
www.allitebooks.com

http://www.allitebooks.org

RubyMotion iOS Development
Essentials

Create apps that utilize iOS device capabilities without
learning Objective-C

Abhishek Nalwaya

Akshat Paul

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

RubyMotion iOS Development Essentials

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2013

Production Reference: 1090713

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-522-0

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Abhishek Nalwaya

Akshat Paul

Reviewers
Florian Bertholin

Victor Khanna

Vladimir Pouzanov

Acquisition Editor
Usha Iyer

Lead Technical Editors
Chalini Victor

Joel Noronha

Technical Editors
Madhuri Das

Dennis John

Larissa Pinto

Dominic Pereira

Copy Editors
Insiya Morbiwala

Aditya Nair

Alfida Paiva

Laxmi Subramanian

Project Coordinator
Anugya Khurana

Proofreader
Bernadette Watkins

Indexer
Rekha Nair

Graphics
Ronak Dhruv

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Abhishek Nalwaya is the author of the book, Rhomobile Beginner's Guide. He
is a Ruby enthusiast and loves to participate regularly at Ruby and Ruby on Rails
meetup groups. He works for Mckinsey and Company IT. He has spoken at many
conferences, meetups, and was the speaker at RubyConf India 2012 and RubyMotion
Conference 2013.

Akshat Paul is a programmer and is working as a lead developer at Mckinsey and
Company IT. He has extensive experience of mobile application development and
has delivered many enterprise and consumer applications.

In other avatars, Akshat frequently speaks and evangelizes at conferences and
meetup groups on various technologies; this way he plays his part in giving back
to the community. He has given talks at RubyConfIndia and #inspect-RubyMotion
Conference. He also has a strong belief in Agile methodologies for creating
world-class software, and is a Certified Scrum Master (CSM).

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

We would like to thank our families and friends, especially Manu Singhal, who saw
us through this book, provided support, talked things over, read, wrote, and offered
comments, without which conceiving this book wouldn't have been possible.

Also, we would like to thank Usha, Anugya, the entire team at Packt Publishing,
and specially Joel Noronha who allowed us to quote their remarks and assisted
in the editing, proofreading, and design of this book. Writing a book is a long and
arduous journey, but you all made it so easy for us.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Florian Bertholin is a software engineer and lead developer. After having studied
Computer Sciences in France and in the USA, he now lives in Geneva, Switzerland.

He has been working with Ruby since 2009, and he loves to design High-Scalable
Architectures and High-Performance Web Applications.

You can find him online at http://florianbertholin.com.

Vladimir Pouzanov is a systems engineer and mobile development enthusiast.
Vladimir spent countless hours hacking different mobile hardware, porting Linux
to Palm® devices, and toying outside the iPhone sandbox. He has been doing
professional iOS development and consultancy since the first Apple iPhones
were available. Later on, Vladimir switched his professional interest to systems
management and engineering, but he keeps a close eye on the mobile and
embedded world of iPhones, Android devices, and Arduino-based gadgets.

I would like to acknowledge the team of the Hack&Dev project,
which brought me to the world of microcontrollers and specifically,
Dmitry Shaposhnik for pushing me towards the magic of the Ruby
language.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Ready for RubyMotion 7

How can I develop an iOS application? 8
Native apps using Objective-C 8
Mobile web applications 8
Hybrid applications 8

What is RubyMotion? 10
Why RubyMotion? 11

If you are not an Objective-C fan 11
It is not a bridge 12
Managed memory 12
Terminal-based workflow 12
Easy debugging with REPL 12
It is extendable 13
Debugging and testing 13

Pop quiz 13
RubyMotion installation – furnish your environment 14

Prerequisites for RubyMotion 14
Installing RubyMotion 15
Update RubyMotion 17
How do we check we've done everything correctly? 17
Pick your own editor – you are not forced to use Xcode 18
How to get help 18

FAQs 19
Summary 20

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Instant Gratification – Your First Application 21
Your first application 22
Folder structure 26
Some more goodies 27

Let's understand the code 29
Exploring the command line 29

Motion command – one-stopshop 30
Rake tasks – get things done fast 31
Rake file – configuring your application 32

REPL – the interactive console 35
Debugger – catch your mistakes! 37

How to start debugging 38
While testing on a simulator 38
While testing on a device 38
Entering commands before starting 39

Breakpoint 39
Listing breakpoints 40
Moving between the different breakpoints 40

Checking the value of a local variable 41
Checking the value of an instance variable 41

Disable breakpoint 41
Exit debugger 42

Summary 42
Chapter 3: Evolution – From Objective-C to RubyMotion 43

Ruby and Objective-C – a partnership 43
Ruby and Objective-C share the same ancestor 44

Interfacing with C and Objective-C 47
Types 47
Enumerations and constants 48
Functions 49
Structures 49
Pointers 50
Classes 51
Objective-C messages 52
RubyMotion selectors 52

Memory management 53
Summary 53

Table of Contents

[iii]

Chapter 4: Mastering MVC Paradigm 55
Model-View-Controller (MVC) 55

Model 56
View 56
Controller 56

The restaurant application 57
Creating a model 59
Writing more code 60

Restaurant controller 63
Restaurant view 64

Connecting to an external API 66
Search restaurant by city 70

What just happened 72
Picture speaks louder than words 74
Play time 76
Summary 77

Chapter 5: User Interface – Cosmetics for Your App 79
Bars 80

The tab bar 80
Customizing the tab bar 83

The navigation bar 87
Customizing the navigation bar 88

The status bar 91
Basic UI elements 92

Label 92
Textfield 93
Switch button 94
Slider 94
Button 95
Picker view 96

Hands-on – add a Restro Application 100
Summary 105

Chapter 6: Device Capability – Power Unleashed 107
Camera – smile please! 108

Camera example 108
Understanding the Camera code 111

Location Manager – directions for apps 113
Location Manager example 113

Table of Contents

[iv]

Gestures – non-verbal communication 123
Gesture example 124
Do it yourself 130

Core Data – manage your data 130
Core Data example 130

Creating an employee 136
Deleting the employee 142

Address Book – manage your contacts 144
Do it yourself 149

Task 1 – show nearest restaurant 149
Task 2 – mark each restaurant on a map with a pin 149

Summary 149
Chapter 7: Interface Builder and WebView – More Goodies! 151

Interface Builder 151
Let's try the Interface Builder 152

.xib to RubyMotion 159
UIWebView – embed web content 164
Summary 166

Chapter 8: Testing – Let's Fail Gracefully 167
Unit testing 167
Functional testing 172
Device events 175

Rotate device 176
Accelerometer device event 179
Gestures 180

Tap 180
Flick 181
Pinch open 181
Pinch close 182
Drag 182
Rotation 183

Summary 183
Chapter 9: Creating a Game 185

Cocos2D 185
Let's create a game – Whac-A-Mole 186

Let's start coding! 187
Adding motion to moles 196
Adding touch events to the game 197
Adding scores 199
Games without any sounds are boring — let's add some sound 200

Summary 201

Table of Contents

[v]

Chapter 10: Getting Ready for the App Store 203
Generating certificates 204

Do it yourself 206
Provisioning profile 206

App ID 206
Adding devices 208
Developer Provisioning Profile 209
Do it yourself 210

Setting up the RubyMotion project 210
Entitlements 210
Info.plist settings 211
Building icons 211
Configuring your application 213
Installing on a device 213
iTunes Connect 214

Creating bundles for submission 216
Summary 217

Chapter 11: Extending RubyMotion 219
RubyMotion gems 219

Teacup – say goodbye to Xcode and XIB files! 220
BubbleWrap – making Cocoa APIs more Ruby-like 227
motion-addressbook – access phonebook easily 230

CocoaPods – managing Objective-C libraries 235
Installing CocoaPods with RubyMotion 236

Summary 236
What next? 237

Index 239

Preface

With the arrival of the iOS family of devices, the direction of software development
has radically changed. Today people are spending considerable amounts of time
on smart devices instead of PCs, which is generating an unprecedented amount of
revenue that no industry has ever seen. Despite this, it still fits in your pocket.

So far the application development scene for the iOS ecosystem has been dominated
by Objective-C. However, with the introduction of the revolutionary RubyMotion
tool chain, Ruby developers are no longer outcasts for creating pure native iOS
applications. They can make use of every bit of the all-powerful iOS SDK; and the
best part is this can be done without using Xcode.

Both Ruby and RubyMotion are the brainchild of folks who wanted to simplify
things in a complex world. Yukihiro Matsumoto (also known as Matz) is credited for
creating the Ruby programming language, which is often regarded as a developer's
best friend. And Laurent Sansonetti is credited for creating the ground-breaking tool
chain, RubyMotion.

RubyMotion iOS Development Essentials will appeal to a developer's mind,
especially to the technocrats looking for a reliable tool chain for iOS development.
This book] is a step-by-step guide to build an iOS application from scratch
to deployment.

What this book covers
Chapter 1, Getting Ready for RubyMotion, gets you acquainted with RubyMotion.
Here, we will start with an introduction to RubyMotion, followed by detailed
installation steps.

Chapter 2, Instant Gratification – Your First Application, explains how to create a
simple Hello World application and also the structure of RubyMotion applications
in general.

Preface

[2]

Chapter 3, Evolution – From Objective-C to RubyMotion, helps you understand the
journey from Objective-C to RubyMotion. This chapter is also a quick guide to
understanding the RubyMotion syntax corresponding to its Objective-C syntax.

Chapter 4, Mastering MVC Paradigm, focuses on writing better code with the
Model-View-Controller architecture. We will also learn about connecting
the application to an external API.

Chapter 5, User Interface – Cosmetics for Your App, describes how the user interface
is a key part of an iOS application. Also, this chapter explains how we can use the
various user interface elements.

Chapter 6, Device Capability – Power Unleashed, teaches you how to use various device
capabilities, such as Camera, Location Manager, Gestures, Core Data, and Address
Book. We will create sample applications for each one of them to understand
them better.

Chapter 7, Interface Builder and WebView – More Goodies!, explains how to use the
interface builder and UIWebView with RubyMotion applications.

Chapter 8, Testing – Let's Fail Gracefully, discusses Unit Testing and Functional
Testing in a RubyMotion application by following the philosophy of
Test-driven Development.

Chapter 9, Creating a Game Application, helps you create a popular arcade game,
Whack-a-Mole, using Cocoa2D and RubyMotion. This is one of the most exciting
and unique features of working with RubyMotion where it's possible to create
graphical gaming applications.

Chapter 10, Getting Ready for the App Store, explains the process of submitting a
RubyMotion application to the Apple App Store.

Chapter 11, Extending RubyMotion, describes how to augment our RubyMotion
applications by making use of the already available open source gems, such
as TeaCup, BubbleWrap, and Address Book.

What you need for this book
To program with RubyMotion, firstly you require a Macintosh computer. Since
RubyMotion is proprietary software, you are required to buy its license from
http://sites.fastspring.com/hipbyte/product/rubymotion.

Preface

[3]

Who this book is for
This book is for developers who are well versed with the Ruby programming
language, and are interested in developing native iOS applications. We do not
expect you to have any prior knowledge of RubyMotion. With RubyMotion iOS
development essentials, we will discover features of this amazing tool chain from
beginner to pro level.

Prior knowledge of Objective-C and the iOS SDK can come in handy at times, but
no worries, we have covered every little detail to make you a maven by the end of
this book.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Create a contact_us_controller.rb file inside the app folder."

A block of code is set as follows:

 @submit_button.addTarget(self,
 action:''send_message'', forControlEvents:UIControlEventT
ouchUpInside)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

def setupNavigationBar
 back= UIBarButtonItem.alloc.initWithTitle(''Back'', style:UIBarButto
nItemStylePlain,target:nil ,action:nil)
 self.navigationItem.backBarButtonItem = back;
 contact_us_button = UIBarButtonItem.alloc.initWithTitle(""Contact
Us"", style:UIBarButtonItemStylePlain ,target:self, action:""contact_
us"")
 self.navigationItem.rightBarButtonItem = contact_us_button
end
def contact_us
 contact_us_controller = ContactUsController.alloc.initWithNibName(""
ViewController"", bundle:nil)
 presentModalViewController(contact_us_controller, animated:true)
end

Preface

[4]

Any command-line input or output is written as follows:

$rake

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes, for example, appear in the text like this: "Open
Xcode and click on Create a new Xcode Project."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.allitebooks.org

Getting Ready for
RubyMotion

"You will never win if you never begin."

–Helen Rowland

Welcome to RubyMotion iOS development essentials. The goal of this book is to
quickly acquaint you with RubyMotion and start building applications for your
favorite iOS device. Ever since the introduction of the first iPhone, followed by
the iPad, iOS devices have become very popular because of the way they have
revolutionized how people work, and thereby have begun an era of increased
productivity. The success behind the phenomenal growth of these devices lies in the
applications bundled with them, which increases their functionality exponentially.

We will learn how to develop iOS applications with RubyMotion by building sample
applications from scratch. We will try to have something tangible with a running
code by the end of every chapter so that you can see a clear progression from chapter
to chapter. Though RubyMotion and iOS Cocoa APIs are vast, and part of a fast-
moving framework, we'll focus on the smaller, more stable set of core RubyMotion
techniques that have crystallized after its release. This means that the knowledge
you gain here will not become obsolete quickly. This book is written keeping the
Zero-to-Deployment approach in mind.

Getting Ready for RubyMotion

[8]

In this chapter we will learn:

• Various ways to create iOS applications
• How RubyMotion is different from other frameworks
• RubyMotion installation

How can I develop an iOS application?
To develop iOS applications, there are various third-party frameworks available,
apart from Apple libraries. If we broadly categorize the ways in which we can create
iOS applications, we can divide them into three ways.

Native apps using Objective-C
This is the most standard way to build your application, by interacting with Apple
APIs and writing apps in Objective-C. Applications made using native Apple APIs
can use all possible device capabilities, and are relatively more reliable and high
performing (however, the topic of performance is debatable based on the quality
of the developer's code).

Mobile web applications
Mobile web applications are simple web applications extended for mobile web
browsers, which can be created using standard web technologies such as HTML5.
For example, if we browse through http://www.twitter.com in a mobile
browser, it will be redirected to http://mobile.twitter.com, which renders its
corresponding views for mobile devices. These applications are easy to create but the
downside is that they have limited access to user data (for example, phonebook) and
hardware (for example, camera).

Hybrid applications
These applications are somewhere in between mobile web apps and native
applications. They are created using common web technologies such as HTML5 and
JavaScript and have the ability to use device capabilities via their homegrown APIs.
Some of the popular hybrid frameworks include Rhomobile and Phonegap.

Chapter 1

[9]

If we compare the speed of development and user experience, it can be summed up
with the following diagrams:

From the preceding diagrams we see that mobile web apps can be created very
quickly but we have to compromise on user experience. While native apps using
Objective-C have good user experience, they have a very steep initial learning
curve for web developers.

RubyMotion is good news for both users and developers. Users get an amazing
experience of a native application and developers are able to develop applications
rapidly in comparison to applications developed using Objective-C. Let's now learn
about RubyMotion.

Getting Ready for RubyMotion

[10]

What is RubyMotion?
RubyMotion is a toolchain that allows developers to develop native iOS applications
using the Ruby programming language. RubyMotion acts as a compiler that interacts
with the iOS SDK (Software Development Kit). This gives us enormous power
to make use of Apple libraries; therefore, once the application has compiled and
loaded, the device has no idea whether it's an application made using Objective-C
or RubyMotion.

RubyMotion is a product of HipByte, founded by Laurent Sansonetti.

Laurent Sansonetti is a former Apple employee and the brain behind
MacRuby. MacRuby is the implementation of Ruby on top of Mac OS X
core technologies, which was maintained by Apple for over 4 years. And
the best part is that RubyMotion is based on MacRuby.

While developing applications with RubyMotion using Ruby, you always have
access to the iOS SDK classes. This gives you the benefit of even mixing Objective-C
and Ruby code, as RubyMotion implements Ruby on top of the Objective-C runtime
and iOS Foundation classes.

This is how a typical RubyMotion application works. The code written in
RubyMotion is fully compiled into machine code, so the application created
by RubyMotion is as fast as the one created using Objective-C.

Chapter 1

[11]

Why RubyMotion?
So far we have learned what RubyMotion is, but the question that comes to mind
is, why should we use RubyMotion? There are many reasons why RubyMotion is a
good choice for building robust iOS apps. The following sections detail a few that we
think matter the most.

If you are not an Objective-C fan
For a newbie developer, Objective-C is an arduous affair. It's complicated to code;
even for doing a simple thing, we have to write many lines of code. Though it
is a powerful language and one of the best object-oriented ones available, it is
time consuming and the learning curve is very steep. On the other hand, Ruby is
more expressive, simple, and productive in comparison to Objective-C. Because
of its simplicity, developers can shift their focus onto problem solving rather than
spending time on trivial stuff, which is taken care by Ruby itself. In short, we can say
RubyMotion allows us to use the power of Objective-C with the simplicity of Ruby.

Ruby classes used in RubyMotion are inherited from Objective-C classes. If you
are familiar with the concept of object-oriented programming, you can understand
its power. This means we can directly use Apple iOS SDK classes from your
RubyMotion code. We will be discussing more on this in the next chapter.

Ruby classes in RubyMotion have the same ancestor as Objective-C.

Getting Ready for RubyMotion

[12]

It is not a bridge
RubyMotion apps get direct access to iOS SDK APIs, which means the size of
application and performance created using RubyMotion is comparable to the one
created using Objective-C. It implements Ruby on top of the Objective-C runtime
and iOS Foundation classes. RubyMotion uses a state-of-the-art static compiler
based on Low Level Virtual Machine (LLVM), which converts the Ruby source
code into a blazing fast machine code. The original source code is never present in
the application bundle. A typical application weighs less than 1 MB, but the size can
increase depending on the use case.

Managed memory
One of the key features of RubyMotion is that it takes care of memory management.
Just like ARC (Automatic Reference Counting) with Xcode 4.4 and above, we don't
have to take the pain of releasing the memory once an object is no longer used.
RubyMotion does the magic and we don't need to think about it. It handles
it on its own.

Terminal-based workflow
RubyMotion has a terminal-based workflow; from creation of the application to
deployment, everything can be done through terminals. If you are used to working
on terminals, you know it adds to speedier development.

Easy debugging with REPL
The terminal window where you run Rake also gives you the option to debug
with REPL (Read Evaluate Print Loop), which lets you use Ruby expressions that
are evaluated on the spot, and the results are reflected on the simulator while the
application is still running. The ability to make live changes to the user interface and
internal application data structures at runtime is extremely useful for testing and
troubleshooting issues with the application, as this saves a lot of time and is much
faster than a traditional edit-compile-run loop. If this confuses you right now,
don't worry, as we will discuss more on this powerful feature in later chapters.

REPL is similar to IRB in Ruby.

Chapter 1

[13]

It is extendable
We can use RubyMotion salted gems easily by just adding them in the Rakefile.
What are RubyMotion salted gems? We can't use all the gems that are available for
Ruby right now, but there are a lot of gems specifically developed for RubyMotion.
As the RubyMotion developer community expands, so will its gem bouquet, and this
will make our application development rapid.

Third-party Objective-C libraries can be easily used in a RubyMotion project. It
supports CocoaPods, which is a dependency manager for Objective-C libraries,
making this process a bit easier.

Debugging and testing
RubyMotion has a console-based inbuilt interactive debugger for troubleshooting
the issues both on a simulator and on a device using GDB (GNU Debugger). GDB is
extremely powerful on its own, and RubyMotion uses it for debugging the compiled
Ruby code. Also, RubyMotion projects are fit for Test Driven Development (TDD).
We can write a unit test for our code from the beginning. We can use Behavior
Driven Development (BDD) with RubyMotion, which is integrated into every
project. We will discuss more about testing in later chapters.

RubyMine editor also supports RubyMotion and it has a very powerful
debugging mechanism through breakpoints.

Pop quiz
Q.1. How can we distinguish between the iOS application created by RubyMotion
and the iOS application created by Objective-C?

1. You can distinguish based on the user experience of the application.
2. You can distinguish based on the performance of the application.
3. You can't distinguish based on the user experience and performance

of the application.
Solution: If your answer was option 3, you were right. We can't distinguish
between applications created by RubyMotion or Objective-C as the user
experience and performance are similar.

Getting Ready for RubyMotion

[14]

Q.2. How can we extend RubyMotion?

1. We can use Objective-C libraries.
2. We can use all Ruby gems.
3. We can use RubyMotion-flavored gems.
4. We can't use any other libraries.

Solution: If your answer was option 1 and 3, you were right. Yes, we can use
Objective-C libraries and also RubyMotion-flavored gems.

RubyMotion installation – furnish your
environment
Now that we have got a good introduction to RubyMotion, let's set up our
development environment; but before that let's run through some of the prerequisites.

Prerequisites for RubyMotion
• You need a Mac OS: we can't develop iOS applications with RubyMotion

on any other operating system; so we definitely need a Mac OS.
• OSX 10.6 or higher: RubyMotion requires a Mac running OSX 10.6 or higher.

OSX 10.7 Lion is highly recommended.
• Ruby: the Ruby framework comes preinstalled with Mac OS X. If you have

multiple versions of Ruby, we recommend that you use Ruby Version
Manager (RVM). For more details, visit https://rvm.io/.

• Xcode: next we need to install Xcode, which includes the iOS SDK,
developed by Apple and essential for developing iOS applications. It can be
downloaded from the App Store for free. It also includes the iPhone/iPad
simulator, which will be used for testing our application.

Chapter 1

[15]

• Command Line Tools: after installing the Xcode toolchain, we need to install
the command-line tools package, which is necessary for RubyMotion. To
confirm that command-line tools is installed with your Xcode, open Xcode in
your Applications folder, go to the Preferences window, and click on the
Downloads tab. You should see the Command Line Tools package in this
list. If it is not yet installed, make sure to click on the Install button.

If you have an old version of Xcode, run the following command
on the terminal:
sudo xcode-select -switch /Applications/Xcode.app/
Contents/Developer

This command will set up the default Xcode path.

Installing RubyMotion
RubyMotion installation is really simple and takes no time at all. RubyMotion
is a commercial product that you need to purchase from www.rubymotion.com.
Once purchased, you will receive your unique license key and installer.

RubyMotion installation is a five-step procedure and is given here:

1. Once you have received the package, run the RubyMotion installer
as follows:

www.allitebooks.com

http://www.allitebooks.org

Getting Ready for RubyMotion

[16]

2. Read and accept the EULA (End User License Agreement).

3. Enter the license number you have received as shown in the
following screenshot:

4. Time for a short break—it will take a few minutes for RubyMotion to get
downloaded and installed on your system. You can relax for some time.

Chapter 1

[17]

5. Yippee!! There is no step 5. And that's how quick it is to start working with
RubyMotion.

Update RubyMotion
RubyMotion is a fast-moving framework and we need to upgrade it once there is
a new release available. Upgrading RubyMotion is again really simple—with one
command, you can easily upgrade it to the latest version.

sudo motion update

You need to be connected to the Internet for an upgrade to happen.

If you want to work on an old version, you can downgrade using the
following command:
sudo motion update –force-version=1.2

But we recommend using the latest version.

How do we check we've done everything
correctly?
Now that we have installed our RubyMotion copy, it's good practice to confirm
which version we have installed; to do this, go to the terminal and run the following:

motion –v

Getting Ready for RubyMotion

[18]

This command outputs the RubyMotion version installed on your machine. If you
get an error, you need to reinstall.

Pick your own editor – you are not forced to
use Xcode
With RubyMotion, you are not forced to use Xcode. As every developer is more
comfortable with a specific editor, you are open to choose what you like. However,
we recommend the following editors for Ruby development:

• RubyMine
• Vim
• TextMate
• Sublime
• Emacs

RubyMine now provides full support to a RubyMotion project.

How to get help
If you are facing some issues, the preferred way to get a solution is to
discuss it at the RubyMotion Google group, (https://groups.google.com/
forum/?fromgroups#!forum/rubymotion), where you can interact with fellow
developers from the community and get a speedy resolution.

Sometimes you might not get a precise response from the RubyMotion group. Not to
worry, RubyMotion support is there to rescue you. If you have a feature request, an
issue, or simply want to ask a question, you can log a support ticket—that too from
the command line using the following command:

$ motion support

This will open up a new window in your browser. You can fill and submit the form
with your query. Your RubyMotion license key, email address, and environment
details will be added automatically.

Chapter 1

[19]

The RubyMotion community is growing at a very fast pace. In a
short span of time, a lot of popular RubyMotion gems have been
created by developers.

FAQs
We believe no question is silly. By now you will have many questions in your mind
regarding RubyMotion. We have tried to answer a few of the most frequently asked
questions (FAQs) related to topics covered so far in this section. Here are a few
of them:

Q1. Are the applications created by RubyMotion in keeping with Apple guidelines?

Answer. Yes, RubyMotion strongly follows the review guidelines provided by
Apple. Many applications created using RubyMotion are already available at
the App Store.

Q2. Will my RubyMotion application work on a Blackberry, Android,
or Windows phone?

Answer. No, applications created using RubyMotion are only for iOS devices;
it is an alternative to programming in Objective-C. For a single-source
multi-device application, we would recommend hybrid frameworks such
as Rhomobile, Phonegap, and Titanium. For android development using
Ruby, you can try Rubuto.

Q3. Can I share an application with someone?

Answer. Yes and no. With the Apple Developer Program membership, you can
share your application only for testing purposes with a maximum of 100 devices,
where each device has to be registered individually with Apple. Also, you cannot
distribute your application on the App Store for testing. Once you have finished
developing your application and are ready to ship, you can submit it to Apple for
an App Store review.

Q4. Can I use Ruby gems?

Answer. Yes and no. No because we can't use normal Ruby gems, which you
generally use in your Ruby on Rails projects; and yes because you can use gems that
are specifically developed for RubyMotion, and there are already many such gems.

Q5. Will my application work on iPad and iPod Touch?

Answer. Absolutely, your application will work on any iOS devices, namely iPhone,
iPad, and iPod Touch.

Getting Ready for RubyMotion

[20]

Q6 Is Ruby allowed on the App Store?

Answer. The App Store can't distinguish between applications made using
Objective-C and those made using RubyMotion. So, no worries, our RubyMotion
applications are fit for the App Store.

Q7. Can I use third-party Objective-C libraries?

Answer. Certainly. Third-party Objective-C libraries can be used in your project.
RubyMotion provides integration with the CocoaPods dependency manager, which
helps in reducing the hassle. You also can use C/C++ code provided that you wrap it
into the Objective-C classes and methods.

Q8. Is RubyMotion open source?

Answer. RubyMotion as a toolchain is open source (available at GitHub).
The closed source part is the Ruby runtime, which is, however, very similar
to MacRuby runtime (which is open source).

Summary
Before we move to the next chapter, let's review all that we have learned so far. We
first discussed the different ways to create iOS applications. Then we started with
RubyMotion and discussed why to use it. And in the last section, we learned how
to get started with RubyMotion and which editor fits with it.

Now that we have our RubyMotion framework up and running, the next obvious
task is to create our very first application, the most rudimentary Hello World
application. In the next chapter, we will also learn the structure of the RubyMotion
application in general.

Instant Gratification – Your
First Application

"Dream the impossible, seek the unknown, and achieve greatness."

–Anonymous

Now that we are all charged up about RubyMotion and have our system set up,
let's create a simple RubyMotion application. We will try and keep it simple, but
sometimes you may feel disconnected by monotonously typing the code. Although,
going along is enough for now. Remember that mimicry is a powerful form of
learning; that's how we have learned most of our skills, such as talking, reading,
writing, and that is how you will learn to program with RubyMotion. We promise
you that by the end of this book, you will have sufficient knowledge of RubyMotion
to create an iOS application and make it live on the App Store. In this chapter we will
cover the following topics:

• Creating your first RubyMotion application
• Understanding the folder structure
• Exploring the command line
• Configuring your application
• REPL – the interactive console
• The debugger

Instant Gratification – Your First Application

[22]

Your first application
Let's start with the classic HelloWorld application. As we have discussed in the last
chapter, RubyMotion has a terminal-based flow, so let's fire up our terminal and
create our very first RubyMotion application.

$motion create HelloWorld
Create HelloWorld
 Create HelloWorld/.gitignore
 Create HelloWorld/Rakefile
 Create HelloWorld/app
 Create HelloWorld/app/app_delegate.rb
 Create HelloWorld/resources
 Create HelloWorld/spec
 Create HelloWorld/spec/main_spec.rb

If you observe closely the output on the terminal screen, you will see that a lot
of files and directories have been generated by a single motion command, which
automatically creates standard directories, and you will also see the file structure
that will quickly bring us onboard with app development, which we can work
on later and enhance to make a fully functional application. Moreover, since
the structure is common to all the RubyMotion apps, it's easy to understand.

Just like the motion command, popular frameworks such as Ruby on
Rails also have commands such as rails to create a predefined layout
of the application.

The following steps automatically compile the code and start the application
on a simulator:

1. Start the application, traverse to the application directory, and type the
following command:
$ cd HelloWorld

$rake

Build ./build/iPhoneSimulator-6.0-Development

Compile ./app/app_delegate.rb

Create ./build/iPhoneSimulator-6.0-Development/HelloWorld.app

Link ./build/iPhoneSimulator-6.0-Development/HelloWorld.app/
HelloWorld

Create ./build/iPhoneSimulator-6.0-Development/HelloWorld.app/
Info.plist

Create ./build/iPhoneSimulator-6.0-Development/HelloWorld.app/
PkgInfo

Chapter 2

[23]

Create ./build/iPhoneSimulator-6.0-Development/HelloWorld.dSYM

warning: no debug symbols in executable (-arch i386)

Simulate ./build/iPhoneSimulator-6.0-Development/HelloWorld.app

Wow! The rake command automatically compiles the code and starts
the application on a simulator. So far, we have not created any views for
our application; that's why we can see a blank screen. It looks boring, but
remember that we have not written a single line of code. So let's write some
code, create some views, and build our application again.

You can open the RubyMotion project in your favorite
editor. If you don't have an editor yet, you can use
either TextEdit or VIM.

Instant Gratification – Your First Application

[24]

2. Open the file app_delegate.rb in the app folder and add the following code
in it:
class AppDelegate
 def application(application, didFinishLaunchingWithOptions:launc
hOptions)
 alert = UIAlertView.new
 alert.message = "Hello World!"
 alert.show
 true
 end
end

3. Let's re-run our application by traversing to the application directory and
typing the execute command (rake):
$rake

The rake command will compile our code and fire up the iPhone simulator.
We can see a blue pop-up saying Hello World! in the following screenshot:

Chapter 2

[25]

Let's understand the code that we have written in AppDelegate. Here the
application method (didFinishLaunchingWithOptions:launchOptions) is
called first when our application starts. This will be the starting point of our
application and the right place to define our window.
RubyMotion functions are a combination of the usual Ruby name method
(didFinishLaunchingWithOptions) with their named parameters; a
variable directly follows the function, which it refers to, and therefore,
we don't need to know the implementation of the function.

Named parameters were added to RubyMotion to preserve
the existing Objective-C APIs, and the extra symbols
are required parts of the method name, for example,
didFinishLaunchingWithOptions:launchOptions.

As discussed, the code written in AppDelegate will be called automatically
as the application is initialized.
In the following code snippet, we created an object alert of the UIAlertView
class and then we assigned a Hello World! string to the message attribute
of the object. Now we have our alert object ready. To display this alert on the
device screen, we call the show method on the alert object as follows:
 alert = UIAlertView.new
 alert.message = "Hello World!"
 alert.show

UIAlertView is a class that is bundled in the UIKit framework of the iOS.
We can use this class to display an alert message on the screen. This class is
inherited from UIView that is inherited from UIResponder that, in turn, is
inherited from NSObject.

Why do we see the NS prefix?
Objective-C is a superset of C and thus doesn't have
namespaces like in C++; therefore, the symbols must be
prefixed with a unique prefix so that they don't collide. This
is particularly important for symbols defined in a framework.
The original code for the Cocoa frameworks came from the
NextStep libraries, and so the NextStep engineers chose to
prefix their symbols with NS.

4. To exit the application, close the simulator by selecting the exit option or
press Command + Q.

Instant Gratification – Your First Application

[26]

The iOS simulator is a great tool for testing your applications quickly.
It comes bundled with Xcode. But you can't test everything on the
simulator. To test the shaking of a device, camera, GPS, Accelerometer,
Gyroscope, and other device capabilities, you may require additional
products to pass device data to the app in the simulator.

Folder structure
In this section, we will understand the folder structure of our application as we know
from the previous section that motion create <project name> sets up the directory
structure with all the essential files to run a simple RubyMotion application. Let's walk
through each one of them to have a precise understanding of their function:

• The app folder: This is the core of your application code; you will write most
of your code in this folder. RubyMotion iterates in this folder and loads any
.rb file that it catches.

If you want to keep your code somewhere else other than
the app directory, add the folder path to the Rakefile.

• The app_delegate.rb file in the app folder: This file is at the heart of the
RubyMotion application. If you are a little familiar with iOS development,
this is the delegate file. A delegate is an object that usually reacts to some
event in another object and/or can affect how another object behaves. There
are various methods that can be implemented in UIApplicationDelegate.
These methods are called during the different phases of an application, such
as during the finish of its launch, during termination, when the application is
low on memory, and during the occurrence of important changes. While the
application is running, tracking its state transitions is one of the main jobs of
the application delegate.
App delegates use the method application:didFinishLaunchingWithOpt
ions as the first entry point. This method is called after your application has
been launched. When this method is called, your application is in the inactive
state. A few other methods available are:

 ° applicationWillEnterForeground

 ° applicationWillTerminate

 ° application:shouldSaveApplicationState

 ° application:shouldRestoreApplicationState

Chapter 2

[27]

A full list of available methods can be obtained from the iOS developer
library (http://developer.apple.com/library/ios). The good part
here is that most of the methods are self-explanatory by their name.
For example, applicationWillEnterForeground will be called
when your application is relaunched.

We see that in some iOS 6 applications, the app is restored to the
previous state; we can handle this in an application delegate.

• The resources folder: As the name suggests, the resources folder contains
static content, such as images, sounds, UI layouts, and icons that we use in
our applications.

• The Spec folder: This folder contains automated test cases. RubyMotion
supports a Ruby testing framework, Bacon; it is a small RSpec clone that
is used for writing unit, functional, and UI tests. By default, it creates
main_spec.rb as an example.

• Rakefile: With Rakefile we can configure our application name, resources,
gems to be included, and the code location. We will discuss more about
Rakefile later in this chapter.

Some more goodies
We know that it's not so much fun to have only a simple HelloWorld pop-up as our
very first application, so let's jazz up our code by adding some more goodies to our
alert box; and this time, let's do things in a much better way.

Earlier we had added an alert box in the delegate itself. Actually it is not a
good idea to write code in the application delegate. It is better to write code in a
Model-View-Controller (MVC) way. Right now we won't cover all three parts of
the MVC architecture for now let's begin with the controller for our application and
add three buttons in this alert box, add a title, and add a message for the title box.

The class UIAlertView that we've used in the last section has numerous properties,
such as title, message, delegate, cancelButtonTitle, otherButtonTitles, and many
more. Let's use a few of them in our application as follows:

1. Create a file root_controller.rb in the app folder and add the
following code:
class RootController < UIViewController
 def viewDidLoad
 alert = UIAlertView.alloc.initWithTitle "This is foo title",

Instant Gratification – Your First Application

[28]

 message:"Do you like this example?",
 delegate: nil,
 cancelButtonTitle: "cancel"
 otherButtonTitles: "Yes","No",nil
 alert.show
 end
end

2. To call this controller, we need to update our AppDelegate class. Replace
the following code in your app_delegate.rb file:
class AppDelegate
 def application
 (application,didFinishLaunchingWithOptions:
 launchOptions)
 @window = UIWindow.alloc.initWithFrame
 (UIScreen.mainScreen.bounds)
 @window.rootViewController = RootController.alloc.init
 @window.rootViewController.wantsFullScreenLayout = true
 @window.makeKeyAndVisible
 true
 end
end

3. Start the simulator by running the rake command from the console inside
your application directory as follows:

Chapter 2

[29]

That's cool; our earlier HelloWorld pop-up has now been replaced with an
alert box that has a title, a cancel button, and two other buttons.

The iOS SDK has been built around the MVC pattern that separates
responsibilities and ends up with an application that is easy to
design and maintain.

Let's understand the code
When an iPhone application starts, it puts a window on the screen, which we have
created using the UIWindow class. You can think of a window as a drawing board
where you can put anything, such as a button, textbox or label. The instance of the
UIWindow class manages and coordinates the views of an application, which are
displayed on a device screen.

A UIScreen object contains the bounding rectangle of the device's entire screen.
So, UIScreen.mainScreen.bounds returns the rectangle size according to the
screen size and orientation of the device.

Every iOS application needs at least one window, which is an instance
of the UIWindow class.

You might be wondering, should I remember all the properties and methods of the
Apple iOS SDK, such as UIAlertView? It is not necessary to memorize them as one
can always refer to the properties and methods from the iOS development library.
Nevertheless, having a basic idea about the usage of a class can come in handy
at times. The popular IDE, RubyMine, supports RubyMotion. It also has a useful
autocompletion feature.

The more you understand, the less you have to memorize.

Exploring the command line
RubyMotion is based on an underlying principle, "to use the tools which
developers love". Therefore, to create an application using RubyMotion, we
require only two tools; the first is your favorite editor and the second is the
terminal. While developing a RubyMotion application, you will be required
to familiarize yourself with the command line. Familiarity with the terminal
always helps in faster and comfortable development.

Instant Gratification – Your First Application

[30]

Now that we have created our HelloWorld application, let us explore a few
commands that we have already used, and remember that RubyMotion uses
them considerably. These commands are responsible for inaugurating our
RubyMotion projects, motion and rake.

Motion command – one-stopshop
As used previously, the motion command creates our RubyMotion project and
also supports various other options. The motion command is similar to the popular
framework Ruby on Rails' rails command. Before we go any further, let's
fire up our terminal and see what can be done using the motion command.

$ motion

Usage:

 motion [-h, --help]

 motion [-v, --version]

 motion <command> [<args...>]

Commands:

 account Access the software license account

 activate Activate the software license

 create Create a new project

 ri Display API reference

 update Update the software

 support Create a support ticket

• motion account: This displays the account/license information on
the browser.

• motion activate: If you want to activate your RubyMotion framework
with a new license or if you have not yet activated the framework, motion
activate can be used.

• motion create <project name>: This command will generate a
RubyMotion project's skeleton that will have all the essential files
needed to begin developing an iOS application.

• motion ri <API-name>: This command helps us to find the documentation
for the API that has been mentioned.

• motion update: RubyMotion is a fast-moving framework and often requires
updates. motion update updates your framework from the command
line itself.

Chapter 2

[31]

• motion support: There may be times when you have questions only an
expert can answer. motion support helps you connect with RubyMotion
directly, and you can ask a question by filling up a form. It can also be used
for any feature request or for reporting a bug.

Rake tasks – get things done fast
Rake is a simple Ruby build program with capabilities similar to Make. RubyMotion's
rake command has many predefined tasks that help you do several trivial jobs, such
as compiling your code to test in a simulator or creating a package to test on a device,
with ease. Let's fire up our terminal again and check what tasks can be performed
using rake --tasks.

$ rake ––tasks

The following table elaborates the different Rake tasks:

Rake task Description
Rake archive Create a .ipa archive
Rake archive:distribution Create a .ipa archive for distribution
Rake build Build everything
Rake build:device Build the device version
Rake build:simulator Build the simulator version
Rake clean Clear build objects
Rake config Show project config
Rake ctags Generate ctags
Rake default Build the project, then run the simulator
Rake device Deploy on the device
Rake simulator Run the simulator
Rake spec Same as a spec:simulator
Rake spec:device Run the test/spec suite on the device
Rake spec:simulator Run the test/spec suite on the simulator
Rake static Create a static library

So Rake has plenty of tasks to do, but most importantly, out of all these tasks, if we
simply run Rake, it will build and run our application on the iOS simulator.

Instant Gratification – Your First Application

[32]

Rake file – configuring your application
RubyMotion applications are highly configurable using different attributes in
a Rakefile. These attributes, by default, come with a sensible value but can be
overridden with custom values. Let's explore each one of them—this section will
come in handy, time and again, as we proceed with our application.

To see your current application configuration, run the rake config task, and you
will be presented with the following list:

$ rake config

background_modes : []

build_dir : "./build"

codesign_certificate : "Error"

delegate_class : "AppDelegate"

deployment_target : "6.0"

device_family : :iphone

entitlements : {}

files : ["./app/app_delegate.rb", "./app/twitter.rb",
"./app/twitter_controller.rb"]

fonts : []

frameworks : ["UIKit", "Foundation", "CoreGraphics",
"CoreGraphics"]

icons : []

identifier : "com.yourcompany.MacBaconUI"

interface_orientations : [:portrait, :landscape_left, :landscape_right]

libs : []

motiondir : "/Library/RubyMotion"

name : "MacBacon UI"

prerendered_icon : false

provisioning_profile : "Error"

resources_dir : "./resources"

sdk_version : "6.0"

seed_id : "Error"

short_version : "1"

specs_dir : "./spec"

status_bar_style : :default

version : "1.0"

weak_frameworks : []

xcode_dir : "/Applications/Xcode.app/Contents/Developer"

Chapter 2

[33]

You can see the entire configuration settings for your application. These settings can
be modified in a Rakefile. You may find it easy to understand what these properties
do by their names, but let us explain a few of them:

• name: This is where you can specify the name of your project as a string.
By default, the name of your application will be the attribute that you
passed during motion create.

• version: This variable saves the current application version as a string;
it is 1.0 by default.

• identifier: The project identifier is a string that is in reverse DNS—a
naming convention that is in the reverse order of the domain name
notation—such as com.yourcompany.yourapp.

• delegate_class: This is where you specify your application delegate class
as a string that is loaded once the application starts. The default value is
AppDelegate and the class is defined in the app/app_delegate.rb file.
However, we can rename the AppDelegate class to a custom name of our
choice and this then has to be updated in the Rakefile.

• Files: This shows every .rb file in the app directory in an array format.
The default value is the result of executing the following expression:
Dir.glob(./app/*/.rb)

• framework: This shows the names of the iOS frameworks that are used in our
application in an array format. Soon you will be using many iOS frameworks,
such as CoreFoundation, CoreMotion, and others, with your application.
The build system is capable of dealing with dependencies, therefore they
should be mentioned here. The default value is either UIKit, Foundation,
or CoreGraphics.

• libs: This variable shows the library paths that are to be linked to the
application in an array format. It contains the path to public system libraries,
for example, /usr/lib/libz.dylib. The default value is [], an empty array.

• build_dir: This variable is used to specify the directory path where you
want the application build to be created in a string format. It must be relative
to the project directory. The directory initially gets created automatically. In
case it is not created, a temporary directory will be used instead. The default
value is build.

• resources_dir: This variable is used to specify the directory for the resource
files where all the images and icons go in a string format. It must be relative
to the project directory. The default value is resources.

Instant Gratification – Your First Application

[34]

• spec_dir: This variable is used to specify the directory of spec files where
all our test cases are present in a String format. The default value is spec.
It should be relative to the project directory.

• icons: This variable lists the icons used for the application present in the
resources folder in an array format, for example, icon.png and/or
icon-72.png. The files should be in tune with Apple's HIG (Human
Interface Guidelines). By default, the value is [], an empty array.

• fonts: This variable lists the names of the font files present in the resources
directory in an array format. These fonts will be taken into account while
either generating the application bundle or testing on a simulator.

• prerendered_icon: iOS application icons usually have a reflective shine
on them. For that purpose, this property is used. If it is false, we will get
the reflective shine on the icon. By default, the value is false.

• device_family: With this property, we can specify which family of iOS
device our application supports. The values can be iphone, ipad, or for
universal application [:iphone, :ipad]. By default it is :iphone.

• interface_orientations: Apple iOS devices support various
orientations for an application. They can be portrait, landscape_left,
landscape_right, or portrait_upside_down. By default, the value is
an array of :portrait, :landscape_left, or :landscape_right.

• Xcode_dir: This configuration tells us where the Xcode is installed.

Giving a new value to the XCode_dir property should generally
be done first, before changing other Rakefile properties.

• sdk_version: This configuration lets us decide which SDK version will be
used. By default, the value is the most recent version of the supported SDK.

• deployment_target: This configuration shows which iOS SDK to target for
the RubyMotion project. By default, the value is of the current SDK version
that is installed, but this can be changed to any desired version of the iOS
SDK, for example, 6.0 that will use iOS SDK Version 6.0.

• codesign_certificate: This configuration shows which code-signing
certificate is used. By default, the value is the first iPhone developer
certificate in the keychain utility; for example, in our case it is iPhone
developer: Paul Akshat (S3KPMT842Z).

• provisioning_profile: This configuration variable specifies the path of
the provisioning profile.

• seed_id: The Apple provisioning profile has an identifier. This configuration
shows us the same, which is usually the first application identifier picked
from the provisioning profile.

Chapter 2

[35]

REPL – the interactive console
RubyMotion comes with an interactive console that lets us traverse and scan the code
that we are using in our application. The good thing is that the console is connected
to the application running on the simulator. This means that if we make any changes
from the console, it will be reflected on the simulator in real time. Let's try this with
our HelloWorld application.

Run the application as follows:

$rake

As expected, it will open a simulator and the terminal screen will show:

(main)>

Now hold the Command key and hover the mouse over the simulator. You will see
a red-bordered box. As we move the mouse pointer over an element, we can see its
corresponding class object appearing in the terminal window (UIView:0xc5710c0)?
as seen in the following screenshot. Now click the mouse to select the object that you
want to work on dynamically.

www.allitebooks.com

http://www.allitebooks.org

Instant Gratification – Your First Application

[36]

Try the following command on the terminal and observe the changes in the simulator:

self returns the current object selected by the mouse.

(#<UIView:0x7652680>)> self

=> #<UIView:0x7652680>

Create an object blue for the UIColor class and assign the color blue to the variable
as follows:

(#<UIView:0x7652680>)> blue = UIColor.blueColor

To change the background color of the view, use the backgroundColor property of
the selected view as follows:

=> #<UICachedDeviceRGBColor:0xb05a800>

 (#<UIView:0x7652680>)> self.backgroundColor = blue

=> #<UICachedDeviceRGBColor:0xb05a800>

Make sure that the background color on the simulator has been changed to blue as
shown in the following screenshot:

Let's dismiss the alert box by clicking on any button and put a new alert box with the
following code:

a = UIAlertView.new
a.title = "My Title"
a.message = "Hello World!"
a.show

Chapter 2

[37]

The simulator shows a new alert box on screen without compiling the code as shown
in the following screenshot:

You can dismiss the alert box as follows:

(main) > a.dismiss

We can see how REPL is a great tool for developing applications for iOS and how it
helps us make changes dynamically. To make these changes permanent we need to
add the same code to our source code.

Debugger – catch your mistakes!
A typical debugger provides the ability to halt when specific conditions are
encountered. It also offers sophisticated functions, such as running a program step
by step, breaking or pausing the program for an examination based on breakpoints,
and tracking the values of the variables at that state. RubyMotion Version 1.24
and above support debugging using GDB: the GNU project debugger
(http://www.gnu.org/software/gdb/).

Instant Gratification – Your First Application

[38]

The RubyMotion debugger provides the following inbuilt debugging facilities:

• It stops the program at a specific line
• It examines the problem when the program has stopped
• It checks the value for the variables at a specific breakpoint

The RubyMotion compiler implements the DWARF debugging format's
metadata for the Ruby language. This allows external programs, such as
the debugger in our case, to retrieve source-level information about the
RubyMotion application. The metadata is saved under a .dSYM bundle file
at the same level as the .app bundle in the build directory of your project.

How to start debugging
There are three ways in which we can start the debugger.

While testing on a simulator
We can start the debugger with a simulator. The debugger will directly attach itself
to the app and replace the interactive shell (REPL).

To start, just type:

$rake simulator debug=1

While testing on a device
We can start debugging with the device running simultaneously. The build system
will start the iOS debugging server on the device and then remotely attach the
debugger on your shell right after the application has been deployed on the device.

$rake device debug=1

In the release mode, local variables might not be accessible in the debugger as they
are optimized to fit into CPU registers.

To test your application on a device, you are required to enroll
for the Apple Developer Program. We will discuss this in detail
in later chapters.

Chapter 2

[39]

Entering commands before starting
We might need some breakpoint before loading the application; we can do this
as follows:

$rake debug=1 no_continue=1

On execution of this command, the GDB will start and we will be able to set the
breakpoints. This is discussed in more detail in the next section.

Breakpoint
We can put breakpoints at a specific location of our application code using the break
command and then pass the location where the debugger should stop the execution
of the code using the file_name:line_number notation.

Let's try putting a breakpoint in our current application. To do so, we need to start
our HelloWorld application in debugging mode as follows:

$rake simulator debug=1

/Library/RubyMotion/lib/motion/project/config.rb:89:

 Build ./build/iPhoneSimulator-5.1-Development

 Simulate ./build/iPhoneSimulator-5.1-Development/HelloWorld.app

Attaching to process 86665.

Reading symbols for shared libraries . done

0x8fe6c030 in __dyld__dyld_start ()

Function "rb_exc_raise" not defined.

Breakpoint 1 (rb_exc_raise) pending.

Function "malloc_error_break" not defined.

Breakpoint 2 (malloc_error_break) pending.

Reading symbols for shared libraries
...
. done

Breakpoint 1 at 0x37136

Pending breakpoint 1 – "rb_exc_raise" resolved

Breakpoint 2 at 0x97bdec97

Pending breakpoint 2 – "malloc_error_break" resolved

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

Reading symbols for shared libraries ... done

(gdb)

Instant Gratification – Your First Application

[40]

Now let's set a breakpoint on the eighth line of the file app_delegate.rb as follows:

(gdb) break app_delegate.rb:8

Breakpoint 3 at 0x80085: file app_delegate.rb, line 8

With the preceding command, the execution of your application will halt at line
number 8 of the app_delegate.rb file.

Listing breakpoints
To list the breakpoints that have been set up in the current debugging environment,
we use the info breakpoint command as follows:

(gdb) info breakpoint

Num Type Disp Enb Address What

1 breakpoint keep y 0x000adff6 <rb_exc_raise+6>

2 breakpoint keep y 0x97bdec97 <malloc_error_break+6>

3 breakpoint keep y 0x00080085 in rb_scope__application:didFinish
LaunchingWithOptions:__ at app_delegate.rb:8

We can see that the list of breakpoints created in the last section can also be seen in
the list.

Moving between the different breakpoints
The continue command will continue the execution of the program until it reaches
the next breakpoint.

(gdb) continue

We can also use its alias c as follows; it is more handy to use:

(gdb) c

Breakpoint 3, rb_scope__application:didFinishLaunchingWithOptions:__
(self=0x9408440, application=0x9401750, launchOptions=0x4) at app_
delegate.rb:8

8 alert.show

The next command will continue the execution of the program until the next
source-level location. This is usually the very next line in the Ruby source code.
You should have a look at the terminal for the relevant source code line.

(gdb) next

Chapter 2

[41]

Checking the value of a local variable
This is an important feature of debugging, to check the value of a variable at a
specific breakpoint.

(gdb) pro alert

#<UIAlertView:0x944b9b0>

This shows that the alert is an object of the UIAlertView class

Pro (print-ruby-object) accepts two parameters as follows:

• The object on which the variable will be retrieved.
• The variable name that you want to get.

To check the variables available for us to execute, run the
following command:

$info locals

Checking the value of an instance variable
We can also check the value of an instance variable during some breakpoint using
pri (print-ruby-ivar) as follows:

pri self "@tweet"

pri accepts two commands as follows:

• The object on which the instance variable will be retrieved.
• The instance variable that you want to get. Make sure to include the @

character in the name.

You can use pri @tweet instead of pri self @tweet.

Disable breakpoint
To disable a breakpoint, use disable followed by the breakpoint number; it has to be
disabled as follows:

(gdb) disable 3

Instant Gratification – Your First Application

[42]

Exit debugger
Type quit to exit the debugger as follows:

(gdb) quit

The program is running. Quit anyway (and detach it)? (y or n) y

Detaching from process 6792.

Downloading the example code
You can download the example code files for all Packt books you have
purchased, and the graphics bundle of this book from your account at
http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Summary
Let's recap what we have done in this chapter:

• Created a simple RubyMotion application
• Discussed the basic RubyMotion application structure
• Explored the commands available with RubyMotion
• Performed different Rake tasks with RubyMotion
• Learned how to configure your RubyMotion application
• Worked with the interactive console—REPL
• Debugged your application using the RubyMotion debugger

In the next chapter, we turn our attention to RubyMotion data type objects—such as
strings and arrays. We will also learn how to interface with C and we will focus on
memory management in RubyMotion.

Evolution – From Objective-C
to RubyMotion

"Actually, I'm trying to make Ruby natural, not simple."

— Matz

In this chapter, we will have a detailed discussion on how Ruby is implemented
in RubyMotion. We will also understand how we can use the various Objective-C
objects in our Ruby code. As we know, the iOS SDK is written in Objective-C, which
is a simple extension of the C language. Since this is a book on learning RubyMotion,
we will not focus too much on this. However, we will make sure you have enough
knowledge on Objective-C to program in RubyMotion. In this chapter, we will cover
the following topics:

• How Ruby and Objective-C work together in RubyMotion
• In what ways are RubyMotion objects inherited from Objective-C
• Interfacing with C and Objective-C – learning about data types
• Memory management with RubyMotion

Ruby and Objective-C – a partnership
You must be wondering how Objective-C and Ruby can work together,
as Objective-C is a compiled language and Ruby is an interpreted language.
Then how come they work together in RubyMotion?

Evolution – From Objective-C to RubyMotion

[44]

In reality, Objective-C in the iOS SDK not only has a compiler, but also has a runtime
system to execute the compiled code. This runtime system acts as an interface for
the Objective-C language; this is what makes the language work. RubyMotion takes
advantage of the Objective-C runtime and our Ruby code interacts through this
runtime system in just the same way as an Objective-C code does. That means Ruby
and Objective-C are effectively working on top of the Objective-C runtime.

The preceding diagram represents the way RubyMotion and Objective-C work
together in an iOS SDK ecosystem. In simple terms, this means we can access all iOS
SDK classes with RubyMotion through the Objective-C runtime. The Foundation
Framework is an Objective-C framework, but the great news is that RubyMotion
is, in fact, based on Objective-C runtime; therefore, the classes that are defined can
naturally be re-used in RubyMotion.

The runtime library is written mainly in the C language and is open
source. This is available at http://opensource.apple.com.

Ruby and Objective-C share the same
ancestor
Some of the built-in classes of RubyMotion are based on the Foundation
Framework. To better understand this, let's fire up REPL in our console for our
existing RubyMotion application from the previous chapter. As you may remember,
in that chapter we had learned how to use REPL. Run the rake command to start
REPL and then run the following commands in REPL:

Chapter 3

[45]

(main)> a = 5
=> 5
(main)> a.class
=> Fixnum
(main)> a.superclass
=> NSNumber
(main)> name = ""Abhishek""
=> ""Abhishek""
(main)> name.class
=> String
(main)> name.superclass
=> NSMutableString
(main)> a.superclass.superclass
=> NSString
(main)> a.superclass.superclass.superclass
=> NSObject

In the preceding example, we have found the root for the Ruby integer and string
classes. Firstly, we declared a variable and assigned an integer value to it. When we
trace its class, we see a familiar name, Fixnum, which is a Ruby data type. But when
we trace back to the super class for Fixnum, we see that it's an Objective-C Integer
type. This shows that the RubyMotion Fixnum data type is inherited from NSNumber.

Similarly, when we declare a string variable name and then trace its class, we see
a recognizable Ruby class, String. Moreover, this string class is inherited from
NSMutableString. This means the String Ruby class is a subclass of the
Objective-C String class in RubyMotion.

A direct consequence of hosting the Ruby built-in classes over Foundation is that
their instances respond to more messages. For example, the NSString class defines
the uppercase String method. Since the String class is a subclass of NSString,
strings created in Ruby also respond to that method, as shown here:

''hello''.uppercaseString # => ''HELLO''

This gives us immense flexibility to not only use Ruby methods, but also access
thousands of classes and methods from the Foundation Framework, making it
possible to create any app one can imagine.

Evolution – From Objective-C to RubyMotion

[46]

Other data types are also inherited in the same fashion. Just have a look at the
following table (source – http://www.rubymotion.com/developer-center/
guides/runtime):

Ruby class Ancestors
foo NSObject → Kernel
String NSMutableString → NSString → Comparable → NSObject

→ Kernel
Array NSMutableArray → NSArray → Enumerable → NSObject →

Kernel

Hash NSMutableDictionary → NSDictionary → Enumerable →
NSObject → Kernel

Numeric Comparable → NSNumber → NSValue → NSObject → Kernel
Time Comparable → NSDate → NSObject → Kernel

You must have noticed that strings created in RubyMotion inherit from
NSMutableString instead of NSMutable. Isn't that strange? It will be good to
know the difference between these two. NSMutableString objects provide us
with methods to change the underlying array of characters that they represent,
while NSString objects do not. For example, NSMutableString provides us
methods such as appendString, deleteCharactersInRange, insertString,
and replaceOccurencesWithString. All these methods operate directly on the
NSMutableString object in memory, which means we can modify the original value.
On the other hand, NSString is a create-once-then-read-only string. We have many
manipulation methods (substring, uppercaseString, and so on) for NSString
objects. However, they return a new NSString object and never actually modify
the existing string in memory, as shown here:

NSString.new.strip! # raises RuntimeError: can't
 # modify frozen/immutable string

NSMutableString.new.strip! # works

As there is no read-only string in Ruby and we need to update the string too, we are
using NSMutableString by default. The same goes for arrays and hashes that are
inherited from NSMutableArray and NSMutableDictionary respectively.

Foundation comes with the NSObject root object class, as well as a set
of other primitive object classes. In RubyMotion, Object is an alias of
NSObject, making NSObject the root class of all Ruby classes.

Chapter 3

[47]

Interfacing with C and Objective-C
Although working with RubyMotion does not require one to learn Objective-C, or
even C for that matter, sometimes when you want to use the iOS API, knowledge
of its Ruby equivalent is beneficial. Objective-C is a superset of the C language.
Objective-C methods can therefore accept and return C-language types.

Types
C language—and indirectly Objective-C—has a set of basic data types that are used
in the iOS SDK APIs. In order to accept or return these data types, we need some
equivalent data types for Ruby.

For example, let's create a function named foo that accepts a C integer type as a
parameter and returns the some_number integer:

int foo(int some_number)
{
 return some_number;
}

So, if we want to call the preceding function from Ruby, we will require some
equivalent Ruby type. Basic C types cannot be created from Ruby directly, but
are automatically converted from and to equivalent Ruby types. You don't have
to worry, RubyMotion will take care of this for you.

Let's discuss all of the basic C types and discuss how they are converted from
C data types to Ruby data types:

• void:
 ° From Ruby to C – nil is similar to void.
 ° From C to Ruby – void is similar to nil.

• char, short, int, long, and long_long:
 ° From Ruby to C – If the object is Fixnum or Bignum, the value

is returned. If the object is true or false, 1 or 0 are returned
respectively. The char data type is mapped with string and
the value returned is the same.

 ° From C to Ruby – Either a Fixnum or Bignum object is returned.
• Bool/BOOL:

 ° From Ruby to C – If the value of an object is false or nil, false will
be returned, else true will be returned. Whereas, for 0, Fixnum true
will be returned.

 ° From C to Ruby – true or false will be returned.

Evolution – From Objective-C to RubyMotion

[48]

• float and double:

 ° From Ruby to C:
 ° For a float object, a value is returned.
 ° For true or false, 1.0 or 0.0 are returned respectively.
 ° If the object responds to the to_f message, the message is

sent and the result is returned.

 ° From C to Ruby – it is the float object.

Enumerations and constants
Generally, C code uses enumerations and constants extensively, but we don't
have these in Ruby. So they are mapped to constants of the Object class. Both
enumerations and constants defined by the Foundation can be directly accessed.

For example, NSNotFound is an enumeration and we can directly access it as
shown here:

if ary.indexOfObject(obj) == NSNotFound
 # Some Code
end

Also, a constant such as AVMediaTypeAudio can be directly accessed.

There are many enumerations or constants defined in
the iOS SDK that start with a lowercase letter, such as
kCLLocationAccuracyNearestTenMeters, which starts with
k. But since Ruby constants always begin with a capital letter, their
names must be changed by making the lowercase of the first letter
uppercase. Therefore, the constant from the preceding example becomes
KCLLocationAccuracyNearestTenMeters; (starting with a capital
K) in Ruby.

locationManager.desiredAccuracy =
kCLLocationAccuracyNearestTenMeters;

NameError: undefined local variable or method

locationManager.desiredAccuracy =
KCLLocationAccuracyNearestTenMeters; # works

Chapter 3

[49]

Functions
C functions are available as methods to be used in Ruby code in RubyMotion.

For example, the CGPointMake function can be used in Ruby to create a
rectangular structure.

pt = CGPointMake(100, 200)
''Hello''.drawAtPoint(pt, withFont: font)

Many functions in the iOS SDK start with a capital letter. And there is also a
possibility that a few of them accept no arguments; in such cases, it can create
confusion and the compiler may treat such expressions as constants. So it is very
important to use parentheses explicitly when calling such functions, as shown in
the following example:

NSHomeDirectory # NameError: uninitialized constant
 # NSHomeDirectory
NSHomeDirectory() # works

Inline functions, which are implemented in the framework's header, are
also supported by RubyMotion.

Structures
A structure is a collection of one or more variables, possibly of different data types,
grouped together under a single name for convenient handling. To map C structures
with Ruby, RubyMotion uses classes, which means structures can be created in
Ruby and then passed to APIs that expect C structures. Similarly, APIs returning
C structures will return an instance of the appropriate structure class.

A structure class has an accessor method for each field of the corresponding
C structure it wraps.

For example, the following piece of code creates a CGPoint structure, sets its x and y
fields, and then passes it to the drawAtPoint:withFont: method:

pt = CGPoint.new
pt.x = 100
pt.y = 200
''Hello''.drawAtPoint(pt, withFont: font)

Evolution – From Objective-C to RubyMotion

[50]

We can also pass this value directly to the constructor:

pt = CGPoint.new(100, 200)
''Hello''.drawAtPoint(pt, withFont: font)

RubyMotion will also accept arrays for our convenience. They must contain the same
number and type of objects expected in the structure. Here is an example:

''Hello''.drawAtPoint([100, 200], withFont: font)

Pointers
C and Objective-C both commonly make use of pointers and therefore it is
extensively used in the iOS SDK too. In the iOS SDK, pointers are usually used
as arguments to return objects by reference. For example, the NSData method
expects an error pointer that will be set to an NSError object in case of a failure.

As there is no pointer concept in Ruby, RubyMotion uses the Pointer class in order
to create and manipulate pointers. To create a new pointer, use the following syntax:

name = Pointer.new(:char)

We can see that we have passed char in a new initializer, which will create a string
pointer. Similarly, to create a different type of pointer, we can pass the following
parameters in the Pointer class (source – http://www.rubymotion.com/
developer-center/guides/runtime/#_pointers):

C type pointer Runtime type string Shortcut symbol
id* ""@"" :object

Char ""c"" :char

unsigned char* ""C"" :uchar

short* ""s"" :short

unsigned short* ""S"" :ushort

int* ""i"" :int

unsigned int* ""I"" :uint

long* ""l"" :long

unsigned long* ""L"" :ulong

long long* ""q"" :long_long

unsigned long long* ""Q"" :ulong_long

float ""f"" :float

double* ""d"" :double

Chapter 3

[51]

Pointers to C characters, which are also called C strings, are automatically
converted from and to String objects by RubyMotion.

Classes
Creating a class in Ruby is simple, but since the iOS SDK is written in Objective-C,
it is necessary to understand Objective-C interfaces and learn how to use them
with Ruby.

An Objective-C interface always starts with a minus or a plus sign, which is used
to declare an instance or class method.

For example, the following interface declares the foo instance method on the
Foo class:

@class Foo
- (id)foo;
 @end

The methods that instances of a class can use are called instance methods
and are marked with a minus sign.

The following declares the foo class method on the same class:

@class Foo
+ (id)foo;
 @end

The names of the methods that can be used by class objects are preceded
by a plus sign.

As seen in the previous section, arguments in Objective-C methods can be named
with a keyword. The following interface declares the sharedInstanceWithObject:a
ndObject: class method on the Test class:

@class Test
+ (id)sharedInstanceWithObject:(id)obj1 andObject:(id)obj2;
 @end

Evolution – From Objective-C to RubyMotion

[52]

The corresponding Ruby method for the preceding code will be as follows:

instance = Test.sharedInstanceWithObject(obj1, andObject:obj2)

It will call the sharedInstanceWithObject method of the Test class, where obj1
and obj2 are variables of the arguments.

Objective-C messages
We can send and define Objective-C messages using RubyMotion. As Objective-C
uses named arguments, which is unlike Ruby methods, it looks different from a
typical Ruby method if it contains more than one argument.

Each argument in Objective-C has a keyword associated with it and the final
Objective-C message is the combination of all these keywords.

UIColor *myColor = [UIColor colorWithRed:0.5f green:0.5f blue:0.5f
alpha:1.0f];

Objective-C messages can be sent from RubyMotion using a similar syntax.

myColor = UIColor.colorWithRed(0.5, green:0.5, blue:0.5, alpha:1)

The message keywords are colorWithRed:, green:, blue:, and alpha:.
The complete message is the combination of these keywords. If you are a Ruby
developer, you will probably find it strange to see the colon in the Ruby code. The
reason is that this is called a named parameter and it is very common in RubyMotion
applications. As we interact a lot with Objective-C methods and these receive named
parameters, we have to pass them in this way.

The syntax used to define Objective-C selectors was added to
RubyMotion and is not part of the Ruby standard.

RubyMotion selectors
The RubyMotion runtime provides convenient shortcuts for certain Objective-C
selectors (source – http://www.rubymotion.com).

Selector Shortcut
setFoo: foo=

isFoo foo?

objectForKey: []

setObject:forKey: []=

Chapter 3

[53]

Memory management
Memory management is an important programming principle of handling the
life cycles of objects and releasing them when they are no longer needed in your
application. Management of object memory is necessary to have good performance;
if an application doesn't free unneeded objects, its memory footprint grows and
performance suffers.

RubyMotion provides automatic memory management; you do not need to reclaim
unused objects. Also, as memory in any iOS device is limited, the bad acting
application would just be killed at some point.

Memory management in a Cocoa application that doesn't use garbage collection is
based on a reference-counting method. RubyMotion also uses reference-counting
ways to reclaim memory. When you create or copy an object, its retain count is 1.
Thereafter, other objects may express an ownership interest in your object, which
increments its retain count. The owners of an object may also surrender their
possession interest in it, which reduces the retain count. When the retain count
becomes zero, the object is deallocated (destroyed).

Objects created by Objective-C or the Core-Foundation-style APIs are automatically
managed by RubyMotion. There is no need to send the retain, release, or auto-release
messages to them, or to use the CFRetain or CFRelease functions.

Summary
Let's recap what we have just learned in this chapter:

• How Objective-C and Ruby work together
• How RubyMotion objects are inherited from Objective-C
• How RubyMotion interfaces with C and Objective-C
• Memory management offered with RubyMotion

In the next chapter, we will learn how we can use the Model-View-Controller
(MVC) design principle in our RubyMotion application. We will discuss in detail
about the MVC architecture. Later in the chapter, we will have some hands-on
examples to learn how to integrate our mobile application with an external API.

Mastering MVC Paradigm

"Model-View-Controller is not an inescapable law of purity, but a pragmatic
principle of effectiveness."

—Anonymous

In this chapter we will learn about Model-View-Controller, popularly abbreviated
as MVC, which is a design principle based on the ideas of code reusability and
separation of concerns (SoC). This architecture imposes serious constraints on
the structure of an application, however, surprisingly these restrictions make it
considerably easier to design and maintain the application. In this chapter we
will be covering the following topics:

• Understanding the Model-View-Controller paradigm
• Creating a RubyMotion application using MVC
• Connecting to an external API
• Enhancing the application with search and images
• The do-it-yourself exercise

Model-View-Controller (MVC)
Model-View-Controller (MVC) is a design principle that separates the
representation of information from the user's interaction. The main purpose of MVC
is to make the code more modular and reusable, which increases the product quality.

Mastering MVC Paradigm

[56]

Most of the popular commercial and noncommercial application frameworks are
created to enforce the MVC design pattern. However, RubyMotion does not force
you to use MVC style, but this way of programming is central to a good design for
application development. If we make use of MVC while developing our application,
it will be beneficial for us later on, as we will be able to add new features more easily.

Apple's Cocoa framework is also based on
Model-View-Controller.

As the name implies, the application is divided into three distinct parts: model, view,
and controller, where model encapsulates application data, view displays and allows
editing the data, and controller is the place where logic of the interaction between the
two (model and view) resides. Let's understand each of them individually.

Model
The model contains the application data and business rules. The model could just
be the actual data store, either in-memory (maybe as an NSArray or NSDictionary
class) or to-and-from disk. In a more complex app, you may choose to use a SQLite
database or Core Data, and your model would be a simple instance or one piece
of data.

View
A view is that part of an application that outputs information from the model via
the controller. The logic should never be written in the view; the sole purpose of the
view is only to present information. In iOS, and also in RubyMotion, most views are
subclasses of the UIView class that provide the capability for handling touch events
and drawings. The UIKit framework contains classes to draw typical interface
elements such as tables (lists), buttons, text fields, and sliders.

Controller
A controller is a link between the model and view. A controller acts as an
intermediary between one or more application views, and one or more of its models.
In iOS, the controller is generally a subclass of UIViewController that also manages
a view; this class is also responsible for responding to delegation messages and
target-action messages.

Chapter 4

[57]

The Model-View-Controller layers are very closely coupled, as shown in the
following diagram:

Model

Controller

U
pd

at
e

N
ot

ify

U
se

r
Ac

tio
n

U
pd

at
e

View

The View and Controller layers interact through User Action and Update as
shown in the diagram. Whenever the View layer creates or modifies data, it is
communicated to Controller through User Action. Similarly, whenever Model
updates any change it will first Notify the Controller and will then be reflected
on the View by an Update.

The restaurant application
Now to better understand MVC we will create a restro application. This application
will search restaurants in a city. Does the world need another restaurant application?
No, but that won't stop us from writing one. On a serious note, it will help us to
explore many features of RubyMotion and will also help us learn and master MVC.

Let's understand what we are going to do in this application. A restaurant
application will list out the eat outs, which we can search based on the city.
The list of places will have a thumbnail image along with information related
to the restaurant.

Mastering MVC Paradigm

[58]

It's good practice to imagine views of your application in the form of a mockup.
The best way to do this is by using a white board with illustrations that you
envision for your application.

Search

maclaren’s
central perk
cheesecake factory

You must be wondering where all this data will come from. Do I need to hardcode
it right into my application? That does not make sense! To begin with, we will
hardcode the values; but later on, as we proceed and evolve, we will learn how
to use an external API to fetch information, which is something often done in
real-world applications. We have created a backend API exclusively for this
book, having all the data available for practice.

Let's now create a restro project with RubyMotion, using the magical
motion command:

>motion create restro

 Create restro

 Create restro/.gitignore

 Create restro/Rakefile

 Create restro/app

 Create restro/app/app_delegate.rb

 Create restro/resources

 Create restro/spec

 Create restro/spec/main_spec.rb

As discussed in earlier chapters, the motion command will create the basic structure
for a RubyMotion project.

Feel free to choose your IDE. If you are using RubyMine, you
can also create and run the application from the IDE.

Chapter 4

[59]

Creating a model
For our restro application, let's brainstorm what entities and attributes will
be required. The first thing that comes to mind is a restaurant entity having the
following attributes:

• name: This will contain the name of the application
• thumb_url_image: This will contain the image URL for the restaurant
• food_type: This will contain the type of food the restaurant serves
• desc: This will contain a small description about the restaurant

Looks good! Let's create a model, Restaurant, that will store all the information
related to restaurants.

Create a ruby (.rb) file, which will be our model inside the app folder, and name it
restaurant.rb:

class Restaurant
attr_accessor :name,:thumb_url_image, :food_type, :desc
 def initialize(restaurant)
 @name =restaurant['name']
 @thumb_url_image = restaurant['thumb_url_image']
 @food_type = restaurant['food_type']
 @desc = restaurant['desc']
 end
end

We have created a class called Restaurant. Generally we need to first create getter
and setter methods for the variables. However, in Ruby we don't need to separately
create getters and setters, instead we use a single method called attr_accessor to
do that; this idea of syntactic sugar is commonly used in various trivial jobs in Ruby,
which indeed saves a lot of time.

Syntactic sugar is a syntax within a programming language that is
designed to make things easier to read or express. An example of
syntactic sugar is as follows:

attr_accessor :name,:thumb_url_image, :food_type, :desc

Mastering MVC Paradigm

[60]

After setting up attr_accessor, in order to assign values while creating an object
of the Restaurant class, we have created an initialize method. This gives us a
chance to write code that sets up our object's state.

 def initialize(restaurant)
 @name =restaurant['name']
 @thumb_url_image = restaurant['thumb_url_image']
 @food_type = restaurant['food_type']
 @desc = restaurant['desc']
 end

Whenever we create an object of the Restaurant class, it will call the name method,
and initialize and execute it. We have to pass a hash of restaurants while creating the
object. To test the model, let's fire up our terminal in the application directory and
run rake:

>restaurant = Restaurant.new({'name'=> "Pizza madness", 'thumb_url_
image'=> nil, 'food_type'=>"italian", 'desc'=>"Pizza at your door step in
30 min"})
=> #<Restaurant:0xb5376a0 @name="Pizza madness" @thumb_url_image=nil @
food_type="italian" @desc="Pizza at your door step in 30 min">

> restaurant.name
=> "Pizza madness"

Great! Our Restaurant class is created and we can now create objects of this class.

Writing more code
A lot of iOS applications use table structure to represent their information. This
method of design is best for information-based applications, like the one we have in
our example. So let's create a table view for our landing page, which will populate a
list of restaurants.

Let's now update the app_delegate.rb file inside the app folder:

class AppDelegate
 def application(application,
 didFinishLaunchingWithOptions:launchOptions)
 @window = UIWindow.alloc.initWithFrame
 (UIScreen.mainScreen.applicationFrame)
 @window.rootViewController =
 RestroController.alloc.initWithStyle(UITableViewStylePlain)
 @window.rootViewController.wantsFullScreenLayout = true
 @window.makeKeyAndVisible
 true
 end
end

Chapter 4

[61]

The UIWindow class defines an object known as window, which manages and
coordinates different views of your application, and displays them on the device
screen. A UIScreen object contains the bounding rectangle of the device's entire
screen. So UIScreen.mainScreen.applicationFrame returns the rectangle size
according to the screen size and orientation of the device. Also we need to tell the
UIWindow object which controller to load:

@window.rootViewController =
 RestroController.alloc.initWithStyle(UITableViewStylePlain)

We have assigned the RestroController class as the root controller for our
application in AppDelegate. So let's create restro_controller.rb in the app folder:

class RestroController < UITableViewController
 def viewDidLoad
 super
 @restaurant1 = Restaurant.new({'name'=> "Pizza madness",
 'thumb_url_image'=> nil, 'food_type'=>"italian",
 'desc'=>"Pizza at your door step in 30 min"})
 @restaurant2 = Restaurant.new({'name'=> "Lavasa",
 'thumb_url_image' => nil,'food_type'=>"italian",
 'desc'=>"best Coffee house in town"})
 @restaurants = [@restaurant1,@restaurant2]
 view.backgroundColor = UIColor.whiteColor
 @myTableView = UITableView.alloc.initWithFrame
 (view.bounds, style:UITableViewStylePlain)
 @myTableView.dataSource = self
 @myTableView.delegate = self
 view.addSubview(@myTableView)
 end

 def tableView(tableView, numberOfRowsInSection:section)
 @restaurants.count
 end

 def tableView(tableView, cellForRowAtIndexPath:indexPath)

 @reuseIdentifier ||= "CELL_IDENTIFIER"

 cell = tableView.dequeueReusableCellWithIdentifier
 (@reuseIdentifier) || begin
 UITableViewCell.alloc.initWithStyle
 (UITableViewCellStyleDefault, reuseIdentifier:@
reuseIdentifier)
 end
 cell.textLabel.text = @restaurants[indexPath.row].name
 cell
 end

end

Mastering MVC Paradigm

[62]

Now let's fire up our terminal again and see what we have done:

>rake

The previous screenshot shows a table structure with a list of restaurants. Now that's
some impressive work. Let's now understand what we did in the previous section.
Our code has three parts—model, view, and controller. We have already explained
about the restaurant model. We first created an object for the model and assigned
some value to it:

@restaurant1 = Restaurant.new({
 'name'=> "Pizza madness", 'thumb_url_image'=> nil,
 'food_type'=>"italian",
 'desc'=>"Pizza at your door step in 30 min"})

@restaurant2 = Restaurant.new({
 'name'=> "Lavasa",
 'thumb_url_image' => nil,
 'food_type'=>"italian",
 'desc'=>"best Coffee house in town"})

Chapter 4

[63]

We have created two objects and passed a hash to them, as we have explained in
the previous section. The remaining code has two parts, a controller and a view;
let's understand them one by one.

Restaurant controller
In the previous example, the Restaurant controller inherits from
UITableViewController, which is a subclass of UIViewController.
The UIViewController class provides the fundamental view-management
model for your apps.

We rarely instantiate the UIViewController objects directly. Instead, it is generally
instantiated via a class that is a subclass of the UIViewController class, as we did
in the previous example. It manages a set of views that make up a portion of your
app's user interface. The most important thing in an iOS controller is its lifecycle.
There are various actions that are called at different phases of the application. The
lifecycle includes actions such as Initialize, ViewDidLoad, ViewWillAppear,
ViewDidAppear, ViewWillDisappear, ViewDidDisappear, ViewDidUnload, and
Dispose. So these events are called automatically and dynamically. Whenever we
create an object of the controller it calls Initialize, before loading the view for the
controller, ViewDidLoad will be called. The complete lifecycle of a controller can be
seen in the following diagram:

Initialize

ViewDidLoad

ViewWillAppear

ViewDidAppear

ViewWillDisappear

ViewDidDisappear

ViewDidUnload

Dispose

viewDidUnload and viewWillUnload are deprecated in iOS 6.0.

Mastering MVC Paradigm

[64]

You can see in our restro controller that we have written a lot of logic in
ViewDidLoad, so all the code written in this block will execute before the
loading of the view.

It's important to note that these methods are attached to
UIViewController and not to UIViews.

Restaurant view
The UITableView class is used to create one of the most common types of views
used in iOS applications, that is, the table view. We can see only one column in
our application. This is because the UITableView instance is limited to a single
column as it is designed for a device with a small screen. UITableView is a
subclass of UIScrollView, which allows users to scroll through the table,
although UITableView allows vertical scrolling only.

Table views can have one of two styles, UITableViewStylePlain (for example,
iOS contacts) or UITableViewStyleGrouped (for example, iOS settings). When you
create a UITableView instance, you must specify the table style; this style cannot be
changed. For our application, since we do not require to group the restaurants we
will use UITableViewStylePlain.

@myTableView = UITableView.alloc.initWithFrame
 (view.bounds, style:UITableViewStylePlain)

A view is bound to return CGRect with an empty origin point. The CGRect class
is very commonly used in iOS apps. Its data structure represents the location and
dimensions of a rectangle, which is used to set the size of the table view.

The UITableView class provides a lot of options, but it needs to know what data
we are trying to show and what to do when the user interacts with that data.
This is where the datasource and delegate properties come in:

 @myTableView.dataSource = self
 @myTableView.delegate = self

We have to return the number of rows to be created using numberOfRowsInSection:

 def tableView(tableView, numberOfRowsInSection:section)
 @restaurants.count
 end

The tableView:numberOfRowsInSection property tells the UITableview
datasource to return the number of rows in a given section of a table view.
So in our example, the number of rows will be equal to the total restaurant count.

Chapter 4

[65]

Moving forward, let's understand UITableViewCell, which is the subclass of
UIView; using this class our rows are displayed in table form. To access the contents
of the cell, we have properties, such as textLabel and imageView, to use them for
setting their attributes such as text color, font, image, and highlighted image. You
can also easily give a custom look to tables by using different iOS methods. Another
property cellForRowAtIndexPath either creates a new cell or recycles an offscreen
one and populates it with the data corresponding to indexPath, and returns the cell.
The following code snippet shows how a more complete implementation looks:

 def tableView(tableView, cellForRowAtIndexPath:indexPath)

 @reuseIdentifier ||= "CELL_IDENTIFIER"

 cell = tableView.dequeueReusableCellWithIdentifier(@
reuseIdentifier) || begin
 UITableViewCell.alloc.initWithStyle(UITableViewCellStyleDefault,
reuseIdentifier:@reuseIdentifier)
 end
 cell.textLabel.text = @restaurants[indexPath.row].name
 cell
 end

The UITableView class only displays enough data to fill the iPhone screen—it does
not really matter how much data you might have in total. The UITableView class
does this by reusing cells that scrolled off the screen. When cells scroll off the screen
(either the top or the bottom) the table view will queue up cells that are no longer
needed. When it asks the datasource for the cell of a particular row, you can check
that queue of cells to see if there are any available for use:

The cells that are off
the view go to iPhone
memory until iPhone
needs memory or the
table view can reuse
them when the user

scrolls.

The datasource
checks if there are

any cells available for
reuse. If so, it just
replaces the row s’

contents and returns
the row. Otherwise it
creates a new cell

Active Cell
This is visible

Nandos

Restro

Pizza Madness

Polka Dots

Striker

Dollaly

Heights

Sky restro

Striker

Mastering MVC Paradigm

[66]

The whole point of dequeueReusableCell is that the process
of creating a new view hierarchy for UITableViewCell is rather
expensive. If you recreated the cell each time you needed it, the
scrolling behavior wouldn't be as nice as it is.

With dequeueReusableCellWithIdentifier for tableView, you can greatly
speed things up. Instead of instantiating a lot of cells, you can just instantiate the
ones that are needed, which means only those cells that are visible (this is handled
automatically). When scrolling to an area in the list for which the cells are not yet
visually represented, instead of instantiating new ones, you can reuse the already
existing ones.

cell = tableView.dequeueReusableCellWithIdentifier
 (@reuseIdentifier) || begin
 UITableViewCell.alloc.initWithStyle
 (UITableViewCellStyleDefault, reuseIdentifier:@
reuseIdentifier)
 end

Next we have assigned a display value for each row in the following way:

cell.textLabel.text = @restaurants[indexPath.row].name

In Ruby, a ||= b means if a is nil/false, assign it the value of b.

Connecting to an external API
Right now we have hardcoded the object values, which usually never happens in
a real-world application; let's get these values from an external API. For practicing
purposes we have created an external API to get the data in JSON format.

If you visit http://restro.nalwaya.com/restaurants/search.
json?city=Chicago or use the curl command instead, it will return the restaurants
we have seeded for Chicago in JSON format (note that this is fictitious data, you
might not actually find them in Chicago city).

Let's run the following curl command to get the data:

> curl "http://restro.nalwaya.com/restaurants/search.json?city=Chicago"

[{

 "name":"Polka Dots",
 "thumb_url_image":"http://restro.nalwaya.com/system/

Chapter 4

[67]

 restaurants/avatars/000/000/001/thumb/hotel.jpg?1352812187",

 "food_type":"Italian",

 "desc":"Best Italian food in city"

},

{

 "name":"Striker",
 "thumb_url_image":"http://restro.nalwaya.com/system/
 restaurants/avatars/000/000/002/thumb/
 20121111_135450.jpg?1353424527",

 "food_type":"Italian",

 "desc":"Best food in the town"

},

{

 "name":"Pizza madness",
 thumb_url_image":"http://restro.nalwaya.com/system/
 restaurants/avatars/000/000/003/thumb/
 restaurant-icon-96da9e9f58682c8035c4fa4ee04bdcca.gif?1353425778",

 "food_type": "Pizza Mania",

 "desc":"Pizza in 30 min"},

{

 "name":"Dollaly",
 "thumb_url_image":"http://restro.nalwaya.com/system/
 restaurants/avatars/000/000/004/thumb/
 restaurant_table3.jpg?1353425829", "food_type":"Indian",

 "desc":"Best beer in town"

}]

curl is a command-line tool for transferring data using various protocols.

Now we will show the list of restaurants in Chicago city, which we are getting from
our source in our restro application. Since we are getting data in JSON format,
we need to convert this JSON object to a Ruby object.

Create a file by the name json_parser.rb in the app folder:

class JSONParser
 def self.parse_from_url(url)
 data = DataParser.parse(url)

 error_ptr = Pointer.new(:object)

Mastering MVC Paradigm

[68]

 json = NSJSONSerialization.JSONObjectWithData(data, options:0,
error:error_ptr)
 unless json
 alert = UIAlertView.new··
 alert.message = error_ptr[0]
 alert.show
 end
 json
 end
end

The NSJSONSerialization class converts JSON to Foundation objects and converts
Foundation objects to JSON.

RubyMotion has the Pointer class in order to create and manipulate
pointers. The type of pointer to create must be provided in the new
constructor. So Pointer.new(:object) will create a new pointer
with the object class.

We need to fetch the JSON object by sending a request to the server; for that we will
create a DataParser class.

Let's create a file by the name data_parser.rb in the app folder:

class DataParser
 def self.parse(url)
 error_ptr = Pointer.new(:object)
 data = NSData.alloc.initWithContentsOfURL(NSURL.
URLWithString(url), options:NSDataReadingUncached, error:error_ptr)
 unless data
 alert = UIAlertView.new··
 alert.message = error_ptr[0]
 alert.show

 end
 data
 end
end

We will fetch data using the NSUrl class that will pass this data to NSData. NSData
and its mutable subclass NSMutableData provides the data objects with an
object-oriented wrapping for byte buffers.

Chapter 4

[69]

Now let's refactor the logic in restro_controller.rb, which will fetch data
from the API instead of the hardcoded Restaurant object we had created in
the previous section.

Update the viewDidLoad section of restro_controller.rb:

url = "http://restro.nalwaya.com/restaurants/
 search.json?city=Chicago"
 json = nil
 begin
 json = JSONParser.parse_from_url(url)
 rescue RuntimeError => e
 presentError e.message
 end

 @restaurants = []
 json.each do |restaurant|
 @restaurants << Restaurant.new(restaurant)
 end

 view.backgroundColor = UIColor.whiteColor
 @myTableView = UITableView.alloc.initWithFrame(view.bounds,
style:UITableViewStylePlain)
 @myTableView.dataSource = self
 @myTableView.delegate = self
 view.addSubview(@myTableView)

In case of an error, let's face it gracefully by displaying the error message using a
pop-up. So let's create a presentError method in restaurant_controller.rb,
and print the error on pop-up:

def presentError error_msg
 alert = UIAlertView.new··
 alert.message = error_msg
 alert.show·

end

Mastering MVC Paradigm

[70]

Go to the terminal and start the application with the rake command.

We can see that the list of restaurants is shown dynamically from the JSON API.

Search restaurant by city
In the previous section we were only showing restaurants in Chicago. If you
noticed, it was hardcoded in the URL itself and was not generic. In this section
we will make the application more generic and allow the user to search data
based on a parameter city.

Update restro_controller.rb as follows:

class RestroController < UITableViewController
 def viewDidLoad
 super
 @restaurants = []
 searchBar = UISearchBar.alloc.initWithFrame(CGRectMake(0, 0, self.
tableView.frame.size.width, 0))
 searchBar.delegate = self;
 searchBar.showsCancelButton = true;
 searchBar.sizeToFit

Chapter 4

[71]

 view.tableHeaderView = searchBar
 view.dataSource = view.delegate = self
 searchBar.text = 'Chicago'

 searchBarSearchButtonClicked(searchBar)

 end
 def searchBarSearchButtonClicked(searchBar)
 query = searchBar.text.stringByAddingPercentEscapesUsingEncoding(N
SUTF8StringEncoding)
 url = "http://restro.nalwaya.com/restaurants/search.
json?city=#{query}"
 @restaurants.clear
 json = nil
 begin
 json = JSONParser.parse_from_url(url)
 rescue RuntimeError => e
 presentError e.message
 end

 @restaurants = []
 json.each do |restaurant|
 @restaurants << Restaurant.new(restaurant)
 end

 view.reloadData
 searchBar.resignFirstResponder
 end
 def searchBarCancelButtonClicked(searchBar)
 searchBar.resignFirstResponder
 end
 def tableView(tableView, numberOfRowsInSection:section)
 @restaurants.count
 end

 def tableView(tableView, cellForRowAtIndexPath:indexPath)
 @reuseIdentifier ||= "CELL_IDENTIFIER"
 cell = tableView.dequeueReusableCellWithIdentifier(@
reuseIdentifier) || begin
 UITableViewCell.alloc.initWithStyle(UITableViewCellStyleDefault,
reuseIdentifier:@reuseIdentifier)
 end

Mastering MVC Paradigm

[72]

 cell.textLabel.text = @restaurants[indexPath.row].name
 cell
 end
end

Start the simulator by the rake command, and you can see that your toolbar is
replaced with a search box with the default value Chicago.

What just happened
The UISearchBar class implements a text field control for text-based searches. The
UISearchBar object does not actually perform any search; it is just a view, which we
can see on the device. To make the search work, we use a delegate, which is an object
conforming to the UISearchBarDelegate protocol, to implement the actions when
text is entered and buttons are clicked. The UISearchBarDelegate protocol defines
the optional methods you implement to make a UISearchBar control functional.

Chapter 4

[73]

The UISearchBar object provides the user interface for a search field on a bar, but it's
the application's responsibility to implement the actions when buttons are tapped.
We can implement this using various methods available, which are explained next.

The methods used for editing text are as follows:

• searchBar:textDidChange: This tells the delegate that the user changed the
search text

• searchBar:shouldChangeTextInRange:replacementText: This asks the
delegate if text in a specified range should be replaced with the given text

• searchBarShouldBeginEditing: This asks the delegate if editing should
begin in the specified search bar

• searchBarTextDidBeginEditing: This tells the delegate when the user
begins editing the search text

• searchBarShouldEndEditing: This asks the delegate if editing should stop
in the specified search bar

• searchBarTextDidEndEditing: This tells the delegate that the user finished
editing the search text

The methods used for different click events on various buttons in the search bar are
as follows:

• searchBarBookmarkButtonClicked: This tells the delegate that the
bookmark button was tapped

• searchBarCancelButtonClicked: This tells the delegate that the cancel
button was tapped

• searchBarSearchButtonClicked: This tells the delegate that the search
results list button was tapped

• searchBarResultsListButtonClicked: This tells the delegate that the
search button was tapped

The method used for the scope button is as follows:

• searchBar:selectedScopeButtonIndexDidChange: This tells the delegate
that the scope button selection changed

As a minimum, the delegate needs to perform the actual
search when the text is entered in the text field.

Mastering MVC Paradigm

[74]

We have implemented searchBarSearchButtonClicked(searchBar),
and whenever the search button is clicked this action will be called:

 def searchBarSearchButtonClicked(searchBar)
 query = searchBar.text.stringByAddingPercentEscapesUsingEncoding(N
SUTF8StringEncoding)
 url = "http://restro.nalwaya.com/restaurants/search.
json?city=#{query}"
 @restaurants.clear
 json = nil
 begin
 json = JSONParser.parse_from_url(url)
 rescue RuntimeError => e
 presentError e.message
 end

 @restaurants = []
 json.each do |restaurant|
 @restaurants << Restaurant.new(restaurant)
 end

 view.reloadData
 searchBar.resignFirstResponder
 end

So, all the results that we have fetched from our web service are stored in the json
variable. We will loop through this object and store the information in our restaurant
model, which we have created in the previous section.

We have to reload the view once we complete the entire task, and this can be done by
using the view.reloadData class.

Picture speaks louder than words
Let's now show a thumbnail image of a restaurant next to its name. In the JSON API
call, we also see that we are getting the link for the restaurant image. So, we use this
URL to display the image with the restaurant name in the table view.

Chapter 4

[75]

Update restaurant_controller.rb as follows:

 def tableView(tableView, cellForRowAtIndexPath:indexPath)

 @reuseIdentifier ||= "CELL_IDENTIFIER"

 cell = tableView.dequeueReusableCellWithIdentifier(@
reuseIdentifier) || begin
 UITableViewCell.alloc.initWithStyle(UITableViewCellStyleDefault,
reuseIdentifier:@reuseIdentifier)
 end
 cell.textLabel.text = @restaurants[indexPath.row].name
 cell.imageView.image = UIImage.alloc.initWithData(NSData.alloc.
initWithContentsOfURL(NSURL.URLWithString(@restaurants[indexPath.row].
thumb_url_image)))
 cell
 end

UIImage.alloc.initWithData initializes and returns the image object with the
specified data, and NSData.alloc.initWithContentsOfURL initializes a newly
allocated data object initialized with the data from the location specified by a URL.

Once again let's fire up our simulator to see the progress. Run rake from the
app folder.

www.allitebooks.com

http://www.allitebooks.org

Mastering MVC Paradigm

[76]

Isn't that simple! We can now see an image displayed next to the restaurant name.

Play time
It's time for a small do-it-yourself exercise. In the same application put some
description about the restaurant in each row of the table.

We get the description in our API and it is already stored in the
Restaurant object. To display this in the view you can use
detailTextLabel on the cell object, as we have used in textLabel.

Chapter 4

[77]

Summary
Let's recap what we have learned in this iteration:

• Model-View-Controller architecture
• Using an MVC design with RubyMotion
• Connecting our application with an external API
• Augmenting our app with search and images

In the next chapter, we will turn our attention to user interface (UI) for mobile
applications. UI is a key area in mobile application development, and we will learn
about various Objective-C classes, which make user interface more interactive, and
how they can be used in our RubyMotion application.

User Interface – Cosmetics
for Your App

"Design is not just what it looks like and feels like. Design is how it works."

- Steve Jobs

The ultimate objective of a user interface design is to make a user's interaction with
the application a simple and pleasant experience. It is important to understand the
basic elements of a technology to make a friendly user interface for end users. In this
chapter, we will learn about the different elements required to craft a user interface
for iOS applications with RubyMotion. Apps running on iOS-based devices have
a limited amount of screen space for exposing content. This is the most expensive
real estate for any iOS developer, and we must be creative enough to devise ways
to present information to the user and make use of this precious space economically.

You can always customize your user interface to create a stunning look for your
application. But as you design the user interface of your application, there are some
preferred ways, such as the placement of a few controls, that can be adopted to give
users an amicable environment similar to that of built-in apps. As you know, there is
no dedicated hardware for a back button on the iPhone; we must always make sure
to keep one on the upper-left corner before the user gets lost while navigating from
one page to another. A good way to achieve this is by using a typical iOS navigation
bar that is provided in the iOS SDK. The benefit of using such conventional UI
elements is that they act gracefully at the time of updates, when Apple introduces
a redesign of these elements. Completely custom-made elements do not receive
updates. When you use these standard APIs, you can still customize the appearance
for most of the UI elements and still receive automatic updates.

User Interface – Cosmetics for Your App

[80]

In the iOS SDK, the UIKit framework provides a wide range of UI elements that you
can use in your app. In this chapter, we will cover the following topics in detail:

• Bars
• Basic UI elements
• The Restaurant app—let's make it pretty

Bars
There are many types of bars available in the iOS SDK, such as a tab bar, navigation
bar, toolbar, and status bar. These are UI elements that have been designed with
explicit behavior and appearance. Although having bars is not mandatory in your
application, it's advisable to add them as they make life easier for both developers
and users alike. These bars provide common anchors to users of iOS devices who
are familiar with the information they provide and the function they perform.

In this section, we will discuss the following types of bars in detail:

• The tab bar
• The navigation bar and toolbar
• The status bar

The tab bar
A tab bar gives people the ability to switch between different subtasks, views, or
modes. A tab bar is placed at the bottom of the screen, mainly at the footer section,
which we can see in most of the popular iOS applications. Each tab in a tab bar has a
separate view that can be used to initiate the navigation between your app's different
modes, and it can also convey information about the state of each mode.

On the iPhone, a tab bar can display no more than five tabs at a given point in time.
If the app has more tabs, the tab bar displays four of them and adds the More tab
that reveals the additional tabs in a list. On the iPad, a tab bar can display more
than five tabs.

The size of a tab bar image is typically 30 x 30 px. If this image is too large
to fit on the tab bar, it is clipped to fit the available size.

Chapter 5

[81]

First, we'll create some views to understand out topic better:

1. Let's create a sample application to understand this topic more clearly:
motion create UserInterfaceApplication

 Create UserInterfaceApplication
 Create UserInterfaceApplication/.gitignore
 Create UserInterfaceApplication/Rakefile
 Create UserInterfaceApplication/app
 Create UserInterfaceApplication/app/app_delegate.rb
 Create UserInterfaceApplication/resources
 Create UserInterfaceApplication/spec
 Create UserInterfaceApplication/spec/main_spec.rb

2. Create a file named tab1_controller.rb in the app folder and add the
following code:
class Tab1Controller < UIViewController
 def viewDidLoad
 view.backgroundColor = UIColor.
scrollViewTexturedBackgroundColor
 end
end

In the preceding code, we are setting the background color for
the view to a custom color that is provided by iOS and is called
scrollViewTexturedBackgroundColor. This custom color is
available with the UIColor class. Similarly, we will create two
more tabs.

3. Create a file named tab2_controller.rb inside the app folder and add
the following code:
class Tab2Controller < UIViewController
 def viewDidLoad
 view.backgroundColor = UIColor.redColor
 end
end

4. Create another file named tab3_controller.rb inside the app folder and
add the following code:

class Tab3Controller < UIViewController
 def viewDidLoad
 view.backgroundColor = UIColor.whiteColor
 end
end

User Interface – Cosmetics for Your App

[82]

We have created three views with different background colors so that when we
switch from one view to another, we can see the difference. Now let's create a tab
bar and link it with the three view controllers that we just created.

For this, we can just add the following code in app_delegate.rb inside the
app folder:

class AppDelegate
 def application(application, didFinishLaunchingWithOptions:launchOp
tions)
 @window = UIWindow.alloc.initWithFrame(UIScreen.mainScreen.
bounds)
 @window.rootViewController = createTabBar
 @window.makeKeyAndVisible

 true
 end

 def createTabBar

 tab_bar_controller = UITabBarController.alloc.init
 tab_bar_controller.viewControllers = [
 Tab1Controller.alloc.init,
 Tab2Controller.alloc.init,
 Tab3Controller.alloc.init
]
 tab_bar_controller
 end
end

In the preceding code, we created a method called createTabBar in which
we are building a tab bar. A UITabBarController class needs an array of
UIViewControllers. Each element in this array will become a tab on the screen.
The three views, which were created earlier, are linked to the tabs of the tab bar
respectively. Let's fire up the terminal and see our newly created tab bar:

$rake

Chapter 5

[83]

This is what we get as our output:

Great! We can see a tab bar at the bottom of the screen with three tabs, and each tab
has a view with different background colors.

UITabBar, which is at the bottom of the screen, has a
height of 44 pixels.

Customizing the tab bar
You will always have to label your tabs in the tab bar with a title or an image-like
icon. Let's give some titles to our tabs, which we have created in the previous section,
and provide some images for them:

1. Update the tab1_controller.rb file inside the app folder with the
following code:
class Tab1Controller < UIViewController
 def init

 super
 self.title = "Tab 1"
 self.tabBarItem.image = UIImage.imageNamed('FirstTab.png')
 self

User Interface – Cosmetics for Your App

[84]

 end

 def viewDidLoad
 view.backgroundColor = UIColor.
scrollViewTexturedBackgroundColor
 end
end

2. Add the following method in the tab2_controller.rb file inside the
app folder:
def init
 super

 self.tabBarItem = UITabBarItem.alloc.initWithTabBarSystemItem
(UITabBarSystemItemSearch, tag: 1)
 self
 end

3. Similarly, add the following method in the tab3_controller.rb file inside
the app folder:
 def init
 super

 self.tabBarItem = UITabBarItem.alloc.initWithTabBarSystemItem
(UITabBarSystemItemTopRated, tag: 1)
 self
 end

4. Now, let's test the changes in the iOS simulator:
$rake

5. Here is what we get:

Chapter 5

[85]

The result, as you can see, is a tab bar with icons and titles. The UITabBarItem class
is responsible for implementing any items or images on the tab bar. By default, it
will place any image that you passed with a blue gradient, discarding the color
information of the image and using the alpha channel (transparency) information
to know where to apply the gradient. A tab bar will always operate in radio mode;
this means only one item can be selected at a time.

If you want to display a custom image when a tab is selected, you can do
so by using the following code:

tab_bar_item.setFinishedSelectedImage(UIImage.
imageNamed("selectedImage"), withFinishedUnselectedImag
e:UIImage.imageNamed("UnselectedImage"))

User Interface – Cosmetics for Your App

[86]

There are two ways to add icons to tabs in the tab bar. Depending on your
requirement, you can either add a custom icon or use the common icons
provided by Apple. Let's briefly discuss both these ways:

• Custom icon: You can design your image and put it in each tab.
There is an image property in tabBarItem that accepts an image:
self.tabBarItem.image = UIImage.imageNamed('FirstTab.png')

If your image is in PNG format, you can skip the extension
while mentioning the filename, shown as follows:

self.tabBarItem.image = UIImage.
imageNamed('FirstTab')

• Common icons provided by iOS: The following are some common icons
provided by the Cocoa library. These will be used directly in our application:

Constant name Icon
UITabBarSystemItemMore

UITabBarSystemItemFavorites

UITabBarSystemItemFeatured

UITabBarSystemItemRecents

UITabBarSystemItemContacts

UITabBarSystemItemBookmarks

UITabBarSystemItemSearch

UITabBarSystemItemDownloads

UITabBarSystemItemMostRecent

UITabBarSystemItemMostViewed

If you want to change the background of the tab bar to customize an
image, use the following code:

tab_bar_controller.tabBar.backgroundImage = UIImage.
imageNamed "bgTabBar"

Chapter 5

[87]

The navigation bar
A navigation bar allows navigation through different screens. A navigation bar
and a toolbar can be seen at the top of the app screen, just below the status bar. The
navigation bar provides a drill-down interface for hierarchical content. You can also
provide items for the toolbar that are managed by navigation controllers such as
buttons. Let's see how we can create a navigation bar in our app:

1. Update the app_delegate.rb file inside the app folder with the
following code:
def createTabBar

 tab_bar_controller = UITabBarController.alloc.init
 tab_bar_controller.viewControllers = [
 UINavigationController.alloc.initWithRootViewController(Tab
1Controller.alloc.init),
 Tab2Controller.alloc.init,
 Tab3Controller.alloc.init
]
 tab_bar_controller
 end

In the preceding code, we initialized Tab1Controller while initializing
UINavigationController. In this way, we can generate a navigation bar:

UINavigationController.alloc.initWithRootViewController(Tab1Contro
ller.alloc.init)

2. Let's fire up the terminal and execute the following command:
$rake

User Interface – Cosmetics for Your App

[88]

3. The following is what we get when we execute the command:

That's really cool! We can see a navigation bar appear at the top of the screen.
But right now it does nothing. Let's modify the bar and add buttons to it.

A navigation bar automatically shows some default title text.

Customizing the navigation bar
Now let's customize the navigation bar with a translucent color and add a button
to it:

1. Update the tab1_controller.rb file inside the app folder with the
following code:
class Tab1Controller < UIViewController
 def init
 super
 self.title = "Tab 1"

Chapter 5

[89]

 self.tabBarItem.image = UIImage.imageNamed('FirstTab.png')
 self
 end
 def viewDidLoad
 view.backgroundColor = UIColor.
scrollViewTexturedBackgroundColor

 setupNavigationBar

 end
 def setupNavigationBar

 self.navigationController.navigationBar.barStyle =
UIBarStyleBlackTranslucent;
 right_button_item = UIBarButtonItem.alloc.initWithTitle
('Add',style:UIBarButtonItemStyleBordered,target: self, action:
"click_add")
 self.navigationItem.setRightBarButtonItem(right_button_
item)

 end

 def click_add
 @alert_box = UIAlertView.alloc.initWithTitle("Add button
popup",
 message:"You have pressed the 'Add' button",
 delegate: nil,
 cancelButtonTitle: "ok",
 otherButtonTitles:nil)
 @alert_box.show
 end

end

2. Let's fire up the terminal and execute the following command:
$rake

User Interface – Cosmetics for Your App

[90]

3. Here is the output:

We can see that the navigation toolbar controller is now translucent, and we have an
Add button in the upper-left corner. When we press the Add button, an alert pop-up
will appear with the message: You have pressed the 'Add' button.

The UIBarButtonItem class creates a button, and for each button we have to define
an action that will be called when that button is clicked. In our example, we have
created the click_add action for the Add button:

UIBarButtonItem.alloc.initWithTitle('Add',style:UIBarButtonItemStyleBo
rdered,target: self, action: "click_add")

In the preceding code snippet, we created a button with the title set as Add.
To define the action that has to be performed when the button is clicked,
we use the action parameter.

Next, we will assign the location of the button on the navigation bar:

self.navigationItem.setRightBarButtonItem(right_button_item)

Chapter 5

[91]

Doing this will place a button on the right-hand side of the navigation bar.

To add a button on the left-hand side of the screen, use the following line
of code:

self.navigationItem.setLeftBarButtonItem(button_item)

The status bar
The status bar is a 20-pixel bar that appears at the top of the window. It shows
important system information, such as the signal strength, network, current time,
and battery status.

By default, a status bar in iOS 6.0 comes in a translucent black style, but we can
modify this look with the following available styles:

• UIStatusBarStyleDefault

• UIStatusBarStyleBlackOpaque

• UIStatusBarStyleBlackTranslucent

With RubyMotion, we can customize the status bar in the following two ways:

• With Rakefile: There is a setting in the Rakefile of your RubyMotion
project; update it in the following way:
app.status_bar_style = :black_translucent

• With app code: Update your delegate file with the following code snippet:

application.setStatusBarStyle(UIStatusBarStyleBlackOpaque,
animated:true)

Note that these ways are distinct. The first one sets the status bar
appearance while the application is being loaded, whereas the
second one is used when the application has loaded.

User Interface – Cosmetics for Your App

[92]

The following code snippet shows how we can hide the status bar:

application.setStatusBarHidden(true, withAnimation:UIStatusBarAnimat
ionSlide)

As per Apple's guidelines, it is not advisable to create a custom status bar
as users appreciate the consistency of the system-provided status bar.

Basic UI elements
In the previous section, we learned about bars, which play a pivotal role in creating
the application view, primarily in the header and footer section of the screen. In this
section, we will learn about other user interface elements essential for creating an
interactive view. We will not discuss all the UI elements, however, as there are too
many of them; we will examine only those that are used most frequently.

Label
A label displays a read-only text view and is used to display information. With
the iOS SDK, we make use of the UILabel class to generate labels on screen.
The UILabel class has many properties for customizing a label. In the following
example, we will use a few of these properties to make our own customized label:

1. First, update the tab1_controller.rb file with following code inside the
app folder:
 def viewDidLoad
 view.backgroundColor = UIColor.
scrollViewTexturedBackgroundColor
 setupNavigationBar
 add_form_elements
 end

2. Next, add the add_form_elements method:
def add_form_elements
 label = UILabel.alloc.init
 label.frame = [[0, 40], [300, 30]]
 label.backgroundColor = UIColor.clearColor
 label.textColor = UIColor.greenColor
 label.font = UIFont.fontWithName("HelveticaNeue-
CondensedBold",size:18)

Chapter 5

[93]

 label.text = "This is sample application"

 view.addSubview(label)
end

3. Let's fire up the terminal and test our app:
$rake

4. We will see the following customized label appear on the screen:

Textfield
A UITextField object will create a textbox in the view. It is a very common input
type in any form. This is how we create it:

1. Update the add_form_elements method in the tab1_controller.rb file:
 @textbox = UITextField.alloc.initWithFrame([[10,80],[200,35]])
 @textbox.borderStyle = UITextBorderStyleRoundedRect
 @textbox.placeholder = "Type.."
 @textbox.textAlignment = UITextAlignmentCenter
 view.addSubview(@textbox)

2. Let's fire up the terminal and test our app:
$rake

3. We will see the following textbox appear on the screen:

When a user taps the text field, the system automatically
displays an associated keyboard. As the keyboard pops
up from below, there is a chance that this will lead to an
obscure view. It is the developer's duty to reposition the
view accordingly.

User Interface – Cosmetics for Your App

[94]

Switch button
A UISwitch object will create a button to select on and off states. This is like a radio
button that we commonly see when switching the Wi-Fi on and off. Follow the
ensuing steps to create a switch button in your app:

1. Add the following code in tab1_controller.rb for the add_form_elements
method inside the app folder:
@switch = UISwitch.alloc.initWithFrame([[10, 130], [200, 35]])
 @switch.addTarget(self,action:'switchIsChanged', forControlEve
nts:UIControlEventValueChanged)
 view.addSubview(@switch)

2. Once the button is switched from one state to another, it calls an action.
Let's create the switchIsChanged action, which we already mentioned
in the preceding step:
 def switchIsChanged
 if @switch.on?
 #Some code
 else
 #some code
 end

3. Let's fire up the terminal and test our app:
$rake

4. We will see the following switch button appear on the screen:

Slider
A UISlider object is a visual control used to select a single value from a continuous
range of values. Sliders are always displayed as horizontal bars. Perform the
following steps to create a slider in your app:

1. Add the following code in tab1_controller.rb for the
add_form_elements method:
 @customSlider = UISlider.alloc.initWithFrame([[10, 160],[200,
35]])
 #Setting the minimum value of slider
 @customSlider.minimumValue = 0
 #Setting the maximum value of slider

Chapter 5

[95]

 @customSlider.maximumValue = 1000
 #Setting the default value of slider
 @customSlider.value = @customSlider.maximumValue/2
 #Setting the action value of slider to sliderValueChanged
 @customSlider.addTarget(self, action:'sliderValueChanged', for
ControlEvents:UIControlEventValueChanged)
 view.addSubview(@customSlider)

2. In the preceding code, when the slider's value is changed, the
sliderValueChanged action will be called. Let's add this action
in our tab1_controller.rb file:
def sliderValueChanged
 #some code
 end

3. Let's fire up the terminal and test our app:
$rake

4. We will see the following slider appear on the screen:

Button
The UIButton class implements a button on the touchscreen. A button catches
touch events and performs an action when tapped. Follow the ensuing steps to
create a button in your app:

1. Add the following code in tab1_controller.rb for the
add_form_elements method:
 @normalButton = UIButton.buttonWithType(UIButtonTypeRoundedRect)
 @normalButton.frame = [[10,200],[200,35]]
 @normalButton.setTitle("Click Me",
forState:UIControlStateNormal)
 @normalButton.setTitle("You have clicked me", forState:UIControl
StateHighlighted)
 @normalButton.setTitle(self, action:'buttonIsPressed', forContro
lEvents:UIControlEventTouchDown)
 view.addSubview(@normalButton)

2. Let's fire up the terminal and test our app:
$rake

User Interface – Cosmetics for Your App

[96]

3. We will see the following button appear on the screen:

Picker view
A picker view is used to select a value from multiple options. It uses a representation
that is like a spinning wheel or slot machine to show one or more series of values
similar to a select box in web applications.

The UIPickerView class implements a picker view. Let's understand this by adding
one to our application:

1. Update the tab2_controller.rb file with the highlighted code. Go through
the comments (the lines prefixed with #) for a better understanding of what's
happening in that section:
class Tab2Controller < UIViewController
 def init
 super
 self.tabBarItem = UITabBarItem.alloc.initWithTabBarSystemItem(
UITabBarSystemItemSearch, tag: 1)
 self
 end
 def viewDidLoad

 view.backgroundColor = UIColor.redColor
 # creating an array of country names
 @countryNames = ['United States', 'France', 'India', 'China',
'Russia']

 #calling add_label_and_button method to create label and
button
 add_label_and_button
 #calling create_picker method to create piker
 @picker = create_picker
 view.addSubview(@picker)

 end

 def create_picker
 picker = UIPickerView.alloc.initWithFrame(CGRectMake(10,100,
220, 250))

Chapter 5

[97]

 picker.hidden = true
 picker.showsSelectionIndicator = true
 picker.dataSource = self
 picker.delegate = self
 picker
 end

 def add_label_and_button
 @label = UILabel.alloc.init
 @label.frame = [[10, 40], [300, 30]]
 @label.backgroundColor = UIColor.clearColor
 @label.text = "Value"
 view.addSubview(@label)

 @button = UIButton.buttonWithType(UIButtonTypeRoundedRect)
 @button.frame = [[120, 40], [150, 30]]
 @button.setTitle("Show Picker",forState:UIControlStateNormal)
 @button
 @button.addTarget(self,
 action: 'show_picker',
 forControlEvents:UIControlEventTouchUpInside)
 view.addSubview(@button)
 end

 def show_picker
 if @picker.isHidden
 @picker.hidden = false
 @button.setTitle("Hide Picker",forState:UIControlStateNorm
al)
 else
 @picker.hidden = true
 @button.setTitle("Show Picker",forState:UIControlStateNorm
al)
 end
 end

 #This method returns number of components in picker.
 def numberOfComponentsInPickerView(pickerView)
 1
 end

 #This method returns number of rows in picker.
 def pickerView(pickerView,numberOfRowsInComponent:component)
 @countryNames.count

User Interface – Cosmetics for Your App

[98]

 end

 #This method returns value of rows in picker
 def pickerView(pickerView, titleForRow:row,forComponent:compone
nt)
 @countryNames[row]
 end

#This method will be called when some value is selected in picker
 def pickerView(pickerView, didSelectRow:row,
inComponent:component)
 @label.text = @countryNames[row]
 end

end

2. Now, let's run the application and click on the second tab to check what we
have done so far:
$rake

3. We can see a Show Picker button, and once we click on it, we can see a
picker view that allows us to select a country:

Chapter 5

[99]

Let's understand the picker code that we have created using the UIPickerView class:

 picker = UIPickerView.alloc.initWithFrame(CGRectMake(10,100, 220,
250))
 picker.hidden = true
 picker.showsSelectionIndicator = true
 picker.dataSource = self
 picker.delegate = self
 picker

We must always provide dataSource and delegate in a picker because datasource
supplies the data and delegate supplies the behavior of the picker. In the preceding
code, we concealed the picker using picker.hidden = true as it will be shown only
when the user clicks on the button.

To create a picker, we have to create a minimum of three delegate methods:

• numberOfComponentsInPickerView: This is called by the PickerView
control to identify the number of components, such as the selection
wheels, that are to be displayed to the user:
def numberOfComponentsInPickerView(pickerView)
 1
end

In our code, we return 1 as we only have one component to show.

• numberOfRowsInComponent: This informs the PickerView control about the
number of rows that are present in a specified component:
def pickerView(pickerView,numberOfRowsInComponent:component)
 @countryNames.count
 end

So, @countryNames.count will return the total number of countries in
the array.

• titleForRow: It will be called by the PickerView control to identify the
string that is to be displayed for a specified row in a specific component:

def pickerView(pickerView, titleForRow:row,forComponent:component)
 @countryNames[row]
 end

The pickerView:titleForRow:forComponent method gets called n number
of times; here n is the number returned by pickerView:numberOfRowsInCom
ponent.

User Interface – Cosmetics for Your App

[100]

We can also perform an action when we select any value from the picker view.
This can be done using the pickerView(pickerView, didSelectRow:row,
inComponent:component) delegate method, as shown in the following code:

def pickerView(pickerView, didSelectRow:row, inComponent:component)
 @label.text = @countryNames[row]
End

Here, we are changing the label message with the country name that we have
selected from the picker.

Hands-on – add a Restro Application
So far in this chapter, we have learned about the different UI elements; it's now time
to apply this knowledge to enhance our Restro Application.

Firstly, we will add a tab bar and a navigation bar in our Restro Application,
followed by creating a view for showing the restaurant detail page:

1. Update app_delegate.rb with the highlighted code:
class AppDelegate
 def application(application, didFinishLaunchingWithOptions:launc
hOptions)
 @window = UIWindow.alloc.initWithFrame(UIScreen.mainScreen.
bounds)
 @window.makeKeyAndVisible
 about_tab = UINavigationController.alloc.initWithRootViewCont
roller(AboutController.alloc.init)
 restro_tab = RestroController.alloc.initWithStyle(UITableViewS
tylePlain)
 restro_tab.tabBarItem = UITabBarItem.alloc.initWithTabBarSyste
mItem(UITabBarSystemItemSearch, tag: 1)
 @tabbar = UITabBarController.alloc.init
 @tabbar.viewControllers = [restro_tab, about_tab]
 @tabbar.wantsFullScreenLayout = true
 @window.rootViewController = @tabbar
 true
 end
end

Chapter 5

[101]

Here, we created a tab bar using UITabBarController and assigned two
controllers, namely RestroController and AboutController, to it.

2. Next, let's create an about_controller.rb file in the app folder and add the
following code:
class AboutController < UIViewController
def init
 if super
 self.tabBarItem.title = "About"
 self.tabBarItem.image = UIImage.imageNamed('FirstTab.png')
 end
super
end
def viewDidLoad
 view.backgroundColor = UIColor.whiteColor
 @label = UILabel.new
 @label.text = 'Restro Application'
 @label.lineBreakMode = UILineBreakModeWordWrap;
 @label.numberOfLines = 0
 @label.frame = [[50,50],[250,50]]
 view.addSubview(@label)

end
end

Here, we just created a simple view and added a label as a subview.

3. Now let's run the application to see our progress:
$rake

User Interface – Cosmetics for Your App

[102]

4. Here is the output we get:

In the preceding screenshot, we can see a tab bar at the bottom of the screen
with two tabs: Search and About.

In the last chapter, we implemented a search based on city. Let's make the search
results on the search page clickable; this will redirect us to a new view that shows
us the details of the restaurant that was selected:

1. Create a controller detail_controller.rb in the app folder:
class DetailController < UIViewController
 attr_accessor :restaurant
 def viewDidLoad
 view.backgroundColor = UIColor.whiteColor
 show_restaurant_detail
 end
 def show_restaurant_detail
 label = UILabel.alloc.init
 label.frame = [[120, 20], [300, 30]]
 label.backgroundColor = UIColor.clearColor
 label.font = UIFont.fontWithName("HelveticaNeue-
CondensedBold",size:22)

Chapter 5

[103]

 label.text = @restaurant.name
 view.addSubview(label)

 image = UIImage.alloc.initWithData(NSData.alloc.
initWithContentsOfURL(NSURL.URLWithString(@restaurant.thumb_url_
image)))
 view.addSubview(UIImageView.alloc.initWithImage(image))

 label = UILabel.alloc.init
 label.frame = [[20, 100], [300, 30]]
 label.backgroundColor = UIColor.clearColor
 label.font = UIFont.fontWithName("HelveticaNeue-
CondensedBold",size:15)
 label.text = @restaurant.desc
 view.addSubview(label)
 end
end

In these lines of code, we are showing all the details on the view that will get
stored in the @restaurant instance variable from RestroController.

2. Add the following code in restro_controller.rb in the app folder:
 def tableView(tableView, didSelectRowAtIndexPath:indexPath)
 detail_controller = DetailController.alloc.init
 detail_controller.restaurant = @restaurants[indexPath.row]
 self.navigationController.pushViewController(detail_
controller,
 animated:true)
 end

This code will make each row of the table a link that will redirect to a
detailed view.

3. Also, we need to replace the following line in app_delegate.rb:
RestroController.alloc.initWithStyle(UITableViewStylePlain)

4. The following code snippet will add a navigation bar with controls to enable
easy navigation in between pages:
restro_tab = UINavigationController.alloc.initWithRootViewControll
er(RestroController.alloc.initWithStyle(UITableViewStylePlain))

5. Let's fire up the terminal, and check our progress:
$rake

User Interface – Cosmetics for Your App

[104]

6. This is the output we get:

7. We can see a navigation bar and a search bar, but we only need a search bar
at the top. Let's make that change in restro_application.rb by replacing
view.tableHeaderView = searchBar with what follows:
self.navigationItem.titleView = searchBar

8. Generally in an iOS application, if a row is a link to another controller, an
arrow is shown in the right-hand side corner. Let's add an arrow and make
it look more like an iOS app. Update restro_controller.rb, and add the
following line where we will create the TableView cell:
cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator

9. Let's run the application to check what we have done:
$rake

10. We can see that the top navigation toolbar has disappeared, but arrows
at the end of each row of the table view have appeared:

Chapter 5

[105]

Summary
In this chapter, we have learned some of the fundamentals of the iOS user interface
that are essential in creating outstanding user-friendly applications; we covered
the following:

• We started by understanding standard UI elements, such as bars, and
learned how to use them so that we do not lose the fundamental structure
of an iOS app

• Next, we covered UI elements, such as textboxes, labels, sliders, pickers,
and many more

• Lastly, we encompassed what we have learned so far in our application to
get some real-time experience

In the next chapter, we will move our focus to using the powerful device capabilities
of iOS devices and learn how to use them with RubyMotion. We will also learn how
to make use of the camera, geolocation, contacts, gestures and many more features to
create some amazing demo applications.

Device Capability – Power
Unleashed

"Software will give you respect, but hardware will give you the Power."

- Akshat Paul

An iPhone is not only used for making calls, surfing the Internet, and playing music,
but it is also the most advanced piece of hardware that can be used to take pictures,
know your present location, comprehend gestures, and to do so many other things.
So why not take advantage of these incredible device capabilities in your application.
The beauty of these features is that just by tapping into the tools that the iPhone
SDK provides, one can quickly import pictures, locations, and maps with minimal
lines of code.

In this chapter we will focus on the following topics:

• Camera
• Location Manager (GPS)
• Gestures
• Core Data
• Address Book

Device Capability – Power Unleashed

[108]

Camera – smile please!
The camera is probably the most widely used feature of an iOS device. In this
section, we will cover the most frequently used Camera events by creating an
application that will allow us to take a picture using the Camera device and to
select a picture from the Gallery.

An iPhone implements image selection through a picker that allows us to get
images from different sources, such as Camera Roll or Photo Library. The
UIImagePickerController class provides basic, customizable user interfaces (UIs)
for taking pictures and videos, also providing the user with some simple editing
capabilities for newly captured media.

The role and appearance of a UIImagePickerController class depends on the value
of sourceType assigned to it. There are three ways to choose the source of an image,
as follows:

• Choose from Camera:
imagePicker.sourceType = UIImagePickerControllerSourceTypeCamera;

• Choose from any folder in Gallery:
imagePicker.sourceType =
UIImagePickerControllerSourceTypePhotoLibrary;

• Choose from Photo Album (Camera Roll):
imagePicker.sourceType =
UIImagePickerControllerSourceTypeSavedPhotosAlbum;

Camera example
Let's create an application that will allow us to capture a photo from the camera and
select an image from Photo Gallery. Perform the following steps:

1. Create an application with the motion command:
motion create CameraExample

2. Update app_delegate.rb and set the root controller to CameraController:
class AppDelegate
 def application(application, didFinishLaunchingWithOptions:launc
hOptions)
 @window = UIWindow.alloc.initWithFrame(UIScreen.mainScreen.
bounds)
 @window.rootViewController = CameraController.alloc.init
 @window.makeKeyAndVisible
 true
 end
end

Chapter 6

[109]

3. Create a file named camera_controller.rb inside the app folder:

class CameraController < UIViewController

 def viewDidLoad
 view.backgroundColor = UIColor.underPageBackgroundColor
 load_view
 end

 def load_view
 @camera_button = UIButton.buttonWithType(UIButtonTypeRoundedRe
ct)
 @camera_button.frame = [[50, 20], [200, 50]]
 @camera_button.setTitle("Click from camera",
forState:UIControlStateNormal)
 @camera_button.addTarget(self, action: :start_camera, forContr
olEvents:UIControlEventTouchUpInside)
 view.addSubview(@camera_button)

 @gallery_button = UIButton.buttonWithType(UIButtonTypeRoundedR
ect)
 @gallery_button.frame = [[50, 100], [200, 50]]
 @gallery_button.setTitle("Chose from Gallery",
forState:UIControlStateNormal)
 @gallery_button.addTarget(self, action: :open_gallery, forCont
rolEvents:UIControlEventTouchUpInside)
 view.addSubview(@gallery_button)

 @image_picker = UIImagePickerController.alloc.init
 @image_picker.delegate = self
 end

 def imagePickerController(picker, didFinishPickingImage:image,
editingInfo:info)
 self.dismissModalViewControllerAnimated(true)
 @image_view.removeFromSuperview if @image_view
 @image_view = UIImageView.alloc.initWithImage(image)
 @image_view.frame = [[50, 200], [200, 180]]
 view.addSubview(@image_view)
 end

 def start_camera
 if camera_present?
 @image_picker.sourceType =
UIImagePickerControllerSourceTypeCamera
 presentModalViewController(@image_picker, animated:true)
 else
 show_alert
 end
 end

Device Capability – Power Unleashed

[110]

 def open_gallery
 @image_picker.sourceType =
UIImagePickerControllerSourceTypePhotoLibrary
 presentModalViewController(@image_picker, animated:true)
 end
 def show_alert
 alert = UIAlertView.new
 alert.message = ‘No Camera in device'
 alert.show
 end
 def camera_present?
 UIImagePickerController.isSourceTypeAvailable(UIImagePickerCon
trollerSourceTypeCamera)
 end
end

Let's see what we have done so far by testing our application on the simulator using
the following command:

$rake

We can see the results as shown in the following screenshot:

Chapter 6

[111]

As we are using an iPhone simulator, we cannot access the camera hardware.
However, if we test our application with an iPhone device, we will be able to use
the camera hardware and capture images from it. Now let's choose an image from
Gallery by clicking on the Choose from Gallery button:

Understanding the Camera code
First, we need to initiate two buttons for the photo-taking process and choose a
picture from Gallery. We will also create an image picker:

 def load_view
 @camera_button = UIButton.buttonWithType(UIButtonTypeRoundedRect)
 @camera_button.frame = [[50, 20], [200, 50]]
 @camera_button.setTitle("Click from camera",
forState:UIControlStateNormal)
 @camera_button.addTarget(self, action: :start_camera, forControlEv
ents:UIControlEventTouchUpInside)
 view.addSubview(@camera_button)

Device Capability – Power Unleashed

[112]

 @gallery_button = UIButton.buttonWithType(UIButtonTypeRoundedRect)
 @gallery_button.frame = [[50, 100], [200, 50]]
 @gallery_button.setTitle("Choose from Gallery",
forState:UIControlStateNormal)
 @gallery_button.addTarget(self, action: :open_gallery, forControlE
vents:UIControlEventTouchUpInside)
 view.addSubview(@gallery_button)

 @image_picker = UIImagePickerController.alloc.init
 @image_picker.delegate = self
 end

So when we click on the Click from camera and Choose from Gallery buttons,
the start_camera and open_gallery actions will be called, respectively:

 def start_camera
 if camera_present?
 @image_picker.sourceType =
UIImagePickerControllerSourceTypeCamera
 presentModalViewController(@image_picker, animated:true)
 else
 show_alert
 end
 end

 def open_gallery
 @image_picker.sourceType =
UIImagePickerControllerSourceTypePhotoLibrary
 presentModalViewController(@image_picker, animated:true)
 end
 def show_alert
 alert = UIAlertView.new
 alert.message = ‘No Camera in device'
 alert.show
 end

So we have used UIImagePickerControllerSourceTypeCamera and
UIImagePickerControllerSourceTypePhotoLibrary as source types;
they will open the Camera and Photo Library tools, respectively.

As an iOS application can also be installed on devices such as an iPod,
which does not have a camera, to check the device for a camera, the
UIImagePickerController.isSourceTypeAvailable(UIImageP
ickerControllerSourceTypeCamera) method is used.

Chapter 6

[113]

The following two camera picker delegates are available:

• imagePickerController:didFinishPickingImage: This is called when the
image is selected

• imagePickerControllerDidCancel: This is called when the Cancel button
is clicked

The following delegate will be called when an image is selected:

 def imagePickerController(picker, didFinishPickingImage:image,
editingInfo:info)
 self.dismissModalViewControllerAnimated(true)
 @image_view.removeFromSuperview if @image_view
 @image_view = UIImageView.alloc.initWithImage(image)
 @image_view.frame = [[50, 200], [200, 180]]
 view.addSubview(@image_view)
 end

The self.dismissModalViewControllerAnimated(true) method is called
explicitly to remove the pop-up, and then the image is displayed using UIImageView.

Location Manager – directions for apps
You must have observed that in many iOS applications, your current location is
spotted automatically. With RubyMotion, we can easily use the location capabilities
of your device with our application. There are two parts to this: the first is to find the
device location and the second is to display it in our application.

iOS SDK contains various layers; one of them is the Core Services layer and a part
of this layer is the Core Location framework. This framework uses the available
hardware to determine a user's current position and where they are heading. Core
Location provides us with coordinates, text strings, and number values instead of
visual location information such as maps. Later in the chapter, we will also use Map
Kit that will help us embed maps directly in our views using our knowledge of the
Core Location framework.

Location Manager example
Let's create an application to demonstrate how we can use Location Manager with
the RubyMotion application. Perform the following steps:

1. Create an application with the motion command:
$motion create LocationManager

Device Capability – Power Unleashed

[114]

2. Update the app_delegate.rb file:
class AppDelegate
 def application(application, didFinishLaunchingWithOptions:launc
hOptions)
 @window = UIWindow.alloc.initWithFrame(UIScreen.mainScreen.
bounds)
 @window.rootViewController = LocationController.alloc.init
 @window.makeKeyAndVisible
 true
 end
end

3. Update the rake file and add the following line of code:
app.frameworks = [‘CoreLocation', ‘MapKit']

4. To use the Location service, we have to include the following two
frameworks:

 ° CoreLocation: The CoreLocation framework lets you determine
the current location. This framework uses the available hardware
of the device to determine the device's current position and where
it is heading.

 ° MapKit: The MapKit framework provides an interface for embedding
maps directly into your app's views.

5. Create the location_controller.rb controller in the app folder and add
the following code:

class LocationController < UIViewController
 def viewDidLoad
 view.backgroundColor = UIColor.underPageBackgroundColor
 create_location_label
 check_location

 end

 def check_location
 if (CLLocationManager.locationServicesEnabled)
 @location_manager = CLLocationManager.alloc.init
 @location_manager.desiredAccuracy =
KCLLocationAccuracyKilometer
 @location_manager.delegate = self
 @location_manager.purpose = " Our applications functionality

Chapter 6

[115]

is based on your current location "
 @location_manager.startUpdatingLocation
 else
 show_error_message(‘Please enable the Location Services for
this app in Settings.')
 end
 end
 def create_location_label
 @latitudeLabel = UILabel.alloc.initWithFrame([[25, 30], [250,
40]])
 @latitudeLabel.backgroundColor = UIColor.clearColor

 @longitudeLabel = UILabel.alloc.initWithFrame([[25, 80], [250,
40]])
 @longitudeLabel.backgroundColor = UIColor.clearColor

 @latitudeLabel.text = "Latitude:"
 @longitudeLabel.text = "Longitude:"
 view.addSubview(@latitudeLabel)
 view.addSubview(@longitudeLabel)
 end
 def locationManager(manager, didUpdateToLocation:newLocation,
fromLocation:oldLocation)
 @latitudeLabel.text = @latitudeLabel.text + newLocation.
coordinate.latitude.to_s
 @longitudeLabel.text = @longitudeLabel.text + newLocation.
coordinate.longitude.to_s
 end

 def locationManager(manager, didFailWithError:error)

 show_error_message(‘Please enable the Location Services for
this app in Settings.')
 end
 def show_error_message msg
 alert = UIAlertView.new
 alert.message = msg
 alert.show
 end

end

Device Capability – Power Unleashed

[116]

In the preceding code, we configured the CLLocationManager object using the
following steps:

1. Always check to see whether the desired services are available before starting
any service and abandon the operation if they are not. You can do so by
triggering CLLocationManager.locationServicesEnable. If this returns
true, the service has been enabled for your application.

The user has the option of denying applications the ability
to access its Location service data. During the initial
use by an application, the Core Location framework
prompts the user to confirm that using the Location
service is acceptable. If the user denies the request, the
CLLocationManager object reports an appropriate error
to the delegate in future requests.

2. Then we created an instance of the CLLocationManager class:
@location_manager = CLLocationManager.alloc.init

3. Next, we configured additional properties relevant to the Location service:
 @location_manager.desiredAccuracy =
KCLLocationAccuracyKilometer

desiredAccuracy supports a wide range of methods that provide
different levels of accuracy. You can also use KCLLocationAccuracyBest;
it will give you more accurate results but it will also drain the battery.
KCLLocationAccuracyKilometer doesn't give an accurate location but
is more effective in terms of performance.
 @location_manager.delegate = self

@location_manager.purpose = "Our application provides
functionality based on your current location"

This message will appear when the application asks for permissions.

4. Then we created a delegate to handle the latitude and longitude for
our application:
def locationManager(manager, didUpdateToLocation:newLocation,
fromLocation:oldLocation)
 @latitudeLabel.text = @latitudeLabel.text + newLocation.
coordinate.latitude.to_s
 @longitudeLabel.text = @longitudeLabel.text + newLocation.
coordinate.longitude.to_s
 end

Chapter 6

[117]

5. Lastly, we called the appropriate start method to begin the delivery of events:

@location_manager.startUpdatingLocation

Let's fire up the terminal and test our app using the following command:

$rake

The output is as follows:

If your location is not set in your simulator, you will get a pop-up showing an error,
as shown in the preceding screenshot.

Device Capability – Power Unleashed

[118]

As we are using the iOS simulator, we do not have physical GPS access for the
iPhone device. However, iOS simulator does give us the option to mimic this by
selecting or adding values via the emulator. From the toolbar, navigate to Debug |
Location and either choose or add custom longitude and latitude values.

You can see a pop-up on the screen with a custom message, which we had described
in our code:

Once we click on OK, we will see the longitude and latitude of our current location
as shown in the following screenshot:

Chapter 6

[119]

Now let's plot the current location on a map and display this on our screen.

1. Add the following code to the location_controller.rb file in the
app folder:
 def show_map
 map= MKMapView.alloc.initWithFrame([[20,190], [275, 150]])
 map.mapType = MKMapTypeStandard
 self.view.addSubview(map)
 end

Device Capability – Power Unleashed

[120]

We have chosen MKMapTypeStandard, but MKMapView provides the following
three types of maps:

 ° MKMapTypeStandard: This shows a street and some road names
 ° MKMapTypeSatellite: This shows satellite imagery
 ° MKMapTypeHybrid: This shows a satellite image of the area with roads

and their names along with other information superimposed

2. Then, add the following code in the viewDidLoad method in the
location_controller.rb file:
 def viewDidLoad
 view.backgroundColor = UIColor.underPageBackgroundColor
 location_label
 check_location
 show_map
 end

3. Now run the application in the simulator using the following command:
$rake

The output is as follows:

Chapter 6

[121]

The preceding code will only show a map on the screen and not pinpoint the
location. We are now going to add a pin—annotations in MapKit terms—to
our map.

4. Update the show_map method in the location_controller.rb file:
 def show_map
 map= MKMapView.alloc.initWithFrame([[20,190], [275, 150]])
 map.mapType = MKMapTypeStandard
 location = CLLocationCoordinate2D.new(@latitude, @longitude)
 map.setRegion(MKCoordinateRegionMake(location,
MKCoordinateSpanMake(1, 1)),animated:true)
 pointer = MyAnnotation.alloc.initWithCoordinate(location,
title:"Title", andSubTitle:"Sub Title")
 map.addAnnotation(pointer)
 self.view.addSubview(map)
 end

CLLocationCoordinate2D is a structure that contains the geographical
coordinate of a location.

5. To add the pin (Annotation), you must create a class that explicitly
implements the MKAnnotation protocol. We should define the
following attributes in this class:

 ° coordinate

 ° title

 ° subtitle

6. Let's create a file named my_annotation.rb inside the app folder. Create a
class named MyAnnotation that has these attributes:
class MyAnnotation
 def initWithCoordinate(coordinate, title:title,
andSubTitle:subtitle)
 @coordinate = coordinate
 @title = title
 @subtitle = subtitle
 self
 end

 def coordinate
 @coordinate
 end
 def title
 @title
 end

Device Capability – Power Unleashed

[122]

 def subtitle
 @subtitle
 end
end

7. Update the location_controller.rb file with the following code:
 def locationManager(manager, didUpdateToLocation:newLocation,
fromLocation:oldLocation)
 @latitude = newLocation.coordinate.latitude
 @longitude = newLocation.coordinate.longitude
 @latitudeLabel.text = @latitudeLabel.text + newLocation.
coordinate.latitude.to_s
 @longitudeLabel.text = @longitudeLabel.text + newLocation.
coordinate.longitude.to_s
 @location_manager.stopUpdatingLocation
 show_map
 end

8. Let's fire up the terminal and run our application using the
following command:

$rake

The output is as follows:

Chapter 6

[123]

In the preceding screenshot, we can see a map with the current location and
its description.

You can change the location in the simulator by
navigating to Debug | Change Location.

Gestures – non-verbal communication
Gestures are a big part of iOS applications. For example, when we pinch on a
picture, it gets zoomed, or when we rotate our device, the orientation of the picture
changes. Detecting gestures in your application is very easy with the built-in
UIGestureRecognizer classes.

There are a few subclasses of UIGestureRecognizer, each designed to detect a
specific type of gesture. You can handle the most commonly used gestures with the
following subclasses:

• UITapGestureRecognizer: This class detects the tapping gesture made on
the device screen by the user.

• UIPinchGestureRecognizer: This class detects the pinching gesture made
on screen by the user. This motion is usually used to zoom in or out of a view
or to change the size of a visual component.

• UIPanGestureRecognizer: This class detects the dragging or panning
gesture that the user makes.

• UISwipeGestureRecognizer: This class detects when the user makes a
swiping gesture across the screen. Instances of this class may be configured
to detect motion only in a specific direction.

• UIRotationGestureRecognizer: This class identifies the rotation
gesture that the user makes. (To make a rotation gesture, move two
fingers located opposite each other in contact with the screen and
move them in a circular motion.)

• UILongPressGestureRecognizer: This class is used to identify when the
user touches the screen with one or more fingers for a specified period
of time.

Device Capability – Power Unleashed

[124]

Gesture example
The following is an example of how the gesture feature can be used:

1. Create an application that will help us understand the various gestures we
have discussed in the last section:
$motion create gesture

2. Update the app_delegate.rb file in the app folder:
class AppDelegate
 def application(application, didFinishLaunchingWithOptions:launc
hOptions)

 @window = UIWindow.alloc.initWithFrame(UIScreen.mainScreen.
bounds)
 @window.rootViewController = UINavigationController.alloc.
initWithRootViewController(GestureController.new)
 @window.makeKeyAndVisible
 true
 end
end

3. Now, create a file named gesture_controller.rb in the app folder and add
the following code:
class GestureController < UIViewController
 def viewDidLoad
 view.backgroundColor = UIColor.whiteColor

 longPressRecognizer = UILongPressGestureRecognizer.alloc.
initWithTarget(self, action:'longPressGestureRecognizer:')
 tap_gesture_recognizer = UITapGestureRecognizer.alloc.initWith
Target(self,action:'tabGestureRecognizer:')
 rotate_gesture_recognizer = UIRotationGestureRecognizer.alloc.
initWithTarget(self, action:'rotationGestureRecognizer:')
 swipe_gesture_recognizer = UISwipeGestureRecognizer.alloc.
initWithTarget(self, action:'swipeGestureRecognizer:')
 pan_gesture_recognizer = UIPanGestureRecognizer.alloc.
initWithTarget(self, action:'panGestureRecognizer:')
 pinch_gesture_recognizer = UIPinchGestureRecognizer.alloc.
initWithTarget(self, action:'pinchGestureRecognizer:')

 self.view.addGestureRecognizer(longPressRecognizer)
 self.view.addGestureRecognizer(tap_gesture_recognizer)
 self.view.addGestureRecognizer(rotate_gesture_recognizer)
 self.view.addGestureRecognizer(swipe_gesture_recognizer)

Chapter 6

[125]

 self.view.addGestureRecognizer(pan_gesture_recognizer)
 self.view.addGestureRecognizer(pinch_gesture_recognizer)
 load_labels
 end
 def longPressGestureRecognizer(longPressRecognizer)
 show_alert("You've pressed the screen long enough!") if
UIGestureRecognizerStateEnded == longPressRecognizer.state
 end
 def tabGestureRecognizer(tap_gesture_recognizer)
 show_alert("You've tapped the screen!")
 end
 def rotationGestureRecognizer(rotate_gesture_recognizer)
 show_alert("You've rotated the screen!") if
UIGestureRecognizerStateEnded == rotate_gesture_recognizer.state
 end
 def swipeGestureRecognizer(swipe_gesture_recognizer)
 show_alert("You've just swiped!") if
UIGestureRecognizerStateEnded == swipe_gesture_recognizer.state
 end
 def panGestureRecognizer(pan_gesture_recognizer)
 show_alert("You've Panned!") if UIGestureRecognizerStateEnded
== pan_gesture_recognizer.state
 end
 def pinchGestureRecognizer(pinch_gesture_recognizer)
 show_alert("You've Pinched!") if UIGestureRecognizerStateEnded
== pinch_gesture_recognizer.state
 end

 def load_labels
 label = UILabel.new
 label.frame = [[10,50],[300,100]]
 label.lineBreakMode = UILineBreakModeWordWrap;
 label.numberOfLines = 0
 label.text = " Try a different gesture such as tap, rotate,
swipe, pan and pinch "
 view.addSubview(label)
 end
 def show_alert(message)
 alert_box = UIAlertView.alloc.initWithTitle("Gesture Action",
 message:message,
 delegate: nil,
 cancelButtonTitle: "ok",
 otherButtonTitles:nil)

 alert_box.show
 end
end

Device Capability – Power Unleashed

[126]

4. Run the application using the following command:

$rake

The output is as follows:

You must be wondering how we can use multi-touch on a simulator.
To use this feature on a simulator, hold the Option key; doing this will
display two circles on the simulator screen. You can move them in the
desired direction.

Chapter 6

[127]

Now let's understand the code. First, we created a different recognizer for each class:

 longPressRecognizer = UILongPressGestureRecognizer.alloc.
initWithTarget(self, action:'longPressGestureRecognizer:')
 tap_gesture_recognizer = UITapGestureRecognizer.alloc.initWithTarg
et(self,action:'tabGestureRecognizer:')
 rotate_gesture_recognizer = UIRotationGestureRecognizer.alloc.
initWithTarget(self, action:'rotationGestureRecognizer:')
 swipe_gesture_recognizer = UISwipeGestureRecognizer.alloc.
initWithTarget(self, action:'swipeGestureRecognizer:')
 pan_gesture_recognizer = UIPanGestureRecognizer.alloc.
initWithTarget(self, action:'panGestureRecognizer:')
 pinch_gesture_recognizer = UIPinchGestureRecognizer.alloc.
initWithTarget(self, action:'pinchGestureRecognizer:')

For each recognizer, we'll call an action. This means that whenever the user creates a
pattern or makes a gesture, such as a rotation, its corresponding action is called. For
example, when a user tries to pinch the view, pinchGestureRecognizer gets called.

Device Capability – Power Unleashed

[128]

Remember that after we have created the recognizers, we need to add them to
the view so that users can interact with them. We did this by adding them to the
addGestureRecognizer() method by passing the recognizer object to the view:

 self.view.addGestureRecognizer(longPressRecognizer)
 self.view.addGestureRecognizer(tap_gesture_recognizer)
 self.view.addGestureRecognizer(rotate_gesture_recognizer)
 self.view.addGestureRecognizer(swipe_gesture_recognizer)
 self.view.addGestureRecognizer(pan_gesture_recognizer)
 self.view.addGestureRecognizer(pinch_gesture_recognizer)

Next, we created actions for each gesture. We are just showing a pop-up when the
user shows any of the common gestures. For example, when we pinch, the following
code is called:

def pinchGestureRecognizer(pinch_gesture_recognizer)
 show_alert("You have Pinch") if UIGestureRecognizerStateEnded ==
pinch_gesture_recognizer.state
 end

This action is called in several states, such as when pinching starts and when
pinching stops. For discrete gestures, such as a tapping gesture, the gesture
recognizer invokes the method once per recognition; for continuous gestures, the
gesture recognizer invokes the method at repeated intervals until the gesture ends
(that is, until the last finger is lifted from the gesture recognizer's view). So, there can
be many states that you can find by UIGestureRecognizerState. Its value can be
one of the following:

• UIGestureRecognizerStatePossible

• UIGestureRecognizerStateBegan

• UIGestureRecognizerStateChanged

• UIGestureRecognizerStateEnded

• UIGestureRecognizerStateCancelled

• UIGestureRecognizerStateFailed

• UIGestureRecognizerStateRecognized =
UIGestureRecognizerStateEnded

Chapter 6

[129]

Possible

Failed

Began

Changed

Ended

Possible

Fails to recognize gesture
(All gestures recognizes)

Fails to recognize gesture
(continuous gestures)

Possible

Failed

Began

Changed

Cancelled

Possible

recognize gesture
(discrete gestures)

Gesture cancel
(continuous gestures)

As shown in the preceding figure, when a gesture is recognized, every subsequent
state transition causes an action message to be sent to the target. When a gesture
recognizer reaches the Recognized or Ended state, it is asked to reset its internal
state in preparation for a new attempt at recognizing the gesture.

Responses to the gestures should be in line with what the users expect.
For example, a pinching gesture should scale a view, zooming it in and
out; it should not be interpreted as, say, a selection request, for which a
tap is more appropriate.

Device Capability – Power Unleashed

[130]

Do it yourself
You can implement your own custom gesture recognizer. To implement this,
first create a subclass of UIGestureRecognizer. Then you can override the
following methods:

• reset

• touchesBegan

• touchesMoved

• touchesEnded

• touchesCancelled

Core Data – manage your data
Sometimes applications are required to save and manipulate user data. iOS SDK
provides a framework for this purpose known as Core Data.

The Core Data framework provides comprehensive and automated solutions related
to an object's life cycle and its searching and persistence features. It can retrieve and
manipulate data purely on an object level without having to worry about the details
of storage and retrieval.

With Core Data, data can be handled using higher-level objects indicating entities
and their relationships. Core Data interfaces directly with SQLite, separating the
developer from the underlying SQL.

So does it mean Core Data is a database? No; Core Data is not a database and the
best example of this is that Core Data can be used totally in memory without any
form of persistence. Then is Core Data similar to an ORM such as Active Record or
Hibernate? No; Core Data is an object graph manager with life cycle, searching, and
persistence features. With Core Data, an app can define a database schema, create a
database file, and create and manage record data.

Core Data example
We will create a simple employee application that will allow us to add the name and
age of an employee. This example is only used to demonstrate how Core Data works:

1. Let's create an application using the motion command:
$motion create CoreDataExample

2. Add the CoreData framework in the rake.rb file:
app.frameworks += [‘CoreData']

Chapter 6

[131]

3. This will be an MVC application, so let's create a model named employee.rb
in the app folder:
class Employee < NSManagedObject
 #Attribute Name, Data Type, Default Value, Is Optional, Is
Transient, Is Indexed
 @attributes ||= [
 [‘name', NSStringAttributeType, ‘', false, false, false],
 [‘age', NSInteger32AttributeType, 0, false, false, false]
]
end

You must have noticed that we have inherited the Employee class from
NSManagedObject. We have created an array of arrays for attributes in the
employee table with the attributes name and age. You must be wondering
what other parameters there are in this array. To understand this, we will
have to write a few helpers in our application.

4. Let's create a folder named helper and add a file named
NSEntityDescription.rb with the following code in it:

class NSEntityDescription
 def self.newEntityDescriptionWithName(name,
attributes:attributes)
 entity = self.alloc.init
 entity.name = name
 entity.managedObjectClassName = name

 attributes = attributes.each.map do |name, type, default,
optional, transient, indexed|
 property = NSAttributeDescription.alloc.init
 property.name = name
 property.attributeType = type
 property.defaultValue = default if default != nil
 property.optional = optional
 property.transient = transient
 property.indexed = indexed
 property
 end
 entity.properties = attributes
 entity
 end
end

Device Capability – Power Unleashed

[132]

The attributes that we have created in the employee model are defined
through this class. For each attribute, the NSAttributeDescription
class will be used to define them. The NSAttributeDescription class
is used to describe attributes of an entity described by an instance of
NSEntityDescription. It is inherited from NSPropertyDescription, which
provides most of the basic behavior. Instances of NSAttributeDescription
are used to describe attributes, as distinct from relationships. We can define
many properties for an object of NSAttributeDescription; for example,
we can put a validation on it, we can index the attribute, and much more.

5. Next, create a file named NSManagedObject.rb in the app folder and add the
following code:
 def self.entity
 @entity ||= NSEntityDescription.newEntityDescriptionWithName(n
ame, attributes:@attributes)
 end

 def self.objects
 # Use if you do not want any section in your table view
 @objects ||= NSFetchRequest.fetchObjectsForEntity
ForName(name, withSortKey:@sortKey, ascending:false,
inManagedObjectContext:Store.shared.context)
 end

end

class NSManagedObject
 def self.entity
 @entity ||= NSEntityDescription.newEntityDescriptionWithName(n
ame, attributes:@attributes)
 end
 def self.objects
 # Use if you do not want any section in your table view
 @objects ||= NSFetchRequest.fetchObjectsForEntity
ForName(name, withSortKey:@sortKey, ascending:false,
inManagedObjectContext:Store.shared.context)
 end
end

An NSEntityDescription object describes an entity in Core Data. An
entity to a manage object is what a class is to an ID or, to use a database
analogy, what tables are to rows. An NSEntityDescription object may
have NSAttributeDescription and NSRelationshipDescription
objects that represent the properties of the entity in the schema. An
entity may also have fetched properties, represented by instances of
NSFetchedPropertyDescription, and the model may have fetched
request templates, represented by instances of NSFetchRequest.

Chapter 6

[133]

6. Now, add the following code to the app_delegate.rb file:

class AppDelegate
 def application(application, didFinishLaunchingWithOptions:launc
hOptions)
 setting_core_data
 true
 end

 def setting_core_data

 # First we need to create the NSManagedObjectModel with all
the entities and their relationships.
 managed_object_model = NSManagedObjectModel.alloc.init
 managed_object_model.entities = [Employee.entity]

 # The next object needed is the NSPersistentStoreCoordinator
which will allow Core Data to persist the information.
 persistent_store_coordinator = NSPersistentStoreCoordinator.
alloc.initWithManagedObjectModel(managed_object_model)

 # Now lets get a URL for where we want Core Data to create the
persist file, in this case a SQLite Database File
 persistent_store_file_url = NSURL.fileURLWithPath(File.
join(NSHomeDirectory(),

‘Documents',

‘EmployeeStore.sqlite'))

 error_pointer = Pointer.new(:object)

 # Add a new Persistent Store to our Persistent Store
Coordinator which means that we are telling the Persistent Store
Coordinator where to perform the save of our objects.
 # In this case we are stating that our objects must be stored
in a SQLite database in the path we already created previously
 unless persistent_store_coordinator.addPersistentStoreWithType(
NSSQLiteStoreType,
configuration: nil,
URL: persistent_store_file_url,
options: nil,
error: error_pointer)

Device Capability – Power Unleashed

[134]

 # In case we can't initialize the Persistance Store File
 raise "Cannot initialize Core Data Persistance Store Coordinator:
#{error_pointer[0].description}"
 end
 # Finally our most important object, the Managed Object
Context, is responsible for creating, destroying, and fetching the
objects

 @managed_object_context = NSManagedObjectContext.alloc.init
 @managed_object_context.persistentStoreCoordinator =
persistent_store_coordinator
 end
end

Till now we have done some basic settings that we are required to do
before actually using database operations. In this case, we are stating that
our objects must be stored in a SQLite database at a location we define in
our code with the filename EmployeeStore.sqlite.
In the preceding code, we have created an object of NSManagedObjectModel
with all the entities. You can think of this object as a reference of
the objects to be used by Core Data. The next object needed is the
NSPersistentStoreCoordinator object that will allow Core Data
to persist the information. It is also responsible for choosing a location
to save our objects.
In the last part of our code, we have used the most important class,
which is the NSManagedObjectContext class. This class is responsible
for creating, destroying, and fetching the objects. An instance of
NSManagedObjectContext represents a single "object space" or scratch pad
in an application. Its primary responsibility is to manage a collection of
managed objects. These objects form a group of related model objects that
represent an internally consistent view of one or more persistent stores.
A single managed object instance exists in one and only one context, but
multiple copies of an object can exist in different contexts.

7. Let's fire up the terminal and run our application using the
following command:
$rake

Chapter 6

[135]

8. You will see a blank screen as we have not yet created the controller and
view. We will create them in the next section, but before that, let's first
update the app_delegate file to accommodate the controller and view
with the following code:

 def application(application, didFinishLaunchingWithOptions:launc
hOptions)
 setting_core_data
 employee_view_controller = EmployeeViewController.alloc.init

 # We need to pass the Managed Object Context to the next
controller so we can use it later for creating, fetching or
deleting objects
 employee_view_controller.managed_object_context = @managed_
object_context

www.allitebooks.com

http://www.allitebooks.org

Device Capability – Power Unleashed

[136]

 @window = UIWindow.alloc.initWithFrame(UIScreen.mainScreen.
bounds)
 @window.rootViewController = UINavigationController.alloc.
initWithRootViewController(employee_view_controller)
 @window.makeKeyAndVisible

 true
 end

Creating an employee
In the last part of the previous code snippet, we initialized
EmployeeViewController. Next, we will pass the managed object context to the
next controller that will later be used for either creating, fetching, or deleting objects.
And in the end, we will create a window and assign EmployeeViewController as its
root controller:

1. Create a file named employee_view_controller.rb in the app folder with
the following code in it:
class EmployeeViewController < UIViewController
 attr_accessor :managed_object_context
 def loadView
 # Set up the title for the View Controller
 self.title = ‘Employee'

 # Create a new Table View for showing the Text Fields
 table_view = UITableView.alloc.initWithFrame(UIScreen.
mainScreen.bounds,

style:UITableViewStyleGrouped)
 table_view.dataSource = self
 self.view = table_view

 # Create a new Bar Button Item with the Add System Default
 add_new_employee_item= UIBarButtonItem.alloc.initWithBarButtonS
ystemItem(UIBarButtonSystemItemAdd,

target: self,

action: ‘add_new_employee')
 # Add the Bar Button Item to the Navigation Bar
 self.navigationItem.rightBarButtonItem = add_new_employee_item
 end

Chapter 6

[137]

 def viewWillAppear(animated)
 super
 reload_data
 end

2. Next, let's fetch specific objects using the NSFetchRequest object. We also
need to tell Core Data which entity we want to retrieve. This can be done
using NSEntityDescription:
def reload_data
fetch_request = NSFetchRequest.alloc.init

entity = NSEntityDescription.entityForName(Employee.name,

inManagedObjectContext:@managed_object_context)
 fetch_request.setEntity(entity)

 # Sort the Employee by employee name
 fetch_sort = NSSortDescriptor.alloc.initWithKey(‘name',
 ascending:
true)
 fetch_request.setSortDescriptors([fetch_sort])

 # Update the fetch employee array and reload the table view
 update_fetched_employee_with_fetch_request(fetch_request)
 end

 def update_fetched_employee_with_fetch_request(fetch_request)

 # Create a new pointer for managing the errors
 error_pointer = Pointer.new(:object)

 # Using the NSManagedObjectContext execute the fetch request
 @fetched_employee = @managed_object_context.
executeFetchRequest(fetch_request,

error: error_pointer)

 # If the returning array of the fetch request is nil
 # means that a problem has occurred
 unless @fetched_employee
 raise "Error fetching employee: #{error_pointer[0].
description}"
 end

Device Capability – Power Unleashed

[138]

 # refresh table view to reload its data
 self.view.reloadData
 end

 # UITableView Data Source
 def tableView(tableView, numberOfRowsInSection: section)
 @fetched_employee.count
 end

 def tableView(tableView, cellForRowAtIndexPath: indexPath)
 cell_identifier = ‘EmployeeCell'
 cell = tableView.dequeueReusableCellWithIdentifier(cell_
identifier)
 # If we are not cells to use we need to create one
 if cell == nil
 # Lets create a new UITableViewCell with the identifier
 cell = UITableViewCell.alloc.initWithStyle(UITableViewCellSty
leValue1, reuseIdentifier:cell_identifier)
 cell.selectionStyle = UITableViewCellSelectionStyleNone
 end

 employee = @fetched_employee[indexPath.row]
 cell.textLabel.text = employee.name
 cell.detailTextLabel.text = employee.age.to_s
 cell
 end

 def add_new_employee
 add_employee_view_controller = AddEmployeeViewController.alloc.
init

 # We need to pass the Managed Object Context to the next
controller so we can use it later for creating, fetching or
deleting objects
 add_employee_view_controller.managed_object_context = @managed_
object_context
 self.navigationController.pushViewController(add_employee_view_
controller,
 animated:true)
 end

end

Chapter 6

[139]

That's a lot of code; let's try to understand it. First, we created a
tableView to create a table as it's the best way to represent this type
of data. Then, we created a + button at the top of the navigation bar with the
add_new_employee action associated with it. When this button is pressed, it
calls the add_new_employee action that, in turn, calls a new view, shows a
form, and adds a new employee.
Then, we created a reload_data method that will be called to refresh
the view with employee data. It will fetch the employee data using the
NSFetchRequest object. Then, we declared NSEntityDescription for the
Employee object so we can tell Core Data which entity we want to retrieve.
We also sorted the result by name using NSSortDescriptor.
In the last part of our example, we created an update_fetched_employee_
with_fetch_request method that will fetch the employee array and update
the table to show all of the data. NSManagedObjectContext executes the
fetch request that we created using the following code:

@fetched_employee = @managed_object_context.
executeFetchRequest(fetch_request,

error: error_pointer)

3. Next, we will create the view that will be called when the + button is clicked
on. Let's create a file named add_employee_view_controller.rb and add
the following code to it:
class AddEmployeeViewController < UIViewController
 attr_accessor :managed_object_context

 def viewDidLoad
 self.view.backgroundColor = UIColor.whiteColor
 self.title = ‘Add Employee'
 save_bar_button_item = UIBarButtonItem.alloc.
initWithTitle(‘Save',
 style: UIBarButtonItemStyleDone,
 target: self,
 action: ‘save_employee')
 self.navigationItem.rightBarButtonItem = save_bar_button_item
 load_form
 end

 def save_employee
 # Using Core Data create a new instance of the object employee
 employee = NSEntityDescription.insertNewObjectForEntityForName
(Employee.name,
 inManagedObjectContext: @managed_object_context)

Device Capability – Power Unleashed

[140]

 # Assign the text of the name text field to the employee
 employee.name = @name.text
 employee.age = @age.text.intValue

 # Create a new pointer for managing the errors
 error_pointer = Pointer.new(:object)

 # Lets persist the new Movie object, saving the managed object
context that contains it
 unless @managed_object_context.save(error_pointer)
 raise "Error saving a new Director: #{error_pointer[0].
description}"
 end

 # Pop the Director View Controller
 self.navigationController.popViewControllerAnimated(true)
 end

 def load_form
 @name = UITextField.alloc.initWithFrame([[50,50],[200,30]])
 @name.borderStyle = UITextBorderStyleRoundedRect
 @name.placeholder = "Name"
 self.view.addSubview(@name)
 @age = UITextField.alloc.initWithFrame([[50,100],[200,30]])
 @age.borderStyle = UITextBorderStyleRoundedRect
 @age.placeholder = "Age"
 self.view.addSubview(@age)
 end
end

With the preceding code, we created two text fields, one for name and the
other for age and we first added a Save button on top of the view that will
save the employee details by calling the save_employee action. In the
save_employee action, we used Core Data to create a new instance of the
employee object in the following way:
employee = NSEntityDescription.insertNewObjectForEntityForName(Emp
loyee.name,

inManagedObjectContext: @managed_object_context)

Chapter 6

[141]

Then, we assigned the value of the text field to the employee object and
finally saved that object and navigated to EmployeeViewController.

4. Let's fire up the terminal and run our application using the
following command:
$ rake

The output is as follows:

Device Capability – Power Unleashed

[142]

5. Now, let's add data to the Employee form using the view:

Deleting the employee
With the completion of the last section, our Core Data application is capable of
adding new employee records. But there may be instances when we'll need to
delete an employee record. In this section, we'll enhance our app to delete employee
records. The use case for this feature will be such that when we slide any row, the
system will ask for a confirmation. And once we confirm, the record will be deleted:

1. Update the employee_view_controller.rb file with the following code:
def tableView(tableView, canEditRowAtIndexPath: indexPath)
 true
 end

def tableView(tableView, commitEditingStyle: editingStyle,
forRowAtIndexPath: indexPath)

 employee = @fetched_employee[indexPath.row]

Chapter 6

[143]

 # Ask the NSManagedObjectContext to delete the object
 @managed_object_context.deleteObject(employee)

 # Create a new pointer for managing the errors
 error_pointer = Pointer.new(:object)

 # Lets persist the deleted employee object, saving the managed
object context that contains it
 unless @managed_object_context.save(error_pointer)
 raise "Error deleting an Employee: #{error_pointer[0].
description}"
 end

 # Create a new mutable copy of the fetched_employee array
 mutable_fetched_employee = @fetched_employee.mutableCopy

 # Remove the employee from the array
 mutable_fetched_employee.delete(employee)

 # Assign the modified array to our fetched_employee property
 @fetched_employee = mutable_fetched_employee

 # Tell the table view to delete the row
 tableView.deleteRowsAtIndexPaths([indexPath],
 withRowAnimation:UITableViewRo
wAnimationFade)
 end

With the iOS tableView, we have a direct way of creating or deleting
a row. In the preceding code, we first passed the value true to the
tableView(tableView, canEditRowAtIndexPath: indexPath)
delegate. Then in order to perform a delete action, we defined the
tableView(tableView, commitEditingStyle: editingStyle,
forRowAtIndexPath: indexPath) delegate.

2. Once we fetch the row that we want to delete, we use
NSManagedObjectContext to delete that object:
 @managed_object_context.deleteObject(employee)

Remember that we have to always call save to persist it
to our database.

Device Capability – Power Unleashed

[144]

3. Let's fire up the terminal and run the application using the
following command:

$rake

The output is as follows:

As shown in the preceding screenshot, when we slide the row, we get a system
prompt to delete the row. And once we click on Delete, the row gets deleted.

Address Book – manage your contacts
Address Book for iOS provides a way to store the contact information and other
personal information of people in a centralized database that can then be shared
between various applications. In this section, we will perform basic operations
related to the Address Book.

We will perform the following operations in this section:

• Access the device's Address Book
• Choose a desired user
• Copy data from the Address Book into our application

Chapter 6

[145]

Perform the following steps to work with an Address Book:

1. Let's first create a sample address book application with our favorite
motion command:
$motion create AddressBook_example

2. Next, let's create a controller named addressbook_controller.rb and
replace the following code in app_delegate.rb so that our delegate points
to our address book controller:
class AppDelegate
 def application(application, didFinishLaunchingWithOptions:launc
hOptions)

 @window = UIWindow.alloc.initWithFrame(UIScreen.mainScreen.
bounds)
 @window.rootViewController = AddressbookController.alloc.init
 @window.makeKeyAndVisible

 true
 end
end

3. Next, in our addressbook_controller.rb controller, which will initially be
empty, we will add a button and two labels. With the button, we will access
our Address Book and thereafter choose the desired contact. In the labels, we
will display the data of the user that we had selected from the Address Book.
Let's add the following code in our addressbook_controller controller:
def viewDidLoad
 view.backgroundColor = UIColor.underPageBackgroundColor
 load_button
 load_labels
end

def load_button

 @phonebook_button = UIButton.buttonWithType(UIButtonTypeRou
ndedRect)
 @phonebook_button.frame = [[50, 20], [200, 50]]
 @phonebook_button.setTitle("Click from Contacts",
forState:UIControlStateNormal)
 @phonebook_button.addTarget(self, action: :phonebook_
access, forControlEvents:UIControlEventTouchUpInside)
 view.addSubview(@phonebook_button)

Device Capability – Power Unleashed

[146]

end

def load_labels

 @first_name = UILabel.new
 @first_name.text = ‘First Name'
 @first_name.frame = [[100,100],[150,50]]

 @phone_number = UILabel.new
 @phone_number.text = ‘Phone Number'
 @phone_number.frame = [[100,200],[150,50]]

 view.addSubview(@first_name)
 view.addSubview(@phone_number)

end

4. Let's rake and see the progress so far:
$rake

The output is as follows:

Chapter 6

[147]

5. In the preceding step, we mentioned about a phonebook_access method; let's
create it. This method will help us access our device's Address Book. Further,
let's add the following code to our addressbook_controller.rb file:
def addressbook_access
 @people_picker = ABPeoplePickerNavigationController.alloc.init
 @people_picker.peoplePickerDelegate = self
 presentModalViewController(@people_picker, animated:true)
end

6. Once again, let's execute the rake command and see if we are able to access
the Address Book by clicking on the Click for contacts button:

7. With the last step, we are in our Address Book and can see the list of
contacts. Next, we need to add a method that will copy the desired
contact and navigate back to our application. This can be done with
peoplePickerNavigationController. Further, we'll add the following
code in addressbook_controller:
def peoplePickerNavigationController(peoplePicker, shouldContinueA
fterSelectingPerson:person)
 self.displayPerson(person)
 self.dismissModalViewControllerAnimated(true)

end

Device Capability – Power Unleashed

[148]

8. Now we need to display all of the data we have copied from the Address
Book. This can be done using the displayPerson method that will let us use
the saved values. Add the following method to addressbook_controller:

def displayPerson(person)
 firstname = ABRecordCopyValue(person,
KABPersonFirstNameProperty)
 phoneNumbers = ABRecordCopyValue(person,
KABPersonPhoneProperty)
 phone = ABMultiValueCopyValueAtIndex(phoneNumbers, 0)
 @phone_number.text = phone
 @first_name.text = firstname

end

Great! But we have missed something. What if a user changes his mind and does not
want any contact? We need to find a way to get back to the original application from
the Address Book. This can be done by adding the following three-line method in
addressbook_controller:

def peoplePickerNavigationControllerDidCancel(peoplePicker)
 self.dismissModalViewControllerAnimated(true)
end

Chapter 6

[149]

Do it yourself
So far we have learned a lot; now let's use our acquired knowledge and improvise
our restro application by implementing the following changes:

Task 1 – show nearest restaurant
To get data from the server, use the http://restro.nalwaya.com/restaurants/
find_restaurent_distance.json?latitude=#{latitude}&&longitude=#{longi
tude} API.

You have to pass the latitude and longitude with this request, and in return, you
will get a list of restaurants in the JSON format. Use this as input and create a view
displaying the results.

Task 2 – mark each restaurant on a map with
a pin
Use the http://restro.nalwaya.com/restaurants/search.json?city={city_
name} API that will give you a list of restaurants with their latitude and longitude in
the JSON format. Use these coordinates to show their location on the map.

Once you are done with this exercise, compare your solution with the one available
in the chapter code available with this book.

Summary
The following is what we have learned in this chapter:

• How to access Camera
• How to use Core Location
• How to use different device gestures
• How to store data on a phone using Core Data
• How to access the Address Book

Now that we are acclimatized with the basics of RubyMotion, in the next
chapter we will dig deep into the advanced features of iOS SDK with RubyMotion.
iOS SDK is very powerful and has vast functionalities. In the next chapter, we
will discuss how to use .storyboard, .xib, and WebView in detail, to create a
truly interactive application.

Interface Builder and
WebView – More Goodies!

"Time is precious; waste it wisely."

–Anonymous

In this chapter we will learn about some features of iOS development with
RubyMotion. Xcode is a very advanced IDE and has many qualities, which we can
exploit to develop faster and better iOS applications. In this chapter we will also
learn how to use an Interface Builder for rapid development with RubyMotion.
We will also have a look at some key elements of Xcode, such as .xib, .nib,
and WebView, to create real-life interactive apps.

Interface Builder
Xcode's Interface Builder allows you to create your application's user interface
visually, instead of writing code. Interface Builder is a great tool that is very simple
to use and is pivotal in making iOS development really fast. Therefore, the Interface
Builder used along with RubyMotion further reduces development time. We can
say these are two delicious recipes independently, but when used together, it's the
ultimate formula to make beautiful iOS apps as quickly as possible.

Interface Builder and WebView – More Goodies!

[152]

Interface Builder comes with Xcode. Before we jump into using Interface Builder,
it's important to understand that although Interface Builder creates the UI using the
drag-and-drop mechanism, it is however not creating the Objective-C code behind
the scene. It's creating an XML description of the GUI you're building, and the Cocoa
Touch framework uses that XML to actually create the UI elements, such as label and
textbox, for your application at runtime. Everything we do in Interface Builder could
be done by writing lines of Ruby code—that's exactly what we have been doing from
the beginning of this book—but shortly you will see how things get really easy with
a GUI builder.

XCode uses XML only for the editing stage, which is then compiled
to nibs. Cocoa Touch never sees the XML source.

Before we begin using Interface Builder, let's understand some jargon associated
with XCode development. The GUI builder provides options to drag-and-drop
buttons, table views, and text fields into your app window. The resulting interface is
stored as a .xib file. A .xib file is an XML representation of your objects and their
instance variables, and it is compiled into a .nib file when your application is built.
The .xib file is easier to work with but the .nib file is smaller and easier to parse,
that's why the file that actually ships with your application is a .nib file.

The .nib file is short for NeXT Interface Builder.

Let's try the Interface Builder
So far we have created the views for our Restro application views by writing code
in Ruby. In this section, let's create a view using the GUI-based Interface Builder.
We will create a Contact Us form and use it in our application.

Chapter 7

[153]

The Interface Builder is integrated into Xcode, which is a one stop IDE for any
Apple-related development, whether it's for iOS devices or Mac. We will create
a .xib file and then use this file in our RubyMotion project by performing the
following steps:

1. Open Xcode and click on Create a new Xcode Project.

2. Click on Single View Application, as we need only one .xib file.

Interface Builder and WebView – More Goodies!

[154]

3. Enter this data in the project-creation wizard. Notice that we have selected
the device as iPhone. We can also see the other options, such as iPad and
Universal. If you want to create a single application to be used on both
iPhone and iPad, use the Universal option from the drop-down list.
Also, unselect the Use Storyboards option.

4. Save the project in a folder of your choice; your project will then be loaded
in XCode. Click on ViewController.xib and you will be able to see the
Interface Builder.

Chapter 7

[155]

The Interface Builder has a fairly simple layout; it consists of four main windows:

• View
• Library
• Document browser
• Inspector

The View window is where you construct your interface. You will drag-and-drop
items from the Library window onto the View window to place them. The document
browser allows you to browse hierarchically the elements you have placed in your
.nib file. Finally, the Inspector window shows you all of the different attributes of
the selected element and allows you to edit them.

Interface Builder and WebView – More Goodies!

[156]

And now the magic begins; drag Navigation Bar from Library to view the section as
shown in the following image:

Chapter 7

[157]

When you select Navigation Bar, you will see many properties in the Inspector
window. Change the tag value to 1 in the Inspector window. Remember that we
will use this tag value in the RubyMotion project code. We need to wire our View
Controller elements. The easiest way to do this is to use its Tag attribute. Tag is
an integer property of the UIView class that you can use to identify your views.
Basically, you have to set a unique integer for each UIView class you need to access
from your UIViewController element.

Interface Builder and WebView – More Goodies!

[158]

Similarly, add a text field for e-mail and change the value for the placeholder to
Email as shown in the following screenshot. There are a lot of properties associated
with every Library object; for example, in case of a text field, we have changed the
keyboard value to Email as it suits our requirement; but you are free to go ahead and
play with other properties too. Using Email will show a keyboard customized for
entering e-mail addresses.

Chapter 7

[159]

Next, we need a button. Let's drag-and-drop a button onto the View window.

.xib to RubyMotion
In this section, we will import our .xib file into our RubyMotion project. Open
the folder of the Xcode project and locate ViewController.xib. It's inside a folder
named en.lproj; copy it into the resources folder of your Restro application,
which we created in the last chapter.

Interface Builder and WebView – More Goodies!

[160]

Update the about_controller.rb file in the restro app, which we created in the
last chapter, with the following code:

def setupNavigationBar
 back= UIBarButtonItem.alloc.initWithTitle("Back", style:UIBarButtonI
temStylePlain,target:nil ,action:nil)
 self.navigationItem.backBarButtonItem = back;
 contact_us_button = UIBarButtonItem.alloc.initWithTitle("Contact
Us", style:UIBarButtonItemStylePlain ,target:self, action:"contact_
us")
 self.navigationItem.rightBarButtonItem = contact_us_button
end
def contact_us
 contact_us_controller = ContactUsController.alloc.initWithNibName("V
iewController", bundle:nil)
 presentModalViewController(contact_us_controller, animated:true)
end

As we have imported the .xib file from Xcode to the RubyMotion project,
RubyMotion creates a .nib file automatically when we build the code with the Rake
command. Here, we are creating a View Controller variable with an initializer
initWithNibName that receives a parameter, which will be the name of the .nib file.
This initializer has the responsibility of instantiating the .nib file and wiring the
View declared in the view property of the View Controller variable.

Create a file contact_us_controller.rb inside the app folder as follows:

class ContactUsController < UIViewController
end

Let's fire up the terminal and run the application with the following command:

$rake

Chapter 7

[161]

The following screenshot shows the output of the preceding command:

Next, let's update contact_us_controller.rb with the following code:

class ContactUsController < UIViewController
 HEADER_TAG = 1
 EMAIL_BOX_TAG = 2
 INFORMATION_BOX_TAG = 3
 SUBMIT_BUTTON_TAG = 4
 def viewDidLoad
 @header = self.view.viewWithTag(HEADER_TAG)
 @email_box = self.view.viewWithTag(EMAIL_BOX_TAG)

Interface Builder and WebView – More Goodies!

[162]

 @information_box = self.view.viewWithTag(INFORMATION_BOX_TAG)
 @submit_button = self.view.viewWithTag(SUBMIT_BUTTON_TAG)
 @submit_button.addTarget(self,
 action:"send_message", forControlEvents:UIControlEventTou
chUpInside)
 tapGesture = UITapGestureRecognizer.alloc.initWithTarget(self,
action:"hideKeyboard")
 tapGesture.cancelsTouchesInView = false
 view.addGestureRecognizer(tapGesture)
 end

 def send_message
 if form_valid?
 puts "Submitted the button with correct values"
 close
 else
 puts "Invalid Values"
 end
 end
 def close
 dismissModalViewControllerAnimated true
 end

 #method to hide keyboard when user taps on a scrollview
def hideKeyboard
 @information_box.resignFirstResponder
end

def form_valid?
 not @email_box.text.empty? and not @information_box.text.empty?
and not @email_box.text.match(/\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]
{2,})\Z/i).nil?
end
end

Let's start the application by using the following command:

$rake

Enter a few incorrect values in the form and you will get Invalid value printed on
the terminal. Once you enter the values correctly in the form and submit it, it will
be pulled down.

Chapter 7

[163]

Now let's understand the code. First we have assigned the tags to the attributes that
we had created in Interface Builder. And then we have used these tags to wire our
variables to those components.

self.view.viewWithTag(HEADER_TAG)

The preceding command will retrieve a subview of self.view based on its tag.

We have also created an action item for the Submit button. That means when we
click on the Submit button, it will call the action send_message.

 @submit_button.addTarget(self,
 action:"send_message", forControlEvents:UIControlEventTouchUpIn
side)

In the send_message action, we are checking whether the form is valid or not.

Interface Builder and WebView – More Goodies!

[164]

Some developers like to design the user interface using Interface Builder; others
prefer to work entirely with code. One of the reasons is that when connecting
Interface Builder outlets and actions to your code, it is easy to make a mistake. This
often results in an error that is more difficult to debug than if you had simply written
the entire code, as you have to debug in two places (Interface Builder and your code)
instead of just one (the code).

UIWebView – embed web content
There is a possibility that we have to show web content in our application. The
UIWebView class helps us to do exactly that. To do this, simply create a UIWebView
object, attach it to a window, and send a request to load web content. We can also
use this class to move back and forth in the history of web pages and you can even
set some web content properties programmatically.

Now let's create a UIWebView class that displays www.rubymotion.com in our view.

Update about_controller.rb with the following code:

def submit_button
 @visitButton = UIButton.buttonWithType(UIButtonTypeRoundedRect)
 @visitButton.frame = [[80,10],[180,37]]
 @visitButton.setTitle("Visit", forState:UIControlStateNormal)
 @visitButton.setTitle("You have clicked me", forState:UIControlStat
eHighlighted)
 @visitButton.addTarget(self, action:"load_some_view", forControlEven
ts:UIControlEventTouchDown)
 view.addSubview(@visitButton)
end
def load_some_view
 @my_web_view = UIWebView.alloc.
initWithFrame([[0,100],[320,220]])
 @my_web_view.delegate = self
 @my_web_view.scalesPageToFit = "YES"
 view.addSubview(@my_web_view)
 url = NSURL.URLWithString("http://www.rubymotion.com")
 request = NSURLRequest.requestWithURL(url)
 @my_web_view.loadRequest(request)
end

Now let's understand the code. Take the following line:

url = NSURL.URLWithString("http://www.rubymotion.com")

Chapter 7

[165]

Here, NSURL.URLWithString tells our application that the text passed is a web
address or a URL, which is now an NSURL object called url.

request = NSURLRequest.requestWithURL(url)

NSURLRequest.requestWithURL processes the url variable passed as a request. It is
now a request object called request.

@my_web_view.loadRequest(request)

Finally, we load the request into the WebView class, which we have named @my_
web_view.

Let's fire up the terminal and run our application as follows to see the results:

$rake

The following screenshot shows the output of the preceding command:

Interface Builder and WebView – More Goodies!

[166]

Summary
Let's recap what we have learned in this chapter:

• Xcode Interface Builder with RubyMotion
• Using WebView to embed web content in your application with RubyMotion

In the next chapter we will focus on a pivotal part of the software development
lifecycle, which is testing. We will learn how to write test cases for the RubyMotion
project and test our application on iOS devices.

Testing – Let's Fail Gracefully

"Truth will sooner come out from error than from confusion."

—Francis Bacon

In order to maintain high quality of a software product, testing is a very important
part of the software development life cycle. In this chapter we will learn how we can
test RubyMotion applications. We will learn to write unit tests, which can test an
isolated code, and then learn functional testing, which will help us automate the
UI tests. The following topics will be covered in this chapter:

• Unit testing
• Functional testing
• Device events

Unit testing
The goal of unit testing is to isolate each part of the program and show that the
individual parts function properly. RubyMotion uses MacBacon, which is an iOS
flavor of Bacon.

Bacon is a smaller clone of RSpec. With less than 350 LOCs,
we nevertheless get all the essential features.

Testing – Let's Fail Gracefully

[168]

Here, we will also follow Test Driven Development (TDD), a way of working
where unit tests are created before the code itself is written. Of course, the tests will
fail initially because we don't have anything. That's the philosophy of TDD; first
we write the test case, it fails, we then refractor our code and once again write the
feature code, and this time our test cases pass and the code is considered complete.

The idea here is that the developer himself wears the hat of a tester. We first
document the feature in the form of a test, which fails, then we write our code
and refractor, and once again document with a test case for the next feature.

First, let's create an application, which we will be using to learn how to write test
cases for use with TDD.

$motion create LearnTest

In the folder structure, we can see a spec folder and a file main_spec.rb placed
inside this folder. This is the default test file generated by the RubyMotion generator;
this is where we write our test cases.

Let's write our first test case in the main_spec.rb file inside the spec folder
as follows:

describe "Application 'LearnTest'" do
 before do
 @app = UIApplication.sharedApplication
 end

 it "has one window" do
 @app.windows.size.should == 1
 end
end

Bacon gives you a way to encapsulate what you're testing via the describe block.
As the name suggests, the describe block is used to describe the behavior of a class
as follows:

describe "Application 'LearnTest'" do
end

Tests are written using the it block. The test has a window, which checks if our
application has a window as follows:

 it "has one window" do
 @app.windows.size.should == 1
 end

Chapter 8

[169]

As you can see, the syntax of these tests is very readable and you can easily
understand what it means. In this case, @app.windows.size.should == 1
means that your application should have one window.

The describe() method clasps into the Bacon API and gives us the
Spec::ExampleGroup class. As the name suggests, it is a group of examples. These
examples are actually the expected behavior of the object. If you're familiar with the
xUnit tools such as Test::Unit, you can think of an ExampleGroup class as being
akin to a test case.

Let's run the test case with the following commands:

$ rake spec

Build ./build/iPhoneSimulator-6.0-Development

 Compile ./app/app_delegate.rb

 Compile /Library/RubyMotion/lib/motion/spec.rb

 Compile /Library/RubyMotion/lib/motion/spec/helpers/ui.rb

 Compile ./spec/main_spec.rb

 Create ./build/iPhoneSimulator-6.0-Development/LearnTest_spec.app

 Link ./build/iPhoneSimulator-6.0-Development/LearnTest_spec.app/
LearnTest

 Create ./build/iPhoneSimulator-6.0-Development/LearnTest_spec.app/Info.
plist

 Create ./build/iPhoneSimulator-6.0-Development/LearnTest_spec.app/
PkgInfo

 Create ./build/iPhoneSimulator-6.0-Development/LearnTest_spec.dSYM

 Simulate ./build/iPhoneSimulator-6.0-Development/LearnTest_spec.app

Application 'LearnTest'

 has one window [FAILED]

Bacon::Error: 0.==(1) failed

 spec.rb:649:in 'satisfy:': Application 'LearnTest' - has one window

 spec.rb:663:in 'method_missing:'

 spec.rb:279:in 'block in run_spec_block'

 spec.rb:403:in 'execute_block'

 spec.rb:279:in 'run_spec_block'

 spec.rb:294:in 'run'

1 specifications (1 requirements), 1 failures, 0 errors

Testing – Let's Fail Gracefully

[170]

We can see that one test failed (Bacon::Error: 0.==(1)). That is exactly what
we wanted.

This means that @app.windows.size should expect the value as 1 but the actual
value right now is 0. This is because till now we have not created a window in
our application.

Next, let's write the code to create a window and update the app_delegate.rb file
with the following code:

class AppDelegate
 def application(application, didFinishLaunchingWithOptions:launchOp
tions)
 @window = UIWindow.alloc.initWithFrame(UIScreen.mainScreen.
applicationFrame)
 @window.makeKeyAndVisible
 true
 end
end

Let's run the specs file as follows:

$rake spec

Application 'LearnTest'

 - has one window

1 specifications (1 requirements), 0 failures, 0 errors

We see that our test has passed and the code is therefore complete; mission
accomplished!

The following are some commonly used assertions with MacBacon:

• should. and should.be
• should.equal

• should.match

• should.be.identical_to/should.be.same_as
• should.raise(*exceptions) { }

• should.change { }

• should.throw(symbol) { }

• should.satisfy { |object| }

Chapter 8

[171]

Now let's create one more test by adding the following code to your
main_spec.rb file:

it "should set rootviewcontroller as RootViewController" do
 @app.keyWindow.rootViewController.class.should ==
RootViewController
end

This test checks whether we have the rootViewController property in our
application whose name should be RootViewController. Run this test case
and it should fail, as we have not yet created RootViewController.

Let's create a file root_view_controller.rb in the app folder as follows:

class RootViewController < UIViewController

def viewDidLoad

 end

end

Also update the app_delegate.rb file by adding the following line:

@window.rootViewController = RootViewController.alloc.init

Now when we run the specs file, we will find that all the test cases are passed.

Next, let's add some functionality to our application. How about we calculate the
sum of the squares of numbers? Let's first write the tests for this.

Add the following specs code to the main_spec.rb file in the spec folder:

describe "sum_of_square_number" do
 it "should return sum of squares of numbers" do
 array = [2,4,1]
 controller.sum_of_square_number(array).should.equal 21
 end

 it "should return 0 if array is blank" do
 array = []
 controller.sum_of_square_number(array).should.equal 0
 end
end

Testing – Let's Fail Gracefully

[172]

When we run the test, they will surely fail, as we have not yet created the
sum_of_square_number method. So let's create this method and its logic so
that our specs tests pass, update the root_view_controller.rb file, and
add the following method:

def sum_of_square_number(array)
 sum = 0
 array.each do |number|
 sum = sum + number*number
 end
 sum
end

This time, when we run our specs tests they will pass.

So far we have learned about testing a piece of code, but it is equally important that
we test the user interface, so in the next section we will write a functional test.

You can create multiple files in your spec folder. RubyMotion
automatically runs all the files with the .rb extension. You can
also run individual files even from different locations with the
following command:
rake spec files=foo_spec,spec/bar_spec.rb

Functional testing
RubyMotion lets us write functional tests for our controllers and interacts with
its views through a set of high-level event generating APIs, by leveraging the
functionality of Apple's UIAutomation framework without forcing us to write
the tests in JavaScript.

Let's now write tests for user interface of the same application. In the following test
case, we will test whether we have a label and a button on the screen.

Create the spec file restro_view_controller_spec.rb in the spec folder:

it "should have a label and a button" do
 view('Click Button').should.not.equal nil
 button = view('Click Me')
 button.should.not.equal nil
 button.isEnabled.should.equal true
end

Chapter 8

[173]

The view(label) property returns the view that matches the specified accessibility
label. The view command traverses down through the view hierarchy, starting from
the current window. If no view matches our condition, it keeps retrying it until the
timeout, which defaults to three seconds. This means you don't need to worry about
whether or not the view you're looking for is still being loaded or animated.

Finally, if the timeout passes and no view matches, an exception will be raised.

The default timeout value can be changed through the Bacon::Functional.
default_timeout property.

You can also check what buttons are available on view with the classname
as follows:

views(UIButton) # => [button1, button2]

Now to pass this test, let's write the code for this functionality and update the file
root_view_controller.rb with the following code:

def viewDidLoad
 super
 view.backgroundColor = UIColor.whiteColor
 @label = UILabel.new
 @label.text = 'Click Button'
 @label.textAlignment = UITextAlignmentCenter
 @label.frame = [[80,50],[150,50]]
 view.addSubview(@label)
 @normal_button = UIButton.buttonWithType(UIButtonTypeRoundedRect)
 @normal_button.frame = [[80,150],[180,37]]
 @normal_button.setTitle("Click Me", forState:UIControlStateNormal)
 @normal_button.addTarget(self, action:'buttonIsPressed', forControlE
vents:UIControlEventTouchDown)
 view.addSubview(@normal_button)
end

Let's fire up the terminal and run the application with the following command:

$rake

Testing – Let's Fail Gracefully

[174]

The following screenshot shows the output of the preceding command:

We have created a label and a button in this View and now, when we run our
spec test, it passes. Next, we want to calculate the sum of the squares of the first
5 numbers on click of a button. Let's first write the spec code for this functionality.
Update the file restro_view_controller_spec.rb with the following code:

it "should show sum of squares on click of button" do
 tap 'Click Me'
 view('55').should.not.equal nil
end

The tap command clicks on the button with the label Click Me. There are many
options available with the tap command. We will know more about them as we
proceed with this chapter.

Chapter 8

[175]

Now let's write the corresponding code for this spec test and update the file
root_view_controller.rb with the following code:

def buttonIsPressed
 array = [1,2,3,4,5]
 @label.text = sum_of_square_number(array).to_s
end

Let's fire up the terminal and test our application with the following command:

$rake

The following screenshot shows the output of the preceding command:

We are now familiar with the basic functioning of testing. Next, we will learn how to
test the device events with RubyMotion.

Device events
Most of the iOS applications make use of the various device capabilities. As a good
practice, we must test these features to deliver high quality apps. RubyMotion gives
us an environment to test some device capabilities. Let's discuss a few of them in
this section.

Testing – Let's Fail Gracefully

[176]

Rotate device
We can test the rotation of the device by calling the following event:

rotate_device(:to => orientation, :button => location)

The rotate_device command allows us to pass the following two arguments:

• to: This passes the orientation to rotate the device; it can either have portrait
or landscape as a value.

• button: The button here indicates the position of the home button; it makes
sense if we pass the values based on the first value of orientation. In portrait
mode, we can opt for the :bottom or :top button location. In landscape
mode, we can opt for :left or :right with respect to the button location,
for example, rotate_device :to => :portrait, :button => :bottom.

This device event will rotate the device to the portrait orientation with the home
button at the bottom.

Now let's use this rotation in our sample application from the previous section.
We want to ensure that our application only works in portrait mode. For this we
must disable the landscape mode. Let's add a test case for this scenario. Add the
following code in the file root_view_controller_spec.rb:

it "has default orientations for portrait" do
 rotate_device :to => :landscape
 controller.interfaceOrientation.should ==
UIInterfaceOrientationPortrait

 rotate_device :to => :portrait
 controller.interfaceOrientation.should ==
UIInterfaceOrientationPortrait
end

With the preceding test case, we rotate the device first in landscape mode and then in
portrait mode, and then we test that each rotation is actually in portrait mode.

Let's fire up the terminal and run the test as follows:

$rake spec

Application 'LearnTest'

 has one window

 should set rootviewcontroller as RootViewController

Chapter 8

[177]

RootViewController

 should have label and button

 should show sum of square on click of button

 has default orientations for portrait [FAILED]

sum_of_square_number

 should written sum of square of numbers

 should written 0 if array is blank

Bacon::Error: 4.==(1) failed

 spec.rb:649:in 'satisfy:': RootViewController - has default
orientations for portrait

 spec.rb:663:in 'method_missing:'

 spec.rb:279:in 'block in run_spec_block'

 spec.rb:403:in 'execute_block'

 spec.rb:279:in 'run_spec_block'

 spec.rb:294:in 'run'

As expected, it failed. Let's write its corresponding code to make our app work only
in portrait mode.

Update Rakefile with the following line of code:

app.interface_orientations = [:portrait]

Let's test our spec file once again and check the output on the console:

$rake spec

Application 'LearnTest'
 - has one window
 - should set rootviewcontroller as RootViewController

RootViewController
 - should have label and button
 - should show sum of square on click of button
 - has default orientations for portrait

sum_of_square_number
 - should written sum of square of numbers
 - should written 0 if array is blank

7 specifications (10 requirements), 0 failures, 0 errors

Testing – Let's Fail Gracefully

[178]

All tests passed as expected. Now, let's run the application in a simulator with the
following command:

$rake

Rotate the device by selecting Hardware | Rotate Left in the simulator menu as
shown in the following screenshot:

You can see that even after rotation, the interface orientation does not change as
shown in the following screenshot:

Chapter 8

[179]

Accelerometer device event
Accelerometer allows us to measure the linear acceleration of the device for your
application. We can test the accelerometer features either on a device or with the
following accelerate event:

accelerate(:x => x_axis_acceleration, :y => y_axis_acceleration,

 :z => z_axis_acceleration, :duration => duration)

The following parameters can be passed with accelerate:

• x: If you hold your device in the portrait orientation and the screen is facing
you, the x axis will run from left to right, with values on the left as negative
and values on the right as positive.

• y: If you hold your device in the portrait orientation and the screen is facing
you, the y axis will run from bottom to top, with values on the bottom as
negative and values on the top as positive.

• z: If you hold your device in the portrait orientation and the screen is facing
you, the z axis will run from back to front, with values at the back as negative
and values towards the front as positive. For example, accelerate: x => 0, :y
=> 0, :z => -1.

This test case event simulates a device lying on its back.

Testing – Let's Fail Gracefully

[180]

To trigger a shake motion event, we can use the following
method: shake()

Gestures
A user of an iOS application uses the app in a number of ways, by tapping or
touching the screen and pinching or rotating. With RubyMotion, we can test
most of these gestures; let's discuss a few of them in this section.

Most of the gestures operate on views. We can specify the location of our event on
the view by either using CGPoint or with the following constants:

• :top

• :top_left

• :top_right

• :bottom_right

• :bottom

• :bottom_left

• :left

• :right

CGPoint lets us access a structure that contains a point in a two-
dimensional coordinate system, for example, CGPoint.new(100, 200).

Tap
To simulate a tapping event on a view, we can specify a label or a view, and some
specific properties as follows:

tap(label_or_view, :at => location, :times => number_of_taps, :touches
=> number_of_fingers)

Let's understand what the purpose of the optional parameters is:

• at: We can specify the location on the view where we want the tap to
simulate; the default location is the center of the view.

• times: This specifies the number of times to tap the view. The default is a
single tap.

Chapter 8

[181]

• touches: iPhone and iPad are multitouch devices; many apps exploit this
feature of the iOS devices. You can specify the number of fingers that will
be used to tap the view. The default is a single touch.

The following example will tap Test Label with the default setting of tapping a
view once with a single touch:

tap "Test Label"

In the next example, we will test the view labeled Test Label by tapping five times
with two fingers:

tap 'Test Label', :times => 5, :touches => 2

Flick
Flick generates a sharp moment of the drag gesture as follows:

flick(label_or_view, :from => location, :to => location, :duration =>
duration)

We can pass the following options with the flick method:

• from: Specifies the location on the view to start the drag gesture.
• to: Specifies the location on the view to end the drag gesture.

The following example generates a flick gesture to the right of the view:

flick "test label", :to => :right

Pinch open
Pinch open is a gesture using two fingers, which is generally used for zooming the
images. With the following method we can generate a pinch open gesture:

pinch_open(label_or_view, :from => location, :to => location,
:duration => duration)

We can pass the following options with the pinch_open method:

from: This denotes the starting point for two fingers to begin the pinch open gesture;
by default, it is to the left of the view.

to: This denotes the ending point for two fingers to finish the pinch open gesture;
it defaults to the right.

Testing – Let's Fail Gracefully

[182]

The following example zooms in on the content view of a UIScrollView class:

view('Test Zoom').zoomScale # => 1.0
pinch_open 'Test Zoom'
view('Test Zoom').zoomScale # => 2.0

Pinch close
Pinch close is a gesture using two fingers, which is generally used for zooming out
on images. With the following method we can generate a pinch close gesture:

pinch_close(label_or_view, :from => location, :to => location,
:duration => duration)

We can pass the following options with the pinch_close method:

• from: This denotes the starting point for two fingers to begin the pinch close
gesture; by default, it is to the right of the view.

• to: This denotes the ending point for two fingers to finish the pinch close
gesture; by default, it is to the left of the view.

The following example zooms out of the content view of a UIScrollView class:

view('Test Zoom').zoomScale # => 1.0
pinch_close 'Test Zoom'
view('Test Zoom').zoomScale # => 0.5

Drag
A drag gesture is generally used for panning and scrolling; it always has a start and
end point. With the following method we can generate a drag gesture:

drag(label_or_view, :from => location, :to => location, :number_of_
points => steps,
 :points => path, :touches => number_of_fingers, :duration =>
duration)

We can pass the following options with the drag method:

• from: This denotes the part of the view where the drag gesture will begin.
If not specified, it defaults to none.

• to: This denotes the part of the view where the drag gesture will end.
If not specified, it defaults to none.

• number_of_points: The number of points between :from and :to.
It defaults to 20.

Chapter 8

[183]

• points: An array of CGPoint instances that specifies the drag path.
• touches: The number of fingers to be used to drag. It defaults to a single touch.

Keep in mind that scrolling in a direction means dragging in the opposite direction.

The following code will scroll down in a scroll view:

view('Some Scrollable scrollview').contentOffset.y # => 0
drag 'Some Scrollable scrollview', :from => :bottom
view('Some Scrollable scrollview').contentOffset.y # => 400

Rotation
To test the clockwise and anticlockwise rotation gesture, the following method is
used. This method will simulate the rotation gesture around the center point of
the view.

rotate(label_or_view, :radians => angle, :degrees => angle, :touches
=> number_of_fingers, :duration => duration)

We can pass the following options with the rotate method:

• radians: The angle of rotation in radians. It defaults to π.
• degrees: The angle of rotation in degrees. It defaults to 180.
• touches: The number of fingers used to rotate. It defaults to 2.

Summary
Let's recap all that we have learned in this chapter:

• Unit test cases
• Functional test cases
• How to test device events

So far we have covered the basics and advanced topics related to RubyMotion. And
now we are ready to do some fun stuff. In the next chapter we will learn to create
games with RubyMotion. Gaming apps are one of (if not the) most popular genres of
apps on the App Store. Most of us pass the time playing games on our iOS devices,
so why not learn how to use RubyMotion to create our own game. In the next
chapter we will learn how to create a game using RubyMotion.

Creating a Game
Apple App Store has a wide variety of applications. There are many popular genres
of applications available, such as productivity, business, entertainment, and many
more. But out of these, the most popular kind are the gaming apps, and to make one
yourself is much more exciting. Gaming on iOS devices is a gigantic topic; in this
chapter we will cover some basics for creating an engaging gaming app. We will
also use a popular library, so that by the end of this iteration, we will be able to
make a simple and fun gaming application. The following topics will be covered
in this chapter:

• Cocos2D
• Understanding gaming basics by creating a game app

Cocos2D
Cocos2D is a powerful library for game development, which saves a lot of time by
handling trivial things while building your game. Common things that are regularly
needed for game development, such as direction, sprite, cool graphical effects,
animations, physics libraries, sound engines, and a lot more are already provided
by libraries and APIs.

Cocos2D organizes game development like the making of a movie where you
are made to sit in the director's chair. For example, you will have a scene for the
startup menu of the game, another for the main game, and then another for the
game over scene with options that concludes the playing episode. You have to
literally use the Director class to create a director object, which drives the
whole application forward.

All the basic tasks, such as starting the game, pausing the game, and creating various
scenes are handled by Cocos2D.

Creating a Game

[186]

Inside the scenes, you can have a number of layers that contain nodes such as sprites,
labels, menus, and more. These nodes can contain other nodes as well. This can be
nicely demonstrated with the help of the following figure:

Let's create a game – Whac-A-Mole
We will create an iPhone version of the popular arcade game Whac-A-Mole. When the
game starts, moles (an animal) will begin to pop up from the bottom of the screen.
The objective of the game is to hit the mole, thereby adding to the player's score:

1. Create an application using the following command:
motion create GameApp

2. Now, as we are using an external library for our application, let's first install
CocoaPods. Run the following commands on your terminal:
$ sudo gem install cocoapods
$ pod setup
$ sudo gem install motion-cocoapods

3. Update the Rakefile:

$:.unshift("/Library/RubyMotion/lib")
require 'motion/project'
require 'motion-cocoapods'

Motion::Project::App.setup do |app|
 # Use 'rake config' to see complete project settings.
 app.name = 'GameApp'
 app.pods do
 pod 'cocos2d'
 end
end

Now we are all set to begin coding for our app.

Chapter 9

[187]

Let's start coding!
As in Cocos2D, we need to create a director for starting the game. Let's create one:

1. Update the app_delegate.rb file with the following code:
class AppDelegate
 def application(application, didFinishLaunchingWithOptions:launc
hOptions)

 # Create a window to present our director
 @window = UIWindow.alloc.initWithFrame(UIScreen.mainScreen.
bounds)

 # Create CCGLView view that will be used by the director to
present the game scenes

 game_view = CCGLView.viewWithFrame(@window.bounds,
pixelFormat: KEAGLColorFormatRGBA8, depthFormat: 0,
preserveBackbuffer: false, sharegroup: nil, multiSampling: false,
numberOfSamples: 0)

 # Create Director shared instance
 @director = CCDirector.sharedDirector
 @director.wantsFullScreenLayout = true
 @director.animationInterval = 1.0/60

 # Assign the view used for the director to present the game
scenes
 @director.view = game_view

 # Create a navigation controller to store our game director
and assign the navigation controller to the window
 @navigation_controller = UINavigationController.alloc.
initWithRootViewController(@director)
 @navigation_controller.navigationBarHidden = true
 @window.rootViewController = @navigation_controller
 @window.makeKeyAndVisible

 # Configuration for our game images, this is very helpful when
you want to use compressed images or those with a different
 # pixel format

Creating a Game

[188]

 CCTexture2D.defaultAlphaPixelFormat = KCCTexture2DPixelFormat_
RGBA8888
 CCTexture2D.PVRImagesHavePremultipliedAlpha(true)

 # Configuration for the names of the images that will be used
on the game
 file_utils = CCFileUtils.sharedFileUtils
 file_utils.enableFallbackSuffixes = false
 true
 end

end

2. Then run the application with the rake command:

Let's understand what we have done so far.

Chapter 9

[189]

First, we created a window and a view:

 @window = UIWindow.alloc.initWithFrame(UIScreen.mainScreen.bounds)
game_view = CCGLView.viewWithFrame(@window.bounds,
 pixelFormat: KEAGLColorFormatRGBA8,
 depthFormat: 0,
 preserveBackbuffer: false,
 sharegroup: nil,
 multiSampling: false,
 numberOfSamples: 0)

You must have noted that we used the CCGLView class to create a view, which is
available with Cocos2D. It is inherited from EAGLview, which is in turn a subclass
of the UIView subclass that renders the OpenGL scene.

After this, we defined an object for the CCDirector class that creates and handles
the main window and manages how and when to execute the scenes. It initializes the
OpenGL ES context. The CCDirector class starts or pauses the game; it also handles
when a phone call or text message comes in, so that it can automatically pause the
game. We have also set the view to the CCDirector object.

@director = CCDirector.sharedDirector
@director.wantsFullScreenLayout = true
@director.animationInterval = 1.0/60
@director.view = game_view

Now let's create a scene, which will be inherited by CCScene:

1. Create a file named game_scene.rb:
class GameScene < CCScene
 def init
 if super
 end
 self
 end

end

2. Add the following code in the app_delegate.rb file:
@director.pushScene(GameScene.node)

Basically, it will tell the @director object to open GameScene once the
application loads.

Creating a Game

[190]

3. Now, as we have created a blank scene, let's start adding graphical layers
to our game. Create a file named background_layer.rb and update the
following code:
class BackgroundLayer < CCLayer
 def init
 if super
 label = CCLabelTTF.labelWithString('We are creating a game',
 fontName:'Marker Felt',
 fontSize:24)

 window_size = CCDirector.sharedDirector.winSize
 label.position = CGPointMake(window_size.width / 2, window_
size.height / 2)
 self.addChild(label)
 end
 self
 end
end

The CCLabelTTF class is used to display text on the scene. We can also pass
fontName and fontSize while initiating the label. Then we have to assign
the positions to the label.

The CCDirector class also provides the height and width of
the screen with the following command:
CCDirector.sharedDirector.winSize

4. Now, to add this layer to our scene, update the game_scene.rb file with the
following code:
class GameScene < CCScene

 def init
 if super
 background_layer = BackgroundLayer.node
 # Add it to the scene
 self.addChild(background_layer)
 end
 self
 end

end

Chapter 9

[191]

5. Now let's run the application to check our progress so far:

We can see the text displayed on the screen. This is some test text that we
have added, so why not replace this text with a background image.

You can download the image provided in the resource folder
from the exercise code, which is provided with the book.

6. To display a background image, update the background_layer.rb file with
the following code:
class BackgroundLayer < CCLayer

 def init
 if super

 background_sprite = CCSprite.spriteWithFile('sky.png')
 # We need to get the screen size for positioning the sprite

Creating a Game

[192]

 screen_size = CCDirector.sharedDirector.winSize

 # We need to get the screen size for positioning the sprite
 background_sprite.position = CGPointMake(screen_size.width /
2, screen_size.height / 2)

 # Setting the position for image
 self.addChild(background_sprite)
 end

 self
 end

end

We have created a CCSprite object, which is loaded from an image named
sky.png.

7. Now run the application using the rake command:

Chapter 9

[193]

8. Now, as our game has a lot of objects, we have to design it for the landscape
mode, so that the users can interact with the game comfortably. For that,
open the Rake file and add app.interface_orientations = [:landscape_
left] in this file, and run the application using the rake command:

9. That's cool! Let's now add grass in the game layer. Create a file named
game_layer.rb and add the following code:
class GameLayer < CCLayer

 def init

 if super
 # We need to get the screen size for positioning the sprite
 screen_size = CCDirector.sharedDirector.winSize
 @grass = CCSprite.spriteWithFile('Grass.png')
 @grass.position = CGPointMake(screen_size.width / 2, screen_
size.height / 12)

 # Add the sprite to the Layer
 self.addChild(@grass)
 end
 self
 end
 end

Creating a Game

[194]

10. Then add this layer in our scene and update game_scene.rb with the
following code:
 game_layer = GameLayer.node
 self.addChild(game_layer)

11. Let's start the application and see what we have done:

12. Wow! We can see green grass. Next, let's add three mole animals to our view
by updating the game_layer.rb file with the following code:
class GameLayer < CCLayer

 def init
 if super
 # We need to get the screen size for positioning the sprite
 screen_size = CCDirector.sharedDirector.winSize
 @grass = CCSprite.spriteWithFile('Grass.png')

 @grass.position = CGPointMake(screen_size.width / 2, screen_
size.height / 12)
 # Add the sprite to the Layer
 self.addChild(@grass)

 @mole = []

 # Create a new sprite instance for drawing our mole
 @mole1 = CCSprite.spriteWithFile('mole.png')

 @mole1.position = CGPointMake(screen_size.width / 2, 0)

Chapter 9

[195]

 # Add the sprite to the Layer
 self.addChild(@mole1, z: 0)
 # We need to get the screen size for positioning the
sprite
 screen_size = CCDirector.sharedDirector.winSize

 @mole2 = CCSprite.spriteWithFile('mole.png')
 @mole2.position = CGPointMake(screen_size.width / 4, 0)
 self.addChild(@mole2)

 @mole3= CCSprite.spriteWithFile('mole.png')
 @mole3.position = CGPointMake(3* screen_size.width / 4, 0)
 self.addChild(@mole3)

 @moles = [@mole1, @mole2, @mole3]

 end
 self
 end
 end

13. And now run the application:

Wow! We can see three moles at the bottom of the page. Let's add some motion to
these moles.

Creating a Game

[196]

Adding motion to moles
To make things more interesting, we want these moles to be moving up and
down—this will add a challenge for the app users:

1. Update the game_layer.rb file by adding the following method to it:
 def popMole(mole)
 moveUp = CCMoveBy.actionWithDuration(0.2, position:
CGPointMake(0, mole.contentSize.height));
 easeMoveUp = CCEaseInOut.actionWithAction(moveUp, rate:
3.0);
 easeMoveDown = easeMoveUp.reverse
 delay = CCDelayTime.actionWithDuration(0.5)
 mole.runAction(CCSequence.actionsWithArray([easeMoveUp,
delay, easeMoveDown]));
 end

CCMoveBy moves the mole up along the Y axis according to the height of
the mole. To make the movement look more natural, we have used the
CCEaseInOut class. To make the mole move back down again, we have used
the reverse action. The reverse method on an action pulls the object in the
opposite direction. We have then created an action to pause the popping
action of the moles using the CCDelayTime class.
Now, we have combined all the actions into a sequence using the
CCSequence class. The CCSequence class allows us to chain together
a sequence of actions that are performed in order, one at a time.

2. As we have three moles, let's call this motion randomly for each mole. We'll
also update the game_layer.rb file by adding the following method to it:
def popAnyMole
 random = Random.new
 @moles.each do |mole|

 if (random.rand(1..100) % 3 == 0)
 if (@mole1.numberOfRunningActions == 0 and @mole2.
numberOfRunningActions==0 and @mole3.numberOfRunningActions==0)
 popMole(mole)
 end
 end
 end
 end

Chapter 9

[197]

3. We just need one more thing before we are ready to roll. We need to schedule
this method to run as often as possible by adding the following line of code
to the init method of the game_layer.rb file:
schedule :popAnyMole

4. Now run the application:

We can see that the mole is randomly popping up and down.

5. Let's now make this mole hide behind the grass. To do so, update the
game_layer.rb file and modify the init method by setting the value
of z to 999:

self.addChild(@grass, z:999)

The layer that has a higher value of z will show up.

Adding touch events to the game
Now, let's add a touch event to the game:

1. Add the following code in the game_layer.rb file:
self.isTouchEnabled = true

Creating a Game

[198]

2. Now add the following method to it:
 def ccTouchesBegan(touches, withEvent:event)
 touch = touches.anyObject

 touch_location = self.convertTouchToNodeSpace(touch)
 @moles.each do |mole|
 if CGRectContainsPoint(mole.boundingBox, touch_location)
and !CGRectContainsPoint(@grass.boundingBox, touch_location)
 puts "You have clicked a mole"
 end
 end
 end

In the first portion, we choose one of the touches we want to work with, get
the location in the current view, and then call convertToGL to convert the
coordinates to our current layout. This is important to do as we are in the
landscape mode.
Next, come to the game logic. The CGRectContainsPoint(mole.
boundingBox, touch_location) method will return true if someone
clicks on the mole. But what if the user clicks on the mole behind the
grass? For that, CGRectContainsPoint(@grass.boundingBox, touch_
location) will return true if we have clicked on the grass. Therefore,
CGRectContainsPoint(mole.boundingBox, touch_location) and
!CGRectContainsPoint(@grass.boundingBox, touch_location) will
only return true if we click on the mole at the right place. We will also print
a message in the console to test the logic.

3. Let's run the application. When you click on the mole, you will get a message
printed in the console:

Chapter 9

[199]

Adding scores
We need to give a purpose and sense of accomplishment to the user—that's one of
the reasons why we play games. This can be done by calculating the score for the
player every time there is a tap on the mole:

1. Add the following code to the game_layer.rb file:
 @score = 0
 @score_label = CCLabelTTF.labelWithString("Score: 0",
fontName:"Verdana",fontSize: 14)
 @score_label.position = CGPointMake(9*screen_size.width / 10,
9*screen_size.height / 10)
 self.addChild(@score_label, z:999)

2. Then, update the ccTouchesBegan delegate in the game_layer.rb file:
 def ccTouchesBegan(touches, withEvent:event)
 touch = touches.anyObject

 touch_location = self.convertTouchToNodeSpace(touch)
 @moles.each do |mole|
 if CGRectContainsPoint(mole.boundingBox, touch_location)
and !CGRectContainsPoint(@grass.boundingBox, touch_location)
 @score = @score + 10
 @score_label.setString("Score:"+ @score.to_s)
 end
 end
 end

3. Now run the application:

Creating a Game

[200]

Games without any sounds are boring — let's add
some sound
We're pretty close to having a workable game now. We just need to add some sound
effects and music, and our game application will be complete. Playing sound in a
game with Cocos2D is simple. We already have the noise.wav file in the resource
folder; so let's use it on a few of our events:

Add the following code, which will play a sound when someone rightly clicks on
the mole:

 def ccTouchesBegan(touches, withEvent:event)
 touch = touches.anyObject

 touch_location = self.convertTouchToNodeSpace(touch)
 @moles.each do |mole|
 if CGRectContainsPoint(mole.boundingBox, touch_location) and
!CGRectContainsPoint(@grass.boundingBox, touch_location)
 @score = @score + 10
 @score_label.setString("Score:"+ @score.to_s)
 SimpleAudioEngine.sharedEngine.playEffect "noise.wav"
 end
 end
 end

Here we have finally completed a gaming application with RubyMotion. But don't
submit this simple application to the App Store; use your imagination to make it
an amazing application. Besides Cocos2D, there are many other gaming libraries
that you can explore to create breathtaking apps. The following are a few that
we recommend:

• iTGB for 2D Games: This is a 2D game engine
• Ston3D for iPhone: This is a 3D game engine
• SIO2Engine: This is a 3D game engine
• Unity3D Engine: This is a 3D game engine

Chapter 9

[201]

Summary
This chapter was really exciting for us, and we hope you have learned a lot too.
The following topics were covered:

• Understanding Cocos2D
• Creating a simple gaming application

So far we have learned all the major features of RubyMotion, and we even created a
gaming application, but it is important to publish our application too. Next, we need
to learn how to submit our valuable applications to Apple's App Store, so that they
can be put in the hands of millions of iPhone and iPad users.

Getting Ready for
the App Store

"There are two kinds of people, those who finish what they start and so on."

Robert Byrne

We have come a long way in learning RubyMotion to create iOS applications.
Hopefully, we are now proficient in developing applications with RubyMotion. So
far, we have gone from creating a simple iOS application to including the amazing
device capabilities of iPhone and iPad with our RubyMotion project and then
creating games. In the previous chapter, we learned how to write test cases and test
our application automatically. We have now covered all the parts of a software life
cycle, except our app is not in production yet. Apple has a specific way to share your
finished app with the world. In this chapter, we will cover setting up your Mac to
create your application bundle, to share it, and to distribute your application over
the Apple App Store.

In this chapter, we will cover the following topics:

• Generating certificates
• Provisioning portals
• Setting up a RubyMotion project
• Testing on a device
• iTunes Connect
• Bundles for submission

Getting Ready for the App Store

[204]

Before you begin setting up your Mac for app distribution, you are required to enroll
into the Apple Developer Program for iOS development (https://developer.
apple.com). It is compulsory to enroll into this program, otherwise you will not
be able to submit your application build to the App Store. Apple reviews each and
every application before it is released to the App Store. You should also have a look
at the Apple review guidelines, available at the iOS Dev Center, once you have your
membership. These guidelines are important to understand for the smooth approval
of your app; we will cover most of them as we proceed, but do go through them
yourself too. These guidelines also contain Human Interface Guidelines (HIG);
many consider these guidelines as Apple's way of having a controlled environment
for developers, but the prime purpose of these instructions is to create applications
of a set standard and make them a class apart from other smartphones. So far, Apple
has been successful in maintaining their good standard.

You should also set up your profile for your apps at https://itunesconnect.
apple.com/; we will discuss more about this later in the chapter.

Generating certificates
To submit your application to the App Store, you require a developer certificate,
a distribution certificate, a developer provisioning profile, and a distribution
provisioning profile. In this section, we will bind your Mac with your iOS
provisioning portal by generating certificates.

Once you log in to https://developer.apple.com, choose the iOS provisioning
portal. Select the Certificates tab from the options provided in the left-hand side
column as shown in the following screenshot:

If you are a first-time user, you need to first install the Worldwide Developer
Relations (WWDR) intermediate certificate; this certificate binds your developer and
distribution certificate to the Apple Certificate Authority. Download this and it will
be installed in your keychain.

Chapter 10

[205]

Next, let's create our developer certificate. To generate this, let's go back to our
keychain application and navigate to KeyChain Access Menu | Certificate
Assistant | Request a certificate from certificate authority.

Here, you have to use the same e-mail address with which you had registered for
your developer account. We must add a unique name for this certificate and save it
to the disk.

Now, let's go back to our developer account in our browser. Inside the Development
tab, we have a Request Certificate option that shows all of the instructions that we
have already completed and that are ready for our certificate.

Once uploaded, you will see Pending Issuance. Not a problem; refresh your
browser, and your certificate will be uploaded. Download this and run; it will
get stored in your keychain. Similarly, follow the same procedure for the
distribution certificate.

Inside your keychain, in the certificate section you will see all of the installed
certificates. Every certificate is a combination of two things: a certificate and a private
key. It's good practice to make a copy of it and keep it in a safe place. In this way, if
you change your machine, you will easily be able to download the certificate; but it
will not work without the private key.

Getting Ready for the App Store

[206]

Do it yourself
Just like the developer profile for developing and testing in a development
environment, we have a distribution profile that is used for distributing our
application on the App Store.

Now that you know how to generate, upload, and install the Apple certificate on
your Mac machine for your developer profile, why not try it yourself and distribute
the profile. All you have to do is just follow these steps:

1. Generate the certificate using Certificate Assistant.
2. Upload it on the Distribution certificate tab.
3. Install it on your machine.

Provisioning profile
A provisioning profile binds numerous digital objects, such as our applications,
certificates, and devices, together. A provisioning profile has two parts: one is our
development provisioning profile and the other is the distribution profile.

App ID
Before we create a new provisioning profile, let's first create an app ID for our
application. Inside the provisioning portal, we have a section for creating the app ID.
It is necessary to create a new app ID for every application. This app ID is then used
while generating a new provisioning profile.

Chapter 10

[207]

First, we add the description; this is how we will recognize our app ID in our
provisioning portal. Next, we add a seed ID. (For first-time users, you will get an
option to generate a new one.) Lastly, we add a bundle identifier. We are going to
use this bundle identifier in the Rakefile of our RubyMotion project later on. The
general nomenclature of naming a bundle identifier is the reverse domain notation,
where com is followed by the domain name. In our case I have used packtpub, but
you should add your domain name here. In the last part of the bundle identifier,
add your application's name; in this case, we will use Restroapp.

A bundle identifier is used to distinguish between various
applications. We can use com.domainname.* for this purpose. An
asterisk (*) symbol lets us use the same identifier for multiple apps.
But we recommend naming your application for every identifier.

Getting Ready for the App Store

[208]

Adding devices
For development and testing purposes, we need to add our iOS devices in
the Devices section of the application. Inside the Devices section, click on
Add Devices as shown in the following screenshot:

To test your application on your iPhone or iPad, simply add the UDID number of
your device and a device name of your choice. The UDID number can be seen in
iTunes. When you click on the iPhone name, it will show you a 40-digit sequence:

You must add all of the devices you want to test on, which we will be using during
development. If the devices you want to test on are not present, the application won't
be installed on that device.

Apple allows you to add up to 100 iOS devices; this is
strictly for development and testing purposes only.

Chapter 10

[209]

Developer Provisioning Profile
Now that we have everything in place to create a new provisioning profile, let's do
it by choosing the Provisioning option. The Create new developer profile form is
divided into the following four sections:

• Profile Name: This is a label to recognize the profile.
• Certificates: Choose the developer certificate you have installed on your

system. If it is a one-man workshop like mine, you will see only one option.
• App ID: Select the one we had created from the previous section for

this application.
• Devices: These are the devices you want to test on.

Once you submit this, you will see a pending status. Refresh your browser,
and your provisioning profile will be ready. Download it and click on the file,
and it will get installed in your Xcode. You can access all of the information related
to this provisioning profile by navigating to Xcode | Organiser | Provisioning
Profiles | Devices.

Getting Ready for the App Store

[210]

Do it yourself
Now that you know how to create a developer provisioning profile, why don't you
try creating the distribution profile for yourself by performing the following steps:

1. Open the Distribution tab in the Provisioning section.
2. Create a new profile.
3. Download and install the profile.

Setting up the RubyMotion project
Next, let's set up our RubyMotion project; it will include the information we have
collected previously.

Entitlements
Entitlements are used during the code-signing part of the build process. Many
applications require access to device features; Apple requires you to specify the
entitlements if you want to access a specific device feature. This can be added in the
Rakefile. The entitlement method in the Rakefile lets you specify the appropriate
keys and values in the following way:

Motion::Project::App.setup do |app|
 # ...
 app.entitlements['keychain-access-groups'] = [
 app.seed_id + '.' + app.identifier
]
end

In this example, if your application requires access to a keychain to store user
credentials, you must send a request for keychain-access-groups by passing
the application provisioning identifier and application identifier along with
seed_id and the app identifier.

Chapter 10

[211]

Info.plist settings
To provide the best experience to the users, iOS expects the presence of meta
information in each application. This information is then used in various ways.
Some of it is displayed to users and some may be used internally by the system to
identify the application. These configuration settings are defined in Info.plist,
which resides in the application's bundle.

In a RubyMotion project, the Info.plist file is defined in the Rakefile in a
hash-like structure where you have a key-value pair. For example, we define
CFBundleURLTypes in the following example:

Motion::Project::App.setup do |app|
 # ...
 app.info_plist['CFBundleURLTypes'] = [
 { 'CFBundleURLName' => 'com.packtpub.restroapp'}

]
end

The Rakefile does not cover all the possible settings, but it reveals the internal
Info.plist data structure that one can modify, if at all needed. For more
information and to check a list of other Info.plist properties, you can visit
the Apple developer reference at http://developer.apple.com/library/
ios/#documentation/General/Reference/InfoPlistKeyReference/
Introduction/Introduction.html.

Building icons
Now that our machine is set up for the App Store, let's set up our RubyMotion
project too. The first thing to do here is to set build icons. Since iOS devices, such as
the iPhone, iPad, iPad mini, and retina displays come in a variety of screen sizes and
display resolutions, Apple provides specific guidelines for creating icons to cater to
each of them.

For our application icons, simply add these icons in the resources folder. They can
have any random name, but it is a good idea to name them descriptively according
to what they represent, such as icon_name-114 or icon-1024. Here, 114 and 1024
represent the size 114 x 114 for a standard app icon and 1024 x 1024 for an App Store
icon, respectively.

Getting Ready for the App Store

[212]

Next, add the icon attribute in your Rakefile in the following way:

Motion::Project::App.setup do |app|
 # Use `rake config' to see complete project settings.
 app.name = 'Restaurant Application'
 app.icons = ['icon-114.png']
end

By default, these icons have a glossy effect on the upper half of the image, which is
the traditional iPhone style. But you can change this by adding the following lines
in your Rakefile:

Motion::Project::App.setup do |app|
 # Use `rake config' to see complete project settings.
 app.name = 'Restaurant Application'
 app.icons = ['icon-114.png']
 app.prerendered_icon = true
end

That's it. Our RubyMotion application is now ready with icons. Some tips for
designing great icons are as follows:

• For best results, enlist the help of a professional graphic designer
• Use universal imagery that people will easily recognize
• Embrace simplicity
• The richer the icons are in texture, the better they are to look at
• Make the icons more detailed and more realistic
• Add detail and depth

As icons provide the first impression of your application, you must work extensively
to ensure they look good. You can find more information related to icons and designs
on the Apple developer reference at http://developer.apple.com/library/
ios/#documentation/userexperience/conceptual/mobilehig/IconsImages/
IconsImages.html.

Besides icons, we can have other resources, such as images and sound files.
These can be included in the resources folder, and instances of these can be
used throughout our application. For example, we can create the instance of
the hello.png image with UIImage.imageNamed("hello").

Chapter 10

[213]

Configuring your application
Before we create the package that will be uploaded to the App Store review, we need
to add some configuration settings so that Apple can recognize that the application
is from a registered source. Here we will use the information from our provisioning
profile, plus some general information related to our application.

All these settings, once again, go into our Rakefile. Some of the required settings
that need to be fed are our iOS SDK version that we are using and our application
version, such as 1.0, 1.3, and 2.0, which is always incremented for future releases.
The deployment target is a minimal iOS version on which we want to run our
application or anything that will work fine with our application. We also need to
specify our identifier and provisioning profile details. This will be clear with the
following example:

Motion::Project::App.setup do |app|
app.sdk_version = "6.0"
app.deployment_target = "5.0"
app.version = "1.0"
app.identifier = "com.packtpub.restroapp"
app.provisiong_profile = "/Users/your_name/Provisioning_Profiles/
random_sequence.mobileprovision"
end

The provisioning profile details are different for development and
distribution. Distribution profile details are used only when we want
to submit or test apps on many devices.

Installing on a device
It's a good idea to test your application before you submit it to the App Store.
Now that all our settings are in place, we just need to run the rake device
command from the console. Before doing so, make sure your registered device
in the provisioning portal is connected via USB to your Mac machine. The process
may fail for any of the following reasons:

• The registered device is not connected to your machine via a USB
• An incorrect identifier or provisioning profile's details have been added
• The project uses an incorrect iOS version that is running on the device

Getting Ready for the App Store

[214]

iTunes Connect
Now we are done; but just before we create our application bundle and upload it,
we need to set up our application on a separate portal (https://itunesconnect.
apple.com). iTunes Connect has many options related to your application, such as
Sales and Trends, Catalog Reports, Developer Forums, Payments, Manage Your
Application, Manage Users, and many more. But, for now, we are just interested in
the Manage Your Application option:

Chapter 10

[215]

Once you have chosen Manage Your Applications, click on the button to add a new
application to your catalog. This will show you the following form:

Enter your application's name in the App Name textbox. The SKU number
is a desired, unique alphanumeric sequence that you have to enter. Select a
Bundle ID option from the drop-down menu; since your iTunes Connect profile
is coupled with your provisioning portal, you will get the right options in the
dropdown automatically.

Once submitted, you will get the option of when to release the application, choosing
the price tier (free or paid), and choosing which App Store will sell the application
based on various countries. Following this window, another form will appear where
you will have to fill in the description of your application, upload snapshots of
various devices, add icons for the App Store, and fill in other logistic details,
such as who to contact for support in case there are some issues related to
the application.

Now that our application has been set up on iTunes Connect, we will next learn how
to push our app for the App Store review.

Getting Ready for the App Store

[216]

Creating bundles for submission
The rake archive command generates a .ipa archive. This package is used for
submitting our application to the App Store. The archive package can also be used
for ad-hoc distribution to test the application on distributed devices.

Once we run the rake archive command, we will get the binary along with their
appropriate distribution certificates. This is then uploaded on iTunes Connect with
a special Apple utility named Application Loader.

With the Xcode installation, we automatically get the Application Loaded utility
that we can access from our application's folder or access by simply making a
spotlight search:

Choose the Deliver Your App option; this will indicate the name of the application
iTunes Connect is waiting to upload. Choose your .ipa package from ./build/
iPhoneOs_sdk_verson/Release/your_application.ipa. Once this is done,
you will see that the status of iTunes Connect has changed to Received Binary.

Chapter 10

[217]

Great! Finally, we have submitted our application to the App Store. The Apple App
Store takes a few days to review your application; you will see the status of your
application change from Waiting for Review to In Review after a few days. In case
there are any issues related to your application, the Apple team will first contact you
using the details provided in iTunes Connect; and if the problem is not resolved, the
application will get rejected. If this happens, you can resolve the issues faced by the
review team and resubmit the app.

Summary
This chapter has covered the last step of an iOS application's life cycle. Let's recap
what we have learned:

• How to generate certificates
• How to use the provisioning portal
• How to set up a RubyMotion project
• How to test on a device
• How to use iTunes Connect
• How to create bundles for submission

With this chapter, we have almost come to the end of our journey of learning how
to use and craft iOS applications with RubyMotion. But this is just the tip of the
iceberg. We still have to explore so many iOS SDK APIs to make the applications we
have dreamt of. RubyMotion makes even this part stress-free with the use of gems.
In the final chapter, we will learn how to use some of the most popular RubyMotion
gems, and how to contribute back to the RubyMotion community by creating our
own gems.

Extending RubyMotion
The DRY principle states the following:

"Every piece of knowledge must have a single, unambiguous, authoritative
representation within a system."

We are now approaching the end of this book. So far we have learned how to quickly
make iOS applications with RubyMotion. To make this process even more rapid,
RubyMotion lets us use special RubyMotion-flavored gems and wrappers. Gems
and wrappers are Ruby programs that are wrapped into a self-contained format.
These are generally open source projects, which other developers can use in their
applications or can even contribute back to these projects. Fortunately, RubyMotion
has a very enthusiastic community; within months of launching RubyMotion's tool
chain, plenty of gems were introduced that implement many laborious tasks fairly
quickly. In this chapter, we will learn how to augment our application by using
RubyMotion-flavored gems. The following topics will be covered in this chapter:

• RubyMotion gems
• CocoaPods

RubyMotion gems
Use of gems is based on the programming practice of Don't Repeat Yourself (DRY),
which states that when some piece of code is ready to use and is available, why
bother working on it again. The RubyMotion community may be very young right
now, but it already has some amazing gems that make a lot of tiring tasks pretty
easy. Some gems even target challenging functionalities in a very simple manner.

Extending RubyMotion

[220]

In this chapter we will cover the following RubyMotion-flavored gems:

• Teacup
• BubbleWrap
• motion-addressbook

Teacup – say goodbye to Xcode and XIB files!
Designing a UI for iOS apps is a tough job, especially for developers who have
worked previously on easy-to-learn-and-implement web technologies. Teacup is a
gem that will make your life really easy. Teacup augments your ability to quickly
design and style the views of your RubyMotion application; you can easily create
layouts while keeping your code DRY.

Let's create an application and learn how easy it is to use Teacup:

$motion create TeaCupMotion

We will be using Bundler (which is also a Ruby gem) to install all our gems. Bundler
also helps us manage application dependencies, so that the exact version of the gems
used are available for the application to run.

Bundler comes as a default dependency manager for popular frameworks
such as Ruby on Rails.

Let's add Bundler to our application:

1. Update the Rakefile with the following lines of code:
$:.unshift("/Library/RubyMotion/lib")

require 'motion/project'

require 'bundler'

Bundler.require

Chapter 11

[221]

2. With Bundler, we require a Gemfile in which we can mention details about
the gems we will use with our application. Next, let's create a Gemfile and
add the following lines of code in it:
source "https://rubygems.org"

gem "teacup"

So, in the future, if you want to add any new gem to your project, you can
simply add it to this file.

3. Next, let's run bundle install and we're good to go:
bundle install

The bundle install command adds a Gemfile.lock file to
your repository. This ensures that other developers on your app,
as well as your deployment environment, will all use the same
third-party code that you are using now.

4. Next, update the app_delegate.rb file with the following code:

class AppDelegate
 def application(application, didFinishLaunchingWithOptions:launc
hOptions)
 @window = UIWindow.alloc.initWithFrame(UIScreen.mainScreen.
bounds)
 myNavController = RootController.alloc.init

 @window.rootViewController = UINavigationController.alloc.init
WithRootViewController(myNavController)
 @window.rootViewController.wantsFullScreenLayout = true
 @window.makeKeyAndVisible
 true
 end
end

In this code, we are only initializing an instance of RootController, just like we
do with every application. As you may remember, the controller is where all our
application logic resides.

Extending RubyMotion

[222]

So far, in various chapters we have made RubyMotion iOS applications in a
traditional way. Let's use Teacup in our application this time, and add styles
by making use of its Cascading Style Sheets (CSS) type syntax.

Let's create a directory named style and add a new file with the name of style.rb
in it. Add the following code to the style.rb file in the style folder:

Teacup::Stylesheet.new(:style) do

 style :your_layout,
 landscape: true

 style UILabel,
 textColor: UIColor.blueColor
 style :label,
 text: 'Awesome',
 backgroundColor: UIColor.whiteColor,
 top: 10,
 left: 100,
 width: 100,
 height: 20

end

Let's understand the preceding code:

1. First, we have created a stylesheet named style.
Teacup::Stylesheet.new(:style) do
…
end

This convention is provided by Teacup to create a new stylesheet.

2. Next, we have created a specific layout for your views,
using CSS-based syntax.
 style :your_layout,
 landscape: true

This will create a style named your_layout and will enable the landscape
rotation (otherwise, only portrait orientation is enabled).

Chapter 11

[223]

3. Next, we have added style for all UILabel instances.
 style UILabel,
 textColor: UIColor.blueColor

The preceding line of code gives text color to all UILabel instances that
are defined inside the style. Since we apply a style to all the labels when
using UILabel, if we want to style a specific element, we have to add the
following commands:
style :label,
 text: 'Awesome',
 backgroundColor: UIColor.whiteColor,
 top: 10,
 left: 100,
 width: 100,
 height: 20

Here, label is like a class. This will do the styling for the label.

To understand this better, let's create a view. Perform the following steps to create
a view:

1. Create a file named root_view_controller.rb and add the following code
to it:
class RootController < UIViewController

 stylesheet :style

 layout :your_layout do
 @label1 = subview(UILabel, :label)

 end

 def shouldAutorotateToInterfaceOrientation(orientation)
 autorotateToOrientation(orientation)
 end

end

As we have created a new controller file, we must make the corresponding
changes to the app_delegate.rb file. Make these changes in your
app_delegate.rb file as shown in the previous chapters.
In the preceding code snippet, first we have given the stylesheet a name,
which is done using stylesheet:style, and then we have specified a layout
named your_layout and passed label : @label1 = subview(UILabel,
:label) to it.

Extending RubyMotion

[224]

2. Let's fire up the terminal and test our application.
$rake

The following is the output:

We can see the text Awesome appear on the simulator screen and it is styled
as we have defined in the stylesheet.

Teacup implements the viewDidLoad method and
instantiates any views. If you want to implement your
own viewDidLoad method, make sure to call super.

We can also define different stylesheets for changing dimensions as we rotate
the device, such as the landscape and portrait modes. Let's try this in our
next example.

Chapter 11

[225]

3. Now update the stylesheet, that is, the style.rb file, with the following code:
 style :label,
 text: 'Awesome',
 backgroundColor: UIColor.whiteColor,
 top: 10,
 left: 100,
 width: 100,
 height: 20,
 landscape: {
 backgroundColor: UIColor.redColor,
 }

4. Run the application and rotate the screen from the simulator menu by
navigating to Hardware | Rotate Left. You will see that as the screen
rotates the background color of the label changes.

5. Now, let's do a few more things in the same example. Add the following
code in the style.rb file:
 style UITextField, # Defining styles based on
view
class instead
 textColor: UIColor.redColor

 style :field,
 left: 10,
 top: 10,
 width: 200,
 height: 30,
 landscape: {
 width: 360 # make it wide in landscape view
 }

 style :search, extends: :field,
 backgroundColor: UIColor.whiteColor,
 left: 20,

Extending RubyMotion

[226]

 top: 70,
 placeholder: 'Search Box'
 style :search_new, extends: :field,
 backgroundColor: UIColor.redColor,
 left: 20,
 top: 110,
 placeholder: 'Search Box'

Here we have created two text field boxes.

6. Now, update the root_controller.rb file.
 layout :your_layout do
 @label1 = subview(UILabel, :label)
 @search = subview(UITextField, :search)
 @one_more_search = subview(UITextField, :search_new)

 end

7. Let's test our application in the simulator.

$rake

The following is the output:

Chapter 11

[227]

With the preceding example, we can see how easy it is to design views with the
Teacup gem; it has delivered a way to create interfaces programmatically with ease.
We have shared a few of the features of this amazing gem; you can explore more at
https://github.com/rubymotion/teacup.

BubbleWrap – making Cocoa APIs more
Ruby-like
BubbleWrap is a collection of very well-tested helpers and wrappers used to wrap
Cocoa SDK code and provide more Ruby-like APIs for RubyMotion. It provides
wrappers for a lot of iOS Cocoa SDK code, such as camera, notification center,
HTTP, and many more.

We can do a lot of things very easily. For example, to perform a GET HTTP request
with BubbleWrap, we require the following simple code snippet:

BW::HTTP.get("https://twitter.com/rubymotion") do |response|
 p response.body.to_str
end

In Chapter 6, Device Capability – Power Unleashed, we have learned about device
capabilities—implementing camera functionalities in your app. We have written
quite a lot of code there, but with BubbleWrap things get really simplified. We only
require the following code snippet for using a camera in our application:

BW::Device.camera.front.picture(media_types: [:movie, :image]) do
|result|
 image_view = UIImageView.alloc.initWithImage(result[:original_
image])
end

BubbleWrap also provides a module named App that can be used while running the
application. To understand this, perform the following steps:

1. First, create a small sample application.
$motion create UseBubbleWrap

2. Update the Rakefile to include a Bundler that will help us install the
BubbleWrap gem easily.
require 'bundler'
Bundler.require

Extending RubyMotion

[228]

3. As shown in the last section, let's add a Gemfile to our project with the
following code:
source :rubygems
gem 'bubble-wrap'

4. Run the following command to install the BubbleWrap gem:
$bundle install

5. Next, let's fire up the terminal to test the App module on the console:
$rake

6. To use the App module, run the following commands in REPL:
(main)> App.name

=> "UseBubbleWrap"

(main)> App.identifier

=> "com.yourcompany.UseBubbleWrap"

(main)> App.documents_path

=> "/Users/abhishek/Library/Application Support/iPhone
Simulator/6.1/Applications/3CF89A96-F390-4A7D-89B8-2F0E7B54A38A/
Documents"

(main)> App.resources_path

=> "/Users/abhishek/Library/Application Support/iPhone
Simulator/6.1/Applications/3CF89A96-F390-4A7D-89B8-2F0E7B54A38A/
UseBubbleWrap.app"

(main)> App.frame

=> #<CGRect origin=#<CGPoint x=0.0 y=20.0> size=#<CGSize
width=320.0 height=460.0>>

(main)> App.states

=> {}

(main)> App.shared

=> #<UIApplication:0x9530920>

(main)> App.current_locale

=> #<__NSCFLocale:0x966a040>

Chapter 11

[229]

(main)> App.alert("This is nice!!")

=> #<UIAlertView:0xa8433f0>

(main)> App.run_after(0.5) { p "It's #{Time.now}" }

=> #<__NSCFTimer:0x93760c0>

(main)> "It's 2013-05-10 18:47:34 +0530"

7. There is another module named Device that provides many options related
to the current device. Let's once again fire up REPL in our terminal and
execute the following commands:

$rake

(main)> Device.iphone?

=> true

(main)> Device.ipad?

=> false

(main)> Device.front_camera?

"This method (front_camera?) is DEPRECATED. Transition to using
Device.camera.front?"

=> false

(main)> Device.screen.width

=> 320.0

(main)> Device.screen.height

=> 480.0

(main)> Device.orientation

=> :portrait

There are tons of helpers that come with the BubbleWrap gem. It will be
helpful for your project if you have a look at the BubbleWrap documentation
at http://bubblewrap.io/.

Extending RubyMotion

[230]

motion-addressbook – access phonebook
easily
In Chapter 6, Device Capability – Power Unleashed, we had discussed in detail how
to use the Address Book technology for iOS devices. In this section, we will use a
special gem for RubyMotion named motion-addressbook that simplifies using the
Address Book.

We will perform the following actions in this section:

• Create a sample app with the motion-addressbook gem
• Pull the data from the device's Address Book
• Display it on the screen

Let's start by performing the following steps:

1. Create a sample application.
$motion create AddressBook_example

2. Next, let's include the motion-addressbook gem in the Gemfile.
source :rubygems
gem 'bubble-wrap'
gem 'motion-addressbook'

3. Bundle install from the command line to include this gem in our project:
$bundle install

4. Let's create a file named addressbook_controller.rb in which we will add
a button and three labels. With the button, we will access our address book
and choose the desired contact. In the labels, we will display the data of the
user, which we have copied from the address book. Add the following code
in your addressbook_controller.rb file:
def viewDidLoad
 view.backgroundColor = UIColor.underPageBackgroundColor
 load_button
 load_labels
 end

 def load_button

 @phonebook_button = UIButton.buttonWithType(UIButtonTypeRounde
dRect)
 @phonebook_button.frame = [[50, 20], [200, 50]]

Chapter 11

[231]

 @phonebook_button.setTitle("Click from Contacts",
forState:UIControlStateNormal)
 @phonebook_button.addTarget(self, action: :addressbook_access,
forControlEvents:UIControlEventTouchUpInside)
 view.addSubview(@phonebook_button)

 end

 def load_labels

 @first_name = UILabel.new
 @first_name.text = 'First Name'
 @first_name.frame = [[100,100],[150,50]]

 @last_name = UILabel.new
 @last_name.text = 'Last Name'
 @last_name.frame = [[100,160],[150,50]]

 @organization = UILabel.new
 @organization.text = 'Organization'
 @organization.frame = [[100,220],[150,50]]

 view.addSubview(@first_name)
 view.addSubview(@last_name)
 view.addSubview(@organization)
 end

5. Add the following code in the app_delegate.rb file so that our delegate
points to our address book controller:
class AppDelegate
 def application(application, didFinishLaunchingWithOptions:launc
hOptions)

 @window = UIWindow.alloc.initWithFrame(UIScreen.mainScreen.
bounds)
 @window.rootViewController = AddressbookController.alloc.init
 @window.makeKeyAndVisible

 true
 end
end

Extending RubyMotion

[232]

6. Let's fire up the terminal and run our app in a simulator to check if we are
able to see our three labels and a button.
$rake

The following is the output:

7. In the preceding code snippet, we have mentioned a method named
addressbook_access. To access the Address Book, we need to use the
AddressBook picker that lets us open the device's Address Book in our
application and pick data from it. With this method, we will be doing the
same. Let's create this method in our addressbook_controller.rb file and
add the following code to it:
 def addressbook_access

 AddressBook.pick { |person|
 if person
 first_name = person.attributes[:first_name]
 last_name = person.attributes[:last_name]
 org = person.attributes[:organization]
 @first_name.text = first_name

Chapter 11

[233]

 @last_name.text = last_name
 @organization.text = org

 else
 # write some cancel code
 end
 }

 end

8. Let's fire up the terminal and run our app in a simulator to check if we are
able to access the Address Book and import the desired contact details in
our application.
$rake

The following is the output:

Extending RubyMotion

[234]

9. Once we select any contact, we will get its details on our application,
as shown in the following screenshot:

That's it, we are done. It's the same application we had created in Chapter 6, Device
Capability – Power Unleashed, but with motion-addressbook, we have substantially
less code.

Let's understand what we have done here. The motion-addressbook gem gives us
many options to easily use the device's Address Book. In the addressbook_access
method, we have used the AddressBook picker by using AddressBook.pick, which
opens up the device's Address Book for us. Once we select any contact, we get a
person object that has a hash of all the attributes of the selected contact.

In our example, we have used the first_name, last_name, and organization
values from the selected person object. However, the motion-addressbook gem has
many more options that make working with the Address Book framework faster and
easier. A few of them are as follows:

Chapter 11

[235]

• To create a new contact.
AddressBook::Person.new
#<AddressBook::Person:0xc360bc0 @address_book=nil @ab_person=nil @
attributes={}>

• To pull all the records from the address book.
AddressBook::Person.all
[#<AddressBook::Person:0x9d78c80 @address_book=#<__
NSCFType:0xc0db6d0> @ab_person=#<__NSCFType:0x9d77ea0> @
attributes={:first_name=>"Abhishek", :last_name=>"Nalwaya",
:organization=>"Fun Inc."}>, #<AddressBook::Person:0x78f0a20
@address_book=#<__NSCFType:0xc0db6d0> @ab_person=#<__
NSCFType:0x9d78520> @attributes={:first_name=>"Akshat",
:last_name=>"Paul", :organization=>"PacktPub"}>,
#<AddressBook::Person:0x78a5eb0 @address_book=#<__
NSCFType:0xc0db6d0> @ab_person=#<__NSCFType:0x9d788b0> @
attributes={:first_name=>"Laurent", :last_name=>"Sansonetti",
:organization=>"HipByte"}>, #<AddressBook::Person:0x78c06e0
@address_book=#<__NSCFType:0xc0db6d0> @ab_person=#<__
NSCFType:0x9d78700> @attributes={:first_name=>"Manu", :last_
name=>"Singhal", :organization=>"Ruby Inc"}>]

• To get a list of records based on a specific attribute.
AddressBook::Person.find_all_by_organization('HipByte')

• To get a list of records based on many conditions.
AddressBook::Person.where(:email => 'akshatpaul@abc.com',
:organization => 'Fun Inc')

• To create a new contact.
AddressBook::Person.create(:first_name => 'Shi', :last_name =>
'Foo', :email => shi@foo.com')

CocoaPods – managing Objective-C
libraries
CocoaPods is the best way to manage library dependencies in Objective-C projects.
CocoaPods was originally designed to be integrated in Objective-C Xcode projects,
but it can readily be used in RubyMotion projects using the motion-cocoapods gem.

Extending RubyMotion

[236]

Installing CocoaPods with RubyMotion
Perform the following steps to install CocoaPods with RubyMotion:

1. Install CocoaPods.
 $sudo gem install cocoapods

2. Set up CocoaPods.
 $pod setup

3. Install motion-cocoapods to work with RubyMotion.

$sudo gem install motion-cocoapods

Now we are all set to use CocoaPods in our RubyMotion project. Add the following
code in the Rakefile:

Motion::Project::App.setup do |app|
 app.pods do
 dependency 'Reachability'
 end
end

So, next time when you build your code, it will automatically download the library
for you. Then you can use the Objective-C CocoaPods in your project.

For detailed documentation on CocoaPods, visit http://cocoapods.org/.

Summary
In this chapter, we have learned the following topics:

• RubyMotion Gems
 ° Teacup: A community-driven DSL for creating user interfaces on iOS.
 ° BubbleWrap: A collection of (tested) helpers and wrappers used to

wrap CocoaTouch code and provide more Ruby-like APIs.
 ° motion-addressbook: A gem to perform different actions on the iOS

Address Book.

• CocoaPods: It is the best way to manage library dependencies in Objective-C
and RubyMotion projects

Chapter 11

[237]

What next?
Congratulations, we have covered a lot in the last 11 chapters and we are sure you
now know a lot more about RubyMotion than you did at the outset.

We have learned a lot of things during this journey—beginning with installing
RubyMotion, understanding the RubyMotion folder structure, debugging our
application, introducing RubyMotion objects, creating an MVC application,
playing with the user interface, using device capabilities such as the camera,
gestures, persistence storage, writing test cases, creating games, using
RubyMotion-flavored gems, and submitting the application to App Store.
That's a lot of stuff!

So, what can be done next from here? The answer to this question is plenty of
things! There is still a lot to discover in RubyMotion and the iOS SDK; so from
here, the first thing we can do is grab a book that explores the iOS SDK in detail.
The best source for anything related to iOS SDK is Apple's Developer Reference at
https://developer.apple.com/. All things at Apple's Developer Reference are
in Objective-C, but now we have the skills to translate verbose Objective-C code to
learn and clean RubyMotion code.

Next, keep yourself updated with the latest happenings in the RubyMotion
ecosystem with the RubyMotion blog (http://blog.rubymotion.com) and
Developer Center (http://www.rubymotion.com/developer-center/). The
RubyMotion blog keeps us updated with the RubyMotion world—what's new
in this version or what's in store for the future of RubyMotion. Developer
Center is a great source for API references, some quick tutorials, and the latest
articles on technology. For RubyMotion wrappers and libraries, you can visit
http://rubymotion-wrappers.com/. This web page is a one-stop shop for
details on available wrappers and is updated often.

To discuss any issue, you must join the RubyMotion community at its Google
group (https://groups.google.com/forum/?fromgroups#!forum/rubymotion).
This group is a great place to interact with the vibrant RubyMotion community.

Finally, create apps! There is no better way to master a technology than learning on
your own in a real-world scenario. You can contribute to the community by creating
wrappers and gems—that's a great way to acquire expertise on a specific area of a
technology. We hope you have enjoyed reading and learning with this book, and
have now evolved as an iOS RubyMotion developer; we are very excited about
RubyMotion, just like you, and look forward to seeing your work making a mark
in the iOS and RubyMotion world.

Index
A
accessor method 49
add_form_elements method 93, 95
addGestureRecognizer() method 128
address book 144-148
addressbook_controller.rb controller 145
alert box

goodies, adding 27-29
UIScreen object 29

App ID 206
Apple App Store 203
Application Loader 216
App module 228
ARC 12
Array 46
Automatic Reference Counting. See ARC

B
Bacon::Functional.default_timeout

property 173
bars 80
bars, types

navigation bar 87
status bar 91
tab bar 80

basic UI elements
about 92
Button 95
label 92, 93
Picker view 96-100
Slider 94
Switch button 94
Textfield 93

BubbleWrap 227, 229

build_dir, property 33
bundle install command 221
Bundler 220
Button 95

C
camera

about 108
choosing 108-111
code, adding 111-113

Cascading Style Sheets-type (CSS)
syntax 222

CCDirector class 189, 190
CCEaseInOut class 196
CCLabelTTF class 190
CCSequence class 196
certificates

generating 204-206
CGPointMake function 49
Choose from Gallery button 111
classes 51
Click for contacts button 147
CocoaPods

about 235
installing, with RubyMotion 236
Objective-C libraries, libraries 235

Cocos2D 185
codesign_certificate property 34
Command key 35
command line

exploring 29, 30
motion command 30, 31
Rake file 32
Rake tasks 31

Command Line Tools 15

[240]

Common icons, iOS
UITabBarSystemItemBookmarks 86
UITabBarSystemItemContacts 86
UITabBarSystemItemDownloads 86
UITabBarSystemItemFavorites 86
UITabBarSystemItemFeatured 86
UITabBarSystemItemMore 86
UITabBarSystemItemMostRecent 86
UITabBarSystemItemMostViewed 86
UITabBarSystemItemRecents 86
UITabBarSystemItemSearch 86

Controller 56, 57
Core Data

about 130
employee, creating 136-140
employee, deleting 142-144
example 130-135

Core Location framework 113
Core Services layer

code, adding 113
Create new developer profile form 209
C strings 51

D
data types 47
Debug | Change Location 123
debugger

commands, entering 39
simulator, testing on 38
starting with, ways 38
testing, on device 38
testing, on simulator 38

delegate_class property 33
Deliver Your App option 216
deployment_target property 34
describe block 168
describe() method 169
device events

about 175
accelerometer device event 179
gestures 180
rotate device 176-178

device_family property 34
displayPerson method 148
Don't Repeat Yourself. See DRY principle
drag, gestures 182

drag method
from option 182
number_of_points option 182
points option 183
to option 182
touches option 183

drawAtPoint
withFont: method 49

DRY principle
statement 219

DWARF debugging 38

E
edit-compile-run loop 12
End User License Agreement. See EULA
EULA 16
ExampleGroup class 169
exercise 19, 20, 76, 149

F
Files property 33
Flick, gestures

about 181
from option 181
to option 181

folder structure
about 26
app_delegate.rb file 26
app folder 26
Rakefile 27
resources folder 27
Spec folder 27

fonts property 34
foo 46
Foo class 51
foo class method 51
Foundation Framework 44
framework property 33
functional testing 172-175

G
game_layer.rb file 199
GDB (GNU Debugger) 13
Gems 219

[241]

gestures
about 123, 180
constant 180
custom gesture recognizer,

implementing 130
drag 182
example 124-129
flick 181
Pinch close 182
Pinch open 181
rotation 183
tap 180
UIGestureRecognizer subclasses 123

GNU project debugger 37

H
Hash 46
HelloWorld application 22-25
Human Interface Guidelines (HIG) 204
Hybrid applications 8

I
icons property 34
identifier property 33
image source

choosing 108
Info.plist settings 211
init method 197
instance methods 51
Interface Builder

about 151, 152, 157-159
document browser 155
Inspector window 155
Library window 155
View window 155
working with 152-154
.xib to RubyMotion 159-164

interface_orientations property 34
iOS application development

about 8
hybrid applications 8, 9
mobile web applications 8
Objective-C, using 8

iOS developer library 27
iOS development 204
iTunes Connect 214

L
label 92, 93
libs property 33
LLVM 12
Location Manager

example 113-122
Low Level Virtual Machine. See LLVM

M
memory management 53
Mobile web applications 8
Model 56
Model updates 57
Model-View-Controller. See MVC
motion-addressbook 230, 231, 234, 235
motion-cocoapods gem 235
motion command

about 58, 108, 130
motion account 30
motion activate 30
motion create <project name> 30
motion ri <API-name> 30
motion support 31
motion update 30

MVC
about 55, 56
Controller 56, 57
Model 56
View 56

N
named parameter 52
name property 33
navigation bar

about 87, 88
customizing 88-91

Notify 57
NSAttributeDescription class 132
NSJSONSerialization class 68
NSManagedObjectContext class 134
NSString class 45
numberOfComponentsInPickerView

method 99
numberOfRowsInComponent method 99
Numeric 46

[242]

O
Object class 48
Objective-C, interfacing

classes 51
functions 49
Objective-C messages 52
pointers 50
RubyMotion selectors 52
structures 49
types 47, 48

Option key 126

P
phonebook_access method 147
picker view 96-99
pickerView:titleForRow:forComponent

method 99
Pinch close, gestures

about 182
from option 182
to option 182

Pinch open, gestures
about 181
from option 181
to option 181

pointers
Char 50
double* 50
float 50
id* 50
int* 50
long* 50
long long* 50
short* 50
unsigned char* 50
unsigned int* 50
unsigned long* 50
unsigned long long* 50
unsigned short* 50

prerendered_icon property 34
provisioning profile

about 206
App ID 206, 207
Developer Provisioning Profile 209, 210
devices, adding 208

provisioning_profile property 34

R
rake command 44, 70, 192
Rake file

application, configuring 32, 33
Rake tasks

Rake archive 31
Rake archive:distribution 31
Rake build 31
Rake build:device 31
Rake build:simulator 31
Rake clean 31
Rake config 31
Rake ctags 31
Rake default 31
Rake device 31
Rake simulator 31
Rake spec 31
Rake spec:device 31
Rake spec:simulator 31
Rake static 31

Read Evaluate Print Loop. See REPL
reload_data method 139
REPL

about 35-37
used, for debugging 12

Request Certificate option 205
resource folder 200
resources_dir property 33
restaurant

searching, by city 70-74
thumbnail image 74

restaurant application
about 57, 58
code, writing 60-63
external API, connecting to 66-70
mode, creating 59, 60
Restaurant controller 63, 64
Restaurant view 64-66

Restroapp 207
Restro Application

adding 100-104
rootViewController property 171
rotate_device command 176
rotate method 183

[243]

rotation, gestures 183
Ruby class

Array 46
foo 46
Hash 46
Numeric 46
String 46
Time 46

RubyMotion
about 10, 21, 43
and Objective-C 43, 44
debugging 13
easy debugging, REPL used 12
extendable feature 13
installing 14
managed memory 12
need for 11
non-Objective-C fan 11
terminal-based workflow 12
testing 13
updating 17

RubyMotion community 19
RubyMotion debugger

inbuilt debugging facilities 38
RubyMotion gems

about 219
BubbleWrap 227-229
motion-addressbook 230-235
Teacup 220-227

RubyMotion installation
help 18
own editor, selecting 18
prerequisites 14
steps 15-17
testing 18

RubyMotion iOS 7
RubyMotion-Objective-C partnership

about 44
ancestor origin 44-46
diagram 44

RubyMotion project
application, configuring 213
device, installing 213
entitlements 210
icons, building 211, 212
Info.plist settings 211
iTunes Connect 214, 215

RubyMotion selectors
isFoo 52
objectForKey 52
setFoo 52
setObject:forKey 52

Ruby Version Manager. See RVM
RVM 14

S
SDK 10
sdk_version property 34
searchBar

selectedScopeButtonIndexDidChange
method 73

searchBarBookmarkButtonClicked
method 73

searchBarCancelButtonClicked method 73
searchBarResultsListButtonClicked

method 73
searchBarSearchButtonClicked method 73
seed_id property 34
self.dismissModalViewControllerAnimated

(true) method 113
separation of concerns. See SoC
sharedInstanceWithObject:and

Object:class 51
sharedInstanceWithObject method 52
show_map method 121
Show Picker button 98
Slider 94
SoC 55
Software Development Kit. See SDK
spec_dir property 34
Spec::ExampleGroup class 169
status bar

about 91, 92
customizing, app code used 91
customizing, Rakefile used 91

String 46
String class 45
submission bundles

creating 216, 217
Submit button 163
sum_of_square_number method 172
switch button 94
syntactic sugar 59

[244]

T
tab bar

about 80-83
Common icons provided by iOS 86
custom icon 86
customizing 83-86
icons, adding 86

tableView
numberOfRowsInSection property 64

Tap, gestures
about 180
at parameter 180
times parameter 180
touches parameter 181

TDD 168
Teacup

using 220
Terminal-based workflow 12
Test Driven Development. See TDD
testing

about 167
functional testing 172
unit testing 167

Textfield 93
thumbnail image 75, 76
Time 46
titleForRow method 99
touch events

adding, to Whac-A-Mole game 197, 198

U
UIBarButtonItem class 90
UIGestureRecognizer, subclasses

UILongPressGestureRecognizer 123
UIPanGestureRecognizer 123
UIPinchGestureRecognizer 123
UIRotationGestureRecognizer 123
UISwipeGestureRecognizer 123
UITapGestureRecognizer 123

UIImagePickerController class 108
UIKit framework 80
UILongPressGestureRecognizer class 123
UIPanGestureRecognizer class 123
UIPickerView class 96
UIPinchGestureRecognizer class 123
UIRotationGestureRecognizer class 123

UISearchBar class 72
UISearchBar object 73
UISwipeGestureRecognizer class 123
UITableView class 65
UITableView class 64
UITapGestureRecognizer class 123
UIViewController class 63
UIViewController element 157
UIWebView 164, 165
UIWindow class 61
unit testing 167-172
Update 57
update_fetched_employee_with_fetch_re-

quest method 139
User Action 57
user interface

objective 79

V
version property 33
View 56, 57
View and Controller layers 57
viewDidLoad method 120, 224
view(label) property 173
view.reloadData class 74

W
web content

embeddding 164, 165
Whac-A-Mole game

creating 186
motion, adding to moles 196, 197
scores, adding 199
sounds, adding 200
starting with 187-195
touch events, adding 197, 198

Worldwide Developer Relations. See
WWDR

wrappers 219
WWDR 204

X
Xcode

Interface Builder 151
Xcode_dir property 34

Thank you for buying
RubyMotion iOS Develoment
Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Xcode 4 iOS Development
Beginner's Guide
ISBN: 978-1-84969-130-7 Paperback: 432 pages

Use the powerful Xcode 4 suite of tools to build
applications for the iPhone and iPad from scratch

1. Learn how to use Xcode 4 to build simple, yet
powerful applications with ease

2. Each chapter builds on what you have
learned already

3. Learn to add audio and video playback to your
applications

PhoneGap 2.x Mobile Application
Development Hotshot
ISBN: 978-1-84951-940-3 Paperback: 388 pages

Create exciting apps for mobile devices using
PhoneGap

1. Ten apps included to help you get started on
your very own exciting mobile app

2. These apps include working with localization,
social networks, geolocation, as well as the
camera, audio, video, plugins, and more

3. Apps cover the spectrum from productivity
apps, educational apps, all the way to
entertainment and games

4. Explore design patterns common in apps
designed for mobile devices

Please check www.PacktPub.com for information on our titles

Ruby and MongoDB Web
Development Beginner's Guide
ISBN: 978-1-84951-502-3 Paperback: 332 pages

Create dynamic web applications by combining the
power of Ruby and MongoDB

1. Step-by-step instructions and practical
examples to creating web applications with
Ruby and MongoDB

2. Learn to design the object model in a
NoSQL way

3. Create objects in Ruby and map them to
MongoDB

Xcode 4 Cookbook
ISBN: 978-1-84969-334-9 Paperback: 402 pages

Over 100 recipes to build your own fun and exciting
iOS applications

1. Learn how to go about developing some
simple, yet powerful applications with ease
using recipes and example code

2. Teaches how to use the features of iOS 6 to
integrate Facebook, Twitter, iCloud, and
Airplay into your applications

3. Lots of step-by-step recipe examples with
ample screenshots right through to application
deployment to the Apple App Store to get you
up to speed in no time, with helpful hints along
the way

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Ready for RubyMotion
	How can I develop an iOS application?
	Native apps using Objective-C
	Mobile web applications
	Hybrid applications

	What is RubyMotion?
	Why RubyMotion?
	If you are not an Objective-C fan
	It is not a bridge
	Managed memory
	Terminal-based workflow
	Easy debugging with REPL
	It is extendable
	Debugging and testing

	Pop quiz
	RubyMotion installation – furnish your environment
	Prerequisites for RubyMotion
	Installing RubyMotion
	Update RubyMotion
	How do we check we've done everything correctly?
	Pick your own editor – you are not forced to use Xcode
	How to get help

	FAQs
	Summary

	Chapter 2: Instant Gratification – Your First Application
	Your first application
	Folder structure
	Some more goodies
	Let's understand the code

	Exploring the command line
	Motion command – one-stop shop
	Rake tasks – get things done fast
	Rake file – configuring your application

	REPL – the interactive console
	Debugger – catch your mistakes!
	How to start debugging
	While testing on a simulator
	While testing on a device
	Entering commands before starting

	Breakpoint
	Listing breakpoints
	Moving between the different breakpoints
	Checking the value of a local variable
	Checking the value of an instance variable

	Disable breakpoint
	Exit debugger

	Summary

	Chapter 3: Evolution – From Objective-C to RubyMotion
	Ruby and Objective-C – a partnership
	Ruby and Objective-C share the same ancestor

	Interfacing with C and Objective-C
	Types
	Enumerations and constants
	Functions
	Structures
	Pointers
	Classes
	Objective-C messages
	RubyMotion selectors

	Memory management
	Summary

	Chapter 4: Mastering MVC Paradigm
	Model-View-Controller (MVC)
	Model
	View
	Controller

	The restaurant application
	Creating a model
	Writing more code
	Restaurant controller
	Restaurant view

	Connecting to an external API
	Search restaurant by city
	What just happened

	Picture speaks louder than words
	Play time
	Summary

	Chapter 5: User Interface – Cosmetics for Your App
	Bars
	The tab bar
	Customizing the tab bar

	The navigation bar
	Customizing the navigation bar

	The status bar

	Basic UI elements
	Label
	Textfield
	Switch button
	Slider
	Button
	Picker view

	Hands-on – add a Restro Application
	Summary

	Chapter 6: Device Capability – Power Unleashed
	Camera – smile please!
	Camera example
	Understanding the Camera code

	Location Manager – directions for apps
	Location Manager example

	Gestures – non-verbal communication
	Gesture example
	Do it yourself

	Core Data – manage your data
	Core Data example
	Creating an employee
	Deleting the employee

	Address Book – manage your contacts
	Do it yourself
	Task 1 – show nearest restaurant
	Task 2 – mark each restaurant on a map with a pin

	Summary

	Chapter 7: Interface Builder and WebView – More Goodies!
	Interface Builder
	Let's try the Interface Builder
	.xib to RubyMotion

	UIWebView – embed web content
	Summary

	Chapter 8: Testing – Let's Fail Gracefully
	Unit testing
	Functional testing
	Device events
	Rotate device
	Accelerometer device event
	Gestures
	Tap
	Flick
	Pinch open
	Pinch close
	Drag
	Rotation

	Summary

	Chapter 9: Creating a Game
	Cocos2D
	Let's create a game – Whac-A-Mole
	Let's start coding!
	Adding motion to moles
	Adding touch events to the game
	Adding scores
	Games without any sounds are boring — let's add some sound

	Summary

	Chapter 10: Getting Ready for the App Store
	Generating certificates
	Do it yourself

	Provisioning profile
	App ID
	Adding devices
	Developer Provisioning Profile
	Do it yourself

	Setting up the RubyMotion project
	Entitlements
	Info.plist settings
	Building icons
	Configuring your application
	Installing on a device
	iTunes Connect

	Creating bundles for submission
	Summary

	Chapter 11: Extending RubyMotion
	RubyMotion gems
	Teacup – say goodbye to Xcode and XIB files!
	BubbleWrap – making Cocoa APIs more Ruby-like
	motion-addressbook – access phonebook easily

	CocoaPods – managing Objective-C libraries
	Installing CocoaPods with RubyMotion

	Summary
	What next?

	Index

