
www.apress.com

Carter
SQL Server Alw

aysOn Revealed

SQL Server
AlwaysOn
Revealed

Supporting 24 x 7 operations with
continuous uptime
—
Peter A Carter

SQL Server AlwaysOn Revealed

F O R P R O F E S S I O N A L S B Y P R O F E S S I O N A L S® THE E XPER T ’S VOICE® IN SQL S E R V E R

Get a fast start to using AlwaysOn, the SQL Server solution to high-availability and disaster
recovery. Read this short, 150-page book that is adapted from Peter Carter’s Pro SQL Server
Administration to gain a solid and accurate understanding of how to implement systems
requiring consistent and continuous uptime.

Begin with an introduction to high-availability and disaster recovery concepts such as
Recovery Point Objectives (RPOs), Recovery Time Objectives (RTO), availability levels, and the
cost of downtime. Then move into detailed coverage of implementing and configuring the
AlwaysOn feature set in order to meet the business objectives set by your organization.

SQL Server AlwaysOn Revealed offers real-world advice on how to build and configure the
most appropriate topology to meet the high-availability and disaster recovery requirements
you are faced with. Content includes strong coverage on implementing clusters, on building
 AlwaysOn failover clustered instances, and on configuring AlwaysOn Availability Groups. This is
a practical and hand-on book to get you started quickly in using one of the most talked-about
SQL Server feature sets.

• Teaches you to build HA and DR solutions using the AlwaysOn feature set
• Provides real-world advice on configuration and performance considerations
• Demonstrates administrative techniques for the AlwaysOn feature set

Shelve in:
Databases/MS SQL Server

User level:
Intermediate–Advanced

SOURCE CODE ONLINE9 781484 217627

52499
ISBN 978-1-4842-1762-7

www.allitebooks.com

http://www.allitebooks.org

SQL Server AlwaysOn
Revealed

Peter A Carter

www.allitebooks.com

http://www.allitebooks.org

SQL Server AlwaysOn Revealed

Copyright © 2015 by Peter A Carter

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1762-7

ISBN-13 (electronic): 978-1-4842-1763-4

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Jonathan Gennick
Technical Reviewer: Alex Grinberg and Louis Davidson
Editorial Board: Steve Anglin, Louise Corrigan, Jim DeWolf, Jonathan Gennick, Robert Hutchinson,

Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Jill Balzano
Copy Editor: Rebecca Rider
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

This book is dedicated to the beloved memory of Margaret Carter (1938-2015)

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ��� xi

About the Technical Reviewers ��� xiii

 ■Chapter 1: High Availability and Disaster Recovery Concepts ������������������������������ 1

 ■Chapter 2: Understanding High Availability and Disaster Recovery Technologies ����� 7

 ■Chapter 3: Implementing a Cluster �� 27

 ■Chapter 4: Implementing an AlwaysOn Failover Clustered Instance ������������������� 57

 ■Chapter 5: Implementing AlwaysOn Availability Groups ������������������������������������� 71

 ■Chapter 6: Administering AlwaysOn �� 129

Index ��� 149

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ��� xi

About the Technical Reviewers ��� xiii

 ■Chapter 1: High Availability and Disaster Recovery Concepts ������������������������������ 1

Level of Availability ��� 1

Service-Level Agreements and Service-Level Objectives �� 3

Proactive Maintenance ��� 3

Recovery Point Objective and Recovery Time Objective �� 3

Cost of Downtime ��� 4

Classification of Standby Servers��� 5

Summary �� 6

 ■Chapter 2: Understanding High Availability and Disaster Recovery Technologies ��� 7

AlwaysOn Failover Clustering ��� 7

Active/Active Configuration �� 8

Three-Plus Node Configurations ��� 9

Quorum ��� 11

Database Mirroring��� 13

AlwaysOn Availability Groups ��� 16

Automatic Page Repair ��� 20

Log Shipping �� 21

Recovery Modes ��� 21

Remote Monitor Server��� 22

Combining Technologies ��� 23

Summary �� 26

www.allitebooks.com

http://www.allitebooks.org

viii

■ Contents

 ■Chapter 3: Implementing a Cluster �� 27

Building the Cluster �� 27

Installing the Failover Cluster Feature �� 27

Creating the Cluster �� 33

Configuring the Cluster �� 45

Changing the Quorum ��� 45

Configuring MSDTC��� 49

Configuring a Role �� 54

Summary �� 56

 ■Chapter 4: Implementing an AlwaysOn Failover Clustered Instance ������������������� 57

Building the Instance �� 57

Preparation Steps ��� 57

Cluster-Specific Steps �� 57

Installing the Instance with PowerShell ��� 63

Adding a Node �� 64

Summary �� 69

 ■Chapter 5: Implementing AlwaysOn Availability Groups ������������������������������������� 71

Implementing High Availability with AlwaysOn Availability Groups �������������������������������� 71

Configuring SQL Server �� 76

Creating the Availability Group ��� 78

Performance Considerations for Synchronous Commit Mode �� 98

Implementing Disaster Recovery with Availability Group ��� 103

Configuring the Cluster ��� 103

Configuring the Availability Group �� 113

Adding AlwaysOn Readable Secondary Replicas ��� 127

Summary �� 128

www.allitebooks.com

http://www.allitebooks.org

ix

■ Contents

 ■Chapter 6: Administering AlwaysOn �� 129

Managing a Cluster �� 129

Moving the Instance between Nodes ��� 129

Removing a Node from the Cluster ��� 133

Managing AlwaysOn Availability Groups ��� 135

Failover ��� 135

Synchronizing Uncontained Objects ��� 140

Monitoring �� 140

Adding Multiple Listeners ��� 143

Other Administrative Considerations �� 146

Summary �� 147

Index ��� 149

www.allitebooks.com

http://www.allitebooks.org

xi

About the Author

Peter A Carter is a SQL Server expert with over a decade of experience in
developing, administering, and architecting SQL Server platforms, data-tier
applications, and ETL solutions. Peter has a passion for SQL Server and
hopes that his enthusiasm for this technology helps or inspires others.

www.allitebooks.com

http://www.allitebooks.org

xiii

About the Technical Reviewers

Louis Davidson has been in the IT industry for more than 15 years as a
corporate database developer and architect. He has spent the majority of
his career working with Microsoft SQL Server, beginning in the early days
of version 1.0. He has a bachelor’s degree from the University of Tennessee
at Chattanooga in computer science, with a minor in mathematics.
Louis is the data architect for Compass Technology (Compass.net) in
Chesapeake, Virginia, leading database development on their suite
of nonprofit-oriented customer relationship management (CRM)
products, which are built on the Microsoft CRM platform and SQL Server
technologies.

Alex Grinberg is a senior SQL Server database administrator (DBA)
with more than 20 years of IT experience. He has been working on
Microsoft SQL Server products since version 6.5. Alex currently works in
the Pennsylvania branch of Cox Automotive, headquartered in Atlanta,
GA. His primary duties are to provide architecture, tuning, optimization,
analysis, operational, and development services; to create new
applications; to convert legacy technologies (SQL Server, VB.NET, and
C#); and to provide on-site training with the latest Microsoft technologies
including .NET (VB and C#), SSRS, and SSIS. Alex is a frequent speaker at
professional IT events, including SQLSaturdays, Code Camps, SQL Server
User Groups, and other industry seminars, where he shares his cumulative
knowledge. He is the guest author for SQLServerSentral.com and is also
the cofounder of HexaArt Inc., an IT consulting services company for
small and mid-size corporations. For any questions or consulting needs,
Alex can be reached at hexaart@gmail.com.

www.allitebooks.com

http://hexaart@gmail.com
http://www.allitebooks.org

1

Chapter 1

High Availability and Disaster
Recovery Concepts

In today’s 24×7 environments that are running mission critical applications, businesses rely heavily on the
availability of their data. Although servers and their software are generally reliable, there is always the risk
of a hardware failure or a software bug, each of which could bring a server down. To mitigate these risks,
business-critical applications often rely on redundant hardware to provide fault tolerance. If the primary
system fails, then the application can automatically fail over to the redundant system. This is the underlying
principle of high availability (HA).

Even with the implementation of HA technologies, there is always a small risk of an event that causes
the application to become unavailable. This could be due to a major incident, such as the loss of a data
center, due to a natural disaster, or due to an act of terrorism. It could also be caused by data corruption or
human error, resulting in the application’s data becoming lost or damaged beyond repair.

In these situations, some applications may rely on restoring the latest backup to recover as much data
as possible. However, more critical applications may require a redundant server to hold a synchronized copy
of the data in a secondary location. This is the underpinning concept of disaster recovery (DR). This chapter
discusses the concepts behind HA and DR.

Level of Availability
The amount of time that a solution is available to end users is known as the level of availability, or uptime.
To provide a true picture of uptime, a company should measure the availability of a solution from a user’s
desktop. In other words, even if your SQL Server has been running uninterrupted for over a month, users
may still experience outages to their solution caused by other factors. These factors can include network
outages or an application server failure.

In some instances, however, you have no choice but to measure the level of availability at the SQL Server
level. This may be because you lack holistic monitoring tools within the Enterprise. Most often, however, the
requirement to measure the level of availability at the instance level is political, as opposed to technical. In the
IT industry, it has become a trend to outsource the management of data centers to third-party providers. In such
cases, the provider responsible for managing the SQL servers may not necessarily be the provider responsible
for the network or application servers. In this scenario, you need to monitor uptime at the SQL Server level to
accurately judge the performance of the service provider.

The level of availability is measured as a percentage of the time that the application or server is
available. Companies often strive to achieve 99 percent, 99.9 percent, 99.99 percent, or 99.999 percent
availability. As a result, the level of availability is often referred to in 9s. For example, five 9s of availability
means 99.999 percent uptime and three 9s means 99.9 percent uptime.

Chapter 1 ■ high availability and disaster reCovery ConCepts

2

Table 1-1 details the amount of acceptable downtime per week, per month, and per year for each level
of availability.

To calculate other levels of availability, you can use the script in Listing 1-1. Before running this script,
replace the value of @Uptime to represent the level of uptime that you wish to calculate. You should also
replace the value of @UptimeInterval to reflect uptime per week, month, or year.

Listing 1-1. Calculating the Level of Availability

DECLARE @Uptime DECIMAL(5,3) ;

--Specify the uptime level to calculate

SET @Uptime = 99.9 ;

DECLARE @UptimeInterval VARCHAR(5) ;

--Specify WEEK, MONTH, or YEAR

SET @UptimeInterval = 'YEAR' ;

DECLARE @SecondsPerInterval FLOAT ;

--Calculate seconds per interval

SET @SecondsPerInterval =
(
SELECT CASE
 WHEN @UptimeInterval = 'YEAR'
 THEN 60*60*24*365.243
 WHEN @UptimeInterval = 'MONTH'
 THEN 60*60*24*30.437
 WHEN @UptimeInterval = 'WEEK'
 THEN 60*60*24*7
 END
) ;

Table 1-1. Levels of Availability

Level of Availability Downtime Per Week Downtime Per Month Downtime Per Year

99% 1 hour, 40 minutes,
48 seconds

7 hours, 18 minutes,
17 seconds

3 days, 15 hours,
39 minutes, 28 seconds

99.9% 10 minutes, 4 seconds 43 minutes, 49 seconds 8 hours, 45 minutes,
56 seconds

99.99% 1 minute 4 minutes, 23 seconds 52 minutes, 35 seconds

99.999% 6 seconds 26 seconds 5 minutes, 15 seconds

All values are rounded down to the nearest second.

Chapter 1 ■ high availability and disaster reCovery ConCepts

3

DECLARE @UptimeSeconds DECIMAL(12,4) ;

--Calculate uptime

SET @UptimeSeconds = @SecondsPerInterval * (100-@Uptime) / 100 ;

--Format results
SELECT
 CONVERT(VARCHAR(12), FLOOR(@UptimeSeconds /60/60/24)) + ' Day(s), '
 + CONVERT(VARCHAR(12), FLOOR(@UptimeSeconds /60/60 % 24)) + ' Hour(s), '
 + CONVERT(VARCHAR(12), FLOOR(@UptimeSeconds /60 % 60)) + ' Minute(s), '
 + CONVERT(VARCHAR(12), FLOOR(@UptimeSeconds % 60)) + ' Second(s).' ;

Service-Level Agreements and Service-Level Objectives
When a third-party provider is responsible for managing servers, the contract usually includes service-level
agreements (SLAs). These SLAs define many parameters, including how much downtime is acceptable, the
maximum length of time a server can be down in the event of failure, and how much data loss is acceptable
if failure occurs. Normally, there are financial penalties for the provider if these SLAs are not met.

In the event that servers are managed in-house, DBAs still have the concept of customers. These are
usually the end users of the application, with the primary contact being the business owner. An application’s
business owner is the stakeholder within the business who commissioned the application and who is
responsible for signing off on funding enhancements, among other things.

In an in-house scenario, it is still possible to define SLAs, and in such a case, the IT Infrastructure or
Platform departments may be liable for charge-back to the business teams if these SLAs are not being met.
However, in internal scenarios, it is much more common for IT departments to negotiate service-level
objectives (SLOs) with the business teams, as opposed to SLAs. SLOs are very similar in nature to SLAs, but
their use implies that the business do not impose financial penalties on the IT department in the event that
they are not met.

Proactive Maintenance
It is important to remember that downtime is not only caused by failure, but also by proactive maintenance.
For example, if you need to patch the operating system, or SQL Server itself, with the latest service pack, then
you must have some downtime during installation.

Depending on the upgrade you are applying, the downtime in such a scenario could be substantial—
several hours for a stand-alone server. In this situation, high availability is essential for many business-
critical applications—not to protect against unplanned downtime, but to avoid prolonged outages during
planned maintenance.

Recovery Point Objective and Recovery Time Objective
The recovery point objective (RPO) of an application indicates how much data loss is acceptable in the
event of a failure. For a data warehouse that supports a reporting application, for example, this may be an
extended period, such as 24 hours, given that it may only be updated once per day by an ETL process and all
other activity is read-only reporting. For highly transactional systems, however, such as an OLTP database
supporting trading platforms or web applications, the RPO will be zero. An RPO of zero means that no data
loss is acceptable.

Chapter 1 ■ high availability and disaster reCovery ConCepts

4

Applications may have different RPOs for high availability and for disaster recovery. For example,
for reasons of cost or application performance, an RPO of zero may be required for a failover within the
site. If the same application fails over to a DR data center, however, five or ten minutes of data loss may be
acceptable. This is because of technology differences used to implement intra-site availability and inter-site
recovery.

The recovery time objective (RTO) for an application specifies the maximum amount of time an
application can be down before recovery is complete and users can reconnect. When calculating the
achievable RTO for an application, you need to consider many aspects. For example, it may take less than
a minute for a cluster to fail over from one node to another and for the SQL Server service to come back
up; however it may take far longer for the databases to recover. The time it takes for databases to recover
depends on many factors, including the size of the databases, the quantity of databases within an instance,
and how many transactions were in-flight when the failover occurred. This is because all noncommitted
transactions need to be rolled back.

Just like RPO, it is common for there to be different RTOs depending on whether you have an intra-
site or inter-site failover. Again, this is primarily due to differences in technologies, but it also factors in the
amount of time you need to bring up the entire estate in the DR data center if the primary data center is lost.

The RPO and RTO of an application may also vary in the event of data corruption. Depending on the
nature of the corruption and the HA/DR technologies that have been implemented, data corruption may
result in you needing to restore a database from a backup.

If you must restore a database, the worst-case scenario is that the achievable point of recovery may be
the time of the last backup. This means that you must factor a hard business requirement for a specific RPO
into you backup strategy. If only part of the database is corrupt, however, you may be able to salvage some
data from the live database and restore only the corrupt data from the restored database.

Data corruption is also likely to have an impact on the RTO. One of the biggest influencing factors is if
backups are stored locally on the server, or if you need to retrieve them from tape. Retrieving backup files
from tape, or even from off-site locations, is likely to add significant time to the recovery process.

Another influencing factor is what caused the corruption. If it is caused by a faulty IO subsystem, then
you may need to factor in time for the Windows administrators to run the check disk command (CHKDSK)
against the volume and potentially more time for disks to be replaced. If the corruption is caused by a user
accidently truncating a table or deleting a data file, however, then this is not of concern.

Cost of Downtime
If you ask any business owners how much downtime is acceptable for their applications and how much data
loss is acceptable, the answers invariably come back as zero and zero, respectively. Of course, it is never
possible to guarantee zero downtime, and once you begin to explain the costs associated with the different
levels of availability, it starts to get easier to negotiate a mutually acceptable level of service.

The key factor in deciding how many 9s you should try to achieve is the cost of downtime. Two
categories of cost are associated with downtime: tangible costs and intangible costs. Tangible costs are
usually fairly straightforward to calculate. Let’s use a sales application as an example. In this case, the most
obvious tangible cost is lost revenue because the sales staff cannot take orders. Intangible costs are more
difficult to quantify but can be far more expensive. For example, if a customer is unable to place an order
with your company, they may place their order with a rival company and never return. Other intangible
costs can include loss of staff morale, which leads to higher staff turnover, or even loss of company
reputation. Because intangible costs, by their very nature, can only be estimated, the industry rule of thumb
is to multiply the tangible costs by three and use this figure to represent your intangible costs.

Chapter 1 ■ high availability and disaster reCovery ConCepts

5

Once you have an hourly figure for the total cost of downtime for your application, you can scale
this figure out, across the predicted lifecycle of your application, and compare the costs of implementing
different availability levels. For example, imagine that you calculate that your total cost of downtime is
$2,000/hour and the predicted lifecycle of your application is three years. Table 1-2 illustrates the cost of
downtime for your application, comparing the costs that you have calculated for implementing each level of
availability, after you have factored in hardware, licenses, power, cabling, additional storage, and additional
supporting equipment, such as new racks, administrative costs, and so on. This is known as the total cost of
ownership (TCO) of a solution.

In this table, you can see that implementing five 9s of availability saves $525,474 over a two-9s solution,
but the cost of implementing the solution is an additional $802,000, meaning that it is not economical
to implement. Four 9s of availability saves $520,334 over a two-9s solution and only costs an additional
$354,000 to implement. Therefore, for this particular application, a four-9s solution is the most appropriate
level of service to design for.

Classification of Standby Servers
There are three classes of standby solution. You can implement each using different technologies, although
you can use some technologies to implement multiple classes of standby server. Table 1-3 outlines the
different classes of standby that you can implement.

Table 1-2. Cost of Downtime

Level of Availability Cost of Downtime (Three Years) Cost of Availability Solution

99% $525,600 $108,000

99.9% $52,560 $224,000

99.99% $5,256 $462,000

99.999% $526 $910,000

Table 1-3. Standby Classifications

Class Description Example Technologies

Hot A synchronized solution where failover can occur
automatically or manually. Often used for high
availability.

Clustering, AlwaysOn Availability
Groups (Synchronous)

Warm A synchronized solution where failover can only occur
manually. Often used for disaster recovery.

Log Shipping, AlwaysOn Availability
Groups (Asynchronous)

Cold An unsynchronized solution where failover can only
occur manually. This is only suitable for read-only data,
which is never modified.

-

 ■ Note Cold standby does not show an example technology because no synchronization is required and,
thus, no technology implementation is required.

Chapter 1 ■ high availability and disaster reCovery ConCepts

6

Summary
Your application’s level of availability is measured as a percentage of time that the application is available to
users. The level of availability is often referred in nines. For example 99.9% uptime requirement is known as
three 9s of availability. The higher the uptime requirement, the higher the cost of implementing the solution.
Therefore, the level of uptime that you strive to achieve should be driven by SLAs and the cost of downtime.

Recover Point Objective is a measure of how much data it is acceptable to loose in the event of a
disaster. For example, if your only DR solution is backups and backups are scheduled to be taken every hour,
you can achieve a recovery point objective of one hour. Recovery time objective is a measure of how long it
will take to recover a solution after a failure. For example if you have a recovery time objective of 30 minutes,
then you must be able to restore service with half an hour.

It is important to determine the cost of downtime for your application, as this is one of the mane drivers
to determine your level of availability. The cost of downtime consists of both tangible and intangible costs.
Tangible costs can be calculated, whereas intangible costs need to be estimated.

Redundant infrastructure helps you to maintain availability of your applications and services.
A redundant server will be classified as hot, warm or cold. A hot standby server is one which is kept
synchronized with the live server and configured to allow automatic failover. This is suitable for HA
scenarios. A warn standby server is one which is kept synchronized with the live server, but is not configured
to failover automatically. Instead, an engineer must perform the failover manually. This is suitable for DR
scenarios. A cold standby server is not kept synchronized with the live server and therefore cannot be failed
over automatically. A cold standby server is suitable for DR scenarios where all data is read-only and never
modified.

7

Chapter 2

Understanding High Availability
and Disaster Recovery
Technologies

SQL Server provides a full suite of technologies for implementing high availability and disaster recovery.
This chapter provides an overview of these technologies and discuss their most appropriate uses.

AlwaysOn Failover Clustering
A Windows cluster is a technology for providing high availability in which a group of up to 64 servers works
together to provide redundancy. An AlwaysOn Failover Clustered Instance (FCI) is an instance of SQL Server
that spans the servers within this group. If one of the servers within this group fails, another server takes
ownership of the instance. Its most appropriate usage is for high availability scenarios where the databases
are large or have high write profiles. This is because clustering relies on shared storage, meaning the data
is only written to disk once. With SQL Server–level HA technologies, write operations occur on the primary
database, and then again on all secondary databases, before the commit on the primary completes. This can
cause performance issues. Even though it is possible to stretch a cluster across multiple sites, this involves
SAN replication, which means that a cluster is normally configured within a single site.

Each server within a cluster is called a node. Therefore, if a cluster consists of three servers, it is known
as a three-node cluster. Each node within a cluster has the SQL Server binaries installed, but the SQL Server
service is only started on one of the nodes, which is known as the active node. Each node within the cluster
also shares the same storage for the SQL Server data and log files. The storage, however, is only attached to
the active node.

If the active node fails, then the SQL Server service is stopped and the storage is detached. The storage
is then reattached to one of the other nodes in the cluster, and the SQL Server service is started on this node,
which is now the active node. The instance is also assigned its own network name and IP address, which
are also bound to the active node. This means that applications can connect seamlessly to the instance,
regardless of which node has ownership.

The diagram in Figure 2-1 illustrates a two-node cluster. It shows that although the databases are stored
on a shared storage array, each node still has a dedicated system volume. This volume contains the SQL
Server binaries. It also illustrates how the shared storage, IP address, and network name are rebound to the
passive node in the event of failover.

Chapter 2 ■ Understanding high availability and disaster reCovery teChnologies

8

Active/Active Configuration
Although the diagram in Figure 2-1 illustrates an active/passive configuration, it is also possible to have
an active/active configuration. Although it is not possible for more than one node at a time to own a single
instance, and therefore it is not possible to implement load-balancing, it is possible to install multiple
instances on a cluster, and a different node may own each instance. In this scenario, each node has its
own unique network name and IP address. Each instance’s shared storage also consists of a unique set of
volumes.

Therefore, in an active/active configuration, during normal operations, Node1 may host Instance1 and
Node2 may host Instance2. If Node1 fails, both instances are then hosted by Node2, and vice-versa. The
diagram in Figure 2-2 illustrates a two-node active/active cluster.

Network Name

IP Address

Active Node Passive Node

Shared Storage

SQL Server
Binaries

SQL Server
Binaries

System Volume System Volume

Normal Operation

FailoverDatabase

Figure 2-1. Two-node cluster

Chapter 2 ■ Understanding high availability and disaster reCovery teChnologies

9

 ■ Caution in an active/active cluster, it is important to consider resources in the event of failover. For
example, if each node has 128gb of raM and the instance hosted on each node is using 96gb of raM and
locking pages in memory, then when one node fails over to the other node, this node fails as well, because it
does not have enough memory to allocate to both instances. Make sure you plan both memory and processor
requirements as if the two nodes are a single server. For this reason, active/active clusters are not generally
recommended for sQl server.

Three-Plus Node Configurations
As previously mentioned, it is possible to have up to 64 nodes in a cluster. When you have 3 or more nodes,
it is unlikely that you will want to have a single active node and two redundant nodes, due to the associated
costs. Instead, you can choose to implement an N+1 or N+M configuration.

In an N+1 configuration, you have multiple active nodes and a single passive node. If a failure occurs
on any of the active nodes, they fail over to the passive node. The diagram in Figure 2-3 depicts a three-node
N+1 cluster.

Network Name

IP Address

Active Node
(Instance1)

Passive Node
(Instance2)

Passive Node
(Instance1)

SQL Server
Binaries

SQL Server
Binaries

Database

Shared Storage
(Instance1)

Shared Storage
(Instance2)

Database

System Volume System Volume

Normal Operation

Failover

Active Node
(Instance2)

Network Name

IP Address

Figure 2-2. Active/Active cluster

Chapter 2 ■ Understanding high availability and disaster reCovery teChnologies

10

In an N+1 configuration, in a multi-failure scenario, multiple nodes may fail over to the passive node.
For this reason, you must be very careful when you plan resources to ensure that the passive node is able to
support multiple instances. However, you can mitigate this issue by using an N+M configuration.

Whereas an N+1 configuration has multiple active nodes and a single passive node, an N+M cluster has
multiple active nodes and multiple passive nodes, although there are usually fewer passive nodes than there
are active nodes. The diagram in Figure 2-4 shows a five-node N+M configuration. The diagram shows that
Instance3 is configured to always fail over to one of the passive nodes, whereas Instance1 and Instance2 are
configured to always fail over to the other passive node. This gives you the flexibility to control resources on
the passive nodes, but you can also configure the cluster to allow any of the active nodes to fail over to either
of the passive nodes, if this is a more appropriate design for your environment.

Network Name

IP Address

Active Node
(Instance1)

SQL Server
Binaries

SQL Server
Binaries

SQL Server
Binaries

Database

Shared Storage
(Instance1)

Shared Storage
(Instance2)

Database

System Volume

System Volume

System Volume

Normal Operation

Failover

Active Node
(Instance2)

Passive Node
(Instance1 &
Instance2)

Network Name

IP Address

Figure 2-3. Three-node N+1 configuration

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Understanding high availability and disaster reCovery teChnologies

11

Quorum
So that automatic failover can occur, the cluster service needs to know if a node goes down. In order to
achieve this, you must form a quorum. The definition of a quorum is “The minimum number of members
required in order for business to be carried out.” In terms of high availability, this means that each node
within a cluster, and optionally a witness device (which may be a cluster disk or a file share that is external
to the cluster), receives a vote. If more than half of the voting members are unable to communicate with
a node, then the cluster service knows that it has gone down and any cluster-aware applications on the
server fail over to another node. The reason that more than half of the voting members need to be unable to
communicate with the node is to avoid a situation known as a split brain.

To explain a split-brain scenario, imagine that you have three nodes in Data Center 1 and three nodes
in Data Center 2. Now imagine that you lose network connectivity between the two data centers, yet all six
nodes remain online. The three nodes in Data Center 1 believe that all of the nodes in Data Center 2 are
unavailable. Conversely, the nodes in Data Center 2 believe that the nodes in Data Center 1 are unavailable.
This leaves both sides (known as partitions) of the cluster thinking that they should take control. This can
have unpredictable and undesirable consequences for any application that successfully connects to one or
the other partition. The Quorum = (Voting Members / 2) + 1 formula protects against this scenario.

 ■ Tip if your cluster loses quorum, then you can force one partition online, by starting the cluster service
using the /fq switch. if you are using Windows server 2012 r2 or higher, then the partition that you force online
is considered the authoritative partition. this means that other partitions can automatically re-join the cluster
when connectivity is re-established.

Network Name

IP Address

Active Node
(Instance1)

SQL Server
Binaries

SQL Server
Binaries

Database

Shared Storage
(Instance1)

Shared Storage
(Instance2)

Shared Storage
(Instance2)

Database Database

System Volume

System Volume System Volume System Volume

System Volume

Normal Operation

Failover

Active Node
(Instance2)

Active Node
(Instance3)

Passive Node
(Instance3)

Passive Node
(Instance1 &
Instance2)

Network Name Network Name

IP Address IP Address

SQL Server
Binaries

SQL Server
Binaries

SQL Server
Binaries

Figure 2-4. Five-node N+M configuration

Chapter 2 ■ Understanding high availability and disaster reCovery teChnologies

12

Table 2-1. Quorum Models

Quorum Model Appropriate Usage

Node Majority When you have an odd number of nodes in the cluster

Node + Disk Witness Majority When you have an even number of nodes in the cluster

Node + File Share Witness Majority When you have nodes split across multiple sites or when you have
an even number of nodes and are required to avoid shared disks*

*Reasons for needing to avoid shared disks due to virtualization are discussed later in this chapter.

Various quorum models are available and the most appropriate model depends on your environment.
Table 2-1 lists the models that you can utilize and details the most appropriate way to use them.

Although the default option is one node, one vote, it is possibly to manually remove a nodes vote by
changing the NodeWeight property to zero. This is useful if you have a multi-subnet cluster (a cluster in
which the nodes are split across multiple sites). In this scenario, it is recommended that you use a file-share
witness in a third site. This helps you avoid a cluster outage as a result of network failure between data
centers. If you have an odd number of nodes in the quorum, however, then adding a file-share witness leaves
you with an even number of votes, which is dangerous. Removing the vote from one of the nodes in the
secondary data center eliminates this issue.

 ■ Caution a file-share witness does not store a full copy of the quorum database. this means that a
two-node cluster with a file-share witness is vulnerable to a scenario know as partition in time. in this scenario,
if one node fails while you are in the process of patching or altering the cluster service on the second node,
then there is no up-to-date copy of the quorum database. this leaves you in a position in which you need to
destroy and rebuild the cluster.

Windows Server 2012 R2 also introduces the concepts of Dynamic Quorum and Tie Breaker for 50%
Node Split. When Dynamic Quorum is enabled, the cluster service automatically decides whether or not
to give the quorum witness a vote, depending on the number of nodes in the cluster. If you have an even
number of nodes, then it is assigned a vote. If you have an odd number of nodes, it is not assigned a vote. Tie
Breaker for 50% Node Split expands on this concept. If you have an even number of nodes and a witness and
the witness fails, then the cluster service automatically removes a vote from one random node within the
cluster. This maintains an odd number of votes in the quorum and reduces the risk of a cluster going offline,
due to a witness failure.

 ■ Note Clustering is discussed in more depth in Chapter 3 and Chapter 4

http://dx.doi.org/10.1007/978-1-4842-1763-4_3
http://dx.doi.org/10.1007/978-1-4842-1763-4_4

Chapter 2 ■ Understanding high availability and disaster reCovery teChnologies

13

Database Mirroring
Database mirroring is a technology that can provide configurations for both high availability and disaster
recovery. As opposed to relying on the Windows cluster service, Database Mirroring is implemented entirely
within SQL Server and provides availability at the database level, as opposed to the instance level. It works
by compressing transaction log records and sending them to the secondary server via a TCP endpoint. A
database mirroring topology consists of precisely one primary server, precisely one secondary server, and an
optional witness server.

Database mirroring is a deprecated technology, which means that it will be removed in a future version
of SQL Server. In SQL Server 2014, however, it can still prove useful. For instance, if you are upgrading a
data-tier application from SQL Server 2008, where AlwaysOn Availability Groups were not supported and
database mirroring had been implemented, and also assuming your expectation is that the lifecycle of the
application will end before the next major release of SQL Server, then you can continue to use database
mirroring. Some organizations, especially where there is disconnect between the Windows administration
team and the SQL Server DBA team, are also choosing not to implement AlwaysOn Availability Groups,
especially for DR, until database mirroring has been removed; this is because of the relative complexity and
multi-team effort involved in managing an AlwaysOn environment. Database mirroring can also be useful
when you upgrade data-tier applications from older versions of SQL Server in a side-by-side migration. This
is because you can synchronize the databases and fail them over with minimal downtime. If the upgrade is
unsuccessful, then you can move them back to the original servers with minimal effort and downtime.

Database mirroring can be configured to run in three different modes: High Performance, High Safety,
and High Safety with Automatic Failover. When running in High Performance mode, database mirroring
works in an asynchronous manor. Data is committed on the primary database and is then sent to the
secondary database, where it is subsequently committed. This means that it is possible to lose data in the
event of a failure. If data is lost, the recovery point is the beginning of the oldest open transaction. This
means that you cannot guarantee an RPO that relies on asynchronous mirroring for availability, since it
will be nondeterministic. There is also no support for automatic failover in this configuration. Therefore,
asynchronous mirroring offers a DR solution, as opposed to a high availability solution. The diagram in
Figure 2-5 illustrates a mirroring topology, configured in High Performance mode.

Chapter 2 ■ Understanding high availability and disaster reCovery teChnologies

14

When running in High Safety with Automatic Failover mode, data is committed at the secondary
server using a synchronous method, as opposed to an asynchronous method. This means that the data
is committed on the secondary server before it is committed on the primary server. This can cause
performance degradation and requires a fast network link between the two servers. The network latency
should be less than 3 milliseconds.

In order to support automatic failover, the database mirroring topology needs to form a quorum. In
order to achieve quorum, it needs a third server. This server is known as the witness server and it is used to
arbitrate in the event that the primary and secondary servers loose network connectivity. For this reason,
if the primary and secondary servers are in separate sites, it is good practice to place the witness server in
the same data center as the primary server, as opposed to with the secondary server. This can reduce the
likelihood of a failover caused by a network outage between the data centers, which makes them become
isolated. The diagram in Figure 2-6 illustrates a database mirroring topology configured in High Protection
with Automatic Failover mode.

Application

Primary Server

1) Application sends transaction to SQL Server.

Server manually failed over to secondary server;
application manually reconnects.

3) Transaction is sent to
secondary server.

4) Transaction is committed to secondary database.
2) Transaction is committed to database.

Primary
Database

Secondary
Database

Secondary Server

Normal Operation

Failover

Figure 2-5. Database mirroring in High Performance mode

Chapter 2 ■ Understanding high availability and disaster reCovery teChnologies

15

High Safety mode combines the negative aspects of the other two modes. You have the same
performance degradation that you expect with High Safety with Automatic Failover, but you also have the
manual server failover associated with High Performance mode. The benefit that High Safety mode offers
is resilience in the event that the witness goes offline. If database mirroring loses the witness server, instead
of suspending the mirroring session to avoid a split-brain scenario, it switches to High Safety mode. This
means that database mirroring continues to function, but without automatic failover. High Safety mode
is also useful in planned failover scenarios. If your primary server is online, but you need to fail over for
maintenance, then you can change to High Safety mode. This essentially puts the database in a safe state,
where there is no possibility of data loss, without you needing to configure a witness server. You can then fail
over the database. After the maintenance work is complete and you have failed the database back, then you
can revert to High Performance mode.

Application

Primary Server

1) Application sends transaction to SQL Server.

Server manually failed over to secondary server;
application manually reconnects.

2) Transaction is sent to
secondary server.

4) Notification is sent back to
primary server.

3) Transaction is committed to
secondary database.5) Transaction is committed to

secondary database.

Primary
Database

Secondary
Database

Witness Server

Secondary Server

Normal Operation

Failover

Figure 2-6. Database mirroring in High Safety with Automatic Failover mode

Chapter 2 ■ Understanding high availability and disaster reCovery teChnologies

16

 ■ Tip database mirroring is not supported on databases that use in-Memory oltp. you will be unable to
configure database mirroring, if your database contains a memory-optimized filegroup.

AlwaysOn Availability Groups
AlwaysOn Availability Groups (AOAG) replaces database mirroring and is essentially a merger of database
mirroring and clustering technologies. SQL Server is installed as a stand-alone instance (as opposed to an
AlwaysOn Failover Clustered Instance) on each node of a cluster. A cluster-aware application, called an
Availability Group Listener, is then installed on the cluster; it is used to direct traffic to the correct node.
Instead of relying on shared disks, however, AOAG compresses the log stream and sends it to the other
nodes, in a similar fashion to database mirroring.

AOAG is the most appropriate technology for high availability in scenarios where you have small
databases with low write profiles. This is because, when used synchronously, it requires that the data is
committed on all synchronous replicas before it is committed on the primary database. Unlike with database
mirroring, however, you can have up to eight replicas, including two synchronous replicas. AOAG may also
be the most appropriate technology for implementing high availability in a virtualized environment. This
is because the shared disk required by clustering may not be compatible with some features of the virtual
estate. As an example, VMware does not support the use of vMotion, which is used to manually move virtual
machines (VMs) between physical servers, and the Distributed Resource Scheduler (DRS), which is used to
automatically move VMs between physical servers, based on resource utilization, when the VMs use shared
disks, presented over Fiber Channel.

 ■ Tip the limitations surrounding shared disks with vMware features can be worked around by presenting
the storage directly to the guest os over an isCsi connection at the expense of performance degradation.

AOAG is the most appropriate technology for DR when you have a proactive failover requirement
but when you do not need to implement a load delay. AOAG may also be suitable for disaster recovery in
scenarios where you wish to utilize your DR server for offloading reporting. When used for disaster recovery,
AOAG works in an asynchronous mode. This means that it is possible to lose data in the event of a failover.
The RPO is nondeterministic and is based on the time of the last uncommitted transaction.

When you use database mirroring, the secondary database is always offline. This means that you
cannot use the secondary database to offload any reporting or other read-only activity. It is possible to work
around this by creating a database snapshot against the secondary database and pointing read-only activity
to the snapshot. This can still be complicated, however, because you must configure your application to
issue read-only statements against a different network name and IP address. Availability Groups, on the
other hand, allow you to configure one or more replicas as readable. The only limitation is that readable
replicas and automatic failover cannot be configured on the same secondaries. The norm, however, would
be to configure readable secondary replicas in asynchronous commit mode so that they do not impair
performance.

Chapter 2 ■ Understanding high availability and disaster reCovery teChnologies

17

To further simplify this, the Availability Group Replica checks for the read-only or read-intent properties
in an applications connection string and points the application to the appropriate node. This means that
you can easily scale reporting and database maintenance routines horizontally with very little development
effort and with the applications being able to use a single connection string.

Because AOAG allows you to combine synchronous replicas (with or without automatic failover),
asynchronous replicas, and replicas for read-only access, it allows you to satisfy high availability, disaster
recovery, and reporting scale-out requirements using a single technology.

When you are using AOAG, failover does not occur at the database level, nor at the instance level.
Instead, failover occurs at the level of the availability group. The availability group is a concept that allows
you to group similar databases together so that they can fail over as an atomic unit. This is particularly useful
in consolidated environments, because it allows you to group together the databases that map to a single
application. You can then fail over this application to another replica for the purposes of DR testing, among
other reasons, without having an impact on the other data-tier applications that are hosted on the instance.

No hard limits are imposed for the number of availability groups you can configure on an instance, nor
are there any hard limits for the number of databases on an instance that can take part in AOAG. Microsoft,
however, has tested up to, and officially recommends, a maximum of 100 databases and 10 availability
groups per instance. The main limiting factor in scaling the number of databases is that AOAG uses a
database mirroring endpoint and there can only be one per instance. This means that the log stream for all
data modifications is sent over the same endpoint.

Figure 2-7 depicts how you can map data-tier applications to availability groups for independent
failover. In this example, a single instance hosts two data-tier applications. Each application has been
added to a separate availability group. The first availability group has failed over to Node2. Therefore, the
availability group listeners point traffic for Application1 to Node2 and traffic for Application2 to Node1.
Because each availability group has its own network name and IP address, and because these resources fail
over with the AOAG, the application is able to seamlessly reconnect to the databases after failover.

Chapter 2 ■ Understanding high availability and disaster reCovery teChnologies

18

Figure 2-7. Availability groups failover

Chapter 2 ■ Understanding high availability and disaster reCovery teChnologies

19

The diagram in Figure 2-8 depicts an AlwaysOn Availability Group topology. In this example, there are
four nodes in the cluster and a disk witness. Node1 is hosting the primary replicas of the databases, Node2
is being used for automatic failover, Node3 is being used to offload reporting, and Node4 is being used for
DR. Because the cluster is stretched across two data centers, multi-subnet clustering has been implemented.
Because there is no shared storage, however, there is no need for SAN replication between the sites.

Application

Primary Site

Availability
Group Listener

Node1 (Primary
Replica)

Synchronous Commit

Asynchronous
Commit

Node2
(Synchronous

Secondary Replica
-Automatic
Failover)

Node4
(Asynchronous

Secondary Replica
-Not Readable)

Node3
(Asynchronous

Secondary Replica
-Readable)

AlwaysOn Availability Group Cluster

DR Site

Primary
Replica

SQL Server
Binaries

SQL Server
Binaries

SQL Server
Binaries

SQL Server
Binaries

Secondary
Replica

Secondary
Replica

Secondary
Replica

Figure 2-8. AlwaysOn Availability Group topology

Chapter 2 ■ Understanding high availability and disaster reCovery teChnologies

20

 ■ Note alwayson availability groups are discussed in more detail in Chapter 5 and Chapter 6

Automatic Page Repair
If a page becomes corrupt in a database configured as a replica in an AlwaysOn Availability Group topology,
then SQL Server attempts to fix the corruption by obtaining a copy of the pages from one of the secondary
replicas. This means that a logical corruption can be resolved without you needing to perform a restore or
for you to run DBCC CHECKDB with a repair option. However, automatic page repair does not work for the
following page types:

•	 File Header page

•	 Database Boot page

•	 Allocation pages

•	 GAM (Global Allocation Map)

•	 SGAM (Shared Global Allocation Map)

•	 PFS (Page Free Space)

If the primary replica fails to read a page because it is corrupt, it first logs the page in the MSDB.
dbo.suspect_pages table. It then checks that at least one replica is in the SYNCHRONIZED state and that
transactions are still being sent to the replica. If these conditions are met, then the primary sends a broadcast
to all replicas, specifying the PageID and LSN (log sequence number) at the end of the flushed log. The page is
then marked as restore pending, meaning that any attempts to access it will fail, with error code 829.

After receiving the broadcast, the secondary replicas wait, until they have redone transactions up to the
LSN specified in the broadcast message. At this point, they try to access the page. If they cannot access it,
they return an error. If they can access the page, they send the page back to the primary replica. The primary
replica accepts the page from the first secondary to respond.

The primary replica will then replace the corrupt copy of the page with the version that it received from
the secondary replica. When this process completes, it updates the page in the MSDB.dbo.suspect_pages
table to reflect that it has been repaired by setting the event_type column to a value of 5 (Repaired).

If the secondary replica fails to read a page while redoing the log because it is corrupt, it places the
secondary into the SUSPENDED state. It then logs the page in the MSDB.dbo.suspect_pages table and
requests a copy of the page from the primary replica. The primary replica attempts to access the page. If it is
inaccessible, then it returns an error and the secondary replica remains in the SUSPENDED state.

If it can access the page, then it sends it to the secondary replica that requested it. The secondary replica
replaces the corrupt page with the version that it obtained from the primary replica. It then updates the
MSDB.dbo.suspect_pages table with an event_id of 5. Finally, it attempts to resume the AOAG session.

 ■ Note it is possible to manually resume the session, but if you do, the corrupt page is hit again during the
synchronization. Make sure you repair or restore the page on the primary replica first.

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-1763-4_5
http://dx.doi.org/10.1007/978-1-4842-1763-4_6
http://www.allitebooks.org

Chapter 2 ■ Understanding high availability and disaster reCovery teChnologies

21

Principle

Backup

Transaction
Log

Transaction
Log

File Share File ShareCopy

Restore

Secondary

Figure 2-9. Log Shipping topology

Log Shipping
Log shipping is a technology that you can use to implement disaster recovery. It works by backing up the
transaction log on the principle server, copying it to the secondary server, and then restoring it. It is most
appropriate to use log shipping in DR scenarios in which you require a load delay, because this is not
possible with AOAG. As an example of where a load delay may be useful, consider a scenario in which a
user accidently deletes all of the data from a table. If there is a delay before the database on the DR server
is updated, then it is possible to recover the data for this table, from the DR server, and then repopulate the
production server. This means that you do not need to restore a backup to recover the data. Log shipping
is not appropriate for high availability, since there is no automatic failover functionality. The diagram in
Figure 2-9 illustrates a log shipping topology.

Recovery Modes
In a log shipping topology, there is always exactly one principle server, which is the production server. It
is possible to have multiple secondary servers, however, and these servers can be a mix of DR servers and
servers used to offload reporting.

When you restore a transaction log, you can specify three recovery modes: Recovery, NoRecovery,
and Standby. The Recovery mode brings the database online, which is not supported with Log Shipping.
The NoRecovery mode keeps the database offline so that more backups can be restored. This is the normal
configuration for log shipping and is the appropriate choice for DR scenarios.

Chapter 2 ■ Understanding high availability and disaster reCovery teChnologies

22

The Standby option brings the database online, but in a read-only state so that you can restore further
backups. This functionality works by maintaining a TUF (Transaction Undo File). The TUF file records any
uncommitted transactions in the transaction log. This means that you can roll back these uncommitted
transactions in the transaction log, which allows the database to be more accessible (although it is
read-only). The next time a restore needs to be applied, you can reapply the uncommitted transaction in the
TUF file to the log before the redo phase of the next log restore begins.

Figure 2-10 illustrates a log shipping topology that uses both a DR server and a reporting server.

Principle

Backup Restore (with NoRecovery)Restore (with Standby)

Transaction
Log

Transaction
Log

Transaction
Log

File Share File Share File Share

Copy

Copy

Secondary (read-
only for reporting)

Secondary (online
for DR)

Figure 2-10. Log shipping with DR and reporting servers

Remote Monitor Server
Optionally, you can configure a monitor server in your log shipping topology. This helps you centralize
monitoring and alerting. When you implement a monitor server, the history and status of all backup, copy,
and restore operations are stored on the monitor server. A monitor server also allows you to have a single
alert job, which is configured to monitor the backup, copy, and restore operations on all servers, as opposed
to it needing separate alerts on each server in the topology.

Chapter 2 ■ Understanding high availability and disaster reCovery teChnologies

23

 ■ Caution if you wish to use a monitor server, it is important to configure it when you set up log shipping.
after log shipping has been configured, the only way to add a monitor server is to tear down and reconfigure
log shipping.

Failover
Unlike other high availability and disaster recovery technologies, an amount of administrative effort is
associated with failing over log shipping. To fail over log shipping, you must back up the tail-end of the
transaction log, and copy it, along with any other uncopied backup files, to the secondary server.

You now need to apply the remaining transaction log backups to the secondary server in sequence,
finishing with the tail-log backup. You apply the final restore using the WITH RECOVERY option to bring
the database back online in a consistent state. If you are not planning to fail back, you can reconfigure log
shipping with the secondary server as the new primary server.

Combining Technologies
To meet your business objectives and non-functional requirements (NFRs), you need to combine multiple
high availability and disaster recovery technologies together to create a reliable, scalable platform. A classic
example of this is the requirement to combine an AlwaysOn Failover Cluster with AlwaysOn Availability
Groups.

The reason you may need to combine these technologies is that when you use AlwaysOn Availability
Groups in synchronous mode, which you must do for automatic failover, it can cause a performance
impediment. As discussed earlier in this chapter, the performance issue is caused by the transaction being
committed on the secondary server before being committed on the primary server. Clustering does not
suffer from this issue, however, because it relies on a shared disk resource, and therefore the transaction is
only committed once.

Therefore, it is common practice to first use a cluster to achieve high availability and then use AlwaysOn
Availability Groups to perform DR and/or offload reporting. The diagram in Figure 2-11 illustrates a HA/DR
topology that combines clustering and AOAG to achieve high availability and disaster recovery, respectively.

Chapter 2 ■ Understanding high availability and disaster reCovery teChnologies

24

The diagram in Figure 2-11 shows that the primary replica of the database is hosted on a two-node
active/passive cluster. If the active node fails, the rules of clustering apply, and the shared storage, network
name, and IP address are reattached to the passive node, which then becomes the active node. If both
nodes are inaccessible, however, the availability group listener points the traffic to the third node of the
cluster, which is situated in the DR site and is synchronized using log stream replication. Of course, when
asynchronous mode is used, the database must be failed over manually by a DBA.

Another common scenario is the combination of a cluster and log shipping to achieve high availability
and disaster recovery, respectively. This combination works in much the same way as clustering combined
with AlwaysOn Availability Groups and is illustrated in Figure 2-12.

Primary Site

Manual Failover

Manual Failover
Automatic Failover

Automatic Failover

Automatic FailoverNetwork Name

IP Address

Failover Clustered Instance

Node1 (Active)

System Volume

System Volume

Shared Storage

SQL Server
Binaries

SQL Server
Binaries

SQL Server
Binaries

Node2 (Passive) Node3

Stand-Alone
Instance

Secondary
Replica

Primary
Replica

DR Site

Normal Operation

Failover

Figure 2-11. Clustering and AlwaysOn Availability Groups combined

Chapter 2 ■ Understanding high availability and disaster reCovery teChnologies

25

The diagram shows that a two-node active/passive cluster has been configured in the primary data
center. The transaction log(s) of the database(s) hosted on this instance are then shipped to a stand-alone
server in the DR data center. Because the cluster uses shared storage, you should also use shared storage for
the backup volume and add the backup volume as a resource in the role. This means that when the instance
fails over to the other node, the backup share also fails over, and log shipping continues to synchronize,
uninterrupted.

 ■ Caution if failover occurs while the log shipping backup or copy jobs are in progress, then log shipping
may become unsynchronized and require manual intervention. this means that after a failover, you should
check the health of your log shipping jobs.

Primary Site

Automatic Failover

Automatic Failover

Automatic FailoverNetwork Name

IP Address

Node1 (Active)

System Volume System Volume

Stand-Alone
Server

Shared Storage

File Share File ShareCopy

SQL Server
Binaries

SQL Server
Binaries

Transaction
Log

RestoreBackup

Transaction
Log

Node2 (Passive)

DR Site

Normal Operation

Failover

Figure 2-12. Clustering combined with log shipping

Chapter 2 ■ Understanding high availability and disaster reCovery teChnologies

26

Summary
SQL Server provides a full suite of high availability and disaster recovery technologies, giving you the
flexibility to implement a solution that best fits the needs of your data-tier applications. For high availability,
you can implement either an AlwaysOn cluster or AlwaysOn Availability Groups (AOAG). Clustering uses
a shared disk resource and failover occurs at the instance level. AOAG, on the other hand, synchronizes
data at the database level by maintaining a redundant copy of the database with a synchronous log stream.
Database mirroring is also available in SQL Server 2014, but it is a deprecated feature and will be removed in
a future version of SQL Server.

To implement disaster recovery, you can choose to implement AOAG or log shipping. Log shipping
works by backing up, copying, and restoring the transaction logs of the databases, whereas AOAG
synchronizes the data using an asynchronous log stream.

It is also possible to combine multiple HA and DR technologies together in order to implement the most
appropriate availability strategy. Common examples of this are combining clustering for high availability
with AOAG or log shipping to provide DR.

27

Chapter 3

Implementing a Cluster

Engineers may find the process of building and configuring a cluster to be complex and that they can
implement many variations of the pattern. Although DBAs may not always need to build a cluster
themselves, they do need to be comfortable with the technology and often need to provide their input into
the process. They may also take part in troubleshooting issues discovered with the cluster.

For these reasons, this chapter begins by looking at how to build a cluster at the Windows level and
discusses some of the possible configurations.

Building the Cluster
Before you install a SQL Server AlwaysOn failover cluster instance, you must prepare the servers that form
the cluster (known as nodes) and build a Windows cluster across them. The following sections demonstrate
how to perform these activities.

 ■ Note To support demonstrations in this chapter, we use a domain called PROSQLADMIN. The domain
contains a domain controller, which is also configured to serve up five iSCSI disks (Data, Logs, TempDB, MSDTC,
and Quorum). Two servers also act as cluster nodes named ClusterNode1 and ClusterNode2. Each server has
two NICs (network interface cards) on different subnets; one will be used for data and the other for the cluster
heartbeat.

Installing the Failover Cluster Feature
In order to build the cluster, the first thing we need to do is install the failover cluster feature on each of the
nodes. To do this, we need to select the Add Roles And Features option in Server Manager. This causes the
Add Roles And Features Wizard to display. The first page of this wizard offers guidance on prerequisites, as
shown in Figure 3-1.

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

28

On the Installation Type page, ensure that Role-Based Or Feature-Based Installation is selected,
as illustrated in Figure 3-2.

Figure 3-1. The Before You Begin page

Figure 3-2. The Installation Type page

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

29

On the Server Selection page, ensure that the cluster node that you are currently configuring is selected.
This is illustrated in Figure 3-3.

Figure 3-3. The Server Selection page

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

30

The Server Roles page of the wizard allows you to select any server roles that you want configured. As
shown in Figure 3-4, this can include roles such as Application Server or DNS Server, but in our case, this is
not appropriate, so we simply move to the next screen.

Figure 3-4. The Server Roles page

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

31

On the Features page of the wizard, we need to select both .NET Framework 3.5 Features and Failover
Clustering, as shown in Figure 3-5. This satisfies the prerequisites for building the Windows cluster and also
the AlwaysOn failover cluster instance.

Figure 3-5. The Features page

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

32

On the final page of the wizard, you see a summary of the features that are to be installed, as shown
in Figure 3-7. Here, you can specify the location of the Windows media if you need to. You can also choose
whether the server should automatically restart. If you are building out a new server, it makes sense to check
this box. However, if the server is already in production when you add the feature, make sure you consider
what is currently running on the box, and whether you should wait for a maintenance window to perform a
restart if one is needed.

Figure 3-6. Selecting management tools

When you select Failover Clustering, the wizard presents you with a screen (Figure 3-6) that asks if you
want to install the management tools in the form of a checkbox. If you are managing the cluster directly from
the nodes, check this option.

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

33

Instead of installing the cluster services through Server Manager, you can install them from PowerShell.
The script in Listing 3-1 achieves the same results as the preceding steps.

Listing 3-1. Installing Cluster Services

Install-WindowsFeature –name NET-Framework-Core

Install-WindowsFeature -Name Failover-Clustering –IncludeManagementTools

Creating the Cluster
Once clustering has been installed on both nodes, you can begin building the cluster. To do this, connect to
the server that you intended to be the active node using a domain account, and then run Failover Cluster
Manager from Administrative Tools.

The Before You Begin page of the Create Cluster Wizard warns that the domain account you use to
install the cluster must be an administrator of the cluster nodes and that Microsoft only supports clusters
that pass all verification tests, as shown in Figure 3-8.

Figure 3-7. The Confirmation page

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

34

On the Select Servers screen of the wizard, you need to enter the names of the cluster nodes. Even if
you enter just the short names of the servers, they will be converted to fully qualified names in the format
server.domain. This is illustrated in Figure 3-9. In our case, our cluster nodes are named ClusterNode1 and
ClusterNode2, respectively.

Figure 3-8. The Before You Begin page

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

35

On the Validation Warnings page, you are asked if you wish to run the validation tests against the
cluster. You should always choose to run this validation for production servers, because Microsoft will not
offer support for the cluster unless it has been validated. Choosing to run the validation tests invokes the
Validate A Configuration wizard. You can also run this wizard independently from the Management pane of
Failover Cluster Manager. The Validation Warnings page is shown in Figure 3-10.

Figure 3-9. The Select Servers page

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

36

 ■ Tip There are some situations in which validation is not possible, and in these instances, you need to
select the No, I Do Not require Support. . . option. For example, some DBas choose to install one-node clusters
instead of stand-alone instances so that they can be scaled up to full clusters in the future, if need be. This
approach can cause operational challenges for Windows administrators, however, so use it with extreme
caution.

After you complete the Before You Begin page of the Validate A Configuration Wizard, you see the
Testing Options page. Here, you are given the option of either running all validation tests or selecting a
subset of tests to run, as illustrated in Figure 3-11. Normally when you are installing a new cluster, you want
to run all validation tests, but it is useful to be able to select a subset of tests if you invoke the Validate A
Configuration Wizard independently after you make a configuration change to the cluster.

Figure 3-10. The Validation Warning page

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

37

On the Confirmation page of the wizard, illustrated in Figure 3-12, you are presented with a summary
of tests that will run and the cluster nodes that they will run against. The list of tests is comprehensive and
includes the following categories:

•	 Inventory (such as identifying any unsigned drivers)

•	 Network (such as checking for a valid IP configuration)

•	 Storage (such as validating the ability to fail disks over, between nodes)

•	 System Configuration (such as validating the configuration of Active Directory)

Figure 3-11. The Testing Options page

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

38

The Summary page, shown in Figure 3-13, provides the results of the tests and also a link to an HTML
version of the report. Make sure to examine the results for any errors or warnings. You should always resolve
errors before continuing, but some warnings may be acceptable. For example, if you are building your
cluster to host AlwaysOn Availability Groups, you may not have any shared storage. This will generate a
warning but is not an issue in this scenario. AlwaysOn Availability Groups are discussed in further detail in
Chapter 5.

Figure 3-12. The Confirmation page

http://dx.doi.org/10.1007/978-1-4842-1763-4_5

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

39

The View Report button displays the full version of the validation report, as shown in Figure 3-14.
The hyperlinks take you to a specific category within the report, where further hyperlinks are available for
each test. These allow you to drill down to messages generated for the specific test, making it easy to
identify errors.

Figure 3-13. The Summary page

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

40

Clicking Finish on the Summary page returns you to the Create Cluster Wizard, where you are greeted
with the Access Point For Administering The Cluster page. On this screen, illustrated in Figure 3-15, you
need to enter the virtual name of your cluster and the IP address for administering the cluster. We name our
cluster PROSQLADMIN-C and assign an IP address of 192.168.0.20.

Figure 3-14. The Failover Cluster Validation Report

www.allitebooks.com

http://www.allitebooks.org

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

41

 ■ Note The virtual name and Ip address are bound to whichever node is active, meaning that the cluster is
always accessible in the event of failover.

In our case, the cluster resides within a single site and single subnet, so only one network range is
displayed. If you are configuring a multi-subnet cluster, however, then the wizard detects this, and multiple
networks display. In this scenario, you need to enter an IP address for each subnet.

 ■ Note Each of the two NICs within a node is configured on a separate subnet so that the heartbeat between
the nodes is segregated from the public network. however, a cluster is only regarded as multi-subnet if the data
NICs of the cluster nodes reside in different subnets.

 ■ Tip If you do not have permissions to create aD (active Directory) objects in the Ou (organizational unit)
that contains your cluster, then the VCO (virtual computer object) for the cluster must already exist and you must
have the Full Control permission assigned.

Figure 3-15. The Access Point For Administering The Cluster page

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

42

Figure 3-16. The Confirmation page

The Confirmation page displays a summary of the cluster that is created. You can also use this screen to
specify whether or not all eligible storage should be added to the cluster, which is generally a useful feature.
This screen is displayed in Figure 3-16.

After the cluster has been built, the Summary page shown in Figure 3-17 displays. This screen
summarizes the cluster name, IP address, nodes, and quorum model that have been configured. It also
provides a link to an HTML (Hypertext Markup Language) version of the report.

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

43

The Create Cluster report displays a complete list of tasks that have been completed during the cluster
build, as shown in Figure 3-18.

Figure 3-17. The Summary page

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

44

Figure 3-18. The Create Cluster report

We could also have used PowerShell to create the cluster. The script in Listing 3-2 runs the cluster
validation tests using the Test-Cluster cmdlet, before using the New-Cluster cmdlet to configure the
cluster.

Listing 3-2. Validating and Creating the Cluster

#Run the validation tests

Test-Cluster -Node Clusternode1.prosqladmin.com,Clusternode2.prosqladmin.com

#Create the cluster

New-Cluster -Node ClusterNode1.prosqladmin.com,ClusterNode2.prosqladmin.com -StaticAddress
192.168.0.20 -Name PROSQLADMIN-C

Figure 3-19 shows the results of running this script. The first part of the output provides the details of
the validation report that has been generated. The second part confirms the name of the cluster that has
been created.

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

45

Configuring the Cluster
Many cluster configurations can be altered, depending on the needs of your environment. This section
demonstrates how to change some of the more common configurations.

Changing the Quorum
If we examine our cluster in the Failover Cluster Manager, we can instantly see one configuration change
that we need to make. The cluster has chosen the Logs volume as the quorum drive, as shown in Figure 3-20.

Figure 3-19. Validate and create cluster output

Figure 3-20. Cluster disks

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

46

We can modify this by entering the context menu of the cluster and by selecting More Actions |
Configure Cluster Quorum Settings, which causes the Configure Cluster Quorum Wizard to be invoked. On
the Select Quorum Configuration Option page, shown in Figure 3-21, we choose the Select The Quorum
Witness option.

Figure 3-21. The Select Quorum Configuration Option page

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

47

Figure 3-22. The Select Quorum Witness page

On the Select Quorum Witness page, we select the option to configure a disk witness. This is illustrated
in Figure 3-22.

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

48

On the Configure Storage Witness page of the wizard, we can select the correct disk to use as a quorum.
In our case, this is Disk 5, as illustrated in Figure 3-23.

The Summary page of the wizard, shown in Figure 3-24, details the configuration changes that will be
made to the cluster. It also highlights that dynamic quorum management is enabled and that all nodes, plus
the quorum disk, have a vote in the quorum. Advanced quorum configurations are discussed in Chapter 4.

Figure 3-23. The Configure Storage Witness page

http://dx.doi.org/10.1007/978-1-4842-1763-4_4

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

49

We can also perform this configuration from the command line by using the PowerShell command in
Listing 3-3. Here, we use the Set-ClusterQuorum cmdlet and pass in the name of the cluster, followed by the
quorum type that we wish to configure. Because disk is included in this quorum type, we can also pass in the
name of the cluster disk that we plan to use, and it is this aspect that allows us to change the quorum disk.

Listing 3-3. Configuring the Quorum Disk

Set-ClusterQuorum -Cluster PROSQLADMIN-C -NodeAndDiskMajority "Cluster Disk 5"

Configuring MSDTC
If your instance of SQL Server uses distributed transactions, or if you are installing SQL Server Integration
Services (SSIS), then it relies on MSDTC (Microsoft Distributed Transaction Coordinator). If your instance
will use MSDTC, then you need to ensure that it is properly configured. If it is not, then setup will succeed,
but transactions that rely on it may fail.

When installed on a cluster, SQL Server automatically uses the instance of MSDTC that is installed in
the same role, if one exists. If it does not, then it uses the instance of MSDTC to which it has been mapped (if
this mapping has been performed). If there is no mapping, it uses the cluster’s default instance of MSDTC,
and if there is not one, it uses the local machine’s instance of MSDTC.

Figure 3-24. The Summary Page

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

50

Many DBAs choose to install MSDTC within the same role as SQL Server; however, this introduces a
problem. If MSDTC fails, it can also bring down the instance of SQL Server. Of course, the cluster attempts to
bring both of the applications up on a different node, but this still involves downtime, including the time it
takes to recover the databases on the new node, which takes a non-deterministic duration. For this reason,
I recommend installing MSDTC in a separate role. If you do, the SQL Server instance still utilizes MSDTC,
since it is the cluster’s default instance, and it removes the possibility of MSDTC causing an outage to SQL
Server. This is also preferable to using a mapped instance or the local machine instance since it avoids
unnecessary configuration, and the MSDTC instance should be clustered when a clustered instance of SQL
Server is using it.

To create an MSDTC role, start by selecting the Configure Role option from the Roles context menu in
Failover Cluster Manager. This invokes the High Availability Wizard. On the Select A Role page of the wizard,
select the Distributed Transaction Coordinator (DTC) role type, as shown in Figure 3-25.

Figure 3-25. The Select Role page

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

51

Figure 3-26. The Client Access Point page

On the Client Access Point page, illustrated in Figure 3-26, you need to enter a virtual name and IP
address for MSDTC. In our case, we name it PROSQLMSDTC-C and assign 192.168.0.21 as the IP address. On a
multi-subnet cluster, you need to provide an IP address for each network.

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

52

On the Select Storage page of the wizard, select the cluster disk on which you plan to store the MSDTC
files, as shown in Figure 3-27. In our case, this is Disk 4.

Figure 3-27. The Select Storage page

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

53

The Confirmation page displays an overview of the role that is about to be created, as shown
in Figure 3-28.

Alternatively, we could create this role in PowerShell. The script in Listing 3-4 first uses the Add-
ClusterServerRole cmdlet to create the role. We pass the virtual name to use for the role into the Name
parameter, the name of the cluster disk to use into the Storage parameter, and the IP address for the role
into the StaticAddress parameter.

Figure 3-28. The Confirmation page

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

54

Listing 3-4. Creating an MSDTC Role

#Create the Role

Add-ClusterServerRole -Name PROSQLMSDTC-C -Storage "Cluster Disk 4" -StaticAddress
192.168.0.21

#Create the DTC Resource

Add-ClusterResource -Name MSDTC-PROSQLMSDTC-C -ResourceType "Distributed Transaction
Coordinator" -Group PROSQLMSDTC-C

#Create the dependencies

Add-ClusterResourceDependency MSDTC-PROSQLMSDTC-C PROSQLMSDTC-C

Add-ClusterResourceDependency MSDTC-PROSQLMSDTC-C "Cluster Disk 4"

#Bring the Role online

Start-ClusterGroup PROSQLMSDTC-C

We then use the Add-ClusterResource cmdlet to add the DTC resource. The Name parameter names
the resource and the ResourceType parameter specifies that it is a DTC resource. We then need to create the
dependencies between the resources within the role. We did not need to do this when using the GUI, as the
dependencies were created for us automatically. Resource dependencies specify the resource or resources
on which other resources depend. A resource failing propagates through the chain and could take a role
offline. For example, in the case of our PROSQLMSDTC-C role, if either the disk or the virtual name becomes
unavailable, the DTC resource goes offline. Windows Server supports multiple dependencies with both AND
and OR constraints. It is the OR constraints that make multi-subnet clustering possible, because a resource
can be dependent on IP address A OR IP address B. Finally, we need to bring the role online by using the
Start-ClusterGroup cmdlet.

Configuring a Role
After creating a role, you may wish to configure it to alter the failover policy or configure nodes as preferred
owners. To configure a role, select Properties from the role’s context menu. On the General tab of the
Properties dialog box, which is shown in Figure 3-29, you can configure a node as the preferred owner of
the role. You can also change the order of precedence of node preference by moving nodes above or below
others in the Preferred Owners window.

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

55

Figure 3-29. The General tab

You can also select the priority for the role in the event that multiple roles fail over to another node at
the same time. The options for this setting are as follows:

•	 High

•	 Medium

•	 Low

•	 No Auto Start

On the Failover tab of the Properties dialog box, you can configure the number of times that the role can
fail over within a given period before the role is left offline. The default value for this is one failure within
6 hours. The issue with this is that if a role fails over, and after you fix the issue on the original node, you
fail the role back, no more failovers are allowed within the 6-hour window. This is obviously a risk, and I
generally advise that you change this setting. In our case, we have configured the role to allow a maximum of
three failovers within a 24-hour time window, as illustrated in Figure 3-30. We have also configured the role
to fail back to the most preferred owner if it becomes available again. Remember, when setting automatic
failback, that failback also causes downtime in the same way that a failover does. If you aspire to a very high
level of availability, such as five 9s, then this option may not be appropriate.

ChapTEr 3 ■ IMpLEMENTINg a CLuSTEr

56

Summary
Before creating the cluster, the Microsoft Cluster Service (MCS) must be installed on all nodes. This can be
achieved by installing the Cluster Feature, using the Add Roles and Features wizard.

Once the cluster feature has been installed, clustering can be configured on each node by using the
Create Cluster Wizard. Before building the cluster, this wizard will prompt you to run the Cluster Validation
Wizard. The Cluster Validation Wizard will validate that environment meets the requirements for a cluster.
If you find that your environment does not meet the requirements, you can continue to building the cluster,
but the installation will not be supported by Microsoft.

Once the cluster has been built, it will also need to be configured. This will include configuring the
quorum mode and may also include configuring MSDTC. After creating a role on the cluster, you may also
wish to configure the role with failover policies or preferred owners.

Figure 3-30. The Failover tab

57

Chapter 4

Implementing an AlwaysOn
Failover Clustered Instance

Once the cluster has been built and configured, it is time to install the AlwaysOn failover cluster instance
of SQL Server. This chapter will discuss how to create an AlwaysOn Failover Clustered Instance and also
demonstrate how to add a node to the cluster.

Building the Instance
To build an AlwaysOn Failover Clustered Instance, select the New SQL Server Failover Cluster Installation
option from the Installation tab of the SQL Server Installation Center.

Preparation Steps
When you select this option, you invoke the Install A SQL Server Failover Cluster Wizard. The majority of the
pages in this wizard are identical to the pages in the SQL Server 2014 Setup Wizard.

Cluster-Specific Steps
The first deviation from a stand-alone installation of SQL Server is the Instance Configuration page, which
is illustrated in Figure 4-1. On this screen, you are prompted to enter the SQL Server Network Name as well
as choose between a default instance and a named instance. The SQL Server Network Name is the virtual
name, which is configured as a resource in the role. This allows client applications to connect to a server
with a consistent name, regardless of the node that owns the instance.

Chapter 4 ■ ImplementIng an alwaysOn FaIlOver Clustered InstanCe

58

 ■ Tip If you do not have permissions to create ad objects in the Ou that contains your cluster, then the vCO
for the instance must already exist, and you must have the Full Control permission assigned.

On the Cluster Resource Group page, displayed in Figure 4-2, a list of roles on the local cluster is
displayed. It is possible to create an empty role prior to running the installation of the instance, and if you
have done so, then you can select it from the list. Alternatively, you can modify the default name supplied in
the SQL Server cluster resource group name box to create a new resource group. In this demonstration, we
leave the default name.

Figure 4-1. The Instance Configuration page

Chapter 4 ■ ImplementIng an alwaysOn FaIlOver Clustered InstanCe

59

On the Cluster Disk Selection page of the wizard, shown in Figure 4-3, a list of cluster disks displays in
the lower pane, with warnings next to any disks that you cannot select. In the top pane, you can check the
disks that you want to add to the role. In our case, we select all of them, since there is one for data, one for
logs, and one for TempDB.

Figure 4-2. The Cluster Resource Group page

Chapter 4 ■ ImplementIng an alwaysOn FaIlOver Clustered InstanCe

60

On the Cluster Network Configuration page, we add an IP address for the role. In a multi-subnet cluster,
we would add multiple IP addresses, one for each subnet. The Cluster Network Configuration page is
illustrated in Figure 4-4.

Figure 4-3. The Cluster Disk Selection page

Chapter 4 ■ ImplementIng an alwaysOn FaIlOver Clustered InstanCe

61

On the Service Accounts tab of the Server Configuration page, the startup type for the SQL Server
service and the Server Agent service can only be configured as manual, since startup is controlled by
the cluster during failover. The other required service accounts are in a read-only display and cannot be
configured, as shown in Figure 4-5.

Figure 4-4. The Cluster Network Configuration page

Chapter 4 ■ ImplementIng an alwaysOn FaIlOver Clustered InstanCe

62

Figure 4-5. The Sevice Account tab

After instance installation is complete, the role is brought online and the instance is visible in Failover
Cluster Manager, as shown in Figure 4-6.

Chapter 4 ■ ImplementIng an alwaysOn FaIlOver Clustered InstanCe

63

Installing the Instance with PowerShell
Of course, we can use PowerShell to install the AlwaysOn failover cluster instance instead of using the
GUI. To install an AlwaysOn failover cluster instance from PowerShell, we can use SQL Server’s setup.exe
application with the InstallFailoverCluster action specified.

When you perform a command-line installation of a clustered instance, you need the parameters in
Table 4-1, in addition to the parameters that are mandatory when you install a stand-alone instance of
SQL Server.

Figure 4-6. The SQL Server role in Failover Cluster Manager

Table 4-1. Required Parameters for the Installation of a Clustered Instance

Parameter Usage

/FAILOVERCLUSTERIPADDRESSES Specifies the IP address(s) to use for the instance in the format
<IP Type>;<address>;<network name>;<subnet mask>.
For multi-subnet clusters, the IP addresses are space delimited.

/FAILOVERCLUSTERNETWORKNAME The virtual name of the clustered instance.

/INSTALLSQLDATADIR The folder in which to place SQL Server data files. This must be a
cluster disk.

The script in Listing 4-1 performs the same installation that has just been demonstrated when you run it
from the root directory of the installation media.

Chapter 4 ■ ImplementIng an alwaysOn FaIlOver Clustered InstanCe

64

Listing 4-1. Installing an AlwaysOn Failover Cluster Instance with PowerShell

.\SETUP.EXE /IACCEPTSQLSERVERLICENSETERMS /ACTION="InstallFailoverCluster"
/FEATURES=SQL,Conn,ADV_SSMS,DREPLAY_CTLR,DREPLAY_CLT
/INSTANCENAME="PROSQLADMINCLUST" /SQLSVCACCOUNT="PROSQLADMIN\ClusterAdmin"
/SQLSVCPASSWORD="Pa$$w0rd" /AGTSVCACCOUNT="PROSQLADMIN\ClusterAdmin"
/AGTSVCPASSWORD="Pa$$w0rd" /SQLSYSADMINACCOUNTS="PROSQLADMIN\SQLAdmin"
/FAILOVERCLUSTERIPADDRESSES="IPv4;192.168.0.23;Cluster Network 2;255.255.255.0"
/FAILOVERCLUSTERNETWORKNAME="PROSQLSRV-C"
/INSTALLSQLDATADIR="F:\" /qs

Adding a Node
The next step you should take when installing the cluster is to add the second node. Failure to add the
second node results in the instance staying online, but with no high availability, since the second node is
unable to take ownership of the role. To configure the second node, you need to log in to the passive cluster
node and select the Add Node To SQL Server Failover Cluster option from the Installation tab of SQL Server
Installation Center. This invokes the Add A Failover Cluster Node Wizard. The first page of this wizard is the
Product Key page. Just like when you install an instance, you need to use this screen to provide the product
key for SQL Server. Not specifying a product key only leaves you the option of installing the Evaluation
Edition, and since this expires after 180 days, it’s probably not the wisest choice for high availability.

The following License Terms page of the wizard asks you to read and accept the license terms of SQL
Server. Additionally, you need to specify if you wish to participate in Microsoft’s Customer Experience
Improvement Program. If you select this option, then error reporting is captured and sent to Microsoft.

After you accept the license terms, a rules check runs to ensure that all of the conditions are met so you
can continue with the installation. After the wizard checks for Microsoft updates and installing the setup files
required for installation, another rules check is carried out to ensure that the rules for adding the node to the
cluster are met.

On the Cluster Node Configuration page, illustrated in Figure 4-7, you are asked to confirm the instance
name to which you are adding a node. If you have multiple instances on the cluster, then you can use the
drop-down box to select the appropriate instance.

Chapter 4 ■ ImplementIng an alwaysOn FaIlOver Clustered InstanCe

65

On the Cluster Network Configuration page, shown in Figure 4-8, you confirm the network details.
These should be identical to the first node in the cluster, including the same IP address, since this is, of
course, shared between the two nodes.

Figure 4-7. The Cluster Node Configuration page

Chapter 4 ■ ImplementIng an alwaysOn FaIlOver Clustered InstanCe

66

Figure 4-8. The Cluster Network Configuration page

On the Service Accounts page of the wizard, most of the information is in read-only mode and you
are not able to modify it. This is because the service accounts you use must be the same for each node
of the cluster. You need to re-enter the service account passwords, however. This page is shown
in Figure 4-9.

Chapter 4 ■ ImplementIng an alwaysOn FaIlOver Clustered InstanCe

67

Now that the wizard has all of the required information, an additional rules check is carried out before
the summary page displays. The summary page, known as the Ready To Add Node page, is illustrated in
Figure 4-10. It provides a summary of the activities that take place during the installation.

Figure 4-9. The Service Accounts page

Chapter 4 ■ ImplementIng an alwaysOn FaIlOver Clustered InstanCe

68

Adding a Node Using PowerShell
To add a node using PowerShell instead of the GUI, you can run SQL Server’s setup.exe application with
an AddNode action. When you add a node from the command line, the parameters detailed in Table 4-2 are
mandatory.

Figure 4-10. The Read To Add Node page

Chapter 4 ■ ImplementIng an alwaysOn FaIlOver Clustered InstanCe

69

The script in Listing 4-2 adds ClusterNode2 to the role when you run it from the root folder of the
install media.

Listing 4-2. Adding a Node Using PowerShell

.\setup.exe /IACCEPTSQLSERVERLICENSETERMS /ACTION="AddNode"
/INSTANCENAME="PROSQLADMINCLUST" /SQLSVCACCOUNT="PROSQLADMIN\ClusterAdmin"
/SQLSVCPASSWORD="Pa$$w0rd" /AGTSVCACCOUNT="PROSQLADMIN\ClusterAdmin"
/AGTSVCPASSWORD="Pa$$w0rd"
/FAILOVERCLUSTERIPADDRESSES="IPv4;192.168.0.23;Cluster Network
2;255.255.255.0" /CONFIRMIPDEPENDENCYCHANGE=0 /qs

Summary
An AlwaysOn Failover Clustered Instance can be installed using SQL Server Installation Center or via
PowerShell. When using the SQL Server Installation Center, the process is very similar to the installation of a
stand-alone instance, however you will need to specify additional details, such as the network name,
IP Address and resource group configuration.

When using Powershell to install the Instance, you will InstalFailoverCluster action, specifying the
/FAILOVERCLUSTERIPADDRESSES, /FAILOVERCLUSTERNETWORKNAME, and /INSTALLSQLDATADIR parameters, in
addition the parameters required for a stand-alone instance build.

Table 4-2. Mandatory Parameters for the AddNode Action

Parameter Usage

/ACTION Must be configured as AddNode.

/IACCEPTSQLSERVERLICENSETERMS Mandatory when installing on Windows Server Core, since the
/qs switch must be specified on Windows Server Core.

/INSTANCENAME The instance that you are adding the extra node to support.

/CONFIRMIPDEPENDENCYCHANGE Allows multiple IP addresses to be specified for multi-subnet
clusters. Pass in a value of 1 for True or 0 for False.

/FAILOVERCLUSTERIPADDRESSES Specifies the IP address(es) to use for the instance in the format
<IP Type>;<address>;<network name>;<subnet mask>.
For multi-subnet clusters, the IP addresses are space delimited.

/FAILOVERCLUSTERNETWORKNAME The virtual name of the clustered instance.

/INSTALLSQLDATADIR The folder in which to place SQL Server data files. This must be
a cluster disk.

/SQLSVCACCOUNT The service account that is used to run the Database Engine.

/SQLSVCPASSWORD The password of the service account that is used to run the
Database Engine.

/AGTSVCACCOUNT The service account that issued to run SQL Server Agent.

/AGTSVCPASSWORD The password of the service account that is used to run SQL
Server Agent.

71

Chapter 5

Implementing AlwaysOn
Availability Groups

AlwaysOn Availability Groups provide a flexible option for achieving high availability, recovering from
disasters, and scaling out read-only workloads. The technology synchronizes data at the database level, but
health monitoring and quorum are provided by a Windows cluster.

This chapter demonstrates how to build and configure availability groups for both high availability (HA)
and disaster recovery (DR). We also discuss aspects such as performance considerations and maintenance.
We also discuss using availability groups to scale out read-only workloads.

 ■ Note For the demonstrations in this chapter, we use a domain that contains a domain controller and a
two-node cluster. These servers are in a site called Site1. A second site, called Site2, contains a third server.
During the course of the chapter, we add this as a node to the cluster. The cluster has no shared storage for
data and there is no AlwaysOn failover clustered instance. Each node has a stand-alone instance of SQL Server
installed on it named ClusterNode1\PrimaryReplica, ClusterNode2\SyncHA, and ClusterNode3\AsyncDR,
respectively.

Implementing High Availability with AlwaysOn
Availability Groups
Before implementing AlwaysOn Availability Groups, we first create three databases, which we will use
during the demonstrations in this chapter. Two of the databases relate to the fictional application, App1, and
the third database relates to the fictional application, App2. Each contains a single table, which we populate
with data. Each database is configured with Recovery mode set to FULL. This is a hard requirement for a
database to use AlwaysOn Availability Groups because data is synchronized via a log stream. The script in
Listing 5-1 creates these databases.

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

72

Listing 5-1. Creating Databases

CREATE DATABASE Chapter5App1Customers ;
GO

ALTER DATABASE Chapter5App1Customers SET RECOVERY FULL ;
GO

USE Chapter5App1Customers
GO

CREATE TABLE App1Customers
(
ID INT PRIMARY KEY IDENTITY,
FirstName NVARCHAR(30),
LastName NVARCHAR(30),
CreditCardNumber VARBINARY(8000)
) ;
GO

--Populate the table

DECLARE @Numbers TABLE
(
 Number INT
)

;WITH CTE(Number)
AS
(
 SELECT 1 Number
 UNION ALL
 SELECT Number + 1
 FROM CTE
 WHERE Number < 100
)
INSERT INTO @Numbers
SELECT Number FROM CTE

DECLARE @Names TABLE
(
 FirstName VARCHAR(30),
 LastName VARCHAR(30)
) ;

INSERT INTO @Names
VALUES('Peter', 'Carter'),
 ('Michael', 'Smith'),
 ('Danielle', 'Mead'),
 ('Reuben', 'Roberts'),
 ('Iris', 'Jones'),
 ('Sylvia', 'Davies'),

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

73

 ('Finola', 'Wright'),
 ('Edward', 'James'),
 ('Marie', 'Andrews'),
 ('Jennifer', 'Abraham'),
 ('Margaret', 'Jones')

INSERT INTO App1Customers(Firstname, LastName, CreditCardNumber)
SELECT FirstName, LastName, CreditCardNumber FROM
 (SELECT
 (SELECT TOP 1 FirstName FROM @Names ORDER BY NEWID()) FirstName
 ,(SELECT TOP 1 LastName FROM @Names ORDER BY NEWID()) LastName
 ,(SELECT CONVERT(VARBINARY(8000)
 ,(SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID()) + '-' +
 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID()) + '-' +
 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID()) + '-' +
 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID()))) CreditCardNumber
FROM @Numbers a
CROSS JOIN @Numbers b
CROSS JOIN @Numbers c
) d ;

CREATE DATABASE Chapter5App1Sales ;
GO

ALTER DATABASE Chapter5App1Sales SET RECOVERY FULL ;
GO

USE Chapter5App1Sales
GO

CREATE TABLE dbo.Orders(
 OrderNumber int NOT NULL IDENTITY(1,1) PRIMARY KEY CLUSTERED,
 OrderDate date NOT NULL,
 CustomerID int NOT NULL,
 ProductID int NOT NULL,
 Quantity int NOT NULL,
 NetAmount money NOT NULL,
 TaxAmount money NOT NULL,
 InvoiceAddressID int NOT NULL,
 DeliveryAddressID int NOT NULL,
 DeliveryDate date NULL,
) ;

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

74

DECLARE @Numbers TABLE
(
 Number INT
)

;WITH CTE(Number)
AS
(
 SELECT 1 Number
 UNION ALL
 SELECT Number + 1
 FROM CTE
 WHERE Number < 100
)
INSERT INTO @Numbers
SELECT Number FROM CTE

--Populate ExistingOrders with data

INSERT INTO Orders
SELECT
 (SELECT CAST(DATEADD(dd,(SELECT TOP 1 Number
 FROM @Numbers
 ORDER BY NEWID()),getdate())as DATE)),
 (SELECT TOP 1 Number -10 FROM @Numbers ORDER BY NEWID()),
 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID()),
 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID()),
 500,
 100,
 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID()),
 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID()),
 (SELECT CAST(DATEADD(dd,(SELECT TOP 1 Number - 10
 FROM @Numbers
 ORDER BY NEWID()),getdate()) as DATE))
FROM @Numbers a
CROSS JOIN @Numbers b
CROSS JOIN @Numbers c ;

CREATE DATABASE Chapter5App2Customers ;
GO

ALTER DATABASE Chapter5App2Customers SET RECOVERY FULL ;
GO

USE Chapter5App2Customers
GO

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

75

CREATE TABLE App2Customers
(
ID INT PRIMARY KEY IDENTITY,
FirstName NVARCHAR(30),
LastName NVARCHAR(30),
CreditCardNumber VARBINARY(8000)
) ;
GO

--Populate the table

DECLARE @Numbers TABLE
(
 Number INT
) ;

;WITH CTE(Number)
AS
(
 SELECT 1 Number
 UNION ALL
 SELECT Number + 1
 FROM CTE
 WHERE Number < 100
)
INSERT INTO @Numbers
SELECT Number FROM CTE ;

DECLARE @Names TABLE
(
 FirstName VARCHAR(30),
 LastName VARCHAR(30)
) ;

INSERT INTO @Names
VALUES('Peter', 'Carter'),
 ('Michael', 'Smith'),
 ('Danielle', 'Mead'),
 ('Reuben', 'Roberts'),
 ('Iris', 'Jones'),
 ('Sylvia', 'Davies'),
 ('Finola', 'Wright'),
 ('Edward', 'James'),
 ('Marie', 'Andrews'),
 ('Jennifer', 'Abraham'),
 ('Margaret', 'Jones')

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

76

INSERT INTO App2Customers(Firstname, LastName, CreditCardNumber)
SELECT FirstName, LastName, CreditCardNumber FROM
 (SELECT
 (SELECT TOP 1 FirstName FROM @Names ORDER BY NEWID()) FirstName
 ,(SELECT TOP 1 LastName FROM @Names ORDER BY NEWID()) LastName
 ,(SELECT CONVERT(VARBINARY(8000)
 ,(SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID()) + '-' +
 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID()) + '-' +
 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID()) + '-' +
 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID()))) CreditCardNumber
FROM @Numbers a
CROSS JOIN @Numbers b
CROSS JOIN @Numbers c
) d ;

Configuring SQL Server
The first step in configuring AlwaysOn Availability Groups is enabling this feature on the SQL Server service.
To enable the feature from the GUI, we open SQL Server Configuration Manager, drill through SQL Server
Services and select Properties from the context menu of the SQL Server service. When we do this, the service
properties display and we navigate to the AlwaysOn High Availability tab, shown in Figure 5-1.

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

77

On this tab, we check the Enable AlwaysOn Availability Groups box and ensure that the cluster name
displayed in the Windows Failover Cluster Name box is correct. We then need to restart the SQL Server
service. Because AlwaysOn Availability Groups uses stand-alone instances, which are installed locally on
each cluster node, as opposed to a failover clustered instance, which spans multiple nodes, we need to
repeat these steps for each stand-alone instance hosted on the cluster.

We can also use PowerShell to enable AlwaysOn Availability Groups. To do this, we use the PowerShell
command in Listing 5-2. The script assumes that CLUSTERNODE1 is the name of the server and that
PRIMARYREPLICA is the name of the SQL Server instance.

Listing 5-2. Enabling AlwaysOn Availability Groups

Enable-SqlAlwaysOn -Path SQLSERVER:\SQL\CLUSTERNODE1\PRIMARYREPLICA

The next step is to take a full backup of all databases that will be part of the availability group. We create
separate availability groups for App1 and App2, respectively, so to create an availability group for App1, we
need to back up the Chapter5App1Customers and Chapter5App1Sales databases. We do this by running the
script in Listing 5-3.

Figure 5-1. The AlwaysOn High Avaiability tab

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

78

Listing 5-3. Backing Up the Databases

BACKUP DATABASE Chapter5App1Customers
TO DISK = N'C:\Backups\Chapter5App1Customers.bak'
WITH NAME = N'Chapter5App1Customers-Full Database Backup' ;
GO

BACKUP DATABASE Chapter5App1Sales
TO DISK = N'C:\Backups\Chapter5App1Sales.bak'
WITH NAME = N'Chapter5App1Sales-Full Database Backup' ;
GO

Creating the Availability Group
You can create an availability group topology in SQL Server in several ways. It can be created manually,
predominantly through dialog boxes, via T-SQL, or through a wizard. The following sections explore each of
these options.

Using the New Availability Group Wizard
When the backups complete successfully, we invoke the New Availability Group wizard by drilling through
AlwaysOn High Availability in Object Explorer and selecting the New Availability Group wizard from the
context menu of the Availability Groups folder. The Introduction page of the wizard, displayed in Figure 5-2,
now displays, giving us an overview of the steps that we need to undertake.

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

79

Figure 5-2. The Introduction page

On the Specify Name page (see Figure 5-3), we are prompted to enter a name for our availability group.

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

80

On the Select Databases page, we are prompted to select the database(s) that we wish to participate
in the availability group, as illustrated in Figure 5-4. On this screen, notice that we cannot select the
Chapter5App2Customers database, because we have not yet taken a full backup of the database.

Figure 5-3. The Specify Name page

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

81

The Specify Replicas page consists of four tabs. We use the first tab, Replicas, to add the secondary
replicas to the topology. Checking the Synchronous Commit option causes data to be committed on the
secondary replica before it is committed on the primary replica. (This is also referred to as hardening
the log on the secondary before the primary.) This means that, in the event of a failover, data loss is
not possible, meaning that we can meet an SLA (service level agreement) with an RPO (recovery point
objective) of 0 (zero). It also means that there is a performance impediment, however. If we choose not
to check the option for Synchronous Commit, then the replica operates in Asynchronous Commit mode.
This means that data is committed on the primary replica before being committed on the secondary
replica. This stops us from suffering a performance impediment, but it also means that, in the event of
failover, the RPO is nondeterministic. Performance considerations for synchronous replicas are discussed
later in this chapter.

Figure 5-4. The Select Database page

www.allitebooks.com

http://www.allitebooks.org

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

82

When we check the Automatic Failover option, the Synchronous Commit option is also selected
automatically if we have not already selected it. This is because automatic failover is only possible in
Synchronous Commit mode. We can set the Readable Secondary drop-down to No, Yes, or Read-intent.
When we set it to No, the database is not accessible on replicas that are in a secondary role. When we set it to
read-intent, the Availability Group Listener is able to redirect read-only workloads to this secondary replica,
but only if the application has specified Application Intent=Read-only in the connection string. Setting
it to Yes enables the listener to redirect read-only traffic, regardless of whether the Application Intent
parameter is present in the application’s connection string. Although we can change the value of Readable
Secondary through the GUI while at the same time configuring a replica for automatic failover without error,
this is simply a quirk of the wizard. In fact, the replica is not accessible, since active secondaries are not
supported when configured for automatic failover. The Replicas tab is illustrated in Figure 5-5.

Figure 5-5. The Replicas tab

 ■ Note using secondary replicas for read-only workloads is discussed in more depth in the Adding AlwaysOn
readable Secondary replicas section of this chapter.

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

83

Figure 5-6. The Endpoints tab

On the Endpoints tab of the Specify Replicas page, illustrated in Figure 5-6, we specify the port number for
each endpoint. The default port is 5022, but we can specify a different port if we need to. On this tab, we also
specify if data should be encrypted when it is sent between the endpoints. It is usually a good idea to check this
option, and if we do, then AES (Advanced Encryption Standard) is used as the encryption algorithm.

Optionally, you can also change the name of the endpoint that is created. Because only one database
mirroring endpoint is allowed per instance, however, and because the default name is fairly descriptive,
there is not always a reason to change it. Some DBAs choose to rename it to include the name of the
instance, since this can simplify the management of multiple servers. This is a good idea if your enterprise
has many availability group clusters.

The service account each instance uses is displayed for informational purposes. It simplifies security
administration if you ensure that the same service account is used by both instances. If you fail to do this,
you will need to grant each instance permissions to each service account. This means that instead of
reducing the security footprint of each service account by using it for one instance only, you simply push the
footprint up to the SQL Server level instead of the Operating System level.

The endpoint URL specifies the URL of the endpoint that availability groups will use to communicate.
The format of the URL is [Transport Protocol]://[Path]:[Port]. The transport protocol for a database
mirroring endpoint is always TCP (Transmission Control Protocol). The path can either be the fully qualified
domain name (FQDN) of the server, the server name on its own, or an IP address, which is unique across the
network. I recommend using the FQDN of the server, because this is always guaranteed to work. It is also the
default value populated. The port should match the port number that you specify for the endpoint.

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

84

 ■ Note Availability groups communicate with a database mirroring endpoint. Although database mirroring is
deprecated, the endpoints are not.

On the Backup Preferences tab (see Figure 5-7), we can specify the replica on which automated backups
will be taken. One of the big advantages of AlwaysOn Availability Groups is that when you use them, you
can scale out maintenance tasks, such as backups, to secondary servers. Therefore, automated backups can
seamlessly be directed to active secondaries. The possible options are Prefer Secondary, Secondary Only,
Primary, or Any Replica. It is also possible to set priorities for each replica. When determining which replica
to run the backup job against, SQL Server evaluates the backup priorities of each node and is more likely to
choose the replica with the highest priority.

Figure 5-7. The Backup Preferences tab

Although the advantages of reducing IO on the primary replica are obvious, I, somewhat controversially,
recommend against scaling automated backups to secondary replicas in many cases. This is especially
the case when RTO (recovery time objective) is a priority for the application because of operational
supportability issues. Imagine a scenario in which backups are being taken against a secondary replica and
a user calls to say that they have accidently deleted all data from a critical table. You now need to restore a
copy of the database and repopulate the table. The backup files, however, sit on the secondary replica. As
a result, you need to copy the backup files over to the primary replica before you can begin to restore the
database (or perform the restore over the network). This instantly increases your RTO.

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

85

Also, when configured to allow backups against multiple servers, SQL Server still only maintains
the backup history on the instance where the backup was taken. This means that you may be scrambling
between servers, trying to retrieve all of your backup files, not knowing where each one resides. This
becomes even worse if one of the servers has a complete system outage. You can find yourself in a scenario
in which you have a broken log chain.

The workaround for most of the issues that I just mentioned is to use a share on a file server and
configure each instance to back up to the same share. The problem with this, however, is that by setting
things up in this manner, you are now sending all of your backups across the network rather than backing
them up locally. This can increase the duration of your backups as well as increase network traffic.

On the Listener tab, shown in Figure 5-8, we choose if we want to create an availability group listener
or if we want to defer this task until later. If we choose to create the listener, then we need to specify the
listener’s name, the port that it should listen on, and the IP address(es) that it should use. We specify one
address for each subnet, in multi-subnet clusters. The details provided here are used to create the client
access point resource in the availability group’s cluster role. You may notice that we have specified port 1433
for the listener, although our instance is also running on port 1433. This is a valid configuration, because the
listener is configured on a different IP address than the SQL Server instance. It is also not mandatory to use
the same port number, but it can be beneficial, if you are implementing AlwaysOn Availability Groups on an
existing instance because applications that specify the port number to connect may need fewer application
changes. Remember that the server name will still be different, however, because applications will be
connecting to the virtual name of the listener, as opposed to the name of the physical server\instance. In our
example, applications connect to APP1LISTEN\PRIMARYREPLICA instead of CLUSTERNODE1\PRIMARYREPLICA.
Although connections via CLUSTERNODE1 are still permitted, they do not benefit from high availability or scale
our reporting.

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

86

 ■ Tip If you do not have Create Computer Objects permission within the Ou, then the listener’s vCO (virtual
computer object) must be prestaged in AD and you must be assigned Full Control permissions on the object.

On the Select Initial Data Synchronization screen, shown in Figure 5-9, we choose how the initial data
synchronization of the replicas is performed. If you choose Full, then each database that participates in the
availability group is subject to a full backup, followed by a log backup. The backup files are backed up to a
share, which you specify, before they are restored to the secondary servers. After the restore is complete,
data synchronization, via log stream, commences.

Figure 5-8. The Listener tab

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

87

If you have already backed up your databases and restored them onto the secondaries, then you can
select the Join Only option. This starts the data synchronization, via log stream, on the databases within
the availability group. Selecting Skip Initial Data Synchronization allows you to back up and restore the
databases yourself after you complete the setup.

 ■ Tip If your availability group will contain many databases, then it may be best to perform the backup/
restore yourself. This is because the inbuilt utility will perform the actions sequentially, and therefore, it may
take a long time to complete.

On the Validation page, rules that may cause the setup to fail are checked, as illustrated in Figure 5-10.
If any of the results come back as Failed, then you need to resolve them before you attempt to continue.

Figure 5-9. The Select Data Synchronization page

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

88

Once validation tests are complete and we move to the Summary page, we are presented with a list of
the tasks that are to be carried out during the setup. As setup progresses, the results of each configuration
task display on the Results page. If any errors occur on this page, be sure to investigated them, but this does
not necessarily mean that the entire availability group needs to be reconfigured. For example, if the creation
of the availability group listener fails because the VCO had not been prestaged in AD, then you can re-create
the listener without needing to re-create the entire availability group.

As an alternative to using the New Availability Group wizard, you can perform the configuration of the
availability group using the New Availability Group dialog box, followed by the Add Listener dialog box.
This method of creating an availability group is examined later in this chapter.

Scripting the Availability Group
We can also script the activity by using the script in Listing 5-4. This script connects to both instances
within the cluster, meaning that it can only be run in SQLCMD mode. First, the script creates a login for
the service account on each instance. It then creates the TCP endpoint, assigns the connect permission to
the service account, and starts the health trace for AlwaysOn Availability Groups (which we discuss later
in this chapter). The script then creates the availability group on the primary and joins the secondary to

Figure 5-10. The Validation page

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

89

the group. Next, we perform a full and log backup and a restore of each database that will participate in
the availability group before we add the databases to the group. Note that the databases are backed up,
restored, and added to the group in a serial manner. If you have many databases, then you may want to
parallelize this process.

Listing 5-4. Creating Availability Group

--Create Logins for the Service Account,
--create Endpoints and assign Service Account permissions
--to the Endpoint on Primary Replica

:Connect CLUSTERNODE1\PRIMARYREPLICA

USE master
GO

CREATE LOGIN [prosqladmin\clusteradmin] FROM WINDOWS ;
GO

CREATE ENDPOINT [Hadr_endpoint]
 AS TCP (LISTENER_PORT = 5022)
 FOR DATA_MIRRORING (ROLE = ALL, ENCRYPTION = REQUIRED ALGORITHM AES) ;
GO

ALTER ENDPOINT [Hadr_endpoint] STATE = STARTED ;
GO

GRANT CONNECT ON ENDPOINT::[Hadr_endpoint] TO [prosqladmin\clusteradmin] ;
GO

IF EXISTS(SELECT * FROM sys.server_event_sessions WHERE name='AlwaysOn_health')
BEGIN
 ALTER EVENT SESSION AlwaysOn_health ON SERVER WITH (STARTUP_STATE=ON);
END
IF NOT EXISTS(SELECT * FROM sys.dm_xe_sessions WHERE name='AlwaysOn_health')
BEGIN
 ALTER EVENT SESSION AlwaysOn_health ON SERVER STATE=START;
END
GO

--Create Logins for the Service Account,
--create Endpoints and assign Service Account permissions
--to the Endpoint on Secondary Replica

:Connect CLUSTERNODE2\SYNCHA

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

90

USE master
GO

CREATE LOGIN [prosqladmin\ClusterAdmin] FROM WINDOWS ;
GO

CREATE ENDPOINT [Hadr_endpoint]
 AS TCP (LISTENER_PORT = 5022)
 FOR DATA_MIRRORING (ROLE = ALL, ENCRYPTION = REQUIRED ALGORITHM AES) ;
GO

ALTER ENDPOINT [Hadr_endpoint] STATE = STARTED ;
GO

GRANT CONNECT ON ENDPOINT::[Hadr_endpoint] TO [prosqladmin\ClusterAdmin] ;
GO

IF EXISTS(SELECT * FROM sys.server_event_sessions WHERE name='AlwaysOn_health')
BEGIN
 ALTER EVENT SESSION AlwaysOn_health ON SERVER WITH (STARTUP_STATE=ON);
END
IF NOT EXISTS(SELECT * FROM sys.dm_xe_sessions WHERE name='AlwaysOn_health')
BEGIN
 ALTER EVENT SESSION AlwaysOn_health ON SERVER STATE=START;
END
GO

--Create Avaiability Group

:Connect CLUSTERNODE1\PRIMARYREPLICA

USE master
GO

CREATE AVAILABILITY GROUP App1
WITH (AUTOMATED_BACKUP_PREFERENCE = PRIMARY)
FOR DATABASE Chapter5App1Customers, Chapter5App1Sales
REPLICA ON N'CLUSTERNODE1\PRIMARYREPLICA'
WITH (ENDPOINT_URL = N'TCP://ClusterNode1.PROSQLADMIN.COM:5022',
FAILOVER_MODE = AUTOMATIC, AVAILABILITY_MODE = SYNCHRONOUS_COMMIT, BACKUP_PRIORITY = 50,
SECONDARY_ROLE(ALLOW_CONNECTIONS = NO)),
 N'CLUSTERNODE2\SYNCHA'
 WITH (ENDPOINT_URL = N'TCP://ClusterNode2.PROSQLADMIN.COM:5022',
 FAILOVER_MODE = AUTOMATIC, AVAILABILITY_MODE = SYNCHRONOUS_COMMIT,
 BACKUP_PRIORITY = 50, SECONDARY_ROLE(ALLOW_CONNECTIONS = NO));
GO

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

91

--Create the Listener (Use an IP Address applicable to your environment)

ALTER AVAILABILITY GROUP App1
ADD LISTENER N'App1Listen' (
WITH IP
((N'192.168.0.4', N'255.255.255.0')
)
, PORT=1433);
GO

--Join the Secondary Replica

:Connect CLUSTERNODE2\SYNCHA

ALTER AVAILABILITY GROUP App1 JOIN;
GO

--Back Up Database and Log (First database)

:Connect CLUSTERNODE1\PRIMARYREPLICA

BACKUP DATABASE Chapter5App1Customers
TO DISK = N'\\CLUSTERNODE1\AOAGShare\Chapter5App1Customers.bak'
WITH COPY_ONLY, FORMAT, INIT, REWIND, COMPRESSION, STATS = 5 ;
GO

BACKUP LOG Chapter5App1Customers
TO DISK = N'\\CLUSTERNODE1\AOAGShare\Chapter5App1Customers.trn'
WITH NOSKIP, REWIND, COMPRESSION, STATS = 5 ;
GO

--Restore Database and Log (First database)

:Connect CLUSTERNODE2\SYNCHA

RESTORE DATABASE Chapter5App1Customers
FROM DISK = N'\\CLUSTERNODE1\AOAGShare\Chapter5App1Customers.bak'
WITH NORECOVERY, STATS = 5 ;
GO

RESTORE LOG Chapter5App1Customers
FROM DISK = N'\\CLUSTERNODE1\AOAGShare\Chapter5App1Customers.trn'
WITH NORECOVERY, STATS = 5 ;
GO

--Wait for replica to start communicating

DECLARE @connection BIT

DECLARE @replica_id UNIQUEIDENTIFIER
DECLARE @group_id UNIQUEIDENTIFIER

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

92

SET @connection = 0

WHILE @Connection = 0
BEGIN
 SET @group_id = (SELECT group_id
 FROM Master.sys.availability_groups
 WHERE name = N'App1')
 SET @replica_id = (SELECT replica_id
 FROM Master.sys.availability_replicas
 WHERE UPPER(replica_server_name COLLATE Latin1_General_CI_AS) =
 UPPER(@@SERVERNAME COLLATE Latin1_General_CI_AS)
 AND group_id = @group_id)

 SET @connection = ISNULL((SELECT connected_state
 FROM Master.sys.dm_hadr_availability_replica_states
 WHERE replica_id = @replica_id), 1)

 WAITFOR DELAY '00:00:10'
END

--Add first Database to the Availability Group

ALTER DATABASE Chapter5App1Customers SET HADR AVAILABILITY GROUP = App1;

GO

--Back Up Database and Log (Second database)

:Connect CLUSTERNODE1\PRIMARYREPLICA

BACKUP DATABASE Chapter5App1Sales
TO DISK = N'\\CLUSTERNODE1\AOAGShare\Chapter5App1Sales.bak'
WITH COPY_ONLY, FORMAT, INIT, REWIND, COMPRESSION, STATS = 5 ;
GO

BACKUP LOG Chapter5App1Sales
TO DISK = N'\\CLUSTERNODE1\AOAGShare\Chapter5App1Sales.trn'
WITH NOSKIP, REWIND, COMPRESSION, STATS = 5 ;
GO

--Restore Database and Log (Second database)

:Connect CLUSTERNODE2\SYNCHA

RESTORE DATABASE Chapter5App1Sales
FROM DISK = N'\\CLUSTERNODE1\AOAGShare\Chapter5App1Sales.bak'
WITH NORECOVERY, STATS = 5 ;
GO

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

93

RESTORE LOG Chapter5App1Sales
FROM DISK = N'\\CLUSTERNODE1\AOAGShare\Chapter5App1Sales.trn'
WITH NORECOVERY, STATS = 5 ;
GO

--Wait for replica to start communicating
DECLARE @connection BIT

DECLARE @replica_id UNIQUEIDENTIFIER
DECLARE @group_id UNIQUEIDENTIFIER

SET @connection = 0

WHILE @Connection = 0
BEGIN
 SET @group_id = (SELECT group_id
 FROM Master.sys.availability_groups
 WHERE name = N'App1')
 SET @replica_id = (SELECT replica_id
 FROM Master.sys.availability_replicas
 WHERE UPPER(replica_server_name COLLATE Latin1_General_CI_AS) =
 UPPER(@@SERVERNAME COLLATE Latin1_General_CI_AS)
 AND group_id = @group_id)

 SET @connection = ISNULL((SELECT connected_state
 FROM Master.sys.dm_hadr_availability_replica_states
 WHERE replica_id = @replica_id), 1)

 WAITFOR DELAY '00:00:10'
END

--Add Second database to the Availaility Group

ALTER DATABASE Chapter5App1Sales SET HADR AVAILABILITY GROUP = App1;
GO

Creating the availability group via T-SQL gives you the most flexibility in terms of configuration.
Table 5-1 contains a complete list of arguments, along with their explanation.

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

94

Table 5-1. The CREATE AVAIABILITY GROUP Arguments

Argument Description Acceptable Values

AUTOMATED_BACKUP_PREFERENCE Defines where backups run from automated jobs
should be taken.

PRIMARY
SECONDARY_ONLY
SECONDARY
NONE

FAILURE_CONDITION_LEVEL Specifies how sensitive the failover will be. Further
details in Table 5-2.

1 through 5

HEALTH_CHECK_TIMEOUT Configures the amount of time, in milliseconds, that
SQL Server has to return health check information
to the cluster before the cluster assumes that the
instance is not responding, which triggers a failover
when FAILOVER_MODE is set to AUTOMATIC.

15000ms through
4294967295ms

DATABASE A comma-separated list of databases that will join
the availability group.

–

REPLICA ON A comma-separated list of server\instance names
that will be replicas within the group. The following
arguments in this table form the WITH clause of the
REPLICA ON argument.

–

ENDPOINT_URL The URL of the TCP endpoint that the replica will
use to communicate.

–

AVAILABILITY_MODE Determines if the replica operates in synchronous
or asynchronous mode.

SYNCHRONOUS_COMMIT
ASYNCHRONOUS_COMMIT

FAILOVER_MODE When the AVAILABILITY_MODE is set to
synchronous, determines if automatic failover
should be allowed.

AUTOMATIC
MANUAL

BACKUP_PRIORITY Gives the replica a weight when SQL Server is deciding
where an automated backup job should run.

0 through 100

SECONDARY_ROLE Specifies properties that only apply to the replica
when it is in a secondary role. ALLOW_CONNECTIONS
specifies if the replica is readable, and if so, by all
read_only connections or only those that specify
read-intent in the connection string. READ_ONLY_
ROUTING_URL specifies the URL for applications
to connect to it, for read only operations, in the
format: TCP://ServerName:Port.

-

PRIMARY_ROLE Specifies properties that only apply to the replica
when it is in the primary role. ALLOW_CONNECTIONS
can be configured as All to allow any connection,
or Read_Write, to disallow read-only connections.
READ_ONLY_ROUTING_LIST is a comma-separated list
of server\instance names that have been configured
as read-only replicas.

-

SESSION_TIMEOUT Specifies how long replicas can survive without
receiving a ping before they enter the
DISCONNECTED state.

5 to 2147483647
seconds

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

95

The FAILOVER_CONDITION_LEVEL argument determines the group’s sensitivity to failover. Table 5-2
provides a description of each of the five levels.

Table 5-2. The FAILOVER_CONDITION_LEVEL Arguement

Level Failover Triggered By

1 Instance down.
AOAG lease expires.

2 Conditions of level 1 plus:
HEALTH_CHECK_TIMEOUT is exceeded.
The replica has a state of FAILED.

3 (Default) Conditions of level 2 plus:
SQL Server experiences critical internal errors.

4 Conditions of level 3 plus:
SQL Server experiences moderate internal errors.

5 Failover initialed on any qualifying condition.

Using the New Availability Group Dialog Box
Now that we have successfully created our first availability group, let’s create a second availability group for
App2. This time, we use the New Availability Group and Add Listener Dialog boxes. We begin this process
by backing up the Chapter5App2Customers database. Just like when we created the App1 availability group,
the databases are not selectable until we perform the backup. Unlike when we used the wizard, however, we
have no way to make SQL Server perform the initial database synchronization for us. Therefore, we back up
the database to the share that we created during the previous demonstration and then restore the backup,
along with a transaction log backup, to the secondary instance. We do this by using the script in Listing 5-5,
which must be run in SQLCMD mode for it to work. This is because it connects to both instances.

Listing 5-5. Backing Up and Restoring the Database

--Back Up Database and Log

:Connect CLUSTERNODE1\PRIMARYREPLICA

BACKUP DATABASE Chapter5App2Customers TO DISK = N'\\CLUSTERNODE1\AOAGShare\
Chapter5App2Customers.bak' WITH COPY_ONLY, FORMAT, INIT, REWIND, COMPRESSION, STATS = 5 ;
GO

BACKUP LOG Chapter5App2Customers TO DISK = N'\\CLUSTERNODE1\AOAGShare\
Chapter5App2Customers.trn' WITH NOSKIP, REWIND, COMPRESSION, STATS = 5 ;
GO

--Restore Database and Log

:Connect CLUSTERNODE2\SYNCHA

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

96

RESTORE DATABASE Chapter5App2Customers FROM DISK = N'\\CLUSTERNODE1\AOAGShare\
Chapter5App2Customers.bak' WITH NORECOVERY, STATS = 5 ;
GO

RESTORE LOG Chapter5App2Customers FROM DISK = N'\\CLUSTERNODE1\AOAGShare\
Chapter5App2Customers.trn' WITH NORECOVERY, STATS = 5 ;
GO

If we had not already created an availability group, then our next job would be to create a TCP endpoint
so the instances could communicate. We would then need to create a login for the service account on
each instance and grant it the connect permissions on the endpoints. Because we can only ever have one
database mirroring endpoint per instance, however, we are not required to create a new one, and obviously
we have no reason to grant the service account additional privileges. Therefore, we continue by creating the
availability group. To do this, we drill through AlwaysOn High Availability in Object Explorer and select New
Availability Group from the context menu of availability groups.

This causes the General tab of the New Availability Group dialog box to display, as illustrated in
Figure 5-11. On this screen, we type the name of the availability group in the first field. Then we click the
Add button under the Availability Databases window before we type the name of the database that we wish
to add to the group. We then need to click the Add button under the Availability Replicas window before we
type the server\instance name of the secondary replica in the new row.

Figure 5-11. The New Availability Group dialog box

Now we can begin to set the replica properties. We discussed the Role, Availability Mode, Failover
Mode, Readable Secondary, and Endpoint URL properties when we created the App1 availability group. The
Connection In Primary Role property defines what connections can be made to the replica if the replica is in
the primary role. You can configure this as either Allow All Connections, or allow Read/Write connections.
When Read/Write is specified, applications using the Application Intent = Read only parameter in their
connection string will not be able to connect to the replica.

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

97

The Session Timeout property sets how long the replicas can go without receiving a ping from one
another before they enter the DISCONNECTED state and the session ends. Although it is possible to set this
value to as low as 5 seconds, it is usually a good idea to keep the setting at or above 10 seconds, otherwise
you run the risk of a false positive response, resulting in unnecessary failover. If a replica times out, it needs
to be resynchronized, since transactions on the primary will no longer wait for the secondary, even if the
secondary is running in Synchronous Commit mode.

 ■ Note you may have noticed that we have configured the replica in Asynchronous Commit mode. This is
for the benefit of a later demonstration. For hA, we would always configure Synchronous Commit mode, since
otherwise, automatic failover is not possible.

On the Backup Preferences tab of the dialog box, we define the preferred replica to use for automated
backup jobs, as shown in Figure 5-12. Just like when using the wizard, we can specify Primary, or we can
choose between enforcing and preferring backups to occur on a secondary replica. We can also configure a
weight, between 0 and 100 for each replica, and use the Exclude Replica check box to avoid backups being
taken on a specific node.

Figure 5-12. The Backup Preferences tab

Once we have created the availability group, we need to create the availability group listener. To do
this, we select New Listener from the context menu of the App2 availability group, which should now be
visible in Object Explorer. This invokes the New Availability Group Listener dialog box, which can be seen
in Figure 5-13.

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

98

In this dialog box, we start by entering the virtual name for the listener. We then define the port that it
will listen on and the IP address that will be assigned to it. We are able to use the same port for both of the
listeners, as well as the SQL Server instance, because all three use different IP addresses.

Performance Considerations for Synchronous Commit Mode
Unlike traditional clustering, Availability Group topology does not have any shared disk resources.
Therefore, data must be replicated on two devices, which of course, has an overhead. This overhead varies
depending on various aspects of your environment, such as network latency and disk performance, as
well as the application profile. However, the script in Listing 5-6 runs some write-intensive tests against
the Chapter5App2Customers database (which is in Asynchronous Commit mode) and then against the
Chapter5App1Customers database (which is Synchronous Commit mode). This indicates the overhead that
you can expect to witness.

Figure 5-13. The New Availability Group Listener dialog box

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

99

 ■ Tip It is important to remember that there is no overhead on read performance. Also, despite the overhead
associated with writes, some of this is offset by distributing read-only workloads if you implement readable
secondary replicas.

Listing 5-6. Performance Benchmark with Availability Groups

DBCC FREEPROCCACHE
DBCC DROPCLEANBUFFERS

SET STATISTICS TIME ON

PRINT 'Begin asynchronous commit benchmark'

USE Chapter5App2Customers
GO

PRINT 'Build a nonclustered index'

CREATE NONCLUSTERED INDEX NIX_FirstName_LastName ON App2Customers(FirstName, LastName) ;

PRINT 'Delete from table'

DELETE FROM [dbo].[App2Customers] ;

PRINT 'Insert into table'

DECLARE @Numbers TABLE
(
 Number INT
)

;WITH CTE(Number)
AS
(
 SELECT 1 Number
 UNION ALL
 SELECT Number + 1
 FROM CTE
 WHERE Number < 100
)
INSERT INTO @Numbers
SELECT Number FROM CTE ;

DECLARE @Names TABLE
(
 FirstName VARCHAR(30),
 LastName VARCHAR(30)
) ;

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

100

INSERT INTO @Names
VALUES('Peter', 'Carter'),
 ('Michael', 'Smith'),
 ('Danielle', 'Mead'),
 ('Reuben', 'Roberts'),
 ('Iris', 'Jones'),
 ('Sylvia', 'Davies'),
 ('Finola', 'Wright'),
 ('Edward', 'James'),
 ('Marie', 'Andrews'),
 ('Jennifer', 'Abraham'),
 ('Margaret', 'Jones')

INSERT INTO App2Customers(Firstname, LastName, CreditCardNumber)
SELECT FirstName, LastName, CreditCardNumber FROM
 (SELECT
 (SELECT TOP 1 FirstName FROM @Names ORDER BY NEWID()) FirstName
 ,(SELECT TOP 1 LastName FROM @Names ORDER BY NEWID()) LastName
 ,(SELECT CONVERT(VARBINARY(8000)
 , (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID()) + '-' +
 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID()) + '-' +
 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID()) + '-' +
 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID()))) CreditCardNumber
FROM @Numbers a
CROSS JOIN @Numbers b
CROSS JOIN @Numbers c
) d ;
GO

PRINT 'Begin synchronous commit benchmark'

USE Chapter5App1Customers
GO

PRINT 'Build a nonclustered index'

CREATE NONCLUSTERED INDEX NIX_FirstName_LastName ON App1Customers(FirstName, LastName) ;

PRINT 'Delete from table'

DELETE FROM dbo.App1Customers ;

PRINT 'Insert into table'

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

101

DECLARE @Numbers TABLE
(
 Number INT
)

;WITH CTE(Number)
AS
(
 SELECT 1 Number
 UNION ALL
 SELECT Number + 1
 FROM CTE
 WHERE Number < 100
)
INSERT INTO @Numbers
SELECT Number FROM CTE ;

DECLARE @Names TABLE
(
 FirstName VARCHAR(30),
 LastName VARCHAR(30)
) ;

INSERT INTO @Names
VALUES('Peter', 'Carter'),
 ('Michael', 'Smith'),
 ('Danielle', 'Mead'),
 ('Reuben', 'Roberts'),
 ('Iris', 'Jones'),
 ('Sylvia', 'Davies'),
 ('Finola', 'Wright'),
 ('Edward', 'James'),
 ('Marie', 'Andrews'),
 ('Jennifer', 'Abraham'),
 ('Margaret', 'Jones') ;

INSERT INTO App1Customers(Firstname, LastName, CreditCardNumber)
SELECT FirstName, LastName, CreditCardNumber FROM
 (SELECT
 (SELECT TOP 1 FirstName FROM @Names ORDER BY NEWID()) FirstName
 ,(SELECT TOP 1 LastName FROM @Names ORDER BY NEWID()) LastName
 ,(SELECT CONVERT(VARBINARY(8000)
 ,(SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID()) + '-' +
 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID()) + '-' +
 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID()) + '-' +

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

102

 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))
 FROM @Numbers
 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID()))) CreditCardNumber
FROM @Numbers a
CROSS JOIN @Numbers b
CROSS JOIN @Numbers c
) d ;

GO

SET STATISTICS TIME OFF

GO

The relevant parts of the results of this query are displayed in Listing 5-7. You can see that the index
rebuild was almost three times slower when the Availability Group was operating in Synchronous Commit
mode, the insert was over six times slower, and the delete was also marginally slower. In productions
environments in which I have implemented availability groups in Synchronous Commit mode, they have
generally been around two times slower than in Asynchronous Commit mode.

Listing 5-7. Results of Performance Benchmark

Begin asynchronous commit benchmark

Build a nonclustered index
 SQL Server Execution Times:
 CPU time = 1109 ms, elapsed time = 4316 ms.

Delete from table
 SQL Server Execution Times:
 CPU time = 6938 ms, elapsed time = 69652 ms.
(1000000 row(s) affected)

Insert into table
 SQL Server Execution Times:
 CPU time = 13656 ms, elapsed time = 61372 ms.
(1000000 row(s) affected)

Begin synchronous commit benchmark

Build a nonclustered index
 SQL Server Execution Times:
 CPU time = 1516 ms, elapsed time = 12437 ms.

Delete from table
 SQL Server Execution Times:
 CPU time = 8563 ms, elapsed time = 77273 ms.
(1000000 row(s) affected)

Insert into table
 SQL Server Execution Times:
 CPU time = 23141 ms, elapsed time = 372161 ms.
(1000000 row(s) affected)

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

103

Because of the performance challenges associated with Synchronous Commit mode, many DBAs
decide to implement high availability and disaster recovery by using a three-node cluster, with two nodes
in the primary data center and one node in the DR data center. Instead of having two synchronous replicas
within the primary data center, however, they stretch the primary replica across a failover clustered instance
and configure the cluster to only be able to host the instance on these two nodes, and not on the third node
in the DR data center. This is important, because it means that we don’t need to implement SAN replication
between the data centers. The DR node is synchronized using availability groups in Asynchronous Commit
mode. If you combine an AlwaysOn failover clustered instance with AlwaysOn Availability Groups in this
way, then automatic failover is not supported between the clustered instance and the replica. It can only
be configured for manual failover. There is also no need for availability groups to fail over between the
two nodes hosting the clustered instance, because this failover is managed by the cluster service. This
configuration can prove to be a highly powerful and flexible way to achieve your continuity requirements.

Implementing Disaster Recovery with Availability Group
Now that we have successfully implemented high availability for the Chapter5App1Customers and
Chapter5App1Sales databases through the App1 availability group, we need to implement disaster recovery
for these databases. To do this, we first need to build out a new server in our second site and install a
stand-alone instance of SQL Server. Because the cluster now spans two sites, we need to reconfigure it as
a multi-subnet cluster. We also need to reconfigure the quorum model to remove its dependency on the
shared storage, which we currently have for the quorum. Once this is complete, we are able to add the
instance on the new node to our availability group. The following sections assume that you have already
built out a third server with a SQL Server instance called CLUSTERNODE3\ASYNCDR, and they demonstrate how
to reconfigure the cluster as well as the availability group.

Configuring the Cluster
We need to perform several cluster configuration steps before we begin to alter our availability group.
These include adding the new node, reconfiguring the quorum, and adding a new IP to the cluster’s client
access point.

Adding a Node
The first task in adding DR capability to our availability group is to add the third node to the cluster. To
do this, we select Add Node from the context menu of nodes in Failover Cluster Manager. This causes the
Add Node Wizard to be invoked. After passing through the Before You Begin page of this wizard, you are
presented with the Select Servers page, which is illustrated in Figure 5-14. On this page, you need to enter
the server name of the node that you plan to add to the cluster.

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

104

On the Validation Warning page, you are invited to run the Cluster Validation Wizard. You should
always run this wizard in a production environment when making changes of this nature; otherwise, you will
not be able to receive support from Microsoft for the cluster. Details of running the Cluster Validation wizard
can be found in Chapter 3. Running the Cluster Validation wizard in our scenario is likely to throw up some
warnings, which are detailed in Table 5-3.

Figure 5-14. The Select Servers page

http://dx.doi.org/10.1007/978-1-4842-1763-4_3

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

105

Table 5-3. Cluster Validation Warnings

Warning Reason Resolution

This resource does not have all
the nodes of the cluster listed as
Possible Owners. The clustered
role that this resource is a member
of will not be able to start on any
node that is not listed as a Possible
Owner.

This warning has been displayed
because we have not yet configured
our availability group to use the
new node.

Configuring the availability
group to use the new node is
discussed later in this chapter.

The RegisterAllProvidersIP
property for network name 'Name:
App1Listen' is set to 1. For the
current cluster configuration this
value should be set to 0.

Setting the
RegisterAllProvidersIP to 1
will cause all IP addresses to be
registered, regardless of whether
they are online or not. When we
created the Availability Group
Listener through SSMS, this setting
was automatically configured to
allow clients to fail over faster,
and this warning should always
be ignored. If we had created the
Listener through Failover Cluster
Manager, the property would have
been set to 0 by default.

No resolution is required, but
RegisterAllProvidersIP is
discussed in more detail later
in this chapter.

On the Confirmation page, we are given a summary of the tasks that will be performed. On this page,
we deselect the option to add eligible storage, since one of our aims is to remove the dependency on shared
storage. The Confirmation page is displayed in Figure 5-15.

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

106

On the Configure The Cluster page, the progress on the tasks displays until it is complete. The Summary
page then displays, giving an overview of the actions and their success.

Modifying the Quorum
Our next step in configuring the cluster will be to modify the quorum. As mentioned earlier, we would like
to remove our current dependency on shared storage. Therefore we need to make a choice. Since we now
have three nodes in the cluster, one possibility is to remove the disk witness and form a node majority
quorum. The issue with this is that one of our nodes is in a different location. Therefore, if we lose network
connectivity between the two sites for an extended period, then we have no fault tolerance in our primary
site. If one of the nodes goes down, we lose quorum and the cluster goes offline. On the other hand, if we
have an additional witness in the primary location, then we are not maintaining best practice, since there are
an even number of votes. Again, if we lose one voting member, we lose resilience.

Therefore, the approach that we take is to replace the disk witness with a file share witness, thus
removing the shared disk dependency. We then remove the vote from the node in the DR site. This means
that we have three voting members of the quorum, and all of them are within the same site. This mitigates
the risk of an inter-site network issue causing loss of redundancy in our HA solution.

In order to invoke the Configure Cluster Quorum Wizard, we select Configure Cluster Quorum from the
More Actions submenu within the context menu of our cluster in Failover Cluster Manager. After moving
through the Before You Begin page of this wizard, you are asked to select the configuration that you wish
to make on the Select Quorum Configuration Option page, which is shown in Figure 5-16. We select the
Advanced Quorum Configuration option.

Figure 5-15. Confirmation page

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

107

On the Select Voting Configuration page, we choose to select nodes and remove the vote from
CLUSTERNODE3. This is demonstrated in Figure 5-17.

Figure 5-16. The Select Quorum Configuration Option page

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

108

On the Select Quorum Witness page, we choose the Configure A File Share Witness option, as shown
in Figure 5-18.

Figure 5-17. The Select Voting Configuration page

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

109

On the Configure File Share Witness page, which is illustrated in Figure 5-19, we enter the UNC of the
share that we will use for the quorum. This file share must reside outside of the cluster and must be an SMB
file share on a machine running Windows Server.

Figure 5-18. The Select Quorum Witness page

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

110

 ■ Tip Although many non-windows–based nAS (network-attached storage) devices have support for Smb 3,
I have experienced real-world implementations of a file share quorum on a nAS device work only intermittently,
without resolution by either vendor.

 ■ Caution remember that using a file share witness, with only two other voting nodes, can lead to a
partition-in-time scenario. For more information, please refer to Chapter 3.

On the Confirmation page of the wizard, you are given a summary of the configuration changes that will
be made, as shown in Figure 5-20.

Figure 5-19. The Configure File Share Witness page

http://dx.doi.org/10.1007/978-1-4842-1763-4_3

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

111

On the Configure Cluster Quorum Settings page, a progress bar displays. Once the configuration is
complete, the Summary page appears. This page provides a summary of the configuration changes and a
link to the report.

Adding an IP Address
Our next task is to add a second IP address to the cluster’s client access point. We do not add an extra IP
address for the Availability Group Listener yet. We perform this task in the “Configuring the Availability
Group” section later in this chapter.

In order to add the second IP address, we select Properties from the context menu of Server Name in
the Core Cluster Resources window of Failover Cluster Manager. On the General tab of the Cluster Properties
dialog box, we add the IP address for administrative clients, following failover to DR, as illustrated in
Figure 5-21.

Figure 5-20. The Confirmation page

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

112

When we apply the change, we receive a warning saying that administrative clients will temporarily be
disconnected from the cluster. This does not include any clients connected to our availability group.
If we choose to proceed, we then navigate to the Dependencies tab of the dialog box and ensure that an OR
dependency has been created between our two IP addresses, as shown in Figure 5-22.

Figure 5-21. The General tab

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

113

After this process is complete, the second IP address resource in the Cluster Core Resources group shows
up as offline. This is normal. In the event of failover to the server in the second subnet, this IP address comes
online, and the IP address of the subnet in the primary site goes offline. This is why the OR dependency (as
opposed to an AND dependency) is critical. Without it, the Server Name resource could never be online.

Configuring the Availability Group
To configure the availability group, we first have to add the new node as a replica and configure its
properties. We then add a new IP address to our listener for the second subnet. Finally, we look at improving
the connection times for clients.

Adding and Configuring a Replica
In SQL Server Management Studio (SSMS), on the primary replica, we drill through Availability Groups |
App1 and select Add Replica from the context menu of the Availability Replicas node. This causes the Add
Replica To Availability Group wizard to be displayed. After passing through the Introduction page of the
wizard, you see the Connect To Replicas page, as displayed in Figure 5-23. On this page, you are invited to
connect to the other replicas in the availability group.

Figure 5-22. The Dependencies tab

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

114

On the Replicas tab of the Specify Replicas page, shown in Figure 5-24, we first use the Add Replica
button to connect to the DR instance. After we have connected to the new replica, we specify the properties
for that replica. In this case, we leave them as-is because it will be a DR replica. Therefore, we want it to be
asynchronous and we do not want it to be readable.

Figure 5-23. The Connect To Replicas page

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

115

On the Endpoints tab, shown in Figure 5-25, we ensure that the default settings are correct and
acceptable.

Figure 5-24. The Replicas tab

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

116

On the Backup Preferences tab, the option for specifying the preferred backup replica is read-only. We
are, however, able to specifically exclude our new replica as a candidate for backups or change its backup
priority. This page is displayed in Figure 5-26.

Figure 5-25. The Endpoints tab

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

117

On the Listener tab, illustrated in Figure 5-27, we can decide if we will create a new listener. This is a
strange option, since SQL Server only allows us to create a single listener for an availability group, and we
already have one. Therefore, we leave the default choice of Do Not Create An Availability Group Listener
selected. It is possible to create a second listener, directly from Failover Cluster Manager, but you would only
want a second listener for the same availability group in very rare, special cases, which we discuss later in
this chapter.

Figure 5-26. The Backup Preferences tab

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

118

On the Select Data Synchronization page, we choose how we want to perform the initial
synchronization of the replica. The options are the same as they were when we created the availability group,
except that the file share will be prepopulated, assuming that we choose the Full synchronization when
creating the availability group. This screen is shown in Figure 5-28.

Figure 5-27. The Listener tab

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

119

On the Validation page, which is illustrated in Figure 5-29, we should review any warnings or errors and
resolve them before continuing.

Figure 5-28. The Select Data Synchronization page

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

120

On the Summary page, displayed in Figure 5-30, we are presented with a summary of the configurations
that will be carried out.

Figure 5-29. The Validation page

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

121

After the reconfiguration completes, our new replica is added to the cluster. We should then review
the results and respond to any warnings or errors. We could also have used T-SQL to add the replica to the
availability group. The script in Listing 5-8 performs the same actions just demonstrated. You must run this
script in SQLCMD Mode since it connects to multiple instances.

Listing 5-8. Adding a Replica

:Connect CLUSTERNODE3\ASYNCDR

--Create Login for Service Account

USE master
GO

CREATE LOGIN [prosqladmin\ClusterAdmin] FROM WINDOWS ;
GO

Figure 5-30. The Summary page

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

122

--Create the Endpoint

CREATE ENDPOINT Hadr_endpoint
 AS TCP (LISTENER_PORT = 5022)
 FOR DATA_MIRRORING (ROLE = ALL, ENCRYPTION = REQUIRED ALGORITHM AES) ;
GO

ALTER ENDPOINT Hadr_endpoint STATE = STARTED ;
GO

--Grant the Service Account permissions to the Endpoint

GRANT CONNECT ON ENDPOINT::[Hadr_endpoint] TO [prosqladmin\ClusterAdmin] ;
GO

--Start the AOAG Health Trace

IF EXISTS(SELECT * FROM sys.server_event_sessions WHERE name='AlwaysOn_health')
BEGIN
 ALTER EVENT SESSION AlwaysOn_health ON SERVER WITH (STARTUP_STATE=ON);
END
IF NOT EXISTS(SELECT * FROM sys.dm_xe_sessions WHERE name='AlwaysOn_health')
BEGIN
 ALTER EVENT SESSION AlwaysOn_health ON SERVER STATE=START;
END
GO

:Connect CLUSTERNODE1\PRIMARYREPLICA

USE master
GO

--Add the replica to the Avaialability Group

ALTER AVAILABILITY GROUP App1
ADD REPLICA ON N'CLUSTERNODE3\ASYNCDR'
WITH (ENDPOINT_URL = N'TCP://CLUSTERNODE3.PROSQLADMIN.COM:5022',
 FAILOVER_MODE = MANUAL, AVAILABILITY_MODE = ASYNCHRONOUS_COMMIT, BACKUP_PRIORITY = 50,
 SECONDARY_ROLE(ALLOW_CONNECTIONS = NO));
GO

--Back up and restore the first database and log

BACKUP DATABASE Chapter5App1Customers TO DISK = N'\\CLUSTERNODE1\AOAGShare\
Chapter5App1Customers.bak'
WITH COPY_ONLY, FORMAT, INIT, REWIND, COMPRESSION, STATS = 5 ;
GO

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

123

BACKUP LOG Chapter5App1Customers
TO DISK = N'\\CLUSTERNODE1\AOAGShare\Chapter5App1Customers.trn'
WITH NOSKIP, REWIND, COMPRESSION, STATS = 5 ;
GO

:Connect CLUSTERNODE3\ASYNCDR

ALTER AVAILABILITY GROUP App1 JOIN;
GO

RESTORE DATABASE Chapter5App1Customers
FROM DISK = N'\\CLUSTERNODE1\AOAGShare\Chapter5App1Customers.bak'
WITH NORECOVERY, STATS = 5 ;
GO

RESTORE LOG Chapter5App1Customers
FROM DISK = N'\\CLUSTERNODE1\AOAGShare\Chapter5App1Customers.trn'
WITH NORECOVERY, STATS = 5 ;
GO

-- Wait for the replica to start communicating
DECLARE @connection BIT

DECLARE @replica_id UNIQUEIDENTIFIER
DECLARE @group_id UNIQUEIDENTIFIER

SET @connection = 0

WHILE @Connection = 0
BEGIN
 SET @group_id = (SELECT group_id
 FROM Master.sys.availability_groups
 WHERE name = N'App1')
 SET @replica_id = (SELECT replica_id
 FROM Master.sys.availability_replicas
 WHERE UPPER(replica_server_name COLLATE Latin1_General_CI_AS) =
 UPPER(@@SERVERNAME COLLATE Latin1_General_CI_AS)
 AND group_id = @group_id)

 SET @connection = ISNULL((SELECT connected_state
 FROM Master.sys.dm_hadr_availability_replica_states
 WHERE replica_id = @replica_id), 1)

 WAITFOR DELAY '00:00:10'
END

--Add the first Database to the Availability Group on the new replica

ALTER DATABASE Chapter5App1Customers SET HADR AVAILABILITY GROUP = [App1];
GO

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

124

--Back up and restore the second database and log

:Connect CLUSTERNODE1\PRIMARYREPLICA

BACKUP DATABASE Chapter5App1Sales
TO DISK = N'\\CLUSTERNODE1\AOAGShare\Chapter5App1Sales.bak'
WITH COPY_ONLY, FORMAT, INIT, REWIND, COMPRESSION, STATS = 5 ;
GO

BACKUP LOG Chapter5App1Sales
TO DISK = N'\\CLUSTERNODE1\AOAGShare\Chapter5App1Sales.trn'
WITH NOSKIP, REWIND, COMPRESSION, STATS = 5 ;
GO

:Connect CLUSTERNODE3\ASYNCDR

ALTER AVAILABILITY GROUP [App1] JOIN;
GO

RESTORE DATABASE Chapter5App1Sales
FROM DISK = N'\\CLUSTERNODE1\AOAGShare\Chapter5App1Sales.bak'
WITH NORECOVERY, STATS = 5 ;
GO

RESTORE LOG Chapter5App1Sales
FROM DISK = N'\\CLUSTERNODE1\AOAGShare\Chapter5App1Sales.trn'
WITH NORECOVERY, STATS = 5 ;
GO

-- Wait for the replica to start communicating
DECLARE @connection BIT

DECLARE @replica_id UNIQUEIDENTIFIER
DECLARE @group_id UNIQUEIDENTIFIER

SET @connection = 0

WHILE @Connection = 0
BEGIN
 SET @group_id = (SELECT group_id
 FROM Master.sys.availability_groups
 WHERE name = N'App1')
 SET @replica_id = (SELECT replica_id
 FROM Master.sys.availability_replicas
 WHERE UPPER(replica_server_name COLLATE Latin1_General_CI_AS) =
 UPPER(@@SERVERNAME COLLATE Latin1_General_CI_AS)
 AND group_id = @group_id)

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

125

 SET @connection = ISNULL((SELECT connected_state
 FROM Master.sys.dm_hadr_availability_replica_states
 WHERE replica_id = @replica_id), 1)

 WAITFOR DELAY '00:00:10'
END

--Add the second database to the Avaiability Group on the new replica

ALTER DATABASE Chapter5App1Sales SET HADR AVAILABILITY GROUP = App1;
GO

Add an IP Address
Even though the replica has been added to the availability group and we are able to fail over to this replica,
our clients are still not able to connect to it in the DR site using the Availability Group Listener. This is because
we need to add an IP address resource, which resides in the second subnet. To do this, we can select Properties
from the context menu of App1Listen in Object Explorer, which causes the Availability Group Listener
Properties dialog box to be displayed, as in Figure 5-31. Here, we add the listener’s second IP address.

Figure 5-31. The Availability Group Listener Properties

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

126

We can also achieve this through T-SQL by running the script in Listing 5-9.

Listing 5-9. Adding an IP Address to the Listener

ALTER AVAILABILITY GROUP App1
MODIFY LISTENER 'App1Listen'
(ADD IP (N'192.168.2.10', N'255.255.255.0')) ;

SQL Server now adds the IP address as a resource in the App1 role, and also configures the OR
dependency on the Name resource. You can view this by running the dependency report against the Name
resource in Failover Cluster Manager, as illustrated in Figure 5-32.

Figure 5-32. The dependency report

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

127

Improving Connection Times
Clients using .NET 4 or higher are able to specify the new MultiSubnetFailover=True property in their
connecting strings when connecting to an AlwaysOn Availability Group. This improves connection times by
retrying TCP connections more aggressively. If clients are using older versions of .NET, however, then there
is a high risk of their connections timing out.

There are two workarounds for this issue. The first is to set the RegisterAllProvidersIP property to 0.
This is the recommended approach, but the problem with it is that failover to the DR site can take up to
15 minutes. This is because the IP address resource for the second subnet is offline until failover occurs.
It can then take up to 15 minutes for the PTR record to be published. In order to reduce this risk, it is
recommended that you also lower the HostRecordTTL. This property defines how often the resource records
for the cluster name are published.

The script in Listing 5-10 demonstrates how to disable RegisterAllProvidersIP and then reduce the
HostRecordTTL to 300 seconds.

Listing 5-10. Configuring Connection Properties

Get-ClusterResource "App1_App1Listen" | Set-ClusterParameter RegisterAllProvidersIP 0

Get-ClusterResource "App1_App1Listen" | Set-ClusterParameter HostRecordTTL 300

The alternative workaround is to simply increase the time-out value for connections to 30 seconds.
However, this solution accepts that a large volume of connections will take up to 30 seconds. This may not be
acceptable to the business.

Adding AlwaysOn Readable Secondary Replicas
It can be very useful to add readable secondary replicas to an AlwaysOn Availability Group topology in order
to implement vertically scaled reporting. When you use this strategy, the databases are kept synchronized,
with variable, but typically low latency, using log streaming. The additional advantage of readable secondary
replicas from SQL Server 2014 onward is that they stay online, even if the primary replica is offline. The
limitation here, however, is that users must connect directly to the instance, as opposed to the Availability
Group Listener.

You can further improve read performance in readable secondary replicas by using temporary statistics,
which you can also use to optimize read-only workloads. Also, snapshot isolation is also used exclusively on
readable secondary replicas, even if other isolation levels or locking hints are explicitly requested. This helps
avoid contention, but it also means that TempDB should be suitably scaled and on a fast disk array.

The main risk of using readable secondary replicas is that implementing snapshot isolation on the
secondary replica can actually cause deleted records not to be cleaned up on the primary replica. This is
because the ghost record cleanup task only remove rows from the primary once they are no longer required
at the secondary. In this scenario, log truncation is also delayed on the primary replica. This means that you
potentially risk having to kill long-running queries that are being satisfied against the readable secondary.
This issue can also occur if the secondary replica becomes disconnected from the primary. Therefore, there
is a risk that you may need to remove the secondary replica from the Availability Group and subsequently
re-add it.

To make a secondary replica readable, you need to perform three tasks. First configure the secondary
replica to allow read-only connections. Second, specify a read-only URL for reporting. The Availability
Group Listener then directs appropriate traffic to this URL. The final task is to update the read-only routing
list on the primary replica. These tasks are performed by the script in Listing 5-11.

ChApTEr 5 ■ ImpLEmEnTIng ALwAySOn AvAILAbILITy grOupS

128

Listing 5-11. Configuring Read-only Routing

--Configure the ASYNCDR Replica to allow read-only connections

ALTER AVAILABILITY GROUP App1
 MODIFY REPLICA ON N'CLUSTERNODE3\ASYNCDR' WITH
(SECONDARY_ROLE (ALLOW_CONNECTIONS = READ_ONLY)) ;

--Configure the read-only URL for the ASYNCDR Replica

ALTER AVAILABILITY GROUP App1
 MODIFY REPLICA ON N'CLUSTERNODE3\ASYNCDR' WITH
(SECONDARY_ROLE (READ_ONLY_ROUTING_URL = N'TCP://CLUSTERNODE3.PROSQLADMIN.com:1433')) ;

--Configure the read-only routing list on the Primary Replica

ALTER AVAILABILITY GROUP App1
MODIFY REPLICA ON N'CLUSTERNODE1\PRIMARYREPLICA' WITH
(PRIMARY_ROLE (READ_ONLY_ROUTING_LIST=('CLUSTERNODE3\ASYNCDR'))) ;

Summary
AlwaysOn Availability Groups can be implemented with up to eight secondary replicas, combining both
Synchronous and Asynchronous Commit modes. When implementing high availability with availability
groups, you always use Synchronous Commit mode, because Asynchronous Commit mode does not
support automatic failover. When implementing Synchronous Commit mode, however, you must be aware
of the associated performance penalty caused by committing the transaction on the secondary replica
before it is committed on the primary replica. For disaster recovery, you will normally choose to implement
Asynchronous Commit mode.

The availability group can be created via the New Availability Group Wizard, though dialog boxes,
through T-SQL, or even through PowerShell. If you create an availability group using dialog boxes, then some
aspects, such as the endpoint and associated permissions, must be scripted using T-SQL or PowerShell.

If you implement disaster recovery with availability groups, then you need to configure a multi-
subnet cluster. This does not mean that you must have SAN replication between the sites, however, since
availability groups do not rely on shared storage. What you do need to do is add additional IP addresses
for the administrative cluster access point and also for the Availability Group Listener. You also need to
pay attention to the properties of the cluster that support client reconnection to ensure that clients do not
experience a high number of timeouts.

129

Chapter 6

Administering AlwaysOn

This chapter will discuss how to administer AlwaysOn features. We will first look at cluster maintenance,
including rolling patch upgrades and removing an instance. We will then discuss managing Availability
Groups, including monitoring with the AlwaysOn Dashboard and a demonstration of how to failover.

Managing a Cluster
Installing the cluster is not the end of the road from an administrative perspective. You still need to
periodically perform maintenance tasks. The following sections describe some of the most common
maintenance tasks.

Moving the Instance between Nodes
Other than protecting against unplanned outages, one of the benefits of implementing high availability
technologies is that doing so significantly reduces downtime for maintenance tasks, such as patching. This
can be at the operating system level or the SQL Server level.

If you have a two-node cluster, apply the patch to the passive node first. Once you are happy that the
update was successful, fail over the instance and then apply the patch to the other node. At this point, you
may or may not wish to fail back to the original node, depending on the needs of your environment. For
example, if the overriding priority is the level of availability of the instance, then you will probably not wish
to fail back, because this will incur another short outage.

On the other hand, if your instance is less critical and you have licensed SQL Server with Software
Assurance, then you may not be paying for the SQL Server license on the passive node. In this scenario, you
only have a limited time period in which to fail the instance back to avoid needing to purchase an additional
license for the passive node.

 ■ Note For versions of SQL Server prior to SQL Server 2014, Software Assurance is not required in order to
have a passive node without a license.

To move an instance to a different node using Failover Cluster Manager, select Move | Select Node from
the context menu of the role that contains the instance. This causes the Move Clustered Role dialog box to
display. Here, you can select the node to which you wish to move the role, as illustrated in Figure 6-1.

ChApter 6 ■ AdminiStering ALwAySOn

130

The role is then moved to the new node. If you watch the role’s resources window in Failover Cluster
Manager, then you see each resource move through the states of Online ➤ Offline Pending ➤ Offline. The
new node is now displayed as the owner before the resources move in turn through the states of Offline -
Online Pending - Online, as illustrated in Figure 6-2. The resources are taken offline and placed back online
in order of their dependencies.

Figure 6-1. The Move Clustered Role dialog box

ChApter 6 ■ AdminiStering ALwAySOn

131

We can also fail over a role using PowerShell. To do this, we need to use the Move--ClusterGroup
cmdlet. Listing 6-1 demonstrates this by using the cmdlet to fail back the instance to ClusterNode1. We use
the -Name parameter to specify the role that we wish to move and the -Node parameter to specify the node to
which we wish to move it.

Listing 6-1. Moving the Role Between Nodes

Move-ClusterGroup -Name "SQL Server (PROSQLADMINCLUST)" -Node ClusterNode1

Figure 6-2. Resources coming onlinie on passive node

ChApter 6 ■ AdminiStering ALwAySOn

132

Rolling Patch Upgrade
If you have a cluster with more than two nodes, then consider performing a rolling patch upgrade when you are
applying updates for SQL Server. In this scenario, you mitigate the risk of having different nodes, which are possible
owners of the role, running different versions or patch levels of SQL Server, which could lead to data corruption.

The first thing that you should do is make a list of all nodes that are possible owners of the role. Then
select 50 percent of these nodes and remove them from the Possible Owners list. You can do this by selecting
Properties from the context menu of the Name resource, and then, in the Advanced Policies tab, unchecking
the nodes in the possible owners list, as illustrated in Figure 6-3.

Figure 6-3. Remove possible owners.

To achieve the same result using PowerShell, we can use the Get-Resource cmdlet to navigate to the
name resource and then pipe in the Set-ClusterOwnerNode to configure the possible owners list. This
is demonstrated in Listing 6-2. The possible owners list is comma separated in the event that you are
configuring multiple possible owners.

Listing 6-2. Configuring Possible Owners

Get-ClusterResource "SQL Network Name (PROSQLSRV-C)" | Set-ClusterOwnerNode -Owners clusternode1

Once 50 percent of the nodes have been removed as possible owners, you should apply the update to
these nodes. After the update has been verified on this half of the nodes, you should reconfigure them to
allow them to be possible owners once more.

ChApter 6 ■ AdminiStering ALwAySOn

133

The next step is to move the role to one of the nodes that you have upgraded. After failover has
successfully completed, remove the other half of the nodes from the preferred owners list before applying
the update to these nodes. Once the update has been verified on this half of the nodes, you can return them
to the possible owners list.

 ■ Tip the possible owners can only be set on a resource. if you run Set-ClusterOwnerNode against a role
using the -Group parameter, then you are configuring preferred owners rather than possible owners.

Removing a Node from the Cluster
If you wish to uninstall an AlwaysOn failover cluster instance, then you cannot perform this action from
Control Panel as you would a stand-alone instance. Instead, you must run the Remove Node Wizard on each
of the nodes of the cluster. You can invoke this wizard by selecting Remove Node from a SQL Server Failover
Cluster option from the Maintenance tab in SQL Server Installation Center.

The wizard starts by running a global rules check, followed by a rules check for removing a node.
Then, on the Cluster Node Configuration page shown in Figure 6-4, you are asked to confirm the instance
for which you wish to remove a node. If the cluster hosts multiple instances, you can select the appropriate
instance from the drop-down box.

Figure 6-4. The Cluster Node Configuration page

ChApter 6 ■ AdminiStering ALwAySOn

134

On the Ready To Remove Node page, shown in Figure 6-5, you are given a summary of the tasks that will
be performed. After confirming the details, the instance is removed. This process should be repeated on all
passive nodes, and then finally on the active node. When the instance is removed from the final node, the
cluster role is also removed.

Figure 6-5. The Ready To Remove Node page

To remove a node using PowerShell, we need to run SQL Server’s setup.exe application, with the
action parameter configured as RemoveNode. When you use PowerShell to remove a node, the parameters
in Table 6-1 are mandatory.

ChApter 6 ■ AdminiStering ALwAySOn

135

The script in Listing 6-3 removes a node from our cluster when we run it from the root directory of the
SQL Server installation media.

Listing 6-3. Removing a Node

.\setup.exe /ACTION="RemoveNode" /INSTANCENAME="PROSQLADMINCLUST" /CONFIRMIPDEPENDENCYCHANGE=0 /qs

Managing AlwaysOn Availability Groups
Once the initial setup of your availability group is complete, you still need to perform administrative tasks.
These include failing over the availability group, monitoring, and on rare occasions, adding additional
listeners. These topics are discussed in the following sections.

Failover
If a replica is in Synchronous Commit mode and is configured for automatic failover, then the availability
group automatically moves to a redundant replica in the event of an error condition being met on the
primary replica. There are occasions, however, when you will want to manually fail over an availability
group. This could be because of DR testing, proactive maintenance, or because you need to bring up an
asynchronous replica following a failure of the primary replica or the primary data center.

Synchronous Failover
If you wish to fail over a replica that is in Synchronous Commit mode, launch the Failover Availability
Group wizard by selecting Failover from the context menu of your availability group in Object Explorer.
After moving past the Introduction page, you find the Select New Primary Replica page (see Figure 6-6).
On this page, check the box of the replica to which you want to fail over. Before doing so, however,
review the Failover Readiness column to ensure that the replicas are synchronized and that no data loss
will occur.

Table 6-1. Mandatory Parameters When Removing a Node from a Cluster

Parameter Usage

/ACTION Must be configured as AddNode.

/INSTANCENAME The instance that you are adding the extra node to support.

/CONFIRMIPDEPENDENCYCHANGE Allows multiple IP addresses to be specified for multi-subnet clusters.
Pass in a value of 1 for True or 0 for False.

ChApter 6 ■ AdminiStering ALwAySOn

136

On the Connect To Replica page, illustrated in Figure 6-7, use the Connect button to establish a
connection to the new primary replica.

Figure 6-6. The Select New Primary Replica page

ChApter 6 ■ AdminiStering ALwAySOn

137

On the Summary page, you are given details of the task to be performed, followed by a progress
indicator on the Results page. Once the failover completes, check that all tasks were successful, and
investigate any errors or warnings that you receive.

We can also used T-SQL to fail over the availability group. The command in Listing 6-4 achieves the
same results. Make sure to run this script from the replica that will be the new primary replica. If you run it
from the current primary replica, use SQLCMD mode and connect to the new primary within the script.

Listing 6-4. Failing Over an Availability Group

ALTER AVAILABILITY GROUP App1 FAILOVER ;
GO

Asynchronous Failover
If your availability group is in Asynchronous Commit mode, then from a technical standpoint, you can fail
over in a similar way to the way you can for a replica running in Synchronous Commit mode, except for the
fact that you need to force the failover, thereby accepting the risk of data loss. You can force failover by using
the command in Listing 6-5. You should run this script on the instance that will be the new primary. For it to
work, the cluster must have quorum. If it doesn’t, then you need to force the cluster online before you force
the availability group online.

Figure 6-7. The Connect To Replica page

ChApter 6 ■ AdminiStering ALwAySOn

138

Listing 6-5. Forcing Failover

ALTER AVAILABILITY GROUP App1 FORCE_FAILOVER_ALLOW_DATA_LOSS ;

From a process perspective, you should only ever do this if your primary site is completely unavailable.
If this is not the case, first put the application into a safe state. This avoids any possibility of data loss. The
way that I normally achieve this in a production environment is by performing the following steps:

 1. Disable logins.

 2. Change the mode of the replica to Synchronous Commit mode.

 3. Fail over.

 4. Change the replica back to Asynchronous Commit mode.

 5. Enable the logins.

You can perform these steps with the script in Listing 6-6. When run from the DR instance, this script
places the databases in App1 into a safe state before failing over, and then it reconfigures the application to
work under normal operations.

Listing 6-6. Safe-stating an Application and Failing Over

--DISABLE LOGINS

DECLARE @AOAGDBs TABLE
(
DBName NVARCHAR(128)
) ;

INSERT INTO @AOAGDBs
SELECT database_name
FROM sys.availability_groups AG
INNER JOIN sys.availability_databases_cluster ADC
 ON AG.group_id = ADC.group_id
WHERE AG.name = 'App1' ;

DECLARE @Mappings TABLE
(
 LoginName NVARCHAR(128),
 DBname NVARCHAR(128),
 Username NVARCHAR(128),
 AliasName NVARCHAR(128)
) ;

INSERT INTO @Mappings
EXEC sp_msloginmappings ;

DECLARE @SQL NVARCHAR(MAX)

ChApter 6 ■ AdminiStering ALwAySOn

139

SELECT DISTINCT @SQL =
(
 SELECT 'ALTER LOGIN [' + LoginName + '] DISABLE; ' AS [data()]
 FROM @Mappings M
 INNER JOIN @AOAGDBs A
 ON M.DBname = A.DBName
 WHERE LoginName <> SUSER_NAME()
 FOR XML PATH ('')
)

EXEC(@SQL)
GO

--SWITCH TO SYNCHRONOUS COMMIT MODE

ALTER AVAILABILITY GROUP App1
MODIFY REPLICA ON N'CLUSTERNODE3\ASYNCDR' WITH (AVAILABILITY_MODE = SYNCHRONOUS_COMMIT) ;
GO

--FAIL OVER

ALTER AVAILABILITY GROUP App1 FAILOVER
GO

--SWITCH BACK TO ASYNCHRONOUS COMMIT MODE

ALTER AVAILABILITY GROUP App1
MODIFY REPLICA ON N'CLUSTERNODE3\ASYNCDR' WITH (AVAILABILITY_MODE = ASYNCHRONOUS_COMMIT) ;
GO

--ENABLE LOGINS

DECLARE @AOAGDBs TABLE
(
DBName NVARCHAR(128)
) ;

INSERT INTO @AOAGDBs
SELECT database_name
FROM sys.availability_groups AG
INNER JOIN sys.availability_databases_cluster ADC
 ON AG.group_id = ADC.group_id
WHERE AG.name = 'App1' ;

DECLARE @Mappings TABLE
(
 LoginName NVARCHAR(128),
 DBname NVARCHAR(128),
 Username NVARCHAR(128),
 AliasName NVARCHAR(128)
) ;

ChApter 6 ■ AdminiStering ALwAySOn

140

INSERT INTO @Mappings
EXEC sp_msloginmappings

DECLARE @SQL NVARCHAR(MAX)

SELECT DISTINCT @SQL =
(
 SELECT 'ALTER LOGIN [' + LoginName + '] ENABLE; ' AS [data()]
 FROM @Mappings M
 INNER JOIN @AOAGDBs A
 ON M.DBname = A.DBName
 WHERE LoginName <> SUSER_NAME()
 FOR XML PATH ('')
) ;

EXEC(@SQL)

Synchronizing Uncontained Objects
Regardless of the method you use to fail over, assuming that all of the databases within the availability
group are not contained, then you need to ensure that instance-level objects are synchronized. The most
straightforward way to keep your instance-level objects synchronized is by implementing an SSIS package,
which is scheduled to run on a periodic basis.

Whether you choose to schedule a SSIS package to execute, or you choose a different approach, such as
a SQL Server Agent job that scripts and re-creates the objects on the secondary servers, these are the objects
that you should consider synchronizing:

•	 Logins

•	 Credentials

•	 SQL Server Agent jobs

•	 Custom error messages

•	 Linked servers

•	 Server-level event notifications

•	 Stored procedures in Master

•	 Server-level triggers

•	 Encryption keys and certificates

Monitoring
Once you have implemented availability groups, you need to monitor them and respond to any errors or
warnings that could affect the availability of your data. If you have many availability groups implemented
throughout the enterprise, then the only way to monitor them effectively and holistically is by using an
enterprise monitoring tool, such as SOC (Systems Operations Center). If you only have a small number of
availability groups, however, or if you are troubleshooting a specific issue, then SQL Server provides the
AlwaysOn Dashboard and the AlwaysOn Health Trace. The following sections examine these two features.

ChApter 6 ■ AdminiStering ALwAySOn

141

Figure 6-8. The availability group dashboard

AlwaysOn Dashboard
The AlwaysOn Dashboard is an interactive report that allows you to view the health of your AlwaysOn
environment and drill through, or roll up elements within the topology. You can invoke the report from
the context menu of the Availability Groups folder in Object Explorer, or from the context menu of the
availability group itself. Figure 6-8 shows the report that is generated from the context menu of the App1
availability group. You can see that currently, synchronization of both replicas is in a healthy state.

The three possible synchronization states that a database can be in are SYNCHRONIZED, SYNCRONIZING,
and NOT SYNCHRONIZING. A synchronous replica should be in the SYNCHRONIZED state, and any other state
is unhealthy. An asynchronous replica, however, will never be in the SYNCHRONIZED state, and a state of
SYNCHRONIZING is considered healthy. Regardless of the mode, NOT SYNCHRONIZING indicates that the replica
is not connected.

 ■ Note in addition to the synchronization states, a replica also has one of the following operational states:
PENDING_FAILOVER, PENDING, ONLINE, OFFLINE, FAILED, FAILED_NO_QUORUM, and NULL (when the replica
is disconnected). the operational state of a replica can be viewed using the sys.dm_hadr_availability_
replica_states dmV.

At the top right of the report, there are links to the failover wizard, which we discussed earlier in this
chapter; the AlwaysOn Health events, which we discussed in the next section; and also a link to view
cluster quorum information. The Cluster Quorum Information screen, which is invoked by this link, is
displayed in Figure 6-9. You can also drill through each replica in the Availability Replicas window to see
replica-specific details.

www.allitebooks.com

http://www.allitebooks.org

ChApter 6 ■ AdminiStering ALwAySOn

142

AlwaysOn Health Trace
The AlwaysOn Health Trace is an Extended Events session, which is created when you create you first
availability group. It can be located in SQL Server Management Studio, under Extended Events | Sessions,
and via its context menu, you can view live data that is being captured, or you can enter the session’s
properties to change the configuration of the events that are captured.

Drilling through the session exposes the session’s package, and from the context menu of the
package, you can view previously captured events. Figure 6-10 shows that the latest event captured, was
Database 5 (which, in our case, is Chapter5App1Customers), was waiting for the log to be hardened on the
synchronous replica.

Figure 6-9. The Cluster Quorum Information screen

ChApter 6 ■ AdminiStering ALwAySOn

143

Figure 6-10. The target data

Adding Multiple Listeners
Usually, each availability group has a single Availability Group Listener, but there are some rare instances in
which you may need to create multiple listeners for the same availability group. One scenario in which this
may be required is if you have legacy applications with hard-coded connection strings. Here, you can create
an extra listener with a client access point that matches the name of the hard-coded connection string.

As mentioned earlier in this chapter, it is not possible to create a second Availability Group Listener
through SQL Server Management Studio, T-SQL, or even PowerShell. Instead, we must use Failover
Cluster Manager. Here, we create a new Client Access Point resource within our App1 role. To do this, we
select Add Resource from the context menu of the App1 role, and then select Client Access Point. This
causes the New Resource Wizard to be invoked. The Client Access Point page of the wizard is illustrated in
Figure 6-11. You can see that we have entered the DNS name for the client access point and specified an IP
address from each subnet.

ChApter 6 ■ AdminiStering ALwAySOn

144

On the Confirmation page, we are shown a summary of the configuration that will be performed. On the
Configure Client Access Point page, we see a progress indicator, before we are finally shown a completion
summary on the Summary page, which is illustrated in Figure 6-12.

Figure 6-11. The Client Access Point page

ChApter 6 ■ AdminiStering ALwAySOn

145

Figure 6-12. The Confirmation page

Now we need to configure the Availability Group resource to be dependent upon the new client access
point. To do this, we select Properties from the context menu of the App1 resource and then navigate to the
Dependencies tab. Here, we add the new client access point as a dependency and configure an OR constraint
between the two listeners, as illustrated in Figure 6-13. Once we apply this change, clients are able to
connect using either of the two listener names.

ChApter 6 ■ AdminiStering ALwAySOn

146

Figure 6-13. The Dependencies tab

Other Administrative Considerations
When databases are made highly available with AlwaysOn Availability Groups, several limitations are
imposed. One of the most restrictive of these is that databases cannot be placed in single_user mode or be
made read only. This can have an impact when you need to safe-state your application for maintenance.
This is why, in the Failover section of this chapter, we disabled the logins that have users mapped to the
databases. If you must place your database in single-user mode, then you must first remove it from the
availability group.

A database can be removed from an availability group by running the command in Listing 6-7. This
command removes the Chapter5App1Customers database from the availability group.

Listing 6-7. Removing a Database from an Availability Group

ALTER DATABASE Chapter5App1Customers SET HADR OFF ;

ChApter 6 ■ AdminiStering ALwAySOn

147

There may also be occasions in which you want a database to remain in an availability group, but
you wish to suspend data movement to other replicas. This is usually because the availability group is in
Synchronous Commit mode and you have a period of high utilization, where you need a performance
improvement. You can suspend the data movement to a database by using the command in Listing 6-8,
which suspends data movement for the Chapter5App1Sales database and then resumes it.

 ■ Caution if you suspend data movement, the transaction log on the primary replica continues to grow, and
you are not able to truncate it until data movement resumes and the databases are synchronized.

Listing 6-8. Suspending Data Movement

ALTER DATABASE Chapter5App1Customers SET HADR SUSPEND ;
GO

ALTER DATABASE Chapter5App1Customers SET HADR RESUME ;
GO

Another important consideration is the placement of database and log files. These files must be
in the same location on each replica. This means that if you use named instances, it is a hard technical
requirement that you change the default file locations for data and logs, because the default location
includes the name of the instance. This is assuming, of course, that you do not use the same instance name
on each node, which would defy many of the benefits of having a named instance.

Summary
Failover to a synchronous replica in the event of a failure of the primary replica is automatic. There are
instances, however, in which you will also need to failover manually. This could be because of a disaster that
requires failover to the DR site, or it could be for proactive maintenance. Although it is possible to failover to
an asynchronous replica with the possibility of data loss, it is good practice to place the databases in a
safe-state first. Because you cannot place a database in read only or single_user mode, if it is participating
in an availability group, safe-stating usually consists of disabling the logins and then switching to
Synchronous Commit mode before failover.

To monitor availability groups throughout the enterprise, you need to use a monitoring tool, such as
Systems Operation Center. If you need to monitor a small number of availability groups or troubleshoot a
specific issue, however, use one of the tools included with SQL Server, such as a dashboard for monitoring
the health of the topology, and an extended events session, called the AlwaysOn Health Trace.

One benefit of achieving high availability for SQL Server is that doing so allows you to minimize
downtime during planned maintenance. On a two-node cluster, you can upgrade the passive node, fail
over, and then upgrade the active node. For larger clusters, you can perform a rolling patch upgrade, which
involves removing half of the nodes from the possible owners list and upgrading them. You then fail over the
instance to one of the upgraded nodes and repeat the process for the remaining nodes. This mitigates the
risk of mixed version, across the possible owners.

149

��������� A, B
AlwaysOn administration, 129

availability group (see AlwaysOn Availability
Groups)

cluster maintenance, 129
move instance between nodes, 129–131
Remove Node Wizard, 133–135
rolling patch upgrade, 132

AlwaysOn Availability Groups (AOAG), 16
active/passive cluster, 24
asynchronous failover, 137–140
automatic page repair, 20
clustering, 24
creation, 78

arguments, 93
Backup Preferences tab, 84
data synchorization page, 87
database page, 80
Endpoints tab, 83
FAILOVER_CONDITION_LEVEL

argument, 95
introduction page, 78
Listener tab, 86
replicas page, 81–82
RTO, 84
script, 88–93
Synchronous Commit option, 82
validation page, 87

database creation, 71–76
specify name page, 79

data-tier applications, 17
disaster recovery (see Disaster recovery)
DRS, 16
listener dialog box, 95, 98

Backup Preferences tab, 97
general tab, 96
replica properties, 96
Session Timeout property, 97

monitoring tool, 140
AlwaysOn Dashboard, 141–142
AlwaysOn Health Trace, 142

multiple listeners, 143
client access page point, 143
confirmation page, 144
dependencies tab, 145

nodes, 19
non-functional requirements (NFRs), 23
performance Benchmark, 102
readable secondary replicas, 127
remove database, 146
replicas, 17
RPO, 16
SQL Server configuration, 76–78
suspend data movement, 147
Synchronous Commit mode, 98–102
synchronous failover, 135

Replica page, 136
summary page, 137

uncontained objects,
synchronizing, 140

AlwaysOn Failover Clustering, 7
active/active configuration, 8
quorum, 11
three-plus node configuration, 9

��������� C
Check disk command (CHKDSK), 4
Cluster, 27

creation, 33
admin access point, 41
begin page, 34
confirmation page, 38, 42
PowerShell, 44
report, 44
server page, 35
summary page, 39, 43
testing options page, 37
validation report, 40, 44
warning page, 36

installation, failover features, 27
begin page, 28
confirmation page, 33

Index

■ index

150

features page, 31
management tools, 32
server roles page, 30
server selection page, 29
type page, 29

MSDTC configuration, 49
client access point page, 51
confirmation page, 53
creation, 54
DTC resource, 54
role page, 50
storage page, 52

quorum configuration, 45
disks, 45
option page, 46
storage witness, 48
summary page, 49
witness page, 47

role configuration, 55
FailOver tab, 55–56
general tab, 55
options, 55

Cost of downtime, 4

��������� D, E
Database mirroring, 13
Data corruption, 4
Disaster recovery, 103

cluster configuration, 103
confirmation page, 105
IP address, 111
quorom, 106
servers page, 103
validation warning page, 105

replica configuration, 113
Backup Preferenes tab, 116
code implementation, 121–125
connection times, 127
data synchronization page, 118
Endpoints tab, 115
IP address, 125
listener tab, 117
summary page, 120
validation page, 119

Distributed Resource Scheduler (DRS), 16

��������� F, G, H
Failover Clustered Instance (FCI), 7

cluster-specific steps, 57
disk selection page, 59
instance configuration page, 58
network configuration page, 60

resource group page, 58
server configuration page, 61

nodes, 64
License Terms page, 64
network configuration page, 65
node configuration page, 64
Ready To Add Node page, 67
service accounts page, 66
using PowerShell, 68

PowerShell installation, 63
preparation steps, 57

Fully qualified domain
name (FQDN), 83

��������� I, J, K
IP address, 111

dependencies tab, 113
general tab, 112

��������� L, M, N, O, P
Level of availability, 1

downtime, 1
proactive maintenance, 3
SLAs, 3

Log shipping, 21
fail over, 23
monitor server, 22
recovery modes, 21

��������� Q
Quorum, 106

Configuration Option page, 106
Voting Configuration page, 107
Witness page, 108

��������� R
Recovery point objective (RPO), 3
Recovery time objective (RTO), 4

��������� S
Service-level agreements(SLAs), 3
Standby server, 5

��������� T, U
Total cost of ownership (TCO), 5

��������� V, W, X, Y, Z
Virtual machines (VMs), 16

Cluster (cont.)

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Chapter 1: High Availability and Disaster Recovery Concepts
	 Level of Availability
	 Service-Level Agreements and Service-Level Objectives
	 Proactive Maintenance

	 Recovery Point Objective and Recovery Time Objective
	 Cost of Downtime
	 Classification of Standby Servers
	 Summary

	Chapter 2: Understanding High Availability and Disaster Recovery Technologies
	 AlwaysOn Failover Clustering
	 Active/Active Configuration
	 Three-Plus Node Configurations
	 Quorum

	 Database Mirroring
	 AlwaysOn Availability Groups
	 Automatic Page Repair

	 Log Shipping
	 Recovery Modes
	 Remote Monitor Server
	Failover

	 Combining Technologies
	 Summary

	Chapter 3: Implementing a Cluster
	 Building the Cluster
	 Installing the Failover Cluster Feature
	 Creating the Cluster

	 Configuring the Cluster
	 Changing the Quorum
	 Configuring MSDTC
	 Configuring a Role

	 Summary

	Chapter 4: Implementing an AlwaysOn Failover Clustered Instance
	 Building the Instance
	 Preparation Steps
	 Cluster-Specific Steps
	 Installing the Instance with PowerShell
	 Adding a Node
	Adding a Node Using PowerShell

	 Summary

	Chapter 5: Implementing AlwaysOn Availability Groups
	 Implementing High Availability with AlwaysOn Availability Groups
	 Configuring SQL Server
	 Creating the Availability Group
	Using the New Availability Group Wizard
	Scripting the Availability Group
	Using the New Availability Group Dialog Box

	 Performance Considerations for Synchronous Commit Mode

	 Implementing Disaster Recovery with Availability Group
	 Configuring the Cluster
	Adding a Node
	Modifying the Quorum
	Adding an IP Address

	 Configuring the Availability Group
	Adding and Configuring a Replica
	Add an IP Address
	Improving Connection Times

	 Adding AlwaysOn Readable Secondary Replicas
	 Summary

	Chapter 6: Administering AlwaysOn
	 Managing a Cluster
	 Moving the Instance between Nodes
	Rolling Patch Upgrade

	 Removing a Node from the Cluster

	 Managing AlwaysOn Availability Groups
	 Failover
	Synchronous Failover
	Asynchronous Failover

	 Synchronizing Uncontained Objects
	 Monitoring
	AlwaysOn Dashboard
	AlwaysOn Health Trace

	 Adding Multiple Listeners
	 Other Administrative Considerations

	 Summary

	Index

