batch job.

We’ll start with the domain objects. As you’d expect, each domain object maps one to one to the tables
in our database. They also happen to map well to the files we’ll be working with. Listing 6-14 shows the
listings for both the Transaction and AccountSummary domain objects.

Listing 6-14. Domain Objects

...
public class Transaction {

 private String accountNumber;

 private Date timestamp;

 private double amount;

 public String getAccountNumber() {
 return accountNumber;
 }

 public void setAccountNumber(String accountNumber) {
 this.accountNumber = accountNumber;
 }

 public Date getTimestamp() {
 return timestamp;
 }

 public void setTimestamp(Date timestamp) {
 this.timestamp = timestamp;
 }

Figure 6-2. Transaction data model

Chapter 6 ■ running a Job

137

 public double getAmount() {
 return amount;
 }

 public void setAmount(double amount) {
 this.amount = amount;
 }
}

...
public class AccountSummary {

 private int id;

 private String accountNumber;

 private Double currentBalance;

 public int getId() {
 return id;
 }

 public void setId(int id) {
 this.id = id;
 }

 public String getAccountNumber() {
 return accountNumber;
 }

 public void setAccountNumber(String accountNumber) {
 this.accountNumber = accountNumber;
 }

 public Double getCurrentBalance() {
 return currentBalance;
 }
 public void setCurrentBalance(Double currentBalance) {
 this.currentBalance = currentBalance;
 }
}

The next component we’ll look at is our custom ItemReader. We’re reading in a csv, which Spring Batch
has robust facilities to do, so why do we need a custom ItemReader? The reason is that the ExitStatus
of the step is tied to the state of the reader. If we don’t read in the same number of records as the footer
record specifies, we should not continue. So we’re going to wrap a FlatFileItemReader with our custom
ItemReader. This custom ItemReader will count the number of records read in. Once it gets to the footer
record, if the number of expected records match, processing will continue. However, if they do not, our
custom ItemReader will also provide an AfterStep method that will set the ExitStatus to STOPPED.
Listing 6-15 illustrates how this is accomplished.

Chapter 6 ■ running a Job

138

Listing 6-15. TransactionReader

...
public class TransactionReader implements ItemStreamReader<Transaction> {

 private ItemStreamReader<FieldSet> fieldSetReader;
 private int recordCount = 0;
 private int expectedRecordCount = 0;

 public TransactionReader(ItemStreamReader<FieldSet> fieldSetReader) {
 this.fieldSetReader = fieldSetReader;
 }

 public Transaction read() throws Exception {
 return process(fieldSetReader.read());
 }

 private Transaction process(FieldSet fieldSet) {
 Transaction result = null;

 if(fieldSet != null) {
 if(fieldSet.getFieldCount() > 1) {
 result = new Transaction();
 result.setAccountNumber(fieldSet.readString(0));
 result.setTimestamp(fieldSet.readDate(1, "yyyy-MM-DD HH:mm:ss"));
 result.setAmount(fieldSet.readDouble(2));

 recordCount++;
 } else {
 expectedRecordCount = fieldSet.readInt(0);
 }
 }

 return result;
 }
 public void setFieldSetReader(ItemStreamReader<FieldSet> fieldSetReader) {
 this.fieldSetReader = fieldSetReader;
 }

 @AfterStep
 public ExitStatus afterStep(StepExecution execution) {
 if(recordCount == expectedRecordCount) {
 return execution.getExitStatus();
 } else {
 return ExitStatus.STOPPED;
 }
 }

 @Override
 public void open(ExecutionContext executionContext) throws ItemStreamException {
 this.fieldSetReader.open(executionContext);
 }

Chapter 6 ■ running a Job

139

 @Override
 public void update(ExecutionContext executionContext) throws ItemStreamException {
 this.fieldSetReader.update(executionContext);
 }

 @Override
 public void close() throws ItemStreamException {
 this.fieldSetReader.close();
 }
}

From the top of the TransactionReader listed in Listing 6-15, the ItemReader#read() method delegates
to the reader we inject. In our case, it will be a FlatFileItemReader. We let the delegate return a FieldSet
because we actually have two record formats. One for the data we’re importing and one for the footer that
contains the number of records in the file. We pass the FieldSet returned from the delegate ItemReader to
a method called process. There we’re determining what type of record it is. If there is more than one value
in the record, it’s a data record. If there is only one field in the record, it’s the footer record. Data records are
transformed into a Transaction instance and returned. The footer record’s value is recorded and null is
returned indicating that we’re done processing the file.

After the process method, we have the implementation of the StepExecutionListener.
afterStep(StepExecution stepExecution). This method will be called once our step is complete
giving us the opportunity to return a specific ExitStatus. In our case, this method will look at the
number of records read and compare that with the value saved in the footer of the file. If they match,
it will return the ExitStatus set by the framework. Otherwise, it will return ExitStatus.STOPPED. This
will allow us to stop the Job from continuing if the file is invalid.

The rest of the methods in our TransactionItemReader are the implementation of the ItemStream
interface. Spring Batch will automatically look at the ItemReader, ItemProcessor, and ItemWriter to
see if it’s an ItemStream and register it automatically to have the callbacks executed at the appropriate
time. However, we have a delegate that implements ItemStream. This delegate ItemReader won’t be
explicitly registered with Spring Batch so the framework won’t look to see if it implements ItemStream.
This leaves us with two options. Either we remember to explicitly register the delegate as an ItemStream
on our job (an error-prone approach since it requires us to remember to do the registration) or implement
ItemStream in our TransactionItemReader and have it call the appropriate lifecycle methods on the
delegate which is what this does.2

The next custom component is the TransactionDao. This is an interface with a single method,
getTransactionsByAccountNumber(String accountNumber). This method returns a List of Transactions
associated with the account number provided. Listing 6-16 illustrates the implementation of this DAO.

Listing 6-16. TransactionDaoSupport

...
public class TransactionDaoSupport extends JdbcTemplate implements TransactionDao {

 public TransactionDaoSupport(DataSource dataSource) {
 super(dataSource);
 }

2The ItemStream interface will be covered later in Chapters 7 and 9.

Chapter 6 ■ running a Job

140

 @SuppressWarnings("unchecked")
 public List<Transaction> getTransactionsByAccountNumber(String accountNumber) {
 return query(
 "select t.id, t.timestamp, t.amount " +
 "from transaction t inner join account_summary a on " +
 "a.id = t.account_summary_id " +
 "where a.account_number = ?",
 new Object[] { accountNumber },
 (rs, rowNum) -> {
 Transaction trans = new Transaction();
 trans.setAmount(rs.getDouble("amount"));
 trans.setTimestamp(rs.getDate("timestamp"));
 return trans;
 }
);
 }
}

The DAO in Listing 6-16 selects all Transaction records associated with the accountNumber provided
and returns them. We’ll use it in an ItemProcessor that will apply all the transactions to a given account to
determine their current balance. Listing 6-17 shows the ItemProcessor that uses the TransactionDAO in use.

Listing 6-17. TransactionApplierProcessor

...
public class TransactionApplierProcessor implements
 ItemProcessor<AccountSummary, AccountSummary> {

 private TransactionDao transactionDao;

 public TransactionApplierProcessor(TransactionDao transactionDao) {
 this.transactionDao = transactionDao;
 }

 public AccountSummary process(AccountSummary summary) throws Exception {
 List<Transaction> transactions = transactionDao
 .getTransactionsByAccountNumber(summary.getAccountNumber());

 for (Transaction transaction : transactions) {
 summary.setCurrentBalance(summary.getCurrentBalance()
 + transaction.getAmount());
 }
 return summary;
 }
}

As Listing 6-17 shows, for each AccountSummary record that is passed to this ItemProcessor, all the
transactions will be looked up with the TransactionDao, and the current balance of the account will be
incremented or decremented according to the Transaction.

That’s all the custom batch components we need to write for this job. The next step is to configure
them all. We’ll start by configuring each Step, then assembling the Steps into our Job. The first Step is the
importTransactionFileStep as shown in Listing 6-18.

Chapter 6 ■ running a Job

141

Listing 6-18. importTransactionFileStep

...
 @Bean
 @StepScope
 public TransactionReader transactionReader() {
 return new TransactionReader(fileItemReader(null));
 }

 @Bean
 @StepScope
 public FlatFileItemReader<FieldSet> fileItemReader(
 @Value("#{jobParameters['transactionFile']}") Resource inputFile) {
 return new FlatFileItemReaderBuilder<FieldSet>()
 .name("fileItemReader")
 .resource(inputFile)
 .lineTokenizer(new DelimitedLineTokenizer())
 .fieldSetMapper(new PassThroughFieldSetMapper())
 .build();
 }

 @Bean
 public JdbcBatchItemWriter<Transaction> transactionWriter(DataSource dataSource) {
 return new JdbcBatchItemWriterBuilder<Transaction>()
 .itemSqlParameterSourceProvider(
 new BeanPropertyItemSqlParameterSourceProvider<>())
 .sql("INSERT INTO TRANSACTION " +
 "(ACCOUNT_SUMMARY_ID, TIMESTAMP, AMOUNT) " +
 "VALUES ((SELECT ID FROM ACCOUNT_SUMMARY " +
 " WHERE ACCOUNT_NUMBER = :accountNumber), " +
 ":timestamp, :amount)")
 .dataSource(dataSource)
 .build();
 }

 @Bean
 public Step importTransactionFileStep() {
 return this.stepBuilderFactory.get("importTransactionFileStep")
 .<Transaction, Transaction>chunk(100)
 .reader(transactionReader())
 .writer(transactionWriter(null))
 .allowStartIfComplete(true)
 .listener(transactionReader())
 .build();
 }
...

Chapter 6 ■ running a Job

142

The configuration for this first Step begins with the definition of the TransactionReader. This is the
custom ItemReader we reviewed in Listing 6-15. From there, we configure the FlatFileItemReader. We’ll
cover the details of this more in Chapter 7 when review ItemReaders in detail. The JdbcBatchItemWriter
configured next is the way we will write the values to the database. Again, this will be covered in more
detail in Chapter 9 so we’ll worry about the details then. For now, just realize that it’s the way we write
to the database. The final bean definition in Listing 6-18 is the definition of the Step itself. Using the
StepBuilderFactory, we get a builder and configure it to be a chunk-based Step with the transaction reader
and jdbc writer we just configured. We configure this Step to be rerunnable if the Job is restarted. The
reason for this is that if the file we import is invalid (meaning the number of records doesn’t match the footer
record), we’d want to clear out this import and rerun it with a valid file. After configuring the ability to rerun
this Step, we register our TransactionReader as a listener before building our Step.

That first Step was to import our file into the database. The second Step is to apply the transactions that
were found in the file to the accounts. Listing 6-19 walks us through the configuration of that Step.

Listing 6-19. applyTransactionsStep

...
@Bean
@StepScope
public JdbcCursorItemReader<AccountSummary> accountSummaryReader(DataSource dataSource) {
 return new JdbcCursorItemReaderBuilder<AccountSummary>()
 .name("accountSummaryReader")
 .dataSource(dataSource)
 .sql("SELECT ACCOUNT_NUMBER, CURRENT_BALANCE " +
 "FROM ACCOUNT_SUMMARY A " +
 "WHERE A.ID IN (" +
 " SELECT DISTINCT T.ACCOUNT_SUMMARY_ID " +
 " FROM TRANSACTION T) " +
 "ORDER BY A.ACCOUNT_NUMBER")
 .rowMapper((resultSet, rowNumber) -> {
 AccountSummary summary = new AccountSummary();

 summary.setAccountNumber(resultSet.getString("account_number"));
 summary.setCurrentBalance(resultSet.getDouble("current_balance"));

 return summary;
 }).build();
 }

@Bean
public TransactionDao transactionDao(DataSource dataSource) {
 return new TransactionDaoSupport(dataSource);
}

@Bean
public TransactionApplierProcessor transactionApplierProcessor() {
 return new TransactionApplierProcessor(transactionDao(null));
}

Chapter 6 ■ running a Job

143

@Bean
public JdbcBatchItemWriter<AccountSummary> accountSummaryWriter(DataSource dataSource) {
 return new JdbcBatchItemWriterBuilder<AccountSummary>()
 .dataSource(dataSource)
 .itemSqlParameterSourceProvider(
 new BeanPropertyItemSqlParameterSourceProvider<>())
 .sql("UPDATE ACCOUNT_SUMMARY " +
 "SET CURRENT_BALANCE = :currentBalance " +
 "WHERE ACCOUNT_NUMBER = :accountNumber")
 .build();
}
@Bean
public Step applyTransactionsStep() {
return this.stepBuilderFactory.get("applyTransactionsStep")
 .<AccountSummary, AccountSummary>chunk(100)
 .reader(accountSummaryReader(null))
 .processor(transactionApplierProcessor())
 .writer(accountSummaryWriter(null))
 .build();
}
...

Beginning at the top of Listing 6-19, we define a JdbcCursorItemReader to read the AccountSummary
records from the database. The next two bean definitions are for the TransactionDao, which looks up the
transactions, and the custom ItemProcessor reviewed in Listing 6-17 that applies the transactions to the
accounts. Finally, the updated account summary records are written with a JdbcBatchItemWriter. With
those components configured, we can assemble them into our Step. The applyTransactionsStep uses the
StepBuilderFactory to obtain a builder and configure a chunk-based step with a chunk size of 100 records,
and the ItemReader, ItemProcessor, and ItemWriter configured previously.

The final Step, the generateAccountSummaryStep, actually reuses the ItemReader from the
applyTransactionsStep since we’re reading the same data (just doing something different with it). This
is why the accountSummaryReader is step scoped, so we get a new instance for each step. So all we really
need to configure for the generateAccountSummaryStep is the ItemWriter and the Step itself. Listing 6-20
has that code.

Listing 6-20. generateAccountSummaryStep

...
 @Bean
 @StepScope
 public FlatFileItemWriter<AccountSummary> accountSummaryFileWriter(
 @Value("#{jobParameters['summaryFile']}") Resource summaryFile) {

 DelimitedLineAggregator<AccountSummary> lineAggregator =
 new DelimitedLineAggregator<>();
 BeanWrapperFieldExtractor<AccountSummary> fieldExtractor =
 new BeanWrapperFieldExtractor<>();
 fieldExtractor.setNames(new String[] {"accountNumber", "currentBalance"});
 fieldExtractor.afterPropertiesSet();
 lineAggregator.setFieldExtractor(fieldExtractor);

Chapter 6 ■ running a Job

144

 return new FlatFileItemWriterBuilder<AccountSummary>()
 .name("accountSummaryFileWriter")
 .resource(summaryFile)
 .lineAggregator(lineAggregator)
 .build();
 }

@Bean
public Step generateAccountSummaryStep() {
 return this.stepBuilderFactory.get("generateAccountSummaryStep")
 .<AccountSummary, AccountSummary>chunk(100)
 .reader(accountSummaryReader(null))
 .writer(accountSummaryFileWriter(null))
 .build();
}
...

Listing 6-20 starts off configuring the ItemWriter. The FlatFileItemWriter generates a CSV
with the account number and current balance in each record. The Step is then assembled using the
StepBuilderFactory to obtain a builder and configure a chunk-based Step with the reader used in the
previous Step (accountSummaryReader) and the ItemWriter we just configured.

The last piece of this puzzle is the configuration of the Job itself. This Job needs to have the three Steps
in sequence, but handle the STOPPED ExitStatus that could be returned by the first Step. Listing 6-21 has the
code to build our stoppable Job.

Listing 6-21. transactionJob

...
@Bean
public Job transactionJob() {
 return this.jobBuilderFactory.get("transactionJob")
 .start(importTransactionFileStep())
 .on("STOPPED").stopAndRestart(importTransactionFileStep())
 .from(importTransactionFileStep()).on("*").to(applyTransactionsStep())
 .from(applyTransactionsStep()).next(generateAccountSummaryStep())
 .end()
 .build();
}
...

Listing 6-21 begins by using the JobBuilderFactory to get a builder and configures the job to start
with our importTransactionFileStep. From there, it says if the ExitStatus is STOPPED, stop the job and
restart it back at the same step (in essence, start the job over again if it is programmatically stopped). On
all other conditions, go to the applyTransactionsStep. From the applyTransactionsStep, transition to
the generateAccountSummaryStep. The call to end() is required because we were building a flow using the
transitions APIs. We then call build() to generate our Job.

Now, execute the job twice. The first time, execute the job with a transaction.csv that has an invalid
integrity record. In other words, you run the job with an input file of 100 records plus an integrity record
at the end. The integrity record is any number other than 100; here you use the number 20. When the
job executes, the StepListener validates that the number of records you read in (100) doesn’t match the
number expected (20) and returns the value ExitStatus.STOPPED, stopping the job. You can see the results
of the job in the console as shown in Listing 6-22.

Chapter 6 ■ running a Job

145

Listing 6-22. transactionJob First Run

...
2018-03-01 22:02:35.770 INFO 36810 --- [main] o.s.b.a.b.JobLauncherCommandLine
Runner : Running default command line with: [transactionFile=/data/transactions.csv,
summaryFile=file://Users/mminella/tmp/summary.xml]
2018-03-01 22:02:35.873 INFO 36810 --- [main] o.s.b.c.l.support.SimpleJob
Launcher : Job: [FlowJob: [name=transactionJob]] launched with the following
parameters: [{transactionFile=/data/transactions.csv, summaryFile=file://Users/mminella/tmp/
summary.xml}]
2018-03-01 22:02:35.918 INFO 36810 --- [main] o.s.batch.core.job.SimpleStep
Handler : Executing step: [importTransactionFileStep]
2018-03-01 22:03:16.435 INFO 36810 --- [main] o.s.b.c.l.support.
SimpleJobLauncher : Job: [FlowJob: [name=transactionJob]] completed with the following
parameters: [{transactionFile=/data/transactions.csv, summaryFile=file://Users/mminella/tmp/
summary.xml}] and the following status: [STOPPED]
...

When the job stops, delete the contents of the TRANSACTION table and update your transaction file to
have 100 records and an integrity record say 100 as well. This time, when you execute the job, as Listing 6-23
shows, it runs to completion successfully.

Listing 6-23. transactionJob Second Run

...
2018-03-01 22:04:17.102 INFO 36815 --- [main] o.s.b.c.l.support.SimpleJob
Launcher : Job: [FlowJob: [name=transactionJob]] launched with the following
parameters: [{transactionFile=/data/transactions.csv, summaryFile=file://Users/mminella/tmp/
summary.xml}]
2018-03-01 22:04:17.122 INFO 36815 --- [main] o.s.batch.core.job.SimpleStep
Handler : Executing step: [importTransactionFileStep]
2018-03-01 22:05:02.977 INFO 36815 --- [main] o.s.batch.core.job.SimpleStep
Handler : Executing step: [applyTransactionsStep]
2018-03-01 22:05:53.729 INFO 36815 --- [main] o.s.batch.core.job.SimpleStep
Handler : Executing step: [generateAccountSummaryStep]
2018-03-01 22:05:53.822 INFO 36815 --- [main] o.s.b.c.l.support.
SimpleJobLauncher : Job: [FlowJob: [name=transactionJob]] completed with the following
parameters: [{transactionFile=/data/transactions.csv, summaryFile=file://Users/mminella/tmp/
summary.xml}] and the following status: [COMPLETED]
...

Using the stop transition along with configuring the ability to re-execute steps in the job is a useful
way to allow for issues to be fixed based on checks in the execution of a job. In the next section, you refactor
the listener to use the StepExecution#setTerminateOnly() method to communicate to Spring Batch to
end the job.

Stopping with StepExecution
In the transactionJob example, you manually handled stopping the job by using the ExitStatus of a
StepExecutionListener and the configured transitions in the job. Although this approach works, it requires
you to specially configure the job’s transitions and override the step’s ExitStatus.

Chapter 6 ■ running a Job

146

There is a slightly cleaner approach. We replace the afterStep with a beforeStep to get a handle
on the StepExecution. Once you have access to that, when we read the footer record, you can call the
StepExecution#setTerminateOnly() method. This method sets a flag that tells Spring Batch to end after the
step is complete as shown in Listing 6-24.

Listing 6-24. TransactionReader with setTerminateOnly() Call

...
public class TransactionReader implements ItemStreamReader<Transaction> {

 private ItemStreamReader<FieldSet> fieldSetReader;
 private int recordCount = 0;
 private int expectedRecordCount = 0;

 private StepExecution stepExecution;

 public TransactionReader(ItemStreamReader<FieldSet> fieldSetReader) {
 this.fieldSetReader = fieldSetReader;
 }

 public Transaction read() throws Exception {
 Transaction record = process(fieldSetReader.read());

 return record;
 }

 private Transaction process(FieldSet fieldSet) {
 Transaction result = null;

 if(fieldSet != null) {
 if(fieldSet.getFieldCount() > 1) {
 result = new Transaction();
 result.setAccountNumber(fieldSet.readString(0));
 result.setTimestamp(fieldSet.readDate(1, "yyyy-MM-DD HH:mm:ss"));
 result.setAmount(fieldSet.readDouble(2));

 recordCount++;
 } else {
 expectedRecordCount = fieldSet.readInt(0);

 if(expectedRecordCount != this.recordCount) {
 this.stepExecution.setTerminateOnly();
 }
 }
 }

 return result;
 }

Chapter 6 ■ running a Job

147

 @BeforeStep
 public void beforeStep(StepExecution execution) {
 this.stepExecution = execution;
 }

 @Override
 public void open(ExecutionContext executionContext) throws ItemStreamException {
 this.fieldSetReader.open(executionContext);
 }

 @Override
 public void update(ExecutionContext executionContext) throws ItemStreamException {
 this.fieldSetReader.update(executionContext);
 }

 @Override
 public void close() throws ItemStreamException {
 this.fieldSetReader.close();
 }
}

Although the code is only marginally cleaner (you move the check of the record count from the
afterStep(StepExecution execution) to the read() method), the configuration becomes cleaner as well
by allowing you to remove the configuration required for the transitions. Listing 6-25 shows the updated Job
configuration.

Listing 6-25. Reconfigured transactionJob

...
@Bean
public Job transactionJob() {
 return this.jobBuilderFactory.get("transactionJob")
 .start(importTransactionFileStep())
 .next(applyTransactionsStep())
 .next(generateAccountSummaryStep())
 .build();
}
...

You can now execute the job again with the same test (running it the first time with an incorrect number
of records in the transaction file and then a second time with the correct number) and see the same results.
The only difference is in the output of the job on the console. Instead of the job returning a STOPPED status,
Spring Batch throws a JobInterruptedException, as shown in Listing 6-26.

Listing 6-26. Results of the First Execution of Your Updated Job

2018-03-01 22:25:19.070 INFO 36931 --- [main] o.s.b.c.l.support.SimpleJob
Launcher : Job: [SimpleJob: [name=transactionJob]] launched with the following
parameters: [{transactionFile=/data/transactions.csv, summaryFile=file://Users/mminella/tmp/
summary.csv}]
2018-03-01 22:25:19.118 INFO 36931 --- [main] o.s.batch.core.job.SimpleStep
Handler : Executing step: [importTransactionFileStep]

Chapter 6 ■ running a Job

148

2018-03-01 22:26:05.265 INFO 36931 --- [main] o.s.b.c.s.ThreadStepInterruption
Policy : Step interrupted through StepExecution
2018-03-01 22:26:05.266 INFO 36931 --- [main] o.s.batch.core.step.AbstractStep
: Encountered interruption executing step importTransactionFileStep in job transactionJob :
Job interrupted status detected.
2018-03-01 22:26:05.274 INFO 36931 --- [main] o.s.batch.core.job.AbstractJob
: Encountered interruption executing job: Job interrupted by step execution
2018-03-01 22:26:05.277 INFO 36931 --- [main] o.s.b.c.l.support.
SimpleJobLauncher : Job: [SimpleJob: [name=transactionJob]] completed with the
following parameters: [{transactionFile=/data/transactions.csv, summaryFile=file://Users/
mminella/tmp/summary.csv}] and the following status: [STOPPED]

Stopping a job programmatically is an important tool when you’re designing batch jobs. Unfortunately, not
all batch jobs are perfect, how does Spring Batch handle errors? Let’s take a look at the basics in the next section.

Error Handling
No job is perfect—not even yours. Errors happen. You may receive bad data. You may forget one null check
that causes a NullPointerException at the worst of times. How you handle errors using Spring Batch is
important. This section discusses the options for what to do when an exception is thrown during your batch
job and how to implement them.

Job Failure
It should come as little surprise that the default behavior of Spring Batch is probably the safest: stopping the
job and rolling back the current commit. This is one of the driving concepts of chunk-based processing. It
allows you to commit the work you’ve successfully completed and pick up where you left off when you restart.

By default, Spring Batch considers a step and job failed when any exception is thrown. You can see
this in action by tweaking TransactionReader as shown in Listing 6-27. In this case, you throw a org.
springframework.batch.item.ParseException after reading 510 records, stopping the job in a FAILED status.

Listing 6-27. TransactionReader Set Up to Throw an Exception

...
public class TransactionReader implements ItemStreamReader<Transaction> {

 private ItemStreamReader<FieldSet> fieldSetReader;
 private int recordCount = 0;
 private int expectedRecordCount = 0;

 private StepExecution stepExecution;

 public TransactionReader(ItemStreamReader<FieldSet> fieldSetReader) {
 this.fieldSetReader = fieldSetReader;
 }

 public Transaction read() throws Exception {
 if(this.recordCount == 25) {
 throw new ParseException("This isn't what I hoped to happen");
 }

Chapter 6 ■ running a Job

149

 Transaction record = process(fieldSetReader.read());

 return record;
 }

 private Transaction process(FieldSet fieldSet) {
 Transaction result = null;

 if(fieldSet != null) {
 if(fieldSet.getFieldCount() > 1) {
 result = new Transaction();
 result.setAccountNumber(fieldSet.readString(0));
 result.setTimestamp(fieldSet.readDate(1, "yyyy-MM-DD HH:mm:ss"));
 result.setAmount(fieldSet.readDouble(2));

 recordCount++;
 } else {
 expectedRecordCount = fieldSet.readInt(0);

 if(expectedRecordCount != this.recordCount) {
 this.stepExecution.setTerminateOnly();
 }
 }
 }

 return result;
 }

 @BeforeStep
 public void beforeStep(StepExecution execution) {
 this.stepExecution = execution;
 }

 @Override
 public void open(ExecutionContext executionContext) throws ItemStreamException {
 this.fieldSetReader.open(executionContext);
 }

 @Override
 public void update(ExecutionContext executionContext) throws ItemStreamException {
 this.fieldSetReader.update(executionContext);
 }

 @Override
 public void close() throws ItemStreamException {
 this.fieldSetReader.close();
 }
}

With no other configuration changes from the previous runs, when you execute transactionJob, it
throws a ParseException after it reads the record 25 of the transaction file. After this exception is thrown,
Spring Batch considers the step and job failed. If we look at the console, we can see the exception thrown
and that the job stops processing.

Chapter 6 ■ running a Job

150

There is a big difference between the examples of stopping via StepExecution and stopping the job
with an exception. That difference is the state in which the job is left. In the StepExecution example, the job
was stopped after a step is complete in the STOPPED ExitStatus. In the exception case, the step didn’t finish.
In fact, it was part way through the step when the exception was thrown. Because of this, the step and job are
labeled with the ExitStatus FAILED.

When a step is identified as FAILED, Spring Batch doesn’t start the step over from the beginning.
Instead, Spring Batch is smart enough to remember what chunk you were on when the exception was
thrown. When you restart the job, Spring Batch picks up at the chunk it left off on. As an example, let’s say
the job is processing chunk five of ten, with each chunk consisting of five items. An exception is thrown on
the fourth item of the second chunk. Items one to four of the current chunk are rolled back, and when you
restart, Spring Batch skips chunks one and two.

Although Spring Batch’s default method of handling an exception is to stop the job in the failed status,
there are other options at your disposal. Because most of those depend on input/output-specific scenarios,
the next few chapters cover them together with I/O.

Controlling Restart
Spring Batch provides many facilities to address stopping and restarting a job, as you’ve seen. However, it’s
up to you to determine what can and can’t be restarted. If you have a batch process that imports a file in
the first step, and that job fails in the second step, you probably do not want to reimport the file. There are
scenarios where you may only want to retry a step a given number of times. This section looks at how to
configure a job to be restartable and how to control how it’s restarted.

Preventing a Job from Being Rerun
All the jobs up to now could be executed again if they failed or were stopped. This is the default behavior
of Spring Batch. But what if you have a job that can’t be rerun? You give it one try, and if it works, great. If
not, you don’t run it again. Spring Batch provides the ability to configure jobs to not be restartable using the
preventRestart() call on the JobBuilder.

If you look at the transactionJob configuration, by default you can restart the job. However, if you
choose to call the preventRestart() method, as shown in Listing 6-28, then when the job fails or is stopped
for any reason, you won’t be able to re-execute it.

Listing 6-28. transactionJob Configured to Not Be Restartable

...
@Bean
public Job transactionJob() {
 return this.jobBuilderFactory.get("transactionJob")
 .preventRestart()
 .start(importTransactionFileStep())
 .next(applyTransactionsStep())
 .next(generateAccountSummaryStep())
 .build();
}
...

Now if you attempt to run the job after a failure, you’re told by Spring Batch that the JobInstance
already exists and isn’t restartable, as shown in Listing 6-29.

Chapter 6 ■ running a Job

151

Listing 6-29. Results from Re-executing a Nonrestartable Job

2018-03-01 23:08:49.251 INFO 37017 --- [main] ConditionEvaluationReportLogging
Listener :

Error starting ApplicationContext. To display the conditions report re-run your application
with 'debug' enabled.
2018-03-01 23:08:49.271 ERROR 37017 --- [main] o.s.boot.SpringApplication :
Application run failed

java.lang.IllegalStateException: Failed to execute CommandLineRunner
 at org.springframework.boot.SpringApplication.callRunner(SpringApplication.java:793)

[spring-boot-2.0.0.RELEASE.jar:2.0.0.RELEASE]
 at org.springframework.boot.SpringApplication.callRunners(SpringApplication.java:774)

[spring-boot-2.0.0.RELEASE.jar:2.0.0.RELEASE]
 at org.springframework.boot.SpringApplication.run(SpringApplication.java:335) [spring-

boot-2.0.0.RELEASE.jar:2.0.0.RELEASE]
 at org.springframework.boot.SpringApplication.run(SpringApplication.java:1246)

[spring-boot-2.0.0.RELEASE.jar:2.0.0.RELEASE]
 at org.springframework.boot.SpringApplication.run(SpringApplication.java:1234)

[spring-boot-2.0.0.RELEASE.jar:2.0.0.RELEASE]
 at io.spring.batch.transaction_stop.TransactionStopApplication.

main(TransactionStopApplication.java:20) [classes/:na]
Caused by: org.springframework.batch.core.repository.JobRestartException: JobInstance
already exists and is not restartable
 at org.springframework.batch.core.launch.support.SimpleJobLauncher.

run(SimpleJobLauncher.java:101) ~[spring-batch-core-4.0.0.RELEASE.jar:4.0.0.RELEASE]
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) ~[na:1.8.0_131]
 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)

~[na:1.8.0_131]
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)

~[na:1.8.0_131]
 at java.lang.reflect.Method.invoke(Method.java:498) ~[na:1.8.0_131]

Being able to execute a job once or else may be a bit extreme for some scenarios. Spring Batch also lets
you configure the number of times a job can be run, as you see next.

Configuring the Number of Restarts
There can be situations where a job doesn’t run successfully for some reason outside of your control. Say,
for example, that the job downloads a file from a web site as one of its steps, and the web site is down. If the
download fails the first time, it may work if you try again in 10 minutes. However, you probably don’t want to
try that download indefinitely. Because of this, you may want to configure the job so it can be executed only
five times. After the fifth time, it can’t be rerun any more.

Spring Batch provides this facility at the step level instead of the job level. Again, looking at the
transactionJob example, if you only want to attempt to import an input file twice, you modify the step
configuration as in Listing 6-30.

Chapter 6 ■ running a Job

152

Listing 6-30. Allowing the File Import to Be Attempted Only Twice

...
@Bean
public Step importTransactionFileStep() {
 return this.stepBuilderFactory.get("importTransactionFileStep")
 .startLimit(2)
 .<Transaction, Transaction>chunk(100)
 .reader(transactionReader())
 .writer(transactionWriter(null))
 .allowStartIfComplete(true)
 .listener(transactionReader())
 .build();
}
...

In this case, if you attempt to restart this job more than once, because the .startLimit(int limit)
has been configured to 2, you can’t re-execute this job. The initial run takes up one attempt
you’re allowed allowing you one other try. You receive an org.springframework.batch.core.
StartLimitExceededException, as shown in Listing 6-31, if you attempt to execute the job again.

Listing 6-31. Results from Re-executing transactionJob More Than Once

...
2018-03-01 23:12:17.205 ERROR 37027 --- [main] o.s.batch.core.job.Abstract
Job : Encountered fatal error executing job

org.springframework.batch.core.StartLimitExceededException: Maximum start limit exceeded for
step: importTransactionFileStepStartMax: 2
 at org.springframework.batch.core.job.SimpleStepHandler.shouldStart(SimpleStepHandler.

java:229) ~[spring-batch-core-4.0.0.RELEASE.jar:4.0.0.RELEASE]
...

The last configuration aspect that you can use when determining what should happen when your batch
job is re-executed, you’ve seen before: the allowStartIfComplete() method.

Rerunning a Complete Step
One of Spring Batch’s features (or detriments, depending on how you choose to look at it) is that the
framework allows you to execute a job only once successfully with the same identifying parameters. There is
no way around this. However, that rule doesn’t necessarily apply to steps.

You can override the framework’s default configuration and execute a step that has been completed
more than once. You did it previously using transactionJob. To tell the framework that you want to be able
to re-execute a step even if it has been completed, you use the allowStartIfComplete() method on the
StepBuilder. Listing 6-32 shows an example.

Chapter 6 ■ running a Job

153

Listing 6-32. Configuring a Step to Be Re-executed if Complete

...
@Bean
public Step importTransactionFileStep() {
 return this.stepBuilderFactory.get("importTransactionFileStep")
 .allowStartIfComplete(true)
 .<Transaction, Transaction>chunk(100)
 .reader(transactionReader())
 .writer(transactionWriter(null))
 .allowStartIfComplete(true)
 .listener(transactionReader())
 .build();
}
...

In this case, when the step is executed for the second time within a job that failed or was stopped on the
previous execution, the step starts over. Because it completed the previous time, there is no middle ground
at which to restart, which is why it begins again at the beginning.

 ■ Note if the job has the BatchStatus of COMPLETE, the JobInstance can’t be rerun regardless of whether
you configure all the steps to allowStartIfComplete(true);

When you’re configuring batch processes, Spring Batch offers many different options for stopping and
restarting jobs. Some scenarios can have the full job re-executed. Others can be tried again, but only a given
number of times. And some can’t be restarted at all. However, it’s you, the developer, who must design your
batch jobs in a way that is safe for your scenario.

Summary
Starting or stopping a program isn’t a topic that typically gets much press. But as you’ve seen, controlling
the execution of a Spring Batch process provides many options. And when you think about the variety of
scenarios that must be supported by batch processes, those options make sense.

The next section of this book covers the meat of the framework: ItemReaders, ItemProcessors, and
ItemWriters.

155© Michael T. Minella 2019
M. T. Minella, The Definitive Guide to Spring Batch, https://doi.org/10.1007/978-1-4842-3724-3_7

CHAPTER 7

ItemReaders

The three Rs, Reading, wRiting, and aRithmetic, are considered the basis of the skills children learn in
schools. When you think about it, these same concepts apply to software as well. The foundations of any
program—whether web applications, batch jobs, or anything else—are the input of data, the processing of it
in some way, and the output of data.

This concept is no more obvious than when you use Spring Batch. Each chunk-based step consists of
an ItemReader, an ItemProcessor, and an ItemWriter. Reading in any system is not always straightforward,
however. There are a number of different formats in which input can be provided; flat files, XML, and
databases of all kinds are just some of the potential input sources.

Spring Batch provides standard ways to handle most forms of input without the need to write code as
well as the ability to develop your own readers for formats that are not supported, like reading a web service.
This chapter will walk through the different features the different ItemReader implementations provide
within the Spring Batch framework.

The ItemReader Interface
Up to this chapter we have vaguely discussed the concept of an ItemReader but we have not looked at
the interface that Spring Batch uses to define input operations. The org.springframework.batch.item.
ItemReader<T> interface defines a single method—read()—which is used to provide input for a step. Listing 7-1
shows the ItemReader interface.

Listing 7-1. org.springframework.batch.item.ItemReader<T>

package org.springframework.batch.item;

public interface ItemReader<T> {

 T read() throws Exception, UnexpectedInputException, ParseException,
 NonTransientResourceException;
}

The ItemReader interface shown in Listing 7-1 is a strategy interface. Spring Batch provides a number of
implementations based on the type of input to be processed. Flat files, databases, JMS resources, and other
sources of input all have implementations provided by Spring Batch. You can also implement your own
ItemReader by implementing the ItemReader or any one of its subinterfaces.

https://doi.org/10.1007//978-1-4842-3724-3_7

Chapter 7 ■ Itemreaders

156

 ■ Note spring Batch’s org.springframework.batch.item.ItemReader interface is different from javax.
batch.api.chunk.ItemReader from Jsr-352 (JBatch). the main differences being that the spring Batch
version provides generic support and the Jsr version combines the ItemStream and ItemReader interfaces.
this book will only use the one from spring Batch.

The read() method of the ItemReader interface returns a single item to be processed by your step as
it is called by Spring Batch. This item is what your step will count as it maintains how many items within a
chunk have been processed. The item will be passed to any configured ItemProcessor before being sent as
part of a chunk to the ItemWriter.

The best way to understand how to use the ItemReader interface is to put it to use. In the next section
you will begin to look at the many ItemReader implementations provided by Spring Batch by working with
the FlatFileItemReader.

File Input
When I think of file IO in Java, I can’t help but cringe. The API for IO is marginally better than the API for handling
dates in this language (although that has gotten much better in recent years), and you all know how good that is.
Luckily, the guys at Spring Batch have addressed most of this by providing a number of declarative readers that
allow you to declare the format of what you’re going to read and they handle the rest. In this section, you’ll be
looking at the declarative readers that Spring Batch provides and how to configure them for file-based IO.

Flat Files
When I talk about flat files in the case of batch processes, I’m talking about any file that has one or more
records. Each record can take up one or more lines. The difference between a flat file and an XML file is that
the data within a flat file is nondescriptive. In other words, there is no metainformation within the file itself
to define the format or meaning of the data. In contrast, in XML, you use tags to give the data meaning.

Before you get into actually configuring an ItemReader for a flat file, let’s take a look at the components
of reading a file in Spring Batch. Figure 7-1 shows the components of the FlatFileItemReader. The
org.springframework.batch.item.file.FlatFileItemReader consists of two main components: a Spring
Resource that represents the file to be read and an implementation of the org.springfamework.batch.
item.file.LineMapper interface. The LineMapper serves a similar function as the RowMapper does in Spring
JDBC. When using a RowMapper in Spring JDBC, a ResultSet representing a collection of fields is provided
for you map to objects.

FlatFileItemReader

LineMapper

LineTokenizer FieldSetMapper

Figure 7-1. FlatFileItemReader pieces

Chapter 7 ■ Itemreaders

157

The FlatFileItemReader allows you to configure a number of attributes about the file you’re reading.
Table 7-1 shows the options that you are likely to use and explains their meanings.

Table 7-1. FlatFileItemReader Configuration Options

Option Type Default Description

comments String [] null This array of strings indicates what
prefixes will be considered line comments
and skipped during file parsing.

currentItemCount int 0 The current index of the item being read.
Used on restarts.

encoding String The default Charset
for the platform.

The character encoding for the file.

lineMapper LineMapper null (required) This class will take each line of a file as
a String and convert it into a domain
object (item) to be processed.

linesToSkip int 0 When running a job, the
FlatFileItemReader can be configured
to skip lines at the beginning of the file
before parsing. This number indicates
how many.

maxItemCount int Integer.MAX_VALUE Indicates the maximum number of items
to be read from the file.

name String null Used to create a unique key for the values
persisted in the ExecutionContext.

record
SeparatorPolicy

Record
SeparatorPolicy

DefaultRecord
SeparatorPolicy

Used to determine the end of each record.
By default, an end of line character
indicates the end of a record; however, this
can be used to determine how to handle
things like quoted strings across lines.

Resource Resource null (required) The resource to be read.

saveState boolean true Indicates of the state of the ItemReader
should be saved after each chunk for
restartability. This should be turned
to false if used in a multithreaded
environment.

skipped
LinesCallback

LineCallback
Handler

null Callback interface called with the line
skipped. Every line skipped will be passed
to this callback.

strict boolean false An Exception will be thrown if the
resource is not found in strict mode.

Chapter 7 ■ Itemreaders

158

When reading a file, a String is provided to the LineMapper implementation, representing a single
record from a file. The most common LineMapper implementation used is the DefaultLineMapper. With
the raw String from the file, there is a two-step process used by the DefaultLineMapper for getting it
to the domain object you will later work with. These two steps are handled by the LineTokenizer and
FieldSetMapper:

•	 A LineTokenizer implementation parses the line into a org.springframework.
batch.item.file.FieldSet. The provided String represents the entire line from
the file. In order to be able to map the individual fields of each record to your domain
object, you need to parse the line into a collection of fields. The FieldSet in Spring
Batch represents that collection of fields for a single row (similar to a java.sql.
ResultSet when working with a database).

•	 The FieldSetMapper implementation maps the FieldSet to a domain object. With
the line divided into individual fields, you can now map each input field to the field
of your domain object just like a RowMapper would map a ResultSet row to the
domain object.

Sounds simple doesn’t it? It really is. The intricacies come from how to parse the line and when you
look at objects that are built out of multiple records from your file. Let’s take a look at reading files with fixed-
width records first.

Fixed-Width Files
When dealing with legacy mainframe systems, it is common to have to work with fixed-width files due to the
way COBOL, big data, and other technologies declare their storage. Because of this, you need to be able to
handle fixed-width files as well.

You can use a customer file as your fixed-width file. Consisting of a customer’s name and address,
Table 7-2 outlines the format of your customer file.

Table 7-2. Customer File Format

Field Length Description

First Name 11 Your customer’s first name.

Middle Initial 1 The customer’s middle initial.

Last Name 10 The last name of the customer.

Address Number 4 The street number piece of the customer’s address.

Street 20 The name of the street where the customer lives.

City 16 The city the customer is from.

State 2 The two-letter state abbreviation.

Zip Code 5 The customer’s postal code.

Defining the format for a fixed-width file is important. A delimited file describes its fields with its
delimiters. XML or other structured files are self-describing given the metadata the tags provide. Database
data has the metadata from the database describing it. However, fixed-width files are different. They provide
zero metadata to describe their format. If you look at Listing 7-2, you can see an example of what the
previous description looks like as your input file.

Chapter 7 ■ Itemreaders

159

Listing 7-2. customer.txt, the Fixed-Width File

Aimee CHoover 7341Vel Avenue Mobile AL35928
Jonas UGilbert 8852In St. Saint Paul MN57321
Regan MBaxter 4851Nec Av. Gulfport MS3319
Sydnee NRobinson 894 Ornare. Ave Olathe KS25606

In order for us to read this file, we will need a domain object to represent our record. The Customer
object we will use can be found in Listing 7-3.

Listing 7-3. Customer.java

...
public class Customer {

 private String firstName;
 private String middleInitial;
 private String lastName;
 private String addressNumber;
 private String street;
 private String city;
 private String state;
 private String zipCode;

 public Customer() {
 }

 public Customer(String firstName, String middleInitial, String lastName, String
addressNumber, String street, String city, String state, String zipCode) {

 this.firstName = firstName;
 this. middleInitial = middleInitial;
 this.lastName = lastName;
 this.addressNumber = addressNumber;
 this.street = street;
 this.city = city;
 this.state = state;
 this.zipCode = zipCode;
 }

 // Getters and setters removed for brevity
 ...

 @Override
 public String toString() {
 return "Customer{" +
 "firstName='" + firstName + '\" +
 ", middleInitial ='" + middleInitial + '\" +
 ", lastName='" + lastName + '\" +
 ", addressNumber='" + addressNumber + '\" +
 ", street='" + street + '\" +
 ", city='" + city + '\" +

Chapter 7 ■ Itemreaders

160

 ", state='" + state + '\" +
 ", zipCode='" + zipCode + '\" +
 '}';
 }
}

To demonstrate how each of these readers work, you will create a single-step job that reads in a file and
writes it right back out. For this job, copyJob, you will create a BatchConfiguration configuration class with
the following beans:

•	 customerReader: The FlatFileItemReader

•	 outputWriter: The FlatFileItemWriter

•	 copyStep: The Step definition for your job

•	 copyJob: The Job definition

The customerReader is an instance of the FlatFileItemReader. As covered previously, the
FlatFileItemReader consists of two pieces, a Resource to read in (in this case, the customerFile) and a way
to map each line of the file (a LineMapper implementation).

For the LineMapper implementation, you are going to use Spring Batch’s org.springframework.batch.
item.file.DefaultLineMapper. This LineMapper implementation is intended for the two-step process of
mapping lines to domain objects you talked about previously: parsing the line into a FieldSet and then
mapping the fields of the FieldSet to a domain object, the Customer object in your case.

To support the two-step mapping process, the DefaultLineMapper takes two dependencies: a
LineTokenizer implementation which will parse the String that is read in from your file into a FieldSet and
a FieldSetMapper implementation to map the fields in your FieldSet to the fields in your domain object.

That probably sounds like quite a bit to code. And it was...before Spring Batch 4. However, in Spring
Batch 4, a collection of builders was created to simplify the configuration of common use cases. We’ll be
using the builders for all examples in this chapter. Listing 7-4 shows the customerReader being created via
the FlatFileItemReaderBuilder.

Listing 7-4. customerReader in BatchConfiguration

...
@Bean
@StepScope
public FlatFileItemReader<Customer> customerItemReader(
@Value("#{jobParameters['customerFile']}")Resource inputFile) {

 return new FlatFileItemReaderBuilder<Customer>()
 .name("customerItemReader")
 .resource(inputFile)
 .fixedLength()
 .columns(new Range[]{new Range(1,11), new Range(12, 12), new Range(13, 22),
 new Range(23, 26), new Range(27,46), new Range(47,62),
 new Range(63,64), new Range(65,69)})
 .names(new String[] {"firstName", "middleInitial", "lastName",
 "addressNumber", "street", "city", "state","zipCode"})
 .targetType(Customer.class)
 .build();
 }
...

Chapter 7 ■ Itemreaders

161

Listing 7-4 contains all you need to configure the reading of a fixed-width file. However, the builder
hides a lot of what is actually going on, so let’s walk through what we’re configuring here.

Let’s start off with the parameter to the method inputFile. This comes from passing the path to our
input file as a job parameter to our Boot application. Spring will automatically create a Resource for it and
inject it for us.

From there, we create our builder. The first thing we configure with the builder is a name. The
ItemStream interface, which we will look at in more detail later in this chapter, requires us to provide
a name that serves as the prefix for any keys that are added to our step’s ExecutionContext. This allows
you to use, for example, two FlatFileItemReader instances in the same step and not have their state
persistence step on each other. This value is not required if the saveState configuration of this reader is
set to false (in which case, no data will be stored in the ExecutionContext making the reader start at the
beginning on a restart). The next thing we do with our builder is to let it know that we’re working with a
fixed-width file. This call returns a builder specifically for building a FixedLengthTokenizer. This is an
implementation of the LineTokenzier interface that the reader will use to parse each line into a FieldSet.
The FixedLengthTokenizer requires the configuration of two things: the names of each column in a record
and an array of Range objects. Each Range instance represents a start index and an end index for the columns
being parsed. The other options you can configure with the FixedLengthTokenizer are a FieldSetFactory
which is used to create the FieldSet (a DefaultFieldSetFactory is provided by default) and a strict flag
that indicates how to handle a record that has a more tokens than are defined to parse (the flag is true by
default which means an Exception is thrown in this condition). In Listing 7-4, we ignore the optional values
since the defaults are good enough and configure the ranges and names for our input file.

If you remember, we said that a FlatFileItemReader uses a LineMapper to convert a record of a file to
an object. The builder configured in 7-3 is using the DefaultLineMapper which takes two dependencies:
the LineTokenizer which we just configured, and the FieldSetMapper (you can specify your own via
the builder as well if you want). The builder we’re using will create a new BeanWrapperFieldSetMapper
when we call the .targetType(Class targetType) method. This FieldSetMapper, provided by Spring
Batch, will use the names of the columns to set the values on the class configured. So, for example, the
BeanWrapperFieldSetMapper will call Customer#setFirstName, Customer#setMiddleInitial, and so on,
based on the names of the columns configured in the LineTokenizer.

 ■ Note the FixedLengthTokenizer doesn’t trim any leading or trailing characters (spaces, zeros, etc.)
within each field. to do this, you’ll have to implement your own LineTokenizer or you can trim in your own
FieldSetMapper.

To put your reader to use, you need to configure your Step and Job. You will also need to configure a
writer so that you can see that everything works. You will be covering writers in depth in Chapter 9 so you
can keep the writer for this example simple. Listing 7-5 shows how to configure a simple writer to output the
domain objects to standard out.

Listing 7-5. A Simple Writer

...
@Bean
public ItemWriter<Customer> itemWriter() {
 return (items) -> items.forEach(System.out::println);
}
...

Chapter 7 ■ Itemreaders

162

Looking at the writer in Listing 7-5, we use the fact that ItemWriter is a functional interface to
return a lambda as its implementation. In this case, for each item in the List passed to the ItemWriter.
write(List<T> items) method, the .toString() method will be called via System.out.println, displaying
the output in the console.

Your job configuration is very simple. As shown in Listing 7-6, a simple step that consists of the reader
and writer with a commit count of 10 records is all you need. Your Job uses that single Step.

Listing 7-6. The copyFileStep and copyFileJob

...
@Bean
public Step copyFileStep() {
 return this.stepBuilderFactory.get("copyFileStep")
 .<Customer, Customer>chunk(10)
 .reader(customerItemReader(null))
 .writer(outputWriter(null))
 .build();
}

@Bean
public Job job() {
 return this.jobBuilderFactory.get("job")
 .start(copyFileStep())
 .build();
}
...

The interesting piece of all of this is we’ve written zero application codes beyond our domain object
(Customer). The only code we have written is the code to configure our application. Once you build your
application, you can execute it with the command shown in Listing 7-7.

Listing 7-7. Executing the copyJob

java -jar copyJob.jar customerFile=/path/to/customer/file.txt

The output of the job is the same content of the input file formatted according to the format string of the
writer, as shown in Listing 7-8.

Listing 7-8. Results of the copyJob

2019-01-28 16:11:44.089 INFO 54762 --- [main] o.s.b.c.l.support.
SimpleJobLauncher : Job: [SimpleJob: [name=job]] launched with the following
parameters: [{customerFile=/input/customerFixedWidth.txt}]
2019-01-28 16:11:44.159 INFO 54762 --- [main] o.s.batch.core.job.
SimpleStepHandler : Executing step: [copyFileStep]
Customer{firstName='Aimee', middleInitial='C', lastName='Hoover', addressNumber='7341',
street='Vel Avenue', city='Mobile', state='AL', zipCode='35928'}
Customer{firstName='Jonas', middleInitial='U', lastName='Gilbert', addressNumber='8852',
street='In St.', city='Saint Paul', state='MN', zipCode='57321'}
 ...

Chapter 7 ■ Itemreaders

163

Fixed-width files are a form of input provided for batch processes in many enterprises. As you can see,
parsing the file into objects via FlatFileItemReader and FixedLengthTokenizer makes this process easy. In the
next section you will look at a file format that provides a small amount of metadata to tell us how the file is to be
parsed.

Delimited Files
Delimited files are files that provide a small amount of metadata within the file to tell us what the format of
the file is. In this case, a character acts as a divider between each field in your record. This metadata provides
us with the ability to not have to know what defines each individual field. Instead, the file dictates to use
what each field consists of by dividing each record with a delimiter.

As with fixed-width records, the process is the same to read a delimited record. The record will first
be tokenized by the LineTokenizer into a FieldSet. From there, the FieldSet will be mapped into your
domain object by the FieldSetMapper. With the process being the same, all you need to do is update the
LineTokenizer implementation you use to parse your file based upon a delimiter instead of premapped
columns. Let’s start by looking at an updated customerFile that is delimited instead of fixed-width.
Listing 7-9 shows your new input file.

Listing 7-9. A Delimited customerFile

Aimee,C,Hoover,7341,Vel Avenue,Mobile,AL,35928
Jonas,U,Gilbert,8852,In St.,Saint Paul,MN,57321
Regan,M,Baxter,4851,Nec Av.,Gulfport,MS,33193

You’ll notice right away that there are two changes between the new file and the old one. First, you
are using commas to delimit the fields. Second, you have trimmed all of the fields. Typically, when using
delimited files, each field is not padded to a fixed-width like they are in fixed-width files. Because of that, the
record length can vary, unlike the fixed-width record length.

As mentioned, the only configuration update you need to make to use the new file format is how
each record is parsed. For fixed-width records, you used the FixedLengthTokenizer to parse each line.
For the new delimited records, you will use the org.springframework.batch.item.file.transform.
DelimitedLineTokenizer to parse the records into a FieldSet. Listing 7-10 shows the configuration of the
reader updated with the DelimitedLineTokenizer.

Listing 7-10. customerFileReader with the DelimitedLineTokenizer

...
@Bean
@StepScope
public FlatFileItemReader<Customer> customerItemReader(@Value("#{jobParameters
['customerFile']}")Resource inputFile) {
 return new FlatFileItemReaderBuilder<Customer>()
 .name("customerItemReader")
 .delimited()
 .names(new String[] {"firstName",
 "middleInitial",
 "lastName",
 "addressNumber",
 "street",
 "city",
 "state",
 "zipCode"})

Chapter 7 ■ Itemreaders

164

 .targetType(Customer.class)
 .resource(inputFile)
 .build();
}
...

The DelimitedLineTokenizer allows for two options that you’ll find very useful. The first is the ability to
configure the delimiter. A comma is the default value; however, any String can be used. The second option is
the ability to configure what value will be used as a quote character. When this option is used, that value will
be used instead of “ as the character to indicate quotes. This character will also be able to escape itself. Listing
7-11 shows an example of how a String is parsed when you use the # character as the quote character.

Listing 7-11. Parsing a Delimited File with the Quote Character Configured

Michael,T,Minella,#123,4th Street#,Chicago,IL,60606

Is parsed as

Michael
T
Minella
123,4th Street
Chicago
IL
60606

Although that’s all that is required to process delimited files, it’s not the only option you have. The
current example maps address numbers and streets to two different fields. However, what if you wanted to
map them together into a single field as represented in the domain object in Listing 7-12?

Listing 7-12. Customer with a Single Street Address Field

package com.apress.springbatch.chapter7;

public class Customer {
 private String firstName;
 private String middleInitial;
 private String lastName;
 private String address;
 private String city;
 private String state;
 private String zip;

 // Getters & setters go here
...
}

With the new object format, you will need to update how the FieldSet is mapped to the domain object.
To do this, you will create your own implementation of the org.springframework.batch.item.file.
mapping.FieldSetMapper interface. The FieldSetMapper interface, as shown in Listing 7-13, consists of a
single method, mapFieldSet(FieldSet fieldSet), that allows you to map the FieldSet as it is returned
from the LineTokenizer to the domain object fields.

Chapter 7 ■ Itemreaders

165

Listing 7-13. The FieldSetMapper Interface

package org.springframework.batch.item.file.mapping;

import org.springframework.batch.item.file.transform.FieldSet;
import org.springframework.validation.BindException;

public interface FieldSetMapper<T> {

 T mapFieldSet(FieldSet fieldSet) throws BindException;
}

To create your own mapper, you will implement the FieldSetMapper interface with the type defined as
Customer. From there, as shown in Listing 7-14, you can map each field from the FieldSet to the domain
object, concatenating the addressNumber and street fields into a single address field per your requirements.

Listing 7-14. Mapping Fields from the FieldSet to the Customer Object

...
public class CustomerFieldSetMapper implements FieldSetMapper<Customer> {

 public Customer mapFieldSet(FieldSet fieldSet) {
 Customer customer = new Customer();

 customer.setAddress(fieldSet.readString("addressNumber") +
 " " + fieldSet.readString("street"));
 customer.setCity(fieldSet.readString("city"));
 customer.setFirstName(fieldSet.readString("firstName"));
 customer.setLastName(fieldSet.readString("lastName"));
 customer.setMiddleInitial(fieldSet.readString("middleInitial"));
 customer.setState(fieldSet.readString("state"));
 customer.setZipCode(fieldSet.readString("zipCode"));

 return customer;
 }
}

The FieldSet methods are very similar to the ResultSet methods of the JDBC realm. Spring provides a
method for each of the primitive data types, String (trimmed or untrimmed), BigDecimal, and java.util.
Date. Each of these different methods has two different varieties. The first takes an integer as the parameter
where the integer represents the index of the field to be retrieved in the record. The other version, shown in
Listing 7-15, takes the name of the field. Although this approach requires you to name the fields in the job
configuration, it’s a more maintainable model in the long run. Listing 7-15 shows the FieldSet interface.

Listing 7-15. FieldSet Interface

package org.springframework.batch.item.file.transform;

import java.math.BigDecimal;
import java.sql.ResultSet;
import java.util.Date;
import java.util.Properties;

Chapter 7 ■ Itemreaders

166

public interface FieldSet {

 String[] getNames();
 boolean hasNames();
 String[] getValues();
 String readString(int index);
 String readString(String name);
 String readRawString(int index);
 String readRawString(String name);
 boolean readBoolean(int index);
 boolean readBoolean(String name);
 boolean readBoolean(int index, String trueValue);
 boolean readBoolean(String name, String trueValue);
 char readChar(int index);
 char readChar(String name);
 byte readByte(int index);
 byte readByte(String name);
 short readShort(int index);
 short readShort(String name);
 int readInt(int index);
 int readInt(String name);
 int readInt(int index, int defaultValue);
 int readInt(String name, int defaultValue);
 long readLong(int index);
 long readLong(String name);
 long readLong(int index, long defaultValue);
 long readLong(String name, long defaultValue);
 float readFloat(int index);
 float readFloat(String name);
 double readDouble(int index);
 double readDouble(String name);
 BigDecimal readBigDecimal(int index);
 BigDecimal readBigDecimal(String name);
 BigDecimal readBigDecimal(int index, BigDecimal defaultValue);
 BigDecimal readBigDecimal(String name, BigDecimal defaultValue);
 Date readDate(int index);
 Date readDate(String name);
 Date readDate(int index, Date defaultValue);
 Date readDate(String name, Date defaultValue);
 Date readDate(int index, String pattern);
 Date readDate(String name, String pattern);
 Date readDate(int index, String pattern, Date defaultValue);
 Date readDate(String name, String pattern, Date defaultValue);
 int getFieldCount();
 Properties getProperties();
}

 ■ Note Unlike the JdBC ResultSet, which begins indexing columns at 1, the index used by spring Batch’s
FieldSet is zero based.

Chapter 7 ■ Itemreaders

167

To put the CustomerFieldSetMapper to use, you need to update the configuration to use it. Replace the
BeanWrapperFieldSetMapper reference with your own bean reference, as shown in Listing 7-16.

Listing 7-16. customerFileReader Configured with the CustomerFieldSetMapper

...
@Bean
@StepScope
public FlatFileItemReader<Customer> customerItemReader(@Value("#{jobParameters
['customerFile']}")Resource inputFile) {
 return new FlatFileItemReaderBuilder<Customer>()
 .name("customerItemReader")
 .delimited()
 .names(new String[] {"firstName",
 "middleInitial",
 "lastName",
 "addressNumber",
 "street",
 "city",
 "state",
 "zip"})
 .fieldSetMapper(new CustomerFieldSetMapper())
 .resource(inputFile)
 .build();
}
...

Note that with your new CustomerFieldSetMapper, you don’t need to configure the reference to the
Customer bean. Since you handle the instantiation yourselves, this is no longer needed.

Parsing files with the standard Spring Batch parsers, as you have shown, requires nothing more than a
few lines of Java. However, not all files consist of Unicode characters laid out in a format that is easy for Java
to understand. When dealing with legacy systems, it’s common to come across data storage techniques that
require custom parsing. In the next section, you will look at how to implement your own LineTokenizer to
be able to handle custom file formats.

Custom Record Parsing
In the previous section you looked at how to address the ability to tweak the mapping of fields in your file
to the fields of your domain object by creating a custom FieldSetMapper implementation. However, that is
not the only option. Instead, you can create your own LineTokenizer implementation. This will allow you to
parse each record however you need.

Like the FieldSetMapper interface, the org.springframework.batch.item.file.transform.
LineTokenizer interface has a single method: tokenize. Listing 7-17 shows the LineTokenizer interface.

Listing 7-17. LineTokenizer Interface

package org.springframework.batch.item.file.transform;

public interface LineTokenizer {

 FieldSet tokenize(String line);
}

Chapter 7 ■ Itemreaders

168

For this approach you will use the same delimited input file you used previously; however, since the
domain object has the address number and the street combined into a single field, you will combine those
two tokens into a single field in the FieldSet. Listing 7-18 shows the CustomerFileLineTokenizer.

Listing 7-18. CustomerFileLineTokenizer

...
public class CustomerFileLineTokenizer implements LineTokenizer {

 private String delimiter = ",";
 private String[] names = new String[] {"firstName",
 "middleInitial",
 "lastName",
 "address",
 "city",
 "state",
 "zipCode"};

 private FieldSetFactory fieldSetFactory = new DefaultFieldSetFactory();

 public FieldSet tokenize(String record) {

 String[] fields = record.split(delimiter);

 List<String> parsedFields = new ArrayList<>();

 for (int i = 0; i < fields.length; i++) {
 if (i == 4) {
 parsedFields.set(i - 1,
 parsedFields.get(i - 1) + " " + fields[i]);
 } else {
 parsedFields.add(fields[i]);
 }
 }

 return fieldSetFactory.create(parsedFields.toArray(new String [0]),
 names);
 }
}

The tokenize(String line) method of the CustomerFileLineTokenizer takes each record and
splits it based upon the delimiter that was configured with Spring. You loop through the fields, combining
the third and fourth fields together so that they are a single field. You then create a FieldSet using the
DefaultFieldSetFactory, passing it the one required parameter (an array of values to be your fields) and
one optional parameter (an array of names for the fields). This LineTokenizer names your fields so that
you can use the BeanWrapperFieldSetMapper to do your FieldSet to domain object mapping without any
additional code.

Configuring the CustomerFileLineTokenizer is similar to how we configured our custom
FieldSetMapper by removing the other configuration and replacing it with a single method call. Listing 7-19
shows the updated configuration.

Chapter 7 ■ Itemreaders

169

Listing 7-19. Configuring the CustomerFileLineTokenizer

...
@Bean
@StepScope
public FlatFileItemReader<Customer> customerItemReader(@Value("#{jobParameters['customer
File']}")Resource inputFile) {
 return new FlatFileItemReaderBuilder<Customer>()
 .name("customerItemReader")
 .lineTokenizer(new CustomerFileLineTokenizer())
 .fieldSetMapper(new CustomerFieldSetMapper())
 .resource(inputFile)
 .build();
}
...

The sky’s the limit with what you can do with your own LineTokenizer and FieldSetMapper. Other uses
for custom LineTokenizers could include

•	 Parsing unusual file formats

•	 Parsing third party file formats like Microsoft’s Excel Worksheets

•	 Handling special type conversion requirements

However, not all files are as simple as the customer one you have been working with. What if your
file contains multiple record formats? The next section will discuss how Spring Batch can choose the
appropriate LineTokenizer to parse each record it comes across.

Multiple Record Formats
Up to this point you have been looking at a customer file that contains a collection of customer records.
Each record in the file has the exact same format. However, what if you received a file that had customer
information as well as transaction information? Yes, you could implement a single custom LineTokenizer.
However, there are two issues with this approach:

 1. Complexity: If you have a file that has three, four, five, or more line formats—each
with a large number of fields—this single class can get out of hand quickly.

 2. Separation of concerns: The LineTokenizer is intended to parse a record. That’s
it. It should not need to determine what the record type is prior to the parsing.

With this in mind, Spring Batch provides another LineMapper implementation: the org.
springframework.batch.item.file.mapping.PatternMatchingCompositeLineMapper. The previous
examples used the DefaultLineMapper, which provided the ability to use a single LineTokenizer and a
single FileSetMapper. With the PatternMatchingCompositeLineMapper, you will be able to define a Map of
LineTokenizers and a corresponding Map of FieldSetMappers. The key for each Map will be a pattern that
the LineMapper will use to identify which LineTokenizer to use to parse each record.

Let’s start this example by looking at the updated input file. In this case, you still have the same
customer records. However, interspersed between each customer record is a random number of transaction
records. To help identify each record, you have added a prefix to each record. Listing 7-20 shows the updated
input file.

Chapter 7 ■ Itemreaders

170

Listing 7-20. The Updated customerInputFile

CUST,Warren,Q,Darrow,8272 4th Street,New York,IL,76091
TRANS,1165965,2011-01-22 00:13:29,51.43
CUST,Ann,V,Gates,9247 Infinite Loop Drive,Hollywood,NE,37612
CUST,Erica,I,Jobs,8875 Farnam Street,Aurora,IL,36314
TRANS,8116369,2011-01-21 20:40:52,-14.83
TRANS,8116369,2011-01-21 15:50:17,-45.45
TRANS,8116369,2011-01-21 16:52:46,-74.6
TRANS,8116369,2011-01-22 13:51:05,48.55
TRANS,8116369,2011-01-21 16:51:59,98.53

In the file shown in Listing 7-20, you have two comma-delimited formats. The first consists of the
standard customer format you have been working with up to now with the concatenated address number
and street. These records are indicated with the prefix CUST. The other records are transaction records; each
of these records, prefixed with the TRANS, prefix, are also comma delimited, with the following three fields:

 1. Account number: The customer’s account number.

 2. Date: The date the transaction occurred. The transactions may or may not be in
date order.

 3. Amount: The amount in dollars for the transaction. Negative values symbolize
debits and positive amounts symbolize credits.

Listing 7-21 shows the code for the Transaction domain object.

Listing 7-21. Transaction Domain Object Code

...
public class Transaction {

 private String accountNumber;
 private Date transactionDate;
 private Double amount;

 private DateFormat formatter = new SimpleDateFormat("MM/dd/yyyy");

 // Getters and setters are omitted
 @Override
 public String toString() {
 return "Transaction{" +
 "accountNumber='" + accountNumber + '\" +
 ", transactionDate=" + transactionDate +
 ", amount=" + amount +
 '}';
 }

}

With the record formats identified, you can look at the reader. Listing 7-22 shows the configuration for
the updated customerFileReader. As mentioned, using the PatternMatchingCompositeLineMapper, you
map two instances of the DelimitedLineTokenizer, each with the correct record format configured. You’ll
notice that you have an additional field named prefix for each of the LineTokenizers. This is to address the

Chapter 7 ■ Itemreaders

171

string at the beginning of each record (CUST and TRANS). Spring Batch will parse the prefix and name it prefix
in your FieldSet; however, since you don’t have a prefix field in either of your domain objects, it will be
ignored in the mapping.

Listing 7-22. Configuring the customerFileReader with Multiple Record Formats

...
@Bean
@StepScope
public FlatFileItemReader customerItemReader(
 @Value("#{jobParameters['customerFile']}")Resource inputFile) {

 return new FlatFileItemReaderBuilder<Customer>()
 .name("customerItemReader")
 .lineMapper(lineTokenizer())
 .resource(inputFile)
 .build();
}

@Bean
public PatternMatchingCompositeLineMapper lineTokenizer() {
 Map<String, LineTokenizer> lineTokenizers = new HashMap<>(2);

 lineTokenizers.put("CUST*", customerLineTokenizer());
 lineTokenizers.put("TRANS*", transactionLineTokenizer());

 Map<String, FieldSetMapper> fieldSetMappers = new HashMap<>(2);

 BeanWrapperFieldSetMapper<Customer> customerFieldSetMapper =
 new BeanWrapperFieldSetMapper<>();
 customerFieldSetMapper.setTargetType(Customer.class);

 fieldSetMappers.put("CUST*", customerFieldSetMapper);
 fieldSetMappers.put("TRANS*", new TransactionFieldSetMapper());

 PatternMatchingCompositeLineMapper lineMappers =
 new PatternMatchingCompositeLineMapper();

 lineMappers.setTokenizers(lineTokenizers);
 lineMappers.setFieldSetMappers(fieldSetMappers);

 return lineMappers;
}

@Bean
public DelimitedLineTokenizer transactionLineTokenizer() {
 DelimitedLineTokenizer lineTokenizer = new DelimitedLineTokenizer();

 lineTokenizer.setNames("prefix", "accountNumber", "transactionDate", "amount");

 return lineTokenizer;
}

Chapter 7 ■ Itemreaders

172

@Bean
public DelimitedLineTokenizer customerLineTokenizer() {
 DelimitedLineTokenizer lineTokenizer = new DelimitedLineTokenizer();

 lineTokenizer.setNames("firstName",
 "middleInitial",
 "lastName",
 "address",
 "city",
 "state",
 "zip");

 lineTokenizer.setIncludedFields(1, 2, 3, 4, 5, 6, 7);

 return lineTokenizer;
}
 ...

The configuration of the customerFileReader is beginning to get a bit verbose. Let’s walk through what
will actually happen when this reader is executed. If you look at Figure 7-2, you can follow the flow of how
the customerFileReader will process each line.

PatternMatchingCompositeLineMapper

if pattern for customer matches

applyPattern

if pattern for transaction matches

CustomerLineTokenizer TransactionLineTokenizer CustomerFieldSetMapper TransactionFieldSetMapper

tokenize

tokenize

mapFieldSet

mapFieldSet

Figure 7-2. Flow of processing for multiple record formats

As Figure 7-2 shows, the PatternMatchingCompositeLineMapper will look at each record of the file
and apply your pattern to it. If the record begins with CUST,* (where * is zero or more characters), it will
pass the record to the customerLineTokenizer for parsing. Once the record is parsed into a FieldSet, it
will be passed to a FieldSetMapper. In this case, we are using the BeanWrapperFieldSetMapper from the
framework. Because of this and our Customer domain object does not have a prefix field, we want our
tokenizer to skip the prefix field. To do that, we do two things. First, we leave the prefix name out of the list of
field names we configure in the DelimitedLineTokenizer. Second, we provide a list of indices (0 based) of
the fields that we want to include. In our case, we want to include all of the fields except for the prefix.

If the record begins with TRANS,*, it will be passed to the transactionLineTokenizer for parsing with
the resulting FieldSet being passed to the custom transactionFieldSetMapper.

But why do you need a custom FieldSetMapper? It’s necessary for custom-type conversion. By default,
the BeanWrapperFieldSetMapper doesn’t do any special type conversion. The Transaction domain object
consists of an accountNumber field, which is a String; however, the other two fields, transactionDate and
amount, are a java.util.Date and a Double, respectively. Because of this, you will need to create a custom
FieldSetMapper to do the required type conversions. Listing 7-23 shows the TransactionFieldSetMapper.

Chapter 7 ■ Itemreaders

173

Listing 7-23. TransactionFieldSetMapper

package com.apress.springbatch.chapter7;

import org.springframework.batch.item.file.mapping.FieldSetMapper;
import org.springframework.batch.item.file.transform.FieldSet;
import org.springframework.validation.BindException;

public class TransactionFieldSetMapper implements FieldSetMapper<Transaction> {

 public Transaction mapFieldSet(FieldSet fieldSet) {
 Transaction trans = new Transaction();

 trans.setAccountNumber(fieldSet.readString("accountNumber"));
 trans.setAmount(fieldSet.readDouble("amount"));
 trans.setTransactionDate(fieldSet.readDate("transactionDate",
 "yyyy-MM-dd HH:mm:ss"));

 return trans;
 }
}

As you can see, the FieldSet interface, like the ResultSet interface of the JDBC world, provides custom
methods for each data type. In the case of the Transaction domain object, you use the readDouble method
to have the String in your file converted into a java.lang.Double, and you use the readDate method to
parse the String contained in your file into a java.util.Date. For the date conversion, you specify not only
the field’s name but also the format of the date to be parsed.

When you execute the job, you’re able to read in the two different record formats and parse them into
their respective domain objects. A sample of the results of this job is shown in Listing 7-24.

Listing 7-24. Results of Running the copyJob Job with Multiple Record Formats

2019-01-28 22:41:09.812 INFO 60498 --- [main] o.s.batch.core.job.
SimpleStepHandler : Executing step: [copyFileStep]
Customer{firstName='Warren', middleInitial='Q', lastName='Darrow', address='8272 4th
Street', city='New York', state='IL', zipCode='76091'}
Transaction{accountNumber='1165965', transactionDate=Sat Jan 22 00:13:29 CST 2011,
amount=51.43}
Customer{firstName='Ann', middleInitial='V', lastName='Gates', address='9247 Infinite Loop
Drive', city='Hollywood', state='NE', zipCode='37612'}
Customer{firstName='Erica', middleInitial='I', lastName='Jobs', address='8875 Farnam
Street', city='Aurora', state='IL', zipCode='36314'}
Transaction{accountNumber='8116369', transactionDate=Fri Jan 21 20:40:52 CST 2011,
amount=-14.83}
Transaction{accountNumber='8116369', transactionDate=Fri Jan 21 15:50:17 CST 2011,
amount=-45.45}
Transaction{accountNumber='8116369', transactionDate=Fri Jan 21 16:52:46 CST 2011,
amount=-74.6}
Transaction{accountNumber='8116369', transactionDate=Sat Jan 22 13:51:05 CST 2011,
amount=48.55}
Transaction{accountNumber='8116369', transactionDate=Fri Jan 21 16:51:59 CST 2011,
amount=98.53}

Chapter 7 ■ Itemreaders

174

The ability to process multiple records from a single file is a common requirement in batch processing.
However, this example assumes that there was no real relationship between the different records. What if
there is? The next section will look at how to read multiline records into a single item.

Multiline Records
In the last example, you looked at the processing of two different record formats into two different, unrelated
items. However, if you take a closer look at the file format you were using, you can see that the records you
were reading were actually related. While not related by a field in the file, the transaction records are the
transaction records for the customer record above it. Instead of processing each record independently,
doesn’t it make more sense to have a Customer object that has a collection of Transaction objects on it?

To make this work, you will need to perform a small bit of trickery. The examples provided with Spring
Batch use a footer record to identify the true end of a record. Although convenient, many files seen in batch
do not have that trailer record. With your file format, you run into the issue of not knowing when a record is
complete without reading the next row. To get around this, you can implement your own ItemReader that
adds a bit of logic around the customerFileReader you configured in the previous section. Figure 7-3 shows
the flow of logic you will use within your custom ItemReader.

CustomerFileReader

while the next record is not a
customer record

FlatFileItemReader

read

read

return Customer

read

Figure 7-3. CustomerFileReader flow

As Figure 7-3 shows, your read method will begin by determining if a Customer object has already been
read. If it hasn’t, it will attempt to read one from the FlatFileItemReader. Assuming you read a record
(you won’t have read one once you reach the end of the file), you will initialize the transaction List on the
Customer object. While the next record you read is a Transaction, you will add it to the Customer object.

Before we get to the listing for our custom ItemReader implementation, our domain object needs
to change slightly. Instead of two independent domain objects, Customer and Transaction, our new
configuration will use a Customer object that contains a List<Transaction> objects in it. Listing 7-25
illustrates the updated Customer object.

Chapter 7 ■ Itemreaders

175

Listing 7-25. Updated Customer Object

...
public class Customer {

 private String firstName;
 private String middleInitial;
 private String lastName;
 private String address;
 private String city;
 private String state;
 private String zipCode;

 List<Transaction> transactions;

 public Customer() {
 }

 // Getters and setters removed for brevity
 ...
}

With our updated domain object, we can take a look at the implementation of the CustomerFileReader
in Listing 7-26.

Listing 7-26. CustomerFileReader

public class CustomerFileReader implements ItemStreamReader<Customer> {

 private Object curItem = null;

 private ItemStreamReader<Object> delegate;

 public CustomerFileReader(ItemStreamReader<Object> delegate) {
 this.delegate = delegate;
 }

 public Customer read() throws Exception {
 if(curItem == null) {
 curItem = delegate.read();
 }

 Customer item = (Customer) curItem;
 curItem = null;

 if(item != null) {
 item.setTransactions(new ArrayList<>());

 while(peek() instanceof Transaction) {
 item.getTransactions().add((Transaction) curItem);
 curItem = null;
 }
 }

 return item;
 }

Chapter 7 ■ Itemreaders

176

 private Object peek() throws Exception {
 if (curItem == null) {
 curItem = delegate.read();
 }
 return curItem;
 }

 public void close() throws ItemStreamException {
 delegate.close();
 }

 public void open(ExecutionContext arg0) throws ItemStreamException {
 delegate.open(arg0);
 }

 public void update(ExecutionContext arg0) throws ItemStreamException {
 delegate.update(arg0);
 }
}

The CustomerFileReader has two key methods that you should look at. The first is the read() method.
This method is responsible for implementing the logic involved in reading and assembling a single Customer
item including its child transaction records. It does so by reading in a customer record from the file you
are reading. It then reads the related transaction records until the next record is the next customer record.
Once the next customer record is found, the current customer is considered complete and returned by your
ItemReader. This type of logic is called control break logic.

The other method of consequence is the peak method. This method is used to read ahead while still
working on the current Customer. It caches the current record. If the record has been read but not processed,
it will return the same record again. If the record has been processed (indicated to this method by setting
curItem to null), it will read in the next record.1

You should notice that your custom ItemReader does not implement the ItemReader interface. Instead,
it implements on of its subinterfaces, the ItemStreamReader interface. The reason for this is that when
using one of the Spring Batch ItemReader implementations, they handle the opening and closing of the
resource being read as well as maintaining the ExecutionContext as records are being read. However, if
you implement your own, you need to manage that yourself. Since you are just wrapping a Spring Batch
ItemReader (the FlatFileItemReader), you can use it to maintain those resources.

To configure the CustomerFileReader, the only dependency you have is the delegate. The delegate
in this case is the reader that will do the actual reading and parsing work for you. Listing 7-27 shows the
configuration for the CustomerFileReader.

Listing 7-27. CustomerFileReader Configuration

...
@Bean
@StepScope
public FlatFileItemReader customerItemReader(@Value("#{jobParameters['customerFile']}")
Resource inputFile) {

1It is important to note that there is an ItemReader subinterface called the org.springframework.batch.item.
PeekableItemReader<T>. Since the CustomerFileReader does not firmly meet the contract defined by that interface,
here we do not implement it.

Chapter 7 ■ Itemreaders

177

 return new FlatFileItemReaderBuilder()
 .name("customerItemReader")
 .lineMapper(lineTokenizer())
 .resource(inputFile)
 .build();
}

@Bean
public CustomerFileReader customerFileReader() {
 return new CustomerFileReader(customerItemReader(null));
}

@Bean
public PatternMatchingCompositeLineMapper lineTokenizer() {
 Map<String, LineTokenizer> lineTokenizers = new HashMap<>(2);

 lineTokenizers.put("CUST*", customerLineTokenizer());
 lineTokenizers.put("TRANS*", transactionLineTokenizer());

 Map<String, FieldSetMapper> fieldSetMappers = new HashMap<>(2);

 BeanWrapperFieldSetMapper<Customer> customerFieldSetMapper = new
BeanWrapperFieldSetMapper<>();

 customerFieldSetMapper.setTargetType(Customer.class);

 fieldSetMappers.put("CUST*", customerFieldSetMapper);
 fieldSetMappers.put("TRANS*", new TransactionFieldSetMapper());

 PatternMatchingCompositeLineMapper lineMappers = new PatternMatchingCompositeLineMapper();

 lineMappers.setTokenizers(lineTokenizers);
 lineMappers.setFieldSetMappers(fieldSetMappers);

 return lineMappers;
}

@Bean
public DelimitedLineTokenizer transactionLineTokenizer() {
 DelimitedLineTokenizer lineTokenizer = new DelimitedLineTokenizer();

 lineTokenizer.setNames("prefix", "accountNumber", "transactionDate", "amount");

 return lineTokenizer;
}

@Bean
public DelimitedLineTokenizer customerLineTokenizer() {
 DelimitedLineTokenizer lineTokenizer = new DelimitedLineTokenizer();

 lineTokenizer.setNames("prefix", "firstName", "middleInitial", "lastName", "address",
"city", "state", "zip");

Chapter 7 ■ Itemreaders

178

 return lineTokenizer;
}
...

The configuration in Listing 7-27 should look familiar. It’s essentially the exact same as the configuration
you used for multiple record formats (see Listing 7-19). The only addition, as highlighted in bold, is the
configuration of your new CustomerFileReader with its reference to the old ItemReader and renaming the
old ItemReader.

With the new CustomerFileReader wrapping the original ItemReader that did the work, we will need
to update our step to reference the CustomerFileReader as the ItemReader to do the work with. Listing 7-28
shows the updated configuration for our step.

Listing 7-28. copyFileStep

...
@Bean
public Step copyFileStep() {
 return this.stepBuilderFactory.get("copyFileStep")
 .<Customer, Customer>chunk(10)
 .reader(customerFileReader())
 .writer(itemWriter())
 .build();
}
...

For each Customer object, we want to print how many transactions the user has. This will provide
enough detail for you to verify that your reading worked correctly. Given the simple ItemWriter we have
been using, you only need to override the Customer’s toString() method to format the output. Listing 7-29
shows the updated method.

Listing 7-29. Customer’s toString() Method

...
 @Override
 public String toString() {
 StringBuilder output = new StringBuilder();

 output.append(firstName);
 output.append(" ");
 output.append(middleInitial);
 output.append(". ");
 output.append(lastName);

 if(transactions != null&& transactions.size() > 0) {
 output.append(" has ");
 output.append(transactions.size());
 output.append(" transactions.");
 } else {
 output.append(" has no transactions.");
 }

Chapter 7 ■ Itemreaders

179

 return output.toString();
 }
...

With a run of the job, you can see each of your customers and the number of transaction records
you read in. It’s important to note that when reading records in this way, the customer record and all
the subsequent transaction records are considered a single item. The reason for this is that Spring Batch
considers an item to be any object that is returned by the ItemReader. In this case, the Customer object is the
object returned by the ItemReader so it is the item used for things like commit counts, etc. Each Customer
object will be processed once by any configured ItemProcessor you add and once by any configured
ItemWriter. The output from the job configured with the new ItemReaders can be seen in Listing 7-30.

Listing 7-30. Output from Multiline Job

2019-01-28 23:32:17.635 INFO 61271 --- [main] o.s.batch.core.job.
SimpleStepHandler : Executing step: [copyFileStep]
Warren Q. Darrow has 1 transactions.
Ann V. Gates has no transactions.
Erica I. Jobs has 5 transactions.

Multiline records are a common element in batch processing. Although they are a bit more complex
than basic record processing, as you can see from this example, there is still only a minimal amount of actual
code that needs to be written to handle these robust situations.

The last piece of the flat file puzzle is to look at input situations where you read in from multiple files.
This is a common requirement in the batch world and it’s covered in the next section.

Multiple Sources
The examples up to this point have been based around a customer file with transactions for each customer.
Many companies have multiple departments or locations that sell things. Take, for example, a restaurant
chain with restaurants nationwide. Each location may contribute a file with the same format to be processed.
If you were to process each one with a separate writer like you have been up to now, there would be a
number of issues from performance to maintainability. So how does Spring Batch provide for the ability to
read in multiple files with the same format?

Using a similar pattern to the one you just used in the multiline record example, Spring Batch
provides an ItemReader called the MultiResourceItemReader. This reader wraps another ItemReader
like the CustomerFileItemReader did; however, instead of defining the resource to be read as part of
the child ItemReader, a pattern that defines all of the files to be read is defined as a dependency of the
MultiResourceItemReader. Let’s take a look.

You can use the same file format as you did in your multi-record example (as shown in Listing 7-20),
which will allow you to use the same ItemReader configuration you created in the multiline example as
well. However, if you have five of these files with the filenames customerFile1.csv, customerFile2.csv,
customerFile3.csv, customerFile4.csv, and customerFile5.csv, you need to make two small updates.
The first is to the configuration. You need to tweak your configuration to use the MultiResourceItemReader
with the correct resource pattern. Listing 7-31 shows the updated configuration.

Chapter 7 ■ Itemreaders

180

Listing 7-31. Configuration to Process Multiple Customer Files

...
@Bean
@StepScope
public MultiResourceItemReader multiCustomerReader(@Value("#{jobParameters['customerFile']}")
Resource[] inputFiles) {
 return new MultiResourceItemReaderBuilder<>()
 .name("multiCustomerReader")
 .resources(inputFiles)
 .delegate(customerFileReader())
 .build();
}

@Bean
public CustomerFileReader customerFileReader() {
 return new CustomerFileReader(customerItemReader());
}

@Bean
public FlatFileItemReader customerItemReader() {
 return new FlatFileItemReaderBuilder()
 .name("customerItemReader")
 .lineMapper(lineTokenizer())
 .build();
}

@Bean
public PatternMatchingCompositeLineMapper lineTokenizer() {
 Map<String, LineTokenizer> lineTokenizers = new HashMap<>(2);

 lineTokenizers.put("CUST*", customerLineTokenizer());
 lineTokenizers.put("TRANS*", transactionLineTokenizer());

 Map<String, FieldSetMapper> fieldSetMappers = new HashMap<>(2);

 BeanWrapperFieldSetMapper<Customer> customerFieldSetMapper = new
BeanWrapperFieldSetMapper<>();

 customerFieldSetMapper.setTargetType(Customer.class);

 fieldSetMappers.put("CUST*", customerFieldSetMapper);
 fieldSetMappers.put("TRANS*", new TransactionFieldSetMapper());

 PatternMatchingCompositeLineMapper lineMappers = new PatternMatchingCompositeLineMapper();

 lineMappers.setTokenizers(lineTokenizers);
 lineMappers.setFieldSetMappers(fieldSetMappers);

 return lineMappers;
}

Chapter 7 ■ Itemreaders

181

@Bean
public DelimitedLineTokenizer transactionLineTokenizer() {
 DelimitedLineTokenizer lineTokenizer = new DelimitedLineTokenizer();

 lineTokenizer.setNames("prefix", "accountNumber", "transactionDate", "amount");

 return lineTokenizer;
}

@Bean
public DelimitedLineTokenizer customerLineTokenizer() {
 DelimitedLineTokenizer lineTokenizer = new DelimitedLineTokenizer();

 lineTokenizer.setNames("prefix", "firstName", "middleInitial", "lastName", "address",
"city", "state", "zip");

 return lineTokenizer;
}
...

The MultiResourceItemReader takes three main pieces. The first is the name since it is stateful like the
other ItemReader implementations we have looked at up to now. The second is an array of Resource objects.
These are the files to be read in. We can use SpEL to have Spring resolve the array for us as shown in the
example. The final piece is the delegate that will do the actual work for us. In this example, our delegate is
the custom CustomerFileReader we used in the previous section.

In order for the MultiResourceItemReader to do its job, we need to change the configuration for our
FlatFileItemReader as well. In the previous listings, we configured the resource to be read at that point.
However, in this case, the MultiResourceItemReader is going to loop over an array of Resource objects,
injecting a new one as each one is exhausted. Because of that, we need to remove the configuration of the
Resource on our customerItemReader bean as shown in bold in Listing 7-31.

The other change you need to make is to the CustomerFileReader code. Previously, you were able to
use the ItemStreamReader interface as what you implemented and the delegate’s type. However, that won’t
be specific enough this time around. Instead, you are going to need to use one of the ItemStreamResource’s
sub interfaces. The ResourceAwareItemReaderItemStream interface is for any ItemReader that reads its
input from Resources. The reason you will want to make the two changes is that you will need to be able to
inject multiple Resources into the ItemReader.

By implementing org.springframework.batch.item.file.ResourceAwareItemReaderItemStream,
you will be required to add one additional method: setResource(Resource resource). Like the open, close
and update methods of the ItemStream interface, you will just be calling the setResource method on the
delegate in your implementation. The other change you need to make is to have your delegate be of the type
ResourceAwareItemReaderItemStream. Since you are using the FlatFileItemReader as your delegate, you
won’t need to use a different ItemReader as the delegate. The updated code is listed in Listing 7-32.

Listing 7-32. CustomerFileReader

public class CustomerFileReader implements ResourceAwareItemReaderItemStream<Customer> {

 private Object curItem = null;

 private ResourceAwareItemReaderItemStream<Object> delegate;

 public CustomerFileReader(ResourceAwareItemReaderItemStream<Object> delegate) {
 this.delegate = delegate;

Chapter 7 ■ Itemreaders

182

 }

 public Customer read() throws Exception {
 if(curItem == null) {
 curItem = delegate.read();
 }

 Customer item = (Customer) curItem;
 curItem = null;

 if(item != null) {
 item.setTransactions(new ArrayList<>());

 while(peek() instanceof Transaction) {
 item.getTransactions().add((Transaction) curItem);
 curItem = null;
 }
 }

 return item;
 }

 private Object peek() throws Exception {
 if (curItem == null) {
 curItem = delegate.read();
 }
 return curItem;
 }

 public void close() throws ItemStreamException {
 delegate.close();
 }

 public void open(ExecutionContext arg0) throws ItemStreamException {
 delegate.open(arg0);
 }

 public void update(ExecutionContext arg0) throws ItemStreamException {
 delegate.update(arg0);
 }

 @Override
 public void setResource(Resource resource) {
 this.delegate.setResource(resource);
 }
}

The sole difference from a processing standpoint between what is shown in Listing 7-32 and what you
originally wrote in Listing 7-26 is the ability to inject a Resource. This allows Spring Batch to create each of
the files as needed and inject them into the ItemReader instead of the ItemReader itself being responsible
for file management.

Chapter 7 ■ Itemreaders

183

When you run this example with the command java -jar copyJob.jar customerFile=/input/
customerMulitFormat*, Spring Batch will iterate through all of the resources that match your provided
pattern and execute your reader for each file. The output for this job is nothing more than a larger version of
the output from the multiline record example.

Listing 7-33. Output from Multiline Job

Warren Q. Darrow has 1 transactions.
Ann V. Gates has no transactions.
Erica I. Jobs has 5 transactions.
Joseph Z. Williams has 2 transactions.
Estelle Y. Laflamme has 3 transactions.
Robert X. Wilson has 1 transactions.
Clement A. Blair has 1 transactions.
Chana B. Meyer has 1 transactions.
Kay C. Quinonez has 1 transactions.
Kristen D. Seibert has 1 transactions.
Lee E. Troupe has 1 transactions.
Edgar F. Christian has 1 transactions.

It is important to note that when dealing with multiple files like this, Spring Batch provides no added
safety around things like restart. So in this example, if your job started with files customerFile1.csv,
customerFile2.csv, and customerFile3.csv and it were to fail after processing customerFile2.csv, and
you added a customerFile4.csv before it was restated, customerFile4.csv would be processed as part of
this run even though it didn’t exist when the job was first executed. To safeguard against this, it’s a common
practice to have a directory for each batch run. All files that are to be processed for the run go into the
appropriate directory and are processed. Any new files go into a new directory so that they have no impact
on the currently running execution.

I have covered many scenarios involving flat files—from fixed-width records, delimited records, multiline
records, and even input from multiple files. However, flat files are not the only type of files that you are likely to
see. XML, while not the most sexy input format, still represents a large amount of the file-based input you will
see in an enterprise. Let’s see what Spring Batch can do for you when you’re faced with XML files.

XML
When I began talking about file-based processing at the beginning of this chapter, I talked about how
different file formats have differing amounts of metadata that describe the format of the file. Fixed-width
records have the least amount of metadata, requiring the most information about the record format to be
known in advance. XML is at the other end of the spectrum. XML uses tags to describe the data in the file,
providing a full description of the data it contains.

Two XML parsers are commonly used: DOM and SAX. The DOM parser loads the entire file into
memory in a tree structure for navigation of the nodes. This approach is not useful for batch processing due
to the performance implications. This leaves you with the SAX parser. SAX is an event-based parser that fires
events when certain elements are found.

In Spring Batch, you use a StAX parser. Although this is an event-based parser similar to SAX, it has the
advantage of allowing for the ability to parse sections of your document independently. This relates directly
with the item-oriented reading you do. A SAX parser would parse the entire file in a single run; the StAX
parser allows you to read each section of a file that represents an item to be processed at a time.

Chapter 7 ■ Itemreaders

184

Before you look at how to parse XML with Spring Batch, let’s look at a sample input file. To see how
the XML parsing works with Spring Batch, you will be working with the same input: your customer file.
However, instead of the data in the format of a flat file, you will structure it via XML. Listing 7-34 shows a
sample of the input.

Listing 7-34. Customer XML File Sample

<customers>
 <customer>
 <firstName>Laura</firstName>
 <middleInitial>O</middleInitial>
 <lastName>Minella</lastName>
 <address>2039 Wall Street</address>
 <city>Omaha</city>
 <state>IL</state>
 <zipCode>35446</zipCode>
 <transactions>
 <transaction>
 <accountNumber>829433</accountNumber>
 <transactionDate>2010-10-14 05:49:58</transactionDate>
 <amount>26.08</amount>
 </transaction>
 </transactions>
 </customer>
 <customer>
 <firstName>Michael</firstName>
 <middleInitial>T</middleInitial>
 <lastName>Buffett</lastName>
 <address>8192 Wall Street</address>
 <city>Omaha</city>
 <state>NE</state>
 <zipCode>25372</zipCode>
 <transactions>
 <transaction>
 <accountNumber>8179238</accountNumber>
 <transactionDate>2010-10-27 05:56:59</transactionDate>
 <amount>-91.76</amount>
 </transaction>
 <transaction>
 <accountNumber>8179238</accountNumber>
 <transactionDate>2010-10-06 21:51:05</transactionDate>
 <amount>-25.99</amount>
 </transaction>
 </transactions>
 </customer>
</customers>

The customer file is structured as a collection of customer sections. Each of these contains a collection
of transaction sections. Spring Batch parses lines in flat files into FieldSets. When working with XML,
Spring Batch parses XML fragments that you define into your domain objects. What is a fragment? As Figure
7-4 shows, an XML fragment is a block of XML from open to close tag. Each time the specified fragment
exists in your file, it will be considered a single record and converted into an item to be processed.

Chapter 7 ■ Itemreaders

185

In the customer input file, you have the same data at the customer level. You also have a collection of
transaction elements within each customer, representing the list of transactions you put together in the
multiline example previously.

To parse your XML input file, you will use the org.springframework.batch.item.xml.
StaxEventItemReader that Spring Batch provides. To use it, you define a fragment root element name,
which identifies the root element of each fragment considered an item in your XML. In your case, this will
be the customer tag. It also takes a resource, which will be the same your customerFile bean as it has been
previously. Finally, it takes an org.springframework.oxm.Unmarshaller implementation. This will be used
to convert the XML to your domain object. Listing 7-35 shows the configuration of your customerFileReader
using the StaxEventItemReader implementation.

Listing 7-35. customerFileReader Configured with the StaxEventItemReader

...
@Bean
@StepScope
public StaxEventItemReader<Customer> customerFileReader(
 @Value("#{jobParameters['customerFile']}") Resource inputFile) {

 return new StaxEventItemReaderBuilder<Customer>()
 .name("customerFileReader")
 .resource(inputFile)
 .addFragmentRootElements("customer")
 .unmarshaller(customerMarshaller())
 .build();
}
...

Figure 7-4. XML fragments as Spring Batch sees them

Chapter 7 ■ Itemreaders

186

Spring Batch is not picky about the XML binding technology you choose to use. Spring provides
Unmarshaller implementations that use Castor, JAXB, JiBX, XMLBeans, and XStream in their oxm package.
For this example, you will use JAXB .

For your customerMarshaller configuration, you will use the org.springframework.oxm.
jaxb.Jaxb2Marshaller implementation provided by Spring. To use it, we will need to add a few new
dependencies to our project. Listing 7-36 lists out the new dependencies we will need to add JAXB to our
classpath.

Listing 7-36. JAXB Dependencies

...
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-oxm</artifactId>
</dependency>
<dependency>
 <groupId>javax.xml.bind</groupId>
 <artifactId>jaxb-api</artifactId>
 <version>2.2.11</version>
</dependency>
<dependency>
 <groupId>com.sun.xml.bind</groupId>
 <artifactId>jaxb-core</artifactId>
 <version>2.2.11</version>
</dependency>
<dependency>
 <groupId>com.sun.xml.bind</groupId>
 <artifactId>jaxb-impl</artifactId>
 <version>2.2.11</version>
</dependency>
<dependency>
 <groupId>javax.activation</groupId>
 <artifactId>activation</artifactId>
 <version>1.1.1</version>
</dependency>
...

With the dependencies for both JAXB and the Spring components to use it (via the Spring OXM
module), we will need to configure our application to parse the XML. First, we need to add the JAXB
annotations to our domain objects. We have both the Customer and Transaction objects. In order for JAXB
to understand how they map to the tags in the XML, we need to annotate the classes and tell it. For our
Transaction class, we just need to add @XmlType(name = "transaction") to our class. However, for the
Customer class, we need to tell JAXB not only the element to expect (via the @XmlRootElement annotation),
but also we need to explain to the parser how we’ve constructed the transaction collection (that the
collection is wrapped via the <transactions> element and each element within the collection consists of a
<transaction> block). Listing 7-37 illustrates our updated Customer class with the annotations applied.

Chapter 7 ■ Itemreaders

187

Listing 7-37. JAXB Annotations for the Customer Class

...
@XmlRootElement
public class Customer {

 private String firstName;
 private String middleInitial;
 private String lastName;
 private String address;
 private String city;
 private String state;
 private String zipCode;

 private List<Transaction> transactions;

 public Customer() {
 }

 // Other getters and setters were removed for brevity.
// No change to them is required

 @XmlElementWrapper(name = "transactions")
 @XmlElement(name = "transaction")
 public void setTransactions(List<Transaction> transactions) {
 this.transactions = transactions;
 }

 @Override
 public String toString() {
 StringBuilder output = new StringBuilder();

 output.append(firstName);
 output.append(" ");
 output.append(middleInitial);
 output.append(". ");
 output.append(lastName);

 if(transactions != null&& transactions.size() > 0) {
 output.append(" has ");
 output.append(transactions.size());
 output.append(" transactions.");
 } else {
 output.append(" has no transactions.");
 }

 return output.toString();
 }
}

Chapter 7 ■ Itemreaders

188

Once we have configured our domain objects with the appropriate mappings, we can configure the
actual Unmarshaller that the StaxEventItemReader will use to parse each block. Since our annotations on
the domain objects handle the majority of the configuration, we really just need to tell the Jaxb2Marshaller2
what classes to be aware of.

Listing 7-38 shows the code needed to configure our Unmarshaller.

Listing 7-38. Jaxb2Marshaller Configuration

...
@Bean
public Jaxb2Marshaller customerMarshaller() {
 Jaxb2Marshaller jaxb2Marshaller = new Jaxb2Marshaller();

 jaxb2Marshaller.setClassesToBeBound(Customer.class,
 Transaction.class);

 return jaxb2Marshaller;
}
...

The last piece of the puzzle is to configure our step to use this new ItemReader as its source of input.
Listing 7-39 shows the updated code for our step.

Listing 7-39. copyFileStep

...
@Bean
public Step copyFileStep() {
 return this.stepBuilderFactory.get("copyFileStep")
 .<Customer, Customer>chunk(10)
 .reader(customerFileReader(null))
 .writer(itemWriter())
 .build();
}
...

That’s all you need to parse XML into items in Spring Batch! By running this job, you will get the same
output as you did from the multiline record job.

While XML is still found in many enterprises, it is not the serialization format preferred by most these
days. JSON has taken over in many ways as the preferred storage format for data. Spring Batch has you
covered if you need to read JSON. This next section will take a look at the JsonItemReader and its capabilities
for reading JSON documents in a fashion similar to what we just looked at with XML.

JSON
As XML has fallen out of favor by many due to its verbosity, JSON has skyrocketed up as a common
replacement. JSON as a data format is less verbose, yet just as flexible as XML is. The rise in complex
JavaScript-based web front ends ushered in the need for a common mechanism for communicating data

2The Jaxb2Marshaller also implements the Unmarshaller interface which is why we are using it here.

Chapter 7 ■ Itemreaders

189

between back ends and front ends. Once back ends began using JSON for that piece of communication, it
quickly spread into a number of other applications. Because of this, you may see JSON that you need to read
in your batch processing. Fortunately, Spring Batch has an ItemReader that just fits the bill.

The JsonItemReader works with the same concept as the StaxEventItemReader does in that it reads
chunks of JSON and parses them into objects. The JSON document is expected to be a complete JSON
document containing a single array of objects. The parsing that the JsonItemReader does is delegated to an
implementation of the JsonObjectReader interface. This interface is what does the actual parsing from JSON to
an object in a similar manner to how the Unmarshaller parses XML into an object in the StaxEventItemReader.
Out of the box, Spring Batch provides two implementations of the JsonObjectReader interface, one using
Jackson as the parsing engine and one using Gson. For our example, we will use the Jackson implementation.

Before we look at the code, let’s take a look at the input file we will be reading in. It is actually the same
data as we read in from the customer.xml file in the previous section; however, it is represented via JSON
instead. Listing 7-40 shows the file.

Listing 7-40. customer.json

[
 {
 "firstName": "Laura",
 "middleInitial": "O",
 "lastName": "Minella",
 "address": "2039 Wall Street",
 "city": "Omaha",
 "state": "IL",
 "zipCode": "35446",
 "transactions": [
 {
 "accountNumber": 829433,
 "transactionDate": "2010-10-14 05:49:58",
 "amount": 26.08
 }
]
 },
 {
 "firstName": "Michael",
 "middleInitial": "T",
 "lastName": "Buffett",
 "address": "8192 Wall Street",
 "city": "Omaha",
 "state": "NE",
 "zipCode": "25372",
 "transactions": [
 {
 "accountNumber": 8179238,
 "transactionDate": "2010-10-27 05:56:59",
 "amount": -91.76
 },
 {
 "accountNumber": 8179238,
 "transactionDate": "2010-10-06 21:51:05",

Chapter 7 ■ Itemreaders

190

 "amount": -25.99
 }
]
 }
]

To configure our JsonItemReader, we will use the builder that Spring Batch provides to do so. For this file,
we will need to configure three dependencies: a name for restartability, the JsonObjectReader we will be using,
and the Resource to be read in. Other configuration options on this ItemReader include a flag to indicate if
the input must exist (strict, true by default), a flag indicating if state should be saved (saveState, true by
default), the maximum number of items to be read (maxItemCount, Integer.MAX_VALUE by default) and the
currentItemCount (used on restarts). Listing 7-41 illustrates configuring the JsonItemReader to read in our file.

Listing 7-41. JsonItemReader Configuration

...
@Bean
@StepScope
public JsonItemReader<Customer> customerFileReader(
 @Value("#{jobParameters['customerFile']}") Resource inputFile) {

 ObjectMapper objectMapper = new ObjectMapper();
 objectMapper.setDateFormat(new SimpleDateFormat("yyyy-MM-dd hh:mm:ss"));

 JacksonJsonObjectReader<Customer> jsonObjectReader =
 new JacksonJsonObjectReader<>(Customer.class);
 jsonObjectReader.setMapper(objectMapper);

 return new JsonItemReaderBuilder<Customer>()
 .name("customerFileReader")
 .jsonObjectReader(jsonObjectReader)
 .resource(inputFile)
 .build();
}
...

Walking through Listing 7-41, we begin by creating an ObjectMapper instance. This is the main class
that Jackson uses to read and write JSON. In many cases, you won’t need to do this step; however, in our
case we need to specify the format of the dates in our input file. This means that we need to customize the
ObjectMapper instance we will be using. Once we create the ObjectMapper instance and configure the
format for the transactionDate fields in the input file, we can create our JacksonJsonObjectReader. This
class has two dependencies: The first is the class it will be returning (Customer in our case). The second is the
customized ObjectMapper instance we just created. Finally, we can configure our JsonItemReader instance.
We create a new instance of the JsonItemReaderBuilder, configure our name, the JsonObjectReader
instance, the Resource to be read, and call build() to construct our instance.

This is the only change we need to make from the XML-based example.3 If we run the job using the
command java -jar copyJob.jar customerFile=/path/to/customer/customer.json, we see the same
output as we saw when running the XML sample as illustrated in Listing 7-42.

3Jackson is already included on the classpath of a Spring Batch application so there are no dependency updates needed. If
you choose to use Gson, you will need to import that as well.

Chapter 7 ■ Itemreaders

191

Listing 7-42. JsonItemReader Job Output

2019-01-30 23:50:27.012 INFO 10451 --- [main] o.s.b.a.b.JobLauncherCommandLineRu
nner : Running default command line with: [customerFile=/input/customer.json]
2019-01-30 23:50:27.153 INFO 10451 --- [main] o.s.b.c.l.support.
SimpleJobLauncher : Job: [SimpleJob: [name=job]] launched with the following
parameters: [{customerFile=/input/customer.json}]
2019-01-30 23:50:27.222 INFO 10451 --- [main] o.s.batch.core.job.
SimpleStepHandler : Executing step: [copyFileStep]
Laura O. Minella has 1 transactions.
Michael T. Buffett has 2 transactions.
2019-01-30 23:50:27.355 INFO 10451 --- [main] o.s.b.c.l.support.
SimpleJobLauncher : Job: [SimpleJob: [name=job]] completed with the following
parameters: [{customerFile=/input/customer.json}] and the following status: [COMPLETED]

Over the course of this section, you have covered a wide array of file-based input formats. Fixed-length
files, delimited files, and various record configurations as well as XML and JSON are all available to be
handled via Spring Batch with no or very limited coding, as you have seen. However, not all input will come
from a file. Relational databases will provide a large amount of the input for your batch processes. The next
section will cover the facilities that Spring Batch provides for database input.

Database Input
Databases serve as a great source of input for batch processes for a number of reasons. They provide
transactionality built in, they are typically more performant, and they scale better than files. They also
provide better recovery features out of the box than most other input formats. When you consider all of these
and the fact that most enterprise data is stored in relational databases to begin with, your batch processes
will need to be able to handle input from databases. In this section, you will look at some of the facilities that
Spring Batch provide out of the box to handle reading input data from a database including JDBC, Hibernate,
and JPA.

JDBC
In the Java world, database connectivity begins with JDBC. We all go through the pain of writing the JDBC
connection code when we learn it, then quickly forget those lines when we realize that most frameworks
handle things like connections for us. One of the Spring framework’s strengths is encapsulating the pain
points of things like JDBC in ways that allow developers to concentrate only on the business-specific details.

In this tradition, the developers of the Spring Batch framework have extended the Spring framework’s
JDBC functionality with the features that are needed in the batch world. But what are those features and how
has Spring Batch addressed them?

When working with batch processes, the need to process large amounts of data is common. If you have
a query that returns millions of records, you probably don’t want all of that data loaded into memory at once.
However, if you use Spring’s JdbcTemplate, that is exactly what you would get. The JdbcTemplate loops
through the entire ResultSet, mapping every row to the required domain object in memory.

Instead, Spring Batch provides two different methods for loading records one at a time as they are
processed: a cursor and paging. A cursor is implemented via a standard java.sql.ResultSet. When
a ResultSet is opened, every time the next() method is called a batch of records from the database is
returned. This allows records to be streamed from the database on demand, which is the behavior that you
need for a cursor.

Chapter 7 ■ Itemreaders

192

Paging, on the other hand, takes a bit more work. The concept of paging is that you retrieve records from
the database in chunks called pages. Each page is created by its own, independent SQL query. As you read
through each page, a new page is read from the database via a new query. Figure 7-5 shows the difference
between the two approaches.

Database

Cursor

ItemReader Database

Paging

ItemReader1 Row 10 Rows

Figure 7-5. Cursor vs. paging

Figure 7-6. Customer data model

As you can see in Figure 7-5, the first read in the cursor returns a single record and advances the record
you point at to the next record, streaming a single record at a time, whereas in the pagination approach, you
receive 10 records from the database at a time. You will look at both approaches (cursor implementations as
well as paging) for each of the database technologies you will look at. Let’s start with straight JDBC.

JDBC Cursor Processing
For this example, you’ll be using a CUSTOMER table. Using the same fields you have been working with up
to now, you will create a database table to hold the data. Figure 7-6 shows the database model for the new
CUSTOMER table.

To implement a JDBC reader (either cursor-based or page-based), you will need to do two things:
configure the reader to execute the query that is required and create a RowMapper implementation just like
the Spring JdbcTemplate requires to map your ResultSet to your domain object. Before we get into the new
components we need to use, let’s revisit our domain object (Customer) and address the changes we need
to make for it to be compatible with the database table we are using. Listing 7-43 illustrates the Customer
domain object updated for this section.

Chapter 7 ■ Itemreaders

193

Listing 7-43. Customer

...
public class Customer {

 private Long id;

 private String firstName;
 private String middleInitial;
 private String lastName;
 private String address;
 private String city;
 private String state;
 private String zipCode;

 public Customer() {}

 // Getters and setters removed

 @Override
 public String toString() {
 return "Customer{" +
 "id=" + id +
 ", firstName='" + firstName + '\" +
 ", middleInitial='" + middleInitial + '\" +
 ", lastName='" + lastName + '\" +
 ", address='" + address + '\" +
 ", city='" + city + '\" +
 ", state='" + state + '\" +
 ", zipCode='" + zipCode + '\" +
 '}';
 }
}

The Customer object has had all the transaction related code removed as well as any JAXB annotations.
We have also added an id field for the primary key in our database table. With the domain object properly
defined, we can move onto the RowMapper implementation.

A standard piece of the core Spring Framework’s JDBC support, a RowMapper is exactly what it
sounds like. It takes a row from a ResultSet and maps the fields to a domain object. In your case, you
will be mapping the fields of the CUSTOMER table to the Customer domain object. Listing 7-44 shows the
CustomerRowMapper you’ll use for your JDBC implementations.

Listing 7-44. CustomerRowMapper

...
public class CustomerRowMapper implements RowMapper<Customer> {

 @Override
 public Customer mapRow(ResultSet resultSet, int rowNumber) throws
 SQLException {
 Customer customer = new Customer();

Chapter 7 ■ Itemreaders

194

 customer.setId(resultSet.getLong("id"));
 customer.setAddress(resultSet.getString("address"));
 customer.setCity(resultSet.getString("city"));
 customer.setFirstName(resultSet.getString("firstName"));
 customer.setLastName(resultSet.getString("lastName"));
 customer.setMiddleInitial(resultSet.getString("middleInitial"));
 customer.setState(resultSet.getString("state"));
 customer.setZipCode(resultSet.getString("zipCode"));

 return customer;
 }
}

With the ability to map your query results to a domain object, you need to be able to execute a query by
opening a cursor to return results on demand. To do that, you will use Spring Batch’s org.springframework.
batch.item.database.JdbcCursorItemReader. This ItemReader opens a cursor (by creating a ResultSet)
and have a row mapped to a domain object each time the read method is called by Spring Batch. To
configure the JdbcCursorItemReader, you provide a minimum of three dependencies: a DataSource, the
query you want to run, and your RowMapper implementation. Listing 7-45 shows the configuration for your
customerItemReader.

Listing 7-45. JDBC Cursor-Based customerItemReader

...
@Bean
public JdbcCursorItemReader<Customer> customerItemReader(DataSource dataSource) {
 return new JdbcCursorItemReaderBuilder<Customer>()
 .name("customerItemReader")
 .dataSource(dataSource)
 .sql("select * from customer")
 .rowMapper(new CustomerRowMapper())
 .build();
}
...

I should point out that while the rest of the configurations for the job do not need to be changed (the
same ItemWriter will work fine), you will need to update the reference to the customerFileReader in the
copyFileStep to reference your new customerItemReader instead.

With the configuration you have now, each time Spring Batch calls the read() method on the
JdbcCursorItemReader, the database will return a single row to be mapped to your domain object and
processed.

 ■ Note Not all databases stream data in a ResultSet by default. some will attempt to load all of the rows
into memory at once, which can be problematic on larger datasets. special configuration may be needed. refer
to the documentation of your database for details.

To run your job, you use the command: java –jar copyJob. This command will execute your job
generating the same type of output you have in your previous examples.

Chapter 7 ■ Itemreaders

195

Although this example is nice, it lacks one key ingredient. The SQL is hardcoded. I can think of very
few instances where SQL requires no parameters. Using the JdbcCursorItemReader, you use the same
functionality to set parameters in your SQL as you would using the JdbcTemplate and a PreparedStatement.
To do this, you need to use an org.springframework.jdbc.core.PreparedStatementSetter
implementation. A PreparedStatementSetter is similar to a RowMapper; however, instead of mapping a
ResultSet row to a domain object, you are mapping parameters to your SQL statement. You can write your
own, however Spring is nice enough to provide a few useful implementations for you. The one we will use is
the ArgumentPreparedStatementSetter found in Spring Framework. This instance takes an array of objects.
If the objects are not of type SqlParameterValue, then the objects are set as the values (in order of the array)
on the PreaparedStatement (where the ? is in the SQL statement). If the values are SqlParameterValue
instances, that type provides more metadata on what to do with the value (what index to set it at, what type
it is, etc.) and Spring will obey its wishes. Listing 7-46 shows the updated configuration with both the reader
builder and the ArgumentPreparedStatementSetter configurations.

Listing 7-46. Processing Only Customers by a Given City

...
@Bean
public JdbcCursorItemReader<Customer> customerItemReader(DataSource dataSource) {
 return new JdbcCursorItemReaderBuilder<Customer>()
 .name("customerItemReader")
 .dataSource(dataSource)
 .sql("select * from customer where city = ?")
 .rowMapper(new CustomerRowMapper())
 .preparedStatementSetter(citySetter(null))
 .build();
}

@Bean
@StepScope
public ArgumentPreparedStatementSetter citySetter(
 @Value("#{jobParameters['city']}") String city) {

 return new ArgumentPreparedStatementSetter(new Object [] {city});
}
...

This job is executed using a command that includes the job parameter city=Chicago. The full
command being java -jar copyJob.jar city=Chicago. The results of the job are only the customers with
an address in Chicago are displayed as shown in Listing 7-47.

Listing 7-47. Customers in Chicago

...
2019-01-31 22:31:41.939 INFO 33800 --- [main] o.s.b.c.l.support.
SimpleJobLauncher : Job: [SimpleJob: [name=job]] launched with the following
parameters: [{city=Chicago}]
2019-01-31 22:31:41.995 INFO 33800 --- [main] o.s.batch.core.job.
SimpleStepHandler : Executing step: [copyFileStep]
Customer{id=297, firstName='Hermione', middleInitial='K', lastName='Kirby',
address='599-9125 Et St.', city='Chicago', state='IL', zipCode='95546'}

Chapter 7 ■ Itemreaders

196

Customer{id=831, firstName='Oren', middleInitial='Y', lastName='Benson', address='P.O. Box
201, 1204 Sed St.', city='Chicago', state='IL', zipCode='91416'}
2019-01-31 22:31:42.063 INFO 33800 --- [main] o.s.b.c.l.support.
SimpleJobLauncher : Job: [SimpleJob: [name=job]] completed with the following
parameters: [{city=Chicago}] and the following status: [COMPLETED]
...

With the ability to not only stream items from the database but also inject parameters into your queries,
this approach is useful in the real world. There are good and bad things about this approach. It can be a
good thing to stream records in certain cases; however, when processing a million rows, the individual
network overhead for each request can add up. Add to that, a ResultSet is not thread safe which means this
approach cannot be used in a multithreaded environment. All of this leads you to the other option, paging.

JDBC Paged Processing
When working with a paginated approach, Spring Batch returns the result set in chunks called pages. Each
page is a predefined number of records to be returned by the database. It is important to note that when
working with pages, the items your job will process will still be processed individually. There is no difference
in the processing of the records. What differs is the way they are retrieved from the database. Instead of
retrieving records one at a time via a single SQL query, paging will execute a new query for each page,
loading only those rows into memory at a time. In this section, you’ll update your configuration to return a
page of 10 records in a page.

In order for paging to work, you need to be able to query based on a page size and page number
(the number of records to return and which page you are currently processing). For example, if your total
number of records is 10,000 and your page size is 100 records, you need to be able to specify that you
are requesting the 20th page of 100 records (or records 2,000 through 2100). To do this, you provide an
implementation of the org.springframework.batch.item.database.PagingQueryProvider interface to
the JdbcPagingItemReader. The PagingQueryProvider interface provides all of the functionality required to
navigate a paged ResultSet.

Unfortunately, each database offers its own paging implementation. Because of this, you have the
following two options:

 1. Configure a database-specific implementation of the PagingQueryProvider.
As of this writing, Spring Batch provides implementations for DB2, Derby, H2,
HSql, MySQL, Oracle, Postgres, SqlServer, and Sybase.

 2. Configure your reader to use the org.springframework.batch.item.database.
support.SqlPagingQueryProviderFactoryBean. This factory detects what
database implementation to use.

Since using the SqlPagingQueryProviderFactoryBean will usually provide us with what we want by
autodetecting what database platform you are using and returning the appropriate PagingQueryProvider,
we will use it for our examples.

To configure the JdbcPagingItemReader, you have four dependencies: a DataSource, the
PagingQueryProvider implementation, your RowMapper implementation, and the size of your page.
You also have the opportunity to configure your SQL statement’s parameters to be injected by Spring.
Listing 7-48 shows the configuration for the JdbcPagingItemReader.

Chapter 7 ■ Itemreaders

197

Listing 7-48. JdbcPagingItemReader Configuration

...
@Bean
@StepScope
public JdbcPagingItemReader<Customer> customerItemReader(DataSource dataSource,
 PagingQueryProvider queryProvider,
 @Value("#{jobParameters['city']}") String city) {

 Map<String, Object> parameterValues = new HashMap<>(1);
 parameterValues.put("city", city);

 return new JdbcPagingItemReaderBuilder<Customer>()
 .name("customerItemReader")
 .dataSource(dataSource)
 .queryProvider(queryProvider)
 .parameterValues(parameterValues)
 .pageSize(10)
 .rowMapper(new CustomerRowMapper())
 .build();
}

@Bean
public SqlPagingQueryProviderFactoryBean pagingQueryProvider(DataSource dataSource) {
 SqlPagingQueryProviderFactoryBean factoryBean = new SqlPagingQueryProviderFactoryBean();

 factoryBean.setDataSource(dataSource);
 factoryBean.setSelectClause("select *");
 factoryBean.setFromClause("from Customer");
 factoryBean.setWhereClause("where city = :city");
 factoryBean.setSortKey("lastName");

 return factoryBean;
}

As you can see, to configure your JdbcPagingItemReader, you provide it a DataSource,
PagingQueryProvider, the parameters to be injected into your SQL, the size of each page, and the RowMapper
implementation that will be used to map your results.

Within the PagingQueryProvider’s configuration, you provide five pieces of information. The first three
are the different pieces of your SQL statement: the select clause, the from clause, and the where clause of your
statement. The next property you set is the sort key. It is important to sort your results when paging since instead
of a single query being executed and the results being streamed, a paged approach will typically execute a query
for each page. In order for the record order to be guaranteed across query executions, an order by is required
and is applied to the generated SQL statement for any fields that are listed in the sortKey. It is important that
this sort key is also required to be unique within the ResultSet. The reason for this is that the sort key is the field
that Spring Batch uses during its creation of the SQL query to execute. Finally, you have a DataSource reference.
You may wonder why you need to configure the DataSource in both the SqlPagingQueryProviderFactoryBean
and the JdbcPagingItemReader. The SqlPagingQueryProviderFactoryBean uses the DataSource to determine
what type of database it’s working with. You can configure the database type explicitly if you want as well via the
setDatabaseType(String databaseType) method. From there, it provides the appropriate implementation of
the PagingQueryProvider to be used for your reader.

Chapter 7 ■ Itemreaders

198

The use of parameters in a paging context is different than it is in the previous cursor example. Instead
of creating a single SQL statement with question marks as parameter placeholders, you build your SQL
statement in pieces. Within the whereClause string, you have the option of using either the standard
question mark placeholders or you can use the named parameters as I did in the customerItemReader in
Listing 7-48. From there, you can inject the values to be set as a Map in your configuration. In this case, the
city entry in the parameterValues maps to the named parameter city in your whereClause String. If you
wanted to use question marks instead of names, you would use the number of the question mark as the key
for each parameter. With all of the pieces in place, Spring Batch will construct the appropriate query for each
page each time it is required.

As you can see, straight JDBC interaction with a database for reading the items to be processed is
actually quite simple. With not much more than a few lines of Java, you can have a performant ItemReader in
place that allows you to input data to your job. However, JDBC isn’t the only way to access database records.
Object Relational Mapping (ORM) technologies like Hibernate and MyBatis have become popular choices
for data access given their well-executed solution for mapping relational database tables to objects. You will
take a look at how to use Hibernate for data access next.

Hibernate
Hibernate is the leading ORM technology in Java today. Written by Gaven King back in 2001, Hibernate
provides the ability to map the object-oriented model you use in your applications to a relational database.
Hibernate uses XML files or annotations to configure mappings of objects to database tables; it also provides
a framework for querying the database by object. This provides the ability to write queries based on the
object structure with little or no knowledge of the underlying database structure. In this section, you will
look at how to use Hibernate as your method of reading items from a database.

Using Hibernate in batch processing is not as straightforward as it is for web applications. For web
applications, the typical scenario is to use the session in view pattern. In this pattern, the session is opened
as a request comes into the server, all processing is done using the same session, and then the session is
closed as the view is returned to the client. Although this works well for web applications that typically have
small independent interactions, batch processing is different.

For batch processing, if you use Hibernate naively, you would use the normal stateful session
implementation, read from it as you process your items, and write to it as you complete your processing
closing the session once the step is complete. However, as mentioned, the standard session within Hibernate
is stateful. If you are reading a million items, processing them, then writing those same million items, the
Hibernate session will cache the items as they are read and an OutOfMemoryException will occur.

Another issue with using Hibernate as a persistence framework for batch processing is that Hibernate
incurs larger overhead than straight JDBC does. When processing millions of records, every millisecond can
make a big difference.4

Spring Batch’s Hibernate based ItemReaders are developed to do the right thing. They do things like
flushing the Session on commit as well as other features that are related more for batch processing than
web-based use of Hibernate. In environments where Hibernate objects are mapped previously for another
system, it can be an efficient way to get things up and running. Hibernate also does solve the fundamental
issue of mapping objects to database tables in a very robust way. It’s up to you and your requirements to
determine if Hibernate or any ORM tool is right for your job.

4A one millisecond increase per item over the course of a million items can add over 15 minutes of processing time to a
single step.

Chapter 7 ■ Itemreaders

199

Cursor Processing with Hibernate
To use Hibernate with a cursor, you will need to configure the SessionFactory, your Customer mapping, the
HibernateCursorItemReader, and add the Hibernate dependencies to your pom.xml file. Let’s start with
updating your pom.xml file.

Using Hibernate in your job will require the addition of a new dependency, the spring-boot-starter-
jpa dependency. Now this example won’t use JPA for data access directly (we will use the JPA annotations
for data mapping), but since this starter is backed by Hibernate, we’ll get all the Hibernate specific
dependencies as well as all the extra stuff Spring Data JPA does for us (register custom type converters, etc.).
We’ll look at how to use JPA in the next section. Listing 7-49 shows the addition of the starter to our pom.xml.

Listing 7-49. Hibernate Dependencies in POM

...
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
 ...

With the Hibernate framework added to your project, you can map your Customer object to the
Customer table in the database. To keep things simple, you will use Hibernate’s annotations to configure the
mapping. Listing 7-50 shows the updated Customer object mapped to the Customer table.

Listing 7-50. Customer Object Mapped to the Customer Table via Hibernate Annotations

...
@Entity
@Table(name = "customer")
public class Customer {

 @Id
 private Long id;

 @Column(name = "firstName")
 private String firstName;
 @Column(name = "middleInitial")
 private String middleInitial;
 @Column(name = "lastName")
 private String lastName;
 private String address;
 private String city;
 private String state;
 private String zipCode;

 public Customer() {
 }

 @Override
 public String toString() {
 return "Customer{" +
 "id=" + id +

Chapter 7 ■ Itemreaders

200

 ", firstName='" + firstName + '\" +
 ", middleInitial='" + middleInitial + '\" +
 ", lastName='" + lastName + '\" +
 ", address='" + address + '\" +
 ", city='" + city + '\" +
 ", state='" + state + '\" +
 ", zipCode='" + zipCode + '\" +
 '}';
 }
}

The Customer class’s mapping consists of identifying the object as an Entity using the JPA annotation
@Entity, specifying the table the entity maps to using the @Table annotation, and finally identifying the ID for the
table with the @Id tag. All other attributes on the Customer will be mapped automatically by Hibernate since
you have named the columns in the database the same as the attributes in your object. However, we do need
to specify two properties within Spring Boot for this mapping to be applied. Since we are using camel case in
this example and not the conventional underscore notation, we need to use the correct naming strategies for
Hibernate. To do this, we will want to update our application.yml and set the following properties:

•	 spring.jpa.hibernate.naming.implicit-strategy: "org.hibernate.boot.
model.naming.ImplicitNamingStrategyLegacyJpaImpl"

•	 spring.jpa.hibernate.naming.physical-strategy: "org.hibernate.boot.
model.naming.PhysicalNamingStrategyStandardImpl"

With our data object mapped, we need to customize the TransactionManager we’ll use for this
batch job. By default, Spring Batch will give you a DataSourceTransactionManager. However we want a
TransactionManager that will work across regular DataSource connections and a Hibernate Session. Spring
just happens to have something we can use, the HibernateTransactionManager. That being said, we will
need to configure it via a custom implementation of the BatchConfigurer. All we will need to do is override
the DefaultBatchConfigurer.getTransactionManager() method and we should be good to go. Listing 7-51
shows the new BatchConfigurer.

Listing 7-51. HibernateBatchConfigurer

...
@Component
public class HibernateBatchConfigurer extends DefaultBatchConfigurer {

 private DataSource dataSource;
 private SessionFactory sessionFactory;
 private PlatformTransactionManager transactionManager;

 public HibernateBatchConfigurer(DataSource dataSource,
 EntityManagerFactory entityManagerFactory) {

 super(dataSource);
 this.dataSource = dataSource;
 this.sessionFactory = entityManagerFactory.unwrap(SessionFactory.class);
 this.transactionManager = new HibernateTransactionManager(this.sessionFactory);
 }

Chapter 7 ■ Itemreaders

201

 @Override
 public PlatformTransactionManager getTransactionManager() {
 return this.transactionManager;
 }
}

You’ll see that all we needed to do was create our own HibernateTransactionManager and return it
via the overridden getTransactionManager() method. From here, Spring Batch will consume this where
appropriate.5

With all of that configured, you need to actually configure the org.springframework.batch.item.
database.HibernateCusorItemReader. Probably the simplest piece of the puzzle. Listing 7-52 shows using
the HibernateCursorItemReaderBuilder to configure our reader. It takes a name, SessionFactory, query
string, and any parameters for that query.

Listing 7-52. Configuring the HibernateCursorItemReader

...
@Bean
@StepScope
public HibernateCursorItemReader<Customer> customerItemReader(
 EntityManagerFactory entityManagerFactory,
 @Value("#{jobParameters['city']}") String city) {

 return new HibernateCursorItemReaderBuilder<Customer>()
 .name("customerItemReader")
 .sessionFactory(entityManagerFactory.unwrap(SessionFactory.class))
 .queryString("from Customer where city = :city")
 .parameterValues(Collections.singletonMap("city", city))
 .build();
 }
...

In this example, you used an HQL query as your method of querying the database. There are three other
ways to specify the query to execute. Table 7-3 covers all three options.

5With this approach, the log messages will state that a DataSourceTransactionManager is being used. This is a bug in
Spring Batch and is addressed in versions past 4.2.

Table 7-3. Hibernate Query Options

Option Type Description

queryName String This references a named Hibernate query as configured
in your Hibernate configurations.

queryString String This is an HQL query specified in your Spring
configuration.

queryProvider HibernateQueryProvider This provides the ability to programmatically build your
Hibernate Query.

nativeQuery String Used to run a native SQL query and have Hibernate map
the results.

Chapter 7 ■ Itemreaders

202

That’s all that is required to implement the Hibernate equivalent to JdbcCursorItemReader. Executing
this job will output the same output as your previous job.

Paged Database Access with Hibernate
Hibernate, like JDBC, supports both cursor database access as well as paged database access. The only
change required is to specify the HibernatePagingItemReader instead of the HibernateCursorItemReader
in your job configuration class and specify a page size for your ItemReader. Listing 7-53 shows the updated
ItemReader using paged database access with Hibernate.

Listing 7-53. Paging Database Access with Hibernate

...
@Bean
@StepScope
public HibernatePagingItemReader<Customer> customerItemReader (
 EntityManagerFactory entityManagerFactory,
 @Value("#{jobParameters['city']}") String city) {

 return new HibernatePagingItemReaderBuilder<Customer>()
 .name("customerItemReader")
 .sessionFactory(entityManagerFactory.unwrap(SessionFactory.class))
 .queryString("from Customer where city = :city")
 .parameterValues(Collections.singletonMap("city", city))
 .pageSize(10)
 .build();
}
...

Using Hibernate can speed up development of batch processing in situations where the mapping
already exists as well as simplify the mapping of relational data to domain objects. However, Hibernate is not
the only kid on the ORM block. The Java Persistence API (or JPA for short) is the native Java implementation
of ORM persistence. You’ll look at that next.

JPA
JPA or Java Persistence API brings a standardized approach to the object relational mapping (ORM)
space. Hibernate was an early inspiration of JPA and currently implements the JPA specification. However,
Hibernate is not a drop in replacement. JPA does not have a cursor based way to read items for example
which is available in native Hibernate.6 In this example, you will use JPA to provide paged database access
similar to the Hibernate paged example you used previously.

Like most things that Spring Boot touches, configuring JPA when using Spring Boot is actually quite
easy. In fact, we already did it in the Hibernate example previously. Any app that uses the spring-boot-
starter-data-jpa will have all the necessary components required to use JPA with Spring Batch. In fact, we
don’t even need to create a custom BatchConfigurer implementation when using Spring Boot’s starter
because it handles the configuration of the JpaTransactionManager (similar to the Hibernate version) for
us. Since our Hibernate examples used the JPA annotations, we actually don’t need to do anything from a
mapping perspective either.

6JPA 2.2 supports returning a Stream, but semantics make it difficult to use in a Spring Batch use case.

Chapter 7 ■ Itemreaders

203

The only piece of the JPA puzzle we really need to be concerned with is to configure your ItemReader.
As mentioned, JPA does not support cursor database access but it does support paging database access. The
ItemReader will be the org.springframework.batch.item.database.JpaPagingItemReader which uses four
dependencies: the name used as a prefix for entries in the ExecutionContext, the EntityManager provided by
Spring Boot, a query to execute, and in your case, your query has a parameter, so you will inject the value of
the parameter as well. Listing 7-54 shows the customerItemReader configured for JPA database access.

Listing 7-54. customerItemReader with JPA

...
@Bean
@StepScope
public JpaPagingItemReader<Customer> customerItemReader (
 EntityManagerFactory entityManagerFactory,
 @Value("#{jobParameters['city']}") String city) {

 return new JpaPagingItemReaderBuilder<Customer>()
 .name("customerItemReader")
 .entityManagerFactory(entityManagerFactory)
 .queryString("select c from Customer c where c.city = :city")
 .parameterValues(Collections.singletonMap("city", city))
 .build();
}
...

Executing the job as it currently is configured will output all of the customers’ names and addresses
within the city specified at the command line. There’s another way to specify queries in JPA: the Query
object. To use JPA’s Query API, you need to implement the org.springframework.batch.item.database.
orm.JpaQueryProvider interface. The interface, which consists of a createQuery() method and a
setEntityManager(EntityManager em) method is used by the JpaPagingItemReader to obtain the required
Query to be executed. To make things easier, Spring batch provides an abstract base class for you to extend,
the org.springframework.batch.item.database.orm.AbstractJpaQueryProvider. Listing 7-55 shows
what the implementation to return the same query (as configured in Listing 7-54) looks like.

Listing 7-55. CustomerByCityQueryProvider

...
public class CustomerByCityQueryProvider extends AbstractJpaQueryProvider {

 private String cityName;

 public Query createQuery() {
 EntityManager manager = getEntityManager();

 Query query =
 manager.createQuery("select c from Customer " +
 "c where c.city = :city");
 query.setParameter("city", cityName);

 return query;
 }

Chapter 7 ■ Itemreaders

204

 public void afterPropertiesSet() throws Exception {
 Assert.notNull(cityName, "City name is required");
 }

 public void setCityName(String cityName) {
 this.cityName = cityName;
 }
}

For the CustomerByCityQueryProvider, you use the AbstractJpaQueryProvider base class to handle
obtaining an EntityManager for you. From there, you create the JPA query, populate any parameters
in the query and return it to Spring Batch for execution. To configure your ItemReader to use the
CustomerByCityQueryProvider instead of the query string you provided previously, you simply swap the
queryString parameter with the queryProvider parameter, as shown in Listing 7-56.

Listing 7-56. Using the JpaQueryProvider

...
@Bean
@StepScope
public JpaPagingItemReader<Customer> customerItemReader (
 EntityManagerFactory entityManagerFactory,
 @Value("#{jobParameters['city']}") String city) {

 CustomerByCityQueryProvider queryProvider =
 new CustomerByCityQueryProvider();
 queryProvider.setCityName(city);

 return new JpaPagingItemReaderBuilder<Customer>()
 .name("customerItemReader")
 .entityManagerFactory(entityManagerFactory)
 .queryProvider(queryProvider)
 .parameterValues(Collections.singletonMap("city", city))
 .build();
}
...

Using JPA can limit an application’s dependencies on third party libraries while still providing many of
the benefits of ORM libraries like Hibernate.

The last relational database topic we will take a look at in this chapter is how to read from the results of a
stored procedure. This topic is up next.

Stored Procedures
In many enterprises, the relational database is not just a simple place with tables of data. It is an ecosystem
of code that contains complex stored procedures that are used for all kinds of business purposes. While not
the most friendly mechanism for working with a database for the average Java developer, stored procedures
are a well-established tool found in many databases around the world.

What is a stored procedure? A stored procedure is a unit of database specific code that is saved in the
database for future execution by a client of some kind. Not all databases support them, although they are
available in most enterprise grade relational database options.

Chapter 7 ■ Itemreaders

205

Before we can take a look at the configuration of our StoredProcedureItemReader, the component
Spring Batch provides for reading data from a stored procedure, we should look at the stored procedure we
will be using itself. In this case, since we are using MySQL as our database, we will be using MySQL’s syntax
for creating a stored procedure. For our procedure, we will do the same thing as the queries we have been
executing up to now, find all customers by city. Listing 7-57 illustrates the code needed to create our stored
procedure in MySQL.

Listing 7-57. customer_list stored procedure

DELIMITER //

CREATE PROCEDURE customer_list(IN cityOption CHAR(16))
 BEGIN
 SELECT * FROM CUSTOMER
 WHERE city = cityOption;
 END //

DELIMITER ;

To create the stored procedure we need to execute this code before we execute our job. The procedure
we have defined takes one parameter in (cityOption), which is used in the query. By default, the query will
return a ResultSet just like a regular SQL query would. It’s important to note that you cannot just drop that
code into your schema.sql file and expect Spring Boot to run it. You will need to execute the preceding code
from the MySQL command line directly.

With the procedure created, we can take a look at how to configure our ItemReader. It should
look similar to the JdbcCursorItemReader since the design of the class is based on it. They both have
you configure a name, DataSource, RowMapper, and a PreparedStatementSettter. However, instead of
defining the SQL for the query, we configure the StoredProcedureItemReader with the name of the
procedure to call. Since stored procedures can handle more complex parameters we need to do a bit more
mapping for our parameter definitions. The StoredProcedureItemReader takes an array of SqlParameter
objects as the mechanism for defining the parameters the procedure takes. In our case, we will define
a single parameter called cityOption of type VARCHAR. Listing 7-58 illustrates the configuration of the
StoredProcedureItemReader.

Listing 7-58. StoredProcedureItemReader

...
@Bean
@StepScope
public StoredProcedureItemReader<Customer> customerItemReader(DataSource dataSource,
 @Value("#{jobParameters['city']}") String city) {

 return new StoredProcedureItemReaderBuilder<Customer>()
 .name("customerItemReader")
 .dataSource(dataSource)
 .procedureName("customer_list")
 .parameters(new SqlParameter[]{
 new SqlParameter("cityOption", Types.VARCHAR)})
 .preparedStatementSetter(
 new ArgumentPreparedStatementSetter(new Object[] {city}))

Chapter 7 ■ Itemreaders

206

 .rowMapper(new CustomerRowMapper())
 .build();
}
...

Once this application is built and executed, the results are the same as we’ve seen from our previous
relational database examples.

Relational databases hold the lion’s share of the market when it comes to data stores. However, a new
category of data stores has come on strong and that is the NoSQL variants. Spring Data, a project designed
to simplify and provide a consistent programming model across these various datasources forms the
foundation of what we are going to look at next.

Spring Data
According to the Spring Data website, it’s “mission is to provide a familiar and consistent, Spring-based
programming model for data access while still retaining the special traits of the underlying data store.” Spring
Data is not a single project, it represents a portfolio of projects that all have a set of consistent abstractions
(the Repository) while still allowing users to access the unique features of each of the NoSQL and SQL data
stores they support. In this section, we will look at a number of NoSQL data stores and how Spring Batch can
consume data from them with the same declarative I/O style we’ve seen up to this point. We will begin by
looking at MongoDB.

MongoDB
MongoDB’s roots began at a company called 10gen back in 2007. 10gen developed it as part of a platform
product they were working on at the time. The company later released MongoDB as a separate product and
changed their name to MongoDB Inc.

MongoDB was one of the first NoSQL data stores to catch on, but it’s difference from databases that
most enterprise developers were used to and its lack of some traditional enterprise features (like ACID
transactions), made it be considered more of a toy at the time. However, MongoDB has evolved into a
popular document database for the enterprise.

The key feature for MongoDB is that it doesn’t use tables. Instead, each database is made up of one or
more collections. Each of these collections is a grouping of documents (typically JSON or BSON in format).
These collections and documents can be traversed and queried via JavaScript or a JSON-based query
language. This design allows for MongoDB to both be very fast and dynamic in that the schema can change
based on the data you are looking at. Other features MongoDB has include

•	 High availability and scaling: MongoDB has great support for both high availability
via replication and scalability via sharding natively.

•	 Geospatial support: MongoDB’s query language supports queries that are attempting
to determine things like if a point is within particular boundaries.

The MongoItemReader is a paging-based ItemReader in that it takes a query and returns data from the
MongoDB servers in pages. The MongoItemReader takes a few dependencies as requirements:

•	 MongoOperations implementation: A MongoTemplate is required to execute the
queries with.

•	 name: If saveState is true, just like all other stateful Spring Batch components.

Chapter 7 ■ Itemreaders

207

•	 targetType: The Java class to be returned. This is what the document that is returned
will be mapped to.

•	 Either a JSON-based query or a Query instance: The query to be executed.

Other items you can configure include sorts, hints, what fields to include, the MongoDB collection to
query as well as any parameters needed for the query.

For our example, we will take a look at tweet data. Twitter conveniently uses JSON for all its
communication mechanisms, so getting tweet data in JSON format is rather easy. We can obtain a simple
dataset from Github here: https://github.com/ozlerhakan/mongodb-json-files. If we download the
Tweets dataset from this git repository, we can import it into MongoDB using the command mongorestore
-d tweets -c tweets_collection <PATH_TO_YOUR_UNZIPPED_FILE>/dump\ 2/twitter/tweets.bson. This
will create a database called tweets with a collection called tweets_collection. The format of the JSON is
such that within the root is an object called entities. Within that object are four fields: hashtags, symbols,
user_mentions, and urls. The field we care about is hashtags. We will write a query to look for any element
within that array to have the text value of the job parameter we pass in.

The next thing we need to do is add the appropriate dependency for working with MongoDB to our
pom.xml. The dependency we will need is the spring-boot-starter-data-mongodb dependency as shown in
Listing 7-59.

Listing 7-59. Spring Boot Starter for MongoDB

...
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-mongodb</artifactId>
</dependency>
...

With our data loaded and dependencies added, we can query it for a particular hash tag. To query
MongoDB, we will need to configure our MongoItemReader with the following items:

•	 name: used for storing state in the ExecutionContext for restartability. Required if
storeState is true.

•	 targetType: This is the class that each document returned will be deserialized into.
For our use case, a Map will do.

•	 jsonQuery: We want to find any hashtag that is equal to the value we pass in via a job
parameter.

•	 collection: The collection we want to query against. In this case, it will be
tweets_collection.

•	 parameterValues: The values of any parameters in our query (the value of the hash
tag to search for in our case).

•	 sorts: What fields to sort by and in what order. Since MongoItemReader is a paged
ItemReader, output must be sorted.

•	 template: The MongoOperations implementation used to execute the queries
against.

Listing 7-60 illustrates the configuration for the ItemReader and Step used in this job.

https://github.com/ozlerhakan/mongodb-json-files

Chapter 7 ■ Itemreaders

208

Listing 7-60. MongoItemReader

...
@Bean
@StepScope
public MongoItemReader<Map> tweetsItemReader(MongoOperations mongoTemplate,
 @Value("#{jobParameters['hashTag']}") String hashtag) {

 return new MongoItemReaderBuilder<Map>()
 .name("tweetsItemReader")
 .targetType(Map.class)
 .jsonQuery("{ \"entities.hashtags.text\": { $eq: ?0 }}")
 .collection("tweets_collection")
 .parameterValues(Collections.singletonList(hashtag))
 .pageSize(10)
 .sorts(Collections.singletonMap("created_at", Sort.Direction.ASC))
 .template(mongoTemplate)
 .build();
}

@Bean
public Step copyFileStep() {
 return this.stepBuilderFactory.get("copyFileStep")
 .<Map, Map>chunk(10)
 .reader(tweetsItemReader(null, null))
 .writer(itemWriter())
 .build();
}
...

We need to configure one other item before running our job. When we imported our data into
MongoDB, we did so into the tweets database. However, we haven’t told our application that yet. In our
application.yml, we will need to add the property spring.data.mongodb.database: tweets.

Once our application is built, we can run it with the job parameter hashTag=nodejs. On the dataset we
imported, we should see 20 records printed into the console like the ones seen in Figure 7-7.

Figure 7-7. MongoDB output

MongoDB is one of the most popular NoSQL data stores on the market today. However it is not the only
one. MongoDB serves a specific purpose with its document oriented approach. However there are other
approaches to NoSQL data stores. The next reader we will explore is one that allows you to utilize any of
Spring Data’s Repository abstractions.

Chapter 7 ■ Itemreaders

209

Spring Data Repository
Earlier in this section, I quoted the Spring Data’s website as saying that their goal is to provide a consistent
programming model. The main point of this consistency is the Repository abstraction. This abstraction
allows you to do basic create/read/update/delete (CRUD) operations by simply defining an interface that
extends one of the ones provided by Spring Data. This opens up a world of possibilities in that any data
store that has a Spring Data project associated with it can be read via Spring Batch as long as they support
the types of repository mechanisms needed. So, for example, if you needed to read from Apache Cassandra
which does not have native support in Spring Batch, since it does have support in Spring Data for Apache
Cassandra you can just by creating a repository for it.

What is a Spring Data repository though? Spring Data provides the feature where you can define an
interface that extends one of their specific interfaces (the PagingAndSortingRepository for example) and
Spring Data will handle the implementation for you. What is even more interesting is Spring Data provides a
query language for these repositories that is based on the name of the method you define on your interface.
For example, if you wanted to query our Customer table by the city attribute, you would create a method
with the signature public List<Customer> findByCity(String city); This method will be interpreted by
Spring Data and it will generate the appropriate query you need based on the data store you are using.

How Spring Batch fits into this is that Spring Batch takes advantage of Spring Data’s
PagingAndSortingRepository. This Repository interface defines repositories that have the ability to do
both paging and sorting on the data in a standardized way. The RepositoryItemReader utilizes this to
perform paged queries just like it does in the JdbcPagingItemReader or the HibernatePagingItemReader.
The difference here is that this ItemReader can be utilized to query any data store that there is a Spring Data
project for with repository support.

To take a look, we will go back to our JPA example. In that previous example, we queried a
CUSTOMER table by city. To do that, we needed to define our query as a String that we passed into the
JpaPagingItemReader. This time, we will create a repository interface and let Spring Data do the work. The
domain object we will use is the same as shown in Listing 7-50.

Before we define our ItemReader, we need to create a repository that extends
PagingAndSortingRepository. In our case, it will contain a single method for querying our database by city.
The method signature mentioned previously in this section won’t quite work because it does not utilize
the paging mechanisms Spring Data provides. In order to get that functionality to be applied, we need to
modify that signature in two small ways. First we need to add an additional parameter to the method:
org.springframework.data.domain.Pageable. Implementations of this interface encapsulate the
parameters related to requesting a page of data. Specifically, it includes the page size, the offset, the page
number, the sort options, and other mechanisms needed to build the paged query. The other change we
need to make to that method signature is that instead of returning a List<Customer>, we need to return a
org.springframework.data.domain.Page<Customer>. A Page object contains the values from the Pageable
we passed in, as well as the actual data for the specific page. It also contains some metadata about the
dataset based on the query you ran like the total number of elements in the data set (not just the ones in
the current page), an indicator if this page is the first page or the last page, and more. Listing 7-61 shows the
repository interface we will use.

Listing 7-61. CustomerRepository

...
public interface CustomerRepository extends PagingAndSortingRepository<Customer, Long> {

 Page<Customer> findByCity(String city, Pageable pageRequest);
}

Chapter 7 ■ Itemreaders

210

 ■ Note If more than one spring data starter is included in your project, you may need to use the data store
specific interface like JpaRepository to indicate which data store your repository belongs to.

With our repository defined, we can now define our RepositoryItemReader to read data from it. To do
so, we will use the RepositoryItemReaderBuilder passing it the name (for restartability), any arguments
our method requires besides the Pageable parameter, the name of the method to call, the repository
implementation itself, and define any sort we need (we will sort by the customer’s last name in this
example). Listing 7-62 illustrates this configuration.

Listing 7-62. RepositoryItemReader

...
@Bean
@StepScope
public RepositoryItemReader<Customer> customerItemReader(CustomerRepository repository,
 @Value("#{jobParameters['city']}") String city) {

 return new RepositoryItemReaderBuilder<Customer>()
 .name("customerItemReader")
 .arguments(Collections.singletonList(city))
 .methodName("findByCity")
 .repository(repository)
 .sorts(Collections.singletonMap("lastName", Sort.Direction.ASC))
 .build();
}
...

With this code in place, we can execute our job and view the results as shown in Listing 7-63.

Listing 7-63. RepositoryItemReader Job Results

...
2019-02-04 17:17:07.333 INFO 8219 --- [main] o.s.batch.core.job.
SimpleStepHandler : Executing step: [copyFileStep]
2019-02-04 17:17:07.448 INFO 8219 --- [main] o.h.h.i.QueryTranslatorFactoryIniti
ator : HHH000397: Using ASTQueryTranslatorFactory
Customer{id=831, firstName='Oren', middleInitial='Y', lastName='Benson', address='P.O. Box
201, 1204 Sed St.', city='Chicago', state='IL', zipCode='91416'}
Customer{id=297, firstName='Hermione', middleInitial='K', lastName='Kirby',
address='599-9125 Et St.', city='Chicago', state='IL', zipCode='95546'}
2019-02-04 17:17:07.657 INFO 8219 --- [main] o.s.b.c.l.support.
SimpleJobLauncher : Job: [SimpleJob: [name=job]] completed with the following
parameters: [{city=Chicago}] and the following status: [COMPLETED]

Up to this point you have covered various file and database input sources and the variety of ways you
can obtain your input data from them. However, in a world of microservices and APIs direct access to the
data is not always guaranteed. In the next section, you will cover how to obtain data from your existing Java
services.

Chapter 7 ■ Itemreaders

211

Existing Services
Many companies have Java applications (web or otherwise) currently in production. These applications have
gone through strenuous amounts of analysis, development, testing, and bug fixing. The code that comprises
these applications is battle tested and proven to work.

So why can’t you use that code in your batch processes? Let’s use the example that your batch process
requires you to read in Customer objects. However, instead of a Customer object mapping to a single table
or file like it has been up to now, your customer data is spread across multiple tables in multiple databases.
Also, you never physically delete customers; instead you flag them as being deleted. A service to retrieve the
customer objects already exists in your web-based application. How do you use that in your batch process?
In this section you will look at how to call existing Spring services to provide data for your ItemReader.

Back in Chapter 4, you learned about a few adapters that Spring Batch provides for tasklets
to be able to do different things, specifically the org.springframework.batch.core.step.
tasklet.CallableTaskletAdapter, org.springframework.batch.core.step.tasklet.
MethodInvokingTaskletAdapter and the org.springframework.batch.core.step.tasklet.
SystemCommandTasklet. All three of these were used to wrap some other element in a way that Spring Batch
could interact with it. To use an existing service within Spring Batch, the same pattern is used.

In the case of reading input, you will be using the org.springframework.batch.item.adapter.
ItemReaderAdapter. Similarly to the way the RepositoryItemReader takes a reference to the Repository
and the method to call on it, this ItemReader also takes a reference to the service to call and the name of
the method to call as dependencies. You need to keep the following two things in mind when using the
ItemReaderAdapter:

 1. The object returned from each call is the object that will be returned by the
ItemReader. If your service returns a single Customer, then that single Customer
object will be the object passed onto the ItemProcessor and finally the
ItemWriter. If a collection of Customer objects is returned by the service, it will
be passed as a single item to the ItemProcessor and ItemWriter and it will be
your responsibility to iterate over the collection.

 2. Once the input is exhausted, the service method must return a null. This
indicates to Spring Batch that the input is exhausted for this step.

For this example, you will use a service hardcoded to return a Customer object for each call
until the List is exhausted. Once the List is exhausted, null will be returned for every call after. The
CustomerService in Listing 7-64 generates a random list of Customer objects for your use.

Listing 7-64. CustomerService

...
@Component
public class CustomerService {

 private List<Customer> customers;
 private int curIndex;

 private String [] firstNames = {"Michael", "Warren", "Ann", "Terrence",
 "Erica", "Laura", "Steve", "Larry"};
 private String middleInitial = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
 private String [] lastNames = {"Gates", "Darrow", "Donnelly", "Jobs",
 "Buffett", "Ellison", "Obama"};

Chapter 7 ■ Itemreaders

212

 private String [] streets = {"4th Street", "Wall Street", "Fifth Avenue",
 "Mt. Lee Drive", "Jeopardy Lane",
 "Infinite Loop Drive", "Farnam Street",
 "Isabella Ave", "S. Greenwood Ave"};
 private String [] cities = {"Chicago", "New York", "Hollywood", "Aurora",
 "Omaha", "Atherton"};
 private String [] states = {"IL", "NY", "CA", "NE"};

 private Random generator = new Random();

 public CustomerService() {
 curIndex = 0;

 customers = new ArrayList<>();

 for(int i = 0; i < 100; i++) {
 customers.add(buildCustomer());
 }
 }

 private Customer buildCustomer() {
 Customer customer = new Customer();

 customer.setId((long) generator.nextInt(Integer.MAX_VALUE));
customer.setFirstName(

 firstNames[generator.nextInt(firstNames.length - 1)]);
 customer.setMiddleInitial(
 String.valueOf(middleInitial.charAt(
 generator.nextInt(middleInitial.length() - 1))));
 customer.setLastName(
 lastNames[generator.nextInt(lastNames.length - 1)]);
 customer.setAddress(generator.nextInt(9999) + " " +
 streets[generator.nextInt(streets.length - 1)]);
 customer.setCity(cities[generator.nextInt(cities.length - 1)]);
 customer.setState(states[generator.nextInt(states.length - 1)]);
 customer.setZip(String.valueOf(generator.nextInt(99999)));

 return customer;
 }

 public Customer getCustomer() {
 Customer cust = null;

 if(curIndex < customers.size()) {
 cust = customers.get(curIndex);
 curIndex++;
 }

 return cust;
 }
}

Chapter 7 ■ Itemreaders

213

Finally, to use the service you have developed in Listing 7-64, using the ItemReaderAdapter, you
configure your customerItemReader to call the getCustomer method for each item. Listing 7-65 shows the
configuration for this.

Listing 7-65. Configuring the CustomerService and the ItemReaderAdapter to Call It

...
@Bean
public ItemReaderAdapter<Customer> itemReader(CustomerService customerService) {
 ItemReaderAdapter<Customer> adapter = new ItemReaderAdapter<>();

 adapter.setTargetObject(customerService);
 adapter.setTargetMethod("getCustomer");

 return adapter;
}
...

That’s all that is required to use one of your existing services as the source of data for your batch job.
Using existing services can allow you to reuse code that is tested and proven instead of running the risk of
introducing new bugs by rewriting existing processes.

Spring Batch provides a wide array of ItemReader implementations, many of which you have covered
up to now. However, there is no way the developers of the framework can plan for every possible scenario.
Because of this, they provide the facilities for you to create your own ItemReader implementations. The next
section will look at how to implement your own custom ItemReader.

Custom Input
Spring Batch provides readers for just about every type of input Java applications normally face, however if
you are using a form of input that Spring Batch provides an ItemReader, you will need to create one yourself.
Implementing the ItemReader interface’s read() method is the easy part. However, what happens when you
need to be able to restart your reader? How do you maintain state across executions? This section will look at
how to implement an ItemReader that can handle state across executions.

As mentioned, implementing Spring Batch’s ItemReader interface is actually quite simple. In fact, with
a small tweak, you can convert the CustomerService you used in the previous section to an ItemReader. All
you need to do is implement the interface and rename the method getCustomer() to read(). Listing 7-66
shows the updated code.

Listing 7-66. CustomerItemReader

...
public class CustomerItemReader implements ItemReader<Customer> {

 private List<Customer> customers;
 private int curIndex;

 private String [] firstNames = {"Michael", "Warren", "Ann", "Terrence",
 "Erica", "Laura", "Steve", "Larry"};
 private String middleInitial = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
 private String [] lastNames = {"Gates", "Darrow", "Donnelly", "Jobs",
 "Buffett", "Ellison", "Obama"};

Chapter 7 ■ Itemreaders

214

 private String [] streets = {"4th Street", "Wall Street", "Fifth Avenue",
 "Mt. Lee Drive", "Jeopardy Lane",
 "Infinite Loop Drive", "Farnam Street",
 "Isabella Ave", "S. Greenwood Ave"};
 private String [] cities = {"Chicago", "New York", "Hollywood", "Aurora",
 "Omaha", "Atherton"};
 private String [] states = {"IL", "NY", "CA", "NE"};

 private Random generator = new Random();

 public CustomerItemReader () {
 curIndex = 0;

 customers = new ArrayList<Customer>();

 for(int i = 0; i < 100; i++) {
 customers.add(buildCustomer());
 }
 }

 private Customer buildCustomer() {
 Customer customer = new Customer();

 customer.setFirstName(
 firstNames[generator.nextInt(firstNames.length - 1)]);
 customer.setMiddleInitial(
 String.valueOf(middleInitial.charAt(
 generator.nextInt(middleInitial.length() - 1))));
 customer.setLastName(
 lastNames[generator.nextInt(lastNames.length - 1)]);
 customer.setAddress(generator.nextInt(9999) + " " +
 streets[generator.nextInt(streets.length - 1)]);
 customer.setCity(cities[generator.nextInt(cities.length - 1)]);
 customer.setState(states[generator.nextInt(states.length - 1)]);
 customer.setZip(String.valueOf(generator.nextInt(99999)));

 return customer;
 }

 @Override
 public Customer read() {
 Customer cust = null;

 if(curIndex < customers.size()) {
 cust = customers.get(curIndex);
 curIndex++;
 }

 return cust;
 }
}

Chapter 7 ■ Itemreaders

215

Even if you ignore the fact that your CustomerItemReader builds a new list with each run, the
CustomerItemReader as it is written in Listing 7-66 will restart at the beginning of your list each time the job
is executed. Although this will be the behavior you want in many cases, it will not always be the case. Instead,
if there is an error after processing half a million records out of a million, you will want to start over again in
that same chunk.

To provide the ability for Spring Batch to maintain the state of your reader in the JobRepository and
restart your reader where you left off, you need to implement an additional interface, the ItemStream
interface. Shown in Listing 7-67, the ItemStream interface consists of three methods: open, update, and
close.

Listing 7-67. The ItemStream Interface

package org.springframework.batch.item;

public interface ItemStream {

 void open(ExecutionContext executionContext) throws ItemStreamException;
 void update(ExecutionContext executionContext) throws ItemStreamException;
 void close() throws ItemStreamException;
}

Each of the three methods of the ItemStream interface are called by Spring Batch during the execution
of a step. open is called to initialize any required state within your ItemReader. This includes the opening
of any files or database connections as well as restoring state when restarting a job. For example, the open
method could be used to reload the number of records that had been processed so they could be skipped
during the second execution. update is used by Spring Batch as processing occurs to update that state.
Keeping track of how many records or chunks have been processed is a use for the update method. Finally,
the close method is used to close any required resources (close files, etc.).

You will notice that the open and update provide access to the ExecutionContext that you did not have a
handle on in your ItemReader implementation. This is because Spring Batch will use the ExecutionContext
in the open method to provide the previous state of the reader when a job is restarted. It will also use the
update method to learn the current state of the reader (which record you are currently on) as each item is
processed. Finally, the close method is used to clean up any resources used in the ItemStream.

Now you may be wondering how you can use the ItemStream interface for your ItemReader if it
doesn’t have the read method. Short answer: you don’t. Instead we will extend a utility class called org.
springframework.batch.item.ItemStreamSuport. ItemStreamSupport implements ItemStream as well
as provides a utility method getExecutionContextKey(String key) that makes the key unique based
on the name of the component. Listing 7-68 shows your CustomerItemReader updated to extend the
ItemStreamSupport base class.7

Listing 7-68. CustomerItemReader extending ItemStreamSupport

...
public class CustomerItemReader extends ItemStreamSupport implements ItemReader<Customer> {

 private List<Customer> customers;
 private int curIndex;
 private String INDEX_KEY = "current.index.customers";

7For this use case, extending AbstractItemCountingItemStreamItemReader would be more efficient, however this
illustrates the use of the ItemStreamReader interface.

Chapter 7 ■ Itemreaders

216

 private String [] firstNames = {"Michael", "Warren", "Ann", "Terrence",
 "Erica", "Laura", "Steve", "Larry"};
 private String middleInitial = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
 private String [] lastNames = {"Gates", "Darrow", "Donnelly", "Jobs",
 "Buffett", "Ellison", "Obama"};
 private String [] streets = {"4th Street", "Wall Street", "Fifth Avenue",
 "Mt. Lee Drive", "Jeopardy Lane",
 "Infinite Loop Drive", "Farnam Street",
 "Isabella Ave", "S. Greenwood Ave"};
 private String [] cities = {"Chicago", "New York", "Hollywood", "Aurora",
 "Omaha", "Atherton"};
 private String [] states = {"IL", "NY", "CA", "NE"};

 private Random generator = new Random();

 public CustomerItemReader() {
 customers = new ArrayList<>();

 for(int i = 0; i < 100; i++) {
 customers.add(buildCustomer());
 }
 }

 private Customer buildCustomer() {
 Customer customer = new Customer();

 customer.setFirstName(
 firstNames[generator.nextInt(firstNames.length - 1)]);
 customer.setMiddleInitial(
 String.valueOf(middleInitial.charAt(
 generator.nextInt(middleInitial.length() - 1))));
 customer.setLastName(
 lastNames[generator.nextInt(lastNames.length - 1)]);
 customer.setAddress(generator.nextInt(9999) + " " +
 streets[generator.nextInt(streets.length - 1)]);
 customer.setCity(cities[generator.nextInt(cities.length - 1)]);
 customer.setState(states[generator.nextInt(states.length - 1)]);
 customer.setZip(String.valueOf(generator.nextInt(99999)));

 return customer;
 }

 public Customer read() {
 Customer cust = null;

 if(curIndex == 50) {
 throw new RuntimeException("This will end your execution");
 }

 if(curIndex < customers.size()) {
 cust = customers.get(curIndex);

Chapter 7 ■ Itemreaders

217

 curIndex++;
 }

 return cust;
 }

 public void close() throws ItemStreamException {
 }

 public void open(ExecutionContext executionContext) throws ItemStreamException {
 if(executionContext.containsKey(getExecutionContextKey(INDEX_KEY))) {
 int index = executionContext.getInt(getExecutionContextKey(INDEX_KEY));
 if(index == 50) {
 curIndex = 51;
 } else {
 curIndex = index;
 }
 } else {
 curIndex = 0;
 }
 }

 public void update(ExecutionContext executionContext) throws ItemStreamException {
 executionContext.putInt(getExecutionContextKey(INDEX_KEY), curIndex);
 }
}

The bold sections of Listing 7-68 show the updates to the CustomerItemReader. First, the class
was changed to extend the ItemStreamSupport class. Then the close(), open(ExecutionContext
executionContext), and update(ExecutionContext executionContext) methods were added. In the
update method, you add a key value pair to the ExecutionContext that indicates the current record
being processed. The open method will check to see if that value has been set. If it has been set, that
means that this is the restart of your job. In the run method, to force the job to end, you added code to
throw a RuntimeException after the 50th customer. In the open method, if the index being restored is
50, you’ll know it was due to your previous code so you will just skip that record. Otherwise, you’ll try
again. You’ll notice that all references to the key used in the ExecutionContext are passed through the
getExecutionContextKey method provided by the ItemStreamSupport class as well.

The other piece you need to do is configure your new ItemReader implementation. In this case, your
ItemReader has no dependencies, so all you will need to do is define the bean with the correct name (so it is
referred to in your existing copyJob). Listing 7-69 shows the configuration of the CustomerItemReader.

Listing 7-69. CustomerItemReader Configuration

...
@Bean
public CustomerItemReader customerItemReader() {
 CustomerItemReader customerItemReader = new CustomerItemReader();

 customerItemReader.setName("customerItemReader");

 return customerItemReader;
}
...

Chapter 7 ■ Itemreaders

218

That really is it. Now if you execute your job, after you process 50 records, your CustomerItemReader will
throw an Exception causing your job to fail. However, if you look in the BATCH_STEP_EXECUTION_CONTEXT
table of your job repository, you will be happy to see what is listed in Listing 7-70.

Listing 7-70. The Step Execution Context

mysql> select * from BATCH_STEP_EXECUTION_CONTEXT where STEP_EXECUTION_ID = 8495;
+-------------------+---
-----+------------------------+
| STEP_EXECUTION_ID | SHORT_CONTEXT
| SERIALIZED_CONTEXT |
+-------------------+---
-----+------------------------+
| 8495 | {"customerItemReader.current.index.customers":50,"batch.
taskletType":"org.springframework.batch.core.step.item.ChunkOrientedTasklet","batch.
stepType":"org.springframework.batch.core.step.tasklet.TaskletStep"} |
NULL |

Although a bit hard to read, you’ll notice that Spring Batch has saved your commit count in the job
repository. Because of this and your logic to skip the 50th customer the second time around, you can
re-execute your job knowing that Spring Batch will start back where it left off and your writer will skip the
item that caused the error.

Files, databases, services and even your own custom ItemReaders—Spring Batch provides you with a
wide array of input options of which you have truly only scratched the surface here. Unfortunately, not all of
the data you work with in the real world is as pristine as the data you have been working with here. However,
not all errors are ones that need to stop processing. In the next section you will look at some of the ways that
Spring Batch allows you to deal with input errors.

Error Handling
Things can go wrong in any part of a Spring Batch application—on startup, when reading input, processing
input, or writing output. In this section, you will look at ways to handle different errors that can occur during
batch processing.

Skipping Records
When there is an error reading a record from your input, you have a couple different options. First, an
Exception can be thrown that causes processing to stop. Depending on how many records need to be
processed and the impact of not processing this single record, this may be a drastic resolution. Instead,
Spring Batch provides the ability to skip a record when a specified Exception is thrown. This section will
look at how to use this technique to skip records based upon specific Exceptions.

There are two pieces involved in choosing when a record is skipped. The first is under what conditions
to skip the record, specifically what exceptions you will ignore. When any error occurs during the reading
process, Spring Batch throws an exception. In order to determine what to skip, you need to identify what
exceptions to skip.

The second part of skipping input records is how many records you will allow the step to skip before
considering the step execution failed. If you skip one or two records out of a million, not a big deal; however,
skipping half a million out of a million is probably wrong. It’s your responsibility to determine the threshold.

Chapter 7 ■ Itemreaders

219

To actually skip records, all you need to do is tell Spring Batch the exceptions you want to skip and how
many times it’s okay to do so. Say you want to skip the first 10 records that throw any org.springframework.
batch.item.ParseException. Listing 7-71 shows the configuration for this scenario.

Listing 7-71. Configuring to Skip 10 ParseExceptions

@Bean
public Step copyFileStep() {

 return this.stepBuilderFactory.get("copyFileStep")
 .<Customer, Customer>chunk(10)
 .reader(itemReader())
 .writer(outputWriter(null))
 .faultTolerant()
 .skip(ParseException.class)
 .skipLimit(10)
 .build();
}

In this scenario, you have a single exception that you want to be able to skip. However, sometimes this
can be a rather exhaustive list. The configuration in Listing 7-71 allows the skipping of a specific exception,
but it might be easier to configure the ones you don’t want to skip instead of the ones you do. To do this, you
use a combination of the skip(Class exception) method like Listing 7-71 did and the noSkipMethod(Class
exception) method. Listing 7-72 shows how to configure the opposite of your previous example (skipping
all exceptions except for the ParseException).

Listing 7-72. Configuring to Skip All Exceptions Except the ParseException

@Bean
public Step copyFileStep() {

 return this.stepBuilderFactory.get("copyFileStep")
 .<Customer, Customer>chunk(10)
 .reader(itemReader())
 .writer(outputWriter(null))
 .faultTolerant()
 .skip(Exception.class)
 .noSkip(ParseException.class)
 .skipLimit(10)
 .build();
}

The configuration in Listing 7-72 specifies that any Exception that extends java.lang.Exception
except for org.springframework.batch.item.ParseException will be skipped up to 10 times.

There is a third way to specify what Exceptions to skip and how many times to skip them. Spring
Batch provides an interface called org.springframework.batch.core.step.skip.SkipPolicy. This
interface, with its single method shouldSkip, takes the Exception that was thrown and the number of
times records have been skipped. From there, any implementation can determine what Exceptions they
should skip and how many times. Listing 7-73 shows a SkipPolicy implementation that will not allow a
java.io.FileNotFoundException to be skipped but 10 ParseExceptions to be skipped.

Chapter 7 ■ Itemreaders

220

Listing 7-73. FileVerificationSkipper

...
public class FileVerificationSkipper implements SkipPolicy {

 public boolean shouldSkip(Throwable exception, int skipCount)
 throws SkipLimitExceededException {

 if(exception instanceof FileNotFoundException) {
 return false;
 } else if(exception instanceof ParseException && skipCount <= 10) {
 return true;
 } else {
 return false;
 }
 }
}

Skipping records is common practice in batch processing. It allows what is typically a much larger
process than a single record to continue with minimal impact. Once you can skip a record that has an error,
you may want to do something additional like log it for future evaluation. The next section discusses an
approach for just that.

Logging Invalid Records
While skipping problematic records is a useful tool, by itself it can raise an issue. In some scenarios, the
ability to skip a record is okay. Say you are mining data and come across something you can’t resolve;
it’s probably okay to skip it. However, when you get into situations where money is involved, say when
processing transactions, just skipping a record probably will not be a robust enough solution. In cases like
these, it is helpful to be able to log the record that was the cause of the error. In this section, you will look at
using an ItemListener to record records that were invalid.

The ItemReadListener interface consists of three methods: beforeRead(), afterRead(T item), and
onReadError(Exception ex). For the case of logging invalid records as they are read in, you can use the
ItemListenerSupport class and override the onReadError to log what happened or use a POJO with a
method annotated with @OnReadError. It’s important to point out that Spring Batch does a good job building
its Exceptions for file parsing to inform you of what happened and why. On the database side, things are a
little less in the framework’s hands as most of the actual database work is done by other frameworks (Spring
itself, Hibernate, etc.). It is important that as you develop your own processing (custom ItemReaders,
RowMappers, etc.) that you include enough detail for you to diagnose the issue from the Exception itself.

In this example, you will read data in from the Customer file from the beginning of the chapter. When an
Exception is thrown during input, you will log the record that caused the exception and the exception itself.
To do this, the CustomerItemListener will take the exception thrown and if it is a FlatFileParseException,
you will have access to the record that caused the issue and information on what went wrong. Listing 7-74
shows the CustomerItemListener.

Chapter 7 ■ Itemreaders

221

Listing 7-74. CustomerItemListener

...
public class CustomerItemListener {

 private static final Log logger = LogFactory.getLog(CustomerItemListener.class);

 @OnReadError
 public void onReadError(Exception e) {
 if(e instanceof FlatFileParseException) {
 FlatFileParseException ffpe = (FlatFileParseException) e;

 StringBuilder errorMessage = new StringBuilder();
 errorMessage.append("An error occured while processing the " +
 ffpe.getLineNumber() +
 " line of the file. Below was the faulty " +
 "input.\n");
 errorMessage.append(ffpe.getInput() + "\n");

 logger.error(errorMessage.toString(), ffpe);
 } else {
 logger.error("An error has occurred", e);
 }
 }
}

Configuring your listener requires you to update the Step reading the file. In your case, you have only
one step in your copyJob. Listing 7-75 shows the configuration for this listener.

Listing 7-75. Configuring the CustomerItemListener

...
@Bean
public CustomerItemListener customerListener() {
 return new CustomerItemListener ();
}

@Bean
public Step copyFileStep() {
 return this.stepBuilderFactory.get("copyFileStep")
 .<Customer, Customer>chunk(10)
 .reader(customerFileReader(null))
 .writer(outputWriter(null))
 .faultTolerant()
 .skipLimit(100)
 .skip(Exception.class)
 .listener(customerListener())
 .build();
}
 ...

Chapter 7 ■ Itemreaders

222

If you use the fixed-length record job as an example and execute it with a file that contains an input
record longer than 63 characters, an exception will be thrown. However, since you have configured your
job to skip all exceptions that extend Exception, the exception will not affect your job’s results, yet your
customerItemLogger will be called and log the item as required. When you execute this job, you see two
things. The first is a FlatFileParseException for each record that is invalid. The second are your log
messages. Listing 7-76 shows an example of the log messages your job generates on error.

Listing 7-76. Output of the CustomerItemLogger

2011-05-03 23:49:22,148 ERROR main [com.apress.springbatch.chapter7.CustomerItemListener] -
<An error occured while processing the 1 line of the file. Below was the faulty input.
Michael TMinella 123 4th Street Chicago IL60606ABCDE
>

Using nothing more than a good logging framework, you can get the input that failed to parse from the
FlatFileParseException and log it to your log file. However, this by itself does not accomplish your goal of
logging the error record to a file and continuing on. In this scenario, your job will log the record that caused
the issue and fail. In the last section, you will look at how to handle having no input when your jobs run.

Dealing with No Input
A SQL query that returns no rows is not an uncommon occurrence. Empty files exist in many situations.
But do they make sense for your batch process? In this section, you will look at how Spring Batch handles
reading input sources that have no data.

When a reader attempts to read from an input source and a null is returned the first time, by default
this is treated like any other time a reader receives a null; it considers the step complete. While this
approach may work in the majority of the scenarios, you may need to know when a given query returns zero
rows or a file is empty.

If you want to cause your step to fail or take any other action (send an e-mail, etc.) when no input has
been read, you use a StepExecutionListner. In Chapter 4, you used a StepExecutionListner to log the
beginning and end of your step. In this case, you can use the StepExecutionListner’s @AfterStep method
to see how many records were read and react accordingly. Listing 7-77 shows how you would mark a step
failed if no records were read.

Listing 7-77. EmptyInputStepFailer

...
public class EmptyInputStepFailer {

 @AfterStep
 public ExitStatus afterStep(StepExecution execution) {
 if(execution.getReadCount() > 0) {
 return execution.getExitStatus();
 } else {
 return ExitStatus.FAILED;
 }
 }
}

Chapter 7 ■ Itemreaders

223

To configure your listener, you configure it like you would any other StepExecutionListener. Listing 7-78
covers the configuration in this instance.

Listing 7-78. Configuring the EmptyInputStepFailer

...
@Bean
public EmptyInputStepFailer emptyFileFailer() {
 return new EmptyInputStepFailer();
}

@Bean
public Step copyFileStep() {
 return this.stepBuilderFactory.get("copyFileStep")
 .<Customer, Customer>chunk(10)
 .reader(customerFileReader(null))
 .writer(outputWriter(null))
 .listener(emptyFileFailer())
 .build();
}
...

By running a job with this step configured, instead of your job ending with the status COMPLETED if no
input was found, the job will fail, allowing you to obtain the expected input and rerun the job.

Summary
Reading and writing takes up the vast majority of a batch process and, as such, is one of the most important
pieces of the Spring Batch framework. In this chapter, you took a thorough (but not exhaustive) look at the
ItemReader options within the framework. Now that you can read in an item, you need to be able to do
something with it. ItemProcessors, which make things happen, are covered in the next chapter.

225© Michael T. Minella 2019
M. T. Minella, The Definitive Guide to Spring Batch, https://doi.org/10.1007/978-1-4842-3724-3_8

CHAPTER 8

ItemProcessors

In the previous chapter, you learned how to read various types of input using the components of Spring
Batch. While obtaining the input for any piece of software is an important aspect of the project, it doesn’t
mean much if you don’t do something with it. ItemProcessors are the component within Spring Batch
where you do something with your input. In this chapter, you will look at the ItemProcessor interface and
see how you can use it to develop your own processing of batch items.

•	 In the “Introduction to ItemProcessors” section, you will start with a quick overview
of what an ItemProcessor is and how it fits into the flow of a step.

•	 Spring Batch provides utility ItemProcessor implementations like the
ItemProcessorAdapter, which uses existing services as your ItemProcessor
implementation. In the “Using Spring Batch’s ItemProcessors” section, you’ll take
an in-depth look at each of the processors the framework provides.

•	 In many cases, you will want to develop your own ItemProcessor implementation.
In the “Writing Your Own ItemProcessors” section, you will look at different
considerations as you implement an example ItemProcessor.

•	 A common use of an ItemProcessor is to filter out items that were read in by an
ItemReader from being written by the step’s ItemWriter. In the “Filtering Items”
section, you’ll look at an example of how this is accomplished.

Introduction to ItemProcessors
In Chapter 7, you looked at ItemReaders, the input facility you use within Spring Batch. Once you have
received your input, you have two options. The first is to just write it back out as you did in the examples in
that chapter. There are many times when that will make sense. Migrating data from one system to another or
loading data into a database initially are two examples of where reading input and writing it directly without
any additional processing makes sense.

However, in most scenarios, you are going to need to do something with the data you read in. Spring
Batch has broken up the pieces of a step to allow a good separation of concerns between reading, processing,
and writing. Doing this allows you the opportunity to do a couple unique things, such as the following:

•	 Validate input: In the original version of Spring Batch, validation occurred at the
ItemReader by subclassing the ValidatingItemReader class. The issue with this
approach is that none of the provided readers subclassed the ValidatingItemReader
class so if you wanted validation, you couldn’t use any of the included readers.
Moving the validation step to the ItemProcessor allows validation to occur on an
object before processing, regardless of the input method. This makes much more
sense from a division-of-concerns perspective.

https://doi.org/10.1007//978-1-4842-3724-3_8

Chapter 8 ■ ItemproCessors

226

•	 Reuse existing services: Just like the ItemReaderAdapter you looked at in Chapter 7 to
reuse services for your input, Spring Batch provides an ItemProcessorAdapter for
the same reason.

•	 Execute scripts: ItemProcessors can be a great opportunity to plug in logic from
other developers or other teams. However, those other teams may not use the
same Spring based toolset that you and your team does. The ScriptItemProcessor
allows you to execute a script of some kind as an ItemProcessor, providing the
script the item as the input and taking what the script returns as the output.

•	 Chain ItemProcessors: There are situations where you will want to perform multiple
actions on a single item within the same transaction. Although you could write
your own custom ItemProcessor to do all of the logic in a single class, that couples
your logic to the framework, which is something you want to avoid. Instead, Spring
Batch allows you to create a list of ItemProcessors that will be executed in order
against each item.

To accomplish all of this, the org.springframework.batch.item.ItemProcessor interface consists of
a single method process shown in Listing 8-1. It takes an item as read from your ItemReader and returns
another item.

Listing 8-1. ItemProcessor Interface

package org.springframework.batch.item;

public interface ItemProcessor<I, O> {

 O process(I item) throws Exception;
}

It’s important to note that the type the ItemProcessor receives as input does not need to be the same
type it returns. The framework allows for you to read in one type of object and pass it to an ItemProcessor
and have the ItemProcessor return a different type for writing. With this feature, you should note that the
type the final ItemProcessor returns is required to be the type the ItemWriter takes as input. You should
also be aware that if an ItemProcessor returns null, all processing of the item will stop. In other words, any
further ItemProcessors for that item will not be called nor shall the ItemWriter for the step. However, unlike
returning null from an ItemReader, which indicates to Spring Batch that all input has been exhausted,
processing of other items will continue when an ItemProcessor returns null.

 ■ Note an ItemProcessor must be idempotent. an item may be passed through it more than once in fault
tolerant scenarios.

Let’s take a look at how to use ItemProcessors for your jobs. To start, you’ll dig into the ones provided
by the framework.

Chapter 8 ■ ItemproCessors

227

Using Spring Batch’s ItemProcessors
When you looked at the ItemReaders previously, there was a lot of ground to cover regarding what was
provided from Spring Batch because input and output are two relatively standard things. Reading from a file
is the same in most cases. Writing to a database works the same with most databases. However, what you
do to each item differs based on your business requirements. This is really what makes each job different.
Because of this, the framework can only provide you with the facility to either implement your own or wrap
existing logic. This section will cover the ItemProcessor implementations that are included in the Spring
Batch framework.

ValidatingItemProcessor
You’ll start your look at Spring Batch’s ItemProcessor implementations with where you left off in Chapter 7.
Previously, you handled obtaining input for your jobs; however, just because you can read it doesn’t mean
it’s valid. Data validation with regards to types and format can occur within an ItemReader; however,
validation via business rules is best left once the item has been constructed. That’s why Spring Batch
provides an ItemProcessor implementation for validating input called the ValidatingItemProcessor. In
this section, you will look at how to use it to validate your input.

Input Validation
The org.springframework.batch.item.validator.ValidatingItemProcessor is an implementation of the
ItemProcessor interface that allows you to set an implementation of Spring Batch’s Validator interface1 to
be used to validate the incoming item prior to processing. If the item passes validation, it will be processed.
If not, an org.springframework.batch.item.validator.ValidationException is thrown, causing normal
Spring Batch error handling to kick in.

JSR 303 is the Java specification for bean validation. This specification provides a widely accepted
method for validation in the Java ecosystem. The validation performed via the javax.validation.* code is
configured via annotations. There is a collection of annotations that predefine validation functions out of the
box; you also have the ability to create your own validation functions. Let’s start by looking at how you would
validate a Customer class like the one in Listing 8-2.

Listing 8-2. Customer Class

...
public class Customer {
 private String firstName;
 private String middleInitial;
 private String lastName;
 private String address;
 private String city;
 private String state;
 private String zip;

 // Getters & setters go here
...
}

1Although Spring does have a Validator interface of its own, the ValidatingItemProcessor uses one from Spring
Batch instead.

Chapter 8 ■ ItemproCessors

228

If you look at the Customer class in Listing 8-2, you can quickly determine some basic validation rules:

•	 Not null: firstName, lastName, address, city, state, zip.

•	 Alphabetic: firstName, middleInitial, lastName, city, state.

•	 Numeric: zip.

•	 Size: middleInitial should be no longer than one character; state should be no
longer than two characters; and zip should be no longer than five characters.

There are further validations you can perform on the data provided zip is a valid ZIP code for the city
and state. However, this provides you with a good start. Now that you have identified the things you want
to validate, you can describe them to your validator via annotations on the Customer object. Specifically,
you will be using the @NotNull, @Size, and @Pattern annotations for these rules. To use these, we will need
to use a new starter within our projects, spring-boot-starter-validation. This starter brings in the Hibernate
implementation of the JSR-303 validation tooling.

We can begin our work with validation by creating a new project with the dependencies batch, jdbc,
MySQL, and validation from Spring Initalizr. With our new project created, we can add the code from
Listing 8-2 to it as our domain object. Next, we want to apply the preceding validation rules we mentioned
using the JSR-303 annotations. Listing 8-3 shows their use on the Customer object.

Listing 8-3. Customer Object with Validation Annotations

...
public class Customer {

 @NotNull(message="First name is required")
 @Pattern(regexp="[a-zA-Z]+", message="First name must be alphabetical")
 private String firstName;

 @Size(min=1, max=1)
 @Pattern(regexp="[a-zA-Z]", message="Middle initial must be alphabetical")
 private String middleInitial;

 @NotNull(message="Last name is required")
 @Pattern(regexp="[a-zA-Z]+", message="Last name must be alphabetical")
 private String lastName;

 @NotNull(message="Address is required")
 @Pattern(regexp="[0-9a-zA-Z\\.]+")
 private String address;

 @NotNull(message="City is required")
 @Pattern(regexp="[a-zA-Z\\.]+")
 private String city;

 @NotNull(message="State is required")
 @Size(min=2,max=2)
 @Pattern(regexp="[A-Z]{2}")
 private String state;

Chapter 8 ■ ItemproCessors

229

 @NotNull(message="Zip is required")
 @Size(min=5,max=5)
 @Pattern(regexp="\\d{5}")
 private String zip;

 // Accessors go here
...
}

A quick look at the rules defined in Listing 8-3 may make you ask why use both the @Size annotation
and the @Pattern one when the regular expression defined in the @Pattern would satisfy both. You are
correct. However, each annotation allows you to specify a unique error message (if you want); moreover,
being able to identify if the field was the wrong size vs. the wrong format may be helpful in the future.

At this point, you have defined the validation rules you will use for your Customer item. In order to put
this functionality to work, we need to provide a mechanism for Spring Batch to validate each of our items.
The org.springframework.batch.item.validator.BeanValidatingItemProcessor will do that for us. This
ItemProcessor is an extension of the ValidatingItemProcessor that specifically utilizes JSR-303 to provide
the validation.

The ValidatingItemProcessor’s validation capabilities come from its use of a
org.springframework.batch.item.validator.Validator implementation. This interface has a
single method, void validate(T value). This method does nothing if the item is valid and throws
an org.springframework.batch.item.validator.ValidationException if the validation fails. The
BeanValidatingItemProcessor is a special version of this in that it handles the creation of a Validator
object for you that is JSR-303 specific.

 ■ Note the Validator interface included in the spring Batch framework is not the same as the Validator
interface that is part of the core spring framework. spring Batch provides an adapter class, SpringValidator,
to handle the differences.

Let’s see how all of this works together by creating a job to put them to use. Your job will read
a comma-delimited file into your Customer object, which will then be validated as part of the
BeanValidatingItemProcessor and written out to a csv, as you did in Chapter 7. To start, Listing 8-4 shows
an example of the input you will process.

Listing 8-4. customer.csv

Richard,N,Darrow,5570 Isabella Ave,St. Louis,IL,58540
Barack,G,Donnelly,7844 S. Greenwood Ave,Houston,CA,38635
Ann,Z,Benes,2447 S. Greenwood Ave,Las Vegas,NY,55366
Laura,9S,Minella,8177 4th Street,Dallas,FL,04119
Erica,Z,Gates,3141 Farnam Street,Omaha,CA,57640
Warren,L,Darrow,4686 Mt. Lee Drive,St. Louis,NY,94935
Warren,M,Williams,6670 S. Greenwood Ave,Hollywood,FL,37288
Harry,T,Smith,3273 Isabella Ave,Houston,FL,97261
Steve,O,James,8407 Infinite Loop Drive,Las Vegas,WA,90520
Erica,Z,Neuberger,513 S. Greenwood Ave,Miami,IL,12778
Aimee,C,Hoover,7341 Vel Avenue,Mobile,AL,35928
Jonas,U,Gilbert,8852 In St.,Saint Paul,MN,57321
Regan,M,Darrow,4851 Nec Av.,Gulfport,MS,33193
Stuart,K,Mckenzie,5529 Orci Av.,Nampa,ID,18562
Sydnee,N,Robinson,894 Ornare. Ave,Olathe,KS,25606

Chapter 8 ■ ItemproCessors

230

Note that on line 4 of your input the middle initial field is 9S, which is invalid. This should cause
your validation to fail at this point. With your input file defined, you can configure the job. The job
you will be running will consist of a single step that reads in the input, passes it to an instance of the
ValidatingItemProcessor, and then writes it to standard out. Listing 8-5 shows the configuration for the job.

Listing 8-5. ValidationJob

...
@EnableBatchProcessing
@SpringBootApplication
public class ValidationJob {

 @Autowired
 public JobBuilderFactory jobBuilderFactory;

 @Autowired
 public StepBuilderFactory stepBuilderFactory;

 @Bean
 @StepScope
 public FlatFileItemReader<Customer> customerItemReader(
 @Value("#{jobParameters['customerFile']}")Resource inputFile) {

 return new FlatFileItemReaderBuilder<Customer>()
 .name("customerItemReader")
 .delimited()
 .names(new String[] {"firstName",
 "middleInitial",
 "lastName",
 "address",
 "city",
 "state",
 "zip"})
 .targetType(Customer.class)
 .resource(inputFile)
 .build();
 }

 @Bean
 public ItemWriter<Customer> itemWriter() {
 return (items) -> items.forEach(System.out::println);
 }

 @Bean
 public BeanValidatingItemProcessor<Customer> customerValidatingItemProcessor() {
 return new BeanValidatingItemProcessor<>();
 }

 @Bean
 public Step copyFileStep() {

Chapter 8 ■ ItemproCessors

231

 return this.stepBuilderFactory.get("copyFileStep")
 .<Customer, Customer>chunk(5)
 .reader(customerItemReader(null))
 .processor(customerValidatingItemProcessor())
 .writer(itemWriter())
 .build();
 }

 @Bean
 public Job job() throws Exception {

 return this.jobBuilderFactory.get("job")
 .start(copyFileStep())
 .build();
 }

 public static void main(String[] args) {
 SpringApplication.run(ValidationJob.class, "customerFile=/input/customer.csv");
 }
}

To walk through the ValidationJob class listed in Listing 8-5, let’s start with definitions of the input file
and the reader. This reader is a simple delimited file reader that maps the fields of the file to your Customer
object. Next is the output configuration, which consists of defining a lambda for our ItemWriter to write to
standard out. With the input and output defined, the bean customerValidatingItemProcessor will serve as
your ItemProcessor. By default, the BeanValidatingItemProcessor just passes the item through from the
ItemReader to the ItemWriter, which will work for this example.

With all of the beans defined, you can build your Step, which is the next piece of the file. All you need
for your Step is to define the reader, processor, and writer. With your Step defined, you finish the file by
configuring the Job itself.

To run the job, use the command in Listing 8-6 from the target directory of your project.

Listing 8-6. Running the copyJob

java -jar itemProcessors-0.0.1-SNAPSHOT.jar customerFile=/input/customer.csv

As mentioned, you have some bad input that will not pass validation. When you run the job, it fails due
to the ValidationException that is thrown. To get the job to complete successfully, you have to fix your
input to pass validation. Listing 8-7 shows the results of your job when the input fails validation.

Listing 8-7. copyJob Output

2019-02-05 17:19:35.287 INFO 39336 --- [main] o.s.batch.core.job.SimpleStep
Handler : Executing step: [copyFileStep]
2019-02-05 17:19:35.462 ERROR 39336 --- [main] o.s.batch.core.step.Abstract
Step : Encountered an error executing step copyFileStep in job job

Chapter 8 ■ ItemproCessors

232

org.springframework.batch.item.validator.ValidationException: Validation failed for Customer
{firstName='Laura', middleInitial='9S', lastName='Minella', address='8177 4th Street',
city='Dallas', state='FL', zip='04119'}:
Field error in object 'item' on field 'middleInitial': rejected value [9S]; codes [Size.
item.middleInitial,Size.middleInitial,Size.java.lang.String,Size]; arguments [org.
springframework.context.support.DefaultMessageSourceResolvable: codes [item.
middleInitial,middleInitial]; arguments []; default message [middleInitial],1,1]; default
message [size must be between 1 and 1]
Field error in object 'item' on field 'middleInitial': rejected value [9S]; codes [Pattern.
item.middleInitial,Pattern.middleInitial,Pattern.java.lang.String,Pattern]; arguments
[org.springframework.context.support.DefaultMessageSourceResolvable: codes [item.
middleInitial,middleInitial]; arguments []; default message [middleInitial],[Ljavax.
validation.constraints.Pattern$Flag;@3fd05b3e,org.springframework.validation.beanvalidation.
SpringValidatorAdapter$ResolvableAttribute@4eb9f2af]; default message [Middle initial must
be alphabetical]
 at org.springframework.batch.item.validator.SpringValidator.validate(SpringValidator.

java:54) ~[spring-batch-infrastructure-4.1.1.RELEASE.jar:4.1.1.RELEASE]
...

That is all that is required to add item validation to your jobs in Spring Batch using JSR-303. However,
what if you wanted to implement your own validation? To do that, we would change our ItemProcessor
from the BeanValidatingItemProcessor to the ValidatingItemProcessor and inject our own
implementation of the Validator interface.

Let’s say that the lastName field must be unique across the data set. To validate that the records conform
to that, we would implement a stateful Validator that kept track of the last names seen. If we wanted the
state to be persisted across restarts, the Validator would also need to implement the ItemStream interface
by extending ItemStreamSupport and store those last names in the ExecutionContext with each commit.
Listing 8-8 illustrates the code for the new Validator that handles this logic.

Listing 8-8. Validating Last Name Is Unique in the Data Set

...
public class UniqueLastNameValidator extends ItemStreamSupport
 implements Validator<Customer> {

 private Set<String> lastNames = new HashSet<>();

 @Override
 public void validate(Customer value) throws ValidationException {
 if(lastNames.contains(value.getLastName())) {
 throw new ValidationException("Duplicate last name was found: "
 + value.getLastName());
 }

 this.lastNames.add(value.getLastName());
 }

Chapter 8 ■ ItemproCessors

233

 @Override
 public void open(ExecutionContext executionContext) {
 String lastNames = getExecutionContextKey("lastNames");

 if(executionContext.containsKey(lastNames)) {
 this.lastNames = (Set<String>) executionContext.get(lastNames);
 }
 }

 @Override
 public void update(ExecutionContext executionContext) {
 executionContext.put(getExecutionContextKey("lastNames"), this.lastNames);
 }
}

Starting from the top, the class extends ItemStreamSupport for the abilty to save the state from job
execution to job execution and implements the Validator interface. We save the last name values in a Set
defined next. The validate(Customer customer) method is required by the Validator interface and does
the work for us. It confirms that if the last name isn’t already saved in the Set, to save it and if it was put there
by a previous record to throw the ValidationExecption identifying the bad data. The last two methods
in the class are used to persist the state from execution to execution. The open method determines if the
lastNames field was saved in a previous execution. If it was, it is restored before the step’s processing begins.
The update method (called once per chunk once the transaction commits) stores the current state in the
ExecutionContext in case there is a failure in the next chunk.

Once we’ve created our Validator implementation, we need to configure it. There are three pieces to
the configuration of this validation mechanism. First, defining the UniqueLastNameValidator as a bean,
then injecting it into the ValidatingItemProcessor, and finally registering the UniqueLastNameValidator as
a stream on our step so that Spring Batch will know to call the ItemStream related methods on it. Listing 8-9
illustrates this configuration.

Listing 8-9. UniqueLastNameValidator Configuration

...
@Bean
public UniqueLastNameValidator validator() {
 UniqueLastNameValidator uniqueLastNameValidator = new UniqueLastNameValidator();

 uniqueLastNameValidator.setName("validator");

 return uniqueLastNameValidator;
}

@Bean
public ValidatingItemProcessor<Customer> customerValidatingItemProcessor() {
 return new ValidatingItemProcessor<>(validator());
}

@Bean
public Step copyFileStep() {

return this.stepBuilderFactory.get("copyFileStep")

Chapter 8 ■ ItemproCessors

234

 .<Customer, Customer>chunk(5)
 .reader(customerItemReader(null))
 .processor(customerValidatingItemProcessor())
 .writer(itemWriter())
 .stream(validator())
 .build();
}
...

If you run these configuration updates with the data defined in Listing 8-4, it will take three attempts to
get through the job:

 1. The first attempt will commit the first chunk (five records), then fail on the
second chunk.

 2. Remove line 6 from the input file and run it again. This time, the records in the
first chunk will be skipped, the second chunk will be committed, and then the
third chunk will fail after finding the same last name (which was restored from
the ExecutionContext previously).

 3. Remove line 13 (12 after step 2 is done) and run it a final time to see it complete.

The ValidatingItemProcessor and its subclass, the BeanValidatingItemProcessor, are useful for
being able to apply validation to your items as they are processed. However, these are only one of the three
main areas Spring Batch provides implementations of the ItemProcessor interface. In the next section you
will look at the ItemProcessorAdapter and how it allows you to use existing services as ItemProcessors.

ItemProcessorAdapter
In Chapter 7, you looked at the ItemReaderAdapter as a way to use existing services to provide input to
your jobs. Spring Batch also allows you to put to use the various services you already have developed as
ItemProcessors as well by using the org.springframework.batch.item.adapter.ItemProcessorAdapter.
In this section, you will look at the ItemProcessorAdapter and see how it lets you use existing services as
processors for your batch job items.

To take a look at this functionality, we will create a service that uppercases the customer’s name (first
name, middle initial, and last name). We can call this the UpperCaseNameService. It will have a single
method that copies the Customer input object into a new Customer output object (making it idempotent),
and then uppercases the name values on the new instance, returning that once it’s done. Listing 8-10 shows
the code for our UpperCaseNameService.

Listing 8-10. UpperCaseNameService

...
@Service
public class UpperCaseNameService {

 public Customer upperCase(Customer customer) {
 Customer newCustomer = new Customer(customer);

 newCustomer.setFirstName(newCustomer.getFirstName().toUpperCase());
 newCustomer.setMiddleInitial(newCustomer.getMiddleInitial().toUpperCase());
 newCustomer.setLastName(newCustomer.getLastName().toUpperCase());

Chapter 8 ■ ItemproCessors

235

 return newCustomer;
 }

}

With our service defined, we can replace the validation functionality in the previous job with the
uppercase functionality in this new service. Listing 8-11 has the code to configure the new ItemProcessor
and the updated step.

Listing 8-11. ItemProcessorAdapter Configuration

...
@Bean
public ItemProcessorAdapter<Customer, Customer> itemProcessor(UpperCaseNameService service)
{
 ItemProcessorAdapter<Customer, Customer> adapter = new ItemProcessorAdapter<>();

 adapter.setTargetObject(service);
 adapter.setTargetMethod("upperCase");

 return adapter;
}

@Bean
public Step copyFileStep() {

return this.stepBuilderFactory.get("copyFileStep")
 .<Customer, Customer>chunk(5)
 .reader(customerItemReader(null))
 .processor(itemProcessor(null))
 .writer(itemWriter())
 .build();
}
...

Looking at Listing 8-11, we begin by defining the bean for our ItemProcessorAdapter. We inject the
UpperCaseNameService we defined in Listing 8-10. The adapter requires at least two values to be set with an
optional third. The two required are the target object (the instance we are going to make the calls to) and the
target method (the method on the instance to be called). There is another configuration option that enables
you to provide an array of arguments, however any values passed to this on the ItemProcessorAdapter will
be ignored.

With our adapter configured, the step needs to be updated to reference it as shown in Listing 8-11. With
that configuration complete, when the job is run, the output shows the name fields in the Customer to be
uppercased as shown in Listing 8-12.

Chapter 8 ■ ItemproCessors

236

Listing 8-12. ItemProcessorAdapterJob Output

...
2019-02-05 22:23:19.185 INFO 45123 --- [main] o.s.batch.core.job.SimpleStep
Handler : Executing step: [copyFileStep]
Customer{firstName='RICHARD', middleInitial='N', lastName='DARROW', address='5570 Isabella
Ave', city='St. Louis', state='IL', zip='58540'}
Customer{firstName='BARACK', middleInitial='G', lastName='DONNELLY', address='7844 S.
Greenwood Ave', city='Houston', state='CA', zip='38635'}
Customer{firstName='ANN', middleInitial='Z', lastName='BENES', address='2447 S. Greenwood
Ave', city='Las Vegas', state='NY', zip='55366'}
Customer{firstName='LAURA', middleInitial='9S', lastName='MINELLA', address='8177 4th
Street', city='Dallas', state='FL', zip='04119'}
Customer{firstName='ERICA', middleInitial='Z', lastName='GATES', address='3141 Farnam
Street', city='Omaha', state='CA', zip='57640'}
...

Scripting languages and their support on the JVM has had a big boost ever since Groovy came along.
Now you can run Ruby, JavaScript, Groovy, and a host of other scripting languages on the JVM. In the next
section, we will take a look at how you can use a script to implement your ItemProcessor.

ScriptItemProcessor
Scripting languages provide a whole host of unique opportunities. Scripts are typically easier to create
and modify so for frequently changing components, scripts can provide great flexibility. Prototyping is
another area where using a script instead of performing all the ceremony that a staticly typed language
like Java requires. Spring Batch allows you to inject this flexibility into your batch jobs by executing
a script as an ItemProcessor. The org.springframework.batch.item.support.ScriptItemProcessor
allows you to specify a script that will receive the ItemProcessor’s input and return the object that
will be the ItemProcessor’s output. In this section, we will implement the same functionality as in the
ItemProcessorAdapter use case; however, instead of using a Java service to perform the logic, we will
put the logic in a JavaScript script.

To begin, we need to venture a bit out of our comfort zone and write some JavaScript. The script we
will create is actually quite simple. The ScriptItemProcessor binds the input from the ItemProcessor to
the variable item by default (this value is configurable if you want to change it). From there, we can perform
any JavaScript functionality on it and return it to our ItemProcessor. In our case, we will uppercase the first
name, middle initial, and last name as shown in Listing 8-13.

Listing 8-13. upperCase.js

item.setFirstName(item.getFirstName().toUpperCase());
item.setMiddleInitial(item.getMiddleInitial().toUpperCase());
item.setLastName(item.getLastName().toUpperCase());
item;

With our script written, we can update our job to use the ScriptItemProcessor. All we need to provide
as a dependency for this ItemProcessor is a Resource that points to the script file we will use (you can also
define the script inline as a String). Listing 8-14 illustrates the configuration of the ScriptItemProcessor in
our job.

Chapter 8 ■ ItemproCessors

237

Listing 8-14. ScriptItemProcessor Configuration

...
@Bean
@StepScope
public ScriptItemProcessor<Customer, Customer> itemProcessor(
 @Value("#{jobParameters['script']}") Resource script) {

 ScriptItemProcessor<Customer, Customer> itemProcessor =
 new ScriptItemProcessor<>();

 itemProcessor.setScript(script);

 return itemProcessor;
}
...

To this configuration, we will need to add one additional job parameter to our job which is the location
of the script file, making the command to execute this job: java -jar copyJob.jar customerFile=/input/
customer.csv script=/upperCase.js. When you execute this command, the output from this job should
match that from the ItemProcessorAdapter job illustrated in Listing 8-12.

The idea of applying a single action to an item within a transaction can be limiting in certain situations.
For example, if you have a set of calculations that need to be done on some of the items, you may want to
filter out the ones that don’t need to be processed. In the next section, you will look at how to configure
Spring Batch to execute a list of ItemProcessors on each item within a step.

CompositeItemProcessor
You break up a step into three phases (reading, processing, and writing) to divide responsibilities
between components. However, the business logic that needs to be applied to a given item may not make
sense to couple into a single ItemProcessor. Spring Batch allows you to maintain that same division of
responsibilities within your business logic by chaining ItemProcessors within a step. In this section,
you will look at how composition can be used to allow you to do more complex orchestration in the
ItemProcessor phase of a step.

We will start with the org.springframework.batch.item.support.CompositeItemProcessor.
This is an implementation of the ItemProcessor interface that delegates processing to each of a list of
ItemProcessor implementations in order. As each processor returns its result, that result is passed onto
the next processor until they all have been called. This pattern occurs regardless of the types returned, so if
the first ItemProcessor takes a String as input, it can return a Product object as output as long as the next
ItemProcessor takes a Product as input. At the end, the result is passed to the ItemWriter configured for the
step. It is important to note that just like any other ItemProcessor, if any of the processors this one delegates
to returns null, the item will not be processed further. Figure 8-1 shows how the processing within the
CompositeItemProcessor occurs.

Chapter 8 ■ ItemproCessors

238

As Figure 8-1 shows, the CompositeItemProcessor serves as a wrapper for multiple ItemProcessors,
calling them in order. As one completes, the next one is called with the item returned from the previous one.
Let’s take a look at how this looks in practice.

In this example, we will take the previous examples of this chapter and apply them all at once. We will
create a chain of ItemProcessors that do the following in order:

 1. Validate the input, filtering out any bad records.

 2. Uppercase the name using the UpperCaseNameService.

 3. Lowercase the address, city, and state fields using a JavaScript script.

Let’s begin by configuring the ItemProcessor we will use to validate the Customer objects passed received
by the ItemProcessor. To do this, we will use the same configuration we did in Listing 8-9, with one small
change. The ValidatingItemProcessor, by default, throws a ValidationException when an item is not valid.
However, that may be too drastic of a measure for some use cases (like ours). Because of this, you can also
configure that ItemProcessor to filter out the items that do not pass validation. This is the way we want to apply
the logic this time around. Listing 8-15 shows the updated configuration for this ItemProcessor.

Listing 8-15. ValidatingItemProcessor Configured to Filter Items

...
@Bean
public UniqueLastNameValidator validator() {
 UniqueLastNameValidator uniqueLastNameValidator = new UniqueLastNameValidator();

 uniqueLastNameValidator.setName("validator");

 return uniqueLastNameValidator;
}

@Bean
public ValidatingItemProcessor<Customer> customerValidatingItemProcessor() {
 ValidatingItemProcessor<Customer> itemProcessor =
 new ValidatingItemProcessor<>(validator());

 itemProcessor.setFilter(true);

 return itemProcessor;
}
...

ItemReader CompositeItemProcessor itemWriter

itemProcessor3itemProcessor2itemProcessor1

Figure 8-1. CompositeItemProcessor processing

Chapter 8 ■ ItemproCessors

239

One down, three more to go. The second ItemProcessor we will configure is the ItemProcessorAdapter
we configured earlier to uppercase the customer’s name. This configuration is identical to the
ItemProcessAdapter configuration we used previously as shown in Listing 8-16.

Listing 8-16. upperCaseItemProcessor

...
@Bean
public ItemProcessorAdapter<Customer, Customer> upperCaseItemProcessor(
 UpperCaseNameService service) {

 ItemProcessorAdapter<Customer, Customer> adapter = new ItemProcessorAdapter<>();

 adapter.setTargetObject(service);
 adapter.setTargetMethod("upperCase");

 return adapter;
}
...

For our third ItemProcessor, we will need to write a new script first. This one, instead of capitalizing
the name related fields on the customer, will lowercase all the address related fields on the customer.
Listing 8-17 shows the JavaScript for our new script.

Listing 8-17. lowerCase.js

item.setAddress(item.getAddress().toLowerCase());
item.setCity(item.getCity().toLowerCase());
item.setState(item.getState().toLowerCase());
item;

To put our script to use, we will configure the ScriptItemProcessor using the configuration in Listing 8-18.

Listing 8-18. lowerCaseItemProcessor

...
@Bean
@StepScope
public ScriptItemProcessor<Customer, Customer> lowerCaseItemProcessor(
 @Value("#{jobParameters['script']}") Resource script) {

 ScriptItemProcessor<Customer, Customer> itemProcessor =
 new ScriptItemProcessor<>();

 itemProcessor.setScript(script);

 return itemProcessor;
}
...

Chapter 8 ■ ItemproCessors

240

Finally, to put it all together, we need to configure our CompositeItemProcessor. This ItemProcessor
takes a list of ItemProcessors to execute, so order is important. Listing 8-19 shows the configuration of the
CompositeItemProcessor with its chain of delegates.

Listing 8-19. CompositeItemProcessor Configuration

...
@Bean
public CompositeItemProcessor<Customer, Customer> itemProcessor() {
 CompositeItemProcessor<Customer, Customer> itemProcessor =
 new CompositeItemProcessor<>();

 itemProcessor.setDelegates(Arrays.asList(
 customerValidatingItemProcessor(),
 upperCaseItemProcessor(null),
 lowerCaseItemProcessor(null)));

 return itemProcessor;
}
...

When our job is run with these updates, the output consists of all name fields uppercased, all address
related fields lowercased, and two records being filtered out (the one for Warren M. Darrow and Regan M.
Darrow). Listing 8-20 shows a sample of the output form the job.

Listing 8-20. CompositeItemProcessor Job Output

...
2019-02-05 23:46:49.884 INFO 46774 --- [main] o.s.batch.core.job.SimpleStep
Handler : Executing step: [copyFileStep]
Customer{firstName='RICHARD', middleInitial='N', lastName='DARROW', address='5570 isabella
ave', city='st. louis', state='il', zip='58540'}
Customer{firstName='BARACK', middleInitial='G', lastName='DONNELLY', address='7844 s.
greenwood ave', city='houston', state='ca', zip='38635'}
Customer{firstName='ANN', middleInitial='Z', lastName='BENES', address='2447 s. greenwood
ave', city='las vegas', state='ny', zip='55366'}
...

The CompositeIemProcessor allows for you to compose an ItemProcessor via other components
for good design of your software. However, what happens if you don’t want to send every item to every
ItemProcessor on the list? What if you want some items to go to ItemProcessorA and some to go to
ItemProcessorB? The ClassifierCompositeItemProcessor is the component you will want.

The ClassifierCompositeItemProcessor uses an org.springframework.classify.Classifier
implementation to choose what ItemProcessor to use. The Classifier’s implementation of the
classify(C classifiable) method must take an item as input and return the appropriate ItemProcessor
to use. To look at this, we will create a Classifier that returns the ItemProcessor to uppercase the name if
the zip code is odd, and the ItemProcessor to lowercase the address if the zip code is even.

The key piece of code we will need to write for this is our Classifier implementation. It will
determine if the zip code is even or odd and return the correct delegate. Listing 8-21 lists the code for the
ZipCodeClassifier.

Chapter 8 ■ ItemproCessors

241

Listing 8-21. ZipCodeClassifier

,,,
public class ZipCodeClassifier implements Classifier<Customer, ItemProcessor<Customer,
Customer>> {

 private ItemProcessor<Customer, Customer> oddItemProcessor;
 private ItemProcessor<Customer, Customer> evenItemProcessor;

 public ZipCodeClassifier(ItemProcessor<Customer, Customer> oddItemProcessor,
 ItemProcessor<Customer, Customer> evenItemProcessor) {

 this.oddItemProcessor = oddItemProcessor;
 this.evenItemProcessor = evenItemProcessor;
 }

 @Override
 public ItemProcessor<Customer, Customer> classify(Customer classifiable) {
 if(Integer.parseInt(classifiable.getZip()) % 2 == 0) {
 return evenItemProcessor;
 }
 else {
 return oddItemProcessor;
 }
 }
}

With our Classifier implementation created, we can configure it and the
ClassifierCompositeItemProcessor in our job. To begin, we’ll configure the ZipCodeClassifier by
injecting the upperCaseItemProcessor and the lowerCaseItemProcessor into its constructor respectively.
This will be followed by the configuration for the ClassifierCompositeItemProcessor where we set the
Classifier as its only dependency. Listing 8-22 has the code for this configuration.

Listing 8-22. ClassifierCompositeItemProcessor Configuration

...
@Bean
public Classifier classifier() {
 return new ZipCodeClassifier(upperCaseItemProcessor(null),
 lowerCaseItemProcessor(null));
}

@Bean
public ClassifierCompositeItemProcessor<Customer, Customer> itemProcessor() {
 ClassifierCompositeItemProcessor<Customer, Customer> itemProcessor =
 new ClassifierCompositeItemProcessor<>();

 itemProcessor.setClassifier(classifier());

 return itemProcessor;
}
...

Chapter 8 ■ ItemproCessors

242

After we build and execute the job with this configuration as its ItemProcessor, the output will look like
Listing 8-23.

Listing 8-23. Output from the ClassifierCompositeItemProcessor Job

...
2019-02-06 00:17:11.833 INFO 47362 --- [main] o.s.b.c.l.support.SimpleJob
Launcher : Job: [SimpleJob: [name=job]] launched with the following parameters:
[{customerFile=/input/customer.csv, script=/lowerCase.js}]
2019-02-06 00:17:11.882 INFO 47362 --- [main] o.s.batch.core.job.
SimpleStepHandler : Executing step: [copyFileStep]
Customer{firstName='Richard', middleInitial='N', lastName='Darrow', address='5570 isabella
ave', city='st. louis', state='il', zip='58540'}
Customer{firstName='BARACK', middleInitial='G', lastName='DONNELLY', address='7844 S.
Greenwood Ave', city='Houston', state='CA', zip='38635'}
Customer{firstName='Ann', middleInitial='Z', lastName='Benes', address='2447 s. greenwood
ave', city='las vegas', state='ny', zip='55366'}
...

The ClassifierCompositeItemProcessor is another way to build complex flows within an
ItemProcessor. Combined with the CompositeItemProcessor, the options are nearly limitless as to how
complex a chain of processors you can build within the ItemProcessor phase of a step.

In the next section, you will look at writing your own ItemProcessor to filter items from the
ItemWriter. Although you have filtered records out in an earlier section, we have not implemented our own
ItemProcessor yet. In the next section, you will look at how to change that.

Writing Your Own ItemProcessor
The ItemProcessor is really the easiest piece of the Spring Batch framework to implement yourself. This is
by design. Input and output is standard across environments and business cases. Reading a file is the same
regardless of whether it contains financial data or scientific data. Writing to a database works the same
regardless of what the object looks like. However, the ItemProcessor is where the business logic of your
process exists. Because of this, you will virtually always need to create custom implementations of them. In
this section, you will look at how to create a custom ItemProcessor implementation that filters certain items
that were read from begin written.

Filtering Items
In the previous section, we performed different logic based on if the zip code was even or odd. In this
section, we will write an ItemProcessor that filters the even zip codes out, leaving only the odd ones to be
written.

So how do we filter out records when they are going through an ItemProcessor? Spring Batch makes
this simple by ensuring that any item that results in the ItemProcessor returning null is filtered out. Not
only is it filtered out from the downstream impacts (other ItemProcessors or any ItemWriters involved in
the step), but Spring Batch keeps a count of the number of records that are filtered and stores it in the job
repository.

To implement our ItemProcessor, we will need to create a class that implements the ItemProcessor
interface. We will put the logic in the process method returning null if the zip code is even, and returning
the input parameter unmodified if the zip code is odd. Listing 8-24 has the code as described.

Chapter 8 ■ ItemproCessors

243

Listing 8-24. EvenFilteringItemProcessor

...
public class EvenFilteringItemProcessor implements ItemProcessor<Customer, Customer> {

 @Override
 public Customer process(Customer item) {
 return Integer.parseInt(item.getZip()) % 2 == 0 ? null: item;
 }
}

The only thing left to do is to configure our job to use this ItemProcessor. Listing 8-25 has the
configuration of our new ItemProcessor.

Listing 8-25. Custom ItemProcessor Configuration

...
@Bean
public EvenFilteringItemProcessor itemProcessor() {
 return new EvenFilteringItemProcessor();
}
...

With our new ItemProcessor configured, we can run the job and see that nine of the records are filtered
out by our EvenFilteringItemProcessor leaving six written out to standard out as shown in Listing 8-26.

Listing 8-26. Output from the Custom ItemProcessor Job

...
2019-02-06 00:31:30.808 INFO 47626 --- [main] o.s.batch.core.job.SimpleStep
Handler : Executing step: [copyFileStep]
Customer{firstName='Barack', middleInitial='G', lastName='Donnelly', address='7844 S.
Greenwood Ave', city='Houston', state='CA', zip='38635'}
Customer{firstName='Laura', middleInitial='9S', lastName='Minella', address='8177 4th
Street', city='Dallas', state='FL', zip='04119'}
Customer{firstName='Warren', middleInitial='L', lastName='Darrow', address='4686 Mt. Lee
Drive', city='St. Louis', state='NY', zip='94935'}
Customer{firstName='Harry', middleInitial='T', lastName='Smith', address='3273 Isabella
Ave', city='Houston', state='FL', zip='97261'}
Customer{firstName='Jonas', middleInitial='U', lastName='Gilbert', address='8852 In St.',
city='Saint Paul', state='MN', zip='57321'}
Customer{firstName='Regan', middleInitial='M', lastName='Darrow', address='4851 Nec Av.',
city='Gulfport', state='MS', zip='33193'}
2019-02-06 00:31:30.949 INFO 47626 --- [main] o.s.b.c.l.support.
SimpleJobLauncher : Job: [SimpleJob: [name=job]] completed with the following
parameters: [{customerFile=/input/customer.csv}] and the following status: [COMPLETED]

If we are going to filter out records, it would be good to know how many in an easy way. Spring
Batch records the count of items filtered in the job repository. If we look, we can see that using the data
in Listing 8-4, 15 records were read, 9 were filtered out, and 6 were written. Listing 8-27 shows that data
from the job repository.

Chapter 8 ■ ItemproCessors

244

Listing 8-27. Filter Count in the Job Repository

mysql> select step_execution_id as id, step_name, status, commit_count, read_count, filter_
count, write_count from SPRING_BATCH.BATCH_STEP_EXECUTION;
+----+--------------+-----------+--------------+------------+--------------+-------------+
| id | step_name | status | commit_count | read_count | filter_count | write_count |
+----+--------------+-----------+--------------+------------+--------------+-------------+
| 1 | copyFileStep | COMPLETED | 4 | 15 | 9 | 6 |
+----+--------------+-----------+--------------+------------+--------------+-------------+
1 row in set (0.01 sec)

In Chapter 4, you learned about skipping items, which used exceptions to identify records that were not
to be processed. The difference between these two approaches is that this approach is intended for records
that are technically valid records. Your customer had a zip code in the data. Instead, your business rules
prevented you from being able to process this record, so you decided to filter it out of the steps results.

Although a simple concept, ItemProcessors are a piece of the Spring Batch framework that any batch
developer will spend large amounts of time in. This is where the business logic lives and is applied to the
items being processed.

Summary
ItemProcessors are where business logic can be applied to the items being processed in your jobs. Spring
Batch, instead of trying to help you, does what it should do for this piece of the framework: it gets out of your
way and lets you determine how to apply the logic of your business as needed. In the next chapter, you will
finish your look at the core components of Spring Batch by taking a deep dive into ItemWriters.

245© Michael T. Minella 2019
M. T. Minella, The Definitive Guide to Spring Batch, https://doi.org/10.1007/978-1-4842-3724-3_9

CHAPTER 9

ItemWriters

It’s amazing what computers can do. The numbers they can crunch. The images they can process. Yet it
doesn’t mean a thing unless the computer can communicate what it has done via its output. ItemWriters
are the output facility for Spring Batch. And when you need a format to output the results of the Spring
Batch process, Spring Batch delivers. In this chapter, you look at the different types of ItemWriters provided
by Spring Batch as well as how to develop ItemWriters for situations that are more specific to your needs.
Topics discussed include the following:

•	 Introduction to ItemWriters: Similar to the ItemReaders at the other end of step
execution, ItemWriters have their own special nuances. This chapter talks about
how ItemWriters work from a high level.

•	 File-based ItemWriters: File-based output is the easiest method to set up and is one
of the most common forms used in batch processing. Because of this, you begin your
exploration of ItemWriter implementations by looking at writing to flat files as well
as XML files.

•	 Database ItemWriters: The relational database is king in the enterprise when it
comes to data storage. However, databases create their own unique challenges when
you’re working with high volumes of data. You look at how Spring Batch handles
these challenges with its unique architecture.

•	 NoSQL ItemWriters: While the relational database may be king, all the cool kids
are using NoSQL stores like MongoDB, Apache Geode, and Neo4j for their storage
needs. This section will look at the ItemWriter implementations that support the
various forms of NoSQL stores.

•	 Alternative output destination ItemWriters: Files and databases aren’t the only
media to which enterprise software outputs. Systems send e-mails, write to Java
Messaging Service (JMS) endpoints, and save data via other systems. This section
looks at some of the less common but still very useful output methods that Spring
Batch supports.

•	 Multipart ItemWriters: Unlike reading, where data typically comes from a single
source and enriched later via an ItemProcessor, it’s common to send output to
multiple sources. Spring Batch provides ways to write to multiple systems as well as
structure a single ItemWriter as a collaborative effort of multiple ItemWriters. This
section looks at ItemWriters tasked with working with either multiple resources or
multiple output formats.

To start with ItemWriters, let’s look at how they work and how they fit into a step.

https://doi.org/10.1007//978-1-4842-3724-3_9

Chapter 9 ■ ItemWrIters

246

Introduction to ItemWriters
The ItemWriter is the output mechanism used in Spring Batch. When Spring Batch first came out,
ItemWriters were essentially the same as ItemReaders. They wrote each item out as it was processed.
However, with Spring Batch 2 and the introduction of chunk-based processing, the role of the ItemWriter
changed. Writing out each item as it’s processed no longer makes sense.

With chunked-based processing, an ItemWriter doesn’t write a single item: it writes a chunk of items.
Because of this, the org.springframework.batch.item.ItemWriter interface is slightly different than
the ItemReader interface. Listing 9-1 shows that the ItemWriter’s write(List<T> items) method takes a
List<T> of items, whereas the ItemReader interface you looked at in Chapter 7 returns only a single item
from the read() method.

Listing 9-1. ItemWriter

package org.springframework.batch.item;

import java.util.List;

public interface ItemWriter<T> {
 void write(List<? extends T> items) throws Exception;
}

To illustrate the flow of how an ItemWriter fits into the step, Figure 9-1 shows a sequence diagram
that walks through the processing within a step. The step reads each item individually via the ItemReader
and passes it to the ItemProcessor for processing. This interaction continues until the number of items
in a chunk has been processed. With the processing of a chunk complete, the items are passed into the
ItemWriter to be written accordingly.

ItemReader ItemProcessor ItemWriter

For each item

read

process

write

Figure 9-1. Step interaction with an ItemWriter

Since chunk-based processing was introduced, the number of calls to an ItemWriter is much less than
it was. However, you need to handle things a bit differently. Take for example working with nontransactional
resources like files. If a write to a file fails, there is no way to roll back what was already written. Because of
that, extra safeguards must be put in place to limit your exposure to errors during the write.

Chapter 9 ■ ItemWrIters

247

Spring Batch provides a number of writers to handle the vast majority of output scenarios. Let’s start
with writers at the same place you started with readers: FlatFileItemWriter.

File-Based ItemWriters
Large amounts of data are moved via files in enterprise batch processing. There is a reason for this: files are
simple and reliable. Backups are easy. So is recovery if you need to start over. This section looks at how to
generate flat files in a variety of formats including formatted records (fixed width or other) and delimited
files as well as how Spring Batch handles the issue of file creation.

FlatFileItemWriter
org.springframework.batch.item.file.FlatFileItemWriter is the ItemWriter implementation provided
to generate text file output. Similar to FlatFileItemReader in many respects, this class addresses the issues
with file-based output in Java with a clean, consistent interface for you to use. Figure 9-2 shows how the
FlatFileItemWriter is constructed.

FlatFileItemWriter, as shown in Figure 9-2, consists of a Resource to write to and a LineAggregator
implementation. The org.springframework.batch.item.file.transform.LineAggregator interface
replaces the LineMapper of the FlatFileItemReader discussed in Chapter 7. Here, instead of parsing a
String into an object as the LineMapper is responsible for doing, the LineAggregator is responsible for the
generating of an output String based on an object.

FlatFileItemWriter has a number of interesting configuration options, which are reviewed in Table 9-1.

FlatFileItemWriter

Resource

LineAggregator

Figure 9-2. FlatFileItemWriter pieces

Chapter 9 ■ ItemWrIters

248

Table 9-1. FlatFileItemWriter Configuration Options

Option Type Default Description

encoding String UTF-8 Character encoding for the
file.

footerCallback FlatFileFooterCallback null Executed after the last item
of a file has been written.

headerCallback FlatFileHeaderCallback null Executed before the first
item of a file has been
written.

lineAggregator LineAggregator null (required) Used to convert an
individual item to a String
for output.

lineSeparator String System’s line.
separator

Generated file’s newline
character.

resource Resource null (required) File or stream to be written to.

saveState boolean true Determines if the state of
the writer should be stored
in the ExecutionContext as
processing occurs.

shouldDeleteIfEmpty boolean false If true and no records
are written (not including
header/footer records), the
file is deleted on the close of
the reader.

appendAllowed boolean false If true and the file to
be written to already
exists, the output is
appended to it instead of
replacing the file. If true,
shouldDeleteIfExists is
automatically set to false.

shouldDeleteIfExists boolean true If true and the file to be
written to exists prior to
the run of the job, the file
is deleted and a new file is
created.

transactional boolean true If true and a transaction is
currently active, the writing
of the data to the file is
delayed until the transaction
is committed.

Chapter 9 ■ ItemWrIters

249

Unlike the LineMapper of FlatFileItemReader, the LineAggregator doesn’t have any hard
dependencies. However, a related interface to be aware of is org.springframework.batch.item.
file.transform.FieldExtractor. This interface is used in most of the provided LineAggregator
implementations as a way to access the required fields from a given item. Spring Batch provides two
implementations of the FieldExtractor interface: org.springframework.batch.item.file.transform.
BeanWrapperFieldExtractor, which uses the getters on the class to access the properties per traditional
Java Beans, and org.springframework.batch.item.file.transform.PassThroughFieldExtractor, which
returns the item (useful for items that are just a String, for example).

You will look at a few of the LineAggregator implementations over the course of this section. However,
before we get into how to format our files, let’s take a minute and talk about transactions. Spring Batch’s
transaction model is baked into chunk-based processing, and while it doesn’t typically have an impact on
the reading side of a step (transactional queues excluded), it has a big impact on the write side of things.
How do transections work with flat files?

 ■ Note the FlatFileItemWriter delays the persistence of the output data until the last moment before the
commit to limit exposure to writing data and needing to roll back.

The FlatFileItemWriter is designed in a way that pushes off the actual write as late as possible in the
transaction cycle. It does this by using a TransactionSynchronizationAdapter’s beforeCommit(boolean
readOnly) method to do the actual write. This means that all other processing is complete and the only
thing left to do is for the PlatformTransactionManager to commit the transaction before the data is
actually pushed to disk. This allows for any other interactions that may cause problems (persisting data to
the database, etc.) to fail before the data is written to the disk because there is no practical way to roll back
the data once it is flushed to disk. All nontransactional data stores use a mechanism similar to this for
persisting data during a transaction.

Let’s begin to see how the FlatFileItemWriter really works by generating formatted files in the next
section.

Formatted Text Files
When you looked at text files from the input side, you had three different types: fixed width, delimited, and
XML. From the output side of things, you still have delimited and XML, but fixed width isn’t just fixed width.
In this case, it’s really a formatted record. This section looks at how to construct batch output as a formatted
text file.

Why the difference between a fixed-width input file and a formatted output file? Well, technically there
is no difference. They’re both files that contain a fixed format record of some kind, so it does not matter if
that format is defining column widths or another format. However, typically input files have records that
contain nothing but data and are defined via columns, whereas output files can be either fixed width or more
robust (as you see later in this chapter with the statement job).

This example generates a list of customers and where they live. To get started, we will create a new
project from Spring Initializr with the usual suspects for dependencies: batch, jdbc, and MySQL. Once
we have our project, we can look at the input you’re working with. Listing 9-2 shows an example of the
customer.csv file.

Listing 9-2. customer.csv

Richard,N,Darrow,5570 Isabella Ave,St. Louis,IL,58540
Warren,L,Darrow,4686 Mt. Lee Drive,St. Louis,NY,94935
Barack,G,Donnelly,7844 S. Greenwood Ave,Houston,CA,38635

Chapter 9 ■ ItemWrIters

250

Ann,Z,Benes,2447 S. Greenwood Ave,Las Vegas,NY,55366
Erica,Z,Gates,3141 Farnam Street,Omaha,CA,57640
Warren,M,Williams,6670 S. Greenwood Ave,Hollywood,FL,37288
Harry,T,Darrow,3273 Isabella Ave,Houston,FL,97261
Steve,O,Darrow,8407 Infinite Loop Drive,Las Vegas,WA,90520

As Listing 9-2 shows, you’re working with a file similar to the customer files you’ve been using up to this
point in the book. However, the output for this job will be slightly different. In this case, you want to output
a full sentence for each customer: “Richard Darrow lives at 5570 Isabella Ave in St. Louis, IL.”
Listing 9-3 shows an example of what the output file looks like.

Listing 9-3. Formatted Customer Output

Richard N Darrow lives at 5570 Isabella Ave in St. Louis, IL.
Warren L Darrow lives at 4686 Mt. Lee Drive in St. Louis, NY.
Barack G Donnelly lives at 7844 S. Greenwood Ave in Houston, CA.
Ann Z Benes lives at 2447 S. Greenwood Ave in Las Vegas, NY.
Laura 9S Minella lives at 8177 4th Street in Dallas, FL.
Erica Z Gates lives at 3141 Farnam Street in Omaha, CA.
Warren M Williams lives at 6670 S. Greenwood Ave in Hollywood, FL.
Harry T Darrow lives at 3273 Isabella Ave in Houston, FL.
Steve O Darrow lives at 8407 Infinite Loop Drive in Las Vegas, WA.
Erica Z Minella lives at 513 S. Greenwood Ave in Miami, IL.

How do you do this? For this example, you’ll use a single step job that reads in the input file and writes it
to the output file; we won’t be needing an ItemProcessor for this example. Because the only code you need
to write is that for the Customer class, you can start there; see Listing 9-4.

Listing 9-4. Customer.java

...
public class Customer {
 private static final long serialVersionUID = 1L;

 private long id;
 private String firstName;
 private String middleInitial;
 private String lastName;
 private String address;
 private String city;
 private String state;
 private String zip;

 // Accessors go here
 ...
}

Chapter 9 ■ ItemWrIters

251

As you can see in Listing 9-4, the fields of the Customer object map to the fields in the
customer.csv file.1 With the item coded, you can begin configuring the Job. The input side should be
familiar from Chapter 7. Listing 9-5 shows the configuration of the input file as a resource (the value is
passed in via a job parameter), the FlatFileItemReader configuration, and the required reference to
the Customer object.

Listing 9-5. Configuring the Format Job’s Input

...
@Bean
@StepScope
public FlatFileItemReader<Customer> customerFileReader(
 @Value("#{jobParameters['customerFile']}")Resource inputFile) {

 return new FlatFileItemReaderBuilder<Customer>()
 .name("customerFileReader")
 .resource(inputFile)
 .delimited()
 .names(new String[] {"firstName",
 "middleInitial",
 "lastName",
 "address",
 "city",
 "state",
 "zip"})
 .targetType(Customer.class)
 .build();
}
...

There shouldn’t be a lot of surprises in the configuration in Listing 9-4. We define a step scoped
bean so that we can inject the location of the input file via a job parameter. From there, we use the
FlatFileItemReaderBuilder to construct our FlatFileItemReader by defining the name, injecting the
Resource, identifying that the file is a comma-delimited file, and providing the names of each column and
the type of object to be returned. Spring Batch uses this information to create a DefaultLineMapper that
uses the DelimitedLineTokenizer and a BeanWrapperFieldSetMapper to parse the lines and populate our
domain objects, respectively.

For the output side of things, we will use a FlatFileItemWriter and a LineAggregator. This example
uses the org.springframework.batch.itemfile.transform.FormatterLineAggregator provided by
Spring Batch. Having to configure a FieldExtractor and a LineAggregator by hand is a lot of work, so the
framework rolls the configuration of those components into the FlatFileItemWriterBuilder. Listing 9-6
shows the configuration for the job’s output.

Listing 9-6. Output Configuration for Format Job

...
@Bean
@StepScope

1The Customer object has an id attribute that you use later; it has no data in the file.

Chapter 9 ■ ItemWrIters

252

public FlatFileItemWriter<Customer> customerItemWriter(
 @Value("#{jobParameters['outputFile']}") Resource outputFile) {

 return new FlatFileItemWriterBuilder<Customer>()
 .name("customerItemWriter")
 .resource(outputFile)
 .formatted()
 .format("%s %s lives at %s %s in %s, %s.")
 .names(new String[] {"firstName",
 "lastName",
 "address",
 "city",
 "state",
 "zip"})
 .build();
}
...

As Listing 9-6 shows, we begin by configuring a step scoped bean, allowing us to inject via a job
parameter where the output file will result. We can then use the FlatFileItemWriterBuilder to construct
the ItemWriter itself. We specify the name and Resource to write to. From there, we indicate to Spring Batch
that we want to generate a formatted output file which returns the FormattedBuilder for us to configure the
format we want our output to be generated in and the names of the fields to extract in the order they will be
presented in the format. We call build to actually create the ItemWriter instance.

With all of the input and output configured, all you need to do to complete the job is configure the
Step and Job. Listing 9-7 shows the complete configuration of formatJob including the previous input
and output.

Listing 9-7. FormattedTextFileJob.java

...
@EnableBatchProcessing
@Configuration
public class FormattedTextFileJob {

 private JobBuilderFactory jobBuilderFactory;

 private StepBuilderFactory stepBuilderFactory;

 public FormattedTextFileJob(JobBuilderFactory jobBuilderFactory,
 StepBuilderFactory stepBuilderFactory) {

 this.jobBuilderFactory = jobBuilderFactory;
 this.stepBuilderFactory = stepBuilderFactory;
 }

 @Bean
 @StepScope
 public FlatFileItemReader<Customer> customerFileReader(
 @Value("#{jobParameters['customerFile']}")Resource inputFile) {

Chapter 9 ■ ItemWrIters

253

 return new FlatFileItemReaderBuilder<Customer>()
 .name("customerFileReader")
 .resource(inputFile)
 .delimited()
 .names(new String[] {"firstName",
 "middleInitial",
 "lastName",
 "address",
 "city",
 "state",
 "zip"})
 .targetType(Customer.class)
 .build();
 }

 @Bean
 @StepScope
 public FlatFileItemWriter<Customer> customerItemWriter(
 @Value("#{jobParameters['outputFile']}") Resource outputFile) {
 return new FlatFileItemWriterBuilder<Customer>()
 .name("customerItemWriter")
 .resource(outputFile)
 .formatted()
 .format("%s %s lives at %s %s in %s, %s.")
 .names(new String[] {"firstName",
 "lastName",
 "address",
 "city",
 "state",
 "zip"})
 .build();
 }

 @Bean
 public Step formatStep() {
 return this.stepBuilderFactory.get("formatStep")
 .<Customer, Customer>chunk(10)
 .reader(customerFileReader(null))
 .writer(customerItemWriter(null))
 .build();
 }

 @Bean
 public Job formatJob() {
 return this.jobBuilderFactory.get("formatJob")
 .start(formatStep())
 .incrementer(new RunIdIncrementer())
 .build();
 }
}

Chapter 9 ■ ItemWrIters

254

After you build the project using Maven’s ./mvnw clean install command, you can execute the
example via Spring Boot with the command shown in Listing 9-8.

Listing 9-8. How to Execute formatJob from the Command Line

java -jar itemWriters-0.0.1-SNAPSHOT.jar
customerFile=/data/customer.csv outputFile=file:/output/formattedCustomers.txt

When you run the job with the input specified in Listing 9-2, the result is a new file,
formattedCustomers.txt, with the contents listed in Listing 9-9.

Listing 9-9. formattedCustomers.txt

Richard Darrow lives at 5570 Isabella Ave St. Louis in IL, 58540.
Warren Darrow lives at 4686 Mt. Lee Drive St. Louis in NY, 94935.
Barack Donnelly lives at 7844 S. Greenwood Ave Houston in CA, 38635.
Ann Benes lives at 2447 S. Greenwood Ave Las Vegas in NY, 55366.
Erica Gates lives at 3141 Farnam Street Omaha in CA, 57640.
Warren Williams lives at 6670 S. Greenwood Ave Hollywood in FL, 37288.
Harry Darrow lives at 3273 Isabella Ave Houston in FL, 97261.
Steve Darrow lives at 8407 Infinite Loop Drive Las Vegas in WA, 90520.

This method of formatting output can be used for a number of different requirements. Whether it’s
formatting items into human-readable output as you did here or formatting them into a fixed-width file
as you used for input in Chapter 7, all that needs to change is the format String you configure for the
LineAggregator.

The other main type of flat file you see on a regular basis is the delimited file. customer.csv is a comma-
delimited file, for example. The next section looks at how to output files that contain delimited output.

Delimited Files
Unlike the formatted files you looked at in the previous section, delimited files don’t have a single predefined
format. Instead, a delimited file consists of a list of values separated by a predefined separator character. This
section looks at how to use Spring Batch to generate a delimited file.

To see how generating a delimited file works, you use the same input for this job. For the output, you
refactor the ItemWriter to generate the new, delimited output. In this case, you change the order of the
fields and change the delimiter from a comma (,) to a semicolon (;). Listing 9-10 shows some sample output
with the updated formatJob.

Listing 9-10. Output for Delimited formatJob

58540;IL;St. Louis;5570 Isabella Ave;Darrow;Richard
94935;NY;St. Louis;4686 Mt. Lee Drive;Darrow;Warren
38635;CA;Houston;7844 S. Greenwood Ave;Donnelly;Barack
55366;NY;Las Vegas;2447 S. Greenwood Ave;Benes;Ann
57640;CA;Omaha;3141 Farnam Street;Gates;Erica
37288;FL;Hollywood;6670 S. Greenwood Ave;Williams;Warren
97261;FL;Houston;3273 Isabella Ave;Darrow;Harry
90520;WA;Las Vegas;8407 Infinite Loop Drive;Darrow;Steve

Chapter 9 ■ ItemWrIters

255

To generate the output in Listing 9-10, all you need to do is update the configuration of
the LineAggregator. Instead of using FormatterLineAggregator, you use Spring Batch’s org.
springframework.batch.item.file.transform.DelimitedLineAggregator implementation. Using the
same BeanWrapperFieldExtractor to extract an Object array, the DelimitedLineAggregator concatenates
the elements of the array with the configured delimiter between each element. Again, Spring Batch’s
FlatFileItemWriterBuilder provides another builder for configuring the LineAggregator resources
needed to generate this delimited file by calling delimited(). Listing 9-11 shows the updated configuration
for the ItemWriter.

Listing 9-11. flatFileOutputWriter Configuration

...
@Bean
@StepScope
public FlatFileItemWriter<Customer> customerItemWriter(
 @Value("#{jobParameters['outputFile']}") Resource outputFile) {

 return new FlatFileItemWriterBuilder<Customer>()
 .name("customerItemWriter")
 .resource(outputFile)
 .delimited()
 .delimiter(";")
 .names(new String[] {"zip",
 "state",
 "city",
 "address",
 "lastName",
 "firstName"})
 .build();
}
...

By changing the configuration of the FormatterLineAggregator to use Spring Batch’s
DelimitedLineAggregator, the only other change you have to make is removing the format dependency
and including the definition of a delimiter character. After building the project with the same ./mvnw clean
install you used previously, you can run the job with the command in Listing 9-12.

Listing 9-12. Running formatJob to Generate Delimited Output

java -jar itemWriters-0.0.1-SNAPSHOT.jar
customerFile=/input/customer.csv outputFile=file:/output/delimitedCustomers.txt

The results of the formatJob with the updated configuration are shown in Listing 9-13.

Listing 9-13. formatJob Results for Delimited File Writing

58540;IL;St. Louis;5570 Isabella Ave;Darrow;Richard
94935;NY;St. Louis;4686 Mt. Lee Drive;Darrow;Warren
38635;CA;Houston;7844 S. Greenwood Ave;Donnelly;Barack
55366;NY;Las Vegas;2447 S. Greenwood Ave;Benes;Ann
57640;CA;Omaha;3141 Farnam Street;Gates;Erica

Chapter 9 ■ ItemWrIters

256

37288;FL;Hollywood;6670 S. Greenwood Ave;Williams;Warren
97261;FL;Houston;3273 Isabella Ave;Darrow;Harry
90520;WA;Las Vegas;8407 Infinite Loop Drive;Darrow;Steve

It’s easy to create flat files with Spring Batch. With zero lines of code outside of the domain object, you
can read in a file and convert its format to either a formatted file or a delimited file. Both of the examples for
flat-file processing have assumed that the file is a new file to be created each time. The next section looks at
some of the more advanced options Spring Batch provides for handling what file to write to.

File Management Options
Unlike reading from an input file where the file must exist or it is typically considered an error condition,
an output file may or may not exist at the time of processing, and that may or may not be okay. Spring Batch
provides the ability to configure how to handle each of these scenarios based on your needs. This section
looks at how to configure FlatFileItemWriter to handle multiple file creation scenarios.

In Table 9-1, there were two options for FlatFileItemWriter that pertain to file creation:
shouldDeleteIfEmpty and shouldDeleteIfExists. shouldDeleteIfEmpty actually deals with what to do
when a step is complete. It’s set to false by default. If a step executes, no items were written (a header
and footer may have been, but no item records were written), and shouldDeleteIfEmpty is set to true,
the file is deleted on the completion of the step. By default, the file is created and left empty. You can look
at this behavior with the formatJob you ran in the previous section. By updating the configuration of
flatFileOutputWriter to set shouldDeleteIfEmpty to true as shown in Listing 9-14, you can process an
empty file and see that no output file is left behind.

Listing 9-14. Configuring formatJob to Delete the Output File If No Items Are Written

...
@Bean
@StepScope
public FlatFileItemWriter<Customer> delimitedCustomerItemWriter(
 @Value("#{jobParameters['outputFile']}") Resource outputFile) {

 return new FlatFileItemWriterBuilder<Customer>()
 .name("customerItemWriter")
 .resource(outputFile)
 .delimited()
 .delimiter(";")
 .names(new String[] {"zip",
 "state",
 "city",
 "address",
 "lastName",
 "firstName"})
 .shouldDeleteIfEmpty(true)
 .build();
}
 ...

Chapter 9 ■ ItemWrIters

257

If you execute formatJob with the updated file and pass it an empty customer.csv file as input, no
output is left behind. It’s important to note that the file is still created, opened, and closed. In fact, if the step
is configured to write a header and/or footer in the file, that is written as well. However, if the number of
items written to the file is zero, the file is deleted at the end of the step.

The next configuration parameter related to file creation/deletion is the shouldDeleteIfExists flag.
This flag, set to true by default, deletes a file that has the same name as the output file the step intends
to write to. For example, if you’re going to run a job that writes to a file /output/jobRun.txt, and that file
already exists when the job starts, Spring Batch deletes the file and creates a new one. If this file exists and
the flag is set to false, an org.springframework.batch.item.ItemStreamException is thrown when the
step attempts to create the new file. Listing 9-15 shows formatJob’s flatFileOutputWriter configured to
not delete the output file if it exists.

Listing 9-15. Configuring formatJob to Not Delete the Output File If It Already Exists

...
@Bean
@StepScope
public FlatFileItemWriter<Customer> delimitedCustomerItemWriter(
 @Value("#{jobParameters['outputFile']}") Resource outputFile) {

 return new FlatFileItemWriterBuilder<Customer>()
 .name("customerItemWriter")
 .resource(outputFile)
 .delimited()
 .delimiter(";")
 .names(new String[] {"zip",
 "state",
 "city",
 "address",
 "lastName",
 "firstName"})
 .shouldDeleteIfExists(false)
 .build();
}
 ...

By running the job as it’s configured in Listing 9-15, you receive the previously mentioned
ItemStreamException as shown in Listing 9-16.

Listing 9-16. Results of a Job That Writes to an Existing File That Shouldn’t Be There

2018-04-16 15:38:55.269 INFO 76152 --- [main] o.s.batch.core.job.SimpleStep
Handler : Executing step: [delimitedStep]
2018-04-16 15:38:55.316 ERROR 76152 --- [main] o.s.batch.core.step.
AbstractStep : Encountered an error executing step delimitedStep in job delimitedJob

org.springframework.batch.item.ItemStreamException: File already exists: [/Users/mminella/
Documents/IntelliJWorkspace/def-guide-spring-batch/Chapter9/target/formattedCustomers.txt]

Chapter 9 ■ ItemWrIters

258

 at org.springframework.batch.item.util.FileUtils.setUpOutputFile(FileUtils.java:56)
~[spring-batch-infrastructure-4.0.1.RELEASE.jar:4.0.1.RELEASE]

 at org.springframework.batch.item.file.FlatFileItemWriter$OutputState.initializeBuff
eredWriter(FlatFileItemWriter.java:572) ~[spring-batch-infrastructure-4.0.1.RELEASE.
jar:4.0.1.RELEASE]

 at org.springframework.batch.item.file.FlatFileItemWriter$OutputState.
access$000(FlatFileItemWriter.java:414) ~[spring-batch-infrastructure-4.0.1.RELEASE.
jar:4.0.1.RELEASE]

 at org.springframework.batch.item.file.FlatFileItemWriter.doOpen(FlatFileItemWriter.
java:348) ~[spring-batch-infrastructure-4.0.1.RELEASE.jar:4.0.1.RELEASE]

 at org.springframework.batch.item.file.FlatFileItemWriter.open(FlatFileItemWriter.
java:338) ~[spring-batch-infrastructure-4.0.1.RELEASE.jar:4.0.1.RELEASE]

The use of this parameter is a good idea in an environment where you want to preserve the output of
each run. This prevents an accidental overwrite of your old file.

The final option related to file creation is the appendAllowed parameter. When this flag (which defaults
to false) is set to true via the .append(boolean value) method call, Spring Batch automatically sets the
shouldDeleteIfExists flag to false, creates a new file if one doesn’t exist, and appends the data if it does.
This option can be useful if you have an output file that you need to write to from multiple steps. Listing 9-17
shows formatJob configured to append data if the file exists.

Listing 9-17. Appending Data If the Output File Exists

...
@Bean
@StepScope
public FlatFileItemWriter<Customer> delimitedCustomerItemWriter(
 @Value("#{jobParameters['outputFile']}") Resource outputFile) {

 return new FlatFileItemWriterBuilder<Customer>()
 .name("customerItemWriter")
 .resource(outputFile)
 .delimited()
 .delimiter(";")
 .names(new String[] {"zip",
 "state",
 "city",
 "address",
 "lastName",
 "firstName"})
 .append(true)
 .build();
}
 ...

With this configuration, you can run the job multiple times using the same output file (with different
input files), and Spring Batch appends the output of the current job to the end of the existing output file.

As you can see, there are a number of options available to handle generation of flat file-based output,
from being able to format your records any way you want to generating delimited files and even providing
options for how Spring Batch handles files that already exist. However, flat files aren’t the only type of file
output. XML is the other type of file output that Spring Batch provides for, and you look at it next.

Chapter 9 ■ ItemWrIters

259

StaxEventItemWriter
When you looked at reading XML back in Chapter 7, you explored how Spring Batch views XML documents
in fragments. Each of these fragments is the XML representation of a single item to be processed. On the
ItemWriter side, the same concept exists. Spring Batch generates an XML fragment for each of the items the
ItemWriter receives and writes the fragment to the file. This section looks at how Spring Batch handles XML
as an output medium.

To handle writing XML using Spring Batch, you use org.springframework.batch.item.xml.
StaxEventItemWriter. Just like the ItemReader, the Streaming API for XML (StAX) implementation
allows Spring Batch to write fragments of XML as each chunk is processed. Just like FlatFileItemWriter,
StaxEventItemWriter generates the XML a chunk at a time and writes it to the file just before the local
transaction has been committed; this prevents rollback issues if there is an error writing to the file.

The configuration of the StaxEventItemReader consists of a Resource (file to read from), a root element
name (the root tag for each fragment), and an Unmarshaller to be able to convert the XML input into an
object. The configuration for StaxEventItemWriter is almost identical, with a Resource to write to, a root
element name (the root tag for each fragment you generate), and a Marshaller to convert each item into an
XML fragment.

StaxEventItemWriter has a collection of configurable attributes that are covered in Table 9-2.

Table 9-2. Attributes Available in StaxEventItemWriter

Option Type Default Description

encoding String UTF-8 Character encoding for the file.

footerCallback StaxWriterCallback null Executed after the last item of a
file has been written.

headerCallback StaxWriterCallback null Executed before the first item of
a file has been written.

marshaller Marshaller null (required) Used to convert an individual
item to an XML fragment for
output.

overwriteOutput boolean true By default, the file is replaced
if the output file already exists.
If this is set to true and the file
exists, an ItemStreamException
is thrown.

resource Resource null (required) File or stream to be written to.

rootElementAttributes Map<String, String> null This key/value pairing is
appended to the root tag of each
fragment with the keys as the
attribute names and value as
their values.

rootTagName String null (required) Defines the root XML tag the
XML document.

(continued)

Chapter 9 ■ ItemWrIters

260

To look at how StaxEventItemWriter works, let’s update formatJob to output the customer output in XML.
Using the same input from the previous examples, Listing 9-18 shows the new output you create when you
update the job.

Listing 9-18. customer.xml

<?xml version="1.0" encoding="UTF-8"?>
<customers>
 <customer>
 <id>0</id>
 <firstName>Richard</firstName>
 <middleInitial>N</middleInitial>
 <lastName>Darrow</lastName>
 <address>5570 Isabella Ave</address>
 <city>St. Louis</city>
 <state>IL</state>
 <zip>58540</zip>
 </customer>
 ...
</customers>

In order to generate the output shown in Listing 9-18, you reuse the formatJob configuration
but replace flatFileOutputWriter with a new xmlOutputWriter that uses the StaxEventItemWriter
ItemWriter implementation. To configure the new ItemWriter, you provide three dependencies as
shown in Listing 9-19: a Resource to write to, a reference to an org.springframework.oxm.Marshaller
implementation, and a root tag name (customer in this case).

Listing 9-19. Configuration for formatJob with StaxEventItemWriter

...
@Configuration
public class XmlFileJob {

 private JobBuilderFactory jobBuilderFactory;

 private StepBuilderFactory stepBuilderFactory;

Option Type Default Description

saveState boolean true Determines if Spring Batch
keeps track of the state of the
ItemWriter (number of items
written, and so on).

transactional boolean true If true, the writing of the output
is delayed until the transaction is
committed, to prevent rollback
issues.

version String "1.0" Version of XML the file is
written in.

Table 9-2. (continued)

Chapter 9 ■ ItemWrIters

261

 public XmlFileJob(JobBuilderFactory jobBuilderFactory,
 StepBuilderFactory stepBuilderFactory) {

 this.jobBuilderFactory = jobBuilderFactory;
 this.stepBuilderFactory = stepBuilderFactory;
 }

 @Bean
 @StepScope
 public FlatFileItemReader<Customer> customerFileReader(
 @Value("#{jobParameters['customerFile']}")Resource inputFile) {

 return new FlatFileItemReaderBuilder<Customer>()
 .name("customerFileReader")
 .resource(inputFile)
 .delimited()
 .names(new String[] {"firstName",
 "middleInitial",
 "lastName",
 "address",
 "city",
 "state",
 "zip"})
 .targetType(Customer.class)
 .build();
 }

 @Bean
 @StepScope
 public StaxEventItemWriter<Customer> xmlCustomerWriter(
 @Value("#{jobParameters['outputFile']}") Resource outputFile) {

 Map<String, Class> aliases = new HashMap<>();
 aliases.put("customer", Customer.class);

 XStreamMarshaller marshaller = new XStreamMarshaller();

 marshaller.setAliases(aliases);

 marshaller.afterPropertiesSet();

 return new StaxEventItemWriterBuilder<Customer>()
 .name("customerItemWriter")
 .resource(outputFile)
 .marshaller(marshaller)
 .rootTagName("customers")
 .build();
 }

 @Bean
 public Step xmlFormatStep() throws Exception {

Chapter 9 ■ ItemWrIters

262

 return this.stepBuilderFactory.get("xmlFormatStep")
 .<Customer, Customer>chunk(10)
 .reader(customerFileReader(null))
 .writer(xmlCustomerWriter(null))
 .build();
 }

 @Bean
 public Job xmlFormatJob() throws Exception {
 return this.jobBuilderFactory.get("xmlFormatJob")
 .start(xmlFormatStep())
 .build();
 }
}

Of the 80 or so lines of Java code that it took to configure the original formatJob as shown in
Listing 9-7, the formatJob in Listing 9-19 has changed only the delimitedCustomerItemWriter(Resource
file) method. The changes begin with the definition of a new ItemWriter, xmlOutputWriter. This
bean is a reference to the StaxEventItemWriter the section has been talking about and defines three
dependencies: the resource to write to, the Marshaller implementation, and the root tag name for each
XML fragment the Marshaller will generate.

We configure the Marshaller inline. This object is used to generate an XML fragment for each
item the job processes. Using Spring’s org.springframework.oxm.xtream.XStreamMarshaller class,
the only further configuration you’re required to provide is a Map of aliases to use for each type the
Marshaller comes across. By default, the Marshaller uses the attribute’s name as the tag name, but you
provide an alias for the Customer class because the XStreamMarshaller uses the fully qualified name
for the class by default as the root tag of each fragment (com.apress.springbatch.chatper8.Customer
instead of just customer).

In order for the job to be able to compile and run, you need to make one more update. The POM file
needs a new dependency to handle the XML processing, a reference to Spring’s Object/XML Mapping
(OXM) library as well as the XStream library we are using for XML processing. Listing 9-20 shows the update
to the POM that is required.

Listing 9-20. Spring’s OXM Library Maven Dependency

...
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-oxm</artifactId>
</dependency>
<dependency>
 <groupId>com.thoughtworks.xstream</groupId>
 <artifactId>xstream</artifactId>
 <version>1.4.10</version>
</dependency>
 ...

With the POM updated and the job configured, you’re ready to build and run formatJob to generate
XML as the output. After running a ./mvnw clean install from the command line, you can use the
command listed in Listing 9-21 to execute the job.

Chapter 9 ■ ItemWrIters

263

Listing 9-21. Executing formatJob to Generate XML

java -jar itemWriters-0.0.1-SNAPSHOT.jar
customerFile=/input/customer.csv outputFile=file:/output/xmlCustomer.xml

When you look at the results of the XML, notice that it was obviously generated by a library in that there
is no formatting applied. However using your IDE or your favorite text editor, you can see clearly that the
output is what you expected. Listing 9-22 shows a sample of the generated output XML.

Listing 9-22. formatJob XML Results

<?xml version="1.0" encoding="UTF-8"?>
<customers>
 <customer>
 <id>0</id>
 <firstName>Richard</firstName>
 <middleInitial>N</middleInitial>
 <lastName>Darrow</lastName>
 <address>5570 Isabella Ave</address>
 <city>St. Louis</city>
 <state>IL</state>
 <zip>58540</zip>
 </customer>
 ...
</customers>

With not much more than a couple lines of Java, you can easily generate XML output with the full power
of any Spring-supported XML Marshaller.

The ability to process XML as both input and output is important in today’s enterprise environment, as
is the ability to process flat files. However, although files play a large part in batch processing, they aren’t as
prevalent in other processing in today’s enterprise. Instead, the relational database has taken over. As such,
the batch process must be able to not only read from a database (as you saw in Chapter 7) but write to it as
well. The next section looks at the more common ways to handle writing to a database using Spring Batch.

Database-Based ItemWriters
Writing to a database offers a different set of constraints than file-based output. First, databases are
transactional resources, unlike files. Because of this, you can include the physical write as part of the
transaction instead of segmenting it as file-based processing does. Also, there are many different options for
how to access a database. JDBC, Java Persistence API (JPA), and Hibernate all offer unique yet compelling
models for handling writing to a database. This section looks at how to use JDBC, Hibernate, and JPA to write
the output of a batch process to a database.

JdbcBatchItemWriter
The first way you can write to the database is the way most people learn how to access a database
with Spring, via JDBC. Spring Batch’s JdbcBatchItemWriter uses the JdbcTemplate and its batch SQL
execution capabilities to execute all of the SQL for a single chunk at once. This section looks at how to use
JdbcBatchItemWriter to write a step’s output to a database.

Chapter 9 ■ ItemWrIters

264

org.springframework.batch.item.database.JdbcBatchItemWriter isn’t much more than a thin
wrapper around Spring’s org.springframework.jdbc.support.JdbcTemplate, using the JdbcTemplate.
batchUpdate() or JdbcTemplate.execute() method depending on whether named parameters are used in
the SQL to execute mass database insert/updates. The important thing to note about this is that Spring uses
PreparedStatement’s batch-update capabilities to execute all the SQL statements for a single chunk at once
instead of using multiple calls. This greatly improves performance while still allowing all the executions to
execute within the current transaction.

To see how the JdbcBatchItemWriter works, again you work with the same input you used with the file-
based writers, but you use it to populate a CUSTOMER database table instead of writing a file. Figure 9-3 shows
the design of the table into which you’re inserting the customer information.

As you can see in Figure 9-3, the columns of the CUSTOMER table match up virtually one-to-one with the
elements in the customer.csv file. The only difference is the id field, which you let the database populate
for you. In order to insert the values into the table, you need to build the SQL in either of two ways: using
question marks (?) as placeholders for the values or using named parameters (:name, for example) as
placeholders. Each of these two options requires a slightly different approach in populating the values. You
start with the question mark as shown in the sample SQL statement in Listing 9-23.

Listing 9-23. Prepared Statement for Inserting into the CUSTOMER Table

insert into CUSTOMER (firstName, middleInitial, lastName, address, city,
state, zip) values (?, ?, ?, ?, ?, ?, ?)

As you can see, there is nothing unusual about the prepared statement. However, providing the
SQL statement is only one of the configuration options for JdbcBatchItemWriter. Table 9-3 lists all the
configuration options.

Figure 9-3. CUSTOMER table design

Chapter 9 ■ ItemWrIters

265

Table 9-3. JdbcBatchItemWriter Configuration Options

Option Type Default Description

assertUpdates boolean true If true, causes JdbcBatchItemWriter
to validate that every item
resulted in an insert or update. If
any item didn’t trigger an insert
or an update of a record, an
EmptyResultDataAccessException is
thrown.

dataSource DataSource null (required) Provides access to the required
database.

itemPrepared
StatementSetter

ItemPrepared
Statement
Setter

null If a standard PreparedStatement is
provided (using ? for parameters),
JdbcBatchItemWriter uses this class to
populate the parameter values.

itemSqlParameter
SourceProvider

ItemSqlParameter
SourceProvider

null If named parameters are
used in the SQL provided, the
JdbcBatchItemWriter uses this class to
populate the parameter values.

simpleJdbcTemplate SimpleJdbc
Template

null Allows you to inject an implementation
of the SimpleJdbcOperations interface.

sql String null (required) SQL to be executed for each item.

To use JdbcBatchItemWriter in formatJob, you replace xmlOutputWriter with a new jdbcBatchWriter
bean. Because you begin with a standard PreparedStatement syntax for the query (using question marks),
you need to provide it with a DataSource, the SQL to be executed, and an implementation of the org.
springframework.batch.item.database.ItemPreparedStatementSetter interface. Yes, you’re correct if
you realized that you’re going to have to write some code to make this one work.

ItemPreparedStatementSetter is a simple interface used to abstract the extraction of values from each
item and set them on the PreparedStatement. It contains a single method, as shown in Listing 9-24.

Listing 9-24. ItemPreparedStatementSetter Interface

package org.springframework.batch.item.database;

import java.sql.PreparedStatement;
import java.sql.SQLException;

public interface ItemPreparedStatementSetter<T> {
 void setValues(T item, PreparedStatement ps) throws SQLException;
}

To implement the ItemPreparedStatementSetter interface, you create your own
CustomerItemPreparedStatementSetter. This class implements the single setValues(T item,
PreparedStatement ps) method that is required by the ItemPreparedStatementSetter interface by using
the normal PreparedStatement API to populate each value of the PreparedStatement with the appropriate
value from the item. Listing 9-25 shows the code for CustomerItemPreparedStatementSetter.

Chapter 9 ■ ItemWrIters

266

Listing 9-25. CustomerItemPreparedStatementSetter.java

...
public class CustomerItemPreparedStatementSetter implements
 ItemPreparedStatementSetter<Customer> {

 public void setValues(Customer customer, PreparedStatement ps)
 throws SQLException {

 ps.setString(1, customer.getFirstName());
 ps.setString(2, customer.getMiddleInitial());
 ps.setString(3, customer.getLastName());
 ps.setString(4, customer.getAddress());
 ps.setString(5, customer.getCity());
 ps.setString(6, customer.getState());
 ps.setString(7, customer.getZip());
 }
}

As Listing 9-25 shows, there is no magic involved in setting the values for each PreparedStatement.
With this code, you can update formatJob’s configuration to write its output to the database. Listing 9-26
shows the configuration for the new ItemWriter.

Listing 9-26. jdbcBatchWriter’s Configuration

...
@Bean
@StepScope
public JdbcBatchItemWriter<Customer> jdbcCustomerWriter(DataSource dataSource) throws
Exception {
 return new JdbcBatchItemWriterBuilder<Customer>()
 .dataSource(dataSource)
 .sql("INSERT INTO CUSTOMER (first_name, " +
 "middle_initial, " +
 "last_name, " +
 "address, " +
 "city, " +
 "state, " +
 "zip) VALUES (?, ?, ?, ?, ?, ?, ?)")
 .itemPreparedStatementSetter(new
 CustomerItemPreparedStatementSetter())
 .build();
}
...

As you can see in Listing 9-26, the new jdbcBatchItemWriter references the dataSource bean from
the Spring Boot (the CUSTOMER table is in the same schema as the Spring Batch tables you use for the
JobRepository). The SQL value is the same as the SQL statement you previously defined in Listing 9-23. The
last dependency you provide is the reference to the CustomerItemPreparedStatementSetter.

Chapter 9 ■ ItemWrIters

267

The final piece of the puzzle to configure the new ItemWriter is to update the configuration for the
step to reference the new ItemWriter. To do this, all you need to do is update formatStep’s configuration
to reference the jdbcBatchWriter bean in place of its current reference to the xmlOutputWriter from
the previous section. Listing 9-27 shows the full listing of JdbcFormatJob.java configured to write to the
database.

Listing 9-27. formatJob Configured for JDBC Database Writing

...
@Configuration
public class JdbcFormatJob {

 private JobBuilderFactory jobBuilderFactory;

 private StepBuilderFactory stepBuilderFactory;

 public JdbcFormatJob(JobBuilderFactory jobBuilderFactory,
 StepBuilderFactory stepBuilderFactory) {

 this.jobBuilderFactory = jobBuilderFactory;
 this.stepBuilderFactory = stepBuilderFactory;
 }

 @Bean
 @StepScope
 public FlatFileItemReader<Customer> customerFileReader(
 @Value("#{jobParameters['customerFile']}")Resource inputFile) {

 return new FlatFileItemReaderBuilder<Customer>()
 .name("customerFileReader")
 .resource(inputFile)
 .delimited()
 .names(new String[] {"firstName",
 "middleInitial",
 "lastName",
 "address",
 "city",
 "state",
 "zip"})
 .targetType(Customer.class)
 .build();
 }

 @Bean
 @StepScope
 public JdbcBatchItemWriter<Customer> jdbcCustomerWriter(DataSource dataSource)

throws Exception {
 return new JdbcBatchItemWriterBuilder<Customer>()
 .dataSource(dataSource)
 .sql("INSERT INTO CUSTOMER (first_name, " +
 "middle_initial, " +
 "last_name, " +

Chapter 9 ■ ItemWrIters

268

 "address, " +
 "city, " +
 "state, " +
 "zip) VALUES (?, ?, ?, ?, ?, ?, ?)")
 .itemPreparedStatementSetter(
 new CustomerItemPreparedStatementSetter())
 .build();
 }

 @Bean
 public Step xmlFormatStep() throws Exception {
 return this.stepBuilderFactory.get("xmlFormatStep")
 .<Customer, Customer>chunk(10)
 .reader(customerFileReader(null))
 .writer(jdbcCustomerWriter(null))
 .build();
 }

 @Bean
 public Job xmlFormatJob() throws Exception {
 return this.jobBuilderFactory.get("xmlFormatJob")
 .start(xmlFormatStep())
 .build();
 }
}

Because you already have the JDBC drivers configured in the POM and the DataSource configured for
the JobRepository, all you need to do is execute an ./mvnw clean install and execute the command in
Listing 9-28 to see the results of the updated formatJob.

Listing 9-28. Command to Execute formatJob

java -jar itemWriters-0.0.1-SNAPSHOT.jar customerFile=/input/customer.csv

The output of this job isn’t in a file this time but in the database. You can confirm the execution in two
ways. The first is by going to the database to validate the input. Listing 9-29 shows the results of the job in the
database.

Listing 9-29. Job Results with jdbcBatchWriter

mysql> select id, first_name, middle_initial as middle, last_name, address, city, state as
st, zip from SPRING_BATCH.CUSTOMER;
+----+------------+--------+-----------+--------------------------+-----------+------+-------+
| id | first_name | middle | last_name | address | city | st | zip |
+----+------------+--------+-----------+--------------------------+-----------+------+-------+
1	Richard	N	Darrow	5570 Isabella Ave	St. Louis	IL	58540
2	Warren	L	Darrow	4686 Mt. Lee Drive	St. Louis	NY	94935
3	Barack	G	Donnelly	7844 S. Greenwood Ave	Houston	CA	38635
4	Ann	Z	Benes	2447 S. Greenwood Ave	Las Vegas	NY	55366
5	Erica	Z	Gates	3141 Farnam Street	Omaha	CA	57640

Chapter 9 ■ ItemWrIters

269

6	Warren	M	Williams	6670 S. Greenwood Ave	Hollywood	FL	37288
7	Harry	T	Darrow	3273 Isabella Ave	Houston	FL	97261
8	Steve	O	Darrow	8407 Infinite Loop Drive	Las Vegas	WA	90520
+----+------------+--------+-----------+--------------------------+-----------+------+-------+
8 rows in set (0.00 sec)

The PreparedStatement notation is useful given most Java developers’ familiarity with it. However,
the named parameter approach provided by Spring’s JdbcTemplate is a much safer way to go and is the
preferred way to populate parameters in most Spring environments. With that in mind, you can put this
feature to use by making two small updates to the configuration:

•	 Update the configuration to remove the ItemPreparedStatementSetter
implementation you wrote and replace it with an implementation of the
ItemSqlParameterSourceProvider interface.

•	 Update the SQL to use named parameters instead of question marks for parameters.

The org.springframework.batch.item.database.ItemSqlParameterSourceProvider interface is
slightly different from the ItemPreparedStatementSetter interface in that it doesn’t set the parameters
on the statement to be executed. Instead, an implementation of the ItemSqlParameterSourceProvider’s
responsibility is to extract the parameter values from an item and return them as an org.springframework.
jdbc.core.namedparam.SqlParameterSource object.

The nice thing about this approach is that not only is it the safer approach (no concerns about needing
to keep the SQL in the configuration code in synch with the code of the ItemPreparedStatementSetter
implementation) but Spring Batch provides implementations of this interface that allow you to use
convention over code to extract the values from the items. In this example, you use Spring Batch’s
BeanPropertyItemSqlParameterSourceProvider (try saying that three times fast) to extract the values from
the items to be populated in the SQL which the JdbcBatchItemWriterBuilder makes easy to use via the
beanMapped() method. Listing 9-30 shows the updated jdbcBatchWriter configuration for this change.

Listing 9-30. jdbcBatchWriter Using BeanPropertyItemSqlParameterSourceProvider

...
@Bean
public JdbcBatchItemWriter<Customer> jdbcCustomerWriter(DataSource dataSource)
 throws Exception {
 return new JdbcBatchItemWriterBuilder<Customer>()
 .dataSource(dataSource)
 .sql("INSERT INTO CUSTOMER (first_name, " +
 "middle_initial, " +
 "last_name, " +
 "address, " +
 "city, " +
 "state, " +
 "zip) VALUES (:firstName, " +
 ":middleInitial, " +
 ":lastName, " +
 ":address, " +
 ":city, " +
 ":state, " +
 ":zip)")

Chapter 9 ■ ItemWrIters

270

 .beanMapped()
 .build();
}
...

You can quickly note in Listing 9-30 that there is no reference to the ItemPreparedStatementSetter
implementation. By using this configuration, you don’t need any custom code. Yet the results are the same.

Although JDBC is known for its speed compared to other persistence frameworks that lie on top of it,
other frameworks are popular in the enterprise. Next you look at how to use the most popular of those to do
database writing: Hibernate.

HibernateItemWriter
When you have most of your database tables and applications already mapped with Hibernate, reusing all
that is a logical choice to start. You saw how Hibernate works as a competent reader in Chapter 7.
This section looks at how you can use HibernateItemWriter to write the changes to a database.

Like JdbcBatchItemWriter, org.springframework.batch.item.database.HibernateItemWriter
serves as a thin wrapper to Hibernate’s Session API. When a chunk completes, the list of items is passed
to HibernateItemWriter where Hibernate's Session.saveOrUpdate(Object item) method is called for
each item that is not already associated with the Session. When all the items have been saved or updated,
HibernateItemWriter makes a single call to Session#flush() method, executing all the changes at once.
This provides a batching functionality similar to JdbcBatchItemWriter’s implementation without dealing
directly with the SQL.

Configuring HibernateItemWriter is simple. All but the configuration of the actual ItemWriter should
be familiar, because it’s the same as the configuration and coding you did for the Hibernate-supported
ItemReaders. To modify formatJob to use Hibernate, you need to update the following:

•	 The POM: The POM needs to incorporate the Hibernate dependencies.

•	 application.yml: You need to configure the CurrentSessionContext class via
the property spring.jpa.properties.hibernate.current_session_context_
class=org.springframework.orm.hibernate5.SpringSessionContext.

•	 Customer.java: You use annotations to configure the mapping for the Customer
object, so you need to add those to the Customer class.

•	 SessionFactory: You need to configure both the SessionFactory and a new
TransactionManager to support Hibernate.

•	 HibernateItemWriter: You can configure the new ItemWriter using
HibernateItemWriter.

Let’s start with the POM updates. For Hibernate to work with Spring Batch, we’ll use the Spring JPA
starter since it provides everything we need. Listing 9-31 shows the additions you need to make to the POM.

Listing 9-31. POM Additions for Supporting Hibernate

...
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
...

Chapter 9 ■ ItemWrIters

271

Now you can begin updating formatJob. Let’s begin with the only code you need to write: the
annotations you add to the Customer class to map it to the database. Listing 9-32 shows the Customer class
updated.

Listing 9-32. Customer.java Mapped to the CUSTOMER Table

...
@Entity
@Table(name = "CUSTOMER")
public class Customer implements Serializable {
 private static final long serialVersionUID = 1L;

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private long id;
 private String firstName;
 private String middleInitial;
 private String lastName;
 private String address;
 private String city;
 private String state;
 private String zip;

 // Accessors go here

}

The annotations you use here are the same as the ones you used in the ItemReader example in Chapter 7.
The mapping for the Customer class is pretty straightforward because the column names of the CUSTOMER
table match those of the Customer class. The other thing to notice is that you aren’t using any Hibernate-
specific annotations. All the annotations used here are JPA-supported annotations, which allows you
to switch from Hibernate to any JPA-supported implementation if you choose with no code changes
required.

The next piece we need to add when using Hibernate is our custom HibernateBatchConfigurer.
This will be the exact same one we used in Chapter 7. It provides a HibernateTransactionManager
in place of the normally provided DataSourceTransactionManager. Listing 9-33 provides the
HibernateBatchConfigurer.

Listing 9-33. HibernateBatchConfigurer.java

...
@Component
public class HibernateBatchConfigurer implements BatchConfigurer {

 private DataSource dataSource;
 private SessionFactory sessionFactory;
 private JobRepository jobRepository;
 private PlatformTransactionManager transactionManager;
 private JobLauncher jobLauncher;
 private JobExplorer jobExplorer;

Chapter 9 ■ ItemWrIters

272

 public HibernateBatchConfigurer(DataSource dataSource,
 EntityManagerFactory entityManagerFactory) {

 this.dataSource = dataSource;
 this.sessionFactory = entityManagerFactory.unwrap(SessionFactory.class);
 }

 @Override
 public JobRepository getJobRepository() throws Exception {
 return this.jobRepository;
 }

 @Override
 public PlatformTransactionManager getTransactionManager() throws Exception {
 return this.transactionManager;
 }

 @Override
 public JobLauncher getJobLauncher() throws Exception {
 return this.jobLauncher;
 }

 @Override
 public JobExplorer getJobExplorer() throws Exception {
 return this.jobExplorer;
 }

 @PostConstruct
 public void initialize() {

 try {
 HibernateTransactionManager transactionManager =
 new HibernateTransactionManager(sessionFactory);
 transactionManager.afterPropertiesSet();

 this.transactionManager = transactionManager;

 this.jobRepository = createJobRepository();
 this.jobExplorer = createJobExplorer();
 this.jobLauncher = createJobLauncher();

 }
 catch (Exception e) {
 throw new BatchConfigurationException(e);
 }
 }

 private JobLauncher createJobLauncher() throws Exception {
 SimpleJobLauncher jobLauncher = new SimpleJobLauncher();

Chapter 9 ■ ItemWrIters

273

 jobLauncher.setJobRepository(this.jobRepository);
 jobLauncher.afterPropertiesSet();

 return jobLauncher;
 }

 private JobExplorer createJobExplorer() throws Exception {
 JobExplorerFactoryBean jobExplorerFactoryBean = new JobExplorerFactoryBean();

 jobExplorerFactoryBean.setDataSource(this.dataSource);
 jobExplorerFactoryBean.afterPropertiesSet();

 return jobExplorerFactoryBean.getObject();
 }

 private JobRepository createJobRepository() throws Exception {
 JobRepositoryFactoryBean jobRepositoryFactoryBean = new

JobRepositoryFactoryBean();

 jobRepositoryFactoryBean.setDataSource(this.dataSource);
 jobRepositoryFactoryBean.setTransactionManager(this.transactionManager);
 jobRepositoryFactoryBean.afterPropertiesSet();

 return jobRepositoryFactoryBean.getObject();
 }
}

Finally, you can configure HibernateItemWriter. It’s probably the easiest ItemWriter to configure
given that other components and the Hibernate framework do all the work. HibernateItemWriter requires
a single dependency and has one optional dependency. The required dependency is a reference to the
SessionFactory. The optional dependency (which you aren’t using in this case) is an indicator if the
writer should call clear() on the Session after calling flush() (defaults to true). Listing 9-34 show the
configuration of the job complete with the new HibernateItemWriter configuration.

Listing 9-34. HibernateImportJob.java Using Hibernate

...
@Configuration
public class HibernateImportJob {

 private JobBuilderFactory jobBuilderFactory;

 private StepBuilderFactory stepBuilderFactory;

 public HibernateImportJob(JobBuilderFactory jobBuilderFactory,
 StepBuilderFactory stepBuilderFactory) {

 this.jobBuilderFactory = jobBuilderFactory;
 this.stepBuilderFactory = stepBuilderFactory;
 }

Chapter 9 ■ ItemWrIters

274

 @Bean
 @StepScope
 public FlatFileItemReader<Customer> customerFileReader(
 @Value("#{jobParameters['customerFile']}")Resource inputFile) {

 return new FlatFileItemReaderBuilder<Customer>()
 .name("customerFileReader")
 .resource(inputFile)
 .delimited()
 .names(new String[] {"firstName",
 "middleInitial",
 "lastName",
 "address",
 "city",
 "state",
 "zip"})
 .targetType(Customer.class)
 .build();
 }

 @Bean
 public HibernateItemWriter<Customer> hibernateItemWriter(
 EntityManagerFactory entityManager) {

 return new HibernateItemWriterBuilder<Customer>()
 .sessionFactory(entityManager.unwrap(SessionFactory.class))
 .build();
 }

 @Bean
 public Step hibernateFormatStep() throws Exception {
 return this.stepBuilderFactory.get("jdbcFormatStep")
 .<Customer, Customer>chunk(10)
 .reader(customerFileReader(null))
 .writer(hibernateItemWriter(null))
 .build();
 }

 @Bean
 public Job hibernateFormatJob() throws Exception {
 return this.jobBuilderFactory.get("hibernateFormatJob")
 .start(hibernateFormatStep ())
 .build();
 }
}

The configuration for this job changes only with the configuration of hibernateBatchWriter and
its reference in the hibernateFormatStep. As you saw previously, HibernateItemWriter requires only
a reference to a SessionFactory, which is provided via Spring Boot. Executing this job returns the same
results as the JdbcBatchItemWriter example previously.

Chapter 9 ■ ItemWrIters

275

When other frameworks do all of the heavy lifting, the Spring Batch configuration is quite simple, as this
Hibernate example shows. Hibernate’s official spec cousin, JPA, is the other database access framework you
can use to do database writing.

JpaItemWriter
The Java Persistence API (JPA) provides very similar functionality and requires almost the exact same
configuration as its Hibernate cousin. It, like Hibernate, does the heavy lifting in the case of writing to the
database, so the Spring Batch piece of the puzzle is very small. This section looks at how to configure JPA to
perform database writing.

When you look at the org.springframework.batch.item.writer.JpaItemWriter, it serves as a thin
wrapper around JPA’s javax.persistence.EntityManager. When a chunk completes, the list of items
within the chunk is passed to JpaItemWriter. The writer loops over the items in the List<T>, calling the
EntityManager’s merge(T entity) method on each item before calling flush() after all the items have been
saved.

To see JpaItemWriter in action, you use the same customer input as earlier and insert it into the same
CUSTOMER table. To hook JPA into the job, you need to do the following two things:

 1. Create a BatchConfigurer implementation that creates a JpaTransactionManager.
This acts the same as the Hibernate version in the previous section.

 2. Configure the JpaItemWriter. The last step is to configure the new ItemWriter to
save the items read in the job.

The rest is provided via Spring Boot. We can start the code we need to provide with the
JpaBatchConfigurer. The code here is exactly the same as the Hibernate version in the previous section
except for two minor things. First, we’ll save off an EntityManager instead of a SessionFactory in the
constructor. Second, instead of creating a HibernateTransactionManager in the initialize() method,
we’ll create a JpaTransactionManager. Listing 9-35 illustrates the configuration.

Listing 9-35. JpaBatchConfigurer.java

...
@Component
public class JpaBatchConfigurer implements BatchConfigurer {

 private DataSource dataSource;
 private EntityManagerFactory entityManagerFactory;
 private JobRepository jobRepository;
 private PlatformTransactionManager transactionManager;
 private JobLauncher jobLauncher;
 private JobExplorer jobExplorer;

 public JpaBatchConfigurer(DataSource dataSource,
 EntityManagerFactory entityManagerFactory) {
 this.dataSource = dataSource;
 this.entityManagerFactory = entityManagerFactory;
 }

 @Override
 public JobRepository getJobRepository() throws Exception {
 return this.jobRepository;
 }

Chapter 9 ■ ItemWrIters

276

 @Override
 public PlatformTransactionManager getTransactionManager() throws Exception {
 return this.transactionManager;
 }

 @Override
 public JobLauncher getJobLauncher() throws Exception {
 return this.jobLauncher;
 }

 @Override
 public JobExplorer getJobExplorer() throws Exception {
 return this.jobExplorer;
 }

 @PostConstruct
 public void initialize() {

 try {
 JpaTransactionManager transactionManager =
 new JpaTransactionManager(entityManagerFactory);
 transactionManager.afterPropertiesSet();

 this.transactionManager = transactionManager;

 this.jobRepository = createJobRepository();
 this.jobExplorer = createJobExplorer();
 this.jobLauncher = createJobLauncher();

 }
 catch (Exception e) {
 throw new BatchConfigurationException(e);
 }
 }

 private JobLauncher createJobLauncher() throws Exception {
 SimpleJobLauncher jobLauncher = new SimpleJobLauncher();

 jobLauncher.setJobRepository(this.jobRepository);
 jobLauncher.afterPropertiesSet();

 return jobLauncher;
 }

 private JobExplorer createJobExplorer() throws Exception {
 JobExplorerFactoryBean jobExplorerFactoryBean =
 new JobExplorerFactoryBean();

 jobExplorerFactoryBean.setDataSource(this.dataSource);
 jobExplorerFactoryBean.afterPropertiesSet();

Chapter 9 ■ ItemWrIters

277

 return jobExplorerFactoryBean.getObject();
 }

 private JobRepository createJobRepository() throws Exception {
 JobRepositoryFactoryBean jobRepositoryFactoryBean =
 new JobRepositoryFactoryBean();

 jobRepositoryFactoryBean.setDataSource(this.dataSource);
 jobRepositoryFactoryBean.setTransactionManager(this.transactionManager);
 jobRepositoryFactoryBean.afterPropertiesSet();

 return jobRepositoryFactoryBean.getObject();
 }
}

Since we used the JPA annotations to map our Customer object in the previous section, there are no
modifications needed to it for this example. The final aspect of configuring the job to use JPA is to configure
JpaItemWriter. It requires only a single dependency—a reference to EntityManagerFactory—so that it can
obtain an EntityManager to work with. Listing 9-36 shows the configuration for the new ItemWriter and the
job updated to use it.

Listing 9-36. formatJob Configured to Use JpaItemWriter

...
@Configuration
public class JpaImportJob {

 private JobBuilderFactory jobBuilderFactory;

 private StepBuilderFactory stepBuilderFactory;

 public JpaImportJob(JobBuilderFactory jobBuilderFactory,
 StepBuilderFactory stepBuilderFactory) {

 this.jobBuilderFactory = jobBuilderFactory;
 this.stepBuilderFactory = stepBuilderFactory;
 }

 @Bean
 @StepScope
 public FlatFileItemReader<Customer> customerFileReader(
 @Value("#{jobParameters['customerFile']}")Resource inputFile) {

 return new FlatFileItemReaderBuilder<Customer>()
 .name("customerFileReader")
 .resource(inputFile)
 .delimited()
 .names(new String[] {"firstName",
 "middleInitial",
 "lastName",
 "address",
 "city",

Chapter 9 ■ ItemWrIters

278

 "state",
 "zip"})
 .targetType(Customer.class)
 .build();
 }

 @Bean
 public JpaItemWriter<Customer> jpaItemWriter(
 EntityManagerFactory entityManagerFactory) {

 JpaItemWriter<Customer> jpaItemWriter = new JpaItemWriter<>();

 jpaItemWriter.setEntityManagerFactory(entityManagerFactory);

 return jpaItemWriter;
 }

 @Bean
 public Step jpaFormatStep() throws Exception {
 return this.stepBuilderFactory.get("jpaFormatStep")
 .<Customer, Customer>chunk(10)
 .reader(customerFileReader(null))
 .writer(jpaItemWriter(null))
 .build();
 }

 @Bean
 public Job jpaFormatJob() throws Exception {
 return this.jobBuilderFactory.get("jpaFormatJob")
 .start(jpaFormatStep())
 .build();
 }
}

You can now build the job with a quick ./mvnw clean install. To execute the job, use the command in
Listing 9-37, which returns the results you’ve seen in the other database examples.

Listing 9-37. Command to Execute formatJob with JPA Configured

java -jar itemWriters-0.0.1-SNAPSHOT.jar customerFile=/input/customer.csv

The relational database rules in the modern enterprise, for better or worse. As you can see, writing job
results to a database is easy with Spring Batch. But relational databases aren’t the only databases that are
available both from Spring Batch or needed in an enterprise. The next section looks at other NoSql stores
supported by Spring Data.

Chapter 9 ■ ItemWrIters

279

Spring Data ItemWriters
In Chapter 7 we learned about the Spring Data project and how it brings a common programming model
to a number of different data stores. Spring Batch takes advantage of Spring Data’s capabilities to offer the
ability to write to a number of NoSql data stores, specifically MongoDB, Neo4J, Pivotal Gemfire, or Apache
Geode, as well as offering support for any other Spring Data project with CrudRepository support. In this
section, we will look at how each of these options can be integrated into our Spring Batch projects.

MongoDB
Mongo’s features as a high performance, highly scalable datastore make it an attractive option for the
enterprise. Spring Batch supports the use of storing objects as documents in a MongoDB collection via the
MongoItemWriter.

In order to use MongoDB, we first need to update our Customer object in a few minor ways. First of all,
MongoDB does not support long values for ids, it requires String ids. Secondly, we can remove the JPA
annotations from the Customer object since there are no tables in MongoDB. This leaves us with a Customer
domain object that looks like what is in Listing 9-38.

Listing 9-38. Customer.java for MongoDB

...
public class Customer implements Serializable {
 private static final long serialVersionUID = 1L;

 @Id
 private String id;
 private String firstName;
 private String middleInitial;
 private String lastName;
 private String address;
 private String city;
 private String state;
 private String zip;

 // Getters and setters removed

 @Override
 public String toString() {
 return "Customer{" +
 "id=" + id +
 ", firstName='" + firstName + '\" +
 ", middleInitial='" + middleInitial + '\" +
 ", lastName='" + lastName + '\" +
 ", address='" + address + '\" +
 ", city='" + city + '\" +
 ", state='" + state + '\" +
 ", zip='" + zip + '\" +
 '}';
 }
}

Chapter 9 ■ ItemWrIters

280

With our domain object updated, we need to add the correct dependency to our pom.xml to bring in
the MongoDB dependencies. Like most other instances when you need to bring in new functionality using
Spring Boot, we will bring in the correct starter. In this case, it is the spring-boot-starter-data-mongodb as
shown in Listing 9-39.

Listing 9-39. spring-boot-starter-data-mongodb

...
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-mongodb</artifactId>
</dependency>
...

The next thing we need to configure is our application.yml to point to our MongoDB database. By
default, Spring Boot looks for it on localhost with standard login credentials, so we do not need to configure
any of those; however, we do need to tell our application the name of the database to write to, which in our
case is called customerdb. We set that via the spring.data.mongodb.database property.

The MongoDB ItemWriter works in a similar way to the Hibernate and JPA based ItemWriter
implementations. The mapping is handled via the annotations on the domain object, so there is only
minimal configuration required on the ItemWriter itself. In our case, we will need to configure the name
of the collection within our database to write to (customers), provide an instance of MongoOperations, and
call build(). The only other configuration option is a flag called delete that indicates if the ItemWriter
should delete the matching items or it should save them. By default, it saves them. Listing 9-40 shows the
configuration for our mongoFormatJob including the updated MongoItemWriter.

Listing 9-40. mongoFormatJob

...
@Configuration
public class MongoImportJob {

 private JobBuilderFactory jobBuilderFactory;

 private StepBuilderFactory stepBuilderFactory;

 public MongoImportJob(JobBuilderFactory jobBuilderFactory,
 StepBuilderFactory stepBuilderFactory) {

 this.jobBuilderFactory = jobBuilderFactory;
 this.stepBuilderFactory = stepBuilderFactory;
 }

 @Bean
 @StepScope
 public FlatFileItemReader<Customer> customerFileReader(
 @Value("#{jobParameters['customerFile']}")Resource inputFile) {

 return new FlatFileItemReaderBuilder<Customer>()
 .name("customerFileReader")
 .resource(inputFile)
 .delimited()

Chapter 9 ■ ItemWrIters

281

 .names(new String[] {"firstName",
 "middleInitial",
 "lastName",
 "address",
 "city",
 "state",
 "zip"})
 .targetType(Customer.class)
 .build();
 }

 @Bean
 public MongoItemWriter<Customer> mongoItemWriter(MongoOperations mongoTemplate) {
 return new MongoItemWriterBuilder<Customer>()
 .collection("customers")
 .template(mongoTemplate)
 .build();
 }

 @Bean
 public Step mongoFormatStep() throws Exception {
 return this.stepBuilderFactory.get("mongoFormatStep")
 .<Customer, Customer>chunk(10)
 .reader(customerFileReader(null))
 .writer(mongoItemWriter(null))
 .build();
 }

 @Bean
 public Job mongoFormatJob() throws Exception {
 return this.jobBuilderFactory.get("mongoFormatJob")
 .start(mongoFormatStep())
 .build();
 }
}

One point of contention with MongoDB with many enterprises is that historically MongoDB has not
supported ACID (Atomicity, Consistency, Isolation, Durability) transactions. Because of this, Spring Batch
treats MongoDB like any other data store that does not support transactions and buffers the writes until just
before the commit occurs, performing the write at the last moment.

With our job written, if we build and run it, we will find nine documents were inserted into our
collection as illustrated via the GUI client Robot 3T2 Figure 9-4.

2https://robomongo.org/

https://robomongo.org/

Chapter 9 ■ ItemWrIters

282

While MongoDB is probably the most popular NoSQL data store on the market, the format of storing
documents is not ideal for all use cases. That’s the whole idea behind the NoSQL movement, to use the
data store that is right for your data. In the next section, we will look at another NoSQL store that has a very
different model, it’s a graph database.

Neo4J
In our society where everything is connected, our lives have been turned into large graphs. Graphs of friends
on Facebook, networks of connections on LinkedIn...the list goes on. Each node of these graphs has very
different forms of relationships which make traditional relational data stores inefficient for storing this kind
of data. Neo4J is the leading graph database on the market today with over three million downloads which
is increasing by 50 thousand a month.3 Spring Data brings support to the Spring portfolio for Neo4j. In this
section, we will take a look at how to write records to a Neo4j database using the Neo4jItemWriter.

To get started with Neo4j, just like in JPA and MongoDB, we map our data to it’s representation in
the database via annotations. With this, we will need to update our Customer class with the appropriate
annotations to map it in a Neo4j database. We will begin with the @NodeEntity annotation at the class level,
indicating to the ItemWriter that this class represents a node in the graph. Neo4j also has an @Relationship

Figure 9-4. Output of mongoFormatJob in Robot 3T

3https://neo4j.com/top-ten-reasons/

https://neo4j.com/top-ten-reasons/

Chapter 9 ■ ItemWrIters

283

annotation that allows you to map the relationships between nodes in the graph. In our case, our node does
not have any relationships, but we do need to identify an id for it. Using a relational database we used a
long for the id. MongoDB required that we use a String. For Neo4j we are going to use a UUID. Listing 9-41
illustrates the updated Customer domain object, mapped for Neo4j.

Listing 9-41. Customer Mapped for Neo4j

...
@NodeEntity
public class Customer implements Serializable {
 private static final long serialVersionUID = 1L;

 @Id
 @GeneratedValue(strategy = UuidStrategy.class)
 private UUID id;
 private String firstName;
 private String middleInitial;
 private String lastName;
 private String address;
 private String city;
 private String state;
 private String zip;

 // Getters and setters removed
 @Override
 public String toString() {
 return "Customer{" +
 "id=" + id +
 ", firstName='" + firstName + '\" +
 ", middleInitial='" + middleInitial + '\" +
 ", lastName='" + lastName + '\" +
 ", address='" + address + '\" +
 ", city='" + city + '\" +
 ", state='" + state + '\" +
 ", zip='" + zip + '\" +
 '}';
 }
}

In order to put Neo4j to use from our application, we will need to add the appropriate Spring Boot
starter to our pom.xml. At this point in the book, assuming you have been following along, it should come as
no surprise that the starter we are going to bring in is the spring-boot-starter-data-neo4j artifact as shown in
Listing 9-42.

Listing 9-42. Neo4j Dependencies

...
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-neo4j</artifactId>
</dependency>
...

Chapter 9 ■ ItemWrIters

284

With the correct dependencies included in our application, we need to add the correct configuration to
our application.yml. To get started, I recommend using the Community Edition of the Neo4j server.4 To use
it, we will need to configure the username, password, and uri as shown in Listing 9-43.

Listing 9-43. Neo4j Dependencies

spring:
 data:
...
 neo4j:
 username: neo4j
 password: password
 embedded:
 enabled: false
 uri: bolt://localhost:7687

The last piece of the puzzle for using Neo4j as our ItemWriter is to actually configure the ItemWriter.
The Neo4jItemWriter simply requires one dependency, an org.neo4j.orgm.session.SessionFactory
instance which is provided by Spring Boot via the starter we added earlier. Listing 9-44 illustrates the full job
configured to write to Neo4j.

Listing 9-44. Neo4jImportJob

...
@Configuration
public class Neo4jImportJob {

 private JobBuilderFactory jobBuilderFactory;

 private StepBuilderFactory stepBuilderFactory;

 public Neo4jImportJob(JobBuilderFactory jobBuilderFactory,
 StepBuilderFactory stepBuilderFactory) {

 this.jobBuilderFactory = jobBuilderFactory;
 this.stepBuilderFactory = stepBuilderFactory;
 }

 @Bean
 @StepScope
 public FlatFileItemReader<Customer> customerFileReader(
 @Value("#{jobParameters['customerFile']}")Resource inputFile) {

 return new FlatFileItemReaderBuilder<Customer>()
 .name("customerFileReader")
 .resource(inputFile)
 .delimited()
 .names(new String[] {"firstName",

4https://neo4j.com/download-center/#releases

https://neo4j.com/download-center/#releases

Chapter 9 ■ ItemWrIters

285

 "middleInitial",
 "lastName",
 "address",
 "city",
 "state",
 "zip"})
 .targetType(Customer.class)
 .build();
 }

 @Bean
 public Neo4jItemWriter<Customer> neo4jItemWriter(SessionFactory sessionFactory) {
 return new Neo4jItemWriterBuilder<Customer>()
 .sessionFactory(sessionFactory)
 .build();
 }

 @Bean
 public Step neo4jFormatStep() throws Exception {
 return this.stepBuilderFactory.get("neo4jFormatStep")
 .<Customer, Customer>chunk(10)
 .reader(customerFileReader(null))
 .writer(neo4jItemWriter(null))
 .build();
 }

 @Bean
 public Job neo4jFormatJob() throws Exception {
 return this.jobBuilderFactory.get("neo4jFormatJob")
 .start(neo4jFormatStep())
 .build();
 }
}

After building and running the Neo4jImportJob, you can verify that your results were successfully
imported into the database by opening the Neo4j browser provided by the server. Once open, you can
execute the cypher equivalent of SELECT firstName, lastName FROM customer; by executing the cypher
query MATCH(c:Customer) RETURN c.firstName, c.lastName. The results you will receive are illustrated in
Figure 9-5.

Chapter 9 ■ ItemWrIters

286

Graph databases provide powerful tools for solving the right problem; however, there is yet another data
store that Spring Batch supports that utilizes another storage model. In the next section, we will look at how
to use a particular key value store for high performance in memory use cases.

Pivotal Gemfire and Apache Geode
In the financial world, milliseconds can count. Fraud detection during a retail transaction does not have
time to wait to retrieve data across multiple hops on a network or off of slow disk. Data must be cached
in memory to be fast enough in these types of environments. This is the type of environment that Pivotal
Gemfire was born in. In this section we will learn about Pivotal Gemfire and it’s open source version Apache
Geode as well as how to write to it using Spring Batch.

Pivotal Gemfire is an in memory data grid. At its core, it is a high performance, distributed HashMap.
It is a key value store that keeps all data in memory and provides extremely fast read times due to it’s network
topology. So what does this have to do with Spring Batch? Simple. One of the main use cases for Gemfire
is caching. And in order for a cache to be useful, it needs to be primed. Spring Batch provides an excellent
facility for priming a cold cache on application startup in an efficient manner.

We will begin as we have in the past couple sections by updating the mapping of the domain object. For
Gemfire, since we are working with a key value store, the key will be something derived from the domain
object and the domain object itself will be the value. All we really need to do is to identify the Region (similar
to a collection in MongoDB) where the values will be persisted to. To do this, we add the @Region annotation
on the Customer class as shown in Listing 9-45.

Figure 9-5. Output of neo4jFormatJob in Neo4j’s browser

Chapter 9 ■ ItemWrIters

287

Listing 9-45. Neo4jImportJob

...
@Region(value = "Customers")
public class Customer implements Serializable {
 private static final long serialVersionUID = 1L;

 private long id;
 private String firstName;
 private String middleInitial;
 private String lastName;
 private String address;
 private String city;
 private String state;
 private String zip;

 // Accessors removed for brevity

 @Override
 public String toString() {
 return "Customer{" +
 "id=" + id +
 ", firstName='" + firstName + '\” +
 ", middleInitial='" + middleInitial + '\” +
 ", lastName='" + lastName + '\” +
 ", address='" + address + '\” +
 ", city='" + city + '\” +
 ", state='" + state + '\” +
 ", zip='" + zip + '\” +
 '}';
 }
}

With our domain object defined, we need to update our pom.xml to bring in the Pivotal Gemfire
dependencies. To do this, we need to make two changes to our POM. First, we need to add two new
dependencies, one for Spring Data Gemfire and one for Spring Shell (Spring Data Gemfire requires it). The
other thing we need to do is we need to exclude the logging dependency on our spring-boot-starter-batch
due to a conflict between what Spring Boot uses by default and what Gemfire uses by default. Listing 9-46
has the POM updates we need to make.

Listing 9-46. pom.xml Updates for Pivotal Gemfire

...
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-batch</artifactId>
 <exclusions>
 <exclusion>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-logging</artifactId>
 </exclusion>
 </exclusions>
</dependency>

Chapter 9 ■ ItemWrIters

288

...
<dependency>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-gemfire</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.shell</groupId>
 <artifactId>spring-shell</artifactId>
</dependency>
...

With our dependencies added, we can now configure Pivotal Gemfire. Unlike the other data stores
that we have used up to this point, all of which were external to our application, we are going to run
Pivotal Gemfire internal to our application. The reason for this is that it’s a common practice so that it
limits network hops.

To begin our configuration, we will add the annotation @PeerCacheApplication to our configuration
class. This annotation is what bootstraps the Pivotal Gemfire service within our application. We will provide it
with two options, a name of the Pivotal Gemfire application and the level of logging we want. From there, we
need to configure a Region. As mentioned earlier, a Region for Gemfire is similar to a Collection in MongoDB.
Pivotal Gemfire allows us to configure things like this directly via Spring instead of using external mechanisms
to do so. Once we have our Region configured, we need to create a GemfireTemplate for our ItemWriter
to use. It takes a single dependency (the Region). Once we have our template defined, we can create our
ItemWriter. The GemfireItemWriter requires two items to be configured on it. The first is the template we
just created. The second is an org.springframework.core.convert.converter.Converter. This Converter
instance is used to convert the item being written to Pivotal Gemfire to the key it will use. In our case, we will
use one of the implementations provided by Spring Batch for this purpose, the SpELItemKeyMapper. This
implementation will take a SpEL expression to create a key from the current item. The final addition to our
configuration compared to previous iterations of it is a new CommandLineRunner. We are going to use this to
validate our job ran successfully since we do not have a GUI to view the results and the Pivotal Gemfire server
shuts down when our application shuts down. This CommandLineRunner will query our Gemfire instance and
list out the items in it. Listing 9-47 configures our Pivotal Gemfire instance and our Spring Batch job to load it.

Listing 9-47. GemfireImportJob

...
@Configuration
@PeerCacheApplication(name = "AccessingDataGemFireApplication", logLevel = "info")
public class GemfireImportJob {

 private JobBuilderFactory jobBuilderFactory;

 private StepBuilderFactory stepBuilderFactory;

 public GemfireImportJob(JobBuilderFactory jobBuilderFactory,
 StepBuilderFactory stepBuilderFactory) {

 this.jobBuilderFactory = jobBuilderFactory;
 this.stepBuilderFactory = stepBuilderFactory;
 }

Chapter 9 ■ ItemWrIters

289

 @Bean
 @StepScope
 public FlatFileItemReader<Customer> customerFileReader(
 @Value("#{jobParameters['customerFile']}")Resource inputFile) {

 return new FlatFileItemReaderBuilder<Customer>()
 .name("customerFileReader")
 .resource(inputFile)
 .delimited()
 .names(new String[] {"firstName",
 "middleInitial",
 "lastName",
 "address",
 "city",
 "state",
 "zip"})
 .targetType(Customer.class)
 .build();
 }

 @Bean
 public GemfireItemWriter<Long, Customer> gemfireItemWriter(
 GemfireTemplate gemfireTemplate) {

 return new GemfireItemWriterBuilder<Long, Customer>()
 .template(gemfireTemplate)
 .itemKeyMapper(new SpELItemKeyMapper<>(
 "firstName + middleInitial + lastName"))
 .build();
 }

 @Bean
 public Step gemfireFormatStep() throws Exception {
 return this.stepBuilderFactory.get("gemfireFormatStep")
 .<Customer, Customer>chunk(10)
 .reader(customerFileReader(null))
 .writer(gemfireItemWriter(null))
 .build();
 }

 @Bean
 public Job gemfireFormatJob() throws Exception {
 return this.jobBuilderFactory.get("gemfireFormatJob")
 .start(gemfireFormatStep())
 .build();
 }

Chapter 9 ■ ItemWrIters

290

 @Bean(name="customer")
 public Region<Long, Customer> getCustomer(final GemFireCache cache) throws Exception {
 LocalRegionFactoryBean<Long, Customer> customerRegion =
 new LocalRegionFactoryBean<>();
 customerRegion.setCache(cache);
 customerRegion.setName("customer");
 customerRegion.afterPropertiesSet();
 Region<Long, Customer> object = customerRegion.getRegion();
 return object;
 }

 @Bean
 public GemfireTemplate gemfireTemplate() throws Exception {
 return new GemfireTemplate(getCustomer(null));
 }

 @Bean
 public CommandLineRunner validator(final GemfireTemplate gemfireTemplate) {
 return args -> {
 List<Object> customers =
 gemfireTemplate.find("select * from /customer").asList();

 for (Object customer : customers) {
 System.out.println(">> object: " + customer);
 }
 };
 }
}

With this configuration we can build and run our job, the output of which will write to System.out all
the items we loaded into our Gemfire Region as shown in Listing 9-48.

Listing 9-48. GemfireImportJob Output

...
[info 2019/02/09 12:59:40.617 CST <main> tid=0x1] Job: [SimpleJob: [name=gemfireFormatJob]]
completed with the following parameters: [{customerFile=/data/customer.csv}] and the
following status: [COMPLETED]

>> object: Customer{id=0, firstName='Ann', middleInitial='Z', lastName='Benes',
address='2447 S. Greenwood Ave', city='Las Vegas', state='NY', zip='55366'}
>> object: Customer{id=0, firstName='Warren', middleInitial='M', lastName='Williams',
address='6670 S. Greenwood Ave', city='Hollywood', state='FL', zip='37288'}
>> object: Customer{id=0, firstName='Erica', middleInitial='Z', lastName='Gates',
address='3141 Farnam Street', city='Omaha', state='CA', zip='57640'}
>> object: Customer{id=0, firstName='Warren', middleInitial='L', lastName='Darrow',
address='4686 Mt. Lee Drive', city='St. Louis', state='NY', zip='94935'}
>> object: Customer{id=0, firstName='Richard', middleInitial='N', lastName='Darrow',
address='5570 Isabella Ave', city='St. Louis', state='IL', zip='58540'}
>> object: Customer{id=0, firstName='Steve', middleInitial='O', lastName='Darrow',
address='8407 Infinite Loop Drive', city='Las Vegas', state='WA', zip='90520'}

Chapter 9 ■ ItemWrIters

291

>> object: Customer{id=0, firstName='Harry', middleInitial='T', lastName='Darrow',
address='3273 Isabella Ave', city='Houston', state='FL', zip='97261'}
>> object: Customer{id=0, firstName='Barack', middleInitial='G', lastName='Donnelly',
address='7844 S. Greenwood Ave', city='Houston', state='CA', zip='38635'}
[info 2019/02/09 12:59:40.660 CST <Distributed system shutdown hook> tid=0x21] VM is exiting
- shutting down distributed system
...

Pivotal Gemfire and Apache Geode both can provide best in class performance capabilities on a variety
of workloads. Spring Batch provides efficient mechanisms for updating them as well. The last Spring Data
related ItemWriter is the RepositoryItemWriter. Just like the RepositoryItemReader discussed in Chapter 7,
this one takes advantage of Sping Data’s Repository abstraction to write records to any data store Spring
Data supports. We will look at it in the next section.

Repository
Spring Data’s Repository abstraction provides a very useful way to construct an ItemWriter. In Chapter 7,
we looked at how Spring Data’s PagingAndSortingRepository can be used to create an ItemReader
for any data store Spring Data has repository support for. The difference between the ItemReader use
of repositories and the ItemWriter use of them is which repository we use. When reading, we used the
PagingAndSortingRepository. However on the writing side of the coin, we really aren’t worried about
paging and sorting, so we use its super interface, org.springframework.data.repository.CrudRepository.
In this section, we will look at using the RepositoryItemWriter to persist data to a data store supported by
Spring Data.

To take a look at how this ItemWriter works, we will write data to the CUSTOMER table just like we did
in the JPA example earlier in this chatper. However, instead of using the JpaItemWriter, we will use the
RepositoryItemWriter. We can begin with the domain object. Since we are using JPA under the hood of this
example, we can actually use the same domain object configuration we did in the JPA section of this chapter.
Here it is in Listing 9-49 for your convenience.

Listing 9-49. Customer Mapped for JPA

...
@Entity
@Table(name = "CUSTOMER")
public class Customer implements Serializable {
 private static final long serialVersionUID = 1L;

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private long id;
 private String firstName;
 private String middleInitial;
 private String lastName;
 private String address;
 private String city;
 private String state;
 private String zip;

 // Getters and setters removed for brevity

Chapter 9 ■ ItemWrIters

292

 @Override
 public String toString() {
 return "Customer{" +
 "id=" + id +
 ", firstName='" + firstName + '\” +
 ", middleInitial='" + middleInitial + '\” +
 ", lastName='" + lastName + '\” +
 ", address='" + address + '\” +
 ", city='" + city + '\” +
 ", state='" + state + '\” +
 ", zip='" + zip + '\” +
 '}';
 }
}

With our domain object configured as needed, we can also create our repository definition. Since we are
just storing the Customer objects into the database, we actually just need to create an interface that extends
CrudRepository. Spring Data will do the rest. Listing 9-50 shows our CustomerRepository definition.

Listing 9-50. CustomerRepository

...
public interface CustomerRepository extends CrudRepository<Customer, Long> {
}

Since we already imported our JPA related dependencies earlier, we do not need to add them again
leaving us only with the configuration of the job itself. The RepositoryItemWriter takes two dependencies,
the repository we are going to use and the name of the method to call. The only other new item here is that
to bootstrap the repository functionality, we need to tell Spring to do so and where to look for repositories.
We do this via the @EnableJpaRepositories and specifying a class in the package where our repository lives.
Listing 9-51 has the configuration of our job.

Listing 9-51. RepositoryImportJob

...
@Configuration
@EnableJpaRepositories(basePackageClasses = Customer.class)
public class RepositoryImportJob {

 private JobBuilderFactory jobBuilderFactory;

 private StepBuilderFactory stepBuilderFactory;

 public RepositoryImportJob(JobBuilderFactory jobBuilderFactory,
 StepBuilderFactory stepBuilderFactory) {

 this.jobBuilderFactory = jobBuilderFactory;
 this.stepBuilderFactory = stepBuilderFactory;
 }

Chapter 9 ■ ItemWrIters

293

 @Bean
 @StepScope
 public FlatFileItemReader<Customer> customerFileReader(
 @Value("#{jobParameters['customerFile']}")Resource inputFile) {

 return new FlatFileItemReaderBuilder<Customer>()
 .name("customerFileReader")
 .resource(inputFile)
 .delimited()
 .names(new String[] {"firstName",
 "middleInitial",
 "lastName",
 "address",
 "city",
 "state",
 "zip"})
 .targetType(Customer.class)
 .build();
 }

 @Bean
 public RepositoryItemWriter<Customer> repositoryItemWriter(
 CustomerRepository repository) {

 return new RepositoryItemWriterBuilder<Customer>()
 .repository(repository)
 .methodName("save")
 .build();
 }

 @Bean
 public Step repositoryFormatStep() throws Exception {
 return this.stepBuilderFactory.get("repositoryFormatStep")
 .<Customer, Customer>chunk(10)
 .reader(customerFileReader(null))
 .writer(repositoryItemWriter(null))
 .build();
 }

 @Bean
 public Job repositoryFormatJob() throws Exception {
 return this.jobBuilderFactory.get("repositoryFormatJob")
 .start(repositoryFormatStep())
 .build();
 }
}

Once our job is built and ran, we can verify the results by looking in our CUSTOMER table in MySQL.
Listing 9-52 shows the results.

Chapter 9 ■ ItemWrIters

294

Listing 9-52. Results of the RepositoryImportJob

mysql> select id, first_name, middle_initial as middle, last_name, address, city, state as
st, zip from SPRING_BATCH.CUSTOMER;
+----+------------+--------+-----------+--------------------------+-----------+------+-------+
| id | first_name | middle | last_name | address | city | st | zip |
+----+------------+--------+-----------+--------------------------+-----------+------+-------+
1	Richard	N	Darrow	5570 Isabella Ave	St. Louis	IL	58540
2	Warren	L	Darrow	4686 Mt. Lee Drive	St. Louis	NY	94935
3	Barack	G	Donnelly	7844 S. Greenwood Ave	Houston	CA	38635
4	Ann	Z	Benes	2447 S. Greenwood Ave	Las Vegas	NY	55366
5	Erica	Z	Gates	3141 Farnam Street	Omaha	CA	57640
6	Warren	M	Williams	6670 S. Greenwood Ave	Hollywood	FL	37288
7	Harry	T	Darrow	3273 Isabella Ave	Houston	FL	97261
8	Steve	O	Darrow	8407 Infinite Loop Drive	Las Vegas	WA	90520
+----+------------+--------+-----------+--------------------------+-----------+------+-------+
8 rows in set (0.01 sec)

The list of databases Spring Batch can interact with is quite long as we have seen. However, databases
and files are not the only thing you can call from a Spring Batch job to write to. Let’s look at some other
options.

Alternative Output Destination ItemWriters
Files and databases aren’t the only ways you can communicate the end result of an item being processed.
Enterprises use a number of other means to store an item after it has been processed. In Chapter 7, you
looked at Spring Batch’s ability to call an existing Spring service to obtain data. It should come as no surprise
then that the framework offers similar functionality on the writing end. Spring Batch also exposes Spring’s
powerful JMS interactions with a JmsItemWriter. Finally, if you have a requirement to send e-mails from a
batch process, Spring Batch can handle that too. This section looks at how to call existing Spring services,
write to a JMS destination, and send e-mail using provided Spring Batch ItemWriters.

ItemWriterAdapter
In most enterprises that use Spring, there are a number of existing services already written and battle-tested
in production. There is no reason they can’t be reused in your batch processes. In Chapter 7, you looked at
how to use them as sources of input for the jobs. This section looks at how the ItemWriterAdapter allows
you to use existing Spring services as ItemWriters as well.

org.springframework.batch.item.adapter.ItemWriterAdapter is nothing more than a thin wrapper
around the service you configure. As with any other ItemWriter, the write method receives a List<T> of
items to be written. ItemWriterAdapter loops through the list calling the service method configured for each
item in the list. It’s important to note that the method being called by ItemWriterAdapter can only accept
the item type being processed. For example, if the step is processing Car objects, the method being called
must take a single argument of type Car.

To configure an ItemWriterAdapter, two dependencies are required:

•	 targetObject: The Spring bean that contains the method to be called

•	 targetMethod: The method to be called with each item

Chapter 9 ■ ItemWrIters

295

 ■ Note the method being called by ItemWriterAdapter must take a single argument of the type that is
being processed by the current step.

Let’s look at an example of ItemWriterAdapter in action. Listing 9-53 shows the code for a service that
logs Customer items to System.out.

Listing 9-53. CustomerService.java

package com.apress.springbatch.chapter9;

@Service
public class CustomerService {

public void logCustomer(Customer cust) {
 System.out.println("I just saved " + cust);
 }
}

As you can see in Listing 9-53, CustomerService is short, sweet, and to the point. But it serves the
purpose for the example. To put this service to work in formatJob, you can configure it to be the target
of a new ItemWriterAdapter. Using the same input configuration you’ve used in the other jobs this
chapter, Listing 9-54 shows the configuration for the ItemWriter using the CustomerServiceImpl’s
logCustomer(Customer cust) method and job referencing it.

Listing 9-54. ItemWriterAdapter Configuration

 ...
@Bean
public ItemWriterAdapter<Customer> itemWriter(CustomerService customerService) {
 ItemWriterAdapter<Customer> customerItemWriterAdapter = new ItemWriterAdapter<>();

 customerItemWriterAdapter.setTargetObject(customerService);
 customerItemWriterAdapter.setTargetMethod("logCustomer");

 return customerItemWriterAdapter;
}

@Bean
public Step formatStep() throws Exception {
 return this.stepBuilderFactory.get("jpaFormatStep")
 .<Customer, Customer>chunk(10)
 .reader(customerFileReader(null))
 .writer(itemWriter(null))
 .build();
}

Chapter 9 ■ ItemWrIters

296

@Bean
public Job itemWriterAdapterFormatJob() throws Exception {
 return this.jobBuilderFactory.get("itemWriterAdapterFormatJob")
 .start(formatStep())
 .build();
}
...

Listing 9-54 starts with the configuration of the ItemWriter as the itemWriterAdapter. The two
dependencies it uses are a reference to customerService and the name of the logCustomer method. Finally,
you reference the itemWriterAdapter in the step to be used by the job.

To execute this job, you build it, like all jobs, with a ./mvnw clean install from the command line.
With the job built, you can execute it by executing the jar file as you’ve done in the past. A sample of the
output of this job is shown in Listing 9-55.

Listing 9-55. ItemWriterAdapter Output

2018-05-03 21:55:01.287 INFO 61906 --- [main] o.s.b.c.l.support.
SimpleJobLauncher : Job: [SimpleJob: [name=itemWriterAdapterFormatJob]] launched
with the following parameters: [{customerFile=/data/customer.csv, outputFile=file:/
Users/mminella/Documents/IntelliJWorkspace/def-guide-spring-batch/Chapter9/target/
formattedCustomers.xml}]
2018-05-03 21:55:01.299 INFO 61906 --- [main] o.s.batch.core.job.
SimpleStepHandler : Executing step: [jpaFormatStep]
Customer{id=0, firstName='Richard', middleInitial='N', lastName='Darrow', address='5570
Isabella Ave', city='St. Louis', state='IL', zip='58540'}
Customer{id=0, firstName='Warren', middleInitial='L', lastName='Darrow', address='4686 Mt.
Lee Drive', city='St. Louis', state='NY', zip='94935'}
Customer{id=0, firstName='Barack', middleInitial='G', lastName='Donnelly', address='7844 S.
Greenwood Ave', city='Houston', state='CA', zip='38635'}
Customer{id=0, firstName='Ann', middleInitial='Z', lastName='Benes', address='2447 S.
Greenwood Ave', city='Las Vegas', state='NY', zip='55366'}
Customer{id=0, firstName='Erica', middleInitial='Z', lastName='Gates', address='3141 Farnam
Street', city='Omaha', state='CA', zip='57640'}
Customer{id=0, firstName='Warren', middleInitial='M', lastName='Williams', address='6670 S.
Greenwood Ave', city='Hollywood', state='FL', zip='37288'}
Customer{id=0, firstName='Harry', middleInitial='T', lastName='Darrow', address='3273
Isabella Ave', city='Houston', state='FL', zip='97261'}
Customer{id=0, firstName='Steve', middleInitial='O', lastName='Darrow', address='8407
Infinite Loop Drive', city='Las Vegas', state='WA', zip='90520'}
2018-05-03 21:55:01.373 INFO 61906 --- [main] o.s.b.c.l.support.
SimpleJobLauncher : Job: [SimpleJob: [name=itemWriterAdapterFormatJob]] completed
with the following parameters: [{customerFile=/data/customer.csv, outputFile=file:/
Users/mminella/Documents/IntelliJWorkspace/def-guide-spring-batch/Chapter9/target/
formattedCustomers.xml}] and the following status: [COMPLETED]

As you would expect, calling an existing service with the item you’ve processed in your step is made
easy with Spring Batch. However, what if your service doesn’t take the same object you’re processing? If
you want to be able to extract values out of your item and pass them to your service, Spring Batch has you
covered. PropertyExtractingDelegatingItemWriter (yes, that really is its name) is next.

Chapter 9 ■ ItemWrIters

297

PropertyExtractingDelegatingItemWriter
The use case for ItemWriterAdapter is pretty simple. Take the item being processed, and pass it to an
existing Spring service. However, software is rarely that straightforward. Because of that, Spring Batch has
provided a mechanism to extract values from an item and pass them to a service as parameters. This section
looks at PropertyExtractingDelegatingItemWriter and how to use it with an existing service.

Although it has a long name, org.springframework.batch.item.adapter.
PropertyExtractingDelegatingItemWriter is a lot like the ItemWriterAdapter. Just like
ItemWriterAdapter, it calls a specified method on a referenced Spring service. The difference is that instead
of blindly passing the item being processed by the step, PropertyExtractingDelegatingItemWriter
passes only the attributes of the item that are requested. For example, if you have an item of type
Product that contains fields for a database id, name, price, and SKU number, you’re required
to pass the entire Product object to the service method as with ItemWriterAdapter. But with
PropertyExtractingDelegatingItemWriter, you can specify that you only want the database id and price to
be passed as parameters to the service.

To look at this as an example, you can use the same customer input that you’re familiar with by this
point. You add a method to the CustomerService that allows you to log the address of the Customer item
being processed and use PropertyExtractingDelegatingItemWriter to call the new method. Let’s start by
looking at the updated CustomerService (see Listing 9-56).

Listing 9-56. CustomerService with logCustomerAddress()

...
@Service
public class CustomerService {

 public void logCustomer(Customer customer) {
 System.out.println(customer);
 }

 public void logCustomerAddress(String address,
 String city,
 String state,
 String zip) {
 System.out.println(
 String.format("I just saved the address:\n%s\n%s, %s\n%s",
 address,
 city,
 state,
 zip));
 }
}

As you can see in Listing 9-56, we’ve added a new method logCustomerAddress(String
address, String city, String state, String zip); however, our new method doesn’t take
the Customer item. Instead it takes values that you have within it. To use this method, you use
PropertyExtractingDelegatingItemWriter to extract the address fields (address, city, state, and zip)
from each Customer item and call the service with the values it receives. To configure this ItemWriter, you
pass in an ordered list of properties to extract from the item along with the target object and method to
be called. The list you pass is in the same order as the parameters required for the property; Spring does
support dot notation (address.city, for example) as well as index properties (e-mail[5]). Just like the
ItemWriterAdapter, this ItemWriter implementation also exposes an arguments property that isn’t used

Chapter 9 ■ ItemWrIters

298

because the arguments are extracted by the writer dynamically. Listing 9-57 shows the job updated to call
the logCustomerAddress(String address, String city, String state, String zip) method instead
of handling the entire Customer item.

Listing 9-57. formatJob Configured to Call the logCustomerAddress Method on CustomerService

 ...
@Bean
public PropertyExtractingDelegatingItemWriter<Customer> itemWriter(CustomerService
customerService) {
 PropertyExtractingDelegatingItemWriter<Customer> itemWriter =
 new PropertyExtractingDelegatingItemWriter<>();

 itemWriter.setTargetObject(customerService);
 itemWriter.setTargetMethod("logCustomerAddress");
 itemWriter.setFieldsUsedAsTargetMethodArguments(
 new String[] {"address", "city", "state", "zip"});

 return itemWriter;
}

@Bean
public Step formatStep() throws Exception {
 return this.stepBuilderFactory.get("formatStep")
 .<Customer, Customer>chunk(10)
 .reader(customerFileReader(null))
 .writer(itemWriter(null))
 .build();
}

@Bean
public Job propertiesFormatJob() throws Exception {
 return this.jobBuilderFactory.get("propertiesFormatJob")
 .start(formatStep())
 .build();
}
...

When you run the job, the output of it consists of a sentence written to System.out with a formatted
address. Listing 9-58 shows a sample of the output you can expect.

Listing 9-58. Output of formatJob Using PropertyExtractingDelegatingItemWriter

2018-05-03 22:15:06.509 INFO 62192 --- [main] o.s.b.c.l.support.
SimpleJobLauncher : Job: [SimpleJob: [name=propertiesFormatJob]] launched with the
following parameters: [{customerFile=/data/customer.csv, outputFile=file:/Users/mminella/
Documents/IntelliJWorkspace/def-guide-spring-batch/Chapter9/target/formattedCustomers.xml}]
2018-05-03 22:15:06.523 INFO 62192 --- [main] o.s.batch.core.job.
SimpleStepHandler : Executing step: [formatStep]
I just saved the address:
5570 Isabella Ave
St. Louis, IL

Chapter 9 ■ ItemWrIters

299

58540
I just saved the address:
4686 Mt. Lee Drive
St. Louis, NY
94935
I just saved the address:
7844 S. Greenwood Ave
Houston, CA
38635
I just saved the address:
2447 S. Greenwood Ave
Las Vegas, NY
55366
I just saved the address:
3141 Farnam Street
Omaha, CA
57640
I just saved the address:
6670 S. Greenwood Ave
Hollywood, FL
37288
I just saved the address:
3273 Isabella Ave
Houston, FL
97261
I just saved the address:
8407 Infinite Loop Drive
Las Vegas, WA
90520
2018-05-03 22:15:06.598 INFO 62192 --- [main] o.s.b.c.l.support.
SimpleJobLauncher : Job: [SimpleJob: [name=propertiesFormatJob]] completed with the
following parameters: [{customerFile=/data/customer.csv, outputFile=file:/Users/mminella/
Documents/IntelliJWorkspace/def-guide-spring-batch/Chapter9/target/formattedCustomers.xml}]
and the following status: [COMPLETED]
2018-05-03 22:15:06.599 INFO 62192 --- [Thread-7] s.c.a.AnnotationConfigApplication
Context : Closing org.springframework.context.annotation.AnnotationConfigApplicationContext
@22635ba0: startup date [Thu May 03 22:15:04 CDT 2018]; root of context hierarchy

Spring Batch provides the ability to reuse just about any existing Spring service you’ve created as an
ItemWriter, with good reason. The code your enterprise has is battle tested in production, and reusing it is
less likely to introduce new bugs and also speeds up development time. The next section looks at using JMS
resources as the destination of items processed within a step.

JmsItemWriter
Java Messaging Service (JMS) is a message-oriented method of communicating between two or more
endpoints. By using either point-to-point communication (a JMS queue) or a publish-subscribe model (JMS
topic), Java applications can communicate with any other technology that can interface with the messaging
implementation. This section looks at how you can put messages on a JMS queue using Spring Batch’s
JmsItemWriter.

Chapter 9 ■ ItemWrIters

300

Spring has made great progress in simplifying a number of common Java concepts. JDBC and
integration with the various ORM frameworks come to mind as examples. But Spring’s work in simplifying
interfacing with JMS resources is just as impressive. In order to work with JMS, you need to use a JMS broker.
This example uses Apache’s ActiveMQ. Apache ActiveMQ is a simple broker that we can utilize in memory
for our examples.

Before you can work with ActiveMQ, you need to add its dependencies and Spring’s JMS dependencies
to the POM so that it’s available. This example works with ActiveMQ version 5.15.3, which is the most current
version as of this writing. Listing 9-5 shows the dependencies you need to add to the POM.

Listing 9-59. Dependencies for ActiveMQ and Spring JMS

...
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-activemq</artifactId>
</dependency>
<dependency>
 <groupId>org.apache.activemq</groupId>
 <artifactId>activemq-broker</artifactId>
</dependency>
...

Now you can begin to put ActiveMQ to work. Before you get into the code, however, let’s look at the
processing for this job because it’s slightly different than before.

In previous examples in this chapter, you have had a single step that read in the customer.csv file and
wrote it out using the appropriate ItemWriter for the example. For this example, however, that won’t be
enough. If you read in the items and write them to the JMS queue, you won’t know if everything got onto the
queue correctly because you can’t see what is in the queue. Instead, as Figure 9-6 shows, you use two steps
for this job. The first one reads the customer.csv file and writes it to the ActiveMQ queue. The second step
reads from the queue and writes the records out to an XML file.

customer.csv customer.xmlcustomerQueueStep 1 Step 2

Figure 9-6. Processing for jmsFormatJob

It’s important to note that you don’t want to do this in an actual production environment because
a message isn’t pulled off the queue until all of them have been put on it. This could lead to running out
of room in your queue depending on how it’s configured and the resources available. However, for this
example and given the small number of customers you’re processing, this approach demonstrates the point.

•	 A MessageConverter: This will convert the message to JSON for transport over
the wire.

•	 A JmsTemplate: While Spring Boot will provide a JmsTemplate autoconfigured,
it does not provide one using a CachingConnectionFactory, which is the
recommended approach when using JmsTemplate. Because of this, we’ll configure
our own JmsTemplate.

Chapter 9 ■ ItemWrIters

301

Let’s start by looking at the MessageConverter. By default Spring Integration will handle the serialization
of Message objects on it’s own via Java serialization. However, that isn’t very useful. Instead, we’ll configure a
MessageConverter to convert the Message passed to JSON for transport over the wire on ActiveMQ.

The JmsTemplate is the next bean we need to configure ourselves. Spring Boot provides a JmsTemplate;
however, the ConnectionFactory it provides does not work well with a JmsTemplate. Because of this, we
configure our own JmsTemplate utilizing a CachingConnectionFactory.

Listing 9-60 shows the configuration of the JMS resources in JmsJob.java.

Listing 9-60. JMS Resource Configuration

...
@Bean // Serialize message content to json using TextMessage
public MessageConverter jacksonJmsMessageConverter() {
 MappingJackson2MessageConverter converter = new MappingJackson2MessageConverter();
 converter.setTargetType(MessageType.TEXT);
 converter.setTypeIdPropertyName("_type");
 return converter;
}

@Bean
public JmsTemplate jmsTemplate(ConnectionFactory connectionFactory) {
 CachingConnectionFactory cachingConnectionFactory = new CachingConnectionFactory

(connectionFactory);
 cachingConnectionFactory.afterPropertiesSet();

 JmsTemplate jmsTemplate = new JmsTemplate(cachingConnectionFactory);
 jmsTemplate.setDefaultDestinationName("customers");
 jmsTemplate.setReceiveTimeout(5000L);

 return jmsTemplate;
}
...

Now you can configure the job. You use the same reader you’ve used up to this point in the chapter for
the first step and the same writer you used in the XML example earlier in the chapter for the writer in the
second step. Their configuration can be found in Listing 9-61.

Listing 9-61. Input and Output of jmsFormatJob

...
@Bean
@StepScope
public FlatFileItemReader<Customer> customerFileReader(
 @Value("#{jobParameters['customerFile']}")Resource inputFile) {

 return new FlatFileItemReaderBuilder<Customer>()
 .name("customerFileReader")
 .resource(inputFile)
 .delimited()
 .names(new String[] {"firstName",
 "middleInitial",
 "lastName",

Chapter 9 ■ ItemWrIters

302

 "address",
 "city",
 "state",
 "zip"})
 .targetType(Customer.class)
 .build();
}

@Bean
@StepScope
public StaxEventItemWriter<Customer> xmlOutputWriter(
 @Value("#{jobParameters['outputFile']}") Resource outputFile) {

 Map<String, Class> aliases = new HashMap<>();
 aliases.put("customer", Customer.class);

 XStreamMarshaller marshaller = new XStreamMarshaller();
 marshaller.setAliases(aliases);

 return new StaxEventItemWriterBuilder<Customer>()
 .name("xmlOutputWriter")
 .resource(outputFile)
 .marshaller(marshaller)
 .rootTagName("customers")
 .build();
}
...

JmsReader and JmsWriter are configured the same way. Both of them are basic Spring beans with
a reference to the JmsTemplate configured in Listing 9-60. In Listing 9-62, you see the configuration of
JmsItemReader, JmsItemWriter, and the job to put all the readers/writers to work.

Listing 9-62. JmsItemReader and JmsItemWriter and the Job That Uses Them

 ...
@Bean
public JmsItemReader<Customer> jmsItemReader(JmsTemplate jmsTemplate) {

 return new JmsItemReaderBuilder<Customer>()
 .jmsTemplate(jmsTemplate)
 .itemType(Customer.class)
 .build();
}

@Bean
public JmsItemWriter<Customer> jmsItemWriter(JmsTemplate jmsTemplate) {

 return new JmsItemWriterBuilder<Customer>()
 .jmsTemplate(jmsTemplate)
 .build();
}

Chapter 9 ■ ItemWrIters

303

@Bean
public Step formatInputStep() throws Exception {
 return this.stepBuilderFactory.get("formatInputStep")
 .<Customer, Customer>chunk(10)
 .reader(customerFileReader(null))
 .writer(jmsItemWriter(null))
 .build();
}

@Bean
public Step formatOutputStep() throws Exception {
 return this.stepBuilderFactory.get("formatOutputStep")
 .<Customer, Customer>chunk(10)
 .reader(jmsItemReader(null))
 .writer(xmlOutputWriter(null))
 .build();
}

@Bean
public Job jmsFormatJob() throws Exception {
 return this.jobBuilderFactory.get("jmsFormatJob")
 .start(formatInputStep())
 .next(formatOutputStep())
 .build();
}
...

That’s all it takes! With all the resources configured, building and running this job is no different than
any of the others you’ve executed. However, when you run this job, notice that nothing obvious is outputted
from step 1 to tell you that anything happened besides looking into the JobRepository or browsing the
queue before the second step executes. When you look at the XML generated in step 2, you can see that the
messages have successfully been passed through the queue as expected. Listing 9-63 shows a sample of the
XML generated by this job.

Listing 9-63. Sample Output from the JMS Version of formatJob

<?xml version="1.0" encoding="UTF-8"?>
<customers>
 <customer>
 <id>0</id>
 <firstName>Richard</firstName>
 <middleInitial>N</middleInitial>
 <lastName>Darrow</lastName>
 <address>5570 Isabella Ave</address>
 <city>St. Louis</city>
 <state>IL</state>
 <zip>58540</zip>
 </customer>

Chapter 9 ■ ItemWrIters

304

 <customer>
 <id>0</id>
 <firstName>Warren</firstName>
 <middleInitial>L</middleInitial>
 <lastName>Darrow</lastName>
 <address>4686 Mt. Lee Drive</address>
 <city>St. Louis</city>
 <state>NY</state>
 <zip>94935</zip>
 </customer>
 ...
</customers>

By using Spring’s JmsTemplate, Spring Batch exposes the full power of Spring’s JMS processing
capabilities to the batch processes with minimal effort. The next section looks at a writer you may not have
thought about: it lets you send e-mail from batch processes.

SimpleMailMessageItemWriter
The ability to send an e-mail may sound very useful. Heck, when a job completes, it might be handy to
receive an e-mail that things ended nicely. However, that isn’t what this ItemWriter is for. It’s an ItemWriter,
which means it’s called once for each item processed in the step where it’s used. If you want to run your
own spam operation, this is the ItemWriter for you! This section looks at how to use Spring Batch’s
SimpleMailMessageItemWriter to send e-mails from jobs.

Although you probably won’t be using this ItemWriter to write a spam-processing program, you can
use it for other things as well. Let’s say the customer file you’ve been processing up to this point is really a
customer import file; after you import all the new customers, you want to send a welcome e-mail to each
one. Using the org.springframework.batch.item.mail.SimpleMailMessageItemWriter is a perfect way to
do that.

For this example, you have a two-step process as you did in the JMS example. The first step imports the
customer.csv file into the CUSTOMER database table. The second step reads all the customers that have been
imported and sends them the welcome e-mail. Figure 9-7 shows the flow for this job.

customer.csv
Customer

table
Step 1 Step 2 Email

Figure 9-7. Flow for the customerImport job

Before you begin coding, let’s look at SimpleMailMessageItemWriter. Like all other ItemWriters,
it implements the ItemWriter interface by executing a single write(List<T> items) method
that takes a list of objects. However, unlike the ItemWriters you’ve looked at up to this point,
SimpleMailMessageItemWriter doesn’t take just any item. Sending an e-mail requires more information
than the text of the e-mail. It needs a subject, a to address, and a from address. Because of this,
SimpleMailMessageItemWriter requires that the list of objects it takes contain objects that extend Spring’s
SimpleMailMessage. By doing this, SimpleMailMessageItemWriter has all the information it needs to build
the e-mail message.

Chapter 9 ■ ItemWrIters

305

But does that mean any item you read in must extend SimpleMailMessage? That seems like a poor
job of decoupling e-mail functionality from business logic—which is why you don’t have to do that. If you
remember, Chapter 8 talked about how ItemProcessors don’t need to return an object of the same type they
receive. For example, you can receive a Car object but return an object of type House. In this case, you create
an ItemProcessor that takes in the Customer object and returns the required SimpleMailMessage.

To make this work, you reuse the same input file format with a single field appended to the end: the
customer’s e-mail address. Listing 9-64 shows an example of the input file you’re processing.

Listing 9-64. customerWithEmail.csv

Ann,A,Smith,2501 Mt. Lee Drive,Miami,NE,62935,ASmith@yahoo.com
Laura,B,Jobs,9542 Isabella Ave,Aurora,FL,62344,LJobs@yahoo.com
Harry,J,Williams,1909 4th Street,Seatle,TX,48548,HWilliams@hotmail.com
Larry,Y,Minella,7839 S. Greenwood Ave,Miami,IL,65371,LMinella@hotmail.com
Richard,Q,Jobs,9732 4th Street,Chicago,NV,31320,RJobs@gmail.com
Ann,P,Darrow,4195 Jeopardy Lane,Aurora,CA,24482,ADarrow@hotmail.com
Larry,V,Williams,3075 Wall Street,St. Louis,NY,34205,LWilliams@hotmail.com
Michael,H,Gates,3219 S. Greenwood Ave,Boston,FL,24692,MGates@gmail.com
Harry,H,Johnson,7520 Infinite Loop Drive,Hollywood,MA,83983,HJohnson@hotmail.com
Harry,N,Ellison,6959 4th Street,Hollywood,MO,70398,HEllison@gmail.com

To handle the need for an e-mail address per customer, you need to add an e-mail field to the Customer
object as well. Listing 9-65 shows the updated Customer class.

Listing 9-65. Customer.java Updated with an E-mail Field

package com.apress.springbatch.chapter9;

import java.io.Serializable;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Table;

@Entity
@Table(name="CUSTOMER")
public class Customer implements Serializable {
 private static final long serialVersionUID = 1L;

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private long id;
 private String firstName;
 private String middleInitial;
 private String lastName;
 private String address;
 private String city;
 private String state;

Chapter 9 ■ ItemWrIters

306

 private String zip;
 private String email;

 // Accessors go here
 ...
}

Because the job is storing the customer information in the database, let’s take a quick look at how that
interaction works. To start, Figure 9-8 has the data model for the CUSTOMER table you use in this example.

Figure 9-8. CUSTOMER table

Before we can get into any of the email pieces of the code, we need to add the correct dependencies
to our POM file. Spring Boot makes adding email support to an application simple by requiring a single
dependency, the mail starter as shown in Listing 9-66.

Listing 9-66. Java Mail Dependency

...
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-mail</artifactId>
</dependency>
 ...

With the starter added, we need to do a bit of configuration in order to send emails. For this example, I’ll
be using a personal Gmail account to send the emails via Google’s SMTP server.5 If you use Gmail, you can
do the same within the bounds of their terms of service. To do so, Listing 9-67 shows the properties you need
to configure in your application.properties.

5You may need to turn on allow less secure applications to use Google’s SMTP server. Learn more about it here:
https://support.google.com/accounts/answer/6010255?hl=en

https://support.google.com/accounts/answer/6010255?hl=en

Chapter 9 ■ ItemWrIters

307

Listing 9-67. Java Mail Dependency

spring.mail.host=smtp.gmail.com
spring.mail.port=587
spring.mail.username=<SOME_USERNAME>
spring.mail.password=<SOME_PASSWORD>
spring.mail.properties.mail.smtp.auth=true
spring.mail.properties.mail.smtp.starttls.enable=true

With the email configuration complete, we can configure the components of our job. The first three
beans should all be familiar to you. They are two ItemReaders and one ItemWriter that we’ve used
before. The customerEmailFileReader is the same as the other FlatFileItemReaders we’ve used in
this chapter with an extra field (email) configured to be read in each record. Following that bean is the
customerBatchWriter which is a JdbcBatchItemWriter that is configured to use JDBC to write to the
database. Listing 9-68 shows how you wire that up for the first step in the job.

Listing 9-68. ItemReader and ItemWriter for Step 1

...
@Bean
@StepScope
public FlatFileItemReader<Customer> customerEmailFileReader(
 @Value("#{jobParameters['customerFile']}")Resource inputFile) {

 return new FlatFileItemReaderBuilder<Customer>()
 .name("customerFileReader")
 .resource(inputFile)
 .delimited()
 .names(new String[] {"firstName",
 "middleInitial",
 "lastName",
 "address",
 "city",
 "state",
 "zip",
 "email"})
 .targetType(Customer.class)
 .build();
}

@Bean
public JdbcBatchItemWriter<Customer> customerBatchWriter(DataSource dataSource) {

 return new JdbcBatchItemWriterBuilder<Customer>()
 .namedParametersJdbcTemplate(new NamedParameterJdbcTemplate

(dataSource))
 .sql("INSERT INTO CUSTOMER (first_name, middle_initial, last_name,

address, city, state, zip, email) " +
 "VALUES(:firstName, :middleInitial, :lastName,

:address, :city, :state, :zip, :email)")

Chapter 9 ■ ItemWrIters

308

 .beanMapped()
 .build();
}
...

After the components for the first step are configured, customerCursorItemReader, the reader for
the second step is configured. This ItemReader is a JdbcCursorItemReader that returns all of the data
in the CUSTOMER table. You’ll note that we aren’t developing a custom RowMapper, but instead, using the
BeanPropertyRowMapper to map column names with bean setters to map our database data.

None of the configuration up to this point should be new, because you’ve seen it previously.
The new parts come when you configure the ItemWriter for step 2. For step 2, you’re using a
SimpleMailMessageItemWriter as the ItemWriter. Listing 9-69 shows the configuration of the beans
required for step 2 along with the job configuration.

Listing 9-69. Step 2 and the Job Configuration

...
@Bean
public JdbcCursorItemReader<Customer> customerCursorItemReader(DataSource dataSource) {

 return new JdbcCursorItemReaderBuilder<Customer>()
 .name("customerItemReader")
 .dataSource(dataSource)
 .sql("select * from customer")
 .rowMapper(new BeanPropertyRowMapper<>(Customer.class))
 .build();
}

@Bean
public SimpleMailMessageItemWriter emailItemWriter(MailSender mailSender) {

 return new SimpleMailMessageItemWriterBuilder()
 .mailSender(mailSender)
 .build();
}

@Bean
public Step importStep() throws Exception {
 return this.stepBuilderFactory.get("importStep")
 .<Customer, Customer>chunk(10)
 .reader(customerEmailFileReader(null))
 .writer(customerBatchWriter(null))
 .build();
}

@Bean
public Step emailStep() throws Exception {
 return this.stepBuilderFactory.get("emailStep")
 .<Customer, SimpleMailMessage>chunk(10)
 .reader(customerCursorItemReader(null))
 .processor((ItemProcessor<Customer, SimpleMailMessage>) customer -> {
 SimpleMailMessage mail = new SimpleMailMessage();

Chapter 9 ■ ItemWrIters

309

 mail.setFrom("prospringbatch@gmail.com");
 mail.setTo(customer.getEmail());
 mail.setSubject("Welcome!");
 mail.setText(String.format("Welcome %s %s,\nYou were

imported into the system using Spring Batch!",
 customer.getFirstName(), customer.

getLastName()));

 return mail;
 })
 .writer(emailItemWriter(null))
 .build();
}

@Bean
public Job emailJob() throws Exception {
 return this.jobBuilderFactory.get("emailJob")
 .start(importStep())
 .next(emailStep())
 .build();
}
...

You’ll notice that the SimpleMailMessageItemWriter only requires one dependency, a MailSender
which is provided by Spring Boot. Once that ItemWriter is configured, we can configure our steps. The
importStep looks like all the others we’ve seen up to this point, specifying both an ItemReader and an
ItemWriter. The second step, emailStep, also provides an ItemReader and an ItemWriter; however,
we’re using a lambda expression for the ItemProcessor that we need to convert a Customer item to a
SimpleMailMessage (the input type for our ItemWriter). That’s all there is to it! You can build this job with
./mvnw clean install from the command line and run it with the command listed in Listing 9-70 to
process the input file and send out the e-mails.

Listing 9-70. Executing the E-mail Job

java -jar itemWriters-0.0.1-SNAPSHOT.jar customerFile=/input/customerWithEmail.csv

When the job is complete, you can check your e-mail inbox as shown in Figure 9-9 to see that the
customers have successfully received their e-mails.

Chapter 9 ■ ItemWrIters

310

Spring Batch provides a full collection of ItemWriters to handle the vast majority of output handling
that you need to be able to do. The next section looks at how you can use the individual features of each of
these ItemWriters together to address more complex output scenarios, such as writing to multiple places
based on a number of scenarios.

Multipart ItemWriters
As part of your new system, you have the requirement to extract customer data into two different formats.
You need an XML file for the Sale’s department’s customer relationship management (CRM) application.
You also need a CSV for the billing department’s database import system. The issue is, you expect to extract
one million customers.

Using the tools discussed up to this point, you would be stuck looping through the one million items
twice (once for a step that outputs the XML file and once for the step that outputs the CSV file) or creating
a custom ItemWriter implementation to write to each file as an item is processed. Neither option is what
you’re looking for. The first will take too long, tying up resources; and the other requires you to code and test
something that the framework should already provide. Fortunately for you, it does. This section looks at how
you can use the various composite ItemWriters available in Spring Batch to address more complex output
scenarios.

MultiResourceItemWriter
Chapter 7 looked at Spring Batch’s ability to read from multiple files with the same format in a single step.
Spring Batch provides a similar feature on the ItemWriter side as well. This section looks at how to generate
multiple resources based on the number of items written to a file.

Spring Batch offers the ability to create a new resource after a given number of records has been
processed. Say you want to extract all the customer records and write them to XML files with only ten
customers per file. To do that, you use MultiResourceItemWriter.

MultiResourceItemWriter dynamically creates output resources based on the number of records it has
processed. It passes each item it processes to a delegate writer so that the actual writing piece is handled
there. All MultiResourceItemWriter is responsible for is maintaining the current count and creating new
resources as items are processed. Figure 9-10 shows the flow of a step using org.springframework.batch.
item.file.MultiResourceItemWriter.

Figure 9-9. The result of the e-mail job

Chapter 9 ■ ItemWrIters

311

When the write(List<T>) method on MultiResourceItemWriter is called, it verifies that the current
Resource has been created and is open (if not, it creates and opens a new file) and passes the items to the
delegate ItemWriter. Once the items have been written, it checks to see if the number of items written to the
file has reached the configured threshold for a new resource. If it has, the current file is closed.

It’s important to note that when MultiResourceItemWriter is processing, it doesn’t create a new
resource mid-chunk. It waits for the end of the chunk before creating a new resource. For example, if the
writer is configured to roll the file after 15 items have been processed but the chunk size is configured to 20,
MultiResourceItemWriter writes the 20 items in the chunk before creating a new resource.

MultiResourceItemWriter has five available dependencies you can configure. Table 9-4 shows each
one and how they’re used.

MultiResourceItemWriter

check item count
and chunk boundary

Resource

write

create new resource

Figure 9-10. Processing using a MultiResourceItemWriter

Table 9-4. MultiResourceItemWriter Configuration Options

Option Type Default Description

delegate ResourceAwareItem
WriterItemStream

null (required) The delegate ItemWriter that the
MultiResourceItemWriter uses to
write each item.

itemCountLimit
PerResource

int Integer.MAX_VALUE The number of items to write to each
resource.

resource Resource null (required) A prototype of the
resources to be created by
MultiResourceItemWriter.

resourceSuffix
Creator

ResourceSuffix
Creator

null Optionally,
MultiResourceItemWriter can use
this class to append a suffix to the
end of the file names it creates.

saveState boolean true If false, the state of the
ItemWriter isn’t maintained in the
JobRepository.

Chapter 9 ■ ItemWrIters

312

To see how this works, you extract customers from the database and create XML files containing ten
customers each. To make this work, you don’t need to develop any new code (you created the XML). All
you need to do is wire everything up. Let’s start working with this example by looking at the configuration
for the job.

Listing 9-71 shows the configuration for the ItemReader in this example. In this case, it’s a simple
JdbcCursorItemReader configured to select all customers. From there, you pass the customers you receive
from the database to the ItemWriter you configure next.

Listing 9-71. The multiResource formatJob’s ItemReader

...
@Bean
public JdbcCursorItemReader<Customer> customerJdbcCursorItemReader(DataSource dataSource) {

 return new JdbcCursorItemReaderBuilder<Customer>()
 .name("customerItemReader")
 .dataSource(dataSource)
 .sql("select * from customer")
 .rowMapper(new BeanPropertyRowMapper<>(Customer.class))
 .build();
}
...

The configuration for this ItemWriter is in layers. First you configure the StaxEventItemWriter that you
use for the XML generation. With that configured you layer MultiResourceItemWriter on top to generate
multiple resources the StaxEventItemWriter writes to. Listing 9-72 shows the configuration of the output
half of the job as well as the step and job configuration.

Listing 9-72. ItemWriters and Step and Job Configuration

 ...
@Bean
@StepScope
public StaxEventItemWriter<Customer> delegateItemWriter() throws Exception {

 Map<String, Class> aliases = new HashMap<>();
 aliases.put("customer", Customer.class);

 XStreamMarshaller marshaller = new XStreamMarshaller();

 marshaller.setAliases(aliases);

 marshaller.afterPropertiesSet();

 return new StaxEventItemWriterBuilder<Customer>()
 .name("customerItemWriter")
 .marshaller(marshaller)
 .rootTagName("customers")
 .build();
}

Chapter 9 ■ ItemWrIters

313

@Bean
public MultiResourceItemWriter<Customer> multiCustomerFileWriter() throws Exception {

 return new MultiResourceItemWriterBuilder<Customer>()
 .name("multiCustomerFileWriter")
 .delegate(delegateItemWriter())
 .itemCountLimitPerResource(25)
 .resource(new FileSystemResource("Chapter9/target/customer"))
 .build();
}

@Bean
public Step multiXmlGeneratorStep() throws Exception {
 return this.stepBuilderFactory.get("multiXmlGeneratorStep")
 .<Customer, Customer>chunk(10)
 .reader(customerJdbcCursorItemReader(null))
 .writer(multiCustomerFileWriter())
 .build();
}

@Bean
public Job xmlGeneratorJob() throws Exception {
 return this.jobBuilderFactory.get("xmlGeneratorJob")
 .start(multiXmlGeneratorStep())
 .build();
}
...

We start by can configuring delegateItemWriter to generate the XML as required. Although
similar to the StaxEventItemWriters we’ve configured in other examples, it’s important to note that
delegateItemWriter doesn’t have a direct reference to the output file. Instead, multiResourceItemWriter
provides it when needed.

For this example, multiCustomerFileWriter uses three dependencies: a Resource to serve as the
template of where to write the file to (directory and the file name), the delegateItemWriter that does the
actual work of writing to the files it creates, and the number of customers that the ItemWriter writes per file
(itemCountLimitPerResource)—25 in this case. The last piece for this job is configuring the step and job to
put them to use. The configuration for the Job itself is straightforward, as Listing 9-72 shows. To use this job,
you use the command listed in Listing 9-73.

Listing 9-73. Command Used to Execute the multiResource Job

java -jar itemWriters-0.0.1-SNAPSHOT.jar

When you look at the output of this job, you find in the /output directory one file for every ten
customers currently loaded in the database. However, Spring Batch did something interesting. First, note
that you didn’t pass in a file extension on the outputFile parameter you passed into the job. This was for
a reason. If you look at the directory listing shown in Listing 9-74, you see that MultiResourceItemWriter
added a .X to each file, where X is the number of the file that was created.

Chapter 9 ■ ItemWrIters

314

Listing 9-74. File Names Created by the Job

michael-minellas-macbook-pro:temp mminella$ ls Chapter9/target/customer
customer.1 customer.2 customer.3 customer.4

Although it makes sense that you need to distinguish each file name from another, this may or may not
be a workable solution for how to name the files (they don’t exactly open nicely with your favorite editor
by default). Because of that, Spring Batch lets you to configure the suffix for each file created. You do that
by implementing the org.springframework.batch.item.file.ResourceSuffixCreator interface and
adding that as a dependency to the multiResourceItemWriter bean. When the MultiResourceItemWriter
is creating a new file, it uses ResourceSuffixCreator to generate a suffix that it tacks onto the end of the new
file’s name. Listing 9-75 shows the suffix creator for the example.

Listing 9-75. CustomerOutputFileSuffixCreator

...
@Component
public class CustomerOutputFileSuffixCreator implements ResourceSuffixCreator {

 @Override
 public String getSuffix(int arg0) {
 return arg0 + ".xml";
 }
}

In Listing 9-75, you implement the ResourceSuffixCreator’s only method, getSuffix, and return a
suffix of the number provided and an .xml extension. The number provided is the number file that is being
created. If you were to re-create the same extension as the default, you would return a dot plus the number
provided.

To use CustomerOutputFileSuffixCreator, you configure it as a bean and add it as a dependency to
the multiResourceItemWriter bean using the property resourceSuffixCreator. Listing 9-76 shows the
added configuration.

Listing 9-76. Configuring CustomerOutputFileSuffixCreator

...
@Bean
public MultiResourceItemWriter<Customer> multiCustomerFileWriter(CustomerOutputFileSuffixCre
ator suffixCreator) throws Exception {

 return new MultiResourceItemWriterBuilder<Customer>()
 .name("multiCustomerFileWriter")
 .delegate(delegateItemWriter())
 .itemCountLimitPerResource(25)
 .resource(new FileSystemResource("Chapter9/target/customer"))
 .resourceSuffixCreator(suffixCreator)
 .build();
}
...

Chapter 9 ■ ItemWrIters

315

By running the job again with the additional configuration provided in Listing 9-76, you get a slightly
different result, as shown in Listing 9-77.

Listing 9-77. Results Using ResourceSuffixCreator

michael-minellas-macbook-pro:output mminella$ ls Chapter9/target/customer
customer1.xml customer2.xml customer3.xml customer4.xml

You surely agree that the file names in Listing 9-77 are more like what you would expect when
generating XML files.

Header and Footer XML Fragments
When creating files, whether a single file for a step/job or multiple files as you saw in the previous example,
it’s common to need to be able to generate a header or footer on the file. You can use a header to define the
format of a flat file (what fields exist in a file or in what order) or include a separate, non-item-related section
in an XML file. A footer may include the number of records processed in the file or totals to use as integrity
checks after a file has been processed. This section looks at how to generate header and footer records using
Spring Batch’s callbacks available for them.

When opening or closing a file, Spring Batch provides the ability to add either a header or footer
(whichever is appropriate) to your file. Adding a header or footer to a file means different things based on
whether it’s a flat file or an XML file. For a flat file, adding a header means adding one or more records to the
top or bottom of the file. For an XML file, you may want to add an XML segment at either the top or bottom
of the file. Because the generation of plain text for a flat file is different from generating an XML segment for
an XML file, Spring Batch offers two different interfaces to implement and make this happen. Let’s begin by
looking at the XML callback interface, org.springframework.batch.item.xml.StaxWriterCallback.

The StaxWriterCallback interface consists of a single write(XMLEventWriter writer) method that is
used to add XML to the current XML document. Spring Batch executes a configured callback once at either
the header or footer of the file (based on the configuration). To see how this works, in this example you write
a StaxWriterCallback implementation that adds an XML fragment containing the name of the person who
wrote the job (me). Listing 9-78 shows the code for the implementation.

Listing 9-78. CustomerXmlHeaderCallback

...
@Component
public class CustomerXmlHeaderCallback implements StaxWriterCallback {

 @Override
 public void write(XMLEventWriter writer) throws IOException {
 XMLEventFactory factory = XMLEventFactory.newInstance();

 try {
 writer.add(factory.createStartElement("", "", "identification"));
 writer.add(factory.createStartElement("", "", "author"));
 writer.add(factory.createAttribute("name", "Michael Minella"));
 writer.add(factory.createEndElement("", "", "author"));
 writer.add(factory.createEndElement("", "", "identification"));

Chapter 9 ■ ItemWrIters

316

 } catch (XMLStreamException xmlse) {
 System.err.println("An error occured: " + xmlse.getMessage());
 xmlse.printStackTrace(System.err);
 }
 }
}

Listing 9-78 shows CustomerXmlHeaderCallback. In the callback, you add two tags to the XML file:
an identification section and a single author section. The author section contains a single attribute called
name with the value Michael Minella. To create a tag, you use the javax.xml.stream.XMLEventFactory’s
createStartElement and createEndElement methods. Each of these methods takes three parameters: a
prefix, a namespace, and the name of the tag. Because you aren’t using a prefix or namespace, you pass in
empty strings for those. To put this implementation to use, you need to configure StaxEventItemWriter to
call the callback as the headerCallback. Listing 9-79 shows the configuration for this example.

Listing 9-79. XML Configuration for CustomerXmlHeaderCallback

...
@Bean
public MultiResourceItemWriter<Customer> multiCustomerFileWriter(CustomerOutputFileSuffix
Creator suffixCreator) throws Exception {

 return new MultiResourceItemWriterBuilder<Customer>()
 .name("multiCustomerFileWriter")
 .delegate(delegateItemWriter(null))
 .itemCountLimitPerResource(25)
 .resource(new FileSystemResource("Chapter9/target/customer"))
 .resourceSuffixCreator(suffixCreator)
 .build();
}
...

When you execute the multiresource job from the previous example using the header configuration in
Listing 9-79, each of the output files begins with the XML fragment as shown in Listing 9-80.

Listing 9-80. XML Header

<?xml version="1.0" encoding="UTF-8"?>
<customers>
<identification>
<author name="Michael Minella"/>
</identification>
<customer>
 ...

As you can see, adding an XML fragment at either the start or end of an XML file is quite easy.
Implement the StaxWriterCallback interface and configure the ItemWriter to call it as either the header or
the footer, and you’re done!

Chapter 9 ■ ItemWrIters

317

Header and Footer Records in a Flat File
Next you can look at adding headers and footers to a flat file. Unlike the XML header and footer generation
that use the same interface for either, writing a header in a flat file requires the implementation of a different
interface than that of a footer. For the header, you implement the org.springframework.batch.item.file.
FlatFileHeaderCallback interface; and for the footer, you implement the org.springframework.batch.
item.file.FlatFileFooterCallback interface. Both consist of a single method: writeHeader(Writer
writer) and writeFooter(Writer writer), respectively. Let’s look at how to write a footer that writes the
number of records you’ve processed in the current file.

For this example, you use the MultiResourceItemWriter to write files with 30 formatted records in
each file plus a single footer record that states how many records were written in each file. To be able to keep
count of the number of items you’ve written into a file, we’ll need to use a couple aspects. The first pointcut
will be before any calls to the FlatFileItemWriter.open(ExecutionContext ec) method. We’ll use this
pointcut to reset a counter each time a new file is opened up. The second pointcut will be before any calls to
FlatFileItemWriter.write(List<T> items). Here is where we will increment the counter.

Now you may wonder why not just use an ItemWriteListener.beforeWrite(List<T> items)
call instead of jumping through the hoops of an aspect. The reason is the ordering of calls. The
beforeWrite(List<T> items) call is called before the call to write(List<T> items). However, the call to
open(ExecutionContext ec) is called within that method. Since we need to reset the counter before the call
to write(List<T> items), we need to use an aspect.

What we will do is create a component that is both an aspect as well as implements the
FlatFileFooterCallback. The aspects will manage the state of the callback (how many records have been
written in the current file), and the FlatFileFooterCallback.writeFooter(Writer writer) method will
write out the results. Listing 9-81 illustrates the code for this implementation.

Listing 9-81. CustomerRecordCountFooterCallback

...
@Component
@Aspect
public class CustomerRecordCountFooterCallback implements FlatFileFooterCallback {

 private int itemsWrittenInCurrentFile = 0;

 @Override
 public void writeFooter(Writer writer) throws IOException {
 writer.write("This file contains " +
 itemsWrittenInCurrentFile + " items");
 }

 @Before("execution(* org.springframework.batch.item.file.FlatFileItemWriter.
open(..))")

 public void resetCounter() {
 this.itemsWrittenInCurrentFile = 0;
 }

 @Before("execution(* org.springframework.batch.item.file.FlatFileItemWriter.
write(..))")

Chapter 9 ■ ItemWrIters

318

 public void beforeWrite(JoinPoint joinPoint) {
 List<Customer> items = (List<Customer>) joinPoint.getArgs()[0];

 this.itemsWrittenInCurrentFile += items.size();
 }
}

As you can see in Listing 9-81, CustomerRecordCountFooterCallback is annotated with the
@Component and @Aspect annotations. The first wires it up as a bean for Spring. The second identifies it as
an aspect for AspectJ. The class implements the FlatFileFooterCallback and its writeFooter(Writer
writer) method. This method writes out the actual footer. The next two methods are the aspect methods.
The first, resetCounter() is configured to be called before the open(ExecutionContext ec) method on the
FlatFileItemWriter and resets the current count to 0. This will be called once per file. The last method is
the beforeWrite(List<T> items) method which increments the count with the number of items passed to
the FlatFileItemWriter.write(List<T> items) method.

In order to put our callback to use, we’ll need to update the MultiResourceJob in two ways. First, we’ll
need to use a FlatFileItemWriter as the delegate instead of the XML based ItemWriter we used previously.
Second we will need to configure that ItemWriter to use our callback. Listing 9-82 shows the configuration
of the new ItemWriter.

Listing 9-82. delegateCustomerItemWriter

@Bean
@StepScope
public FlatFileItemWriter<Customer> delegateCustomerItemWriter(CustomerRecordCountFooterCall
back footerCallback) throws Exception {
 BeanWrapperFieldExtractor<Customer> fieldExtractor = new BeanWrapperField

Extractor<>();
 fieldExtractor.setNames(new String[] {"firstName", "lastName", "address", "city",

"state", "zip"});
 fieldExtractor.afterPropertiesSet();

 FormatterLineAggregator<Customer> lineAggregator = new FormatterLineAggregator<>();

 lineAggregator.setFormat("%s %s lives at %s %s in %s, %s.");
 lineAggregator.setFieldExtractor(fieldExtractor);

 FlatFileItemWriter<Customer> itemWriter = new FlatFileItemWriter<>();

 itemWriter.setName("delegateCustomerItemWriter");
 itemWriter.setLineAggregator(lineAggregator);
 itemWriter.setAppendAllowed(true);
 itemWriter.setFooterCallback(footerCallback);

 return itemWriter;
}

Writing to multiple files based on the number of records per file is made easy using
MultiResourceItemWriter. Spring’s ability to add a header and/or footer record is also managed in a simple
and practical way using the appropriate interfaces and configuration. The next section looks at how to write
the same item to multiple writers with the addition of no code.

Chapter 9 ■ ItemWrIters

319

CompositeItemWriter
Although it may not seem like it, the examples you’ve reviewed in this chapter up to this point have been
simple. A step writes to a single output location. That location may be a database, a file, an e-mail, and so on,
but they each have written to one endpoint. However, it’s not always that simple. An enterprise may need to
write to a database that a web application uses as well as a data warehouse. While items are being processed,
various business metrics may need to be recorded. Spring Batch allows you to write to multiple places as
you process each item of a step. This section looks at how the CompositeItemWriter lets a step write items to
multiple ItemWriters.

Like most things in Spring Batch, the ability to call multiple ItemWriters for each item you process is
quite easy. Before you get into the code, however, let’s look at the flow of writing to multiple ItemWriters
with the same item. Figure 9-11 shows a sequence diagram of the process.

ItemReader ItemProcessor CompositeItemWriter ItemWriter ItemWriter ItemWriter

read
process

process

process

write
write

write

write

read

read

Figure 9-11. Sequence diagram of writing to multiple ItemWriters

As Figure 9-11 shows, reading in occurs one at a time, as does processing. However, the diagram also
shows that writing occurs in chunks as you would expect, calling each ItemWriter with the items in the
current chunk in the order they’re configured.

To look at how this feature works, you create a job that reads in the customerWithEmail.csv file
from earlier in the chapter. Let’s start with the input. Listing 9-83 shows the configuration to read in the
customerWithEmail.csv file.

Listing 9-83. Reading in the customerWithEmail.csv File

...
@Bean
@StepScope
public FlatFileItemReader<Customer> compositewriterItemReader(
 @Value("#{jobParameters['customerFile']}")Resource inputFile) {

 return new FlatFileItemReaderBuilder<Customer>()
 .name("compositewriterItemReader")
 .resource(inputFile)
 .delimited()
 .names(new String[] {"firstName",

Chapter 9 ■ ItemWrIters

320

 "middleInitial",
 "lastName",
 "address",
 "city",
 "state",
 "zip",
 "email"})
 .targetType(Customer.class)
 .build();
}
...

Nothing in Listing 9-83 should be unfamiliar. You’re using the same input file you used in the previous
examples in this chapter. The configuration consists of the configuration of the FlatFileItemReader using
DelimitedLineTokenizer (via the call to .delimited()) and BeanWrapperFieldSetMapper (via the call to
.targetType(Customer.class)) to read the file.

On the output side, you need to create three ItemWriters: the XML writer and its dependencies, the
JDBC writer and its dependencies, and the CompositeItemWriter that wraps both of the other writers.
Listing 9-84 shows the configuration for the output of this step as well as the configuration for the step
and job.

Listing 9-84. Output, Step, and Job Configuration

...

@Bean
@StepScope
public StaxEventItemWriter<Customer> xmlDelegateItemWriter(
 @Value("#{jobParameters['outputFile']}") Resource outputFile) throws

Exception {

 Map<String, Class> aliases = new HashMap<>();
 aliases.put("customer", Customer.class);

 XStreamMarshaller marshaller = new XStreamMarshaller();

 marshaller.setAliases(aliases);

 marshaller.afterPropertiesSet();

 return new StaxEventItemWriterBuilder<Customer>()
 .name("customerItemWriter")
 .resource(outputFile)
 .marshaller(marshaller)
 .rootTagName("customers")
 .build();
}

Chapter 9 ■ ItemWrIters

321

@Bean
public JdbcBatchItemWriter<Customer> jdbcDelgateItemWriter(DataSource dataSource) {

 return new JdbcBatchItemWriterBuilder<Customer>()
 .namedParametersJdbcTemplate(new NamedParameterJdbcTemplate

(dataSource))
 .sql("INSERT INTO CUSTOMER (first_name, " +
 "middle_initial, " +
 "last_name, " +
 "address, " +
 "city, " +
 "state, " +
 "zip, " +
 "email) " +
 "VALUES(:firstName, " +
 ":middleInitial, " +
 ":lastName, " +
 ":address, " +
 ":city, " +
 ":state, " +
 ":zip, " +
 ":email)")
 .beanMapped()
 .build();
}

@Bean
public CompositeItemWriter<Customer> compositeItemWriter() throws Exception {
 return new CompositeItemWriterBuilder<Customer>()
 .delegates(Arrays.asList(xmlDelegateItemWriter(null),
 jdbcDelgateItemWriter(null)))
 .build();
}

@Bean
public Step compositeWriterStep() throws Exception {
 return this.stepBuilderFactory.get("compositeWriterStep")
 .<Customer, Customer>chunk(10)
 .reader(compositewriterItemReader(null))
 .writer(compositeItemWriter())
 .build();
}

@Bean
public Job compositeWriterJob() throws Exception {
 return this.jobBuilderFactory.get("compositeWriterJob")
 .start(compositeWriterStep())
 .build();
}
...

Chapter 9 ■ ItemWrIters

322

The configuration for the ItemWriters is about what you would expect. You begin the configuration
with the XML writer you’re using (xmlDelegateItemWriter) as configured as in the example earlier
on in the chapter. The JDBC ItemWriter is next, with the PreparedStatement configured using named
parameters and a NamedParameterTemplate injected to be able to handle that. The call to .beanMapped()
indicates to Spring Batch that the names of the fields in the item will be used to map them to the names
in the SQL statement. Finally you get to the CompositeItemWriter definition (compositeItemWriter). For
compositeItemWriter, you configure a list of ItemWriters for the wrapper to call. It’s important to note that
the ItemWriters are called in the order they’re configured with all of the items in a chunk. So if there are ten
items in a chunk, the first ItemWriter is called with all ten items followed by the next ItemWriter and so
on. It is also important to note that although the execution of the writing is serial (one writer at a time), all of
the writes across all of the ItemWriters occur in the same transaction. Because of that, if an item fails to be
written at any point in the chunk, the entire chunk is rolled back.

When you run this job as configured via the command java -jar itemWriters-0.0.1-SNAPSHOT.jar
customerFile=/input/customerWithEmail.csv outputFile=/output/xmlCustomer.xml, you can see that
the output consists of all the records being written to both the database and an XML file. You would think
that if the file had 100 customers in it, Spring Batch would consider this to be 200 writes. But if you look at
what Spring Batch recorded in the JobRepository, it says that 100 writes were executed.

The reasoning is that Spring Batch is counting the number of items that were written. It doesn’t
care how many places you write the item to. If the job fails, the restart point depends on how many
items you read and processed, not how many you wrote to each location (because those are rolled back
anyway).

The CompositeItemWriter makes writing all the items to multiple locations easy. But sometimes you
want to write some things to one place and some things to another place. The last ItemWriter you look at in
this chapter is ClassifierCompositeItemWriter, which handles just that.

ClassifierCompositeItemWriter
In Chapter 7, you looked at the scenario where you had a single file that contained multiple record types.
Handling the ability to map different types of lines to different parsers and mappers so that each would end
up in the correct object was no trivial task. But on the writing side, Spring Batch has made life a bit easier.
This section looks at how ClassifierCompositeItemWriter allows you to choose where to write items based
on a predetermined criterion.

org.springframework.batch.item.support.ClassifierCompositeItemWriter is used to look
at items of different types, determine what ItemWriter they should be written to, and forward them
accordingly. This functionality is based on two things: ClassifierCompositeItemWriter and an
implementation of the org.springframework.batch.classify.Classifier interface. Let’s start by
looking at the Classifier interface.

The Classifier interface, shown in Listing 9-85, consists of a single method, classify(C item).
In the case of what ClassifierCompositeItemWriter uses a Classifier implementation for, the
classify(C item) method accepts an item as input and returns the ItemWriter to write the item
to. In essence, the Classifier implementation serves as a context, with the ItemWriters as strategy
implementations.

Listing 9-85. The Classifier Interface

package org.springframework.batch.classify;

public interface Classifier<C, T> {

 T classify(C classifiable);
}

Chapter 9 ■ ItemWrIters

323

ClassifierCompositeItemWriter takes a single dependency, an implementation of the Classifier
interface. From there it gets the ItemWriter required for each item as it’s processed.

Unlike the regular CompositeItemWriter, which writes all items to all ItemWriters,
ClassifierCompositeItemWriter ends up with a different number of items written to each ItemWriter.
Let’s look at an example where you write all customers who live in a state that starts with the letters A
through M to a flat file and items with a state name starting with the letters N through Z to the database.

As you’ve probably gathered, the Classifier implementation is the key to making
CompositeItemWriter work, so that is where you start. To implement this Classifier as Listing 9-86 shows,
you take a Customer object as the sole parameter to the classify(C item) method. From there, you use
a regular expression to determine whether it should be written to a flat file or the database and return the
ItemWriter as required.

Listing 9-86. CustomerClassifier

...
public class CustomerClassifier implements
 Classifier<Customer, ItemWriter<? super Customer>> {

 private ItemWriter<Customer> fileItemWriter;
 private ItemWriter<Customer> jdbcItemWriter;

 public CustomerClassifier(StaxEventItemWriter<Customer> fileItemWriter,
JdbcBatchItemWriter<Customer> jdbcItemWriter) {

 this.fileItemWriter = fileItemWriter;
 this.jdbcItemWriter = jdbcItemWriter;
 }

 @Override
 public ItemWriter<Customer> classify(Customer customer) {
 if(customer.getState().matches("^[A-M].*")) {
 return fileItemWriter;
 } else {
 return jdbcItemWriter;
 }
 }
}

With the CustomerClassifier coded, you can configure the Job and ItemWriters. You reuse
the same input and individual ItemWriters you used in the CompositeItemWriter example in the
previous section, leaving only ClassifierCompositeItemWriter to configure. The configuration for
ClassifierCompositeItemWriter and CustomerClassifier is shown in Listing 9-87.

Listing 9-87. Configuration of the ClassifierCompositeItemWriter and Dependencies

 ...

@Bean
public ClassifierCompositeItemWriter<Customer> classifierCompositeItemWriter() throws
Exception {
 Classifier<Customer, ItemWriter<? super Customer>> classifier = new CustomerClassifier

(xmlDelegate(null), jdbcDelgate(null));

Chapter 9 ■ ItemWrIters

324

 return new ClassifierCompositeItemWriterBuilder<Customer>()
 .classifier(classifier)
 .build();
}

@Bean
public Step classifierCompositeWriterStep() throws Exception {
 return this.stepBuilderFactory.get("classifierCompositeWriterStep")
 .<Customer, Customer>chunk(10)
 .reader(classifierCompositeWriterItemReader(null))
 .writer(classifierCompositeItemWriter())
 .build();
}

@Bean
public Job classifierCompositeWriterJob() throws Exception {
 return this.jobBuilderFactory.get("classifierCompositeWriterJob")
 .start(classifierCompositeWriterStep())
 .build();
}
...

When you build and run classifierFormatJob via the statement java -jar itemWriters-0.0.1-
SNAPSHOT.jar jobs/formatJob.xml formatJob customerFile=/input/customerWithEmail.csv
outputFile=/output/xmlCustomer.xml, you’re met with a bit of a surprise. It doesn’t work. Instead of the
normal output of Spring telling you the job completed as expected, you’re met with an exception, as shown
in Listing 9-88.

Listing 9-88. Results of classifierFormatJob

2018-05-10 22:51:23.691 INFO 11102 --- [main] o.s.b.c.l.support.SimpleJob
Launcher : Job: [SimpleJob: [name=classifierCompositeWriterJob]] launched with the
following parameters: [{customerFile=/data/customerWithEmail.csv, outputFile=file:/
Users/mminella/Documents/IntelliJWorkspace/def-guide-spring-batch/Chapter9/target/
formattedCustomers.xml}]
2018-05-10 22:51:23.701 INFO 11102 --- [main] o.s.batch.core.job.SimpleStep
Handler : Executing step: [classifierCompositeWriterStep]
2018-05-10 22:51:23.900 ERROR 11102 --- [main] o.s.batch.core.step.Abstract
Step : Encountered an error executing step classifierCompositeWriterStep in job
classifierCompositeWriterJob

org.springframework.batch.item.WriterNotOpenException: Writer must be open before it can be
written to
 at org.springframework.batch.item.xml.StaxEventItemWriter.write(StaxEventItemWriter.

java:761) ~[spring-batch-infrastructure-4.0.1.RELEASE.jar:4.0.1.RELEASE]
 at org.springframework.batch.item.xml.StaxEventItemWriter$$FastClassBySpringCGLIB$$d105

dd1.invoke(<generated>) ~[spring-batch-infrastructure-4.0.1.RELEASE.jar:4.0.1.RELEASE]
 at org.springframework.cglib.proxy.MethodProxy.invoke(MethodProxy.java:204) ~[spring-

core-5.0.5.RELEASE.jar:5.0.5.RELEASE]
 at org.springframework.aop.framework.CglibAopProxy$CglibMethodInvocation.

invokeJoinpoint(CglibAopProxy.java:747) ~[spring-aop-5.0.5.RELEASE.jar:5.0.5.RELEASE]
 at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodI

nvocation.java:163) [spring-aop-5.0.5.RELEASE.jar:5.0.5.RELEASE]

Chapter 9 ■ ItemWrIters

325

What went wrong? All you really did was swap out the CompositeItemWriter you used in the previous
section with the new ClassifierCompositeItemWriter. The issue centers around the ItemStream interface.

The ItemStream Interface
The ItemStream interface serves as the contract to be able to periodically store and restore state. Consisting
of three methods, open(ExecutionContext ec), update(ExecutionContext ec), and close(), the
ItemStream interface is implemented by any stateful component in Spring Batch. In cases, for example,
where a file is involved in the input or output, the open(ExecutionContext ec) method opens the required
file, and the close() method closes the required file. The update(ExecutionContext ec) method records
the current state (number of records written, and so on) as each chunk is completed.

The reason for the difference between CompositeItemWriter and ClassifierCompositeItemWriter
is that CompositeItemWriter implements the org.springframework.batch.item.ItemStream interface. In
CompositeItemWriter, the open(ExecutionContext ec) method loops through the delegate ItemWriters
and calls the open(ExecutionContext ec) method on each of them as required. The close() and
update(ExecutionContext ec) methods work the same way. However, ClassifierCompositeItemWriter
doesn’t implement the ItemStream method. Because of this, the XML file is never opened or
XMLEventFactory (or the underlying XML writing) created, throwing the exception shown in Listing 9-88.

How do you fix this error? Spring Batch provides the ability to register ItemStreams to be handled in a
step manually. If an ItemReader or ItemWriter implements ItemStream, the methods are handled for you. If
they don’t (as in the case of ClassifierCompositeItemWriter), you’re required to register the ItemReader
or ItemWriter as a stream to be able to work with it if it maintains state. Listing 9-89 shows the updated
configuration for the job, registering the xmlOutputWriter as an ItemStream.6

Listing 9-89. Updated Configuration Registering the Appropriate ItemStream for Processing

 ...
@Bean
public Step classifierCompositeWriterStep() throws Exception {
 return this.stepBuilderFactory.get("classifierCompositeWriterStep")
 .<Customer, Customer>chunk(10)
 .reader(classifierCompositeWriterItemReader(null))
 .writer(classifierCompositeItemWriter())
 .stream(xmlDelegate(null))
 .build();
}

@Bean
public Job classifierCompositeWriterJob() throws Exception {
 return this.jobBuilderFactory.get("classifierCompositeWriterJob")
 .start(classifierCompositeWriterStep())
 .build();
}

...

6You only need to register the xmlDelegate as a stream. JdbcBatchItemWriter doesn’t implement the ItemStream
interface because it doesn’t maintain any state.

Chapter 9 ■ ItemWrIters

326

If you rebuild and rerun the job with the updated configuration, you see that all the records are
processed as expected.

Summary
Spring Batch’s ItemWriter implementations provide a wide range of output options. From writing to a
simple flat file to choosing which items get written to which ItemWriters on the fly, there aren’t many
scenarios that aren’t covered by the components Spring Batch provides out of the box.

This chapter has covered the majority of the ItemWriters available in Spring Batch. You also looked
at how to use the ItemWriters provided by the framework to complete the sample application. In the
next chapter, you look at how to use the scalability features of the framework to allow the jobs to scale and
perform as required.

327© Michael T. Minella 2019
M. T. Minella, The Definitive Guide to Spring Batch, https://doi.org/10.1007/978-1-4842-3724-3_10

CHAPTER 10

Sample Application

Tutorials you find on the Internet in technology can be funny. Most of them rarely extend past a “Hello,
World!” level of complexity for any new concept. And although that may be great for a basic understanding
of a technology, you know that life is never as simple as a tutorial makes it out to be. Because of this, in this
chapter you look at a more real-world example of a Spring Batch job.

This chapter covers the following:

•	 Reviewing the statement job: Before developing any new functionality, you review the
goals of the job to be developed, as outlined in Chapter 3.

•	 Project setup: You create a brand-new Spring Batch project from Spring Initializr.

•	 Job development: You walk through the entire development process for the statement
job outlined in Chapter 3.

Let’s get started by reviewing what the statement job you develop is required to do.

Reviewing the Statement Job
The job you develop in this chapter is for a mythical bank called Apress Banking. Apress Banking has a large
number of clients that have multiple traditional bank accounts. At the end of each month, the clients receive
a composite statement that lists all their accounts, all of the transactions that occurred over the past month,
the total amount that was credited to their account, total amount that was debited from their account, and
their current balance.

To accomplish these requirements, a four step job is used as outlined in Figure 10-1.

importCustomer
Updates

importTransactions applyTransactions generateStatements

Figure 10-1. The flow for the statement job

https://doi.org/10.1007//978-1-4842-3724-3_10

Chapter 10 ■ Sample appliCation

328

The job starts in step 1 with importing customer data. This step imports a single CSV file that contains
a number of different record formats, each one for a different type of update to a customer. We apply these
updates to the customer records in our database before importing transactions in the second step.

The transactions that have occurred are provided via an XML document that we’ll read into the
database as new records. Once all the transaction records have been successfully imported into the
database, we’ll need to apply them to the current balance, adding all credits and deducting all debits from
the running total. Step 3 of the job is where this occurs.

The final step of the job is to generate the statement files themselves. For each customer a single file is
created that has a header with the customer’s address in it, and for each account the customer has (they can
have more than one account), a header for the account, a list of all transactions, a total for all credits, a total
for all debits, and the current balance are all printed. In this chapter, we’ll implement these steps and go into
detail as to why the job is designed the way it is.

While we’ve done this many times throughout this book, we’ll begin this work by creating a new shell
project from Spring Initializr in the next section.

Setting Up a New Project
To begin any Spring Boot based project, the best place to begin is https://start.spring.io (It’s Spring
Developer Advocate Josh Long’s second favorite place on the Internet). Using either an IDE like Spring Tool
Suite or IntelliJ IDEA, we can do this directly from our IDE. I’m an IDEA user so I’ll walk you through those steps.

Begin by going to File ➤ New Project. Along the left hand side, you’ll be able to select Spring Initializr.
Once that is selected, you will be able to select the Project SDK and the Service URL. For this project, we’ll
use Java 8 since that’s the default for Spring Boot 2. We’ll also use the default Service URL.1 Figure 10-2 shows
the selections made.

Figure 10-2. Spring Initializr being used within IntelliJ IDEA

1Some enterprises choose to run their own instance of Spring Initializr so that they can customize it or not have developer
machines need to hit the Internet. If that is the case for you, you’ll want to enter your custom URL in your IDE.

https://start.spring.io

Chapter 10 ■ Sample appliCation

329

With those selections made we can click Next and enter our project metadata. We’ve used Apache
Maven throughout this book, so we won’t change that here. We can fill in the group id, artifact id, select
Maven Project (this will give us the full shell of a Maven based project), and Java for the language. We’ll
select JAR for the packaging so that the POM that is generated is configured with the Spring Boot plug-in
to generate an über jar for us. We’ll select 8 for the Java version. Why do we need to select the Java version
twice? The first one was what your IDE will use to build and run the project in. The second one is what the
Maven POM will be configured to compile to. We finish up by configuring a version, name, description, and
default package. In our case, the values for all of these are as follows:

•	 Group ID: com.apress.batch

•	 Artifact ID: chapter10

•	 Version: 0.0.1-SNAPSHOT

•	 Name: Statement Batch Job

•	 Description: Apress Banking statement generation batch job

•	 Default Package: com.apress.batch.chapter10

When we click Next, we’re taken to where we can select our dependencies. These dependencies are
Spring Boot starters that we’ll select to be included within our project. For this project, we’ll need to select
Batch, JDBC, and HSQLDB. Each of these can be added by simply typing them in the search box at the top of
the window and pressing enter. We’ll have a few other dependencies we need to add that don’t have Spring
Boot starters for them once our project is loaded. Figure 10-3 illustrates our selections made.

Figure 10-3. Selecting dependencies for our project in IDEA

Chapter 10 ■ Sample appliCation

330

The final screen asks us to name our project and select the directory we want the project to be
downloaded into. Enter the values that work best for your environment and click Finish. A new IDEA
window will open with your project configured.

The project should look like any other Maven project. Spring Initializr provides a basic class in the root
of the default package with the required main method for bootstrapping Spring Boot. It also provides a single
test that does nothing but boostraps the ApplicationContext. Since Spring Boot launches any Spring Batch
jobs it finds by default, that test isn’t all that useful, so we can delete it.

And we’re set. We can run a Maven build from the command line in the root of our project using the
command ./mvnw clean install and it should build successfully. With that, we can begin to build our
batch job. We need to add the @EnableBatchProcessing annotation to our main class. Listing 10-1 shows
our main class updated with the annotation applied.

Listing 10-1. Chapter10Application

...
@EnableBatchProcessing
@SpringBootApplication
public class Chapter10Application {

 public static void main(String[] args) {
 SpringApplication.run(Chapter10Application.class, realArgs);
 }
}

With our main class configured, we can begin working on the job and first step. As our diagram
illustrated in Figure 10-1, updating the customer information is the first step. The next section will walk
through how we accomplish the functionality required for that step.

Importing Customer Updates
The first step in our job, as mentioned earlier is to import customer updates. We receive a CSV file that
contains three different record formats. This section will look into how to parse those records and apply the
related updates to date within our database.

Before we dig into the batch code, however, let’s review the data model for this job. The data model for
this job is pretty simple compared to most enterprise data models, but it contains what we’d expect. The
model begins with the CUSTOMER table. This table contains name, address, and various contact information
including email address and different types of phone numbers. It also has a field for the user to indicate
their preference for what type of communication should be used to contact them. The ACCOUNT table is next.
The CUSTOMER table has a many to many relationship with the ACCOUNT table (a Customer can have many
Accounts and an Account can have many Customers). The ACCOUNT table is very simple, containing only an
id, the current balance, and the date of the last statement that was issued. The last table with business data
in it is the TRANSACTION table. This table contains the details of each transaction that has occurred within
an account. As you’d expect, the ACCOUNT table has a one to many relationships with the TRANSACTION table.
With all of the business tables defined, the fourth and final table in our data model is the CUSTOMER_ACCOUNT
table which serves as a join table between the CUSTOMER table and the ACCOUNT table. Figure 10-4 illustrates
the data model for this job.

Chapter 10 ■ Sample appliCation

331

In order to import the data from the customer file, we need to understand the file format we’ll receive
it in. The file consists of three record formats: one for updates to customer name fields, one for updates to
customer address related fields, and one for updates to customer communication mechanisms. Listing 10-2
shows a sample of the file format.

Listing 10-2. Sample of the customer_update.csv File

2,2,,,Montgomery,Alabama,36134
2,2,,,Montgomery,Alabama,36134
3,441,,,,316-510-9138,2
3,174,trothchild3o@pinterest.com,,785-790-7373,467-631-6632,5
2,287,,,Rochester,New York,14646
2,287,,,Rochester,New York,14646
1,168,Rozelle,Heda,Farnill
2,204,2 Warner Junction,,Akron,Ohio,44305

Each record type is indicated via the first field in the record. We’ll be able to use that to our advantage
when we parse the file. For now, let’s look at each record type. Record type 1 (which begins with the number
1) is to update the customer record fields. This record type has five fields:

 1. Record type: This will always be 1 for a record type 1.

 2. Customer ID: The id of the customer record to be updated.

Figure 10-4. Data model for the statement job

Chapter 10 ■ Sample appliCation

332

 3. First name: The first name the customer record should be updated with. If blank,
no update to first name should be done.

 4. Middle Name: The middle name the customer record should be updated with. If
blank, no update to the middle name should be done.

 5. Last Name: The last name of the customer record should be updated with. If
blank, no update to the last name should be done.

It’s important to note that it is expected that the customer exist in the database prior to the update
record coming through. We’ll validate that in this import step.

The next record format is record type 2. Record type 2 has seven fields:

 1. Record type: This will always be 2 for a record type 2.

 2. Customer ID: The id of the customer record to be updated.

 3. Address 1: The first line of the address to be updated. If blank, no update should
be executed.

 4. Address 2: The second (optional) line of the address to be updated. If blank, no
update should be executed.

 5. City: The city of the customer. If blank, no update should be executed.

 6. State: The state of the customer. If blank, no update should be executed.

 7. Postal Code: The postal code of the customer. If blank, no update should be
executed.

The final record format in the customer update file is record type 3. This record type is used to update
customer contact information. The record has seven fields:

 1. Record type: This will always be 3 for a record type 3.

 2. Customer ID: The id of the customer record to be updated.

 3. Email address: The email address to update the customer record to. If blank, no
update should be executed.

 4. Home phone: The home phone number to update the customer record with. If
blank, no update should be executed.

 5. Cell phone: The cell phone number to update the customer record with. If blank,
no update should be executed.

 6. Work phone: The work phone number to update the customer record with. If
blank, no update should be executed.

 7. Notification preference: The indicator of what mechanism to use to contact a
customer. If blank, no update should be executed.

To process this file, we’ll begin by defining the job and its first step. The configuration for our job will
live in the class com.apress.batch.chapter10.configuration.ImportJobConfiguration. Listing 10-3
illustrates the configuration of the job and first step.

Chapter 10 ■ Sample appliCation

333

Listing 10-3. Definition of Import Job

...
@Configuration
public class ImportJobConfiguration {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Job job() throws Exception {
 return this.jobBuilderFactory.get("importJob")
 .start(importCustomerUpdates())
 .build();
 }

 @Bean
 public Step importCustomerUpdates() throws Exception {
 return this.stepBuilderFactory.get("importCustomerUpdates")
 .<CustomerUpdate, CustomerUpdate>chunk(100)
 .reader(customerUpdateItemReader(null))
 .processor(customerValidatingItemProcessor(null))
 .writer(customerUpdateItemWriter())
 .build();
 }
...

This listing is simple enough. We begin by defining a Spring Configuration class (via the @Configuration)
annotation. From there, we can autowire in the JobBuilderFactory and StepBuilderFactory provided by
@EnableBatchProcessing (which lives on our main class). With the builders wired in, we can define our Job
and Step. The Job is defined using the jobBuilderFactory, starting with the step importCustomerUpdates,
and calling build() to construct the Job.

The importCustomerUpdates Step is defined using the StepBuilderFactor to get a StepBuilder which
is configured for chunk-based processing. Each chunk consists of 100 items. This step will use an ItemReader
called customerUpdateItemReader, an ItemProcessor called customerValidatingItemProcessor, and an
ItemWriter called customerUpdateItemWriter. All of which will read, process, and write CustomerUpdate
objects. That all sounds nice, but what do those ItemReader, ItemProcessor, and ItemWriter look like? Let’s
start with the ItemReader.

The ItemReader in this step is a FlatFileItemReader. Configuring it is actually very straightforward.
We use the FlatFileItemReaderBuilder to configure a name (to support restartability), a Resource
(the file we’ll be reading from), a LineTokenizer that knows how to parse the records in the file, and a
FieldSetMapper that knows how to map the parsed tokens to a domain object. Listing 10-4 lists the code for
this ItemReader.

Chapter 10 ■ Sample appliCation

334

Listing 10-4. Reading the Customer Update File

...
@Bean
@StepScope
public FlatFileItemReader<CustomerUpdate> customerUpdateItemReader(
@Value("#{jobParameters['customerUpdateFile']}") Resource inputFile) throws Exception {

 return new FlatFileItemReaderBuilder<CustomerUpdate>()
 .name("customerUpdateItemReader")
 .resource(inputFile)
 .lineTokenizer(customerUpdatesLineTokenizer())
 .fieldSetMapper(customerUpdateFieldSetMapper())
 .build();
}
...

You’ll notice that the customerUpdateItemReader is step scoped and we’re using a job parameter to
specify where the file is to be read.

While we have the ItemReader defined, we need to define the LineTokenizer and FieldSetMapper.
We’ve already discussed that there are three record formats in this file, so how do we accomplish the
tokenizing in a single LineTokenizer? Simple, we don’t. We use composition to create a composite
that delegates to the correct LineTokenizer based on a pattern for each file. Spring Batch provides the
PatternMatchingCompositeLineTokenizer for this very use case. It requires that you create a Map<String,
LineTokenizer>. The String in each Map entry defines a pattern the record must match in order to use
that LineTokenzier. So what we really will do is define three LineTokenizer implementations and define a
pattern to identify when to use each. Listing 10-5 illustrates that configuration.

Listing 10-5. LineTokenizer Configurations for the Customer Update File

...
@Bean
public LineTokenizer customerUpdatesLineTokenizer() throws Exception {
 DelimitedLineTokenizer recordType1 = new DelimitedLineTokenizer();

 recordType1.setNames("recordId", "customerId", "firstName",
 "middleName", "lastName");

 recordType1.afterPropertiesSet();

 DelimitedLineTokenizer recordType2 = new DelimitedLineTokenizer();

 recordType2.setNames("recordId", "customerId", "address1",
 "address2", "city", "state", "postalCode");

 recordType2.afterPropertiesSet();

 DelimitedLineTokenizer recordType3 = new DelimitedLineTokenizer();

 recordType3.setNames("recordId", "customerId", "emailAddress",
 "homePhone", "cellPhone", "workPhone", "notificationPreference");

Chapter 10 ■ Sample appliCation

335

 recordType3.afterPropertiesSet();

 Map<String, LineTokenizer> tokenizers = new HashMap<>(3);
 tokenizers.put("1*", recordType1);
 tokenizers.put("2*", recordType2);
 tokenizers.put("3*", recordType3);

 PatternMatchingCompositeLineTokenizer lineTokenizer =
 new PatternMatchingCompositeLineTokenizer();

 lineTokenizer.setTokenizers(tokenizers);

 return lineTokenizer;
}
...

As you can see in Listing 10-5, we configure three DelimitedLineTokenizer instances, each defining the
fields in each record type. We then map each one to the pattern for the prefix identifying each record type.
The PatternMatchingCompositeLineTokenizer will take care of delegating to the correct LineTokenizer
based on those patterns.

The last piece to reading this file is mapping them to a domain object. Now we could go with an
über domain object that has all the fields for each of the three record types in it and have a simple
FieldSetMapper that handles populating the fields it has. However, that’s a rather messy way to deal
with the data. So we have three distinct domain objects, one for each record type. Record type 1 uses a
CustomerNameUpdate object, record type 2 uses a CustomerAddressUpdate object, and record type 3 uses a
CustomerContactUpdate object. Each of these extends a common class, CustomerUpdate. CustomerUpdate
contains the customerId field. This super class serves two purposes. The first is a common place to hold
the customerId. However, the more important purpose is to allow us to use CustomerUpdate in the generics
for Step configuration (take another look at Listing 10-3 to see it in action). Listing 10-6 shows the domain
objects we’re using for this step.

Listing 10-6. Domain Objects for the Customer Update Step

...
public class CustomerUpdate {
 protected final long customerId;

 public CustomerUpdate(long customerId) {
 this.customerId = customerId;
 }
// accessors removed
}

...
public class CustomerNameUpdate extends CustomerUpdate {

 private final String firstName;

 private final String middleName;

 private final String lastName;

Chapter 10 ■ Sample appliCation

336

 public CustomerNameUpdate(long customerId, String firstName,
 String middleName, String lastName) {

 super(customerId);
 this.firstName = StringUtils.hasText(firstName) ? firstName : null;
 this.middleName = StringUtils.hasText(middleName) ? middleName : null;
 this.lastName = StringUtils.hasText(lastName) ? lastName : null;
 }
// accessors removed
}

...
public class CustomerAddressUpdate extends CustomerUpdate {

 private final String address1;

 private final String address2;

 private final String city;

 private final String state;

 private final String postalCode;

 public CustomerAddressUpdate(long customerId, String address1,
 String address2, String city, String state, String postalCode) {

 super(customerId);
 this.address1 = StringUtils.hasText(address1) ? address1 : null;
 this.address2 = StringUtils.hasText(address2) ? address2 : null;
 this.city = StringUtils.hasText(city) ? city : null;
 this.state = StringUtils.hasText(state) ? state : null;
 this.postalCode = StringUtils.hasText(postalCode) ? postalCode : null;
 }
// accessors removed
}

...

public class CustomerContactUpdate extends CustomerUpdate {

 private final String emailAddress;

 private final String homePhone;

 private final String cellPhone;

 private final String workPhone;

 private final Integer notificationPreferences;

Chapter 10 ■ Sample appliCation

337

 public CustomerContactUpdate(long customerId, String emailAddress, String homePhone,
String cellPhone, String workPhone, Integer notificationPreferences) {

 super(customerId);
 this.emailAddress = StringUtils.hasText(emailAddress) ? emailAddress : null;
 this.homePhone = StringUtils.hasText(homePhone) ? homePhone : null;
 this.cellPhone = StringUtils.hasText(cellPhone) ? cellPhone : null;
 this.workPhone = StringUtils.hasText(workPhone) ? workPhone : null;
 this.notificationPreferences = notificationPreferences;
 }
// accessors removed
}

In order to determine which object to return, we need a FieldSetMapper that will create and return the
right domain object based on the record type. Listing 10-7 shows how we can keep things simple and use a
lambda expression to create a FieldSetMapper that handles this mapping.

Listing 10-7. FieldSetMapper Configurations for the Customer Update File

...
@Bean
public FieldSetMapper<CustomerUpdate> customerUpdateFieldSetMapper() {
 return fieldSet -> {
 switch (fieldSet.readInt("recordId")) {
 case 1: return new CustomerNameUpdate(
 fieldSet.readLong("customerId"),
 fieldSet.readString("firstName"),
 fieldSet.readString("middleName"),
 fieldSet.readString("lastName"));
 case 2: return new CustomerAddressUpdate(
 fieldSet.readLong("customerId"),
 fieldSet.readString("address1"),
 fieldSet.readString("address2"),
 fieldSet.readString("city"),
 fieldSet.readString("state"),
 fieldSet.readString("postalCode"));
 case 3:
 String rawPreference =
 fieldSet.readString("notificationPreference");

 Integer notificationPreference = null;

 if(StringUtils.hasText(rawPreference)) {
 notificationPreference = Integer.

parseInt(rawPreference);
 }

 return new CustomerContactUpdate(fieldSet.
readLong("customerId"),

 fieldSet.readString("emailAddress"),
 fieldSet.readString("homePhone"),
 fieldSet.readString("cellPhone"),
 fieldSet.readString("workPhone"),
 notificationPreference);

Chapter 10 ■ Sample appliCation

338

 default: throw new IllegalArgumentException(
 "Invalid record type was found:" +
 fieldSet.readInt("recordId"));
 }
 };
}
...

The lambda illustrated in Listing 10-7 looks at the record type field in each record and creates a new
instance of the appropriate domain object for each record. If no record can be found, an exception is thrown
indicating that the record type was invalid.

Reading is only the first part of the process of applying the customer updates. The goal of this step is
to get the data into your database. To do that, we need to first validate that each record actually has a valid
customer id. This next section will look at how to do that with Spring Batch.

Validating Customer ID
In our step definition we defined an ItemProcessor called customerValidatingItemProcessor. The intent
of this component will be to look up the customer id in the CustomerUpdate object it receives. If it exists in
the database, we’ll let the record through. If it does not exist, we’ll filter those records out. In a real-world
scenario we may want to write these items to a new file for future debugging; for the case of this job, filtering
them out is good enough.

To do this, we can use Spring Batch’s ValidatingItemProcessor. This ItemProcessor takes an
implementation of a org.springframework.batch.item.validator.Validator (this is different from the
Spring Framework Validator interface). In our case, we’ll create a custom Validator implementation that
looks up the customer id and throws a ValidationException if none are found. Listing 10-8 shows the code
for our CustomerItemValidator.

Listing 10-8. CustomerItemValidator

...
@Component
public class CustomerItemValidator implements Validator<CustomerUpdate> {

 private final NamedParameterJdbcTemplate jdbcTemplate;

 private static final String FIND_CUSTOMER =
 "SELECT COUNT(*) FROM CUSTOMER WHERE customer_id = :id";

 public CustomerItemValidator(DataSource dataSource) {
 this.jdbcTemplate = new NamedParameterJdbcTemplate(dataSource);
 }

 @Override
 public void validate(CustomerUpdate customer) throws ValidationException {
 Map<String, Long> parameterMap =
 Collections.singletonMap("id", customer.getCustomerId());

 Long count = jdbcTemplate.queryForObject(FIND_CUSTOMER, parameterMap,
 Long.class);

Chapter 10 ■ Sample appliCation

339

 if(count == 0) {
 throw new ValidationException(
 String.format("Customer id %s was not able to be found",
 customer.getCustomerId()));
 }
 }
}

With our Validator defined, we can configure our ItemProcessor. Listing 10-9 provides the
configuration for the ValidatingItemProcessor.

Listing 10-9. customerValidatingItemProcessor

...
@Bean
public ValidatingItemProcessor<CustomerUpdate> customerValidatingItemProcessor(CustomerItem
Validator validator) {

 ValidatingItemProcessor<CustomerUpdate> customerValidatingItemProcessor =
 new ValidatingItemProcessor<>(validator);

 customerValidatingItemProcessor.setFilter(true);

 return customerValidatingItemProcessor;
}
...

With the ItemProcessor configured, all that is left is to configure the ItemWriter side of this step.
However, if we have three items to write, how do we manage that on the write side of the step? The next
section will explain how.

Writing Customer Updates
The final piece for our first step is the applying of the updates to the CUSTOMER table. Since we have three
record types, meaning three different update types, we’ll want three different ItemWriters to be able to
delegate between. We can use Spring Batch’s ClassifierCompositeItemWriter to delegate between our
ItemWriter implementations based on a Classifier we implement.

We’ll begin by looking at the three ItemWriter implementations we’ll need to configure. They are
all the same except for the SQL they are using for the update. Using the JdbcBatchItemWriterBuilder,
we can configure our SQL, the DataSource, and tell Spring to map our statement’s parameters using
bean names with just a few lines of code. Listing 10-10 shows the configuration for each of the three
JdbcBatchItemWriters we’ll configure.

Listing 10-10. customerValidatingItemProcessor

...
@Bean
public JdbcBatchItemWriter<CustomerUpdate> customerNameUpdateItemWriter(DataSource
dataSource) {
 return new JdbcBatchItemWriterBuilder<CustomerUpdate>()
 .beanMapped()

Chapter 10 ■ Sample appliCation

340

 .sql("UPDATE CUSTOMER " +
 "SET FIRST_NAME = COALESCE(:firstName, FIRST_NAME), " +
 "MIDDLE_NAME = COALESCE(:middleName, MIDDLE_NAME), " +
 "LAST_NAME = COALESCE(:lastName, LAST_NAME) " +
 "WHERE CUSTOMER_ID = :customerId")
 .dataSource(dataSource)
 .build();
}

@Bean
public JdbcBatchItemWriter<CustomerUpdate> customerAddressUpdateItemWriter(DataSource
dataSource) {
 return new JdbcBatchItemWriterBuilder<CustomerUpdate>()
 .beanMapped()
 .sql("UPDATE CUSTOMER SET " +
 "ADDRESS1 = COALESCE(:address1, ADDRESS1), " +
 "ADDRESS2 = COALESCE(:address2, ADDRESS2), " +
 "CITY = COALESCE(:city, CITY), " +
 "STATE = COALESCE(:state, STATE), " +
 "POSTAL_CODE = COALESCE(:postalCode, POSTAL_CODE) " +
 "WHERE CUSTOMER_ID = :customerId")
 .dataSource(dataSource)
 .build();
}

@Bean
public JdbcBatchItemWriter<CustomerUpdate> customerContactUpdateItemWriter(DataSource
dataSource) {
 return new JdbcBatchItemWriterBuilder<CustomerUpdate>()
 .beanMapped()
 .sql("UPDATE CUSTOMER SET " +
 "EMAIL_ADDRESS = COALESCE(:emailAddress, EMAIL_ADDRESS), " +
 "HOME_PHONE = COALESCE(:homePhone, HOME_PHONE), " +
 "CELL_PHONE = COALESCE(:cellPhone, CELL_PHONE), " +
 "WORK_PHONE = COALESCE(:workPhone, WORK_PHONE), " +
 "NOTIFICATION_PREF = COALESCE(:notificationPreferences,

NOTIFICATION_PREF) " +
 "WHERE CUSTOMER_ID = :customerId")
 .dataSource(dataSource)
 .build();
}
...

Each of the ItemWriter configurations in Listing 10-10 do the same thing, just setting different columns
with the appropriate values. The reason we use COALESCE for each of the values in the SQL statement is
because we only want to update the values that the input file provided. If the input file provided null as the
value, we shouldn’t update it.

Chapter 10 ■ Sample appliCation

341

Now that we have those three ItemWriters configured, we need to be able to choose the correct one
based on the type of item that we receive (since the type of item is based on the record type from the input
file). To make this choice, we’ll implement a org.springframework.classify.Classifier that evaluates
the item it is given and return the appropriate ItemWriter. Listing 10-11 illustrates the simple Classifier
implementation we’ll use.

Listing 10-11. CustomerUpdateClassifier

...
public class CustomerUpdateClassifier implements
Classifier<CustomerUpdate, ItemWriter<? super CustomerUpdate>> {

 private final JdbcBatchItemWriter<CustomerUpdate> recordType1ItemWriter;
 private final JdbcBatchItemWriter<CustomerUpdate> recordType2ItemWriter;
 private final JdbcBatchItemWriter<CustomerUpdate> recordType3ItemWriter;

 public CustomerUpdateClassifier(
 JdbcBatchItemWriter<CustomerUpdate> recordType1ItemWriter,
 JdbcBatchItemWriter<CustomerUpdate> recordType2ItemWriter,
 JdbcBatchItemWriter<CustomerUpdate> recordType3ItemWriter) {

 this.recordType1ItemWriter = recordType1ItemWriter;
 this.recordType2ItemWriter = recordType2ItemWriter;
 this.recordType3ItemWriter = recordType3ItemWriter;
 }

 @Override
 public ItemWriter<? super CustomerUpdate> classify(CustomerUpdate classifiable) {

 if(classifiable instanceof CustomerNameUpdate) {
 return recordType1ItemWriter;
 }
 else if(classifiable instanceof CustomerAddressUpdate) {
 return recordType2ItemWriter;
 }
 else if(classifiable instanceof CustomerContactUpdate) {
 return recordType3ItemWriter;
 }
 else {
 throw new IllegalArgumentException("Invalid type: " +
 classifiable.getClass().getCanonicalName());
 }
 }
}

As you can see, the Classifier takes in each of the ItemWriter instances as constructor parameters.
Then, based on the type of item passed to it, the correct ItemWriter is returned. The final piece of the first
step in our statement job is to configure the ClassifierCompositeItemWriter. This ItemWriter is pretty
simple to configure since all the work is done in the Classifier and the delegate ItemWriter instances.
Listing 10-12 shows how to configure our customerUpdateItemWriter.

Chapter 10 ■ Sample appliCation

342

Listing 10-12. customerUpdateItemWriter

...
@Bean
public ClassifierCompositeItemWriter<CustomerUpdate> customerUpdateItemWriter() {

 CustomerUpdateClassifier classifier =
 new CustomerUpdateClassifier(customerNameUpdateItemWriter(null),
 customerAddressUpdateItemWriter(null),
 customerContactUpdateItemWriter(null));

 ClassifierCompositeItemWriter<CustomerUpdate> compositeItemWriter =
 new ClassifierCompositeItemWriter<>();

 compositeItemWriter.setClassifier(classifier);

 return compositeItemWriter;
}
...

With all of the components for the first Step written and configured, you can run your batch job to see
the first step run. You’ll want to configure a “real database” using the Spring Boot properties in Listing 10-13
to be able to view the results.

Listing 10-13. application.properties

spring.datasource.driverClassName=com.mysql.jdbc.Driver
spring.datasource.url=jdbc:mysql://localhost:3306/statement
spring.datasource.username=<USERNAME>
spring.datasource.password=<PASSWORD>
spring.datasource.schema=schema-mysql.sql
spring.datasource.initialization-mode=always
spring.batch.initialize-schema=always

The last piece you’ll need to configure to run your job and test the first step is add the driver for MySQL
(this example is using MySQL. Replace configuration values and driver as needed for other database
options). Listing 10-14 has the Maven dependency for MySQL (the version is provided by Spring Boot).

Listing 10-14. MySQL Dependency

<dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
</dependency>

With all of those values configured, we can build our project from the command line via ./mvnw clean
install. Once that is complete, from the target directory of our project, we can run it via the command java
-jar chapter10-0.0.1-SNAPSHOT.jar customerUpdateFile=<PATH_TO_CUSTOMER_FILE>. With that, you
should be able to validate the data has been correctly applied to the CUSTOMER table.

In the next section, we’ll work on the second step of the job, importing the transaction file.

Chapter 10 ■ Sample appliCation

343

Importing Transactions
With the customers updated, we can now import the transactions from the transaction file. While the
customer input file was complex since it had multiple record types to deal with, the transaction file is
actually very simple. It is a simple XML file that we’ll be importing directly into the transaction table in our
database. Listing 10-15 shows an example of the transaction file we’ll be importing.

Listing 10-15. Transaction File

<?xml version='1.0' encoding='UTF-8'?>
<transactions>
 <transaction>
 <transactionId>2462744</transactionId>
 <accountId>405</accountId>
 <description>Skinix</description>
 <credit/>
 <debit>-438</debit>
 <timestamp>2018-06-01 19:39:53</timestamp>
 </transaction>
 <transaction>
 <transactionId>4243424</transactionId>
 <accountId>584</accountId>
 <description>Yakidoo</description>
 <credit>8681.98</credit>
 <debit/>
 <timestamp>2018-06-12 18:39:09</timestamp>
 </transaction>
...
</transactions>

The transaction file begins with a transactions element that wraps all of the individual transaction
elements. Each transaction chunk represents a single bank transaction and will result in an item in our
batch job. These blocks map to a Transaction domain object that is listed in Listing 10-16.

Listing 10-16. Transaction Domain Object

...
@XmlRootElement(name = "transaction")
public class Transaction {

 private long transactionId;

 private long accountId;

 private String description;

 private BigDecimal credit;

 private BigDecimal debit;

 private Date timestamp;

Chapter 10 ■ Sample appliCation

344

 public Transaction() {
 }

 public Transaction(long transactionId,
 long accountId,
 String description,
 BigDecimal credit,
 BigDecimal debit,
 Date timestamp) {

 this.transactionId = transactionId;
 this.accountId = accountId;
 this.description = description;
 this.credit = credit;
 this.debit = debit;
 this.timestamp = timestamp;
 }

 // accessors removed for brevity

 @XmlJavaTypeAdapter(JaxbDateSerializer.class)
 public void setTimestamp(Date timestamp) {
 this.timestamp = timestamp;
 }

 public BigDecimal getTransactionAmount() {
 if(credit != null) {
 if(debit != null) {
 return credit.add(debit);
 }
 else {
 return credit;
 }
 }
 else if(debit != null) {
 return debit;
 }
 else {
 return new BigDecimal(0);
 }
 }
}

As you can see, the Transaction domain object has fields that map directly to the XML chunks
in the input file. The three notable items on this class are the @XmlRootElement annotation at the
class level, the @XmlJavaTypeAdapter on the setter for the timestamp field, and the additional method
getTransactionAmount(). The @XmlRootElement is a JAX-B annotation that defines what the root tag is for
that domain object. In our case, it is the tag transaction. The @XmlJavaTypeAdapter is used on the setter
for the timestamp field because JAX-B doesn’t have a nice and simple way to handle the conversion from a
String to a java.util.Date. Because of that, we need to provide a bit of code that JAX-B will use to do that
conversion which is the JaxbDateSerializer. Listing 10-17 illustrates the JaxbDateSerializer.

Chapter 10 ■ Sample appliCation

345

Listing 10-17. JaxbDateSerializer

...
public class JaxbDateSerializer extends XmlAdapter<String, Date> {

 private SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd hh:mm:ss");

 @Override
 public String marshal(Date date) throws Exception {
 return dateFormat.format(date);
 }

 @Override
 public Date unmarshal(String date) throws Exception {
 return dateFormat.parse(date);
 }
}

The JaxbDateSerializer extends XmlAdapter and is used by JAX-B for the type conversion
from a String to a java.util.Date in our case. The final addition to the Transaction class is the
getTransactionAmount() method. A Transaction contains either a credit or a debit. However, when we
need to do math, we don’t care about whether the value is a credit or debit, we just care how much the value
is. So this method returns the actual value for the transaction.

Once we have the domain object defined, we can configure our second step, importTransactions, and
begin to look at its components. We’ll do that in the next section.

Reading Transactions
Let’s start the importing of our bank transactions by configuring the Step and adding it to our Job. Listing 10-18
has the configuration of our second Step, importTransactions.

Listing 10-18. importTransactions

...
@Bean
public Job job() throws Exception {
 return this.jobBuilderFactory.get("importJob")
 .start(importCustomerUpdates())
 .next(importTransactions())
 .build();
}

@Bean
public Step importTransactions() {
 return this.stepBuilderFactory.get("importTransactions")
 .<Transaction, Transaction>chunk(100)
 .reader(transactionItemReader(null))
 .writer(transactionItemWriter(null))
 .build();
}
...

Chapter 10 ■ Sample appliCation

346

The importTransactions step is a simple one. We define a reader named transactionItemReader and
a writer named transactionItemWriter. Let’s take a look at the configuration for the ItemReader. Since
we’ll be reading XML, we’ll be using the StaxEventItemReader. As for how we plan on unmarshalling the
XML, the JAX-B annotations on our domain object should have been a bit of a giveaway, but we’ll be using
JAX-B to handle that aspect. By taking this approach, the configuration of our reader becomes very simple.
Listing 10-19 shows the 16 lines required to configure it.

Listing 10-19. transactionItemReader

...
@Bean
@StepScope
public StaxEventItemReader<Transaction> transactionItemReader(
 @Value("#{jobParameters['transactionFile']}") Resource transactionFile) {

 Jaxb2Marshaller unmarshaller = new Jaxb2Marshaller();
 unmarshaller.setClassesToBeBound(Transaction.class);

 return new StaxEventItemReaderBuilder<Transaction>()
 .name("fooReader")
 .resource(transactionFile)
 .addFragmentRootElements("transaction")
 .unmarshaller(unmarshaller)
 .build();
}
...

The step scoped transactionItemReader takes the location of the input file as a job parameter named
transactionFile. In the method, we create a new Jaxb2Marshaller and bind it to the Transaction domain
object we defined in Listing 10-16. Finally, we use the StaxEventItemReaderBuilder to configure our
ItemReader. We pass it a name (for restartability), the resource injected via the job parameter, we define the
root element for each XML snip to be parsed (transaction), and we pass the StaxEventItemReaderBuilder
the Jaxb2Marshaller to use when parsing the XML. Calling build gives us our StaxEventItemReader.

Once we have the ItemReader, we need an ItemWriter. This also will be familiar since it’s the same type
of configuration from the previous step (just simplified). The next section will review how we configure the
transactionItemWriter.

Writing Transactions
The transactionItemWriter is going to be responsible for writing the transactions to the transaction table
in the database. To accomplish this, we’ll again us the JdbcBatchItemWriter. It’s configuration is found in
Listing 10-20.

Listing 10-20. transactionItemWriter

...
@Bean
public JdbcBatchItemWriter<Transaction> transactionItemWriter(DataSource dataSource) {
 return new JdbcBatchItemWriterBuilder<Transaction>()
 .dataSource(dataSource)

Chapter 10 ■ Sample appliCation

347

 .sql("INSERT INTO TRANSACTION (TRANSACTION_ID, " +
 "ACCOUNT_ACCOUNT_ID, " +
 "DESCRIPTION, " +
 "CREDIT, " +
 "DEBIT, " +
 "TIMESTAMP) VALUES (:transactionId, " +
 ":accountId, " +
 ":description, " +
 ":credit, " +
 ":debit, " +
 ":timestamp)")
 .beanMapped()
 .build();
}
...

The JdbcBatchItemWriterBuilder is used to configure our JdbcBatchItemWriter by taking a
DataSource, SQL statement, and telling the ItemWriter to use the item’s property names as keys to set the
SQL statement’s values.

That is all we need for our second step. With the ItemReader and ItemWriter configured, we can build
our job via ./mvnw clean install and run it with the same command as last time plus our new input file
parameter: java -jar chapter10-0.0.1-SNAPSHOT.jar customerUpdateFile=<PATH_TO_CUSTOMER_FILE>
transactionFile=<PATH_TO_TRANSACTION_FILE>. After our job’s successful run, we can validate that the
values in the transaction XML file got into the transaction table in our database.

With the transactions imported, we now need to apply them to the balance value in the account table.
The next section will cover how to accomplish that.

Applying Transactions to Current Balance
The next step in our job is to apply the transactions we just imported to the account balance. This is actually
our easiest step to configure. It, like the import transaction step, has a simple ItemReader and a simple
ItemWriter. We’ll use the JdbcBatchItemWriter like we have in the previous two steps; however, our input
will also come from the database in the form of the transactions we just loaded. Let’s start by looking at the
configuration for the step itself. Listing 10-21 shows the applyTransactions step’s configuration.

Listing 10-21. applyTransactions Step

...
@Bean
public Job job() throws Exception {
 return this.jobBuilderFactory.get("importJob")
 .start(importCustomerUpdates())
 .next(importTransactions())
 .next(applyTransactions())
 .build();
}

...

Chapter 10 ■ Sample appliCation

348

@Bean
public Step applyTransactions() {
 return this.stepBuilderFactory.get("applyTransactions")
 .<Transaction, Transaction>chunk(100)
 .reader(applyTransactionReader(null))
 .writer(applyTransactionWriter(null))
 .build();
}
...

Listing 10-21 adds the new step to our job’s configuration then defines the Step bean. The Step is
created using the builders configured to read and write Transaction domain objects with a chunk size of
100. The reader will be the applyTransactionReader with the factory method taking a DataSource and the
writer will be the applyTransactionWriter also taking a DataSource. In the next section, we’ll look at how
we define the ItemReader for our job.

Reading the Transaction Data
Reading the transaction data from the database table we just imported it into is simple thanks to the
JdbcCursorItemReader. To use that reader, all we need to configure is the name (for restartability), a
DataSource, a SQL statement, and in our case a RowMapper implementation. We’ll use a lambda expression
for that. Listing 10-22 shows the code required to configure this ItemReader.

Listing 10-22. applyTransactionsReader

...
@Bean
public JdbcCursorItemReader<Transaction> applyTransactionReader(DataSource dataSource) {
 return new JdbcCursorItemReaderBuilder<Transaction>()
 .name("applyTransactionReader")
 .dataSource(dataSource)
 .sql("select transaction_id, " +
 "account_account_id, " +
 "description, " +
 "credit, " +
 "debit, " +
 "timestamp " +
 "from TRANSACTION " +
 "order by timestamp")
 .rowMapper((resultSet, i) ->
 new Transaction(
 resultSet.getLong("transaction_id"),
 resultSet.getLong("account_account_id"),
 resultSet.getString("description"),
 resultSet.getBigDecimal("credit"),
 resultSet.getBigDecimal("debit"),
 resultSet.getTimestamp("timestamp")))
 .build();
}
...

Chapter 10 ■ Sample appliCation

349

That really is all that’s needed to read the Transaction data. In the next section, we’ll look at how to
apply the transactions to the account balance using a JdbcBatchItemWriter.

Updating the Account Balance
With each item read, we can apply the result of that bank transaction to the appropriate account. The nice
thing is that we only need a SQL query to do this. I’ll take a minute to acknowledge that there are much more
performant ways of doing this. Querying the items for a sum and applying that in a single item per account
would be just as effective and more performant. However, business rules may make this approach more
realistic (tracking when a balance goes negative or below a given threshold may be required, for example).
However, in this example, I’m looking to keep things simple and reuse as much as possible. Listing 10-23
illustrates the applying of each transaction to the account balance.

Listing 10-23. applyTransactionsWriter

...
@Bean
public JdbcBatchItemWriter<Transaction> applyTransactionWriter(DataSource dataSource) {
 return new JdbcBatchItemWriterBuilder<Transaction>()
 .dataSource(dataSource)
 .sql("UPDATE ACCOUNT SET " +
 "BALANCE = BALANCE + :transactionAmount " +
 "WHERE ACCOUNT_ID = :accountId")
 .beanMapped()
 .assertUpdates(false)
 .build();
}
...

In Listing 10-23, we configure the JdbcBatchItemWriter with the DataSource, a SQL statement that
adds the amount of the item’s transaction to the current balance and identifies that the parameters in our
SQL statement can be populated via calling bean properties.

With our reader and writer built we can now build and run our job. Using the same commands
we did after we built the importTransactions Step (./mvnw clean install to build the project and
java -jar chapter10-0.0.1-SNAPSHOT.jar customerUpdateFile=<PATH_TO_CUSTOMER_FILE>
transactionFile=<PATH_TO_TRANSACTION_FILE> to execute the job) we can validate that our step has
worked and the transactions are applied correctly.

The next section brings us to the last step in our job, actually generating the statements. While this step
is simple on the surface, there is a bit more code involved. The next section will take a look.

Generating Monthly Statement
The end goal of this batch job is to generate a statement for each customer with a summary of their account.
All the processing up to this point has been about updating and preparing to write the statement. Step 4 is
where you do that work. This section looks at the processing involved writing the statements.

Chapter 10 ■ Sample appliCation

350

Reading the Statement Data
When you look at the expected output of this last step, you quickly realize that a large amount of data needs
to be pulled in order to generate the statement. Before you get into how to pull that data, let’s look at the
domain object you use to represent the data: the Statement object (see Listing 10-24).

Listing 10-24. Statement.java

...
public class Statement {

 private final Customer customer;
 private List<Account> accounts = new ArrayList<>();

 public Statement(Customer customer, List<Account> accounts) {
 this.customer = customer;
 this.accounts.addAll(accounts);
 }

 // accessors removed for brevity
...
}

The Statement object consists of a Customer instance (for who the statement is being generated for) and
a list of Account objects representing each of the accounts the customer has. Each Customer object contains
all of the data in the CUSTOMER table in our database. The Account object, as you’d expect also maps directly
to the ACCOUNT table in the database. Listing 10-25 shows the code for both of these domain objects.

Listing 10-25. Customer.java and Account.java

...
public class Customer {

 private final long id;
 private final String firstName;
 private final String middleName;
 private final String lastName;
 private final String address1;
 private final String address2;
 private final String city;
 private final String state;
 private final String postalCode;
 private final String ssn;
 private final String emailAddress;
 private final String homePhone;
 private final String cellPhone;
 private final String workPhone;
 private final int notificationPreferences;

 public Customer(long id, String firstName, String middleName, String lastName,
String address1, String address2, String city, String state, String postalCode,
String ssn, String emailAddress, String homePhone, String cellPhone, String
workPhone, int notificationPreferences) {

Chapter 10 ■ Sample appliCation

351

 this.id = id;
 this.firstName = firstName;
 this.middleName = middleName;
 this.lastName = lastName;
 this.address1 = address1;
 this.address2 = address2;
 this.city = city;
 this.state = state;
 this.postalCode = postalCode;
 this.ssn = ssn;
 this.emailAddress = emailAddress;
 this.homePhone = homePhone;
 this.cellPhone = cellPhone;
 this.workPhone = workPhone;
 this.notificationPreferences = notificationPreferences;
 }

 // accessors removed

 ...
}

...
public class Account {

 private final long id;
 private final BigDecimal balance;
 private final Date lastStatementDate;
 private final List<Transaction> transactions = new ArrayList<>();

 public Account(long id, BigDecimal balance, Date lastStatementDate) {
 this.id = id;
 this.balance = balance;
 this.lastStatementDate = lastStatementDate;
 }

 // accessors removed

 ...
}

While our domain object consists of all of the components for our statement, our reader won’t populate
them all. For this step, we will use what’s called the driving query pattern. This means our ItemReader will
read just the basics (the Customer in this case). The ItemProcessor will enrich the Statement object with the
account information before going to the ItemWriter for the final generation of the statement. Let’s begin by
taking a look at the configuration for the step itself. Listing 10-26 shows the configuration of our final Step
and its addition to the Job.

Chapter 10 ■ Sample appliCation

352

Listing 10-26. generateStatements Step

...
@Bean
public Job job() throws Exception {
 return this.jobBuilderFactory.get("importJob")
 .start(importCustomerUpdates())
 .next(importTransactions())
 .next(applyTransactions())
 .next(generateStatements(null))
 .build();
}
...
@Bean
public Step generateStatements(AccountItemProcessor itemProcessor) {
 return this.stepBuilderFactory.get("generateStatements")
 .<Statement, Statement>chunk(1)
 .reader(statementItemReader(null))
 .processor(itemProcessor)
 .writer(statementItemWriter(null))
 .build();
}
...

The last step in our job, generateStatements, consists of a simple ItemReader, an ItemProcessor, and
an ItemWriter. You’ll notice that the chunk size is one for our final step. The reason for this is that we want a
single file per statement. To do that, we’ll use the MultiResourceItemWriter. This, however, only rotates files
once per chunk. If we want one file per item, our chunk size then needs to be 1.

With our step configured we can configure the ItemReader for our step. The ItemReader for the
generateStatements step is a simple JdbcCursorItemReader. We configure the JdbcCursorItemReader with
a name (for restartability), a DataSource, the SQL statement we want to run, and a RowMapper (in our case,
we’ll just us a lambda expression). Listing 10-27 shows the configuration of our ItemReader.

Listing 10-27. statementItemReader

...
@Bean
public JdbcCursorItemReader<Statement> statementItemReader(DataSource dataSource) {
 return new JdbcCursorItemReaderBuilder<Statement>()
 .name("statementItemReader")
 .dataSource(dataSource)
 .sql("SELECT * FROM CUSTOMER")
 .rowMapper((resultSet, i) -> {
 Customer customer =
 new Customer(resultSet.getLong("customer_id"),
 resultSet.getString("first_name"),
 resultSet.getString("middle_name"),
 resultSet.getString("last_name"),
 resultSet.getString("address1"),
 resultSet.getString("address2"),
 resultSet.getString("city"),
 resultSet.getString("state"),

Chapter 10 ■ Sample appliCation

353

 resultSet.getString("postal_code"),
 resultSet.getString("ssn"),
 resultSet.getString("email_address"),
 resultSet.getString("home_phone"),
 resultSet.getString("cell_phone"),
 resultSet.getString("work_phone"),
 resultSet.getInt("notification_pref"));

 return new Statement(customer);
 }).build();
}
...

With our reader configured, we will need to write our ItemProcessor to enrich the Statement object
that was just returned via the ItemReader with the Accounts associated with the customer. The next section
will cover this in detail.

Enrich the Statement with Accounts
Once we have each customer read, we can read the Account and Transactions needed to generate the
statement. We’ll use Spring’s JdbcTemplate to do this. However, since the query will result in a parent child
relationship (one parent Account to multiple Transaction children), we won’t be able to use a RowMapper.
Instead we’ll use a ResultSetExtractor. Unlike the RowMapper interface which is intended to map a single
row to an object, the ResultSetExtractor looks at a ResultSet as a whole (when using a RowMapper, if you
advance the ResultSet yourself, an exception is thrown). We’ll use a ResultSetExtractor because the
query we’ll be running results in a parent child relationship with one account having many transactions.
We’ll need to read multiple rows from the ResultSet to create each Account. Let’s start digging into this code
by looking at the code for the AccountItemProcessor in Listing 10-28 where we’re executing our query and
enriching our Statement object.

Listing 10-28. AccountItemProcessor

...
@Component
public class AccountItemProcessor implements ItemProcessor<Statement, Statement> {

 @Autowired
 private final JdbcTemplate jdbcTemplate;

 public AccountItemProcessor(JdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 }

 @Override
 public Statement process(Statement item) throws Exception {

 item.setAccounts(this.jdbcTemplate.query("select a.account_id," +
 " a.balance," +
 " a.last_statement_date," +
 " t.transaction_id," +
 " t.description," +

Chapter 10 ■ Sample appliCation

354

 " t.credit," +
 " t.debit," +
 " t.timestamp " +
 "from account a left join " + //HSQLDB
 " transaction t on a.account_id = t.account_account_id "+
 "where a.account_id in " +
 " (select account_account_id " +
 " from customer_account " +
 " where customer_customer_id = ?) " +
 "order by t.timestamp",
 new Object[] {item.getCustomer().getId()},
 new AccountResultSetExtractor()));

 return item;
 }
}

This ItemProcessor runs a query to find all the accounts and their transactions for a specified
customer. The code for that is pretty simple (beyond the SQL query itself). The real “work” is done in the
AccountResultSetExtractor which we’ll look at in Listing 10-29.

Listing 10-29. AccountResultSetExtractor

...
public class AccountResultSetExtractor implements ResultSetExtractor<List<Account>> {

 private List<Account> accounts = new ArrayList<>();
 private Account curAccount;

 @Nullable
 @Override
 public List<Account> extractData(ResultSet rs) throws SQLException, DataAccessException {

 while (rs.next()) {

 if(curAccount == null) {
 curAccount = new Account(
 rs.getLong("account_id"),
 rs.getBigDecimal("balance"),
 rs.getDate("last_statement_date"));
 }
 else if (rs.getLong("account_id") != curAccount.getId()) {
 accounts.add(curAccount);

 curAccount = new Account(rs.getLong("account_id"),
 rs.getBigDecimal("balance"),
 rs.getDate("last_statement_date"));
 }

 if(StringUtils.hasText(rs.getString("description"))) {
 curAccount.addTransaction(
 new Transaction(rs.getLong("transaction_id"),
 rs.getLong("account_id"),

Chapter 10 ■ Sample appliCation

355

 rs.getString("description"),
 rs.getBigDecimal("credit"),
 rs.getBigDecimal("debit"),
 new Date(rs.getTimestamp("timestamp").getTime())));
 }
 }

 if(curAccount != null) {
 accounts.add(curAccount);
 }

 return accounts;
 }
}

As Listing 10-29 illustrates, we iterate over the ResultSet building an Account object. If the current
Account is null or the account id does not equal the current one, we’ll create a new Account object. Once we
have the Account object, for each record that has a transaction, we add a Transaction object. This allows us
to build up a list of Account objects that we return to the ItemProcessor which adds them to the Statement
item to be written. The last piece of this puzzle is the configuration of the ItemWriter. Saving the best for
last, let’s dig into the ItemWriter used for writing the statement files.

Writing Statements
It is common to see there be a lot of pre-processing before the final thing is generated. The job we have
been working on is no different. However, this is where things arrive. We are going to write our statements,
one statement per file. For this ItemWriter we’ll need a MultiResourceItemWriter to write one statement
per file. That will delegate to a FlatFileItemWriter. For each file, we’ll need to generate a header with the
customer information as well as the information about each account. Let’s start by looking at the detail
pieces then put them together. Starting with the custom LineAggregator we need to create for outputting
each statement’s accounts. Listing 10-30 has the code for the StatementLineAggregator.

Listing 10-30. StatementLineAggregator

public class StatementLineAggregator implements LineAggregator<Statement> {

 private static final String ADDRESS_LINE_ONE =
 String.format("%121s\n", "Apress Banking");
 private static final String ADDRESS_LINE_TWO =
 String.format("%120s\n", "1060 West Addison St.");
 private static final String ADDRESS_LINE_THREE =
 String.format("%120s\n\n", "Chicago, IL 60613");
 private static final String STATEMENT_DATE_LINE =
 String.format("Your Account Summary %78s ", "Statement Period") +
 "%tD to %tD\n\n";

 public String aggregate(Statement statement) {
 StringBuilder output = new StringBuilder();

Chapter 10 ■ Sample appliCation

356

 formatHeader(statement, output);
 formatAccount(statement, output);

 return output.toString();
 }

 private void formatAccount(Statement statement, StringBuilder output) {
 if(!CollectionUtils.isEmpty(statement.getAccounts())) {

 for (Account account : statement.getAccounts()) {

 output.append(
 String.format(STATEMENT_DATE_LINE,
 account.getLastStatementDate(),
 new Date()));

 BigDecimal creditAmount = new BigDecimal(0);
 BigDecimal debitAmount = new BigDecimal(0);
 for (Transaction transaction : account.getTransactions()) {
 if(transaction.getCredit() != null) {
 creditAmount =
 creditAmount.add(transaction.getCredit());
 }

 if(transaction.getDebit() != null) {
 debitAmount =
 debitAmount.add(transaction.getDebit());
 }

 output.append(
 String.format(" %tD %-50s %8.2f\n",
 transaction.getTimestamp(),
 transaction.getDescription(),
 transaction.getTransactionAmount()));
 }

 output.append(
 String.format("%80s %14.2f\n", "Total Debit:" , debitAmount));
 output.append(
 String.format("%81s %13.2f\n", "Total Credit:", creditAmount));
 output.append(
 String.format("%76s %18.2f\n\n", "Balance:", account.getBalance()));
 }
 }
 }

 private void formatHeader(Statement statement, StringBuilder output) {
 Customer customer = statement.getCustomer();

Chapter 10 ■ Sample appliCation

357

 String customerName =
 String.format("\n%s %s",
 customer.getFirstName(),
 customer.getLastName());
 output.append(customerName +
 ADDRESS_LINE_ONE.substring(customerName.length()));

 output.append(customer.getAddress1() +
 ADDRESS_LINE_TWO.substring(customer.getAddress1().length()));

 String addressString =
 String.format("%s, %s %s",
 customer.getCity(),
 customer.getState(),
 customer.getPostalCode());
 output.append(addressString +
 ADDRESS_LINE_THREE.substring(addressString.length()));
 }
}

That’s a lot of code; however, the majority of it is String.format calls with well-defined expressions.
The formatHeader(Statement statement, StringBuilder output) method is responsible for formatting
and appending the strings to the output. The formatAccount(Statement statement, StringBuilder
output) method does essentially the same thing, only doing it for each account and the transactions within
the account.

The next component for the ItemWriter is the HeaderCallback. This will provide the generic elements
of each statement. Listing 10-31 shows the code for the HeaderCallback.

Listing 10-31. StatementHeaderCallback

...
public class StatementHeaderCallback implements FlatFileHeaderCallback {

 public void writeHeader(Writer writer) throws IOException {
 writer.write(String.format("%120s\n", "Customer Service Number"));
 writer.write(String.format("%120s\n", "(800) 867-5309"));
 writer.write(String.format("%120s\n", "Available 24/7"));
 writer.write("\n");
 }

}

This class does essentially the same thing as the StatementLineAggregator in that all it’s doing is
formatting strings and appending them to the current stream. However, this data is static so there is nothing
that changes.

Chapter 10 ■ Sample appliCation

358

Those are the components required for the FlatFileItemWriter used to generate the statements. To
configure the actual FlatFileItemWriter, we just need to pass the previous two instances to the builder.
Listing 10-32 demonstrates that.

Listing 10-32. individualStatementItemWriter

...
@Bean
public FlatFileItemWriter<Statement> individualStatementItemWriter() {
 FlatFileItemWriter<Statement> itemWriter = new FlatFileItemWriter<>();

 itemWriter.setName("individualStatementItemWriter");
 itemWriter.setHeaderCallback(new StatementHeaderCallback());
 itemWriter.setLineAggregator(new StatementLineAggregator());

 return itemWriter;
}
...

The FlatFileItemWriter is configured with the name, HeaderCallback, and the LineAggregator we’ve
just gone through. With those configured, the last piece to configure is the MultiResourceItemWriter. This
component is used to generate a file per customer. Listing 10-33 illustrates its configuration.

Listing 10-33. statementItemWriter

...
@Bean
@StepScope
public MultiResourceItemWriter<Statement> statementItemWriter(@Value("#{jobParameters['outpu
tDirectory']}") Resource outputDir) {
 return new MultiResourceItemWriterBuilder<Statement>()
 .name("statementItemWriter")
 .resource(outputDir)
 .itemCountLimitPerResource(1)
 .delegate(individualStatementItemWriter())
 .build();
}

The last piece of this puzzle is the MultiResoureItemWriter. We configure that with a name, resource
representing the directory to write into, the item count per resource (in our case it is 1), and finally the
delegate.

That’s it. With the components for our job configured, we can build the job via the ./mvnw clean install
command and run it via the java -jar chapter10-0.0.1-SNAPSHOT.jar customerUpdateFile=<PATH_TO_
CUSTOMER_FILE> transactionFile=<PATH_TO_TRANSACTION_FILE> outputDirectory=L<PATH_TO_OUTPUT_
DIR>. The output for our job is the full statement as shown in Listing 10-34.

Listing 10-34. A Sample Statement

 Customer Service Number
 (800) 867-5309
 Available 24/7

Chapter 10 ■ Sample appliCation

359

Elliot Winslade Apress Banking
3 Clyde Gallagher Parkway 1060 West Addison St.
San Antonio, Texas 78250 Chicago, IL 60613

Your Account Summary Statement Period 05/08/18 to 06/20/18

 Total Debit: 0.00
 Total Credit: 0.00
 Balance: 24082.61

Your Account Summary Statement Period 05/06/18 to 06/20/18

 06/05/18 Quinu 10733.88
 06/15/18 Jabbercube -1061.00
 Total Debit: -1061.00
 Total Credit: 10733.88
 Balance: 11413.68

Summary
Learning how to do something without context makes it hard to take what you’ve learned and apply it to the
real world. This chapter has taken commonly used elements of the Spring Batch framework and put them
together into a realistic example of a batch job.

With the basics covered, we will dive deeper into the more advanced topics of Spring Batch in the
upcoming chapters. In Chapter 11, you will look at how to scale batch jobs beyond a single threaded
execution like you have used up to this point.

361© Michael T. Minella 2019
M. T. Minella, The Definitive Guide to Spring Batch, https://doi.org/10.1007/978-1-4842-3724-3_11

CHAPTER 11

Scaling and Tuning

The IRS processed over 115 million individual tax returns in 2018. Atlanta’s Hartsfield-Jackson airport handled
nearly 104 million passengers in 2017. Facebook has more than 300 million photos uploaded a day.
Apple sold more than 216 million iPhones in 2017. The amount of data the world generates every day is
staggering. It used to be that as the data increased, so did the processors to process it. If your app wasn’t fast
enough, you could wait a year and buy a new server, and all was fine.

But that isn’t the case anymore. CPUs are not getting faster anymore. However, the overall cost of
compute is dropping. Instead of getting faster processing, you get more compute power through either
more cores on a single chip or more chips via distributed systems. The developers behind Spring Batch
understand this and made parallel processing one of the primary focuses of the framework. This chapter
looks at the following:

•	 Profiling batch jobs: You see a process for profiling your batch jobs so that the
optimization decisions you make positively impact your performance and not the
other way around.

•	 Evaluating each of the scalability options in Spring Batch: Spring Batch provides a
number of different scalability options, each of which is reviewed in detail.

Profiling Your Batch Process
Michael A. Jackson put forth the best two rules of optimization in his 1975 book Principals of Program Design:

•	 Rule 1. Don’t do it.

•	 Rule 2. (for experts only) Don’t do it yet.

The idea behind this is simple. Software changes over the course of its development. Because of this,
it’s virtually impossible to make accurate decisions about how to design a system until the system has been
developed. After the system has been developed, you can test it for performance bottlenecks and address
those as required. By not taking this approach, you risk being described by my second most favorite quote
on optimization, this one by W. A. Wulf:

More computing sins are committed in the name of efficiency (without necessarily
achieving it) than for any other single reason—including blind stupidity.

To profile any Java application there are many options, ranging from free to very expensive. However,
one of the best free options is available on Github: VisualVM. This is the tool you can use to profile batch
jobs. Before you begin profiling your jobs, let’s take a quick tour of the VisualVM tool.

https://doi.org/10.1007//978-1-4842-3724-3_11

Chapter 11 ■ SCaling and tuning

362

A Tour of VisualVM
Oracle’s VisualVM is a tool that gives you insights into what is going on in your JVM. As JConsole’s big
brother, VisualVM provides not only JMX administration like JConsole but also information about CPU and
memory usage, method execution times, as well as thread management and garbage collection. This section
looks at the capabilities of the VisualVM tool.

Before you can try VisualVM, you have to install it. Before Java 9, VisualVM was provided with your JVM.
However, that changed with Java 9 and is now only available via Github. You can obtain the latest version of
VisualVM and the installation instructions at: https://visualvm.github.io/index.html.

With VisualVM installed, you can launch it. VisualVM greets you with a menu on the left and a Start
Page on the right, as shown in Figure 11-1.

Figure 11-1. The start screen for VisualVM

The menu on the left is broken into four sections: Local and Remote are where you find applications
that you can connect to, to profile. When you start VisualVM, because it’s itself a Java application, it appears
in the Local section. Below the Local and Remote sections is where you can load either Java VM coredumps
that you’ve collected previously that you want to analyze, or snapshots, which are the state of a VM at a
certain point in time that you can capture using VisualVM. To see some of the capabilities of the VisualVM
tool, let’s connect VisualVM to an instance of Eclipse.

When you first connect to a running JVM, VisualVM displays the screen shown in Figure 11-2.

https://visualvm.github.io/index.html

Chapter 11 ■ SCaling and tuning

363

Along the top of the screen are four tabs:

•	 Overview: Provides an overview of the Java application running, including the main
class, application name, process id, and arguments passed into the JVM on startup.

•	 Monitor: Displays charts showing CPU utilization, memory utilization (both heap
and PermGen), the number of classes loaded, and the number of live and daemon
threads. The Monitor tab also lets you perform garbage collection as well as generate
a heap dump for later analysis.

•	 Threads: Displays information about all threads the application has launched and
what they’re doing (running, sleeping, waiting, or monitoring). This data is shown in
either timeline, table, or detail form.

•	 Sampler: Allows you to take a sample of the CPU utilization and memory allocation
for your application as well as take snapshots. CPU shows what methods are taking
how long to run. Memory utilization shows what classes are taking how much
memory.

Figure 11-2. Connecting to a Java process

Chapter 11 ■ SCaling and tuning

364

In addition to the tabs, Overview shows you information about the current Java process that is being
analyzed including process id, the host the process is running on, JVM arguments, as well as the full list of
system properties the JVM knows.

The second tab is the Monitor tab, as shown in Figure 11-3.

Figure 11-3. The Monitor tab for an Eclipse instance

The Monitor tab is where you view the state of the JVM from a memory and CPU perspective as a whole.
The other tabs are more useful when you’re determining the cause of a problem identified in the Monitor tab
(if you keep running out of memory, or the CPU is pegged for some reason). All the charts on the Monitor
tab are resizable, and they can be hidden as required.

The next tab available in VisualVM is the Threads tab, displayed in Figure 11-4.

Chapter 11 ■ SCaling and tuning

365

All Java applications are multithreaded. At the least, you have the main execution thread and an
additional thread for garbage collection. However, most Java applications spawn many additional threads
for various reasons. This tab allows you to see information about the various threads your application has
spawned and what they’re doing. Figure 11-4 shows the data as a timeline, but the data is also available as a
table and as detailed graphs for each thread.

The last tab, as shown in Figure 11-5, is the Sampler tab.

Figure 11-4. The Threads tab in VisualVM

Chapter 11 ■ SCaling and tuning

366

In this tab, you’re presented with a screen which includes CPU and Memory buttons as well as a
Stop button. To begin sampling either CPU execution by method or memory footprint by class, click the
appropriate button. The tables update periodically with the current state of the VM VisualVM is studying.

VisualVM is a powerful and extendable tool. Many plug-ins are available to extend the feature set
provided out of the box. You can add things like the ability to view the stack trace of currently executing
threads with the Thread Inspector plug-in, visual garbage collection with the Visual GC plug-in, and access
to MBeans via the MBean browser, to extend VisualVM’s already powerful suite of tools.

Now that you have an idea of what Oracle’s VisualVM can do, let’s see how you can use it to profile
Spring Batch applications.

Profiling Spring Batch Applications
When you profile your applications, you’re typically looking at one of two things: how hard the CPU is
working and where, and how much memory is being used and on what. The first questions, how hard the
CPU is working and where, relate to what your CPU is working on. Is your job computationally difficult? Is
your CPU using a lot of its effort in places other than your business logic—for example, is it spending more
time working on parsing files than actually doing the calculations you want it to? The second set of questions
revolves around memory. Are you using most if not all of the available memory? If so, what is taking up all
the memory? Do you have a Hibernate object that isn’t lazily loading a collection, which is causing memory
pressure? This section looks at how to see where resources are being used in your Spring Batch applications.

Figure 11-5. VisualVM’s Sampler tab

Chapter 11 ■ SCaling and tuning

367

CPU Profiling
It would be nice to have a straightforward checklist of things to check when you’re profiling applications. But
it just isn’t that easy. Profiling an application can, at times, feel more like an art than a science. This section
walks through how to obtain data related to the performance of your applications and their utilization of the
CPU.

When you look at how a CPU is performing within your application, you typically use the measure of
time to determine the hot spots (the areas that aren’t performing to your expectations). What areas is the
CPU working in the most? For example, if you have an infinite loop somewhere in your code, the CPU will
spend a large amount of time there after it’s triggered. However, if everything is running fine, you can expect
to see either no bottlenecks or at bottlenecks that you would expect (I/O is typically the bottleneck of most
modern systems).

To view the CPU profiling functionality at work, let’s use the statement job that you completed in the last
chapter. This job consists of four steps and interacts with both files and a database. Figure 11-6 shows from a
high level what the job does as it’s currently configured.

importCustomer
Updates

importTransactions applyTransactions generateStatements

Figure 11-6. Statement job

To execute the job, you use the command java -jar chapter10-0.0.1-SNAPSHOT.jar
customerUpdateFile=<PATH_TO_CUSTOMER_FILE> transactionFile=<PATH_TO_TRANSACTION_FILE>
outputDirectory=<PATH_TO_OUTPUT_DIR>. After you’ve launched the job, it appears in the VisualVM menu
on the left under Local. To connect to it, all you need to do is double-click it.

Now that you’ve connected to the running statement job, you can begin to look at how things operate
within it. Let’s first look at the Monitor tab to see how busy the CPU is in the first place. After running the
statement job with a customer transaction file containing 100 customers and more than 20,000 transactions,
you can see that the CPU utilization for this job is minimal. Figure 11-7 shows the charts from the Monitor
tab after a run of the job.

Chapter 11 ■ SCaling and tuning

368

As Figure 11-7 shows, the statement job isn’t a CPU-intensive process. In fact, if you look at the memory
profile, the job isn’t very memory intensive either. However, you can easily change that. If you add a small
loop into the ItemProcessor used in step 4 (AccountItemProcessor) you can quickly make your CPU busy.
Listing 11-1 shows the loop you add.

Listing 11-1. Using PricingTiersItemProcessor to Calculate Prime Numbers

...
@Component
public class AccountItemProcessor implements ItemProcessor<Statement, Statement> {

 @Autowired
 private final JdbcTemplate jdbcTemplate;

 public AccountItemProcessor(JdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 }

 @Override
 public Statement process(Statement item) throws Exception {

 int threadCount = 10;
 CountDownLatch doneSignal = new CountDownLatch(threadCount);

Figure 11-7. Resource utilization for the statement job

Chapter 11 ■ SCaling and tuning

369

 for(int i = 0; i < threadCount; i++) {
 Thread thread = new Thread(() -> {
 for (int j = 0; j < 1000000; j++) {
 new BigInteger(String.valueOf(j))
.isProbablePrime(0);
 }
 doneSignal.countDown();
 });
 thread.start();
 }

 doneSignal.await();

 item.setAccounts(this.jdbcTemplate.query("select a.account_id," +
 " a.balance," +
 " a.last_statement_date," +
 " t.transaction_id," +
 " t.description," +
 " t.credit," +
 " t.debit," +
 " t.timestamp " +
 "from account a left join " + //HSQLDB
 " transaction t on a.account_id = t.account_account_id " +
// "from account a left join " + //MYSQL
// " transaction t on a.account_id = t.account_account_id " +
 "where a.account_id in " +
 " (select account_account_id " +
 " from customer_account " +
 " where customer_customer_id = ?) " +
 "order by t.timestamp",
 new Object[] {item.getCustomer().getId()},
 new AccountResultSetExtractor()));

 return item;
 }
}

Obviously, the loop you added to launch a number of threads and calculate all the prime numbers
between zero and one million as shown in Listing 11-1 is unlikely to end up in your code. But it’s exactly the
type of accidental looping that could cause a catastrophic impact on the performance of a batch job over the
course of processing millions of transactions. Figure 11-8 shows the impact this small loop makes on CPU
utilization, according to VirtualVM.

Chapter 11 ■ SCaling and tuning

370

That code, as expected, sent our job into quite a frenzy. The first three steps of the job execute so fast,
they don’t even show up in the graph, but once the job gets to the last step, it consumes many more threads,
memory, and CPU. But if you didn’t know what caused this spike, where would you look next?

With a spike identified like this, the next place to look is in the Sampler tab. By rerunning the job under the
same conditions, you can see what individual methods show up as hot spots in the job’s execution.In this case,
the lambda we created to run our calculations in is number three on the list by CPU time. By the end of the job,
this method has taken up 24.2% of all the CPU time required to execute this job, as shown in Figure 11-9.

Figure 11-8. Resource utilization for the updated statement job

Chapter 11 ■ SCaling and tuning

371

When you come across a scenario like this, a better way to view what is eating up CPU execution
time is to filter the list by the package name you’re using for your code. In this case, you can filter the
list on com.apress.batch.chapter10.* to see what classes take up what percentage of the total CPU
utilization. Under this filter, the culprit becomes crystal clear in this example: the AccountItemProcessor.
lambda$process$0 method and the 24.2% of the CPU time it takes up. The next highest on the list takes
up 0%. At this point, you have all the information you can get from the tool, and it’s time to begin digging
through the code to determine what in AccountItemProcessor is using so much CPU.

Simple, isn’t it? Not really. Although the process used here is what you would use to narrow
down an issue in any system, the issue is rarely this easy to track down. However, using VisualVM you
can progressively narrow down where the issue is in your job. CPU utilization isn’t the only piece of
performance. The next section looks at how to profile memory using VisualVM.

Memory Profiling
Although CPU utilization may seem like the place you’re most likely to see issues, the truth is that it is my
experience that memory issues are more likely to pop up in your software. The reason is that you use a
number of frameworks that do things behind the scenes. When you use these frameworks incorrectly, large
numbers of objects can be created without any indication that it has occurred until you run out of memory
completely. This section looks at how to profile memory usage using VisualVM.

To look at how to profile memory, let’s tweak what you did previously. However, this time instead of
taking up processing time, you update it to simulate creating a String that is out of control. Although the
code example may not be what you see in real-world systems, excess String manipulation is a common
reason for memory issues. Listing 11-2 shows the code for the updated AccountItemProcessor.

Figure 11-9. The AccountItemProcessor has taken up quite a bit of CPU

Chapter 11 ■ SCaling and tuning

372

Listing 11-2. PricingTierItemProcessor with a Memory Leak

@Component
public class AccountItemProcessor implements ItemProcessor<Statement, Statement> {

 @Autowired
 private final JdbcTemplate jdbcTemplate;

 public AccountItemProcessor(JdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 }

 @Override
 public Statement process(Statement item) throws Exception {

 String memoryBuster = "memoryBuster";

 for (int i = 0; i < 200; i++) {
 memoryBuster += memoryBuster;
 }

 item.setAccounts(this.jdbcTemplate.query("select a.account_id," +
 " a.balance," +
 " a.last_statement_date," +
 " t.transaction_id," +
 " t.description," +
 " t.credit," +
 " t.debit," +
 " t.timestamp " +
 "from account a left join " + //HSQLDB
 " transaction t on a.account_id = t.account_account_id " +
// "from account a left join " + //MYSQL
// " transaction t on a.account_id = t.account_account_id " +
 "where a.account_id in " +
 " (select account_account_id " +
 " from customer_account " +
 " where customer_customer_id = ?) " +
 "order by t.timestamp",
 new Object[] {item.getCustomer().getId()},
 new AccountResultSetExtractor()));

 return item;
 }
}

In the version shown in Listing 11-2, you are creating a String that is out of control. By doing something
like what you have in this example, you would expect the memory footprint to grow out of control as well.

When you run the statement job with this bug and profile it using VisualVM, you can see that things
quickly get out of hand from a memory perspective; an OutOfMemoryException is thrown midway through the
step. Figure 11-10 shows the VisualVM Monitor tab during a run of the statement job with the memory leak.

Chapter 11 ■ SCaling and tuning

373

Notice at the very end of the memory graph in the upper-right corner of Figure 11-10 that memory
usage spikes, causing the OutOfMemoryException. But how do you know what caused the spike? If you didn’t
know, the Sampler tab might be able to shed some light.

You’ve seen before that the Sampler tab can show what method calls are using up CPU, but it can
also tell you what objects are taking up precious memory. To see that, begin by executing your job as you
have previously. When it’s running, connect to the process using VisualVM and go to the Sampler tab. To
determine the cause of a memory leak, you need to determine what changes as the memory usage occurs.
For example, in Figure 11-11, each block represents a class instance. The higher the blocks are stacked in
each column; the more instances are in memory. Each column represents a snapshot in time within the
JVM. When the program begins, the number of instances created is small (one in this case); this number
slowly rises over time, occasionally declining when garbage collection occurs. Finally, it spikes at the end to
nine instances. This is the type of increase in memory usage you look for with VisualVM.

Time

Nu
m

be
r o

f c
la

ss
 in

st
an

ce
s

Figure 11-11. Memory utilization over the life of a program

Figure 11-10. Monitoring results of the statement job with a memory leak

Chapter 11 ■ SCaling and tuning

374

To view this type of change in your batch jobs, you can use VisualVM’s snapshot feature. As a job runs,
click the Snapshot button in the middle of the screen. VisualVM records the exact state of the JVM when you
take that snapshot. You can compare this with other snapshots to determine what changes. Typically, the
change indicates the location of the issue. If it isn’t the smoking gun, it’s definitely where you should start
looking.

The ability to scale batch jobs isn’t a requirement to be able to address performance bugs as discussed
in the previous sections of this chapter. On the contrary, jobs that have bugs like those discussed typically
don’t scale no matter what you do. Instead, you need to address the issues within your application before
applying the scalability features that Spring Batch or any framework provides. When you have a system with
none of these issues, the features that Spring Batch offers to scale it beyond a single-threaded, single-JVM
approach are some of the strongest of any framework. You spend the rest of this chapter looking at how to
use Spring Batch’s scalability features.

Scaling a Job
In an enterprise, when things are going well, data gets big. More customers. More transactions. More site
hits. More, more, more. Your batch jobs need to be able to keep up. Spring Batch was designed from the
ground up to be highly scalable, to fit the needs of both small batch jobs and large enterprise-scale batch
infrastructures. This section looks at the four different approaches Spring Batch takes for scaling batch jobs
beyond the default flow: multithreaded steps, parallel steps, remote chunking, and partitioning.

Multithreaded Steps
When a step is processed, by default it’s processed in a single thread. Although a multithreaded step is the
easiest way to parallelize a job’s execution, as with all multithreaded environments there are aspects you
need to consider when using it. This section looks at Spring Batch’s multithreaded step and how to use it
safely in your batch jobs.

Spring Batch’s multithreaded step concept allows a batch job to use Spring’s org.springframework.
core.task.TaskExecutor abstraction to execute each chunk in its own thread. Figure 11-12 shows an
example of how processing works when using the multithreaded step.

As Figure 11-12 shows, any step in a job can be configured to perform within a threadpool, processing
each chunk independently. As chunks are processed, Spring Batch keeps track of what is done accordingly.
If an error occurs in any one of the threads, the job’s processing is rolled back or terminated per the regular
Spring Batch functionality.

Regular Step Regular Step

Chunk

Chunk

Chunk

Multithreaded Step

Figure 11-12. Multithreaded step processing

Chapter 11 ■ SCaling and tuning

375

To configure a step to execute in a multithreaded manner, all you need to do is configure a reference
to a TaskExecutor for the given step. If you use the statement job as an example, Listing 11-3 shows how to
configure a single step job to use a multithreaded step.

Listing 11-3. MultithreadedJobApplication Using a Multithreaded Step

...
@EnableBatchProcessing
@SpringBootApplication
public class MultithreadedJobApplication {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 @StepScope
 public FlatFileItemReader<Transaction> fileTransactionReader(
 @Value("#{jobParameters['inputFlatFile']}") Resource resource) {

 return new FlatFileItemReaderBuilder<Transaction>()
 .name("transactionItemReader")
 .resource(resource)
 .saveState(false)
 .delimited()
 .names(new String[] {"account", "amount", "timestamp"})
 .fieldSetMapper(fieldSet -> {
 Transaction transaction = new Transaction();

 transaction.setAccount(fieldSet.
readString("account"));

 transaction.setAmount(fieldSet.
readBigDecimal("amount"));

 transaction.setTimestamp(fieldSet.
readDate("timestamp", "yyyy-MM-dd HH:mm:ss"));

 return transaction;
 })
 .build();
 }

 @Bean
 @StepScope
 public JdbcBatchItemWriter<Transaction> writer(DataSource dataSource) {
 return new JdbcBatchItemWriterBuilder<Transaction>()
 .dataSource(dataSource)
 . sql("INSERT INTO TRANSACTION (ACCOUNT, AMOUNT, TIMESTAMP)

VALUES (:account, :amount, :timestamp)")
 .beanMapped()
 .build();
 }

Chapter 11 ■ SCaling and tuning

376

 @Bean
 public Job multithreadedJob() {
 return this.jobBuilderFactory.get("multithreadedJob")
 .start(step1())
 .build();
 }

 @Bean
 public Step step1() {
 return this.stepBuilderFactory.get("step1")
 .<Transaction, Transaction>chunk(100)
 .reader(fileTransactionReader(null))
 .writer(writer(null))
 .taskExecutor(new SimpleAsyncTaskExecutor())
 .build();
 }

 public static void main(String[] args) {
 String [] newArgs = new String[] {"inputFlatFile=/data/csv/bigtransactions.csv"};

 SpringApplication.run(MultithreadedJobApplication.class, newArgs);
 }
}

As Listing 11-3 shows, all that is required to add the power of Spring’s multithreading capabilities to a
step in your job is to define a TaskExecutor implementation (you use org.springframework.core.task.
SimpleAsyncTaskExecutor in this example) and reference it in your step. When you execute this job, Spring
creates a new thread for each chunk executed within the step, executing each chunk in parallel. As you can
imagine, this can be a powerful addition to most jobs.

But there is a catch when working with multithreaded steps. Most ItemReaders provided by Spring
Batch are stateful. Spring Batch uses this state when it restarts a job, so it knows where processing left off.
However, in a multithreaded environment, objects that maintain state in a way that is accessible to multiple
threads (not synchronized, etc.) can run into issues of threads overwriting each other’s state. Because of this,
we turn the state saving feature of the reader off, preventing this job from being able to restart.

By adding a task executor can be a great first step in to improve performance. However, there are plenty
of cases where this will not actually change the performance dynamic (if the input mechanism is already
saturating resources like network, disk bus, etc). The next mechanism we will look at for scaling Spring Batch
jobs is parallel steps.

Parallel Steps
Multithreaded steps provide the ability to process chunks of items within the same step of a job in parallel,
but sometimes it’s also helpful to be able to execute entire steps in parallel. Take for example importing
multiple files that have no relationship to each other. There is no reason for one import to need to wait for
the other import to complete before it begins. Spring Batch’s ability to execute steps and even flows (reusable
groups of steps) in parallel allows you to improve overall throughput on a job. This section looks at how to
use Spring Batch’s parallel steps and flows to improve the overall performance of your jobs.

If you consider the use case where you accept files from multiple sources, say each customer provides
a file that you import into your system. Some clients prefer CSVs. Some clients prefer XML. The data is the
same but the format is different. In this case, we can accomplish this a couple different ways; however,

Chapter 11 ■ SCaling and tuning

377

since each file is independent, one easy way to accomplish this is by executing parallel steps. Figure 11-13
illustrates the way parallel steps execute.

step1 step5

step2 step3

step4

Figure 11-13. Process flow for an order-processing job

The job in Figure 11-14 begins with a single step. It then splits into two flows processing in parallel.
Flow 1 (the top flow) executes step2 and on its completion step3. Flow 2 (the bottom flow) executes step4.
Once flow 1 and 2 are both complete, then step 5 executes.

The job we will be looking at is a simple two-step job. Each step is responsible for importing data from
a different input format. Step1 reads from XML files. Step2 reads from flat files. Both steps will be executed
in parallel. The data from each format is the same. A transaction object consisting of an account, timestamp,
and amount of the transaction is all that it contains. It’s important to note that we’re using a simplistic
domain model here so that we can focus on the components of scaling and not the domain model itself.

Configuring the Parallel Steps
To execute steps in parallel, Spring Batch again uses Spring’s TaskExecutor. In this case, each flow is
executed in its own thread, allowing you to execute multiple flows in parallel. To configure this, you use the
FlowBuilder’s split() method. The split() method takes a TaskExecutor as its argument and returns a
SplitBuilder. With the SplitBuilder you can add as many flow objects as you want. Each of those flows
will be executed in its own thread (based on the rules of the underlying TaskExecutor) providing you the
ability to execute steps or flows of steps in parallel.

It’s important to note that the execution order of a job using split is similar to that of a regular job. In
a regular job, a step doesn’t complete until all the items are processed for the step and the next step doesn’t
begin until the previous one is completed. Using split, the step after the split isn’t executed until all the
flows configured within the split have been completed.

 ■ Note the step after a split isn’t executed until all the flows within a split are completed.

For each of these input sources we will configure a step to execute in parallel. Listing 11-4 shows the
configuration of the entire job.

Chapter 11 ■ SCaling and tuning

378

Listing 11-4. Configuration of Parallel Steps

@EnableBatchProcessing
@SpringBootApplication
public class ParallelStepsJobApplication {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public Job parallelStepsJob() {
 Flow secondFlow = new FlowBuilder<Flow>("secondFlow")
 .start(step2())
 .build();

 Flow parallelFlow = new FlowBuilder<Flow>("parallelFlow")
 .start(step1())
 .split(new SimpleAsyncTaskExecutor())
 .add(secondFlow)
 .build();

 return this.jobBuilderFactory.get("parallelStepsJob")
 .start(parallelFlow)
 .end()
 .build();
 }

 @Bean
 @StepScope
 public FlatFileItemReader<Transaction> fileTransactionReader(
 @Value("#{jobParameters['inputFlatFile']}") Resource resource) {

 return new FlatFileItemReaderBuilder<Transaction>()
 .name("flatFileTransactionReader")
 .resource(resource)
 .delimited()
 .names(new String[] {"account", "amount", "timestamp"})
 .fieldSetMapper(fieldSet -> {
 Transaction transaction = new Transaction();

 transaction.setAccount(fieldSet.
readString("account"));

 transaction.setAmount(fieldSet.
readBigDecimal("amount"));

 transaction.setTimestamp(fieldSet.
readDate("timestamp", "yyyy-MM-dd HH:mm:ss"));

Chapter 11 ■ SCaling and tuning

379

 return transaction;
 })
 .build();
 }

 @Bean
 @StepScope
 public StaxEventItemReader<Transaction> xmlTransactionReader(
 @Value("#{jobParameters['inputXmlFile']}") Resource resource) {
 Jaxb2Marshaller unmarshaller = new Jaxb2Marshaller();
 unmarshaller.setClassesToBeBound(Transaction.class);

 return new StaxEventItemReaderBuilder<Transaction>()
 .name("xmlFileTransactionReader")
 .resource(resource)
 .addFragmentRootElements("transaction")
 .unmarshaller(unmarshaller)
 .build();
 }

 @Bean
 @StepScope
 public JdbcBatchItemWriter<Transaction> writer(DataSource dataSource) {
 return new JdbcBatchItemWriterBuilder<Transaction>()
 .dataSource(dataSource)
 .beanMapped()
 . sql("INSERT INTO TRANSACTION (ACCOUNT, AMOUNT, TIMESTAMP)

VALUES (:account, :amount, :timestamp)")
 .build();
 }

 @Bean
 public Step step1() {
 return this.stepBuilderFactory.get("step1")
 .<Transaction, Transaction>chunk(100)
 .reader(xmlTransactionReader(null))
 .writer(writer(null))
 .build();
 }

 @Bean
 public Step step2() {
 return this.stepBuilderFactory.get("step2")
 .<Transaction, Transaction>chunk(100)
 .reader(fileTransactionReader(null))
 .writer(writer(null))
 .build();
 }

 public static void main(String[] args) {
 String [] newArgs = new String[] {"inputFlatFile=/data/csv/

bigtransactions.csv",

Chapter 11 ■ SCaling and tuning

380

 "inputXmlFile=/data/xml/
bigtransactions.xml"};

 SpringApplication.run(ParallelStepsJobApplication.class, newArgs);
 }
}

Listing 11-4 shows all that is needed to configure our job. The key items for this example are bolded in
the listing where we use the FlowBuilder to create two flows. The first creates a flow to execute a step that
ingests a CSV file containing the three fields previously talked about (account, amount, and timestamp). The
second flow creates the actual split that will execute the step used to ingest XML as well as run the previously
defined flow in parallel.

The rest of the listing defines the readers and writers for each of the steps as well as the steps
themselves. Finally, the main method used by Spring Boot appears at the end of the listing. In order to run
this job, you’ll need input. Listing 11-5 shows the sample input for the CSV file.

Listing 11-5. bigtransactions.csv

5113971498870901,-546.68,2018-02-08 17:46:12
4041373995909987,-37.06,2018-02-02 21:10:33
3573694401052643,-784.93,2018-02-04 13:01:30
3543961469650122,925.44,2018-02-05 23:41:50
3536921428140325,507.57,2018-02-13 02:09:08
490516718399624409,-575.81,2018-02-15 20:43:12
201904179222112,-964.21,2018-02-08 15:50:21
5602221470889083,23.71,2018-02-14 10:23:41
5038678280559913,979.94,2018-02-05 04:28:31

And Listing 11-6 shows sample XML for the XML file input.

Listing 11-6. bigtransactions.csv

<transactions>
 <transaction>
 <account>633110684460535475</account>
 <amount>961.93</amount>
 <timestamp>2018-02-03 18:30:51</timestamp>
 </transaction>
 <transaction>
 <account>3555221131716404</account>
 <amount>759.62</amount>
 <timestamp>2018-02-12 20:02:01</timestamp>
 </transaction>
 <transaction>
 <account>30315923571992</account>
 <amount>648.92</amount>
 <timestamp>2018-02-12 23:16:45</timestamp>
 </transaction>
 <transaction>
 <account>5574851814767258</account>
 <amount>-90.11</amount>

Chapter 11 ■ SCaling and tuning

381

 <timestamp>2018-02-04 10:01:04</timestamp>
 </transaction>
</transactions>

When you execute this job, you can follow along in the logs that both steps begin at the same time and
the job completes once the two steps are complete. Listing 11-7 shows the snip of logs that illustrates this.

Listing 11-7. parallelStepsJob Logs

2018-12-03 15:46:09.575 INFO 44705 --- [main] o.s.b.c.l.support.
SimpleJobLauncher : Job: [FlowJob: [name=parallelStepsJob]] launched with the following
parameters:
[{inputXmlFile=/data/xml/bigtransactions.xml, inputFlatFile=/data/csv/bigtransactions.csv}]
2018-12-03 15:46:09.661 INFO 44705 --- [cTaskExecutor-2] o.s.batch.core.job.
SimpleStepHandler : Executing step: [step1]
2018-12-03 15:46:09.670 INFO 44705 --- [cTaskExecutor-1] o.s.batch.core.job.
SimpleStepHandler : Executing step: [step2]
2018-12-03 15:46:09.819 INFO 44705 --- [cTaskExecutor-2] o.s.oxm.jaxb.Jaxb2Marshaller
: Creating JAXBContext with classes to be bound [class io.spring.batch.scalingdemos.domain.
Transaction]
2018-12-03 15:46:29.960 INFO 44705 --- [main] o.s.b.c.l.support.
SimpleJobLauncher : Job: [FlowJob: [name=parallelStepsJob]] completed with the
following parameters: [{inputXmlFile=/data/xml/bigtransactions.xml, inputFlatFile=/data/csv/
bigtransactions.csv}] and the following status: [COMPLETED]

Executing steps in parallel can be a very useful tool when you have independent steps that you need
to execute and want to improve performance. There is one other mechanism within Spring Batch that
relies solely on threading within a single JVM for scaling and that is using the AsyncItemProcessor and
AsyncItemWriter combination. This next section will take a look at how those can improve the performance
of your ItemProcessor phase.

AsyncItemProcessor and AsyncItemWriter
There are certain processes where the ItemProcessor is the bottleneck of a step. Say, for example, the
ItemProcessor has a complex calculation that needs to occur that slows down the overall execution of the
step. A way to improve performance is to execute just the ItemProcessor phase of the step in a new thread.
The AsyncItemProcessor and AsyncItemWriter allow you to do just that.

The AsycnItemProcessor is a decorator that will wrap whatever ItemProcessor implementation you
have. When an item is passed to the decorator, the call to the underlying delegate is executed in a new
thread. The Future that is returned, representing the results of the ItemProcessor’s execution, is then
passed to the AsyncItemWriter. Just like the AsyncItemProcessor, the AsyncItemWriter is also a decorator
for a provided ItemWriter. The AsyncItemWriter finally unwraps the Future and passes the result to
the delegate ItemWriter. It is important to note that the AsycnItemProcessor and AsyncItemWriter
should be used together. Otherwise, you will be responsible for unwrapping the Futures returned by the
AsyncItemProcessor yourself.

 ■ Note AsyncItemProcessor and AsyncItemWriter should be used together.

Chapter 11 ■ SCaling and tuning

382

Before we can use the AsyncItemProcessor and AsyncItemWriter, we need to import a new module
into our project, the spring-batch-integration module. Listing 11-8 has the Maven configuration to add to
your pom.xml.

Listing 11-8. spring-batch-integration

...
<dependency>
 <groupId>org.springframework.batch</groupId>
 <artifactId>spring-batch-integration</artifactId>
</dependency>
...

For this example, we will use the same use case we did in the parallel steps. However, this time
we’ll only import the CSV file. However, the difference is that we will add an ItemProcessor that does a
Thread.sleep(5) for each item. While 5 milliseconds may not seem like a lot, if you process one million
records in sequence, that can add over an hour of processing time to your job.1 Not a trivial amount of time.
However, if that is parallelized, you can see immediate benefits.

Once we’ve defined our ItemProcessor, we will define the AsyncItemProcessor to decorate ours.
This will take a TaskExecutor to launch the underlying ItemProcessor#process call in another thread.
Listing 11-9 shows the configuration of the ItemProcessor used for this example.

Listing 11-9. Async ItemProcessor

...
 @Bean
 public AsyncItemProcessor<Transaction, Transaction> asyncItemProcessor() {
 AsyncItemProcessor<Transaction, Transaction> processor = new

AsyncItemProcessor<>();

 processor.setDelegate(processor());
 processor.setTaskExecutor(new SimpleAsyncTaskExecutor());

 return processor;
 }

 @Bean
 public ItemProcessor<Transaction, Transaction> processor() {
 return (transaction) -> {
 Thread.sleep(5);
 return transaction;
 };
 }
...

With the ItemProcessors defined, we can add the AsyncItemWriter and configure our Step to
use them. Listing 11-10 begins with the writer that does the actual work. In this case, it’s the same
ItemWriter configuration that we used in the parallel step example. The second bean in the listing is the
AsyncItemWriter that decorates the JdbcBatchItemWriter we are delegating to. After that, we configure the

1One million records x 5 milliseconds = 1 hour 23.34 minutes

Chapter 11 ■ SCaling and tuning

383

step to use the AsyncItemProcessor and AsyncItemWriter instead of the delegates we also configured. One
other detail about the step configuration to note is the types used on the chunk method call. Instead of the
generics being <Transaction, Transaction> as you’d normally expect, since the second generic indicates
the input of the ItemWriter, we need to update that to be <Transaction, Future<Transaction>> since a
Future<Transaction> is what the AsycItemProcessor will actually return. The final piece of the listing is the
configuration of our job to use the step we just configured.

Listing 11-10. Async ItemWriter

...
@Bean
public JdbcBatchItemWriter<Transaction> writer(DataSource dataSource) {
 return new JdbcBatchItemWriterBuilder<Transaction>()
 .dataSource(dataSource)
 .beanMapped()
 .sql("INSERT INTO TRANSACTION (ACCOUNT, AMOUNT, TIMESTAMP) " +
 "VALUES (:account, :amount, :timestamp)")
 .build();
}

@Bean
public AsyncItemWriter<Transaction> asyncItemWriter() {
 AsyncItemWriter<Transaction> writer = new AsyncItemWriter<>();

 writer.setDelegate(writer(null));

 return writer;
}

@Bean
public Step step1async() {
 return this.stepBuilderFactory.get("step1async")
 .<Transaction, Future<Transaction>>chunk(100)
 .reader(fileTransactionReader(null))
 .processor(asyncItemProcessor())
 .writer(asyncItemWriter())
 .build();
}

@Bean
public Job asyncJob() {
 return this.jobBuilderFactory.get("asyncJob")
 .start(step1async())
 .build();
}
...

If you run the job now with the AsyncItemProcessor and AsyncItemWriter in place, you can see that
even with a million records, there is a significant performance improvement. One thing to note, the example
here uses the SimpleAsyncTaskExecutor which uses a new thread per request. In a production environment,
you’ll want to use something safer like the ThreadPoolTaskExecutor.

Chapter 11 ■ SCaling and tuning

384

Up to this point, all of the scaling options have been tied to using threads within a single JVM. However,
not all workloads can fit into a single JVM. The next option for scaling Spring Batch workloads allows
you to choose whether to use it via threads in a single JVM or via remote worker JVMs. Let’s take a look at
partitioning.

Partitioning
The majority of batch based workloads are I/O bound. Interacting with a database or reading files typically
is where performance and scalability concerns come into play. To help with that, Spring Batch provides
the ability for multiple workers to execute complete steps. The entire ItemReader, ItemProcessor, and
ItemWriter interaction can be offloaded to workers. This section looks at what partitioning is and how to
configure jobs to take advantage of this powerful Spring Batch feature.

Partitioning is a concept where a master step farms out work to any number of worker steps for
processing. In a partitioned step, a large data set (say a database table with a million rows in it) is divided
into smaller partitions. Each of those partitions is processed in parallel by the workers. Each worker is a
complete Spring Batch step that is responsible for its own reading, processing, writing, and so on. There are
great advantages to this model. For example, you get all of the features like restartability out of the box with
this model. The implementation of the workers feels natural because it’s just another step.

Using a partitioned step within Spring Batch requires the understanding of two main abstractions. The
first is the Partitioner interface. This interface is responsible for understanding the data to be partitioned
and how to divide it up into partitions. Going back to the example of a database table with a million rows
in it, a Partitioner implementation may execute queries to determine what ids are part of each partition.
Spring Batch provides one Partitioner implementation out of the box. The MultiResourcePartitioner
looks at an array of Resources and creates a partition per Resource.

We should pause here and answer the question “What is a partition” within Spring Batch? How is it
represented? It’s actually very simple. A partition is represented by an ExecutionContext that contains
the pertitinent data to identify what the partition consists of. When using the MultiResourcePartitioner,
Spring Batch sets the name of the Resource in the ExecutionContext for each partition. That is stored in the
job repository for later reference by the workers.

The Partitioner interface consists of a single method, partition(int gridSize). It returns a
Map<String, ExecutionContext>. The gridSize is nothing more than a hint to the implementation as
to how many workers are there to be able to divide the data in a way that is efficient for the overall cluster.
That being said, there is nothing within Spring Batch that dynamically determines that value. It’s up to
you to calculate or set. The Map that the method returns should consist of key value pairs where the key is
the name of the partition and should be unique. The ExecutionContext, as mentioned previously, is the
representation of the partition metadata identifying what to process.

The other key abstraction in a partitioned step in Spring Batch is the PartitionHandler. This interface
is one that understands how to communicate with the workers. How to tell each worker what to work on
and how to identify when all the work is complete. While you will probably write your own Partitioner
implementations when using Spring Batch, you probably will not write your own PartitionHandler.

Within the Spring portfolio, there are three implementations of this interface. The two in Spring
Batch are the TaskExecutorPartitionHandler and the MessageChannelPartitionHandler. The
TaskExecutorPartitionHandler launches the workers as threads within the same JVM allowing you
to use the partitioning concept within a single JVM. The MessageChannelPartitionHandler uses
Spring Integration to send the metadata to remote JVMs for processing. The last implementation of the
PartitionHandler within Spring is provided by the Spring Cloud Task project. That project provides the
DeployerPartitionHandler implementation. This implementation delegates to a Spring Cloud Deployer

Chapter 11 ■ SCaling and tuning

385

implementation to launch the workers on a supported platform2 on demand. These workers start, execute
their partition, then shut down providing dynamic scaling at runtime. We’ll take a look at all three as we
explore partitioning within Spring Batch. Figure 11-14 illustrates the relationships between the various
components of a partitioned Spring Batch step.

Master Step

Worker Step Worker Step Worker Step

Partitioner

PartitionHandler

Figure 11-14. A partitioned Spring Batch step

There are some considerations that need to be taken when using a partitioned step. For example, the
state of the step is maintained within the job repository. That is across both the master and all workers,
so all components of the cluster must be configured to talk to the same job repository database instance.
Another consideration is that if you are to use the MessageChannelPartitionHandler, you’ll need to be
able to communicate with the remote JVMs. This means setting up messaging middleware or some other
mechanism supported by Spring Integration for that communication. Let’s begin to dig into partitioning
from a code perspective by using a single JVM.

TaskExecutorPartitionHandler
The TaskExecutorPartitionHandler is a component that allows a partitioned step to execute the workers
using threads within a single JVM. For many use cases, this is a good way to start with partitioning before
taking on the added complexities of orchestrating remote JVMs. The limitations of this approach center
around the limits of a single JVM. There are limits on what you can accomplish on a single box (how fast you
can get data off the disk, how fast and how many network connections you can have at once, etc.) which are
what you are trying to exercise when using threads in this manner. You are really trying to push a single JVM
to its max performance.

The use case we are going to look at for using a partitioned step is the ingestion of multiple files into a
database. Each file can be processed independently. This style of use case (I/O bound with no dependencies
between the input) is a classic example of when to use partitioning. We’ll use the same input CSV files

2As of this writing, CloudFoundry, Kubernetes, and local implementations are maintained by the Spring team.

Chapter 11 ■ SCaling and tuning

386

we used in our split configuration. The domain object will be the same as well. In fact, the code for the
worker step we’ll run in our job is also the same as step2 in the split job in Listing 11-4 with one very minor
difference. The method signature for our fileTransactionReader obtains the name of the file to read in via
the job parameters. When using partitioning, we obtain any partition specific information (like the file we
are going to process) from the step execution context. Listing 11-11 shows the updated listing for the reader
in our worker step.

Listing 11-11. fileTransactionReader

...
@Bean
@StepScope
public FlatFileItemReader<Transaction> fileTransactionReader(
 @Value("#{stepExecutionContext['file']}") Resource resource) {

 return new FlatFileItemReaderBuilder<Transaction>()
 .name("flatFileTransactionReader")
 .resource(resource)
 .delimited()
 .names(new String[] {"account", "amount", "timestamp"})
 .fieldSetMapper(fieldSet -> {
 Transaction transaction = new Transaction();

 transaction.setAccount(fieldSet.readString("account"));
 transaction.setAmount(fieldSet.readBigDecimal("amount"));
 transaction.setTimestamp(fieldSet.readDate("timestamp",
 "yyyy-MM-dd HH:mm:ss"));

 return transaction;
 })
 .build();
}
...

One of the great advantages to how Spring Batch’s scalability features work is that you can add them
iteratively without need for heavy rewrites each time. Partitioning is just another example of that. The only
difference between the single threaded version of this job and the partitioned version is the addition of
the partitioned step configuration and the change to the reader to obtain the file location from the step
execution context instead of the job parameters.

Now it is important to note that the step we defined previously and are reusing is now the worker step
and not the master step in our job. Because of that, our job will not directly reference that step. Instead,
we need to define our partitioned step with two components: A Partitioner implementation and a
PartitionHandler implementation. For this example, both are available out of the box from Spring Batch.
All we need to do is to configure them. Let’s start with the Partitioner.

The Partitioner interface, as previously discussed, is responsible for understanding the data set
and how to divide it up into partitions. Spring Batch only provides one implementation out of the box, the
MultiResourcePartitioner. This implementation takes an array of resources and creates a new partition for
each resource. Listing 11-12 illustrates our configuration of our MultiResourcePartitioner.

Chapter 11 ■ SCaling and tuning

387

Listing 11-12. MultiResourcePartitioner

...
@Bean
@StepScope
public MultiResourcePartitioner partitioner(
 @Value("#{jobParameters['inputFiles']}") Resource[] resources) {

 MultiResourcePartitioner partitioner = new MultiResourcePartitioner();

 partitioner.setKeyName("file");
 partitioner.setResources(resources);

 return partitioner;
}

The bean definition takes in a single parameter, the array of Resource objects provided by Spring when
we pass in the path to the input files. The MultiResourcePartitioner takes two values to be set. The first is
the key name. This is the value that the workers will use to look in the provided ExecutionContext for the
name of the resource to read. In this example, that value “file” matches the key we used in the defintion of
the FlatFileItemReader in Listing 11-11. The other value we need to set on this Partitioner is that array of
Resources. Once that is done, we can return the instance.

The other component we’ll use in our partitioned step is the PartitionHandler implementation.
For this first look at partitioning, we’re going to use the TaskExecutorPartitionHandler. Here, we
set two values on that implementation. The first is the step we want to execute; in this case, it is called
step1. The second value is a TaskExecutor. By default, if you either do not provide a PartitionHandler
to a PartitionStepBuilder or do not provide a TaskExecutor to the TaskExecutorPartitionHandler,
a SyncTaskExecutor is used as the default. While that may seem like it defeats the purpose if you’re
looking for parallelism, there really isn’t another reasonable, production grade option. So you’ll always
want to be sure to set the TaskExecutor on this implementation to something that uses multiple
threads. For testing, the SimpleAsyncTaskExecutor will do.3 Listing 11-13 shows the configuration of the
TaskExecutorPartitionHandler for our job.

Listing 11-13. TaskExecutorPartitionHandler

...
@Bean
public TaskExecutorPartitionHandler partitionHandler() {
 TaskExecutorPartitionHandler partitionHandler =
 new TaskExecutorPartitionHandler();

 partitionHandler.setStep(step1());
 partitionHandler.setTaskExecutor(new SimpleAsyncTaskExecutor());

 return partitionHandler;
}
...

3Do not use the SimpleAsyncTaskExecutor in production as it does not recycle threads and does not have any kind of
limit on how many it creates.

Chapter 11 ■ SCaling and tuning

388

With both of our new beans defined, we can create our new partitioned step and update our job to use
it. The partitionedMaster step uses the normal StepBuilderFactory to obtain a builder. It then sets the
partitioner providing both the step name to execute and the Partitioner instance. It needs the step name
to be able to create the step execution contexts for each partition. The second thing we set is the partition
handler. Listing 11-14 illustrates both the partitionedMaster step as well as the job updated to reference it.

Listing 11-14. partitionedMaster Step and Job

...
@Bean
public Step partitionedMaster() {
 return this.stepBuilderFactory.get("step1")
 .partitioner(step1().getName(), partitioner(null))
 .partitionHandler(partitionHandler())
 .build();
}

@Bean
public Job partitionedJob() {
 return this.jobBuilderFactory.get("partitionedJob")
 .start(partitionedMaster())
 .build();
}
...

With everything defined, we can build and execute the job. Once the jar is built, we can execute the
job using the command java -jar partition-demo-0.0.1-SNAPSHOT.jar inputFiles=/data/csv/
transactions*.csv. When we look at the output from the logs, not much will have changed. However, there
are two key differences. The first is that all the files located in /data/csv with the prefix transactions and a .csv
extension will have been imported into the TRANSACTION table. Second, if we take a look at the BATCH_STEP_
EXECUTION table, there is one record for the partitioned step, then one additional record for each partition that
was executed as well. Listing 11-15 shows the results of the BATCH_STEP_EXECUTION table after running three
files.

Listing 11-15. BATCH_STEP_EXECUTION After a Partitioned Step

mysql> select step_name, status, commit_count, read_count, write_count from SCALING.BATCH_
STEP_EXECUTION;
+------------------+-----------+--------------+------------+-------------+
| step_name | status | commit_count | read_count | write_count |
+------------------+-----------+--------------+------------+-------------+
step1	COMPLETED	303	30000	30000
step1:partition1	COMPLETED	101	10000	10000
step1:partition2	COMPLETED	101	10000	10000
step1:partition0	COMPLETED	101	10000	10000
+------------------+-----------+--------------+------------+-------------+
4 rows in set (0.01 sec)

The TaskExecutorPartitionHandler is the simplest way to add partitioning to a Spring Batch step.
However, it’s also the most restrictive when you consider that it is tied to a single JVM. In the next section, we
will take a look at distributed batch processing by using the MessageChannelPartitionHandler to distribute
the partition workload over multiple JVMs.

Chapter 11 ■ SCaling and tuning

389

MessageChannelPartitionHandler
Spring Integration is a project in the Spring portfolio that implements the enterprise integration patterns
presented in the book “Enterprise Integration Patterns” by Gregor Hohpe and Bobby Woolf. When we are
looking for ways to communicate between JVMs on a Spring project, the components in this framework
normally come to mind, which brings us to the MessageChannelPartitionHandler.

The MesssageChannelPartitionHandler is a PartitionHandler implementation that uses Spring
Integration’s MessageChannel abstraction to communicate with external JVMs via some means. For this
example, we will be using RabbitMQ, an open source message broker that is easy to use both in production
environments as well as locally.

When we’re looking at a partitioned step in a distributed fashion, the topolgoy obviously changes a bit.
Instead of our worker step implementations running within the same JVM via threads, we’ll have a listener
in each of the worker JVMs listening for a request to execute the worker step. Figure 11-15 illustrates the
topology of a remote partitioned step.

Master Step

Partitioner

MessageChannel
PartitionHandler

StepExecution
RequestHandler

Worker Step

Communication via Message Channel

StepExecution
RequestHandler

Worker Step

StepExecution
RequestHandler

Worker Step

Figure 11-15. A remote partitioned Spring Batch step

As you can see, the master communicates with the workers via messages to execute the worker step.
Each of the worker JVMs has a listener listening on the queue for those messages. When the request comes
over the wire, the listener executes the step and returns the results. It’s important to note a few details of this
architecture.

The first is that all JVMs involved in this process need to be configured to use the same job repository.
Since that’s where the state is maintained, each step is responsible for maintaining the results as it processes.
Without this shared state, restartability of a partitioned job would not be possible. The second is that
each of the worker steps is executed outside of the context of a job. So anything that you’d need from the
JobExecution or job’s ExecutionContext will not be available in the workers.

Now the configuration of this type of partitioned step is the same on the master side except for three
things. First, we’ll need to configure the communication mechanisms for our app to talk to RabbitMQ. That
is easy thanks to Spring Boot and Spring Integration. The second piece we need to do is to configure our new
PartitionHandler, the MessageChannelPartitionHandler. Fortunately, Spring Batch provides a builder
that helps with all of that as well. Finally, to simplify the deployment, we use Spring profiles to group the

Chapter 11 ■ SCaling and tuning

390

components for the worker applications and for the master application. This allows us to use a single JAR for
both and just specific which we are running via a simple parameter.

Let’s start the configuration with the master. We’ll create a new configuration class called
MasterConfiguration. We will add a new annotation to it, @EnableBatchIntegration. This annotation
provides the required builders for building remote partitioned steps in a simple way. On the master side
of the configuration, there are really two flows that need to be configured, the outbound flow (sending the
messages to the workers) and the inbound flow (receiving messages from the workers). Listing 11-16 begins
showing the configuration by configuring the outbound flow.

Listing 11-16. MasterConfiguration and Outbound Flow

...
@Configuration
@Profile("master")
@EnableBatchIntegration
public class MasterConfiguration {

 private final JobBuilderFactory jobBuilderFactory;

 private final RemotePartitioningMasterStepBuilderFactory
 masterStepBuilderFactory;

 public MasterConfiguration(JobBuilderFactory jobBuilderFactory,
 RemotePartitioningMasterStepBuilderFactory masterStepBuilderFactory) {

 this.jobBuilderFactory = jobBuilderFactory;
 this.masterStepBuilderFactory = masterStepBuilderFactory;
 }

 /*
 * Configure outbound flow (requests going to workers)
 */
 @Bean
 public DirectChannel requests() {
 return new DirectChannel();
 }

 @Bean
 public IntegrationFlow outboundFlow(AmqpTemplate amqpTemplate) {
 return IntegrationFlows.from(requests())
 .handle(Amqp.outboundAdapter(amqpTemplate)
 .routingKey("requests"))
 .get();
 }
...

The block of code in Listing 11-16 begins with the annotations to identify the class as a configuration
class, that it is to be used with the master profile and that we will be using the Spring Batch Integration
components in it. The first builder factory within the class is the same as we’ve used to define every job so
far. However, the second builder factory (RemotePartitioningMasterStepBuilderFactory) is new. This is a
special builder factory for getting step builders that know how to build a master remote partitioned step.

Chapter 11 ■ SCaling and tuning

391

The code in this listing continues with a constructor allowing for both builder factories to be injected.
The next pieces are the configuration of the outbound flow, connecting one end of a direct channel to
an AMQP Template (provided by Spring Boot’s autoconfiguration). The IntegrationFlow uses Spring
Integration’s Java DSL to configure that flow. In English, it says “when a message comes in on the requests
channel, pass it to the handler configured. The handler configured is an AMQP outbound adapter that will
send the messages to a RabbitMQ queue named requests.”

Once we have the outbound plumbing configured, we should configure the inbound plumbing. Now we
should note that there are two options for obtaining the results from the workers with remote partitioning.
The first (and the option we will use here) is to receive messages sent back to the master from each worker,
aggregate them, and evaluate the results to determine if the step was successful or not. The alternative is to
poll the job repository to check the status of each StepExecution we sent out. Once they are all updated in
the database as being complete, we can then evaluate the status from there. As I mentioned previously, we’ll
use the mechanism of receiving result messages from each worker in this example. Listing 11-17 illustrates
the configuration of the master flow to receive those resulting requests.

Listing 11-17. Inbound Flow

...
 /*
 * Configure inbound flow (replies coming from workers)
 */
 @Bean
 public DirectChannel replies() {
 return new DirectChannel();
 }

 @Bean
 public IntegrationFlow inboundFlow(ConnectionFactory connectionFactory) {
 return IntegrationFlows
 .from(Amqp.inboundAdapter(connectionFactory,"replies"))
 .channel(replies())
 .get();
 }
...

The configuration of the inbound flow is essentially the opposite of the outbound one. We again,
begin with the definition of a direct channel. From there, the IntegrationFlow we configure using Spring
Integration’s Java DSL reads in English like this “When we receive a message on the replies queue in
RabbitMQ, take that message and put it on the replies channel.”

The last pieces on the master side to configure are the Step and Job. I should note that you want the job
to be configured in the master profile when using remote partitioning because if you use the same Spring
Boot uber jar for both the master and the worker (as we recommend), Spring Boot will automatically execute
the job in the worker application as well as the master if you don’t put the job exclusively in the master
profile. Listing 11-18 illustrates the creation of the Partitioner (also required in the master step), the Step,
and Job for the remote partitioning job.

Listing 11-18. Inbound Flow

...
 @Bean
 @StepScope
 public MultiResourcePartitioner partitioner(
 @Value("#{jobParameters['inputFiles']}") Resource[] resources) {

Chapter 11 ■ SCaling and tuning

392

 MultiResourcePartitioner partitioner = new MultiResourcePartitioner();

 partitioner.setKeyName("file");
 partitioner.setResources(resources);

 return partitioner;
 }

 @Bean
 public Step masterStep() {
 return this.masterStepBuilderFactory.get("masterStep")
 .partitioner("workerStep", partitioner(null))
 .outputChannel(requests())
 .inputChannel(replies())
 .build();
 }

 @Bean
 public Job remotePartitioningJob() {
 return this.jobBuilderFactory.get("remotePartitioningJob")
 .start(masterStep())
 .build();
 }

}

Listing 11-18 begins with the definition of the MultiResourcePartitioner. This is the same as it was
in the TaskExecutorPartitionHandler section. Our data hasn’t changed, so how we divide it up shouldn’t.
Next we define our remote partitioned step. We begin by obtaining the builder from the factory. From
there, we provide our Partitioner, an output channel (requests), and an input channel (replies). With
those components configured, Spring Batch will wire up all the components needed to send the outbound
requests, receive the replies, and aggregate them into a single result for the master step.

With the master side configured, we can take a look at the worker configuration. Again, we’ll use
another configuration class for this called WorkerConfiguration. It will actually look very similar to the
master in that we will again configure two flows, an inbound flow and an outbound flow, and a Step.
However, instead of configuring a Job, we will just need to configure the reader and writer that our worker
step use (hint: it will be the same as we used in the TaskExecutorPartitionHandler section). Listing 11-19
begins the listing for the WorkerConfiguration class.

Listing 11-19. WorkerConfiguration and inboundFlow

...
@Configuration
@Profile("!master")
@EnableBatchIntegration
public class WorkerConfiguration {

 private final RemotePartitioningWorkerStepBuilderFactory
 workerStepBuilderFactory;

Chapter 11 ■ SCaling and tuning

393

 public WorkerConfiguration(
 RemotePartitioningWorkerStepBuilderFactory workerStepBuilderFactory) {

 this.workerStepBuilderFactory = workerStepBuilderFactory;
 }

 /*
 * Configure inbound flow (requests coming from the master)
 */
 @Bean
 public DirectChannel requests() {
 return new DirectChannel();
 }

 @Bean
 public IntegrationFlow inboundFlow(ConnectionFactory connectionFactory) {
 return IntegrationFlows
 .from(Amqp.inboundAdapter(connectionFactory, "requests"))
 .channel(requests())
 .get();
 }

 @Bean
 public DirectChannel replies() {
 return new DirectChannel();
}
...

Similar to the MasterConfiguration in Listing 11-16, we begin with the @Configuration annotation,
a @Profile annotation (in this case indicating that we want to use this configuration any time we are not
using the master profile), and the @EnableBatchIntegration annotation. To prevent duplication, you can
also move this annotation to the main class if you wanted.

The class then begins with another new factory. This time we have the RemotePartitioningWorker
StepBuilderFactory. This is the counterpart to the RemotePartitioningMasterStepBuilderFactory. This
builder factory provides a step builder that can build the components needed for the worker side of a remote
partitioned step. Those components consist of a StepExecutionRequestHandler and the other components
of our remote step. The StepExecutionRequestHander is responsible for receiving the message from the
master step and executing it in the remote JVM. The code continues with the definition of our inbound
channel, requests, and the integration flow used to define how our request is routed. In plain words, the
inboundFlow is configured to take each request it receives from the AMQP queue named requests and
pass it to the requests channel. The last piece of the worker side plumbing is the definition of the replies
channel. This channel will serve as the return route for the results of each partition.

With the inbound plumbing constructed, the worker step is constructed with the new builders as shown
in Listing 11-20.

Listing 11-20. workerStep Configuration

...
public Step workerStep() {
 return this.workerStepBuilderFactory.get("workerStep")
 .inputChannel(requests())

Chapter 11 ■ SCaling and tuning

394

 .outputChannel(replies())
 .<Transaction, Transaction>chunk(100)
 .reader(fileTransactionReader(null))
 .writer(writer(null))
 .build();
}
...

Just like the master step begins with specifying the name, input channel, and output channel, so does
the worker. However, from there, the rest of the configuration for this step is exactly as you’d expect for
any other Spring Batch step. In this case, we specify the chunk size, the reader and writer to use, and call
build(). The reader and writer for this job are the same we used in the thread based partitioned example.

Launching this example is a bit more complex. Now, we are dealing with multiple JVMs. Before we
execute our job, we need our messaging middleware up and running. In our case, we’ll be using RabbitMQ,
so we need to be sure that is running locally. For OS X users who installed RabbitMQ via brew, the command
is typically rabbitmq-server. Once Rabbit is up and running, we can start our worker JVMs. For this example,
we’ll execute three worker JVMs. To do this, we’ll need to execute the same command in three different
shell windows. Each one will be executed with the command java -jar target/partitioned-demo-
0.0.1-SNAPSHOT.jar --spring.profiles.active=worker. Once each of those applications has started,
you’ll notice that they just sit and wait. Since there is no Job bean defined in the worker profile, Spring Boot
doesn’t automatically start our processing like it has in our other examples. To launch our job, we’ll need to
launch the master profile with the command java -jar target/partitioned-demo-0.0.1-SNAPSHOT.jar
--spring.profiles.active=master. This will launch our master application, and Spring Boot will launch the
job. If we monitor the logs in the workers, we’ll see as each worker picks up the request from the queue and
executes it as well as when they all finish in the master. On a clean database, the output in the database for
this execution should match that of what we saw from the TaskExecutorPartitionHandler example.

We’ve looked at two different mechanisms for executing partitioned workloads in Spring Batch so far.
The first was within a single JVM with threads and the second was with static worker JVMs waiting for work
in a classic messaging workload style. However, neither of these options lend themselves well to the benefits
that can be had in the cloud. The third option is designed to take advantage of the dynamic resources
available in the cloud when using partitioning in Spring Batch.

DeployerPartitionHandler
The biggest driver to the cloud is the abilty to get compute on demand. If I need two servers 80% of the time,
but I need 100 servers that other 20%, I can easily accomplish both with out paying for 100 servers 100% of
the time. That ability to scale on demand is a huge benefit for many workloads. Batch processing is probably
one of the best examples of where that kind of elasticity is ideal. Think about it. Most batch processes are
run on a schedule of some kind, execute within a finite timeframe, then are no longer needed until the next
window. In traditional Java deployments, these applications would sit idle in application containers 24/7,
wasting resources. In the cloud, it doesn’t have to be that way.

The DeployerPartitionHandler is the last PartitionHandler implementation provided by the Spring
portfolio out of the box. This PartitionHandler utilizes another abstraction, a TaskLauncher, to execute the
workers on demand. The flow goes like this. The master application is executed with no workers running.
When the partitioned step begins, the master determines how many partitions there are. Once that is
known, the PartitionHandler launches a new instance of the application on platform to execute a partition.
It will execute as many as required (up to a configured max) to get the work done. Say the master determines
there are ten partitions and the DeployerPartitionHandler is configured to use at most four workers. The
DeployerPartitionHandler will keep four workers busy until all ten partitions have been executed.

With this approach, you get the same benefits of partitioning in Spring Batch (restartability, higher
throughput, etc.) with the dynamic scaling of the cloud. Now in order for this to work, you need a

Chapter 11 ■ SCaling and tuning

395

TaskLauncher that is supported for your platform as well as Spring Cloud Task. As of the writing of this book,
there are TaskLaunchers for CloudFoundry, Kubernetes, and a local version. Listing 11-21 has the Maven
imports for running this example locally.

Listing 11-21. Maven Dependencies for Spring Cloud Task and the Local Deployer

...
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-task</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-deployer-local</artifactId>
</dependency>
...

For our look into this PartitionHandler implementation, we will use the same job we have used up to
now. The general configuration looks like a combination of the two previous options. It will have two profiles
since we’ll have independent JVMs, each with their own responsibility (one for running the master and
multiple for running the worker); however, it won’t have the Spring Integration configuration because we
won’t need any form of messaging middleware in between our master and worker applications. Listing 11-22
begins the configuration for this job with the real differences.

Listing 11-22. BatchConfiguration

...
@Configuration
public class BatchConfiguration {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Autowired
 private JobRepository jobRepository;

 @Autowired
 private ConfigurableApplicationContext context;

 @Bean
 @Profile("master")
 public DeployerPartitionHandler partitionHandler(TaskLauncher taskLauncher,
 JobExplorer jobExplorer,
 ApplicationContext context,
 Environment environment) {
 Resource resource =
 context.getResource("file:///path-to-jar/partitioned-demo-0.0.1-

SNAPSHOT.jar");

Chapter 11 ■ SCaling and tuning

396

 DeployerPartitionHandler partitionHandler =
 new DeployerPartitionHandler(taskLauncher, jobExplorer, resource,

"step1");

 List<String> commandLineArgs = new ArrayList<>(3);
 commandLineArgs.add("--spring.profiles.active=worker");
 commandLineArgs.add("--spring.cloud.task.initialize.enable=false");
 commandLineArgs.add("--spring.batch.initializer.enabled=false");
 commandLineArgs.add("--spring.datasource.initialize=false");
 partitionHandler.setCommandLineArgsProvider(
 new PassThroughCommandLineArgsProvider(commandLineArgs));
 partitionHandler.setEnvironmentVariablesProvider(
 new SimpleEnvironmentVariablesProvider(environment));
 partitionHandler.setMaxWorkers(3);
 partitionHandler.setApplicationName("PartitionedBatchJobTask");

 return partitionHandler;
 }

 @Bean
 @Profile("worker")
 public DeployerStepExecutionHandler stepExecutionHandler(JobExplorer jobExplorer) {
 return new DeployerStepExecutionHandler(this.context, jobExplorer, this.

jobRepository);
 }
...

Starting at the top, we create the class definition with the @Configuration annotation. After that, we
autowire in the normal Spring Batch step and job builder factories. Since there is nothing “special” about
these steps, we don’t need special builders to create our Step. We also autowire in the JobRepository and
the current app’s context which are used in the worker profile. We’ll get to their use in a bit.

The first bean configured here is the DeployerPartitionHandler. There is a lot going on in there, so
let’s break down what it’s going to do before we walk through configuring it. The DeployerPartitionHandler
is going to launch a new instance of an application on the given platform. Think about deploying a new
application on Kubernetes. You create a docker image, publish it to a docker registry, then use Kubernetes’s
tools to download and push that to a Kubernetes cluster. The DeployerPartitionHandler does the same
thing. So you create a docker image, publish it to a docker registry, then the DeployerPartitionHandler
downloads it and pushes it automatically to the Kubernetes cluster (assuming you are using Kubernetes for
this). Now let’s get back to the configuration and see how what it has to do maps to how we configure it.

The configuration for the deployerPartitionHandler begins by obtaining a Resource that is the
artifact that will be executed as the worker. So if you are using the Kubernetes deployer under the hood,
this would point to a docker resource. In our case, since we are going to use the local deployer (the
default), we are pointing that resource to our Spring Boot über jar. When the workers are launched, the
DeployerPartitionHandler will delegate to the TaskLauncher to create the command to execute (in the
local’s case, it will generate the java -jar command executed from a shell).

Once we’ve obtained a reference to the Resource we will run, we create the DeployerPartitionHandler
instance. It’s constructor takes three arguments, a taskLauncher, jobExplorer, the Resource we just
obtained, and the step name to be executed. The taskLauncher is the platform specific piece that knows
how to launch an application on the platform. Spring provides three options as of the writing of this book:
Local, CloudFoundry, and Kubernetes. The JobExplorer reference is used to poll the job repository to see
if the workers are complete. The Resource is the resource to launch as previously mentioned. Finally, the
name of the step to execute is what the worker will launch once the app is running.

Chapter 11 ■ SCaling and tuning

397

Once we have the DeployerPartitionHandler created, there are two main abstractions related to it that
we’ll need to work with. The first is the CommandLineArgsProvider. This is a strategy interface that allows
users to customize what command line arguments are passed to the uber jar when it is executed. In our case,
we’re going to use the one provided out of the box from Spring, the PassThroughCommandLineArgsProvider
to pass in a list of args. The args we are passing are as follows:

•	 --spring.profiles.active=worker: This arg is used to set the profile on each
worker launched to be a worker.

•	 --spring.cloud.task.intialize.enable=false: This tells Spring Cloud Task to
not run the database initialization code for each worker. Since it will be initialized on
startup of the master (or by other means) we don’t want each worker to reinitialize it.

•	 --spring-batch.initializer.enabled=false: Same concept as the previous
argument, only for the Spring Batch tables instead of the Spring Cloud Task ones.

•	 --spring.datasource.initialize=false: Again, same concept as the previous two
arguments, only for any other database scrips declared in our über jar.

Once we have defined the CommandLineArgsProvider, the other abstraction related to this
PartitionHandler is the EnvironmentVariablesProvider. This is also a strategy interface that is used to set
any environment variables within the shell the worker apps are running in. In our case, we are going to copy
the current environment over to the workers by using the SimpleEnvironmentVariablesProvider.

The last two pieces we need to configure are the max number of workers we will allow to be running at
once and the application name. We configure the max workers so that Spring doesn’t launch an unknown
number of workers. If we do not set that value, Spring will launch one worker per partition. If your
Partitioner determines you have 1000 partitions, it will launch 1000 workers ... probably not what you want.
By setting it to three, if we have less than three partitions, the PartitionHandler will launch one per partition.
If we have more than three partitions, the PartitionHandler will launch three, then as each one finishes,
it will launch more up to the max three until all partitions are complete. The application name we need to
configure is used by Spring Cloud Task in the task repository for tracking the execution of the workers.

Now that the DeployerPartitionHandler is configured, we need a mechanism within the workers
to launch the step that is requested. When we are using the MessageChannelPartitionHandler,
there is a listener that monitors a channel for the requests and launches them as they come in
(StepExecutionRequestHandler). When using the DeployerPartitionHandler, we need another
mechanism to launch the worker step, the DeployerStepExecutionHandler. This handler, instead
of obtaining its information from a message via a channel, pulls the values of the job execution id,
step execution id, and step name out of the environment via well known properties. It then executes
the step just as the StepExecutionRequestHandler in the previous example did. To configure the
DeployerStepExecutionHandler, we simply need to provide a context (for the handler to obtain a handle
on the step to execute), a jobExplorer (to obtain the StepExecution to execute from the job repository),
and a JobRepository to update the step’s execution upon a step failure that is not handled by the step
implementation itself.

While a lot is going on there, that is all that is different from the previous example ... except for how to
execute it. In the previous example, we had to manually launch the workers and make sure RabbitMQ was
running before they were launched. With this approach, we only need to worry about launching the master.
It will handle launching the workers for us. So once we have built our project, all we need to do is java -jar
target/partitioned-demo-0.0.1-SNAPSHOT.jar --spring.profiles.active=master. We can monitor the
progress of the app in the job repository but that doesn’t illustrate to us the fact that the other workers are
being launched. When they are, you’ll see in the logs of the master the locations of the log files as shown in
Listing 11-23.

Chapter 11 ■ SCaling and tuning

398

Listing 11-23. Launching Worker JVMs

2019-01-05 10:34:16.533 INFO 67745 --- [main] o.s.c.t.b.l.TaskBatchExecutionList
ener : The job execution id 1 was run within the task execution 1
2019-01-05 10:34:16.562 INFO 67745 --- [main] o.s.batch.core.job.
SimpleStepHandler : Executing step: [step1]
2019-01-05 10:34:16.640 DEBUG 67745 --- [main] o.s.c.t.b.p.DeployerPartitionHandl
er : 3 partitions were returned
2019-01-05 10:34:16.684 INFO 67745 --- [main] o.s.c.d.spi.local.
LocalTaskLauncher : launching task PartitionedBatchJobTask-a5e75fd0-0c90-49b3-9e2b-
428d5182765c
 Logs will be in /var/folders/6s/2mwfrcbx5tg1mxr251bbl44m0000gn/T/spring-cloud-
dataflow-9037584903989022167/PartitionedBatchJobTask-1546706056645/PartitionedBatchJobTask-
a5e75fd0-0c90-49b3-9e2b-428d5182765c
2019-01-05 10:34:16.697 INFO 67745 --- [main] o.s.c.d.spi.local.
LocalTaskLauncher : launching task PartitionedBatchJobTask-4a4c7152-8f3c-48ce-84d3-
cac0919d4385
 Logs will be in /var/folders/6s/2mwfrcbx5tg1mxr251bbl44m0000gn/T/spring-cloud-
dataflow-9037584903989022167/PartitionedBatchJobTask-1546706056689/PartitionedBatchJobTask-
4a4c7152-8f3c-48ce-84d3-cac0919d4385
2019-01-05 10:34:16.709 INFO 67745 --- [main] o.s.c.d.spi.local.
LocalTaskLauncher : launching task PartitionedBatchJobTask-705cf4dd-b708-491f-8191-
f6f520cc018c
 Logs will be in /var/folders/6s/2mwfrcbx5tg1mxr251bbl44m0000gn/T/spring-cloud-
dataflow-9037584903989022167/PartitionedBatchJobTask-1546706056699/PartitionedBatchJobTask-
705cf4dd-b708-491f-8191-f6f520cc018c

As you can see in Listing 11-23, when the worker JVM is launched using the LocalTaskLauncher (the
default), the location of the log files is presented in this log. If we open one of those directories up, we’ll
see a stdout.log and a stderr.log for standard out and standard error, respectively. The stdout.log file
will look just like any other Spring Boot log file assuming all goes well. There is another way to tell that the
extra JVMs are launching (besides the tell tail sign of your laptop fan spooling up). We can also monitor the
execution of the extra JVMs via the jps command. This command is like the Unix ps command, only it lists
all the Java virtual machines running. Listing 11-24 shows the list I have when I execute this job.

Listing 11-24. jps Output

➜ ~ jps
68944 RemoteMavenServer
42899
88027 partitioned-demo-0.0.1-SNAPSHOT.jar
88045 partitioned-demo-0.0.1-SNAPSHOT.jar
88044 partitioned-demo-0.0.1-SNAPSHOT.jar
88047 Jps
88046 partitioned-demo-0.0.1-SNAPSHOT.jar

You can see that we end up with four Java processes, one for the master and three workers. With just like
all the other examples, the output is the same as seen in Listing 11-25.

Chapter 11 ■ SCaling and tuning

399

Listing 11-25. Partitioned Job Output

mysql> select step_name, status, commit_count, read_count, write_count from SCALING.BATCH_
STEP_EXECUTION;
+------------------+-----------+--------------+------------+-------------+
| step_name | status | commit_count | read_count | write_count |
+------------------+-----------+--------------+------------+-------------+
step1	COMPLETED	303	30000	30000
step1:partition1	COMPLETED	101	10000	10000
step1:partition0	COMPLETED	101	10000	10000
step1:partition2	COMPLETED	101	10000	10000
+------------------+-----------+--------------+------------+-------------+
4 rows in set (0.01 sec)

Partitioning a workload, whether it be within a single JVM or spread across a cluster, is a powerful tool.
When working with a use case that is bound by IO, it can have profound impacts on the performance of a job.

However, not all processes are bound by IO. If you have a use case where the processor piece is the
bottle neck and you need more than what a single JVM can handle, remote chunking may be the right
scaling option for you. The next section will take a look at this last option for scaling Spring Batch jobs.

Remote Chunking
Distributed computing where the processing of data is offloaded to the cluster is a common pattern seen
in many verticles. One of the more extreme examples is the BOINC system developed by Berkley. This
framework was originally developed for use with the SETI@Home project which searches for evidence
of extraterrestrial intelligence by having unused personal computers process radio signals recorded from
radio telescopes. BOINC was later extracted from the SETI@Home project and is now a more general use
framework used in the scientific community for a number of @Home projects (Folding@Home which
looks at protein folding, Einstein@Home which looks for pulsars, Rosetta@Home which performs protein
structure prediction for disease research, etc.). The idea around BOINC, however, is actually quite simple.
It consists of a master command server that receives requests for data to be processed. It replies with
input to be processed by the requesting worker. The worker downloads the input, performs the required
processing, then uploads the results.

Remote chunking is similar to how BOINC works only in a push instead of pull model. Unlike remote
partitioning where metadata is sent over the wire to the workers, remote chunking (like BOINC) sends the
actual data to be processed over the wire. The master reads the data, sends it to the workers for processing,
then the workers write the output. This type of scaling outside of a single JVM is useful only when item
processing is the bottleneck in your process. If input or output is the bottleneck, this type of scaling only
makes things worse. There are a couple things to consider before using remote chunking as your method for
scaling batch processing:

•	 Processing needs to be the bottleneck: Because reading and writing are completed
in the master JVM, in order for remote chunking to be of any benefit, the cost of
sending data to the slaves for processing must be less than the benefit received from
parallelizing the processing.

•	 Guaranteed delivery is required: Because Spring Batch doesn’t maintain any type
of information about who is processing what, if one of the slaves goes down during
processing, Spring Batch has no way to know what data is in play. Thus a persisted
form of communication (typically a persistent messaging based solution) is required.

Chapter 11 ■ SCaling and tuning

400

To configure a job using remote chunking, you begin with a normally configured job that contains a
step that you want to execute remotely. Spring Batch allows you to add this functionality with no changes
to the configuration of the job itself. Instead, you hijack the ItemProcessor of the step to be remotely
processed and insert an instance of a ChunkHandler implementation (provided by Spring Batch Integration).
The org.springframework.batch.integration.chunk.ChunkHandler interface has a single method,
handleChunk, that works just like the ItemProcessor interface. However, instead of actually doing the work
for a given item, the ChunkHandler implementation sends the item to be processed remotely and listens for
the response. When the item returns, it’s written normally by the local ItemWriter. Figure 11-16 shows the
structure of a step that is using remote chunking.

Master Step

ItemReader

ItemWriter

Worker Step

ItemProcessor

ItemWriter

Worker Step

ItemProcessor

ItemWriter

Worker Step

ItemProcessor

ItemWriter

Communication via Messaging Middleware

Figure 11-16. The structure of a step using remote chunking

As Figure 11-16 shows, any one of the steps in a job can be configured to do its processing via remote
chunking. When you configure a given step, that step’s ItemProcessor is replaced with a ChunkHandler, as
mentioned previously. That ChunkHandler’s implementation uses a special writer (org.springframework.
batch.integration.chunk.ChunkMessageChannelItemWriter) to write the items to the queue. The workers
are nothing more than message-driven POJOs that execute your business logic. When the processing is
completed, the output of the ItemProcessor is persisted via the ItemWriter.

For this example, we will just demonstrate the flow of data through the process doing the same
import job we did in the partitioned examples before. Just like the partitioned job that uses the
MessageChannelPartitionHandler, we’ll be working with two profiles and Spring Integration for configuring
the communication between the master and the worker nodes. Let’s begin with the master configuration.
Listing 11-26 has the configuration for the master step.

Listing 11-26. Master Remote Chunked Step

...
@EnableBatchIntegration
@Configuration
public class BatchConfiguration {

Chapter 11 ■ SCaling and tuning

401

 @Configuration
 @Profile("!worker")
 public static class MasterConfiguration {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private RemoteChunkingMasterStepBuilderFactory
 remoteChunkingMasterStepBuilderFactory;

 @Bean
 public DirectChannel requests() {
 return new DirectChannel();
 }

 @Bean
 public IntegrationFlow outboundFlow(AmqpTemplate amqpTemplate) {
 return IntegrationFlows.from(requests())
 .handle(Amqp.outboundAdapter(amqpTemplate)
 .routingKey("requests"))
 .get();
 }

 @Bean
 public QueueChannel replies() {
 return new QueueChannel();
 }
 @Bean
 public IntegrationFlow inboundFlow(
 ConnectionFactory connectionFactory) {

 return IntegrationFlows
 .from(Amqp.inboundAdapter(connectionFactory,
 "replies"))
 .channel(replies())
 .get();
 }

 @Bean
 @StepScope
 public FlatFileItemReader<Transaction> fileTransactionReader(
 @Value("#{jobParameters['inputFlatFile']}") Resource resource) {

 return new FlatFileItemReaderBuilder<Transaction>()
 .saveState(false)
 .resource(resource)
 .delimited()
 .names(new String[] {"account",
 "amount",
 "timestamp"})

Chapter 11 ■ SCaling and tuning

402

 .fieldSetMapper(fieldSet -> {
 Transaction transaction = new Transaction();

 transaction.setAccount(
 fieldSet.readString("account"));
 transaction.setAmount(
 fieldSet.readBigDecimal("amount"));
 transaction.setTimestamp(
 fieldSet.readDate("timestamp",
 "yyyy-MM-dd HH:mm:ss"));

 return transaction;
 })
 .build();
 }
 @Bean
 public TaskletStep masterStep() {
 return this.remoteChunkingMasterStepBuilderFactory.get("masterStep")
 .<Transaction, Transaction>chunk(100)
 .reader(fileTransactionReader(null))
 .outputChannel(requests())
 .inputChannel(replies())
 .build();
 }

 @Bean
 public Job remoteChunkingJob() {
 return this.jobBuilderFactory.get("remoteChunkingJob")
 .start(masterStep())
 .build();
 }
 }
...

Just like the remote partitioning example earlier in this chapter, the remote chunking configuration
begins with the @EnableBatchIntegration annotation. Spring Batch provides special builder factories to
build a step that uses remote chunking and this annotation enables that functionality. Once in the class we
break the master/worker configuration up using inner classes. The master configuration is first.

The master’s configuration begins with the autowiring of both a jobBuilderFactory
(like all Spring Batch configuration classes) and a new builder factory called the
RemoteChunkingMasterStepBuilderFactory. Just as the RemotePartitioningMasterStepBuilderFactory
provides a special builder for creating the master step for remote partitioning, the
RemoteChunkingMasterStepBuilderFactory will provide a builder for creating the master step for a remote
chunking step.

After the two autowired factories, we create a channel for the outbound flow. This channel will be
used to send data to RabbitMQ for processing by the workers. The flow using that channel is the next bean
definition. You’ll notice that this outbound flow is the same as what is used in the outbound flow in our
remote partitioning example. Read in English, the Spring Integration DSL states to take each message from
the requests channel and pass it to the AMQP outbound adapter which will send it to the RabbitMQ queue
named requests.

Chapter 11 ■ SCaling and tuning

403

Once we have the outbound flow configured, we configure the inbound flow. Now you may be
wondering, since the writing is going to happen on the worker side of this step, what replies are we
expecting. The replies that come from the worker side are actually the StepContribution for the master to
apply. This allows the stats in the job repository to be accurate even if this is a distributed step. To configure
the inbound flow, we configure a direct channel and then the inbound Spring Integration flow. This flow
reads from the replies queue in RabbitMQ, take the messages and put them in the replies channel.

The next component configured in the master is the FlatFileItemReader we are using to read the
transaction input file. This is the same as the reader we have configured previously. The reason I call it out
here is that it is the only part of a chunked step that is configured in the master side. The ItemProcessor and
ItemWriter are both configured in the worker side of the application.

Once we have the components of the step configured, we can configure the Step itself. The
configuration of the masterStep reads just like any other chunk based step to begin with. We specify the
name, chunk size, and the reader. However, instead of either an ItemProcessor or an ItemWriter, we specify
an input channel and an output channel. These are used to configure the step to send and receive the
messages to the workers. The last bean in the master configuration is the configuration for the Job. We put
this bean in the master profile so Boot only executes it on the master and not once per JVM.

Seven beans for the master and three of them would be required even if we were not using remote
chunking to scale the step. Not bad. Let’s take a look at the worker’s configuration. It is found in Listing 11-27.

Listing 11-27. Worker Remote Chunked Step

...
 @Configuration
 @Profile("worker")
 public static class WorkerConfiguration {

 @Autowired
 private RemoteChunkingWorkerBuilder<Transaction, Transaction> workerBuilder;

 @Bean
 public DirectChannel requests() {
 return new DirectChannel();
 }

 @Bean
 public DirectChannel replies() {
 return new DirectChannel();
 }

 @Bean
 public IntegrationFlow inboundFlow(ConnectionFactory connectionFactory) {
 return IntegrationFlows
 .from(Amqp.inboundAdapter(connectionFactory,

"requests"))
 .channel(requests())
 .get();
 }
 @Bean
 public IntegrationFlow outboundFlow(AmqpTemplate template) {
 return IntegrationFlows.from(replies())

Chapter 11 ■ SCaling and tuning

404

 .handle(Amqp.outboundAdapter(template)
 .routingKey("replies"))
 .get();
 }

 @Bean
 public IntegrationFlow integrationFlow() {
 return this.workerBuilder
 .itemProcessor(processor())
 .itemWriter(writer(null))
 .inputChannel(requests())
 .outputChannel(replies())
 .build();
 }

 @Bean
 public ItemProcessor<Transaction, Transaction> processor() {
 return transaction -> {
 System.out.println("processing transaction = " + transaction);
 return transaction;
 };
 }
 @Bean
 public JdbcBatchItemWriter<Transaction> writer(DataSource dataSource) {
 return new JdbcBatchItemWriterBuilder<Transaction>()
 .dataSource(dataSource)
 .beanMapped()
 .sql("INSERT INTO TRANSACTION (ACCOUNT, AMOUNT,

TIMESTAMP) " +
 "VALUES (:account, :amount, :timestamp)")
 .build();
 }
 }
}

Again using an inner class to group the beans makes it easier to rationalize about them. The class begins
with the autowiring of the RemoteChunkingWorkerBuilder. You’ll note that this is not a FactoryBean bean
like the others. The reason for this is that no factory is needed. When working with the other builders, the
factory you interact with does some Spring “magic” behind the scenes. In the case of this builder, there is no
magic needed so you just get the builder itself.

Moving down the configuration, we again have an inbound flow and an outbound flow that do the
same things that they did on the master side of the configuration. Things get different when we realize
that we have three integration flows instead of the two we had in the master. On the worker side, instead
of configuring a step, we actually configure an integration flow when using remote chunking. Behind the
scenes, this builder will create a chain that accepts the incoming requests, passes them to a service activator
for handling the batch related processing, and the result is returned to the outbound flow. To configure
that flow, we use the new builder, the RemoteChunkingWorkerBuilder to configure the ItemProcessor, the
ItemWriter, the input channel, and the output channel.

The configuration completes when we configure our ItemProcessor (a simple lambda that passes the
transaction to System.out) and the ItemWriter which stores the items in a database table.

Chapter 11 ■ SCaling and tuning

405

Once we have our configuration, we can build our project and execute it. The mechanisms for
launching this are actually the same as they were for the remote partitioning example where we used
RabbitMQ. We begin by starting RabbitMQ (if it’s not already running) via rabbitmq-server. From there, we
can launch our workers each with the command java -jar target/chunking-demo-0.0.1-SNAPSHOT.jar.
Finally we can launch the master with the command java -jar target/chunking-demo-0.0.1-SNAPSHOT.
jar --spring.profiles.active=master.

With all of the components running, we can see the output of our job in the database just as we have up
to now as shown in Listing 11-28.

Listing 11-28. Remote Chunking Job Output

mysql> select step_name, status, commit_count, read_count, write_count from SCALING.BATCH_
STEP_EXECUTION;
+------------------+-----------+--------------+------------+-------------+
| step_name | status | commit_count | read_count | write_count |
+------------------+-----------+--------------+------------+-------------+
| step1 | COMPLETED | 303 | 30000 | 30000 |
+------------------+-----------+--------------+------------+-------------+
1 rows in set (0.01 sec)

Summary
One of the primary reasons for using Spring Batch is its ability to scale without having a large impact on
your existing code base. Although you could write any of these features yourself, none of them are easy to
implement well, and it doesn’t make sense to reinvent the wheel. Spring Batch provides an excellent set of
ways to scale jobs with a number of options.

This chapter looked at how to profile jobs to obtain information about where bottlenecks exist. You then
worked through examples of each of the five options Spring Batch provides for scalability: parallel steps,
multithreaded steps, asynchronous item processing, remote chunking, and partitioning.

407© Michael T. Minella 2019
M. T. Minella, The Definitive Guide to Spring Batch, https://doi.org/10.1007/978-1-4842-3724-3_12

CHAPTER 12

Cloud Native Batch

Batch processing has been around for a long time. Since the dawn of automated computing, gathering data,
running a process over it, and generating output from it have been a fundamental piece of it. As enterprises
transition to the cloud, it is just natural that batch processing also migrates there.

However, what makes an application ready for the cloud or “cloud native”? Can we just pick up our
Spring Batch application and drop it in the cloud? In short, probably not. Even if it does “work” there
are additional concerns about running an application in the cloud. A concept called the “twelve factor
application” was devised explicitly for this purpose. A twelve factor application addresses the extra concerns
related to running an application within the cloud.

The Spring Cloud project is a portfolio of projects that build on Spring Boot to enable cloud native
development. Things like circuit breakers, service discovery, configuration management, and job
orchestration (all related to twelve factor applications) all fall into this bucket of functionality. Don’t know
what any of those are? Don’t worry, we’ll walk through them in this chapter.

In this chapter we will iterate over a very simple Spring Batch application, taking it from a traditional
Spring Boot based Spring Batch application, to a cloud native one. Each iteration we’ll add new features to it
to take advantage of cloud native features until we have an application that utilizes features of Spring Cloud.
Specifically

•	 We’ll walk through what are the tenants of a twelve factor application and how do
they apply to batch processing.

•	 We’ll look at a very simple Spring Batch application that we’ll migrate to a cloud
native application.

•	 We will add additional resiliency to our batch application by using the circuit breaker
pattern to handle interacting with a faulty REST API.

•	 We’ll then externalize our configuration with both Spring Cloud Config Server and
Spring Cloud Eureka.

•	 Finally, we’ll orchestrate our batch job with Spring Cloud Data Flow.

Before we can get started on looking at the details, let’s take a look at what a twelve factor application is.

https://doi.org/10.1007//978-1-4842-3724-3_12

Chapter 12 ■ Cloud Native BatCh

408

Twelve Factor Applications
The concept of a twelve factor application came out of Heroku and their work with cloud computing.
The goals of a twelve factor application are to develop patterns that can be used to develop applications
as services. The twelve factors are1

 1. Codebase: One codebased tracked in revision control with many deploys

 2. Dependencies: Explicitly declare and isolate dependencies

 3. Config: Store configuration in the environment

 4. Backing services: Treat backing services as attached resources

 5. Build, release, run: Strictly separate build and run stages

 6. Processes: Execute the app as one or more stateless processes

 7. Port binding: Export services via port binding

 8. Concurrency: Scale out via the process model

 9. Disposability: Maximize robustness with fast startup and graceful shutdown

 10. Dev/prod parity: Keep development, staging, and production as similar as
possible

 11. Logs: Treat logs as event streams

 12. Admin processes: Run admin/management tasks as one-off processes

Let’s walk through each of those, define what they really mean as well as talk about how they each apply
to batch processing.

Codebase
The codebase of your application should be consolidated in a single version control repository. The idea
here is that if you need to break your codebase up into multiple repositories, you probably don’t have an
application ... you have a distributed system. Twelve factor applications make up a distributed system, but
each of these apps are self-contained and independent. From the perspective of batch processing, in most
of our book we’ve been following this model of a single batch job per application. In legacy environments,
however, it is not uncommon to see codebases where there is a monolithic WAR or EAR file that contains
multiple batch jobs. In a cloud native environment, you’d want to break that up into multiple applications.

Dependencies
Dependencies are a part of developing in java. You use your build system (Maven or Gradle) to download
and include your dependencies in your Spring Boot über jar as we have in all the examples to date. This
model is a specific requirement for twelve factor applications. The idea here is that you don’t want your
application depending on something external to it. All dependences should be encapsulated within the
application via some mechanism. Spring Boot handles this for us.

1https://12factor.net/

https://12factor.net/

Chapter 12 ■ Cloud Native BatCh

409

Config
Configuration must be separated from the code in a twelve factor application. Why is that? Because the
same artifact will work through multiple environments and it must be independent of those environments.
While even Spring provides mechanisms for configuring environments independently via features like
profiles, that model doesn’t scale as cleanly as using something like environment variables or a centralized
configuration server. In the batch world, we have a number of things we need to have configured. Whether
it be the database for the job repository or access to other systems for our inputs and outputs, Spring Batch
applications will need to be adapted to meet this principle.

Backing Services
A backing service is any service that the application depends on. This may be a RDBMS, SMTP server, S3,
third party APIs, and so on. The key to this tenant though is that all of these should be referenceable via a
URL or other locator that is made available via the configuration. There should be no direct dependence
on a particular service instance within the code. For example, whether you use a local MySQL or Amazon’s
RDS in the cloud, your code should not change. Only the configuration should need to change (changing the
URL, username, password, etc.). In a batch application, this means structuring our code and configuration
separately in ways where our application can be configured this way. Fortunately, using good development
practices with Spring Boot already enforces these practices.

Build, Release, Run
The twelve factor tenants strictly divide the process of building an application, releasing it, and running it.
Building an application is about compiling and testing the application’s code. Releasing the artifact is not only
about creating the artifact but providing a unique identifier for that version and stored in a place that it cannot
be modified (a Maven repository, for example). Running the application is the taking of that released artifact
and executing it in an environment. With Spring Batch, you’ll want to setup a continuous integration system
like Jenkins or Concourse to run your build pipeline. From there, tools like Spinnaker can handle the release
and run pieces in very robust ways, providing for things like rollbacks if a deployment fails, and so on.

Processes
Twelve factor applications are stateless and share nothing. This means that if I execute an application once,
it will not expect any preexisting data either locally on the file system, or in memory. The classic example of
how to break this tenant in the web world is building your application to require sticky sessions. This design
implies that there is data that persists in memory from request to request, is therefore stateful, and will scale
poorly. In the batch world, Spring Batch has been designed from the beginning to be stateless. I bet you’re
thinking, but wait, batch jobs are stateful. They can be restarted and have state in the ExecutionContext.
While that is all true, the state is maintained within the job repository, a relational database that is cloud
friendly. I can execute a properly designed batch job on one node, have it fail, then restart it on a completely
different node with no other preexisting state defined besides the ability to connect to the same database for
the job repository.

Port Binding
A twelve factor application does not require the runtime addition of a server of some kind to expose it as
a service. It is self-contained and will bind to a port itself if that is required to execute the functionality it
is designed for. An example of this would be in a non-twelve factor application, you would take a WAR file

Chapter 12 ■ Cloud Native BatCh

410

and deploy it on Tomcat. In a twelve factor application, it is completely self-contained and so Tomcat is
embedded in the application (as is done in Spring Boot). In Spring Batch or batch jobs in general, this isn’t
as big of a concern given that batch jobs are by definition, self-contained. That being said, Spring does
provide the ability to handle scenarios where you can have a Spring Batch job open a port to expose itself for
various other reasons.

Concurrency
Twelve factor applications must be able to scale via processes. This does not mean that the use of threads is
forbidden or even discouraged. Threads as found in the JVM are great tools for scaling an application and
should be used in the right scenarios. However, a JVM can only grow to a certain point and so using multiple
instances must be an option. As we discussed in Chapter 11, we can scale Spring Batch applications either
via threads within a JVM or externally with remote chunking and remote partitioning. Both are examples of
how Spring Batch fits well into this model.

Disposability
In a legacy world, the idea that a process is going to go down is a scary one. The idea of pager duty in a world
where applications must stay up or customers are impacted send shivers down the spine of any developer.
However, in a cloud native world, processes are disposable. They can be stopped and restarted without
notice and need to be architected as such. Processes should start as quickly s possible and shut down
gracefully when a request to stop is received. Spring Batch naturally falls into this. Due to how it works with
the JobRepository, it has the ability to be shut down and restarted on demand. That being said, the process
itself is still stateful and on a restart, state does need to be restored. Spring Batch optimizes this by doing
things like skipping records that have already been processed on a restart.

Dev/Prod Parity
One of the goals of the cloud is business agility. Remove the delays of things like getting servers racked
and databases provisioned. Speed from a business perspective is a key driver to the cloud. The ultimate
goal of that speed is continuous deployment. Going from deploying to production once a quarter or once
a month, to multiple times a day. This can only occur when there is parity between environments. If you
are developing against MySQL but deploying in production against Oracle, there may be issues that are not
found. Parity between environments is key to minimizing issues that can be exposed by these differences.
Spring Batch doesn’t address these kinds of nonfunctional demands but doing so will make your release and
deployment process much smoother.

Logs
We said earlier that processes must be disposable and stateless. This includes their log files as well.
Applications in a cloud native environment will ideally write all log output to stdout to be consumed
either by a developer as they work at their terminal window or via a log ingestion system like Splunk or
related system. This allows for the aggregation across instances to better understand what is happening
within your system. Spring integrates well with all major Java logging frameworks and as so handles this
requirement well.

Chapter 12 ■ Cloud Native BatCh

411

Admin Processes
Administration processes like database migrations should be run as one-off processes. The funny thing
about this tenant of the twelve factor application is that it’s not uncommon for batch processes to be the
administration processes themselves.

That is it for the twelve factors in cloud native application development. However, how do they apply
from a tactical perspective to our Spring Batch applications. In the next section, we’ll begin exploring that by
looking at the Spring Batch application we are going to evolve from a basic application to a cloud native one.

A Simple Batch Job
For the rest of this chapter, we will take a simple Spring Batch application and evolve it to use the capabilities
in Spring to make it cloud native. The use case for this job is intended to be unusually simplistic. We want to
focus not on the domain model, but on the additional capabilities we are adding with each iteration. So for
our use, a single step batch job that downloads files from Amazon’s S3 to a local directory, it will read in each
file line by line, calling a REST API to enrich the data, then store the results a database.

Before we create our batch job we will create our project from Spring Initializr. We will bring in the
usual suspects for dependencies plus one we have not looked at. We can start with batch, jdbc, and MySQL.
However we will add the AWS dependency as well to be able to interact with Amazon’s S3 store. We will be
adding dependencies as we add new features; however, for our base application, that should suffice.

To start looking at our job, we’ll begin with the main class. This is nothing more than the normal Spring
Boot main class we have used in every other example in this book. Listing 12-1 shows the main class.

Listing 12-1. CloudNativeBatchApplication.java

...
@EnableBatchProcessing
@SpringBootApplication
public class CloudNativeBatchApplication {

 public static void main(String[] args) {
 SpringApplication.run(CloudNativeBatchApplication.class, args);
 }
}

The class begins with two normal annotations, the @EnableBatchProcessing annotation used to
bootstrap all of the Spring Batch infrastructure, and @SpringBootApplication to bootstrap classpath
scanning and autoconfiguration. The main method on the class simply points Spring Boot as to where to
begin looking for configurations via the classpath scanning. The rest resides in other configuration classes.

This leads us to the JobConfiguration class. This class contains all of the configuration for all of
the components required for our Spring Batch job to execute. Listing 12-2 provides the code for the
JobConfiguration class.

Listing 12-2. JobConfiguration.java

...
@Configuration
public class JobConfiguration {

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

Chapter 12 ■ Cloud Native BatCh

412

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Bean
 public DownloadingJobExecutionListener downloadingStepExecutionListener() {
 return new DownloadingJobExecutionListener();
 }

 @Bean
 @StepScope
 public MultiResourceItemReader reader(
 @Value("#{jobExecutionContext['localFiles']}")String paths) throws Exception {

 System.out.println(">> paths = " + paths);
 MultiResourceItemReader<Foo> reader = new MultiResourceItemReader<>();

 reader.setName("multiReader");
 reader.setDelegate(delegate());

 String [] parsedPaths = paths.split(",");
 System.out.println(">> parsedPaths = " + parsedPaths.length);
 List<Resource> resources = new ArrayList<>(parsedPaths.length);

 for (String parsedPath : parsedPaths) {
 Resource resource = new FileSystemResource(parsedPath);
 System.out.println(">> resource = " + resource.getURI());
 resources.add(resource);
 }
 reader.setResources(resources.toArray(new Resource[resources.size()]));

 return reader;
 }

 @Bean
 @StepScope
 public FlatFileItemReader<Foo> delegate() throws Exception {
 FlatFileItemReader<Foo> reader = new FlatFileItemReaderBuilder<Foo>()
 .name("fooReader")
 .delimited()
 .names(new String[] {"first", "second", "third"})
 .targetType(Foo.class)
 .build();

 return reader;
 }
 @Bean
 @StepScope
 public EnrichmentProcessor processor() {
 return new EnrichmentProcessor();
 }

Chapter 12 ■ Cloud Native BatCh

413

 @Bean
 public JdbcBatchItemWriter<Foo> writer(DataSource dataSource) {

 return new JdbcBatchItemWriterBuilder<Foo>()
 .dataSource(dataSource)
 .beanMapped()
 .sql("INSERT INTO FOO VALUES (:first, :second, :third,

:message)")
 .build();
 }

 @Bean
 public Step load() throws Exception {
 return this.stepBuilderFactory.get("load")
 .<Foo, Foo>chunk(20)
 .reader(reader(null))
 .processor(processor())
 .writer(writer(null))
 .build();
 }

 @Bean
 public Job job(JobExecutionListener jobExecutionListener) throws Exception {
 return this.jobBuilderFactory.get("s3jdbc")
 .listener(jobExecutionListener)
 .start(load())
 .build();
 }

 @Bean
 public RestTemplate restTemplate() {
 return new RestTemplate();
 }
}

There is quite a bit of code in this but the vast majority of it should be familiar. Let’s start at the top. After
the @Configuration and class definition, we’re autowiring in two fields. Both are the builders used to create
our steps and jobs.

The first bean definition in our JobConfiguration class is one for a DownloadingJobExecutionListener.
This is a JobExecutionListener that we will implement in just a bit, but it is responsible for downloading the
files from S3 to be imported into our database. In the beforeJob method is where we will do the download.
This design allows us to be compliant with the Processes tenant of the twelve factor application. If our job
fails and is restarted on a new node or container in the cloud, the beforeJob(JobExecution jobExecution)
method will be re-executed and the files will be redownloaded.

Since we are processing multiple files, the next bean is the MultiResourceItemReader. This factory
method looks at the directory containing the files downloaded by the previous listener and configures the
MultiResourceItemReader to read all the files in it. You’ll notice this method is marked as step scoped via
the @StepScope annotation. This is due to the fact that the listener places a list of the files it downloaded into
job’s ExecutionContext to be pulled out by this method.

Chapter 12 ■ Cloud Native BatCh

414

The MultiResourceItemReader needs another ItemReader to delegate to during the reading.
The next bean in our configuration, the delegate, is the one we’ll use. This factory method provides a
FlatFileItemReader configured to read a CSV with three values in each record. The values are originally
named “first,” “second,” and “third” (real inventive). The values for each of these are mapped to a domain
object called Foo that contains a setFirst(int value), setSecond(int value), and a setThird(String
value) methods on it for Spring to automatically call.

Once the readers have been defined, the ItemProcessor that will be calling the REST API will be defined.
The factory method for this component simply returning a new instance of the EnrichmentItemProcessor.
This custom ItemProcessor we’ll look at later, but all it does is call a REST API that returns the number of
times it’s been called. The EnrichmentItemProcessor then set the field message with the result.

The final component for the step is the ItemWriter. For this, we’re using the JdbcBatchItemWriter
to write our enriched items. Using the builder for that ItemWriter, we configure the DataSource, identify
that we’ll be using the BeanPropertyItemSqlParameterSourceProvider via the beanMapped() method call,
provide our SQL insert statement, and call build.

That is all of our components for the load step. Now to build the step, we use the autowired
StepBuilderFactory to get StepBuilder. We identify that we’re going to use a chunk based step passing
it in the MultiResourceItemReader we configured previously, the EnrichmentItemProcessor, and the
JdbcBatchItemWriter. This constructs the step we’ll use to import the data.

In order to user our step, we need to configure our job. Using the autowired JobBuilderFactory, we
configure the DownloadingJobExecutionListener as a JobExecutionListener on the job, identify that the
job will start with our load step, and call build on the builder.

The last bean in this class may not seem like it’s needed. We explicitly configure a RestTemplate bean.
Spring Boot will automatically add one to your context with the right starter. However, we are going to
customize this component in a future iteration of the batch job, so we’ll explicitly configure one for now.

That’s all for the JobConfiguration class. We identified two custom classes we created for this
job, the DownloadingJobExecutionListner and the EnrichmentProcessor. We’ll take a look at the
DownloadingJobExecutionListner first. In the DownloadingJobExecutionListener, we use Spring’s S3
resource capabilities from the Spring AWS project to navigate the resources stored in the configured S3
bucket and download it in the beforeJob(JobExecution jobExecution) method. Listing 12-3 displays the
code for this listener.

Listing 12-3. DownloadingJobExecutionListner.java

...
public class DownloadingJobExecutionListener extends JobExecutionListenerSupport {

 @Autowired
 private ResourcePatternResolver resourcePatternResolver;

 @Value("${job.resource-path}")
 private String path;

 @Override
 public void beforeJob(JobExecution jobExecution) {

 try {
 Resource[] resources =
 this.resourcePatternResolver.getResources(this.path);

 StringBuilder paths = new StringBuilder();

Chapter 12 ■ Cloud Native BatCh

415

 for (Resource resource : resources) {

 File file = File.createTempFile("input", ".csv");

 StreamUtils.copy(resource.getInputStream(),
 new FileOutputStream(file));

 paths.append(file.getAbsolutePath() + ",");
 System.out.println(">> downloaded file : " +
 file.getAbsolutePath());
 }

 jobExecution.getExecutionContext()
 .put("localFiles",
 paths.substring(0, paths.length() - 1));
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
}

The DownloadingJobExecutionListener extends JobExecutionListenerSupport which provides a
no-op implementation of the JobExecutionListener for us to override just the methods we care about. In
this case, our implementation only requires us to implement the beforeJob method. In there, we begin by
getting a list of all the resources found in the S3 bucket we configured via the job.resource-path application
parameter. Once we’ve obtained the array of Resources (files), we create a temporary file for each one, then
use Spring’s StreamUtils to download the file saving off the absolute path for each file downloaded. Once all
the files have been downloaded, the list of paths to them is saved in the job’s ExecutionContext with the key
localFiles.

One key point about this that makes this work in a cloud native environment is that each time the job
runs, this listener will re-execute, redownloading each of the files needed. It will also overwrite the values in
the job’s ExecutionContext from the last time, preventing the job from looking for files that most likely won’t
be there if the job is being run in a new container.

The last piece of code for this example job is the EnrichmentProcessor. This processor makes a simple
GET call to a REST API using the RestTemplate we defined in our JobConfiguration. Listing 12-4 shows the
code for the EnrichmentProcessor.

Listing 12-4. EnrichmentProcessor.java

...
public class EnrichmentProcessor implements ItemProcessor<Foo, Foo> {

 @Autowired
 private RestTemplate restTemplate;

 @Override
 public Foo process(Foo foo) throws Exception {
 ResponseEntity<String> responseEntity =
 this.restTemplate.exchange(
 "http://localhost:8080/enrich",
 HttpMethod.GET,

Chapter 12 ■ Cloud Native BatCh

416

 null,
 String.class);
 foo.setMessage(responseEntity.getBody());

 return foo;
 }
}

Once the response is received from the RestTemplate call, it is stored in the item. In our case, it will
just be a message stating “Enriched X” where X is the number of times the controller in the REST API has
been called.

With all of the code for our job defined, our job is in need of a bit of configuration. To begin, we’ll
use Spring Boot’s application.yml to configure our application. Listing 12-5 provides an example of the
application.yml required for this application.

Listing 12-5. application.yml

spring:
 datasource:
 driverClassName: org.mariadb.jdbc.Driver
 url: jdbc:mysql://localhost:3306/cloud_native_batch
 username: 'root'
 password: 'password'
 schema: schema-mysql.sql
job:
 resource-path: s3://def-guide-spring-batch/inputs/*.csv
cloud:
 aws:
 credentials:
 accessKey: 'OPAR802SSRDI9NIGDBWA'
 secretKey: 'SDKEjF9IqN0IjTKIJVaE0G9UwI+=DOEFTjOkS2B4'
 region:
 static: us-east-1
 auto: false

 ■ Note You will need to configure the database url, username, password, job.resource-path, aWS
credentials, and region to match your own values. the preceding ones are provided as samples and will not
work for you.

The application.yml begins by configuring our DataSource with the normal values required by
Spring Boot. The only additional piece is the schema value which points to the database table for our Foo
item. Once the database is configured, the job.resource-path points to the S3 bucket where our input files
are located on AWS. The last configuration pieces are our AWS credentials and region configuration. The
cloud.aws.region.auto is an important value. When you run your code on AWS, Spring will automatically
configure the region to be the same as the region the code is running in. For example, if you are in the US
East 1 region, Spring will automatically configure your S3 region to be the same. The code, as configured,
is not configured to be run on AWS, so we turn off the autoconfiguration of our region and configure it
explicitly.

That’s it for the batch job. If you tried to compile and run it now, however, you’d get an exception.
We haven’t gone over the REST API the EnrichmentProcessor will be calling.

Chapter 12 ■ Cloud Native BatCh

417

The REST API we’ll build will be a web module created via Spring Initializr. Once we’ve downloaded
and imported our project, we will only need to add a single class, our controller. Listing 12-6 shows the code
for that controller.

Listing 12-6. EnrichmentController.java

...
@RestController
public class EnrichmentController {

 private int count = 0;

 @GetMapping("/enrich")
 public String enrich() {
 this.count++;

 return String.format("Enriched %s", this.count);
 }
}

This controller is annotated with the @RestController which indicates to Spring that the values
returned from the methods will be returned to the client in its raw form. Its sole field is the counter used to
keep track of how many times the controller is called.2 The enrich method is annotated with @GetMapping
mapping that method to the /enrich URL. All our method does is increment our counter and format the
message, returning the formatted message to the caller.

If we build and run the REST API and the job, you should see that all the data stored in S3 will be
imported successfully into your database. This job and REST API is the baseline for what we will iterate on
for the rest of the chapter.

It is important to note that while this chapter discusses the building of a cloud native application,
we will not be running it on any given cloud. Given the number of different options on the market at the
time of this writing and no clear winner at this point, we will leave out the issues of deploying these on a
specific cloud provider. That being said, everything in this chapter is intended to be cloud agnostic and
can be run on any of the major cloud providers (CloudFoundry, Kubernetes, Google Cloud Platform,
Amazon Web Services, etc.).

The first cloud native feature we’ll take a look at with Spring Batch is one that is common in cloud native
web applications, the circuit breaker.

Circuit Breaker
One interesting aspect of batch processes is that they are very efficient. If you need to make a large number
of API calls, a batch job will do them efficiently. If you need to read messages from a queue, batching them
up is a known way to improve performance. The same goes for writing to databases. The list goes on.
However, with that efficiency can come trouble.

Say that REST API becomes overloaded. Does calling it over and over mercilessly in a batch process
make sense? Einstein defined insanity as doing the same thing over and over again and expecting different
results. Yet this is exactly what can happen.

2We are ignoring the thread safety issues of using an int for this use case for the sake of simplicity.

Chapter 12 ■ Cloud Native BatCh

418

Instead, what if we gave the API a chance to catch up before hitting it with another request? Netflix
popularized this technique in their microservices architecture via a framework called Hystrix. The idea
is simple. Identify a method that is surrounded by a circuit breaker. When a threshold of exceptions is
surpassed, the circuit breaker trips stopping calls to that method and routing traffic to an alternative method.
This alternative method usually handles things in a different way. For example, returning a default value
instead of one the REST API returns. The circuit breaker will, based on some algorithm, trickle traffic back
through to the original method to test to see if it’s back online. Once it is, the circuit breaker resets and traffic
is restored as normal to the original method.

Netflix has since deprecated Hystrix and resilience4j has taken its place, but Spring Batch actually needs
neither of them to implement the circuit breaker pattern. Spring Batch depends on a library called Spring
Retry. This little known library is actually heavily utilized throughout the Spring portfolio. It provides the
fault tolerant capabilities in the fault tolerant step in Spring Batch. However, for our purposes, we’re going to
use a feature added in recent versions ... a basic circuit breaker.

Our use case will work like this. Our REST API will be configured to return random exceptions. We’ll
wrap our EnrichmentProcessor#process method in the circuit breaker and have the message field of our
item set to “error” by the alternative method.

Given Spring Batch’s fault tolerant capabilities, you may wonder why we would even do this instead of
using those facilities. There are really two reasons to use a circuit breaker in this instance instead of a fault
tolerant step. The first is performance. When an operation is retried in Spring Batch, as we’ve identified in
previous chapters, the framework will roll back the transaction, set the commit count to one, and then retry
each item in its own transaction. This can be a very performance killing operation. If you can just flag items
as errors and can rerun them later, that’s a much more efficient mechanism for dealing with errors. The
second reason is due to the use case. Spring Batch will let you retry items but it doesn’t offer the ability to
back off the pressure on the offending code. If your service needs time to recover, Spring Batch doesn’t have
a good facility built in to handle that. Enter Spring Retry’s circuit breakers.

The key components to Spring Retry’s circuit breakers are two annotations. The first, not surprisingly,
is @CircuitBreaker. This method level annotation indicates that something should be wrapped in a
circuit breaker. By default, the circuit breaker will be closed until three exceptions of the configured type
(all exceptions by default) are thrown from the method in 5 seconds. The circuit breaker, once tripped will
remain open for 20 seconds by default before attempting the main path again. All of this is configurable via
the annotation parameters as shown in Table 12-1.

Table 12-1. CircuitBreaker Attributes

Name Description Default

exclude Array of exceptions to exclude. Useful for excluding
specific subclasses of an exception for example.

Empty (all exceptions if the
include attribute is also empty)

include Array of exceptions to retry with Empty (all exceptions if the
exclude attribute is also empty)

label A unique tag for circuit breaker reporting The method signature where the
annotation is declared

maxAttempts Max number of attempts before opening the circuit
breaker (including the first failure)

3

openTimeout The interval over which the maxAttempts must occur
before tripping the circuit breaker

5000

resetTimeout Number of milliseconds before trying the main path
again

20000 (20 seconds)

value Array of exceptions to retry with Empty (all exceptions)

Chapter 12 ■ Cloud Native BatCh

419

The other annotation used by the Spring Retry is the @Recover annotation. This method level
annotation indicates the method to call when the retryable method fails or when the circuit breaker is
flipped. The method annotated with @Recover is required to have the same method signature as that of the
method annotated with the @CircuitBreaker annotation associated with it.

The final piece of the puzzle for adding the circuit breaker functionality to our ItemProcessor is the
@EnableRetry annotation. This annotation bootstraps the Spring mechanisms for proxying the retryable
method calls. By adding this to our main class along with the @EnableBatchProcessing, we’ll have the
infrastructure we need. To see the code update we need to make, take a look at Listing 12-7.

Listing 12-7. EnrichmentProcessor with Circuit Breaker

...
public class EnrichmentProcessor implements ItemProcessor<Foo, Foo> {

 @Autowired
 private RestTemplate restTemplate;

 @Recover
 public Foo fallback(Foo foo) {
 foo.setMessage("error");
 return foo;
 }

 @CircuitBreaker(maxAttempts = 1)
 @Override
 public Foo process(Foo foo) {
 ResponseEntity<String> responseEntity =
 this.restTemplate.exchange(
 "http://localhost:8080/enrich",
 HttpMethod.GET,
 null,
 String.class);
 foo.setMessage(responseEntity.getBody());

 return foo;
 }
}

The two differences between the original version in Listing 12-6 and here are the addition of the
@CircuitBreaker annotation to the process method and the addition of the fallback method annotated
with the @Recover annotation. Our fallback method has the same method signature as the process
method. However, instead of making the remote call, we provide a default message. The @CircuitBreaker
annotation on the process method is configured to trip after a single attempt within the default 5 seconds
and reset after 20 seconds.

To test this configuration, we’re going to update the EnrichmentController to throw a random
exception about 50% of the time. This will simulate flakiness in our system and will cause our circuit breaker
to trip. Listing 12-8 shows the code for the updated controller.

Chapter 12 ■ Cloud Native BatCh

420

Listing 12-8. EnrichmentController Updated to Throw Random Exceptions

...
@RestController
public class EnrichmentController {

 private int count = 0;

 @GetMapping("/enrich")
 public String enrich() {
 if(Math.random() > .5) {
 throw new RuntimeException("I screwed up");
 }
 else {
 this.count++;

 return String.format("Enriched %s", this.count);
 }
 }
}

With the updates to our controller as shown in Listing 12-8, if we run our job again, this time we’ll see
some records imported with the message “Enriched X” with X being the number of times the controller has
been called without throwing an exception. However, we will also see “error” in some of the messages. If we
compare the number of error messages in the database with the number of stack traces in the logs from the
REST application, we should see that there are more error messages than stack traces. That confirms that our
circuit breaker was tripped and our fallback method was called instead of trying the REST API.

Now that we’ve added some additional resiliency to our application, we’re going to work on
externalizing the configuration for our application. We’ll do that in two ways. First using Spring Cloud’s
Config Server and second by using service discovery provided by Eureka. The next section will look at the
mechanisms for how to make this work.

Externalizing Configuration
Every Spring Boot application up to this point in the book has used the application.properties or
application.yml to configure our applications. However, that poses a problem in a cloud native environment
in that since our configuration is bundled with our application in the jar file, we cannot change it easily as we
move from environment to environment. There are also security concerns with the current approach in that
we have sensitive secrets (username and password for our database as well as Amazon credentials) stored in
plain text in our artifact that is typically published to a public repository of some kind.

There has to be a better way. And thanks to the Spring Cloud projects, there is. In this section, we will
look at two mechanisms for externalizing our configuration. The first will be using Spring Cloud Config
Server to provide and secure the values we are currently storing in our application.yml file. We will also
secure them using encryption tools provided by the Spring Cloud CLI. Finally, we will use service binding to
allow our batch job to locate and contact our REST API instead of having a URL, port, and so on hard coded
or configured in our application directly.

Chapter 12 ■ Cloud Native BatCh

421

Spring Cloud Config
Spring Cloud Config is a configuration server that provides a server for serving configuration stored in either
a git repository or a database back end. In order to consume this configuration, an application uses the
Spring Cloud Config client within their application. This client will call the server, obtain the configuration
properties from the server, and populate a Spring Environment with those values so all of the normal
property injection, and so on, that Spring Boot does for you when using your application.yml still works.

To enable this functionality in our application, we’ll need to do two things. The first is to include the
client in our application. This is done by adding the dependency for the spring-cloud-starter-config to our
pom.xml. Listing 12-9 shows the dependency we’ll need.

Listing 12-9. Spring Cloud Config Client Dependency

...
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-config</artifactId>
</dependency>
...

With that dependency added, the other change we’ll need to make to our application is to replace
the application specific configuration in our application.yml file with the configuration the config
server client requires. For our purposes (running everything on our local machine), we’ll only need
to configure two properties: spring.application.name and spring.cloud.config.failFast. The first
property spring.application.name is used by the client to ask for the correct configuration from the
server. We’ll specify the value for this property to be cloud-native-batch. Spring Cloud Config supports
all of the normal features of Spring based properties including things like profiles; however, that is
out of the scope of this book. The other property we are configuring, spring.cloud.config.failFast
tells the client to throw an exception, preventing the application from starting, if it cannot retrieve
the configuration from the config server. By default, the client will ignore the inability to retrieve the
configuration and use whatever is locally configured; however, in our case we want to be sure we are
reading our configuration from the config server. With those two properties configured in our batch
application, all other configuration can be deleted.

With the client side configured we need to provide our configuration to the config server. The easiest
way to get up and running with the config server is with the Spring Cloud CLI.4 This CLI provides the ability
to launch the various Spring Cloud server components with a single command as well as some useful
utilities for things like encrypting values. The project page for it has instructions for its installation.

Once the Spring Cloud CLI is installed on your machine, we need to do some configuration for the
config server. We will use a git repository for our mechanism for storing our configuration. In order for the
config server to use our repository, we need to tell it we are going to use git and the location of the repository.
We configure this in a configserver.yml file located in ~/.spring-cloud. Listing 12-10 shows what our
configserver.yml looks like.

3https://cloud.spring.io/spring-cloud-cli/

https://cloud.spring.io/spring-cloud-cli/

Chapter 12 ■ Cloud Native BatCh

422

Listing 12-10. configserver.yml

spring:
 profiles:
 active: git
 cloud:
 config:
 server:
 git:
 uri: file:///Users/mminella/.spring-cloud/config/

With the configuration in Listing 12-10, we can add a git repository to the ~/.spring-cloud/config
directory. This is where we will store our configuration. We can begin by just copying over our old
application.yml file to this directory, and committing it into a new git repository (via git init, git add, and
git commit). However, we would also like to secure our secrets in this file so that we don’t need to worry
about attackers getting hold of this file. To do that, we’ll use Spring Cloud CLI’s encrypt functionality.

Spring Cloud CLI’s encrypt functionality supports encrypting values using either a String as a key or as
a file (an RSA public key, for example). We’ll keep things simple here and use the String key. Listing 12-11
shows the results of using Spring’s encrypt utilities.

Listing 12-11. Encryption Round Trip

➜ config git:(master) ✗ spring encrypt mysecret --key foo
ea48c11ca890b7cb7ffb37de912c4603d97be9d9b1ec05c7dbd3d2183a1da8ee
➜ config git:(master) ✗ spring decrypt --key foo
ea48c11ca890b7cb7ffb37de912c4603d97be9d9b1ec05c7dbd3d2183a1da8ee
mysecret

Using this technique, we can encrypt all of our secrets and past the encrypted values in the
configuration file being served by our config server. The format for pasting the secret is to prepend the value
with {cipher} and wrap the entire value in single quotes. Listing 12-12 shows the full cloud-native-batch.
yml file with sample values for the encrypted values.

Listing 12-12. cloud-native-batch.yml

spring:
 datasource:
 driverClassName: org.mariadb.jdbc.Driver
 url: jdbc:mysql://localhost:3306/cloud_native_batch
 username: '{cipher}19775a12b552cd22e1530f745a7b842c90d903e60f8a934b072c21454321de17'
 password: '{cipher}abcdefa44d2db148cd788507068e770fa7b64c4d1980ef6ab86cdefabc118def'
 schema: schema-mysql.sql
 batch:
 initalizr:
 enabled: false
job:
 resource-path: s3://def-guide-spring-batch/inputs/*.csv
cloud:
 aws:
 credentials:
 accessKey: '{cipher}a7201398734bcd468f5efab785c2b6714042d62844e93f4a436bc4fd2e95fa4bcd

26e8fab459c99807d2ef08a212018b'

Chapter 12 ■ Cloud Native BatCh

423

 secretKey: '{cipher}40a1bc039598defa78b3129c878afa0d36e1ea55f4849c1c7b92e809416737
de05dc45b7eafce3c2bc184811f514e2a9ad5f0a8bb3e503282158b577d27937'

 region:
 static: us-east-1
 auto: false

With our configuration file created and the config server pointed to the right place, we can start
our config server and test our batch job using it. Start by launching the REST API via the normal Spring
boot java -jar rest-service/target/rest-service-0.0.1-SNAPSHOT.jar command we’ve used
previously. With the REST API running, we can launch the config server with the command spring cloud
configserver. This will launch the config server and point it to the configuration file we just committed in
our git repository. Once the config server is running we can launch our batch job. With these updates, you
should see no difference in the output of the job since the behavior is the same. The only difference is the
mechanism for obtaining the configuration for our job.

The second part of externalizing our configuration is using service binding via Eureka to connect our
batch job to the REST API. We’ll take a look at how that works in the next section.

Service Binding via Eureka
The other piece of externalizing configuration is the use of service binding. Spring Cloud Netflix contains
an implementation of Eureka, a service discovery tool provided by Netflix’s open source initiatives. Eureka
provides the ability for services to register themselves so that they can be discovered dynamically by other
services. There is also a client that allows services to be discovered by other services. In this section, we’ll
look at how to use service discovery via Eureka to allow our batch job to connect to the REST API without
explicitly configuring our job to do so.

Enabling service discovery works in a similar manner as cloud configuration did in the previous section.
Eureka has a client and a server. An application registers with the server identifying that it is available
to be discovered. Our REST API will register itself to be discoverable. Our batch job will then obtain the
information on how to communicate with the REST API from Eureka when it launches. This means that
all we will need to provide our job is where Eureka is and what services we need to talk to and Eureka will
handle the rest of the configuration for us. To make this happen, there are only a couple lines of code that
need to change.

We’ll start with the new dependency that is required. Eureka, like Cloud Config has a client component
and a server component. We will need to include the client dependency into our REST API and our batch
job. The dependency we will be adding is found in Listing 12-13.

Listing 12-13. Eureka Dependency

...
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-eureka</artifactId>
</dependency>
...

With that dependency added to both our batch job and our REST API, we’ll be able to configure each
appropriately. To start, let’s configure the REST API to register itself with Eureka on startup. In order for us to
do that, we will make two small changes. The first is adding the @EnableDiscoveryClient annotation to our
main class as shown in Listing 12-14.

Chapter 12 ■ Cloud Native BatCh

424

Listing 12-14. Adding @EnableDiscoveryClient

...
@EnableDiscoveryClient
@SpringBootApplication
public class RestServiceApplication {

 public static void main(String[] args) {
 SpringApplication.run(RestServiceApplication.class, args);
 }
}

With the new annotation added, our REST API will automatically register with Eureka on the localhost.
You can configure a remote instance via standard properties in a production use case or even use Spring
Cloud Config to specify its location.

The final change needed for the REST API is we need to add a boostrap.yml file to our project. This
file has the same format as an application.yml file; however, there is a minor difference. application.yml is
loaded as your ApplicationContext is loaded. However, for some Spring Cloud features, that is too late in
the process, so Spring Cloud works by creating a bootstrap ApplicationContext, which serves as a parent
context to your ApplicationContext. It is this bootstrap context that will load the bootstrap.yml. For our use
case, we need to configure the name of the application in the bootstrap.yml. This name is the name that our
application will register with Eureka. Listing 12-15 shows the bootstrap.yml for the REST API.

Listing 12-15. bootstrap.yml

spring:
 application:
 name: rest-service

With those changes, the REST API is ready to be used via Eureka. Now it’s onto our batch job. There are
four updates we’ll need to make to our batch job in order to consume the REST API via Eureka’s provided
configuration. The first is adding the client dependency. This is the same dependency that was provided in
Listing 12-13.

Once we’ve added the dependency, we can update our main class. Again, we’ll add the
@EnableDiscoveryClient annotation, however with a small modification. We wanted our REST API
to register with Eureka as a service. We don’t want to register our job as one, we just want to obtain the
configuration details for other services. Because of this, we’ll set the autoRegister value on the annotation
to false as shown in Listing 12-16.

Listing 12-16. CloudNativeBatchApplication

@EnableRetry
@EnableBatchProcessing
@SpringBootApplication
@EnableDiscoveryClient(autoRegister = false)
public class CloudNativeBatchApplication {

 public static void main(String[] args) {
 SpringApplication.run(CloudNativeBatchApplication.class, args);
 }
}

Chapter 12 ■ Cloud Native BatCh

425

Once we’ve enabled the Eureka client within our batch application, we need to configure our
RestTemplate to use it. This occurs via another annotation called @LoadBalanced. This annotation, added
to the bean definition for our RestTemplate, autoconfigures our RestTemplate to be able to use the
configurations provided via Eureka including things like client side load balancing. Listing 12-17 shows what
the updated bean definition for our RestTemplate looks like with this annotation applied.

Listing 12-17. LoadBalanced RestTemplate

...
@Bean
@LoadBalanced
public RestTemplate restTemplate() {
 return new RestTemplate();
}
...

The final update we need to apply to our batch job is to actually reference the service by name. In the
previous iteration of our EnrichmentProcessor, we specified the host and port of the REST API directly in
our code. This obviously is not an ideal in a cloud environment since you may not know the host name.
The benefit of using Eureka is that we just specify the name of the service and Spring Cloud handles the
rest. Our updated EnrichmentProcessor calls a service name (rest-service as specified in our bootstrap.
yml) instead of a host and port. Listing 12-18 shows the updated EnrichmentProcessor.

Listing 12-18. EnrichmentProcessor

...
public class EnrichmentProcessor implements ItemProcessor<Foo, Foo> {

 @Autowired
 private RestTemplate restTemplate;

 @Recover
 public Foo fallback(Foo foo) {
 foo.setMessage("error");
 return foo;
 }

 @CircuitBreaker
 @Override
 public Foo process(Foo foo) {
 ResponseEntity<String> responseEntity = this.restTemplate.exchange(
 "http://rest-service/enrich",
 HttpMethod.GET,
 null,
 String.class);
 foo.setMessage(responseEntity.getBody());

 return foo;
 }
}

Chapter 12 ■ Cloud Native BatCh

426

That’s all there is. Now to run these components, we’ll need to start Eureka locally like we did Spring
Cloud Config. To do that, we can use the Spring Cloud CLI and the command spring cloud eureka. If
you are starting both the config server and Eureka at the same time, you can simplify their startup via the
command spring cloud configserver eureka and both servers will be launched locally.

Once Eureka is up and running, you can navigate to its web dashboard via the URL provided in the
logs (defaults to http://localhost:8761) to see what services have been registered. On startup, none
will be registered. With Eureka started up, you can launch the REST API and monitor the dashboard for its
registration. Figure 12-1 illustrates what you should see once the REST API has registered with Eureka.

Figure 12-1. Eureka dashboard

You’ll notice that the ConfigServer also registers with Eureka by default. If you click on the status URL
for the REST API, you’ll get a whitelabeled error page because we haven’t configured anything for the Spring
Boot /info endpoint. However, if you modify the URL to be /enrich instead of /info at the end, you’ll see
the result of our API being called.

The last step is to run our job. You can do that via the same java commands we’ve done up to now.
Verifying the results should show the same behaviors in our previous run.

Externalizing configuration is one of the most important pieces of making cloud native processes
resilient to their new, dynamic environment. However, given the dynamic nature of the cloud, orchestration
mechanisms need to be compatible with them. In the next section, we’ll take a look at another Spring Cloud
project that handles the orchestration pieces of cloud native batch processing.

Chapter 12 ■ Cloud Native BatCh

427

Orchestrating Batch Processes
Spring Batch, by design, does not handle orchestration. There is no scheduler or other mechanism for
launching batch jobs at a given time within the framework. The framework delegates this responsibility to
other mechanisms to allow it to integrate with whatever orchestration tool makes the most sense for your
enterprise. Whether it’s a large scale enterprise scheduler like Control-M or something as simple as cron,
Spring Batch is able to run with it.

That being said, the Spring portfolio does have a tool for orchestrating data processing applications.
That tool is called Spring Cloud Data Flow. Unlike most of the Spring portfolio which consists of frameworks
and libraries you use to build custom applications with, Spring Cloud Data Flow is a fully built tool that you
use to orchestrate applications for either streaming or task based workloads.

An entire book could be written on the Spring Cloud Data Flow ecosystem.4 We are only going to cover a
very small subsection related to batch processing. I encourage you to explore books, online documentation,
and talks that have been given on the subject to learn more. For our needs, we’ll begin by answering the
question, what is Spring Cloud Data Flow?

Spring Cloud Data Flow
At its core, Spring Cloud Data Flow is an orchestration tool. Up to this point, if we’ve wanted to launch a
Spring Batch job using our Spring Boot über jar, we would type at the command line java -jar, the name of
the jar file, and any parameters required to run our job. And that works fine in development. You could even
argue that it may be okay to run an ad hoc job once in a while. But what about in a cloud environment? How
does your application get deployed to the cloud? How does it get launched with the correct parameters?
How do you monitor your batch job? How do you manage dependencies between batch jobs?

These are all use cases that Spring Cloud Data Flow solves. Spring Cloud Data Flow is a server
application that launches your batch jobs for you on the platform you are using. Spring Cloud Data
Flow’s server supports three different platforms: CloudFoundry, Kubernetes, and local. Each is capable of
deploying and launching your batch jobs.

Spring Cloud Data Flow consists of a Spring Boot application that serves as a server responsible for
deploying and launching your batch jobs on the given platform. You interact with that server via either an
interactive shell or a web based user interface. Both of those communicate with the server via a set of REST
APIs that you can also consume directly. Figure 12-2 shows a diagram of the architecture involved when
using Spring Cloud Data Flow.

4In fact, one has. Spring Cloud Data Flow by Felipe Gutierrez.

Chapter 12 ■ Cloud Native BatCh

428

It’s important to note that with Spring Cloud Data Flow, everything is Spring Boot based. The server is a
Spring Boot application, the shell is a Spring Boot application, and the apps Spring Cloud Data Flow deploys
are all typically Spring Boot applications.

To get started using Data Flow, we’ll need to download it. We’ll begin by downloading the server and
the shell via the wget commands:

wget https://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-
server-local/1.7.0.M1/spring-cloud-dataflow-server-local-1.7.0.M1.jar

wget https://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-
shell/1.7.0.M1/spring-cloud-dataflow-shell-1.7.0.M1.jar

With those jar files downloaded, you’ll need to configure the Spring Batch job repository. Fortunately,
Data Flow’s server comes preconfigured with the Spring Cloud Config client, so it will pick up the same
values for our job repository that we’ve already configured for our batch job. And that is important. In order
for Spring Cloud Data Flow to be useful from a monitoring perspective, it needs to be looking at the same Job
Repository tables that our batch job is writing to.

So with our config server already running from the previous section, all we need to do is start the Data
Flow server via the command java -jar spring-cloud-dataflow-server-local-1.7.0.M1.jar. This will
launch the Data Flow server and point it to our previously configured database. Once the server is up and
running, we can connect to it either via the web based user interface or the interactive shell.

We’ll begin by using the shell. To launch the shell, you can execute the command java -jar spring-
cloud-dataflow-shell-1.7.0.M1.jar. By default, it will automatically connect to our locally running
Spring Cloud Data Flow server. Once it is running, you should be presented with a prompt. This is an
interactive shell so if at any time you don’t know what to do, press tab and the shell will give you guidance.

App App

Spring Cloud Data Flow Server
Spring Cloud

Data Flow Shell

Spring Cloud
Data Flow GUI

App

Figure 12-2. Spring Cloud Data Flow architecture

Chapter 12 ■ Cloud Native BatCh

429

As we said earlier, Spring Cloud Data Flow is responsible for the orchestration of applications. When
dealing with Spring based applications, there are two main types of workloads Spring Cloud Data Flow
orchestrates: streams and tasks. Let’s take a look at tasks and how they work in this context.

Spring Cloud Task
When we think about most cloud native applications, our minds naturally go to things like REST APIs or
integration applications. All of these workloads have one key thing in common…they all are not meant to
end. If the REST API that powers your website goes down in the middle of the night, you are probably going
to get a page or call to fix it. However, as we well know, not all workloads fit nicely into that never-ending
model. That’s where tasks come in.

Spring Cloud Task is a framework for building microservices that have an expected end. Database
migrations, batch jobs, data science batch training of models. These all are workloads that we would like to
run in the cloud with a bit more robustness than just throwing a script up in a cloud and hoping it was run
successfully. Spring Cloud Task provides a series of functional and non functional features that allow you to
run finite workloads in the cloud in a production hardened manor. Spring Cloud Task includes the following
features:

•	 A Task Repository – Modeled after Spring Batch’s Job Repository, Spring Cloud Task
provides a repository backed by a database that stores a task’s start time, end time,
results, parameters that were passed to it, and any error that was thrown in the
course of the task’s execution.

•	 Listeners – Spring Cloud Task provides the ability to hook into the various execution
points of a task just like Spring Batch provides the ability to hook into the various
stages of a job’s lifecycle.

•	 Integration with Spring Cloud Stream – Spring Cloud Stream is a framework for
building message based microservices. Spring Cloud Task provides integration with
Spring Cloud Stream by implementing listeners for Spring Cloud Task and Spring
Batch that emit informational messages via messaging middleware. Things like a
task started or finished, a job started or finished, a step started or finished, etc.

•	 Integration with Spring Batch – Spring Cloud Task provides two main
integrations with Spring Batch. The first being the informational messages Spring
Cloud Task can enable as mentioned in the previous bullet. The other is the
DeployerPartitionHandler as discussed in Chapter 11.

For Spring Cloud Data Flow to have the visibility into a task the way it needs, the task must be a
Spring Cloud Task5. To make this happen, we will need to tweak the application we have been working on
throughout this chapter in two minor ways. First, we will need to add the dependency for the Spring Cloud
Task starter. This Maven entry can be found in Listing 12-19.

Listing 12-19. Spring Cloud Task starter dependency

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-task</artifactId>
</dependency>

5Or emulate the same functionality in non-Spring or polyglot situations.

Chapter 12 ■ Cloud Native BatCh

430

With Spring Cloud Task added to our project, we need to enable its functionality. To do this, the Spring
developers have made it really hard to do…you just add a single annotation. The @EnableTask annotation
bootstraps the Spring Cloud Task functionality we will need to interact with Spring Cloud Data Flow. We can
add that to our main class as shown in Listing 12-20.

Listing 12-20. Spring Cloud Task’s @EnableTask annotation

@EnableTask
@EnableRetry
@EnableBatchProcessing
@EnableDiscoveryClient(autoRegister = false)
public class CloudNativeBatchApplication {

 public static void main(String[] args) {
 SpringApplication.run(CloudNativeBatchApplication.class, args);
 }
}

Now that our application is a task, we can register it with Spring Cloud Data Flow which is what we will
look at next.

Registering and Running a Task
In order for Data Flow to be able to orchestrate the applications, it needs to know where the bits are. To tell
it, we register our applications, providing Data Flow with a name and coordinates of where the executable is.
This executable can be a jar file somewhere (Maven repository, hosted via http, etc.) or a Docker image in a
registry (Dockerhub, etc.). In our case, we’ll specify the Maven coordinates for the jar file we’ve been creating
up to now to register our application with Data Flow. To do this, we use the app register command. It
takes three arguments: name which is the name we want to give our application, type which is the type of
application (source, processor, sink, or task), and the URI specifying the location of the bits. In our case,
we’ll register the application using Maven coordinates since we can install it conveniently into our local
Maven repository. So the command we’ll use is app register --name fileImport --type task --uri
"maven://io.spring.cloud-native-batch:batch-job:0.0.1-SNAPSHOT". If you follow that command with
app list, you will see the fileImport task has been added.

Once we have our application registered, we need to create a task definition. A definition is like a
template for launching tasks. It’s a combination of the task name along with any properties that need to
be set in order to run it. A task definition uses a pipes and filters syntax similar to a normal UNIX shell so
it should feel very familiar. We’ll use the shell to also create our task definition. To do this, we’ll use the
command task create myFileImport --definition "fileImport". If we had any parameters that
needed to be set for our fileImport task, we could configure them in the definition in a format similar to
"fileImport --foo=bar". However, since we are going to use the config server to obtain our configuration,
it simplifies our definition greatly.

The last step for launching a job with Spring Cloud Data Flow is to determine how you want to launch
it. There are a few different mechanisms possible. You can launch a task on demand via the shell, GUI, or
REST API. You can schedule the task to be run if you are running Spring Cloud Data Flow on a platform that
supports it.6 Or you can take an event based approach by defining a stream that will launch a task when
something particular happens (the download of a file for example). In our case, we are just going to launch
the task ad hoc. To do this, we’ll use the shell to launch our task. The command for launching a task is task

6CloudFoundry and Kubernetes are the two platforms that support task scheduling as of this writing.

Chapter 12 ■ Cloud Native BatCh

431

launch myFileImport. If we had any additional command line arguments we wanted to add at runtime, we
could append them via the --arguments parameter (task launch myFileImport –arguements foo=bar) and
properties we can add via the --propeties parameter.

With the job running, we can monitor it via the data in the job repository. Again, this can be done via
the shell, REST API, or the GUI; however, it’s better represented via the GUI, so we’ll take a look there. To
go to the GUI, open a browser and navigate to http://localhost:9393/dashboard. Along the left is a set of
tabs for the various features of Spring Cloud Data Flow. Apps has a list of all the registered applications in
the system as well as the ability to register more of your own. Runtime illustrates the status of all the running
applications deployed via Spring Cloud Data Flow. Streams provides the ability to define and launch
message based microservices based on Spring Cloud Stream as a stream. Tasks provides the ability to define
and execute tasks as well as provides a view into the task repository used by Spring Cloud Task. Jobs is an
extension of the Task tab that provides the ability to browse the Spring Batch job repository. Analytics is a
tab for doing basic visualizations using Spring Cloud Data Flow’s built in analytics capabilities. Finally, Audit
Records is a way to view the audit flow that Spring Cloud Data Flow provides for security and compliance
use cases.

Let’s go to the Task tab. Within the task tab, you will see two additional tabs: Task and Executions.
The Task tab will list all the task definitions as well as provide the ability to create, launch, schedule, and
delete task definitions. However, we’ve already run our task from the shell, so we want to go over to the
Executions tab. Here, you’ll find a list of all the task executions that are in the task repository. In our case,
we’ll have an entry for the myFileImport task that we just ran. Figure 12-3 shows the dashboard with the
task execution data.

Figure 12-3. Task Executions in Spring Cloud Data Flow

Chapter 12 ■ Cloud Native BatCh

432

Figure 12-4. Task execution detail in Spring Cloud Data Flow

Within the dashboard, we can see the name, start and end times, and the exit code from the task once
it’s been run. By clicking on the #1 (the task’s execution id), we can see the details for this run including
any arguments that were passed, the external execution id (the id for the underlying system), if the task
contained a batch job and a link to its execution id, as well as the data that was on the original list. If an
exception had occurred while our job was running, its stack trace would appear in the exit message field on
this page. Figure 12-4 illustrates the details of a task execution.

Chapter 12 ■ Cloud Native BatCh

433

In our case, we not only care about the task execution but what happened with our batch job. We
can find out in one of two ways. Either clicking the Jobs tab on the left, or, since we’re already on the task
execution detail page, we can just click the link to the job execution id and it will take us directly to the detail
page for the job execution. On this page you’ll see all the same fields you’d see in the BATCH_JOB_EXECUTION
table as well as any job parameters. It also includes a summary view of each step executed within this job
execution. Figure 12-5 shows what to expect.

Figure 12-5. Job execution detail in Spring Cloud Data Flow

Chapter 12 ■ Cloud Native BatCh

434

Spring Cloud Data Flow provides a robust solution for orchestrating and monitoring batch jobs on a
cloud platform. It’s an important piece of the cloud native story for batch processing.

Summary
While the cloud is all the rage, batch processing may not have the sex appeal many other areas of modern
development have. However, as we’ve walked through in this chapter, running batch applications on a
modern cloud platform is not only possible, but provides real benefits. We’ll continue to expand on those
benefits when we look at scaling batch applications in the next chapter.

Figure 12-6. Step execution detail in Spring Cloud Data Flow

The last page of interest to us when monitoring our batch jobs is the step execution detail page. If we
click on the load link under Step Name at the bottom, we will see all the details of the step execution and its
related step execution context. Figure 12-6 illustrates the step execution detail page.

435© Michael T. Minella 2019
M. T. Minella, The Definitive Guide to Spring Batch, https://doi.org/10.1007/978-1-4842-3724-3_13

CHAPTER 13

Testing Batch Processes

Testing is everyone’s lease favorite part of programming. The funny thing is, like most things in life, once you
get good at it, testing actually is fun. It allows you to be more productive. It provides a safety net for you to try
new things. Programmatic tests also give you a test bed to try new technologies (most companies don’t mind
if you want to try something new in the tests but mind greatly if you try it in code that’s going to production).
You’ve spent the previous ten chapters writing code without the ability to prove that any of it works. This
chapter looks at how to exercise your code in a variety of ways so you can not only prove that it works as
designed, but also provide a safety net for when you change it.

This chapter covers the following topics:

•	 Unit tests with JUnit and Mockito: You begin with a high-level overview of the JUnit
and Mockito frameworks. Although you move past JUnit’s base functionality in
the later parts of the chapter, the concepts that Spring has incorporated into its
testing apparatus are based in the JUnit conventions, so knowing them helps you
understand what is going on in the more advanced tests. The chapter also covers
how the mock object framework Mockito can help you unit-test the components you
develop for your batch processes.

•	 Integration testing using Spring Batch’s utilities: Batch processing is a specific domain
and has its own execution requirements. This section will cover how to test batch
processes using some of the tools that Spring Batch provides.

The most fundamental aspect of testing begins with unit testing, so the discussion begins there.

Unit Tests with JUnit and Mockito
Probably the easiest to write and perhaps the most valuable, unit tests are the most overlooked type of
testing. Although the development done in this book hasn’t taken a test-driven approach for a number of
reasons, you’re encouraged to do so in your own development. As a proven way to improve not only the
quality of the software you produce but also the overall productivity of any individual developer and a team
as a whole, the code encased in these tests is some of the most valuable you can produce. This section looks
at how to use JUnit and Mockito to unit-test the components you develop for your batch processes.

What is a unit test? It’s a test of a single, isolated component in a repeatable way. Let’s break down that
definition to understand how it applies to what you’re trying to do:

•	 A test of a single: One. Unit tests are intended to test the smallest building blocks of
your application. A single method is typically the scope of a unit test.

•	 Isolated: Dependencies can wreak havoc on the testing of a system. Yet all systems
have dependencies. The goal of a unit test isn’t to test your integration with each of
these dependencies, but to instead test how your component works by itself.

https://doi.org/10.1007//978-1-4842-3724-3_13

Chapter 13 ■ testing BatCh proCesses

436

•	 In a repeatable way: When you fire up a browser and click through your application,
it isn’t a repeatable exercise. You may enter different data each time. You may click
the buttons in a slightly different order. Unit tests should be able to repeat the exact
same scenario time and time again. This allows you to use them to regression-test as
you make changes in your system.

The frameworks you use to execute the isolated testing of your components in a repeatable way are
JUnit, Mockito, and the Spring framework. The first two are common, multipurpose frameworks that
are useful for creating unit tests for your code. The Spring test utilities are helpful for testing more broad
concerns including the integration of the different layers and even testing job execution from end to end
(from a service or Spring Batch component to the database and back).

JUnit
Considered the gold standard for testing frameworks in Java,1 JUnit is a simple framework that provides
the ability to unit-test Java classes in a standard way. Whereas most frameworks you work with require
add-ons to things like your IDE and build process, Maven and most Java IDEs have JUnit support built in
with no additional configuration required. Entire books have been written on the topic of testing and using
frameworks like JUnit, but it’s important to quickly review these concepts. This section looks at JUnit and its
most commonly used features.

The current version of JUnit as of the writing of this book is JUnit 5.2.0. Although each revision contains
marginal improvements and bug fixes, the last major revision of the framework was the move from JUnit 4 to
JUnit 5, was a major overhaul to the API used to create test cases. Test cases? Let’s step back a minute and go
over how JUnit tests are structured.

JUnit Lifecycle
JUnit tests are broken down into what are called test cases. Each test case is intended to test a particular
piece of functionality, with the common divisor being at the class level. The common practice is to have
at least one test case for each class. A test case is nothing more than a Java class configured with JUnit
annotations to be executed by JUnit. In a test case exist both test methods and methods that are executed
to set preconditions and clean up post conditions after each test or group of tests. Listing 13-1 shows a very
basic JUnit test case.

Listing 13-1. A Basic JUnit Test Case

package com.apress.springbatch.chapter13;

import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.*;

public class StringTest {

 @Test
 public void testStringEquals() {
 String michael = "Michael";
 String michael2 = michael;
 String michael3 = new String("Michael");
 String michael4 = "Michael";

1Or at least it won the Betamax vs. VHS wars against frameworks like TestNG and others.

Chapter 13 ■ testing BatCh proCesses

437

 assertTrue(michael == michael2);
 assertFalse(michael == michael3);
 assertTrue(michael.equals(michael2));
 assertTrue(michael.equals(michael3));
 assertTrue(michael == michael4);
 assertTrue(michael.equals(michael4));
 }
}

There is nothing fancy about the unit test in Listing 13-1. All it does is prove that using == when
comparing Strings isn’t the same as using the .equals method. However, let’s walk through the different
pieces of the test. First, a JUnit test case is a regular POJO. You aren’t required to extend any particular class,
and the only requirement that JUnit has for your class is that it has a no argument constructor.

In each test, you have one or more test methods (one in this case). Each test method is required to be
public, to be void, and to take zero arguments. To indicate that a method is a test method to be executed by
JUnit, you use the @Test annotation. JUnit executes each method annotated with the @Test annotation once
during the execution of a given test.

The last piece of StringTest is the assert methods used in the test method. The test method has a
simple flow. It begins by setting up the conditions required for this test, and then it executes the tests and
validates the results at the same time using JUnit’s assert methods. The methods of the org.junit.Assert
class are used to validate the results of a given test scenario. In the case of StringTest in Listing 13-1, you’re
validating that calling the .equals method on a String object compares the contents of the String, whereas
using == to compare two Strings verifies that they’re the same instance only.

Although this test is helpful, there are a couple other useful annotations that you should know about
when using JUnit. The first two are related to the JUnit test lifecycle. JUnit allows you to configure methods to
run before each test method and after each test method so that you can set up generic preconditions and do
basic cleanup after each execution. To execute a method before each test method, you use the @BeforeEach
annotation; @AfterEach indicates that the method should be executed after each test method. Just like any
test method, the @BeforeEach and @AfterEach marked methods are required to be public, be void, and take
no arguments. Typically, you create a new instance of an object to be tested in the method marked with
@BeforeEach to prevent any residual effects from one test having an effect on another test. Figure 13-1 shows
the lifecycle of a JUnit test case using the @BeforeEach, @Test, and @AfterEach annotations.

@BeforeEach

@AfterEach
@Test

Figure 13-1. JUnit lifecycle

Chapter 13 ■ testing BatCh proCesses

438

As Figure 13-1 shows, JUnit executes those three methods in sequence for each method identified with
the @Test annotation until all the test methods in the test case have been executed. Listing 13-2 shows an
example test case using all three of the discussed annotations.

Listing 13-2. Test of Foo

...
public class FooTest {

 private Foo fooInstance;

 @BeforeEach
 public void setUp() {
 fooInstance = new Foo();
 }

 @Test
 public void testBar() {
 String results = fooInstance.bar();

 assertNotNull("Results were null", results);
 assertEquals("The test was not a success", "success", results);
 }

 @AfterEach
 public void tearDown() {
 fooInstance.close();
 }
}

JUnit provides a number of other variants on these features, including @BeforeAll to execute one-time
setup for all the test methods in a given test class, @Ignore to indicate test methods and classes to skip, and
@RunWith to indicate a class to run your test case other than the default used by JUnit. However, those are
outside of the scope of this book. The goal of this section is to give you the tools required to be able to test
your batch processes. Using just the @BeforeEach, @Test, and @AfterEach annotations along with the assert
methods available on JUnit’s Assert class, you can test the vast majority of scenarios required.

But there is a small catch. The earlier unit test definition said that unit testing is the testing of
components in isolation. How can you test a data access object (DAO) using JUnit when it depends on JDBC
and a database? How about testing an ItemStream, which requires you to use Spring Batch components as
some of its parameters? Mock objects fill this void, and you look at those next.

Mock Objects
It would be very easy to write software like the String object tested earlier, which has no dependencies.
However, most systems are complex. Batch jobs can require dozens or more classes and depend on external
systems including application servers, messaging middleware, and databases, just to name a few. All these
moving parts can be difficult to manage and provide interactions that are outside the scope of a unit test.
For example, when you want to test the business logic for one of your ItemProcessors, do you really need
to test that Spring Batch is saving the context correctly to your database? That is outside the scope of a unit
test. Don’t get this wrong—that does need to be tested, and you look at it later in this chapter. However, to

Chapter 13 ■ testing BatCh proCesses

439

test your business logic, you don’t need to exercise the various dependencies that your production system
interacts with. You use mock objects to replace these dependencies in your testing environment and exercise
your business logic without being effected by outside dependencies.

 ■ Note stubs are not mock objects. stubs are hard coded implementations that are used in testing where
mock objects are reusable constructs that allow the definition of the required behavior at run time.

Let’s take a minute to call out that mock objects aren’t stubs. Stubs are implementations that you write
to replace various pieces of an application. Stubs contain hard coded logic intended to mimic a particular
behavior during execution. They aren’t mock objects (no matter what they’re named in your project)!

How do mock objects work? There are essentially two different approaches most mock object
frameworks take: proxy based and class remapping. Because proxy-based mock objects are not only the
most popular but the easiest to use, let’s look at them first.

A proxy object is an object that is used to take the place of a real object. In the case of mock objects,
a proxy object is used to imitate the real object your code is dependent on. You create a proxy object with
the mocking framework and then set it on the object using either a setter or constructor. This points out an
inherent issue with mocking using proxy objects: you have to be able to set up the dependency through an
external means. In other words, you can’t create the dependency by calling new MyObject() in your method,
because there is no way to mock the object created by calling new MyObject().2 This is one of the reasons
Dependency Injection frameworks like Spring have taken off—they allow you to inject your proxy objects
without modifying any code.

The second form of mocking is to remap the class file in the class loader. The mocking framework
JMockit is the only framework I’m aware of that currently exploits this ability for mock objects. The concept
is provided by the java.lang.instrument.Insturmentation interface. You tell the classloader to remap the
reference to the class file it loads. So, let’s say you have a class MyDependency with the corresponding .class
file MyDependency.class, and you want to mock it to use MyMock instead. By using this type of mock objects,
you actually remap in the classloader the reference from MyDependency to MyMock.class. This allows you to
mock objects that are created by using the new operator. Although this approach provides more power than
the proxy-object approach because of its ability to inject literally any implementation into the classloader,
it’s also harder and more confusing to get going given the knowledge of classloaders you need in order to be
able to use all its features.

Mockito is a popular proxy-based mock object framework that provides a large amount of flexibility
coupled with an expressive syntax. It allows you to create easy-to-understand unit tests with relative ease.
Let’s take a look.

Mockito
Mockito allows you to mock the behaviors you care about and verify only the behaviors that matter.
In this section, you look at some of the functionality available with Mockito and use it to test Spring
Batch components.

Both Junit and Mockito are included in the spring-boot-starter-test dependency, so you don’t need to
do anything once you’ve created your project from Spring Initializr in order to get started writing your tests.

To see how Mockito works, let’s look at one of the classes you developed for the statement job in
Chapter 10. The CustomerItemValidator you created to validate that the customer existed is a prime
candidate to use mock objects, with its dependencies on an external JdbcTemplate. To refresh your memory,
Listing 13-3 shows the code from that ItemProcessor.

2This isn’t 100% true. PowerMock lets you mock the new operator. You can find more information on PowerMock at
http://code.google.com/p/powermock/.

http://code.google.com/p/powermock/

Chapter 13 ■ testing BatCh proCesses

440

Listing 13-3. CustomerItemValidator

...
@Component
public class CustomerItemValidator
implements Validator<CustomerUpdate> {

private final NamedParameterJdbcTemplate jdbcTemplate;

public static final String FIND_CUSTOMER =
 "SELECT COUNT(*) FROM CUSTOMER WHERE customer_id = :id";

public CustomerItemValidator(NamedParameterTemplate template) {
 this.jdbcTemplate = template;
}

@Override
public void validate(CustomerUpdate customer)
 throws ValidationException {

 Map<String, Long> parameterMap =
 Collections.singletonMap("id", customer.getCustomerId());

 Long count =
 jdbcTemplate.queryForObject(FIND_CUSTOMER,parameterMap,Long.class);

 if(count == 0) {
 throw new ValidationException(
 String.format("Customer id %s was not able to be found",
 customer.getCustomerId()));
 }
}
}

The method you’re testing for this class is obviously validate(). This method requires one external
dependency: an instance of a NamedParameterJdbcTemplate. To test this method, you have two test
methods, one for each of the method’s two execution branches (one for when a customer is found and one
for when it is not).

To start this test, let’s create the test-case class and the @BeforeEach method so your objects are built
for later use. Listing 13-4 shows the test case with the setUp() method identified with the @BeforeEach
annotation and three class attributes.

Listing 13-4. CustomerStatementReaderTest

...
public class CustomerItemValidatorTests {

 @Mock
 private NamedParameterJdbcTemplate template;

 private CustomerItemValidator validator;

Chapter 13 ■ testing BatCh proCesses

441

 @BeforeEach
 public void setUp() {
 MockitoAnnotations.initMocks(this);
 this.validator = new CustomerItemValidator(this.template);
 }
...
}

The two attributes of the test class are the class under test (CustomerItemValidator) and the one
dependency (NamedParameterJdbcTemplate). By using the @Mock annotation, you tell Mockito to create a
mock for the NamedParameterJdbcTemplate. When the test is executed, Mockito creates a proxy for each of
these for your test to use.

In the setup method, you do two things. First, you initialize the mocks with Mockito’s
MockitoAnnotations.initMocks method. This method initializes all the objects you previously indicated
with a mock object for you to use. This is a quick and easy way to create the mock objects you need in the
future.

The next thing you do in the setUp() method is create a new instance of the class to test. By creating
this class here, you can be sure that each test method contains a clean instance of the class under test. This
prevents any residual state in the test object from one method from having an impact on your other test
methods. After you create CustomerItemValidator, you inject the mock objects the same way Spring would
do it for you on bootstrapping the application.

Because you now have a new instance of the object under test and a fresh set of mock objects to satisfy
your dependencies on the Spring Batch framework as well as the database, you can write your test methods.
The first one, which tests when the customer is found by our query, is very easy; see Listing 13-5.

Listing 13-5. testValidCustomer()

...
@Test
public void testValidCustomer() {

 // given

 CustomerUpdate customer = new CustomerUpdate(5L);

 // when
 ArgumentCaptor<Map<String, Long>> parameterMap =
 ArgumentCaptor.forClass(Map.class);
 when(this.template.queryForObject(eq(CustomerItemValidator.FIND_CUSTOMER),
 parameterMap.capture(),
 eq(Long.class)))
 .thenReturn(2L);

 this.validator.validate(customer);

 // then

 assertEquals(5L, (long) parameterMap.getValue().get("id"));
}
...

Chapter 13 ■ testing BatCh proCesses

442

I’ve laid this test out in a behavior driven design style3 with the comments //given, //when, //then.
Given these inputs, when these actions occur, then these should be the results. In this example, given the
CustomerUpdate object with an id of 5, when we execute the validator, no exception should be thrown.

However, our code is slightly more complex than that. In the when section we are using a feature of
Mockito to capture the value passed to a mock. In this case, we’re capturing the Map being passed to our
NamedParameterJdbcTemplate, so we can assert that the parameter we’re passing is as expected. We also
tell our mock that when it receives a call with the parameters FIND_CUSTOMER, any Map (since we will be
capturing it for further analysis), and the class Long, then to return the value 2. When our method under test
is executed, when the correct parameters are passed to the mock, Mockito will return 2. Mockito returns type
appropriate defaults for all values when a return is not specified. In our case, if the method is called with any
other arrangement of parameters, it will return null (null is the default for an object) causing our test to fail.
Once Mockito returns a 2, our logic validates that it is not equal to 0 and does not throw an exception.

The second test method we will write is actually almost the same as the first. The main difference is we
will be expecting our code under test to throw an exception when the customer provided is not found so we
can assert that condition. Listing 13-6 shows the code for the testInvalidCustomer method.

Listing 13-6. testInvalidCustomer

...
@Test
public void testInvalidCustomer() {

 // given

 CustomerUpdate customerUpdate = new CustomerUpdate(5L);

 // when
 ArgumentCaptor<Map<String, Long>> parameterMap =
 ArgumentCaptor.forClass(Map.class);
 when(this.template.queryForObject(eq(CustomerItemValidator.FIND_CUSTOMER),
 parameterMap.capture(),
 eq(Long.class)))
 .thenReturn(0L);

 Throwable exception = assertThrows(ValidationException.class,
 () -> this.validator.validate(customerUpdate));

 // then

 assertEquals("Customer id 5 was not able to be found",
 exception.getMessage());
}
...

The testInvalidCustomer() method illustrates another new feature in JUnit 5, the assertThrows
method. In previous versions of JUnit you needed to handle assertions on exceptions in various ways (using
JUnit rules, catching the exception yourself, etc.). Now, we can validate that the type of exception that is
thrown is correct via the org.junit.jupiter.api.Assertions.assertThrows method. This method takes

3https://dannorth.net/introducing-bdd/

https://dannorth.net/introducing-bdd/

Chapter 13 ■ testing BatCh proCesses

443

the class of the exception to expect and a closure executing the code under test. The assertion will fail if no
exception or the wrong type of exception is thrown. It will pass and return the exception thrown if the type is
correct. From there, we can assert that the error message is what we expect in the // then section of our test.

These two tests provide us with the ability to reliably validate the behavior of our class as well as refactor
without fear of impacting other parts of the codebase. Unit tests are the foundation of a solid system. They
not only provide the ability to make the changes you need without fear, but also force you to keep your code
concise and serve as executable documentation for your system. However, you don’t build a foundation just
to look at it. You build on top of it. In the next section, you expand your testing capabilities.

Integration Tests with Spring Classes
The previous section discussed unit tests and their benefits. Unit tests, however useful they are, do have their
limits. Integration testing takes your automated testing to the next level by bootstrapping your application
and running it with the same dependencies you tried so hard to extract previously. This section looks at how
to use Spring’s integration test facilities to test interactions with various Spring beans, databases, and finally
batch resources.

General Integration Testing with Spring
Integration testing is about testing different pieces talking to each other. Does the DAO get wired correctly,
and is the Hibernate mapping correct so you can save the data you need? Does your service retrieve the
correct beans from a given factory? These and other cases are tested when you write integration tests.
But how do you do that without having to set up all the infrastructure and make sure that infrastructure is
available everywhere you want to run these tests? Luckily, you don’t have to.

The two primary use cases for integration testing with the core Spring integration-testing facilities
are to test database interaction and to test Spring bean interaction (was a service wired up correctly,
etc.). To test this, let’s look at the NamedParameterJdbcTemplate you mocked in the unit tests previously
(CustomerItemValidator). However, this time, you let Spring wire up CustomerItemValidator itself, and
you use an in-memory instance of HSQLDB as your database so that you can execute the tests anywhere,
anytime. HSQLDB is a 100% Java implemented database that is great for integration testing because it’s
lightweight to spool up an instance. To get started, let’s look at how to configure your test environment.

Configuring the Testing Environment
To isolate your test execution from external resource requirements (specific database servers, and so on),
you should configure a couple of things. Specifically, you should use a test configuration for your database
that creates an instance of HSQLDB for you in memory. To do that, you need to update your POM file to
include the HSQLDB database drivers. The specific dependency you need to add is shown in Listing 13-7.

Listing 13-7. HSQLDB’s Database Driver Dependency

...
<dependency>
 <groupId>org.hsqldb</groupId>
 <artifactId>hsqldb</artifactId>
 <scope>test</scope>
</dependency>
...

Chapter 13 ■ testing BatCh proCesses

444

Once we have the additional dependency in place, we can write our integration test. Spring Boot
provides a few facilities to make writing integration tests very easy. In fact, since we don’t need to define any
mock objects, our integration test will be shorter than our unit test.

To begin, we use the @ExtendWith(SpringExtension.class) annotation on our test class. This is
the JUnit 5 equivalent to @RunWith(SpringRunner.class). By using this annotation, we get all the Spring
goodness for our test. From there we’ll want to use Spring Boot’s autoconfiguration capabilities to create
our database and populate it. Like most things when using Spring Boot, this is very easy and requires only a
single annotation: @JdbcTest. This annotation will create an in-memory database for us and populate it with
the data Spring Boot normally uses (via our initialization scripts).

With our database automatically created and populated for us by Spring Boot, all we’ll need to do is
autowire in the DataSource related to it. Listing 13-8 shows the initial class definition with the class level
annotations on it and the autowired DataSource.

Listing 13-8. CustomerItemValidatorIntegrationTests

@ExtendWith(SpringExtension.class)
@JdbcTest
public class CustomerItemValidatorIntegrationTests {

 @Autowired
 private DataSource dataSource;

 private CustomerItemValidator customerItemValidator;
...
}

Once we have our DataSource, we can configure our setUp() method to create our validator.
Listing 13-9 has the setUp() method.

Listing 13-9. CustomerItemValidatorIntegrationTests Setup

...
@BeforeEach
public void setUp() {
 NamedParameterJdbcTemplate template =
 new NamedParameterJdbcTemplate(this.dataSource);
 this.customerItemValidator = new CustomerItemValidator(template);
}
...

With our validator created, we can create our tests. However, unlike our unit tests that require us to
mock the values, we can just make the calls and assert the results. Listing 13-10 lists functionaly the same
tests as we did in our unit tests, just as integration tests.

Listing 13-10. CustomerItemValidatorIntegrationTests Tests

...
@Test
public void testNoCustomers() {
 CustomerUpdate customerUpdate = new CustomerUpdate(-5L);

Chapter 13 ■ testing BatCh proCesses

445

 ValidationException exception =
 assertThrows(ValidationException.class,
 () -> this.customerItemValidator.validate(customerUpdate));

 assertEquals("Customer id -5 was not able to be found",
 exception.getMessage());

}

@Test
public void testCustomers() {
 CustomerUpdate customerUpdate = new CustomerUpdate(5L);
 this.customerItemValidator.validate(customerUpdate);
}
...

This time, for our test with no customers, we create a CustomerUpdate object with an id that we know
isn’t in our test data. We can then capture the exception that is thrown and assert the results just as we did in
our unit test. In our test that validates when a customer is found, we create a CustomerUpdate object with an
id that is in our test data and call the validator. If no exception is thrown, the test passes.

Integration tests like those found in CustomerItemValidatorIntegrationTests can be hugely
valuable when you’re developing a system. The ability to determine if things are being wired correctly, if
SQL is correct, and even if the order of operations between components of a system is correct can provide
considerable security when you’re dealing with complex systems.

The final piece of testing with Spring Batch is testing the Spring Batch components themselves.
ItemReaders, steps, and even entire jobs can be tested with the tools provided by Spring. The final section of
this chapter looks at how to use those components and test pieces of your batch process.

Testing Spring Batch
Although the ability to test components like a DAO or a service is definitely needed when you’re working
with robust batch jobs, working with the Spring Batch framework introduces a collection of additional
complexities into your code that need to be addressed in order to build a robust test suite. This section looks
at how to handle testing Spring Batch–specific components, including elements that depend on custom
scopes, Spring Batch steps, and even complete jobs.

Testing Step and Job Scoped Beans
As you’ve seen in many examples throughout this book, the step and job scopes defined by Spring Batch for
your Spring Beans is a very helpful tool. However, when you’re writing integration tests for components that
use the step scope, you run into an issue: If you’re executing those components outside the scope of a step,
how do those dependencies get resolved? In this section, you look at the two ways Spring Batch offers to
simulate that a bean is being executed in the scope of a step.

You’ve seen in the past how using the step scope allows Spring Batch to inject runtime values from the
job and/or step context into your beans. Previous examples include the injection of an input or output file
name, or criteria for a particular database query. In each of those examples, Spring Batch obtains the values
from the JobExecution or the StepExecution. If you aren’t running the step in a job, you don’t have either of
those executions. Spring Batch provides two different ways to emulate the execution in a step so that those
values can be injected. The first approach uses a TestExecutionListener.

Chapter 13 ■ testing BatCh proCesses

446

TestExecutionListener is a Spring API that allows you to define things to occur before or
after a test method. Unlike using JUnit’s @BeforeEach and @AfterEach annotations, using Spring’s
TestExecutionListener allows you to inject behavior across all the methods in a test case in a more
reusable way. Although Spring provides three useful implementations of the TestExecutionListener
interface (DependencyInjectionTestExecutionListener, DirtiesContextTestExecutionListener, and
TransactionalTestExecutionListener), Spring Batch provides two that handle what you’re looking for:
StepScopeTestExecutionListener and JobScopeTestExecutionListener. Since they both function the
same, we’ll use the StepScopeTestExecutionListener for the remainder of this section since it’s more
commonly used.

StepScopeTestExecutionListener provides two features you need. First, it uses a factory method
from your test case to obtain a StepExecution and uses the one returned as the context for the current test
method. Second, it provides a StepContext for the life of each test method. Figure 13-2 shows the flow of a
test being executed using StepScopeTestExecutionListener.

SpringExtension

@BeforeEach

getStepExecution

Close Step Management

@AfterEach

@Test

beforeTestMethod

afterTestMethod

OurTestStepScopeTestExecutionListner

Figure 13-2. Test execution using StepScopeTestExecutionListener

As you can see, the factory method you create in the test case (getStepExecution) is called before
each test method to obtain a new StepExecution. If there is no factory method, Spring Batch uses a default
StepExecution.

To test this, you configure a FlatFileItemReader to obtain the location of the file to read from the
jobParameters. The reader we’ll use is the one from our sample application that reads in the customer
update file. If you’ll remember, it was step scoped and a job parameter was used to provide the location of
the file to read. Listing 13-11 shows the configuration of that reader.

Listing 13-11. ImportJobConfiguration#customerUpdateItemReader

...
@Bean
@StepScope
public FlatFileItemReader<CustomerUpdate> customerUpdateItemReader(
 @Value("#{jobParameters['customerUpdateFile']}") Resource inputFile)
 throws Exception {

Chapter 13 ■ testing BatCh proCesses

447

 return new FlatFileItemReaderBuilder<CustomerUpdate>()
 .name("customerUpdateItemReader")
 .resource(inputFile)
 .lineTokenizer(customerUpdatesLineTokenizer())
 .fieldSetMapper(customerUpdateFieldSetMapper())
 .build();
}
...

We’ll use our reader to read in a test file consisting of three records, one for each of the three record
formats possible in the file. Our test will then assert that the reader is returning the correct type for each
record. Listing 13-12 shows an example of what the test file would look like.

Listing 13-12. Test customerUpdateFile.csv

2,5,,,Montgomery,Alabama,36134
3,5,,,,316-510-9138,2
1,5,Rozelle,Heda,Farnill

The customerUpdateItemReader defined in Listing 13-11 requires additional dependencies but we
won’t need to worry about their configuration. We’re actually just going to use the original configuration
from our application in our test. This provides the most accurate way of testing that all components are
working together as expected. This will require a bit of infrastructure on our test, so let’s begin looking at our
test with the infrastructure we need to put in place. Listing 13-13 lays out what we need.

Listing 13-13. FlatFileItemReaderTests Infrastructure

...
@ExtendWith(SpringExtension.class)
@ContextConfiguration(classes = {ImportJobConfiguration.class,
 CustomerItemValidator.class,
 AccountItemProcessor.class})
@JdbcTest
@EnableBatchProcessing
@SpringBatchTest
public class FlatFileItemReaderTests {

 @Autowired
 private FlatFileItemReader<CustomerUpdate> customerUpdateItemReader;
...
}

The first annotation in Listing 13-13 should be familiar since we used it in our integration test. The
@ExtendWith(SpringExtension.class) is what triggers Spring’s testing goodness. You’ll also notice
that this test is using the @JdbcTest annotation again. While we won’t use the database it creates in
our unit test, since we’re recycling the configuration of our application and it requires a database, we’ll
need to provide one. The next annotation of interest is the @ContextConfiguration annotation. This
annotation is where we specify the classes (or resources if you’re using XML configuration) to build your
ApplicationContext. In this case, we have three classes to provide. The ImportJobConfiguration class is
annotated with @Configuration and is where we do all of our @Bean style configuration. However, we do
have two other components defined that are used by beans in the ImportJobConfiguration. Those are the
CustomerItemValidator and the AccountItemProcessor. Both of these classes are annotated with the
@Component annotation and so also need to be included in the array of classes we provide.

Chapter 13 ■ testing BatCh proCesses

448

All of the annotations up to this point on our test have been either Spring Framework or Spring
Boot annotations. The last two are Spring Batch specific. The first one we’ve used in every example in
this book, @EnableBatchProcessing. Since we’re recycling the configuration from our application, our
ApplicationContext will contain our job and steps (don’t worry, they won’t be executed). Spring Batch will
require that those get wired up with a JobRepository which is why we’re using that annotation.

The last annotation is a newer one from Spring Batch 4.1: @SpringBatchTest. This annotation provides
a number of utilities for testing automatically to your ApplicationContext. Specifically it adds four beans:

•	 A JobLauncherTestUtils instance for launching jobs or steps

•	 A JobRepositoryTestUtils which can be used to create or JobExecutions from a
JobRepository

•	 A StepScopeTestExecutionListner and a JobScopeTextExecutionListner to allow
for testing of step and job scoped beans

The last beans are the ones of interest to us right now since our reader is step scoped. In order to use
the StepScopeTestExecutionListener to handle step scoped dependencies we need to create a method
that will provide a StepExecution populated with what we need. In our case, the reader we are testing
requires that a job parameter named customerUpdateFile pointing to the file to be read is provided. This
factory method is shown in Listing 13-14.

Listing 13-14. FlatFileItemReaderTests#getStepExecution

...
public StepExecution getStepExecution() {
 JobParameters jobParameters = new JobParametersBuilder()
 .addString("customerUpdateFile", "classpath:customerUpdateFile.csv")
 .toJobParameters();

 return MetaDataInstanceFactory.createStepExecution(jobParameters);
}
...

The getStepExecution() method in Listing 13-14 is pretty straightforward. We begin by creating a
JobParameters object with the customerUpdateFile parameter pointing to a test version of the customerFile.
csv. We then use the MetaDataInstanceFactory to create a StepExecution. The MetaDataInstanceFactory
is a utility class for creating Step and Job Execution instances. It’s different from the JobRepositoryTestUtils
in that the resulting Step or Job Execution from the MetaDataInstanceFactory is not persisted in a
JobRepository where as getting one from the JobRepositoryTestUtils is.

With the StepExecution factory method created, all we need to do now is write our test. Since we’re
really relying heavily on Spring Batch’s normal behavior, our test isn’t very complex. We will open the reader
that is injected into our test and then read the three records in our test file and validate that they return the
correct type. Listing 13-15 shows our test.

Listing 13-15. FlatFileItemReaderTests# testTypeConversion

...
@Test
public void testTypeConversion() throws Exception {
 this.customerUpdateItemReader.open(new ExecutionContext());

 assertTrue(this.customerUpdateItemReader.read() instanceof CustomerAddressUpdate);
 assertTrue(this.customerUpdateItemReader.read() instanceof CustomerContactUpdate);

Chapter 13 ■ testing BatCh proCesses

449

 assertTrue(this.customerUpdateItemReader.read() instanceof CustomerNameUpdate);
}
...

Integration tests of this nature can be very useful to test custom developed components such as custom
ItemReaders and ItemWriters or related components. However, as you can see, the value of testing Spring
Batch’s own components is minimal at best. Rest assured, it has test coverage for these very things. Instead,
it may be more useful to test your batch jobs by executing an entire step. The next section looks at the tools
Spring Batch provides to make that happen.

Testing a Step
Jobs are broken into steps. This book has established that. Each step is an independent piece of functionality
that can be executed with minimal impact on other steps. Because of the inherent decoupling of steps with
a batch job, steps become prime candidates for testing. In this section, you look at how to test a Spring Batch
step in its entirety.

In the step scope–based examples in the previous section, you tested the ItemReader of a job that
reads in a file. However let’s take a look at testing it within the context of a step. For this test, we’ll test the
execution of the step that ItemReader is used in. So what will happen is that we’ll execute the step (read our
file and update the database as expected) then we’ll be able to look at the results of the step to validate that it
executed correctly.

To begin, we’ll set up the infrastructure for our test. Listing 13-16 shows that the infrastructure for this
test is very similar to that included in our step scoped test.

Listing 13-16. ImportCustomerUpdatesTests Infrastructure

...
@ExtendWith(SpringExtension.class)
@JdbcTest
@ContextConfiguration(classes = {ImportJobConfiguration.class,
 CustomerItemValidator.class,
 AccountItemProcessor.class,
 BatchAutoConfiguration.class})
@SpringBatchTest
@Transactional(propagation = Propagation.NOT_SUPPORTED)
public class ImportCustomerUpdatesTests {

 @Autowired
 private JobLauncherTestUtils jobLauncherTestUtils;

 @Autowired
 private DataSource dataSource;

 private JdbcOperations jdbcTemplate;

 @BeforeEach
 public void setUp() {
 this.jdbcTemplate = new JdbcTemplate(this.dataSource);
 }
...
}

Chapter 13 ■ testing BatCh proCesses

450

The annotations at the start of this test match what we had in the step scoped test:

•	 @ExtendWith(SpringExtension.class): This enables all the Spring goodness in JUnit 5.

•	 @JdbcTest: Provides facilities including an in-memory database for tests that do
database testing.

•	 @ContextConfiguration: Provides the classes required to build our
ApplicationContext.

•	 @SpringBatchTest: Provides utilities for testing Spring Batch jobs. The specific one
we care about in this example is the JobLauncherTestUtils.

•	 @Transactional(propagation = Propagation.NOT_SUPPORTED): By default,
@JdbcTest will wrap each test method in a transaction and roll it back upon
completion. In normal unit testing scenarios, this makes sense. However, in our
case, Spring Batch manages the transactions for us and being wrapped in another
transaction actually causes an error. This annotation turns off the transactional
behavior of the @JdbcTest annotation.

With those annotations applied we can autowire in the facilities that are provided for us. In this case,
it is the JobLauncherTestUtils and the DataSource. We can also create a setUp() method that will create
a JdbcTemplate for us with the provided DataSource. We’ll use that in our test to validate the results of our
step’s execution.

Next let’s look at the starting data we’ll be using for this test. Table 13-1 illustrates each database field
and it’s expected value before running the test and after.

Table 13-1. Test Values

Database Column Name Initial Value Final Value

customer_id 5 5

first_name Danette Rozelle

middle_name null Heda

last_name Langelay Farnill

address1 36 Ronald Regan Terrace 36 Ronald Regan Terrace

address2 P.O. Box 33 P.O. Box 33

city Gaithersburg Montgomery

state Maryland Alabama

postal_code 99790 36134

ssn 832-86-3661 832-86-3661

email_address tlangelay4@mac.com tlangelay4@mac.com

home_phone 240-906-7652 240-906-7652

cell_phone 907-709-2649 907-709-2649

work_phone null 316-510-9138

notification_pref 3 2

Chapter 13 ■ testing BatCh proCesses

451

The initial values are already in the database, loaded via a script. The final values are the results of
executing our test with the file listed in Listing 13-17 as input.

Listing 13-17. Input File

2,5,,,Montgomery,Alabama,36134
3,5,,,,316-510-9138,2
1,5,Rozelle,Heda,Farnill

With the inputs and outputs established, we can write our test method. Surprisingly, the majority
of the code in the method is actually the code required to query the database for the results. We begin
our test method by defining the job parameters needed to run our step, which in this case are the same
parameters we used in our last test. Once we have our parameters defined, we can execute our step via a
call to this.jobLauncherTestUtils.launchStep("importCustomerUpdates", jobParameters);. This call
will find a Step called importCustomerUpdates and run it providing the job parameters we pass in. The last
part of our test is asserting that the data in the database is what we expect. We execute our query using a
JdbcTemplate, map the results to a Map, and then assert that each one is the value we expect. Listing 13-18
shows the complete test method.

Listing 13-18. ImportCustomerUpdatesTests#test

...
 @Test
 public void test() {
 JobParameters jobParameters = new JobParametersBuilder()
 .addString("customerUpdateFile", "classpath:customerFile.csv")
 .toJobParameters();

 JobExecution jobExecution =
 this.jobLauncherTestUtils.launchStep("importCustomerUpdates",
 jobParameters);

 assertEquals(BatchStatus.COMPLETED,
 jobExecution.getStatus());

 List<Map<String, String>> results =
 this.jdbcTemplate.query("select * from customer where customer_id = 5",
 (rs, rowNum) -> {

 Map<String, String> item = new HashMap<>();
 item.put("customer_id", rs.getString("customer_id"));
 item.put("first_name", rs.getString("first_name"));
 item.put("middle_name", rs.getString("middle_name"));
 item.put("last_name", rs.getString("last_name"));
 item.put("address1", rs.getString("address1"));
 item.put("address2", rs.getString("address2"));
 item.put("city", rs.getString("city"));
 item.put("state", rs.getString("state"));
 item.put("postal_code", rs.getString("postal_code"));
 item.put("ssn", rs.getString("ssn"));
 item.put("email_address", rs.getString("email_address"));
 item.put("home_phone", rs.getString("home_phone"));

Chapter 13 ■ testing BatCh proCesses

452

 item.put("cell_phone", rs.getString("cell_phone"));
 item.put("work_phone", rs.getString("work_phone"));
 item.put("notification_pref", rs.getString("notification_pref"));

 return item;
 });

 Map<String, String> result = results.get(0);

 assertEquals("5", result.get("customer_id"));
 assertEquals("Rozelle", result.get("first_name"));
 assertEquals("Heda", result.get("middle_name"));
 assertEquals("Farnill", result.get("last_name"));
 assertEquals("36 Ronald Regan Terrace", result.get("address1"));
 assertEquals("P.O. Box 33", result.get("address2"));
 assertEquals("Montgomery", result.get("city"));
 assertEquals("Alabama", result.get("state"));
 assertEquals("36134", result.get("postal_code"));
 assertEquals("832-86-3661", result.get("ssn"));
 assertEquals("tlangelay4@mac.com", result.get("email_address"));
 assertEquals("240-906-7652", result.get("home_phone"));
 assertEquals("907-709-2649", result.get("cell_phone"));
 assertEquals("316-510-9138", result.get("work_phone"));
 assertEquals("2", result.get("notification_pref"));
 }
}

The only thing left that you could possibly test is the entire job. In the next section, you move to true
functional testing and test a batch job from end to end.

Testing a Job
Testing an entire job can be a daunting task. Some jobs, as you’ve seen, can be quite complex and require
setup that isn’t easy to do. However, the benefits of being able to automate the execution and result
verification can’t be ignored. Thus you’re strongly encouraged to attempt to automate testing at this level
whenever possible. This section looks at how to use JobLauncherTestUtils to execute an entire job for
testing purposes. You’ll soon find out, it’s actually very similar to executing a step by itself.

For the sake of this test, we’ll use a job that is a bit easier to test than our statement job. In this case, we’ll
have a single step job that reads items from a list and writes them to System.out. While it may not be fancy,
it will allow us to focus on the elements of testing the job and not the job itself.

We’ll begin creating our test the same way we’ve done all of the other integration tests, with the
infrastructure. This test uses the same infrastructure we’ve used in the other integration tests. Listing 13-19
shows the annotations we use.

Listing 13-19. JobTests Infrastructure

...
@ExtendWith(SpringExtension.class)
@SpringBatchTest
@ContextConfiguration(classes = {JobTests.BatchConfiguration.class,
BatchAutoConfiguration.class})

Chapter 13 ■ testing BatCh proCesses

453

public class JobTests {

 @Autowired
 private JobLauncherTestUtils jobLauncherTestUtils;
...

With our infrastructure in place including the annotations and the JobLauncherTestUtils injected
into our test class, we need to define our job. For the sake of this example, we’ll define it within a static class
inside our test case. Listing 13-20 shows the code for our job.

Listing 13-20. Test Job

...
@Configuration
@EnableBatchProcessing
public static class BatchConfiguration {

 @Autowired
 private JobBuilderFactory jobBuilderFactory;

 @Autowired
 private StepBuilderFactory stepBuilderFactory;

 @Bean
 public ListItemReader<String> itemReader() {
 return new ListItemReader<>(Arrays.asList("foo", "bar", "baz"));
 }

 @Bean
 public ItemWriter<String> itemWriter() {
 return (list -> {
 list.forEach(System.out::println);
 });
 }

 @Bean
 public Step step1() {
 return this.stepBuilderFactory.get("step1")
 .<String, String>chunk(10)
 .reader(itemReader())
 .writer(itemWriter())
 .build();
 }

 @Bean
 public Job job() {
 return this.jobBuilderFactory.get("job")
 .start(step1())
 .build();
 }

Chapter 13 ■ testing BatCh proCesses

454

 @Bean
 public DataSource dataSource() {
 return new EmbeddedDatabaseBuilder().build();
 }
}
...

There should be nothing too complex in Listing 13-20. It’s a basic Spring configuration class using
the same builders we’ve used throughout the book to create our step and job. The ItemReader is the
ListItemReader provided by Spring Batch that will return the values foo, bar, and baz as the read() method
is called. The ItemWriter is a lambda that delegates the writing of each item to System.out.println, writing
each item out to standard out. The configuration finishes by configuring the step (a chunk based step with a
chunk size of 10 using the reader and writer previously defined) and the job consisting of the step just defined.

The last piece of the puzzle is to test this job. To do this, we use the JobLauncherTestUtils to launch
our job. In this case we don’t have any job parameters, so we can use the JobLauncherTestUtils.launchJob()
method to execute it. We don’t need to specify the job to use because since we only have one job in our
context, it will be autowired into the utility for us. This method call returns JobExecution which we can
validate that the BatchStatus was COMPLETED. We can also inspect the StepExecution and validate that it
also has a BatchStatus of COMPLETED as well as the number of items read and written. Listing 13-21 shows
the code for the test method itself.

Listing 13-21. JobTests#test

...
@Test
public void test() throws Exception {
 JobExecution jobExecution =
 this.jobLauncherTestUtils.launchJob();

 assertEquals(BatchStatus.COMPLETED,
 jobExecution.getStatus());

 StepExecution stepExecution =
 jobExecution.getStepExecutions().iterator().next();

 assertEquals(BatchStatus.COMPLETED, stepExecution.getStatus());
 assertEquals(3, stepExecution.getReadCount());
 assertEquals(3, stepExecution.getWriteCount());
}
...

Summary
From unit-testing a single method in any component in your system all the way to executing batch jobs
programmatically, you’ve covered the vast majority of testing scenarios you may encounter as a batch
programmer. This chapter began with an overview of the JUnit test framework and the Mockito mock
object frameworks for unit testing. You then explored integration testing using the classes and annotations
provided by Spring, including executing tests in transactions. Finally, you looked at Spring Batch–specific
testing by executing components that are defined in the step scope, individual steps in jobs, and finally the
entire job.

455© Michael T. Minella 2019
M. T. Minella, The Definitive Guide to Spring Batch, https://doi.org/10.1007/978-1-4842-3724-3

Index

��������� A
ActiveMQ, 19, 300–301
ActiveMQ/JMS, dependencies, 300
@AfterChunk, 86
@AfterJob, 63
afterJob method, 61
@AfterRead, 220
@AfterStep, 86–87, 222
Agile process

CI environment, 32
TDD, 32
tenets, 30
user stories

acceptance criteria, 31
narrative, 30
title, 30
universal remote control, 31
vs. use cases, 31

version control system, 32
Apache Geode, 245, 279, 286–291
Apache Maven, 329
application.properties, 46
AsyncItemProcessor, 381–384
AsyncItemWriter, 381–384

��������� B
Backing service, 409
BatchConfiguration.java, 54
BatchConfigurer, 112, 116, 117, 200, 202, 275
Batch Job description

data model, 40, 41
statement-generation process, 39

balance updation, 40
bank statement jobflow, 39
customer data, 39
customer monthly statements, 40
transaction data, 39

BATCH_JOB_EXECUTION_CONTEXT
table, 68, 108, 109

BATCH_JOB_EXECUTION_PARAMS
table, 49, 60, 108, 110

BATCH_JOB_EXECUTION
table, 95, 108, 109

BATCH_JOB_INSTANCE table, 108, 109
Batch jobs scaling

multithreaded steps
MultithreadedJobApplication, 375, 376
process, 374

parallel steps
bigtransactions.csv, 380–381
configuration, 377–380
parallelStepsJob logs, 381
process flow, 377

partitioning (see Partitioning,
job scaling)

remote chunking (see Remote chunking)
Batch processing

challenges, 3
history, 2, 3
in java, 4, 5
scaling, 4–5
with Spring Batch, 9–10

Batch process profiling
JVM arguments, 364
Spring batch applications (see Spring

batch applications)
VisualVM (see VisualVM)

BatchStatus, 90, 93, 134, 454
BATCH_STEP_EXECUTION_CONTEXT

table, 108, 111
BATCH_STEP_EXECUTION table, 95, 108,

110, 388, 399, 405
BeanWrapperFieldExtractor, 249, 255
BeanWrapperFieldSetMapper, 161, 167,

168, 172, 251, 320
@BeforeChunk, 86
beforeCommit method, 249
@BeforeJob, 63
beforeJob method, 61
@BeforeStep, 86

https://doi.org/10.1007/978-1-4842-3724-3

■ INDEX

456

��������� C
CallableTaskletAdapter, 72, 73
Chunk-based processing, 70
Chunk-based step, 79, 80
ChunkHandler, 400
ChunkListener, 86
Chunk oriented processing

commit interval, 79–81
Chunk-size configuration, 80–84
Circuit breaker

Hystrix, 418
@CircuitBreaker annotation, 418, 419
Circuit Breaker, cloud native

attributes, 418
@EnableRetry annotation, 419
EnrichmentController, 420
EnrichmentProcessor, 419
fallback method, 420
fault tolerant, 418
Spring Retry, 418

ClassifierCompositeItemProcessor, 240–242
ClassifierCompositeItemWriter, 322

classifierFormatJob, 324, 325
configuration and dependencies, 323, 324

CloudFoundry, 11, 395, 396, 417, 427
Cloud native batch

circuit breaker (see Circuit breaker, cloud
native)

twelve factor application (see Twelve factor
application)

CloudNativeBatchApplication, 411, 424
CommandLineArgsProvider, 397
CommandLineJobRunner, 44, 45, 49
Comma-separated value (CSV), 135
Common Business Oriented Language

(COBOL), 2, 4, 5, 158
CompletionPolicy interface, 81–84, 86
CompositeItemProcessor, 237–242
CompositeItemWriter

customerWithEmail.csv, 319, 320
output/step/job configuration, 320–321
sequence diagram, 319

@ContextConfiguration, 450
Continuous integration (CI), 32
Create/read/update/delete (CRUD)

operations, 209
Cursor vs. paging, 192
customerBatchWriter, 307
CustomerClassifier, 323
customer.csv file, 251
customerEmailFileReader, 307
CustomerItemPreparedStatementSetter.java, 266
CustomerItemValidatorIntegrationTests, 444
Customer.java, 250
customer.json, 189, 190

Customer relationship management (CRM)
application, 310

CustomerRepository, 292
Customer_update.csv File, 331
Customer updates

application.properties, 342
CustomerUpdateClassifier, 341
customer_update.csv File, 331
customerUpdateItemReader, 334
customerUpdateItemWriter, 342
customerValidatingItemProcessor, 339, 340
data model, 330, 331
domain objects, 335, 336
FieldSetMapper, 337, 338
FlatFileItemReader, 333
importCustomerUpdates, 333
importJobConfiguration, 332, 333
LineTokenizer, 334, 335
MySql Dependency, 342
record type, 331, 332

CustomerValidatingItemProcessor, 340
Custom record parsing

CustomerFileLineTokenizer, 168, 169
LineTokenizer Interface, 167

��������� D
DailyJobTimestamper.java, 59
Data access object (DAO), 136
Database-based ItemWriters

JdbcBatchItemWriter
BeanPropertyItemSqlParameterSource

Provider, 269, 270
configuration options, 265
customer table design, 264
formatJob configuration, 267, 268
formatJob execution, 268
job results, 268, 269
updation, 269

DefaultBatchConfigurer#getTransaction
Manager() method, 200

Delimited files
character configuration, 164
CustomerFieldSetMapper, 167
customerFile, 163
DelimitedLineTokenizer, 163
FieldSet Interface, 165, 166
FieldSetMapper Interface, 165
single street address, 164

Delimited file writing, formatJob
results, 255

DelimitedLineTokenizer, 163
DeployerStepExecutionHandler, 397
Decision, 82
DOM parser, 183
DownloadingJobExecutionListener, 414–415

■ INDEX

457

��������� E
Email, 306–307, 332
@EnableBatchIntegration, 390, 393, 402
@EnableBatchProcessing, 27, 112, 126, 128, 330,

333, 411, 419, 448
@EnableTask, 430
EnrichmentController, 417
EnrichmentProcessor, 415
Error handling, 29

empty input, 222, 223
job failure

ExitStatus, 150
ParseException, 149
TransactionReader, 148–149

logging invalid records, 220–222
NullPointerException, 148
skipping records, 218–220

Eureka
ApplicationContext, 424
bootstrap.yml, 424
@EnableDiscoveryClient

annotation, 423, 424
EnrichmentProcessor, 425
REST API, 423, 426
RestTemplate, 425
service discovery, 423

ExecutionContext, 161, 176, 207, 217,
233, 384, 409, 415

manipulation, 65–67
persistence, 67–69
relationship, 64
vs. web application, 64

ExitStatus, 74, 78, 86, 88, 90, 93, 96, 128, 137, 139,
144, 145, 150

@ExtendWith, 450
Externalizing configuration

service binding via Eureka (see Eureka)
Spring Cloud Configuration (see Spring

Cloud Config)
Extreme Programming (XP), 30

��������� F
FieldExtractor, 249, 251
FieldSet, 139, 158, 161, 163–165, 168, 171, 173
FieldSetFactory, 161
FieldSetMapper, 158, 161, 164, 165,

167, 169, 172, 333, 337
File-Based ItemWriters

FlatFileItemWriter
configuration options, 248, 249
customer.csv, 249
delimited files, 254–256
file management, 256–258

pieces, 247
text files, 249–252, 254

StaxEventItemWriter
attributes, 259, 260
formatJob configuration, 260–262
formatJob execution, XML, 263
OXM library Maven dependency, 262
XML, 260

Files
delimited, 163–167, 247, 249, 254–256
fixed width (see Fixed-width file)
JSON, 188–191
XML (see XML)

Filtering records, 242, 243, 338
FixedLengthTokenizer, 161
Fixed-width file

BatchConfiguration, 160, 161
copyFileJob, 162
copyFileStep, 162
customer file format, 158
Customer.java, 159
customer.txt, 159
simple writer, 161

Fixed-width input file vs. formatted output file, 249
FlatFileItemReader, 137, 139, 142, 174, 181, 333,

403, 446
configuration options, 157
pieces, 156

FlatFileItemReaderBuilder, 160, 251, 333
FlatFileItemWriter, see File-Based ItemWriters,

FlatFileItemWriter
FlatFileItemWriterBuilder, 251, 252, 255
flatFileOutputWriter Configuration, 255
Flat files, 156–158

custom record parsing, 167–169
delimited files, 163–167
fixed-width files, 158–163
multiline records, 174–176, 178, 179
multiple record formats, 169–174
multiple sources, 179–183

Flow, 304, 327
FlowBuilder, 380
FlowBuilder’s split method, 377
Flow step configuration, 100–102
formatJob execution, 254
formattedCustomers.txt, 254
FormattedTextFileJob.java, 252–253

��������� G
GemfireItemWriter, 288
getCustomer() method, 213
getJobExecutionContext() method, 65
getStepExecution method, 448
GUI-based programming, 3

■ INDEX

458

��������� H
HelloWorld.java, 46, 47
Hello, World Spring batch job

DataSource, 27
H2, 25
HelloWorldApplication class, 26, 27
Spring Intializr, 24, 26
Tasklet, 27

HelloWorld Tasklet, 71
Hibernate

annotations, 199, 200
cursor processing, 199
paged database, 202
POM, 199
properties, 200
query options, 201, 202

HibernateBatchConfigurer, 200–201
HibernateBatchConfigurer.java, 271–273
HibernateCursorItemReader, 199, 201, 202
HibernateItemWriter

configuration, 270
Customer.java, 271
HibernateImportJob.java, 273–275
POM additions, 270

HibernatePagingItemReader, 202, 209
Hystrix, 418

��������� I
If/Else logic, 88–92
Input and output options, 29
Integration tests

AccountItemProcessor, 447
CustomerItemValidator, 447
database interaction, 443
environment configuration

CustomerItemValidatorIntegration
Tests, 445

HSQLDB, 443
@JdbcTest, 444

FlatFileItemReader, 446, 447
job (see Testing jobs or steps)
@SpringBatchTest, 448
Spring bean interaction, 443
step (see Testing a step)
test file, 447

IntelliJ IDEA, 24
ItemPreparedStatementSetter Interface, 265
ItemProcessor, 18, 39, 40

composite
configuration, 239–242
processing, 238
validation, 238, 239
ZipCodeClassifier, 240

configuration, 235
filtering items, 242–244
input validation

Customer class, 227, 228
Customer object, 228, 229
job, 230–234

interface, 225, 226
scripting languages, 236
UpperCaseNameService, 234
validating, 227

ItemProcessorAdapter, 234
ItemReader, 13, 40, 50, 69, 137, 139, 142, 155–223
ItemReaderAdapter, 211, 213, 226, 234
ItemReaderinterface

custom input, 213, 215–218
database input

hibernate (see Hibernate)
JDBC (see Java database connectivity

(JDBC))
JPA, 202–204
Spring Data (see Spring Data)
stored procedure (see Stored procedure)

errors (see Error handling)
file input

flat files (see Flat files)
XML, 183–188

JSON, 188–191
ItemReader#read() method, 139
ItemStream, 67, 139, 215, 232, 233, 325–326, 438
ItemWriter, 13, 18, 40, 50, 69, 80, 139, 144, 162, 179,

211, 225, 333, 346–347, 383, 414
database-based (see Database-based

ItemWriters)
introduction, 246–247
Spring Data (see Spring Data ItemWriters)
step interaction, 246
types of, 245
See also specific ItemWriters

ItemWriterAdapter
configuration, 295, 296
CustomerService.java, 295
dependencies, 294
output, 296

��������� J
JacksonJsonObjectReader, 190
Java database connectivity (JDBC)

cursor vs. paging, 192
cursor processing, 192, 193
customer data model, 192
customerItemReader, 194
CustomerRowMapper, 193
JdbcPagingItemReader configuration, 197, 198
paged processing, 196

■ INDEX

459

java–jar copyJob command, 194
Java Messaging Service (JMS), 299
Java Persistence API (JPA), 202, 275
JavaScript, 4, 53, 188, 206, 236, 238, 239
JAXB Dependencies, 186, 187
JdbcBatchItemWriter, 143, 307
jdbcBatchWriter’s configuration, 266
JdbcCursorItemReader, 143, 195
JdbcOperations, 113, 449
JdbcPagingItemReader, 196–197, 209
JdbcTemplate, 191, 192, 195, 263, 264, 269, 450, 451
@JdbcTest, 450
JMockit framework, 439
Jms

JmsItemReader, 302–303
JmsItemWriter, 299–304

JmsItemWriter
configuration, 301
input and output, 301, 302
jmsFormatJob, 300
JmsItemReader, 302–303
JmsTemplate, 301
MessageConverter, 301
sample output, 303–304

Job
batch process, 43, 44
configuration, 46, 47
definition, 43
ending

completed state, 93–95
failed state, 95, 96
states description, 93
stopped state, 96–98

launching via REST, 125–134
lifecycle, 44
listeners (see Job listeners)
metadata, 118–121
parameters (see Job parameters

(JobParameter))
repository, 107–111
with Spring Boot, 123–125
stopping, 134–150
runners, 44, 45

JobBuilder, 47, 54, 62, 100, 102, 150
JobBuilder.build() method, 47
JobBuilderFactory, 27, 47, 144
JobExecution, 17, 45, 61, 64, 65, 90, 111, 389, 445
JobExecutionListener, 413
JobExecutionListenerSupport, 415
JobExplorer, 27, 115–116, 118–121, 396
JobInstance, 16, 17, 45, 93, 121, 130, 131
JobInterruptedException, 147
Job/JobInstance/JobExecution, relationship of, 45
JobLauncher, 16, 27, 45, 116–117, 125
JobLauncherCommandLineRunner, 28, 45, 123, 124

JobLauncherTestUtils.launchJob() method, 454
Job listeners

BatchConfiguration.java, 63, 64
callbacks, 61
creation, 61, 62
output, 62, 63

JobLoggerListener.java, 61, 63
JobOperator, 107
Job parameters (JobParameter)

accessing, 50–51
CommandLineJobRunner, 49
execution, 48, 49
failure output, 56
final output, 56, 57
identification, 50
increment, 57–60
JobParametersIncrementer, 57, 58,

129, 130, 134
late binding, 52
step scoped bean configuration, 53
type specification, 49, 50
validation, 53–57

JobParametersBuilder.getNextJobParameters(job)
method, 130

jobParametersExtractor bean, 105
JobParametersIncrementer, 134
JobRegistry, 27, 44
JobRegistryBackgroundJobRunner, 45
Job repository

definition, 107
in memory, 111
using relational database, 107–111

JobRepository, 15, 16, 27, 45, 98, 100, 107–114, 396,
397, 410, 446

JobRepositoryFactoryBean
in memory, 111
table prefix, 114, 116
transaction customization, 113

Job step configuration, 102–104
JpaItemWriter

formatJob configuration, 277
formatJob execution, 278
JpaBatchConfigurer.java, 275, 277
process, 275

JpaPagingItemReader
PagingQueryProvider, 196
SqlPagingQueryProviderFactoryBean, 196–197

JpaQueryProvider, 204
JsonItemReader, 189–191
JsonObjectReader, 189, 190
JUnit

@AfterEach, 437, 438
assert methods, 437
@BeforeEach, 437, 438
DAO, 438

■ INDEX

460

defined, 436
lifecycle, 437
@Test, 437, 438
test cases, 436
test method, 437

��������� K
Kubernetes, 11, 395, 396, 417, 427

��������� L
Launching a job, 125–134
LineAggregator

PassthroughLineAggregator, 80
LineMapper

DefaultLineMapper, 158, 160, 161, 169, 251
LineTokenizer, 158, 161, 163, 167, 168, 333, 334
Listeners

ItemReadListener, 220
ItemWriteListener, 317
JobExecutionListener, 61, 63, 86, 413
StepExecutionListener, 86, 145

logCustomerAddress method, 298

��������� M
Marshaller, 259, 262
MetaDataInstanceFactory, 448
MethodInvokingTaskletAdapter, 73–76
Mockito, 435, 439

CustomerItemValidator, 440
CustomerStatementReaderTest, 440–441
testInvalidCustomer, 442
testValidCustomer(), 441
validate() method, 440

MockitoAnnotations.initMocks method, 441
Mock objects

MyMock.class, 439
MyObject(), 439
proxy object, 439

MongoDB
dependencies, 206
features, 206
MongoItemReader, 206–208
MongoItemWriter, 279–281
output, 208
Spring Boot Starter, 207

MongoItemReader, 208
Monthly statement

AccountItemProcessor, 353, 354
AccountResultSetExtractor, 354, 355
individualStatementItemWriter, 358
MultiResoureItemWriter, 358

sample, 358, 359
statement data, 350–353
StatementHeaderCallback, 357
statementItemWriter, 358
StatementLineAggregator, 355–357

Multi-file input
MultiResourceItemReader, 179, 181, 413, 414

Multiline records
copyFileStep, 178
CustomerFileReader, 174–178
customer object updation, 175
multiline job, 179
toString() method, 178, 179

Multiple record formats
comma delimited, 170
copyJob, 173, 174
customerFileReader, 171, 172
flow of processing, 172
issues, 169
object code, 170
TransactionFieldSetMapper, 173
updated customerInputFile, 170

Multiple sources
CustomerFileReader, 181, 183
customer files processing, 180, 181
multiline job, 183

MultiResourceItemReader, 181, 413
MultiResourceItemWriter

configuration options, 311
CustomerOutputFileSuffixCreator, 314, 315
execution command, 313
file name creation, 314
header/footer flat file

CustomerRecordCountFooter
Callback, 317–318

delegateCustomerItemWriter, 318
header/footer XML fragments

configuration, 316
CustomerXmlHeaderCallback, 315–316

process, 311
ResourceSuffixCreator, 315
step and job configuration, 312, 313

Multithreaded steps, 17–18, 374–376

��������� N
Neo4j

Neo4jItemWriter, 282, 284
Netflix, 418
next() method, 191

��������� O
Object relational mapping (ORM)

technologies, 198, 202
@OnReadError, 220, 221

JUnit (cont.)

■ INDEX

461

org.springfamework.batch.item.file.LineMapper
interface, 156

org.springframework.batch.core.ChunkListener
interfaces, 86

org.springframework.batch.core.launch.
JobLauncher interface, 45

org.springframework.batch.core.launch.
support, 45

org.springframework.batch.core.
StepExecutionListener, 86

org.springframework.batch.item.file.
DefaultLineMapper, 160

org.springframework.batch.item.ItemReader<T>
interface, 155

org.springframework.batch.item.ItemWriter
interface, 246

org.springframework.core.task.SyncTaskExecutor, 45
org.springframework.core.task.TaskExecutor, 45

��������� P
PagingAndSortingRepository, 209
Parallelization

ItemProcessor/ItemWriter, 18
multithreaded steps, 17, 18
parallel steps, 18
partitioning, 19
remote chunking, 19

Parallel steps, 18, 376–381
Partitioning

Partitioner, 384, 386, 391, 397
PartitionHandler

DeployerPartitionHandler, 394–399
MessageChannelPartitionHandler,

384, 385, 389–394
TaskExecutorPartitionHandler, 385–388, 392

PartitionStep, 387
Partitioning, job scaling

DeployerPartitionHandler
BatchConfiguration, 395, 396
jps output, 398
JVMs, 398
partitioned job output, 399
Spring Cloud Task, 395
TaskLauncher, 394
Unix ps command, 398

MessageChannelPartitionHandler
AMQP template, 391
inbound flow, 391, 392
IntegrationFlow, 391
Java DSL, 391
JobExecution, 389
JVMs, 389
MasterConfiguration, 390
outbound flow, 390
RabbitMQ, 389

remote partitioned step, 389
WorkerConfiguration, 392

partitioner interface, 384
TaskExecutorPartitionHandler

BATCH_STEP_EXECUTION, 388
configuration, 387
ExecutionContext, 387
fileTransactionReader, 386
MultiResourcePartitioner, 386, 387
partitionedMaster, 388
SimpleAsyncTaskExecutor, 387
SyncTaskExecutor, 387

PassThroughCommandLineArgsProvider, 397
PatternMatchingCompositeLineMapper, 172
peak method, 176
@PeerCacheApplication, 288
Pivotal Gemfire, 279, 286–291
PlatformTransactionManager, 27, 112, 115, 117, 249
pom.xml file, 199
@PostMapping, 128
Processing models, 69
PropertyExtractingDelegatingItemWriter

customer service, 297
output, 298–299

��������� Q
Quartz, 130–134
QuartzJob class, 133
Quartz scheduler

BatchScheduledJob, 132
configuration, 133
JobBuilder, 133
JobDetails object, 131
output, 133, 134
scheduled job, 131, 132
SchedulerFactory, 131
SimpleScheduleBuilder, 133
Spring Batch process, 131

��������� R
RabbitMQ, 389, 394
RandomChunkSizePolicy, 85, 86
readDouble method, 173
read() method, 176, 194, 213
@Recover annotation, 419
Relational database, 107–111
Remote chunking

batch processing, 399
BOINC system, 399
ChunkHandler, 400
FlatFileItemReader, 403
inbound flow, 403
master configuration, 400–402
output, 405

■ INDEX

462

RabbitMQ, 402
RemoteChunkingWorkrerBuilder, 404
structure, 400
worker’s configuration, 403, 404

RemoteChunkingMasterStepBuilder
Factory, 402

RemotePartitioningWorkerStep
BuilderFactory, 393

Repository
CrudRepository, 291, 292
PagingAndSortingRepository, 209, 291

RepositoryItemReader, 210
RepositoryItemWriter, 291–292
resilience4j, 418
Resource, 160, 181, 190, 236, 247, 252, 260,

311, 384, 396
Restart control

allowStartIfComplete() method, 152
configuring restarts, 151, 152
preventing rerun

Nonrestartable Job, 151
preventRestart() call, 150
transactionJob, 150

Restarting a job, 16, 123, 129, 150, 153, 215
REST, job launching

curl command, 128
@EnableBatchProcessing, 128
ExitStatus, 128
HTTP POST, 128
JobLauncher interface, 125
JobLaunchingController, 126, 127
JobParameters, 130
JobParametersIncrementer, 129, 130
Quartz (see Quartz scheduler)
RunIdIncrementer, 130
SimpleJobLauncher, 125, 126
Spring Intializr, 126
TaskExecutor, 125

Retry, 29, 40, 86
RowMapper, 156, 158, 193–194, 196, 205, 308, 353
RunIdIncrementer, 58

��������� S
SAX parser, 183
Scalability, 29
Scheduling, 130–134
Scope

job scope, 445–447
step scope, 445–447

ScriptItemProcessor, 226, 236–237
Scrum, 30
Service discovery

Eureka, 423

setResource method, 181
SimpleEnvironmentVariablesProvider, 397
SimpleMailMessageItemWriter

customerImport job, 304
Customer.java, 305–306
customer table, 306
customerWithEmail.csv, 305
execution, 309
ItemReader and ItemWriter, 307, 308
Java mail dependencies, 306, 307
job configuration, 308, 309

Simple Spring Batch application
application.yml, 416
JdbcBatchItemWriter, 414
JobConfiguration, 411–413
REST API, 417
Spring Intializr, 411
StepBuilderFactory, 414

Skip, 86, 110, 172, 218, 219
Spinnaker, 409
Split, 168, 377, 380, 386
Spring Batch

ecosystem, 10
ETL processing, 6
features, 11
framework, 8, 9
Job, 9, 10
local and remote parallelization, 10
message processing, 8
parallel processing, 6
spring boot, 10
spring cloud data flow, 6, 7, 11
Spring Cloud Task, 11
standardizing I/O, 10
working, 11
See also Batch processing

Spring batch applications
CPU profiling

AccountItemProcessor, 368, 370, 371
bottlenecks, 367
PricingTiersItemProcessor, 368, 369
statement job, 367, 368, 370

memory profiling
AccountItemProcessor, 371
memory usage, 373
OutOfMemoryException, 372, 373
PricingTierItemProcessor, 372
statement job, 372, 373

Spring batch architecture
batch job, 14

chunk based step, 14
decoupling features, 15
interface, 15
tasklet step, 14

documentation, batch jobs sample, 20, 21

Remote chunking (cont.)

■ INDEX

463

job execution
JobLauncher, 16
JobRepository, 15, 16

parallelization (see Parallelization)
StepExecution, 16

Spring Batch infrastructure
BatchConfigurer interface, 112
customization

JobExplorer, 115, 116
JobLauncher, 116, 117
JobRepository, 112–114

job metadata, 118–121
Spring Boot, 117
transaction manager, 114, 115

Spring Batch job, 14
Spring Batch project

Github, 21
IntelliJ IDEA, 24
parameters, 21
Spring Initializr, 21, 22
STS, 22, 23

@SpringBatchTest, 450
Spring Beans, 27, 445
Spring Boot, 10, 27, 28, 117, 394
@SpringBootApplication annotation, 27
Spring Boot, job launching

ApplicationRunner, 123
CommandLineRunner, 123
multiple jobs, 125
Spring Batch job, 123

Spring Boot project
current balance transaction

applyTransactionsReader, 348
applyTransactions Step, 347, 348
applyTransactionsWriter, 349
JdbcBatchItemWriter, 349
JdbcCursorItemReader, 348

customer id validation
CustomerItemValidator, 338, 339
customerValidatingItemProcessor, 339

customer updates (see Customer updates)
monthly statement (see Monthly statement)
Spring Initializr, 328–330
transactions

domain object, 343, 344
getTransactionAmount method, 344, 345
importTransactions, 345
JaxbDateSerializer, 344, 345
Jaxb2Marshaller, 346
transaction file, 343
transactionItemReader, 346, 347

spring-boot-starter-data-mongodb, 280
Spring Boot über jar, 408
Spring Cloud, 420, 427
Spring Cloud CLI, 421, 422, 426

Spring Cloud Config
client, 421
encryption, 422
git repository, 422
REST API, 423
Spring Cloud CLI, 421
spring.cloud.config.failFast, 421

Spring Cloud Config Server, 407, 420
Spring Cloud Data Flow, 427

applications orchestration, 429
architecture, 428
Audit Records, 431
GUI, 431
job execution, 433
Maven repository, 430
REST APIs, 427
shell, 430
Streams, 431
step execution, 434
task and executions, 431, 432
wget commands, 428

Spring Cloud Deployer, 384–385
Spring Cloud Netflix, 423
Spring Cloud project, 407
Spring Cloud Task, 11, 61, 395, 429–434
Spring Data, 206, 220, 291

MongoDB, 206–208
repository, 209, 210

Spring Data ItemWriters
Apache Geode, 291
customer mapping, 291, 292
importJob, 292–294
MongoDB

customer.java, 279, 280
mongoFormatJob, 280–281
Robot 3T, 282

Neo4J
customer mapping, 283
dependencies, 283, 284
importJob, 284, 285
output, 286

Pivotal Gemfire
configuration, 288
GemfireImportJob, 288–291
Neo4jImportJob, 287
pom.xml, 287, 288

repository, 291
Spring Initializr, 21, 328–330
Spring Retry library, 418
Spring test utilities, 436
Spring Tool Suite (STS), 22, 23
SqlPagingQueryProviderFactoryBean, 196, 197
Statement job, 327, 328

batch job, 35
batch process, 34

■ INDEX

464

plain text, 34
printed bank statement, 32, 33
user stories, 35

account summary, 38
import transactions, 36
print statement, 37
record formats, 35, 36
update transactions, 37

StaxEventItemReader, 185, 188, 189, 259, 346
StaxEventItemWriter, 259–263
StAX parser, 183
StepBuilder, 27
StepBuilderFactory, 27, 47, 142–144
StepContext.getJobExecutionContext()

method, 65
StepExecution, 17, 90, 445, 446, 448, 454
StepExecution.setTerminateOnly()

method, 145, 146
Step flow

conditional logic, 88–90, 92, 93
ending a job, 93–98
externalizing flows, 98–105
RandomDecider, 91
wild cards, 90

Steps
configuration, 70
flow (see Step flow)
listeners

configuration, 87, 88
logging step start, 86, 87

tasklet, 70
@StepScope, 413
StepScopeTestExecutionListener, 446, 448
Stopping a job

natural completion, 134
programmatic end

error handling (see Error handling)
StepExecution, 146–148
stop transition (see Stop

transition, job)
Stop transition, job

applyTransactionsStep, 142, 143
CSV files, 135
custom ItemReader, 137
data model, 135
domain objects, 136, 137
generateAccountSummaryStep, 143
importTransactionFileStep, 140, 142
ItemStream, 139
JdbcBatchItemWriter, 142
Spring Intializr, 136
StepExecutionListener#AfterStep, 139
steps, 135
TransactionApplierProcessor, 140

TransactionDao, 139, 140
transactionJob, 144, 145
TransactionReader, 138, 139

Stored procedure
definition of, 204
ItemReader, 205, 206
JpaQueryProvider, 205

StoredProcedureItemReader, 205
Streaming API for XML (StAX)

implementation, 259
StreamUtils, 415
Stubs, 439
SystemCommandTasklet, 76–79

��������� T
TaskExecutor, 45, 78
Tasklet, 69, 71
TaskletAdapter, 72–79
Tasklet vs. chunk processing, 69
Tasklet.execute method, 69
Tasklet step, 70, 71
Test-driven development (TDD), 32
TestExecutionListener, 445
Testing jobs or steps

code, 453, 454
infrastructure, 452
JobLauncherTestUtils, 448, 450–454
test method, 454

Testing job or step scoped components
JobScopeTestExecutionListener, 446
StepScopeTestExecutionListener, 446

Testing a step
importCustomerUpdates, 451, 452
infrastructure, 449
test values, 450, 451

Tomcat, 410
toString() method, 178
@Transactional, 450
Transition, 14, 47, 70, 88, 90, 135,

145, 147, 407
Travis CI, 32
Twelve factor application

administration processes, 411
backing service, 409
build, release, run, 409
codebase, 408
concurrency, 410
configuration, 409
dependencies, 408
dev/prod parity, 410
disposability, 410
log files, 410
port binding, 409
processes, 409

Statement job (cont.)

■ INDEX

465

��������� U
Unit test, 435
Unmarshaller, 186, 188, 189, 259
User stories, 30

��������� V, W
Validating input, 227
ValidatingItemProcessor

validator, 227, 229, 233
VisualVM

Java process, 363
Monitor tab, 364
overview, 363, 364

Sampler tab, 365, 366
Threads tab, 364, 365

��������� X, Y, Z
XML

copyFileStep, 188
customer sample file, 184
fragment, 184
JAXB, 186, 187
Jaxb2Marshaller, 188
parsers, 183, 184
Spring Batch, 185
StaxEventItemReader, 185, 186

XML header, 316

	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Foreword
	Chapter 1: Batch and Spring
	A History of Batch Processing
	Batch Challenges
	Why Do Batch Processing in Java?
	Other Uses for Spring Batch
	The Spring Batch Framework
	Defining Jobs with Spring
	Managing Jobs
	Local and Remote Parallelization
	Standardizing I/O
	The Rest of the Spring Batch Ecosystem
	Spring Boot
	Spring Cloud Task
	The Spring Cloud Data Flow

	And All the Features of Spring

	How This Book Works
	Summary

	Chapter 2: Spring Batch 101
	The Architecture of Batch
	Examining Jobs and Steps
	Job Execution
	Parallelization
	Multithreaded Steps
	Parallel Steps
	Asynchronous ItemProcessor/ItemWriter
	Remote Chunking
	Partitioning

	Documentation

	Project Setup
	Obtaining Spring Batch
	The Web Site
	Spring Tool Suite
	IntelliJ IDEA

	It’s the Law: Hello, World!
	Running Your Job
	Summary

	Chapter 3: Sample Job
	Understanding Agile Development
	Capturing Requirements with User Stories
	Capturing Design with Test-Driven Development
	Using a Version-Control System
	Working with a True Development Environment

	Understanding the Requirements of the Statement Job
	Designing a Batch Job
	Job Description
	Importing Customer Data
	Importing Transaction Data
	Calculating Current Balance
	Generating Customer Monthly Statements

	Understanding the Data Model

	Summary

	Chapter 4: Understanding Jobs and Steps
	Introducing a Job
	Tracing a Job’s Lifecycle

	Configuring a Job
	Basic Job Configuration
	Job Parameters
	Accessing Job Parameters
	Validating Job Parameters
	Incrementing Job Parameters

	Working with Job Listeners
	ExecutionContext
	Manipulating the ExecutionContext
	ExecutionContext Persistence

	Working with Steps
	Tasklet vs. Chunk Processing
	Step Configuration
	Tasklet Step

	Understanding the Other Types of Tasklets
	CallableTaskletAdapter
	MethodInvokingTaskletAdapter
	SystemCommandTasklet
	Chunk-Based Step
	Chunk-Size Configuration
	Step Listeners

	Step Flow
	Conditional Logic
	Ending a Job
	Externalizing Flows

	Summary

	Chapter 5: JobRepository and Metadata
	What Is the Job Repository?
	Using a Relational Database
	The In-Memory Job Repository

	Configuring the Batch Infrastructure
	The BatchConfigurer Interface
	Customizing the JobRepository
	Customizing the TransactionManager
	Customizing the JobExplorer
	Customizing the JobLauncher
	Database Configuration

	Using Job Metadata
	The JobExplorer

	Summary

	Chapter 6: Running a Job
	Starting a Job with Spring Boot
	Launching a Job via REST
	Scheduling with Quartz

	Stopping a Job
	The Natural End
	Programmatic Ending
	Using the Stop Transition
	Stopping with StepExecution

	Error Handling
	Job Failure

	Controlling Restart
	Preventing a Job from Being Rerun
	Configuring the Number of Restarts
	Rerunning a Complete Step

	Summary

	Chapter 7: ItemReaders
	The ItemReader Interface
	File Input
	Flat Files
	Fixed-Width Files
	Delimited Files
	Custom Record Parsing
	Multiple Record Formats
	Multiline Records
	Multiple Sources

	XML

	JSON
	Database Input
	JDBC
	JDBC Cursor Processing
	JDBC Paged Processing

	Hibernate
	Cursor Processing with Hibernate
	Paged Database Access with Hibernate

	JPA
	Stored Procedures
	Spring Data
	MongoDB
	Spring Data Repository

	Existing Services
	Custom Input
	Error Handling
	Skipping Records
	Logging Invalid Records
	Dealing with No Input

	Summary

	Chapter 8: ItemProcessors
	Introduction to ItemProcessors
	Using Spring Batch’s ItemProcessors
	ValidatingItemProcessor
	Input Validation

	ItemProcessorAdapter
	ScriptItemProcessor
	CompositeItemProcessor

	Writing Your Own ItemProcessor
	Filtering Items

	Summary

	Chapter 9: ItemWriters
	Introduction to ItemWriters
	File-Based ItemWriters
	FlatFileItemWriter
	Formatted Text Files
	Delimited Files
	File Management Options

	StaxEventItemWriter

	Database-Based ItemWriters
	JdbcBatchItemWriter
	HibernateItemWriter
	JpaItemWriter

	Spring Data ItemWriters
	MongoDB
	Neo4J
	Pivotal Gemfire and Apache Geode
	Repository

	Alternative Output Destination ItemWriters
	ItemWriterAdapter
	PropertyExtractingDelegatingItemWriter
	JmsItemWriter
	SimpleMailMessageItemWriter

	Multipart ItemWriters
	MultiResourceItemWriter
	Header and Footer XML Fragments
	Header and Footer Records in a Flat File

	CompositeItemWriter
	ClassifierCompositeItemWriter
	The ItemStream Interface

	Summary

	Chapter 10: Sample Application
	Reviewing the Statement Job
	Setting Up a New Project
	Importing Customer Updates
	Validating Customer ID
	Writing Customer Updates

	Importing Transactions
	Reading Transactions
	Writing Transactions

	Applying Transactions to Current Balance
	Reading the Transaction Data
	Updating the Account Balance

	Generating Monthly Statement
	Reading the Statement Data
	Enrich the Statement with Accounts
	Writing Statements

	Summary

	Chapter 11: Scaling and Tuning
	Profiling Your Batch Process
	A Tour of VisualVM
	Profiling Spring Batch Applications
	CPU Profiling
	Memory Profiling

	Scaling a Job
	Multithreaded Steps
	Parallel Steps
	Configuring the Parallel Steps

	AsyncItemProcessor and AsyncItemWriter
	Partitioning
	TaskExecutorPartitionHandler
	MessageChannelPartitionHandler
	DeployerPartitionHandler

	Remote Chunking

	Summary

	Chapter 12: Cloud Native Batch
	Twelve Factor Applications
	Codebase
	Dependencies
	Config
	Backing Services
	Build, Release, Run
	Processes
	Port Binding
	Concurrency
	Disposability
	Dev/Prod Parity
	Logs
	Admin Processes

	A Simple Batch Job
	Circuit Breaker
	Externalizing Configuration
	Spring Cloud Config
	Service Binding via Eureka

	Orchestrating Batch Processes
	Spring Cloud Data Flow
	Spring Cloud Task
	Registering and Running a Task

	Summary

	Chapter 13: Testing Batch Processes
	Unit Tests with JUnit and Mockito
	JUnit
	JUnit Lifecycle

	Mock Objects
	Mockito

	Integration Tests with Spring Classes
	General Integration Testing with Spring
	Configuring the Testing Environment

	Testing Spring Batch
	Testing Step and Job Scoped Beans
	Testing a Step
	Testing a Job

	Summary

	Index

