
M A N N I N G

Emmit A. Scott, Jr.
FOREWORD BY Burke Holland

Understanding single-page web applications

www.allitebooks.com

http://www.allitebooks.org

SPA Design and Architecture
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

ii
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

SPA Design and
Architecture

Understanding single-page web applications

EMMIT A. SCOTT, JR.

M A N N I N G
SHELTER ISLAND
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

iv
For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

Manning Publications Co. Development editor: Dan Maharry
20 Baldwin Road Technical development editor: Joel Kotarski
PO Box 761 Technical proofreaders: Andrew Gibson
Shelter Island, NY 11964 Jean-François Morin

Copyeditor: Sharon Wilkey
Proofreader: Linda Recktenwald

Typesetter: Marija Tudor
Cover designer: Marija Tudor

ISBN: 9781617292439
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

www.manning.com
http://www.allitebooks.org

 To my three beautiful children, Ana Carolina, David, and Sofía.
Thanks for all the smiles, hugs, and unconditional love.

You are forever in my heart.

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

vi

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

brief contents
PART 1 THE BASICS ..1

1 ■ What is a single-page application? 3
2 ■ The role of MV* frameworks 22
3 ■ Modular JavaScript 52

PART 2 CORE CONCEPTS ..83

4 ■ Navigating the single page 85
5 ■ View composition and layout 106
6 ■ Inter-module interaction 129
7 ■ Communicating with the server 156
8 ■ Unit testing 186
9 ■ Client-side task automation 209

appendix A Employee directory example walk-through 229
appendix B Review of the XMLHttpRequest API 259
appendix C Chapter 7 server-side setup and summary 266
appendix D Installing Node.js and Gulp.js 277
vii

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

BRIEF CONTENTSviii
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

contents
foreword xv
preface xvii
acknowledgments xviii
about this book xix
about the cover illustration xxiii

PART 1 THE BASICS 1

1 What is a single-page application? 3
1.1 SPA in a nutshell 4

No browser refreshes 7 ■ Presentation logic in the client 7
Server transactions 7

1.2 A closer look 8
An SPA starts with a shell 8 ■ From traditional pages to
views 9 ■ The birth of a view 10 ■ View swapping for zero
reload navigation 11 ■ Fluidity through dynamic updates 12

1.3 Benefits of SPAs over traditional web applications 12

1.4 Rethinking what you already know 14

1.5 Ingredients of a well-designed SPA 15
Organizing your project 15 ■ Creating a maintainable, loosely
coupled UI 17 ■ Using JavaScript modules 18 ■ Performing
SPA navigation 19 ■ Creating view composition and
layout 19 ■ Enabling module communication 20
ix

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
Communicating with the server 20 ■ Performing unit
testing 20 ■ Using client-side automation 20

1.6 Summary 20

2 The role of MV* frameworks 22
2.1 What is MV*? 24

Traditional UI design patterns 25 ■ MV* and the browser
environment 27

2.2 Common MV* concepts 29
Meet the frameworks 30 ■ Meet our MV* project 30
Models 32 ■ Bindings 36 ■ Templates 40 ■ Views 44

2.3 Why use an MV* framework? 44
Separation of concerns 45 ■ Routine tasks simplified 46
Productivity gains 47 ■ Standardization 47
Scalability 48

2.4 Choosing a framework 48

2.5 Chapter challenge 50

2.6 Summary 51

3 Modular JavaScript 52
3.1 What is a module? 53

Module pattern concepts 53 ■ The module’s structure 54
The revealing module pattern 55

3.2 Why modular programming? 56
Avoiding name collisions 56 ■ Protecting your code’s
integrity 65 ■ Hiding complexity 67 ■ Reducing the impact
of code changes 68 ■ Organizing your code 68
Understanding disadvantages of the module pattern 69

3.3 The module pattern dissected 69
Achieving privacy 69 ■ Creating the public API 70
Allowing for global imports 73 ■ Creating the module’s
namespace 73

3.4 Module loading and dependency management 74
Script loaders 74 ■ Asynchronous Module Definition 75
Using AMD modules with RequireJS 77

3.5 Chapter challenge 81

3.6 Summary 81
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xi
PART 2 CORE CONCEPTS ..83

4 Navigating the single page 85
4.1 What is a client-side router? 86

Traditional navigation 86 ■ SPA navigation 86

4.2 Routes and their configuration 88
Route syntax 90 ■ Route entries 90 ■ Route parameters 91
Default routes 93

4.3 How do client-side routers work? 93
The fragment identifier method 94 ■ The HTML5 History API
method 95 ■ Changes for the HTML5 History API
method 97

4.4 Putting it all together: implementing routing in SPAs 98
The faculty list (default route) 99 ■ The main contact
route 101 ■ Faculty office hours (parameterized route) 102

4.5 Chapter challenge 104

4.6 Summary 105

5 View composition and layout 106
5.1 Introducing our project 107

5.2 Reviewing layout design concepts 108
Views 108 ■ Regions 109 ■ View composition 110
Nested views 111 ■ Routes 112

5.3 Considering alternatives for advanced composition and
layout 113
Pros 113 ■ Cons 114

5.4 Designing the application 114
Designing the base layout 115 ■ Designing the default
content 117 ■ Using a view manager for complex designs 122
Creating nested views with their own states 125

5.5 Chapter challenge 127

5.6 Summary 128

6 Inter-module interaction 129
6.1 Review of module concepts 131

Modules encapsulate code 131 ■ APIs provide controlled access
to internal functionality 133 ■ SRP means designing with a
single purpose 134 ■ Code reuse helps your project scale 135
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSxii
6.2 Inter-module interaction methods 136
Inter-module interaction through dependencies 136
Dependency method pros and cons 138 ■ Inter-module
interaction through publish/subscribe 138 ■ Pub/sub pros and
cons 141

6.3 Project details 142
Searching 144 ■ Displaying product information 150

6.4 Chapter challenge 155

6.5 Summary 155

7 Communicating with the server 156
7.1 Understanding the project requirements 158

7.2 Exploring the communication process 158
Choosing a data type 158 ■ Using a supported HTTP request
method 159 ■ Converting the data 160

7.3 Using MV* frameworks 162
Generating requests 162 ■ Processing results with
callbacks 165 ■ Processing results with promises 166
Promise error handling 171

7.4 Consuming RESTful web services 172
What is REST? 172 ■ REST principles 172 ■ How MV*
frameworks help us be RESTful 174

7.5 Project details 174
Configuring REST calls 174 ■ Adding product items to the
cart 177 ■ Viewing the cart 179 ■ Updating the cart 181
Removing products from the cart 183

7.6 Chapter challenge 184

7.7 Summary 184

8 Unit testing 186
8.1 Understanding the project 187

8.2 What is a unit test? 187
Benefits of unit testing 188 ■ Creating better unit tests 189

8.3 Traditional unit testing 192
Getting started with QUnit 193 ■ Creating your first unit
tests 196 ■ Testing code built with MV* objects 200
Testing changes to the DOM 205 ■ Adding other testing
frameworks to the mix 206
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xiii
8.4 Chapter challenge 208

8.5 Summary 208

9 Client-side task automation 209
9.1 Common uses for task runners 210

Live browser reloads 210 ■ Automatic JavaScript and CSS
preprocessing 211 ■ Automatic code analysis from linters 211
Continuous unit testing 211 ■ File concatenation 212
Code minification 212 ■ Continuous integration 212

9.2 Choosing a task runner 212

9.3 Our project 213
Introducing Gulp.js 214 ■ Creating your first task 215
Creating a code analysis task 216 ■ Creating a browser-reload
task 218 ■ Automating unit testing 220 ■ Creating a build
process 222

9.4 Chapter challenge 227

9.5 Summary 227

appendix A Employee directory example walk-through 229
appendix B Review of the XMLHttpRequest API 259
appendix C Chapter 7 server-side setup and summary 266
appendix D Installing Node.js and Gulp.js 277

index 281
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSxiv
Licensed to Mark Watson <nordickan@gmail.com>

foreword
In 1991, Tim Berners-Lee launched the world’s first website, which ran on a program
he named the WorldWideWeb. Two years later, he would release the source code for
the WorldWideWeb and the world itself would never be the same. You can still see that
first web page at info.cern.ch.

 Since 1991, the web has experienced unprecedented popularity. At 24 years old,
it’s still the most widely used technology in the world. It runs on all operating systems,
all hardware platforms, and nearly all mobile devices in some form or fashion. The
program that makes this all possible is the almighty web browser.

 Traditionally, web browsers were simply middlemen. They would fetch data from a
server, display it, take data back to the server, and get more data to display. But today’s
web browsers, while still true to the original principals of the web, are far more com-
plex than anyone could ever have imagined back then.

 The humble browser has graduated into a full-fledged runtime for applications of
all sizes. These are applications that don’t have to be installed, can be accessed from
anywhere, and run everywhere. This is the holy grail for developers. Being able to
deploy one codebase that runs everywhere and is always up to date is an opportunity
too good to pass up. No other technology can make this boast.

 Riding on the success of the web platform is the ubiquity of JavaScript—a language
created in 10 days that’s now the most used programming language in the world.
Developers have embraced JavaScript, and that has opened up doors to new types of
applications that we never would have dreamed possible in a web browser.

 These new applications, often called single-page applications (SPAs), run almost
entirely in the browser, and they introduce a whole new set of principles, patterns, and
problems. The broad appeal of the web has resulted in a Cambrian explosion of Java-
Script and CSS frameworks; so many that it is daunting at best to try to find the needle
of success in the haystack of frameworks.
xv

Licensed to Mark Watson <nordickan@gmail.com>

FOREWORDxvi
 That, dear reader, is why this book is so important.
 For the past four years, I’ve worked at Telerik as a developer advocate focusing on

the Kendo UI JavaScript library. I’ve watched countless JavaScript frameworks come
and go. The hype reaches critical mass, and then the next big thing shows up, and the
developers who are actually building solutions on these fads are left to pick up the
pieces. It often leaves me wondering when it will settle down and we can focus on the
one “right way” to build this new generation of rich client applications.

 The raw truth is that there is no “right way” to do anything. There is only the way
that works for your project and your skill set. There is only the way that makes you
most productive and, ultimately, most successful.

 In order to find that way in the world of SPAs, it’s imperative to understand the fun-
damental principles behind the SPA concept itself. Learning a framework will not be
sufficient and will ultimately leave you short and wanting more. A deep understanding
of the core concepts on which a successful SPA rests will enable you to make the right
decisions with confidence and to know how to build the last 20% when your JavaScript
framework of choice takes you only 80% of the way there.

 This book will be your guide. It’s for experts and novices alike. While reading it, I
found myself learning basics that I had hastily glossed over, as well as getting new
insight into terminology that I thought I had a good grasp of but only partially (and in
some cases incorrectly) understood. The insight and explanations contained in these
pages are not just academic but also practical and hands-on, showing you how to build
an SPA and addressing real-world implementations head-on while discussing relevant
SPA frameworks.

 I’m generally skeptical of books that try to tackle a concept as big as that of SPAs,
but this is one of the few reads that somehow manages to take a very complex topic
and break it down into easily understandable and digestible pieces.

 It is without hesitation that I provide my full recommendation for this book—each
and every page.

 BURKE HOLLAND

 DIRECTOR OF DEVELOPER RELATIONS

 TELERIK
Licensed to Mark Watson <nordickan@gmail.com>

preface
Many of the projects I’ve worked on have been long-running efforts taking a year or
more to build. Then, of course, there were updates and additional phases to complete
after that. Because these types of projects take so long, technology grows by leaps and
bounds in the meantime. By the time I was ready to start the next project, I’d have to
reevaluate my tech stack because things had changed so much.

 It was when my team and I were gearing up for our most recent single-page appli-
cation project that I had the idea to write this book. My director had given us the green
light to research the “best of breed” for the technologies we wanted to use. So we began
evaluating various solutions and creating small proof-of-concept applications.

 While going through this process again, I was reminded of the difficulties in sifting
through the sheer volume of information available to us these days. It also occurred to
me how daunting this must be for those new to creating single-page applications.

 So I set out to write a book that would not only summarize what’s involved in build-
ing an SPA but also give a nice introduction to some of the libraries and frameworks
used to create them. Additionally, I wanted the book to be straightforward and easy to
digest, yet give enough technical details so that you can actually build an SPA when
you’ve finished reading it.

 Thanks for taking this journey with me. I hope you’ll find this book to be an indis-
pensable guide to single-page application development.

xvii

Licensed to Mark Watson <nordickan@gmail.com>

acknowledgments
This is my first book, so as you can imagine it was quite overwhelming at times. I was
very fortunate, though, to have three extraordinary people in my corner who consis-
tently went above and beyond the call of duty to help mold and shape this book: Dan
Maharry, my development editor; Joel Kotarski, my technical development editor; and
Andrew Gibson, my technical proofreader. They are an amazing team to work with
and I can’t thank them enough.

 Thank you, too, Sharon Wilkey, for the wonderful job as copyeditor, and Jean-
François Morin, for lending a hand as the Java/Spring technical proofreader.

 I’d also like to thank the numerous other people at Manning who made this book
possible: Marjan Bace, Michael Stephens, Bert Bates, Maureen Spencer, Kevin Sulli-
van, Mary Piergies, Candace Gillhoolley, Rebecca Rinehart, Ana Romac, Toni Bowers,
and Linda Recktenwald, as well as the unsung heroes who worked so hard to bring
this effort to fruition.

 Special thanks to Burke Holland for writing the book’s foreword. I’m a huge fan of
Burke’s work and his writing and feel honored that he agreed to write this.

 Thanks to the reviewers who read this book in its various stages of development:
Alain Couniot, Anirudh Prabhu, Bruno Sonnino, David Schmitz, Fernando Monteiro
Kobayashi, Johan Pretorius, John Shea, Maqbool Patel, Philippe Vialatte, Rajesh Pillai,
Shrinivas Parashar, Trevor Saunders, Viorel Moisei, and Yogesh Poojari.

 Thanks also to my family: my wife Rosalba, my daughter Ana Carolina, my son
David, my other daughter Sofía, and my mom Lucy. Words just aren’t enough to thank
you for all the love, support, and encouragement you gave me throughout this
endeavor.

 To all my friends and colleagues, both at work and elsewhere, thank you for your
encouragement and support as well.
xviii

Licensed to Mark Watson <nordickan@gmail.com>

about this book
This book was written to give you an introductory look at what it takes to create a
single-page application. The book not only introduces you to frameworks and tech-
nologies for creating an SPA but also shows you how to unit test them and how to auto-
mate client-side development and build-related tasks.

 Because part of the process of creating an SPA is deciding what your technology
stack will look like, the book compares various approaches used by today’s leading
JavaScript frameworks. One of the reasons why so many frameworks exist is that
there’s no single correct way to build an application. By comparing different frame-
works, you can better decide what’s right for you and your next project.

 Each chapter of the book includes a complete, working application. I’ve tried to
keep things interesting yet not overwhelming. I’m not a fan of long-running examples
that fill half a book with pages and pages of source code to wade through. So I
decided to create a separate project for each chapter. I also tried to keep each exam-
ple as small and to the point as possible while still being interesting and relevant to
the concepts and topics for the chapter.

Roadmap

Part 1: The basics

■ Chapter 1 introduces you to the overall SPA concept. From the beginning you’ll
start learning important concepts and how SPAs are different from traditional
web applications. You’ll get a clear, concise definition accompanied by an over-
view of how the various pieces and parts of an SPA fit together.

■ Chapter 2 dives deeper, introducing you to a family of JavaScript frameworks
known as MV* frameworks and their role in the creation of a single-page appli-
cation. The chapter talks about the commonalities among frameworks, as well
xix

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

ABOUT THIS BOOKxx
as how they’re different. The end-of-chapter project is written three different
ways, each with a different MV* framework so you can see different architectural
styles in practice.

■ In chapter 3, you’ll get acquainted with modular programming. You’ll see first-
hand through examples and the chapter’s project the reasons you should be
using modules in your SPA. We’ll also break down the module pattern’s syntax
and walk through it step by step. We’ll top off the chapter with an introduction
to module loading and AMD modules.

Part 2: Core concepts

■ Chapter 4 gives you a crash course on client-side routing. You’ll get a break-
down of how routing works under the covers and see how various frameworks
approach routing. You’ll also get an understanding of how client-side routing
affects the application’s state.

■ Chapter 5 introduces you to layout design and view composition in an SPA.
We’ll start with simple designs and work our way up to more complicated ones
with complex routes. Additionally, we’ll touch on advanced layout topics, like
working with nested views and sibling views.

■ In chapter 6 we’ll talk about inter-module communication. What’s the good of
creating modules if they can’t talk to each other, right? You’ll not only see dif-
ferent approaches to inter-module communication but also get a feel for modu-
lar application design.

■ Chapter 7 looks at the role of the server in an SPA environment. Although the
client is still the focus, you’ll see how your SPA communicates with the server
and how to handle results from your server calls. The chapter examines result
handling from the standpoint of both callbacks and the use of promises. You’ll
also see how MV* frameworks help you with these tasks. At the end of the chap-
ter, you’ll get a brief introduction to REST and see how your SPA can consume
RESTful services.

■ Chapter 8 is an overview of unit testing JavaScript applications, specifically SPAs.
Don’t worry if you’ve never done any unit testing on the client. We’ll take this
slow and easy and go through the basics step by step.

■ Finally, in chapter 9, you’ll see how client-side task automation helps you both
in development and in creating a build process. You’ll get clear pictures of the
most common types of tasks for each scenario and see them in action in the
code for the end-of-chapter project.

The appendices are meant to complement the chapters. Appendix A is a walk-through
of the complete source code for all three versions of the project for chapter 2. Appen-
dix B and appendix C complement chapter 7. Appendix B is an overview of the
XMLHttpRequest API, and appendix C is a summary of the server-side calls for the
chapter’s project. Although the chapter is written deliberately so that you can use
the server-side language of your choice, appendix C additionally includes a guide to
Licensed to Mark Watson <nordickan@gmail.com>

ABOUT THIS BOOK xxi
the Spring MVC code that was used in the downloadable source. Appendix D is a simple
guide for installing Node.js and Gulp.js, which you’ll need if you want to try out the
code for chapter 9.

Audience
This book assumes you have at least basic knowledge of JavaScript, HTML, and CSS. It’s
also helpful if you have some level of web development experience, although this isn’t
a requirement. This book does, however, target those who have little or no experience
in the development of single-page applications or have created SPAs but not using the
technologies described in this book.

Code conventions and downloads
Source code in listings or in text appears in a fixed-width font like this to sepa-
rate it from ordinary text. Code annotations accompany the listings, highlighting
important concepts.

 Source code for the examples in this book can be downloaded from the pub-
lisher’s website at www.manning.com/books/spa-design-and-architecture.

Software and hardware requirements
If you’re using a recent Mac OS X or Windows computer and a modern browser (for
example, Firefox, Safari, or Chrome), you should have no trouble with any of the
examples. For any special software requirements, you’ll find directions in the chap-
ter/appendix itself.

 Because most of the examples dynamically fetch HTML files, you may need to set
certain privileges in your browser if you’re running the example locally (versus using
a server). Please see the readme.txt file in the downloadable source for the project
for details.

 If you want to try the example for chapter 7, you’ll need to use some type of server
and some type of server-side language. Everyone has their preferences, so it’s left to you
to decide what you want to use. I used Java/Spring MVC and include a mini guide to get-
ting that set up. If you’re using something else, I describe the server-side calls and
objects conceptually so you can re-create them using the technology of your choice.

Author Online
Purchase of SPA Design and Architecture includes free access to a private web forum run
by Manning Publications where you can make comments about the book, ask techni-
cal questions, and receive help from the author and from other users. To access the
forum and subscribe to it, please go to www.manning.com/books/spa-design-and-
architecture. This page provides information on how to get on the forum once you’ve
registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
Licensed to Mark Watson <nordickan@gmail.com>

www.manning.com/books/spa-design-and-architecture
www.manning.com/books/spa-design-and-architecture
www.manning.com/books/spa-design-and-architecture

ABOUT THIS BOOKxxii
It’s not a commitment to any specific amount of participation on the part of the
authors whose contribution to the Author Online forum remains voluntary (and
unpaid). We suggest you try asking the author some challenging questions lest his
interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the author

Emmit Scott is a senior software engineer and architect with
more than 17 years of experience in creating web-based appli-
cations. He’s developed large-scale applications for education,
banking, and telecommunications. His hobbies include read-
ing (especially Jim Butcher novels), playing the guitar (was a
head banger back in the day), and spending as much time as
possible with his children.
Licensed to Mark Watson <nordickan@gmail.com>

about the cover illustration
The figure on the cover of SPA Design and Architecture is captioned “Habit of a Young
Turk of Quality in 1700.” The illustration is taken from Thomas Jefferys’ A Collection of
the Dresses of Different Nations, Ancient and Modern, London, published between 1757
and 1772. The title page states that these are hand-colored copperplate engravings,
heightened with gum arabic. Thomas Jefferys (1719–1771), was called “Geographer to
King George III.” He was an English cartographer who was the leading map supplier
of his day. He engraved and printed maps for government and other official bodies
and produced a wide range of commercial maps and atlases, especially of North
America. His work as a mapmaker sparked an interest in local dress customs of the
lands he surveyed and mapped, and which are brilliantly displayed in this four-volume
collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenom-
ena in the late 18th century and collections such as this one were popular, introduc-
ing both the tourist as well as the armchair traveler to the inhabitants of other
countries. The diversity of the drawings in Jefferys’ volumes speaks vividly of the
uniqueness and individuality of the world’s nations some 200 years ago. Dress codes
have changed since then and the diversity by region and country, so rich at the time,
has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life. Or a more varied and interesting intellectual
and technical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Jeffreys’ pictures.

xxiii

Licensed to Mark Watson <nordickan@gmail.com>

ABOUT THE COVER ILLUSTRATIONxxiv

Licensed to Mark Watson <nordickan@gmail.com>

Part 1

The basics

This part of the book will get you acquainted with some basic concepts
you’ll need to know before developing your first single-page web application.

 In chapter 1, we’ll talk about what an SPA is in very clear terms. It’s important
to know what this type of architecture involves and why you might choose it over
that of a traditional web application.

 Keeping your application’s code base clean and maintainable becomes criti-
cal when working within the context of a single page. Chapter 2 compares differ-
ent styles of JavaScript framework that help you achieve that goal. The chapter
frames the discussion with an introduction to the three architectural patterns
that heavily influenced these frameworks: MVC, MVP, and MVVM. The chapter
then progresses into how the same application must change based on the style of
framework that’s implemented.

 In chapter 3, you’ll get a crash course on the module pattern and how it will
change the way you think about organizing your JavaScript code. Using this pat-
tern, you’ll be able to create functions and variables as you normally would but
within the cozy confines of a structure that mimics classic encapsulation in other
languages. As you’ll find out in this chapter, modular programming is crucial for
a successful SPA.

Licensed to Mark Watson <nordickan@gmail.com>

2 CHAPTER

Licensed to Mark Watson <nordickan@gmail.com>

What is a single-page
application?
Developers have been chasing the dream of delivering web applications with the
look and feel of native desktop applications for about as long as they’ve been writ-
ing them. Various solutions for a more native-like experience, such as IFrames, Java
applets, Adobe Flash, and Microsoft Silverlight, have been tried with varying
degrees of success. Though different technologies, they all have at least one goal in
common: bringing the power of a desktop app to the thin, cross-platform environ-
ment of a web browser. The single-page (web) application, or SPA, shares in this
objective, but without a browser plugin or a new language to learn. The idea that a
native-like experience can be realized using only JavaScript, HTML, and Cascading
Style Sheets (CSS) is a tantalizing thought, but what is an SPA under the covers, and
where did this idea begin?

This chapter covers
■ The definition of a single-page application (SPA)
■ An overview of the basic elements of an SPA
■ The benefits of SPAs over traditional web

applications
3

Licensed to Mark Watson <nordickan@gmail.com>

4 CHAPTER 1 What is a single-page application?
 The stage was set in the early 2000s. A brand-new way of thinking about web-page
design came about when the AJAX movement started to gain steam. It began with an
interesting, yet obscure, ActiveX control in Microsoft’s Internet Explorer browser,
used to send and receive data asynchronously. These humble beginnings eventually
led to a revolution, when the control’s functionality was officially adopted by the
major browser vendors as the XMLHttpRequest (XHR) API.

 Developers who began to merge this API with JavaScript, HTML, and CSS obtained
remarkable results. The blending of these techniques became known as AJAX, or Asyn-
chronous JavaScript and XML. AJAX’s unobtrusive data requests, combined with the
power of JavaScript to dynamically update the Document Object Model (DOM), and
the use of CSS to change the page’s style on the fly, brought AJAX to the forefront of
modern web development.

 Piggybacking off this successful movement, the SPA concept takes web develop-
ment to a whole new level by expanding the page-level manipulation techniques of
AJAX to the entire application. Additionally, the patterns and practices commonly
used in the creation of an SPA can lead to overall efficiencies in application design,
code maintenance, and development time. Having a successful implementation of a
single-page application, though, will be greatly impacted by your understanding of
SPA architecture.

 As with most emerging solutions, single-page application design comprises a vari-
ety of approaches. Varying opinions by today’s experts, plus a multitude of competing
libraries and frameworks, can make finding the right solution for your SPA project
challenging. The more you know going into it, the more successful you’ll be in find-
ing the implementation that’s right for you and your development goals. That’s why
I’ll start by providing a clear understanding of an SPA and its benefits. Over the course
of the book, you’ll examine each facet of SPA development by using a style of Java-
Script frameworks commonly called MV* frameworks.

1.1 SPA in a nutshell
In an SPA, the entire application runs as a single web page. In this approach, the pre-
sentation layer for the entire application has been factored out of the server and is
managed from within the browser. To get a better idea of what this looks like, you’ll
review a couple of illustrations.

Not everything is MV*

Our discussion of SPAs in this book is limited to MV* frameworks (and you’ll learn
more about them in chapter 2). It’s important to make this distinction up front, how-
ever, because other approaches can be used to create an SPA, including using React
(https://facebook.github.io/react) or Web Components (a W3C specification for a set
of standards for component-based web development), for example.
Licensed to Mark Watson <nordickan@gmail.com>

https://facebook.github.io/react

5SPA in a nutshell
First, let’s take a look at a web application that’s not an SPA. Figure 1.1 shows a large
web application that uses a traditional server-side design.

 With this design, each request for a new view (HTML page) results in a round-trip
to the server. When fresh data is needed on the client side, the request is sent to the
server side. On the server side, the request is intercepted by a controller object inside
the presentation layer. The controller then interacts with the model layer via the ser-
vice layer, which determines the components required to complete the model layer’s
task. After the data is fetched, either by a data access object (DAO) or by a service

HTML views returned,
causing full-page refresh

Client side

Server side

Request Response

HTML

Model (layer)

Controller Views

Presentation layer

Service layer

Service
interfaces

Service
implementations

Business layer

Business logic
and workflows

Business
objects/entities

Data layer

Data sources Web services

Data access
objects Service agents

Views created and
managed on the server

Figure 1.1 In a traditional web
application, each new view (HTML page)
is constructed on the server.
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

6 CHAPTER 1 What is a single-page application?
agent, any necessary changes to the data are then made by the business logic in the
business layer.

 Control is passed back to the presentation layer, where the appropriate view is cho-
sen. Presentation logic dictates how the freshly obtained data is represented in the
selected view. Often the resulting view starts off as a source file with placeholders, where
data is to be inserted (and possibly other rendering instructions). This file acts as a kind
of template for how the view gets stamped whenever the controller routes a request to it.

 After the data and view are merged, the view is returned to the browser. The
browser then receives the new HTML page and, via a UI refresh, the user sees the new
view containing the requested data.

Presentation layer
Views created and managed
by MV* in the browser

Client side

Server side
JSON

Model (layer)

Controller

Views

AJAX

JSON to native
object conversion

MV*
framework

Service layer

Service
interfaces

Service
implementations

Business layer

Business logic
and workflows

Business
objects/entities

Data layer

Data sources Web services

Data access
objects Service agents

Transactions via AJAX
(XHR + DOM manipulation)
never require refresh

Figure 1.2 In an SPA, the presentation
layer moves to the client-side code, and
transactions never require a browser refresh.
Licensed to Mark Watson <nordickan@gmail.com>

7SPA in a nutshell
Figure 1.2 demonstrates how this design could look as an SPA. Notice what has hap-
pened with the presentation layer and our transactions.

 Moving the process for creating and managing views into the UI decouples it from
the server. From an architectural standpoint, this gives the SPA an interesting advan-
tage. Unless you’re doing partial rendering on the server, the server is no longer
required to be involved in how the data is presented.

 The overall SPA design is nearly the same as the traditional design. The key
changes are as follows: no full browser refreshes, the presentation logic resides in the
client, and server transactions can be data-only, depending on your preference for
data rendering.

1.1.1 No browser refreshes

In an SPA, views aren’t complete HTML pages. They’re merely portions of the DOM
that make up the viewable areas of the screen. After the initial page load, all the tools
required for creating and displaying views are downloaded and ready to use. If a new
view is needed, it’s generated locally in the browser and dynamically attached to the
DOM via JavaScript. No browser refreshes are ever needed.

1.1.2 Presentation logic in the client

Because our presentation logic is mostly client side in an SPA, the task of combining
HTML and data is moved from the server to the browser. As on the server side, source
HTML contains placeholders where data is to be inserted (and possibly other render-
ing instructions). This client-side template is used as a basis for stamping out new
views in the client. It’s not template HTML for a complete page, though. It’s for only
the portion of the page the view represents.

 The heavy lifting of routing to the correct view, combining data with the HTML
template, and managing a view’s lifecycle is typically delegated to a third-party Java-
Script file commonly referred to as an MV* framework (sometimes called an SPA frame-
work). Chapter 2 covers templates and MV* frameworks in detail.

1.1.3 Server transactions

In an SPA, several approaches can be used to render data from the server. These
include server-side partial rendering, in which snippets of HTML are combined with
data in the server’s response. This book focuses on an alternative approach, in which
rendering is done on the client and only data is sent and received during business
transactions. This is always done asynchronously via the XHR API. The data-exchange
format is typically JavaScript Object Notation (JSON), though it doesn’t have to be.
Even using client-side rendering, though, the server still plays a vital role in the SPA.
Chapter 7 reviews the role of the server in more detail.

 Even if you’re already using a server-side design pattern such as Model-View-Con-
troller (MVC) to separate views, data, and logic, reconfiguring your MVC framework
for use with SPAs is relatively easy. Therefore, frameworks such as ASP.NET MVC or
Spring MVC can still be used with an SPA.
Licensed to Mark Watson <nordickan@gmail.com>

8 CHAPTER 1 What is a single-page application?
1.2 A closer look
Now that you have a bird’s-eye view of the SPA, let’s break it down a little further. Let’s
talk about what’s going on in the presentation layer now that it’s moved to the
browser. Because upcoming chapters provide more detail, I’ll keep this discussion at a
high level.

1.2.1 An SPA starts with a shell

The single-page part of the SPA refers to the initial HTML file, or shell. This single HTML
file is loaded once and only once, and it serves as the starting point for the rest of the
application. This is the only full browser load that happens in an SPA. Subsequent por-
tions of the application are loaded dynamically and independently of the shell, with-
out a full-page reload, giving the user the perception that the page has changed.

 Typically, the shell is minimal in structure and often contains a single, empty DIV tag
that will house the rest of the application’s content (see figure 1.3). You can think of this
shell HTML file as the mother ship and the initial container DIV as the docking bay.

 The code for the shell has some of the basic starting elements of a traditional web
page, such as a HEAD and BODY. The following listing illustrates a basic shell file.

<!DOCTYPE html>
<html>
<head>
 <title>Shell Example</title>
 <link rel="stylesheet"
 type="text/css"
 href="app/css/default.css">
</head>
<body>
 <div id="container"></div>
</body>
</html>

Listing 1.1 Example SPA shell

Shell starts empty

Title

Figure 1.3 The HTML shell is the beginning structure. It has no content yet, only an
empty DIV tag.

Load the application’s style sheets

Initial container DIV
Licensed to Mark Watson <nordickan@gmail.com>

9A closer look
The initial container DIV can have
child containers beneath it if the
application’s viewable area is divided
into subsections. The child contain-
ers are often referred to as regions,
because they’re used to visually
divide the screen into logical zones
(see figure 1.4).

 Regions help you divide the view-
able area into manageable chunks of
content. The region container DIV is
where you tell the MV* framework to
insert dynamic content. It’s worth
noting, though, that other paradigms are used by frameworks not covered in this
book. React, for example, uses DOM patching rather than the replacement of particu-
lar regions.

1.2.2 From traditional pages to views

The “pages” of the application aren’t pages at all, at least not in the traditional sense.
As the user navigates, the parts of the screen that appear to be pages are actually inde-
pendent sections of the application’s content, called views. Chapter 2 covers views in
detail. For now, it’s enough to know that the view is a portion of the application that
the end user sees and interacts with.

 Imagining the difference between the average web page and the view of an SPA can
be difficult. To help you visualize the difference, take a look at the following figures.
Figure 1.5 shows a simple website composed of two web pages. As you can see, both
web pages of the traditional site contain the complete HTML structure, including the
HEAD and BODY tags.

Title

Header region Header view

Sidebar region

Sidebar view View 1

Content region

Figure 1.4 Subsections of the shell are called
regions. A region’s content is provided by a view.

page1.html

<!DOCTYPE html>
<html>
<head>
 <title>Page 1</title>
 <link rel="stylesheet"
 type="text/css"
 href="app/css/default.css">
</head>
<body>
 <h1>page 1</h1>
</body>
</html>

page2.html

<!DOCTYPE html>
<html>
<head>
 <title>Page 2</title>
 <link rel="stylesheet"
 type="text/css"
 href="app/css/default.css">
</head>
<body>
 <h1>page 2</h1>
</body>
</html>

Figure 1.5 In traditional
site design, each HTML
file is a complete HTML
page.
Licensed to Mark Watson <nordickan@gmail.com>

10 CHAPTER 1 What is a single-page application?
Figure 1.6 shows the same website as an SPA. The SPA “pages” are only HTML frag-
ments. If the content of the viewable area of the screen changes, that’s the equivalent
of changing pages in a traditional website.

 When the application starts, the MV* framework inserts view 1. When the user nav-
igates to what appears to be a new page, the framework is swapping view 1 for view 2.
Chapter 4 covers SPA navigation in detail.

1.2.3 The birth of a view

If sections (or views) of the application aren’t part of the initial shell, how do they
become part of the application? As mentioned previously, the various sections of the
SPA are presented on demand, usually as a result of user navigation. The skeletal
HTML structure of each section, called a template, contains placeholders for data.
JavaScript-based libraries and frameworks, commonly referred to as MV*, are used to
marry data and at least one template. This marriage ultimately results in the final view
(see figure 1.7). All the screen’s content beyond the shell gets placed into separate
views.

shell.html

<!DOCTYPE html>
<html>
<head>
 <title>Shell</title>
 <link rel="stylesheet"
 type="text/css"
 href="app/css/default.css">
</head>
<body>
 <div id="container"></div>
</body>
</html>

View 1

<div id=”p1">
 <h1> page 1</h1>
</div>

View 2

<div id=”p2">
 <h1> page 2</h1>
</div>

Figure 1.6 In an SPA design, one complete HTML file contains placeholders for the HTML
fragments stored in view files.

Server Data Template View

{"firstName":"Karen",
"lastName":"Tate"}

+

<div>
 First Name: {{firstName}}

 Last Name: {{lastName}}
</div>

First Name: Karen
Last Name: Tate=

Figure 1.7 A view is the marriage of data and one or more templates.
Licensed to Mark Watson <nordickan@gmail.com>

11A closer look
The completed view is attached to the DOM, as needed, either directly under the ini-
tial container DIV, as illustrated in figure 1.8, or in one of the regions if there are any.

1.2.4 View swapping for zero reload navigation

All of this happens without having to refresh the shell. So instead of getting served a
new static page for every navigation request, the SPA can display new content without
a disruption for the user. For a particular part of the screen, content of one view is
merely replaced by the content of another view. This gives the illusion that the page
itself is changing as the user navigates (see figure 1.9). Navigation without a reload is a
key feature of the single-page application that gives it the feel of a native application.

shell.html

<body>
 <div id="container">

 </div

</body>

View

<div>
 First Name: Karen
 Last Name: Tate

</div>

Figure 1.8 Views are
attached to the DOM
dynamically, usually as a
result of user navigation,
beneath the initial container
DIV or one of its regions.

shell.html
View 1

<div id=”p1">
 <h1> page 1</h1>
</div>

View 2

<div id=”p2">
 <h1> page 2</h1>
</div>

MV* library/framework

<!DOCTYPE html>
<html>
<head>
 <title>Shell</title>
 <link rel="stylesheet"
 type="text/css"
 href="app/css/default.css">
</head>
<body>
 <div id="container"></div>
</body>
</html>

Figure 1.9 Views in an SPA are seamlessly swapped (through DOM manipulation) for a given area of
the screen, giving the user a more desktop-like feel.
Licensed to Mark Watson <nordickan@gmail.com>

12 CHAPTER 1 What is a single-page application?
The interesting thing about navigation in an SPA is that, to the user, it looks like the
page is changing. The URL will look different, and even the Back button can be used
to take the user to the previous “page.”

 Keep in mind that the heavy lifting of creating and managing the views in the cli-
ent is handled by MV* frameworks. In chapter 2, you’ll dissect their various parts to get
an even clearer picture.

1.2.5 Fluidity through dynamic updates

Another defining aspect of the SPA is how data from the server can be retrieved asyn-
chronously and inserted dynamically into the application. So not only does the page
not reload during navigation, it also doesn’t reload while requesting and receiving
server data. This, too, gives the appearance and feel of a native application. The tech-
niques of AJAX make this all possible. I began this chapter by talking about the natural
evolution of web development and how AJAX played a pivotal role in the development
of the SPA concept. So I’d be remiss if I didn’t include AJAX as part of the SPA definition.

 Previously, I explained in great detail how the page, or view, is swapped dynamically
during navigation. Domain data from the server, or from cache, can also be added and
removed in the same fashion. The retrieval of the data, which happens silently in the
background, can happen in parallel with other data requests. After the data is fetched,
it’s combined with the HTML template, and the view is updated in real time. The ability
to update the page right in front of the user’s eyes without even as much as a flicker
gives the application a certain fluidity and sleekness that can’t be attained with a tradi-
tional web application. Chapter 7 covers accessing data in greater detail.

1.3 Benefits of SPAs over traditional web applications
The web browser is still a great way to distribute software because of its “thinness,”
ubiquity, and standardized environment. End users will already have a web browser.
It’s also great for software updates, because the updates happen on the server instead
of users having to worry about the installation process. Unfortunately, jarring, full-
page reloads, content being duplicated with every request, and heavy transaction pay-
loads have all diminished the benefits of browser-delivered content.

 Web-based customer interactions are far from over, though. Just the opposite is
true, and SPAs are at the forefront of this user-experience revolution. The idea of the
single-page application was born out of our desire to give end users the best experi-
ence possible. Here are some reasons you should consider single-page application
architecture:

■ Renders like a desktop application, but runs in a browser—The SPA has the ability to
redraw portions of the screen dynamically, and the user sees the update
instantly. Because the SPA downloads the web-page structure in advance, there’s
no need for the disruptive request to get a new page from the server. This is
similar to the experience a user would get from a native desktop application;
Licensed to Mark Watson <nordickan@gmail.com>

13Benefits of SPAs over traditional web applications
therefore, it “feels” more natural. An advantage over even the desktop applica-
tion, the SPA runs in the browser, making its native-like, browser-based environ-
ment the best of both worlds.

■ Decoupled presentation layer—As mentioned previously, the code that governs how
the UI appears and how it behaves is kept on the client side instead of the
server. This leaves both server and client as decoupled as possible. The benefit
here is that each can be maintained and updated separately.

■ Faster, lightweight transaction payloads—Transactions with the server are lighter
and faster, because after initial delivery, only data is sent and received from the
server. Traditional applications have the overhead of having to respond with the
next page’s content. Because the entire page is re-rendered, the content
returned in traditional applications also includes HTML markup. Asynchro-
nous, data-only transactions make the operational aspect of this architecture
extremely fast.

■ Less user wait time—In today’s web-centric world, the less time a user has to wait
for the page to load, the more likely the person is to stay on the site and return
in the future. Because the SPA loads with a shell and a small number of support-
ing files and then builds as the user navigates, application startup is perceived
as being quick. As the previous points state, screens render quickly and
smoothly, and transactions are lightweight and fast. These characteristics all
lead to less user wait time. Performance isn’t just a nice-to-have. It equates to
real dollars when online commerce is involved. A study by Walmart that was
published in Web Performance Today1 indicated that for every 100 ms of perfor-
mance improvement, incremental revenue grew by up to 1%. In Walmart
terms, that’s huge.

■ Easier code maintenance—Software developers are always looking for better ways
to develop and maintain their code base. Traditionally, web applications are a
bit of a Wild West kind of environment, where HTML, JavaScript, and CSS can
be intertwined into a maintenance nightmare. Add in the ability to combine
server-side code with the HTML source (think Active Server Pages or JavaServer
Pages scriptlets) and you’ve got a giant, steaming pile of goo. As you’ll see in
upcoming chapters, MV* frameworks like the ones covered in this book help us
separate our code into different areas of concern. JavaScript code is kept where
it needs to be—out of the HTML and in distinct units. With the help of third-
party libraries and frameworks (for example, Knockout, Backbone.js, and
AngularJS), the HTML structure for an area of the screen and its data can be
maintained separately. The amount of coupling between the client and the
server is dramatically reduced as well.

1 www.webperformancetoday.com/2012/02/28/4-awesome-slides-showing-how-page-speed-correlates-to-
business-metrics-at-walmart-com
Licensed to Mark Watson <nordickan@gmail.com>

www.webperformancetoday.com/2012/02/28/4-awesome-slides-showing-how-page-speed-correlates-to-business-metrics-at-walmart-com
www.webperformancetoday.com/2012/02/28/4-awesome-slides-showing-how-page-speed-correlates-to-business-metrics-at-walmart-com

14 CHAPTER 1 What is a single-page application?
1.4 Rethinking what you already know
In a single-page web application, you use the
same languages that you normally use when
creating a web application: HTML, CSS, and
JavaScript. There’s no browser plugin
required and no magic SPA language to learn.
HTML and CSS continue to be the primary
building blocks for the UI’s structure and lay-
out, whereas JavaScript is still the cornerstone
for interactivity and UI logic (see figure 1.10).

 The difference to the user is in how the
application will feel using SPA architecture.
The navigation feels more like a native desk-
top application, delivering a smoother, more
enjoyable experience. This difference for you,
the developer, is that to create an application
that functions within a single HTML page, you’ll need to rethink your normal
approach to web development.

 As mentioned in the previous section, in an SPA, the application is broken into
independent sections, or views. So you’ll no longer create entire pages in which com-
mon elements, such as a header or a main menu, are repeated. Even the common sec-
tions are views in an SPA. You’ll also have to stop thinking about the layout of
individual pages and start thinking in terms of view placement in the available real
estate of the screen. As it turns out, this is easy after you get the hang of it. Global lay-
out areas, such as a main menu, remain fixed throughout the user experience. Shared
areas of the screen, such as the center content well, are reused by the application to
swap the various views (as well as entire regions) during user navigation.

 To the end user, though, the application can look exactly like a traditional web
application. As figure 1.11 illustrates, it can have a header, a sidebar, or any other typi-
cal web-page element.

SPA client

CSS:
styles and layout

JavaScript:
behavior

HTML:
structure

Figure 1.10 CSS, HTML, and JavaScript
are the building blocks for the single-page
application. There’s no special language to
learn and no browser plugins required.

Header region

Header view

Content region

Content view 1

Sidebar
region

Menu
view

Figure 1.11 Using
regions, an SPA’s
views can be placed
so that it looks
exactly like a
traditional web page.
Licensed to Mark Watson <nordickan@gmail.com>

15Ingredients of a well-designed SPA
On the JavaScript side, you’ll continue to code as you normally would, with one major
exception. Because you’re dealing with a single page that doesn’t refresh, simple
global scope for variables and functions won’t suffice. You’ll divide your code into
workable units and house it in special functions called modules that have their own
scope. This frees you from having to create all your variables and functions in the
global namespace.

 Communication with the server in an SPA is via AJAX. Though the name implies
XML, most modern SPAs use AJAX techniques but use JSON as the preferred data-
exchange format. It’s an ideal format for the SPA because it’s lightweight and com-
pact, and its syntax is well-suited for describing object structure. But AJAX should be
nothing new to most developers. Even traditional web applications typically use at
least some AJAX.

 Your overall design will revolve around keeping all the SPA code easily manageable
and decoupled from other areas of concern. But don’t worry about any extra complex-
ity. Once you get the hang of the unusual syntax of the module pattern, your life as a
developer will get easier. I present modular programming in detail later in the book
and use variants of the module design pattern in all the examples. So no worries—
you’ll see it so much that by the end of the book it’ll be second nature to you!

1.5 Ingredients of a well-designed SPA
If you researched the topic of single-page applications before picking up this book,
you may have felt a little overwhelmed at your choices. As you’ve seen so far, the SPA
isn’t a single technology. It’s a federation of technologies that work together to create
the finished product. There are almost as many libraries and frameworks as there are
opinions about the correct approach to take. So admittedly, trying to find the pieces
of the puzzle that not only fit together but also fit the needs of your project and the
preferences of your team can be rather daunting.

 The good news is that there’s a method to the madness. If you look at the single-
page application concept as a whole, it can be broken into a list of categories that can
fit any style of solution you adopt as your own.

1.5.1 Organizing your project

Having a well-organized project isn’t complicated, but it does require some thought
and shouldn’t be taken for granted. Fortunately, no hard-and-fast rules apply to direc-
tory structures. The general rule of thumb is that you should use whatever style works
for the development team. A couple of common ways to organize your files are by fea-
ture and by functionality.

 Grouping similar files by feature is somewhat akin to organizing code in a com-
piled language, such as Java, into packages. It’s clean, discourages the cross-referenc-
ing of features, and visually segments files related to a particular feature within the
project’s file structure. The following listing illustrates how the client code for an
application might be arranged using this style.
Licensed to Mark Watson <nordickan@gmail.com>

Featur
the applica

beco
second

fo

Imag

Top-l
folde
HTML
JS con
16 CHAPTER 1 What is a single-page application?

|-- app
| |-- foo
| | |-- modules
| | | |-- someModule.js
| | |-- views
| | | |-- someView.html
| |-- bar
| | |-- modules
| | | |-- someModule.js
| | |-- views
| | | |-- someView.html
|-- common
|-- css
|-- images
|-- thirdParty
|-- app.js
|-- index.html
|-- main.js

A modified version of the by feature directory structure was proposed in the AngularJS
style guide.2 It favors a simplified version of listing 1.2, which eliminates the named
functionality folders under each feature. The blog entry is a good read and has several
variations based on the size and complexity of the application; the gist of the structure
is specified in the following listing. In this version, boundaries are removed from the
various file types within a feature. The style guide argues that this simpler version still
groups things by feature but is more readable and creates a more standardized struc-
ture for AngularJS tools.

|-- app
| |-- components
| | |-- foo
| | | |-- someModule.js
| | | |-- someDirective.js
| | | |-- someView.html

Alternatively, you and your development team might elect to organize the project by
functionality (see listing 1.4). This is perfectly acceptable as well. Most SPA libraries
and frameworks aren’t that opinionated when it comes to directory structure. The
choices come down to preference. If you do choose to organize your directory by
functionality, it’s still a good idea to include the name of the feature as a subfolder
under the functionality. Otherwise, under each functionality folder, you’ll end up

Listing 1.2 Sample directory structure (by feature)

2 http://blog.angularjs.org/2014/02/an-angularjs-style-guide-and-best.html or http://angularjs.blogspot.co
.uk/2014/02/an-angularjs-style-guide-and-best.html

Listing 1.3 Simplified “by feature” directory structure

Top-level folder for
HTML and JS contentes of

tion
me a
-tier
lder

Modules for each
feature contain JS code

Views for each feature
contain HTML fragments

Can be used for
application-wide JS
modules, such as utilities

Typical folder for style sheets
e files

JS files not created in-house, such
as the jQuery library and the MV*
framework you decide to use

evel
r for
 and
tent

Second-tier “components”
directory to group features

Feature-related
files grouped under
feature folder
Licensed to Mark Watson <nordickan@gmail.com>

http://blog.angularjs.org/2014/02/an-angularjs-style-guide-and-best.html
http://angularjs.blogspot.co.uk/2014/02/an-angularjs-style-guide-and-best.html
http://angularjs.blogspot.co.uk/2014/02/an-angularjs-style-guide-and-best.html

17Ingredients of a well-designed SPA

Module
each fea

con
JS c
having many unrelated files together. That might be all right for smaller applications,
but for large applications, this leads to a sort of “junk drawer” effect.

|-- app
| |-- modules
| | | -- foo
| | | |-- someModule.js
| | | -- bar
| | | |-- someModule.js
| |-- views
| | | -- foo
| | | |-- someView.html
| | | -- bar
| | | |-- someView.html

The preceding two listings are pretty basic, to give you the idea. The size of the appli-
cation, architecture choices, and personal preferences also influence the types of fold-
ers used and their names. The term modules might be labeled js or scripts. Instead of
views, you might choose templates. Even the type of framework you incorporate might
influence the way you choose to create your directory structure. If you’re creating an
AngularJS project, for example, you might also have other folders such as controllers,
directives, and services.

 However you choose to stack it, having an agreed-upon file structure and sticking to
that organizational model will greatly enhance your chances for a successful project.

1.5.2 Creating a maintainable, loosely coupled UI

Having clean, organized JavaScript code is a step in the right direction for building
scalable, maintainable single-page applications. Layering the code so that the Java-
Script and HTML can be as loosely coupled as possible is another tremendous step.
This approach still allows HTML and JavaScript to interact but removes the need for
direct references in the code.

 How are these separate layers achieved? Enter MV* patterns. Patterns to separate
data, logic, and the UI’s view have been around for years. Some of the most notable
ones are Model-View-Controller (MVC), Model-View-Presenter (MVP), and Model-
View-ViewModel (MVVM). In recent years, these patterns have begun appearing in the
form of JavaScript libraries and frameworks to help apply these same concepts to the
front end of web applications. The basic idea is that a framework or library, outside
your own logic, manages the relationship between the JavaScript and the HTML. The
MV* libraries and frameworks allow you to design the UI such that domain data (the
model) and the resulting HTML “page” the user interacts with (the view) can commu-
nicate but are maintained separately in code. The last component of the MV* pattern,
the controller or ViewModel or presenter, acts as the orchestrator of all this.

Listing 1.4 Sample directory structure (by functionality)

Top-level folder for
HTML and JS contents for

ture
tain
ode

All modules together,
categorized by feature

All views together,
categorized by feature
Licensed to Mark Watson <nordickan@gmail.com>

18 CHAPTER 1 What is a single-page application?
Keeping the view, logic, and data separated, as in figure 1.12, is an effective tool in the
design of a single-page application.

 Achieving this level of separation in your SPA has the following advantages:

■ Designers and developers can more effectively collaborate. When the view is
void of logic, each resource can work in parallel toward the same goal without
stepping on each other’s toes.

■ Separate view and logic layers can also help developers create cleaner unit tests,
because they have to worry about only the nonvisual aspect of a feature.

■ Separate layers help with maintenance and deployments. Isolated code can
more easily be changed without affecting other parts of the application.

It’s OK if this facet of SPA development still seems a little murky at this point. This is
one of the harder concepts to grasp. Don’t worry, though. Chapter 2 covers the MV*
patterns thoroughly.

1.5.3 Using JavaScript modules

Having an elegant way of allowing all your JavaScript code to coexist harmoniously in
the same browser page is a necessity in an SPA. You can achieve this by placing the func-
tionality of your application into modules. Modules are a way to group together distinct
pieces of functionality, hiding some parts while exposing others. In the ECMAScript 6
version of JavaScript, modules will be supported natively. Meanwhile, various patterns,
such as the module pattern, have emerged that you can use as a fallback.

 In a traditional web application, whenever the page is reloaded, it’s like getting a
clean slate. All the previous JavaScript objects that were created get wiped away, and
objects for the new page are created. This not only frees memory for the new page but
also ensures that the names of a page’s functions and variables don’t have any chance
of conflicting with those of another page. This isn’t the case with a single-page applica-
tion. Having a single page means that you don’t wipe the slate clean every time the
user requests a new view. Modules help you remedy this dilemma.

 The module limits the scope of your code. Variables and functions defined within
each module have a scope that’s local to its containing structure (see figure 1.13).

MV* library/framework

Views DataPresentation logic
Figure 1.12 Keeping the
presentation layers
segregated based on their
purpose allows designers
and developers to work in
parallel. It also allows
developers to test,
maintain, and deploy code
more effectively.
Licensed to Mark Watson <nordickan@gmail.com>

19Ingredients of a well-designed SPA
The module pattern, combined with other techniques to manage modules and their
dependencies, gives programmers a practical way to design large, robust web applica-
tions with single-page architecture.

 This book covers the topic of modular programming with JavaScript quite exten-
sively. Chapter 3 provides an introduction. You’ll also explore the topic of script load-
ers, which help manage the modules and their dependencies. Throughout the entire
book, you’ll rely on the module pattern to help build your examples.

1.5.4 Performing SPA navigation

Chapter 4 provides an in-depth look at client-side routing. To give users the feeling
that they’re navigating somewhere, single-page applications normally incorporate the
idea of routing in their design: JavaScript code, either in the MV* framework or via a
third-party library, associates a URL-style path with functionality. The paths usually
look like relative URLs and serve as catalysts for arriving at a particular view as the user
navigates through the application. Routers can dynamically update the browser’s URL,
as well as allow users to use the Forward and Back buttons. This further promotes the
idea that a new destination is reached when part of the screen changes.

1.5.5 Creating view composition and layout

In a single-page application, the UI is constructed with views instead of new pages.
The creation of content regions and the placement of views within those regions
determine your application’s layout. Client-side routing is used to connect the dots.
All of these elements come together to impact both the application’s usability and its
aesthetic appeal.

 In chapter 5, you’ll look at how to approach view composition and layout in an
SPA, tackling both simple and complex designs.

Without modules With modules

All variables
and functions

Variables
and

functions Variables
and

functions

Variables
and

functions

Variables
and

functions

Variables
and

functions

Global
scope

Confined
scope

Figure 1.13 Using the module pattern limits the scope of variables and functions to the module itself.
This helps avoid many of the pitfalls associated with global scope in a single-page application.
Licensed to Mark Watson <nordickan@gmail.com>

20 CHAPTER 1 What is a single-page application?
1.5.6 Enabling module communication

Modules encapsulate our logic and provide individual units of work. Although this
helps decouple and privatize our code, we still need a way for modules to communi-
cate with each other. In chapter 6, you’ll learn the basic ways in which modules com-
municate. In doing so, you’ll also learn about a design pattern called pub/sub, which
allows one module to broadcast messages to other modules.

1.5.7 Communicating with the server

I began our definition of a single-page application by discussing the metamorphosis
that web pages have undergone since the introduction of the XMLHttpRequest API.
The collection of techniques, called AJAX, that revolve around this API is at the heart
of the SPA. The ability to asynchronously fetch data and repaint portions of the screen
is a staple of single-page architecture. After all, in an SPA we create the illusion for
users that, as they navigate, the screen is somehow changing smoothly and effortlessly.
So what would this feat of showmanship by the application be without the ability to
acquire data for our users?

 Chapter 7 focuses on using our MV* frameworks to make calls to our server. You’ll
see how these frameworks abstract away a lot of the boilerplate code used in making
requests and processing results. In doing so, you’ll learn about something called a
promise and a style of web service called a RESTful service.

1.5.8 Performing unit testing

An important but overlooked part of designing a successful single-page application is
testing your JavaScript code. We test our back-end code to smithereens. Unfortu-
nately, JavaScript unit tests aren’t always performed so religiously. Today, many good
unit-testing libraries are available. In chapter 8, you’ll get an introduction to basic
JavaScript unit testing with a framework called QUnit.

1.5.9 Using client-side automation

In chapter 9, you’ll learn about using client-side automation not only to create a build
process for your SPA but also to automate common development tasks.

1.6 Summary
Here’s a quick recap of what you’ve learned about SPAs so far:

■ SPAs are an approach to web development in which the entire application is
housed in a single page.

■ In an SPA, no full-page refreshes occur after the application loads. Instead, pre-
sentation logic is loaded up front and presented in terms of view swapping
within content regions.

■ SPAs communicate with the server asynchronously. Often the data format used
in this communication is JSON-formatted text.
Licensed to Mark Watson <nordickan@gmail.com>

21Summary
■ MV* frameworks provide the mechanism used by SPAs to marry data from our
server requests with the views the user sees and interacts with. There are alter-
natives to MV* not covered in the book, particularly when using technologies
such as React or Web Components.

■ Instead of relying on global variables and functions, the JavaScript code in an
SPA is organized using modules. Modules provide state and/or data encapsula-
tion. They also help code stay decoupled and more easily maintained.

■ Some of the benefits of an SPA include a desktop-like feel, a decoupled presen-
tation layer, faster and lighter payloads, less user wait time, and easier code
maintenance.
Licensed to Mark Watson <nordickan@gmail.com>

The role of
MV* frameworks
Probably one of the most difficult tasks a web developer faces is creating a code
base that can grow gracefully as the project grows. The larger and more compli-
cated a project becomes, the more difficult the task. Shaping a project’s code base
in a way that makes troubleshooting, maintenance, and enhancements easier, not
harder, is no small feat, though. This is true for even traditional web projects.

 In an SPA, keeping your code segregated based on its functionality is more than
just a good practice. It’s critical to being able to successfully implement an applica-
tion as a single page. The key to this is creating a separation of concerns within
your application. Having a separation of concerns within your code base means
that you’re making a concerted effort to separate the various aspects of the applica-
tion’s code based on the responsibility it has.

This chapter covers
■ An overview of UI design patterns
■ An introduction to MV* in the browser
■ Exposure to core MV* concepts
■ Benefits of MV* libraries/frameworks
■ A list of considerations when choosing a framework
22

Licensed to Mark Watson <nordickan@gmail.com>

23

We can break the overall SPA into many application layers, on the server side as well as
in the client. Within the browser space, we can begin our quest for creating a separa-
tion of concerns in a fundamental way by first remembering the roles of our three pri-
mary languages: HTML, CSS, and JavaScript:

■ HTML—This is the scaffolding of your application. This code is primarily con-
cerned with the elements that provide placeholders for content, give the UI its
structure, and offer controls the user can interact with.

■ CSS—Style sheets describe the design of the UI, giving it its look and formatting.
■ JavaScript—In a general sense, the code in this layer represents the application’s

presentation logic. This layer is used to give a web application its dynamic
nature, providing behavior and programmatic control over the other two layers.

We’ve all worked with these three languages and understand the role of each. Even so,
because these three languages can easily be mixed together, your code can quickly
turn into spaghetti (see figure 2.1). This can make your project extremely challenging
to manage.

 It’s possible, however, to produce code written in a decoupled manner but still
achieve the same level of interactivity between each layer. Each part of your code can
be compartmentalized based on the purpose it serves.

 Additionally, this compartmentalization can be extended to encompass the applica-
tion’s data versus its presentation to the user. Data and events can be assigned to your
UI via mapping, instead of direct assignment in your business logic. The UI and the data
can both be observed for changes, allowing them to stay in sync and giving your logic
a means to react appropriately. So not only can the code itself be segregated based on
its responsibility, but your UI’s presentation and the data it represents can be disjoined.
This achieves yet another level of separation in your application (see figure 2.2).

Figure 2.1 Indiscriminately interweaving JavaScript, HTML, and CSS makes your project more difficult to manage
as it grows.

Inline style Embedded script

<button style="background-color: #ccc;" onClick="if(formValid && !formChanged){showConfirmation();}">
 Confirm
</button>

Data Presentation
How the user
sees and interacts
with the data

What the
data is

CSS

HTML

JavaScript

Figure 2.2 The data of your application can be separated from its representation in the UI.
Licensed to Mark Watson <nordickan@gmail.com>

24 CHAPTER 2 The role of MV* frameworks
Although it’s entirely possible for you to create a homemade solution to manage all
these layers of separation, it’s probably not where you want to spend your develop-
ment time. Thankfully, though, a myriad of libraries and frameworks are ideal for just
such a task. If used in your application, they can play a key role in creating a successful
separation of concerns by externally managing the relationship between your logic,
data, and the UI. In varying degrees, they also provide many other features to assist
you in building your SPA.

 This chapter defines JavaScript MV*, briefly discusses its evolution from traditional
UI design patterns, and discusses what these frameworks do for us. The chapter also
breaks down some common MV* concepts, using three MV* frameworks to illustrate
different approaches to the same objective. As mentioned in chapter 1, not everything
is MV*. My focus in this book, however, is on the MV* style of frameworks.

 To further demonstrate how the same concepts are prevalent in MV*, even though
the approach may differ, you’ll create a small but reasonably realistic online directory
project with each framework. I’ll abbreviate the code samples in the text so the con-
cepts don’t get lost in the code. (The code for all three versions is available in appen-
dix A, with a complete code walk-through. And the code for each is available for
download online.)

 The end of the chapter includes a list of things to consider when selecting a frame-
work that’s right for you. Because all MV* implementations are different approaches
to the same problem, you’ll ultimately have to decide which one is the right fit for you.
There’s no clear right or wrong answer that fits all situations. Once you understand
the role of MV* and its underlying patterns, though, you’ll be able to select one that
best fits your environment. After all, no one knows your situation better than you do.
You know the factors that affect your project, your end users, your budget, your time-
lines, and your development resources.

2.1 What is MV*?
The term MV* represents a family of browser-based frameworks that provide support
for achieving a separation of concerns in your application’s code base, as discussed in
the introduction. These frameworks have their roots in traditional UI design patterns,
but the degree to which they follow a pattern varies from implementation to imple-
mentation.

 In MV*, the M stands for model and the V stands for view. Section 2.2 covers them in
depth, but for this discussion let’s briefly summarize each term:

■ Model—The model typically contains data, business logic, and validation logic.
Conceptually, it might represent something like a customer or a payment. The
model is never concerned with how data is presented.

■ View—The view is what the user sees and interacts with. It’s a visual representa-
tion of the model’s data. It can be a simple structure that relies on other parts
of the framework for updates and responses to user interactions or it can con-
tain logic, again depending on the MV* implementation.
Licensed to Mark Watson <nordickan@gmail.com>

25What is MV*?
As you’ll see in section 2.1.1, traditional UI design patterns include a third compo-
nent, which helps manage the relationship between the model and the view, as well
their relationship with the application’s user. Although most modern browser-based
UI design frameworks based on MVC/MVVM have some notion of a model and a view,
it’s the third component that varies, in both name and the duty it performs. There-
fore, people have generally settled on the wildcard (*) to represent whatever the third
component might be.

 Section 2.1.2 presents a lot more about MV* in the browser. First, though, let’s find
out a little about traditional UI design patterns, which form the roots of MV*. Knowing
how we got here will help you get a better idea of why things work the way they do.

2.1.1 Traditional UI design patterns

Using architectural patterns to separate data, logic, and the resulting representation
of the output is a notion that has been around for a long, long time. Central to these
design patterns is the idea that an application’s code is easier to design, develop, and
maintain if it’s segmented based on the type of responsibility each layer has.

 This section details the three pat-
terns that have had the most influence
on client-side approaches: Model-
View-Controller (MVC), Model-View-
Presenter (MVP), and Model-View-
ViewModel (MVVM). After a proper
introduction to these design patterns,
you’ll see in section 2.1.2 how they
relate to the MV* frameworks we see in
the browser today.

MODEL-VIEW-CONTROLLER

Model-View-Controller (MVC) is one of
the oldest patterns to try to separate
data, logic, and presentation. MVC
was proposed by Trygve Reenskaug
and later implemented in the Small-
talk programming language in the
1970s.
 MVC was instrumental in the design
of graphical user interfaces then and
still is today. Since its inception, it and
its variants have become common
design patterns for all types of soft-
ware development. The MVC pattern
includes the model, the view, and a
controller (see figure 2.3):

Application

View

ModelController

Data

The controller processes user
input and sends commands for
the model to update its state.

The model notifies the
view of state changes.

The view observes the model
and gets new data when the
model's state changes.

Figure 2.3 The MVC design pattern has been used for many
years in the development of graphical user interfaces.
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

26 CHAPTER 2 The role of MV* frameworks
■ Controller—The controller is the entry point for the application, receiving sig-
nals from controls in the UI. It also contains the logic that processes the user
input and sends commands to the model to update its state based on the input
received.

The interactions with the controller set off a chain of events that eventually lead to an
update of the view. The view is aware of the model in this pattern and is updated when
changes are observed.

MODEL-VIEW-PRESENTER

In 1996, a subsidiary of IBM called Taligent came up with a variation of MVC called
Model-View-Presenter, or MVP. The idea behind this pattern was to further decouple the
model from the other two components of MVC. Under MVP, a controller-like object
and the view would jointly represent the user interface, or presentation. The model
would continue to represent data management. As noted in figure 2.4, in MVP, there’s
no controller acting as a gatekeeper. Each view is backed by a component called a
presenter:

■ Presenter—The presenter contains the view’s presentation logic. The view
merely responds to user interactions by delegating responsibility to the pre-
senter. The presenter has direct access to the model for any necessary changes
and propagates data changes back to the view. In this way, it acts as a “middle-
man” between the model and the view.

Application

View
Presenter

Direct access

Notifications

View
interface

Model

Data

The view is the main entry
point for the interaction.
It delegates actions to
the presenter.

View updates
are done via a
view interface.

The presenter acts as a middleman
to completely decouple the view
and the model.

Figure 2.4 MVP is a variation of MVC. With this pattern, the view is the entry point, but its logic is
in the presenter.
Licensed to Mark Watson <nordickan@gmail.com>

27What is MV*?
The presenter takes on the task of keeping the view and model updated. Having an
object in the middle allows the view and model to have more-focused responsibilities.

MODEL-VIEW-VIEWMODEL

Model-View-ViewModel (MVVM) was proposed by John Gossman in 2005 as a way to sim-
plify and standardize the process of creating user interfaces for use with Microsoft’s
Windows Presentation Foundation (WPF). It’s another design pattern that emerged to
try to organize the code associated with the UI into something sensible and manage-
able, while still keeping the various components of the process separate.

 As in MVP, the view itself is the point of entry. Also like MVP, this model has an
object that sits between the model and the view (see figure 2.5). The third component
in this pattern is called the ViewModel:

■ ViewModel—The ViewModel is a model or representation of the view in code, in
addition to being the middleman between the model and the view. Anything
needed to define and manage the view is contained within the ViewModel. This
includes data properties as well as presentation logic. Each data point in the
model that needs to be reflected in the view is mapped to a matching property
in the ViewModel. Like a presenter in MVP, each view is backed by a ViewModel.
It’s aware of changes in both the view and the model and keeps the two in sync.

Now that you know a little about traditional UI design patterns, you can better under-
stand browser-side MV* approaches. Let’s fast-forward, then, and talk about the MV*
we see in the browser.

2.1.2 MV* and the browser environment

Just like application code running on the server or natively as a desktop application,
code running in the browser can benefit from using good architectural design pat-
terns. In recent years, many frameworks have cropped up, aiming to fulfill this need.

Application

View ViewModel

Model changes

Model

Data

The ViewModel provides properties
and logic that model the view. It also
keeps the model and view in sync.

UI changes

Figure 2.5 In MVVM, the ViewModel is
aware of changes in both the model and
the view and keeps the two in sync.
Licensed to Mark Watson <nordickan@gmail.com>

28 CHAPTER 2 The role of MV* frameworks
Most are based on MVC, MVP, or MVVM to some degree. The browser is a different sort
of environment, though, and we’re dealing with three languages at once (JavaScript,
HTML, and CSS). Therefore, it’s difficult to perfectly match a browser-side MV* frame-
work with a design pattern. Trying to pigeonhole them into one category or another
is, in most cases, a fruitless undertaking. Design patterns should be malleable strate-
gies, not inflexible directives.

 One of the reasons why the term MV* sprang up in the first place is that it’s often
hard to nail down what the third concept in the framework is. The term represents
sort of a compromise, to cease the endless disputes about whether particular frame-
works are more this pattern or more that pattern.

 The remnants of the traditional patterns are there but are loosely interpreted.
Each one has some form of the data model, whether it’s in the form of a POJO (plain
old JavaScript object) or some model structure dictated by the implementation. Each
also has some notion of a view. The third cog in the machine might be a little more
elusive, though. The framework might employ an explicit controller, presenter, or
ViewModel. But it might have some sort of hybrid or not have the third part at all!

 Derick Bailey, creator of Marionette.js for Backbone.js, put things rather elo-
quently in one of his online posts, titled “Backbone.js Is Not an MVC Framework”:

Ultimately, trying to cram Backbone into a pattern language that doesn’t fit is a bad
idea. We end up in useless arguments and overblown, wordy blog posts like this one,
because no one can seem to agree on which cookie-cutter pattern name something fits
into. Backbone, in my opinion, is not MVC. It’s also not MVP, nor is it MVVM (like
Knockout.js) or any other specific, well-known name. It takes bits and pieces from differ-
ent flavors of the MV* family and it creates a very flexible library of tools that we can use
to create amazing websites. So, I say we toss MVC/MVP/MVVM out the window and just
call it part of the MV* family.

Source: http://lostechies.com/derickbailey/2011/12/23/
backbone-js-is-not-an-mvc-framework/

Many other people share this same viewpoint about the fruitlessness of trying to one-
for-one match today’s MV* with a traditional design pattern. The idea of the useful-
ness of the framework taking priority over its categorization gained even more steam
when the AngularJS team weighed in with a similar conclusion about their framework.
Igor Minar (from the AngularJS team) famously blogged that developers will argue
endlessly about how to categorize a particular MV* framework. He went on to state
that AngularJS started out more like MVC, but over time it has become a little more
like MVVM. In truth, it’s a little like both. In this same blog entry, he proposes the term
MVW, which has since stuck:

I’d rather see developers build kick-ass apps that are well-designed and follow separation
of concerns than see them waste time arguing about MV* nonsense. And for this reason,
I hereby declare AngularJS to be MVW framework—Model-View-Whatever. Where What-
ever stands for whatever works for you.

Source: https://plus.google.com/+IgorMinar/posts/DRUAkZmXjNV
Licensed to Mark Watson <nordickan@gmail.com>

http://lostechies.com/derickbailey/2011/12/23/backbone-js-is-not-an-mvc-framework/
http://lostechies.com/derickbailey/2011/12/23/backbone-js-is-not-an-mvc-framework/
https://plus.google.com/+IgorMinar/posts/DRUAkZmXjNV

29Common MV* concepts
Knowing that most MV* implementations only loosely base their design on the origi-
nal pattern helps us remember that it’s not so important to try to brand the frame-
work as one pattern or another.

2.2 Common MV* concepts
Now that you know what MV* is, let’s go over a few common concepts that are fre-
quently found, no matter the implementation. In the examples for each concept,
you’ll quickly begin to see that even though the syntax and approach may vary
between frameworks, the ideas are the same. Before we begin, let’s take a moment to
review at a high level the concepts covered in this section:

■ Models—Models represent the data of our application. They contain properties
and possibly logic to access and manage the data, including validation. The
model often contains business logic as well.

■ Views—Views are what the user sees and interacts with and are where models
are visually represented. In some MV* implementations, views may also contain
presentation logic.

■ Templates—Templates are the reusable building blocks for views when dynamic
content is needed. They contain placeholders for data, as well as other instruc-
tions for how content in the template should be rendered. One or more tem-
plates will be used to create a view in an SPA.

■ Binding—This term describes the process of associating the data from a model
with an element in a template. Some MV* implementations also provide other
types of binding, such as bindings for events and CSS styles.

Figure 2.6 gives a big-picture view of how these concepts relate to each other in an SPA.
These concepts are probably the least common denominator in building SPAs. Other
features, such as routing (covered in chapter 4), are also common (and necessary)
but may not be provided universally. Not to worry, though. I cover many of the other
concepts later in the book. We just need a sound foundation to begin with.

Model

(Binding)

+ =

[
 {"firstName":"Mary"},
 {"firstName":"Ted"},
 {"firstName":"Alice"}
]

Template View

Hello <%= firstName %>,
how are you?

Hello Mary, how
are you?

Hello Ted, how
are you?

Hello Alice, how
are you?

Figure 2.6 Data from models are combined (bound) with reusable templates to create
views that make up the SPA’s UI.
Licensed to Mark Watson <nordickan@gmail.com>

30 CHAPTER 2 The role of MV* frameworks
2.2.1 Meet the frameworks

Because we’re using three frameworks for illustration in this section, some introduc-
tions are in order. Each represents a slightly different approach to these basic MV*
concepts. Seeing the different approaches, though, should give you a broader per-
spective ultimately. The three frameworks are as follows:

 Description: As mentioned before, Back-
bone.js doesn’t perfectly fit a traditional design
pattern but could be described as being some-
where between MVC and MVP. Backbone.js is
code driven. Models and views are created pro-
grammatically, using JavaScript code in this
framework, by extending Backbone.js objects. By extending core objects, you auto-
matically inherit a lot of built-in functionality. The framework also provides other
out-of-the-box features to make routine tasks easier. Backbone.js doesn’t provide
everything you’ll need in your SPA, though, so you must fill certain gaps using other
libraries or frameworks.

 Description: Knockout may not perfectly fit
with the original MVVM definition, but it’s fairly
close. In this framework, the model is any
source of data, not an explicit object structure
prescribed by the framework. Views and tem-
plates are created with plain HTML. The View-
Models that map model data to UI elements
and provide views with behavior are created programmatically using JavaScript code,
but most everything else is done declaratively by adding custom attributes to the HTML.
Knockout is mainly concerned with making the binding process clean and easy.
Though this makes the framework small and superbly focused, it leaves you to look to
other frameworks and libraries for all other SPA requirements.

 Description: AngularJS humbly describes
itself as the “Superheroic JavaScript MVW
Framework.” The creators of AngularJS
designed it to be a one-stop-shopping kind of
framework. Most, if not all, of your SPA needs
are covered by this framework. AngularJS mixes
and matches concepts that its creators liked
from traditional patterns, as well as from other popular frameworks, to come up with a
nicely balanced palette of out-of-the-box features. Part of your work in this framework
will be done programmatically via JavaScript code, and part will be done declaratively
using custom HTML attributes.

2.2.2 Meet our MV* project

To help illustrate our list of common concepts, you’ll create a simple online employee
directory. You’ll create it three ways, using each of the frameworks previously

URL: http://backbonejs.org

URL: http://knockoutjs.com

URL: https://angularjs.org
Licensed to Mark Watson <nordickan@gmail.com>

http://backbonejs.org
http://knockoutjs.com
https://angularjs.org

31Common MV* concepts
described. Later in the book, you’ll learn about more-advanced topics, such as routing
and server transactions. For now, you’ll stick to the basics for this project. Our exam-
ple, though somewhat contrived, still covers basic CRUD operations over a list. That
should be sufficiently challenging for an introduction.

 Let’s go over our objectives for this example:
■ Create a simple SPA to enter employee information.
■ Build an easy-to-use UI for entering each employee’s first name, last name, title,

email, and phone.
■ Keep track of each entry as part of a list, with the screen split between the entry

form on the left and the directory’s entry list on the right.
■ Have two buttons on the entry side of the SPA: one to add a new entry and one

to clear the form.
■ Have one button next to each entry to remove the entry from the list.
■ Have indicators next to each entry field to denote whether the field’s entry

requirement has been met. (Each indicator should update as the user types.)

Now that you’ve reviewed the objectives, take a look at the screenshot of the final
product (see figure 2.7). The application will look and behave the same for each MV*
framework used.

Indicators change from “Required” to
“Invalid” if the user enters invalid data.

Clicking the X button
deletes the entry.

Figure 2.7 Screen capture of the online directory. The user enters information in the form on
the left. Valid entries appear in a list on the right.
Licensed to Mark Watson <nordickan@gmail.com>

32 CHAPTER 2 The role of MV* frameworks
Throughout our discussion of MV* concepts, I’ll refer to this example. I’ll also talk
about how different philosophies by the framework creators affect the type of code
you’ll create. Although only certain parts of the code will be used for illustration, all of
the code for each MV* version is in appendix A and available for download.

2.2.3 Models

You know from our discussion of patterns that models often contain business logic
and validation. They also represent the data in your application. The data they con-
tain shouldn’t be a motley crew of unrelated information, though. They’re called mod-
els because they model a real-life entity that’s important to the application’s logic.

 For example, if you were building an online reservation system for a hotel, your
models might include the hotel, a room, an agent, a customer, the reservation, ameni-
ties, notes, invoices, receipts, and payments. What about a web-based application for
teachers? You’d need to have data representing the school, its teachers, the students,
courses, and grades, at a minimum. Each model in the application would represent a
real-world object. Consequently, the larger and more complex the system, the more
types of models you’ll have.

 Let’s see what a model’s data would look like for our online employee directory.
Remember that models mirror things in the real world. They contain not only data
but behavior as well. In this case, you’re going to model a directory listing. I’ll keep it
extremely simple to make sure the concept doesn’t get buried in too much code.
Here’s the information we’re going to keep track of in each model:

■ First name
■ Last name
■ Title
■ Email address
■ Phone number

The employee list inside the directory would be a collection (array) of these models.
Figure 2.8 illustrates what this would look like from a conceptual standpoint.

Employee record
(model)

validate()

First name
Last name
Title
Phone
Email

Employee record
(model)

validate()

First name
Last name
Title
Phone
Email

Employee record
(model)

validate()

First name
Last name
Title
Phone
Email

Data

Directory

Validation logic

Employee list

Figure 2.8 The application’s data in our online directory project is just an array of employee
models. Each model is an object that contains the employee information we’ll see onscreen.
Licensed to Mark Watson <nordickan@gmail.com>

33Common MV* concepts
To help you visualize what the models will look like when they’re added to the collec-
tion and rendered in the view, you can look at the screenshot of the employee directory
application again (see figure 2.9). Remember, each model in the list is an object in an
array. In this version of the screenshot, I’ve superimposed a snapshot of the data inside
each model that has been added to our list. This will help you see the models in action.

 Now that you have a mental picture of how the employee models will be used, let’s
talk about how a model is defined in each type of framework. How you create a model
in an MV* application varies, depending on the framework you’re using. As I men-
tioned, the framework might not be an exact match for one of the traditional design
patterns, but the implementation will certainly be influenced by the pattern.

IMPLIED MODELS

In some MV* implementations, the model is just the data itself, not an explicit struc-
ture prescribed by the framework. This data can be from any source, including POJOs
and HTML form controls in the UI itself. There are no restrictions on what you can use

[{
 firstName : "Ana",
 lastName : "Perez",
 title : "Sr. Director, HR",
 phone : "555-555-1234",
 email : "Ana.Perez@someco.com"
},{
 firstName : "Taylor",
 lastName : "Martin",
 title : "Manager, HR",
 phone : "555-555-1231",
 email : "Taylor.Martin@someco.com"
}]

The list is
an array of
model data.

Model 1

Model 2

Figure 2.9 Screen capture of the online directory. Here you see that two instances of the employee
model have been added to the list.
Licensed to Mark Watson <nordickan@gmail.com>

34 CHAPTER 2 The role of MV* frameworks
for the source data when the model is implicit. This is the case for both Knockout and
AngularJS.

 For example, in our fictitious employee directory, we need the data for the
employee model to come from the entry form the user fills out. So instead of creating
a JavaScript object or getting JSON from the server, we need to capture data directly
from the INPUT fields of our HTML form when creating each entry in the directory’s list.

 AngularJS provides an easy shortcut for this. If you need your model data to come
from an INPUT field, you can add a custom attribute called ng-model to each field (see
listing 2.1). The attribute declares that model data is sourced from the HTML form
element where the attribute is placed. The attribute magically establishes the form-
Entry model if it doesn’t already exist and gives it a property called firstName. Then
it ties formEntry.firstName to this INPUT field.

<input id="firstName" name="firstName" type="text"
ng-model="formEntry.firstName"
required
placeholder="First Name"/>

Once established, the model is readily available in your JavaScript code. One of the
many benefits of using an MV* framework is keeping the complex, boilerplate code
that marries the data and UI external to our application’s logic. This one attribute is a
great example.

 In Knockout, the model is again implied, not explicitly declared (see listing 2.2).
In this framework, you add custom attributes to each INPUT field just as we did in the
AngularJS version. This time, the attribute is called data-bind.

 With Knockout (in true MVVM fashion), the attribute ties the INPUT field with a
matching property in the ViewModel. In turn, our JavaScript code gains access to the
field through the ViewModel.

<input id="firstName" name="firstName" type="text"
data-bind="hasFocus: isFocused,
value: entry.firstName,
valueUpdate: 'afterkeydown'"
placeholder="First Name" />

With both AngularJS and Knockout, your model could have been any data source.
Because you’re working from an entry form, that’s where you needed your model’s
data to come from. In both cases, no model object was explicitly defined. Instead,
each framework provided a custom attribute you could add to the HTML to establish
the entry form as the source of the model’s data. Now let’s see how to create a model
in Backbone.js, where models are explicitly defined in code.

Listing 2.1 AngularJS model

Listing 2.2 Knockout model

ng-model is AngularJS’s
custom attribute

data-bind is Knockout’s
custom attribute

A matching property from
a ViewModel you’ll define in code
Licensed to Mark Watson <nordickan@gmail.com>

35Common MV* concepts
EXPLICIT MODELS

In MV* implementations where an explicitly declared model is required by the frame-
work, the model is created as a JavaScript object. Backbone.js is a prime example of
this. Backbone.js models can have logic in addition to data, such as validation, default
data, and custom functions. You also inherit a lot of functionality. Just by extending
the framework’s model to create your own, you automatically receive a wide variety of
base functionality without even writing code.

 The ability to immediately inherit a lot of functionality makes creating a model in
these types of frameworks powerful and flexible. For example, in Backbone.js you can
create a bare-bones model in a single line of code:

var EmployeeRecord = Backbone.Model.extend({});

To use the object, you create a new instance of it and call any functions it has available
out of the box. With this single declaration, your model right away has a variety of
built-in behaviors such as validation, functions to execute RESTful services, and much
more. See the online documentation for the full list (http://backbonejs.org).

 It’s equally as easy to assign properties to a Backbone.js model. To create a new
property called firstName and set its value to Emmit, you can either pass in {first-
Name : "Emmit"} to the object’s constructor or use the model’s built-in set method:

var employee = new EmployeeRecord({});
employee.set({firstName : "Emmit"});

The following listing illustrates the Backbone.js version of the employee model for
our online directory. The validation needed for the directory example makes the
source for the model quite verbose.

var validators = {
 "*": [{
 expr: /\S/,
 message: "Required"
 }],
 "phone": [{
 expr: /^[0-9]{3}-[0-9]{3}-[0-9]{4}$/,
 message: "Invalid"
 }],
 "email": [{
 expr: /^[a-z0-9!#$%&'*+\/=?^_`{|}~-]+(?:\.
 [a-z0-9!#$%&'*+\/=?^_`{|}~-]+)*@
 (?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9]
 (?:[a-z0-9-]*[a-z0-9])?$/i,
 message: "Invalid"
 }]
};

function validateField(value, key) {
 var rules = validators["*"].concat(validators[key] || []);

Listing 2.3 Backbone.js model

Define validation for data being
set on the model’s properties

Keep track of
specific errors
Licensed to Mark Watson <nordickan@gmail.com>

http://backbonejs.org

36 CHAPTER 2 The role of MV* frameworks
 var broken =
 _.find(rules,function(rule) {return !rule.expr.test(value);});

 return broken ? {"attr":key,"error":broken.message} : null;
}

var EmployeeRecord = Backbone.Model.extend({
 validate: function(attrs) {
 var validated = _.mapObject(attrs, validateField);
 var attrsInError = _.compact(_.values(validated));
 return attrsInError.length ? attrsInError : null;
 },
 sync: function(method, model, options) {
 options.success();
 }
});

There seems to be a lot more going on than there is. We inherit the power of the
Backbone.js model just by extending its base object. But the framework leaves it up to
you as to how you want to validate the data. It gives you a couple of hooks with
validate(attrs, options), and you can fill in the rest however you want.

2.2.4 Bindings

The term binding is another concept you should understand if you plan on using an
MV* framework. This term is used frequently when talking about UI development. In
plain English, it means to tie or connect two things together. In UI development,
whether we’re talking about desktop programming with a language like .NET or web
development with MV*, we mean linking a UI element in the view (such as a user input
control) to something in our code (for example, a model’s data).

 It doesn’t have to be just data, though. Different libraries and frameworks offer dif-
ferent types of bindings. Styles, attributes, and events such as click are just a sampling
of what can be bound to the UI. The binding types that are available vary, depending
on the framework. You’ll look at the code for a few approaches in this section, just to
illustrate.

 How exactly do we declare a binding in our application? MV* frameworks make
binding something in our code to an element in the UI simple. Understanding how to
declare a binding starts with getting to know the syntax.

BINDING SYNTAX

Binding syntax comes in two flavors:

■ Expressions, which are special characters that wrap/delimit the bound item
■ HTML attributes (called directives in AngularJS or bindings in Knockout)

With both types, the binding syntax is freely mixed with the HTML of the template.
Table 2.1 lists a few examples of the binding syntax used by some popular libraries/
frameworks. This is by no means an exhaustive list, but it should give you a general idea.

Create the model
Licensed to Mark Watson <nordickan@gmail.com>

37Common MV* concepts
 Keep in mind, also, that the table is using simple text bindings to illustrate syntax
styles. As noted previously, things other than data, such as events and CSS styles, may
also be supported. See the documentation for each library/framework to see the com-
plete list of bindings supported and additional usage instructions.

After you look at the documentation of the framework or library to get a feel for the
syntax, the next thing to understand about binding is the directional flow of data in
the binding.

BINDING DIRECTION

Binding something in our code to a visual element in the view can be bidirectional,
single-directional, or a one-time binding. The type of binding relationship is also
established via the MV* framework.

TWO-WAY BINDING

In bidirectional, or two-way, binding, after the binding link is established, changes on
either end cause updates on the opposite side. This keeps the two sides in sync. In a
web application, two-way binding is associated with UI controls, like those in a form,
that support user input.

 Knockout is a great library to illustrate the concept of two-way binding. Binding is,
after all, this library’s main purpose. As you saw previously, creating a binding is as easy
as typing a custom attribute called data-bind right in the HTML. The data-bind attri-
bute tells Knockout that something in the UI is going to be bound to a property in a
ViewModel. In the following example, we’re binding the value of an INPUT control to a
ViewModel property called firstName:

<input data-bind="value: firstName" />

Table 2.1 Binding is in the form of either an attribute or an expression. AngularJS supports both styles
 to some extent.

Framework/library Type Example

Knockout
http://knockout.com

Attribute data-bind="text: firstName"

AngularJS (type 1)
https://angularjs.org

Attribute ng-bind="firstName"

AngularJS (type 2) Expression {{ firstName }}

Mustache
http://mustache.github.io

Expression {{ firstName }}

Handlebars
http://handlebarsjs.com

Expression {{ firstName }}

Underscore.js (default)
http://underscorejs.org

Expression <%= firstName %>
Licensed to Mark Watson <nordickan@gmail.com>

38 CHAPTER 2 The role of MV* frameworks
For the other half of the two-way binding relationship, you tell Knockout you want the
property to be observed for any changes by wrapping its data in a Knockout observ-
able object. (Remember observables from the Observer pattern?)

var myViewModelObject = {
 firstName : ko.observable("Emmit")
};

Because of the two-way binding established by this small amount of code, these two
items will stay in sync automatically.

 Binding is just as easy, or more so, with AngularJS. You already saw AngularJS’s two-
way binding in action during our discussion of models. You add the attribute ng-
model to the HTML of the INPUT tag:

<input ng-model="firstName" />

On the JavaScript code side, you have a $scope object instead of a ViewModel. Scopes
are similar in that they sit between the view and our JavaScript code and give us access
to the model.

 One nice thing about this framework is that AngularJS’s magic automates a lot of
the two-way setup. First, the $scope object automatically monitors models for changes.
Second, you don’t even have to create the $scope object; AngularJS will hand it to you,
if you ask for it. Then, in your code, you can refer to the property via the $scope
object like this:

$scope.firstName

That’s it. Now both the INPUT field and the property are bidirectionally bound.
Changes on either side affect the other. Pretty easy, huh?

 You’ve seen the approaches to two-way binding from two different frameworks.
Even so, the concept remains the same in both. Now let’s take a quick look at binding
in a single direction.

ONE-WAY BINDING

When binding is single-directional, or one-way, changes in the state of the source
affect the target but not the other way around. This type of binding is normally associ-
ated with HTML elements that don’t require any input from the user, such as a DIV or
SPAN tag. With these types of elements, you’re interested in its text, not its value. You
still access the data on the JavaScript side in the same manner, but in the template you
choose the attribute specifically for one-way text binding.

 With Knockout, you change the word value to text:

In AngularJS, the attribute itself changes from ng-model to ng-bind:

Once again, you can see that the binding concept remains the same even though
you’re looking at different MV* frameworks.
Licensed to Mark Watson <nordickan@gmail.com>

39Common MV* concepts
TIP Knockout provides an additional way to make even bindings for user
input one-way, in case you need that behavior. You just remove the observable
“wrapper” from the ViewModel property like this: firstName : "Emmit".

You might be wondering at this point, why bother with the one-way types? Why not use
two-way binding always? Well, usually something as magical as automatic, two-way bind-
ing comes at a cost. Two-way binding has slightly more overhead. No need to panic and
avoid it, though. For most views, this overhead is negligible. But if you have a ton of
bindings throughout your application, you should use any means to save on overhead.

 If your view receives input from the user, and you need the data and view to stay
constantly in sync, use two-way binding. When you have read-only UI elements, use
one-way binding. One-way will keep the view updated when the model changes but
doesn’t bother with trying to monitor the view side, because the element is read-only.

ONE-TIME BINDING

One-time binding is a type of one-way binding that happens only once. Nothing is
automatically observed for changes. No subsequent updates occur if the source
changes or the target changes.

 With one-time binding, after the template and the data are combined and ren-
dered as the view, the process is done. If new changes need to be applied to the view,
the entire process starts over. The previous view is destroyed, and the new data is com-
bined with the same template to generate the view anew.

 I’ve saved Backbone.js for this section. The typical approach for rendering tem-
plates when using Backbone.js is through one-time binding (though some Backbone-
compatible libraries and plugins offer the other two types). With AngularJS and
Knockout, after the bindings are established, they’re reused. In Backbone.js, the gen-
eral idea is that when new data is needed, the view is destroyed (with the bindings)
and re-created. I’ll talk more specifically about templates in the next section.

NOTE Backbone.js doesn’t have templating/binding capabilities built in but
instead lets you pick the outside library of your choice for the task. Its default
is the utility library Underscore.js.

To recap the types of bindings we discussed, consider table 2.2.

In the next section, you’ll see binding in action with template examples from our
online employee directory.

Table 2.2 Bindings can be two-way, one-way, or one-time.

Binding type Behavior

Two-way Bidirectional—keeps data and view constantly in sync.

One-way Single-directional, or one-way—changes in the state of the source affect
the target, but not the other way around.

One-time One-way—occurs only once at render time, from model to view.
Licensed to Mark Watson <nordickan@gmail.com>

40 CHAPTER 2 The role of MV* frameworks
2.2.5 Templates

A template is a section of HTML that acts as a pattern for how our view is rendered. This
pattern can additionally contain various types of bindings and other instructions that
dictate how the template and its model data get processed. A template is also reusable,
like a stencil.

 One or more templates are used to create a view, with complex views often having
multiple rendered templates on the screen at the same time. The part of the MV*
framework, whether built in or via an outside library, that marries the template and
the model’s data is generally referred to as a template engine. Figure 2.10 illustrates the
marriage of data from the employee directory form (our model) and a template to
arrive at what the user sees onscreen.

 You should now be able to recognize bindings when you see them, so let’s take a
look at some real examples of templates and their bindings taken from our MV* proj-
ect. I’ve highlighted the bindings so you can easily see which part of the template is
the binding and which part is just the HTML.

WHAT TEMPLATES LOOK LIKE

One thing all templates have in common is that they represent some part of our view.
What this means for you as a developer is that, apart from the binding syntax, views

{
 firstName : "Ana",
 lastName : "Perez",
 title : "Sr. Director, HR",
 phone : "555-555-1234",
 email : "Ana.Perez@someco.com"
{

The template engine marries the
data and template to arrive at
what the user sees onscreen.

Data

<div class="entry">
 <%= lastName %>, <%= firstName %>
 <button type="button" class=”removeButton”> X
 </button>

 Title: <%= title %>

 Phone: <%= phone %>

 Email: <%= email %>
</div>

Template

Figure 2.10 The fully rendered template, created by a template engine
Licensed to Mark Watson <nordickan@gmail.com>

41Common MV* concepts

Calls a f
pas

entr
are just HTML. This also means that if you have a web designer on the team, views can
be constructed by the designer as well.

 The following listing shows our Knockout template. Notice that it has custom attri-
butes, but apart from that it’s normal HTML.

<li class="entry">
 <button type="button" class="remove-entry"
 data-bind="click: removeEntry">╳</button>

 ,

 Title:

 Phone:

 Email:

Do you remember from our discussion of binding syntax that with AngularJS we could
use either expressions or attributes? For the online directory project, we’re using
expressions just to demonstrate those (see the following listing). You can use ng-bind
if you prefer the attribute style.

<li class="entry" ng-repeat="entry in entries">

 <button type="button" class="remove-entry"
 ng-click="removeEntry(entry)">╳</button>

 {{entry.lastName}}, {{entry.firstName}}

 Title: {{entry.title}}

 Phone: {{entry.phone}}

 Email: {{entry.email}}

What’s neat about templates in Backbone.js is that you aren’t confined to a particular
template syntax, because there’s no built-in template library. Backbone.js allows you to
use the template engine of your choice. In our directory project, we’re using the
default, which is Underscore.js (see the following listing). Underscore.js has a default

Listing 2.4 Knockout template

Listing 2.5 AngularJS template

This click
binding

removes
the entry Data bindings link our form

fields to the ViewModel’s data

Stamps out this template
for every entry object
in the list of entriesunction,

sing the
current
y object
Licensed to Mark Watson <nordickan@gmail.com>

42 CHAPTER 2 The role of MV* frameworks

Tran
mod
a JS
delimiter of <%= %> for its expressions, but the delimiters can be anything you want
(including {{ }}).

<button type="button" class="remove-entry">╳</button>
<%= lastName %>, <%= firstName %>

Title: <%= title %>

Phone: <%= phone %>

Email: <%= email %>

These examples provide a good introduction to templates and the various binding
styles that are used. One thing we haven’t talked about yet, though, is how the process
gets triggered.

TEMPLATE RENDERING

In AngularJS, the rendering of a template happens automatically, as soon as the appli-
cation starts. AngularJS searches through the DOM for its custom attributes, including
those for binding templates.

 In other frameworks, this step isn’t difficult but may be a little more explicit.
Knockout, for example, requires a one-liner in your JavaScript code for each View-
Model to activate the bindings:

knockout.applyBindings(myViewModel, $("#someElement")[0])

Knockout has a special function you call, applyBindings, which renders the template
with the model data supplied by the ViewModel. The first parameter is the ViewModel
itself. The second is the place in the DOM you want Knockout to start looking for bind-
ings for the given ViewModel. The second parameter is optional, but for efficiency you
should use it in order to confine the binding process to a particular parent element.

TIP $("#someElement")[0] is the way in jQuery to access the underlying
DOM object referenced in its selector, because jQuery doesn’t know how
many elements will be a match for a given selector. You can also use the Java-
Script document.getElementById("someElement") method as the second
parameter.

In Backbone.js, rendering the template is a bit more of a manual process. The frame-
work provides template and render as hooks for the external template engine of your
choice. To render the template to the screen, you have to run it through the compile-
and-render process. You’ll see the view in its entirety in the next section, but for now
let’s focus on the rendering of the template, as shown in the following listing.

template : _.template(templateHTML),
render : function() {
 var modelAsJSON = this.model.toJSON();

Listing 2.6 Backbone.js template using the Underscore.js template library

Listing 2.7 Backbone.js template compile and render

We’re sticking with the default
Underscore.js as the template engine,
but we could substitute a different one

Compiles the template
into a reusable functionslates the

el data to
ON string
Licensed to Mark Watson <nordickan@gmail.com>

43Common MV* concepts

M
data
 var renderedHTML = this.template(modelDataAsJSON);
 this.$el.html(renderedHTML);
 return this;
}

The preceding code seems quite verbose when compared to the other two frameworks.
The ability to choose whichever template engine you want is a great trade-off, though.

 You now know what templates are and how to create them. The lingering question
you might have is where do you keep their source code?

WHERE TO KEEP TEMPLATES

Templates can either be included in the initial download of your SPA (inline) or down-
loaded on demand as external partials (or fragments).

INLINE TEMPLATES

If your template uses the expression style of binding syntax and isn’t downloaded on
demand, you’ll need to place it inside SCRIPT tags. You use SCRIPT tags to avoid acci-
dentally showing the user the binding code before the render process happens. The
browser won’t try to display code within the SCRIPT tags.

 To prevent the browser from trying to execute the script as JavaScript code, you’ll
need to give the SCRIPT tag’s Multipurpose Internet Mail Extensions (MIME) type
something other than text/javascript or application/javascript, as shown in the
following listing.

<script type="text/template" id="myTemplate">
 Hello, <%= firstName %>, how are you?
</script>

If your inline template uses attributes for its binding syntax, there’s nothing else spe-
cial you need to do. SCRIPT tags aren’t needed. Also, because attributes aren’t dis-
played anyway, there’s no chance the user will accidently see the bindings before the
view is rendered.

TEMPLATE PARTIALS

If you download the template on demand, there’s no need for SCRIPT tags, even if
you’re using expressions. The dynamically fetched template can be used directly by
the template engine, which avoids the issue altogether.

 As noted previously, these on-demand templates are sometimes referred to as par-
tials or fragments. They’re not part of the initial HTML document that’s loaded with
your application. Instead, they’re fetched as snippets of source code directly from the
server at runtime.

 Now that you have a good idea about models, binding, and templates, you need to
finally see how they culminate into the view the user sees and interacts with. In the
next section, you’ll look at how MV* frameworks approach views.

Listing 2.8 Inline template

arries the
and HTML Replaces the element’s content

with the rendered HTML

Wrapping a template in SCRIPT tags
hides its source. Non-JavaScript MIME
types aren’t treated as JavaScript code.
Licensed to Mark Watson <nordickan@gmail.com>

44 CHAPTER 2 The role of MV* frameworks

Def
eleme

Comp
te
2.2.6 Views

As you saw during our discussion of templates, frameworks such as Knockout and
AngularJS use declarative bindings in their templates, usually in the form of special
attributes added to HTML elements. In these frameworks, the templates and views are
pretty much the same thing. Thus, when composing views in these frameworks, you
need to decide only whether the templates will be kept inline or downloaded on
demand. This is more of a design issue.

 In a code-driven framework like Backbone.js, the approach is to programmatically
create the view. The following listing is an example from our directory application of a
Backbone.js view. Don’t worry if you don’t understand everything in the example right
now. When you’re ready, appendix A contains a complete walk-through of the code.

var Employee = Backbone.View.extend({
 tagName: "li",
 template: _.template(templateHTML),
 render: function() {
 this.$el.html(this.template(this.model.toJSON()));
 return this;
 },
 events: {
 "click .remove-entry": "removeEntry"
 },
 removeEntry: function() {
 this.model.destroy();
 this.remove();
 }
});

Backbone.js allows you to define traits for your view, such as its CSS class name and the
type of element it will be. Additionally, you’re given the freedom to define key mile-
stones in the life of the view, such as its rendering and removal, in any manner you wish.

 The discussion on views rounds out our conversation of basic MV* concepts. It’s
great to understand the concepts, but what does an MV* framework do for us? In the
next section, I’ll discuss how using an MV* framework can make our lives as SPA devel-
opers much easier and our code much cleaner.

2.3 Why use an MV* framework?
Deciding to use any external software in your project shouldn’t be taken lightly. You
are, after all, introducing a dependency. That being said, however, when its benefits
exceed the costs, a new dependency is worth considering. This section presents some
of the key benefits of using MV* frameworks.

Listing 2.9 Backbone.js view example

Extend the built-in
Backbone.js view object

ine the
nt type

ile the
mplate Render the view and

attach it to the DOM

Define the behavior
for the click event

Perform some cleanup
anytime the view is removed
Licensed to Mark Watson <nordickan@gmail.com>

45Why use an MV* framework?
2.3.1 Separation of concerns

As mentioned previously, MV* frameworks provide a means to segregate JavaScript
objects into their basic roles based on their underlying design pattern or patterns.
Each part of the code can be focused on a particular responsibility to the application.

 This overarching concept of separation of concerns helps us design objects with a
particular purpose. Models can be dedicated to data, views can be dedicated to the
presentation of data, and components such as controllers, presenters, and ViewMod-
els can keep these two parts communicating with one another without being joined at
the hip. The more dedicated an object is to a singular purpose, the easier it is to code,
test, and update after it’s in production.

 MV* frameworks also reduce the tendency to write spaghetti code by providing
framework elements that require us to write code in a particular way to facilitate
loose coupling. This keeps our HTML as clean as possible by removing embedded
JavaScript and CSS code. It also keeps our JavaScript free from deep coupling with
DOM elements.

 Here’s a classic AngularJS example
demonstrating how MV* can make our
code cleaner. Figure 2.11 shows a SPAN tag
(right) mirroring what’s being typed into
an INPUT field (left).

 Let’s create the example from figure
2.11, first written as spaghetti code and
then with AngularJS. Listing 2.10 is the
source code, written as tightly coupled
HTML and JavaScript. Tightly coupling means making direct references or calls from
one function or component to another. This joins them at the hip, so to speak.

 Writing code this way works, but it can prove to be difficult to read and a pain to
update later. If an entire single-page application were written like this, you can imag-
ine how monumentally difficult it would be to maintain.

<html>
<body>
 <input id="name"
 onKeyUp="document.getElementById('output').innerHTML
 = document.getElementById('name').value">

</body>
</html>

WARNING The code in listing 2.10 dynamically updates the SPAN as you type
but is hard to read and difficult to maintain.

Listing 2.10 Tightly coupled HTML and JavaScript

Figure 2.11 In this example, a SPAN tag’s
contents are being updated dynamically as the
user types into an INPUT field.

Don’t do this!
Licensed to Mark Watson <nordickan@gmail.com>

46 CHAPTER 2 The role of MV* frameworks
Now, in the following listing, we use the AngularJS framework’s ability to abstract away
much of the boilerplate code needed to achieve the same results.

<html>
<body ng-app>
 <input ng-model="name">
 {{name}}
 <script src="js/thirdParty/angular.min.js"></script>
</body>
</html>

Believe it or not, that small bit of code is all that’s needed. Of course, this is a con-
trived example. Even using a framework as powerful as AngularJS, complicated appli-
cations will have complicated logic. For all the reasons I just mentioned, though,
you’ll spend more of your time writing business logic, not the low-level, routine
plumbing.

2.3.2 Routine tasks simplified

MV* frameworks also simplify some of the tasks we as developers deal with on a regular
basis. Take, for instance, repetitively printing out the data from a list, complete with
HTML markup, to the screen. That’s a run-of-the-mill task, but the mechanics involved
take a good deal of code to pull it off. Moreover, we find ourselves repeating the same
code over and over every time we need to do this.

 Let’s consider the employee directory from the beginning of the chapter. One of
the requirements is to be able to add an employee’s data as an entry to a list. If you
had to code all the mechanics by hand, you’d find yourself manually creating DOM
elements for each entry in a JavaScript loop. The code wouldn’t be pretty, and
chances are it wouldn’t be reusable for other tasks.

 MV* frameworks take the drudge work out of tasks like this. Take the code in list-
ings 2.12 and 2.13. This is how we’re adding entries to our list using Knockout. Listing
2.12 is from the HTML side of things. For brevity, this isn’t the entire source code, only
the portion to add to the directory’s employee listing. The complete source code can
be found in appendix A.

<ul class="entry-list" id="entryList"
 data-bind="foreach: entries">

Notice that we don’t have any JavaScript code in our HTML. The following listing
shows the ViewModel backing this section of the template.

Listing 2.11 AngularJS example

Listing 2.12 Employee list HTML

The AngularJS framework marries the INPUT
field with the SPAN tag, removing the need
to put JavaScript code in your HTML

An empty UL and a foreach binding
to iteratively build our list
Licensed to Mark Watson <nordickan@gmail.com>

L

Cre
wh
bu
47Why use an MV* framework?

self.entries = ko.observableArray();
self.addEntry = function(e) {
 var newEntry = {
 firstName : self.entry.firstName(),
 lastName : self.entry.lastName(),
 title : self.entry.title(),
 phone : self.entry.phone(),
 email : self.entry.email()
 };
 self.entries.push(newEntry);
};

With a few subtle attributes and a minimal amount of code, we were able to accom-
plish our list of management needs. Taking the grunt work out of routine tasks like
this greatly simplifies life as a programmer.

2.3.3 Productivity gains

From a development standpoint, being able to devote your time and energy to your
business logic is a definite boost to productivity. When we do decide to use an external
library or framework, we’re removing the burdens of having to maintain that part of
the code base ourselves. We also use the expertise of their authors in the areas that the
particular framework covers. Sure, you could create your own routines to do the same
thing, but it would take an enormous effort to get it to the level of the MV* implemen-
tations out there.

 You also have an incredible amount of community-based knowledge on the web
for most libraries/frameworks, should you run into problems. Most authors of MV*
have mechanisms for reporting bugs too. This means that periodically code fixes are
tested and released, without you having to spend your time on the issue.

 If you’re doing everything yourself, you’re maintaining your own business logic,
plus the extra bug fixes and testing for all of the structural code provided from exter-
nal libraries/frameworks.

2.3.4 Standardization

As you’ll hear me repeat throughout this book, writing a robust web application with a
clean, scalable code base is already difficult. This difficulty can be compounded in a
single-page app. So the last thing you need is to have everyone on the development
team writing code in completely different styles.

 You want to be able to read your teammate’s code as if it were your own. Other-
wise, you’ll continuously waste time deciphering some “foreign” style of coding before
you can get around to updating it. Even if you’re alone, not working with a team, hav-
ing uniform code standards will help you when it’s time to revisit something you wrote
to make changes.

Listing 2.13 Employee list JavaScript

Special Knockout array that keeps
the array data in sync with the HTM

ate a new entry
enever the Add
tton is clicked

Add the entry to the array, and
Knockout takes care of the rest
Licensed to Mark Watson <nordickan@gmail.com>

48 CHAPTER 2 The role of MV* frameworks
 MV* libraries and frameworks have certain conventions that must be followed in
order to use the software. This will compel you to write your application’s code in a
more formal, standardized way.

2.3.5 Scalability

As discussed previously, MV* frameworks inherently promote the separation-of-
concerns concept. This, in turn, also makes a project more scalable, because loosely
coupled objects can be reworked with minimal effect on other objects.

 Objects can also be swapped out entirely to make room for new functionality with-
out causing a huge ripple effect throughout the project. This allows the project to
grow more gracefully, because code changes tend to have much less negative impact.

 Now that you’ve seen some of the core MV* features, which style seems easier?
Which is more difficult to use? You’ll have to be the judge. Some people don’t like
having the declarative style of bindings freely mixed with the HTML page itself as you
see with MVVM. Others prefer it over having to use so much boilerplate code to create
the view.

 Although you’ll ultimately have to decide which framework is right for you and
your project, section 2.4 will give you a few things to think about as you’re making
your decision.

2.4 Choosing a framework
After you’ve decided you do want to use an MV* library or framework, you have a lot to
choose from. Even if you decide on a particular style you like better, you’ll still have a
lot of candidates to weed through. Just to give you an idea, here are some popular cli-
ent-side MV* options available at the time of this writing:

■ AngularJS (https://angularjs.org)
■ Agility.js (http://agilityjs.com)
■ Backbone.js (http://backbonejs.org)
■ CanJS (http://canjs.com)
■ Choco (https://github.com/ahe/choco)
■ Dojo Toolkit (http://dojotoolkit.org)
■ Ember.js (http://emberjs.com)
■ Ext JS (www.sencha.com/products/extjs)
■ Jamal (https://github.com/adcloud/jamal)
■ JavaScriptMVC (http://javascriptmvc.com)
■ Kendo UI (www.telerik.com/kendo-ui)
■ Knockout (http://knockoutjs.com)
■ Spine (http://spinejs.com)

As you can see, you have quite a few choices. And those are the libraries/frameworks
themselves. If you decide to choose a framework that’s not all-inclusive, the lists of
Licensed to Mark Watson <nordickan@gmail.com>

http://spinejs.com
http://knockoutjs.com
www.telerik.com/kendo-ui
http://javascriptmvc.com
https://github.com/adcloud/jamal
www.sencha.com/products/extjs
http://emberjs.com
http://dojotoolkit.org
https://github.com/ahe/choco
http://canjs.com
http://backbonejs.org
http://agilityjs.com
https://angularjs.org

49Choosing a framework
libraries and frameworks to handle the other features, such as routing and view
management, are nearly as long. In a few years, we went from relatively few choices to
an overwhelming number of them.

 It’s rather unproductive to try to point out which ones are “better” than others. It’s
all a matter of opinion. Also, because they’re all different and have a different number
of features and styles, it’s hard to make an apples-to-apples comparison. But I can
offer a list of things to keep in mind as you’re making your decision:

■ A la carte or one-stop shopping—This is completely subjective, but do you want a
framework that has everything built in? Or do you prefer something that’s as
small as possible and focused on a few core features? There are arguments for
both. Some people would rather not have to worry about finding other libraries
for missing features. That’s just more dependencies to worry about and more
potential points of failure. You’d also have to be versed in software from various
providers instead of just one. But some people point out the other side of the
coin: by going with an all-inclusive solution, you’re “putting all your eggs in one
basket.” If the framework ever stops being supported, it’ll be tougher to replace
everything than a single supporting library. Smaller offerings, such as Knockout
and Backbone.js, are great if you want to go minimal, but you’ll have to look
elsewhere to fill in any gaps when writing your SPA. Frameworks such as
Ember.js, Kendo UI, and AngularJS plug most gaps but hide a lot of what’s going
on with their framework magic. This is a negative for some people who want
more control.

■ Licensing and support—Budget is always a factor. For your project, do you have
money to spend on a framework, or do you need something that’s free? Are you
required by your company to purchase a commercial product? Does your com-
pany require you to be able to purchase a certain level of support for any soft-
ware used in its projects? Is your project mission critical? Is a minimum
turnaround required for bug fixes and updates?

■ Programming style preference—Knockout and Kendo UI fall squarely in the MVVM
camp. Others, including Backbone.js and Ember.js, are more MVC and/or MVP.
AngularJS is a little more MVVM but still retains some MVC-like features. Any of
these can be used to create large, robust applications. Your selection boils down
to your personal preference after you’ve tried a few of them.

■ Learning curve—This might be a minor point to some, because given enough time
you can learn to use any framework. Some are definitely more difficult to wrap
your head around than others. You might not have months to get up to speed.

■ Number of bugs and fix rate—All software has a certain number of bugs at any
given time. That’s just the way things are. But what you can factor into your
decision is the percentage of high and critical bugs the software experiences
over time. Also, how fast are they being fixed? If a large number of important
bugs have been sitting there for a long time, that’s probably a red flag.
Licensed to Mark Watson <nordickan@gmail.com>

50 CHAPTER 2 The role of MV* frameworks
■ Documentation—How good is their documentation? How up to date is it? Some
MV* providers offer free online videos and interactive training. Are there code
examples to go along with the API documentation?

■ Maturity—We can’t judge how good the framework is by how mature it is. We
can, however, get a warm and fuzzy that it’s here for the foreseeable future if it’s
pretty mature. If software is fairly new, it’s probably still going through “growing
pains.” That might be tolerable for applications that aren’t a high priority. If the
software is constantly changing, though, it would be nearly impossible to create
a mission-critical application with it.

■ Community—This aspect is sometimes overlooked, but if you plan on including
third-party software as a dependency, it’s nice if it has a large community follow-
ing. There’s strength in numbers. Sooner or later, you’ll run into situations that
aren’t covered in the documentation. Finding help in online forums and blogs
can be a lifesaver.

■ How opinionated is it?—For routine tasks, such as creating objects and lists or
sending, receiving, and processing server requests, how flexible is it? Does it
limit you by imposing strict guidelines (and are you OK with that)? How well
does it play with any other libraries/frameworks in your arsenal?

■ POC (proof of concept)—Once you’ve narrowed down your choices to a select few,
do a POC for each to get a feel for it in practice. You’ll always encounter situa-
tions in your real project that you didn’t anticipate and be forced to search for
workarounds. That’s just the nature of the beast. But by doing a simple POC
with at least basic CRUD functionality, you’ll be able to make a decision. Prefera-
bly, your CRUD operations will include a list of objects so you can get a feel for
how easy it is to manage a collection as well.

As you can see, you have many factors to think about when choosing an MV* frame-
work. But you’re now acquainted with the traditional design patterns and the basic
core concepts. You’ve also been exposed to some of the design differences of MV*
libraries/frameworks. With that and this list of points to consider, you’ll be able to
make a more informed choice when the time comes.

2.5 Chapter challenge
Now here’s a challenge for you, to see what you’ve learned in this chapter. Let’s see if
you, on your own, can use one-way bindings to create a simple view. Let’s pretend that
your local library wants to begin offering e-books online and has reached out to the
community for help. The library already has converted its first set of books to e-books
but needs someone with web development skills to set up the e-book site. Pick any one
of the three MV* frameworks from this chapter (or a different one if you prefer) and
create a view that’s contains a list of a few books. The view should have the following
format:

■ Header—The header should contain the library name, address, and phone
number. It should also display the name of the user logged in. For the user,
Licensed to Mark Watson <nordickan@gmail.com>

51Summary
create a JavaScript variable and use your name as its value. Then create a simple
binding to display this value in the view’s header.

■ Body—Create a list of book objects (book title, author, and simple description)
in JavaScript. In the body, choose a binding that prints each book in the list iter-
atively.

2.6 Summary
Understanding the information in this chapter will help you going forward. Let’s
review:

■ The traditional design patterns that had a major influence on MV* libraries/
frameworks are MVC (Model-View-Controller), MVP (Model-View-Presenter),
and MVVM (Model-View-ViewModel).

■ The model represents your data. In MVVM, this object is mainly just data. In the
other two patterns, the model also contains other kinds of logic, including logic
to manage the data.

■ The view represents the part of the application that the user sees and interacts
with.

■ The third object, the controller or presenter or ViewModel, is an intermediary
object of one degree or another, keeping the model and the view decoupled
but interactive.

■ Each pattern must be adaptable to its environment. The authors of MV* librar-
ies/frameworks have had to take various liberties with traditional patterns in
order to create solutions that work in a browser setting.

■ Some basic MV* concepts to know are models, bindings, templates, and views.
■ You should keep a variety of considerations in mind when choosing an MV*

framework: a la carte or one-stop shopping, licensing and support, program-
ming style preference, learning curve, bugs and fix rate, documentation, matu-
rity, community support, and how opinionated it is.

■ When you narrow your choices to two or three, try doing a proof of concept
with each to get a feel for its use in your project.
Licensed to Mark Watson <nordickan@gmail.com>

Modular JavaScript
JavaScript is a powerful yet extremely flexible language that has become the de
facto standard for adding interactivity to web applications. Even large companies
such as Amazon.com, Google, and Walmart rely on it. It’s remarkably easy to learn
and even easier to add working code to a web page. So it’s no wonder that the free-
dom it offers and its ease of use have contributed to its popularity.

 The friendliness of the language is a double-edged sword, though. In any lan-
guage as dynamic as JavaScript, it can be easy to find yourself with a chaotic code
base if you’re not careful. In a presentation for Google Tech Talks, renowned devel-
oper, architect, author, and speaker Douglas Crockford stated that JavaScript has

This chapter covers
■ The definition of modules
■ Reasons to use modules in your SPA
■ A review of JavaScript scope and object

creation
■ An analysis of a module’s syntax and

mechanics
■ An introduction to module loading and AMD

modules
52

Licensed to Mark Watson <nordickan@gmail.com>

53What is a module?
“some of the best ideas ever put into a programming language” (see http://google
code.blogspot.com/2009/03/doug-crockford-javascript-good-parts.html). He added,
however, that it also has “some of the worst ideas ever put into a programming
language.”

 Fortunately, following best practices and proven design patterns goes a long way
toward keeping your project under control. One such pattern that’s particularly useful
in the development of modern web applications is the module pattern. Modules pro-
vide an elegant way to structure your code. They also help avoid many issues that would
otherwise arise from having your entire application in a single page. This chapter pro-
vides an in-depth look at modules and why you should consider using them in an SPA.

3.1 What is a module?
In general, a module can be defined as a part, or component, of a larger structure. The
term module, however, can have a variety of meanings depending on the context, even
within the category of software development. Sometimes you’ll hear people talking
about a module in a more general sense. They might say, for example, “the payments
module” or “the trip planner module.” In these cases, it would be perfectly legitimate
for them to be referring to the feature as a whole. When we’re specifically referring to
a JavaScript code module, we mean a single function—a special function created by
using the module pattern.

Don’t worry about the strange syntax at this point. Section 3.3 provides greater detail.
For now, you’ll continue learning the basics of modular programming by reviewing a
few concepts.

3.1.1 Module pattern concepts

Before moving forward, let’s take a moment to get acquainted with a few module pat-
tern concepts:

■ Namespace—A namespace is a way to provide a particular scope for a group of
related members. Though namespaces aren’t part of the JavaScript language
currently, you can still achieve the same effect by assigning your module func-
tion to any variable with a wider scope (a global variable, for example).

Basic module pattern
var moduleName =
(function() {
 // private variables, functions
 return {
 // public functions
 };
})();

A global variable serves as
the module’s namespace

Code used internally
by the module

An object literal with public
functions is returned, which serves
as the module’s public API
Licensed to Mark Watson <nordickan@gmail.com>

http://googlecode.blogspot.com/2009/03/doug-crockford-javascript-good-parts.html
http://googlecode.blogspot.com/2009/03/doug-crockford-javascript-good-parts.html

54 CHAPTER 3 Modular JavaScript
■ Anonymous function expression—An expression exists if your code is part of an
expression and doesn’t start with the function keyword. If the function expres-
sion being assigned is unnamed, it’s called an anonymous function expression.
The module’s body is contained within an anonymous function expression.

■ Object literal—JavaScript provides a sort of shorthand for creating objects known
as literal notation, which declares an object by using curly braces, with its proper-
ties defined as key-value pairs. Object literals are described in more detail in
section 3.3.2.

■ Closures—Normally when a function finishes executing, the life of any local vari-
ables created within it comes to an end as well. An exception to this is a closure,
which occurs when a function contains variable references outside its own
scope. In JavaScript, each function has its own scope property, which references
the variables of its outer scope. Every function always has an outer scope, even if
that outer scope is just the global scope (so technically all functions are clo-
sures). Closures are important to our discussion because even though the mod-
ule pattern’s outer function executes immediately, any objects or values up the
scope chain referenced in the return statement can’t be garbage collected while
the module is still in use.

3.1.2 The module’s structure

A module’s structure cleverly uses
a function as a container to encap-
sulate its logic. This is possible
because variables and functions
declared locally inside the module
aren’t directly accessible from out-
side its outer function. Access to
the module’s internal functional-
ity is regulated by what’s exposed
in the return statement (see fig-
ure 3.1).

 To see how to use such an
odd-looking construct, let’s take a
simple function and rewrite it by
using the module pattern. The
following function adds two num-
bers and returns the result:

var num1 = 2;
function addTwoNumbers(num2) {
 return num1 + num2;
}

alert(addTwoNumbers(2));

Private inner variables
and functions

Containing outer function

Limited scope
prevents direct
access

Creates
public APIPublic functions

in returned object
literal

Figure 3.1 In a module, the outer function
encapsulates its functionality. There’s no direct access
to internal variables and functions. Access is regulated
via functions in the object literal it returns.

Alerts “4”
Licensed to Mark Watson <nordickan@gmail.com>

55What is a module?

Private
num1

init
Listing 3.1 shows the same functionality, now written as a reusable module. Notice
how the pattern has abstracted away the internal details of the module. Users of the
function don’t have to worry about how the module does what it does. They know that
calling the function addTwoNumbers() in the public interface will alert the correct
result. Again, in section 3.3 you’ll see exactly how this is made possible.

var numberModule = (function() {
 var num1 = 2;

 function addNumbersInternally(num2) {
 return num1 + num2;
 }

 return {
 addTwoNumbers : function(num2) {
 alert(addNumbersInternally(num2));
 }
 };

})();

numberModule.addTwoNumbers(2);

3.1.3 The revealing module pattern

Part of the appeal of the module pattern is that a clear division is created between the
internal workings of the module and its publically available functions. A heavily used
variation of the module pattern that makes this division even clearer is called the
revealing module pattern.

 Proposed by Christian Heilmann, this slightly improved version seeks to make the
public interface’s use self-evident. To do this, it moves any code needed by the API
internally as well, leaving the public functions as mere pointers to the internal code.
The following listing demonstrates the same module from listing 3.1, written using
the revealing module pattern.

var numberModule = (function() {
 var num1 = 2;

 function addTwoNumbers(num2) {
 alert(num1 + num2);
 }

 return {
 addTwoNumbers : addTwoNumbers
 };

})();

numberModule.addTwoNumbers(2);

Listing 3.1 Function to add two numbers rewritten as a module

Listing 3.2 Revealing module pattern

 variable
contains
ial state Private function

addNumbersInternally()
does the work

Alerts the result
from the call to
addTwoNumbersInternally()

Call the module’s public
functions like this

Public addTwoNumbers() function is a pointer
to the private addTwoNumbers() function

Use the module
in the same way
Licensed to Mark Watson <nordickan@gmail.com>

56 CHAPTER 3 Modular JavaScript
As you can see, the public API is much cleaner and more readable. You’ll use this ver-
sion of the module pattern for the examples in the rest of this chapter. Now that you
have a basic understanding of a module, let’s talk about the reasons why you should
consider modular programming.

3.2 Why modular programming?
The module pattern was created in 2003 and popularized by Douglas Crockford
through his lectures. The structure does the following:

■ Keeps parts of our code private, only for use within the module
■ Creates a public API to regulate access to the module’s functionality

We can also assign a single namespace for the module and its related submodules to
reduce the pollution of the global namespace. Why are these things important,
though? Just looking at the module pattern’s syntax for the first time can be off-put-
ting, maybe even a little intimidating. If you can get past the unusual syntax, however,
there are good reasons to consider using the module pattern in an SPA.

3.2.1 Avoiding name collisions

Name collisions for variables and functions can happen, even for small applications.
The likelihood magnifies exponentially the larger your application gets, because in
JavaScript all your variables and functions get thrown into a global namespace. Going
back to Douglas Crockford’s presentation, he says, “The worst part [of the JavaScript
language is] by far—global variables.” He says this to specifically point out the prob-
lem of name collisions for globally defined code. When all your objects are in the
global namespace, they all share the same scope. When you have variable or function
declarations in the same scope, with the same name, no error is generated. The last
declaration overrides any prior declarations. This can lead to unexpected results,
which are difficult to troubleshoot. Let’s consider the following example.

 Pretend you have a new startup company called The Simpler Times Gourmet and
you’re creating a single-page application for it to sell your gourmet wares. (Chapter 4
covers the creation of views, so for now you’ll confine the UI to a couple of DIV tags to
stay focused on the code.) You want to entice new customers to order something by
offering a generous 25% discount on their first order. You’d also like to reward return-
ing customers, but allowing everyone to take 25% off doesn’t provide the profit you’ll
need to make your first year’s earnings goal. So for now, you’ll offer discounts only to
new customers.

 At first, everything’s going swimmingly. Your code correctly greets existing custom-
ers with a simple welcome message. Only new customers are greeted with a message
about a 25% discount. I’ve hardcoded this example so it’s sure to trigger the message
for returning customers. Figure 3.2 shows the output in the browser.

 Listings 3.2 and 3.3 show the working code. This design doesn’t use modules.
When the DOM is ready, you call getWelcomeMessage() (defined in welcom-
Message.js) to return the appropriate greeting. The greeting is then inserted into the
Licensed to Mark Watson <nordickan@gmail.com>

57Why modular programming?

()
content DIV via jQuery’s html() function so the message can greet arriving customers,
as shown in the following listing.

<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet" href="css/default.css">
</head>
<body>
 <div class="siteMain" id="container">
 <div id="header" class="header">The Simpler Times Gourmet</div>
 <div id="content" class="content"></div>
 </div>
 <script src="js/thirdParty/jquery.min.js"></script>
 <script src="js/welcomeMessage.js"></script>
 <script>
 $(document).ready(function() {
 $("#content").html(getWelcomeMessage())
 });
 </script>
</body>
</html>

Pay particular attention to the way the result of the getStatus() function in listing 3.4
is used. Whether the correct message displays depends on whether getStatus()
returns existing or not.

NOTE The jQuery .ready() function guarantees that the DOM will be ready
before the function defined inside executes.

var customerLoggedIn = true;
var customerName = "Emmit";
var isNewCustomer = false;

Listing 3.3 index.html

Listing 3.4 welcomeMessage.js

Figure 3.2 Returning customers correctly greeted with a simple message and
no mention of a discount

getWelcomeMessage
returns the
appropriate greeting
Licensed to Mark Watson <nordickan@gmail.com>

58 CHAPTER 3 Modular JavaScript

)
function getStatus(){
 if(customerLoggedIn){
 if(isNewCustomer){
 return "new";
 } else {
 return "existing";
 }
 } else {
 return "unknown";
 }
}

function getWelcomeMessage(){
 if(getStatus() !== "unknown") {
 if(getStatus() === "existing") {
 return "Hi again " + customerName
 + ", glad to see you back!";
 } else {
 return "Welcome " + customerName
 + " - 25% off entire purchase!";
 }
 } else {
 return "Sign up for some great gourmet deals!";
 }
}

Everything works as expected until an enhancement is added to the application. It
seems pretty benign, just an additional JavaScript file with code to display a message
about the current status of the shopping cart. But after adding the code, functional
tests fail. The cart status message is correct, but returning customers suddenly get an
erroneous message offering them the 25% discount also. Now everyone, regardless of
customer status, is offered the new customer discount. Figure 3.3 shows the welcome
screen after the new file is added.

 When the new file was unit tested in isolation, it seemed to work fine. Why did it
cause issues when added to the site? As you’ll see in listing 3.5, a name conflict is to
blame. The developer who created the new file inadvertently included a function
called getStatus(). Because both the original getStatus() and the new get-
Status() are defined in the global namespace, a name conflict arises.

getStatus() checks whether the
customer is new or existing

getWelcomeMessage()
depends on getStatus(
in determining the
message to return

Figure 3.3 Suddenly everyone’s being told they’re in for a big discount!
Licensed to Mark Watson <nordickan@gmail.com>

59Why modular programming?

var cartActiveItems = [];

function getStatus(){
 if(cartActiveItems.length > 0){
 return "pending";
 } else {
 return "empty";
 }
}

function getStatusMessage(){
 if(getStatus() === "empty") {
 return "Cart is empty";
 } else {
 return "Cart (" + cartActiveItems.length + " items)";
 }
}

Unfortunately, you get no error messages in the browser. Because the new file was
included last (see listing 3.6), the new getStatus() function merely overrides the first
one (see figure 3.4). It’s as if the first one never existed.

Now the wrong getStatus() function is used by the getWelcomeMessage() function
to create the greeting. What’s interesting about this example is that the getStatus()
function in the new file has nothing whatsoever to do with the welcome message, yet it
still has a profound effect on the result.

<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet" href="css/default.css">
</head>

Listing 3.5 shoppingCartStatus.js

Listing 3.6 index.html

Added function getStatus()
creates a name conflict

The function
included last
overrides the
other.

function getStatus()

welcomeMessage.js

function
getWelcomeMessage()

function getStatus()

shoppingCartStatus.js

function
getStatusMessage()

Name
conflict!

Figure 3.4 Without a module to limit the scope of each function, both are added to the same global
scope, causing a name conflict.
Licensed to Mark Watson <nordickan@gmail.com>

60 CHAPTER 3 Modular JavaScript

a
<body>
 <div class="siteMain" id="container">
 <div class="header" id="header">
 <div id="banner" class="banner">
 The Simpler Times Gourmet
 </div>
 <div id="cart" class="cart"></div>
 </div>
 <div id="content" class="content"></div>
 </div>
 <script src="js/thirdParty/jquery.min.js"></script>
 <script src="js/welcomeMessage.js"></script>
 <script src="js/shoppingCartStatus.js"></script>
 <script>
 $(document).ready(function() {
 $("#content").html(getWelcomeMessage());
 $("#cart").html(getStatusMessage());
 });
 </script>
</body>
</html>

Now let’s see if we can fix this mistake. Let’s try recoding the application’s logic by using
modules. I’ve tried to keep the logic of each function as close to the original as possible,
so it’s easier to follow along. The following listing shows your new index page.

<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet" href="css/default.css">
</head>
<body>
<div class="siteMain" id="container">
 <div class="header" id="header">
 <div id="banner" class="banner">
 The Simpler Times Gourmet
 </div>
 <div id="cart" class="cart"></div>
 </div>
 <div id="content" class="content"></div>
 </div>
 <script src="js/thirdParty/jquery.min.js"></script>
 <script src="js/STGourmet.js"></script>
 <script src="js/customer.js"></script>
 <script src="js/welcomeMessage.js"></script>
 <script src="js/shoppingCart.js"></script>
 <script>
 STGourmet.init();
 </script>
</body>
</html>

Listing 3.7 index.html

Header now includes are
for shopping cart status

Second getStatus()
function overrides
the first

getWelcomeMessage()
uses the wrong
getStatus(), creating
the wrong message

Two new files added

STGourmet.init() is the
single kickoff point for
the entire application
Licensed to Mark Watson <nordickan@gmail.com>

61Why modular programming?

STGo

shop
welc
You’ll immediately notice a few changes, including the addition of a couple of new
JavaScript modules. First, your call to jQuery to update the DIV content has been
replaced with a call to your first module. The application now starts with a single call
to the STGourmet module’s only public function, init().

 Second, you now have a total of four includes, not counting jQuery. The existing
JavaScript files have been recoded in module format but kept in their original include
files. You also have a couple of new modules. Pay attention to the load order. If you’re
using standard SCRIPT tags to load the files, modules must be ordered so that any vari-
ables or functions needed later are already loaded when needed. STGourmet is your
main module, so it must be first in the list. Customer has functions that are used later,
so it will come second.

 Chapter 9 presents ways to combine and minify your code for better performance.
Section 3.4 also covers using a third-party library called RequireJS to load modules
asynchronously. For now, you’ll leave them as normal file includes, which get loaded
synchronously. Therefore, load order is important.

NOTE When modules are included using the SCRIPT tag, load order is impor-
tant! Modules should be loaded in the order in which they’re needed.

Listing 3.8 shows your first module. In it, you define STGourmet as the single global
variable in the whole application. This carves out a single namespace where your
entire application will live. Again, don’t worry about the syntax for the module pattern
itself right now. Section 3.3 covers that thoroughly. For now, let’s continue to focus on
how the modules are used to solve the name conflict problems.

var STGourmet = (function($) {

 function init() {
 $(document).ready(function() {
 STGourmet.shoppingCart.displayStatus();
 STGourmet.welcomeMessage.showGreeting();
 });
 }

 return {
 init : init
 };

})(jQuery);

Because only functions declared in the return statement are public, this module’s
init() is its only public function. In index.html, we started the application by calling
STGourmet.init(). This, in turn, calls the displayStatus() function of the
shoppingCart submodule and the showGreeting() function of the welcomeMessage
submodule.

Listing 3.8 STGourmet.js

STGourmet becomes the
application’s namespace

urmet’s two
submodules,
pingCart and
omeMessage

Anything in the return is public,
so init() is our only public function

jQuery is imported into the module at
the bottom and aliased as “$” at the top
Licensed to Mark Watson <nordickan@gmail.com>

62 CHAPTER 3 Modular JavaScript
 The following listing contains your customer module. Because our three private
hardcoded variables aren’t part of the shopping cart or the greeting, this code was
pulled out into a module of its own.

STGourmet.customer = (function() {

 var customerLoggedIn = true;
 var customerName = "Emmit";
 var isNewCustomer = false;

 function isLoggedIn() {
 return customerLoggedIn;
 }

 function getName() {
 return customerName;
 }

 function isNew() {
 return isNewCustomer;
 }

 return {
 isLoggedIn : isLoggedIn,
 getName : getName,
 isNew : isNew
 };

})();

SUBMODULES

One unique thing you did in this file was to create a submodule. It’s a common prac-
tice when creating an application using the module pattern to create submodules.
This allows you to break the code into separate modules, yet still have it be part of the
same namespace.

 You’ll notice you didn’t start the submodule declaration with var. This was no acci-
dent. In reality, you’re using dot notation to add a new property to the previously
defined function object called STGourmet. By adding .customer to your STGourmet
object, you create a submodule named customer (see figure 3.5).

Listing 3.9 customer.js

Adding .customer to STGourmet
creates a new submodule

Code not in the return
statement is private
and can’t be accessed
outside the module

Anything declared in the
return statement is public

STGourmet.customer

Submodule

Initial module

Figure 3.5 You use dot notation, without a var, to declare
a submodule. What you’re really doing is adding a property
called customer, which itself contains a module.
Licensed to Mark Watson <nordickan@gmail.com>

63Why modular programming?
The following listing contains your welcomeMessage submodule. As you can see, it
contains the same logic as before, only wrapped in the module pattern.

STGourmet.welcomeMessage = (function() {

 function getStatus(){
 if(STGourmet.customer.isLoggedIn()){
 if(STGourmet.customer.isNew()){
 return "new";
 } else {
 return "existing";
 }
 } else {
 return "unknown";
 }
 }

 function getWelcomeMessage() {
 if(getStatus() !== "unknown") {
 if(getStatus() === "existing") {
 return "Hi again " + STGourmet.customer.getName()
 + ", glad to see you back!";
 } else {
 return "Welcome "
 + STGourmet.customer.getName()
 + " - 25% off entire purchase!";
 }
 } else {
 return "Sign up for some great gourmet deals!";
 }
 }

 function showGreeting(){
 $("#content").html(getWelcomeMessage());
 }

 return {
 showGreeting : showGreeting
 };

})();

Finally, the following listing contains your shoppingCart submodule.

STGourmet.shoppingCart = (function() {
 var cartActiveItems = [];

 function getStatus(){
 if(cartActiveItems.length > 0){

Listing 3.10 welcomeMessage.js

Listing 3.11 shoppingCartStatus.js

Submodule called
welcomeMessage

Submodule called
shoppingCart
Licensed to Mark Watson <nordickan@gmail.com>

64 CHAPTER 3 Modular JavaScript
 return "pending";
 } else {
 return "empty";
 }
 }

 function getStatusMessage(){
 if(STGourmet.customer.isLoggedIn()
 && getStatus() === "empty") {
 return "Cart is empty";
 } else {
 return "Cart ("
 + cartActiveItems.length
 + " items)";
 }
 }

 function displayStatus(){
 $("#cart").html(getStatusMessage());
 }

 return {
 displayStatus : displayStatus
 };

})();

Now that you have all of your code in modules, avoiding any name conflicts, let’s see
what the application looks like (see figure 3.6).

Using the module pattern,
you can easily write code
without fear of name con-
flicts. Now both getStatus()
functions can coexist, with
each functioning as expected
(see figure 3.7).

Figure 3.7 Now that each
getStatus() function lives in
its own module, there are no
more name conflicts.

Figure 3.6 Using
modules, our
welcome message
is once again
correct!

function getStatus()

welcomeMessage.js

function
getWelcomeMessage()

function getStatus()

shoppingCartStatus.js

Module scope Module scope

function
getStatusMessage()
Licensed to Mark Watson <nordickan@gmail.com>

65Why modular programming?
As you’ve seen, the module pattern gives you the freedom to name your variables and
functions any way you want, without worrying about name conflicts from code inside
other modules. This small detail becomes crucial as your project grows in size and
complexity.

3.2.2 Protecting your code’s integrity

In some languages, access to certain parts of an application’s code can be controlled
through access-level modifiers, such as public or private. In JavaScript, the keyword
private is reserved but not available as of this writing. So you can’t explicitly declare
an attribute of an object to be private. But as you’ve already seen, you can still limit the
accessibility of variables and functions with the module pattern. This is possible
because variables and functions declared inside a function are private in the sense
that they’re scoped to the containing function. The ability to restrict access to certain
parts of a module’s code prevents other code from directly changing its internal state.
This keeps the internals of the module working as expected and its data from being
set to something that’s invalid for the module’s intended purpose.

 Let’s illustrate with a basic counter. A simple function to increment a value every
time it’s invoked is pretty innocuous:

var count = 0;

function incrementCount(){
 ++count;
}

function printCount(){
 console.log("Count incremented: " + count + " times");
}

function displayNewCount(){
 incrementCount();
 printCount();
}

The code as it’s currently written works correctly. But there’s nothing to prevent the
author of displayNewCount() from updating the count variable directly, even though
it’s vital for incrementCount() to work properly. Let’s imagine the programmer wants
to change displayNewCount() so it prints the word time at the end if the count is 1;
otherwise, it ends the sentence with the word times. Let’s see what happens if the func-
tion is allowed to update the count variable itself:

var count = 0;

function incrementCount(){
 ++count;
}

function printCount(){

Correctly increments the
count and prints “Count
incremented: 1 times”
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

66 CHAPTER 3 Modular JavaScript
 if(count === 1) {
 count = count + " time";
 } else {
 count = count + " times";
 }
 console.log("Count incremented: " + count);
}

function displayNewCount(){
 incrementCount();
 printCount();
}

By being allowed to directly manipulate the data used by the incrementCount() func-
tion, the printCount() function causes the value of the count variable to be NaN (not
a number), which is invalid for our business logic.

 Now let’s rewrite the code by using the module pattern. In the next listing, we’re
providing only the consumer of incrementCount() access to the current count via its
public interface. This effectively blocks the direct manipulation of the variable.

var Counter = (function() {
 var count = 0;

 function incrementCount(){
 ++count;
 }

 function getCount(){
 return count;
 }

 return {
 incrementCount : incrementCount,
 getCount : getCount
 };

})();

Counter.displayUtil = (function() {

 function printCount(){
 var count = Counter.getCount();
 if(count === 1) {
 count = count + " time";
 } else {
 count = count + " times";
 }
 console.log("Count incremented: " + count);
 }

 function displayNewCount(){

Listing 3.12 Code rewritten using a modular design

Variable count is put into an invalid state
when it’s concatenated with a string

Prints “Count incremented: 1 time” the
first time but “Count incremented:
NaN times” thereafter

The count variable is private and
no longer directly accessible

Access to the count variable
controlled by the module’s public API

printCount() function must
get the count from the main
module’s getCount()
Licensed to Mark Watson <nordickan@gmail.com>

67Why modular programming?
 Counter.incrementCount();
 printCount();
 }

 return {
 printCount : printCount,
 displayNewCount : displayNewCount
 };

})();

Bulletproofing code that will be used correctly is difficult enough. This task becomes
almost impossible if you can’t prevent the internal workings of your code from being
misused. The module pattern offers a way to manage access to internal code.

3.2.3 Hiding complexity

When we talk about hiding complexity in programming, it’s not because we’re trying
to keep secrets. We’re also not talking about security. We’re referring to the difference
between having complicated logic for a particular feature strewn across a multitude of
global functions versus internalizing the complex logic and putting only what other
developers need to use in a public interface. It reduces clutter and makes it clear
which functions to call in order to correctly use the functionality. Figure 3.8 illustrates

Calling displayNewCount() via the
public API correctly increments
and prints the statement

makeCardPayment

makeBankPayment

Payment module

 VS.

validateCheckPayment

makeCardPayment

makeBankPayment

handleSuccess

handleError

displayUserMessage

validateEntry

validateCardPayment

Which one is
the starting
point?

Figure 3.8 The module pattern makes it
clear how others should use your code.
Licensed to Mark Watson <nordickan@gmail.com>

68 CHAPTER 3 Modular JavaScript
how a module with a public API can make it easier for other developers to know how
to use your code.

 By hiding the complexity of your module, you’re enabling others on your team to
use it without having to understand all the nuts and bolts of its internal code.

3.2.4 Reducing the impact of code changes

Internalizing how your code works also means that other programmers will be coding
to only your public interface. As long as the behavior is the same when using the mod-
ule’s API, the internal code can change without forcing other parts of the application
to change in turn. Reducing the amount of change to other parts of the system
reduces the amount of effort and time that goes into code maintenance.

 You, as the programmer of the module, can more freely make changes to your
code. If the contract of your API remains intact, the chance of inadvertently introduc-
ing unrelated code bugs is greatly lessened.

3.2.5 Organizing your code

Staying organized makes our lives easier and more efficient. This is true in program-
ming as well. Unless you’re using the ECMAScript 6 version of JavaScript, you can’t for-
mally declare your code as part of a class or module or subroutine. Nevertheless, the
ability to define a group of variables and functions as part of a unit of functionality is a
good practice.

 The module pattern gives you a way to take your code out of the global namespace
and organize it in a more meaningful way. You can start to think of the code in terms
of its overall functionality rather than individual functions (see figure 3.9).

 Ultimately, refactoring your code into well-organized units will lead to greater effi-
ciencies in terms of reuse, maintenance, and future updates.

applyBonusMultiplier

validateBonusAmount

subtractBonusFromPool

calculateBonus

applyMeritProration

validateMeritEntry

applyOptionsAward

calculateMerit

validateOptionsAward

subtractAwardFromPool

Global functions

calculate calculate calculate

Modules

Bonus module Merit module Options module

subtractAmountFromPoolsubtractAmountFromPool subtractAmountFromPool

applyAwardapplyMultiplier applyProration

validatevalidate validate

Figure 3.9 The module pattern helps organize code into units of functionality rather than individual functions.
Licensed to Mark Watson <nordickan@gmail.com>

69The module pattern dissected
3.2.6 Understanding disadvantages of the module pattern

Unfortunately, there’s no silver bullet when creating complex code. This is especially
true of modern web applications. For all the benefits offered by the module pattern,
you should be aware of some of its disadvantages:

■ When testing—Some people don’t like the inability to unit test private functions
inside the module. Others, however, advocate that unit-testing functionality via
the module’s public API is a more valid way of testing. Therein lies the contro-
versy. Even though the inability to test private code is seen as a disadvantage by
some, others feel that if you have to test private functions, then you should con-
sider whether they should be made public. Their argument is that unit tests
should be designed to test the interfaces to an object, not the private code
within the object.

■ When extending objects—JavaScript programmers are used to being able to
extend any object, at any time, by merely adding to it. This is a testament to the
powerful yet flexible nature of the language. But as you’ve learned, objects that
are defined within the module and aren’t part of the public API are unreach-
able outside the module. Therefore, adding a new property or method to a pri-
vate object inside the module won’t work. Then again, seeing this as a
disadvantage is all in how you look at it. As you saw previously, this can also pro-
tect the integrity of your module’s core functionality.

3.3 The module pattern dissected
So far you’ve learned a great deal about the module pattern and how to use it. What
you haven’t done is take a deep dive into its structure. Understanding why its syntax is
the way it is will help you feel more comfortable when incorporating the module pat-
tern in your single-page application. In this section, you’ll dissect the module pattern
to see how it does what it does.

 Let’s start by revisiting the original boilerplate structure to have it fresh in your
mind:

var moduleName = (function() {
 return {
 };
})();

This formula is the skeleton for the basic module pattern.

3.3.1 Achieving privacy

JavaScript has only two types of scope: local and global. Declarations made inside a
function are local (private), and those made outside any function are global (public).
Because you can’t explicitly mark variables and functions as public or private, you’re
left with only their scope to work with. That narrows things down a great deal.
Licensed to Mark Watson <nordickan@gmail.com>

70 CHAPTER 3 Modular JavaScript
The only way to achieve privacy in JavaScript is to make your declarations locally
within a function. Figure 3.10 highlights the anonymous function of the pattern,
which internalizes the module’s functionality.

 As you may recall from our discussion of the module pattern in the previous sec-
tion, this ability to internalize code is essential to achieve its benefits, such as avoiding
name conflicts, protecting your code’s integrity, and providing managed access to the
module’s functionality.

3.3.2 Creating the public API

You create the public API of a module by combining a few techniques. These tech-
niques make for unusual syntax but work perfectly together to give the desired effect.

RETURN AN OBJECT LITERAL

Instead of a simple value, such as true or 3, an object is returned in your module pat-
tern (see figure 3.11).

var moduleName = (function() {

 var someVar;
 function someFunction(){
 }

 return {
 someFunction : someFunction
 };

}) ();

Outer
function

Code local to this
function is not
accessible outside
the module

Figure 3.10 The outer function of the
pattern creates a local scope for variables
and functions. This gives the module a way
to achieve privacy for internal code.

var moduleName = (function() {
 var someVar;
 function someFunction(){
 }

 return {
 someFunction : someFunction
 };

}) ();

The functions here
give us regulated
access to the module.

Figure 3.11 An object literal is returned. Its functions have access to the module’s
internal variables and functions. This gives calling code regulated access to the
module’s functionality.
Licensed to Mark Watson <nordickan@gmail.com>

71The module pattern dissected
The returned object can have any assortment of variables and functions, but functions
are what allow you to expose behavior. That’s why you typically see only functions
available in the returned object.

 The object literal is favored for the returned object, because its syntax provides a
nice facility to define an object in a single, hierarchical fashion without the need for
the new keyword. As you saw earlier in the revealing module pattern, the exposed
functions are merely pointers to the inner functions.

CAUSE THE FUNCTION TO RETURN IMMEDIATELY

Normally when a function is declared, it doesn’t return until it’s invoked by other
code calling it. In the case of the module pattern, you need the variable you’re using
for the module’s namespace to point to the returned object literal, not the function
itself. This is accomplished by adding the trailing set of parentheses to the structure
(see figure 3.12).

 Without the trailing parentheses, the variable will be assigned the entire function,
not the object being returned. With them, however, the anonymous function is

Refresher on object literals

As a refresher, let’s look at object literals. In JavaScript, you can create objects with
the new keyword, with the Object.create() function (ECMAScript 5), or with literal
notation (also referred to as an object initializer). With literal notation, the object is
defined using curly braces. Its properties and values are in the form of name-value
pairs, separated with a colon. You’ll also need to put a comma after each pair except
the last one. Values can contain variables, functions, or other objects. Here’s an
example:

var employee = {
 firstName : "Bob",
 lastName : "Jones",
 deptInfo : {
 dept : "Accounting",
 bldg : "C Building",
 floor : "1st floor"
 },
 getFullName : function(){
 return this.firstName + " "
 + this.lastName;
 },
 getDeptInfo : function(){
 return this.deptInfo.dept + ", "
 + this.deptInfo.bldg + ", "
 + this.deptInfo.floor;
 }
}
console.log(employee.getFullName()
+ ": " + employee.getDeptInfo());

Begin object declaration

Declare variables

Nest objects

Declare functions

End object declaration
Prints “Bob Jones: Accounting,
C Building, 1st floor”
Licensed to Mark Watson <nordickan@gmail.com>

72 CHAPTER 3 Modular JavaScript
invoked immediately, returning the object literal to the assigned variable. This is
referred to as an immediately invoked function expression, or IIFE.

A CLOSURE IS FORMED

In order for this entire collection of techniques that are used to form this pattern to
work, any private variables or functions referenced/in scope by the returned object lit-
eral can’t be garbage collected. If they were, you’d get errors when trying to use the
API. But a special situation occurs when your object literal is assigned to the module-
Name variable. The object literal functions are now available for use, so they can’t be
garbage collected. Because these functions in the object literal also have references to
internal private objects, those objects can’t be garbage collected either. As you learned
in our definition of a closure, this is possible because all functions have a scope that
references an outer lexical scope. It’s the closure that keeps the internal functionality
alive long after the IIFE has finished executing (see figure 3.13).

 In holding onto their references, the module’s inner functions can continue to safely
operate without becoming undefined when the outer function finishes executing.

var moduleName = (function() {
 var someVar;
 function someFunction(){
 }

 return {
 someFunction : someFunction
 };

}) ();

This causes
immediate invocation.

Figure 3.12 The trailing parentheses
cause the anonymous function of the
module pattern to be invoked immediately,
returning the object literal.

var moduleName = (function() {

 var someVar;

 function someFunction(){
 }

 return {
 someFunction : someFunction
 };

 }) ();

The closure keeps
objects referenced
in the module’s outer
scope from being
garbage-collected.

Figure 3.13 A closure keeps any variables or functions referenced in the IIFE alive, even after execution.
Licensed to Mark Watson <nordickan@gmail.com>

73The module pattern dissected
3.3.3 Allowing for global imports

The trailing parentheses also give you a way to declare items you want passed into the
anonymous function via its parameters. In module terms, these external objects
you’re bringing inside for internal use are called imports.

 Using this facility to import global variables into the module is a common practice.
It not only makes it clearer to someone reading the code what’s being used but also helps
speed up the variable resolution process for the interpreter. Finally, it allows you to alias
a global variable, if desired, within the scope of the function. Take, for example, jQuery:

var moduleName = (function($) {

 function init() {
 $("#div-name").html("Hello World");
 }

 return {
 init : init
 };

})(jQuery);

The $ is the way most of us like to reference jQuery. It’s much easier than typing out
jQuery all the time. But many libraries out there also want to use $ in their code.
Because you’re specifically aliasing jQuery locally within this module, there’s no
chance for the $ in this instance to conflict with the $ from another library.

3.3.4 Creating the module’s namespace

The final part of the module pattern is the establishment of its namespace. This
namespace gives you a way to call the module’s public API, as well as somewhere to
assign any submodules that may be desired.

 In JavaScript, a function can be declared or assigned as an expression. You just
read that the outer function of the module pattern is an IIFE. The assignment of the
immediately invoked anonymous function to a variable not only gives you a pointer to
the returned object literal but also creates the module’s name. It also defines the mod-
ule’s namespace if submodules are attached (see figure 3.14).

jQuery aliased as $ via
the function parameters

jQuery imported

Creates a namespace
for the module

var moduleName = (function() {

 var someVar;
 function someFunction(){
 }

 return {
 someFunction : someFunction
 };

}) ();

Figure 3.14 This assignment
creates the module’s namespace.
Licensed to Mark Watson <nordickan@gmail.com>

74 CHAPTER 3 Modular JavaScript
TIP The parentheses around the IIFE aren’t required because this is a func-
tion expression. This visually establishes a boundary for the module (see fig-
ure 3.15).

And with that final note, your dissection of the module pattern is complete. As you
can see, each part of the pattern has a purpose. The end result from incorporating
this pattern is that your code base can remain clean, purposeful, and able to grow with
your project.

3.4 Module loading and dependency management
In most browsers, the SCRIPT tag used in your module’s source file creates a blocking
condition. The application pauses while scripts are loading. So the more module files
you have, the more lag your users will experience while waiting for the application to
load. A deluge of HTTP requests can also tax your network.

 To help alleviate this issue, you can concatenate the modules into as few files as
possible and optimize the final files. Chapter 9 covers tools for these two techniques.
But in spite of the gains from using these two techniques, you still have the SCRIPT
tag’s synchronous nature to contend with. To tackle this problem, you can also look at
libraries that load your modules asynchronously.

3.4.1 Script loaders

Being able to bypass the blocking condition of the SCRIPT tag gives a tremendous
boost to your application’s load time. HTML introduced native nonblocking support
for loading and executing JavaScript code through its defer and async attributes for
the SCRIPT tag. The defer attribute specifies that a script is executed only after the
page has finished parsing. The async attribute, on the other hand, asynchronously
executes the script as soon as it’s available. When using the SCRIPT tag, it’s up to you
to make sure scripts are correctly ordered so that dependencies are available when
needed. An alternative approach is to use AMD script-loading libraries.

 AMD script loaders handle the low-level, boilerplate code to manage the asynchro-
nous download process. They also allow you to specify dependencies that must be
present for a module to function. If the dependent modules aren’t there, the

Not required

var moduleName = (function() {

 var someVar;
 function someFunction(){
 }

 return {
 someFunction : someFunction
 };

}) ();

Figure 3.15 The outer
parentheses aren’t required.
Licensed to Mark Watson <nordickan@gmail.com>

75Module loading and dependency management
framework will go get them for you and make sure they’re downloaded and ready
before proceeding. You have a multitude of script loaders to choose from—LABjs,
HeadJS, curl.js, and RequireJS, to name a few. Each one is slightly different but serves
to tackle loading and management issues. It’s also worth mentioning that, though not
ratified as of this writing, the ability to asynchronously load scripts is a proposal for
CommonJS-style script loaders.

 Nothing is ever perfect, though. Asynchronously loading scripts speeds things up
but introduces another problem: unpredictable resource availability. When scripts are
loaded asynchronously, there’s no way to precisely know which one will be first. It’s
entirely possible for a file to download and start executing before all necessary depen-
dencies are in place. Creating the fastest load time possible is for naught if your scripts
fail because their dependencies aren’t yet loaded. Good news, though. Most script-
loading libraries take care of this issue as well.

 Script loaders defer script execution until the file and any required dependencies
needed by the module are loaded. Most cache the module as well, so it’s loaded only
once, no matter how many times it’s requested.

 To illustrate some basic loading and management concepts, I have to choose a
library to use. We’ll use RequireJS because it’s currently a heavily used script-loading
library. RequireJS will also give you a chance to become acquainted with a popular
module format that differs slightly from the traditional module pattern you’ve already
seen. It’s called the Asynchronous Module Definition (AMD) API. The next sections
define AMD and walk you through script-loading basics with RequireJS.

3.4.2 Asynchronous Module Definition

AMD started as the draft of the module format for a larger project called CommonJS.
CommonJS was an attempt to not only solve the issue of a missing standard module
definition in the JavaScript language but also make this single format work for a vari-
ety of environments, including the server. But among the CommonJS group, full con-
sensus wasn’t reached on the module specification (as of this writing), and AMD was
moved to its own group, the AMD JS group (https://github.com/amdjs).

 AMD has largely been adopted for use within web browsers. This specification
defines not only a standard module format but also how to asynchronously load it and
its dependencies. The specification defines two structures: define and require. I’ll
talk about both before diving into an example using RequireJS.

DEFINE

Use define to declare a module, as you did using the module pattern previously. Like
the module pattern, the AMD module allows for imports, which can be accessed via
matching function parameters. The body of the AMD module is also nested inside an
outer containing function, just like the module pattern. Another similarity is that the
AMD module’s body contains private functionality that can be exposed via its return
statement.

 At this point, you’re probably asking yourself why AMD exists, if you already had a
perfectly good way to create modules using the module pattern. The main reason is
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/amdjs

76 CHAPTER 3 Modular JavaScript
that AMD represents a formal specification for defining modules, absent having one in
the language. But more specifically, it’s a specification for defining modules and their
dependencies that are to be loaded asynchronously.

TIP Even though the specification allows for a module ID, it’s normally omit-
ted. If the ID is left out, it’s generated internally by the script loader. In turn,
the module is managed internally via the generated ID. Unnamed AMD mod-
ules are more portable, allowing you to freely move the module to new direc-
tories without code updates.

Notice that a namespace isn’t defined as with the module pattern. Another one of
the perks of using AMD and script loaders is that namespaces are no longer needed.
Modules are managed by the library. You also don’t have to worry about the order of
the dependencies. They’ll be loaded and available by the time the module’s function
executes.

REQUIRE

The require syntax is used to asynchronously load/fetch a particular module. In this
structure, you define the modules to be loaded in the same way that dependencies are
declared using the define syntax. A callback function is executed when the required
modules are fetched and ready.

The require structure is a directive, not a module declaration. So whereas module
definitions are usually one per physical file, require should be used anytime you need
it. It can be used by itself or from within a module.

AMD—define

define('someID',
 ['dependency1', 'dependency2'],
 function (depArg1, depArg2) {

 // private variables, functions
 return {
 // public functions
 };
});

AMD—require
require(
 ['module1', 'module2'],
 function (modArg1, modArg2) {
 // do something
});

Optional name/ID
for the module Optional array of strings representing

the module’s dependencies

Outer containing function’s parameters
are references to the dependencies

Code used internally by the module

Object literal with public functions is
returned, serves as the module’s public API

Array of strings representing
the modules to load/fetch

Callback function with parameters
that are references to the modules
Licensed to Mark Watson <nordickan@gmail.com>

77Module loading and dependency management
3.4.3 Using AMD modules with RequireJS

Quite often concepts are easier to understand after seeing them in action. So let’s take
one of the earlier examples and convert the modules into AMD-style modules. You’ll
use RequireJS as the module-loading library to implement AMD.

 Before you begin the example, let’s go over some RequireJS concepts. Even though
you’ll focus on module loader concepts, you still have to get some of the RequireJS
basics under your belt to be able to complete the example:

■ data-main—Everything has to start somewhere. Just as a basic Java or C# appli-
cation has a “main” method, RequireJS similarly has a point of origin. When you
add a SCRIPT tag to your SPA to include the RequireJS library, you’ll add a data-
main attribute to it. This is the starting point of a RequireJS-loaded application.
Normally your main JavaScript file will contain the RequireJS configuration and
a require directive to execute the initial AMD module.

■ requirejs.config()—This function establishes the RequireJS configuration
options. Its only input is an object literal that will contain all configuration
properties and their values.

■ baseUrl—This is a path relative to your web application’s root directory. Any
other paths in the configuration object will be relative, in turn, to this path.

■ path—You have to tell RequireJS where to find your modules. A path maps a
module name (which you invent) to a path on the web server, relative to the
baseURL (and the application’s root directory). It can be the full path to the
module’s source file (minus the extension) or a partial path. If a partial direc-
tory path is used, the rest of the path to the file must be included anywhere the
object is listed as a dependency.

You have many more configuration options, but we’ll stick to the basics to keep the
emphasis on learning AMD, not RequireJS specifically. If you want to learn more about
RequireJS-specific options, the documentation can be found at http://requirejs.org.

 Now that you’ve been introduced to a few basic concepts, let’s try converting an
example’s modules to AMD modules. You’ll use the example from section 3.2.2,
because it’s a small example and will be easy to compare against the original version.

 First, you’ll need to download the RequireJS library from http://requirejs.org. Fig-
ure 3.16 has the correct download option circled.

Figure 3.16 RequireJS
has no dependencies to
download. You need
only the require.js file.
Licensed to Mark Watson <nordickan@gmail.com>

http://requirejs.org
http://requirejs.org

78 CHAPTER 3 Modular JavaScript

Requi
lib

base
to th
appli
root
With the necessary files in place, the example’s directory now looks like the following
listing.

|-- app
| |-- example
| | |-- modules
| | | |-- counter.js
| | | |-- displayUtil.js
|-- thirdParty
| |-- require.min.js
|-- index.html
|-- main.js

When you open your default URL in the web browser, you’ll immediately get the
index.html page, because the server has been configured to use it as your welcome
page. All you need to do here is add a single JavaScript include to point to the
RequireJS library. Inside the SCRIPT tag, you’ll use the data-main attribute to let
RequireJS know that your main file is called main.js and can be found at the web appli-
cation’s root (see the following listing).

<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet" href="css/default.css">
</head>
<body>
 <!-- starting point defined in data-main -->
 <script data-main="main.js"
 src="thirdParty/require.min.js">
 </script>
</body>
</html>

Next, you’ll need to add some basic configuration to main.js. This example is simple,
so you need to configure only your baseUrl and path properties so RequireJS can find
the modules. You’ll additionally use the require directive to call displayNewCount()
from your displayUtil module twice. Calling the function more than once will let
you know that the counter is incremented appropriately (see the following listing).

requirejs.config({
 baseUrl : "app/example",
 paths : {
 counter : "modules/counter",
 util : "modules/displayUtil"
 }
});

Listing 3.13 AMD example directory structure

Listing 3.14 index.html

Listing 3.15 main.js

Two example modules
reJS
rary

Main file contains the RequireJS configuration
and our application’s kickoff point

Tells RequireJS where application’s
main file is located

RequireJS library

Url relative
e web
cation’s

Path relative to the baseUrl (entry to the
left of the colon is the module’s name)
Licensed to Mark Watson <nordickan@gmail.com>

79Module loading and dependency management

Use th
name
a reso
depen
require(
 ["util"],
 function(utilModule) {
 // increment first time
 utilModule.displayNewCount();
 // increment second time
 utilModule.displayNewCount();
 }
);

Looking at the code for the require call from listing 3.15, notice that you told
RequireJS you wanted to use the displayUtil module in the callback function by
including its module name from the paths section. Each module-name string in the
dependency list should have a matching function parameter. Inside the callback func-
tion, you use this parameter to reference the module.

 The following listing shows the module for the display utility. Because this is a
module declaration, you’ll use the define syntax.

define(["counter"], function(counterModule) {
 function printCount(){
 var count = counterModule.getCount();
 if(count === 1) {
 count = count + " time";
 } else {
 count = count + " times";
 }
 console.log("Count incremented: " + count);
 }

 function displayNewCount(){
 counterModule.incrementCount();
 this.printCount();
 }

 return {
 printCount : printCount,
 displayNewCount : displayNewCount
 };
});

In the displayUtil module, your only dependency is the counter module. The body
of the module is nearly a one-to-one match with the original, non-AMD version. Keep
in mind that you don’t need to assign the module to a namespace, because modules
are managed internally by RequireJS.

 Finally, the next listing shows the counter module. Because it has no dependen-
cies, you can leave out that part of the structure. With no dependencies, your outer
function will have no parameters.

Listing 3.16 displayUtil.js

e module’s
to declare
urce as a
dency

Function parameter receives the object
export of the dependency it matches

Inside our callback function, call
displayUtil twice to increment counter

Counter module
is a dependency

Code was modified to
use the parameter
reference to the
counter module
Licensed to Mark Watson <nordickan@gmail.com>

80 CHAPTER 3 Modular JavaScript

define(function() {
 var count = 0;

 function incrementCount(){
 ++count;
 }

 function getCount(){
 return count;
 }

 return {
 incrementCount : incrementCount,
 getCount : getCount
 };
});

With all of the files in place, you can start your server and navigate to the default URL.
The application will start after the require directive is reached. Figure 3.17 shows the
network console from the browser. Now you can see the module loader in action.

 From the output in the network console, you can see that all required modules were
downloaded automatically by the module loader. All you had to do was to add a depen-
dency to your require or define declaration. Because each dependency was passed
into the module via its corresponding function parameter, you had access to the depen-
dent module’s public API. Additionally, because RequireJS manages the modules for
you, you didn’t need any namespaces. This is a testimony to the power of using AMD
modules and the module loaders that implement this module specification.

Listing 3.17 counter.js

Dependency list can be left out; module’s
outer function has no parameters

Figure 3.17 The module loader correctly downloads and manages our AMD modules and
dependencies. The require directive in main.js declares a dependency that instructs
RequireJS to fetch the displayUtil module. The displayUtil module, in turn, has a
dependency on the counter module that gets dynamically loaded by the module loader.
Licensed to Mark Watson <nordickan@gmail.com>

81Summary
3.5 Chapter challenge
Now here’s a challenge for you, to see what you’ve learned in this chapter. In browsers
such as Firefox or Chrome, you can add styles to messages printed to the browser’s
console by using %c, as in this example:

console.log("%c" + errorMessage, "color: red");

See if you can turn this into a reusable logging module. Expose functions that will
print different colors based on these logging modes: debug, info, warning, and error.
Internally create variables representing each mode’s color: black for debug, green for
info, orange for warning, and red for error. You’ll also need to define internal func-
tionality that prints in a color that matches the logging mode used.

3.6 Summary
This chapter described what a module is and listed what the module pattern does for
you:

■ Keeps parts of your code private, only for use within the module
■ Provides for a public API, which hides complexity and protects the integrity of a

component’s code by providing regulated access to the internal code
■ Prevents name collisions that occur when everything’s defined in the global

namespace
■ Reduces the impact to the project when code changes
■ Provides a way to divide areas of concern in your application into manageable,

more meaningful units

Nothing’s perfect. This chapter also presented some disadvantages of the module
pattern:

■ Unit testing is limited to a public API.
■ Internal objects can’t easily be extended.

Finally, you looked at a more formal specification for modules called Asynchronous
Module Definition (AMD) and learned how module loaders eliminate the need for
namespaces and asynchronously fetch your modules and their dependencies.

 In the next chapter, you’ll look at another way to separate areas of concern: using
MV* libraries to separate your JavaScript code from your HTML.

Licensed to Mark Watson <nordickan@gmail.com>

82 CHAPTER 3 Modular JavaScript

Licensed to Mark Watson <nordickan@gmail.com>

Part 2

Core concepts

In the second part of the book you’ll see how the various pieces of an SPA fit
together. You’ll also get an introduction to testing an SPA and how client-side
automation fits into the picture.

 In chapter 4, you’ll be introduced to client-side routing. You’ll get an over-
view of router syntax and a comparison of various router styles. Along the way,
you’ll learn how routers work under the covers and how they affect the state of
the application.

 Chapter 5 introduces you to design and layout concepts when building an
SPA. We’ll start with a look at simple designs and then progress into building
SPAs with more complex layouts. You’ll also see how to incorporate advanced
routing and view management into your application.

 Chapter 6 gives you a tour of inter-module communication methods, includ-
ing an introduction to modular design concepts. In this chapter, you’ll learn
some ways in which modules communicate with each other. I also talk about the
pros and cons of each method.

 In chapter 7, you’ll learn how to communicate with the server and how MV*
frameworks can be leveraged to make this process easier. We’ll start with the
basics of HTTP transactions and then move into more advanced topics such as
using promises and consuming RESTful services from your SPA.

 Chapter 8 gives you a gentle introduction to unit testing your application.
You’ll learn basic unit-testing concepts and walk through the testing of the dif-
ferent framework styles talked about in the book.
Licensed to Mark Watson <nordickan@gmail.com>

84 CHAPTER Core concepts
 Finally, in chapter 9, you’ll see the role client-side automation plays in both the
development and the creation of a build process. This is an advanced topic, so we’ll
walk through each part of the process, step by step. When you’ve finished, you’ll know
not only how to create a client-side build but also some ways to make your develop-
ment processes faster and more efficient.

Licensed to Mark Watson <nordickan@gmail.com>

Navigating the single page
Part 1 of this book covered views and how they’re created. What it didn’t cover,
though, is client-side routing. This can be used to navigate from one view to the
next, but that’s only part of the picture. Client-side routing is also about transition-
ing between different states in the application. This could include modifications to
the current view without navigation or other activities that don’t include changes in
the UI at all.

 In this chapter, you’ll explore how users navigate in an SPA by using client-side
routing. You’ll not only learn what client-side routers are but also peek behind the
curtain a bit to see how they work.

 During our discussion, I’ll keep things as framework-agnostic as possible by illus-
trating with pseudocode. Once you’ve nailed down the concepts, you’ll use what
you’ve learned to create a simple routing example with AngularJS. In the example,

This chapter covers
■ An introduction to client-side routing
■ An overview of routes and their configuration
■ A summary of how routers work
■ How to use route parameters
85

Licensed to Mark Watson <nordickan@gmail.com>

86 CHAPTER 4 Navigating the single page
you’ll create a website for a department of a university. Though rudimentary, the
example will sufficiently illustrate the basic concepts common to most client-side rout-
ers without getting into too many vendor-specific details. You’ll also use that same uni-
versity theme throughout our discussion. This will help you put a real-world face on
the pseudocode and illustrations.

4.1 What is a client-side router?
Let’s begin this discussion by putting navigation as a whole into context. You’ll start
with the request and response model used in traditional web application navigation.

4.1.1 Traditional navigation

In a traditional web application, navigation is thought of in terms of complete web
pages. When you enter a new URL into the location bar of a browser, usually a request
is sent for the page from the browser to a server, which responds by sending you back
an entire HTML page (see figure 4.1).

 What’s actually sent back is the HTML document for the requested page. After the
HTML for that page is received, the browser then fetches any other source files refer-
enced by the document, such as any CSS and JavaScript include files. Other assets ref-
erenced in the HTML, such as images, also get downloaded as the browser parses the
document’s HTML and encounters their tags. To display the new content, the browser
performs a complete refresh.

4.1.2 SPA navigation

As you already learned, an SPA’s DOM typically starts off as a shell in the SPA’s index
page. That’s all that’s needed. The SPA’s modules and MV* framework, including sup-
porting libraries, are either downloaded with the index page or asynchronously
loaded if an AMD script-loading library is used. An SPA also has the ability to asynchro-
nously fetch data and any remote templates (partials) and other resources not already
included and to dynamically render views as needed.

 As the user navigates, views are seamlessly displayed. This, combined with the asyn-
chronous fetching of data, gives the application a smooth, native-like feel that makes
for a great user experience. No more of the jarring interruptions that you usually

HTTP request
Type: GET

Request URL: http:// www.someurl.com

HTTP response
<html><head><title>Some Site</title> etc...

Figure 4.1 In traditional web-page navigation, complete pages are sent back to the browser,
triggering a refresh to display the new content.
Licensed to Mark Watson <nordickan@gmail.com>

87What is a client-side router?
experience when a page is wiped clean and a new page is downloaded and displayed.
The SPA does all of this without refreshing the initial page after it’s loaded.

 After the SPA is loaded, however, users need a way to access additional content
within the application. Because an SPA is still a web-based application, your users will
expect to be able to use the address bar and the browser’s navigation buttons for navi-
gation. But how can navigation in an SPA occur with just one page and no browser
refreshes?

 As it turns out, it’s not only possible, it’s easy. The JavaScript component that
makes navigation in this single-page environment possible is called a client-side router
(or just a router).

 But remember that when I talk about navigation, I’m talking about managing the
state of the SPA’s views, data, and business transactions as the user navigates. The
router manages the application’s state by assuming control of the browser’s naviga-
tion, allowing developers to directly map changes in the URL to client-side functional-
ity (see figure 4.2). I’ll get into the details of how it does this later, in section 4.3.

 Using this approach, no server round-trips are needed. The router determines when
a change in state is needed through various methods of detecting changes in the
browser’s location, such as listening for particular events. Anytime a URL change
occurs, the router tries to match part of the new URL with an entry in its configuration.

 Before breaking down the typical parts of a router’s configuration, let’s look at the
big picture. Figure 4.3 provides an overview of the navigation process in an SPA and
highlights the role of the client-side router. Notice that at no time does the router
interact with the server. All routing is done in the browser.

 As you can see in the diagram, when the router matches paths from its configura-
tion with real URLs in the browser, it can determine what types of changes in the appli-
cation’s state should occur. Are there any changes in the data of the current view? Is a
business process associated with the route? Should the route result in a change in the
current view?

 Now that you have a mental picture of the basic routing process, let’s go over how
routes are set up. The next section breaks down the configuration of a router and
defines its typical parts.

SPA URL:
Http://www.someurl.com/#/myFirstView

Router

MV* framework

Display view
<div>some content etc...

X

Figure 4.2 In an SPA, the client-side router assumes control of navigation, allowing the SPA to
display new views instead of complete pages.
Licensed to Mark Watson <nordickan@gmail.com>

88 CHAPTER 4 Navigating the single page
4.2 Routes and their configuration
No matter which router you use, a certain amount of up-front configuration must be
done. You must make entries in the router’s configuration file to map out how the
router should respond as the user navigates.

 Each entry in the router’s configuration is called a route. Routes are stored in the
router’s configuration at development time, with each route representing a logical
flow within your SPA. You’ll typically design your routes as you design the layout for
your application. Though router configuration varies from router to router, here are
some typical configuration terms:

■ Name—With some routers, a name is given to the route. In others, the path
serves as the route’s identifier.

■ Verb—Routes are sometimes defined with function names that match HTTP
verbs—for example, get() or put()—but not always. Some routers use more-
generic names such as on() or when() or route().

■ Path—The path is a part of the URL. The path used to configure the router estab-
lishes a link between a URL and a route/route handler. This allows the router to
figure out which set of actions to perform. Anytime the URL in the browser
changes, the router compares the new URL with all route paths in the configura-

1. User reqeusts the office hours
 view for faculty ID “manderson”

2. Router attempts
 to match the URL
 with one of the
 routes from the
 router configuration

3. Run associated code
 for matched route or
 for default route if
 no match is found

4. Display view
 for Dr. Mary
 Anderson

This example results in a view
change, but routing doesn’t always
result in an update to the UI.

When there
is no match

Routes can contain
parameters (marked
by special characters
that vary by vendor).

getOfficeHours(){
 ...
}

Functionality:
getOfficeHours()

View:
/officeHrs.html

Office hours route

Routes
Path list

/facultyRouter

View

http://someuniv.edu/#/officehrs/manderson

/contact

/officehrs/{facultyName}

/ (default route)

Figure 4.3 An overview of the SPA navigation process and the role of the router
Licensed to Mark Watson <nordickan@gmail.com>

89Routes and their configuration
tion file’s path list for a match. When one is found, the route is carried out. The
path of the route must be a valid part of a URL. Although it’s quite common that
the path is simple text, some routers allow the use of regular expressions.

■ Functionality—This is the associated code that may be executed, such as a con-
troller or a callback function. For the route to do anything, you need some asso-
ciated code to run.

Routers may or may not include a way to define the view via configuration. Remember
that routing is about changes in the application’s state that don’t have to result in a view
at all. I include it in the list because the view is a configuration item for some routers:

■ A view—Most often when a router allows you to include the view as part of the
route’s configuration, it’s the path to an HTML partial. As you may remember
from chapter 2, these files are kept separate at development time and include
only elements for a particular view. When the view is configured as part of the
route, the router typically handles its display and gives the functionality access
to the view (or a proxy object for the view, such as a ViewModel).

Figure 4.4 shows an average route in the configuration of some routers, like the one
we’re using in this chapter. Because each router is different, this figure won’t be a

Some routers include the view as part of the
configuration, whereas others leave the rendering
and display of views for you to code yourself.

Each entry
in a router’s
configuration
is called a
route.

The path is the part of the
URL we’re trying to match.

function getListOfFaculty() {
...
}

facList.html
<section id="fac_list">
<h1>Our Faculty ...

Router

Route

View:
/App/Partials/facList.html

Is
displayed

Is
exececuted

Functionality:
getListOfFaculty

PATH:
/faculty

Figure 4.4 Router configuration entries serve as instructions for what happens when a route’s path matches a
part of the browser’s URL.
Licensed to Mark Watson <nordickan@gmail.com>

90 CHAPTER 4 Navigating the single page

Th
perfect fit for all routers. You can use it, however, as a general, high-level look at route
configuration. Keep in mind that in your SPA, you’ll most likely end up with many
routes in the router’s configuration when your application is completed.

 Routers may also provide other, more advanced features. This varies from router to
router. Consult the documentation of the router implementation you’re using for the
full list of available configuration options.

4.2.1 Route syntax

Syntactically, the code for your routes will differ somewhat from router to router. With
some router implementations, you configure the route and route handler in separate
places, whereas others provide for the configuration of both in the same place. A com-
mon theme exists, though, for executing routes. Let’s look at some syntax examples.

 Table 4.1 is by no means an exhaustive list, but it does give you a few examples.
Remember to consult your router’s documentation for the exact syntax to be used.

Also remember that some MV* frameworks, such as Knockout, don’t include a router.
In that case, you’ll need to find an external router library, such as Sammy.js.

4.2.2 Route entries

Now let’s see how a complete route entry might look. Again, we’ll use pseudocode
right now and wrap things up with a real, working project at the end of the chapter.
The following listing illustrates a basic route in which you’re able to specify a view in
the configuration.

ON MATCH OF "/routes/faculty" :
 FUNCTION NAME : "getListOfFaculty",
 VIEW TO DISPLAY : "App/partials/faclist.html"

Table 4.1 Examples of client-side router syntax

Framework/library Path example

Sammy.js
http://sammyjs.org

get('#/routes/faculty', function() {...})

Kendo UI
http://www.telerik.com/kendo-ui

route("/routes/faculty", function() {...})

AngularJS
https://angularjs.org

when("/routes/faculty", { ... })

Backbone.js (2 steps)
http://backbonejs.org

1. routes: {"/routes/faculty": "facultyRoute"}
2. on("route:facultyRoute", function () {...})

Listing 4.1 Router with view capabilities (pseudocode)

e path

The functionality that’s executed

The view that gets displayed
Licensed to Mark Watson <nordickan@gmail.com>

91Routes and their configuration

Th
This route entry almost reads like a sentence, doesn’t it? It’s telling the narrative of
what needs to happen when the router finds a match to its path in the URL. It’s also an
easy trail to follow: match the pattern, run the code, and show the result.

 Next, let’s see the same route, but from the perspective of a router that leaves the
view’s rendering and display up to you. In the following listing, the router provides
only the facility to match the route with a controller or callback function.

ON MATCH OF "/routes/faculty"
 EXECUTE THIS FUNCTION :
 function() {
 // get faculty list, then call MV*code
 // to render and display view
 }

This type of router is handy when you’re using a code-driven framework, such as Back-
bone.js.

TIP No matter which type of router you use, try to leave your route configu-
ration file devoted to the routes themselves. It’s considered a better practice
to have the route’s callback function use your application’s modules to per-
form any business logic, as opposed to mixing in code not related to routing.

So far we’ve been talking about basic routes. Most routers offer a way to greatly
expand the capabilities of a single route, by turning the route path into something
dynamic. The next section explores the topic of route parameters and how to use them
in your application.

4.2.3 Route parameters

Most routers have the notion of route parameters. A route parameter is a variable
defined in the route’s path. This allows you to add variables to the URL, which will
later execute when the route is carried out.

 Why would you need this ability? Well, you might want to use the same functional-
ity and the same view but want a different outcome for different situations. Route
parameters provide this flexibility. This is a powerful tool to have at your disposal.

 Let’s illustrate this concept with a route that displays the office hours for the fac-
ulty members in our university-themed example. In this situation, everything is the
same in your route, down to the view. But you need the view to display different infor-
mation depending on which faculty member’s name is clicked. To do this, you’ll pass
the faculty member’s ID in the route’s path. This situation is a perfect scenario for
using a route parameter.

 To make the route parameter work, you need two parts: the relative URL contain-
ing the text you’re passing and the route path with the parameter on the receiving
end.

Listing 4.2 Router that lets you handle the view (pseudocode)

e path

The functionality that’s executed
Licensed to Mark Watson <nordickan@gmail.com>

92 CHAPTER 4 Navigating the single page

ty
CONFIGURING A ROUTE PATH WITH A PARAMETER

To tell the router that part of the path is a parameter, you define it in your route’s con-
figuration. The parameter is defined by using special characters as specified by the
router. The following listing shows your office hours route with its route parameter.

ON MATCH OF "/routes/officehrs/{facultyNameParam}"
 EXECUTE THIS FUNCTION :
 function(facultyNameParam) {
 // get office hours for faculty member
 // with ID of facultyNameParam
 }

Each router has its own syntax for route parameters. Table 4.2 contains several exam-
ples of route parameter syntax for comparison. We’ll stick to the same router list that
you saw previously in table 4.1. Each one happens to use the same route parameter
syntax.

In the frameworks/libraries represented in table 4.2, a colon is the common way to
denote a route parameter. But no universal standard exists. Other routers may use a
different convention. Additionally, the router you select may offer more-advanced
parameter options, such as regular expressions. Consult the documentation for
whichever router you choose.

THE RELATIVE URL WITH THE TEXT TO BE PASSED

If you use a route parameter, the router can discern from the path which part of the
URL is the parameter and which part should be a verbatim match. For example, the
following is a link that matches the route from listing 4.3. The URL matches the path
exactly, except for the parameter portion.

 Dr. Mary Anderson

Listing 4.3 Office hours route with a parameter (pseudocode)

Table 4.2 Examples of route parameter syntax

Framework/library Path example

Sammy.js
http://sammyjs.org

:facultyNameParam

Kendo UI
http://www.telerik.com/kendo-ui

:facultyNameParam

AngularJS
https://angularjs.org

:facultyNameParam

Backbone.js (2 steps)
http://backbonejs.org

:facultyNameParam

Route parameter to pass a facul
member’s ID denoted with {}

The router passes the route
parameter to the callback
function so you have access to it
Licensed to Mark Watson <nordickan@gmail.com>

93How do client-side routers work?
If this were a link to your office hours route, the last part of the link’s URL would rep-
resent this person’s faculty ID. Each faculty member on your fictitious university web
page could have a link that uses the same route pattern but includes a different ID as
the URL’s suffix.

MULTIPLE PARAMETERS

Most (if not all) routers allow for more than one parameter to be used at a time. For
example, if you have more than one link for a faculty member, you might want to
parameterize the route even further:

/routes/officehrs/{facultyNameParam}/{dayOfTheWeek}

Apart from defining specific routes, it’s also possible to include a default route.

4.2.4 Default routes

To round out our discussion of routes and their configuration, we need to touch on
default routes. These types of routes are good for catchall situations when the route
isn’t specified or is invalid. Without a default, your application wouldn’t do anything if
the user typed a URL in the address bar that had no matches in the router’s configura-
tion. With a default route in place, you’re immediately redirected to a particular route
from your route list. The following listing shows how you can redirect any URL back to
the faculty route when no match is found.

DEFAULT ROUTE: [
 REDIRECT TO "/routes/faculty"
]

Your default means that when you have a route match, route to it; otherwise, redirect
to the faculty route. The default route is also a handy mechanism to specify what hap-
pens when a user types a website’s base URL into the browser, with no specific paths
included.

 The next section explains what the router is doing when you navigate. The discus-
sion will stay at a high level but go just deep enough for you to understand what’s
going on behind the scenes during routing.

4.3 How do client-side routers work?
Part of a client-side router’s job is to allow users to use the address bar and the
browser’s navigation buttons as they normally would in a traditional web application.
At a minimum, many client-side routers offer the following features that make this
possible:

■ Match patterns in the URL with paths defined by the route
■ Allow for the execution of code in your application when a match is found

Listing 4.4 Default route (pseudocode)

Otherwise indicates your default. You
redirect back to the faculty route when
there’s no match to any other path.
Licensed to Mark Watson <nordickan@gmail.com>

94 CHAPTER 4 Navigating the single page
■ Allow a view to be specified that will be displayed when the route is triggered
■ Allow for parameters to be passed via the route’s path
■ Allow users to use standard navigation methods of the browser to navigate the SPA

These features are all that are needed to provide a minimal level of navigation in an
SPA. Keep in mind, though, that there’s no guaranteed standard that all client-side
routers must follow. These are just the most common options you’ll encounter. The
documentation for the MV* framework (or independent router library) will list its full
range of features.

 Having summarized a basic list of features most routers offer, let’s peek under the
covers to see how routers provide navigation in a single-page setting.

 Routers use one of two methods: either via the URL’s fragment identifier or the
HTML5 History API. Both methods enable the router to provide server-less navigation
but in slightly different ways. Because the HTML5 History API is newer and not sup-
ported by older browsers, you’ll start your foray into the world of client-side routing
with the more traditional fragment identifier method.

4.3.1 The fragment identifier method

The traditional method for routers to
provide navigation in an SPA is via a
fragment identifier. As noted in figure
4.5, the fragment identifier is any
arbitrary string of text at the end of
the URL and is prefixed with a hash
symbol (#). This optional part of the
URL references a section of the cur-
rent document, not a new document.

 Browsers treat this part differently from the rest of the URL. When a new fragment
identifier is added to the URL, the browser doesn’t attempt to interact with the server.
The addition does, however, become a new entry in the browser’s history.

 This is important because all entries in the browser’s history, even those generated
from the fragment identifier, can be navigated to via normal means, such as the
address bar and the navigation buttons. To see this in action, go to any website, such
as www.manning.com. Next, try executing the following in your browser’s console:

window.location.hash = "hello";

As you’ll see, doing this results in hello being added as the URL’s fragment identifier.
The URL should look like this after the line executes:

http://www.manning.com/#hello

This action also adds a new entry in the browser’s history. Now you can navigate back
and forth between the fragment identifier and the original URL.

http://www.somesite.com/categ/#hashinfo

Protocol Category

Hostname Fragment
identifier

Figure 4.5 The fragment identifier
Licensed to Mark Watson <nordickan@gmail.com>

95How do client-side routers work?

Th
EXPLOITING THE BROWSER’S LOCATION OBJECT

The location object contains an API that allows you to access the browser’s URL informa-
tion. In an SPA, routers take advantage of the location object to programmatically gain
access to the current URL, including the fragment identifier. The router does this to
listen for changes in the fragment identifier portion of the URL, via the window’s
onhashchange event (if available in that browser version—otherwise, it polls for hash
changes).

 When a change occurs, the pattern in the new hash string is compared to all the
paths in each route from the router’s configuration. If a match exists, the router exe-
cutes any process specified and then displays the view from the matching route.

 For example, imagine you have a link to your fictitious department’s main contact
page in your website header. The link’s code points to a fragment identifier URL:

Contact Us

When you click this link, the browser’s fragment identifier changes from its initial
value to #/routes/contact.

 Because the router actively listens for changes in the fragment identifier, this new
hash is detected. Upon detection, the router searches all routes in its configuration
for a path matching /routes/contact. When it finds a match, the route in the follow-
ing listing is carried out.

ON MATCH OF "/routes/contact" :
 FUNCTION NAME : "displayContactNumber",
 VIEW TO DISPLAY : "App/partials/contact.html"

You should now have a pretty good understanding of basic client-side routing. As I
mentioned at the beginning of this section, routers can use two methods to control
the application’s state. You’ve looked at the fragment identifier method. In the next
section, you’ll look at the newer HTML5 History API method.

4.3.2 The HTML5 History API method

You’ve learned that by using the fragment identifier method to change the URL’s hash
information, the router can add new navigable entries in the browser’s history. Each
change adds a new entry in the history stack. After that, users can navigate back and
forth between hashes without triggering a page refresh. But when using this method,
developers are forced to create paths that revolve around the hash symbol (#).

 New methods in the HTML5 History API change this. Routers can take advantage of
new functionality available in HTML5 to interact with the browser’s history without rely-
ing on the fragment identifier. Also, because these methods aren’t available in older
browsers, most routers gracefully fall back on the fragment identifier automatically.

Listing 4.5 Main contact route (pseudocode)

e path

The functionality used
in the new route

The view you’ll change to
Licensed to Mark Watson <nordickan@gmail.com>

96 CHAPTER 4 Navigating the single page
PUSHSTATE AND REPLACESTATE

The two new methods in the History object’s API that routers can take advantage of
are as follows:

■ pushState()—Allows you to add new history entries
■ replaceState()—Allows you to replace existing history entries with new ones

These new additions allow direct access to the browser’s history without relying on the
fragment identifier. You’ll explore them briefly to understand what happens when
routers use the HTML5 History API method.

 Using history.pushState() or history.replaceState(), the router can directly
modify the browser’s history stack. Both methods also allow the router to work with
“pretty,” natural-looking URL segments instead of hashes. Both methods take three
parameters:

■ State object—An optional JavaScript object associated with the history entry
■ Title—Represents a new title for the history entry (though not implemented by

most browsers as of this writing)
■ URL—The URL that should be displayed in the browser’s address bar

To see how this method works, give pushState() a try. Go to any website, such as
www.manning.com, and type following in your browser’s console:

history.pushState({myObject: "hi"},"A Title", "newURL.html");

The command results in the URL changing to this:

http://www.manning.com/newURL.html

It also adds a new entry in the browser’s history. Now you can navigate back and forth
between the new URL and the original URL. You’ll also notice that the URL added via
pushState() doesn’t trigger a browser refresh and doesn’t contain the hash symbol.

 To view the state object that was added, you can type history.state into the con-
sole. In response, you’ll see the contents of myObject returned.

THE POPSTATE EVENT

Finally, routers are given a way to monitor the history stack for changes: the
window.popstate event. Browsers fire this event whenever the user navigates between
history entries.

 You can also experiment with this in your console. Use the pushState() method to
add some history entries. Then execute the following code in your console:

window.addEventListener("popstate", function(event) {
 console.log("popstate event fired");
});

Next, navigate back and forth between the URLs added with pushState(). You should
see the following log entry added to the console:

popstate event fired
Licensed to Mark Watson <nordickan@gmail.com>

97How do client-side routers work?
Now that you understand the newer HTML5 History API method of routing, let’s see
how you change your code to use it.

4.3.3 Changes for the HTML5 History API method

Most routers offer the option to use the HTML5 History API method for client-side
routing. Indicating to the router which method you prefer is usually as easy as setting
a single configuration option. Often, however, other changes need to be made in
addition to the mode switch. I talk about those in this section.

 Let’s start with the option to change methods. In many routers, you change a Bool-
ean value from false to true.

HTML5 MODE

To convert our example from the fragment identifier method to this one, you need to
change the appropriate setting in your router’s configuration. This is where you flip
the switch to use the HTML5 History API method. For example, in AngularJS, you’d use
this:

html5Mode(true);

In Backbone.js, you’d use this:

Backbone.history.start({pushState: true});

Again, these are framework-specific examples. Consult your router’s documentation
for the exact syntax.

BASE HREF

Now that you’ve told the router that you want to use the HTML5 History API method,
you need to set the BASE HREF in your index page’s header:

<head>
<base href="/SPA/">
</head>

For the HTML5 History API to work correctly, your BASE HREF must match the
deployed application’s root path in its base URL. Otherwise, you’ll get an “Error 404
not found” response when your application tries to retrieve the views in its routes.

TIP You need a base URL only if you don’t want to include the full path in
your links/code.

In this example, /SPA/ will be the root path in your base URL. So you need to use that
as the BASE HREF. A lot of different servers are out there, and applications get deployed
in many ways. As long the BASE HREF is set properly, your views will be displayed.

SERVER-SIDE CHANGES

Finally, to finish off the HTML5 History API configuration, you’ll need to configure your
server so that it always returns content for the root. For example, if you have a catchall
server-side route configured, it’ll always return the correct resource to the client.
Licensed to Mark Watson <nordickan@gmail.com>

98 CHAPTER 4 Navigating the single page
 One caveat is that if a user uses a bookmark or page refresh, the browser will make
a request for that same content. One possible solution is to set up a redirect on the
server to internally redirect to that same URL.

REMOVING THE HASH

If the router supports it, you can now remove the hash characters from the links in
your views. For example, in the link to the main office contact information, the
anchor tag can be written as follows:

Contact Us

When you click this link, you’ll see what looks like a normal URL in the browser’s
address bar. No hash character!

 Now that you know the basics of client-side routing, you can roll up your sleeves
and do some coding.

4.4 Putting it all together: implementing routing in SPAs
In this section, you’ll take the concepts discussed and illustrated with pseudocode and
create a real, working project using AngularJS. In this example, you’ll continue the
university theme. Let’s pretend you’re a campus IT staff member tasked with creating
a website for one of the university’s departments.

 You’ll have three views: a landing view with faculty names to choose from, another
view to display the office hours for the person the user selects, and a general contact
view for the department.

 The user can navigate by either clicking the name of a faculty member in the land-
ing view’s faculty list or clicking a navigation link in the header. Also, because you’re
incorporating an SPA navigation component, the user will be able to use the browser’s
address bar and navigation buttons.

 I include the most relevant
excerpts from the code here. The
complete code is available for
download when you want to give
the example a try or see the com-
plete code for this chapter’s
example. Figure 4.6 shows the fin-
ished product.

 You’ll begin with the exam-
ple’s first route, the faculty list
route. This is your default route.
As you may remember from ear-
lier, the default route is the one
used when there’s no match
between the current URL and any
of the paths in your configuration
file. Because the site’s base URL

Figure 4.6 For this example, you’ll create a basic
website for a university department.
Licensed to Mark Watson <nordickan@gmail.com>

99Putting it all together: implementing routing in SPAs

Th

t
d

Indic
defau
won’t have a match, you should always execute the faculty list route by default. A
direct link to the faculty route exists in the header, so this route can be accessed from
there as well.

4.4.1 The faculty list (default route)

You saw the pseudocode for the faculty list in our discussion of routes, so let’s create it
for real now.

 When you use AngularJS’s router, your routes will be configured via $route-
Provider. You can use the $routeProvider’s when() method for normal routes and
otherwise() to configure a default route. This is specific to AngularJS, though, so
don’t worry about that detail. If you’re using a different framework or routing library,
you’ll add the same configuration using different syntax.

 For now, let’s focus on the concept presented by the route itself. In this route,
you’ll use the text /routes/faculty to represent the route’s path (see the following
listing).

$routeProvider.when("/routes/faculty", {
 templateUrl : "App/components/simplerouter/partials/facList.html",
 controller : "facultyController"
})

As mentioned earlier, you also want to display the list of faculty members by default.
The next listing shows your default route.

.otherwise({
 redirectTo: "/routes/faculty"
})

With this default route in place, you’re immediately redirected to your faculty list
when you type the application’s URL into the browser.

THE FUNCTIONALITY BEHIND THE ROUTE

With AngularJS, you can give the name of a registered controller as the functionality to
be executed. In other libraries or frameworks, it may be some other type of object or the
name of a callback function. In this example, whenever the router finds a URL that con-
tains /routes/faculty, the code in the facultyController controller is executed.

 Your faculty list’s controller will provide the list of faculty members to be displayed
in the view (see listing 4.8). This controller is one of the three defined in our example’s
controller file, which also contains the definition for the routeControllers object:

var routerControllers = angular.module(
"RouterApp.controllers", []);

Listing 4.6 Faculty list route

Listing 4.7 Default route

e path

The view tha
gets displaye

The functionality
that’s executed

ates your
lt

Redirects back to
the faculty route
Licensed to Mark Watson <nordickan@gmail.com>

100 CHAPTER 4 Navigating the single page

ch
ing

t. It
To be available in the view, your list needs to be added to AngularJS’s $scope object. As
you may remember from chapter 2, $scope is a built-in object, which serves as the
“middleman” between the view and your data (kind of like a ViewModel).

routerControllers.controller(
 "facultyController", function($scope) {

 $scope.deptFaculty = [{
 hrefVal : "manderson",
 displayText : "Dr. Mary Anderson"
 }, {
 hrefVal: "sjones",
 displayText : "Dr. Steve Jones"
 }, {
 hrefVal: "arodriguez",
 displayText : "Dr. Ana Rodriguez"
 }];

});

In the array you’re making available to the view, you have a list of faculty objects. Each
object has two properties: hrefVal and displayText. The hrefVal property will be
used in the creation of the link’s URL. The displayText property contains the name
the faculty member. You’ll use the faculty member’s name as the visible text of the link.

NOTE The most common practice when using AngularJS is to keep any kind
of business logic in an AngularJS service, but we’re breaking that rule here for
the sake of keeping this example as simple as possible.

THE FACULTY LIST VIEW

Finally, in listing 4.9, you see the source code for your view. As part of the state
changes associated with this route, you’ll display this view, which will contain the data
from listing 4.8. Notice that the view’s template uses the properties from the $scope
object with the ng-repeat binding to iteratively create the list of links.

<section id="fac_list">
 <h1>Our Faculty</h1>
 <section id="faculty">

 <li ng-repeat="faculty in deptFaculty">

 {{faculty.displayText}}

 </section>
</section>

Listing 4.8 The functionality for your route

Listing 4.9 The route’s view

Define the
facultyController

Add the data for the faculty
office hour links to the $scope
so it’s available in the view

ng-repeat is used to stamp out anchor tags for ea
object in the deptFaculty array. The ng-repeat bind
tells the framework to create the structure of the
 element repeatedly for each item in your lis
works similarly to a for...in loop in JavaScript.
Licensed to Mark Watson <nordickan@gmail.com>

101Putting it all together: implementing routing in SPAs

Rend
After the code fires, your view in facList.html is displayed. The view’s template is ren-
dered for each entry in the array. The following listing shows what the first object in
the array would look like if you were to inspect the DOM after the template has been
rendered. Each HREF in each anchor tag now has a URL and display text.

<li ng-repeat="faculty in deptFaculty" class="ng-scope">

 Dr. Mary Anderson

TIP In AngularJS, you use the special directive ng-view to mark the area
where views are to be rendered. You put this directive anywhere in your SPA’s
shell, and the $route service will automatically find it and place its views
there. Because this is AngularJS-specific syntax, this detail will vary depending
on the MV* framework you’ve chosen.

4.4.2 The main contact route

Also in the navigation header of your site is a link to the fictitious department’s main
contact view. The link’s code points to a fragment identifier URL:

Contact Us

When you click this link, the browser’s fragment identifier changes from #/routes/
faculty to #/routes/contact (see figure 4.7).

 Because the router is actively listening for changes in the fragment identifier, this
new hash is detected. Upon detection, the router searches all routes in its configura-

Listing 4.10 DOM view of rendered template

ered URL
Rendered text

Figure 4.7 Clicking the Contact Us link
produces a new fragment identifier in
the browser’s URL.
Licensed to Mark Watson <nordickan@gmail.com>

102 CHAPTER 4 Navigating the single page

Th
tion for a path matching /routes/contact. When it finds a match, the route in the
following listing is carried out.

.when("/routes/contact", {
 templateUrl : "App/components/simplerouter/partials/contact.html",
 controller : "contactController"
})

The controller for this route is contrived, but it provides another view to demonstrate
navigation (see the next listing). Again, any real business logic would be placed in
another component, such as an AngularJS service.

routerControllers.controller(
 "contactController", function($scope) {

 $scope.mainOffice = "555-555-3000";
});

In contactController, you have only one property: the main office’s contact number.
The following listing shows the view for this route. It displays the main office’s tele-
phone number via an expression binding.

<section id="contact_us">
 <h1>Contact Us</h1>

 <h3>Main Office: {{ mainOffice }}</h3>
</section>

4.4.3 Faculty office hours (parameterized route)

Let’s create one route with a parameter to show how they’re used. When this route is
handled, you’ll display the office hours of the faculty member selected from your fac-
ulty list view. As with our pseudocode, you’ll start by creating a route with a place-
holder for the selected faculty member’s ID (see the following listing).

.when("/routes/officehrs/:facultyID, {
 templateUrl : "App/components/simplerouter/partials/hours.html",
 controller : "hoursController"
})

Listing 4.11 Main contact route

Listing 4.12 The functionality for your route

Listing 4.13 The route’s view

Listing 4.14 Office hours route with a parameter

e path
The view that
gets displayed

The functionality
that’s executed

Define the contactController

The property to be
displayed in the view

An expression binding for
the main office number

Route parameter to pass a
faculty member’s ID
Licensed to Mark Watson <nordickan@gmail.com>

103Putting it all together: implementing routing in SPAs

The o
provid

p

Each router will have different syntax for route parameters. Consult the documenta-
tion for whichever router you choose. This example uses facultyID as the variable
name.

THE RELATIVE URL WITH THE TEXT TO BE PASSED

If you view the source in your browser for the links that you print out in your view,
each link points to the same route except for the last segment of the URL. Here’s the
link for the first faculty member:

 Dr. Mary Anderson

The last part of the link’s URL represents this person’s faculty ID. It was written dynam-
ically with your binding. Because you have three faculty members in your list, each
member’s URL will contain a different ID.

THE CONTROLLER

To be able to use the information passed via the route parameter, each framework or
library will provide a way to access it in your code. AngularJS has the aptly named
$routeParams object. The next listing illustrates your controller’s use of this variable.

routerControllers.controller("hoursController",
 function($scope, $routeParams) {

 var contactInfo = {};

 contactInfo["manderson"] = {
 name : "Dr. Mary Anderson",
 hours : "Tuesday 12-2pm",
 email : "manderson@someuniv.edu",
 phone : "555-555-1111"
 };

 contactInfo["sjones"] = {
 name : "Dr. Steve Jones",
 hours : "By Appointment",
 email : "sjones@someuniv.edu",
 phone : "555-555-1112"
 };

 contactInfo["arodriguez"] = {
 name : "Dr. Ana Rodriguez",
 hours : "Wednesday 1-3pm",
 email : "arodriguez@someuniv.edu",
 phone : "555-555-1113"
 };

 $scope.info = contactInfo[$routeParams.facultyID]
})

Listing 4.15 Controller for office hours

Define the
hoursControllerbject that

es access
to route

arameters

Define the office hours
and contact information

The route parameter is
used to find the correct
contact information
Licensed to Mark Watson <nordickan@gmail.com>

104 CHAPTER 4 Navigating the single page
In this example, the route parameter passed in will match one of the three contact
information entries. Passing the route parameter (the faculty ID) as the property
name of the contactInfo object returns the correct faculty member’s information.
Then you can put the information returned into the $scope variable so the view can
display it. The following listing provides the view for this route.

<section id="office_hours">
 <h1>Office Hours</h1>

 <p class="hrs_faculty_name">{{ info.name }}</p>
 <p>{{ info.hours }}</p>
 <p>{{ info.email }}</p>
 <p>{{ info.phone }}</p>

</section>

Now let’s look at the final product. When the user clicks the first link from your fac-
ulty list view, and the faculty ID of manderson is passed into the controller via the route
parameter, the user sees the screen shown in figure 4.8.

 Now that you understand routing, you’ll be using a router from this point forward.
Feel free to refer to this chapter anytime you need a refresher on what you’ve learned.

4.5 Chapter challenge
Now here’s a challenge for you to see what you’ve learned in this chapter: create a sim-
ple picture viewer. You’ll take several images you have available and use client-side
routing to display them. You could use a different route and resulting view for each

Listing 4.16 Office hours view

Display the info object’s
properties with an
expression bindin

Figure 4.8 Passing manderson via a
route parameter results in the correct
office hours being displayed.
Licensed to Mark Watson <nordickan@gmail.com>

105Summary
picture. But if you want to make the challenge more interesting, try using a single
route and use the name of the image as a route parameter. Then use the MV* frame-
work to dynamically swap the pictures, using the image’s name passed in via the route
parameter.

4.6 Summary
There was quite a lot of information to digest in this chapter. Let’s review to see what
you’ve learned:

■ Routers are libraries/frameworks that allow you to specify a desired state for
your application for a given URL.

■ Routes are configured in a router’s configuration.
■ Routing in an SPA occurs in the browser. No server requests are required.
■ Routers use one of two methods to achieve client-side routing: the fragment

identifier or the HTML5 History API.
■ The HTML5 History API method for routing normally requires you to explicitly

state in the router configuration that you want to use it. It also requires a few
code changes, including changes on the server.

■ The same route can be used to display different outcomes by incorporating
route parameters in a route’s path. Route parameters are variables defined in
the path of the route that allow information to be passed via a URL.
Licensed to Mark Watson <nordickan@gmail.com>

View composition
and layout
So far you’ve learned some of the basic nuts and bolts of creating a single-page
application. During this journey, you learned how to modularize your code and
how to use the power of an MV* framework to create the views that your users see
and interact with. You also discovered the vital role routers play in your application:
they not only allow the natural navigation features of the browser to work with your
single page but also provide a way to configure the functionality and views associ-
ated with your application’s URLs.

 To this point, however, you’ve grasped particular concepts rather than the big-
ger picture. Now that you have some tools in your SPA toolbox, let’s zoom out and
tackle the overall design process for creating a single-page application. Designing a
successful SPA is a little like learning to speak a new language. You’ve learned the

This chapter covers
■ An introduction to layout design
■ Steps for composing views
■ A guide to designing complex routes
■ Insight on how to deal with nested and sibling

views
106

Licensed to Mark Watson <nordickan@gmail.com>

107Introducing our project
basics—the vocabulary and grammar—but you still haven’t mastered the dynamics of
holding a conversation.

 In this chapter, you’ll walk through the design of an SPA, from the visualization of
your layout to the transformation of requirements into a real, working application.
You’ll learn to design the layout with views instead of pages, to design routes to connect
the dots, and then to pull it all together with working code. Even though you under-
stand the underlying mechanics of an SPA, you’ll galvanize what you know by focusing
more on the overall process. Along the way, you’ll also learn how to deal with lifelike sce-
narios, such as more-complicated layouts and routes that result in multiple views.

5.1 Introducing our project
The project for this chapter is the creation of an online tool for a fictitious medical sup-
ply company. We’ll pretend that this SPA will be used by sales reps to track the status of
their clients’ orders. Because this chapter’s focus is on the overall design process, I’ll
make the project’s layout a little more complex than in previous projects. In the appli-
cation, you’ll need to display several categories of information for a given route, such
as customer data, order history, and the client’s addresses for billing and shipping.

 We’ll talk more specifically about the details of the project later, when we get into the
design process, but first take a glimpse at the final product (see figure 5.1). This gives
you a picture of what you’re building as you progress through each phase of the project.

Figure 5.1 Our sample project tracks the status of orders for a fictitious medical supply company
and includes a layout that’s more complex and diverse than you’ve previously dealt with.
Licensed to Mark Watson <nordickan@gmail.com>

108 CHAPTER 5 View composition and layout
Before we begin, though, let’s talk about some basic layout design concepts. I want to
make sure we’re on the same page with familiar concepts and present any new con-
cepts before continuing.

5.2 Reviewing layout design concepts
Our discussion of SPA concepts thus far has been narrowly focused. Let’s pull back
now and review the SPA landscape from a holistic viewpoint. This review will also bring
to light some new details that you’ll need to grasp when you start this project.

5.2.1 Views

When you design an SPA’s views, you’re creating the individual pieces of the overall
SPA puzzle. Each piece provides a particular experience for the user, whether it’s
merely displaying data or providing controls for user input. Generally speaking, you
design views on two levels. At a basic level, you design the view itself. At a broader
level, you’re more concerned with how the view fits into the overall architecture.

 From within the view, your design efforts are concentrated on tasks such as display-
ing data and possibly adding interactivity via JavaScript. As you’ve learned, it’s the MV*
framework that helps keep the various parts of your application’s code separate but
working together as a team. HTML elements and bindings combine to form the basis
of the view’s design. You can further contribute to the design of the view by applying
styles to it via CSS (see figure 5.2).

Data

MV* framework

Model

Wellness Clinic

Medical Center

Metro Family Clinic

CMR Health Center

Mecklenburg Pediatrics

R.P. Taylor Hospital

 <li ng-repeat="customer in list">

 {{customer.name}}

Wellness Clinic

Medical Center

Metro Family Clinic

CMR Health Center

Mecklenburg Pediatrics

R.P. Taylor Hospital

Wellness Clinic

Medical Center

Metro Family Clinic

CMR Health Center

Mecklenburg Pediatrics

R.P. Taylor Hospital

Bind Render CSS

Template Rendered view

Figure 5.2 The template’s HTML forms an initial structure, but CSS refines its look and feel.
Licensed to Mark Watson <nordickan@gmail.com>

109Reviewing layout design concepts
When it comes to the bigger picture (the layout), you have to think about how each
view will be positioned with respect to the other views in a feature. To position a ren-
dered view in a particular area of the screen, you turn to a construct called a region.

5.2.2 Regions

I briefly discussed the concept of a region in chapter 1. Although certain view engines
have their own notions of this term, in this chapter I use region to mean an area of the
screen that’s been designated to contain one or more views. A region can be defined
using semantic elements if you’re using HTML5 (see figure 5.3) or an element such as
a DIV if you’re not. These types of elements are ideal, because they can remain invisi-
ble to the user but can be used to define physical space within the UI.

 To define a region’s dimensions, as well as its aesthetic relationship with other
regions, you can use Cascading Style Sheets (CSS). In figure 5.4, you can see an exam-
ple of applying styles to regions to achieve a certain layout.

 This example positions two regions side by side by assigning a simple float prop-
erty to the regions. For a simple 2×2 layout, you can float one region to the left and
the other to the right. After placing the regions, you can make decisions about the
views they’ll contain.

 You can also assign other CSS properties to your region to further enhance the
effect on your layout’s design, such as width, height, padding, borders, margins, and

View 6

View 5

Regions act as containers for viewsView

Title

Region A

<nav>

</nav>

Region B

<section>

</section>

View 1
View 4

View 3

View 2

Dynamically swapped
views within a single region

Figure 5.3 Regions give you a physical area in the UI where your views can be displayed. Within a region,
views can be fixed or dynamically swapped.
Licensed to Mark Watson <nordickan@gmail.com>

110 CHAPTER 5 View composition and layout
background-color, to name a few. Any property applicable to the type of element you
choose is fair game.

 The process of deciding on the size and shape of regions and the arrangement of
views within those regions to arrive at a particular layout is called view composition.

5.2.3 View composition

As part of the design process, you arrange, or compose, views in a certain way to form
the UI’s layout. In this regard, you can think of view composition as both art and sci-
ence. On one hand, you have the technology that helps create the views and display
them in the UI when a particular route is carried out. On the other hand, there’s the
creative aspect in which you make a subjective decision about where regions will be
placed and how a view, or a set of views, will be arranged within them.

 Although this process is called view composition, regions play an equally important
role in the creation of a layout, as you’ve seen. Regions house the views that are ren-
dered by the MV* framework. Given this, you can say that for all practical purposes,
regions are the bounding boxes that frame views within your layout. That’s why view
composition encompasses both views and regions, hand in hand.

 To illustrate how regions can affect view composition, take a look at figure 5.5.
Here you see the same views that you saw earlier in figure 5.3. By reconfiguring your
regions, you can display exactly the same information with an entirely different layout.
In turn, this has a direct impact on your SPA’s look and feel.

 How your regions and views are arranged is completely subjective, tailored to the
goals of your project and your design preferences.

Title

Region A

<nav id="side">

</nav>

Region B

<section id="content">

</section>

Float left

nav#side {
 background-color: #ADADAD;
 float: left;
 width: 28%;
 margin: 1%;
}

#content {
 margin: 1%;
 padding: 2%;
 height: 100%;
 overflow-y: auto;
 text-align: top;
 background-color: #FFFFFF;
 border-radius: 5px;
 color: black;
}

Figure 5.4 CSS is used to define the physical attributes of the regions in your layout, as well
as to define their relationship with other regions in the UI.
Licensed to Mark Watson <nordickan@gmail.com>

111Reviewing layout design concepts
5.2.4 Nested views

An important point to bear in mind is that the use of regions doesn’t have to be con-
fined to the SPA’s shell. Regions can also be employed within a view to nest other views
(see figure 5.6).

 Nesting views can dramatically increase the complexity of your design, but that’s
sometimes necessary given the nature of the feature you’re building. You can also con-
figure the application’s routes so that your design is properly reflected in the UI when
the application’s state changes.

Title

Region A

<nav>

</nav>

Region B

<section>

</section>

View 1

Now
only these
views are
dynamically
swapped.

Region D

<section>

</section>

Region C

<section>

</section>

View 2

View 6

View 5

View 4

View 3

Figure 5.5 How regions and views are configured impacts view composition and ultimately the layout.

Regions within
views create
nested views.

</section>

Region C

<section>

View 3

View 4

<section>

Region D

</section>

<section>

Region E

</section>

View 5

Figure 5.6 Regions can also be used in views, if you need to nest a view (or views) inside another view.
Licensed to Mark Watson <nordickan@gmail.com>

112 CHAPTER 5 View composition and layout
5.2.5 Routes

As you saw in chapter 4, the way you configure routes affects the application’s state.
This includes the state of the UI. This is why route configuration can also be an impor-
tant aspect of your layout’s design.

 While you were learning about routing and how routers work, you worked with
only simple examples, as in figure 5.7. In this type of route, each resulting view occu-
pies the entire destination region. Designing a route like this is pretty cut and dry.

 But as you just learned, the regions you’re targeting can be placed in any number
of places on the screen. This can lead to some interesting designs. You could, for
example, have multiple regions positioned next to each other and display multiple
views for a given route (see figure 5.8).

 When you design routes that result in complex region/view configurations, things
can become difficult to manage. For complicated layouts, if you’re not using a one-
stop-shopping framework with robust routing and view management built in, you
might want to consider adding a library to your arsenal that manages the application’s
state specifically for the MV* framework you’re using. The next section covers some of
the pros and cons of bringing a view management library onboard and points out
some of the options available.

Region AView 1

#/route

Figure 5.7 Example of a simple route

Region A Region BView 1

View 2

#/route

Region DView 3

Figure 5.8 Example of a route with multiple views
Licensed to Mark Watson <nordickan@gmail.com>

113Considering alternatives for advanced composition and layout
5.3 Considering alternatives for advanced composition
and layout
There are a few reasons why you might need a framework with a more elaborate set of
features built in. The most obvious one I’ve already mentioned is the ability to deal
with complex layouts, specifically those with multiple or nested views.

 If a given MV* framework doesn’t have a particular feature built in, you end up
writing code to bridge the gap. Frameworks exist that expand upon the original MV*
framework, though. They have the common goal of making certain complex tasks,
such as advanced view composition and complex routing, as easy as possible while try-
ing to reduce the amount of boilerplate code you have to write. This alone is a fairly
compelling reason for considering outside help.

 Another reason to consider this type of framework is the extra set of features it may
bring to the table, such as events, messaging, and built-in objects for easy layout cre-
ation.

 Finally, with complex designs, you have to deal with the view’s state. Remember
that when you display a view (or views), you’re also interacting with the MV* frame-
work. You rely on the MV* framework not only for the sake of handling the data and
interactivity for the view but also to manage the view’s lifecycle.

 If you think back to our evaluation of several styles of MV* framework, each one
approached the binding and rendering process differently. With Backbone.js, for
example, the normal process destroys the previous view and re-creates it from the tem-
plate with fresh data. In an MVVM-style framework, such as Knockout, binding is done
once and the view stays active. You merely interact with the ViewModel as needed.

 Each framework has specific parts of the lifecycle that need to be addressed, such
as when a view is rendered, shown, hidden, and (if applicable) destroyed. Certain
libraries/frameworks either take care of this for you or provide hooks for you to use.

 As I mentioned, most of the large, end-to-end frameworks have most or all of these
concerns addressed. If you’re using one that doesn’t have these capabilities built in,
you might try one of these libraries/frameworks instead. But first you should consider
various factors. No dependency should be added without due consideration. So
before you jump in with both feet, here are a few of the pros and cons.

5.3.1 Pros

Here are some of the good points:

■ If a library/framework extends or enhances a particular MV* framework, it’ll be
designed around the nuances of that framework right out of the box.

■ These libraries/frameworks are written by people who have expertise in a cer-
tain MV* framework and understand the difficulties and pitfalls of managing
complex tasks in that environment.

■ You don’t have to worry as much about trying to cobble together various other
libraries and frameworks yourself.
Licensed to Mark Watson <nordickan@gmail.com>

114 CHAPTER 5 View composition and layout
5.3.2 Cons

Here are a few downsides to consider:

■ You’re at the mercy of the developer(s) of the software for bug fixes and
upgrades.

■ Because an outside library/framework isn’t your code and isn’t part of the core
MV* framework, you may find debugging application errors more difficult.

■ The author(s) might, for whatever reason, abandon the library/framework.
This leaves you dependent on obsolete software.

If you need a more robust set of features from your SPA solution, table 5.1 presents a
few options you might consider. Several of these are powerful SPA frameworks in their
own right and include many more features than merely view/layout management.
This isn’t an exhaustive list, but it does represent some of the choices available at the
time of this writing.

You can apply the same acceptance criteria to these frameworks as you did when
selecting the MV* framework itself, in terms of factors such as learning curve, bugs
and fix rate, documentation, maturity, and community support.

 Now that you’ve reviewed basic design concepts and considered possible software
solutions to creating a complex layout, let’s move on to our project. Because I’ll be
using AngularJS to illustrate, I’ll be leveraging the AngularUI component. As men-
tioned in table 5.1, it’s part of the overall Angular software, but it must be separately
downloaded. I’ve also included it in this chapter’s code available for download online.

5.4 Designing the application
Let’s begin with a description of what you’re going to design: an online reporting tool
for a medical supply company. This tool will help the company’s sales reps track the

Table 5.1 Frameworks with built-in features for advanced composition and layout

Framework Options for more-complex composition and layout tasks

Knockout Durandal (http://durandaljs.com)

Backbone.js Marionette.js (http://marionettejs.com)
Geppetto (https://github.com/ModelN/backbone.geppetto)
Chaplin (http://chaplinjs.org)
Vertebrae (https://github.com/hautelook/vertebrae)
LayoutManager (https://github.com/tbranyen/backbone.layoutmanager)
Thorax (https://github.com/walmartlabs/thorax)

AngularJS AngularUI (http://angular-ui.github.io), part of AngularJS but offered as a sep-
arate download

Kendo UI Built in

Ember.js Built in
Licensed to Mark Watson <nordickan@gmail.com>

http://durandaljs.com
http://marionettejs.com
https://github.com/ModelN/backbone.geppetto
http://chaplinjs.org
https://github.com/hautelook/vertebrae
https://github.com/tbranyen/backbone.layoutmanager
https://github.com/walmartlabs/thorax
http://angular-ui.github.io

115Designing the application
status of orders, view order history, and view information about clients. The following
is a list of features you’ll pretend you’ve been asked to include:

■ Provide a selectable list of the sales rep’s customers.
■ Display all open orders by default.
■ When a customer is selected, display company info, contact info, and order

history.
■ Initially hide the customer’s billing and shipping information but make it view-

able on demand. In addition, assign customers their own URLs so the user can
traverse quickly to where they were previously.

■ Include links in the header to the company’s current campaigns, promotions,
and the application’s help file.

5.4.1 Designing the base layout

One of the first things you have to do is to decide on a basic structure for the applica-
tion, just as you would with a regular web application. This is often called the base lay-
out. Will it be a master-detail kind of application? Or would having a side column for
navigation be better? Do you need a footer? Many choices would work.

 You’ll use a traditional three-part base layout for this project. You can put your
links at the top, the list of clients in the navigation bar at the bottom left, and display
the results of your routes in the main content area at the bottom right. You’ll create
this structure in two steps.

 First, you’ll divide the screen into a header and a main body. Figure 5.9 illustrates
this step.

Title

Header region

Main region

Figure 5.9 The base layout begins with a top region and a bottom region.
Licensed to Mark Watson <nordickan@gmail.com>

116 CHAPTER 5 View composition and layout
Next, you’ll divide the main region into two parts: a region on the left for navigation
and a region on the right to display your content (see figure 5.10).

 At this point, your base layout source code looks like the following listing.

<main>
 <header></header>

 <nav id="side"></nav>
 <section id="content"></section>
</main>

You’ll use CSS to mold these regions into the general shape you want for the base lay-
out. To start, you’ll give your header some height and a white background (see the fol-
lowing listing).

header {
 height: 15%;
 background-color: #FFFFFF;
}

You’ll also apply styles to your side navigation region and content region, floating your
navigation region to the left so the two regions sit side by side. And you’ll define the
proportions of the regions by allocating a portion of the width to the navigation
region (see the next listing).

Listing 5.1 Base layout

Listing 5.2 Header region CSS

Title

Header region

Content region
Navigation

region

Figure 5.10 You’ll finish up the base layout with a region for navigation and a region for content.

Header region across the top

Main region across the bottom, split
between navigation and content
Licensed to Mark Watson <nordickan@gmail.com>

117Designing the application

nav#side {
 background-color: #ADADAD;
 float: left;
 width: 28%;
 height: 100%;
 margin: 1%;
}
#content {
 margin: 1%;
 padding: 2%;
 height: 100%;
 overflow-y: auto;
 text-align: top;
 background-color: #FFFFFF;
 border-radius: 5px;
}

After all your styles have been applied to the base layout, it looks like figure 5.11.
 Having finished the basic layout for the application, you can move on to adding its

content.

5.4.2 Designing the default content

Now that you have some regions that you can add content to, you can design views
and a default route. Because your header and navigation views will be fixed (only their
content will change), you’ll design those two first.

Listing 5.3 Navigation region and content region CSS

The navigation region is floated to
the left and given width to define the
relationship of these two regions

Figure 5.11 The base layout with styles applied
Licensed to Mark Watson <nordickan@gmail.com>

118 CHAPTER 5 View composition and layout
THE HEADER

The header view is fairly simple. It has a logo, some links, and the name of the user
who’s logged in. Because it’s a fixed view, you don’t need a route for it. This view will
never be swapped for another view. So all you need to do to get it onscreen is include
it. In AngularJS, you do this via an attribute added to the header region’s DIV. Note,
however, that the MV* framework you choose may require a different method to
include a view.

<div
id="header"
ng-include src="'App/components/customerorders/partials/header.html'">
</div>

The following listing provides a glimpse of the source code for your header view.

<section ng-controller="navController">
 <section id="logo">

 </section>
 <nav id="top">

 <a ui-sref="home">Home
 <a ui-sref="promos">Promotions
 <a ui-sref="campaigns">Campaigns
 <a ui-sref="help">Help

 <p id="userName">User: {{user}}</p>
 </nav>
</section>

The Home link provides a way back to your default content, and the other links satisfy
the rest of the requirements for your header. With the view rendered and some styles
applied, your header now looks like figure 5.12.

With a header in place, you can design the main navigation view. For this application,
the links in the navigation view will consist of a the company’s current customer list.

NAVIGATION

The list of customers in the customer list view will be just as easy. It’s also fixed, so no
route is needed. With an include statement, it’ll load with the application.

Listing 5.4 The header view

The ui-sref attribute provided by
the view management library is
used to execute routes

The name of the user is
added via data binding

Figure 5.12 The layout’s header after styles have been applied
Licensed to Mark Watson <nordickan@gmail.com>

119Designing the application

 a
n
er
<div
id="navigation"
ng-include src="'App/components/customerorders/partials/customerList.html'" >
</div>

To create a link for each customer in your client list, you’ll use a binding made for
iterating over lists. This is the same kind of operation covered in chapter 2, when you
learned about templates and binding. You’ll also use the special link attribute from
your view management component I just mentioned (ui-sref) to execute the cus-
tomerInfo route when a link is clicked (see the following listing).

<div id="listheader">Customer List:</div>
<div id="navButton" ng-controller="customerListController">

 <li ng-repeat="customer in customerList">
 <a ui-sref=
 "customerInfo({ customerID:customer.custNum })">
 {{customer.name}}

</div>

Note that your companion view manager allows you to pass route parameters as you
did with the core AngularJS router. In this example, customerID is the name of the
variable, and customer.custNum represents the data assigned to the parameter when
the ng-repeat attribute stamps out the information from the template.

 With the view rendered to the screen, you can use CSS to turn your unordered list
into what looks like a group of clickable panels. The following listing is a portion of the
style attributes applied (the rest can be viewed in the code available for download).

#navButton {
 width: 100%;
 padding: 0 0 1em 0;
 margin-bottom: 1em;
 background-color: #ADADAD;
 color: white;
}

#navButton li {
 border-bottom: 1px solid #979797;
 margin: 0;
}

#navButton li a:hover {
 background-color: #D9D8D8;
 color: #fff;
}

Listing 5.5 Navigation view

Listing 5.6 Navigation styles applied

For each customer in the list, create
link to the customerInfo route. Whe
the route executes, pass the custom
number as a route parameter.

A background color is added

A subtle bottom border
accepts the panel

A hover is added to the
anchor for a rollover effect
Licensed to Mark Watson <nordickan@gmail.com>

120 CHAPTER 5 View composition and layout

St
After your navigation view is rendered, your default content will look like figure 5.13.
 With the fixed portion of your default content completed, you can work on the

dynamic area.

THE DEFAULT ROUTE

According to our requirements, the user should be greeted with a list of open orders by
default. For this, you’ll create a default route. The view resulting from this route will be
what a user sees after first entering the application or after clicking the Home link.

 Listing 5.7 shows the configuration for this route. As I mentioned earlier, you’re
using the AngularUI router. The syntax is slightly different from the router that comes
with core AngularJS, but it shouldn’t feel totally alien. This router is much more pow-
erful and was deliberately modeled around states rather than URLs. It also supports
multiple views, both nested and parallel.

 Keep in mind that this syntax is specific to the AngularUI router. Don’t worry,
though; the basic concepts carry over to most frameworks that support advanced state
management.

.state("home", {
 url: "/home",
 templateUrl: "App/components/customerorders/partials/openOrders.html",
 controller: "openOrdersController"
})

.otherwise("/home");

As you can see from the template that’s being used, the requirement to show all open
orders by default will be met when this route completes. The keyword otherwise
denotes the default route.

Listing 5.7 Configuration for the default route

Figure 5.13 Your layout after both the header and navigation view are rendered

ate name

Declaring home as the default
Licensed to Mark Watson <nordickan@gmail.com>

121Designing the application
 To specify that the content region should be the recipient of the view rendered by
this route, the attribute ui-view is applied to the region’s DIV:

<div id="content" ui-view></div>

No matter what view management solution you’re using, you’ll need to identify the
region the view should be inserted into. Consult the documentation to see how to do
this for the view manager you’ve chosen.

 In your open orders view, you’ll once again use a repeat binding directive to tell
AngularJS to repeatedly stamp out rows in a table for each order that’s still open (see
the following listing).

<tr ng-repeat="rorder in recentOrders">
 <td class="orderData">{{rorder.orderNumber}}</td>
 <td class="orderData">{{rorder.date}}</td>
 <td class="orderData">{{rorder.name}}</td>
 <td class="orderTotal">{{rorder.total}}</td>
 <td class="orderData"
 ng-class="rorder.status == 'On Hold'
 ? 'orderOnHold' : ''" rorder.status}}</td>
</tr>

With the meat of your default content filled in, let’s take a peek at what the screen
looks like at this point. You saw the opening content of your application at the begin-
ning of the chapter, but let’s look at it again now that you have all the pieces in place
(see figure 5.14). It’ll give you a picture of what you’ve accomplished so far.

Listing 5.8 The row template from our view for open orders

Repeat for each
open order

Class binding used to
apply a different class
if the status is On Hold

Figure 5.14 Your layout after the default route displays the open orders in the content region
Licensed to Mark Watson <nordickan@gmail.com>

122 CHAPTER 5 View composition and layout
With your default content complete, let’s move to the last leg of your application: dis-
playing the appropriate customer information for a selected customer. This time, the
view composition will be more complicated, so you’ll see the usefulness of your view
manager component.

5.4.3 Using a view manager for complex designs

Until this point, the application hasn’t been anything your regular router and MV*
framework couldn’t handle. Now, however, multiple views will need to be simultane-
ously displayed in your content region when a customer from your navigation view is
selected.

 The design for this feature includes a main customer view that you’ll configure in
your customer information route. The complexity, though, is that this new view will
contain regions of its own for the placement of the customer’s contact information
and order history. These regions, in turn, have views of their own. You’ll configure
them within the same route as the main view. You can pretend that each of the three
views in this route is complicated enough that it needs to be developed and main-
tained separately.

 As you may recall from earlier in this chapter, the placement of regions isn’t con-
fined to the shell itself. The use of regions within a view is another view composition
device you have at your disposal to design the most appropriate layout for a given set
of requirements. Figure 5.15 illustrates this arrangement of the regions and views.

 With a mental picture of what you’re going to do, let’s see how to use the extended
routing and view composition abilities of the view management component you’ve
chosen.

Target region for the route

Main view from your route

Content region

Contact region

Main customer view

Order history region

Contact view

Order history view

Regions within a view Views for the
subordinate
regions

Figure 5.15 To compose the customer information feature, you’re placing additional regions within
the main view itself to include the related but separate contact and order history views.
Licensed to Mark Watson <nordickan@gmail.com>

123Designing the application

St

ory
Let’s begin with the route. After you wrap your head around how to configure a route
like this, understanding the rest of the code will be easier. The following listing shows
the configuration of your route with multiple states.

.state("customerInfo", {
 url: "/customerInfo/:customerID",
 views: {

 "": {
 templateUrl: "App/components/customerorders/partials/

 ➥ customerMain.html",
 controller: "customerController"
 },

 "contact@customerInfo": {
 templateUrl: "App/components/customerorders/partials/

 ➥ customerContact.html",
 controller: "customerContactController"
 },

 "history@customerInfo": {
 templateUrl: "App/components/customerorders/

 ➥ partials/customerHistory.html",
 controller: "customerHistoryController"
 }

 }
})

Again, if you’re using a different kind of view manager, the syntax will be different,
but the concepts will be the same or relatively similar. Because this route needs a little
more explanation due to its complexity, we’ll analyze the syntax of the AngularUI
route you just saw (at a high level) to make sure you understand it.

THE ROUTE EXPLAINED

This kind of route has the same things a normal route has (path, view, functional-
ity)—but times three. Here’s what’s happening with this type of route configuration:

■ The default view for this state doesn’t need to be named.
■ The absolute name of each view contains the ID of each region and the name of

the state, concatenated using @. (You’ll see the source for the main view in a
moment.)

You’ll also notice that each view in the view list can have its own functionality. This is
optional but handy because the main reason for this kind of route is to have a feature
with views that are related but developed separately. Moreover, thanks to the
expanded capabilities of your view manager, you’re able to share the route’s parame-
ter with each inner view and its functionality.

Listing 5.9 Customer information route with multiple states

ate name Route’s path with a
parameter defined

Main
customer
view

Associated inner views for
contact and customer hist
Licensed to Mark Watson <nordickan@gmail.com>

124 CHAPTER 5 View composition and layout

e
THE ROUTE’S MAIN/OUTER VIEW

Now that you’ve seen the route, let’s look at the source for its main view (see the fol-
lowing listing). This view is important because it contains bindings for its own infor-
mation, as well as the regions where the other two views will be rendered.

<h1 ng-bind="custInfo.name"></h1>

<h4>Customer #

</h4>

<section ui-view="contact"></section>

<section ui-view="history"></section>

The source of the two inner views is typical of what you’ve already seen. They display
data about the customer through the use of bindings. The route parameter, as I men-
tioned, is shared, and the inner views can also use it to locate the correct data entries.
Their source can be found in the complete online source code.

 Let’s look at a screenshot of the application to check your progress (see figure
5.16).

 The screenshot shows the three rendered views with their styles applied. It’s impos-
sible to tell where each rendered view is from the screenshot, but that’s part of the

Listing 5.10 Main view from the customerInfo route

Use a data binding to display
the selected customer’s name

Use another data binding to display th
selected customer’s customer number

The names of subordinate regions must match
view entries in the route’s configuration

Figure 5.16 What your three views look like when displayed in the content region
Licensed to Mark Watson <nordickan@gmail.com>

125Designing the application

)

design. Although these views are developed and maintained separately, the content
appears like one seamless page to the user. Look at the screenshot again, but this
time I call out the location of each view in the customer information route (see
figure 5.17).

 One more part of the project, which I haven’t discussed yet, requires you to use
nested views.

5.4.4 Creating nested views with their own states

To satisfy your requirement for on-demand billing and shipping information, each
having its own state, you’ll once again call upon your view management software. The
following listing shows the routes for these views.

.state("customerInfo.shipping", {
 url: "/shipping",
 templateUrl: "App/components/customerorders/partials/billShipInfo.html",
 controller: "customerShippingController"
})

.state("customerInfo.billing", {
 url: "/billing",
 templateUrl: "App/components/customerorders/partials/billShipInfo.html",
 controller: "customerBillingController"
});

Listing 5.11 Routes for billing and shipping info

Main
customer
view

Contact
view

Order
history
view

Figure 5.17 The result of the customer information route with each view highlighted

Child routes are defined with dot
notation (parentRoute.childRoute
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

126 CHAPTER 5 View composition and layout
Notice that child routes are defined with dot notation with respect to another route in
the configuration file. In this case, you’re also defining the customer information
route as the parent route.

 Now you need to know how to construct links to get to these child routes. Here’s
where a bit of magic happens. To target these child routes, you also use dot notation
in the link. So let’s now add on to the main customer view that you saw earlier and put
in these additional elements. The following listing shows the updated source for the
main customer view.

<h1 ng-bind="custInfo.name"></h1>

<h4>Customer #

</h4>

<section ui-view="contact"></section>

<section ui-view="history"></section>

<nav class="customerInfoNav">
 <a ui-sref=".shipping">View Shipping Info
 <a ui-sref=".billing">View Billing Info
</nav>

<section ui-view></section>

Once again, the syntax you’ll use may be different, but let’s talk about this addition at
a high level so you can get the main idea. You’ve added a NAV (navigation) element to
the customer information view to display either billing or shipping information. The
other element is an empty SECTION where the resulting views from the route will be
displayed.

 One other thing to note, just for the sake of understanding the code, is that with
AngularUI’s router, unnamed regions become a catchall for the route. Contact and
History are named, so those views will be assigned directly to the regions of the same
name. When no name matches a region, a route’s views are targeted to the first
unnamed region. This is specific to AngularUI, but it should be noted to avoid any
confusion about this example.

 Now, for a final touch, you’ll add a few CSS attributes to the links so they appear
more like buttons and you’ll have a way to see the on-demand content. Figure 5.18
shows both button-styled links and what one of the child views looks like when the
route finishes.

 Now, users can click the appropriate button to show the billing or shipping infor-
mation on an as-needed basis and then click the browser’s Back button to return to
the state the SPA was in previously.

Listing 5.12 The main customer view with billing and shipping added

Links to nested views are
defined with dot notation

An empty region for displaying
the billing and shipping views
Licensed to Mark Watson <nordickan@gmail.com>

127Chapter challenge
5.5 Chapter challenge
Here’s a challenge to see what you’ve learned in this chapter. Pretend you’ve been
hired to create a website for a local landscaping company. The company wants a view
for each of its services: lawn maintenance, landscaping, shrub pruning, and exterior
home staging. The company also needs a products view to display the custom decks,
fountains, and swimming pools they build. You can keep the details for each view as
simple as a description, such as “landscaping view,” or make it more lifelike with simu-
lated content.

 Divide the screen into three regions: one for the header, one for navigation, and one
to display content. Each service will have its own view and corresponding navigation

Customer information
route and parameter

Nested view’s
route

Styled linksShipping info view

Figure 5.18 The nested shipping view with its own URL
Licensed to Mark Watson <nordickan@gmail.com>

128 CHAPTER 5 View composition and layout
link. The product view also has a navigation link, but its view is subdivided into its own
product header and product detail regions. The product header should have links to a
view for each product, which will display in the product detail region.

5.6 Summary
Whew, that was intense! You made it, though. Let’s do a quick recap:

■ In an SPA, you use the view composition process to create a layout.
■ The semantic elements that you’ve used as regions occupy physical space on the

screen. CSS is used to style and position them. Their arrangement affects how
views are displayed, which directly impacts the design of the layout.

■ The first, underlying set of regions that give the application its basic shape is
called the base layout.

■ Regions can also be added to views when the layout’s design calls for multiple
and/or nested views.

■ Routes that result in complex view and region combinations can be difficult to
manage. Frameworks/libraries with robust routing and view management capa-
bilities abstract the complexity by getting you to think in terms of the applica-
tion’s state.
Licensed to Mark Watson <nordickan@gmail.com>

Inter-module interaction
In chapter 3, you learned a great deal about modular programming. One of the
biggest takeaways from that chapter is the idea that you can internalize the com-
plexity of your code and provide a public API to its features by applying an architec-
tural design pattern commonly referred to as the module pattern. This is a way to
achieve encapsulation in JavaScript.

 As you discovered, coding with modules helps organize your application’s logic
into small, single-purpose units, which are easier to maintain and update. This inev-
itably leads to greater reusability for your code. Using modules also helps with data
integrity, code organization, and the avoidance of name collisions. After all, you’re
creating code in a single, nonrefreshing page. Without this kind of design for your
application’s code base, relying purely on global variables and functions would
quickly become unmanageable (see figure 6.1).

This chapter covers
■ A review of modules
■ Interaction between modules
■ Using module dependencies
■ Using the publish/subscribe pattern
129

Licensed to Mark Watson <nordickan@gmail.com>

130 CHAPTER 6 Inter-module interaction

Even though the modules themselves are at the heart of modular programming, being
able to use them to create a successful SPA requires more than knowing how they work
mechanically. You also need to understand how they can interact: how one module can
invoke the functionality of another module and, possibly, receive a response.

 This chapter continues talking about modules but this time within the context of
shaping your SPA’s architecture by the way you design module interaction. The chap-
ter begins with a review of a module’s structure at a high level but mainly concentrates
on the design of the inter-module interaction process.

NOTE Because modules are based on a variety of pattern styles (such as the
traditional, revealing, AMD, and AngularJS-styled modules, to name a few), I’ll
keep our discussion as neutral as possible when covering the chapter’s con-
cepts. Also, as in the other chapters, I’ll include highlights from a concrete
example, with its entire source available for download.

For your project this time, you’ll create an SPA for an acquaintance who wants to start
an online store to sell used video games. You won’t need to get into the complexities
of having a shopping cart in this exercise. You’ll instead focus on the store’s product
search feature. This application, though simple, will still give you a chance to create
several modules and design how they’ll interact, without drowning in source code.

 As in the preceding chapter, you’ll save the details of the project for later. Even
though the interface is fairly trivial, we’ll make sure that the modules that power the

Function

Function

Function

Variables

Functions

Module

Variables

Functions

Module

Variables

Functions

Module

Variables

Functions

Module

Variable
Variable

Variable

Variable
Function

Global namespace

Function

Function

What we’d like What we normally get

Figure 6.1 As your project grows, your code base become less and less manageable if you put
all your variables and functions in the global namespace.
Licensed to Mark Watson <nordickan@gmail.com>

131Review of module concepts

le’s
es)
application are interesting. Before talking about methods for inter-module interaction,
though, let’s set the stage by reviewing some basic concepts for modular programming.

6.1 Review of module concepts
Let’s begin by reviewing some basic module concepts at a high level. We’ll use this as a
baseline for the rest of our discussion.

6.1.1 Modules encapsulate code

Because the JavaScript specification at the time of this writing has no built-in syntax
for creating modules or classes to encapsulate parts of your code, it’s simulated using
the module pattern.

NOTE The next version of JavaScript, ECMAScript 6 (also called Harmony or
ES.next), adds official support of the module to the language.

A module, as far as JavaScript goes, is a specially constructed function. This type of
function is often called an immediately invoked function expression (IIFE).

The following listing is an example of the traditional module pattern. It creates a
module to apply a discount to the price of a product. The price of the product is
passed in via the calculate function, and the new, discounted price is returned.

var pricingSvcMod = (function() {

 var discountRate = 40;

 function calculate(amt) {
 if(isNaN(amt)){
 return 1;

Immediately invoked function expression

As a reminder, the module pattern’s outer function is often referred to as an imme-
diately invoked function expression, or IIFE, because it’s written as a function expres-
sion (it doesn’t start with the function keyword) instead of a function declaration
and has a trailing set of parentheses to make the function get invoked immediately.
The IIFE’s syntax looks like this:

var x = (function() {
 // do something
})();

If you want to learn more about function expressions and how they differ from function
declarations, here’s a good resource: http://javascriptweblog.wordpress.com/2010/
07/06/function-declarations-vs-function-expressions

Listing 6.1 Traditional module pattern

A global variable serves as the modu
name (or namespace with submodul

Code used internally
by the module
Licensed to Mark Watson <nordickan@gmail.com>

http://javascriptweblog.wordpress.com/2010/07/06/function-declarations-vs-function-expressions
http://javascriptweblog.wordpress.com/2010/07/06/function-declarations-vs-function-expressions

132 CHAPTER 6 Inter-module interaction
 }else{
 return ((discountRate / 100) * amt).toFixed(2);
 }

 };

 return {
 applyDiscount : function(param) {
 return calculate(param);
 }
 };

})();

NOTE For AMD/CommonJS modules, an assignment to a global variable isn’t
needed.

Chapter 3 also introduced a popular variation of the module pattern called the reveal-
ing module pattern. The following listing shows the same module written using this style.

var pricingSvcMod = (function() {

 var discountRate = 40;

 function calculate(amt) {
 if(isNaN(amt)){
 return 1;
 }else{
 return ((discountRate / 100) * amt).toFixed(2);
 }

 };

 return {
 applyDiscount : calculate
 };

})();

In this version, everything is the same except for the returned object literal. Here, the
public function is merely a pointer to the internal code. This makes the API cleaner
and easier to read.

 With either version, the pattern’s design enables the module to be used as a wrap-
per for a piece of functionality (see figure 6.2).

 The outer function of the module pattern forms a kind of protective barrier
around your code. This is possible thanks to the limiting scope of the outer function.

NOTE Scope (in a broad sense) refers to the accessibility of one part of an
application to another part of that application.

Listing 6.2 Revealing module pattern

An object literal with public
functions is returned, which serves
as the module’s public API

A simplified return object
simplifies the API
Licensed to Mark Watson <nordickan@gmail.com>

133Review of module concepts
The clever design of this function also enables you to avoid polluting the global
namespace with your application’s variables and functions, because they’re local to
the module’s outer function.

6.1.2 APIs provide controlled access to internal functionality

Another nice feature of the module pattern is that it allows for the creation of an appli-
cation programming interface, or API. An API is like the module’s contract when
another module wants to talk to it. The API defines what’s publicly available. Code from

other modules can use the
API to gain limited and con-
trolled access to its internal
code.
 The API is formed via the
module’s return statement
(see figure 6.3). This forms a
bridge between the internal
functionality of the module
and the outside world.

Figure 6.3 Each public function in
the API (left of the colon) has a
corresponding reference to a private
object inside the module (right of
the colon).

var pricingSvcMod = (function() {

 var discountRate = 40;

 function calculate (amt) {
 if(isNaN(amt)){
 return 1;
 }else{
 return ((discountRate/100) * amt).toFixed(2);
 }
 };

 return {
 applyDiscount : calculate
 };

})();

Private
variable

Private
function

Figure 6.2 The module forms a protective barrier around your code. Variables and functions
declared within the module are private.

var pricingSvcMod = (function() {

 var discountRate = 40;

 function calculate (amt) {
 if(isNaN(amt)){
 return 1;
 }else{
 return ((discountRate/100) * amt).toFixed(2);
 }
 };

 return {
 applyDiscount : calculate
 };

})();

Reference to
internal function

Return statement
creates a public API

Exposed
Licensed to Mark Watson <nordickan@gmail.com>

134 CHAPTER 6 Inter-module interaction
In figure 6.3, we’re returning an object defined with object literal syntax. In the
returned object, any object member names to the left of the colon are exposed. Those
to the right are the references to the internal code of the module.

 After the object is returned, it’s assigned to an external variable. This variable acts
like a remote control to the module’s functionality. Other modules will send messages
to the object referenced by the variable. This variable will continue to hold a valid ref-
erence to that object as long as the variable persists (see figure 6.4).

 Providing an API for your encapsulated code enables you to not only access the
code within the module but also custom-tailor any interaction with it. You can pur-
posely name the exposed functions of the API something meaningful to the others
while naming private functions something meaningful only to the internal code. You
can also choose to expose certain things about the module’s inner workings while hid-
ing others.

 Remember that you’re not hiding functionality out of secrecy. You’re limiting what’s
exposed in the API to only what’s needed for other modules to successfully use it.

6.1.3 SRP means designing with a single purpose

When you design a module, you try to limit the scope of its functionality to a single
purpose. Having only one purpose per object is the crux of the single-responsibility
principle (SRP) for software design. You can extend this idea to the modules you

var pricingSvcMod = (function() {

 var discountRate = 40;

 function calculate (amt) {
 if(isNaN(amt)){
 return 1;
 }else{
 return ((discountRate/100) * amt).toFixed(2);
 }
 };

 return {
 applyDiscount : calculate
 };

})();

References the returned
object, which still references
the module’s internal objects

Figure 6.4 The assigned external variable can be used to indirectly reference the
internal objects.
Licensed to Mark Watson <nordickan@gmail.com>

135Review of module concepts
design: the module itself might have many variables and many functions inside it, but
all of them are to support the module’s overall reason for existence. When modules
are designed with SRP in mind, they become like cogs in a machine. Each cog has a
particular purpose but works harmoniously with the other modules of the application.

 As the application grows in complexity, it’s also normal for the complexity in your
modules to increase. The nice thing about modules, though, is that if their code starts
getting out of control in some way (becoming too large or enabling other purposes to
emerge, perhaps), you can always refactor and split that module into one or more
other modules.

 For example, imagine that your video game application begins as a single module,
but its functionality eventually grows beyond its initial purpose. The best strategy is to
refactor the code, dividing it into smaller, single-purpose modules (see figure 6.5).
Refactoring large, multipurpose modules helps you preserve the SRP aspect of your
application’s code base.

6.1.4 Code reuse helps your project scale

Another thing that sometimes emerges when you refactor is the potential to find func-
tionality that can be reused either in the immediate project or in future phases of the
project. Reusable components mean less work as your project evolves and grows larger,
because having shared modules eliminates the need to repeat code in multiple places.

 Currently, your SPA in this chapter’s example displays the price of a game only
after a product is selected from the search results. Imagine, however, that your

Large modules
can be redesigned
into smaller modules
with a more specific
purpose.

Before After

Products module
Refactor

Search module

Product display module

Pricing module

Messaging module

Figure 6.5 Modules can have multiple functions but should ideally have a single, overall purpose.
Licensed to Mark Watson <nordickan@gmail.com>

136 CHAPTER 6 Inter-module interaction
acquaintance calls you back to ask for additional features, such as a shopping cart or a
product list, which also require displaying the game’s calculated discount price (see
figure 6.6).

 With your application designed with reusable modules, you could support these
types of enhancement requests with less retooling than typically required.

 Being able to design your application’s infrastructure in a modular fashion is well
and good, but how are these self-contained units able to interact with each other? In
the next section, you’ll look at a couple of basic interaction methods.

6.2 Inter-module interaction methods
Modules interact in two ways: directly via module APIs, which creates a direct depen-
dency, or through events. We’ve talked about module APIs in detail, so this section
focuses more on how using dependencies for module interaction affects the applica-
tion’s architecture. This section also covers the decoupling effect of events and, more
specifically, an event aggregation pattern called pub/sub.

6.2.1 Inter-module interaction through dependencies

Even though the syntax of any of the module pattern styles looks alien, a module is
still just a function. As such, you can pass things into it via its parameters. Passing in
another module as a parameter is one way modules can interact. This interaction
method is considered direct, because one module is directly accessing the API of
another. When one module interacts with another by directly calling the other’s API,
the other module is known as its dependency.

 Each module style provides a way to declare other modules as dependencies.
Although the syntax varies, the dependency list of each type serves a universal

Future phaseCurrent

Pricing

Pricing

Product
display

Product
display

Shopping
cart

Product
list

Reusable modules eliminate the need
to repeat code in multiple places.

Figure 6.6 Modules can be
reused in other modules, other
features, or even throughout
the entire application.
Licensed to Mark Watson <nordickan@gmail.com>

137Inter-module interaction methods

The
can
mod
purpose: to allow a module access to the APIs of other modules so they can interact
with one another. If you’re using the traditional module pattern, for example, you
declare dependencies in the module’s trailing parentheses and gain access to them via
its parameter (dependency) list.

 To illustrate, let’s use the pricing module shown previously. To get the price of
each selected game at a discount, you need to add it as a dependency to the product
display module (see the following listing). You’re also adding the product data mod-
ule as a dependency to gain access to your stub product data.

var productDisplaySvcMod = (function(productData, pricingSvc) {

 function getDetailsById(id) {
 var gameFound = null;
 var gameList = productData.usedGames;
 for (var i = 0; i < gameList.length; i++) {
 if (gameList[i].productId === id) {
 gameFound = {
 name : gameList[i].name,
 productId : gameList[i].productId,
 summary : gameList[i].summary,
 url : gameList[i].url,
 price : pricingSvc.applyDiscount(gameList[i].price)
 };
 }
 }

 return gameFound;
 };

 return {
 getDetails : getDetailsById
 };

})(productDataMod, pricingSvcMod);

After a module is declared as a dependency of another, you can gain access to its API.
The module’s API ensures that you access its functionality as it was intended, passing
in any necessary information for the call to be successful. Bear in mind that you still
don’t have direct access to the dependent module’s module-scoped functions and
other objects.

NOTE Even though adding a module as a dependency is a direct method of
module interaction, you’re still interacting only via the dependent module’s
API.

Interacting through dependencies is a good choice for many situations but not always.
This method has both pros and cons.

Listing 6.3 Traditional module pattern dependency list

Access via its parameter list

Your module can now access
the APIs of the dependencies

 combined functionality
 be exposed in this
ule’s API

Dependency declarations
inside the trailing
parentheses
Licensed to Mark Watson <nordickan@gmail.com>

138 CHAPTER 6 Inter-module interaction
6.2.2 Dependency method pros and cons

Here are a few advantages and disadvantages of direct inter-module interaction. Don’t
see this list as reasons to adopt this method or not, however. It’s not practical to avoid
using dependencies in modular programming. Think of the list as a helpful guide for
when to use them.

Pros:

■ No intermediary objects are involved; one module can directly call the API of
another.

■ Direct interaction is sometimes easier to debug.
■ Using the dependency list of a module, it’s easy to look at the source code and

figure out which modules have been grouped together for a particular func-
tionality or feature.

Cons:

■ With dependent modules, a certain amount of coupling is involved. Coupling
refers to how directly tied one part of your code is to another. When you couple
modules, you reduce the flexibility you normally have when updating your code.

■ Dependency lists can get rather long, which can sometimes make it a little hairy
to keep track of what’s dependent on what.

■ When a module interacts with its dependency, it’s a one-to-one relationship.
This type of interaction is narrow and has only one recipient, as opposed to the
method described in the next section, which can have multiple recipients.

The other option for module interaction is through events. The next section high-
lights a popular event aggregation pattern called the publish/subscribe (or pub/sub) pat-
tern. You’ll learn about what publish/subscribe is, how it works at a high level, and
some of the pros and cons of using it in your SPA.

6.2.3 Inter-module interaction through publish/subscribe

Whether you’re talking about interaction with the DOM or interaction between
objects as you’ve seen in our discussion of MV* frameworks, events are used exten-
sively in modern applications. You can think of the entire browser environment as
being event driven. Events provide a natural way to achieve loose coupling, because
recipients can choose to listen or not and also decide on how to respond.

 Several design patterns around events have emerged over the years. The one this
section focuses on is called the publish/subscribe, or pub/sub, pattern. Pub/sub is a com-
mon and useful pattern for interaction between disparate modules. Pub/sub is based
on a classic design pattern called the observer pattern.

 With the observer pattern, one object is directly observed (the observable), and any
number of other objects (called observers) can choose to pay attention to it, as shown
in figure 6.7. The observable sends out a notification (typically through events) when-
ever its state changes so the observers can react accordingly.
Licensed to Mark Watson <nordickan@gmail.com>

139Inter-module interaction methods
What distinguishes pub/sub from the traditional observer pattern is that usually an
intermediary service publishes (sends/broadcasts) the notifications on behalf of
another object. Other objects in the application can choose to listen or not.

 This type of brokered, indirect inter-module interaction is ideal when two unrelated
modules need to interact or an application-wide message needs to be broadcast without
any expectations by the publisher about what happens when the message is received.

TOPICS

Though not a requirement, notifi-
cations with most pub/sub imple-
mentations are topic based. A topic
(or event name in AngularJS) is a
simple name that’s used to repre-
sent a particular notification. If
another object wants to listen, it
subscribes to that topic. When a topi-
cal message is published, the mes-
sage broker delivers that
notification to any of the topic’s
subscribers.

 In the case of your application,
you’ve created a module whose sole
purpose is to broadcast system-wide
messages using AngularJS’s built-in
pub/sub mechanism. This module
will use pub/sub to publish a mes-
sage with the topic userMessage.

 As you can see in figure 6.8, the
topic has only one subscriber: the
controller for a view that displays

Observer

Observer Observer

Observable
object

Notify

The observers are
notified of any changes.

Observer
Notify

Notify Notify

Figure 6.7 In the observer pattern, each
observer is notified whenever something
changes in the object it’s observing.

Messaging
module

(publisher)

AngularJS
$broadcast

(intermediary)

“userMessage”, “2 games found”

Name of topic and
sample message data

User alerts
controller

(subscriber)

Delivers

Delivers notifications
to subscribers of a
particular topic

Upon receiving the
message, the designated
callback function displays
the message to the user.

Figure 6.8 The messaging module uses pub/sub to
publish messages, via an intermediary service, to any
subscribers in the application.
Licensed to Mark Watson <nordickan@gmail.com>

140 CHAPTER 6 Inter-module interaction
user alerts. Because the controller is a subscriber of the userMessage topic, it will
update the text in the view anytime it receives a new message.

 Usually, pub/sub topic notifications and subscriptions are created programmati-
cally by using the syntax style provided by the pub/sub implementation. If you decide
to use the pub/sub method in your application, you’ll need some type of pub/sub
software.

PUB/SUB LIBRARIES

In your SPA, either the message broker implementation will be built into the MV* frame-
work or you’ll have to download one of the many JavaScript pub/sub libraries available.
Table 6.1 lists a few of the pub/sub libraries available at the time of this writing.

As with any dependency in your application’s code base, check out all available alter-
natives, using the usual set of criteria I’ve previously mentioned: learning curve, bugs
and fix rate, documentation, maturity, and community support.

BASIC NOTIFICATIONS

The most basic type of notification doesn’t include any data being passed. It’s merely
the topic name of the message that’s being published. To illustrate a basic notification
in pub/sub, we’ll keep things vendor agnostic by using pseudocode.

 We’ll start with how to publish a topical message. To publish a message in module
A, you include a line similar to the following:

pSub.publish("hello_world_topic");

It’s that simple. Then, in module B, subscribing to that topic is equally easy. You
include the topic name of the message you’re interested in hearing and what you want
to happen when you hear it:

pSub.subscribe("hello_world_topic", functionToCallWhenHeard);

You typically use a basic notification to inform all subscribers that something happened.
Then each subscriber, upon hearing it, can react in a completely different way.

 At times, however, you’ll want to include data along with the topic being pub-
lished. This, too, is accomplished easily using pub/sub.

NOTIFICATIONS WITH DATA

In addition to basic notifications, most pub/sub brokers let you pass data along when
the message is published. In turn, each subscriber of that topic gets this data passed

Table 6.1 A sampling of pub/sub libraries

Pub/sub library URL

AmplifyJS http://amplifyjs.com

PubSubJS https://github.com/mroderick/PubSubJS

Radio.js http://radio.uxder.com

Arbiter.js http://arbiterjs.com
Licensed to Mark Watson <nordickan@gmail.com>

http://amplifyjs.com
https://github.com/mroderick/PubSubJS
http://radio.uxder.com
http://arbiterjs.com

141Inter-module interaction methods
into its callback function by the broker. To publish with data, you use a line similar to
the following in module A:

pSub.publish("hello_world_topic", dataObjectToSend);

In module B, your subscription line would be the same. The message broker passes
the data sent into the function you list in the subscription:

pSub.subscribe("hello_world_topic", functionToCallWhenHeard);

The only difference when receiving data is in your callback function itself. Here,
you’ll need a parameter in the function’s signature to represent the data being passed
to it from the subscription:

function functionToCallWhenHeard(paramForDataPassed) { … }

With most brokers, any valid JavaScript object or value can be passed with the notifica-
tion.

UNSUBSCRIBING

Another feature common to most pub/sub implementations is the ability to unsub-
scribe. Because subscriptions are topic based, the subscriber can invoke the broker’s
unsubscribe function when it doesn’t want to react to that topic anymore. Once again,
most pub/sub implementations make doing this super easy:

pSub.unsubscribe("hello_world_topic");

Various other options might be available, such as setting a priority for a topic, but are
specialized and vendor specific. Additionally, the options mentioned thus far are the
bare minimum but aren’t guaranteed to be available in the pub/sub implementation
you’re using. The documentation for the broker you’re using will specify the list of
available features.

6.2.4 Pub/sub pros and cons

As noted earlier, pub/sub is a pattern that helps keep the modules of your code base
decoupled. It can be a powerful and flexible tool, but it’s not without its disadvantages.
The following are some of the main pros and cons of using pub/sub in your SPA.

Pros:

■ It promotes a loose coupling of your modules through notifications posted to a
message broker, instead of having to maintain direct dependencies.

■ As with using APIs, pub/sub is easy to implement.
■ Notification topical messages can be broadcast to many subscribers at once.
■ Different parts of the application can elect whether to pay attention to pub-

lished messages.

Cons:

■ If not built into the MV* framework, the message broker implementation itself
is an extra dependency that must be separately maintained.
Licensed to Mark Watson <nordickan@gmail.com>

142 CHAPTER 6 Inter-module interaction
■ Notifications flow in only one direction. No acknowledgement or response is
sent back to the publisher (although you could create a response topic to create
a kind of ping-pong effect).

■ Topics are simple text strings. You must rely on a naming convention to ensure
that they’re routed to the correct recipient.

■ It’s harder to track the flow of messages through the system while debugging.
■ In your code, you must ensure that the subscriber is available and listening

before the notification is published, or the topic won’t be heard.

Now that we’ve reviewed module concepts and the ways modules can interact, let’s
review some of the highlights of this chapter’s project. For consistency with the other
chapters in this book, we’ll use AngularJS.

6.3 Project details
As mentioned at the start of the chapter, in this project you’ll create a simple online
store for a friend who has a small business selling used video games. You’ll create only
the product search portion of the SPA, because that’s enough to demonstrate both
methods of inter-module interaction discussed in this chapter.

 In previous chapters, you’ve stuck to a feature or two for your sample application to
stay focused on the concepts at hand. But now your application’s code base is a little
more elaborate. In this chapter, your application is divided into the following features:

■ Search
■ Product display
■ Pricing
■ Messaging
■ User alerts

As you go through some of the code highlights, you’ll see the inter-module interac-
tion method used by each module so you can see how the application is connected.
Before going over the code, though, let’s discuss the objectives for this project.

 For starters, figure 6.9 provides a glimpse of what the application will look like
when you’re finished. With that image in mind, here’s a list of features that you want
the application to have:

■ Customers can search by both partial and complete game titles.
■ Successful searches display a list of results, including a thumbnail image of the

game and its title.
■ In addition to the search results, a message with the number of results appears

briefly at the bottom of the application after each search.
■ When a game is selected, the user is taken to the product view to display the

details of that particular game.
■ The discounted price of the used game is based on the current retail price with

a standard 40% discount (to keep things simple).
Licensed to Mark Watson <nordickan@gmail.com>

143Project details
Because previous chapters have thoroughly covered routing and views, I’ll refer to
them only when setting the stage for each section of our module discussion. As always,
the complete project is available for download.

 Because this chapter’s example uses AngularJS, you’ll also need a brief overview of
modules and dependencies in AngularJS. Although this discussion of the sample proj-
ect will be as neutral as possible, you’ll need a little AngularJS knowledge to follow the
source code.

High-level overview of AngularJS modules and dependencies

In AngularJS, you can create a module by calling the framework’s module() function,
supplying it with a name for your module and, optionally, including a dependency list:

angular.module("moduleName", ["dependency1", "dependency2"])

Let’s compare that with the traditional module pattern:

var moduleName = (function(depParam1,depParam2) {
})(dependency1, dependency2)

If you don’t have any dependencies, you provide empty brackets:

angular.module("moduleName", [])

After creating your module, you can create Angular-specific components within that
module based on what you need your code to do. AngularJS provides the following
out-of-the-box components: filters, directives, controllers, values, constants, services,
factories, and providers. The details of the various AngularJS components are beyond
the scope of this book but can be found in the online documentation at https://
angularjs.org.

Figure 6.9 Our sample
project is an online store to
sell used video games.
Licensed to Mark Watson <nordickan@gmail.com>

https://angularjs.org
https://angularjs.org

144 CHAPTER 6 Inter-module interaction
Now that you understand the bare minimum of AngularJS modules, components, and
dependencies, you can move on to the source code for this chapter’s SPA example.

6.3.1 Searching

When the application loads, users
are greeted with a welcome mes-
sage and a way to search for the
games they’re interested in. The
header view and the search view
are fixed, so they stay present as the
main content changes with each
search. When a title is searched,
clicking the Search button invokes
the route to display your search
results (see figure 6.10).

Figure 6.10 Upon arrival, users are
greeted with a welcome message and can
immediately begin to search for games.

(continued)

In addition to the built-in AngularJS directives, you’re using controllers, values, and
factories. You’re using the value component to hold your stub data, because this com-
ponent is ideal for storing values used in an application. The factory components are
the closest equivalent to your traditional module pattern (in terms of purpose), so you’ll
mostly use those for basic functionality. The controller components will, as you’ve al-
ready learned, act as a bridge between your application’s code and the UI.

To create components for a module, you add a component function, such as facto-
ry() or controller(), to the module declaration. You can also include the name of
other components in your declaration, and AngularJS will inject them into the one you’re
creating. This is called dependency injection (or DI).

To tell AngularJS you want another component injected into the component you’re cre-
ating, you add the other component to the function parameter list. The names of in-
jected components are duplicated as text strings, to decouple the name of the
concrete implementation of the injected dependency from the named reference that
the consuming code binds to:

angular.module("moduleName",[])
 .factory("componentName",
 ["otherComponent",function(otherComponent){…}]
)

The components you ask AngularJS to inject for you can be any you’ve created in an-
other module (if that module is in the current module’s dependency list) or any one
of the out-of-the-box components from AngularJS or other third-party components.
Licensed to Mark Watson <nordickan@gmail.com>

145Project details
Figure 6.11 gives you a big-picture look at this transaction, end to end, and notes the
type of inter-module interaction, where relevant.

 All searches are keyword searches, so any game with the search term in its title is
added to the result list and displayed.

 That’s the high-level view of what happens when a user searches. Let’s break down
the steps now and look at the code behind each type of module interaction.

THE SEARCH CONTROLLERS MODULE

The search.controllers mod-
ule has two controller compo-
nents: one to handle the search
itself and the other to display
the search results. It also
includes the search.services

module as its sole dependency
(see figure 6.12).

search(title)

Search services
module

displayMsg(msg)

Messaging
module

Data module

1. User searches using the term “of ,” which is
 sent as a parameter to the search controller

2. Search controller
 forwards search term to
 search results controller
 for processing

3. Search results controller
 uses search services
 module to perform search
 Type: Dependency 5. Messaging module

 used to broadcast the
 number of records found
 Type: Dependency

4. Data module used as
 data source for search
 services module
 Type: Dependency

6. Messaging module publishes message
 from search services module
 Type: Pub/Sub

7. User alerts displays message
 received from topic subscription
 Type: Pub/Sub

Search controller

Search results
controller

View:
/resultList.html

User alerts
controller

View:
/useralerts.html

http://localhost:8080/SPA/#/searchResults/of

AngularJS
$broadcast

Figure 6.11 High-level view
of what happens when a user
searches for a game title

Search
controllers

module

Inter-module interaction type: Dependency

Module
dependency

Search
services
module

Figure 6.12 The search controllers module uses the search
services module to perform the searches. The search
services module is its only dependency.
Licensed to Mark Watson <nordickan@gmail.com>

146 CHAPTER 6 Inter-module interaction

th

ncy

Creat
comp
searc
After searching, your search results controller uses a component in the search.ser-
vices module to do the work of looking up the term a user has entered. If anything is
found, the search component in the search.services module will return a list of
game objects for the results controller to pass to its view for display.

 The following listing shows the code for your search.controllers module.
Remember that in AngularJS you add module-level dependencies in the brackets of
the module declaration.

 angular.module("search.controllers", ["search.services"])

.controller("searchController",
 ["$scope", "$state",

 function($scope, $state){
 $scope.search = function() {
 $state.go("searchResults",
 { gameTitle:$scope.game.name });
 };
 }

])

.controller("searchResultsController",
 ["$scope", "$stateParams", "searchSvc",

 function($scope, $stateParams, searchSvc){
 $scope.results =
 searchSvc.search($stateParams.gameTitle);
 }

]);

Now that you’ve seen the controllers used for the search, let’s review some of the code
in the search.services module that you’ve added as a dependency. This is the mod-
ule that does the heavy lifting.

THE SEARCH SERVICES MODULE

The search.services mod-
ule has two dependencies:
one to access your data and
another to broadcast the
number of search results
found (see figure 6.13).

Figure 6.13 The search services module
uses the app data module as a data source

and the messaging services module to
broadcast the number of search results.

Listing 6.4 Module for search controllers

Create the module wi
the search.services
module as a depende

e a controller
onent for the
h

In the UI, the Search button is bound to
$scope.search. This function transitions to
the searchResults state, passing along the
search term in a parameter (gameTitle)

searchResultsController
is the controller for the
searchResults state

The searchSvc component of
the search.services module is
injected to do the data lookup

Inter-module interaction type: Dependency

Module
dependency

AppData
module

Search
services
module

Messaging
services
module
Licensed to Mark Watson <nordickan@gmail.com>

147Project details

The fu
refere
modu
Let’s break up your analysis of the search so it’s easier to read. Let’s start with the
dependency list:

angular.module("search.services",["data.appData"
,"messaging.services])

Here you’ll notice that the search.services module also has its own dependencies.
Its dependencies include the following:

■ data.appData—A module that contains your game inventory
■ messaging.services—A module that creates a message about the number of

results found and uses pub/sub to broadcast that message

The following listing provides the entire source code for this module. It’s a lot of
code, but most of it is routine JavaScript used to match the search term with any of the
game titles.

angular.module("search.services",
["data.appData", "messaging.services"])

.factory("searchSvc", ["productData", "messageSvc",
 function(productData, messageSvc) {

 function searchByTitle(title) {

 if(!(title && (typeof title.trim == "function"))) {
 return [];
 }

 if(!(productData && productData.usedGames
 && (typeof productData.usedGames.filter == "function"))) {
 return [];
 }

 var loweredTitle = title.trim().toLowerCase();

 var gamesFound =
 productData.usedGames.filter(function(game) {
 return game.name.toLowerCase().indexOf(loweredTitle) > -1;
 });

 // new user msg for lookup outcome
 messageSvc.displayMsg(
 createResultsMsg(gamesFound.length)
);

 return gamesFound;
 }

 function createResultsMsg(resultSize) {

Listing 6.5 The search services module

Create your module with
its two dependencies

Create your factory component with
two components injected into it

nction
nced by the
le API

Access the data from the
app.appData module

Access the API of the
messageSvc component of the
messaging.services module
Licensed to Mark Watson <nordickan@gmail.com>

148 CHAPTER 6 Inter-module interaction
 var quantifier = resultSize > 0 ? resultSize : "No";
 var noun = resultSize === 1 ? "game" : "games";
 var terminator = resultSize > 0 ? "!" : ".";

 return quantifier + " " + noun
 + " found" + terminator;
 }

 return {
 search : searchByTitle
 };
}]);

This asks AngularJS to inject productData from the data.appData module and
messageSvc from the messaging.services module. These are the worker bees of
these two modules.

 For each match of the search term, the information is returned to the caller (the
search results controller). The results are then displayed for the user. Figure 6.14
shows the search results view after a successful search. In this case, the user used the
term of in the search. This matched the game titles Call of Duty Advanced Warfare
and Middle Earth: Shadow of Mordor.

Create a public API

Figure 6.14 Search results are displayed to the user, along with a brief user alert
about the number of records found. Each search result is a link to display the
item’s details.
Licensed to Mark Watson <nordickan@gmail.com>

149Project details

Create a
compon
Angular
$rootSco
(topmos
object)
Additionally, the number of records found is briefly presented at the bottom of the
screen. Before the searchByTitle function returns, you’ll use the messageSvc compo-
nent of the messaging.services module to create a message about the number of
matches in your search and broadcast it to the rest of the application. This is the mes-
sage in yellow in figure 6.11. This messaging module will then use pub/sub to do the
broadcast.

THE MESSAGING MODULE

The messaging module has no module-level dependencies, so no direct interaction
occurs with another module. It does, however, interact indirectly with the user alerts
module using pub/sub (see figure 6.15).

 The code in this module is straightforward. It has a single component called mes-
sageSvc that uses the built-in pub/sub system of AngularJS to broadcast any messages
passed to it, as you can see in the following listing.

angular.module("messaging.services", [])

.factory("messageSvc", ["$rootScope", function($rootScope) {

 function displayMsg(msg) {
 $rootScope.$broadcast("userMessage", msg)
 };

 return {
 displayMsg : displayMsg
 };

}]);

Listing 6.6 The messaging services module

Messaging
services
module

Inter-module interaction type: Pub/Sub

Uses built-in AngularJS
pub/sub to publish
user message

Intermediary
service

Displays
the message
to the user

AngularJS
$broadcast

User alerts
module

Figure 6.15 The messaging service is a generic utility, blindly broadcasting any
message it’s given. The only module listening in this case is the user alerts module.

Create the module
and give it a name,
no dependencies factory

ent, ask
JS to inject
pe
t scope Use $broadcast to publish

the userMessage topic, along
with any message text

Expose the functionality via the
displayMsg function in its API
Licensed to Mark Watson <nordickan@gmail.com>

150 CHAPTER 6 Inter-module interaction

Create
module
it a nam
depend

Sub
use
eve
With a generic, system-wide feature such as broadcasting a message, it’s acceptable, if
not preferable, to use pub/sub. Also, writing the module in this generic way lets you
use it as a general messaging utility that can be reused anywhere you need to broad-
cast a message.

 With the search results being displayed and the number of results being broad-
casted, you’re left with the module that will consume the broadcast and display it as a
user alert.

THE USER ALERTS MODULE

The user.alerts module also has no module-level dependencies. As you saw in the
previous section, it’s communicated with indirectly by the messaging services module
(refer back to figure 6.15).

 Inside the module, you have one component that’s a controller, so you can display
any information received in the pub/sub subscription in the user alerts view (see the
following listing).

angular.module("userAlerts.controllers", [])

.controller("userAlertsController",
["$scope", "$rootScope", "$timeout",

 function($scope, $rootScope, $timeout){
 $rootScope.$on("userMessage", function(e, msg){
 $scope.msg = msg;

 $timeout(function() {
 $scope.msg = null;
 }, 2000);

 });
 }

]);

At this point, you’ve seen how the application uses both direct and indirect methods
of inter-module interaction when searching. Let’s take a look at what happens when
the user makes a selection from the search results list.

6.3.2 Displaying product information

When the user clicks one of the search results, a change in state allows the application
to display the details about the selected game. Figure 6.16 shows an overview of this
transaction.

 After a game is selected from the search results list, its ID is sent to the product dis-
play controller as a parameter.

Listing 6.7 The user alerts module

the
 and give
e, no

encies

Ask AngularJS to inject a few
out-of-the-box components you need

scribe to the
rMessage
nt using $on

Display the message (via the
$scope/viewmodel), and after
2 seconds remove it
Licensed to Mark Watson <nordickan@gmail.com>

151Project details
THE PRODUCT DISPLAY CONTROLLERS MODULE

The productdisplay.services module has only one module-level dependency: the
product display services module (see figure 6.17).

As shown in the following listing, you use the productDisplaySvc component of the
productdisplay.services module to look up the selected game’s details, using the
product ID sent in via the parameter. These details are then assigned to the $scope
(ViewModel) for display.

getDetails(id)

Product display
services module

applyDiscount(amount)

Pricing services
module

Data module

1. User selects Middle Earth: Shadow
 of Mordor from the search results view

2. The product ID of the
 selection is sent as a
 parameter to the product
 display controller

3. Product display
 controller uses product
 display services module
 to get product details
 Type: Dependency

5. Pricing services module
 used to calculate price
 discount
 Type: Dependency

4. Data module used
 as data source for
 product display services
 Type: Dependency

Product display
controller

View:
/productDisplay.html

http://localhost:8080/SPA/#/productInfo/mid_earth_shadow_mordor

Figure 6.16 High-level view of the product display process

Product
display

controllers
module

Product
display
services
module

Inter-module interaction type: Dependency

Module dependency

Figure 6.17 The product display services module finds the correct product
information by using the selected game’s ID.
Licensed to Mark Watson <nordickan@gmail.com>

152 CHAPTER 6 Inter-module interaction

e
nent

rvice

angular.module("productdisplay.controllers",
 ["productdisplay.services"])

.controller("productDisplayController",
 ["$scope", "$stateParams", "productDisplaySvc",

 function($scope, $stateParams, productDisplaySvc){
 $scope.results =
 productDisplaySvc.getDetails($stateParams.productId);
 }

]);

Let’s take a peek at what’s going on inside the product display services module in
order to look up the game information and apply the price discount.

THE PRODUCT DISPLAY SERVICES MODULE

The productdisplay.services module has two dependencies: one to access your
data and the other to calculate a 40% price discount for the selected used game (see
figure 6.18).

You have some typical JavaScript coding in this module to iterate over the list of games
and find the one with the matching ID (see the following listing).

angular.module("productdisplay.services",
 ["data.appData", "pricing.services"])

.factory("productDisplaySvc", ["productData", "pricingSvc",
 function(productData, pricingSvc) {

 function getDetailsById(id) {

Listing 6.8 The product display controller

Listing 6.9 Product display services module

Create your module
with its dependency

Ask AngularJS to inject th
productDisplaySvc compo
from the other module

Use the productDisplaySvc component
to get the selected game’s details

Inter-module interaction type: Dependency

Module dependency

AppData
module

Product
display
services
module

Pricing
services
module

Figure 6.18 Your data and the components of
the pricing module are used to calculate the price
discount for the game selected.

Create a new module
with two dependencies

Ask AngularJS to inject the data and pricing se
components from the dependent modules
Licensed to Mark Watson <nordickan@gmail.com>

153Project details
 if (!(productData && productData.usedGames)){
 return null;
 }

 if (!(typeof productData.usedGames.filter == "function")) {
 return null;
 }

 var gamesFound = productData.usedGames.filter(function(game) {
 return game.productId == id;
 });

 if (!gamesFound.length) {
 return null;
 }

 var gameFound = gamesFound[0];

 return {
 name : gameFound.name,
 productId : gameFound.productId,
 summary : gameFound.summary,
 url : gameFound.url,
 price : pricingSvc.applyDiscount(gameFound.price)
 };

 }

 return {
 getDetails : getDetailsById
 };

 }

]);

Having seen the product display services module, let’s examine the last leg of your
transaction to see how the discount is calculated and returned to the calling module.

THE PRICING SERVICES MODULE

The pricing.services module has no dependencies of its own and is straightfor-
ward. It takes in an amount from an outside module and multiplies that by the dis-
count rate, as shown in the following listing.

angular.module("pricing.services", [])

.factory("pricingSvc", function() {

 var discountRate = 40;
 var discount = discountRate / 100;

Listing 6.10 The pricing services module

Access
the game
inventory

Call the applyDiscount
function of the API of
the pricing component

Create an API

Create your module,
no dependencies
Licensed to Mark Watson <nordickan@gmail.com>

154 CHAPTER 6 Inter-module interaction
 function isNumber(n) {
 return !isNaN(parseFloat(n)) && isFinite(n);
 }

 function calculate(amt) {
 if(!isNumber(amt)){
 return 1;
 } else{
 return (discount * amt).toFixed(2);
 }
 }

 return {
 applyDiscount : calculate
 };

});

After the appropriate game has been found via its ID, and the discount has been
applied to its price, a new game object is returned to the controller, where the infor-
mation is passed over to the view for display. Figure 6.19 shows the outcome of the
product selection.

 The resulting view is the culmination of your inter-module interaction design for
this project, including both the dependency method and the pub/sub method.

Return the calculated discount

Expose the discount
calculation via this API

Figure 6.19 The resulting view after a matching game is found and a discount
has been applied to the game’s price
Licensed to Mark Watson <nordickan@gmail.com>

155Summary
6.4 Chapter challenge
Now here’s a challenge for you to see what you’ve learned in this chapter. Create a
movie title search for which the matching names of movies appear in a list as the user
types into an input text field. Use a single view, with the input text field at the top and
an unordered list for the results below it. Use a mix of dependencies and pub/sub to
create the functionality. Using your preferred MV* framework, bind a key-up event to
a function that will publish the contents of the input field with every keystroke. One
module should be listening for the topical message and perform the search. It should
also use pub/sub to publish the results. Upon hearing the results, populate the unor-
dered list by using your MV* framework.

6.5 Summary
You’ve accomplished a lot in this chapter. You’ve learned the following about inter-
module interaction:

■ Modules are a vital part of your application’s infrastructure, providing encapsu-
lation and a means for code reuse.

■ A well-designed module can have many functions but should have a single over-
all purpose.

■ Although the internal code of a module remains hidden, its API provides a cen-
tral, controlled access point for its functionality.

■ Two main methods exist for inter-module interaction: directly via APIs or indi-
rectly via events. An event aggregation pattern called pub/sub was used to illus-
trate.

■ No hard-and-fast rules exist for the type of inter-module interaction that you
should choose. In general, modules related to a feature are good candidates for
the dependency method. General-use modules, such as utility modules, are also
OK to have as a direct dependency. Pub/sub is most suitable for unrelated mod-
ules and application-wide notifications.

■ Interaction via dependencies is narrow but allows for direct access to another
module’s API.

■ Interaction via pub/sub is broad and allows all subscribers of a topic to be noti-
fied at the same time.
Licensed to Mark Watson <nordickan@gmail.com>

Communicating
with the server
In chapter 1, you learned how the adoption of the XMLHttpRequest (XHR) API and
the AJAX movement eventually led to the emergence of SPAs. After XHR was sup-
ported in the browser—as a COM component at first and then natively—developers
could use it to asynchronously load both the application’s scaffolding and its data
without refreshing the page. This opened many new avenues for the ways that web
pages could be constructed.

 Until now, you’ve been focusing on creating the SPA itself. In doing so, you’ve
used XHR to dynamically retrieve the templates used to construct your views but
restricted the data in your sample applications to local stub data. In this chapter,
you’ll take another important step forward. You’re going to move the source data
to the server and learn how to remotely access it from your SPA.

This chapter covers
■ The server’s role in an SPA environment
■ How MV* frameworks communicate with the

server
■ Handling results with callback functions and

promises
■ Consuming RESTful services
156

Licensed to Mark Watson <nordickan@gmail.com>

157
 We’ll kick things off with a brief look at the communication process between the
SPA client and the server. After you’re clear on the overall process, we’ll look at the
details of what happens on the client.

 On the client side, I’ll focus on how MV* frameworks try to make your life easier
when you need to talk to the server. MV* frameworks that have built-in support for
persistence enhance the XMLHttpRequest API with their own expanded set of fea-
tures. But because each one has to go through XHR, there are certain commonalities I
can point out.

After learning the basics of communicating with the server, you’ll turn your attention
to dealing with the results. You’ll start with traditional callback functions, which
describe what you want to happen when calls succeed or fail. Next, you’ll learn about
the use of promises. Promises are fast becoming the preferred means of dealing with
XHR results by many of today’s MV* frameworks. More important, though, they’re part
of the ECMAScript 6 version of JavaScript. They’re generally considered a cleaner, more
elegant way of dealing with asynchronous processes than simple callback functions.

 This chapter wraps up with a look at consuming RESTful services with your SPA.
REST is an architectural style for both websites and web services that has gained wide-
spread popularity in recent years—so much so that many MV* frameworks support it
out of the box. Some even use the REST style as a default.

 I won’t go into great detail about designing RESTful services, because that server-
side topic is beyond the scope of this book. I’ll talk about what REST is in the philo-
sophical sense and discuss some of the ways in which MV* frameworks approach REST.

 In the example for this chapter, you’ll continue the preceding chapter’s used video
game store project by adding a shopping cart to it. A shopping cart is a standard feature
for most sites selling goods and/or services online. It’s also the perfect venue for dem-
onstrating the server communication concepts in this chapter. You’ll explore the details

What’s the optimal way for an SPA to communicate with the server?

Generally, the most optimal way to communicate with the server from your SPA is to
use the objects provided by your MV* framework—provided that the framework sup-
ports server communication. Because its objects are built specifically to work within
the framework, they provide request and response methods that are ready-made to
work with the rest of the framework. You’ll need to customize these objects for your
specific needs, either through configuration or by extending them in some fashion.
Typically, you don’t need to supplement the framework with any additional libraries.

If your framework doesn’t have built-in support for communicating with the server, you
can opt to work directly with the low-level methods of the XMLHttpRequest object itself,
use a general utility library (such as jQuery), or go for a library that has fewer, more
specialized components (such as AmplifyJS, http://amplifyjs.com).
Licensed to Mark Watson <nordickan@gmail.com>

http://amplifyjs.com

158 CHAPTER 7 Communicating with the server
of your shopping cart later in the book. That being said, the sample project has some
new requirements that we need to discuss.

7.1 Understanding the project requirements
Unlike in previous chapters, to run the code in this chapter you’ll need a server.
Because most MV* frameworks, including the one we’re using (AngularJS), are server
agnostic, you can pick any server you want. You can also use any server-side language
you want. So whether you like JavaScript, PHP, Python, Ruby, .NET, Java, or any other of
the multitude of languages out there for server-side development, that’s perfectly OK.

 Here are the only two hard requirements for whichever server/language combina-
tion you prefer:

■ Support of RESTful services, because the example uses REST
■ JSON support, either built in or via an add-on

The example’s server code was developed using Spring MVC (version 4), which is a
Java-based MVC framework. Don’t worry, though, if you don’t know Java or Spring. In
our discussions within the chapter, I’ll refer to the server-side code only conceptually.
A guide to the server-side code’s configuration is available in appendix C. If you prefer
a different server-side tech stack, the appendix begins with a summary of the server-
side objects and tasks so you can structure your own server-side code accordingly. The
entire source for the project is available online for download.

 Now that you’ve been introduced to the project, let’s look at how your SPA can
communicate with the server.

7.2 Exploring the communication process
Though many concepts around communicating with the server are the same for any
type of web application, the next few sections present some of the basics within the
context of a single-page application. I’ll also highlight some specific ways in which the
MV* framework supports the communication process.

7.2.1 Choosing a data type

In order for the SPA running in the browser to communicate with a server, both need
to speak the same language. The first order of business is deciding on the type of data
that will be sent and received. To illustrate, I’ll use the example of a shopping cart, as
I do at the end of the chapter.

 When the user interacts with your shopping cart—whether it’s adding an item,
updating the quantity of an item, or viewing the current state of the cart’s contents—
you’re sending and receiving JSON-formatted text. JSON is commonly used by SPAs
when communicating with servers, though the data type can be anything from plain
text, to XML, to a file.

 Even though you’re using JSON-formatted text as a common data exchange for-
mat, it’s merely a representation of a system’s native object or objects. For the text to
Licensed to Mark Watson <nordickan@gmail.com>

159Exploring the communication process
be useful, conversions are happening at both ends. You’ll learn about these a little
later. To ensure that the conversions to native objects work, each side must do its part
to make sure the agreed-upon JSON format is used in the call.

 When a call is made to the server, requests can include information about the inter-
net media types that are acceptable, because a resource can be available in a variety of
languages and media types. The server can then respond with a version of the
requested resource that it deems a best fit. This is called content negotiation. For this
project, you’re interested only in JSON. To express this, you can explicitly declare an
internet media type of application/json for the exchange.

Internet media types are specified using HTTP headers, which are the fields sent in the
transmission that provide information about the request, the response, or what’s con-
tained in the message’s body. The Content-type header tells the other system what to
expect in the request and response. The Accept header can also be specified in the
request to let the server know the media type or types that are acceptable to return.

 After a data type has been selected, an appropriate request method must be used
for the call to be successful. The next section presents common request methods for
an SPA.

7.2.2 Using a supported HTTP request method

When a client makes a request, it can indicate the type of action it would like the
server to perform by specifying the request method. In order for the request to be suc-
cessful, though, the HTTP request method specified in the request must be supported
by the server-side code for that call. If it isn’t, the server may respond with a 405
Method Not Allowed status code.

 Because the HTTP request method describes what should happen to the resource
represented in the request, it’s often called the verb of the call. A request method that
doesn’t modify a resource, such as GET, is considered safe. Any request method that
ends in the same result, no matter how many times its call is executed, is considered
idempotent. For example, you’ll use PUT when the user wants to update the count of a
particular item that’s in the cart. Because PUT is idempotent, you can tell the server

Internet media types

An internet media type (formerly a MIME type) is a standard way to identify the data
that’s being exchanged between two systems. It’s used by many internet protocols,
including HTTP. Internet media types have the format of type/subtype. In this case,
you’re using a media type of application/json: the type is application, and the
subtype is json.

Optional parameters can also be added by using a semicolon, if required. For example,
to specify a media type of text, with a subtype of html and a character encoding of
UTF-8, you use text/html; charset=UTF-8.
Licensed to Mark Watson <nordickan@gmail.com>

160 CHAPTER 7 Communicating with the server
that you want two copies of Madden NFL 10 times in a row, but after the tenth time,
you still have only two copies in the cart.

 Table 7.1 defines a few common HTTP request methods used in our shopping cart
example. Although it’s not a comprehensive list, it does represent the ones most com-
monly used in single-page applications.

Other HTTP methods are specified in the HTTP protocol. For a full list, see http://
en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods.

 The final part of the communication process is the conversion of the data to and
from the internet media type sent and received.

7.2.3 Converting the data

After the data type is agreed upon, both the client and the server must be configured
to send and receive that particular type. For your shopping cart, you’re using JSON
exclusively, so both the code in the browser and the code on the server must be able to
convert to and from this text format.

 On the client, the ability to convert a JavaScript object to JSON may be built into
the MV* framework. If that’s the case, it’s likely the default, and the conversion will
happen automatically when you use the framework to make the server request. If
automatic conversion is not built in, the framework may offer a utility for the conver-
sion of its custom types. For the conversion of JavaScript POJOs, you can use the native
JavaScript command JSON.stringify():

var cartJSONText = JSON.stringify(cartJSObj);

On the server, the JSON-formatted text is converted into a native object of the server-
side language by a JSON parser that’s either built in or available via a third-party
library. Like the HTTP method, the exact method for executing the conversion pro-
cess on the server will vary.

Table 7.1 Common HTTP methods used in an SPA

Method Description Example Safe? Idempotent?

GET Typically, GET is used to fetch
data.

View the shopping cart Yes Yes

POST This method is most commonly
used for creating a resource or
adding an item to a resource.

Add an item to the cart No No

PUT Typically, PUT is used like an
update-or-create action, updating
the existing resource or optionally
adding it if it doesn’t exist.

Update the quantity of an
item in the cart

No Yes

DELETE This is used to remove a
resource.

Remove an item from the
cart

No Yes
Licensed to Mark Watson <nordickan@gmail.com>

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

161Exploring the communication process
To illustrate the process end to end, let’s use the shopping cart update example again.
Let’s say that the user has increased the quantity of an item in the cart. For the modifi-
cation to be verified and processed, you’ll send the updated cart to the server. Figure
7.1 paints a picture of the conversions that happen at both ends.

 After the update function is called, your JavaScript cart object is converted into
JSON-formatted text by the MV* framework. Next, the MV* framework passes the data
to the XMLHttpRequest API. Then the JSON payload is sent in the body of the request
to the server.

 On the client, after the response is received, the returned text is converted once
again. This time it’s converted back into a native JavaScript object. Often this is also
handled automatically for you by the MV* framework. If not, you can use the native
JavaScript command JSON.parse():

var cartJSObj = JSON.parse(returnedCartJSONText);

Now that we’ve discussed the communication process as a whole, let’s go back to the
client to talk about how MV* frameworks help simplify this process.

1. The MV* framework converts the
 JS object to JSON-formatted text

2. The request is sent

3. Server-side
 library converts
 JSON-formatted
 request text to a
 native object

4. Server-side
 code returns
 a cart object

5. Server-side
 library converts
 the native object
 returned to
 JSON-formatted
 text

6. JSON string representing updated
 cart contents is returned

Client

Request
Request method: PUT

Headers

Accept:
application/json
Content-type:
application/json

MV* framework

XHR
object

JavaScript
cart object

JSON conversion
from JS object

Server

Cart as
JSON text

Cart as
JSON text

JSON-native code
conversion library

Native code
cart object

Server-side code:
updateCart(Cart cart)

Updated
native code cart

object

JSON-native code
conversion library

Updated cart
as JSON text

Body

{cartId:123,
 items:[{
 productId:
"madden_nfl_15",
 quantity:2
 }]
}

Response

Headers

Content-type:
application/json

Body

{cartId:123,
 items:[name:
"Madden NFL 15",
productId ...}

etc… rest of cart
contents returned

Figure 7.1 JavaScript objects are converted to JSON and added to the request body for the request. In response,
the server sends back the updated cart as JSON via the response body.
Licensed to Mark Watson <nordickan@gmail.com>

162 CHAPTER 7 Communicating with the server

Con
obje
JSO

S
re
7.3 Using MV* frameworks
One thing MV* frameworks are great at is simplifying complex tasks by abstracting
away a lot of the boilerplate code involved. This is certainly true when it comes to com-
municating with the server. This section specifically covers making requests and deal-
ing with the responses. In our discussion, I’ll point out some of the ways in which MV*
frameworks help with the heavy lifting.

7.3.1 Generating requests

If server communication is supported by the framework, it may expose the XHR object
directly or abstract some or all of the XHR functionality with its own proprietary
objects. These custom objects act as wrappers around the XMLHttpRequest object
either directly or indirectly via another library such as jQuery. They add value by hid-
ing many of the tedious, repetitive tasks in making calls and processing the results.

 Before you look at any MV* examples, let’s put things into perspective by using
vanilla JavaScript and the XMLHttpRequest object to make a server call. If you need a
refresher on XHR, refer to appendix B.

 We’ll use the shopping cart again as an example. As you did earlier, you’ll update
the quantity of an existing item in the cart. Because you’re updating the quantity of an
item, you’ll use the PUT HTTP request method. As you learned in the preceding sec-
tion, PUT is commonly used in an update situation. To keep things simple, you’ll use
an abbreviated version of the cart data used in the project:

var cartObj = {
 cartId : 123,
 items : [{
 productId : "madden_nfl_15",
 quantity : 2
 }]
};

The following listing illustrates the plain JavaScript version of an update to the shop-
ping cart using the XMLHttpRequest object directly.

var cartJSON = JSON.stringify(cartObj);

var xhrObj = new XMLHttpRequest();

xhrObj
.open("PUT","/SPA/controllers/shopping/carts",true);

xhrObj
.setRequestHeader("Content-Type","application/json");

xhrObj
.setRequestHeader("Accept","application/json");

xhrObj.send(cartJSON);

Listing 7.1 Shopping cart update using PUT and XHR directly

vert JS
ct to

N text

Create new instance of
XMLHttpRequest object

Define the call
properties

Set the content type

Declare the data
type you’ll accept

end the
quest
Licensed to Mark Watson <nordickan@gmail.com>

163Using MV* frameworks

Cr
ne
ins
In this example, you’re not even handling the results. You’ll tackle that in the next
section. Even so, you have to deal with several of the low-level details. You have to man-
ually set the content type and any other headers you need (such as Accept). Addition-
ally, you have to manually convert the JavaScript cart object to JSON-formatted text.

 Generally, if an MV* framework has out-of-the-box support for server communica-
tion, you’ll most likely be generating requests from one of two types of objects: a
model or some type of utility/service object. If the framework requires you to create
an explicitly defined data model, you’ll most likely perform server operations by call-
ing functions on the model itself. If the framework doesn’t have an explicit data
model (the framework considers any source of data an implied model), you’ll proba-
bly work through the framework’s utility/service. AngularJS, for example, provides a
couple of services for server communication: $http and $resource. You’re be using
$resource in the project, and you’ll see it in action a little later.

MAKING REQUESTS VIA A DATA MODEL

With some frameworks (Backbone.js,
for example), you explicitly define a
data model by extending a built-in
model object from the framework. By
extending the framework’s model,
you inherit many capabilities auto-
matically. This includes the built-in
capability to perform the full range of
CRUD (create, read, update, and
delete) operations on a remote
resource (see figure 7.2).

 Don’t worry, though, if you need
to make custom calls. Most frame-
works let you override and customize
their out-of-the box behavior.

 Listing 7.2 extends Backbone.Model to define your shopping cart, passing in the
name of the attribute you want to use as its ID. You’re also defining a base URL for all
server requests. You have to do this only once, because this is just the model’s definition.

 After the model has a definition, you can create new instances of it anytime you
need to use it. All new instances of your shopping cart will then inherit everything you
need for server communication.

var Cart = Backbone.Model.extend({
 idAttribute : 'cartId',
 urlRoot : 'controllers/shopping/carts/',
});

var cartInstance = new Cart(cartObj);
cartInstance.save();

Listing 7.2 Backbone.js version of your shopping cart update

Your model
inherits the
MV* framework
model’s abilities.

MV* framework

MV* model

create()
read()

update()
delete()

Your model

Cart

Figure 7.2 With MV* frameworks, where your
model extends those of the framework, you
automatically inherit abilities from the parent, such
as the ability to make server requests.

Define a model with
a URL and an IDeate a

w model
tance

Call its inherited save()
function to initiate the request
Licensed to Mark Watson <nordickan@gmail.com>

164 CHAPTER 7 Communicating with the server

Defin
for th
and n
para
(null

t
ept
it
The Backbone.js code is certainly less verbose. It’s also doing several things under the
covers. For starters, it assumes you’re dealing with JSON (unless you tell it otherwise)
and automatically converts the object passed into its constructor to JSON-formatted
text. In addition, it automatically sets the Content-type and Accept headers for JSON.
Finally, it can automatically decide whether to use PUT or POST based on whether the
object of the request has an ID yet. Again, any of these features can be customized or
overridden.

MAKING REQUESTS THROUGH DATA SOURCE OBJECTS

The other manner in which MV* frameworks make requests to the server is through a
separate data source object. This is typical when a framework, such as AngularJS,
allows you to use anything you want as a data model. With no parent to extend, there
are no canned abilities to inherit. When this is the case, the framework provides a data
source object that you’ll pass your model into when making a call (see figure 7.3).

 Let’s see an example of this alternative MV* approach. Listing 7.3 uses an
AngularJS $resource object to perform your shopping cart update. I mentioned ear-
lier that $resource is one of AngularJS’s services that can be used when communicat-
ing with the server. It has many features for easily modeling requests and dealing with
the server’s response. When you get to this chapter’s project, you’ll delve into the use
of $resource in detail to understand the example. For now, let’s see this style of MV*
code as a comparison with your original, vanilla JavaScript server call.

var CartDataSrc =
 $resource(
 "controllers/shopping/carts", null,
 {updateCart : {method : "PUT"}
 }
);

CartDataSrc.updateCart(cartObj);

Listing 7.3 AngularJS version of your shopping cart update

Data sources are
utility-like objects
you pass your data
into for the call.

No prescribed
model structure

MV* framework

MV* data source object

create()
read()

update()
delete()

Your data
(implied model)

Cart

Figure 7.3 Frameworks that provide server communication, but don’t provide a model
to extend, will most likely provide a data source object instead.

Use the built-in $resource object
to create a data source instancee a URL

e call
o URL

meters
)

AngularJS’s $resource objec
has all CRUD operations exc
update(); you can configure Use the updateCart()

method you added
Licensed to Mark Watson <nordickan@gmail.com>

165Using MV* frameworks
Even though you’re not extending anything, the overall concept is the same as our
first MV* example. You can lean on the MV* framework to help you generate the
request. Like Backbone.js, under the covers AngularJS sets the appropriate headers,
converts the JavaScript object into JSON, and uses the HTTP method you defined. As
you saw, though, the authors of this particular framework chose to not include a
method to update the cart (PUT) out of the box. It’s easy enough, though, to custom-
ize the data source object to add this behavior.

 Another feature that MV* frameworks provide is an easy way to deal with the results
of a call to the server. Some frameworks support using callback functions, whereas
others rely on promises. Promises are becoming more and more prevalent with MV*
frameworks, but I’ll make sure you understand using callbacks with asynchronous
requests first.

7.3.2 Processing results with callbacks

When you’re processing an asynchronous task, such as your server call to update the
shopping cart, you don’t always want the application to hang while you wait for the
server to respond. You sometimes need it to continue in the background while your
application handles other tasks. So instead of the update function returning a value
when it’s done, callbacks are passed in to handle the results when it completes. You
can do this because functions can be passed around. This allows any function to take
other functions as arguments.

 When callbacks are passed into a function as arguments, they become like an
extension of it. They can be passed control and continue processing from there.
Using callbacks in this way is called continuation-passing style.

 Let’s take a look, then, at using the continuation-passing style of programming to
process the results of a server call. Because Backbone.js supports callbacks, I’ll use that
framework to illustrate. Let’s add some handlers to your previous shopping cart
update. Figure 7.4 gives an overview.

Control is passed
to whichever
function gets
executed.

1. Callback function references
 are passed in as arguments

2. Cart sent to
 server for update

3. The returned cart data
 is passed on success

4. The error function is
 invoked if the call fails

Cart model
save(success, error)

Request

Response

success()

Updated cart

error()

Error message

Figure 7.4 With callbacks, control passes
from the save() function to either the
success() function or the error()
function after the process has completed.
Licensed to Mark Watson <nordickan@gmail.com>

166 CHAPTER 7 Communicating with the server

New
insta
creat
If the call is successful, the save() function invokes the success() function via the
XHR object, passing to it the returned cart data. If the call fails, save() invokes
error(), passing in the details for the failure. In either case, processing is continuing
from the model’s save() function to one of these callback functions.

 Now let’s take a look at some code. You’ll make exactly the same request that you
did earlier with Backbone.js, but this time you’ll do something with the results (see
the following listing).

var cartInstance = new Cart(cartObj);

cartInstance.save(null, {
 success : function(updatedCart, reponse) {
 console.log("Cart ID: " + updatedCart.id);
 },
 error : function(cartUnchanged, response) {
 console.log("Error: " + response.statusText);
 }
});

Not only is this code a little easier to read, but you’re also able to pass in a configura-
tion object to the save() function itself. In this object, you can define success and
error callback functions and any other configuration options supported by save()
that are needed. Backbone.js also helps out by automatically passing the results of the
server call to the callback functions you’ve defined.

 In a successful call, you have access to the updated cart object as well as the
response from the server. When the call fails, you can use the response to find out the
reason for the failure. Moreover, if you need any low-level details about the call, the
save() method also returns a jQuery jqXHR object, which is a wrapper for XHR. For
more details about jqXHR, see http://api.jquery.com/jQuery.ajax/#jqXHR.

 Callbacks are easy to work with and great for simple results, but continuation-pass-
ing style can sometimes become cumbersome if you have multiple tasks to perform
when the call completes.

 Fortunately, a trend with many MV* frameworks is to return a promise instead of
relying on continuation-passing style callbacks. Like callback functions, promises are
nonblocking: the application doesn’t have to stop and wait for the call to finish. This
makes them also ideal for asynchronous processing. As you’ll see in the next section,
they have additional properties and behaviors that make your life much easier when
you have complex requirements for handling results.

7.3.3 Processing results with promises

A promise is an object that represents the outcome of a process that hasn’t yet com-
pleted. When an MV* framework supports promises, its functions that perform asyn-
chronous server calls will return a promise that serves as a proxy for the call’s eventual

Listing 7.4 Processing a shopping cart update via callbacks

Cart
nce
ed

No model attributes to
change before saving (null)

Define callbacks for save()
Licensed to Mark Watson <nordickan@gmail.com>

http://api.jquery.com/jQuery.ajax/#jqXHR

167Using MV* frameworks
results. It’s through this promise that you can orchestrate complex result-handling
routines. To understand how to use a promise, you must first understand its internal
state before and after the call is made.

WORKING WITH PROMISE STATES

The good news about working with promises is that they exist in only one of the follow-
ing three states:

■ Fulfilled—This is the state of the promise when the process resolves successfully.
The value contained within the promise is the result of the process that ran. In
your shopping cart update, this would be the updated cart contents returned by
the server.

■ Rejected—This is the promise’s state when the process fails. The promise con-
tains a reason for the failure (usually an Error object).

■ Pending—This is the initial state of the promise before the process completes.
In this state, the promise is neither fulfilled nor rejected.

These three states are mutually exclusive and final. After the promise has been ful-
filled or rejected, it’s considered settled and can’t be converted into any other state.
Figure 7.5 uses the shopping cart project to illustrate the three states of a promise.

 A variable assigned to a promise doesn’t remain a null reference while it waits for
the function to return. Instead, a full-fledged object gets returned immediately in a
pending state with an undetermined value. When the process finishes, the promise’s

1. The state of the promise
 begins as pending.

2. When an error occurs,
 the state is rejected.

3. If the call is successful,
 the state is fulfilled.

Pending

Call is
successful?

Yes

?

Rejected

Reason

Fulfilled

Cart data

No

A fulfilled promise’s
value contains the
expected results.

If rejected, the
promise’s value
is the reason for
the rejection.

Figure 7.5 A promise has three mutually exclusive states: pending, fulfilled, and rejected.
Licensed to Mark Watson <nordickan@gmail.com>

168 CHAPTER 7 Communicating with the server

The u
return
prom
state changes to either fulfilled, with its value containing the results of the call, or
rejected, with the reason for the failure.

ACCESSING THE RESULTS OF YOUR PROCESS

I haven’t talked about what you do with a promise after it’s returned, in order to
access a process’s results. The Promise API has several useful methods, but the one
you’ll use the most is its then() method.

 The then() method lets you register callback functions that allow the promise to
hand you back a process’s results. The functions you define here are called reactions.
The first reaction function represents the case in which the promise is fulfilled. The
second is optional and represents the case in which the promise is rejected:

promise.then(
 function (value) {
 // reaction to process the success value
 },
 function (reason) {
 // reaction to optionally deal with the rejection reason
 }
);

Because the rejected reaction is optional, the then() method can be written in short-
hand:

promise.then(function (value) {
 // process the success value, ignore rejection
});

Here’s the point to remember about reaction functions: no matter how the code is
formatted, only one of the two functions will ever be executed—never both. It’s one or
the other. In this regard, it’s somewhat analogous to a try/catch block. It’s also worth
noting that the parameter of the reaction function is what the promise hands you
back (with either the fulfilled value or the rejection reason). When that happens, you
have your results.

 Let’s take a look at the then() function in action. The following listing updates
your shopping cart and uses a promise instead of a callback function to process the
results.

CartDataSrc.updateCart(cartObj).$promise
.then(
 function(updatedCart) {
 console.log("Cart ID: " + updatedCart.id);
 },
 function(errorMsg) {
 console.log("Error: " + errorMsg);
 }
);

Listing 7.5 Processing a shopping cart update via a promise

pdate
s a

ise
Use the promise’s then()
function to access the results
Licensed to Mark Watson <nordickan@gmail.com>

169Using MV* frameworks

$resou
return
prom
Having a promise returned is built into AngularJS’s $resource methods. As you can
see in the example, you’re writing out the results of the call to the console as you did
before—only this time you’re able to use the returned promise object instead of
diverting control over to a callback function. The then() method passes the success
results or the rejected reason to the functions you give it.

 Another perk of using promises is that you can chain multiple then() methods
together if more than one thing needs to happen after your call has been made.

CHAINING PROMISES

Often after a process has run, you want several things to happen after the fact. In addi-
tion, you may need these things to happen in order, ensuring that the next event hap-
pens only if the one before it succeeds. This is not only possible but also easy to do
with promises.

NOTE jQuery’s implementation of promises doesn’t support every scenario
described in this section. See https://blog.domenic.me/youre-missing-the-
point-of-promises for more details.

So far in your shopping cart update, you’ve been printing the results to the console.
In a real application, you want to perform the following tasks after the server call
finishes:

1 Recalculate the cart’s total, applying necessary discounts.
2 Update the view with the results.
3 Reuse the message service to update the user that the call was a success.

Moreover, you want these tasks performed in order, and only if each task is successful
should the next one begin. This ensures that the user won’t be erroneously notified
that everything went swimmingly if an error happens to occur along the way (see the
following listing).

var promise = CartDataSrc.updateCart(cartObj).$promise

promise.then(function(updatedCart) {
 return shoppingCartSvc
 .calculateTotalCartCosts(updatedCart);
})
.then(function(recalculatedCart) {
 replaceCartInView(recalculatedCart);
})
.then(function() {
 messageSvc.displayMsg("Cart updated!");
})
["catch"](function(errorResult) {
 messageSvc.displayError(errorResult);
});

Listing 7.6 Using promises to force control flow

rce
s a

ise
Return recalculated cart
for use in next then()

Display recalculated cart

Display a user message

Handle any errors that
occurred along the way
Licensed to Mark Watson <nordickan@gmail.com>

https://blog.domenic.me/youre-missing-the-point-of-promises for more details
https://blog.domenic.me/youre-missing-the-point-of-promises for more details

170 CHAPTER 7 Communicating with the server
This works because each then() returns a promise. If the reaction of the previous
then() returns a promise, its value is used in the subsequent promise handed to the
next then(). If the reaction returns a simple value, this value becomes the value in the
promise passed forward. This allows you to chain them all together and makes for a
straightforward and clean approach.

 Being able to chain together multiple tasks in sequence in a few lines of code is
amazing, but chaining can help you in other ways. Another amazing thing about chain-
ing promises is that you can have more than one asynchronous process in the chain.

CHAINING MULTIPLE ASYNCHRONOUS PROCESSES IN SEQUENCE

Sometimes when you need several tasks to run in order, more than one may be asyn-
chronous. Because you don’t know when asynchronous processes will finish, trying to
place one into a sequence with other tasks might be pretty challenging. It’s easy,
though, using promises. Because each then() is resolved before the next one is exe-
cuted, the entire chain executes sequentially. This is still true even if multiple asyn-
chronous processes are in the chain.

 To demonstrate, let’s pretend that the server APIs require you to use the cart ID
that’s returned by the shopping cart update in a subsequent GET call in order to prop-
erly display the cart onscreen. The following listing illustrates how to use promises to
do this.

var promise = CartDataSrc.updateCart(cartObj).$promise

promise.then(function(cartReturned) {
 return shoppingCartSvc
 .getCartById(cartReturned.cartId);
})
.then(function(fetchedCart) {
 return shoppingCartSvc
 .calculateTotalCartCosts(fetchedCart);
})
.then(function(recalculatedCart) {
 replaceCartInView(recalculatedCart);
})
.then(function() {
 messageSvc.displayMsg(userMsg);
})
["catch"](function(errorResult) {
 messageSvc.displayError(errorResult);
});

In this chain, your update happens first. Then, after it returns, your next server call
fires. Because the GET call from $resource already creates a promise, its value will be
used in the promise passed to the next then().

 Before finishing this discussion of promises, let’s get a quick overview of error han-
dling. You saw error handling in some of the examples, but I didn’t go over any
details.

Listing 7.7 Executing more than one server call in order

Use the cart returned in the
update for the next server call

Use the fetched cart
for the recalculation
Licensed to Mark Watson <nordickan@gmail.com>

171Using MV* frameworks
7.3.4 Promise error handling

You can handle rejected promises in two ways. You saw the first way early on. Option 1
is to use the second reaction function of the promise’s then() method. The second
reaction is the one triggered when there’s a rejection:

promise.then(
 function (value) {
 },
 function (reason) {
 // deal with the rejection
 }
);

Option 2 is to add an error-handling method called catch() to the end of your chain:

.catch(function (errorResult) {
 // deal with the rejection
});

Some browsers take issue with a method called catch(), because it’s a preexisting
term in the JavaScript language. Alternatively, you can use this syntax:

["catch"](function(errorResult) {
 // deal with the rejection
});

TIP Writing .catch() as ["catch"] looks strange but will help you avoid
potential issues for any older browsers that don’t support ECMAScript 5. If you
use this syntax, as shown in these examples, notice that it doesn’t have a dot in
front of it.

You saw the second option being used with your shopping cart call. It used the mes-
sage service to log the error and broadcast a user-friendly message to the user:

["catch"](function(errorResult) {
 messageSvc.displayError(errorResult);
});

With either method of error handling, rejections are passed down the chain to the
first available error handler. This behavior seems obvious with the catch() method.
What’s less obvious is that this is true even when using the optional reaction function
for error handling. If a rejection occurs somewhere up the chain, and either type of
error-handling method is encountered somewhere down the chain (even if it’s several
then()s later), that error handler will be triggered and passed the error thrown.

 As illustrated in our shopping cart examples, promises are powerful yet easy to use
if you understand them. Frameworks and libraries sometimes add even more func-
tionality, on top of what this chapter covers on promises. See their documentation for
specific details.

 Even if you have a project that requires you to support older browser versions, you
can still use promises via your MV* framework if promises are supported or via a
Licensed to Mark Watson <nordickan@gmail.com>

172 CHAPTER 7 Communicating with the server
third-party library. The following are a few of the many popular promise third-party
libraries at the time of this writing:

■ bluebird—https://github.com/petkaantonov/bluebird
■ Q—https://github.com/kriskowal/q
■ RSVP.js—https://github.com/tildeio/rsvp.js
■ when—https://github.com/cujojs/when
■ WinJS—http://msdn.microsoft.com/en-us/library/windows/apps/

br211867.aspx

Aside from all of these being promise libraries, they also conform to the current pre-
ferred promise standard called Promise/A+. This is the same standard that native Java-
Script promises are based on. If you’d like to read more about the Promise/A+
specification, a good resource is https://github.com/promises-aplus/promises-spec.

 As an aside, jQuery also has its own version of promises, but as of this writing they
aren’t Promise/A+ compliant. With jQuery, promise functionality is done via its
Deferred object. If you’re interested, a great resource is the jQuery site itself: http://
api.jquery.com/category/deferred-object.

 Promises are also being implemented into the ECMAScript 6 (Harmony) version of
JavaScript. Even before the specifications have been finalized, they already have lim-
ited support in many of today’s browsers.

 At this point, you’re almost ready for our project. But you need to review the con-
sumption of RESTful services first.

7.4 Consuming RESTful web services
This section covers consuming RESTful web services from your SPA. In many single-
page applications today, these types of services are extremely common.

7.4.1 What is REST?

REST stands for Representational State Transfer. REST isn’t a protocol or even a specifica-
tion but an architectural style for distributed hypermedia systems. It has gained such
widespread popularity that many MV* frameworks not only provide out-of-the-box sup-
port for it but also favor this style by default.

 In a RESTful service, APIs define the media types that represent resources and
drive application state. The URL and the HTTP method used in the API define the pro-
cessing rules for a given media type. The HTTP method describes what’s being done,
and the URL uniquely identifies the resource affected by the action. REST can best be
defined by describing its set of guiding principles.

7.4.2 REST principles

This section presents a few of the REST principles that most affect how you consume
RESTful web services. This will also give you a good idea of what REST is about.
Licensed to Mark Watson <nordickan@gmail.com>

http://api.jquery.com/category/deferred-object
http://api.jquery.com/category/deferred-object
https://github.com/promises-aplus/promises-spec
https://github.com/petkaantonov/bluebird
https://github.com/kriskowal/q
https://github.com/tildeio/rsvp.js
https://github.com/cujojs/when
http://msdn.microsoft.com/en-us/library/windows/apps/br211867.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br211867.aspx

173Consuming RESTful web services
EVERYTHING IS A RESOURCE

One of the fundamental concepts in REST is that everything is a resource. A resource is
represented with a type and conceptually maps to an entity or set of entities. A
resource could be a document, an image, or information that represents an object
such as a person. The notion of a resource could also extend to a service such as
today’s weather or, in our case, a shopping cart.

EVERY RESOURCE NEEDS A UNIQUE IDENTIFIER

Each resource in a RESTfull service should have a unique URL to identify it. This often
entails creating and assigning unique IDs to the resource. You want to make sure that
any ID you use in a URL in no way jeopardizes the security or integrity of your applica-
tion. A common security measure is to assign a randomly generated ID for any
resource that’s personal or confidential. To ensure that the ID is used by only the
intended user, the server-side code makes sure the requester is the authenticated user
assigned to the resource and has the proper authorization to perform the action on
the resource.

REST EMPHASIZES A UNIFORM INTERFACE BETWEEN COMPONENTS

You’ve already seen how HTTP methods are considered the verb of a web service call.
Resource identifiers and HTTP methods are used to provide a uniform way of access-
ing resources. Table 7.2 gives some examples from the project.

It’s important to note that the style of URL used isn’t part of REST, even though you
sometimes see the phrase RESTful URL used in articles about REST.

INTERACTIONS ARE STATELESS

Session state for your application should be held in your SPA and shouldn’t rely on cli-
ent context being stored on the server between requests. Each request made by the

Table 7.2 URLs in REST uniquely identify a resource, and the HTTP method describes that action being
 performed on the resource.

REST

URL: /shopping/carts/CART_ID_452
Method: GET
Purpose: Fetch cart

URL: /shopping/carts/CART_ID_452/products/cod_adv_war
Method: POST
Purpose: Add an item to the cart

URL: /shopping/carts/CART_ID_452
Method: PUT
Purpose: Update the entire cart’s contents

URL: / shopping/carts/CART_ID_452/products/cod_adv_war
Method: DELETE
Purpose: Remove all instances of a particular product from the cart
Licensed to Mark Watson <nordickan@gmail.com>

174 CHAPTER 7 Communicating with the server
SPA to the server should convey all the information needed to fulfill the request and
allow the SPA to transition to a new state.

 Again, we’ve barely scratched the surface of REST here. For more information
about REST and REST architecture, see http://en.wikipedia.org/wiki/
Representational_state_transfer.

7.4.3 How MV* frameworks help us be RESTful

Thinking in terms of REST can take a little getting used to. Fortunately, MV* frame-
works such as Backbone.js and AngularJS support REST right out of the box. For
example, when you used Backbone.js for your shopping cart update, it automatically
added the ID from your model to your URL so that the URL uniquely identifies the
resource in the request. Frameworks that don’t have explicit models, such as Angu-
larJS, might allow you to use path variables in a URL template to create a RESTful URL.
You’ll see examples of path variables in a moment, when you look how AngularJS’s
$resource object is used in your project.

 MV* frameworks also help you consume RESTful services by making it easy to send
the correct HTTP request method. They usually either come with canned functions for
GET, POST, PUT, and DELETE or allow you to effortlessly generate them via configuration.

 Now that you have a general idea of RESTful services and their guiding principles,
you’re finally ready to tackle the project. In this project, you’ll get to see firsthand how
promises and REST work together to maintain a shopping cart.

7.5 Project details
You’ll continue building on the preceding chapter’s used video game project by add-
ing a shopping cart. As usual, you’ll use AngularJS for your MV* framework. It has
built-in support for both promises and the consumption of RESTful services. As indi-
cated at the beginning of this chapter, we discuss the server side of the application
only conceptually here.

 Because many server-side languages and frameworks might be used instead of what
you’re using, I include a small summary of the tasks the server will need to perform
for each call in appendix C. This way, you can create the server-side code by using a
different tech stack if you wish. As always, the complete code is available for download.
Let’s begin by walking through the setup of your data source.

7.5.1 Configuring REST calls

Earlier in this chapter, you learned about the $resource object from AngularJS. It
makes consuming RESTful services easier, and its methods all return promises. You’ll
use it for every server call in your project. Although I try to keep our discussions
framework neutral, you’ll have to take a moment to further review how $resource
works. It can be a little intimidating at first. After you walk through how it works,
though, you’ll see how easy it is to use. After a gentle introduction to $resource, you’ll
proceed with how it’ll be configured in your example SPA’s shopping cart service.
Licensed to Mark Watson <nordickan@gmail.com>

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer

175Project details

Creating URLs with AngularJS’s $resource

Like some of the other MV* frameworks, AngularJS offers support for RESTful service
web service consumption out of the box by using its $resource object. This object
adds a lot of sugar coating for the underlying XMLHttpRequest object to hide much
of the boilerplate code you’d have to otherwise write yourself.

The main goal of $resource is to make it easy to work with RESTful services. Having
a consistent and uniform way to represent resources is one of the principles of REST.
After a URL style has been established, the $resource factory will help you create
URLs that conform to this style easily.

The $resource factory enables you to define a template that will create resource URLs
for each type of REST call you need to make. To use $resource, you can pass a URL,
optional default parameters, and an optional set of actions to its constructor:

$resource(DEFAULT URL, DEFAULT URL PARAMS, OPTIONAL ACTIONS)

The following will serve as your default URL:

"controllers/shopping/carts"

The default will be used if you don’t override it. But in this project, you’re defining
custom functions that will override it with their own URLs. Each custom action can
have its own. To construct the URLs in the structure needed by your RESTful web ser-
vices, you can use URL path parameters. As with routes, using a colon in front of a
string in the URL indicates a parameter. Here’s an example URL from your configuration
that includes URL path parameters:

"controllers/shopping/carts/:cartId/products/:productId"

The next argument, the optional parameter list, acts like a data map. It tells the $re-
source object that in one or more of these calls, this optional parameter list may be
used. This list is in the form of key-value pairs. The left side is the name of a parameter
in the URL. The right side is the value for the parameter. The @ symbol tells $resource
that the value is a data property name, not just a string. With it present, the data object
passed in will be scanned for a property with that name, and its value will be used in
the URL’s path.

{
 cartId : "@cartId",
 productId : "@productId "
}

For example, if you passed in an object called myCart for the call, then the value for
the URL parameter cartId would come from myCart.cartId. The value for the URL
parameter productId would come from myCart.productId.

The nice thing about using $resource as a REST URL template is that you get a set
of REST calls out of the box that are preconfigured with the following HTTP methods:

get()—GET
query()—GET (intended for a list; by default it expects an array)
save()—POST
Licensed to Mark Watson <nordickan@gmail.com>

176 CHAPTER 7 Communicating with the server
Now that you’ve looked at $resource basics, let’s look at the entire code for the
$resource instance used for your shopping cart (see the following listing). This will
give you a picture of the type of calls that will be made inside the shopping cart service.

var Cart = $resource("controllers/shopping/carts", {
 cartId : "@cartId",
 productId : "@productId"
}, {
 // cart methods
 getCart : {
 method : "GET",
 url : "controllers/shopping/carts/:cartId"
 },
 updateCart : {
 method : "PUT",
 url : "controllers/shopping/carts/:cartId"
 },
 // item-level methods
 addProductItem : {
 method : "POST",

(continued)

delete()—DELETE

remove()—DELETE (identical to delete(), in case the browser has a problem with
the delete() action)

If you want to customize your calls as we’re doing, you can pass in the optional set
of named functions (or actions in Angular-speak). You can use the action to create a
completely customized call or override one of the out-of-the-box functions. For example,
to create a custom action called updateCart(), you can include the following in your
set of actions:

updateCart : {
 method : "PUT",
 url : "controllers/shopping/carts/:cartId"
}

After you have the $resource object configured, any calls you make with it automat-
ically return a promise. You’ve already seen how to use them to work with the results
of your calls.

In this chapter’s examples, you’re using $resource inside your shopping cart service
because you have additional processes taking place before the data is returned to
the controller. For simple data returns, you might want to wrap the $resource in an-
other AngularJS object (such as a factory) and include it directly in your controller.

To see the complete documentation for $resource, visit the AngularJS site at
https://docs.angularjs.org/api/ngResource/service/$resource.

Listing 7.8 Configuration for your REST calls

Assign the $resource
created to a variableDefine default

parameters

Define actions for
the rest of your calls
Licensed to Mark Watson <nordickan@gmail.com>

https://docs.angularjs.org/api/ngResource/service/$resource

177Project details
 url : "controllers/shopping/carts/:cartId/products/:productId"
 },
 removeAllProductItems : {
 method : "DELETE",
 url : "controllers/shopping/carts/:cartId/products/:productId"
 },
});

With getCart(), you can get the cart’s content anytime you need it. You’ll use add-
ProductItem() to add a new product to the cart or use removeAllProductItems() to
remove all quantities of a given product type. You can use updateCart() to update the
entire cart.

TIP Though you’re not implementing security in this application, usually
each call you make is validated for security and data integrity in the server-
side code.

Because the previous chapter covered the application, in this section you’ll focus only
on the code around your server calls and how to process the results. Let’s begin with
adding new product items to the cart.

7.5.2 Adding product items to the cart

Following the URL format chosen earlier, you include the cart ID and the product ID
in your RESTful service call to add a product item to the shopping cart (see table 7.3).
If the product already exists in the cart, the quantity increases.

You’ve modified the product display page to include a new button that will make the
call to add a product item to the cart. When this button is clicked, it calls the
addItem() action in your shopping cart’s $resource’s configuration. The following
listing shows the modified view containing the new button.

angular.module("data.appData", [])

<section class="product_info">
 <h2>
 {{results.name}}

 Used Price:

Table 7.3 RESTful call to add a product to the shopping cart

Method URL HTTP method Request Response

Cart.addProductItem() /shopping /carts/
CART_ID_89/products/
cod_adv_war

POST Products Cart

Listing 7.9 Updated product display view
Licensed to Mark Watson <nordickan@gmail.com>

178 CHAPTER 7 Communicating with the server
 {{results.discountPrice | currency:"$":0}}

 <button id="product_info_add_btn"
 ng-click="addToCart('{{results.productId}}')">
 Add to Cart
 </button>
 </h2>

 <section id="product_info_img_container">

 </section>

 <section id="product_info_summary">
 {{results.summary}}
 </section>
</section>

Figure 7.6 shows what the finished view looks like.
 Using an ng-click binding, you’ve bound the button click to a function called

addToCart() on the $scope (ViewModel) in the controller to handle the new user
action. In turn, this function calls the addToCart() function of your shopping cart ser-
vice (see listing 7.10). As a reminder, the AngularJS $stateParams object allows you to
access parameters from the route that was executed.

Pass the product ID
of the game found

Figure 7.6 The product display page now features a button to add the item to the
shopping cart.
Licensed to Mark Watson <nordickan@gmail.com>

179Project details

$scope.addToCart = function() {
 shoppingCartSvc.addToCart($stateParams.productId);
};

After the function call is made, the addToCart() function in the shopping cart service
makes the RESTful call to the server for processing (see the following listing).

function addToCart(productId) {
 return Cart.addProductItem({
 cartId : createorGetExistingCart(),
 productId : productId
 }).$promise.then(function(cartReturned) {

 messageSvc.displayMsg("Item added to cart!");

 console.log("Item added successfully to cart ID "
 + cartReturned.cartId);
 })

 ["catch"](function(error) {
 messageSvc.displayError(error);
 });
}

The product ID and the cart ID get mapped to the default parameters of your add-
ProductItem() custom action in the $resource configuration that you saw earlier.
After the user has added items to the cart, a new view needs to display the cart’s con-
tents. For this, you’ve added a brand-new view to the application.

7.5.3 Viewing the cart

In this call, you use the cart ID that was generated locally when the user landed on the
welcome page. You can use it to get the current state of the cart. Table 7.4 lists this
call’s properties.

To be able to view the cart from anywhere, a new link is added to the header. Clicking
the link executes the viewCart route, which takes you to the shopping cart view:

View Cart

Listing 7.10 Application’s data holds cart ID

Listing 7.11 Function to make the addItem() call

Table 7.4 RESTful call to get the shopping cart to display its contents in the view

Method URL HTTP method Request Response

Cart.getCart() /shopping /carts/CART_ID_89 GET Empty Cart

Use the shopping cart
service to add the item

Pass the cart ID and the
product ID as call parameters

Promise chain: display
user message

Handle any errors
Licensed to Mark Watson <nordickan@gmail.com>

180 CHAPTER 7 Communicating with the server
When the controller behind the shopping cart view is called, the first thing it does is
make a GET call to retrieve the cart from the server. You’ll look at this call from the
controller first and then the shopping cart service.

 In the controller where the call originates, the getCart() function returns the
promise generated by the $resource call. As you may remember from our discussion
of promises, the promise referenced here will be pending until the call completes:

var promise = shoppingCartSvc.getCart();
handleResponse(promise, null);

You’re also handing off the promise to a generic JavaScript function in the shopping
cart controller that will handle the promise returned. The nice thing about promises
is that they can be passed around like any other JavaScript object. In each call,
whether it’s fetching the cart, updating it, or removing an item, you’ll process the
promise in the same way every time (see the next listing).

function handleResponse(promise, userMsg){

 promise.then(function(cartReturned) { B
 return shoppingCartSvc
 .calculateTotalCartCosts(cartReturned);
 })

 .then(function(recalculatedCart) {
 replaceCartInView(recalculatedCart);
 })

 .then(function(recalculatedCart) {
 messageSvc.displayMsg(userMsg);
 })

 ["catch"](function(errorResult) {
 messageSvc.displayError(errorResult);
 });
};

In the shopping cart service, your call to get the cart becomes a one-liner thanks to
the magic of the out-of-the-box support for REST in your MV* framework. Here you’re
passing an object with the ID of your cart as the payload of your call. The object will be
scanned by $resource for a property name that matches the cartId URL parameter.
Because you’ve stored the cart ID in the cartData object in the client, you can use it
when you need the ID in the URL:

function getCart() {
 return Cart.getCart({cartId : cartData.cartId})
 .$promise;
}

Listing 7.12 Generic function to handle all cart promises

Promise and optional
user message passed in

Recalculate cart

Update the view

Display user message

Handle any errors
Licensed to Mark Watson <nordickan@gmail.com>

181Project details
Also remember that Cart is the variable name assigned to the $resource object you cre-
ated. When the Cart.getCart() call completes, the promise is returned to the control-
ler for the processing you saw previously. If all the promises are fulfilled in the promise
chain when the call completes, the view displays all the items currently in the cart. It also
shows the original price of each item, its used price, as well as the cost savings. At the top
of the cart is a running total of all items and their used prices (see figure 7.7).

 With your cart returned, the user can use the UI controls to update it or delete
items from it.

7.5.4 Updating the cart

When you update the cart, you’re not sending only the new items; you’re sending and
receiving the entire cart. The RESTful URL identifies the cart you’re updating, and the
request body has the updated cart data. Table 7.5 has this call’s properties.

For each entry, you provide an input control to let the user enter a new item count.
You also have a button that will update the entire cart by each item. Each update

Table 7.5 RESTful call to update the shopping cart with new input from the user

Method URL HTTP method Request Response

Cart.updateCart() /shopping /carts/CART_ID_89 PUT Cart Cart

Figure 7.7 The shopping cart view allows the user to modify the cart’s contents.
Licensed to Mark Watson <nordickan@gmail.com>

182 CHAPTER 7 Communicating with the server

Make
upda
retur
prom
button updates the entire cart in the same manner. It’s repeated beside each item only
for convenience.

Quantity:

<input type="text" ng-model="game.quantity" size="4">

<button class="cartItemButton" ng-click="updateQuantity()">
 Update
</button>

The updateQuantity() function needs no parameters because it always passes the
entire cart. In the controller, you rely on the shopping cart service to make the
update and pass the promise returned to your generic promise handler (see the fol-
lowing listing).

$scope.updateQuantity = function() {
 var uCart =
 shoppingCartSvc.createCartForUpdate($scope.cart);

 var promise = shoppingCartSvc.updateCart(uCart);

 handleResponse(promise, "Cart updated!");
};

In the shopping cart service, you have a JavaScript function to create a cart object to
send to the server. To make the request leaner, in the next listing you include only IDs
and updatable properties.

function createCartForUpdate(cartFromView) {

 var cart = {
 cartId : cartFromView.cartId,
 totalCount : cartFromView.totalCount,
 items : new Array()
 };

 angular.forEach(cartFromView.items, function(item) {
 var pItem = {
 productId : item.productId,
 quantity : item.quantity
 };
 cart.items.push(pItem);
 });

 return cart;
};

Listing 7.13 Controller code for cart updates

Listing 7.14 Building the update request object

Create a request object
for the request body

 the
te call,
n the
ise

Pass the promise and user
message to the generic handler

Create the object with a
placeholder for the items array

Iterate over the cart
items and add them
to the request
Licensed to Mark Watson <nordickan@gmail.com>

183Project details

r

When the request object is ready, you can make the update request. Again, thanks to
our MV* framework’s support for REST, you have a one-liner:

function updateCart(cart) {
 return Cart.updateCart(cart).$promise;
};

Like the other call, the update returns the promise to the controller so the promise
chaining can process the results.

 The last thing you need to do in the cart is provide the ability to remove items
from it. In the next section, you’ll examine how to remove all quantities of a particular
product type from the cart.

7.5.5 Removing products from the cart

To remove all items of a product from the cart, the most obvious choice in HTTP
methods is DELETE. You need to make sure that you’re identifying both the cart and
the product, just as you did when you added it. Table 7.6 has this call’s properties.

In addition to users having the ability to update the quantity, the Delete button next
to each product enables users to remove it completely. In the view, you’ve bound the
button’s click to the removeItem() function on the controller. The function call
passes forward the product ID of the product that’s being deleted.

<button class="cartItemButton"
ng-click="removeItem(game.productId)">Delete</button>

In the controller, as with getting the cart or updating it, you make the call and pass the
returned promise to the generic promise handler (see the following listing).

$scope.removeItem = function(productId) {
 var promise =
 shoppingCartSvc.removeAllProductItems(productId);

 handleResponse(promise, "Cart removed!");
};

Finally, you get to the matching code in the shopping cart service where the call is
made (see the following listing). The cart’s ID from your cart data object is mapped to

Table 7.6 RESTful call to remove all items of a product from the shopping cart

Method URL HTTP method Request Response

Cart.removeAllProductItems() /shopping /carts/
CART_ID_89/
products/
cod_adv_war

DELETE Empty Cart

Listing 7.15 Controller code for cart deletes

Pass the product ID,
get a promise back

Pass the promise and user
message to the generic handle
Licensed to Mark Watson <nordickan@gmail.com>

184 CHAPTER 7 Communicating with the server
the cartId URL parameter, and the product ID passed in is mapped to the productId
parameter.

function deleteItem(productId) {
 return Cart.removeItem(

 {
 cartId : cartData.cartId,
 productId : productId
 }

).$promise;
};

Don’t forget that if you want to create the project in your own environment, the
server-side supplement in appendix C begins with a summary of the objects and tasks.
This is included in case you’re using a different tech stack than the example’s code.
Also, as usual, the complete source code is available for download.

7.6 Chapter challenge
Now here’s a challenge for you to see what you’ve learned in this chapter. In the pre-
ceding chapter’s challenge, you created a movie search. You displayed movie titles that
matched wholly or partially the text the user typed into an input field. A key-up event
was bound to a function that published the field’s contents with each keystroke. A
search module subscribed to that topic and performed a search accordingly. The
search also used pub/sub to publish the results, which were displayed in an unor-
dered list below the input field.

 Extend this exercise by putting the stub data and the search logic on the server.
You’ll still have a client-side module listening for the input field contents to be pub-
lished. In turn, it will fire the server call every time it hears the topic. On the server,
you can use any technologies you’re comfortable with. Make the server call a RESTful
service call. Use a RESTful URL and an appropriate HTTP request method for this type
of request. Use a promise to process the server call. Upon success, publish the results
of the search. Write any errors to the console.

7.7 Summary
We covered a lot of ground in this chapter. Let’s review:

■ The server is still important to the single-page application, providing features
such as security, validation, and standard APIs for accessing back-end data.

■ Having an agreement between the client and the server on the data type and
the HTTP methods is essential for a call to be successful.

■ Native objects on both ends are converted to the agreed-upon data format in
both the request and the response.

Listing 7.16 Controller code for cart deletes

Pass the cart ID and
product ID to the call

Return a promise
to the controller
Licensed to Mark Watson <nordickan@gmail.com>

185Summary
■ MV* frameworks that support server communication often take care of routing
tasks, such as providing standard request types out of the box and handling
data conversions.

■ MV* frameworks typically support server communication either through
extending a parent model or via a data source object.

■ Call results are handled either through callbacks using continuation-passing
style or through promises, depending on the framework or library used.

■ A promise represents the outcome of a pending asynchronous process. It starts
as pending but eventually transitions to either fulfilled or rejected when the call
completes.

■ A promise has several methods, but the most commonly used one is then().
This method allows you to register two functions (called reactions) to process a
fulfilled or rejected promise.

■ The reaction for a fulfilled promise gives you access to the result data of a pro-
cess. The reaction for a rejected promise contains the rejected reason (usually
an Error object).

■ Reactions can be chained together to control the flow of a group of processes,
even if other asynchronous calls are in the chain.

■ Promise errors can be handled either through the rejection reaction or via a
catch() method.

■ REST stands for Representational State Transfer and is an architectural style for
developing web services.

■ In REST, everything is a resource and should have a unique URL representing it.
■ HTTP methods describe the action for the resource. The four most common

are GET, POST, PUT, and DELETE.
Licensed to Mark Watson <nordickan@gmail.com>

Unit testing
When you create software, regardless of the platform or language used, you want to
do your best to ensure that you’re delivering a quality product. In this book, you’ve
looked at various ways to create a maintainable, robust SPA, such as dividing your
code into modules and using the power of MV* frameworks. Another vital facet of
SPA programming is testing. Testing what you write is just as important to the deliv-
ery of the end product as the code itself. Putting your code through the paces does
a lot more than uncover bugs. When you see that your code does what you expect it
to and can handle failures gracefully, this helps you write better code and improves
your confidence in the application.

 Although an application can be subjected to a variety of tests, this chapter
focuses specifically on unit testing. The upcoming sections cover what a unit test is,
how to create code that’s more conducive to unit testing, and what some of the

This chapter covers
■ An introduction to unit testing
■ Using JavaScript testing frameworks
■ Unit testing MV* objects
■ An introduction to behavior-driven development

unit testing
186

Licensed to Mark Watson <nordickan@gmail.com>

187What is a unit test?
benefits are. Even though certain aspects of unit testing are subjective, we can zero in
on some of its most common features.

 We’ll frame our discussions around unit testing applications built using MV* frame-
works and modular code. After we’ve covered some basic unit-testing concepts, we’ll
talk about writing unit tests for an SPA using a framework called QUnit. QUnit is pow-
erful but still easy to use and doesn’t have a steep learning curve.

 The project in this chapter keeps things extremely simple. This will help you stay
focused on the unit-testing aspect of your project’s development. You’ll create the
project by using Backbone.js, Knockout, and AngularJS to illustrate testing across a
variety of MV* framework styles.

8.1 Understanding the project
For this project, you’ll create a basic tip calculator. I’ll introduce various parts of this
project when you begin writing unit tests later in this chapter. Before you begin, let’s
take a moment to see what the final product looks like (see figure 8.1).

Keep this image in your mind as you go through each section. As usual, the entire
code (this time with tests) is available for download.

8.2 What is a unit test?
In a broad sense, a unit test is a test performed on the smallest testable part of an appli-
cation. This type of test is a low-level test performed during development by the devel-
oper. Additionally, whether the test subject is an MV* object or a general module
you’ve created, unit tests typically make assertions about how code behaves.

 A unit test can also be characterized by its relationship to other types of tests. A pyr-
amid structure is often used to describe different test types in terms of measurements
such as scope, time, and level of effort. Because unit tests are narrow in focus and

Figure 8.1 Our sample project calculates the amount of the tip
and the total amount to be paid. It also rates the tip given.
Licensed to Mark Watson <nordickan@gmail.com>

188 CHAPTER 8 Unit testing
scope, are quick to run and easy to maintain, and provide fast feedback for results,
they’re at the pyramid’s base (see figure 8.2).

 Now that you know what unit tests are, let’s look at why you should care about cre-
ating them.

8.2.1 Benefits of unit testing

Unit testing is about a lot more than finding bugs in your code. In reality, you’ll likely
find more bugs in other, more high-level tests. Unit testing is about designing better
software. This list highlights some of the benefits of unit testing:

■ Can lead to better software designs—Creating code that’s easily unit tested helps
reinforce the idea that software components should be loosely coupled with
highly specialized parts. This can lead to a better-designed application as a
whole.

■ Helps detect issues early on—A passing unit test, which is well written and useful, is
proof that the code you write is working as expected. The sooner you can detect
code bugs, the easier and less costly it is to correct the problem.

■ Gives you more confidence to make changes—Sometimes you might be hesitant to
make changes because you don’t want to break something that’s already work-
ing. Unit tests can help bolster your confidence in this area. A good unit test is
one that’s repeatable with consistent results. As you refactor, the same unit tests
that were successful before the changes should still be successful after the
changes.

■ Provide great examples of how your code works—Although you’ll still want to docu-
ment your application, unit tests provide a convenient way for others to see how
your code should work. Well-written unit tests illustrate proper usage for other

Other

Various—depending on test
type (installation, security,

load/stress, etc.)

QA and possibly customer

Developers/QA

Developers

Developers

Maintenance

Time to execute

Cost

Lag in feedback

Broader scope

Broader focus

User
acceptance testing

Functional testing

Integration testing

Unit testing

Figure 8.2 A unit test is a low-level, focused test created during development that’s
quick to execute and offers the least lag in getting test results.
Licensed to Mark Watson <nordickan@gmail.com>

189What is a unit test?
developers who might want a quick dive into the code. They can also serve as an
introduction to the code base for new team members.

Having highlighted some of the benefits, let’s talk about how to get the most out of
the tests you write.

8.2.2 Creating better unit tests

Although there’s no official rulebook on unit testing, you can follow general best
practices to make your unit tests be good unit tests.

FOCUS EACH TEST ON A SPECIFIC BUSINESS-RELATED CONCEPT

Ideally, each unit test should focus on specific concepts in your code. If the scope of
the unit test is too broad or focuses on things beyond specific business requirements,
you’ll have a hard time pinpointing specific areas in your code that aren’t working as
designed.

 For example, don’t try to initiate a unit test through automated user actions, such
as the filling out of a form or the clicking of a button. Even though processes in an
SPA are often initiated by user-driven events, UI-level testing is much broader in scope
than unit testing, because it often generates multiple activities at once at various levels
in the application. It’s far better to test the lower-level parts of your code.

 You also may be tempted to test that third-party software works as advertised if
you’re using it in your own code. But the focus of your unit test should be only on
logic you’ve written. If the third-party software has a bug, it’s incidental to your unit
test and should be considered out of scope for a unit test.

 Let’s consider for a moment our tip calculator project as an example. Figure 8.3
provides a high-level picture of what you might want to consider in scope when unit
testing this application.

Avoid initiating
unit tests through
automated user
actions.

Assume third-party
software works as
designed.

Test the the code you
write yourself at the
lowest testable parts.

0.00

0

Tip Amount: 0.00
Total Amount: 0:00

Tip Rating: N/A

Third-party
binding ability

The code
you write

Figure 8.3 Focus unit tests on the lowest level of the application’s logic.
Licensed to Mark Watson <nordickan@gmail.com>

190 CHAPTER 8 Unit testing
Another way to create more easily testable code is by avoiding ambiguous or nonspe-
cific APIs. These types of APIs generally aren’t well designed. This will become evident
when you try to test them.

AVOID CREATING APIS THAT ARE AMBIGUOUS OR TOO GENERAL

Poorly written APIs are not only bad for the application but also extremely difficult to
unit test. If you can’t easily test the individual parts of your business logic, this is a sign
that you should consider refactoring your code.

 For example, the tip calculator application displays several values at once when the
Calculate button is clicked. You should be able to test the logic behind each calcula-
tion independently. Because the application is so simple, it would be easy enough to
calculate everything in one function (see figure 8.4).

Now let’s refactor things a bit and give each area of concern in the business logic its
own function in the API. Figure 8.5 separates the tasks that were formerly lumped
together.

 When developers create APIs that are easy to unit test, one pleasant side effect is
that the code is often more readable, more specialized, and more easily maintained.

 In addition to being vigilant with your code, you also can structure the unit tests
themselves to make them better.

NO TESTING ORDER SHOULD BE REQUIRED

You’ll often find yourself writing many unit tests for a feature. Most testing tools allow
you to then divide tests into groups (or suites). You should avoid including tests that

What does this calculate?
Can you use this API to test
each type of calculation?

calculate()

Calculation module API

Figure 8.4 In this
design, all the logic is
hidden behind this one
vague API.

Now each area of your
business logic can be
more easily tested.

getDefaultData()

calculateTipAmount(billTotal, tipPercent)

calcNewBillTotal(billTotal, tipAmount)

getTipRating(tipPercent)

Calculation module API

Figure 8.5 Smaller, specialized functions are a better fit for unit testing.
Licensed to Mark Watson <nordickan@gmail.com>

191What is a unit test?
will work only if they’re in a particular order within the test suite. The position of a
unit test within your suite shouldn’t matter. If you’ve created a suite of good unit tests
for your SPA, you should be able to run them in any order and achieve the same
results consistently. In your tip calculator tests, for example, testing the calculation for
the tip amount should produce the same results whether it’s run first, last, or some-
where in the middle of all the other tests.

 In the case of the tip calculator, your test suite might include the tip amount calcu-
lation first, the new bill total calculation second, and the tip rating third. But if for
some reason you decide to rearrange this order, the results of each test should still be
the same as they were with the previous test order.

UNIT TESTS SHOULD BE SELF-RELIANT

Good unit tests should be repeatable with consistent results. The only real way to
ensure this is to have tests that can be contextually isolated and don’t rely on outside
dependencies in order to work properly.

 For starters, unit tests should be repeatable even when run in an environment
other than the one they were originally written in. For example, your tip calculator
unit tests should yield the same results when run in your local development environ-
ment as they would if the tests were automated on a dedicated machine.

 Second, your unit tests shouldn’t rely on any external systems or even other tests.
You’re not using server-side code in this simple project, but let’s imagine you were.
Suppose that your tip ratings came from a database instead of being hardcoded in
your application logic. If you were to create a unit test to make sure that a particular
tip would yield the correct rating, you shouldn’t make a call to the server every time
your test runs. Remember that a good unit test needs to be fast and reliable, with con-
sistent results. External systems affect tests because call responses vary, which can
make the execution time of your tests unpredictable. Relying on external systems also
makes your tests vulnerable to outside issues, such as network problems or a server
being down. Additionally, any changes made in a remote system, such as a data
change or configuration change, could lead to inconsistent results. To avoid reliance
on external systems, you can use mocks instead. Mocks are objects with prepro-
grammed expectations that can take the place of real ones in your unit tests. For
example, you can use mocks as stand-ins for your live web service calls. They can
behave as system calls but with the response you need for your tests.

 Finally, if additional functions are required for the primary function you’re testing
to work properly, you can isolate your test function by temporarily replacing any other
functions with stubs. Stubs are temporary replacements with predetermined behavior.
They allow you to focus a unit test on your primary function without worrying about
the behavior of other parts of your code.

THE FOCUS OF EACH TEST SHOULD BE EASILY UNDERSTOOD

A good unit test can also be measured by how easily its objective is understood just by
looking at the test title and comments. People tend to forget things over time, so it’s
immensely helpful to be able to glance at a unit test and know why it exists.
Licensed to Mark Watson <nordickan@gmail.com>

192 CHAPTER 8 Unit testing
 Here’s an example from this chapter’s project. For the traditional unit test on our
tip amount calculation, table 8.1 shows the title of the suite and the test, as well as its
comments. From this information, the purpose of the test should be clear, whether
the person looking at the test is a business analyst, a QA tester, another developer, or a
business owner.

Having discussed various aspects of unit testing, it’s time to see some unit tests in
action. You’ll build a good foundation by starting with some traditional unit testing
before moving on to testing for behavior-driven development.

8.3 Traditional unit testing
You can approach unit testing in various ways.
The traditional method is to write your code
first and then create unit tests around what
you’ve written (see figure 8.6). This approach is
also simple and easy to follow.

 The traditional approach is just one style of
designing unit tests. Some people prefer this
approach because they like tackling the code
first and then creating tests to make sure the
design is solid. Because the goal of unit testing
is to create better software, others argue that
traditional unit tests are too removed from the
design process. Just for comparison, let’s con-
trast this with unit tests written for test-driven
development (TDD).

 The tests you create, TDD or otherwise,
define the behavior of what you’re creating.
With TDD, you’re associating the unit test with
the design process even more by putting it up front. Because you’re relying on a well-
written test to help in the design of the code, you’re forced to have a deep under-
standing of the requirements up front.

 The test will fail at first, because you haven’t written code yet. The next step is to cre-
ate the minimum amount of code needed to make the test pass. This develops a base-
line for the new feature or enhancement. Next, you keep refactoring the code so it goes
from minimally acceptable to well-designed, production-ready code. Every time you
refactor, all tests are run again. This keeps you confident that with every improvement
you haven’t inadvertently broken anything or created code that no longer satisfies the

Table 8.1 Example of clear, easily understood titles and comments for a unit test

Suite title Test title Test comments

Tip Calculations Calculate Tip Amount 15% tip for $10 should yield $1.50

Test
succeeds?

Yes

Write code

Write unit test

Run unit test Modify code

No

Figure 8.6 With traditional unit
testing, tests are written after the code
has been created.
Licensed to Mark Watson <nordickan@gmail.com>

193Traditional unit testing
point of the test. Figure 8.7 illustrates
this cyclical process.

 Because traditional unit testing is
straightforward, let’s use this approach
to get your feet wet with creating some
basic unit tests for this chapter’s project.

 To unit test your SPA, you’ll need to
choose a JavaScript testing framework.
There are many to choose from, and
we’ll talk about some of the other
options in a later section. You’ll begin,
though, with one of the oldest and easi-
est to use frameworks, called QUnit.

8.3.1 Getting started with QUnit

The first thing you need to do is download the software. QUnit can be found at http:/
/qunitjs.com. You’ll need both the JavaScript file and the CSS file. Next, you need to
get your testing environment ready. Your first task is to create a directory structure
within your project to house your test scripts.

CREATING A TEST DIRECTORY

As with the project itself, your directory structure for your test scripts is a matter of per-
sonal taste. One common approach is to set up a directory structure similar to that of
the application. This test directory is usually separate from the application’s source
code.

 To get exposure to testing using various MV* frameworks, I’ve created this chap-
ter’s project using Backbone.js, Knockout, and AngularJS. To give you an idea of what
a test directory might look like, figure 8.8 demonstrates the directory structure of the

Write a test

Refactor code

Test fails

Write just enough
code to pass the

test

This cycle repeats
until your code is
production ready.

Figure 8.7 In test-driven development, tests are
written before the code is created.

Application directory

Model test directory
after the application’s
directory

Unit test
software

Test directory

Figure 8.8 The test
directory will have a similar
structure but is usually kept
separate from the
application’s source.
Licensed to Mark Watson <nordickan@gmail.com>

194 CHAPTER 8 Unit testing
Backbone.js version of the application. You’ll follow the same approach for the Knock-
out and AngularJS versions. This same approach can also be applied to whichever type
of MV* framework you ultimately decide to use in your own project.

 With your directory set up, you need a place to display the output of your tests.
You’ll need to create a new HTML page for this.

DEFINING A TEST RESULTS PAGE

After you have a test directory, QUnit also needs an HTML page to display the results
of your unit tests. For this demo, I’ve created a file called test.html. To view the page,
you’ll go directly to its URL in the browser. You don’t want a link to any test pages in
the application.

 Listing 8.1 shows the structure of your test results page. In real-world solutions,
you’ll most likely use a build tool to gather the required includes. Because we’re not
covering the build process until the next chapter, you’ll include any files needed
directly in the HTML for the test results page with your AngularJS version. You’ll
include references to both the test scripts and the source files for the application in
your test results page.

<!DOCTYPE html>
<html>
<head>

<title>QUnit tests</title>

<link rel="stylesheet"
href="../test/thirdParty/qunit/QUnit_Styles.css">

</head>
<body>

 <h1 id="qunit-header">QUnit Test Suite</h1>
 <h2 id="qunit-banner"></h2>
 <div id="qunit-testrunner-toolbar"></div>
 <h2 id="qunit-userAgent"></h2>
 <ol id="qunit-tests">
 <div id="qunit"></div>
 <div id="qunit-fixture"></div>

 <script src="../app.js">
 </script>
 <script src="../tipcalc/services/calculateSvc.js">
 </script>
 <script src="../tipcalc/controllers/tipCalcCrtl.js">
 </script>

 <script src="./thirdParty/qunit/QUnit_1_17_1.js">
 </script>
 <script src="../thirdParty/angular.min.js">

Listing 8.1 test.html—AngularJS version

Include QUnit style sheets

HTML elements used by QUnit

Include application files

Include QUnit
and AngularJS
Licensed to Mark Watson <nordickan@gmail.com>

195Traditional unit testing
 </script>

 <script src="./services/calculateSvc_tests.js">
 </script>
 <script src="./controllers/tipCalcCrtl_tests.js">
 </script>

</body>
</html>

The Knockout and Backbone.js versions use AMD-style modules and RequireJS. When
using RequireJS, your HTML page will be nearly identical except that the other
SCRIPT tags are replaced with a single SCRIPT tag referencing RequireJS (see listing
8.2). Its data-main attribute defines the location of the main application file. This
file (main-test.js) contains references to the locations of your frameworks, applica-
tion source files, and test scripts.

<!DOCTYPE html>
<html>
<head>
<title>QUnit tests</title>
<link rel="stylesheet"
href="../test/thirdParty/qunit/QUnit_Styles.css">
</head>
<body>
 <h1 id="qunit-header">QUnit Test Suite</h1>
 <h2 id="qunit-banner"></h2>
 <div id="qunit-testrunner-toolbar"></div>
 <h2 id="qunit-userAgent"></h2>
 <ol id="qunit-tests">
 <div id="qunit"></div>
 <div id="qunit-fixture"></div>

 <script
 data-main="../test/main-test.js"
 src="../thirdParty/require.js">
 </script>
</body>
</html>

Also, when using AMD-style modules, unit tests are defined like any other module,
using define(). The suite itself is kicked off inside require(), just like the project.
Listing 8.3 shows what the require() definition looks like for our Knockout version.
The Backbone.js version is similar and follows the same approach. If you need to see
the complete file, you can find it in the downloadable source code for this chapter.

 In this case, you’ve created custom addTests() APIs for each module. These do
nothing more than execute the QUnit test functions, which add the tests to the list of
tests that the framework will run. You’ll see an example of these in a moment.

Listing 8.2 test.html—Knockout and Backbone.js version

Include test scripts

Include RequireJS, specify
configuration file location
Licensed to Mark Watson <nordickan@gmail.com>

196 CHAPTER 8 Unit testing

require(["QUnit",
 "utilTests/tipCalculatorUtilTests",
 "viewmodelTests/tipViewModelTests"],

 function($,
 QUnit,
 tipCalculatorUtilTests,
 tipViewModelTests) {

 tipCalculatorUtilTests.addTests();
 tipViewModelTests.addTests();

 QUnit.load();
 QUnit.start();
 }
);

NOTE QUnit’s autoStart needs to be set to false in the RequireJS configura-
tion file, and its load() and start() functions manually executed, after your
tests have been added.

With your environment all set up, you can finally start writing some test scripts. In the
next section, you’ll learn what QUnit asserts are and how to use them to create a unit test.

8.3.2 Creating your first unit tests

All three versions of your project perform two calculations: one for the tip amount
and the other for a new bill total. In addition, logic in each version gives a rating such
as “Standard” or “Great!” to the tip percent entered. I’ve tried to make each version of
the project as similar as possible, though some differences exist because of the differ-
ences in each framework. For example, in the AngularJS version, your business logic is
in a service component of the AngularJS module. In the Knockout version, the busi-
ness logic resides in an ancillary AMD module. Last, for your Backbone.js version, your
business logic can be found in the model used by the view for the entry form.

 With that said, let’s get started. To create your first unit test, you’ll need to under-
stand assertions in QUnit.

MAKING AN ASSERTION

The basic idea behind the unit tests you’ll create is that you’re going to assert that
something is true. When a QUnit test is executed, each assertion is evaluated. QUnit
either passes or fails each unit test by verifying its assertion. The assertion you’re mak-
ing can be anything you want it to be. For example, it could be as simple as verifying
that a particular object exists or it might be verifying the result of an operation.

 QUnit provides many types of assertions. The full list can be found at http://
api.qunitjs.com/category/assert. For these unit tests, you’re using only one type of
assertion:

strictEqual()—This assertion compares the first and second parameters for
equality. Its third parameter is for a comment. It uses the strict equality opera-
tor ===.

Listing 8.3 main-test.js—Knockout version using AMD modules and RequireJS

Make sure dependencies
get loaded

Explicitly add any tests
that QUnit will run

Manually load/start QUnit
Licensed to Mark Watson <nordickan@gmail.com>

http://api.qunitjs.com/category/assert
http://api.qunitjs.com/category/assert

197Traditional unit testing
Let’s create your first test by using the calculations from the Knockout version of the
application. In this version, your business logic is in a standard AMD module. No spe-
cial setup is needed. For the Backbone.js version, your calculation logic is in the
model, and in the AngularJS version, it’s in a service. We’ll discuss testing MV* objects
a little later.

WRITING A UNIT TEST

Your first unit test will test the output of your tip amount and new bill total calcula-
tions. To give the test script some context, the following listing shows what that code
looks like. Remember that the entire source for the project is available for download
should you need it.

function calcTipAmount(billTotal, tipPercent) {
 var tipAmount =
 Number(billTotal) * (Number(tipPercent) / 100);

 return tipAmount.toFixed(2);
}

function calcNewBillTotal(billTotal, tipAmount) {
 var newBillTotal
 = Number(billTotal) + Number(tipAmount);

 return newBillTotal.toFixed(2);
}

Now let’s write the unit test. The syntax of a QUnit test is simple. You call a test()
function, giving the test a title and a function containing your assertions, as shown in
the following listing.

test("Tip Calculations", function() {
 var tipAmount
 = tipCalculator.calcTipAmount(10.00, 15);

 var newBillTotal
 = tipCalculator.calcNewBillTotal(10.00, 1.50);

 strictEqual(tipAmount,
 "1.50",
 "When the tip is 15% and the bill is $10,
 the tip amount should be $1.50");

 strictEqual(newBillTotal,
 "11.50",
 "When the bill is is $10 and the tip amount is $1.50,
 the new bill total should be $11.50");
});

Listing 8.4 Logic to calculate the tip amount and new bill total

Listing 8.5 Unit test to verify the roundTipPercent() function

Perform the calculations
and round result to two
decimal places

Give the test a title

Call the API

Test the result against
the expected value
Licensed to Mark Watson <nordickan@gmail.com>

198 CHAPTER 8 Unit testing
When the test runs, you should see the test report displayed in your test’s HTML page
you set up earlier. By default, each test doesn’t show the test comments. In figure 8.9,
I’ve clicked the test title to display the passing assertions for this test as well.

 If one of your tests failed, the test report would look similar to figure 8.10. QUnit
displays what was expected, the result, the difference between those two, and the stack
trace leading to the line that was executed.

 Creating a unit test is that simple. Now let’s finish writing tests for the rest of the
utility. Before we do that, though, let’s group these tests under a single heading.

Figure 8.9 QUnit test report after your first unit test is run

Figure 8.10 QUnit test report with a failed test
Licensed to Mark Watson <nordickan@gmail.com>

199Traditional unit testing

Te
ca
GROUPING TESTS

Another nice feature of QUnit is that it lets you group tests by using its module()
method. In this case, you’re going to group all the calculation utility tests under a sin-
gle heading. This will help you later, when you add tests for other areas of the applica-
tion. In QUnit, grouping your tests into a module is a simple one-liner:

module("Tip Calculator Util Tests");

The following listing shows the complete set of tests for your tip calculator’s utility
module.

module("Tip Calculator Util Tests");

test("Tip Calculations", function() {
 var tipAmount = tipCalculator.calcTipAmount(10.00, 15);
 var newBillTotal = tipCalculator.calcNewBillTotal(10.00, 1.50);

 strictEqual(tipAmount,
 "1.50",
 "When the tip is 15% and the bill is $10,
 the tip amount should be $1.50");

 strictEqual(newBillTotal,
 "11.50", "When the bill is is $10 and the tip amount is $1.50,
 the new bill total should be $11.50");
});

test("Tip Ratings", function() {
 var rating = tipCalculator.getTipRating(5);
 strictEqual(rating,
 "So so",
 "When the tip amount is below $15, the rating should be So So");

 rating = tipCalculator.getTipRating(15);
 strictEqual(rating,
 "Standard",
 "When the tip amount equals $15, the rating should be Standard");

 rating = tipCalculator.getTipRating(20);
 strictEqual(rating,
 "Great!",
 "When the tip amount is between $15 and $20 (inclusive),
 the rating should be Great!");

 rating = tipCalculator.getTipRating(50);
 strictEqual(rating,
 "Super!",
 "When the tip amount is between $20 and $50 (inclusive),
 the rating should be Super!");

 rating = tipCalculator.getTipRating(60);
 strictEqual(rating,
 "WOW!",

Listing 8.6 Utility tests grouped within a module

Define the module

st the
lculations

Test the rating logic
Licensed to Mark Watson <nordickan@gmail.com>

200 CHAPTER 8 Unit testing
 "When the tip amount is greater than $50,
 the rating should be Wow!");
});

Figure 8.11 shows what your test report looks like now, with all the tests for this one
test module. Keep in mind that each test initially displays collapsed but can be
expanded, as shown previously, to see the comments.

 Business-related code inside an MV* object can also be tested similarly. The only
trick is the amount of setup you might need to do.

8.3.3 Testing code built with MV* objects

As far as the mechanics of crafting the unit test go, unfortunately no magic formula
fits everything. Because each framework/library is different, and each object type
within a framework/library has a different purpose, the amount of setup needed for
the test to run varies. Setup is usually minimal, though.

 You also can follow a few simple rules of thumb when unit testing MV* objects:

■ Don’t share objects between tests—Avoid trying to share MV* objects among tests.
Our brains as developers are hardwired to find ways to reuse objects and avoid
duplicate code. But in the case of unit testing, don’t share.

■ Keep tests DRY—As you would with your production code, avoid repeating the
same code in every test. Factor out repeated code into separate functions. Many
testing frameworks have a type of setup process as well for any code that needs
to run before each test.

■ Consult the MV* documentation for any special instructions around testing—For frame-
works such as Backbone.js or Knockout, you merely create new instances of any

Figure 8.11 QUnit test report shows tests grouped together as a test module.
Licensed to Mark Watson <nordickan@gmail.com>

201Traditional unit testing
MV* objects you need to use. For some frameworks, such as AngularJS, you’ll
need to take care of some specific setup tasks to be able to test components cor-
rectly. You’ll see this in a moment when you test the AngularJS version of your
tip calculator SPA.

With these points in mind, let’s try unit testing a few types of MV* objects. I won’t
cover the gamut of MV* objects here. The source for each version of the project, along
with the entire suite of tests for each, is available for download. You will, however, take
on a couple to get the idea.

 Let’s start with the Backbone.js business logic of your tip calculator. You’ll test the
same type of calculations that were in the utility module of the Knockout version of
the project. The time, the code for this logic is in a Backbone.js model, as shown in
the following listing.

module("Tip Form Model Tests", {
 beforeEach: function() {
 this.tipFormModel = TipForm;
 }
});

test("Tip Calculations", function() {
 this.tipFormModel.calcTipAmount(10.00, 15);

 strictEqual(this.tipFormModel.get("tipAmount"),
 1.50,
 "When the tip is 15% and the bill is $10,
 the tip amount should be $1.50");

 this.tipFormModel.calcNewBillTotal(10.00, 1.50);

 strictEqual(this.tipFormModel.get("newBillTotal"),
 11.50, "When the bill is is $10 and the tip amount is
 $1.50, the new bill total should be $11.50");
});

In the listing, notice the beforeEach() function. QUnit has an optional beforeEach()
function for any pretest setup and an optional afterEach() function for teardown/
cleanup work. With the new instance created in the beforeEach() function, you can
now test the model’s logic.

 Continue with your model and create the tests for the rating logic, as shown in the
following listing.

test("Tip Ratings", function() {
 this.tipFormModel.applyTipRating(5);
 strictEqual(this.tipFormModel.get("tipRating"),
 "So so",
 "When the tip amount is below $15, the rating should be So So");

Listing 8.7 Unit test for a Backbone.js model’s business logic

Listing 8.8 Rating logic for the Backbone.js model

The TipForm module returns
a new instance of the model

Use the model to
perform calculations

Change the rating value
for each assertion
Licensed to Mark Watson <nordickan@gmail.com>

202 CHAPTER 8 Unit testing
 this.tipFormModel.applyTipRating(15);
 strictEqual(this.tipFormModel.get("tipRating"),
 "Standard",
 "When the tip amount equals $15, the rating should be Standard");

 this.tipFormModel.applyTipRating(20);
 strictEqual(this.tipFormModel.get("tipRating"),
 "Great!",
 "When the tip amount is between $15 and $20 (inclusive),
 the rating should be Great!");

 this.tipFormModel.applyTipRating(50);
 strictEqual(this.tipFormModel.get("tipRating"),
 "Super!", "When the tip amount is between $20 and $50 (inclusive),
 the rating should be Super!");

 this.tipFormModel.applyTipRating(60);
 strictEqual(this.tipFormModel.get("tipRating"),
 "WOW!", "When the tip amount is greater than $50,
 the rating should be Wow!");
});

Because you can group things into QUnit modules, you have one for the model’s vali-
dation logic and the other for the calculations. Figure 8.12 shows what the test suite
looks like at this point.

 Now let’s look at unit testing an AngularJS object. AngularJS is an example of when
specific steps for setting up your test scripts are provided in the MV* frameworks docu-
mentation. In this example, you’ll unit test the AngularJS version of your calculation
utility. In the Backbone.js version of your application, your calculations were in a

Figure 8.12 QUnit testing against a Backbone.js model
Licensed to Mark Watson <nordickan@gmail.com>

203Traditional unit testing
model housed in an AMD module. In the AngularJS version, your calculations are in
an AngularJS service component of an AngularJS-style module.

 When the application is running, AngularJS’s dependency injection mechanism
will automatically hand you instances of the objects you need. But because you’re run-
ning your tests outside the application, you must manually invoke the dependency
injection. There are several ways to manually inject AngularJS objects. This is just one
of them:

var injector = angular.injector(['ng', 'tipcalculator']);

You’ll need to pass in the AngularJS core module ng and the name of your application
as dependencies for the injector. Then in your setup you can use the injector to get an
instance of your calculation service:

beforeEach: function() {
 this.CalcTestSvc = injector.get("calculateSvc");
}

Now let’s look at the complete unit test for your calculation service (see the following
listing).

var injector = angular.injector(['ng', 'tipcalculator']);

module("Tip Service Tests", {
 beforeEach: function() {
 this.CalcTestSvc = injector.get("calculateSvc");
 }
});

test("Tip Calculations", function() {
 var tipAmount =
 this.CalcTestSvc.calcTipAmount(10.00, 15);

 var newBillTotal =
 this.CalcTestSvc.calcNewBillTotal(10.00, 1.50);

 strictEqual(tipAmount,
 "1.50",
 "When the tip is 15% and the bill is $10,
 the tip amount should be $1.50");

 strictEqual(newBillTotal,
 "11.50",
 "When the bill is is $10 and the tip amount is
 $1.50, the new bill total should be $11.50");
});

test("Tip Ratings", function() {
 var rating = this.CalcTestSvc.getTipRating(5);

Listing 8.9 Unit test for an AngularJS service

Get an instance
of the injector

Ask for an instance of
your calculation service

Define your test scripts
Licensed to Mark Watson <nordickan@gmail.com>

204 CHAPTER 8 Unit testing
 strictEqual(rating,
 "So so",
 "When the tip amount is below $15,
 the rating should be So So");

 rating = this.CalcTestSvc.getTipRating(15);
 strictEqual(rating,
 "Standard",
 "When the tip amount equals $15,
 the rating should be Standard");

 rating = this.CalcTestSvc.getTipRating(20);
 strictEqual(rating,
 "Great!",
 "When the tip amount is between $15 and $20 (inclusive),
 the rating should be Great!");

 rating = this.CalcTestSvc.getTipRating(50);
 strictEqual(rating,
 "Super!",
 "When the tip amount is between $20 and $50 (inclusive),
 the rating should be Super!");

 rating = this.CalcTestSvc.getTipRating(60);
 strictEqual(rating,
 "WOW!", "When the tip amount is greater than $50,
 the rating should be Wow!");
});

In figure 8.13, you can see that the tests did indeed run, which means the extra step of
using the AngularJS injector worked.

Figure 8.13 QUnit test report showing tests run for an AngularJS service
Licensed to Mark Watson <nordickan@gmail.com>

205Traditional unit testing
With the injector at your disposal, you can run tests on any AngularJS object that you
need to in order to unit test your application’s code.

8.3.4 Testing changes to the DOM

At times you also might need to test modifications made to the DOM in your SPA. In your
tip calculator, you’re using the render() function of the view to reflect the state of your
model in the UI. To test that your calculator’s output is propagated to the DOM accu-
rately, QUnit provides a DIV element that has an ID of qunit-fixture. This element,
referred to as a fixture, can be used to append DOM-related output. QUnit automatically
cleans up the fixture element after each test, removing anything that’s been added. The
following listing shows the setup and teardown for your tests on the view.

module("Tip View Tests", {
 beforeEach: function() {
 $("#qunit-fixture").append("<section></section>");
 }
});

To perform unit testing in the UI, you can check for the existence of DOM elements,
CSS classes, or certain text. The next listing gives an example.

test("Tip Display", function() {
 TipForm.setBillTotal("10");
 TipForm.roundTipPercent("15");
 this.tipView = new TipView({
 model : TipForm
 });
 this.tipView.render();

 strictEqual(
 $("section").children("p").eq(0).text(),
 "Tip Amount: 1.50",
 "When the tip is 15% for a $10 bill,
 'Tip Amount: 1.50' should display"
);

 strictEqual(
 $("section").children("p").eq(1).text(),
 "Total Amount: 11.50",
 "When the tip is 15% for a $10 bill,
 'Total Amount: 11.50' should display"
);

 strictEqual(
 $("section").children("p").eq(2).text(),

Listing 8.10 Setup/teardown to perform fixture testing on a Backbone.js view

Listing 8.11 Unit testing your tip amount output by a Backbone.js view

Manually add the element;
the view will render its output

Seed the view’s model
with values to output

Use jQuery to select what you
expect as output from the view

Test the output against
what you expect
Licensed to Mark Watson <nordickan@gmail.com>

206 CHAPTER 8 Unit testing
 "Tip Rating: Standard",
 "When the tip is 15% for a $10 bill,
 'Tip Rating: Standard' should display"
);
});

We’ve covered a lot of ground with QUnit. It’s a great testing framework with many
more capabilities than I can cover in a single chapter. But even when you have a pow-
erful JavaScript testing framework like QUnit, you may still want (or need) to use one
or more other frameworks for particular tasks.

8.3.5 Adding other testing frameworks to the mix

Sometimes not all of your testing needs are covered in a single JavaScript testing
framework. That’s OK, though. It’s common to augment your main testing framework
with a testing utility framework. To give you a brief example, let’s pretend that at some
point you added the ability to save the tip and bill amount entered by a user for trend-
ing purposes. This is stretching things a bit. But nevertheless, let’s just pretend to illus-
trate this point. You’ll use our Backbone.js version again for this one.

 You learned at the beginning of the chapter that you don’t want to include live
server calls in unit tests. So what can you do? As it turns out, JavaScript frameworks/
add-ons can give you the ability to mock a server call easily without having to modify
your code. One such testing software is called Sinon.js.

SUPPLEMENTING QUNIT WITH SINON.JS

The purpose of the section isn’t to cover Sinon.js. Like
QUnit, Sinon.js is powerful and has many great fea-
tures in its own right. In this section, I’ll show how
easy and painless it is to use other testing frameworks
to extend your unit-testing arsenal. In this section,
you’re going to supplement QUnit with Sinon.js to
mock the server call of your new (pretend) feature.
You’ll need to download the framework and add it to
your code base. The software can be found at http://
sinonjs.org. You can add it alongside QUnit in your
test directory (see figure 8.14).

 You won’t go through the motions of creating server code for this example, because
it’s illustrating how to fake it out anyway. This will save you from having to set up a server
and server-side code for one simple example. Instead, imagine you had a server call
already working that’s used to save user input in your tip calculator. To create a mock
server call, you first ask Sinon.js to create a fake server (see the following listing).

module("Tip Form Model Tests", {
 beforeEach: function() {
 this.tipFormModel = TipForm;

Listing 8.12 Create a fake server to mock server requests

Figure 8.14 Your test directory
after adding your second
JavaScript testing framework
Licensed to Mark Watson <nordickan@gmail.com>

207Traditional unit testing
 this.server = sinon.fakeServer.create();
 },
 afterEach: function() {
 this.server.restore();
 }
});

You can add that command to your unit test setup. With the fake server created, you
can tell Sinon.js how you’d like for it to respond. Keep in mind that you’re not testing
the fake server’s output, because you’re mandating how you want the fake server to
respond for your unit-test scenario. You’re testing the business logic related to the
call. This could be whether the call was created or initiated properly or maybe how
your application behaves, given different types of server responses. The following list-
ing shows a mock server and a couple of simple unit tests using its response.

test("Save Request", function() {
 this.server.respondWith(
 [200,
 {"Content-Type":"text/html"},
 "{'save_status':'saved'}"
]);

 this.tipFormModel.save();

 this.server.respond();

 equal(this.tipFormModel.urlRoot,
 "/mockrequest",
 "When the model is saved,
 the URL should be /mockrequest");

 equal(this.server.requests.length, 1,
 "When the model is saved,
 the request length should be 1");

 equal(this.server.requests[0].requestBody,
 JSON.stringify(this.tipFormModel.attributes),
 "When the model is saved,
 the request body should equal the model attributes");
});

Sinon.js has many other features that make it a powerful, standalone product. As you
can see, it can also be the perfect companion to other testing frameworks such as
QUnit. Because we’ve broached the topic of other frameworks, I’ll mention a few oth-
ers you might want to explore. I’ll also include QUnit for comparison.

MAKING JAVASCRIPT UNIT-TESTING CHOICES

Though not an exhaustive list, table 8.2 lists a few of the JavaScript testing frameworks
that are popular at the time of this writing and that support unit testing.

Listing 8.13 Using a mock server in a Backbone.js model’s unit test

Create the fake server

Perform cleanup and restore
the XHR constructor

State how you need the
fake server to respond

Save the model data

Ask the fake server to respond

Make sure save() constructed
the URL correctly

Test for duplicate calls

Test the request
Licensed to Mark Watson <nordickan@gmail.com>

208 CHAPTER 8 Unit testing

Don’t be afraid to explore other frameworks even if you’ve found one that’s your
favorite. Others might have particular strengths that supplement your preferred
framework.

8.4 Chapter challenge
Here’s a challenge for you to see what you’ve learned in this chapter. Create a small
survey SPA that could be used to poll users on what they like best about a particular
topic. The topic could be which movie is the best, which food, and so on. The output
should keep tallying the results with each survey submission, showing how each item
in the survey is ranked. It can be as simple or as complex as you’d like. Then, using
either a JavaScript unit-testing framework covered in this chapter or another that you
like better, create a suite of unit tests for your application.

8.5 Summary
You made it through a crash course in client-side unit testing. Let’s review what you
learned:

■ A unit test is performed on the individual parts of your code. This could be an
entire module but is often individual functions.

■ Unit tests provide examples of how your code works.
■ Unit tests should be focused on individual concepts related to the behavior and

purpose of the software.
■ Unit tests shouldn’t require any particular order, should be self-reliant, and

should be easily understood.
■ One approach to creating unit tests is to create the tests after the software is

written.
■ With test-driven development (TDD), the test is created first.

Table 8.2 Popular JavaScript frameworks that support unit testing

Name URL Comments

QUnit http://qunitjs.com Mature framework, lots of other features I didn’t get to
cover in this chapter, easy to set up and use.

Mocha http://mochajs.org Mocha has many features but leaves it to you to pick an
assertion library such as Unit.js (http://unitjs.com) or
Chai.js (http://chaijs.com).

Buster.js http://busterjs.org Though still in beta at the time of this writing, this frame-
work contains many promising features.

Jasmine http://jas-
mine.github.io

Another easy-to-use framework, but this one is focused
on behavior-driven development.
Licensed to Mark Watson <nordickan@gmail.com>

Client-side task automation
When you develop software, you’ll often find yourself repeating certain tasks over
and over throughout the development lifecycle. These tasks can include perform-
ing particular development steps for a given language, running tests, and creating
builds. To assist in the automation of these tasks, many task-based automation tools
(or task runners) have been created. Some, such as Make, have been around for a
long time. Others, such as the one used in this chapter’s examples, are fairly recent
by comparison.

 Task runners come in all shapes and sizes, metaphorically speaking. Some run
on a particular platform, whereas others are cross-platform. Some target a particu-
lar build language, and others are cross-language tools. Many of these tools have
traditionally focused more on the build process.

 In modern web applications, such as your SPA, JavaScript professionals require
more than just a build tool. The landscape for today’s developer is incredibly vast

This chapter covers
■ Understanding what task runners are and how

they help you
■ Working with task runner tasks for development
■ Creating a client-side build process
209

Licensed to Mark Watson <nordickan@gmail.com>

210 CHAPTER 9 Client-side task automation
and complex, requiring task runners to automate a myriad of development-oriented
tasks as well.

 A new breed of task runner has emerged, however, that puts client-side develop-
ment front and center and treats client-side tasks as first-class citizens. This chapter
covers these client-oriented task runners and the types of tasks commonly automated
by these tools. I’ll split the discussion between how they’re used during development
and how they’re used to create a client-side build.

 For this chapter’s project, you’ll use a JavaScript-based task runner called Gulp.js.
To have some source code to work with, you’ll use the SPA created in chapter 6. For
convenience, the Gulp.js files and the source code for chapter 6 are available together
in the downloadable source for the chapter.

 There are other task runners to choose from. I’ll talk about some alternatives a lit-
tle later. Before you jump into selecting a tool, though, you need a better understand-
ing of what task runners do for you.

9.1 Common uses for task runners
When you use a task runner, you’re creating a set of precise, repeatable instructions
(or tasks) that describe the type of actions you need automated. As I mentioned previ-
ously, task runners can be used to automate the build process but can be used during
development as well. Figure 9.1 provides an overview of common tasks you might per-
form, either during development or to create a client-side build. You could have more
or fewer tasks, depending on your needs, but this gives you an idea.

 You’ll see some of these in action later, when you create this chapter’s project.
For now, let’s break down each of these and discuss what they mean.

9.1.1 Live browser reloads

While creating a web application, such as your SPA, one particular development task
that you’ll find yourself doing all the time is reloading the browser. On their own,

Task Runner

Development

Live reload of
JavaScript and CSS

Builds

Run JavaScript and/or
CSS preprocessors

Code analysis

Continuous unit testing

Code minification

File concatenation

Continuous integration

Run JavaScript and/or
CSS preprocessors

Figure 9.1 Common uses for
JavaScript-based task runners
Licensed to Mark Watson <nordickan@gmail.com>

211Common uses for task runners
browsers have no way to know when a CSS or JavaScript file has changed. Every time
you make a file change, you’re out of sync with the browser. For your changes to take
effect, you have to reload the browser.

 To automate this process, tools such as LiveReload (http://livereload.com) and
Browsersync (www.browsersync.io) can be used to automatically update the browser
when a file changes. You can imagine the amount of time you could save by not having
to stop and manually reload the browser in order to see the results of a change in your
code. These tools can be used standalone, but invoking them from your task runner
gives you the ability to run any number of tasks before triggering the reload of the
browser.

9.1.2 Automatic JavaScript and CSS preprocessing

Preprocessors are programs used to create new or custom versions of an existing lan-
guage by extending or changing the original syntax to include new features. The type
of compilation preprocessors perform is sometimes referred to as transpiling, transcom-
piling, or source-to-source compiling.

 Sass (http://sass-lang.com) and Less.js (http://lesscss.org) are examples of popu-
lar CSS preprocessors. They give you the ability to extend CSS with such features as
variables, mix-ins, and nested rules. CoffeeScript (http://coffeescript.org) and
LiveScript (http://livescript.net) are examples of independent programming lan-
guages that compile into JavaScript by using a preprocessor.

 If you’re using languages that require a preprocessor, you can use a task runner to
automate the preprocessing step.

9.1.3 Automatic code analysis from linters

Code analysis tools (or linters) for JavaScript and CSS check your code for errors and
other problems with the code. These tools can also be used to make sure code adheres
to a standard set of coding practices. For JavaScript, JSHint (http://jshint.com) and
JavaScript Lint (www.javascriptlint.com) are common choices. For CSS, CSS Lint
(http://csslint.net) is a popular tool. As with preprocessors, using a tool for code anal-
ysis is a manual step in your development routine that can be automated with a task
runner. This not only saves you time but also helps detect problems as you code.

9.1.4 Continuous unit testing

With some development styles, such as test-driven development, you’re continuously
unit testing the code you write. One of the hassles with unit testing is that you have to
stop what you’re doing whenever you want to run a test or group of tests. Test runners
can be configured to watch for file changes and automatically trigger unit tests. More-
over, using headless test runners in your tasks enables you to see test results without
having to swivel back and forth with the browser.

NOTE The term headless refers to being able to access a program’s output
without a graphical user interface (for example, from the command line).
Licensed to Mark Watson <nordickan@gmail.com>

http://livereload.com
http://sass-lang.com
http://lesscss.org
http://coffeescript.org
http://livescript.net
http://jshint.com
www.javascriptlint.com
http://csslint.net

212 CHAPTER 9 Client-side task automation
9.1.5 File concatenation

The term concatenate means to combine. When you combine files into as few as possible,
you save on server bandwidth, reduce the amount of network traffic, and improve the
user experience by having the application load faster.

 A common step you can instruct your task runner to perform while creating a
build for your SPA is to concatenate your JavaScript files into as few files as makes
sense. This might mean that all files are combined into a single file or a small handful
of files. You can do the same for your CSS files.

9.1.6 Code minification

Another step your task runner can perform during the front-end build process is to
minify your application’s source code. This process of removing any characters from
the source file that aren’t needed for the application to run is called minification. This
includes characters such as whitespace, new lines, and comments. Minification tools
can also be instructed to produce even more compact versions of your source files by
changing the source code to reduce the length of variable and function names (some-
times down to a single letter).

9.1.7 Continuous integration

Continuous integration, or CI, is a software development practice whereby team mem-
bers frequently check in code throughout the day. CI also uses an automated build
process for the application that performs a code build at least once a day.

 Many development teams use a centralized code repository and a centralized CI
server, such as Jenkins (http://jenkins-ci.org), to establish a continuous build process.
With a product like Jenkins, builds and associated tests can be run at scheduled inter-
vals or whenever new code is checked in. Though the implementation details are
beyond the scope of this book, your client-oriented build and testing tasks can also be
invoked by the CI server. Your task runner needs to also be installed on the CI machine.

 Having reviewed some common uses for task runners, let’s talk about some of the
things to consider when selecting the task runner that best suits your development
needs.

9.2 Choosing a task runner
As I mentioned at the beginning of the chapter, a staggering number of task runners
are available. Even narrowing the discussion to only JavaScript-based tools, you have a
growing number to choose from. Unfortunately, no clear winner emerges when it
comes to picking one over another. It ultimately boils down to preference. You can
consider some general differences, though, when deciding. I’ll use Grunt.js and
Gulp.js in these descriptions, because they represent opposing task-runner architec-
tures and are also arguably the most popular JavaScript-based task runners available.

■ Task creation—One deciding factor is whether you prefer describing tasks by
using configuration or programmatically through function calls. Whereas the
Licensed to Mark Watson <nordickan@gmail.com>

http://jenkins-ci.org

213Our project
other differences between task runners may be more nuanced, this difference is
dramatic. Grunt.js is an example of a task runner that relies heavily on configu-
ration for the creation of tasks. With other task runners, such as Gulp.js, tasks
are created in code.

■ Temp files versus pipelines for processing—Another difference you might consider
when selecting a task runner is the method in which it processes data. With
some task runners, such as Grunt.js, temporary files are created for intermedi-
ate processing. In contrast, tools such as Gulp.js also use I/O streams. These
streams can be piped together to orchestrate task flow, bypassing the need for
temporary files. Streams are generally considered a faster way to process tasks.

■ Number of plugins—Not all but most task runners allow their base functionality
to be extended via plugins. Plugins are add-on modules that extend the out-of-
the-box functionality of a given task runner. The sheer number of plugins for a
tool doesn’t necessarily mean it’s better, but it does speak to the variety of
choices you’ll have when creating your task-runner scripts. At the time of this
writing, Grunt.js has nearly three times as many plugins as Gulp.js.

To get a feel for a particular task runner, you should spend some time perusing the
websites for each tool. There you can get the latest information on a tool and down-
load it to give it a trial run. Table 9.1 lists some of the JavaScript-based task runner/
build frameworks that are available at the time of this writing.

Having reviewed task runners and some common uses for development and builds,
it’s time to create some tasks. So let’s work on our project. We’ll take things slow,
though, to give you time to become familiar with your task runner’s syntax and
methodology.

9.3 Our project
Unlike previous chapters, in which you were creating an SPA, in this project you’ll use
a JavaScript-based task runner to demonstrate live browser reloads and test automa-
tion. You’ll also create a client-side build script. As I mentioned earlier, you’ll use

Table 9.1 Some of the JavaScript-based task runner/build tools available today

Tool URL

Grunt.js http://gruntjs.com

Gulp.js http://gulpjs.com

RequireJS Optimizer (r.js) http://requirejs.org/docs/optimization.html

Mimosa http://mimosa.io

Broccoli https://github.com/broccolijs/broccoli

Brunch http://brunch.io
Licensed to Mark Watson <nordickan@gmail.com>

http://gruntjs.com
http://gulpjs.com
http://requirejs.org/docs/optimization.html
http://mimosa.io
https://github.com/broccolijs/broccoli
http://brunch.io

214 CHAPTER 9 Client-side task automation
Gulp.js for this project. It’s super easy to install, and its programmatic approach to cre-
ating tasks is easy to follow.

 Gulp.js needs Node.js to run. So before you get started, you’ll need to install both
Node.js and Gulp.js. See appendix D for details on their installation. The installation
commands for any plugins used are given during the discussions in each section.

9.3.1 Introducing Gulp.js

As I mentioned earlier, Gulp.js is a task runner. Its primary job is to automate tasks for
you. Out-of-the-box Gulp.js has four basic methods, which you’ll learn more about as
you go:

■ gulp.src—Specifies the files to be piped to plugins for processing
■ gulp.dest—Writes the output of the piped processes
■ gulp.task—Creates a task
■ gulp.watch—Monitors files so you can react (for example, invoke a task) when

changes occur

This is a high-level overview of these methods. Although you’ll learn how to use them
in this chapter, you can also review their functionality in detail by reading the API
documentation for Gulp.js at https://github.com/gulpjs/gulp/blob/master/docs/
API.md.

 For any other functionality not covered by the core APIs, you’ll have to get it from
Gulp.js’s growing library of plugins (see http://gulpjs.com/plugins). In the upcoming
sections, you’ll use plugins to perform some of the development and build tasks intro-
duced earlier in the chapter.

 In Gulp.js, tasks are defined through function calls rather than through configura-
tion. When you process your application’s source files with Gulp.js, the data is pro-
cessed by using Node.js I/O streams. These streams can be connected (or piped)
together to form a task pipeline; the output of each operation in a task can be con-
nected to the input of another. This makes it easy to daisy-chain multiple processes in
a streaming fashion to arrive at the final output (see figure 9.2).

Gulp.js task pipeline Task output

JSHint Concat Uglify

In

Multiple files, like JavaScript
or CSS, can be specified as
a task’s source.

Multiple tasks can
be piped together and
applied to each source.

OutPipe Pipe
all.min.js

Figure 9.2 Gulp.js is able
to pipe together data
streams for processing.
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/gulpjs/gulp/blob/master/docs/API.md
https://github.com/gulpjs/gulp/blob/master/docs/API.md
http://gulpjs.com/plugins

215Our project
With introductions out of the way, let’s create your first task.

9.3.2 Creating your first task

To begin working on a new task, you need to create a file that will contain your task
definition. Gulp.js will automatically look for a file named gulpfile.js in the directory
where you run its commands. So go ahead and create a new, empty file called gulp-
file.js in your local project directory. You can use any directory you want. Just make
sure you’re in that directory when installing plugins or executing tasks.

 Next, you’ll add a task to your gulpfile.js file. Before you jump into creating any
build-related tasks, you’ll create a simple task just to test-drive Gulp.js. Tasks in Gulp.js
are written using JavaScript and have the following syntax:

gulp.task("task-name", [optionalArrayOfDependentTasks], function() {
 // task operations here
});

For your first task, you’ll just write the obligatory “Hello world” to the console. You
don’t have any dependencies, so your gulpfile.js file looks like the following listing at
this point.

var gulp = require("gulp");

gulp.task("say-hello", function() {
 console.log("Hello world");
});

Notice the call to require() at the top. Because your runtime is Node.js and it uses
the CommonJS module system, this is how you include references to any external
modules. This includes Gulp.js itself.

 Gulp tasks are invoked from the command line. Open your favorite command-line
tool and navigate to the local directory where you created the gulpfile.js file. From
there, use the gulp command followed by the task name:

C:\chpt9\AngularJS-proj> gulp say-hello

This produces output similar to the following:

[00:00:39] Using gulpfile C:\chpt9\AngularJS-proj\gulpfile.js
[00:00:39] Starting 'say-hello'...
Hello world
[00:00:39] Finished 'say-hello' after 141 µs

NOTE The symbol µs stands for microseconds.

Next, let’s see how to specify task dependencies in Gulp.js. To tell Gulp.js that one or
more tasks should run before a task is executed, you add the names of each dependent
task to an array of task names. This array is an optional second parameter for a task:

gulp.task("task-name", ["task-b", "task-c", "task-d"], function() { ... });

Listing 9.1 Writing “Hello world” from a task

Require Gulp.js

say-hello is the task name
Licensed to Mark Watson <nordickan@gmail.com>

216 CHAPTER 9 Client-side task automation
To test this out, you’ll create a second task. This time, you’ll write “How are you?” to
the console, but you’ll specify in this task that your previous task must be executed
first (see the following listing).

var gulp = require("gulp");

gulp.task("say-hello", function() {
 console.log("Hello world");
});

gulp.task("how-are-you", ["say-hello"], function() {
 console.log("How are you?");
});

The say-hello task can still be run by itself. But if you run the how-are-you task, both
tasks will be executed. First, say-hello will run, because it’s the dependency, and then
how-are-you. The output from running your new task looks similar to the following:

C:\chpt9\AngularJS-proj> gulp how-are-you
[00:13:37] Using gulpfile C:\chpt9\AngularJS-proj\gulpfile.js
[00:13:37] Starting 'say-hello'...
Hello world
[00:13:37] Finished 'say-hello' after 144 µs
[00:13:37] Starting 'how-are-you'...
How are you?
[00:13:37] Finished 'how-are-you' after 58 µs

Now that you’ve gotten your feet wet with some simple tasks, let’s create a more useful
task. You’ll start with an easy one.

9.3.3 Creating a code analysis task

Code analysis, or linting, is the process of using a program to analyze your code for
errors and other problems. Table 9.2 contains the plugin you’ll use for this task and
the command to install it locally. You’ll use the @latest option to grab the latest ver-
sion available.

To use the plugin, you need to include it. Add this call to the top of your gulpfile.js
file:

var jshint = require("gulp-jshint");

Listing 9.2 Specifying dependent tasks

Table 9.2 Gulp.js plugin for the JSHint JavaScript code linter

Plugin To install

gulp-jshint
www.npmjs.com/package/gulp-jshint

npm install gulp-jshint@latest --save-dev

say-hello is now a
dependency for
how-are-you
Licensed to Mark Watson <nordickan@gmail.com>

217Our project

Sp
fil
Now you can create the task itself in your gulpfile.js file (see the next listing). This
example names the task lint, but you can call it anything you want.

gulp.task("lint", function() {

 return gulp.src(["App/components/**/*.js",
 "!./App/components/thirdParty/**"])
 .pipe(jshint())
 .pipe(jshint.reporter('default'))

});

The listing uses gulp.src() to specify which set of files should be used in your linting
task. The gulp.src() function takes either a string or an array. Inside the string or
array, you can use complete file paths or glob patterns to represent files and folders
that are included or excluded. The pipe() function is used to connect the I/O
streams during processing.

NOTE Globbing is a way of expressing file or folder names by using patterns
and wildcard characters. Gulp.js supports globbing via node-glob. This site
has a good primer on the glob patterns it supports: https://github.com/
isaacs/node-glob.

Using globbing, you define the source as all files with the extension .js under the App/
components directory (*.js) or any folders underneath that directory (/**). You’re also
excluding anything in the thirdParty folder by using the exclamation point (!).

 You probably also noticed a call to jshint.reporter('default'). For this plugin,
you have to use its reporter() function to print the results from your linter to the
console. You’re using the default results reporter from the plugin, but it allows exter-
nal ones to be used as well.

 With your task defined, you can return to the command line and type the follow-
ing command:

C:\chpt9\AngularJS-proj> gulp lint

When the task runs, you see output similar to the following:

C:\chpt9\AngularJS-proj> gulp lint

[10:09:38] Using gulpfile C:\chpt9\AngularJS-proj\gulpfile.js
[10:09:38] Starting 'lint'...

C:\chpt9\AngularJS-proj\App\components\messaging\services\messageSvc.js:
line 7, col 6, Unnecessary semicolon.

1 error
[10:09:38] Finished 'lint' after 112 ms

Listing 9.3 A linter task using the gulp-jshint plugin

ecify which
es to use

Apply plugin

Report the output
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/isaacs/node-glob
https://github.com/isaacs/node-glob

218 CHAPTER 9 Client-side task automation
The task runs through all the files you specified, looking for problems. In this case,
the linter finds an extra semicolon at the end of a function that isn’t needed. In addi-
tion to the issue itself, the plugin tells you which file to look at and the line number
where you’ll find the problem.

 Now let’s look at something that’s crazy cool that will help you tremendously dur-
ing development. Let’s see how to get the browser to automatically reload while
you’re coding.

9.3.4 Creating a browser-reload task

During development, an annoying (yet necessary) activity is to reload the browser
after you’ve made changes in your application. This process can be made less painful
by using a program such as LiveReload or Browsersync. This example uses Browser-
sync (see table 9.3), because it’s easy to set up. Browsersync isn’t a plugin for Gulp.js;
it’s a completely standalone product that can be used by itself or integrated with your
favorite task runner.

 For this project, you’re going to integrate it with Gulp.js. You’ll also make the lint-
ing task you just created a dependency for the browser-reload task. This project illus-
trates how to use your task runner to automatically do any necessary processing on
your application’s source files before the reload happens.

What makes this program nice is that it doesn’t require any special add-ons/exten-
sions to be added to your browser. It can also keep multiple browsers and multiple
devices in sync, all at the same time! I’m not going into all of its features here, but you
can visit the website to see a great video illustrating the things this product can do.

 Let’s create your task now. Start by including the program by using require() just
as you saw previously with the linter plugin:

var browserSync = require("browser-sync");

As I mentioned earlier, you might want to perform certain tasks before the reload
occurs. To integrate Browsersync with your task runner, you wrap it in a task and spec-
ify any dependent tasks you want to run prior to this one:

gulp.task("reload", ["lint"], browserSync.reload);

Browsersync has its own built-in ability to watch files for changes, but for the integra-
tion with Gulp.js, you’re going to use gulp.watch to execute the reload task when any
CSS or JavaScript file changes:

gulp.watch(["./App/css/*.css", "App/components/**/*.js"], ["reload"]);

Table 9.3 Application for automatic browser reloads

Application To install

Browsersync
www.browsersync.io

npm install browser-sync@latest --save-dev
Licensed to Mark Watson <nordickan@gmail.com>

219Our project

Th
ta
The first argument to gulp.watch() is the string or array containing the file paths or
globs to use. The second argument is the name of the task that should be called when
any file being watched changes. Here you’re saying that if any CSS file or JavaScript
files change, then execute the reload task.

 Browsersync can proxy your local virtual host server or spin up its own mini server
for your application. In this case, you’re not using a server, so you’ll let it use its own
server for viewing and reloading your SPA. All you need to do is tell Browsersync
where the base directory for your application is located:

browserSync({
 server: {
 baseDir: "./"
 }
});

Now let’s put everything together in a task (see the following listing).

gulp.task("reload", ["lint"], browserSync.reload);

gulp.task("file-watch", ["lint"], function () {

 browserSync({
 server: {
 baseDir: "./"
 }
 });

 gulp.watch(
 ["./App/css/*.css", "App/components/**/*.js"],
 ["reload"]
);
});

Because reload is a task by itself, you can reuse it in other tasks. You can also use it to
manually reload the browser. While developing code, you want the reload to automat-
ically happen as you change files, so you’ll run the file-watch task from the com-
mand line. You should see output similar to the following when it’s run:

C:\chpt9\AngularJS-proj> gulp file-watch
[11:27:07] Using gulpfile C:\chpt9\AngularJS-proj\gulpfile.js
[11:27:07] Starting 'lint'...
C:\chpt9\AngularJS-proj\App\components\messaging\services\messageSvc.js:
line 7, col 6, Unnecessary semicolon.

1 error
[11:27:08] Finished 'lint' after 105 ms

[11:27:08] Starting 'file-watch'...
[11:27:08] Finished 'file-watch' after 133 ms
[BS] Access URLs:

Listing 9.4 Automatically reloading the browser from a task

e reload
sk The task to watch

 for file changes

Browsersync server setup

Files to watch

The task to call when
a file change occurs
Licensed to Mark Watson <nordickan@gmail.com>

220 CHAPTER 9 Client-side task automation

 Local: http://localhost:3000
 External: http://192.168.1.68:3000

 UI: http://localhost:3001
 UI External: http://192.168.1.68:3001

[BS] Serving files from: ./

Because you have your linting task as a dependency, it’s executed first, and then the
browser is started. You didn’t specify to Browsersync which browser to auto-open, so it
opens your default browser. Next, if you make a change to any file in the list, you’ll
instantly see the change happen in the browser. You also see output similar to the fol-
lowing:

[11:33:35] Starting 'lint'...
C:\chpt9\AngularJS-proj\App\components\messaging\services\messageSvc.js:
line 7, col 6, Unnecessary semicolon.

1 error
[11:33:35] Finished 'lint' after 76 ms

[11:33:35] Starting 'reload'...
[BS] Reloading Browsers...
[11:33:35] Finished 'reload' after 1.54 ms

Again, your dependent task runs first. You also see at what point the browser is
reloaded.

 Now that you know how to have the browser reload automatically while you’re cod-
ing, let’s look at another task that’s quite common during development.

9.3.5 Automating unit testing

As you saw with the automatic browser reloads, having the task runner automatically
take care of repetitious tasks saves you time and hassle. Now let’s look at how to design
a task that automatically runs a unit test for the code you’re creating. Because we used
QUnit in chapter 8, we’ll stick with it for this chapter. Feel free, though, to use any
JavaScript testing software you wish.

 In the SPA code you’re using for your source files to play with, there’s an AngularJS
module that’s used to calculate the discounted price for a used video game. You’ll pre-
tend that code hasn’t been written yet, so for now you’ll remove this function’s code:

function calculate(amt) {

}

This function should take in an amount and multiply it by a standard discount value
that’s available in this module. You’ve created a unit test for this function as well. Its
source can be found in the downloadable source for this chapter under the /test
folder.
Licensed to Mark Watson <nordickan@gmail.com>

221Our project

Display
results
comma
 For your automated testing, you’ll need a way to display the results of your QUnit
tests. Normally you’d need to open the test results HTML page in a browser, but you
don’t want to have to do that while you’re coding. You just want to see the results.

 What you need is a program that will run the tests and report the results in the
command line without the need for a graphical user interface. You’ll use one called
node-qunit-phantomjs (see table 9.4). It uses a headless browser called PhantomJS
internally.

This particular program can be run standalone from the command line, but you’ll
wrap it in a task and set up a watch on your application’s JavaScript source files. This is
similar to what you did with Browsersync in the preceding section. As usual, you’ll
need to include this program as a dependency for your gulpfile.js script:

var qunitp = require("node-qunit-phantomjs");

The program is simple to use. You pass to it the name of the HTML page that you’d
usually use in the browser to see the results of your QUnit tests:

qunitp("./test/test.html");

Now let’s put everything together in a task (see the following listing).

gulp.task("unit-test", function() {
 qunitp("./test/test.html");
});

gulp.task("watch-js", function() {
 gulp.watch("App/components/**/*.js", ["unit-test"]);
});

Let’s first run your unit-test task manually. It fails because you haven’t implemented
the body of the function yet. It spits out the same verbose error that you’d normally
see in the browser. A small part of the result is shown here:

Testing ..\..\test\test.html
Took 4 ms to run 1 tests. 0 passed, 1 failed.

Test failed: Pricing Service Tests: Pricing Calculations:
Failed assertion: When the regular price is $10.00,
the discounted price should be $4.00, expected: 4.00,
but was: undefined

Table 9.4 Application to run QUnit tests in PhantomJS

Application To install

node-qunit-phantomjs
https://github.com/jonkemp/node-qunit-phantomjs

npm install node-qunit-
phantomjs@latest --save-dev

Listing 9.5 Automatically running unit tests when a file changes

 the test
 from the
nd line

Run the unit-test task when a
JavaScript file change occurs
Licensed to Mark Watson <nordickan@gmail.com>

222 CHAPTER 9 Client-side task automation
Now let’s start your watch task. When the watch-js task starts, you’ll see output similar
to the following from the command line:

C:\chpt9\AngularJS-proj> gulp watch-js
[15:08:40] Using gulpfile C:\chpt9\AngularJS-proj\gulpfile.js
[15:08:40] Starting 'watch-js'...
[15:08:40] Finished 'watch-js' after 25 ms

This task does nothing else until you change one of the watched files. In this unit test,
you’re supplying $10 as the price of the video game. The standard discount is 40%, so
the correct result should be $4. Let’s see what happens if you add the code back for
your function so that it calculates the correct result. You get the following output in
your command line:

[15:17:19] Starting 'unit-test'...
[15:17:19] Finished 'unit-test' after 5.67 ms
Testing ..\..\test\test.html
Took 12 ms to run 1 tests. 1 passed, 0 failed.

You’ve set the watch for any JavaScript files, so as you continue to code and add more
unit tests, your tests results will keep printing out to the console as you go.

 Having looked at using a task runner for development, let’s switch gears and create
a client-side build process with it. Each project may have different requirements, so
you may have more or fewer tasks in your build. I’ll use a few common build tasks to
illustrate.

9.3.6 Creating a build process

In the preceding section, you saw how to automate your testing. Automated testing is
also a task you might want for your build, so you’ll make sure it’s invoked by the build
process. But what else might you want to include? Well, a common task for a build is to
optimize source code. You’ll start by optimizing your JavaScript files.

OPTIMIZING JAVASCRIPT FILES

A fairly common set of optimization steps performed on JavaScript source files
includes the concatenation and minification of your source files. You’ll use a plugin
called gulp-concat for the concatenation of your code and one called gulp-uglify for
its minification. You’ll also need one more specifically for AngularJS so that your
AngularJS code still works after the minification process (gulp-ng-annotate).

NOTE If minification is configured to shorten function argument names, this
can prevent AngularJS’s dependency-injection process from working cor-
rectly. The gulp-ng-annotate plugin makes sure that all application compo-
nents are annotated properly to prevent this issue.

For the output of your build process, you’ll add a new folder to your project directory
called dist (as in distribution). You’ll also use a package called del to clear out the dist
folder before each new build. Table 9.5 lists your new plugins/programs.
Licensed to Mark Watson <nordickan@gmail.com>

Give
file a
223Our project

The following listing shows the build-related tasks in your gulpfile.js. It has one task
for clearing your dist directory and another to optimize your JavaScript source files.

var gulp = require("gulp");
var del = require("del");
var concat = require("gulp-concat");
var uglify = require("gulp-uglify");
var ngAnnotate = require("gulp-ng-annotate");

gulp.task("clean", function(done) {
 console.log("cleaning dist dir");
 del(["dist/**/*"], done);
});

gulp.task("scripts", ["clean"], function() {
 console.log("processing scripts");

 return gulp.src(["App/components/**/*.js",
 "!./App/components/thirdParty/**"])
 .pipe(concat("all.min.js"))
 .pipe(ngAnnotate())
 .pipe(uglify())
 .pipe(gulp.dest("./dist/"));
});

The output of your task is the all.min.js file defined in the concat() function. You
specified the dist folder as the destination for the task’s output via the gulp.dest()
function.

 In addition to your scripts task, you have one other task in your gulpfile.js file:
the clean task. You can use your clean task to delete all the files and folders from your
dist folder before each new run of the build process. This task uses the del package
you installed. To tell Gulp.js that you want the clean task to run before your scripts
task is run, you declare it as a task dependency.

Table 9.5 Plugins to process JavaScript and clear the build’s destination folder

Plugin/application To install

gulp-concat
www.npmjs.com/package/gulp-concat

npm install gulp-concat@latest --save-dev

gulp-uglify
www.npmjs.com/package/gulp-uglify

npm install gulp-uglify@latest --save-dev

gulp-ng-annotate
www.npmjs.com/package/gulp-ng-annotate

npm install gulp-ng-annotate@latest
--save-dev

del
www.npmjs.com/package/del

npm install del@latest --save-dev

Listing 9.6 Adding tasks to optimize JavaScript

Remove all files and folders
from the dist directory

Task for your
JavaScript processing

concatenated
 name

Specify a folder to place
the processed file
Licensed to Mark Watson <nordickan@gmail.com>

224 CHAPTER 9 Client-side task automation
OPTIMIZING CSS

So far, you’ve used Gulp.js only to optimize your JavaScript source files. To optimize
your style sheets, you’ll need to use npm once again to locally install a plugin called
gulp-minify-css (see table 9.6).

The following listing shows the new task to add to your growing build script in the
gulpfile.js file.

var minifyCss = require("gulp-minify-css");

gulp.task("css", ["clean"], function() {
 console.log("processing css");

 return gulp.src("./App/css/*.css")
 .pipe(concat("styles.min.css"))
 .pipe(minifyCss())
 .pipe(gulp.dest("./dist/"));
});

That takes care of the optimizations you’re going to do for the scripts and CSS. While
you’re optimizing things for your build, you can also include a task to optimize your
SPA’s images.

OPTIMIZING IMAGES

For your images, you’ll use a plugin called gulp-imagemin (see table 9.7).

The following listing shows your task for optimizing your SPA’s image files for
deployment.

var imagemin = require("gulp-imagemin");

gulp.task("images", ["clean", "html"], function() {
 console.log("processing images");

Table 9.6 Plugin to minify CSS

Plugin To install

gulp-minify-css
www.npmjs.com/package/gulp-minify-css

npm install gulp-minify-css@latest
--save-dev

Listing 9.7 Adding a task to optimize CSS

Table 9.7 Plugin to reduce the size of images

Plugin To install

gulp-imagemin
www.npmjs.com/package/gulp-imagemin

npm install gulp-imagemin@latest --save-dev

Listing 9.8 Adding a task to reduce image size

Concatenate and minify all style
sheets as styles.min.css
Licensed to Mark Watson <nordickan@gmail.com>

225Our project
 return gulp.src("App/images/*.png")
 .pipe(imagemin())
 .pipe(gulp.dest("./dist/App/images"));

});

Your build process so far optimizes your source files and images and moves them to a
dist folder. To complete a build, you’ll need to have the entire application available
for distribution to another environment. You’ll need to create a task to move the rest
of your SPA’s files.

MOVING THE REST OF THE APPLICATION

Not all files went through an optimization process, but they’re still part of the applica-
tion. These include your HTML files and any third-party code. They’ll all need to move
to the same dist folder as your optimized code and images for distribution. For this,
you don’t need a plugin. You can use gulp.src and gulp.dest to move the files (see
the next listing).

gulp.task("html", ["clean"], function(done) {
 console.log("copying over HTML");

 return gulp.src(["App/components/**/*.html",
 "./App/components/thirdParty/**"], {base: "./"})
 .pipe(gulp.dest("./dist/"));

});

With the rest of the application taken care of, wouldn’t it be nice if you could use
Gulp.js to automatically create a new version of index.html that has references to the
new optimized files? There’s a plugin for that as well.

DYNAMICALLY UPDATING FILE REFERENCES

You can use several script replacement plugins to dynamically replace existing script
and CSS references with references to the optimized versions. For this project, you’re
going to use one called gulp-html-replace (see table 9.8).

What’s nice about this plugin is that you can use HTML-style comments to annotate
regions within the source file that should be replaced. There are beginning and end-
ing comments to mark an area as a replacement block, with the syntax of build:xxx
to denote the start of a new block. This way, you can unobtrusively mark an arbitrary
number of references as candidates for replacement.

Listing 9.9 Adding a task to move the rest of the files

Table 9.8 Plugin to update the references in index.html to reflect the build files

Plugin To install

gulp-html-replace
www.npmjs.com/package/gulp-html-replace

npm install gulp-html-replace@latest
--save-dev

Optimize your .png files

Move any application
HTML or third-party code
Licensed to Mark Watson <nordickan@gmail.com>

226 CHAPTER 9 Client-side task automation
 To begin, let’s add the comment blocks around the places you want to replace in
your index.html file from your local project directory. The following listing shows the
annotated CSS include. The listing shows only the relevant portions, but you can see
the entire file in the downloadable source code for the chapter.

<!-- build:css -->

<link rel="stylesheet" href="App/css/default.css">

<!-- endbuild -->

You can do the same thing with your JavaScript files (see the next listing).

<!-- build:js -->

<script src="App/components/app.js"></script>
<script src="App/components/data/appdata.js"></script>
<script src="App/components/useralerts/controllers/useralertsCrtl.js">
</script>
<script src="App/components/search/controllers/searchCrtl.js"></script>
<script
 src="App/components/productdisplay/controllers/productDisplayCrtl.js">
</script>
<script src="App/components/pricing/services/pricingSvc.js"></script>
<script src="App/components/messaging/services/messageSvc.js"></script>
<script src="App/components/search/services/searchSvc.js"></script>
<script src="App/components/productdisplay/services/productDisplaySvc.js">
</script>

<!-- endbuild -->

With the blocks around your includes, you can create a Gulp.js task to dynamically
update your index.html file and move it to the dist folder. You’ll call this your build
task (see the following listing).

gulp.task("build", ["clean", "scripts", "css", "images"], function() {
 console.log("updating index");

 return gulp.src("index.html")
 .pipe(htmlreplace({
 "css": "styles.min.css",
 "js": "all.min.js"
 }))
 .pipe(gulp.dest("./dist/"));
});

Listing 9.10 Annotated CSS include for gulp-html-replace

Listing 9.11 Annotated JavaScript includes for gulp-html-replace

Listing 9.12 Task update file references in index.html

Replace any CSS references here
with the optimized reference

Replace any JavaScript references
here with the optimized reference

Replace any references in comment
blocks with references to these files
Licensed to Mark Watson <nordickan@gmail.com>

227Summary
If you were to examine the index.html file in the dist folder after this task runs, your
CSS references would have been replaced with a reference to your single, optimized
CSS file:

<link rel="stylesheet" href="styles.min.css">

All of the JavaScript includes would have been replaced with just one that references
the optimized JavaScript file:

<script src="all.min.js"></script>

The last thing you can do is define a default task. This isn’t mandatory. If you create a
default task, you’re telling Gulp.js what to do if the gulp command is executed with-
out a task name. You’ll fire off your build process when the default task is invoked.

gulp.task("default", ["build"]);

It’s worth mentioning that when creating your own build process, you might need to
use fewer or more tasks than what you’ve included. Each project has its own require-
ments, and each development team has its own preferences. Ultimately, you’ll have to
decide what works best for your application.

9.4 Chapter challenge
Now here’s a challenge for you to see what you’ve learned in this chapter. Pick one of
the existing projects from this book or one of your own, and create several tasks. Make
sure some tasks are defined as dependencies for others. Experiment with some
plugins also. Be creative.

9.5 Summary
In this chapter, you got an introduction to task runners and client-side task automa-
tion. Let’s quickly recap:

■ Task runners are tools to automate repetitive tasks you’d otherwise have to per-
form manually.

■ You can use a task runner during client-side development to perform tasks such
as live browser reloads, code analysis, applying CSS and/or JavaScript prepro-
cessing, and automated testing.

■ Task runners can also be used to create a build process. A build is a set of consis-
tent, repeatable steps to prepare an application for deployment to another envi-
ronment.

■ In a web-based application, such as your SPA, the build process often includes the
CSS and/or JavaScript preprocessing, file concatenation, and code minification.

■ Task runners such as Gulp.js or Grunt.js may use plugins, which dramatically
increase the range of tasks the tool is able to perform.

■ Many task runners are able to perform the same kinds of tasks, in different
ways. Choosing a task runner often boils down to personal preference and the
type of project/environment for which the tool is being used.
Licensed to Mark Watson <nordickan@gmail.com>

228 CHAPTER 9 Client-side task automation
Licensed to Mark Watson <nordickan@gmail.com>

appendix A
Employee directory

example walk-through

You saw various code examples illustrating the components of our employee direc-
tory throughout chapter 2. In doing so, you gained a better understanding of the
role MV* libraries/frameworks play in the creation of an SPA.

 In this appendix, you’ll walk through the complete source code for our direc-
tory by using each of our selected MV* frameworks. This will help you understand
the complete picture if you decide to try one of these yourself. Before you start,
let’s go over your objectives again:

■ Create a simple SPA to enter employee information.
■ Build an easy-to-use UI for entering each employee’s first name, last name,

title, email, and phone.
■ Keep track of each entry as part of a list, with the screen split between the

entry form on the left and the directory’s entry list on the right.

This appendix covers
■ Walk-through of the Backbone.js example
■ Walk-through of the Knockout example
■ Walk-through of the AngularJS example
229

Licensed to Mark Watson <nordickan@gmail.com>

230 APPENDIX A Employee directory example walk-through
■ Have two buttons on the entry side of the SPA: one to add a new entry and one
to clear the form.

■ Have one button next to each entry to remove the entry from the list.
■ Have indicators next to each entry field to denote whether the field’s entry

requirement has been met (each indicator should update as the user types).

In other parts of the book, you’ll learn more-advanced topics, such as routing and
server transactions. For your first foray into the world of the SPA and MV*, you’ll avoid
the use of the router to keeps things simple. You’ll also keep your employee data in
memory.

 Now that you’ve reviewed the objectives, let’s take another look at the screenshot
you first saw in chapter 2. This screenshot, shown in figure A.1, is the final product.
The application will look and behave the same for each MV* framework used.

 This design, though simple, takes you through the paces of designing views, tem-
plates, bindings, and models, as well as other framework-specific components. It’s also

Indicators change from
“Required” to “Invalid” if
the user enters invalid data.

Clicking the X button
deletes the entry.

Figure A.1 Screen capture of the online directory. The user enters information in the form on the left.
Valid entries appear in a list on the right.
Licensed to Mark Watson <nordickan@gmail.com>

231CSS
nice in the sense that, although you’re not communicating yet with the server, you’re
still carrying out CRUD operations on a list of items.

A.1 CSS
You’ll use the same CSS files for all three versions. The following listing is your default
style sheet. You’re merely setting the stage with the font and the styles for your main
section and header.

html, body {
 font-family: arial;
}

main {
 display: block; /* for IE */
 width: 800px;
 border: 1px solid #909092;
 background-color: #B7B8BA;
 border-radius: 10px;
 margin: 15px;
 padding: 5px 15px 15px 15px;
 box-sizing: border-box;
}

main > header {
 font-size: 25px;
 font-weight: bold;
 margin-bottom: 15px;
}

The following listing defines the styles for the entry form and the set of entries that
will be displayed when the user adds directory entries.

.entries {
 background-color: #D9D9D9;
 border: 1px solid #6D6D6D;
 border-radius: 10px;
 overflow: hidden;
 box-shadow: inset 0 0 3px 0 #6B6B6B;
 box-sizing: border-box;
}

.entries * {
 box-sizing: inherit;
}

.entries form {
 float: left;
 width: 45%;

Listing A.1 default.css

Listing A.2 entries.css
Licensed to Mark Watson <nordickan@gmail.com>

232 APPENDIX A Employee directory example walk-through
 padding: 5px 0 0 5px;
 font-size: 18px;
}

.entries p {
 margin: 12px 0;
}

.entries label {
 font-style: italic;
 line-height: 1.4em;
}

.entries input {
 padding: 2px;
 box-shadow: 0 0 8px rgba(0, 0, 0, 0.3);
 border: 1px solid #999;
 line-height: inherit;
 font-size: inherit;

}

.entries .error-message {
 float: right;
 padding: 1px;
 margin-right: 15px;
 color: #DC3E5E;
 font-size: 12px;
 font-weight: bold;

}

.entries button {
 cursor: pointer;
 background-color: #EFEFEF;
}

.entries button::-moz-focus-inner {
 padding: 0;
}

.entries form button {
 box-shadow: 0px 2px 0px rgba(0, 0, 0, 0.5);
 font-size: 16px;
 border-radius: 5px;
 padding: 7px 20px;
 font-weight: bold;
 border: none;
}

.entries .entry-list {
 margin: 0 0 0 45%;
 width: 55%;
 height: 458px;
 border-left: 1px solid #9F9F9F;
Licensed to Mark Watson <nordickan@gmail.com>

233Backbone.js example
 background-color: #EFEFEF;
 box-shadow: inset 0 0 3px 0 #6B6B6B;
 padding: 5px 0 0 0;
 overflow-y: auto;
}

.entries .entry-list li {
 list-style-type: none;
 margin: 5px 15px 15px 15px;
 border-bottom: 1px solid #9F9F9F;
 font-weight: bold;
}

.entries .entry-list .remove-entry {
 float: right;
 border: 1px outset #D9D9D9;
 padding: 5px;
}

Because it’s such a small application, I’ve given it a fixed size on the screen. This also
gives you just one general area of the screen to focus on while you get your bearings
with MV*.

A.2 Backbone.js example
Let’s begin with Backbone.js. Remember that it’s our MVC/MVP-like framework. It’s a
little more feature rich than Knockout, but it doesn’t have nearly as many bells and
whistles baked in as AngularJS. It has an open design, though, allowing you to extend
it through code or through third-party plugins to add features.

A.2.1 Downloading your dependencies

To start, you’ll download what you need. You’ll use several third-party libraries/frame-
works to extend Backbone.js in this example. I won’t cover all of the third-party librar-
ies/frameworks in depth, but I’ll discuss how they’re being used here (see table A.1).

Table A.1 Dependencies for the Backbone.js version of the example

Framework/library URL Comments

Backbone.js http://backbonejs.org You can select either the minified (compact) version or
the nonminified (readable/formatted) version. Both
work the same. The readable version is helpful for
understanding the source code. For deployment,
always use the minified version.

jQuery http://jquery.com A great overall utility library that excels at DOM
manipulation and event handling.

Underscore.js http://underscorejs.org Another utility library. This one is loaded with all sorts
of programming helpers. You’ll specifically use it as
your template engine.
Licensed to Mark Watson <nordickan@gmail.com>

234 APPENDIX A Employee directory example walk-through
A.2.2 Directory structure

I’ve tried to keep the directory structures fairly simi-
lar between the three versions. I do, however, use
framework-specific folders where it makes sense. Fig-
ure A.2 is the directory structure for our Backbone.js
version.

 This design is still by feature, as I talked about in
chapter 1, with the feature being the directory
(under components). Your feature folders under com-
ponents can grow with the application. But within the
feature, the directory structure represents a some-
what typical Backbone.js layout.

Figure A.2 Directory structure for the
Backbone.js version of the application

Handlebars.js http://handlebarsjs.com Handlebars is another template library. At the time of
this writing, Handlebars is a requirement for using
Backbone.js, even if you don’t use it yourself.

RequireJS http://requirejs.org I discuss RequireJS in chapter 3. For now, just know
that it’s used for asynchronous JavaScript module
loading and dependency management. Using it, you’ll
create code using the AMD specification (also dis-
cussed in chapter 3). You’ll also use two RequireJS
plugins: domReady.js, which makes sure the DOM is
ready before your JavaScript code acts on it, and
text.js, which asynchronously downloads templates.
Both plugins can be found at http://requirejs.org/
docs/download.html.

Table A.1 Dependencies for the Backbone.js version of the example (continued)

Framework/library URL Comments
Licensed to Mark Watson <nordickan@gmail.com>

235Backbone.js example
A.2.3 The shell

In typical SPA fashion, your index.html welcome file, shown in the following listing, is
almost bare. Its main features are the style-sheet reference, the shell DIV for the appli-
cation, and the RequireJS entry to kick-start the application.

<!DOCTYPE html>
<html>
<head>
 <link rel="stylesheet" href="app/css/default.css">
 <link rel="stylesheet" href="app/css/entries.css">
 <!--[if IE]>
 <script>
 document.createElement("main");
 </script>
 <![endif]-->
</head>
<body>
 <main />
 <script
 data-main="app/components/main.js"
 src="app/components/thirdParty/require.js">
 </script>
</body>
</html>

RequireJS dynamically and asynchronously loads any dependent files the application
needs, including modules and templates. It also makes sure they’re ready for use before
any code tries to use them. This way, you don’t have to worry about script order and the
synchronous and blocking nature of SCRIPT tags. Again, don’t worry about RequireJS at
this point. It’s just wrapping your JavaScript code into neat, self-contained modules.

A.2.4 main.js

This file contains the configuration preferences for RequireJS, shown in the next list-
ing. Here you define a base URL and the paths relative to that where RequireJS can
download each file and assign an alias to that path.

"use strict";
requirejs.config({
 baseUrl: "app/components",
 paths: {
 // third party
 jquery: "thirdParty/jquery.min",
 domReady: "thirdParty/domReady",
 text: "thirdParty/text",
 backbone: "thirdParty/backbone-min",
 underscore: "thirdParty/underscore-min",

Listing A.3 index.html

Listing A.4 main.js—RequireJS configuration

SPA’s style sheets

IE HTML5 fix

Shell for the rest of the application

RequireJS configuration file

Reference to RequireJS itself

Define a base URL for your SPA

File paths and their aliases
relative to the base URL
Licensed to Mark Watson <nordickan@gmail.com>

236 APPENDIX A Employee directory example walk-through

The t
plugin
down
JavaS

M
D
b

 // application
 collections: "directory/collections",
 models: "directory/models",
 views: "directory/views",
 templates: "directory/templates",
 partials: "directory/partials"
 }
});

require(["app"], function(app) {
 app.init();
});

The last line is the starting point for the SPA. RequireJS makes sure that app.js is
loaded before calling your application’s init() function.

A.2.5 app.js

Your app.js file, shown in the following listing, loads the user’s first viewable area with
the SPA’s first HTML content file. The file doesn’t have to be called app.js, but that’s a
typical naming convention for the first real code file. Any kind of pre-application work
or setup goes in this file.

"use strict";
define(["jquery", "collections/entries",
 "views/entrylist", "views/directory",
 "text!partials/directoryContent.html",
 "domReady"],

 function($, Entries, EntryList, Directory,
 directoryHTML, domReady) {

 function init() {
 domReady(function() {
 var entries = new Entries({});

 $("main").html(directoryHTML);

 var container = $("main .entries");

 new Directory(
 { el: container,
 collection: entries
 }
);

 new EntryList(
 { el: container.find(".entry-list"),
 collection: entries
 }
);
 });

Listing A.5 app.js

Kick-off point for your SPA
with app.js as a dependency

Dependency names match
file aliases from main.js

ext.js
 used to

load a non-
cript file

Parameter names for
each dependency

ake sure the
OM is ready
efore you begin Use jQuery to insert the

HTML fragment (partial)
Licensed to Mark Watson <nordickan@gmail.com>

237Backbone.js example
 }

 return {
 init: init
 };

 }
);

RequireJS downloads all dependencies in your list to begin with. After the dependen-
cies are in place, the application’s init() function is called. Here, you use jQuery to
insert your first HTML content. When the DOM is ready, you create a new instance of
your main Backbone.js view.

A.2.6 directoryContent.html

As you can see in the following listing, your HTML file looks clean. Backbone.js helps
you interact with it without embedding JavaScript code.

<section class="entries">

 <form name="entryForm">
 <p>
 <label for="firstName">First Name:

 <input name="firstName" id="firstName"
 placeholder="First Name"/>

 </label>
 </p>
 <p>
 <label for="lastName">Last Name:

 <input name="lastName" id="lastName"
 placeholder="Last Name"/>

 </label>
 </p>
 <p>
 <label for="title">Title:

 <input name="title" id="title"
 placeholder="Title"/>

 </label>
 </p>
 <p>
 <label for="phone">Phone:

 <input name="phone" id="phone"
 placeholder="555-555-5555"/>

 </label>
 </p>
 <p>
 <label for="email">Email:

Listing A.6 directoryContent.html

The input form for
the application

SPAN contains the indicators
of each input’s validity checks
Licensed to Mark Watson <nordickan@gmail.com>

238 APPENDIX A Employee directory example walk-through
 <input name="email" id="email"
 placeholder="youremail@address.com"/>

 </label>
 </p>
 <p>
 <button type="submit">Add</button>
 <button type="reset">Clear</button>
 </p>
 </form>

 <ul class="entry-list">
</section>

So far, so good. The HTML is nice and clean, void of JavaScript. It’s also readable. In
the next section, you’ll see what the Backbone.js view looks like for this content.

A.2.7 directory.js view

As you may remember from our discussion of Backbone.js views, a view is created in
code. A template and a model are used to create the visual content (see the following
listing). Also note that function calls beginning with an underscore (_) are functions
from Underscore.js. This framework makes certain tasks, especially those related to
arrays, easier.

"use strict";
define(["backbone", "models/employeeRecord"],
 function(Backbone, EmployeeRecord) {

 var Directory = Backbone.View.extend({
 events : {
 "keyup :input" : "handleInputKeyup",
 "submit" : "handleClickAdd",
 "reset" : "handleClickReset"
 },
 initialize : function() {
 this.scheduleReset();
 },

Backbone.js objects

As you look at the JavaScript code for your Backbone.js version, one thing to keep in
mind is that objects created using this framework extend an out-of-the-box object.
You’ll define the prototype first and then use the new keyword to create a new instance
of it anytime you want to use an object of that type. Your views extend Backbone.View,
your lists extend Backbone.Collection, and your models extend Backbone.Model.
By doing this, you inherit many out-of-the-box features. To see the full set of features
and examples, visit http://backbonejs.org.

Listing A.7 directory.js view

A button to add an entryA button to
clear the form

The element for your collection
of employee views/models

View’s events

Reset upon initialization
Licensed to Mark Watson <nordickan@gmail.com>

239Backbone.js example

I
r

A
t

Ne
 handleInputKeyup : function() {
 this.buildAndValidateModel();
 },
 handleClickReset : function() {
 this.scheduleReset();
 },
 handleClickAdd : function(e) {
 e.preventDefault();

 var employee = this.buildAndValidateModel();

 this.collection.create(employee, {
 wait : true
 });

 if (!_.contains(this.collection.models, employee))
 {
 return;
 }

 this.$("form").trigger("reset");
 },

 scheduleReset : function() {

 this.$(":text:visible:first").focus();

 setTimeout(this.buildAndValidateModel.bind(this), 0);
 },
 buildAndValidateModel : function() {

 var fields = this.$("form").serializeArray();

 function compose(obj, field) {
 obj[field.name] = field.value;
 return obj;
 }

 var attrs = _.reduce(fields, compose, {});

 var model = new EmployeeRecord(attrs);

 this.$(".error-message").text("");

 if (model.isValid()) {
 return model;
 }

 .each(model.validationError,
 this.displayValidationMessage.bind(this)
);

 return model;
 },

Populate a model and
validate with each key up

Get a new model

Add model in the collection
unless there are errors

f unsuccessful,
eturn

Trigger a reset event

Reset the form and
focus on the first field

dd form fields
o an array Callback function for reduce() to build

an object using the form field array

Use reduce() to create the
attributes object for your model

w model instance

If the model is valid,
return for the collection

If the model isn’t valid, pass
each error to a display function
Licensed to Mark Watson <nordickan@gmail.com>

240 APPENDIX A Employee directory example walk-through
 displayValidationMessage : function(err) {

 var selector =
 "[name='" + err.attr + "']+.error-message";

 this.$(selector).text(err.error);
 }

 });

 return Directory;
});

Backbone.js has a lot less magic going on than the other two MV* frameworks you’re
using. As you can see in the listing, all of the work focuses on maintaining the state of
the form as the user types in information.

A.2.8 entrylist.js view

Interaction with your list of entries is done through your entry list’s view (see the fol-
lowing listing). Here you declare a Backbone.js collection to manage your collection
of entry models. You can think of a collection as a proxy to manage an internal array
of models.

"use strict";
define(["backbone", "views/employee"],
 function(Backbone, Employee) {

 var EntryList = Backbone.View.extend({
 initialize: function() {
 this.listenTo(this.collection, "add",
 this.renderEntry);
 },
 renderEntry: function(model, collection, options) {
 if(options.add) {

 var employee =
 new Employee({ model: model });

 this.$el.append(employee.render().el);
 }
 }
 });

 return EntryList;
 }
);

In your view for the list of entries, you can listen to the Backbone.js collection and
react whenever a new model is added. In this case, you’re rendering each model that’s
added.

Listing A.8 entrylist.js view

Function to display
validation errors

When a model is added,
call renderEntry()

New view instance with
the model passed in

Render view
Licensed to Mark Watson <nordickan@gmail.com>

241Backbone.js example

C
th
A.2.9 entries.js collection

This file is fairly simple, as you can see in the next listing. For your simple application,
you need to define only a collection that will hold an EmployeeRecord model.

"use strict";
define(["backbone", "models/employeeRecord"],
 function(Backbone, EmployeeRecord) {

 var Entries = Backbone.Collection.extend({
 model: EmployeeRecord
 });

 return Entries;
 }
);

Make sure to include the model as a dependency. In the previous section, you saw that
every time the form data is valid, one of these models is added to your collection.

A.2.10 employee.js view

You use the RequireJS text plugin to dynamically fetch and cache the employee tem-
plate that contains placeholders for your model’s data (see the following listing).
Because you’re performing template duty in this view, you’re also relying on Under-
score.js as the template engine.

"use strict";
define(["underscore", "backbone",
"text!templates/entrytemplate.html"],

 function(_, Backbone, templateHTML) {

 var Employee = Backbone.View.extend({
 tagName: "li",
 template: _.template(templateHTML),
 render: function() {
 this.$el.html(this.template(this.model.toJSON()));
 return this;
 },
 events: {
 "click .remove-entry": "removeEntry"
 },
 removeEntry: function() {
 // its model
 this.model.destroy();
 // this view
 this.remove();
 }

Listing A.9 entries.js collection

Listing A.10 employee.js view

Collection to hold models
of type EmployeeRecord

Element type used

ompile/render
e template

A click event to call removeEntry

Perform cleanup for the
DOM and events
Licensed to Mark Watson <nordickan@gmail.com>

242 APPENDIX A Employee directory example walk-through
 });

 return Employee;
 }
);

In this view, you don’t do any data validation. That’s the model’s job. The view is all
about what the user sees and interacts with. In this case, it’s just the employee entry
itself. The view for the list will take care of the overall list UI. Here, you’re just con-
cerned with taking your model data and marrying it to your template.

 You also have an event on hand to call the removeEntry function if the X button is
clicked by the user. Backbone.js has a little magic here for you. The destroy event is
observed by your collection, which will remove the reference to the model. To round
out the cleanup job, you also call remove() to remove any associated DOM element in
the view and any event bindings associated with this view as well.

A.2.11 employeeRecord.js model

The following listing shows the employee model behind the view. Don’t worry that it
looks like a lot of code. It’s a little verbose, but it’s just the validation needed by the
model.

"use strict";
define(["jquery", "backbone"], function($, Backbone) {

 var validators = {
 "*": [{
 expr: /\S/,
 message: "Required"
 }],
 "phone": [{
 expr: /^[0-9]{3}-[0-9]{3}-[0-9]{4}$/,
 message: "Invalid"
 }],
 "email": [{
 expr: /^[a-z0-9!#$%&'*+\/=?^_`{|}~-]+(?:\.
 [a-z0-9!#$%&'*+\/=?^_`{|}~-]+)*@(?:[a-z0-9]
 (?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*
 [a-z0-9])?$/i,
 message: "Invalid"
 }]
 };

 function validateField(value, key) {

 var rules = validators["*"]
 .concat(validators[key] || []);

 var broken = _.find(rules, function(rule) {
 return !rule.expr.test(value);

Listing A.11 employeeRecord.js model

Regular expressions
used by validation

List of your
validation rules

Find the first
broken rule, if any
Licensed to Mark Watson <nordickan@gmail.com>

243Backbone.js example

C
of
an

 }
);

 return broken ?
 { "attr": key, "error": broken.message } : null;
 }

 var EmployeeRecord = Backbone.Model.extend({
 validate: function(attrs) {

 var validated = _.mapObject(attrs, validateField);

 var attrsInError = _.compact(_.values(validated));

 return attrsInError.length ? attrsInError : null;
 },
 sync: function(method, model, options) {

 options.success();
 }
 });

 return EmployeeRecord;
});

Obviously, the main event in this model is the validation you’re doing. In Backbone.js,
you can validate any way you want. The only thing you have to do if you want to make
your errors available outside the model is to return them from the model’s validate
method.

A.2.12 entrytemplate.html

You finally see the template for the employee’s data in the following listing. This file is
nothing more than a snippet of HTML with template markup embedded. These snip-
pets of HTML are also called partials or fragments.

<button type="button" class="remove-entry">
 ╳
</button>

<%= lastName %>, <%= firstName %>

Title: <%= title %>

Phone: <%= phone %>

Email: <%= email %>

As you may remember from chapter 2, the <%=%> mark the spots where your model’s
data will be inserted. When the template engine “compiles” the template, it’s just turn-
ing the text string into a reusable function for generating the resulting view. When the
view is rendered, the model’s property values are inserted for its final presentation

Listing A.12 entrytemplate.html

Return a description
for a broken rule or null

Validate each field

ompile a list
 errors minus
y nulls

Return an array
of errors or null

Sync to the server not implemented,
so invoke success immediately

<%=%> is the Underscore.js
syntax to indicate where model
data should be inserted
Licensed to Mark Watson <nordickan@gmail.com>

244 APPENDIX A Employee directory example walk-through
state. Keep in mind that Backbone.js is open minded when it comes to template
engines. I’m using Underscore.js here, but many more options are available. Another
popular choice is Handlebars.

A.3 Knockout example
Your second POC (proof of concept) was created using Knockout, which is squarely in
the MVVM camp. Although it excels at data binding, you’ll have to seek out other
frameworks/libraries (such as Durandal) to fill any other SPA needs you have. Knock-
out sticks mainly to what it’s great at: binding. For those who’d rather not have a
magic black-box solution to MV* and would rather take an a la carte approach, Knock-
out is a perfect choice. For this POC, you’ll incorporate a few of the same extra-helper
libraries that you used in our Backbone.js version.

A.3.1 Downloading your dependencies

Here’s the list of what you need for this POC. If you’ve already downloaded some of
these for the Backbone.js POC, there’s no need to download them again. You can use
them again here (see table A.2).

Table A.2 Dependencies for the Knockout version of the example

Framework/library URL Comments

Knockout http://knockoutjs.com As with Backbone.js, you can select either the mini-
fied (compact) version or the nonminified (readable)
version. Remember, the readable version is only for
understanding the source code and debugging. For
deployment, always use the minified version.

Knockout Validation
plugin

https://github.com/
Knockout-Contrib/
Knockout-Validation

Because Knockout doesn’t come with any kind of val-
idation functionality built in, you can either roll your
own or use a plugin. Feel free to create your own if
you prefer. For this example, you’re using a popular
plugin that’s easy to use and devoted to validating
your ViewModel’s data.

jQuery http://jquery.com A great overall utility library that excels at DOM
manipulation and event handling.

RequireJS http://requirejs.org I discuss RequireJS in chapter 3. For now, just know
that it’s used for asynchronous JavaScript module
loading and dependency management. Using it,
you’ll create code using the AMD specification (also
discussed in chapter 3). You’re also using two
RequireJS plugins: domReady.js, which makes sure
the DOM is ready before your JavaScript code acts
on it, and text.js, which asynchronously downloads
templates. Both plugins can be found at http://
requirejs.org/docs/download.html.
Licensed to Mark Watson <nordickan@gmail.com>

http://requirejs.org/docs/download.html
http://requirejs.org/docs/download.html
http://knockoutjs.com
https://github.com/Knockout-Contrib/Knockout-Validation
https://github.com/Knockout-Contrib/Knockout-Validation
http://jquery.com
http://jquery.com

245Knockout example
A.3.2 Directory structure

As before, you’ll keep the directory structures fairly
similar among the three versions but use frame-
work-specific folders where it makes sense (see fig-
ure A.3).

 This directory structure is, again, by feature, as
covered in chapter 1. Your feature is still a direc-
tory, and the rest of the structure represents a
somewhat typical Knockout layout.

Figure A.3 Directory structure for the
Knockout version of the application

A.3.3 The shell

In typical SPA fashion, your index.html welcome file, shown in the following listing, is
almost bare. Its main features are the style-sheet reference, the shell DIV for the appli-
cation, and the RequireJS entry to kick-start the application.

<!DOCTYPE html>
<html>
<head>
 <link rel="stylesheet" href="app/css/default.css">
 <link rel="stylesheet" href="app/css/entries.css">
 <!--[if IE]>
 <script>
 document.createElement("main");
 </script>
 <![endif]-->
</head>
<body>
 <main />
 <script
 data-main="app/components/main.js"
 src="app/components/thirdParty/require.js">
 </script>
</body>
</html>

As with Backbone.js, you’re using RequireJS to manage your dependencies for you.

Listing A.13 index.html

SPA’s style sheets

IE HTML5 fix

RequireJS
configuration file

Reference to
RequireJS itself
Licensed to Mark Watson <nordickan@gmail.com>

246 APPENDIX A Employee directory example walk-through
A.3.4 main.js

This file provides the configuration preferences for RequireJS, as shown in the follow-
ing listing. Here you define a base URL and the paths relative to that where RequireJS
can download each file and assign an alias to that path.

"use strict";
requirejs.config({
 baseUrl: "app/components",
 paths: {
 // third party
 jquery: "thirdParty/jquery.min",
 domReady: "thirdParty/domReady",
 text: "thirdParty/text",
 knockout : "thirdParty/knockout.min",
 knockout_validation: "thirdParty/knockout-validation.min",

 // application
 viewmodels : "directory/viewmodels",
 templates : "directory/templates",
 partials : "directory/partials",
 },
 shim : {
 "knockout_validation": {
 "deps": ["knockout"]
 }
 }
});

require(["app"], function(app) {
 app.init();
});

The shim section is a special RequireJSism for helping non-AMD modules play well
with the AMD ones. It can also be used to define other load properties, such as depen-
dencies. The last line is the starting point for the SPA. RequireJS makes sure that app.js
is loaded before calling your application’s init() function.

A.3.5 app.js

Your app.js file, shown next, loads the user’s first viewable area with the SPA’s first
HTML content file. The file doesn’t have to be called app.js, but that’s a typical nam-
ing convention for the first real code file. Any kind of pre-application work or setup
goes in this file.

"use strict";
define(["jquery",
"text!partials/directoryContent.html",
 "viewmodels/directory", "domReady"],

Listing A.14 main.js—RequireJS configuration

Listing A.15 app.js

Base URL for your SPA

File paths and their aliases
(relative to base URL)

Declare that the plugin requires
Knockout to be loaded

Kick-off point
and dependencies

text.js plugin used to download
a non-JavaScript file
Licensed to Mark Watson <nordickan@gmail.com>

247Knockout example
 function($, directoryHTML, directoryViewModel, domReady) {

 function init() {
 $("main").html(directoryHTML);

 domReady(function() {
 directoryViewModel.init();
 });
 }

 return {
 init: init
 };

 }

);

RequireJS downloads all dependencies in your list to begin with. After the dependen-
cies are in place, the application’s init() function is called. Here, you use jQuery to
insert your first HTML content. When the DOM is ready, you call the init() function
inside your ViewModel’s JavaScript model.

 Because you’re creating your RequireJS modules as singletons (only one instance),
creating a function that doesn’t get called repeatedly is a nice place to put your call to
apply the ViewModel’s bindings. It doesn’t have to be called init(); that’s just what I
called it.

 Remember, you want to apply bindings only once for any given DOM element.
Unlike Backbone.js, where templates are re-created for each new data set, ViewModels
normally live perpetually. Making the call to apply bindings multiple times leads to
memory leaks, because you’re replicating event handlers with each call.

TIP Call applyBindings() or applyBindingsWithValidation() only once
per subtree inserted into the DOM to avoid duplicating event handlers.

A.3.6 directoryContent.html

Your HTML file, shown in the following listing, doesn’t mix in any JavaScript, but as you
can see, it’s a little more verbose than the Backbone.js file. As in most of life, there’s a
trade-off: with Knockout, your JavaScript might be a little lighter, but adding the custom
Knockout attributes (called declarative bindings) makes the HTML a little heftier.

 Some people prefer cleaner code if the only trade-off is a little more verbose
HTML. Others don’t like the idea of attributes from the framework being added to the
HTML. It’s all subjective. But then again, that’s why it’s a good idea to do little POCs
like this so you get hands-on experience with a few of your top choices and can decide
what’s right for you.

<header>Directory</header>

<section class="entries" id="directoryContent">
 <form name="entryForm">

Listing A.16 directoryContent.html

Use jQuery to insert
the downloaded HTML
fragment (partial)

The input form
for the application
Licensed to Mark Watson <nordickan@gmail.com>

248 APPENDIX A Employee directory example walk-through

on
 <p>
 <label for="firstName">First Name:

 <input id="firstName" type="text"
 name="firstName" placeholder="First Name"
 data-bind="hasFocus: isFocused,
 value: entry.firstName, valueUpdate: 'afterkeydown'" />

 <span class="error-message"
 data-bind="validationMessage: entry.firstName">

 </label>
 </p>
 <p>
 <label for="firstName">Last Name:

 <input id="firstName" type="text"
 name="firstName" placeholder="Last Name"
 data-bind="value: entry.lastName,
 valueUpdate: 'afterkeydown'" />

 <span class="error-message"
 data-bind="validationMessage: entry.lastName">

 </label>
 </p>
 <p>
 <label for="title">title:

 <input id="title" type="text"
 name="title" placeholder="Title"
 data-bind="value: entry.title,
 valueUpdate: 'afterkeydown'" />

 <span class="error-message"
 data-bind="validationMessage: entry.title">

 </label>
 </p>
 <p>
 <label for="title">Phone:

 <input id="phone" type="text"
 name="phone" placeholder="555-555-5555"
 data-bind="value: entry.phone,
 valueUpdate: 'afterkeydown'" />

 <span class="error-message"
 data-bind="validationMessage: entry.phone">

 </label>
 </p>
 <p>
 <label for="email">Phone:

 <input id="email" type="text"
 name="email" placeholder="youremail@address.com"
 data-bind="value: entry.email, valueUpdate: 'afterkeydown'" />
 <span class="error-message"

Bind the ViewModel
data form fields

Binding for the validati
plugin’s error message
Licensed to Mark Watson <nordickan@gmail.com>

249Knockout example

S
V

 data-bind="validationMessage: entry.email">

 </label>
 </p>
 <p>
 <button id="add"
 data-bind="click: addEntry,
 enable: isValidForm" >Add</button>

 <button id="clear"
 data-bind="click: clearForm">Clear</button>
 </p>
 </form>

 <ul class="entry-list" id="entryList"
 data-bind="foreach: entries">

</section>

The HTML looks a little more verbose than it is, because I’m trying to fit it within the
width of this book’s page. When you try the source code, feel free to adjust the format-
ting so it’s the way you like it.

A.3.7 directory.js

In this POC, the module containing your ViewModel has the most code (see the fol-
lowing listing). Not all ViewModels will be exactly like this. Some, dealing only with
the data, might be small. Others, with lots of logic, might be large.

define(["jquery", "knockout",
 "text!templates/entrytemplate.html", "domReady",
 "knockout_validation"],

 function($, ko, entryHTML, domReady, validation) {

 var emptyString = "";
 var astMsg = "Required";
 var invMsg = "Invalid";

 var emailRegX = /^[a-z0-9!#$%&'*+\/=?^_`{|}~-]+(?
 :\.[a-z0-9!#$%&'*+\/=?^_`{|}~-]+)*@(?:[a-z0-9](?:
 [a-z0-9-]*[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*
 [a-z0-9])?$/i;

 var phoneRegX = /(?:\d{3}|\(\d{3}\))([-\/\.])\d{3}\1\d{4}/;

 var directoryViewModel= function() {
 var self = this;
 self.entry = {
 firstName : ko.observable().extend({
 required : {

Listing A.17 directory.js

Add a new entry to the list

Clear the form

Regular expressions
for validation

tart of the
iewModel

ViewModel observables use
validation plugin extenders
Licensed to Mark Watson <nordickan@gmail.com>

250 APPENDIX A Employee directory example walk-through
 params : true,
 message : astMsg
 }
 }),
 lastName : ko.observable().extend({
 required : {
 params : true,
 message : astMsg
 }
 }),
 title : ko.observable().extend({
 required : {
 params : true,
 message : astMsg
 }
 }),
 phone : ko.observable().extend({
 customRegEx : {
 regX : phoneRegX,
 blankMsg : astMsg,
 invalidMsg : invMsg
 }
 }),
 email : ko.observable().extend({
 customRegEx : {
 regX : emailRegX,
 blankMsg : astMsg,
 invalidMsg : invMsg
 }
 })
 };

 self.entries = ko.observableArray();

 self.isFocused = ko.observable(false);

 self.addEntry = function(e) {

 var newEntry = {
 firstName : self.entry.firstName(),
 lastName : self.entry.lastName(),
 title : self.entry.title(),
 phone : self.entry.phone(),
 email : self.entry.email()
 };

 self.entries.push(newEntry);
 self.clearForm();
 self.isFocused(true);
 };

 self.isValidForm = ko.computed(function() {
 if (self.entry.firstName.isValid()
 && self.entry.lastName.isValid()
 && self.entry.title.isValid()

Custom extenders for email
and phone

Observable array
for entry list

Add new entries to list

computed observable
for validation
Licensed to Mark Watson <nordickan@gmail.com>

251Knockout example
 && self.entry.phone.isValid()
 && self.entry.email.isValid()) {
 return true;
 } else {
 return false;
 }
 }, this);

 self.removeEntry = function(entry) {
 self.entries.remove(entry);
 };

 self.clearForm = function() {
 self.entry.firstName(emptyString);
 self.entry.lastName(emptyString);
 self.entry.title(emptyString);
 self.entry.phone(emptyString);
 self.entry.email(emptyString);
 };

 }

 function getValidationConfig() {
 return {
 insertMessages : false
 };
 }

 function createCustomValidationRule() {
 ko.validation.rules["customRegEx"] = {
 validator : function(userInput, ruleObj) {
 if (!userInput || userInput.length == 0) {
 this.message = ruleObj.blankMsg;
 return false;
 }
 if (!ruleObj.regX.test(userInput)) {
 this.message = ruleObj.invalidMsg;
 return false;
 }
 return true;
 },
 };

 ko.validation.registerExtenders();
 }

 function init() {
 $("#entryList").html(entryHTML);

 createCustomValidationRule();

 domReady(function() {
 ko.applyBindingsWithValidation(
 directoryViewModel,
 $("#directoryContent")[0],

Remove an entry

Clear your form entries

So validation plugin doesn’t
automatically add the validation text

Configuration for
custom extenders

Register extenders

Add template

Add custom validation
(via extenders)

Apply binding
Licensed to Mark Watson <nordickan@gmail.com>

252 APPENDIX A Employee directory example walk-through
 getValidationConfig());
 });
 }
 ;

 return {
 init : init
 };

 }
);

Remember that in MVVM, the observable wrapper around the POJO (plain old Java-
Script object) property establishes the magic link between it and the form. The entire
first half of the ViewModel is the binding of your form’s entry fields so you can inter-
act with them.

 The observables look a little different only because there’s a little extra informa-
tion in there to tell the validation plugin how the property should be validated. The
required option is a validation type that comes with the plugin. The validation infor-
mation for the phone and email are for a custom validator I built for this specific type
of UI design. The plugin has some options for phone and email, but they weren’t
exactly what was needed. Fortunately, the plugin is extremely flexible, and you can
create your own.

 One thing I haven’t talked about is a type of Knockout observable called a
computed observable. This isn’t specifically MVVM but rather Knockout-specific
(though other MVVM frameworks may include this). This is just a fancy term to mean
the value is derived programmatically, rather than as a straight assignment. This code
determines whether the observable gets a value of true or false.

TIP Use a computed observable if the value of the observable needs to be pro-
grammatically derived, rather than a simple assignment.

After the assignment portion of your ViewModel and the validation, you have some
bindings to handle the adding and removing of list entries. You also have one to
remove an entry for the list. The interesting part here is that the declarative part of
the binding (attribute in the HTML) is doing the heavy lifting of looping through the
list of values in your array and making sure the UI reflects its current state. You don’t
have to code that part yourself.

 Thanks to the two-way syncing going on, Knockout keeps track of everything that’s
happening with your observable array and updates the DOM and the ViewModel
accordingly. All you have to do is add and delete entries, and Knockout takes care of
the rest. Neat, huh?

 The section of code added to create the custom validation rule is specific to the
validation plugin. You’re following the rules from the website on how to define your
own validator. You’re telling the plugin that if the field is empty, it’s invalid and to use
the blank message (the word Required). If the field isn’t blank but is still invalid, use
the invalid message (the word Invalid).
Licensed to Mark Watson <nordickan@gmail.com>

253AngularJS example
 The validator is robust. You can use a ton of other features in your own SPA. Follow
the same link as the dependency download to learn more.

 The last part of your module is its init() function. Remember, this code runs only
once. That makes it ideal for any setup work. Here you’re using jQuery to add the
template to the DOM and apply your bindings. Normally, the Knockout function to
call is applyBindings(), but with the validation plugin, you need to call applyBind-
ingsWithValidation(). You’re passing in three parameters: the ViewModel itself, the
DOM node where the bindings should be applied, and the configuration for the vali-
dation plugin.

A.3.8 entrytemplate.html

Your last listing, shown next, is the template for the employee’s data. This file is noth-
ing more than a snippet of HTML with template markup embedded. These snippets of
HTML are also called partials or fragments.

<li class="entry">
 <button type="button" class="remove-entry"
 data-bind="click: removeEntry">
 ╳
 </button>

 ,

 Title:

 Phone:

 Email:

As with your Backbone.js template, this file is fairly simple. One stark difference with
MVVM is the use of declarative bindings (special attributes). Remember that Back-
bone.js uses placeholders to mark where the template engine will insert data and cre-
ate a new view. With MVVM, the template and the view are one and the same. The
custom Knockout attributes link this section of the DOM with properties from the
ViewModel. Knockout handles the data sync going on under the covers.

A.4 AngularJS example
One thing you’ll notice immediately about AngularJS is the reduction in the number
of files you need. One reason is all the out-of-the-box magic that comes with the
framework.

Listing A.18 entrytemplate.html

Removes the entry
Licensed to Mark Watson <nordickan@gmail.com>

254 APPENDIX A Employee directory example walk-through
A.4.1 Downloading your dependencies

One thing you won’t be using with AngularJS is RequireJS. In the pre-version-2 Angu-
larJS, the framework has its own proprietary module system. So to keep things in line
with “the Angular way,” you’ll use AngularJS modules (see table A.3). This also further
reduces the number of dependencies.

NOTE AngularJS comes with a subset of jQuery called jqLite. If jQuery isn’t
present, AngularJS falls back on its own version; otherwise, the full jQuery is
used.

A.4.2 Directory structure

Figure A.4 illustrates your nominal directory with
AngularJS. Even using AngularJS, you can still have a
“by feature” directory structure.

A.4.3 The shell

Again, your index.html file (see listing A.19) is mini-
mal. Notice, however, that in the AngularJS version
you need to define where the overall SPA begins by
using the ng-app directive. Remember that directives
are special HTML attributes that tell AngularJS what
you want to do. From the AngularJS documentation:

Use this directive to auto-bootstrap an AngularJS appli-
cation. The ngApp directive designates the root element of
the application and is typically placed near the root ele-
ment of the page—for example, on the <body> or
<html> tags.

<html ng-app="DirectoryApp">

<head>
<link rel="stylesheet" href="app/css/default.css">
<link rel="stylesheet" href="app/css/entries.css">
</head>
<body>

Table A.3 Dependencies for the AngularJS version of the example

Framework/library URL Comments

AngularJS https://angularjs.org Because it’s an all-in-one system, this download
covers most MV* requirements you have.

jQuery http://jquery.com A great overall utility library that excels at DOM
manipulation and event handling.

Listing A.19 index.html

Figure A.4 Directory structure
for the AngularJS version of the
application

Define where the
application begins
Licensed to Mark Watson <nordickan@gmail.com>

255AngularJS example
 <main id="directoryShell"
 class="container"
 ng-include
 src="'app/components/directory/partials/directoryContent.html'">
 </main>

 <script src="app/components/thirdParty/jquery.min.js"></script>
 <script src="app/components/thirdParty/angular.min.js"></script>
 <script src="app/components/app.js"></script>
 <script src="app/components/directory/controllers/controllers.js"></

script>

</body>
</html>

You’re also using an AngularJS directive to tell AngularJS to dynamically fetch your SPA
content for your shell.

 One thing to take note of here with your index.html page is that AngularJS will
manage only its own JavaScript modules. If you have other third-party libraries to
include, you’ll need to use a standard SCRIPT tag.

A.4.4 app.js

Your app.js file, shown next, is miniscule. There seem to be a million different ways to
structure your AngularJS code. Feel free to do things your own way. Despite being a
magic framework, AngularJS is flexible on this point.

angular.module("DirectoryApp", [
 "DirectoryApp.controllers"
]);

As mentioned, there are many ways to configure your AngularJS project. For larger
projects, keep modules in separate source files. This makes development and mainte-
nance much easier. In chapter 9, I discuss build processes to minify and combine your
files into as few files as possible. For this simple application, you didn’t need to do any-
thing elaborate.

A.4.5 directoryContent.html

Like your Knockout content, the AngularJS version is verbose, as you can see in the
next listing. You’re using a lot of built-in AngularJS directives to take care of some of
the plumbing for your UI’s behavior.

<header>Directory</header>

<section class="entries"
 ng-controller="DirectoryController">

Listing A.20 app.js

Listing A.21 directoryContent.html

Directive to dynamically
fetch the file

Your single dependency

Context for your controller
Licensed to Mark Watson <nordickan@gmail.com>

256 APPENDIX A Employee directory example walk-through

n
f

 <form name="entryForm">

 <p>
 <label for="firstName">First Name:

 <input id="firstName" name="firstName" type="text"
 ng-model="formEntry.firstName"
 required placeholder="First Name"/>

 <span class="error-message"
 ng-show="entryForm.firstName.$error.required">
 Required

 </label>
 </p>
 <p>
 <label for="lastName">Last Name:

 <input name="lastName" id="lastName" type="text"
 ng-model="formEntry.lastName"
 required placeholder="Last Name"/>

 <span class="error-message"
 ng-show="entryForm.lastName.$error.required">
 Required

 </label>
 </p>
 <p>
 <label for="title">Title:

 <input name="title" id="title" type="text"
 ng-model="formEntry.title"
 required placeholder="Title"/>
 <span class="error-message"
 ng-show="entryForm.title.$error.required">
 Required

 </label>
 </p>
 <p>
 <label for="phone">Phone:

 <input name="phone" id="phone"
 ng-pattern="phoneRegX"
 type="text"
 ng-model="formEntry.phone"
 required placeholder="555-555-5555"/>

 <span class="error-message"
 ng-show="entryForm.phone.$error.required">
 Required

 <span class="error-message"
 ng-show="entryForm.phone.$error.pattern">
 Invalid

 </label>

g-model binds the input
ield with the model

Display the errors
related to
required fields

Different validation
message for invalid
input
Licensed to Mark Watson <nordickan@gmail.com>

257AngularJS example
 </p>
 <p>
 <label for="email">Email:

 <input name="email" id="email" type="email"
 ng-model="formEntry.email"
 required placeholder="youremail@address.com"/>

 <span class="error-message"
 ng-show="entryForm.email.$error.required">
 Required

 <span class="error-message"
 ng-show="entryForm.email.$error.email">
 Invalid

 </label>
 </p>
 <p>
 <button id="add"
 ng-click="addEntry(formEntry)"
 ng-disabled="entryForm.$invalid">
 Add
 </button>

 <button id="clear"
 ng-click="clearForm()">
 Clear
 </button>
 </p>
 </form>

 <ul class="entry-list"
 ng-include
 src="'app/components/directory/templates/entrytemplate.html'">

</section>

Again, the HTML looks a little more verbose than it is, because I’m trying to fit it
within the width of this book. It uses directives to do everything you did in the Back-
bone.js and Knockout versions. The ng-model is for the value binding, and ng-click
is for the button clicks. For validation, you needed to add only the required keyword
to tell AngularJS that the model is invalid if this field is empty.

 Errors are tied to a particular model binding, so you can show/hide what’s in your
span tag by using a combination of the ng-show directive and $error. The keyword
after $error is the type of validation that should trigger ng-show. In this case, the span
with required will show when a required value is missing, and the span with invalid
will show when a value the user types doesn’t match the pattern.

A.4.6 entrytemplate.html

The following listing shows your template. As with the other two MV* examples, this
file is a snippet of HTML (also referred to as a partial or fragment).

Different validation
message for invalid
input

Enable button if all form entries
are valid, add the entry

Clear the form
Licensed to Mark Watson <nordickan@gmail.com>

Remo
when

Arr
you

Re
fro
258 APPENDIX A Employee directory example walk-through

<li class="entry" ng-repeat="entry in entries">

 <button type="button" class="remove-entry"
 ng-click="removeEntry(entry)">
 ╳
 </button>

 {{entry.lastName}}, {{entry.firstName}}

 Title: {{entry.title}}

 Phone: {{entry.phone}}

 Email: {{entry.email}}

Like Backbone.js, placeholders mark where the framework will insert the data. You
don’t have to worry about writing any template instructions in your code, though.
This is another facet of the process that’s magically taken care of by AngularJS.

 Finally, the following listing illustrates the controller for your application.

angular.module("DirectoryApp.controllers", [])
.controller("DirectoryController", function($scope) {

 $scope.phoneRegX
 = /(?:\d{3}|\(\d{3}\))([-\/\.])\d{3}\1\d{4}/;

 $scope.entries = [];

 $scope.addEntry = function(entryToAdd) {
 $scope.errorMsg = "";
 $scope.entries.push(angular.copy(entryToAdd));
 $scope.clearForm();
 };

 $scope.removeEntry = function(entryToRemove) {
 var index = $scope.entries.indexOf(entryToRemove);
 $scope.entries.splice(index, 1);
 };

 $scope.clearForm = function() {
 $scope.entryForm.$setPristine();
 $scope.formEntry = '';
 };

});

Remember that with AngularJS, your $scope is similar to a ViewModel.

A.5 Summary
The sample code in this appendix shows you not only how to approach your own POCs
but also how differences in philosophies change the balance of where more verbosity
lies, when it comes to model-to-view translation: the HTML or the JavaScript.

Listing A.22 entrytemplate.html

Listing A.23 controllers.js

Repeat binding for
your list of entries

ve the entry
 clicked

{{}} indicate where model
data should be inserted

Regular expression for
phone (email built in)

ay to hold
r entries Add entries when

Add button clicked

move the entry
m the list

Clear the form, set back to pristine
(clean) state, clear the model
Licensed to Mark Watson <nordickan@gmail.com>

appendix B
Review of the

XMLHttpRequest API

In this appendix, you’ll review the low-level API for making a server call. In a real-
world application, you’ll likely rely on your MV* framework for XHR calls if it has
this capability built in or a helper library such as jQuery if it doesn’t. These frame-
works and libraries often abstract away much of the boilerplate code and provide
you with simple, easy-to-use methods instead. Even so, it’s good to have at least a
general idea of what’s going on under the covers. That’s why I’ll stick with vanilla
JavaScript here, so you can see basic XHR mechanics at work. I’ll also not be using
RESTful calls here, just to keep things fairly straightforward.

B.1 Using the XMLHttpRequest object
When you hear someone talk about making an AJAX call, they’re usually talking
about making an XHR call (XHR is short for XMLHttpRequest). AJAX (or Ajax) is short
for Asynchronous JavaScript and XML and generally refers to using JavaScript to

This appendix covers
■ A review of the XMLHttpRequest API
■ The building of an XHR data source module
259

Licensed to Mark Watson <nordickan@gmail.com>

260 APPENDIX B Review of the XMLHttpRequest API
dynamically update a web page with the results of an XHR call. This section focuses
solely on the XMLHttpRequest part of AJAX.

 As I mentioned in chapter 1, the XMLHttpRequest functionality was originally cre-
ated by developers at Microsoft. Eventually, it became a standard API with implemen-
tations in all the major browsers. This standard allows you to create an instance of the
XMLHttpRequest object by using simple JavaScript, and the object will behave similarly
across most modern browsers.

 You start by creating an instance of the object. As long as the user is using a
browser that supports the API, this one line of code is all you need to create the object:

var xhrObj = new XMLHttpRequest();

If you need to support Microsoft Internet Explorer prior to version 7, you should wrap
your object’s creation in a check for the XMLHttpRequest object and use an ActiveX
object if the XMLHttpRequest object is not available. Microsoft recommends this
approach:

function createXHRObject() {
 if (window.XMLHttpRequest) {
 return new XMLHttpRequest();
 }
 else {
 return new ActiveXObject("Microsoft.XMLHTTP");
 }
}

With an instance of the object created, you can now make an asynchronous request to
your server.

B.2 Making requests
After you’ve created an instance of the XHR object, you can use its events, methods,
and properties to customize your server call. The following is a list of the XHR con-
cepts demonstrated in this section:

■ onreadystatechange—This event fires when the state of the call changes. You
assign your own function to handle this event. The most common use of this
event is to see whether the call has completed. If so, you can subsequently check
whether it succeeded or failed and react accordingly.

■ open—This method assigns the request method and URL for the call. Many
request methods exist, but not all of them may be supported by the technology
you’re using on the server. In chapter 7, we’re using only GET, POST, PUT, and
DELETE.

■ setRequestHeader—With this method, you can specify the request headers for
the request, such as the type of content you’re sending and the type of content
you’ll accept in the response.

■ send—This method fires the request. For requests that don’t need a body, such
as a GET request, you can pass in null or use the overloaded version of this
Licensed to Mark Watson <nordickan@gmail.com>

261Making requests

Crea
XHR
function that takes no parameters (this is the preferred approach). Otherwise,
you use this method’s parameter to pass data for the request body.

■ readyState—This is the property you’ll check when the onreadystate event
fires to let you know what state the call is in. The readyState property has five
basic values: 0 (UNSENT), 1 (OPENED), 2 (HEADERS_RECEIVED), 3 (LOADING), and 4
(DONE). For most situations, you’ll need only to check for a value of 4 to make
sure the call has finished.

■ status—You’ll check this property when the call completes to see whether it
succeeded or failed. Status codes in the 400s and 500s represent errors. You can
find a complete list of the status codes at www.w3.org/Protocols/rfc2616/
rfc2616-sec10.html.

■ responseText—This property contains the response body as a string. For JSON
calls with no errors, the JSON text will be found here. In an error situation, it’s
up to the creators of the server-side code to determine what’s written in the
response body.

■ responseXML—This property contains a Document object if the response can be
parsed as XML or HTML. Otherwise, this property is null.

I’m covering only the basics here, but a full listing of the XMLHttpRequest API can be
found at www.w3.org/TR/XMLHttpRequest.

B.2.1 Using URL parameters

When retrieving information using a request with a simple payload or no payload at
all, the GET method is a good choice. In this type of request, no body is sent. Instead,
URL parameters are appended to the URL itself when information needs to be sent. In
our first example (see listing B.1), you’ll use a simple GET request with a single URL
parameter (the ID of the shopping cart) to retrieve the contents of a shopping cart.

 In the shopping cart application for chapter 7, you use AngularJS to bind the data
returned to the view. Here, you write things out to the console to get a better under-
standing of what’s going on with each request.

function getCart(){
 var xhrObj = createXHRObject();

 xhrObj.onreadystatechange = function () {

 if (xhrObj.readyState == 4) {
 var response = "\nreadyState: "
 + xhrObj.readyState
 + "\nstatus: " + xhrObj.status
 + "\nstatusText: " + xhrObj.statusText
 + "\nresponseText: " + xhrObj.responseText;

 if (xhrObj.status == 200) {
 response = "Success:" + response;

Listing B.1 XHR call using GET and URL parameters

te the
 object

Do something only if the state
has changed to 4 (complete)

Prefix console text with
Success for an OK status
(200); otherwise, Error
Licensed to Mark Watson <nordickan@gmail.com>

262 APPENDIX B Review of the XMLHttpRequest API
 } else {
 response = "Error:" + response;
 }

 console.log(response);

 }

 };

 xhrObj.open("GET",
 "/SPA/controllers/shopping/getCart?cartId=123",
 true);

 xhrObj.setRequestHeader("Accept", "application/json");

 xhrObj.send();
}

After the request completes, the following information prints to the console:

Success:
readyState: 4
status: 200
statusText: OK

The readyState is 4 for complete, and the status of your call is 200/OK. You can also
look at the Network tab in the developer tools of your browser to confirm the request
URL and the request headers (see figure B.1).

Define request as a GET and
include the URL parameter cartId

Tell server you’re
interested in JSON
as the format of
the response

Make the
request

GET method specified
in the open() method

The status of the
request once completed

The type of content you’ll
accept from the server

URL parameter
containing the cart ID

Figure B.1 Your request to get the shopping cart contents is successful. You use a GET request,
passing a cart ID of 123 via a URL parameter.
Licensed to Mark Watson <nordickan@gmail.com>

263Making requests

Crea
XHR

e
While you’re in the devel-
oper tools of the browser,
you can also see the server’s
output in the console (see
figure B.2).

 Looking at the response
in the Network tab, you can
see that you don’t have any
items in your cart.

 To add a game to the
shopping cart, you need
only the cart ID and the ID of the game. You could continue to use URL parameters,
but sending a more complex request payload might be a better choice. To send a
more complex payload, you’ll need to rely on the request body.

B.2.2 Using the request body

When you add a new item to your shopping cart, you’d like to send an object in the
request. For this request, you’ll convert your JavaScript request object into a JSON string
and pass that via the request body. The following listing illustrates this technique.

function updateCart(){
 var xhrObj = new XMLHttpRequest();

 xhrObj.onreadystatechange = function () {

 if (xhrObj.readyState == 4) {
 var response = "\nreadyState: "
 + xhrObj.readyState
 + "\nstatus: " + xhrObj.status
 + "\nstatusText: " + xhrObj.statusText;
 + "\nresponseText: " + xhrObj.responseText;

 // 200 is OK
 if (xhrObj.status == 200) {
 response = "Success:" + response;
 } else {
 response = "Error:" + response;
 }

 console.log(response);

 };

 xhrObj.open("POST",
 "/SPA/controllers/shopping/addToCart",
 true);

 xhrObj.setRequestHeader("Accept", "application/json");

Listing B.2 XHR call using POST and the request body

The contents of the shopping
cart in the form of JSON text

Figure B.2 The server responds with your shopping cart’s
JSON-formatted text. You can see that the cart has no items.

te the
 object

Do something only if the state
has changed to 4 (complete)

Prefix console text with
Success for an OK status
(200); otherwise, Error

Define request as a POST

Tell server you’re
interested in JSON as th
format of the response
Licensed to Mark Watson <nordickan@gmail.com>

264 APPENDIX B Review of the XMLHttpRequest API

Tell th
to exp
in req

 xhrObj.setRequestHeader("Content-Type", "application/json");

 var cartRequestObj = {
 cartId : "123",
 itemNum : "madden_nfl_15"
 };

 var cartRequestString = JSON.stringify(cartRequestObj);

 xhrObj.send(cartRequestString);
}

NOTE JSON.js can be used as a polyfill for the JSON object if older browsers
must be supported.

Looking at the code, you’ll see that this time you’re using POST for your request
method so you can use the request body. You’re then using the JavaScript method
JSON.stringify() to transform your JavaScript object into JSON-formatted text. Next,
you pass the text into the send() method of your XHR object so the payload is sent in
the body of the request.

 Another thing to note is that this time, because you’re sending JSON, you need to
specify that as another request header. Let’s see what the request looks like now in
your Network tab (see figure B.3).

e server
ect JSON
uest Create the JavaScript

request object
Convert the
JavaScript object into
JSON-formatted text

Pass the JSON text
in the request body

No URL parameters
needed

POST method specified
in the open() method

The type of content
you’ll accept from
the server

The type of content
you’re sending to
the server

The JSON payload
sent in the
request body

Figure B.3 You use the POST method to send complex request objects in the form of JSON-formatted
text to the server from your SPA.
Licensed to Mark Watson <nordickan@gmail.com>

265Making requests
On the server, the code is written so that the entire cart is returned each time an addi-
tion or update is made. Checking the returned JSON, you can see that you have the
item with the ID madden_nfl_15 in the cart (see figure B.4).

The returned JSON string representing the entire
updated shopping cart after updating an item

Figure B.4 After the new item is posted to the server, you have one game in your shopping cart.
Licensed to Mark Watson <nordickan@gmail.com>

appendix C
Chapter 7 server-side
setup and summary

As mentioned in chapter 7, you can choose to use any server-side technology you
want for the end-of-the-chapter project. If you’re interested in setting up Spring
MVC for that project, this appendix provides details. It also covers the annotations
used. The complete code is available for download.

 In case you decide to use a completely different tech stack, this appendix also
summarizes the task(s) each call is performing so it’s easier to make the transla-
tion. Keep in mind that the project uses RESTful services, so the back-end technol-
ogy you use must support REST either directly or indirectly via a third-party
library/plugin.

This appendix covers
■ Working with server objects and tasks
■ Setting up Spring MVC for the chapter 7

project
■ Using Spring annotations in the chapter 7

project
266

Licensed to Mark Watson <nordickan@gmail.com>

267Summary of server-side calls
C.1 Server-side objects
Only two data objects are used in the project: a ShoppingCart object and a Game
object. Each shopping cart holds a collection of games (see figure C.1). The Game
object is standalone and can be used independently of the ShoppingCart object.

 You also use an object on the server to hold informa-
tion about any errors that occur (see figure C.2). The
message field is for any error that’s OK to display to the
user. In addition to any server-side exception handling,
exceptions are sent back to the UI in the exceptionText
field.

 Now let’s summarize the calls that are made to the
server. We’ll do this before talking about Spring MVC.
This will make it easier to digest what the back end is
doing, regardless of the back-end technology you use.

C.2 Summary of server-side calls
This section generalizes the tasks the server is performing for a service call. I’ll state
the URL format, any object(s) used in the request and response, and a brief summary
of what the server code does in each case.

C.2.1 Viewing the cart

This call is invoked whenever the user clicks the View Cart link. The braces {} indicate
a path variable that contains the cart ID requested. Table C.1 contains its properties.

Task list:

■ Get cart from memory—If a cart is found in your static map that matches the
requested cart ID, your code will return the matching cart. If there’s no match,
a new cart is created and added to the map of carts.

Table C.1 Call to get the cart identified by the path variable

URL HTTP method Request Response

/shopping/carts/{cartId} GET Empty Cart

ShoppingCart

cartId : String
totalCount : int
items : List <Game>

0..1 0..*

Game

name : String
productId : String
summary : String
url : String
price : double
quantity : int

Figure C.1 The shopping
cart has a list of items that
holds a number of games
ranging from 0 to n.

ErrorMessage

message : String
exceptionText : String

Figure C.2 The
ErrorMessage object is
used to relay errors back to
the UI.
Licensed to Mark Watson <nordickan@gmail.com>

268 APPENDIX C Chapter 7 server-side setup and summary
■ Return the cart as JSON—The retrieved cart is converted back to JSON and
returned to the front end.

C.2.2 Adding an item to the cart

When a product item is added, you use the POST HTTP request, passing your cart ID
and the ID of the product item. Table C.2 contains the call properties.

Task list:

■ Add the item—The cart is first checked to see whether the product being added
from the product display view exists already in the cart. If it does, the count of
the existing product is incremented by 1. If not, a new Game object instance is
created by getting the requested game from the inventory. The total item count
is also updated.

■ Update the cart in memory—The shopping cart in memory is updated to reflect
the new state of the cart.

■ Return the cart as JSON—The retrieved cart with the updated product list and any
quantity changes is converted back to JSON and returned to the front end.

C.2.3 Updating the cart

This call is used to update an existing product. Any update will submit the entire cart
to the back end. Table C.3 contains the call properties.

Task list:

■ Update quantities—The entire cart is sent for an update. Because a scaled-down
version of the cart is generated from the $scope of the shopping cart view, any
missing information is regenerated from the static inventory list that’s on the
server. The total item count is also updated.

■ Update the cart in memory—The shopping cart in memory is updated to reflect
the new state of the cart.

■ Return the cart as JSON—The retrieved cart with the updated item list and any
quantity changes is converted back to JSON and returned to the front end.

Table C.2 Call to add a product item for a given cart

URL HTTP method Request Response

/shopping/carts/{cartId}/products/
{productId}

POST Empty Cart

Table C.3 Call to update the cart identified by the path variable

URL HTTP method Request Response

/shopping/carts/{cartId} PUT Cart Cart
Licensed to Mark Watson <nordickan@gmail.com>

269Summary of server-side calls
C.2.4 Deleting an item

When an item is deleted, you identify both the cart and the item in the URL. You don’t
need to send any objects in the request body, because the resource to delete is per-
fectly identifiable using only the URL. Table C.4 contains the call properties.

Task list:

■ Get cart from memory—You use the information in the URL to get the cart from
memory.

■ Delete the item—In this call, you iterate over the items in the cart in memory until
you find a match with the product ID in the URL. When the match is found, the
item is removed.

■ Update cart total—After the item is removed, the item count is recalculated.
■ Return the cart as JSON—The retrieved cart with the updated item list and any

quantity changes is converted back to JSON and returned to the front end.

Chapter 7 focused on only the shopping cart transactions to illustrate the concepts. In
the project, you make a couple of other calls. From the product search view, the user
can search for a game. When a game is found, it can be added to the cart via the but-
ton in the product display view.

C.2.5 Searching for a product

On the product search view, the user types in a search term. This search term is a sim-
ple string that can be the entire game title or just part of it (see table C.5).

Task list:

■ Search—The search term from the URL path is compared with all the game titles
in your inventory for at least a partial match. The number of matches can range
from 0 to n. This call returns a list of Game objects as a result.

■ Return the list as JSON—The retrieved list of games is returned as JSON to the
UI.

Table C.4 Call to delete the item identified by the path variable

URL HTTP method Request Response

/shopping/carts/{cartId}/products/
{productId}

DELETE Empty Cart

Table C.5 Call to search for a game

URL HTTP method Request Response

/games/search/{srchTerm} GET Empty List of Game objects
Licensed to Mark Watson <nordickan@gmail.com>

270 APPENDIX C Chapter 7 server-side setup and summary
C.2.6 Displaying a product

After a list of search results is presented, the user clicks a title to display its informa-
tion (see table C.6).

Task list:

■ Retrieve game by ID—In this call, the product ID is passed in the URL. The code
behind the call uses the ID to find the matching game in your inventory.

■ Return the cart as JSON—The retrieved game is returned as JSON to the UI.

C.3 The project
This section covers the server-side technologies used in our project and walks through
the setup of Spring MVC. It also covers the Spring annotations used in our project.

C.3.1 Prerequisites

Feel free to substitute any particular technology with another if you already work with
something else and would prefer it. This list was used to create the example:

■ Apache Tomcat—Tomcat is a freely available server that supports Java EE.1 Ver-
sion 7 supports the Servlet 3.0 specification, which matches the needs for our
server application (though higher versions should work as well). This version of
Tomcat supports the Servlet 3.0 specification. You can download it from http://
tomcat.apache.org. Feel free to use something else if you prefer a different
server, as long as it supports the Servlet 3.0 specification.

■ Apache Maven 3.2.1 or later—Apache Maven is a software management tool. It
can be found at http://maven.apache.org.

The following dependencies are managed by Maven:

■ Spring 4.1.6 (Core + MVC)—Spring (https://spring.io) is a Java-based applica-
tion framework and inversion-of-control container. If you need to download the
software directly, go to http://repo.spring.io/release/org/springframework/
spring to see a list of versions available for download.

■ Jackson—Jackson is a fast, lightweight JSON parser. It’ll also work by default with
Spring MVC. The example uses version 2.5.3. It can be found at http://wiki
.fasterxml.com/JacksonDownload.

Table C.6 Call to display the selected game’s information

URL HTTP method Request Response

/games/id/{productId} GET Empty Game

1 Tomcat supports only the Web Profile part of the Java EE specification, but this is enough for what you need
here. Servers such as GlassFish, JBoss, WebLogic, and WebSphere support the whole specification.
Licensed to Mark Watson <nordickan@gmail.com>

http://repo.spring.io/release/org/springframework/spring
http://repo.spring.io/release/org/springframework/spring
http://maven.apache.org
http://tomcat.apache.org
http://tomcat.apache.org
https://spring.io
http://wiki.fasterxml.com/JacksonDownload
http://wiki.fasterxml.com/JacksonDownload

271The project
■ Commons Logging (required by Spring)—See http://commons.apache.org/
proper/commons-logging for more information. Download from http://
commons.apache.org/proper/commons-logging/download_logging.cgi. Ver-
sion 1.2 is used in the example.

■ Commons Lang (optional)—Lang is a suite of helper utilities, particularly useful
for string manipulation. Version 3.4 is used, but 3 or higher is fine: http://
commons.apache.org/proper/commons-lang. Lang isn’t a hard requirement.
It’s used in the code for convenience, but you can use vanilla Java instead.

It’s also worth mentioning that Java version 8 is used. If you use a later version of any
of the listed technologies, make sure that it’s compatible with whichever versions of
Java and Tomcat you’re using.

 Before you can get the application up and running, you need to work on configur-
ing Spring MVC. Fortunately, the setup is minimal, because you won’t be using a data-
base or consuming any external web services.

C.3.2 Spring MVC configuration

To begin, you need to create a dynamic web project in your IDE. If you’re using
Eclipse, import the project and you’re ready to go. If you’re using another IDE, you
can create a new dynamic web project in your IDE and copy the code from this
archive. You can find everything you need, including pom.xml, in the downloadable
source for chapter 7. See the readme.txt file for additional installation instructions.

 After the workspace is set up, you can begin your configuration. In Spring 2.5.6 or
higher, you can use either XML or Java classes for configuration. This example uses
Java configuration. This is purely a design choice. Feel free to use XML configuration
if you prefer (or mix the two). Starting with the Servlet 3.0 specification, you no lon-
ger even need a web.xml file, so this file isn’t necessary. It’s included in this case only
to fulfill the Maven plugin’s needs. Remember, though, your container also has to sup-
port this configuration. Check the documentation for the server you’re using.

 In our example, you’ll go that route to keep your configuration code to a minimum.
To get your web application up and running without a web.xml file, you need a class
that implements the WebApplicationInitializer interface. This interface is available
in Spring 3.1 or later. The following listing shows the class that implements this inter-
face. The package it’s placed in isn’t important. It’ll be detected automatically.

public class WebAppInitializer implements WebApplicationInitializer {

 @Override
 public void onStartup(ServletContext container)
 throws ServletException {

 AnnotationConfigWebApplicationContext ctx
 = new AnnotationConfigWebApplicationContext();

Listing C.1 WebAppInitializer.java

Web application context
and annotation support
Licensed to Mark Watson <nordickan@gmail.com>

http://commons.apache.org/proper/commons-logging
http://commons.apache.org/proper/commons-logging
http://commons.apache.org/proper/commons-logging/download_logging.cgi
http://commons.apache.org/proper/commons-logging/download_logging.cgi
ttp://commons.apache.org/proper/commons-lang
ttp://commons.apache.org/proper/commons-lang

272 APPENDIX C Chapter 7 server-side setup and summary

Se
co
ap

En
Spr
MV
 ctx.register(WebMvcConfig.class);

 ctx.setServletContext(container);

 Dynamic dynamic
 = container.addServlet("dispatcher",
 new DispatcherServlet(ctx));

 dynamic.addMapping("/controllers/*");

 dynamic.setLoadOnStartup(1);
 }
}

All of your requests from the front end will come through Spring MVC’s dispatcher
servlet. To configure things purely in Java, without a web.xml file, you implement the
WebApplicationInitializer interface and provide the implementation for the
onStartup method. Spring hands the correct servlet context to this method. It’s
where you define any bootstrap code to be executed during the servlet container’s
start-up. You also need to let Spring know which class will be handling your MVC pref-
erences. Listing C.1 defines WebMvcConfig as your MVC configuration class. The fol-
lowing listing contains its code.

@Configuration
@EnableWebMvc
@ComponentScan(basePackages =
 { "com.gamestore.controllers", "com.gamestore.dataservices" })
public class WebMvcConfig {}

Because you’ve defined WebMvcConfig as the MVC configuration class, you decorate it
as such by using the @Configuration annotation. The class itself has no body. The real
magic comes from the annotation @EnableWebMvc. This annotation sets up the Spring
MVC defaults. If you need to override any of the defaults, you can implement WebMvc-
Configurer in this configuration class and override any of its methods. Alternatively,
Spring provides WebMvcConfigurerAdapter as a convenience to avoid having to imple-
ment all 16 WebMvcConfigurer methods. For your purposes, you need only a basic
Spring MVC configuration so you’ll use WebMvcConfigurerAdapter.

 Finally, you use the @ComponentScan annotation to tell Spring where to look for
the other components used in the application. You have controller components in the
controllers package and a single service component in the data services package.
You’ll learn about both in the next section.

Listing C.2 WebMvcConfig.java

Register your class
for MVC configurationt the servlet

ntext for this
plication

Register the dispatcher servlet

Map all requests beginning with/
controllers/ (after root) with dispatcher

Specify this is a configuration class

able
ing
C

Enable component scanning
for these packages
Licensed to Mark Watson <nordickan@gmail.com>

273The project
 Figure C.3 shows your IDE’s workspace with the
complete project configured and ready to run.

C.3.3 Annotations used in our project

We’ve already discussed the annotations used in your
Spring MVC setup. This section covers the other
annotations you’re using in your controllers and
your service. To show the annotations in action,
you’ll use the shopping cart controller. You’ll start at
the class level and then work your way down to the
method level.

CLASS-LEVEL ANNOTATIONS USED BY THE CONTROLLER

Your shopping cart controller class is decorated with
two annotations: @RestController and @Request-
Mapping (see the following listing). In Spring MVC,
more than one can be used in combination.

Figure C.3 Complete project workspace

@RestController
@RequestMapping("/shopping")
public class ShoppingCartController {

The @RestController is a convenience annotation. It’s the same as adding the anno-
tations @Controller and @ResponseBody to the class.

 The @Controller annotation lets Spring MVC know that this class is a controller
and has methods to handle requests. With this annotation present, Spring MVC will
scan your methods for request mapping annotations. We’ll cover these shortly.

 The @ResponseBody is used when you want the object returned in your method to
be bound to the response body of the call. This annotation can be applied either at
the class level or at the method level. When this annotation is added at the class level,

Listing C.3 Class-level annotations

Applies @Controller and
@ResponseBody under the covers

All URLs beginning (after the root) with
“/shopping” routed to this controller
Licensed to Mark Watson <nordickan@gmail.com>

274 APPENDIX C Chapter 7 server-side setup and summary

Binds
reque
to th
param
every method in the controller follows this behavior, so it can be omitted at the
method level. When your shopping cart objects are returned, they’ll be sent back to
the UI via the response body. Additionally, with the Jackson library in your classpath,
it’ll automatically convert them to JSON-formatted text.

 The @RequestMapping annotation maps incoming requests to particular classes
and/or methods. It can decorate the class, the method, or both. In the case of your
shopping cart, it’s defined at both places. This creates a kind of hierarchy in the
request that’s being mapped. The annotation defined at the class level maps this
entire class to any URL that begins (after the root) with the string /shopping.

 The @RequestMapping annotation elsewhere in your controller maps the other
part of the request URL after /shopping with a particular method. I’ll discuss these in
the next section.

METHOD-LEVEL ANNOTATIONS

To see method-level annotations in action, you’ll use your shopping cart update. It con-
tains the gamut of annotations used in all of the methods (see the following listing).

@RequestMapping(
 value = "/carts/{cartId}",
 method = RequestMethod.PUT)
public ResponseEntity<ShoppingCart> updateCart(
 @RequestBody ShoppingCart cart,
 @PathVariable String cartId,
 HttpServletRequest request) throws Exception {

 authenticateRequest(request, cartId);

 ShoppingCart newCart = dataService.updateQuantities(cart);

 return new ResponseEntity<ShoppingCart>(newCart, HttpStatus.OK);
}

Decorating the method itself, you have the @RequestMapping annotation again. Its
value is the part of the URL that’s used to map the request to this specific method.
With this annotation already defined at the class level with part of the URL, the full
path for this method is /shopping/carts/{cartId}.

 You’ll also notice that, just as in the UI, you can define URL path parameters.
They’re denoted with brackets {} and correspond to method parameters decorated
with the @PathVariable annotation. Finally, in @RequestMapping, you’re defining the
HTTP request method as PUT, because this is an update to your shopping cart.

 @RequestMapping and @PathVariable allow you to easily define resources in the
URL path through path variables and the type of HTTP request method for the
method. As mentioned in chapter 7, the unique resource identifiers in the URL paths
and the HTTP request methods that define the action requested come together to
create a RESTful request.

Listing C.4 Method-level annotations

Maps a URL and request
type to this method

 the
st body

e cart
eter

Maps the path variable cartId to
the cartId method parameter
Licensed to Mark Watson <nordickan@gmail.com>

275The project

Except
to han
 The other method-level annotation you’re using here is @RequestBody. It binds the
method parameter decorated with it to the object being sent in the body of the
request. In the case of a cart update, the entire shopping cart is being sent in the
request body. This annotation binds it to the ShoppingCart parameter. Because you
have the Jackson library in your classpath, Spring automatically converts the JSON-
formatted text of the request body to a native Java ShoppingCart object.

 You always hope that your calls will succeed, but in case there’s an error, you can
rely on annotations to turn the exception thrown into a meaningful response.

EXCEPTION-HANDLING ANNOTATIONS

Another part of the REST architecture is defining HTTP statuses to let the client know
the outcome of the call. This is particularly important when errors exist. In Spring
MVC, you can associate Java exceptions with particular responses by using annotations
as well. Here’s an example from the controller that takes any UnauthorizedAccess-
Exception thrown and turns that into a proper response.

@ExceptionHandler(UnauthorizedAccessException.class)
@ResponseStatus(value = HttpStatus.UNAUTHORIZED)
public ErrorMessage handleUnauthorizedException
 (UnauthorizedAccessException e) {
 return new ErrorMessage(
 "Unable to complete user request."
 , e.getMessage());
}

The @ExceptionHandler annotation can be used to specify what should be returned for
a particular exception. In your shopping cart, you have a simplistic pseudo-authentica-
tion method you’re using in lieu of an action login. You’re comparing the ID of the cart
passed in the request to the one stored on the session to demonstrate the use of excep-
tion-handling annotations. If any of the requests fail this check, the associated methods
in your shopping cart controller throw the UnauthorizedAccessException, and this
method automatically gets invoked. It returns a custom object you’ve created that holds
a user-friendly message and the exception thrown. You’ve defined the 401/Unauthor-
ized status as the status in this case by using the @ResponseStatus annotation.

 The last couple of annotations you’ll look at are used to ask Spring to inject the
data services component into your shopping cart controller.

SERVICES AND AUTOWIRING

In chapter 7, you moved your dummy data from the UI to the server-side code. You
placed it into a class called DataServiceImpl. You’re using this class as a data store, a
service, and a data access object (DAO) all rolled into one. Normally, your services cre-
ate uniform APIs for any business-layer code, which, in turn, uses DAOs and other ser-
vices to access the application’s data. Because you’re not using a database or any other
web services, this class will assume multiple roles for simplicity’s sake.

Listing C.5 Exception-handling annotations

ion
dle HTTP status to return

Return new instance of your
custom ErrorMessage class
Licensed to Mark Watson <nordickan@gmail.com>

276 APPENDIX C Chapter 7 server-side setup and summary
 Because this class is also used in the other controller you have for searching and
displaying games, you don’t create a new instance of it directly in the shopping cart
controller. Instead, you let Spring manage it and inject the service to whichever con-
troller needs to use it.

 This class itself doesn’t do anything special except provide methods to search and
access your static inventory data and your users’ shopping carts. The source can be
downloaded if you want to analyze it. What I want to point out here are the annota-
tions used.

 To define this class as an injectable service, you decorate your class with the
@Service annotation. This allows it to be detected by Spring automatically when it
performs its component scanning:

@Service
public class DataServiceImpl implements DataService {

To use the service, you can decorate either a setter method or an instance variable
with the @Autowired annotation in whichever class it’s to be injected into. Note that
for autowiring, you use the class’s interface. In your shopping cart, you’ve defined an
instance variable as the interface type DataService and you’ve decorated it with this
annotation:

@Autowired
private DataService dataService;

When Spring finds this annotation, it automatically assigns an instance of this service
to this instance variable for you to use.

 This project just scratches the surface of Spring MVC. If you want to know more,
you can start with the friendly introduction at http://docs.spring.io/spring/docs/
current/spring-framework-reference/html/mvc.html.
Licensed to Mark Watson <nordickan@gmail.com>

ttp://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html
ttp://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html

appendix D
Installing Node.js

and Gulp.js

Gulp.js is a JavaScript-based tasked runner that runs in Node.js. This appendix
guides you through installing these two applications.

D.1 Installing Node.js
Apart from Gulp.js, chapter 9 has another fundamental requirement. Gulp.js runs
on Node.js, so you need to have that installed to follow along. You can find Node.js
at https://nodejs.org/download. At the Node.js site, you can also find the installer
that matches your system. After you’ve installed it, you can verify its installation by
typing node –v from the command line:

C:\> node –v
V0.12.2

This appendix covers
■ Installing Node.js
■ Installing Gulp.js
277

Licensed to Mark Watson <nordickan@gmail.com>

https://nodejs.org/download

278 APPENDIX D Installing Node.js and Gulp.js
This tells you the version that was installed, and getting a proper response confirms
the installation. With Node.js installed, you’re ready for your first look at Gulp.js.

D.2 Installing Gulp.js
To get started with Gulp.js, you first need to install it. With Node.js installed, this is
easy. You’ll use the package manager (npm) that comes with Node.js (version 0.6 or
higher). With npm, you can use a simple command from the command line to down-
load and install Gulp.js.

 In npm, what you install is called a package. Packages can be installed locally or
globally (or both). You’ll use the –g option to install Gulp.js globally so you can run its
commands from any directory. From the command line, run npm install –g gulp.

NOTE If you’re using OS X or Linux, it’s recommended that you avoid using
sudo when installing packages. See https://docs.npmjs.com/getting-started/
fixing-npm-permissions.

If the process is successful, you should see output in the console similar to figure D.1.

As you did with Node.js, you can confirm the installation by checking the version
installed via the –v command: gulp –v. With the ability to run Gulp.js commands
from anywhere, switch to your project directory. Here you’ll install any packages spe-
cifically needed for your project.

NOTE To include metadata about your Node.js project, including informa-
tion about your build’s dependencies and their versions, you’ll need to create

Figure D.1 Installing Gulp.js
Licensed to Mark Watson <nordickan@gmail.com>

https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://docs.npmjs.com/getting-started/fixing-npm-permissions

279Installing Gulp.js
a package.json file. The npm package manager can use the version field in
this file to make sure the correct version of your packages gets installed. Addi-
tionally, if this file is present, information about the package being installed
will be added to a list of dependencies if you use the --save or --save-dev
options with the npm install command. The --save option can be used to
specify runtime dependencies (when the application is used, such as your
MV* framework), and the --save-dev option is for development dependen-
cies. Although the dependency listings inside the file will be updated auto-
matically during the installation of your packages using the options
mentioned, you’ll need to create the initial package.json file. You can do that
manually or use the command npm init. If you need guidance in creating the
package.json file, this command will walk you through the process by asking
several questions. Feel free to edit the generated file as needed. After the pro-
cess has completed, you’ll have the initial package.json file created with the
defaults you specified.
Licensed to Mark Watson <nordickan@gmail.com>

280 APPENDIX D Installing Node.js and Gulp.js
Licensed to Mark Watson <nordickan@gmail.com>

index
Symbols

- -save option 279
- -save-dev option 279
@ComponentScan

annotation 272
@Configuration annotation 272
@Controller annotation 273
@EnableWebMvc

annotation 272
@ExceptionHandler

annotation 275
@PathVariable annotation 274
@RequestMapping

annotation 273–274
@ResponseBody annotation 273
@ResponseStatus

annotation 275
@RestController

annotation 273
<%= %> delimiters 42
=== (strict equality

operator) 196
$resource object 174–177
$routeProvider 99
$scope object 38, 100

A

Accept header 159, 164
Agility.js 48
AJAX (Asynchronous JavaScript

and XML) 4, 259
AMD (Asynchronous Module

Definition)

define syntax 75–76
overview 75
require syntax 76
using RequireJS 77–80

AmplifyJS 140, 157
AngularJS

$resource object 174–177
bindings in 37
complex layout options 114
employee directory example

app.js 255
directory structure 254
directoryContent.html

255–257
downloading

dependencies 254
entrytemplate.html

257–258
shell 254–255

minification and 222
overview 30
route syntax 90, 92

anonymous function
expressions 54

Apache Maven 270
Apache Tomcat 270
APIs (application programming

interfaces)
avoiding general or

ambiguous 190
controlled access

through 133–134
creating public API using

JavaScript modules
causing function to return

immediately 71–72

creating closure 72
returning object literal

70–71
application/json type 159
applyBindings function 42
Arbiter.js 140
ASP.NET MVC 7
assertions 196–197
async attribute 74
asynchronous calls, data updates

via 12
Asynchronous Module Defini-

tion. See AMD

B

Backbone.js
complex layout options 114
creating models in 35
data models in 163
employee directory example

app.js 236–237
directory structure 234
directory.js view 238–240
directoryContent.html

237–238
downloading

dependencies 233–234
employee.js view 241–242
employeeRecord.js

model 242–243
entries.js collection 241
entrylist.js view 240
entrytemplate.html

243–244
281

Licensed to Mark Watson <nordickan@gmail.com>

INDEX282
Backbone.js (continued)
main.js 235–236
shell 235

objects in 238
overview 30
route syntax 90, 92
templating engine for 41

BASE HREF 97
base layout 115–117
bindings

binding direction 37
binding syntax 36–37
one-time binding 39
one-way binding 38–39
overview 36
two-way binding 37–38

bluebird library 172
Broccoli tool 213
browsers

catch() method and 171
exploiting location object 95
live reloads

overview 210–211
task for Gulp.js 218–220

MV* frameworks and 27–29
refreshing and SPAs 7

Browsersync 211, 218
Brunch 213
build process

moving application files 225
optimizing CSS 224
optimizing images 224–225
optimizing JavaScript

files 222–223
updating file references

225–227
Buster.js framework 208

C

callbacks, processing server
results using 165–166

CanJS 48
Cascading Style Sheets. See CSS
catch() method 171
chaining asynchronous calls

in sequence 170
promises 169–170

Chaplin 114
Choco 48
CI (continuous integration) 212
client-side routes

creating 90–91
default 93

example
default route 99–101
main contact route

101–102
overview 98–99
parameterized route

102–104
fragment identifier

method 94–95
HTML5 History API

method 95–98
overview 86–90, 93–94
parameters for 91–93
syntax 90

client-side routing
fragment identifier

method 94–95
HTML5 History API method

activating HTML5 mode 97
overview 97
removing hash

character 98
server-side changes 97–98
setting BASE HREF 97

overview 86–87, 93–94
client, presentation logic in 7
closures

creating public APIs 72
defined 54

code encapsulation 131–133
code integrity 65–67
code reuse 135–136
CoffeeScript 211
Commons Lang 271
Commons Logging 271
complexity, hiding 67–68
concatenation 222
concatenation, file 212
content negotiation 159
Content-type header 159, 164
continuation-passing style 165
continuous integration. See CI
continuous unit testing 211
controllers 26
coupling 138
CRUD (create, read, update,

and delete) 163
CSS (Cascading Style Sheets) 3

optimizing 224
purpose of in SPA 23
relationship between regions

and 109
CSS Lint 211

D

DAO (data access object) 5, 275
data-bind attribute 37
defer attribute 74
Deferred object 172
define syntax 75–76
DELETE method 160, 183
dependencies

overview 136–137
pros and cons of 138

DI (dependency injection) 144
directives, AngularJS 36
Dojo Toolkit 48
DOM (Document Object

Model)
JavaScript and 4
testing changes to 205–206

DRY (don't repeat yourself) 200
Durandal 114

E

ECMAScript 18, 131, 171–172
Ember.js 48, 114
employee directory example

AngularJS
app.js 255
directory structure 254
directoryContent.html

255–257
downloading

dependencies 254
entrytemplate.html

257–258
shell 254–255

Backbone.js
app.js 236–237
directory structure 234
directory.js view 238–240
directoryContent.html

237–238
downloading

dependencies 233–234
employee.js view 241–242
employeeRecord.js

model 242–243
entries.js collection 241
entrylist.js view 240
entrytemplate.html

243–244
main.js 235–236
shell 235

CSS 231–233
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 283
Knockout
app.js 246–247
directory structure 245
directory.js 249–253
directoryContent.html

247–249
downloading

dependencies 244
entrytemplate.html 253
main.js 246
shell 245

encapsulation 129, 131–133
error handling, for

promises 171–172
explicit models 35–36
Ext JS 48

F

fragment identifier method
94–95

fragments 43
fulfilled state 167

G

g option 278
Geppetto 114
GET method 160
glob patterns 217
Grunt.js 213
Gulp.js

browser-reload task
using 218–220

creating tasks 215–216
installing 278–279
linting task using 216–218
overview 214–215

H

Handlebars, expressions in 37
hash character, removing 98
header

in view template 118
header, in view template 118
headless browser 221
headless test runners 211
HTML (Hypertext Markup Lan-

guage), purpose of in
SPA 23

HTML5 History API method
activating HTML5 mode 97
overview 97

removing hash character 98
server-side changes 97–98
setting BASE HREF 97

HTTP headers 159
HTTP methods 159–160

I

IIFE (immediately invoked func-
tion expression) 72, 131

images, optimizing 224–225
implied models 33–34
inline templates 43
internet media types 159

J

Jackson parser 270
Jamal 48
Jasmine framework 208
JavaScript

dynamic nature of 52
modules

allowing for global
imports 73

AMD 75–76
avoiding name

collisions 56–62
boilerplate structure of 69
creating namespace 73–74
creating public API 70–72
defined 53
disadvantages of 69
hiding complexity 67–68
organizing code 68
pattern concepts 53–54
privacy for variables 69–70
protecting code

integrity 65–67
reducing impact of code

changes 68
revealing module

pattern 55–56
script loaders 74–75
structure of 54–55
submodules 62–65
using RequireJS 77–80

purpose of in SPA 23
JavaScript Lint 211
JavaScriptMVC 48
Jenkins 212
jQuery

Deferred object 172

jqXHR objects 166
using as utility library 157

JSHint 211
JSON.parse() function 161
JSON.stringify() function 160

K

Kendo UI 48
complex layout options 114
route syntax 90, 92

Knockout 113
bindings in 37
complex layout options 114
employee directory example

app.js 246–247
directory structure 245
directory.js 249–253
directoryContent.html

247–249
downloading

dependencies 244
entrytemplate.html 253
main.js 246
shell 245

overview 30

L

layout
designing 108–109
nested views 111
regions 109–110
view composition 110

LayoutManager 114
Less.js 211
linting 216–218
literal notation 54
live browser reloads

overview 210–211
task for Gulp.js 218–220

LiveReload 211, 218
LiveScript 211

M

Marionette.js 114
MIME (Multipurpose Internet

Mail Extensions) 43
MIME types 159
Mimosa 213
minification 212, 222
Mocha framework 208
Licensed to Mark Watson <nordickan@gmail.com>

INDEX284
models
defined 24
explicit 35–36
implied 33–34
overview 32–33

module() method 199
modules

code encapsulation 131–133
controlled access through

APIs 133–134
defined 15
dependencies

overview 136–137
pros and cons of 138

designing using SRP 134–135
interaction between 129–131
publish/subscribe pattern

basic notifications 140
libraries for 140
notifications with data

140–141
overview 138–139
pros and cons of 141–142
topics 139–140
unsubscribing 141

scalability through code
reuse 135–136

video game store example
messaging module 149–150
overview 142–144
pricing services

module 153–154
product display controllers

module 151–152
product display services

module 152–153
search controllers

module 145–146
search feature

overview 144–145
search services

module 146–149
user alerts module 150

modules, JavaScript
allowing for global imports 73
AMD

define syntax 75–76
overview 75
require syntax 76
using RequireJS 77–80

avoiding name collisions
56–62

boilerplate structure of 69
creating namespace 73–74

creating public API
causing function to return

immediately 71–72
creating closure 72
returning object literal

70–71
defined 53
disadvantages of 69
hiding complexity 67–68
organizing code 68
pattern concepts 53–54
privacy for variables 69–70
protecting code integrity

65–67
reducing impact of code

changes 68
revealing module pattern

55–56
script loaders 74–75
structure of 54–55
submodules 62–65

Multipurpose Internet Mail
Extensions. See MIME

Mustache, expressions in 37
MV* frameworks 4

advantages of using
productivity gains 47
routine tasks simplified

46–47
scalability 48
separation of concerns

45–46
standardization 47–48

bindings
binding direction 37
binding syntax 36–37
one-time binding 39
one-way binding 38–39
overview 36
two-way binding 37–38

browser environment and
27–29

choosing framework 48–50
concepts 29–30
creating server requests

using data model 163–164
using data source

objects 164–165
using XMLHttpRequest

object 162–163
frameworks listing 30
importance of 22–24
models

explicit 35–36

implied 33–34
overview 32–33

MVC 17, 25–26
MVP 17, 26–27
MVVM 17, 27
MVW 28
overview 24–25
processing server results with

callbacks 165–166
processing server results with

promises
accessing results 168–169
chaining asynchronous calls

in sequence 170
chaining promises 169–170
overview 166–167
promise error

handling 171–172
promise states 167–168

REST and 174
templates

example of 40–42
inline 43
overview 40
partials 43
rendering of 42–43
storage of 43

testing objects from 200–205
views 44

MVC (Model-View-
Controller) 17, 25–26

MVP (Model-View-
Presenter) 17, 26–27

MVVM (Model-View-
ViewModel) 17, 27

MVW (Model-View-
Whatever) 28

N

name collisions 56–62
namespaces 53, 73–74
native applications 12
navigation

client-side
fragment identifier

method 94–95
HTML5 History API

method 95–98
overview 86–87, 93–94

example
default route 99–101
main contact route

101–102
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 285
overview 98–99
parameterized route

102–104
in view template 118–120
routes

creating 90–91
default 93
overview 88–90
parameters 91–93
syntax 90

traditional navigation
overview 86

nested views 111
ng-bind attribute 41
ng-click 178
ng-model attribute 38
Node.js, installing 277–278
notifications

basic 140
with data 140–141

npm (node package
manager) 278

O

object initializer 71
object literals 54, 70–71
Object.create() function 71
observer pattern 138
one-time binding 39
one-way binding 38–39
onhashchange event 95
onreadystatechange event 260
open() method 260
otherwise keyword 120

P

packages 278
parameters, route 91
partials 43
paths, routes and 87
pending state 167
PhantomJS 221
POC (proof of concept) 50, 244
POJOs (plain old JavaScript

objects) 28, 252
popstate event 96–97
POST method 160
presenter, defined 26
privacy, for variables 69–70
private keyword 65
Promise/A+ standard 172
promises

accessing results 168–169
chaining asynchronous calls

in sequence 170
chaining promises 169–170
overview 166–167
promise error handling

171–172
promise states 167–168

proof of concept. See POC
pub/sub pattern 20
public APIs, using JavaScript

modules
causing function to return

immediately 71–72
creating closure 72
returning object literal 70–71

publish/subscribe pattern
basic notifications 140
libraries for 140
notifications with data

140–141
overview 138–139
pros and cons of 141–142
topics 139–140
unsubscribing 141

PubSubJS 140
pushState method 96
PUT method 160

Q

Q library 172
QUnit

automating unit testing 220
creating test directory

193–194
defining test results

page 194–196
grouping tests 199–200
making assertions 196–197
overview 208
writing tests for 197–198

R

Radio.js 140
React 4
readyState property 261–262
regions 109–110
rejected state 167
replaceState method 96
requests, server

using data model 163–164
using data source

objects 164–165
using request body 263
using URL parameters

261–263
using XMLHttpRequest

object 162–163
require syntax 76
RequireJS 77–80, 195
RequireJS Optimizer 213
responseText property 261
responseXML property 261
REST (Representational State

Transfer)
defined 172
MV* frameworks and 174
resource concept 173
shopping cart project

$resource object 174–177
adding items to cart

177–179
removing items from

cart 183–184
updating cart 181–183
viewing cart 179–181

statelessness 173–174
uniform interface between

components 173
unique identifiers 173

RESTful services 20
revealing module pattern 55–56,

132
routes

client-side
fragment identifier

method 94–95
HTML5 History API

method 95–98
overview 86–87, 93–94

creating 90–91
default 93, 120–122
example

default route 99–101
main contact route

101–102
overview 98–99
parameterized route

102–104
overview 88–90
parameters 91–93
syntax 90
traditional navigation

overview 86
views and 112

RSVP.js library 172
Licensed to Mark Watson <nordickan@gmail.com>

INDEX286
S

Sammy.js, route syntax 90, 92
Sass 211
scalability

advantages of using MV*
frameworks 48

through code reuse 135–136
scope, defined 132
script loaders 74–75
send() method 260, 264
separation of concerns, advan-

tages of using MV*
frameworks 45–46

server communication
converting data 160–161
creating requests

using data model 163–164
using data source

objects 164–165
using XMLHttpRequest

object 162–163
data types 158–159
general discussion 156–158
HTTP methods 159–160
processing results with

callbacks 165–166
processing results with prom-

ises
accessing results 168–169
chaining asynchronous calls

in sequence 170
chaining promises 169–170
overview 166–167
promise error

handling 171–172
promise states 167–168

REST
defined 172
MV* frameworks and 174
resource concept 173
statelessness 173–174
uniform interface between

components 173
unique identifiers 173

shopping cart project
$resource object 174–177
adding items to cart

177–179
removing items from

cart 183–184
server requirements 158
updating cart 181–183
viewing cart 179–181

server-side technologies
adding items to cart 268
annotations used in

project 273–276
deleting items 269
displaying products 270
objects 267
prerequisites 270–271
searching for products 269
Spring MVC

configuration 271–273
updating cart 268
viewing cart 267

setRequestHeader()
method 260

shell, overview 8–9
shopping cart example

$resource object 174–177
adding items to cart 177–179
removing items from

cart 183–184
server requirements 158
server-side technologies

adding items to cart 268
annotations used in

project 273–276
deleting items 269
displaying products 270
objects 267
prerequisites 270–271
searching for products 269
Spring MVC

configuration 271–273
updating cart 268
viewing cart 267

updating cart 181–183
viewing cart 179–181

Sinon.js 206–207
Smalltalk 25
SPAs (single-page applications)

advantages of 12–13
asynchronous data

updates 12
best practices

asynchronous communica-
tion with server 20

client-side routing 19
loosely coupled UI 17–18
module communication 20
organizing project 15–17
unit testing 20
using JavaScript

modules 18–19
using views 19

browser refreshes removed 7
components of 14–15
overview 3–7
presentation logic in client 7
server transactions for 7
shell for 8–9
views

overview 9–11
swapping instead of refresh-

ing shell 11–12
Spine 48
Spring MVC 7
SRP (single-responsibility

principle) 134
designing modules

using 134–135
standardization, advantages of

using MV* frameworks
47–48

status property 261
strict equality operator (===)

196
strictEqual() assertion 196
stubs 191
submodules 62–65
sudo command 278

T

task runners
application build process

moving application
files 225

optimizing CSS 224
optimizing images 224–225
optimizing JavaScript

files 222–223
updating file

references 225–227
automating unit testing

220–222
Gulp.js

browser-reload task
using 218–220

creating tasks 215–216
linting task using 216–218
overview 214–215

overview 209–210, 212–213
uses for

code analysis from
linters 211

continuous integration 212
continuous unit testing 211
file concatenation 212
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 287
live browser reloads
210–211

minification 212
overview 210
preprocessing JavaScript

and CSS 211
TDD (test-driven

development) 192
template engine 40
templates

defined 10
example of 40–42
inline 43
overview 40
partials 43
rendering of 42–43
storage of 43

then() method 168, 170
Thorax 114
tightly coupling 45
topics 139–140
two-way binding 37–38

U

UnauthorizedAccessException
275

Underscore.js
delimiters in 41
expressions in 37

unit testing
advantages of 188–189
automating 220–222
best practices

avoiding overly general
APIs 190

focus of each test easily
understood 191–192

repeatability of tests 191
specific concept for each

test 189–190
specific testing order not

required 190–191
continuous, using task

runner 211

frameworks for 207–208
overview 186–188
QUnit

creating test directory
193–194

defining test results
page 194–196

grouping tests 199–200
making assertions 196–197
writing tests for 197–198

Sinon.js 206–207
testing changes to DOM

205–206
testing MV* framework

objects 200–205
tip calculator project 187
traditional approach 192–193

unsubscribing 141
URLs, creating using $resource

object 175–176

V

v option 278
variables, privacy for 69–70
verbs

for routes 88
HTTP 159

Vertebrae 114
video game store example

overview 142–144
pricing services module

153–154
product display controllers

module 151–152
product display services

module 152–153
searching

messaging module 149–150
overview 144–145
search controllers

module 145–146
search services

module 146–149
user alerts module 150

ViewModel 27
views

advanced layouts 113–114
defined 24
example application

base layout 115–117
default route 120–122
header 118
navigation 118–120
nested views with state

125–126
overview 107–108, 114–115
using view manager

122–125
layout design 108–109
nested 111
overview 9–11, 44
regions 109–110
routes and 89, 112
swapping instead of refreshing

shell 11–12
view composition 110

W

Web Components 4
WebApplicationInitializer

interface 271–272
when library 172
WinJS library 172
WPF (Windows Presentation

Foundation) 27

X

XHR (XMLHttpRequest)
object 156

creating requests
using request body 263
using URL

parameters 261–263
overview 259–261
Licensed to Mark Watson <nordickan@gmail.com>

Getting MEAN
with Mongo, Express, Angular, and Node
by Simon Holmes

ISBN: 9781617292033
375 pages, $44.99
November 2015

Single Page Web Applications
 JavaScript end-to-end
by Michael S. Mikowski and Josh C. Powell

ISBN: 9781617290756
432 pages, $44.99
September 2013

Node.js in Action
by Mike Cantelon, Marc Harter,

T.J. Holowaychuk, and Nathan Rajlich

ISBN: 9781617290572
416 pages, $44.99
October 2013

Secrets of the JavaScript Ninja
by John Resig and Bear Bibeault

ISBN: 9781933988696
392 pages, $39.99
December 2012

RELATED MANNING TITLES
For ordering information go to www.manning.com

Licensed to Mark Watson <nordickan@gmail.com>

Emmit A. Scott, Jr.

T
he next step in the development of web-based software,
single-page web applications deliver the sleekness and
fl uidity of a native desktop application in a browser. If

you’re ready to make the leap from traditional web applica-
tions to SPAs, but don’t know where to begin, this book will
get you going.

SPA Design and Architecture teaches you the design and devel-
opment skills you need to create SPAs. You’ll start with an
introduction to the SPA model and see how it builds on the
standard approach using linked pages. The author guides you
through the practical issues of building an SPA, including an
overview of MV* frameworks, unit testing, routing, layout
management, data access, pub/sub, and client-side task auto-
mation. This book is full of easy-to-follow examples you can
apply to the library or framework of your choice.

What’s Inside
● Working with modular JavaScript
● Understanding MV* frameworks
● Layout management
● Client-side task automation
● Testing SPAs

This book assumes you are a web developer and know
JavaScript basics.

Emmit Scott is a senior software engineer and architect with
experience building large-scale, web-based applications.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/spa-design-and-architecture

$49.99 / Can $57.99 [INCLUDING eBOOK]

SPA Design and Architecture

WEB DEVELOPMENT

M A N N I N G

“Takes a very complex
topic and breaks it down
into easily understandable
 and digestible pieces.”

—From the Foreword by
Burke Holland, Telerik

“A great resource for this
 hot development topic.”—Bruno Sonnino

Revolution Software

“Gives a crystal-clear,
multi-faceted, and well-

structured presentation of
what state-of-the-art SPAs are.

I highly recommend it!”
—Alain Couniot, STIB-MIVB

“The code examples are
detailed, informative,

and practical. They provide
a real-world context

 to the topic.”—John Shea, Endicott College

SEE INSERT

	SPA Design and Architecture
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Audience
	Code conventions and downloads
	Software and hardware requirements
	Author Online
	About the author

	about the cover illustration
	Part 1 The basics
	1 What is a single-page application?
	1.1 SPA in a nutshell
	1.1.1 No browser refreshes
	1.1.2 Presentation logic in the client
	1.1.3 Server transactions

	1.2 A closer look
	1.2.1 An SPA starts with a shell
	1.2.2 From traditional pages to views
	1.2.3 The birth of a view
	1.2.4 View swapping for zero reload navigation
	1.2.5 Fluidity through dynamic updates

	1.3 Benefits of SPAs over traditional web applications
	1.4 Rethinking what you already know
	1.5 Ingredients of a well-designed SPA
	1.5.1 Organizing your project
	1.5.2 Creating a maintainable, loosely coupled UI
	1.5.3 Using JavaScript modules
	1.5.4 Performing SPA navigation
	1.5.5 Creating view composition and layout
	1.5.6 Enabling module communication
	1.5.7 Communicating with the server
	1.5.8 Performing unit testing
	1.5.9 Using client-side automation

	1.6 Summary

	2 The role of MV* frameworks
	2.1 What is MV*?
	2.1.1 Traditional UI design patterns
	2.1.2 MV* and the browser environment

	2.2 Common MV* concepts
	2.2.1 Meet the frameworks
	2.2.2 Meet our MV* project
	2.2.3 Models
	2.2.4 Bindings
	2.2.5 Templates
	2.2.6 Views

	2.3 Why use an MV* framework?
	2.3.1 Separation of concerns
	2.3.2 Routine tasks simplified
	2.3.3 Productivity gains
	2.3.4 Standardization
	2.3.5 Scalability

	2.4 Choosing a framework
	2.5 Chapter challenge
	2.6 Summary

	3 Modular JavaScript
	3.1 What is a module?
	3.1.1 Module pattern concepts
	3.1.2 The module’s structure
	3.1.3 The revealing module pattern

	3.2 Why modular programming?
	3.2.1 Avoiding name collisions
	3.2.2 Protecting your code’s integrity
	3.2.3 Hiding complexity
	3.2.4 Reducing the impact of code changes
	3.2.5 Organizing your code
	3.2.6 Understanding disadvantages of the module pattern

	3.3 The module pattern dissected
	3.3.1 Achieving privacy
	3.3.2 Creating the public API
	3.3.3 Allowing for global imports
	3.3.4 Creating the module’s namespace

	3.4 Module loading and dependency management
	3.4.1 Script loaders
	3.4.2 Asynchronous Module Definition
	3.4.3 Using AMD modules with RequireJS

	3.5 Chapter challenge
	3.6 Summary

	Part 2 Core concepts
	4 Navigating the single page
	4.1 What is a client-side router?
	4.1.1 Traditional navigation
	4.1.2 SPA navigation

	4.2 Routes and their configuration
	4.2.1 Route syntax
	4.2.2 Route entries
	4.2.3 Route parameters
	4.2.4 Default routes

	4.3 How do client-side routers work?
	4.3.1 The fragment identifier method
	4.3.2 The HTML5 History API method
	4.3.3 Changes for the HTML5 History API method

	4.4 Putting it all together: implementing routing in SPAs
	4.4.1 The faculty list (default route)
	4.4.2 The main contact route
	4.4.3 Faculty office hours (parameterized route)

	4.5 Chapter challenge
	4.6 Summary

	5 View composition and layout
	5.1 Introducing our project
	5.2 Reviewing layout design concepts
	5.2.1 Views
	5.2.2 Regions
	5.2.3 View composition
	5.2.4 Nested views
	5.2.5 Routes

	5.3 Considering alternatives for advanced composition and layout
	5.3.1 Pros
	5.3.2 Cons

	5.4 Designing the application
	5.4.1 Designing the base layout
	5.4.2 Designing the default content
	5.4.3 Using a view manager for complex designs
	5.4.4 Creating nested views with their own states

	5.5 Chapter challenge
	5.6 Summary

	6 Inter-module interaction
	6.1 Review of module concepts
	6.1.1 Modules encapsulate code
	6.1.2 APIs provide controlled access to internal functionality
	6.1.3 SRP means designing with a single purpose
	6.1.4 Code reuse helps your project scale

	6.2 Inter-module interaction methods
	6.2.1 Inter-module interaction through dependencies
	6.2.2 Dependency method pros and cons
	6.2.3 Inter-module interaction through publish/subscribe
	6.2.4 Pub/sub pros and cons

	6.3 Project details
	6.3.1 Searching
	6.3.2 Displaying product information

	6.4 Chapter challenge
	6.5 Summary

	7 Communicating with the server
	7.1 Understanding the project requirements
	7.2 Exploring the communication process
	7.2.1 Choosing a data type
	7.2.2 Using a supported HTTP request method
	7.2.3 Converting the data

	7.3 Using MV* frameworks
	7.3.1 Generating requests
	7.3.2 Processing results with callbacks
	7.3.3 Processing results with promises
	7.3.4 Promise error handling

	7.4 Consuming RESTful web services
	7.4.1 What is REST?
	7.4.2 REST principles
	7.4.3 How MV* frameworks help us be RESTful

	7.5 Project details
	7.5.1 Configuring REST calls
	7.5.2 Adding product items to the cart
	7.5.3 Viewing the cart
	7.5.4 Updating the cart
	7.5.5 Removing products from the cart

	7.6 Chapter challenge
	7.7 Summary

	8 Unit testing
	8.1 Understanding the project
	8.2 What is a unit test?
	8.2.1 Benefits of unit testing
	8.2.2 Creating better unit tests

	8.3 Traditional unit testing
	8.3.1 Getting started with QUnit
	8.3.2 Creating your first unit tests
	8.3.3 Testing code built with MV* objects
	8.3.4 Testing changes to the DOM
	8.3.5 Adding other testing frameworks to the mix

	8.4 Chapter challenge
	8.5 Summary

	9 Client-side task automation
	9.1 Common uses for task runners
	9.1.1 Live browser reloads
	9.1.2 Automatic JavaScript and CSS preprocessing
	9.1.3 Automatic code analysis from linters
	9.1.4 Continuous unit testing
	9.1.5 File concatenation
	9.1.6 Code minification
	9.1.7 Continuous integration

	9.2 Choosing a task runner
	9.3 Our project
	9.3.1 Introducing Gulp.js
	9.3.2 Creating your first task
	9.3.3 Creating a code analysis task
	9.3.4 Creating a browser-reload task
	9.3.5 Automating unit testing
	9.3.6 Creating a build process

	9.4 Chapter challenge
	9.5 Summary

	appendix A Employee directory example walk-through
	A.1 CSS
	A.2 Backbone.js example
	A.2.1 Downloading your dependencies
	A.2.2 Directory structure
	A.2.3 The shell
	A.2.4 main.js
	A.2.5 app.js
	A.2.6 directoryContent.html
	A.2.7 directory.js view
	A.2.8 entrylist.js view
	A.2.9 entries.js collection
	A.2.10 employee.js view
	A.2.11 employeeRecord.js model
	A.2.12 entrytemplate.html

	A.3 Knockout example
	A.3.1 Downloading your dependencies
	A.3.2 Directory structure
	A.3.3 The shell
	A.3.4 main.js
	A.3.5 app.js
	A.3.6 directoryContent.html
	A.3.7 directory.js
	A.3.8 entrytemplate.html

	A.4 AngularJS example
	A.4.1 Downloading your dependencies
	A.4.2 Directory structure
	A.4.3 The shell
	A.4.4 app.js
	A.4.5 directoryContent.html
	A.4.6 entrytemplate.html

	A.5 Summary

	appendix B Review of the XMLHttpRequest API
	B.1 Using the XMLHttpRequest object
	B.2 Making requests
	B.2.1 Using URL parameters
	B.2.2 Using the request body

	appendix C Chapter 7 server-side setup and summary
	C.1 Server-side objects
	C.2 Summary of server-side calls
	C.2.1 Viewing the cart
	C.2.2 Adding an item to the cart
	C.2.3 Updating the cart
	C.2.4 Deleting an item
	C.2.5 Searching for a product
	C.2.6 Displaying a product

	C.3 The project
	C.3.1 Prerequisites
	C.3.2 Spring MVC configuration
	C.3.3 Annotations used in our project

	appendix D Installing Node.js and Gulp.js
	D.1 Installing Node.js
	D.2 Installing Gulp.js

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Related Manning Titles
	SPA Design and Architecture-back

