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Preface

Mango	Solutions	has	been	teaching	face-to-face	R	training	courses	to	business
professionals	and	academics	alike	for	over	13	years.	In	this	time,	we’ve	seen	R	grow	from
its	early	days	as	a	low	cost	alternative	to	S-PLUS	and	SAS	to	become	the	leading
analytical	programming	language	in	the	world	today,	with	several	thousand	contributors
and	somewhere	upward	of	a	million	users.	R	is	widely	used	throughout	academia	and	is
commercially	supported	by	the	likes	of	Microsoft,	Google,	HP,	and	Oracle.

In	Mango’s	face-to-face	training	program	we	teach	R	to	statisticians,	data	scientists,
physicists,	biologists,	chemists,	geographers,	and	psychologists	among	others.	All	are
looking	to	R	to	help	improve	the	way	they	analyze	their	data	in	a	professional
environment.	Our	aim	with	this	book	was	to	take	tried	and	tested	training	material	and
turn	it	into	a	lasting	resource	for	anyone	looking	to	learn	R	for	analysis.

Who	Should	Read	This	Book?
This	book	is	designed	for	professional	statisticians,	data	scientists,	and	analysts	looking	to
widen	the	scope	of	analytical	tools	available	to	them	by	learning	R.	Although	it	is
expected	that	you	might	have	some	programming	knowledge	in	another	analytical
application	or	language	for	data	analysis,	such	as	SAS,	Python,	or	Excel/VBA,	this	is	not	a
prerequisite.	This	book	is	suitable	for	complete	novices	in	programming.	From	the	start,
we	do	not	assume	any	prior	knowledge	of	R;	however,	those	familiar	with	the	basics	may
find	that	they	can	jump	straight	to	later	chapters.

What	Should	You	Expect	from	This	Book?
This	book	is	designed	to	take	you	from	the	basics	of	the	R	language	through	common
tasks	in	data	science,	including	data	manipulation,	visualization,	and	modeling,	to
elements	of	the	language	that	will	allow	you	to	produce	high-quality,	production-ready
code.	As	with	our	face-to-face	training,	this	book	is	structured	around	simple	and	easy-to-
follow	examples,	all	of	which	are	available	to	download	from	the	book’s	website
(http://www.mango-solutions.com/wp/teach-yourself-r-in-24-hours-book).	Throughout,
we	introduce	good	practices	for	writing	code	as	well	as	provide	tips	and	tricks	from	our
combined	experience	in	R	development.

By	the	end	of	this	book,	you	should	have	a	good	understanding	of	the	fundamentals	of	R
as	well	as	many	of	the	most	commonly	used	packages.	You	should	have	a	good
understanding	of	what	makes	well	written	R	code	and	how	to	implement	this	yourself.

How	Is	This	Book	Organized?
This	book	is	designed	to	guide	you	through	everything	you	need	to	know	to	get	started
with	the	R	language	and	then	introduce	additional	elements	of	the	language	for	specific
tasks.

The	following	is	an	outline	of	each	of	the	hours	and	what	to	expect:

Hour	1,	“The	R	Community”—In	this	hour,	we	start	by	looking	at	how	R	evolved	from

http://www.mango-solutions.com/wp/teach-yourself-r-in-24-hours-book


the	S	language	to	become	the	all-purpose	data	science	programming	language	that	it	is
today.	The	R	community	offers	a	plethora	of	help	and	support	options	for	users.	We	look
at	some	of	the	better-known	options	during	this	hour.

Hour	2,	“The	R	Environment”—In	this	hour,	we	start	a	new	R	session	via	RStudio,	type
some	basic	commands,	and	explore	the	idea	of	an	R	“object.”	You	will	be	more	formally
introduced	to	the	concept	of	an	R	package.

Hour	3,	“Single-Mode	Data	Structures”—In	this	hour,	we	describe	the	standard	types	of
data	found	in	R	and	introduce	three	key	structures	that	can	be	used	to	store	these	data
types:	vectors,	matrices,	and	arrays.	We	illustrate	the	ways	in	which	these	structures	can
be	created	and	manage	these	data	structures	with	a	focus	on	how	we	can	extract	data	from
them.

Hour	4,	“Multi-Mode	Data	Structures”—The	majority	of	data	sources	contain	a
mixture	of	data	types,	which	we	need	to	store	together	in	a	simple,	effective	format.	In	this
hour,	we	focus	on	two	key	data	structures	that	allow	us	to	store	“multi-mode”	data:	lists
and	data	frames.	We	illustrate	the	ways	in	which	these	structures	can	be	created	and
manage	these	data	structures	with	a	focus	on	how	we	can	extract	data	from	them.	We	also
look	at	how	these	two	data	structures	can	be	effectively	used	in	our	day-to-day	work.

Hour	5,	“Dates,	Times,	and	Factors”—In	this	hour,	you	learn	more	about	some	of	the
special	data	types	in	R	that	enable	us	to	work	with	dates	and	times	and	with	categorical
data.

Hour	6,	“Common	R	Utility	Functions”—In	this	hour,	we	introduce	you	to	some	of	the
most	common	utility	functions	in	R	that	you	will	find	yourself	using	every	day.

Hour	7,	“Writing	Functions:	Part	I”—One	of	the	strengths	of	R	is	that	we	can	extend	it
by	writing	our	own	functions,	allowing	us	to	create	utilities	that	can	perform	a	variety	of
tasks.	In	this	hour,	we	look	at	ways	in	which	we	can	create	our	own	functions,	specify
inputs,	and	return	results	to	the	user.	We	also	discuss	the	“if/else”	structure	in	R	and	use	it
to	control	the	flow	of	code	within	a	function.

Hour	8,	“Writing	Functions:	Part	II”—This	hour	looks	at	a	range	of	advanced	function-
writing	topics,	such	as	returning	error	messaging,	checking	whether	inputs	are	appropriate
to	our	functions,	and	the	use	of	function	“ellipses.”

Hour	9,	“Loops	and	Summaries”—In	this	hour,	you	see	how	we	can	apply	simple
functions	and	code	in	a	more	“applied”	fashion.	This	allows	us	to	perform	tasks	repeatedly
over	sections	of	our	data	without	the	need	to	produce	verbose,	repetitive	code.

Hour	10,	“Importing	and	Exporting”—In	this	hour,	we	introduce	common	methods	for
importing	and	exporting	data.	By	the	end	of	the	hour	you	will	have	seen	how	R	can	be
used	to	read	and	write	flat	files	and	connect	to	database	management	systems	(DBMSs)	as
well	as	Microsoft	Excel.

Hour	11,	“Data	Manipulation	and	Transformation”—As	data	scientists	and
statisticians,	we	rarely	get	to	control	the	structure	and	format	of	our	data.	Now	we	will
look	a	little	closer	at	the	structure	of	our	data.	Several	approaches	to	data	manipulation	in
R	have	evolved	over	time.	In	this	hour,	we	start	by	looking	at	what	could	be	called
“traditional”	approaches	to	the	data	manipulation	tasks	of	sorting,	setting,	and	merging.



We	then	look	at	the	popular	packages	reshape,	reshape2,	and	tidyr	for	data	restructuring.

Hour	12,	“Efficient	Data	Handling	in	R”—We	begin	the	hour	by	looking	at	the
incredibly	popular	dplyr	package.	The	data.table	package	is	a	standalone	package	for
data	manipulation	that	offers	greater	efficiency	for	very	large	data.

Hour	13,	“Graphics”—After	all	the	manipulations	to	our	data,	we	want	to	be	able	to	start
to	do	something	with	it.	In	this	hour,	we	look	at	how	we	can	create	graphics	using	the	base
graphics	functionality,	including	how	to	send	your	graphics	to	devices	such	as	a	PDF	and
the	standard	graphics	functions.	We	finally	look	at	how	to	control	the	layout	of	graphics
on	the	page.

Hour	14,	“The	ggplot2	Package	for	Graphics”—In	this	hour,	we	look	at	the	hugely
popular	ggplot2	package,	developed	by	Hadley	Wickham	for	creating	high-quality
graphics.

Hour	15,	“Lattice	Graphics”—Here	we	will	look	at	a	third	way	of	creating	graphics:
using	the	lattice	package.	This	graphic	system	is	well	suited	to	graphing	highly	grouped
data,	with	the	code	designed	to	closely	resemble	the	modeling	capabilities	of	R.

Hour	16,	“Introduction	to	R	Models	and	Object	Orientation”—In	this	hour,	we	see
how	to	fit	a	simple	linear	model	and	assess	its	performance	using	a	range	of	textual	and
graphical	methods.	Beyond	this,	we	introduce	“object	orientation”	and	see	how	the	R
statistical	modeling	framework	is	built	on	this	concept.

Hour	17,	“Common	R	Models”—In	this	hour,	we	extend	the	ideas	of	the	previous	hour
to	other	modeling	approaches.	Specifically,	we	look	at	Generalized	Linear	Models,
nonlinear	models,	time	series	models,	and	survival	models.

Hour	18,	“Code	Efficiency”—In	this	hour,	we	look	at	some	of	the	techniques	we	can	use
to	improve	the	efficiency	and,	importantly,	the	professionalism	of	our	R	code.

Hour	19,	“Package	Building”—When	we	put	our	code	into	a	package,	it	forces	us	to
ensure	that	our	code	is	of	a	high	standard	and	we	are	adhering	to	good	practices,	such	as
documenting	our	code.	We	focus	here	on	making	sure	our	code	is	well	written	and
documented,	the	starting	point	for	high-quality,	professional	code	that	is	easy	to	share	and
reuse.

Hour	20,	“Advanced	Package	Building”—There	are	a	number	of	ways	we	can	extend	a
package	to	make	it	more	robust	to	changes	and	easier	for	users	to	get	started	with.	You
learn	the	most	common	of	these	extra	components	in	this	hour.

Hour	21,	“Writing	R	Classes”—In	this	hour,	we	take	a	general	look	at	some	key	features
of	object-oriented	programming	before	focusing	in	on	R’s	S3	implementation.

Hour	22,	“Formal	Class	Systems”—During	this	hour,	we	look	at	the	more	formal	S4	and
Reference	Class	systems	in	R.	Along	the	way,	you	will	be	introduced	to	concepts	such	as
validity	checking,	multiple	dispatch,	message-passing	object	orientation,	and	mutable
objects.

Hour	23,	“Dynamic	Reporting”—Up	to	this	point	we	have	seen	the	fundamentals	of	the
R	language	as	well	as	the	aspects	of	R	that	allow	us	to	ensure	that	we	write	high-quality,
well-documented,	and	easily	shareable	code.	In	this	hour,	we	take	a	look	at	one	of	the



ways	you	can	extend	your	use	of	R,	specifically	for	simplifying	the	generation	of	reports
that	rely	heavily	on	R-generated	output.

Hour	24,	“Building	Web	Applications	with	Shiny”—Although	you	may	initially	be	put
off	by	the	idea	of	building	a	web	application,	we	introduce	a	package	that	allows	you	to
generate	web	applications	entirely	in	R,	writing	only	R	code.	This	is	currently	one	of	the
most	popular	packages	available	in	R,	with	more	and	more	packages	being	added	to
CRAN	that	use	this	framework.

About	the	Sample	Code
Throughout	this	book,	we	have	included	examples	of	the	concepts	that	are	being
introduced.	You	may	notice	that	the	code	is	prefixed	with	the	symbols	“>”	and	“+”.	These
are	the	R	prompt	and	continuation	characters	and	do	not	need	to	be	entered	when	writing
code.	We	have	used	the	formatting	conventions	of	function	for	a	function	name	and
package	for	a	package	name.

All	of	the	code	examples	included	in	this	book	are	available	from	our	web	page:
http://www.mango-solutions.com/wp/teach-yourself-r-in-24-hours-book/

Note

Code-Continuation	Arrows	and	Listing	Line	NumbersYou	might	see	code-
continuation	arrows	( )	occasionally	in	this	book	to	indicate	when	a	line	of	code	is
too	long	to	fit	on	the	printed	page.	Also,	some	listings	have	line	numbers	and	some
do	not.	The	listings	that	have	line	numbers	have	them	so	that	we	can	reference	code
by	line;	the	listings	that	do	not	have	line	numbers	are	not	referenced	by	line.

Contacting	the	Authors
If	you	have	any	comments	or	questions	about	this	book,	please	drop	us	an	email	at
rin24hours@mango-solutions.com.

http://www.mango-solutions.com/wp/teach-yourself-r-in-24-hours-book/
mailto:rin24hours@mango-solutions.com
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Hour	1.	The	R	Community

What	You’ll	Learn	in	This	Hour:

	A	brief	history	of	S	and	R

	An	overview	of	the	R	community

	The	development	and	release	of	R	versions

In	this	hour	we	start	by	looking	at	how	R	evolved	from	the	S	language	to	become	the	all-
purpose	data	science	programming	language	that	it	is	today.	It	is	important	when	learning
any	programming	language	to	understand	a	little	about	where	it	came	from	and	why	it
functions	as	it	does.	This	is	particularly	relevant	for	R	because	many	of	the	quirkier
aspects	of	the	language	have	roots	in	S.

As	a	free	and	open-source	programming	language,	R	relies	strongly	on	community	input.
The	R	community	offers	a	plethora	of	help	and	support	options	for	users.	We	look	at	some
of	the	better-known	options	during	this	hour.	Toward	the	end	of	the	hour	we	look	a	little
closer	at	the	development	and	release	of	R	versions.

A	Concise	History	of	R
When	I	first	started	teaching	introductory	R	courses,	I	would	ask	how	many	people	in	the
room	had	any	experience	with	S.	This	was	an	important	question	for	an	R	training	course
because	the	languages	are	syntactically	similar.	If	you	know	S,	then	what	are	you	doing	in
an	Introduction	to	R	course?!	A	couple	of	years	ago,	the	number	of	raised	hands	had
dropped	significantly,	and	I	revised	this	question	to	ask,	“How	many	people	here	have
actually	heard	of	S?”	Today,	very	few	people	have	but	to	begin	to	understand	R,	so	it	helps
to	know	just	where	it	came	from,	and	that	means	knowing	what	S	is	and	how	it	came	to
be.

The	Birth	of	S
S	was	initially	developed	at	AT&T	Bell	Laboratories	by	John	Chambers	in	the	mid-to-late
1970s—a	time	that	predates	Google	and	the	need	to	be	able	to	search	for	help	concerning
your	programming	language!	John	Chambers’	original	idea	is	beautifully	portrayed	in	the
now	infamous	sketch	from	1976,	shown	in	Figure	1.1.	The	essence	of	Chambers’	idea	was
that	his	then-unnamed	language	would	provide	an	accessible	interface	to	lower-level
Fortran	subroutines,	thereby	reducing	the	time	a	statistician	would	have	to	spend	coding.
Today,	languages	such	as	R,	SAS,	Matlab,	and	Python	all	take	a	similar	approach,	but	at
the	time	this	idea	was	fairly	ground-breaking.



FIGURE	1.1	John	Chambers’	sketch	of	the	idea	that	became	S

The	name	“S”	stands	for	“Statistics.”	It	was	chosen	over	other	names	primarily	for
consistency	(the	C	language	was	also	born	out	of	Bell	Laboratories	a	few	years	earlier)
and	because	pretty	much	every	name	proposed	began	with	the	letter	S.	One	name	in
particular,	SAS	(Statistical	Analysis	Software),	had	already	been	taken.

The	S	language	continued	to	grow	and	evolve	with	several	key	changes	that	shaped	both
the	S	language	and	eventually	R	today.	These	included	a	gradual	transition	toward	C	for
internal	routines,	a	switch	from	macros	to	functions,	and	the	introduction	of	the	“S3”	and
then	the	“S4”	class	systems,	which	are	described	in	Hour	21,	“Writing	R	Classes,”	and
Hour	22,	“Formal	Class	Systems.”

A	particularly	important	milestone	in	the	life	of	S	was	the	development	and	release	of	the
first	version	of	S-PLUS	by	Statistical	Sciences,	Inc.,	in	1988.	In	the	next	few	years,
Statistical	Sciences	built	a	new	graphical	user	interface	for	S	and	added	interactive
graphical	capabilities	by	integrating	the	GUI	with	their	Axum	product.	They	also	added
connectors	to	a	number	of	Microsoft	products,	such	as	Excel	and	PowerPoint.	However,
perhaps	most	significant	of	all	was	that	in	1993	Statistical	Sciences	acquired	the	exclusive
license	to	market	and	distribute	the	S	language,	closing	off	the	development	of	S	to
outsiders.	TIBCO	acquired	the	then-owners	of	S-PLUS,	Insightful,	in	2008.	However,	to
date,	no	new	versions	of	S-PLUS	have	been	released	since	the	acquisition,	with	TIBCO
turning	their	attentions	toward	R	and	becoming	a	founding	member	of	the	R	Consortium
in	2015.



The	Birth	of	R
Earlier	in	this	hour	we	said	that	S	and	R	were	“syntactically	similar.”	The	main	R	Project
website	for	R,	www.r-project.org,	does	not	shy	away	from	the	relationship	with	S,
describing	R	as	“similar	to	the	S	language	and	environment”	and	claiming	that	“much
code	written	for	S	runs	unaltered	under	R.”	It	does	not	go	as	far	as	saying	that	R	is	a	copy
or	reimplementation	of	S,	but	R	is	widely	considered	to	have	evolved	from	S.	The	near-
identical	syntax	is	no	coincidence!	The	first	version	of	the	R	language	was	developed	by
Robert	Gentleman	and	Ross	Ihaka	of	The	University	of	Aukland	in	the	mid-late	1990s.
The	name	“R”	is	a	play	on	the	names	Robert	and	Ross,	though	the	significance	of	the
position	of	the	letter	R	next	to	S	in	the	alphabet	should	not	be	downplayed.

Robert	and	Ross	were	soon	joined	by	a	core	group	of	contributors	known	as	the	“R
Development	Core	Team,”	which	is	today	responsible	for	the	development	and	release	of
new	R	versions.	Following	the	release	of	R-1.5.0,	the	core	members	created	“The	R
Foundation,”	which,	among	other	things,	is	responsible	for	copyright	and	documentation
of	R.	The	R	Foundation	now	contains	many	of	the	original	S	development	team,	including
John	Chambers.

R	has	undergone	many	iterations	of	its	own	since	the	early	days,	with	minor	releases
approximately	every	3	months.	However,	much	of	the	functionality,	particularly	the	core
statistic	routines,	resembles	the	S	language	of	old.

The	R	Community
Before	we	install	R	and	begin	programming,	we	would	like	to	highlight	some	of	the
available	online	resources	for	R.	Indeed,	there	are	many	online	resources,	almost	all	of
which	can	be	accessed	via	the	main	R	project	website	(see	Figure	1.2).	From	here	you	can
download	the	latest	copy	of	R,	download	R	packages,	find	help	on	R,	join	several	R
mailing	lists,	search	for	R	books	such	as	this,	and	find	events.

http://www.r-project.org


FIGURE	1.2	The	main	page	of	the	R	Project	website,	www.r-project.org

A	big	difference	between	the	open-source	R	language	and	commercially	supported
software	such	as	SAS	and	SPSS	is	the	large	and	active	online	community	that	has	built	up
around	R.	Like	many	open-source	communities,	the	R	community	is	a	weird	yet
wonderful	beast	that	takes	some	getting	used	to!	However,	one	of	the	goals	of	a	group
formed	in	2015,	known	as	the	R	Consortium,	is	to	try	to	make	R	more	accessible	for
newcomers	to	the	language.

Mailing	Lists
Several	mailing	lists	are	dedicated	to	R,	each	listed	on	the	R	Project	website.	The	first	port
of	call	for	most	new	users	is	the	R-help	mailing	list.	My	advice	to	any	newcomer	is	to	use
the	searchable	archives	on	the	R	Project	website	(and	read	the	posting	guide)	before
posting	any	help	requests	to	the	community	because	chances	are	someone	else	has	had	the
same	issue	before.	If	you	do	use	R-help,	what	you	will	first	notice	is	the	speed	at	which
users	are	rushing	to	help	you	out;	night	and	day	the	community	is	waiting	to	embrace	your
R	challenge.	On	the	flip	side,	do	beware	of	making	critical	remarks	about	the	behavior	of
a	function	or	quality	of	the	documentation.	The	chances	are	the	author	is	reading	your	post
with	no	sales	or	marketing	team	sitting	next	to	him	telling	you	to	be	kind!

http://www.r-project.org


R	Manuals
A	typical	response	to	an	R-help	request	used	to	be	“read	the	manuals.”	Like	the	language
itself,	the	R	manuals,	of	which	there	are	several,	have	their	roots	in	S.	If	you	do	decide	to
consult	them	for	help,	we	can	promise	you	that	the	information	you’re	looking	for	will	be
there.	In	particular,	the	“Writing	R	Extensions”	manual	is	a	very	handy	reference	for	those
wanting	to	develop	and	deploy	R	packages	for	mass	consumption.	However,	unless	you
are	already	very	familiar	with	general	programming	constructs	such	as	object	orientation,
and	are	therefore	ready	to	jump	in	at	the	deep	end,	you	may	find	the	manuals	hard	going.
The	R	Core	Team	recognizes	this,	and	the	“An	Introduction	to	R”	manual	contains	a
subsection	within	the	preface	titled,	“Suggestions	to	the	reader”	where	the	advice	for	R
novices	is	essentially	to	skip	the	first	80	pages	and	“start	with	the	introductory	session	in
Appendix	A”!

Online	Resources
Plenty	of	online	resources	are	available,	although	they	are	not	always	easy	to	find	for	the
R	newcomer.	I’ve	been	using	R	for	nearly	15	years,	yet	when	I	type	R	and	a	space	into
Google,	it	still	thinks	I’m	looking	for	R.	Kelly!	Generally,	though,	there	is	enough	of	a
divide	between	the	worlds	of	R&B	and	of	statistical	programming	to	make	Googling	for	R
help	fairly	straightforward.	Besides	Google,	there	are	a	number	of	other	options	for
searching	for	R-based	material,	some	of	which	are	listed	on	the	R	Project	website.	In
particular,	Sasha	Goodman	of	Stanford	University	has	created	Rseek	(http://rseek.org/),
which	searches	several	known	R-related	sites.

If	you	wish	to	search	the	manuals	for	help,	you	can	do	so	directly	using	a	tool	called	R
Documentation,	http://www.rdocumentation.org,	developed	by	DataCamp.	R
Documentation	is	a	website	that	pulls	together	documentation	from	the	main	R
repositories	into	a	single	location.	The	website	also	offers	the	ability	to	search	the
Comprehensive	R	Archive	Network’s	(CRAN’s)	Task	Views	for	packages	of	code.	We
will	discuss	CRAN	and	R	packages	in	greater	detail	during	Hour	2,	“The	R	Environment.”

The	R	Consortium
On	June	30,	2015,	the	Linux	Foundation	launched	the	R	Consortium.	The	R	Consortium
consists	primarily	of	data	scientists	from	both	industry	and	academia	with	the	joint	goal	of
trying	to	advance	the	R	language	and	support	the	growth	of	the	R	community.	The	home
page	for	the	R	Consortium	is	shown	in	Figure	1.3.	Existing	members	of	the	R	Foundation
were	joined	by	founding	members	Microsoft	and	RStudio	(Platinum);	TIBCO	Software,
Inc.	(Gold);	and	Alteryx,	Google,	HP,	Mango	Solutions,	Ketchum	Trading,	and	Oracle
(Silver).

http://rseek.org/
http://www.rdocumentation.org


FIGURE	1.3	The	home	page	of	the	R	Consortium,	www.r-consortium.org

The	R	Consortium	is	still	very	much	in	its	infancy,	but	it	is	anticipated	that	its	formation
will	both	improve	the	accessibility	of	the	R	language	and	oversee	its	next	phase	of	growth.
The	R	Consortium	home	page	may	soon	replace	the	R	Project	home	page	as	the	go-to
starting	point	for	the	R	community.

User	Events
Another	great	plus	of	the	open-source	community	is	the	number	of	user	events	available	to
attend	globally.	New	user	groups	are	popping	up	all	the	time,	and	attendance	numbers	can
vary	from	5	to	500.	Events	are	typically	held	in	the	evening,	with	participants	giving	up
their	own	time	to	attend.	Since	the	very	early	days	of	R,	these	user	meetings	have	been	a
primary	arena	for	R	enthusiasts	to	meet	and	share	ideas.	Many	of	the	more	established
meetings	receive	commercial	backing.

In	addition	to	the	localized	R	meetings,	the	main	“useR!”	conference	has	been	held
regularly	since	2004,	with	the	number	of	attendees	steadily	increasing	year	over	year.	The
conference	is	generally	focused	on	developments	in	the	R	language	and	R	packages.	It	is
packed	with	presentations	from	academia	and	industry	and	is	now	backed	by	the	R
Consortium.	In	2014,	UseR!	was	joined	by	the	Effective	Applications	of	the	R	Language
(EARL)	conference.	The	primary	focus	of	the	EARL	conference	is	the	commercial	usage
of	R	across	a	range	of	industry	sectors	with	the	aim	of	sharing	knowledge	and	applications
of	the	language.

http://www.r-consortium.org


In	addition	to	the	cross-sector	R	conferences,	there	are	also	industry-specific	R
conferences	for	those	working	in	either	the	finance	or	insurance	industry.	These	are,
respectively,	R/Finance,	which	has	been	held	annually	in	Chicago	since	2009,	and	R	in
Insurance,	which	has	been	running	annually	since	2013.

R	Development
Today,	the	R	Development	Core	Team	still	controls	the	write-access	to	the	R	source
(though	as	an	open-source	GNU	project,	this	source	code	is	freely	available	to	download
for	anyone	who	wants	to	see	it).	However,	much	of	the	popularity	of	the	R	language	today
can	also	be	attributed	to	the	many	contributors	outside	of	that	group	who	have	written	one
or	more	of	several	thousand	R	“packages,”	freely	available	for	download	from	the	CRAN
repository.	CRAN	is	a	network	of	ftp	and	web	servers	mirrored	around	the	world,	each	of
which	contains	versions	of	R	and	the	contributed	R	packages.

The	scope	and	quality	of	the	R	packages	can	vary	greatly,	but	finding	and	using	new	R
packages	is	an	important	part	of	the	life	of	the	modern	R	user.	A	proactive	statistician	or
data	scientist	may	have	several	hundred	packages	installed	on	his	or	her	local	machine	for
any	particular	version	of	R.	R	packages	are	explained	in	more	detail	in	Hour	2.

Versions	of	R
The	R	Core	Development	Team	decides	when	new	versions	of	R	are	ready	for	general
public	release.	Each	release	comes	with	a	comprehensive	description	of	additional	features
and	fixes	since	the	previous	version.	R	versions	follow	the	Major-Minor-Patch	structure
(for	example,	R-3.2.0).	The	first	version	of	R,	R-1.0.0	was	released	in	February	2000,	with
a	steady	release	pattern	of	patch,	minor	and	very	occasionally	major	releases,	since	then.
In	recent	years	the	rate	of	release	has	slowed	a	little,	with	minor	versions	of	R	released
approximately	annually.	Historically,	each	new	minor	release	has	had	two	to	three
associated	patch	versions.

Note:	Nicknames

R	version	2.15.1	was	the	first	R	release	to	be	given	a	“nickname,”	Roasted
Marshmallows,	by	the	R	Core	Development	Team.	Every	subsequent	R	version	has
been	given	an	interesting	but	apparently	random	nickname.	This	nickname	is
printed	on	start-up	but	can	also	be	accessed	by	running	the	line
R.Version()$nickname.

If	you	have	a	background	in	software	such	as	SAS	or	Microsoft	Excel,	you	may	wonder
why	R	versions	are	released	so	frequently.	There	is	often	a	concern	that	the	high	frequency
of	releases	is	a	sign	of	instability	and	that	R	is	very	buggy.	Actually	the	opposite	is	true;
however,	commercial	organizations	do	tend	to	be	cautious	about	both	the	R	versions	that
they	adopt	and	the	frequency	with	which	they	adopt	them.	Often	companies	wait	until	the
second	or	third	patched	version	of	a	minor	release,	such	as	R-3.1.2,	before	upgrading	their
R	environment.

If	you	do	ever	identify	a	bug	in	R,	it	is	very	simple	and	easy	to	report	it	by	emailing	the
package	maintainer.	Unlike	most	commercially	backed	closed-source	models,	the	open



model	allows	a	direct	dialogue	with	the	person	developing	the	code.	Once	it	has	been
established	as	a	genuine	bug,	you	can	work	with	the	maintainer	on	a	solution	and	in	some
cases	gain	recognition	as	a	package	author	for	your	efforts.	Once	a	resolution	has	been
established	to	the	issue,	your	bug-fix	is	usually	implemented	in	the	next	patched	or	minor
release.	This	means	you	typically	never	have	to	wait	more	than	a	couple	of	months	for	a
bug	to	be	fixed.

Summary
During	this	hour	you	were	presented	with	a	brief	history	of	the	evolution	of	S	and	then	R.
Along	the	way	you	heard	terms	such	as	“S3”	and	“S4,”	deriving	from	S,	which	will	be
mentioned	at	various	points	throughout	the	remaining	hours	and	covered	specifically
during	Hours	21	and	22.

You	were	introduced	to	the	R	community	and	the	various	groups	that	support	the	R
language:	the	R	Core	Development	Team,	the	R	Foundation,	and	the	R	Consortium.	We
looked	at	a	selection	of	the	available	online	resources	and	touched	on	the	difficulties	of
searching	for	R	help.	Finally,	we	discussed	the	development	cycle	of	R	and	what	it	means
for	bugs	in	the	code.

In	the	“Activities”	section,	we	install	R	and	the	RStudio	integrated	development
environment	(IDE).	In	the	next	hour,	we	will	begin	to	use	and	explore	R	through	the
RStudio	IDE.

Q&A
Q.	With	so	many	versions	of	R,	should	I	be	worried	about	backward
compatibility?

A.	If	we	consider	the	base	R	language	and	ignore	the	many	thousand	additional
packages	available	to	download	from	CRAN,	it	is	fair	to	say	that	R	is	pretty
backward	compatible.	Indeed	there	are	many	features	of	R	today	that	exist	due	to
decisions	made	when	the	S	language	was	developed.	However,	the	same	cannot	be
said	for	the	thousands	of	contributed	packages	residing	in	the	main	CRAN
repository.	Even	some	of	the	best	known	and	respected	R	package	authors	change
their	mind	from	time	to	time,	and	package	version	numbers	can	make	a	big
difference.	Ensuring	quality	and	consistency	across	R	packages	is	one	of	the	biggest
challenges	facing	the	R	Foundation	today.

Q.	A	colleague	of	mine	has	sent	me	a	bunch	of	S	scripts.	Will	they	run	in	R?

A.	The	official	line	is,	“There	are	some	important	differences,	but	much	code	written
for	S	runs	unaltered	under	R.”	This	is	very	much	the	case	for	day-to-day	code,	with
a	few	notable	exceptions.	The	function	for	calculating	the	standard	deviation	in	S	is
stdev	compared	with	sd	in	R,	for	example.	For	slightly	more	advanced	users,
functional	scoping	can	become	an	issue	(one	of	the	“important	differences”),	but	in
essence	the	official	line	is	spot	on.	To	the	naked	eye,	S	and	R	code	look	very	similar
indeed.



Workshop
The	workshop	contains	quiz	questions	and	exercises	to	help	you	solidify	your
understanding	of	the	material	covered.	Try	to	answer	all	questions	before	looking	at	the
“Answers”	section	that	follows.

Quiz
1.	Which	“similar”	programming	language	predated	R?

2.	What	does	the	acronym	CRAN	stand	for?

3.	Which	group	of	R	enthusiasts	controls	the	write-access	to	the	R	source	and	is
responsible	for	the	distribution	of	the	R	language?

A.	The	R	Core	Development	Team

B.	The	R	Foundation

C.	The	R	Consortium

Answers
1.	The	S	language.

2.	Comprehensive	R	Archive	Network.

3.	The	R	Core	Development	Team	is	directly	responsible,	though	the	resources	and
support	surrounding	each	release	could	also	be	considered	the	responsibility	of	the	R
Foundation	or	R	Consortium.

Activities
1.	Refer	to	the	“Installing	R”	section	of	this	book’s	Appendix.	Download	and	install
the	appropriate	version	of	R	for	your	operating	system.

2.	Refer	to	the	“Installing	RStudio”	section	of	this	book’s	Appendix.	Download	and
install	the	latest	version	of	RStudio	Desktop	from	the	RStudio	website.



Hour	2.	The	R	Environment

What	You’ll	Learn	in	This	Hour:

	Environments	for	writing	R	code

	Basic	R	syntax

	Elements	of	the	RStudio	IDE

	The	premise	of	an	R	object

	Working	with	R	packages

	Getting	internal	help

At	the	end	of	Hour	1,	“The	R	Community,”	you	installed	R	and	the	popular	RStudio
Desktop	IDE.	In	this	hour	we	start	a	new	R	session	via	RStudio,	type	some	basic
commands,	and	explore	the	idea	of	an	R	“object.”	You	will	be	more	formally	introduced	to
the	concept	of	an	R	package,	and	in	the	“Activities”	section	you	will	load	an	R	package
from	the	CRAN	repository	containing	datasets	that	supplement	the	book.

Integrated	Development	Environments
At	the	end	of	the	previous	hour	you	installed	two	pieces	of	software,	R	and	RStudio
Desktop.	In	this	hour	we	focus	on	RStudio.	The	R	language	can	be	accessed	in	many
different	ways,	however.	For	example,	when	you	installed	R,	you	also	installed	the	R	GUI,
which	for	a	long	time	was	the	way	most	R	users	interacted	with	the	language.	The	RStudio
Desktop	IDE	is	therefore	not	necessary	in	order	to	use	R,	but	it	certainly	helps.

The	R	GUI
The	R	GUI	is	installed	with	R	and	provides	an	environment	in	which	you	can	work	with	R
interactively	via	the	R	console.	The	R	GUI	contains	a	small	selection	of	drop-down	menus
that	allow	you	to	quickly	install	and	load	R	packages,	load	workspaces,	and	access	the	R
manuals.	There	is	also	a	series	of	quick-access	buttons	that	include	a	“Run	line	or
selection”	button	for	working	with	scripts	and	a	Stop	Current	Computation	button	to	allow
users	to	cancel	submitted	statements.

Compared	with	modern	IDEs	such	as	RStudio,	the	R	GUI	is	beginning	to	look	quite	dated.
It	remains	very	quick	to	load,	however,	and	can	be	useful	if	all	you	need	to	do	is	open	R	to
run	one	or	two	commands.	Throughout	this	hour	and	the	remaining	hours,	we	will	access
the	R	language	via	the	far	richer	RStudio	IDE.	Many	of	the	features	we	look	at	in	this	hour
are	also	available	directly	through	the	R	language	or	via	the	R	GUI.	They	may,	however,
have	a	slightly	different	name	within	the	R	GUI	or	behave	slightly	differently.



The	RStudio	IDE
RStudio	is	a	U.S.-based	company	that	builds	tools	to	assist	R	users.	One	such	tool	is	their
extremely	popular	integrated	development	environment	(IDE)	for	R,	called	RStudio	(see
Figure	2.1).	The	first	publically	available	version	of	the	RStudio	environment	was
released	in	2011	and	was	made	available	in	both	desktop	and	server	formats,	with	the
server	version	accessed	via	a	web	browser.	Since	then,	development	has	continued	at	some
pace,	and	the	IDE	has	surpassed	many	others	to	become	the	de	facto	standard	way	of
interfacing	with	R.

FIGURE	2.1	The	RStudio	Environment

Today,	RStudio	is	still	open	source	and	available	as	both	a	desktop	and	a	server	product.
Commercial	versions	of	both	products	are	now	available	for	those	that	require	additional
features	such	as	security	or	commercial	support.

In	Hour	1,	you	installed	the	latest	version	of	RStudio	Desktop	appropriate	for	your
operating	system.	The	RStudio	environment	consists	of	four	primary	panels	or	panes.	The
size	of	these	panes	can	easily	be	adjusted	by	clicking	the	dividing	line	between	two	panes
and	moving	up/down	or	left/right	accordingly.	In	order	to	change	the	layout	of	the	panes,
you	need	to	use	the	menu	options.	Select	Tools	>	Global	Options…	and	then	click	the
Pane	Layout	button	on	the	left.	The	structured	pane	layout	within	RStudio	is	one	of	the
features	that	sets	RStudio	apart	from	the	standard	R	GUI.	Panes	such	as	Packages	and
Environment	provide	a	user	interface	to	core	R	functionality	that	new	users	are	typically
not	aware	of.	More	generally,	the	RStudio	environment	has	helped	make	R	more



accessible	to	many	new	users	who	might	previously	have	been	put	off	by	the	rather	basic
looking	R	GUI.

The	most	relevant	and	useful	features	within	RStudio	will	be	briefly	covered	within	the
remainder	of	this	hour.	RStudio	is	an	evolving	product,	and	new	features	are	being	added
all	the	time.	Full	documentation	is	available	on	the	RStudio	product	website,
www.rstudio.com/products/rstudio/,	and	is	accessible	via	the	Help	menu	within	RStudio.

Other	Development	Environments
The	R	GUI	and	RStudio	are	by	no	means	the	only	ways	to	interface	with	R.	Notepad++	is
a	very	popular	general-purpose	text	editor	that	understands	R	syntax.	You	can	even	use	the
editor	to	submit	code	using	the	NppToR	plug-in	available	from	SourceForge.	Similarly,
ESS	is	an	add-on	package	that	enhances	the	Emacs	text	editor,	enabling	interaction	with
R.	The	highly	customizable	Vim	editor	also	has	an	R	plug-in.

Eclipse	is	a	very	popular	development	platform	maintained	by	the	Eclipse	Foundation,
which	offers	support	for	a	number	of	programming	languages.	The	StatET	plug-in	enables
users	to	create	customized	R	environments.	Eclipse	with	StatET	is	particularly	useful
when	working	on	large	projects	across	multiple	languages.	Casual	users	may	find	it	a	little
too	heavyweight	for	their	needs,	however.	There	is	also	Rattle,	an	open-source	GUI	for
data	mining	in	R,	as	well	as	Tinn-R,	an	R	GUI	and	development	environment	for
Windows.

The	brief	list	presented	here	is	by	no	means	exhaustive,	and	you	can	call	R	from	a	number
of	different	applications	and	environments.	For	example,	you	can	call	R	from	Excel	using
a	tool	called	RExcel.	Similarly,	the	major	business	intelligence	vendors	all	allow	users	to
write	extensions	in	R	and	provide	their	own	script	editors.	Oracle,	HP,	and	Teradata	all
offer	the	ability	to	run	R	within	their	respective	databases.	Microsoft	announced	in	May
2015	that	they	will	be	offering	the	same	functionality	in	SQL	Server	2016.

R	Syntax
Basic	R	syntax	loosely	resembles	other	mathematical/statistical	scripting	languages	such
as	Matlab	and	Python.	In	this	section,	we	take	a	look	at	the	R	console	and	type	a	few
simple	commands	to	see	how	an	interactive	R	session	functions.

The	Console
Within	both	the	R	GUI	and	RStudio,	you	access	your	R	session	via	the	R	Console.	The
console	is	essentially	equivalent	to	running	a	command-line	R	session.	Working	directly
within	the	R	console,	you	type	an	R	command,	and	when	you	press	Enter,	the	result	of	that
command	is	displayed	on	the	line(s)	below.

When	you	start	an	R	session,	you	are	greeted	with	an	initial	start-up	message	containing
information	about	the	version	of	R	you	are	using,	along	with	a	selection	of	commands	that
the	R	Core	Development	Team	would	like	you	to	know	about	(see	Figure	2.2).	Following
the	start-up	message	is	the	>	symbol.	This	is	commonly	referred	to	as	the	command
prompt.

http://www.rstudio.com/products/rstudio/


FIGURE	2.2	The	R	Console

Caution:	No	Warranty!

Note	the	“ABSOLUTELY	NO	WARRANTY”	comment	in	the	initial	startup
message.	If	things	go	wrong,	there	is	no	one	you	can	pick	up	the	phone	and
complain	to!

A	flashing	cursor	to	the	right	of	the	command	prompt	is	a	sign	that	R	is	ready	for	you	to
submit	a	new	command	for	processing.	An	example	of	the	use	of	the	console	for	a	simple
mathematical	operation	can	be	seen	here:

>	4*5		#	A	simple	command
[1]	20
>

Here,	we	asked	R	to	evaluate	the	expression	4*5.	The	correct	answer,	20,	was	printed	on
the	following	line,	and	we	were	returned	to	the	command	prompt	and	flashing	cursor.	The
[1]	relates	to	the	way	R	prints	vectors.	It	is	something	we	will	look	at	more	closely	in
Hour	3,	“Single-Mode	Data	Structures.”	Note	the	use	of	the	#	symbol	in	order	to	comment
our	code.	R	will	ignore	anything	to	the	right	of	the	first	#	symbol	of	a	line.

Caution:	Comment	Blocks

There	is	no	multiline	comment	capability	within	R,	so	comment	blocks	may	only	be
achieved	by	starting	each	line	of	code	with	a	#.

The	command	prompt	reappears	once	R	has	finished	processing	a	complete	line	of	code.	If
we	do	not	provide	a	complete	line	of	code,	we	will	get	a	“continuation”	prompt,	+,	as
follows:

>	4*		#	An	incomplete	line
+

Often	this	occurs	when	a	closing	brace	or	quotation	mark	is	accidently	omitted,	though	it



can	also	be	used	deliberately.	Because	R	only	processes	the	statement	once	the	“line”	of
code	is	complete,	incomplete	lines	do	not	necessarily	cause	syntax	errors.	If	the	break	was
deliberate	or	if	we	know	what	to	type	to	complete	the	line,	we	can	simply	complete	the
line	and	press	Enter.	If	we	have	made	a	more	serious	error	or	are	unsure	of	what	mistake
we	have	made,	we	can	press	the	Esc	key	to	cancel	the	statement	and	return	to	the	standard
command	prompt.

Using	the	R	Console

Let’s	type	a	few	commands	into	the	console	using	the	following	steps:

1.	Open	RStudio	and	wait	for	the	command	prompt	to	appear.

2.	Type	in	a	mathematical	expression	to	evaluate,	such	as	20/4.

3.	Press	Enter.

The	correct	result	should	be	displayed	after	a	[1]	and	you	should	be	returned	to	the
command	prompt,	>.

Scripting
Professional-level	code	is	rarely,	if	ever,	developed	directly	in	a	console	or	command	line.
Large	volumes	of	well-structured,	readable,	and	well-documented	code	should	be
developed	within	an	R	script.	The	RStudio	environment	provides	an	enhanced	text	editor,
shown	in	Figure	2.3,	which	can	be	used	to	develop	R	scripts.	RStudio	refers	to	this	as	the
Source	pane.	You	can	open	a	script	window	using	File	>	New	File	>	R	Script	or	via	the
equivalent	buttons	or	keyboard	shortcuts	within	the	application.

FIGURE	2.3	The	script	editor	and	console	windows

During	script	development,	code	from	the	Source	pane	can	be	executed	in	the	console	by
using	the	Run	button	at	the	top	of	the	Source	pane.	Equivalently,	the	keyboard	shortcut
Ctrl+Enter	(Windows)	or	Command+Return	(OS	X)	can	be	used.	By	default,	submission
of	code	occurs	on	a	line-by-line	basis.	RStudio	will	submit	the	entirety	of	the	line	on
which	the	cursor	is	placed,	regardless	of	where	on	the	line	the	cursor	is	placed.	By
highlighting	only	part	of	a	line	or,	for	that	matter,	multiple	lines,	you	can	choose	exactly



what	is	submitted	to	the	console.

Many	of	the	examples	in	this	book	are	brief	and	will	therefore	use	the	R	Console	directly.
However,	it	is	thoroughly	recommended	that	you	store	all	of	the	code	you	generate	when
working	through	the	book	in	your	own	script	or	series	of	scripts.	The	content	of	the	script
editor	can	be	written	to	a	file	by	selecting	File	>	Save	As…	or	by	using	the	quick	access
Save	button	at	the	top	of	the	Source	pane.	In	Hour	7,	“Writing	Functions:	Part	I,”	we	will
begin	writing	functions,	and	it	is	almost	impossible	to	do	so	without	using	scripts.

R	Objects
R	is	often	described	as	a	loosely	object-oriented	programming	language.	If	you	have	a
background	in	computer	science	and	have	used	truly	object-oriented	languages	such	as
Java,	you	probably	would	not	consider	R	to	be	object-oriented.	If,	like	the	authors	of	this
book,	you	have	more	of	an	analytical	background,	you	may	find	the	multiple	references	to
“objects”	throughout	the	R	manuals	a	little	off-putting.

We	will	look	closer	at	object	orientation	in	R	during	Hour	16,	“Introduction	to	R	Models
and	Object	Orientation,”	and	then	again	in	Hour	21,	“Writing	R	Classes,”	and	Hour	22,
“Formal	Class	Systems.”	To	begin	with,	however,	we	won’t	worry	too	much	about	the
impact	of	object	orientation	in	R.	All	it	really	means	is	that	everything	has	a	name	and	can
be	classified	into	different	types	of	“objects.”	For	example,	there	are	“function”	objects,
“data”	objects,	and	“statistical	model”	objects.	This	book	will	focus	first	on	“data”	objects,
then	move	on	to	the	use	of	specific	“function”	objects	(such	as	particular	graphic	and
statistical	modelling	function	objects).

R	Packages
Sets	of	R	“objects”	are	held	together	in	“packages,”	which	are	structured	elements	that
store	data,	functions,	and	other	information.	When	R	is	installed,	it	is	distributed	with	a	set
of	core	packages,	which	can	be	seen	in	the	“library”	subdirectory	of	the	R	installation.
Only	a	small	subset	of	the	installed	packages	is	actually	loaded	when	you	start	an	R
session.	This	helps	reduce	the	start-up	time	and	avoid	a	behavior	known	as	masking,
which	we	discuss	later	in	this	hour.	The	Packages	pane	in	RStudio	shows	you	which
packages	are	installed	on	your	machine.

The	Search	Path
When	an	R	session	begins,	a	set	of	“default”	packages	are	loaded	into	the	environment,
providing	immediate	access	to	the	most	commonly	used	R	functions	and	other	objects.
The	list	of	packages	included	within	the	environment	is	called	the	R	“search	path,”	which
can	be	viewed	using	the	search	function.	The	physical	location	of	the	packages	loaded
can	be	viewed	using	the	searchpaths	function.	These	functions	are	demonstrated	in
Listing	2.1.

LISTING	2.1	The	Search	Path
Click	here	to	view	code	image

	1:	>	search()



	2:		[1]	“.GlobalEnv”								“tools:rstudio”					“package:stats”
	3:		[4]	“package:graphics”		“package:grDevices”	“package:utils”
	4:		[7]	“package:datasets”		“package:methods”			“Autoloads”
	5:	[10]	“package:base”
	6:	>	searchpaths()
	7:		[1]	“.GlobalEnv”
	8:		[2]	“tools:rstudio”
	9:		[3]	“C:/Program	Files/R/R-3.1.2/library/stats”
10:		[4]	“C:/Program	Files/R/R-3.1.2/library/graphics”
11:		[5]	“C:/Program	Files/R/R-3.1.2/library/grDevices”
12:		[6]	“C:/Program	Files/R/R-3.1.2/library/utils”
13:		[7]	“C:/Program	Files/R/R-3.1.2/library/datasets”
14:		[8]	“C:/Program	Files/R/R-3.1.2/library/methods”
15:		[9]	“Autoloads”
16:	[10]	“C:/PROGRA~1/R/R-31~1.2/library/base”

Note:	Text	Wrapping

In	the	function	call	to	the	search	function	in	Listing	2.1,	the	output	was	printed
with	three	elements	on	each	line,	whereas	the	searchpaths	output	was	longer	so
only	one	element	was	printed	on	each	line.	The	number	in	square	brackets	tells	us
the	position	in	the	search	path	for	the	first	element	on	the	line.

Note:	RStudio	Tools

The	"tools:rstudio"	item	is	unique	to	RStudio.	It	contains	many	hidden
objects	used	by	the	RStudio	IDE.	The	average	R	user	will	never	touch	any	of	the
objects	within	this	item.

Listing	Objects
Each	package	loaded	contains	(possibly	many)	R	objects	that	can	be	accessed.	R	provides
functions	to	list	the	objects	available	in	each	package.	One	such	function	is	the	objects
function.	The	objects	function	lists	the	objects	contained	in	a	package.	To	use	the
function,	you	simply	call	it,	specifying	the	position	of	the	package	on	the	search	path	from
which	you	wish	to	list	the	objects.	Alternatively,	you	can	use	the	“package:
[packageName]”	syntax	produced	by	running	search().	For	example,	if	you	want	to
see	the	names	of	the	objects	contained	within	the	graphics	package,	you	can	run	either	of
these	lines:
Click	here	to	view	code	image

objects(4)																					#	Assumes	that	graphics	is	4th	in	the	search
path
objects(“package:graphics”)				#	Assumes	nothing	about	the	search	path

The	ls.str	function	provides	a	listing	of	the	objects	in	a	package	together	with	a	short
view	of	each	object	(usually	the	arguments	if	the	object	is	a	function).	You	call	ls.str
in	the	same	way	as	objects,	using	either	the	position	of	the	package	in	the	search	path
or	the	text	produced	by	running	search().



Tip:	Find	Hidden	Objects

When	you	list	package	objects	in	this	manner,	you	list	only	those	objects	that	the
package	developer	has	chosen	to	expose	to	the	user.

If,	however,	you	wish	to	view	all	objects	in	a	package,	you	can	use	the
all.names	argument	to	the	objects	function,	setting	all.names	=	TRUE.

The	R	Workspace
Not	all	the	items	in	the	search	path	refer	to	R	packages.	In	particular,	the	first	item
returned	using	both	search	and	searchpaths	was	".GlobalEnv".	This	refers	to
what	is	known	as	the	“Global	Environment,”	(or	“workspace”)	which	is	a	storage	box	for
objects	that	you	create	during	your	R	session.	This	might	be	data	that	you	read	in	to	R	or
functions	that	you	write	yourself.	To	begin	with,	it	is	empty,	but	you	can	easily	create	your
own	objects.	The	standard	method	for	assigning	a	name	to	an	object	is	to	use	the	<	and	-
characters	to	create	an	arrow	(<-).	To	the	left	of	the	arrow	you	specify	the	name	of	a	new
object	you	wish	to	create.	To	the	right	you	specify	the	value	that	the	object	will	take.	Here
is	an	example:

>	x	<-	3*4
>	x
[1]	12

Note:	Dynamic	Typing

R	is	a	“dynamically	typed”	programming	language.	This	means	that	you	do	not
have	to	specify	the	type	(or	class)	of	an	object	before	you	assign	it	a	value.	The
effect	of	dynamic	typing	is	that	R	is	quicker	to	write	but	slower	to	run	than
statically	typed	languages	such	as	Java	and	C.

Instead	of	the	left	arrow,	you	can	use	the	=	sign.	Some	would	argue	that	the	left	arrow
makes	it	clear	that	a	new	object	is	being	created,	whereas	others	would	argue	that	the	=
sign	is	more	consistent	with	assignment	in	other	programming	languages.	In	most
situations,	there	is	very	little	difference,	but	experienced	R	package	developers	tend	to	use
the	left	arrow,	and	this	is	what	we	will	use	for	the	examples	throughout	this	book.

Note:	Assigning	to	the	Right

The	assignment	arrow	works	both	ways.	For	example,	you	can	create	a	variable,	x,
that	has	the	value	9	by	typing	9	->	x.	Very	few	people	actually	use	a	right	arrow
to	assign,	however.	It	is	generally	considered	good	practice	to	avoid	using	it.



Object	Naming

R	object	names	can	be	practically	any	length,	and	be	made	up	of	any	combination	of
letters,	numbers,	and	the	.	and	_	characters.	The	only	real	restriction	is	that	it	cannot
start	with	a	number	or	“_”.	Objects	beginning	with	a	dot	are	accessible	but	hidden	objects.
It	is	important	to	note	that	R	is	a	case-sensitive	language;	therefore,	an	object	named
myObject	is	completely	different	from	one	named	myobject.

Note:	Naming	objects	with	quotes

Strictly	speaking,	it	is	possible	to	start	an	object	name	with	a	number	or	underscore.
It	is	also	possible	to	include	spaces.	However,	these	forms	of	naming	are	generally
discouraged.	We	must	use	one	of	three	types	of	quotes	to	identify	the	non-standard
object	name:	single	quotes,	';	double	quotes,	“;	or	backticks,	`.	The	standard
convention	in	R	is	to	use	backticks	if	naming	objects	in	this	way.

There	is	no	widely	adopted	object-naming	convention	among	R	users.	Throughout	this
book	we	will	predominantly	use	a	convention	known	as	“camelCase,”	because	this	is	the
convention	that	applies	to	most	cases	within	the	Mango	Solutions	coding	standards.	The
camelCase	convention	specifies	that	each	new	word	within	an	object’s	name,	excluding
the	first,	should	start	with	a	capital	letter.	A	variant	of	the	convention	is	also	discussed
within	Google’s	R	Style	Guide,	which	is	a	great	starting	point	for	anyone	looking	for
styling	tips	to	help	ensure	professional-level	R	code.

Tip:	Removing	Objects

It	is	possible	to	remove	objects	from	the	workspace	using	the	rm	function—for
example	rm(x).

The	objects	and	ls	functions	default	to	the	first	item	in	the	search	path	(that	is,
the	Global	Environment).	You	can	therefore	delete	every	object	in	the	Global
Environment	using	rm(list=objects())	or	rm(list=ls()).

The	Working	Directory

In	R,	the	working	directory	is	the	default	directory	from	which	you	import	files,	and	to
which	you	write	information.	A	thorough	understanding	of	how	to	query	and	change	the
working	directory	is	essential	in	order	to	collaborate	and/or	share	code	effectively.	If	a
codebase	is	well	structured	and	relative	file	paths	(as	opposed	to	absolute	file	paths)	are
used	throughout,	then	setting	the	working	directory	need	only	occur	once	right	at	the	start
of	an	R	session.

Tip:	Navigating	the	File	System

The	R	function	list.files	can	also	be	used	to	list	all	the	files	and	folders
within	a	particular	directory,	returning	either	file/directory	names	alone	or	full	file
paths.



You	can	view	the	current	working	directory	using	the	getwd	function,	and	change	the
working	directory	using	the	setwd	function.	RStudio	allows	the	working	directory	to	be
updated	via	the	Session	>	Set	Working	Directory	menu	item.	It	can	also	be	set	via	the	Files
pane.

Note	the	use	of	the	forward	slash	(/)	in	the	directory	paths	specified	in	Listing	2.2.	Every
time	R	reads	a	backslash	(\),	it	skips	onto	the	next	character	and	tries	to	evaluate	what	is
known	as	an	“escape	sequence.”	This	can	be	painful	when	you’re	copying	directory	paths
from	Windows	Explorer.	The	simple	solution	is	to	replace	every	backslash	with	either	a
forward	slash	or	a	double	backslash	(\\).	This	includes	paths	to	servers.	For	example,	a
Windows	path	of	\\server	would	become	\\\\server	or	//server	in	R.

LISTING	2.2	A	Working	Direcotry
Click	here	to	view	code	image

	1:	>	#	Print	the	current	working	directory
	2:	>	getwd()
	3:	[1]	“C:/Users/username/Desktop/STY”
	4:	>	#	Change	the	current	working	directory	using	an	absolute	path
	5:	>	setwd(“C:/Users/username/Desktop”)
	6:	>	getwd()
	7:	[1]	“C:/Users/username/Desktop”
	8:	>	#	Change	the	current	working	directory	using	a	relative	path
	9:	>	setwd(“STY”)
10:	>	getwd()
11:	[1]	“C:/Users/username/Desktop/STY”

The	backslash	itself	is	known	as	an	escape	character.	An	escape	character	has	a	special
place	in	programming	because	it	changes	the	behavior	of	subsequent	characters,	assuming
the	escape	sequence	is	known.	The	double	backslash	(\\)	is	one	such	use	of	an	escape
sequence	in	R.	We	will	explore	some	useful	escape	sequences	such	as	\n	and	\t	in	later
hours.

Saving	Workspace	Objects

The	collection	of	objects	in	the	Global	Environment	that	you	create	during	an	R	session
are	held	in	memory	during	the	session.	When	you	close	R,	you	must	choose	whether	to
save	these	objects	to	disk	for	use	at	a	later	date	or	to	delete	them.

When	a	user	decides	to	quit	RStudio	(and	hence	close	their	R	session),	they	are	presented
with	a	dialog	box	similar	to	the	one	shown	in	Figure	2.4,	asking	them	if	they	would	like	to
“Save	workspace	image	to	~/.RData.”	The	options	presented	are	Save,	Don’t	Save,	and
Cancel.	Selecting	Save	will	create	an	.RData	file	within	the	current	working	directory.
This	is	a	compressed	format	that	R	can	use	to	regenerate	the	objects	within	your	Global
Environment.	RStudio	automatically	saves	an	.Rhistory	file	containing	a	list	of	all	the
commands	typed	during	the	R	session.	This	file	is	visible	in	RStudio	via	the	History	pane.



FIGURE	2.4	To	save	or	not	save?

Tip:	Saving	Large	Objects

The	save	function	can	be	used	at	any	time	during	an	R	session.	For	example,	it
can	be	used	to	create	custom	.RData	files	containing	objects	you	specify	directly.
The	save	function,	along	with	its	counterpart	load,	are	great	for	working	with
very	large	datasets	because	the	time	to	load	objects	stored	as	.RData	files	can	be	an
order	of	magnitude	faster	than	reading	data	from	a	CSV	file	or	other	formats.

In	a	professional	environment	it	is	common	to	work	on	multiple	projects,	each	with	its
own	directory	structure.	RStudio	allows	the	creation	of	projects	via	a	button	in	the	top-
right	corner	of	the	IDE.	When	you	create	a	new	project	within	a	specified	directory,
RStudio	stores	some	information	within	that	directory	relating	to	your	project.	The	impact
of	creating	a	new	project	is	that	the	R	session	restarts	and	the	working	directory	is	set	to
be	the	project	directory.	When	you	return	to	a	project	after	closing	down	RStudio,	any
files	you	had	open	when	you	closed	the	program	down	are	reopened,	enabling	you	to
continue	where	you	left	off.	This	is	not	unique	to	RStudio,	and	tools	such	as	Eclipse	with
StatET	offer	a	slightly	richer	project	setup,	allowing	you	to	associate	a	particular	version
of	R	with	your	project.

Using	R	Packages
The	base	R	distribution	consists	of	approximately	30	R	packages	classified	as	either
“core”	(otherwise	known	as	“base”)	or	“recommended.”	The	packages	that	make	up	the
base	R	distribution	contain	a	huge	amount	of	functionality.	However,	the	success	of	R	has
largely	been	due	to	the	contribution	of	several	thousand	authors	who	have	chosen	to
submit	new	functionality	via	additional	R	packages.

The	main	repository	for	R	packages	is	CRAN,	for	which	the	number	of	R	packages	passed
7,000	in	2015.	There	is	also	a	specialist	repository	for	R	developers	called	R-Forge;
however,	an	increasing	number	of	authors	are	choosing	to	share	development	versions	of
their	packages	on	the	more	general-purpose	GitHub.	In	addition	to	these	primary
repositories,	the	field	of	bioinformatics	has	its	own	repository	known	as	Bioconductor,
which	“provides	tools	for	the	analysis	and	comprehension	of	high-throughput	genomic
data.”	The	Bioconductor	community	is	very	strong	and	even	maintains	its	own
conference,	BioC.



Finding	the	Right	Package
The	CRAN	repository	is	growing	at	an	incredible	rate.	When	I	began	teaching	R	courses
in	2011,	there	were	fewer	than	2,000	packages	on	CRAN.	In	2015,	the	number	of
packages	passed	7,000.	The	R	Core	Development	Team	is	constantly	looking	for	ways	to
limit	the	number	of	packages,	and	the	formation	of	the	R	Consortium	may	bring	some
control	to	the	situation.	However,	at	present,	there	is	no	standard	way	of	finding	the	right
package.	A	good	starting	point	is	CRAN’s	Task	Views,	shown	in	Figure	2.5.

FIGURE	2.5	CRAN	Task	Views

At	the	time	of	writing,	there	are	33	Task	Views.	Each	is	manually	maintained	by	members
of	the	R	community	with	a	special	interest	in	the	topic	that	their	Task	View	covers.	There
is	no	higher-level	classification	of	views,	so	the	views	themselves	are	quite	diverse	and	a
great	deal	of	overlap	occurs	between	the	various	Task	Views.	This	is	to	be	expected	given
that	there	is	no	requirement	that	an	R	package	should	focus	on	a	single	topic.	Conversely,
not	every	package	on	CRAN	appears	in	a	Task	View.

A	drawback	of	the	open-source	nature	of	CRAN	is	the	duplication	of	effort	that	occurs
when	two	independent	developers	attempt	to	solve	the	same	problem.	This	has	resulted	in
several	packages	that	attempt	to	do	the	same	thing,	just	in	slightly	different	ways.
Ensuring	better	collaboration	on	such	projects	in	the	future	is	one	of	the	primary	goals	of
the	R	Consortium.	The	aim	of	CRAN	Task	Views	is	to	tell	you	what	is	available,	not	to	try
to	rank	the	packages	in	any	way.	Finding	the	right	package	via	CRAN	can	therefore	be	a
bit	of	a	challenge!

In	2012,	RStudio	began	maintaining	its	own	CRAN	mirror	and	publish	download	logs	of
all	the	packages	downloaded	from	the	mirror.	The	popularity	of	the	RStudio	environment
(which	defaults	to	downloading	from	this	mirror)	means	that	if	you	want	to	know	which
packages	are	the	most	popular,	these	download	logs	can	give	you	a	good	indication.	Gábor



Csárdi’s	METACRAN	(http://www.r-pkg.org/)	summarizes	the	RStudio	download	logs	in
a	more	interactive,	user-friendly	manner.	Alternatively,	just	search	for	blog	posts
discussing	the	popularity	of	R	packages—there	are	plenty!	Many	of	the	popular	general-
purpose	packages	are	discussed	in	this	book.

Installing	an	R	Package
The	Packages	pane	in	RStudio	provides	a	user-friendly	interface	for	installing	and	loading
R	packages.	When	you	install	an	R	package,	you	essentially	create	a	directory	on	your
machine.	Once	installed,	the	package	lives	on	your	machine	permanently	until	such	time
that	you	choose	to	delete	it.

Tip:	Removing	Packages

You	can	delete	packages	from	your	system	using	the	remove.packages
function.

When	you	install	your	first	R	package,	you	may	be	asked	if	you	wish	to	create	your	own
local	library.	A	library	is	a	just	a	name	for	a	collection	of	R	packages.	Local	libraries	are
particularly	useful	when	you	are	logged	in	to	your	operating	system	as	a	standard	user	and
do	not	have	all	the	necessary	admin	privileges	in	order	to	create	new	files	within	your	R
installation.	If	you	have	a	local	library,	you	may	notice	that	the	Packages	pane	in	RStudio
is	divided	into	“User	Library”	and	“System	Library”	to	show	where	the	packages	are
installed.

The	quickest	way	to	install	an	R	package	in	RStudio	is	to	navigate	to	the	Packages	pane
and	click	the	Install	button.	This	loads	the	pop-up	shown	in	Figure	2.6,	for	installing
packages	from	both	CRAN	and	locally.

FIGURE	2.6	The	Install	Packages	window

http://www.r-pkg.org/


Tip:	Local	Libraries

You	can	ask	R	which	libraries	it	is	using	with	the	.libPaths	function.	The	same
function	can	also	be	used	to	point	R	at	different	local	libraries.	The	system	library
cannot	be	changed,	but	you	can	create	as	many	local	libraries	as	you	like.

If	you	don’t	specify	the	package	location	when	loading	a	package,	R	will	look
through	each	library	in	turn	to	try	to	find	a	package	with	the	name	you	specified.

Installing	from	CRAN

To	install	from	CRAN,	you	need	to	ensure	the	Install	From	field	shown	in	Figure	2.6	is
pointing	to	CRAN.	If	you	were	using	R	on	the	command	line	or	through	the	R	GUI,	you
would	first	have	to	choose	your	CRAN	mirror.	RStudio	does	this	for	you,	however,	so	you
don’t	have	to	worry	about	choosing	a	mirror.	If	you	are	connected	to	the	Internet	and	your
firewall	allows	it,	you	simply	need	to	start	typing	the	name	of	the	package	you	wish	to
install	in	the	Packages	field,	and	RStudio	will	autocomplete	the	rest	for	you.	Note	that	if
you	have	multiple	libraries,	you	can	choose	which	one	to	install	to,	though	RStudio
defaults	to	a	local	library	if	you	have	one.

Caution:	Package	Quality

A	package	must	pass	many	checks	to	make	it	on	to	CRAN.	It	is	therefore	natural	to
assume	that	being	on	CRAN	is	a	sign	of	package	quality.	Although	this	is	partly
true,	packages	downloaded	from	CRAN	have	not	necessarily	been	fully	tested,	or
developed	in	a	“valid”	environment.	Only	the	“core”	and	“recommended”	packages
have	been	tested	by	the	R	Core	Development	Team.

To	save	yourself	some	effort,	we	recommend	leaving	the	Install	Dependencies	box
checked	unless	you	are	concerned	about	what	might	be	installed	onto	your	system.	For
one	thing,	your	package	will	fail	to	load	unless	the	dependencies	are	installed.	Therefore,
if	you	don’t	leave	this	box	checked,	you	will	have	to	manually	install	each	dependency
separately.	Bear	in	mind	that	some	of	the	more	popular	packages	can	have	10	or	more
dependencies.

Note	that	the	Install	Packages	tool	generates	a	line	of	code	in	the	R	Console	that	calls	the
R	function	install.packages.	This	function	resides	in	the	utils	package,	which	is
loaded	by	default	when	you	start	R.	It	is	possible	to	call	this	function	directly	in	any	R
session.



Installing	from	a	Package	Archive	File	(Binary)

CRAN	is	the	primary	package	repository	for	R	users,	though	it	is	not	the	exclusive
repository.	Many	commercial	organizations	build	their	own	utility	packages	for	internal
use	and	may	instead	distribute	package	binaries	over	an	intranet.	The	term	“binary”	refers
to	a	package	that	has	been	built	into	an	archive	(a	“.zip”	on	Windows,	a	“.tgz”	on	OS	X),
ready	for	installation.	When	you	install	a	package	directly	from	CRAN,	the	appropriate
package	binary	is	chosen	for	your	operating	system;	it	is	downloaded	to	a	temporary
location	and	then	“unpacked”	and	installed.	When	you	install	manually	from	a	binary,	you
are	simply	skipping	the	CRAN	piece	and	pointing	directly	to	the	binary	for	R	to	unpack.	It
is	important	to	note	that	binaries	are	constructed	in	order	to	be	unpacked	by	R,	and	you
should	never	try	to	install	a	package	that	you	have	unzipped	yourself.

Installing	from	Source

Since	R	is	open	source,	the	source	code	is	always	available	to	use	and	is	distributed	as	a
“.tar.gz”	file.	In	addition	to	installing	from	a	package	binary,	we	may	also	install	directly
from	the	package	source.	Linux	users	have	to	install	from	source,	though	Windows	and
OS	X	users	usually	won’t	have	a	need	to	until	they	start	building	their	own	packages.
There	are	other	occasions	when	it	can	be	useful,	but	installing	from	source	takes	a	lot
longer	than	installing	from	a	binary	and	may	require	additional	tools.	For	example,
Windows	users	need	to	install	a	version	of	Rtools	that	is	appropriate	for	their	R	version.
Instructions	for	installing	Rtools	can	be	found	in	the	Appendix.

To	install	from	a	source	using	the	RStudio	GUI,	Linux	users	simply	need	to	follow	the
instructions	above	for	installing	a	package	archive	file.	For	those	on	Windows	or	OS	X	we
first	need	download	the	“tar.gz”	file	locally.	We	then	install	the	package	as	we	would	a
local	package	binary.	Regardless	of	our	operating	system,	we	can	install	directly	from	the
console	by	adding	the	type	=	"source"	argument	when	running	the
install.packages	function.

Tip:	Installing	from	GitHub

The	package	devtools	contains	a	function,	install_github,	that	facilitates	a
direct	installation	from	the	GitHub	repository.	You	can	use	install.packages
to	install	packages	directly	from	other	repositories	as	well.

Loading	an	R	Package
When	you	start	R,	only	a	subset	of	your	installed	packages	is	actually	loaded	for	use
within	the	R	session.	This	helps	reduce	the	startup	time	and	avoid	a	behavior	called
masking.	In	order	to	access	the	functionality	of	other	installed	packages,	you	must	load
them	into	the	environment.	The	Packages	pane	in	RStudio	lists	all	the	packages	that	your
R	session	is	aware	of.	To	load	any	of	these	packages,	you	simply	check	the	box	next	to	a
package	name	and	the	packages	is	loaded.	Checking	the	box	calls	a	line	of	R	code	using
the	library	function.	You	can	also	call	the	library	function	directly	from	the	R
console.



When	developing	reusable	production-level	code,	it	is	best	to	avoid	using	untraceable
“point-and-click”	actions	as	much	as	possible.	It	is	standard	practice	to	place	multiple
calls	to	the	library	function	at	the	top	of	an	R	script	so	that	other	users	can	run	your
code.	If	R	cannot	find	the	specified	package	library,	it	will	produce	an	error.	The
require	function	is	an	alternative	to	library	that	returns	a	warning	if	a	package	is
not	present,	allowing	more	control	over	the	behavior	of	the	script—for	example,	“do	this,
but	only	if	package	X	has	successfully	been	loaded.”	We	will	look	closer	at	errors	and
warnings	and	control	flow	when	we	discuss	writing	R	functions	in	Hour	7,	“Writing
Functions:	Part	I,”	and	Hour	8,	“Writing	Functions:	Part	II.”	In	a	professional
development	environment,	checking	that	the	right	packages	are	available	is	only	half	the
battle.	Errors	may	still	occur	due	to	differences	in	package	versions	or	operating	systems,
but	we’ll	come	to	that	later!

Package	Dependencies

When	you’re	developing	packages,	it	is	highly	unlikely	you	will	need	to	write	every
function	from	scratch.	It	is	likely	that	you	will	use	one	or	more	functions	defined	within
another	package.	Rather	than	copy	all	the	relevant	code	into	your	own	package,	you
simply	specify	a	“dependency”	on	the	other	package.	This	avoids	duplication	and	ensures
that	bugs	need	only	be	fixed	in	a	single	location.	When	you	load	an	R	package	with	a
dependency,	the	dependency	is	also	loaded	and	added	to	the	search	path.	Note	that	this
means	the	dependent	package	must	also	be	installed	on	your	machine.

Masking

Masking	occurs	when	two	or	more	“environments”	on	the	search	path	contain	one	or	more
objects	with	the	same	name.	Whenever	we	refer	to	an	object	by	typing	its	name,	R	looks
in	each	of	the	loaded	environments	on	the	search	path	for	that	object	in	turn,	starting	with
the	Global	Environment.	If	R	finds	an	object	with	the	name	it	is	looking	for,	it	stops
searching.	Any	objects	it	doesn’t	find	have	been	hidden,	or	“masked.”

We	can	delete	objects	from	our	own	workspace	but	we	cannot	delete	objects	from	R
packages,	only	mask	them.	If	you	inadvertently	mask	an	object,	you	can	simply	clone	your
object	with	a	different	name	and	use	rm	to	delete	the	original	object	from	your	workspace,
thereby	unmasking	the	hidden	object.

Tip:	Ensuring	the	Right	Object	Is	Used

Masking	is	much	less	of	a	problem	than	most	new	users	perceive	it	to	be.	This	is
largely	due	to	package	namespaces,	which	we	will	look	at	more	closely	in	Hour	19,
“Package	Building,”	and	Hour	20,	“Advanced	Package	Building.”	To	avoid	any
potential	masking	issues,	it	is	possible	to	reference	an	object	within	a	package
directly	by	using	the	[packageName]::[objectName]	syntax—for	example,
base::pi.



Internal	Help
The	help	function	can	be	used	to	display	help	on	a	function	or	indeed	any	R	object.
RStudio	allows	users	to	navigate	R’s	help	files	via	the	Help	tab.	If	the	phrase	you	search
for	exactly	matches	the	name	of	an	R	object	available	in	your	current	session,	then	the
help	file	for	that	object	is	returned.	Otherwise,	it	searches	your	package	libraries
(including	packages	that	are	not	loaded)	for	possible	help	pages.

Note:	Help	from	the	Console

The	RStudio	Help	pane	simply	provides	wrappers	for	functionality	contained
within	the	utils	package.	A	general	search	of	all	help	files	can	be	achieved	using
either	the	help.search	function	or	the	shorthand	version,	??.	Similarly,	if	you
know	the	name	of	the	object	you	require	help	with,	you	can	use	a	function	help	or
its	shorthand,	?.

The	help	files	can	be	a	little	daunting	if	you	are	unfamiliar	with	the	standard	terminology,
as	demonstrated	in	Figure	2.7,	which	shows	the	help	file	for	the	mean	function	referring
to	terms	such	as	“objects,”	“vectors,”	and	“methods”	in	several	places.

FIGURE	2.7	The	help	page	for	the	mean	function

There	is	a	standard	set	of	fields	that	package	maintainers	are	encouraged	to	complete,
though	few	are	actually	necessary.	For	example,	in	order	to	publish	a	package	on	CRAN,
you	must	pass	what	is	known	as	an	“R	CMD	check.”	This	requires	that	all	your	examples
in	the	Examples	section	of	the	help	file	run	successfully.	However,	it	is	also	possible	to
pass	the	check	by	not	including	the	Examples	section!



Summary
In	this	hour	we	looked	at	the	available	development	environments	for	R,	focusing	on	the
RStudio	environment.	We	looked	closely	at	the	makeup	of	the	language	and	saw	how	R	is
constructed	from	a	number	of	core	and	recommended	packages	that	can	be	extended	by
downloading	additional	packages	from	a	repository	such	as	CRAN.	In	the	“Workshop”
and	“Activities”	sections,	you	will	load	RStudio,	begin	using	the	R	console,	and	install
your	first	R	package.

In	the	next	two	hours	we	will	look	at	the	standard	data	objects	that	are	the	building	blocks
of	the	R	language,	beginning	with	vectors	and	working	through	to	R’s	data	frame
structure.	You	will	learn	how	to	create,	combine,	and	subset	these	structures.

Q&A
Q.	I	created	an	object	named	using	the	syntax	x	<-	5	but	when	I	tried	the	line	X
+	2	I	got	“Error:	object	‘X’	not	found.”	Is	that	right?

A.	If	you	have	been	using	a	language	such	as	SAS,	this	may	seem	odd	but	it	is	correct.
R	is	case	sensitive,	so	x	and	X	are	not	the	same	thing.

Q.	A	colleague	sent	you	an	R	package	via	a	.zip	file	but	after	unzipping	the	file	you
found	that	you	could	not	install	the	package.	Why	is	this?

A.	R	packages	are	commonly	distributed	as	binaries	or	“.zip”	files.	Unless	you	want	to
build	the	package	from	source	yourself,	you	need	to	provide	R	with	a	binary	file,
which	means	keeping	it	zipped	up.

Q.	Is	it	possible	to	install	two	different	versions	of	the	same	package	to	different
libraries?	If	so,	what	happens	when	I	try	to	load	them?

A.	It	is	entirely	possible	to	install	different	versions	of	the	same	package	to	different
libraries.	Unless	you	specify	exactly	which	one	you	are	loading,	R	will	load	the	one
highest	up	the	library	path.	Thankfully,	you	can	only	load	one	version	of	a	package
at	a	time.	If	you	do	try	to	load	a	package	that	has	already	been	loaded,	R	does	not
produce	an	error	or	warning,	so	our	advice	is	to	be	careful!

Q.	Is	it	possible	to	have	multiple	versions	of	R	installed?	If	so,	how	are	the
package	libraries	affected?

A.	You	can	have	as	many	versions	of	R	installed	on	your	machine	as	you	like,	which	is
great	if	you	work	in	a	heavily	regulated	environment	and	need	to	ensure	you	can
exactly	reproduce	results	from	a	time	when	you	were	working	with	an	earlier
version	of	R.	RStudio	lets	you	switch	between	R	versions	via	the	Tools	>	Global
Options…	menu,	though	you	will	need	to	restart	RStudio	for	the	change	to	take
effect.

The	system	library	is	associated	with	your	version	of	R	and	therefore	this	is
automatically	updated	to	use	the	new	versions	of	the	core	and	recommended	R
packages	when	you	switch	to	a	new	version	of	R.	User	libraries	default	to	a	version-
specific	location	as	well,	so	there	is	little	risk	to	using	packages	built	for	a	different
version	of	R.	On	the	flip	side,	this	means	that	each	time	you	install	a	new	version	of



R,	you	will	need	to	install	your	favorite	packages	for	that	R	version	as	well.

Workshop
The	workshop	contains	quiz	questions	and	exercises	to	help	you	solidify	your
understanding	of	the	material	covered.	Try	to	answer	all	questions	before	looking	at	the
“Answers”	section	that	follows.

Quiz
1.	True	or	false?	You	must	install	RStudio	in	order	to	work	interactively	with	R.

2.	Which	of	the	following	is	not	used	for	assignment	in	R?

A.	<-

B.	_

C.	->

D.	=

3.	What	does	the	line	objects(4)	tell	you?

4.	What	is	the	difference	between	installing	and	loading	an	R	package?

5.	What	is	the	difference	between	an	Rhistory	and	an	.RData	file?

6.	What	is	masking?

Answers
1.	False.	There	are	many	ways	of	working	interactively	with	R,	though	RStudio	is	the
most	popular.

2.	The	answer	is	B.	However,	you	might	be	surprised	to	learn	that	prior	to	R,
underscores	were	used	for	assignment	in	S.

3.	The	line	objects(4)	produces	a	list	of	objects	that	are	contained	within	the
fourth	item	in	the	search	path.	In	the	example	used	in	this	hour,	this	was	graphics,
though	that	might	not	always	be	the	case.	As	new	packages	are	loaded,	the	position
of	packages	in	the	search	path	can	change.

4.	Installing	an	R	package	creates	a	permanent	directory	on	your	machine.	Typically,
you	only	install	a	package	once	for	a	version	of	R.	Loading	a	package	enables	you	to
actually	use	it	within	the	R	session.

5.	An.Rhistory	file	contains	a	list	of	commands	that	were	executed	during	an	R	session
(or	sessions).	An	.RData	file	stores	R	objects	and	can	be	used	to	re-create	Global
Environment	objects	from	a	previous	R	session.

6.	Masking	occurs	when	two	or	more	“environments,”	typically	packages,	contain	an
object	with	the	same	name.	When	you	type	that	name	into	the	console,	R	finds	the
object	that	is	higher	up	the	search	path.	Any	objects	that	are	not	found	are	hidden,	or
“masked.”



Activities
1.	Start	an	R	session	by	opening	RStudio.

2.	Print	the	search	path	for	your	R	session.

3.	List	all	objects	from	the	“datasets”	package	using	the	objects	function.

4.	Use	the	Packages	pane	to	install	the	mangoTraining	package	from	CRAN.

5.	Load	the	mangoTraining	package	into	the	R	session.

6.	List	the	objects	the	mangoTraining	package	contains.



Hour	3.	Single-Mode	Data	Structures

What	You’ll	Learn	in	This	Hour:

	The	common	R	data	types

	What	a	vector	object	is

	What	a	matrix	object	is

	What	an	array	object	is

R	is	commonly	used	to	gain	insight	from	data,	using	graphical	or	analytic	methods.	To	use
R	effectively,	you	must	have	a	good	working	knowledge	of	the	basic	data	structures.	In
this	hour,	we	describe	the	standard	types	of	data	found	in	R	and	introduce	three	key
structures	that	can	be	used	to	store	these	data	types:	vectors,	matrices,	and	arrays.	We	will
look	at	the	ways	in	which	these	structures	can	be	created	and	managed,	with	a	focus	on
how	to	extract	data	from	them.

The	R	Data	Types
Four	standard	types	of	data	can	be	used	in	R.	These	data	types,	or	“modes”	as	they	are
formally	known	as,	are	as	follows:

	Numeric	values	(integers	or	continuous	values)

	Character	strings

	Logical	values	(TRUE	and	FALSE	values)

	Complex	numbers	(with	real	and	imaginary	parts)

The	following	code	shows	examples	of	each	of	these	data	types:
Click	here	to	view	code	image

>	4	+	5					#	numeric
[1]	9
>	“Hello”			#	character
[1]	“Hello”
>	4	>	5					#	logical	(is	4	greater	than	5)
[1]	FALSE
>	3	+	4i				#	complex
[1]	3+4i

Note:	Quotation	Marks

Note	the	use	of	the	double	quotation	marks	for	specifying	character	data.	You	may
use	either	double	or	single	quotation	marks	(but	not	both	at	the	same	time).



The	mode	Function
In	the	last	section	you	saw	examples	of	the	four	“modes”	of	data	within	R.	You	can	use	the
mode	function	directly	to	discover	the	mode	of	data	held	in	any	object,	as	illustrated	in	the
following	example:
Click	here	to	view	code	image

>	X	<-	4	+	5						#	Assign	a	(numeric)	value	to	X
>	X															#	Print	the	value	of	X
[1]	9
>	mode(X)									#	The	mode	of	X
[1]	“numeric”

>	X	<	10										#	Logical	statement:	is	X	less	than	10?
[1]	TRUE
>	mode(X	<	10)				#	The	mode	of	this	data
[1]	“logical”

Note:	Missing	Values

In	R,	any	missing	value	is	represented	with	an	“NA”	symbol.	This	can	be	a
“missing”	numeric,	character,	logical,	or	complex	value.

Vectors,	Matrices,	and	Arrays
In	R,	there	are	three	data	structures	designed	to	store	a	single	type	of	data.	These
structures	are	known	as	“single-mode”	data	structures:

	Vectors—Series	of	values

	Matrices—Rectangular	structures	with	rows	and	columns

	Arrays—Higher	dimension	structures	(for	example,	3D	and	4D	arrays)

Given	that	these	are	single-mode	structures,	they	may	only	hold	a	single	type	of	data.
Therefore,	you	may	have	a	numeric	vector	or	a	character	matrix,	for	example,	but	you
cannot	create	an	array	that	contains	both	numeric	and	logical	data.

Vectors
A	vector	is	a	series	of	values	of	the	same	mode—it	is	the	basic	form	of	R	structure,	and
most	functions	in	R	are	ultimately	designed	to	operate	on	vectors.	In	this	section,	we	look
at	the	following:

	Some	ways	to	create	vectors

	The	attributes	of	a	vector

	The	ways	in	which	you	can	extract	information	from	a	vector



Creating	Vectors
There	are	many	ways	to	create	vectors	in	the	R	language,	and	many	functions	will	return
vectors	as	an	output	(such	as	the	set	of	functions	that	create	random	samples	from
statistical	distributions,	which	you’ll	see	later	in	Hour	6,	“Common	R	Utility	Functions”).
In	this	section,	we	focus	on	four	ways	to	create	simple	vectors.

Combining	Elements	with	the	c	Function

The	c	function	allows	you	to	create	simple	vectors	by	combining	elements	of	the	same
mode.	(Note	that	c	is	lowercase!)	You	specify	as	many	elements	as	you	want,	separated	by
commas,	optionally	saving	the	results	as	objects	for	reuse	later.	Here’s	an	example:
Click	here	to	view	code	image

>	numericVector	<-	c(2,	6,	8,	4,	2,	9,	4,	0)		#	Vector	of	numerics
>	numericVector														#	Print	the	numeric	vector
[1]	2	6	8	4	2	9	4	0
>	mode(numericVector)								#	What	is	the	mode	of	“numericVector”?
[1]	“numeric”

>	c(“Hello”,	“There”)								#	Vector	of	characters
[1]	“Hello”	“There”
>	c(F,	T,	T,	F,	F,	T,	F,	F)		#	Vector	of	logicals
[1]	FALSE		TRUE		TRUE	FALSE	FALSE		TRUE	FALSE	FALSE
>	c(3+4i,	5+9i,	3+7i)								#	Vector	complex	numbers
[1]	3+4i	5+9i	3+7i

Note:	Logical	Values

You	specify	logical	values	without	quotation	marks,	using	either	T	and	F	or	TRUE
and	FALSE,	as	shown	here:

>	c(T,	F,	TRUE,	FALSE)
[1]		TRUE	FALSE		TRUE	FALSE

You	can	use	the	c	function	to	combine	single	values,	or	even	vectors	of	values	(because	a
single	value	is	actually	a	vector	of	length	1).	In	this	way,	you	can	combine	vectors,	as
illustrated	here:
Click	here	to	view	code	image

>	X	<-	c(1,	2,	3,	4,	5,	6,	7,	8,	9,	10)			#	Create	a	simple	vector	of
numerics
>	X																																							#	Print	the	vector
	[1]		1		2		3		4		5		6		7		8		9	10
>	c(X,	X,	X,	X,	X)																								#	Combine	vectors
	[1]		1		2		3		4		5		6		7		8		9	10		1		2		3		4		5		6		7		8		9	10		1		2		3		4
[25]		5		6		7		8		9	10		1		2		3		4		5		6		7		8		9	10		1		2		3		4		5		6		7		8
[49]		9	10



Note:	Indexed	Printing

When	you	print	vectors	in	R,	you	see	that	the	values	are	prefixed	with	[1].	This
specifies	an	index	for	the	values	in	the	vector.	If	you	print	a	vector	with	many
elements,	it	is	clearer	to	see	this	indexing	behavior.	In	the	preceding	example,	the
first	5	on	the	second	“line”	of	printing	is	the	25th	value	in	the	vector,	as	noted	by
the	[25]	that	precedes	it.

Although	the	horizontal	printing	of	the	vector	may	encourage	you	to	think	of	a
vector	as	a	“row”	of	data,	this	is	just	a	printing	convention.	In	fact,	a	vector	has	no
structure:	It	is	simply	a	series	of	values.

Tip:	Multi-Mode	Structures

Earlier,	we	stated	that	vectors	are	strictly	single-mode	structures—that	is,	they
contain	only	values	of	a	single	data	type.	If	you	try	to	create	vectors	containing
more	than	one	mode	of	data,	R	coerces	the	vector	to	a	single	mode,	as	shown	here:

Click	here	to	view	code	image
>	c(1,	2,	3,	“Hello”)																	#	Multiple	modes
[1]	“1”					“2”					“3”					“Hello”
>	c(1,	2,	3,	TRUE,	FALSE)													#	Multiple	modes
[1]	1	2	3	1	0
>	c(1,	2,	3,	TRUE,	FALSE,	“Hello”)				#	Multiple	modes
[1]	“1”					“2”					“3”							“TRUE”		“FALSE”	“Hello”

Creating	a	Sequence	of	“Integers”

In	the	previous	section,	we	looked	at	the	use	of	the	c	function	to	create	vectors.	In	one	of
the	examples,	we	created	a	sequence	of	integers:
Click	here	to	view	code	image

>	X	<-	c(1,	2,	3,	4,	5,	6,	7,	8,	9,	10)			#	Create	a	simple	vector	of
numerics
>	X																																							#	Print	the	vector
	[1]		1		2		3		4		5		6		7		8		9	10

This	is	a	simple	line	of	code	that	creates	a	sequence	of	values	from	1	to	10,	“by	1.”
However,	if	you	wanted	to	create	a	sequence	of	integer	values	from	1	to	100,	this	would
require	significantly	more	typing!	If	you	do	wish	to	create	a	series	of	integers,	you	can	use
the	:	symbol,	specifying	the	start	and	end	values,	as	follows:
Click	here	to	view	code	image

>	1:100			#	Series	of	values	from	1	to	100
		[1]			1			2			3			4			5			6			7			8			9		10		11		12		13		14		15		16		17		18
	[19]		19		20		21		22		23		24		25		26		27		28		29		30		31		32		33		34		35		36
	[37]		37		38		39		40		41		42		43		44		45		46		47		48		49		50		51		52		53		54
	[55]		55		56		57		58		59		60		61		62		63		64		65		66		67		68		69		70		71		72
	[73]		73		74		75		76		77		78		79		80		81		82		83		84		85		86		87		88		89		90
	[91]		91		92		93		94		95		96		97		98		99	100

In	fact,	the	:	notation	can	be	used	to	create	any	sequence	of	numeric	values	from	one
number	to	another	number,	“by	1,”	as	shown	in	the	following	examples:



>	1:5
[1]	1	2	3	4	5
>	5:1
[1]	5	4	3	2	1
>	-1:1
[1]	-1		0		1
>	1.3:5.3
[1]	1.3	2.3	3.3	4.3	5.3

You	can	combine	R	statements,	such	as	those	in	the	last	two	sections,	to	create	more
complex	vectors.	Here	is	an	example	of	the	c	function	and	the	:	notation	used	together	to
create	a	symmetric	pattern	of	values:

>	c(0:4,	5,	4:0)
	[1]	0	1	2	3	4	5	4	3	2	1	0

You	can	operate	on	vectors	to	create	sequences	where	the	“gap”	in	the	sequence	is	not	one.
For	example,	this	line	of	code	would	create	a	series	of	values	from	2	to	20,	“by	2”:
Click	here	to	view	code	image

>	2*1:10
	[1]		2		4		6		8	10	12	14	16	18	20

This	works	well	for	simple	sequences,	such	as	the	one	illustrated	here.	However,	for	more
complex	sequences	of	numeric	values	(for	example,	1.3	to	8.4,	by	0.3),	you	need	a	more
general	approach.

Note:	Letter	Sequences

In	this	section	we	have	looked	at	regular	series	of	numeric	(primarily	integer)
values.	This	approach	works	only	for	numeric	values.	For	example,	you	cannot
create	a	series	of	letters	using	syntax	such	as	A:Z.	You	will,	however,	see	how	to
achieve	letter	sequences	in	the	“Subscripting	Vectors”	section,	later	in	this	hour.

Creating	a	Sequence	of	Numeric	Values	with	the	seq	Function

In	the	preceding	section,	we	used	the	:	notation	to	create	a	series	of	numeric	values,
where	the	“gap”	in	the	sequence	is	one.	A	more	general	way	of	performing	the	same
operation	is	with	the	seq	function.	The	first	two	arguments	to	seq	are	the	starting	and
ending	values,	and	the	default	gap	is	one.	Therefore,	the	following	lines	are	equivalent:
Click	here	to	view	code	image

>	1:10
	[1]		1		2		3		4		5		6		7		8		9	10
>	seq(1,	10)
	[1]		1		2		3		4		5		6		7		8		9	10

The	advantage	of	using	the	seq	function	is	that	it	has	an	additional	argument,	by,	that
allows	you	to	specify	the	gap	between	consecutive	sequence	values,	as	shown	in	the
following	examples:
Click	here	to	view	code	image

>	seq(1,	10,	by	=	0.5)			#	Sequence	from	1	to	10	by	0.5
	[1]		1.0		1.5		2.0		2.5		3.0		3.5		4.0		4.5		5.0		5.5		6.0		6.5
[13]		7.0		7.5		8.0		8.5		9.0		9.5	10.0



>	seq(2,	20,	by	=	2)					#	Sequence	from	2	to	20	by	2
	[1]		2		4		6		8	10	12	14	16	18	20

>	seq(5,	-5,	by	=	-2)				#	Sequence	from	5	to	-5	by	-2
[1]		5		3		1	-1	-3	-5

These	examples	illustrate	some	simple	sequences	of	values.	However,	let’s	consider	the
following	examples,	where	we	create	a	sequence	of	values	from	1.3	to	8.4	by	0.3:
Click	here	to	view	code	image

>	seq(1.3,	8.4,	by	=	0.3)		#	Sequence	from	1.3	to	8.4	by	0.3
	[1]	1.3	1.6	1.9	2.2	2.5	2.8	3.1	3.4	3.7	4.0	4.3	4.6	4.9	5.2	5.5
[16]	5.8	6.1	6.4	6.7	7.0	7.3	7.6	7.9	8.2

In	this	example,	note	that	the	last	value	in	the	vector	is	8.2,	whereas	we	requested	a
sequence	from	1.3	to	8.4.	Of	course,	the	reason	that	the	last	value	is	not	precisely	8.4	is
that	the	difference	between	the	start	and	end	of	the	sequence	is	not	divisible	by	0.3	(the
specified	“gap”).

If	instead	we	wanted	to	create	a	sequence	of	values	from	a	start	point	to	a	particular	end
point,	we	could	specify	a	length	of	the	output	vector	instead	of	the	gap	in	consecutive
sequence	values:
Click	here	to	view	code	image

>	seq(1.3,	8.4,	length	=	10)		#	Sequence	of	10	values	from	1.3	to	8.4
	[1]	1.300000	2.088889	2.877778	3.666667	4.455556	5.244444
	[7]	6.033333	6.822222	7.611111	8.400000

Creating	a	Sequence	of	Repeated	Values

In	the	earlier	section	“Combining	Elements	with	the	c	Function,”	we	created	a	repeated
sequence	of	values	by	combining	a	created	vector	a	number	of	times:
Click	here	to	view	code	image

>	X	<-	c(1,	2,	3,	4,	5,	6,	7,	8,	9,	10)			#	Create	a	simple	vector	of
numerics
>	X																																							#	Print	the	vector
	[1]		1		2		3		4		5		6		7		8		9	10

>	c(X,	X,	X,	X,	X)																								#	Combine	vectors
	[1]		1		2		3		4		5		6		7		8		9	10		1		2		3		4		5		6		7		8		9	10		1		2		3		4
[25]		5		6		7		8		9	10		1		2		3		4		5		6		7		8		9	10		1		2		3		4		5		6		7		8
[49]		9	10

We	can	use	the	rep	function	in	R	to	create	a	vector	containing	repeated	values.	The	first
two	arguments	to	the	rep	function	are	the	value(s)	to	repeat	and	the	number	of	times	to
repeat	the	value(s),	as	shown	here:
Click	here	to	view	code	image

>	rep(“Hello”,	5)		#	Repeat	“Hello”	5	times
[1]	“Hello”	“Hello”	“Hello”	“Hello”	“Hello”

In	the	last	example,	we	are	repeating	a	single	value,	but	the	first	argument	to	rep	could	be
a	vector	of	values.	In	this	way,	we	could	re-create	the	earlier	vector	of	repeated	sequences
(where	we	used	the	c	function	to	combine	multiple	instances	of	a	vector)	using	rep,	as
follows:
Click	here	to	view	code	image



>	X	<-	c(1,	2,	3,	4,	5,	6,	7,	8,	9,	10)
>	rep(X,	5)								#	Repeat	the	X	vector	5	times
	[1]		1		2		3		4		5		6		7		8		9	10		1		2		3		4		5		6		7		8		9	10		1		2		3		4
[25]		5		6		7		8		9	10		1		2		3		4		5		6		7		8		9	10		1		2		3		4		5		6		7		8
[49]		9	10

You	saw	in	the	earlier	section	“Creating	a	Sequence	of	Integers”	that	you	can	create	a
series	of	integers	with	the	:	notation.	Therefore,	we	can	further	simplify	this	example	as
follows:
Click	here	to	view	code	image

>	X	<-	1:10
>	rep(X,	5)								#	Repeat	the	X	vector	5	times
	[1]		1		2		3		4		5		6		7		8		9	10		1		2		3		4		5		6		7		8		9	10		1		2		3		4
[25]		5		6		7		8		9	10		1		2		3		4		5		6		7		8		9	10		1		2		3		4		5		6		7		8
[49]		9	10

Or	even:
Click	here	to	view	code	image

>	rep(1:10,	5)						#	Repeat	1:10	5	times
	[1]		1		2		3		4		5		6		7		8		9	10		1		2		3		4		5		6		7		8		9	10		1		2		3		4
[25]		5		6		7		8		9	10		1		2		3		4		5		6		7		8		9	10		1		2		3		4		5		6		7		8
[49]		9	10

In	these	examples,	we	repeat	a	series	of	values	a	specific	number	of	times.	Alternatively,
we	can	repeat	each	of	the	values	a	specified	number	of	times	by	supplying	a	vector	value
for	the	second	argument	the	same	length	as	that	in	the	first	argument:
Click	here	to	view	code	image

>	rep(	c(“A”,	“B”,	“C”),	c(4,	1,	3))
[1]	“A”	“A”	“A”	“A”	“B”	“C”	“C”	“C”

In	this	example,	we	repeat	“A”	four	times,	“B”	once,	and	“C”	three	times.	Using	this	same
approach,	we	can	replace	each	value	of	a	vector	a	specific	number	of	times,	as	shown
here:
Click	here	to	view	code	image

>	rep(	c(“A”,	“B”,	“C”),	c(3,	3,	3))
[1]	“A”	“A”	“A”	“B”	“B”	“B”	“C”	“C”	“C”

Alternatively,	because	the	second	input	is	a	repeated	set	of	values,	this	could	be	written	as
follows:
Click	here	to	view	code	image

>	rep(	c(“A”,	“B”,	“C”),	rep(3,	3))
[1]	“A”	“A”	“A”	“B”	“B”	“B”	“C”	“C”	“C”

However,	an	argument	to	rep	called	each	provides	an	easy	way	to	achieve	the	same
result:
Click	here	to	view	code	image

>	rep(	c(“A”,	“B”,	“C”),	each	=	3)
[1]	“A”	“A”	“A”	“B”	“B”	“B”	“C”	“C”	“C”

As	you	can	see,	the	rep	function	can	be	used	to	create	a	variety	of	vectors	with	repeated
sequences.	Let’s	quickly	recap	the	three	ways	of	using	rep,	as	illustrated	in	this	section:
Click	here	to	view	code	image



>	rep(	c(“A”,	“B”,	“C”),	3)											#	Repeat	the	vector	3	times
[1]	“A”	“B”	“C”	“A”	“B”	“C”	“A”	“B”	“C”

>	rep(	c(“A”,	“B”,	“C”),	c(4,	1,	3))		#	Repeat	each	value	a	specific	number
of
																																								times
[1]	“A”	“A”	“A”	“A”	“B”	“C”	“C”	“C”

>	rep(	c(“A”,	“B”,	“C”),	each	=	3)				#	Repeat	each	value	3	times
[1]	“A”	“A”	“A”	“B”	“B”	“B”	“C”	“C”	“C”

Caution:	Nested	Calls

The	last	section	included	the	following	line	of	code:
Click	here	to	view	code	image

>	rep(	c(“A”,	“B”,	“C”),	rep(3,	3))
[1]	“A”	“A”	“A”	“B”	“B”	“B”	“C”	“C”	“C”

This	is	possibly	the	most	complex	line	of	code	you’ve	seen	so	far,	and	includes
nested	calls:	The	inputs	to	rep	are,	themselves,	derived	from	calls	to	functions	(c
and	rep,	respectively).	This	sort	of	syntax	is	common	in	R,	but	care	must	be	taken
not	to	create	overly	complex	nested	calls	because	this	may	make	your	code	hard	to
read	and	understand	later.	Where	appropriate,	consider	breaking	the	code	into
smaller,	commented	fragments,	as	shown	here:

Click	here	to	view	code	image
>	theVector	<-	c(“A”,	“B”,	“C”)		#	Vector	to	repeat
>	repTimes	<-	rep(3,	3)										#	Number	of	times	to	repeat	the	vector
>	rep(theVector,	repTimes)							#	Repeat	the	vector
[1]	“A”	“A”	“A”	“B”	“B”	“B”	“C”	“C”	“C”

Vector	Attributes
A	vector	has	a	number	of	attributes	that	you	can	query	using	a	set	of	simple	functions.
Specifically,	you	can	query	a	vector’s	length,	mode,	and	element	names.

The	mode	function	you	saw	earlier	in	this	hour	takes	a	vector	input	and	returns	the	mode
of	the	data	it	contains.	Here’s	an	example:
Click	here	to	view	code	image

>	X	<-	c(6,	8,	3,	1,	7)		#	Create	a	simple	vector
>	X																						#	Print	the	vector
[1]	6	8	3	1	7
>	mode(X)																#	The	mode	of	the	vector
[1]	“numeric”

If	you	want	to	see	the	number	of	elements	in	a	vector,	you	can	use	the	length	function:
Click	here	to	view	code	image

>	length(X)														#	Number	of	elements
[1]	5



Note:	Missing	Values

If	we	have	a	vector	that	contains	one	or	more	missing	values,	these	values	will	still
contribute	to	the	vector’s	length:

Click	here	to	view	code	image
>	Y	<-	c(4,	5,	NA,	1,	NA,	0)
>	Y
[1]		4		5	NA		1	NA		0
>	length(Y)
[1]	6

The	third	and	fifth	elements	of	the	preceding	vector	exist—we	just	don’t	know	their
values.

A	vector	can	also	have	elements	you	can	query	using	the	names	function.	(Note	that	we
did	not	specify	names	for	the	vector	created	earlier.)	Here’s	an	example:
Click	here	to	view	code	image

>	X	<-	c(6,	8,	3,	1,	7)		#	Create	a	simple	vector
>	X																						#	Print	the	vector
[1]	6	8	3	1	7
>	names(X)															#	Element	names	of	X
NULL

In	R,	NULL	signifies	an	empty	structure.	So	here,	the	result	of	the	call	to	the	names
function	tells	us	that	this	vector	has	no	element	names.	We	come	across	vectors	with
element	names	in	one	of	two	ways:	either	as	the	result	of	a	call	to	a	function	or	when	we
assign	names	directly.

Consider	an	example	where	we	have	created	a	frequency	count	of	men	and	women	in	a	set
of	data.	These	numbers	could	be	returned	as	a	vector,	as	shown	next:
Click	here	to	view	code	image

>	genderFreq			#	Frequency	by	gender
[1]	165	147

Here,	we	see	that	the	vector	contains	two	values	(165	and	147)	that	relate	to	the	frequency
count	by	gender.	However,	without	labels,	we	do	not	know	which	value	refers	to	which
gender.	As	such,	R	may	return	a	named	vector,	as	shown	here:

>	genderFreq
Female			Male
			165				147

If	we	want	to	create	a	vector	with	named	elements,	we	can	specify	names	for	the	elements
as	we	create	the	vector	or	assign	names	using	the	names	function	itself:
Click	here	to	view	code	image

>	genderFreq	<-	c(Female	=	165,	Male	=	147)		#	Create	a	vector	with	element
names
>	genderFreq
Female			Male
			165				147

>	genderFreq	<-	c(165,	147)																		#	Create	a	vector	with	no
element



																																															names
>	genderFreq
[1]	165	147
>	names(genderFreq)	<-	c(“Female”,	“Male”)			#	Assign	element	names
>	genderFreq
Female			Male
			165				147

When	we	encounter	a	“named”	vector,	we	can	query	it	with	the	names	function	to	return
the	(character)	vector	of	element	names:
Click	here	to	view	code	image

>	genderFreq											#	Print	the	vector
Female			Male
			165				147
>	names(genderFreq)				#	Return	the	element	names
[1]	“Female”	“Male”

To	summarize,	the	three	primary	functions	used	to	query	vector	attributes	are	listed	in
Table	3.1.

TABLE	3.1	Functions	to	Query	Vector	Attributes

Subscripting	Vectors
In	this	section,	we	look	at	the	ways	in	which	to	extract	subsets	of	data	from	a	vector.	We
can	achieve	this	using	square	brackets	([	])	following	the	name	of	the	vector,	as	follows:
Click	here	to	view	code	image

VECTOR	[	Input	specifying	the	subset	of	data	to	return	]

The	input	itself	can	be	one	of	a	five	possible	inputs,	as	shown	in	Table	3.2.

TABLE	3.2	Possible	Vector	Subscripting	Inputs



Caution:	Square	versus	Round	Brackets

When	we	call	a	function,	we	use	round	brackets,	as	shown	in	our	examples	of	the
functions	c,	seq,	and	rep.	We	use	square	brackets	to	reference	data	from	an
object.	If	we	use	the	wrong	“type”	of	bracket,	R	will	assume	we	are	trying	to	call	a
function	instead	of	reference	data:

Click	here	to	view	code	image
>	X					#	A	vector	called	X
[1]	6	8	3	1	7
>	X[]			#	Using	square	brackets
[1]	6	8	3	1	7
>	X()			#	Error	when	using	round	brackets
Error:	could	not	find	function	“X”

Subscripting	Vectors:	Blank	Inputs

The	first	(and	simplest)	input	is	“blank,”	which	has	the	result	of	returning	the	entire	vector
of	values:
Click	here	to	view	code	image

>	X	<-	c(6,	8,	3,	1,	7)		#	Create	a	simple	vector

>	X																						#	Print	the	values
[1]	6	8	3	1	7

>	X	[	]																		#	Blank	input
[1]	6	8	3	1	7

Tip:	White	Space

White	space	is	ignored	by	R	(unless	within	quotation	marks	as	part	of	a	string).
Therefore,	in	this	example,	the	command	X	[	]	is	equivalent	to	X[]	or	even	X	[
].	As	a	convention,	we	will	use	spaces	to	improve	readability	where	appropriate.

Subscripting	Vectors:	Positive	Integers

If	you	specify	a	vector	of	integers	as	the	input,	they	are	used	as	an	index	of	values	to
return:
Click	here	to	view	code	image

>	X																						#	Print	the	values
[1]	6	8	3	1	7
>	X	[	c(1,	3,	5)	]							#	1st,	3rd	and	5th	elements
[1]	6	3	7

In	the	preceding	example,	we	used	a	vector	of	positive	integers	within	the	square	brackets
as	the	index.	However,	we	could	alternatively	create	a	separate	vector	with	which	to
reference	the	data:
Click	here	to	view	code	image

>	index	<-	c(1,	3,	5)			#	Create	index	vector
>	X	[	index	]											#	1st,	3rd	and	5th	elements
[1]	6	3	7



Using	this	approach,	we	could	also	specify	values	to	omit	from	our	vector.	For	example,	if
we	wanted	to	return	all	values	except	the	third	value,	we	could	achieve	that	as	follows:
Click	here	to	view	code	image

>	X	[	c(1:2,	4:5)	]				#	Return	the	1st,	2nd,	4th	and	5th	elements
[1]	6	8	1	7

Subscripting	Vectors:	Negative	Integers

In	the	last	example,	we	used	a	vector	of	positive	integers	to	remove	a	value	from	a	vector
(that	is,	to	omit	one	value	in	the	return).	However,	for	larger	vectors	this	is	not	a	scalable
solution.

If	we	provide	a	vector	of	negative	integers	as	the	input,	this	refers	to	an	index	of	values	to
omit	from	the	vector,	as	illustrated	in	this	example:
Click	here	to	view	code	image

>	X																				#	Original	vector	of	values
[1]	6	8	3	1	7
>	X	[	c(1:2,	4:5)	]				#	Omit	3rd	value	using	positive	integers
[1]	6	8	1	7
>	X	[	-3	]													#	Omit	3rd	value	using	negative	integers
[1]	6	8	1	7

If	we	want	to	omit	more	than	one	position,	we	could	either	provide	a	vector	of	negative
integers	or	place	a	minus	symbol	in	front	of	a	vector	of	positive	integers.	Consequently,
the	following	two	lines	are	equivalent:
Click	here	to	view	code	image

>	X	[	c(-2,	-4)	]			#	Omit	2nd	and	4th	values
[1]	6	3	7
>	X	[	-c(2,	4)	]				#	Omit	2nd	and	4th	values
[1]	6	3	7

Among	other	uses,	this	syntax	allows	us	to	exclude	values	from	a	vector	based	on	another
vector,	as	shown	here:
Click	here	to	view	code	image

>	Y																	#	Vector	of	values	to	subset
	[1]	6	9	4	3	6	8	1	9	0	3	4	8	7	4	5
>	outliers										#	Index	of	values	to	omit
[1]		4		7		9	11	15
>	Y	[	-outliers	]			#	Omit	the	values	specified	in	outliers
	[1]	6	9	4	6	8	9	3	8	7	4

Subscripting	Vectors:	Logical	Values

Our	third	possible	input	is	a	vector	of	logical	values	the	same	length	as	the	original	vector.
When	we	reference	a	vector	in	this	way,	only	the	corresponding	TRUE	values	are	returned,
as	illustrated	here:
Click	here	to	view	code	image

>	X																								#	Original	vector
[1]	6	8	3	1	7
>	c(T,	T,	F,	F,	T)									#	Vector	of	logical	values
[1]		TRUE		TRUE	FALSE	FALSE		TRUE
>	X	[	c(T,	T,	F,	F,	T)	]			#	Return	corresponding	TRUE	values	only
[1]	6	8	7



The	logical	vector	has	TRUE	values	in	the	first,	second,	and	fifth	positions,	so	that	is	the
index	of	values	returned	(6,	8,	and	7).

Although	this	example	illustrates	the	“mechanics”	of	how	R	returns	values	when	given	a
logical	vector	input,	in	practice	this	is	not	useful	(in	other	words,	we	will	not	commonly
manually	enter	TRUE	and	FALSE	values	into	a	vector	to	subscript	in	this	way).

More	commonly,	we	use	simple	logical	statements	to	create	vectors	of	logical	values	to
use	as	the	input,	as	shown	here:
Click	here	to	view	code	image

>	X												#	Original	vector
[1]	6	8	3	1	7
>	X	>	5								#	Logical	statement:	where	is	X	>	5?
[1]		TRUE		TRUE	FALSE	FALSE		TRUE
>	X	[	X	>	5	]		#	Subset	where	values	of	X	are	greater	than	5
[1]	6	8	7

This	mirrors	the	previous	example,	although	here	we	use	a	logical	vector	via	the	statement
X	>	5.	Some	other	styles	of	logical	statements	we	can	use	are	listed	here:
Click	here	to	view	code	image

>	X	>	6												#	Greater	than	6
[1]	FALSE		TRUE	FALSE	FALSE		TRUE
>	X	>=	6											#	Greater	than	or	equal	to	6
[1]		TRUE		TRUE	FALSE	FALSE		TRUE
>	X	<	6												#	Less	than	6
[1]	FALSE	FALSE		TRUE		TRUE	FALSE
>	X	<=	6											#	Less	than	or	equal	to	6
[1]		TRUE	FALSE		TRUE		TRUE	FALSE
>	X	==	6											#	X	is	equal	to	6
[1]		TRUE	FALSE	FALSE	FALSE	FALSE
>	X	!=	6											#	X	is	not	equal	to	6
[1]	FALSE		TRUE		TRUE		TRUE		TRUE
>	X	>	2	&	X	<=	6			#	Between	2	(exclusive)	and	6	(inclusive)
[1]		TRUE	FALSE		TRUE	FALSE	FALSE
>	X	<	2	|	X	>	6				#	Less	than	2	or	greater	than	6
[1]	FALSE		TRUE	FALSE		TRUE		TRUE

Because	these	statements	produce	a	logical	vector	that	(by	definition)	is	the	same	length	of
the	input	vector,	they	can	all	be	used	to	subset	the	original	vector:
Click	here	to	view	code	image

>	X																						#	Original	vector
[1]	6	8	3	1	7
>	X	[	X	<=	6	]											#	Values	less	than	or	equal	to	6
[1]	6	3	1
>	X	[	X	!=	6	]											#	Values	that	are	not	equal	to	6
[1]	8	3	1	7
>	X	[	X	>=	3	&	X	<=	7	]		#	Values	between	3	and	7
[1]	6	3	7

It	is	important	to	consider	that,	for	these	examples,	R	performs	a	two-step	process:	The
input	is	evaluated,	returning	the	logical	vector,	which	is	then	used	to	reference	the	original
vector.

This	allows	us	to	reference	values	of	one	vector	based	on	a	second	or	third	vector,	as
shown	here:



Click	here	to	view	code	image
>	ID									#	Vector	of	ID	values
[1]	1001	1002	1003	1004	1005
>	AGE								#	Vector	of	ages
[1]	18	35	26	42	22
>	GENDER					#	Vector	of	genders
[1]	“M”	“F”	“M”	“F”	“F”

>	AGE	[	AGE	>	25	]																	#	Vectors	of	AGE	that	are	greater	than	25
[1]	35	26	42
>	ID	[	AGE	>	25	]																		#	ID	where	AGE	is	greater	than	25
[1]	1002	1003	1004
>	ID	[	AGE	>	25	&	GENDER	==	“F”	]		#	ID	where	AGE	is	greater	than	25	and
GENDER	is
																																					“F”
[1]	1002	1004

Subscripting	Vectors:	Character	Values

When	a	vector	has	element	names,	we	can	use	a	vector	of	characters	to	refer	to	the
elements	to	return.	First,	let’s	add	element	names	to	our	vector	example:
Click	here	to	view	code	image

>	names(X)	<-	c(“A”,	“B”,	“C”,	“D”,	“E”)						#	Add	element	names

>	X																																											#	Original	vector
A	B	C	D	E
6	8	3	1	7

>	X[c(“A”,	“C”,	“E”)]																									#	Reference	based	on	names
A	C	E
6	3	7

Subscripting	Vectors:	Summary

At	this	point,	we	have	looked	at	referencing	data	from	a	vector	by	specifying	one	of	five
possible	inputs,	as	shown	earlier	in	Table	3.2,	examples	of	which	are	shown	here:
Click	here	to	view	code	image

>	X	[	]																					#	Blank:	all	values	returned
A	B	C	D	E
6	8	3	1	7
>	X	[	c(1,	3,	5)	]										#	Positives:	Positions	to	return
A	C	E
6	3	7
>	X	[	-c(1,	3,	5)	]									#	Negatives:	Positions	to	omit
B	D
8	1
>	X	[	X	>	5	]															#	Logical:	TRUE	values	returned
A	B	E
6	8	7
>	X	[	c(“A”,	“C”,	“E”)	]				#	Character:	Named	elements	returned
A	C	E
6	3	7



Tip:	Sequence	of	Letters

As	discussed	earlier,	you	cannot	use	the	:	notation	to	directly	create	a	sequence	of
letters	(for	example,	A:E).	However,	there	are	two	in-built	R	vectors	(called
letters	and	LETTERS)	that	contain	the	(lowercase	and	uppercase)	letters	of	the
alphabet:

Click	here	to	view	code	image
>	letters
	[1]	“a”	“b”	“c”	“d”	“e”	“f”	“g”	“h”	“i”	“j”	“k”	“l”	“m”
[14]	“n”	“o”	“p”	“q”	“r”	“s”	“t”	“u”	“v”	“w”	“x”	“y”	“z”

>	LETTERS
	[1]	“A”	“B”	“C”	“D”	“E”	“F”	“G”	“H”	“I”	“J”	“K”	“L”	“M”
[14]	“N”	“O”	“P”	“Q”	“R”	“S”	“T”	“U”	“V”	“W”	“X”	“Y”	“Z”

Because	these	are	vectors,	we	can	reference	them	using	square	brackets	with	one	of
the	five	input	types	we	just	discussed.	In	this	way,	we	can	create	sequences	of
lowercase	or	uppercase	letters:

Click	here	to	view	code	image
>	letters	[	1:5	]		#	First	5	(lower	case)	letters
[1]	“a”	“b”	“c”	“d”	“e”
>	LETTERS	[	1:5	]		#	First	5	(upper	case)	letters
[1]	“A”	“B”	“C”	“D”	“E”

Matrices
A	matrix	is	a	two-dimensional	structure	containing	values	of	the	same	mode.	Similar	to
the	section	“Vectors”	earlier	in	this	hour,	in	this	section	we	look	at	the	following	topics:

	Some	ways	to	create	matrices

	The	attributes	of	a	matrix

	The	ways	in	which	we	can	extract	information	from	a	matrix

Creating	Matrices
You	typically	create	matrices	in	two	fundamental	ways:

	By	combining	a	series	of	vectors	to	form	rows	or	columns

	By	reading	a	single	vector	into	a	matrix	structure

Combining	Vectors	to	Create	a	Matrix

You	can	use	the	cbind	function	to	combine	a	series	of	vectors,	thus	forming	the	columns
of	a	matrix.	An	example,	creating	a	three-row-by-four-column	matrix,	is	shown	here:
Click	here	to	view	code	image

>	cbind(1:3,	3:1,	c(2,	4,	6),	rep(1,	3))
					[,1]	[,2]	[,3]	[,4]
[1,]				1				3				2				1
[2,]				2				2				4				1
[3,]				3				1				6				1



Note:	Recycling

Note	here	that	we’ve	created	a	matrix	by	supplying	four	vectors	of	the	same	length
to	create	our	vector.	However,	if	we	supply	vectors	that	are	not	of	the	same	length,
R	will	repeat	the	shorter-length	vectors	to	the	length	of	the	longest	vector	to	create
the	matrix.	That	means	we	can	re-create	the	preceding	matrix	by	specifying	a	1	for
the	fourth	column	instead	of	repeating	that	value:

Click	here	to	view	code	image
>	cbind(1:3,	3:1,	c(2,	4,	6),	1)
					[,1]	[,2]	[,3]	[,4]
[1,]				1				3				2				1
[2,]				2				2				4				1
[3,]				3				1				6				1

In	this	example,	the	shorter-length	vector	is	of	length	1,	which	can	easily	be
repeated	to	create	a	vector	of	length	3.	If	the	shorter-length	vectors	cannot	be
recycled	to	exactly	create	the	required	length,	a	warning	is	provided.	Consider	the
third	column	in	this	example:

Click	here	to	view	code	image
>	cbind(1:3,	3:1,	c(2,	4),	1)
					[,1]	[,2]	[,3]	[,4]
[1,]				1				3				2				1
[2,]				2				2				4				1
[3,]				3				1				2				1
Warning	message:
In	cbind(1:3,	3:1,	c(2,	4),	1)	:
		number	of	rows	of	result	is	not	a	multiple	of	vector	length	(arg	3)

As	shown,	the	two	values	are	repeated	but	a	warning	message	is	produced	because
the	result	is	not	a	multiple	of	the	longest-length	vector.

Instead	of	using	cbind,	we	can	use	the	rbind	function	to	specify	the	rows	of	a	matrix.
This	time,	we	will	use	the	same	vectors	to	create	a	four-row-by-three-column	matrix:
Click	here	to	view	code	image

>	rbind(1:3,	3:1,	c(2,	4,	6),	rep(1,	3))
					[,1]	[,2]	[,3]
[1,]				1				2				3
[2,]				3				2				1
[3,]				2				4				6
[4,]				1				1				1



Tip:	Transposing	Matrices

The	t	function	can	be	used	to	transpose	a	matrix;	therefore,	the	following
commands	are	equivalent:

Click	here	to	view	code	image
>	cbind(1:3,	3:1,	c(2,	4,	6),	rep(1,	3))
					[,1]	[,2]	[,3]	[,4]
[1,]				1				3				2				1
[2,]				2				2				4				1
[3,]				3				1				6				1
>	t(rbind(1:3,	3:1,	c(2,	4,	6),	rep(1,	3)))
					[,1]	[,2]	[,3]	[,4]
[1,]				1				3				2				1
[2,]				2				2				4				1
[3,]				3				1				6				1

Creating	a	Matrix	with	a	Single	Vector

As	you	just	saw,	the	rbind	and	cbind	functions	can	be	used	to	create	a	matrix	by
combining	vectors	as	rows	or	columns.	An	alternative	way	is	to	take	a	single	vector	of
data	and	“read”	the	data	into	rows	and	columns	of	a	matrix.	You	can	achieve	this	using	the
matrix	function,	which	accepts,	as	a	first	argument,	the	vector	of	data	to	be	used:

>	matrix(1:12)
						[,1]
	[1,]				1
	[2,]				2
	[3,]				3
	[4,]				4
	[5,]				5
	[6,]				6
	[7,]				7
	[8,]				8
	[9,]				9
[10,]			10
[11,]			11
[12,]			12

The	matrix	function	has	two	arguments,	nrow	and	ncol,	that	you	can	specify	to	create
a	matrix	with	specific	“dimensions,”	as	shown	here:
Click	here	to	view	code	image

>	matrix(1:12,	nrow	=	3,	ncol	=	4)
					[,1]	[,2]	[,3]	[,4]
[1,]				1				4				7			10
[2,]				2				5				8			11
[3,]				3				6				9			12

In	this	example,	we	have	used	both	nrow	and	ncol	to	specify	the	dimensions	of	the
matrix.	When	we	create	a	matrix	in	this	way,	we	need	only	specify	one	dimension	(nrow
or	ncol),	as	shown	here:

>	matrix(1:12,	nrow	=	3)
					[,1]	[,2]	[,3]	[,4]
[1,]				1				4				7			10
[2,]				2				5				8			11
[3,]				3				6				9			12



By	default,	the	values	are	read	in	to	the	matrix	in	a	column-wise	manner,	resulting	in	the
first	column	containing	the	numbers	1	to	3	in	this	example.	This	is	controlled	by	an
argument	to	matrix	called	byrow,	which,	by	default,	is	set	to	FALSE:
Click	here	to	view	code	image

>	matrix(1:12,	nrow	=	3,	byrow	=	F)		#	Default	behavior	–	byrow	=	FALSE
					[,1]	[,2]	[,3]	[,4]
[1,]				1				4				7			10
[2,]				2				5				8			11
[3,]				3				6				9			12

We	can	change	this	argument	to	instead	read	in	the	values	by	row,	as	shown	here:
Click	here	to	view	code	image

>	matrix(1:12,	nrow	=	3,	byrow	=	TRUE)
					[,1]	[,2]	[,3]	[,4]
[1,]				1				2				3				4
[2,]				5				6				7				8
[3,]				9			10			11			12

Matrix	Attributes
When	we	have	created	a	matrix,	we	can	query	a	number	of	matrix	attributes	using	a	set	of
utility	functions.	This	includes	functions	to	query	the	following:

	The	mode	of	the	matrix

	The	dimensions	of	the	matrix

	The	row/column	names	of	the	matrix

As	before,	we	can	query	the	mode	of	the	matrix	using	the	mode	function:
Click	here	to	view	code	image

>	aVector	<-	c(4,	5,	2,	7,	6,	1,	5,	5,	0,	4,	6,	9)		#	Create	a	vector
>	X	<-	matrix(aVector,	nrow	=	3)																				#	Create	a	matrix
>	X																																																	#	Print	the	matrix
					[,1]	[,2]	[,3]	[,4]
[1,]				4				7				5				4
[2,]				5				6				5				6
[3,]				2				1				0				9
>	mode(X)																																											#	The	mode	of	the	matrix
[1]	“numeric”

Similarly,	we	can	use	the	length	function	to	return	the	number	of	elements	in	the
matrix:
Click	here	to	view	code	image

>	length(X)			#	Number	of	elements
[1]	12

Although	the	length	function	returns	the	total	number	of	elements	in	the	matrix,	it	does
not	allow	us	to	directly	see	the	structure	(that	is,	the	number	of	rows	and	columns)	of	the
matrix.	For	this,	we	can	use	the	dim	function,	which	returns	a	vector	of	length	2,
specifying	the	rows	(first)	and	columns	of	the	matrix:
Click	here	to	view	code	image

>	dim(X)					#	Dimension	of	the	matrix



[1]	3	4
>	dim(X)[1]		#	Number	of	rows
[1]	3
>	dim(X)[2]		#	Number	of	columns
[1]	4

Here,	we	use	positive	integers	to	reference	the	position	of	the	vector	(returned	by	dim)	to
return	(1	for	rows,	2	for	columns).	Alternatively,	we	can	use	the	functions	nrow	and
ncol	to	directly	return	the	number	of	rows	and	columns:
Click	here	to	view	code	image

>	nrow(X)		#	Number	of	rows
[1]	3
>	ncol(X)		#	Number	of	columns
[1]	4

Earlier	you	saw	that	vectors	can	be	associated	with	element	names.	With	matrices,	it	is	not
practical	to	assign	a	name	for	each	element	(cell)	of	the	matrix.	However,	you	might	see
matrices	that	have	row	and	column	names.

You’ll	either	create	matrices	with	row	and	column	names	(or	“dimension	names”)	or,	more
commonly,	come	across	matrices	with	dimension	names	as	the	result	of	an	operation.

Consider	an	example	where	we	have	created	a	frequency	count	of	age	group	versus	gender
from	a	set	of	data.	These	numbers	could	be	returned	as	a	matrix,	as	shown	next:
Click	here	to	view	code	image

>	freqMatrix		#	Frequency	by	Age	Group	and	Gender
					[,1]	[,2]
[1,]			75			68
[2,]			52			49
[3,]			38			30

Here,	we	can	see	that	the	matrix	contains	six	values,	which	relate	to	the	frequency	count
by	age	group	and	gender.	However,	without	labels,	we	do	not	know	what	the	values	refer
to.	As	such,	R	may	return	a	matrix	with	dimension	names,	as	shown	here:

>	freqMatrix
						Female	Male
18-35					75			68
26-35					52			49
36+							38			30

If	we	want	to	create	a	matrix	with	dimension	names,	we	can	assign	names	using	the
dimnames	function.	It	accepts	a	“list”	structure	with	row	and	column	names.	(Note	that
we	will	cover	lists	in	Hour	4,	“Multi-Mode	Data	Structures.”)	Here’s	an	example:
Click	here	to	view	code	image

>	freqMatrix																	#	Original	matrix	–	no	row/column	names
					[,1]	[,2]
[1,]			75			68
[2,]			52			49
[3,]			38			30

>	dimnames(freqMatrix)	<-	list(c(“18-35”,	“26-35”,	“36+”),
+			c(“Female”,	“Male”))					#	Assign	dimension	names

>	freqMatrix																	#	Resulting	matrix
						Female	Male



18-35					75			68
26-35					52			49
36+							38			30

When	we	see	a	matrix	that	has	dimension	names,	we	can	query	those	names	using	the
dimnames	function,	which	returns	a	“list”	containing	two	character	vectors:
Click	here	to	view	code	image

>	dimnames(freqMatrix)								#	Dimension	names	of	freqMatrix
[[1]]
[1]	“18-35”	“26-35”	“36+”

[[2]]
[1]	“Female”	“Male”

Subscripting	Matrices
When	we	covered	vectors,	you	saw	that	we	can	use	square	brackets	with	one	of	five	input
types	to	extract	data.	This	included	examples	such	as	the	following:

	Select	the	first	five	elements.

	Select	all	but	the	sixth	element.

	Select	all	values	greater	than	5.

	Select	the	"A",	"C",	and	"E"	elements.

With	a	matrix,	which	has	rows	and	columns,	these	selections	no	longer	seem	particularly
relevant.	However,	we	may	wish	to	select	specific	rows	and	columns,	which	we	specify
using	2	separate	inputs	within	the	square	brackets	separated	by	a	comma:
Click	here	to	view	code	image

MATRIX	[	Input	specifying	rows	to	return,	Input	specifying	columns	to	return
]

Subscripting	Matrices:	Blanks,	Positives,	and	Negatives
First,	let’s	look	at	using	blank	subscripts	for	both	rows	and	columns.	The	following	returns
all	rows	and	all	columns:
Click	here	to	view	code	image

>	X	[	,	]		#	Blank	for	rows,	blank	for	columns
					[,1]	[,2]	[,3]	[,4]
[1,]				4				7				5				4
[2,]				5				6				5				6
[3,]				2				1				0				9

Next,	we’ll	use	vectors	of	positive	integers	for	both	the	rows	and	columns:
Click	here	to	view	code	image

>	X	[	1:2	,	c(1,	3,	4)	]		#	+ives	for	rows,	+ives	for	columns
					[,1]	[,2]	[,3]
[1,]				4				5				4
[2,]				5				5				6

In	this	example,	we	returned	the	first	two	rows	and	the	first,	third,	and	fourth	columns.



Note:	Column	Index

In	this	example,	note	that	we	selected	rows	1	and	2	with	columns	1,	3	and	4,	and	the
matrix	returned	the	correct	matrix	subset.	The	column	index	of	the	new	matrix	is
[,1]	[,2]	[,3].

This	is	because	the	subset	is	a	completely	new	matrix	with	its	own	column	index,
and	it	has	no	“memory”	of	the	manner	in	which	it	was	created	(in	other	words,	the
index	is	not	“1,	3,	4”).	If,	however,	the	matrix	we	were	subsetting	had	dimension
names,	the	row/column	names	would	be	retained	in	the	sub-matrix.

So	far,	we	have	used	blanks	on	the	rows	and	columns,	then	vectors	of	positive	integers	for
both	rows	and	columns.	However,	we	can	also	specify	different	input	types	for	the	rows
and	columns,	as	shown	in	this	example:
Click	here	to	view	code	image

>	X	[		,	-2	]		#	Blank	for	rows,	-ives	for	columns
					[,1]	[,2]	[,3]
[1,]				4				5				4
[2,]				5				5				6
[3,]				2				0				9

Here,	we	use	blank	for	the	rows	(so	all	rows	are	returned)	and	a	negative	integer	for	the
columns	(so	all	but	the	second	column	is	returned).

Dropping	Dimensions
In	the	preceding	example,	we	referenced	data	from	a	3×4	matrix,	but	always	returned	at
least	two	rows/columns.	If	we	instead	reference	a	single	row	or	column,	the	dimensions	of
the	output	matrix	are	dropped,	so	a	simpler	structure	(in	fact,	a	vector)	is	returned:
Click	here	to	view	code	image

>	X	[	,	1:2	]			#	First	2	columns	-	returns	a	matrix
					[,1]	[,2]
[1,]				4				7
[2,]				5				6
[3,]				2				1
>	X	[	,	1	]					#	First	column	-	returns	a	vector
[1]	4	5	2

Because	most	R	functions	work	with	vectors,	the	“dropping”	of	dimensions	in	this	way	is
often	what	we	want.	However,	if	we	want	to	reference	the	data	but	ensure	the	dimensions
are	not	dropped,	we	can	use	an	argument	called	drop	within	the	square	brackets,	as
shown	here:
Click	here	to	view	code	image

>	X	[	,	1	]																#	Returns	a	vector
[1]	4	5	2
>	X	[	,	1,	drop	=	FALSE	]		#	Use	drop	to	maintain	dimensions
					[,1]
[1,]				4
[2,]				5
[3,]				2



Subscripting	Matrices:	Logical	Values
We	can	use	logical	values	to	reference	rows	and/or	columns	of	a	matrix.	To	achieve	this,
we	provide	a	logical	vector	the	same	length	as	the	numbers	of	rows/columns	to	subscript.
A	simple	example	is	shown	here:
Click	here	to	view	code	image

>	X																					#	Original	Matrix
					[,1]	[,2]	[,3]	[,4]
[1,]				4				7				5				4
[2,]				5				6				5				6
[3,]				2				1				0				9

>	X	[	c(T,	F,	T),	]					#	Logical	for	rows,	blank	for	columns
					[,1]	[,2]	[,3]	[,4]
[1,]				4				7				5				4
[2,]				2				1				0				9

In	this	example,	a	logical	vector	is	used	to	subscript	the	matrix.	We	provide	a	logical
vector	length	of	3,	and	only	the	rows	corresponding	to	the	TRUE	values	are	returned	(the
first	and	third	rows).

Instead	of	specifying	a	vector	manually,	we	could	use	a	logical	statement	based	on	one	of
the	other	columns	to	subscript	the	data.	For	example,	let’s	consider	referencing	only	rows
where	the	first	column	is	not	5:
Click	here	to	view	code	image

>	X	[	,	1	]															#	1st	column
[1]	4	5	2

>	X	[	,	1	]	!=	5										#	Where	is	the	1st	column	not	5
[1]		TRUE	FALSE		TRUE

>	X	[	X	[	,	1	]	!=	5	,	]		#	Use	to	subscript	the	data
					[,1]	[,2]	[,3]	[,4]
[1,]				4				7				5				4
[2,]				2				1				0				9

This	last	line	looks	particular	complex,	but	relates	to	syntax	that	is	rarely	used.	The	single-
mode	nature	of	matrices	means	it	is	not	a	good	structure	in	which	to	store	our	standard
rectangular	data;	there	is	a	more	appropriate	structure	to	hold	this	sort	of	data	(the
data.frame	structure,	covered	in	Hour	4)	that	has	a	simpler	syntax	for	referencing
subsets	of	data.

Subscripting	Matrices:	Character	Values
So	far,	we	have	discussed	how	matrices	can	be	referenced	using	blank,	positive,	negative,
and	logical	inputs.	If	we	have	a	matrix	with	row	and	column	names,	we	can	also	use
vectors	of	characters	to	refer	directly	to	the	rows	and	columns	we	wish	to	return.	First,
let’s	add	dimension	names	to	our	matrix	example:
Click	here	to	view	code	image

>	dimnames(X)	<-	list(	letters[1:3],	LETTERS[1:4]	)
>	X
		A	B	C	D
a	4	7	5	4



b	5	6	5	6
c	2	1	0	9

Now	we	can	use	character	vectors	to	reference	the	rows	and/or	columns.	For	example,
let’s	reference	rows	“a”	and	“c”	with	all	the	columns:
Click	here	to	view	code	image

>	X	[	c(“a”,	“c”),	]			#	Characters	for	rows,	blank	for	columns
		A	B	C	D
a	4	7	5	4
c	2	1	0	9

In	this	next	example,	we	use	a	character	vector	to	reference	the	columns	we	want	to	return
and	all	the	rows:
Click	here	to	view	code	image

>	X	[	,	c(“A”,	“C”,	“D”)	]			#	Blank	for	rows,	Characters	for	columns
		A	C	D
a	4	5	4
b	5	5	6
c	2	0	9

Arrays
At	the	start	of	this	hour	we	introduced	vectors	as	a	structure	that	contains	a	series	of	values
of	the	same	mode.	Next,	we	looked	at	matrices	as	a	single-mode	structure	with	rows	and
columns.

An	array	is	a	single-mode	structure	that	can	have	any	number	of	dimensions	(so,	in	fact,	a
matrix	in	R	is	simply	a	two-dimensional	array).

Similar	to	the	previous	sections	in	this	hour	on	vectors	and	matrices,	in	this	section	we
look	at	the	following:

	Some	ways	to	create	an	array

	The	attributes	of	an	array

	The	ways	in	which	we	can	extract	information	from	an	array

For	the	purposes	of	this	hour,	we	will	focus	on	three-dimensional	arrays,	but	the	code
works	in	a	similar	way	for	any	dimension	of	array.

Creating	Arrays
You	create	an	array	by	providing	a	single	vector	input	to	the	array	function	along	with
the	dimension	of	the	array	you	wish	to	create	(as	a	vector	of	integers).	The	following
example	creates	a	two-dimensional	array	(that	is,	a	matrix):
Click	here	to	view	code	image

>	aVector	<-	c(4,	5,	2,	7,	6,	1,	5,	5,	0,	4,	6,	9)		#	Create	a	vector
>	X	<-	array(aVector,	dim	=	c(3,	4))																#	Create	a	2D	array
(matrix)
>	X																																																	#	Print	the	matrix
					[,1]	[,2]	[,3]	[,4]
[1,]				4				7				5				4
[2,]				5				6				5				6
[3,]				2				1				0				9



If	you	want	to	create	a	three-dimensional	array,	you	specify	a	vector	of	length	of	3	for	the
dim	argument,	as	shown	here:
Click	here	to	view	code	image

>	aVector	<-	c(4,	5,	2,	7,	6,	1,	5,	5,	0,	4,	6,	9)		#	Create	a	vector
>	X	<-	array(rep(aVector,	3),	dim	=	c(3,	4,	3))					#	Create	a	3D	array
>	X																																																	#	Print	the	array
,	,	1

					[,1]	[,2]	[,3]	[,4]
[1,]				4				7				5				4
[2,]				5				6				5				6
[3,]				2				1				0				9

,	,	2

					[,1]	[,2]	[,3]	[,4]
[1,]				4				7				5				4
[2,]				5				6				5				6
[3,]				2				1				0				9

,	,	3

					[,1]	[,2]	[,3]	[,4]
[1,]				4				7				5				4
[2,]				5				6				5				6
[3,]				2				1				0				9

Array	Attributes
Attributes	for	arrays	can	be	referenced	in	exactly	the	same	way	as	you	saw	for	matrices.
Some	examples	of	extracting	array	attributes	can	be	seen	here:
Click	here	to	view	code	image

>	mode(X)							#	Mode	of	array
[1]	“numeric”
>	length(X)					#	Number	of	elements	in	array
[1]	36
>	dim(X)								#	Dimension	of	array
[1]	3	4	3

As	with	matrices,	you	specify	dimension	names	using	the	dimnames	function:
Click	here	to	view	code	image

>	dimnames(X)	<-	list(letters[1:3],	LETTERS[1:4],	c(“X1”,	“X2”,	“X3”))
>	X
,	,	X1

		A	B	C	D
a	4	7	5	4
b	5	6	5	6
c	2	1	0	9

,	,	X2

		A	B	C	D
a	4	7	5	4
b	5	6	5	6
c	2	1	0	9



,	,	X3

		A	B	C	D
a	4	7	5	4
b	5	6	5	6
c	2	1	0	9

Subscripting	Arrays
To	extract	data	from	an	array,	you	provide	one	input	per	dimension.	Therefore,	for	a	three-
dimensional	array,	you	need	to	provide	three	inputs,	each	of	which	can	be	one	of	the	five
types	of	input	(blank,	positives,	negatives,	logicals,	or	characters).

Some	examples	of	array	subscripting	with	our	sample	(three-dimensional)	array	are	shown
here:
Click	here	to	view	code	image

>	X	[	,	,	1	]									#	Blank	/	Blank	/	Positive
		A	B	C	D
a	4	7	5	4
b	5	6	5	6
c	2	1	0	9
>	X	[	-1,	1:2,	1:2	]		#	Negative	/	Positive	/	Positive
,	,	X1

		A	B
b	5	6
c	2	1

,	,	X2

		A	B
b	5	6
c	2	1

Relationship	Between	Single-Mode	Data	Objects
So	far	in	this	hour	we	have	looked	at	the	three	“single-mode”	data	structures	in	R:	vectors,
matrices,	and	arrays.	You	have	seen	how	to	create	these	structures,	how	to	query	attributes
of	the	structures,	and	how	to	extract	data	from	them.

Table	3.3	describes	the	key	aspects	of	each	of	these	structures.

TABLE	3.3	Comparison	of	Single-Mode	Data	Structures

During	this	hour	you	may	have	noticed	a	pattern	emerging	with	the	three	structures,	which
is	also	prevalent	in	Table	3.3.	In	fact,	these	three	structures	are	very	closely	related
because	they	are	all,	fundamentally,	vectors.	The	only	thing	that	distinguishes	vectors



from	matrices	and	arrays	is	the	dimension	of	the	structure,	which	allows	you	to	print,
manage,	and	reference	the	data	from	structures	in	a	particular	manner.
This	allows	you	to	very	easily	convert	from	one	structure	to	another	by	(re)specifying	the
dimension	with	the	dim	function.	Consider	the	following	code,	which	converts	a	vector
first	to	a	matrix	and	then	to	a	three-dimensional	array:
Click	here	to	view	code	image

>	X	<-	c(2,	6,	5,	1,	2,	8,	9,	4,	3,	1,	9,	4)			#	Create	a	vector
>	X																																												#	Print	the	vector
	[1]	2	6	5	1	2	8	9	4	3	1	9	4
>	length(X)																																				#	Vector	has	12	elements
[1]	12
>	dim(X)																																							#	Vectors	have	no	“dimension”
NULL

>	dim(X)	<-	c(3,	4)																												#	Assign	a	dimension	(3	x	4)
>	X																																												#	Print	X	-	it	is	now	a	matrix
					[,1]	[,2]	[,3]	[,4]
[1,]				2				1				9				1
[2,]				6				2				4				9
[3,]				5				8				3				4

>	dim(X)	<-	c(2,	3,	2)																									#	Assign	a	new	dimension	(2	x
3	x	2)
>	X																																												#	Print	X	-	it	is	now	a	3D
array
,	,	1

					[,1]	[,2]	[,3]
[1,]				2				5				2
[2,]				6				1				8

,	,	2

					[,1]	[,2]	[,3]
[1,]				9				3				9
[2,]				4				1				4

This	also	allows	you	to	treat	matrices	and	arrays	as	vectors	for	simple	functions	later,	for
example:
Click	here	to	view	code	image

>	dim(X)					#	X	is	an	array
[1]	2	3	2
>	median(X)		#	Median	of	X
[1]	4

Summary
In	this	hour,	we	have	looked	at	how	the	four	different	“modes”	of	data	in	R	(numeric,
character,	logical,	and	complex)	can	be	stored	in	the	three	single-mode	structures:	vectors,
matrices,	and	arrays.	We	have	looked	at	the	ways	in	which	we	can	create	each	structure,
the	attributes	each	structure	has,	and	how	to	reference	subsets	of	data	from	each	structure.

Although	we	have	covered	matrices	and	arrays	in	this	section,	the	majority	of	the	time	was
spent	looking	at	vectors	in	some	details.	This	reflects	the	fact	that	we	typically	work	with
vectors	as	a	primary	data	structure,	so	familiarity	with	how	to	manage	these	objects	is



essential.

Of	course,	in	this	hour	we	have	looked	only	at	“single	mode”	structures	(i.e.	those
structures	that	only	hold	a	single	mode	of	data).	In	the	next	hour,	we	will	look	at	two	data
structures	that	allow	us	to	store	data	with	more	than	one	mode:	lists	and	data	frames.

Q&A
Q.	Can	I	mix	the	five	types	of	subscript	input?

A.	Not	really,	because	one	of	two	things	will	happen:	either	R	will	convert	all	elements
in	the	subscript	input	to	a	single	type	or,	if	you	use	positives	and	negatives	together,
R	will	return	an	error.

Q.	Why	is	a	matrix	not	a	suitable	structure	to	hold	standard	rectangular	datasets?

A.	Because	it	is	a	single-mode	structure,	it	isn’t	capable	of	storing	(say)	a	numeric
column	and	a	character	column	from	a	dataset	together.	In	the	next	hour,	you	will
see	a	more	natural	structure	for	storing	this	sort	of	data.

Q.	What	if	I	try	to	reference	data	outside	of	the	dimensions?

A.	Missing	values	will	be	returned,	as	shown	in	this	example:
Click	here	to	view	code	image

>	X	<-	c(A	=	1,	B	=	2,	C	=	3)
>	X
A	B	C
1	2	3
>	X[2:5]
			B				C	<NA>	<NA>
			2				3			NA			NA
>	X[c(“A”,	“C”,	“E”)]
			A				C	<NA>
			1				3			NA

Q.	How	do	missing	values	impact	referencing	with	logical	values?

A.	If	you	use	a	vector	of	missing	values	in	a	logical	statement,	the	return	value	will
also	be	NA	(because	you	don’t	know	whether	the	missing	value	would	have	met	the
condition).	When	you	use	this	to	subscript,	missing	values	are	returned.	Consider	the
following	example:

Click	here	to	view	code	image
>	ID
[1]	1	2	3	4	5
>	AGE
[1]	18	35	25	NA	23
>	AGE	>=	25
[1]	FALSE		TRUE		TRUE				NA	FALSE
>	ID	[	AGE	>=	25	]
[1]		2		3	NA



Workshop
The	workshop	contains	quiz	questions	and	exercises	to	help	you	solidify	your
understanding	of	the	material	covered.	Try	to	answer	all	questions	before	looking	at	the
“Answers”	section	that	follows.

Quiz
1.	What	are	the	four	different	“modes”	of	data	in	R?

2.	Why	do	we	refer	to	vectors,	matrices,	and	arrays	as	“single-mode”	structures?

3.	What	function	can	you	use	to	create	a	vector	of	repeated	sequences?

4.	What	are	the	five	different	“subscript”	inputs	you	can	use	to	reference	a	subset	of
data	from	a	vector?

5.	What	is	the	difference	between	the	cbind	and	rbind	functions?

6.	Why	do	we	use	a	comma	within	the	square	brackets	when	subscripting	a	matrix	(for
example,	mat[1:2,	-1])?

7.	What	is	the	difference	between	a	matrix	and	an	array?

Answers
1.	The	four	modes	of	data	are	numeric,	character,	logical,	and	complex.

2.	“Single	mode”	refers	to	the	fact	that	these	structures	can	only	store	data	of	a	single
mode	(for	example,	a	“numeric”	vector	or	a	“character”	matrix).	Vectors,	matrices,
and	arrays	cannot	hold	data	of	more	than	one	“mode.”

3.	You	can	use	the	rep	function	to	create	a	vector	of	repeated	sequences.

4.	The	five	“subscript”	input	types	are	blanks,	vectors	of	positive	integers,	vectors	of
negative	integers,	vectors	of	logical	values,	and	vectors	of	characters.

5.	Both	functions	create	a	matrix	based	on	a	number	of	vector	inputs.	The	cbind
function	specifies	that	provided	vectors	are	to	be	used	as	the	columns	of	the	matrix,
whereas	rbind	specifies	that	the	provided	vectors	should	be	used	to	define	the
rows	of	the	matrix.

6.	We	use	a	comma	to	separate	the	“row”	subscripts	from	the	“column”	subscripts.
Therefore,	the	line	mat[1:2,	-1]	specifies	that	we	want	to	return	the	first	two
rows,	and	all	but	the	first	column	of	mat.

7.	A	matrix	is	strictly	a	two-dimensional	structure	(it	has	rows	and	columns).	An	array
is	a	structure	with	any	number	of	dimensions	(that	is,	we	could	create	a	three-,	four-,
10-,	or	100-dimensional	array).	A	two-dimensional	array	is	exactly	equal	to	a	matrix.

Activities
1.	There	is	an	object	in	R	called	pi.	What	is	the	length	and	mode	of	pi?

2.	Create	the	following	vectors	in	R:



Click	here	to	view	code	image
[1]	6	3	4	8	5	2	7	9	4	5
[1]	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	TRUE	TRUE	FALSE	FALSE
[1]	-1	0	1	2	3
[1]	5	4	3	2	1
[1]	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
[1]	1	2	3	1	2	3	1	2	3
[1]	“A”	“A”	“A”	“A”
[1]	“A”	“A”	“A”	“A”	“B”	“B”	“B”	“C”	“C”	“D”

3.	Using	the	LETTERS	vector,	print	the	following:

	The	first	four	letters

	All	but	the	first	four	letters

	The	“even”	letters	(that	is,	A,	C,	E,	G,	…)

4.	Create	a	numeric	vector	of	length	10	using	a	selection	of	integers	between	1	and	9.
Assign	the	first	10	elements	of	the	letters	vector	as	the	element	names	of	your
vector.	Using	this	vector,	do	the	following:

	Select	the	first	and	last	values	of	the	vector.

	Select	all	values	of	the	vector	greater	than	3.

	Select	all	values	of	the	vector	between	2	and	7.

	Select	all	values	of	the	vector	that	are	not	5.

	Select	the	"D",	"E",	and,	"G"	elements	of	your	vector.

5.	Create	a	3×4	matrix	containing	numeric	values.	Print	the	first	two	rows	and	all	but
the	last	column	of	this	matrix.



Hour	4.	Multi-Mode	Data	Structures

What	You’ll	Learn	in	This	Hour:

	What	a	list	object	is

	How	to	create	and	manipulate	a	data	frame

	How	to	perform	an	initial	investigation	in	the	structure	of	our	data

The	majority	of	data	sources	contain	a	mixture	of	data	types,	which	we	need	to	store
together	in	a	simple,	effective	format.	The	“single-mode”	structures	introduced	in	the	last
hour	are	useful	basic	data	objects,	but	are	not	sufficiently	sophisticated	to	store	data
containing	multiple	“modes.”	In	this	hour,	we	focus	on	two	key	data	structures	that	allow
us	to	store	“multi-mode”	data:	lists	and	data	frames.	We	will	illustrate	the	ways	in	which
these	structures	can	be	created	and	managed,	with	a	focus	on	how	to	extract	data	from
them.	We	also	look	at	how	these	two	data	structures	can	be	effectively	used	in	our	day-to-
day	work.

Multi-Mode	Structures
In	the	last	hour,	we	examined	the	three	structures	designed	to	hold	data	in	R:

	Vectors—Series	of	values

	Matrices—Rectangular	structures	with	rows	and	columns

	Arrays—Higher	dimension	structures	(for	example,	3D	and	4D	arrays)

Although	these	objects	provide	us	with	a	range	of	useful	functionality,	they	are	restricted
in	that	they	can	only	hold	a	single	“mode”	of	data.	This	is	illustrated	in	the	following
example:
Click	here	to	view	code	image

>	c(1,	2,	3,	“Hello”)																	#	Multiple	modes
[1]	“1”					“2”					“3”					“Hello”
>	c(1,	2,	3,	TRUE,	FALSE)													#	Multiple	modes
[1]	1	2	3	1	0
>	c(1,	2,	3,	TRUE,	FALSE,	“Hello”)				#	Multiple	modes
[1]	“1”					“2”					“3”					“TRUE”		“FALSE”	“Hello”

As	you	can	see,	when	we	attempt	to	store	more	than	one	mode	of	data	in	a	single-mode
structure,	the	object	(and	its	contents)	will	be	converted	to	a	single	mode.

The	preceding	example	uses	a	vector	to	illustrate	this	behavior,	but	let’s	suppose	we	want
to	store	a	rectangular	“dataset”	using	a	matrix.	For	example,	we	might	attempt	to	create	a
matrix	that	contains	the	forecast	temperatures	for	New	York	over	the	next	five	days:
Click	here	to	view	code	image

>	weather	<-	cbind(
+			Day			=	c(“Saturday”,	“Sunday”,	“Monday”,	“Tuesday”,	“Wednesday”),
+			Date		=	c(“Jul	4”,	“Jul	5”,	“Jul	6”,	“Jul	7”,	“Jul	8”),
+			TempF	=	c(75,	86,	83,	83,	87)
+	)



>	weather
					Day									Date				TempF
[1,]	“Saturday”		“Jul	4”	“75”
[2,]	“Sunday”				“Jul	5”	“86”
[3,]	“Monday”				“Jul	6”	“83”
[4,]	“Tuesday”			“Jul	7”	“83”
[5,]	“Wednesday”	“Jul	8”	“87”

From	the	quotation	marks,	it	is	clear	that	R	has	converted	all	the	data	to	character	values,
which	can	be	confirmed	by	looking	at	the	mode	of	this	matrix	structure:
Click	here	to	view	code	image

>	mode(weather)				#	The	mode	of	the	matrix
[1]	“character”

This	reinforces	the	need	for	data	structures	that	allow	us	to	store	data	of	multiple	modes.	R
provides	two	“multi-mode”	data	structures:

	Lists—Containers	for	any	objects

	Data	frames—Rectangular	structures	with	rows	and	columns

Lists
The	list	is	considered	perhaps	the	most	complex	data	object	in	R,	and	many	R
programmers	will	go	to	great	lengths	to	avoid	the	use	of	lists	in	their	structures.	This
perceived	complexity,	perhaps,	stems	from	a	lack	of	clarity	over	what	a	list	“looks	like.”
Other	structures,	such	as	vectors	and	matrices,	are	relatively	easy	to	visualize,	and	are
therefore	easier	to	adopt	and	manage.

Despite	this,	lists	are	simple	structures	that	can	be	used	to	perform	a	number	of	complex
operations.

What	Is	a	List?
Lists	are	simply	containers	for	other	objects.	The	objects	stored	in	a	list	can	be	of	any	type
(for	example,	“matrix”	or	“vector”)	and	any	mode.	Therefore,	you	can	create	a	list
containing	the	following,	for	example:

	A	character	vector

	A	numeric	matrix

	A	logical	array

	Another	list

When	discussing	lists,	some	people	use	the	analogy	of	a	box.	For	example,	you	might	do
the	following:

	Create	an	empty	box.

	Put	some	“things”	into	the	box.

	Look	into	the	box	to	see	what	things	are	in	there.

	Take	things	back	out	of	the	box.



In	a	similar	way,	in	this	section,	we	will	look	at	how	to	do	the	following:

	Create	an	empty	list.

	Put	objects	into	the	list.

	Look	at	the	number	(and	names)	of	objects	in	the	list.

	Extract	elements	from	the	list.

Creating	an	Empty	List
You	create	a	list	using	the	list	function.	The	simplest	list	you	can	create	is	an	empty	list,
like	this:

>	emptyList	<-	list()
>	emptyList
list()

Later,	you	will	see	how	to	add	elements	to	this	empty	list.

Creating	a	Non-Empty	List
More	commonly,	you’ll	create	a	list	and	add	initial	elements	to	it	at	the	same	time.	You
achieve	this	by	specifying	a	comma-separated	set	of	objects	within	the	list	function:
Click	here	to	view	code	image

>	aVector	<-	c(5,	7,	8,	2,	4,	3,	9,	0,	1,	2)
>	aMatrix	<-	matrix(	LETTERS[1:6],	nrow	=	3)
>	unnamedList	<-	list(aVector,	aMatrix)
>	unnamedList
[[1]]
	[1]	5	7	8	2	4	3	9	0	1	2

[[2]]
					[,1]	[,2]
[1,]	“A”		“D”
[2,]	“B”		“E”
[3,]	“C”		“F”

In	this	example,	we	created	two	objects	(aVector	and	aMatrix)	and	then	created	a	list
(unnamedList)	containing	copies	of	these	objects.

Note:	Original	Objects

When	you	create	lists	in	this	way,	you	take	copies	of	the	objects	(aVector	and
aMatrix	in	this	example).	The	original	objects	are	not	impacted	by	this	action
(that	is,	they	are	not	edited,	moved,	changed,	or	deleted).

If	you	only	need	the	objects	within	the	list,	you	could	create	the	objects	as	you	specify	the
list,	like	this:
Click	here	to	view	code	image

>	unnamedList	<-	list(c(5,	7,	8,	2,	4,	3,	9,	0,	1,	2),
+																					matrix(	LETTERS[1:6],	nrow	=	3))
>	unnamedList
[[1]]



	[1]	5	7	8	2	4	3	9	0	1	2

[[2]]
					[,1]	[,2]
[1,]	“A”		“D”
[2,]	“B”		“E”
[3,]	“C”		“F”

Creating	a	List	with	Element	Names
When	you	create	a	list,	you	can	optionally	assign	names	to	the	elements.	This	helps	you
when	you’re	referencing	elements	in	the	list	later.
Click	here	to	view	code	image

>	namedList	<-	list(VEC	=	aVector,	MAT	=	aMatrix)
>	namedList
$VEC
	[1]	5	7	8	2	4	3	9	0	1	2

$MAT
					[,1]	[,2]
[1,]	“A”		“D”
[2,]	“B”		“E”
[3,]	“C”		“F”

As	before,	you	can	also	create	the	(named)	objects	as	you’re	creating	the	list:
Click	here	to	view	code	image

>	namedList	<-	list(VEC	=	c(5,	7,	8,	2,	4,	3,	9,	0,	1,	2),
+																					MAT	=	matrix(	LETTERS[1:6],	nrow	=	3))
>	namedList
$VEC
	[1]	5	7	8	2	4	3	9	0	1	2

$MAT
					[,1]	[,2]
[1,]	“A”		“D”
[2,]	“B”		“E”
[3,]	“C”		“F”

Creating	a	List:	A	Summary
You	have	now	seen	a	few	different	ways	of	creating	a	list.	It	is	worth	recapping	the	ways
in	which	we	created	the	lists	with	some	code	examples:
Click	here	to	view	code	image

>	#	Create	an	empty	list
>	emptyList	<-	list()

>	#	2	Ways	of	Creating	an	unnamed	list	containing	a	vector	and	a	matrix
>	unnamedList	<-	list(aVector,	aMatrix)
>	unnamedList	<-	list(c(5,	7,	8,	2,	4,	3,	9,	0,	1,	2),
+																					matrix(	LETTERS[1:6],	nrow	=	3))

>	#	2	Ways	of	Creating	a	named	list	containing	a	vector	and	a	matrix
>	namedList	<-	list(VEC	=	aVector,	MAT	=	aMatrix)
>	namedList	<-	list(VEC	=	c(5,	7,	8,	2,	4,	3,	9,	0,	1,	2),
+																			MAT	=	matrix(	LETTERS[1:6],	nrow	=	3))

In	these	examples,	we	created	three	lists	that	we	will	use	as	examples	over	the	next	few



sections:
Click	here	to	view	code	image

>	emptyList									#	An	empty	list
list()

>	unnamedList							#	A	list	with	unnamed	elements
[[1]]
	[1]	5	7	8	2	4	3	9	0	1	2

[[2]]
					[,1]	[,2]
[1,]	“A”		“D”
[2,]	“B”		“E”
[3,]	“C”		“F”

>	namedList									#	A	list	with	element	names
$VEC
	[1]	5	7	8	2	4	3	9	0	1	2

$MAT
					[,1]	[,2]
[1,]	“A”		“D”
[2,]	“B”		“E”
[3,]	“C”		“F”

Note:	Printing	Style

Notice	the	difference	in	printing	when	a	list	has	element	names	versus	when	there
are	no	element	names:	Elements	are	indexed	with	double	square	brackets	(for
example,	[[1]])	for	“unnamed”	lists,	and	with	dollar	symbols	(for	example,
$VEC)	for	“named”	lists.	This	gives	you	a	hint	as	to	how	you’ll	be	able	to	reference
the	elements	of	a	list	later.

List	Attributes
As	with	single-mode	structures,	a	set	of	functions	allows	you	to	query	some	of	the	list
attributes.	Specifically,	you	can	use	the	length	function	to	query	the	number	of	elements
in	the	list,	and	the	names	function	to	return	the	element	names.

The	length	function	returns	the	number	of	elements	in	the	list,	as	shown	here:
>	length(emptyList)
[1]	0
>	length(unnamedList)
[1]	2
>	length(namedList)
[1]	2

The	names	function	returns	the	names	of	the	elements	in	the	list,	or	NULL	if	there	are	no
elements	or	no	element	names	assigned:

>	names(emptyList)
NULL
>	names(unnamedList)
NULL
>	names(namedList)
[1]	“VEC”	“MAT”



With	single-mode	data	structures,	we	additionally	used	the	mode	function	to	return	the
type	of	data	they	held.	Because	lists	are	multi-mode	structures,	there	is	no	longer	a	single
mode	of	data	being	stored,	so	the	word	“list”	is	returned:

>	mode(emptyList)
[1]	“list”
>	mode(unnamedList)
[1]	“list”
>	mode(namedList)
[1]	“list”

Subscripting	Lists
Two	types	of	list	subscripting	can	be	performed:

	You	can	create	a	subset	of	the	list,	returning	a	shorter	list.

	You	can	reference	a	single	element	within	the	list.

Subsetting	the	List
You	can	use	square	brackets	to	select	a	subset	of	an	existing	list.	The	return	object	will
itself	be	a	list.
Click	here	to	view	code	image

LIST	[	Input	specifying	the	subset	of	list	to	return	]

As	with	vectors,	you	can	put	one	of	five	input	types	in	the	square	brackets,	as	shown	in
Table	4.1.

TABLE	4.1	Possible	List	Subscripting	Inputs

To	illustrate	the	subsetting	of	lists,	we	will	use	the	namedList	object	created	earlier.

Blank	Subscripts

If	you	use	a	blank	subscript,	the	whole	of	the	list	is	returned:
Click	here	to	view	code	image

>	namedList	[	]		#	Blank	subscript
$VEC
	[1]	5	7	8	2	4	3	9	0	1	2

$MAT
					[,1]	[,2]
[1,]	“A”		“D”
[2,]	“B”		“E”
[3,]	“C”		“F”



Positive	Integer	Subscripts

If	you	use	a	vector	of	positive	integers,	it	is	used	as	an	index	of	elements	to	return:
Click	here	to	view	code	image

>	subList	<-	namedList	[	1	]			#	Return	first	element
>	subList																						#	Print	the	new	object
$VEC
	[1]	5	7	8	2	4	3	9	0	1	2

>	length(subList)														#	Number	of	elements	in	the	list
[1]	1
>	class(subList)															#	Check	the	“class”	of	the	object
[1]	“list”

As	you	can	see	from	this	example,	the	return	object	(saved	as	subList	here)	is	itself	a
list.	You	can	also	use	the	class	function	to	check	the	type	of	object,	and	it	confirms
subList	is	a	list	object.

Note:	An	Object’s	Class

This	is	the	first	time	in	this	book	you’ve	seen	the	class	function	used.	It	returns
the	type	of	objects,	whereas	the	mode	function	returns	the	type	of	data	held	in	an
object.	Let’s	illustrate	this	distinction	with	a	numeric	matrix:

Click	here	to	view	code	image
>	aMatrix	<-	matrix(1:6,	nrow	=	2)						#	Create	a	numeric	matrix
>	aMatrix																															#	Print	the	matrix
					[,1]	[,2]	[,3]
[1,]				1				3				5
[2,]				2				4				6

>	mode(aMatrix)																									#	Mode	of	data	held	in	this	object
[1]	“numeric”

>	class(aMatrix)																								#	Type	(or	“class”)	of	object
[1]	“matrix”

Negative	Integer	Subscripts

You	can	provide	a	vector	of	negative	integers	to	specify	the	index	of	list	elements	to	omit:
Click	here	to	view	code	image

>	namedList
$VEC
	[1]	5	7	8	2	4	3	9	0	1	2

$MAT
					[,1]	[,2]
[1,]	“A”		“D”
[2,]	“B”		“E”
[3,]	“C”		“F”
>	namedList	[	-1	]			#	Return	all	but	the	first	element
$MAT
					[,1]	[,2]
[1,]	“A”		“D”
[2,]	“B”		“E”
[3,]	“C”		“F”



Logical	Value	Subscripts

You	can	provide	a	vector	of	logical	integers	to	specify	the	list	elements	to	return	and	omit:
Click	here	to	view	code	image

>	namedList
$VEC
	[1]	5	7	8	2	4	3	9	0	1	2

$MAT
					[,1]	[,2]
[1,]	“A”		“D”
[2,]	“B”		“E”
[3,]	“C”		“F”

>	namedList	[	c(T,	F)	]		#	Vector	of	logical	values
$VEC
	[1]	5	7	8	2	4	3	9	0	1	2

Character	Value	Subscripts

If	your	list	has	element	names,	you	can	provide	a	vector	of	character	values	to	identify	the
(named)	elements	you	wish	to	return:
Click	here	to	view	code	image

>	namedList
$VEC
	[1]	5	7	8	2	4	3	9	0	1	2

$MAT
					[,1]	[,2]
[1,]	“A”		“D”
[2,]	“B”		“E”
[3,]	“C”		“F”

>	namedList	[	“MAT”	]								#	Vector	of	Character	values
$MAT
					[,1]	[,2]
[1,]	“A”		“D”
[2,]	“B”		“E”
[3,]	“C”		“F”

Reference	List	Elements
In	the	last	section,	you	saw	that	you	can	reference	a	list	using	square	brackets	to	“subset”
the	list	(that	is,	return	a	list	containing	only	a	subset	of	the	original	elements).	More
commonly,	you’ll	want	to	reference	a	specific	element	within	your	list.

You	can	reference	elements	of	a	list	in	two	ways:

	You	can	use	“double”	square	brackets.

	If	there	are	element	names,	you	can	use	the	$	symbol.

Double	Square	Bracket	Referencing

You	can	directly	reference	an	element	of	a	list	using	double	square	brackets.	Although
there	are	a	number	of	uses	of	the	double	square	brackets,	the	most	common	use	is	to
supply	a	single	integer	index	to	refer	to	the	element	to	extract:



Click	here	to	view	code	image
>	namedList														#	The	original	list
$VEC
	[1]	5	7	8	2	4	3	9	0	1	2

$MAT
					[,1]	[,2]
[1,]	“A”		“D”
[2,]	“B”		“E”
[3,]	“C”		“F”

>	namedList[[1]]									#	The	first	element
	[1]	5	7	8	2	4	3	9	0	1	2
>	namedList[[2]]									#	The	second	element
					[,1]	[,2]
[1,]	“A”		“D”
[2,]	“B”		“E”
[3,]	“C”		“F”

>	mode(namedList[[2]])			#	The	mode	of	the	second	element
[1]	“character”

When	you	use	double	square	brackets	in	this	way,	you	are	directly	referencing	the	objects
contained	within	the	list,	as	supported	by	the	result	of	the	mode	function	call.	This	is	in
contrast	to	the	use	of	the	single	square	bracket	earlier,	where	we	extracted	a	subset	of	the
list	itself:
Click	here	to	view	code	image

>	namedList	[1]										#	Return	a	list	containing	1	element
$VEC
	[1]	5	7	8	2	4	3	9	0	1	2

>	namedList	[[1]]								#	Return	the	first	element	of	the	list	(a	vector)
	[1]	5	7	8	2	4	3	9	0	1	2

Referencing	Named	Elements	with	$

If	the	elements	of	your	list	are	named,	you	can	use	the	$	symbol	to	directly	reference
them.	As	such,	the	following	lines	of	code	are	equivalent	ways	of	referencing	the	first	(the
“VEC”)	element	of	our	namedList	object:
Click	here	to	view	code	image

>	namedList														#	Print	the	original	list
$VEC
	[1]	5	7	8	2	4	3	9	0	1	2

$MAT
					[,1]	[,2]
[1,]	“A”		“D”
[2,]	“B”		“E”
[3,]	“C”		“F”

>	namedList[[1]]									#	Return	the	first	element
	[1]	5	7	8	2	4	3	9	0	1	2
>	namedList$VEC										#	Return	the	“VEC”	element
	[1]	5	7	8	2	4	3	9	0	1	2



Double	Square	Brackets	versus	$

The	$	symbol	provides	a	more	intuitive	way	of	referencing	named	list	elements,	which	is
also	more	aesthetically	pleasing	than	the	use	of	double	square	brackets.	We	tend	to	use
double	square	brackets	when	there	are	no	element	names	assigned,	and	use	$	when	names
exist.	Here’s	an	example:
Click	here	to	view	code	image

>	unnamedList								#	List	with	no	element	names
[[1]]
	[1]	5	7	8	2	4	3	9	0	1	2

[[2]]
					[,1]	[,2]
[1,]	“A”		“D”
[2,]	“B”		“E”
[3,]	“C”		“F”

>	unnamedList[[1]]			#	First	element
	[1]	5	7	8	2	4	3	9	0	1	2

>	namedList										#	List	with	element	names
$VEC
	[1]	5	7	8	2	4	3	9	0	1	2

$MAT
					[,1]	[,2]
[1,]	“A”		“D”
[2,]	“B”		“E”
[3,]	“C”		“F”

>	namedList$VEC						#	The	“VEC”	element
	[1]	5	7	8	2	4	3	9	0	1	2

Tip:	Shortened	$	Referencing

When	you	use	the	$	symbol,	you	only	need	to	provide	enough	of	the	name	so	that	R
understands	which	element	you	are	referring	to.	This	is	illustrated	in	the	following
example:

Click	here	to	view	code	image
>	aList	<-	list(	first	=	1,	second	=	2,	third	=	3,	fourth	=	4	)
>	aList$s			#	Returns	the	second
[1]	2
>	aList$fi		#	Returns	the	first
[1]	1
>	aList$fo		#	Returns	the	fourth
[1]	4

Although	it	is	possible	to	use	shortened	referencing	in	this	way,	it	can	lead	to	less
maintainable	and	readable	code,	and	should	be	avoided	where	possible	when
creating	scripts.

Adding	List	Elements
You	can	add	elements	to	a	list	in	one	of	two	ways:



	By	directly	adding	an	element	with	a	specific	name	or	in	a	specific	position

	By	combing	lists	together

Directly	Adding	a	List	Element

You	can	add	a	single	element	to	a	list	by	assigning	it	into	a	specific	index	or	name.	The
syntax	mirrors	that	of	the	“Double	Square	Brackets	versus	$”	section	earlier.	For	example,
let’s	add	a	single	element	to	our	empty	list:
Click	here	to	view	code	image

>	emptyList																										#	Empty	list
[[1]]
[1]	“A”	“B”	“C”	“D”	“E”

>	emptyList[[1]]	<-	LETTERS[1:5]					#	Add	an	element

>	emptyList																										#	Updated	(non)empty	list
[[1]]
[1]	“A”	“B”	“C”	“D”	“E”

Instead	of	using	the	double	square	brackets,	we	can	use	the	$	symbol	to	add	a	“named”
element	to	a	list:
Click	here	to	view	code	image

>	emptyList	<-	list()																#	Recreate	the	empty	list
>	emptyList																										#	Empty	list
list()
>	emptyList$ABC	<-	LETTERS[1:5]						#	Add	an	element
>	emptyList																										#	Updated	(non)empty	list
$ABC
[1]	“A”	“B”	“C”	“D”	“E”

Note:	Adding	Nonconsecutive	Elements

The	preceding	examples	uses	either	square	brackets	or	the	$	symbol	to	add
elements	to	the	“first”	position	of	an	empty	list.	If	we	add	an	element	to	a	later
index,	R	interpolates	a	number	of	NULL	elements	to	fill	any	gaps	in	the	list:

Click	here	to	view	code	image
>	emptyList	<-	list()																#	Recreate	the	empty	list
>	emptyList																										#	Empty	list
list()
>	emptyList[[3]]	<-	“Hello”										#	Assign	to	third	element
>	emptyList
[[1]]
NULL

[[2]]
NULL

[[3]]
[1]	“Hello”

Combining	Lists

You	can	grow	lists	by	combining	them	together	using	the	c	function,	as	shown	here:



Click	here	to	view	code	image
>	list1	<-	list(A	=	1,	B	=	2)			#	Create	list1
>	list2	<-	list(C	=	3,	D	=	4)			#	Create	list2
>	c(list1,	list2)															#	Combine	the	lists
$A
[1]	1

$B
[1]	2

$C
[1]	3

$D
[1]	4

A	Summary	of	List	Syntax
As	you	have	seen	so	far	in	this	hour,	the	way	we	use	lists	varies	slightly	based	on	whether
the	elements	of	the	list	are	named.	At	this	point,	it	is	worth	reviewing	the	syntax	to	create
and	manage	“unnamed”	and	“named”	list	structures.

Overview	of	Unnamed	Lists

An	overview	of	the	key	syntax	covered	is	shown	here,	using	a	list	without	named	elements
as	an	example.	First,	let’s	create	a	list	and	look	at	the	list	attributes:
Click	here	to	view	code	image

>	unnamedList	<-	list(aVector,	aMatrix)			#	Create	the	list

>	unnamedList																													#	Print	the	list
[[1]]
	[1]	5	7	8	2	4	3	9	0	1	2

[[2]]
					[,1]	[,2]	[,3]
[1,]				1				3				5
[2,]				2				4				6

>	length(unnamedList)																					#	Number	of	elements
[1]	2

>	names(unnamedList)																						#	No	element	names
NULL

We	can	subset	the	list	or	extract	list	elements	using	single/double	square	brackets:
Click	here	to	view	code	image

>	unnamedList[1]																										#	Subset	the	list
[[1]]
	[1]	5	7	8	2	4	3	9	0	1	2

>	unnamedList[[1]]																								#	Return	the	first	element
	[1]	5	7	8	2	4	3	9	0	1	2

>	unnamedList[[3]]	<-	1:5																	#	Add	a	new	element

>	unnamedList
[[1]]
	[1]	5	7	8	2	4	3	9	0	1	2



[[2]]
					[,1]	[,2]	[,3]
[1,]				1				3				5
[2,]				2				4				6

[[3]]
[1]	1	2	3	4	5

Overview	of	Named	Lists

Let’s	look	at	a	similar	example	using	a	list	with	element	names.	First,	let’s	create	the	list
and	view	the	list	attributes:
Click	here	to	view	code	image

>	namedList	<-	list(VEC	=	aVector,	MAT	=	aMatrix)			#	Create	the	list

>	namedList																																									#	Print	the	list
$VEC
	[1]	5	7	8	2	4	3	9	0	1	2

$MAT
					[,1]	[,2]	[,3]
[1,]				1				3				5
[2,]				2				4				6

>	length(namedList)																					#	Number	of	elements
[1]	2

>	names(namedList)																						#	Element	names
[1]	“VEC”	“MAT”

We	can	subset	the	list	using	single	square	brackets,	or	reference	elements	directly	with	the
$	symbol:
Click	here	to	view	code	image

>	namedList[1]																										#	Subset	the	list
$VEC
	[1]	5	7	8	2	4	3	9	0	1	2

>	namedList$VEC																									#	Return	the	first	element
	[1]	5	7	8	2	4	3	9	0	1	2

>	namedList$NEW	<-	1:5																		#	Add	a	new	element

>	namedList
$VEC
	[1]	5	7	8	2	4	3	9	0	1	2

$MAT
					[,1]	[,2]	[,3]
[1,]				1				3				5
[2,]				2				4				6

$NEW
[1]	1	2	3	4	5



Motivation	for	Lists
A	good	understanding	of	lists	helps	you	to	accomplish	a	number	of	useful	tasks	in	R.	To
illustrate	this,	we	will	briefly	look	at	two	use	cases	that	rely	on	list	structures.	Note	that
this	section	includes	syntax	that	will	be	covered	later	in	this	book,	but	we	include	it	here	to
illustrate	“the	art	of	the	possible”	at	this	stage.

Flexible	Simulation

Consider	a	situation	where	we	want	to	simulate	a	number	of	extreme	values	(for	example,
large	financial	losses	by	day,	or	particularly	high	values	of	some	measure	for	each	patient
in	a	drug	study).	For	each	iteration,	we	may	simulate	any	number	of	numeric	values	from
a	given	distribution.

A	list	provides	a	flexible	structure	to	hold	all	the	simulated	data.	Consider	the	following
code	example:
Click	here	to	view	code	image

>	nExtremes	<-	rpois(100,	3)																#	Simulate	number	of	extreme
values	by
																																														day	from	a	Poisson	distribution
>	nExtremes[1:5]																												#	First	5	numbers
[1]	0	3	5	7	3

>	#	Define	function	that	simulates	“N”	extreme	values
>	exFun	<-	function(N)	round(rweibull(N,	shape	=	5,	scale	=	1000))
>	extremeValues	<-	lapply(nExtremes,	exFun)	#	Apply	the	function	to	our
simulated
																																														numbers

>	extremeValues[1:5]																								#	First	5	simulated	outputs
[[1]]
numeric(0)

[[2]]
[1]	1305		948	1077

[[3]]
[1]	676	516	865	614	970

[[4]]
[1]		618	1217		818	1173	1205	1105		519

[[5]]
[1]	1026		933		657

From	this	example,	note	that	the	first	simulated	output	generated	no	“extreme”	values,
resulting	in	the	output	containing	an	empty	numeric	vector	(signified	by	numeric(0)).
The	“unnamed”	list	structure	allows	us	to	hold,	in	the	same	structure:

	This	empty	vector	(indicating	no	“extreme	values”	for	a	particular	day)

	Large	vectors	holding	a	number	of	simulated	outputs	(for	days	where	many
“extreme	values”	were	simulated)

Given	that	we	have	stored	this	information	in	a	list,	we	can	query	it	to	summarize	the
average	number	and	average	of	extreme	values:



Click	here	to	view	code	image
>	median(sapply(extremeValues,	length))					#	Average	number	of	simulated
extremes
[1]	3
>	median(sapply(extremeValues,	sum))								#	Average	extreme	value
[1]	2634

Tip:	The	apply	Functions

In	the	preceding	examples,	we	used	functions	such	as	lapply	(which	applies	a
function	to	each	element	of	a	list)	and	sapply	(which	performs	the	same	action
but	simplifies	the	outputs).	We	cover	the	apply	family	of	functions	later	in	Hour	9,
“Loops	and	Summaries.”

Extracting	Elements	from	Named	Lists

In	R,	most	objects	are,	fundamentally,	lists.	For	example,	let’s	use	the	t.test	function	to
perform	a	simple	T-test.	We	will	take	the	example	straight	from	the	t.test	help	file:
Click	here	to	view	code	image

>	theTest	<-	t.test(1:10,	y	=	c(7:20))						#	Perform	a	T-Test
>	theTest																																			#	Print	the	output

										Welch	Two	Sample	t-test

data:		1:10	and	c(7:20)
t	=	-5.4349,	df	=	21.982,	p-value	=	1.855e-05
alternative	hypothesis:	true	difference	in	means	is	not	equal	to	0
95	percent	confidence	interval:
	-11.052802		-4.947198
sample	estimates:
mean	of	x	mean	of	y
						5.5						13.5

The	output	is	printed	as	a	nicely	formatted	text	summary	informing	us	of	the	significant	T-
test.	But	what	if	we	wanted	to	use	one	of	the	elements	of	this	output	in	further	work	(for
example,	the	p-value).	Consulting	the	help	file,	we	see	the	return	value	is	described	as
follows:

Value
A	list	with	class	htest	containing	the	following	components:

	statistic	The	value	of	the	t-statistic.

	parameter	The	degrees	of	freedom	for	the	t-statistic.

	p.value	The	p-value	for	the	test.

	conf.int	A	confidence	interval	for	the	mean	appropriate	to	the	specified
alternative	hypothesis.

	estimate	The	estimated	mean	or	difference	in	means,	depending	on	whether	it
was	a	one-sample	test	or	a	two-sample	test.

	null.value	The	specified	hypothesized	value	of	the	mean	or	mean	difference,



depending	on	whether	it	was	a	one-sample	test	or	a	two-sample	test.

	alternative	A	character	string	describing	the	alternative	hypothesis.

	method	A	character	string	indicating	what	type	of	t-test	was	performed.

	data.name	A	character	string	giving	the	name(s)	of	the	data.

The	key	thing	to	note	here	is	that	the	return	object	is	“a	list.”	Given	that	the	output	is	a	list,
we	can	query	the	named	elements	of	this	list	and	see	that	the	result	matches	the
description	of	elements	in	the	help	file:
Click	here	to	view	code	image

>	names(theTest)								#	Names	of	list	elements
[1]	“statistic”			“parameter”			“p.value”					“conf.int”				“estimate”
[6]	“null.value”		“alternative”	“method”						“data.name”

Given	that	this	is	a	named	list,	and	we	know	the	names	of	the	elements,	we	can	use	the	$
symbol	to	directly	reference	the	information	we	need:
Click	here	to	view	code	image

>	theTest$p.value							#	Reference	the	p-value
[1]	1.855282e-05

Using	this	approach,	we	can	reference	a	wide	range	of	elements	from	R	outputs.



Note:	Print	Methods

In	the	preceding	example,	we	created	a	complex	object	(fundamentally,	a	named
list)	that	printed	in	a	neat	manner:

Click	here	to	view	code	image
>	theTest																																			#	Print	the	output

										Welch	Two	Sample	t-test

data:		1:10	and	c(7:20)
t	=	-5.4349,	df	=	21.982,	p-value	=	1.855e-05
alternative	hypothesis:	true	difference	in	means	is	not	equal	to	0
95	percent	confidence	interval:
	-11.052802		-4.947198
sample	estimates:
mean	of	x	mean	of	y
						5.5						13.5

The	neat	printout	is	generated	by	a	print	“method”	associated	with	outputs	from
t.test.	If	we	want	to	see	the	“raw”	underlying	structure,	we	can	use	the
print.default	function,	which	confirms	that	the	structure	is	list	based:

>	print.default(theTest)
$statistic
							t
-5.43493

$parameter
						df
21.98221

$p.value
[1]	1.855282e-05
…

Data	Frames
In	the	last	section,	we	introduced	the	“list”	structure,	which	allows	you	to	store	a	set	of
objects	of	any	mode.	A	data	frame	is,	like	many	R	objects,	a	named	list.	However,	a	data
frame	enforces	a	number	of	constraints	on	this	named	list	structure.	In	particular,	a	data
frame	is	constrained	to	be	a	named	list	that	can	only	hold	vectors	of	the	same	length.

Creating	a	Data	Frame
We	create	a	data	frame	by	specifying	a	set	of	named	vectors	to	the	data.frame.	For
example,	let’s	create	a	data	frame	containing	New	York	temperature	forecasts	over	the
next	five	days:
Click	here	to	view	code	image

>	weather	<-	data.frame(																		#	Create	a	data	frame
+			Day			=	c(“Saturday”,	“Sunday”,	“Monday”,	“Tuesday”,	“Wednesday”),
+			Date		=	c(“Jul	4”,	“Jul	5”,	“Jul	6”,	“Jul	7”,	“Jul	8”),
+			TempF	=	c(75,	86,	83,	83,	87)
+	)
>	weather																																	#	Print	the	data	frame



								Day		Date	TempF
1		Saturday	Jul	4				75
2				Sunday	Jul	5				86
3				Monday	Jul	6				83
4			Tuesday	Jul	7				83
5	Wednesday	Jul	8				87

Note:	Print	Methods

As	discussed	earlier,	the	neat	printing	of	this	object	is	caused	by	a	print	“method”
for	data	frames.	We	can	see	the	raw	structure	using	print.default,	which
again	confirms	that	a	data	frame	is	fundamentally	a	named	list	of	vectors:

Click	here	to	view	code	image
>	print.default(weather)
$Day
[1]	Saturday		Sunday				Monday				Tuesday			Wednesday
Levels:	Monday	Saturday	Sunday	Tuesday	Wednesday

$Date
[1]	Jul	4	Jul	5	Jul	6	Jul	7	Jul	8
Levels:	Jul	4	Jul	5	Jul	6	Jul	7	Jul	8

$TempF
[1]	75	86	83	83	87

attr(,“class”)
[1]	“data.frame”

Caution:	Nonmatching	Vector	Lengths

If	we	try	to	create	a	data	frame	using	vectors	with	nonmatching	lengths,	we	get	an
error	message:

Click	here	to	view	code	image
>	data.frame(X	=	1:5,	Y	=	1:2)
Error	in	data.frame(X	=	1:5,	Y	=	1:2)	:
		arguments	imply	differing	number	of	rows:	5,	2

Querying	Data	Frame	Attributes
Because	a	data	frame	is	simply	a	named	list,	the	functions	we	used	to	query	list	attributes
will	work	the	same	way:

	The	length	function	returns	the	number	of	elements	of	the	list	(that	is,	the	number
of	columns).

	The	names	function	returns	the	element	(column)	names.

The	following	example	illustrates	the	use	of	these	functions:
Click	here	to	view	code	image

>	length(weather)											#	Number	of	columns
[1]	3
>	names(weather)												#	Column	names
[1]	“Day”			“Date”		“TempF”



Selecting	Columns	from	the	Data	Frame
As	with	lists,	we	can	reference	a	single	element	(vector)	from	our	data	frame	using	either
double	squared	brackets	or	the	$	symbol:
Click	here	to	view	code	image

>	weather									#	The	whole	data	frame
								Day		Date	TempF
1		Saturday	Jul	4				75
2				Sunday	Jul	5				86
3				Monday	Jul	6				83
4			Tuesday	Jul	7				83
5	Wednesday	Jul	8				87

>	weather[[3]]				#	The	“third”	column
[1]	75	86	83	83	87
>	weather$TempF			#	The	“TempF”	column
[1]	75	86	83	83	87

Selecting	Columns	from	the	Data	Frame
Because	we	can	reference	columns	in	this	way,	we	can	also	use	these	approaches	to	add
new	columns.	For	example,	let’s	add	a	new	column	called	TempC	to	our	data	containing
the	temperature	in	degrees	Celsius:
Click	here	to	view	code	image

>	weather$TempC	<-	round(	(weather$TempF	-	32)	*	5/9	)
>	weather
								Day		Date	TempF	TempC
1		Saturday	Jul	4				75				24
2				Sunday	Jul	5				86				30
3				Monday	Jul	6				83				28
4			Tuesday	Jul	7				83				28
5	Wednesday	Jul	8				87				31

Subscripting	Columns
Because	the	columns	of	data	frames	are	vectors,	we	can	subscript	them	using	the
approaches	from	Hour	3,	“Single-Mode	Data	Structures.”	Specifically,	we	can	subscript
the	columns	using	square	brackets:
Click	here	to	view	code	image

DATA$COLUMN	[	Input	specifying	the	subset	to	return	]

As	before,	we	can	reference	using	blank,	positive,	negative,	or	logical	inputs.	Character
inputs	do	not	make	sense	for	referencing	columns	because	the	individual	elements	within
columns	are	not	associated	with	element	names.

Blank,	Positive,	and	Negative	Subscripts

If	we	use	a	blank	subscript,	all	the	values	of	the	vector	are	returned:
Click	here	to	view	code	image

>	weather
								Day		Date	TempF	TempC
1		Saturday	Jul	4				75				24
2				Sunday	Jul	5				86				30



3				Monday	Jul	6				83				28
4			Tuesday	Jul	7				83				28
5	Wednesday	Jul	8				87				31

>	weather$TempF	[	]		#	All	values	of	TempF	column
[1]	75	86	83	83	87

If	we	use	a	vector	of	positive	integers,	it	refers	to	the	elements	of	the	column	(vector)	to
return:
Click	here	to	view	code	image

>	weather$TempF	[	1:3	]		#	First	3	values	of	the	TempF	column
[1]	75	86	83

If	we	use	a	vector	of	negative	integers,	it	refers	to	the	elements	of	the	column	(vector)	to
omit:
Click	here	to	view	code	image

>	weather$TempF	[	-(1:3)	]		#	Omit	the	first	3	values	of	the	TempF	column
[1]	83	87

Logical	Subscripts

As	you	saw	in	the	last	hour,	we	can	provide	a	vector	of	logical	values	to	reference	a
vector,	and	only	the	corresponding	TRUE	values	are	returned.	Here’s	an	example:
Click	here	to	view	code	image

>	weather$TempF
[1]	75	86	83	83	87
>	weather$TempF	[	c(F,	T,	F,	F,	T)	]				#	Logical	subscript
[1]	86	87

Of	course,	we	usually	generate	the	logical	vector	with	a	logical	statement	involving	a
vector.	For	example,	we	could	return	all	the	TempF	values	greater	than	85	using	this
statement:
Click	here	to	view	code	image

>	weather$TempF	[	weather$TempF	>	85	]		#	Logical	subscript
[1]	86	87

Instead,	we	could	reference	a	column	of	a	data	frame	based	on	logical	statements
involving	one	or	more	other	columns	(because	all	columns	are	constrained	to	be	the	same
length):
Click	here	to	view	code	image

>	weather$Day	[	weather$TempF	>	85	]				#	Logical	subscript
[1]	Sunday				Wednesday
Levels:	Monday	Saturday	Sunday	Tuesday	Wednesday



Note:	Factor	Levels

In	the	last	example,	you	can	see	that	the	days	where	the	forecast	is	greater	than
85°F	are	Sunday	and	Wednesday.	However,	you	should	note	two	things	about	the
output:

	There	are	no	quotation	marks	around	the	returned	values	(Sunday	and
Wednesday).

	Additional	“Levels”	information	has	been	printed.

This	strange	output	is	produced	because,	when	you	create	a	data	frame	using
character	columns,	those	columns	are	converted	to	“factors,”	which	are	“category”
columns	that	are	automatically	derived	from	character	vectors	when	used	in	a	data
frame.	You’ll	see	more	on	factors	later	in	Hour	5,	“Dates,	Times,	and	Factors.”

Referencing	as	a	Matrix
Although	a	data	frame	is	structured	as	a	named	list,	its	rectangular	output	is	more	similar
to	the	matrix	structure	you	saw	earlier.	As	such,	R	allows	us	to	reference	the	data	frame	as
if	it	was	a	matrix.

Matrix	Dimensions

Because	we	can	treat	a	data	frame	as	a	matrix,	we	can	use	the	nrow	and	ncol	functions
to	return	the	number	of	rows	and	columns:
Click	here	to	view	code	image

>	nrow(weather)			#	Number	of	rows
[1]	5
>	ncol(weather)			#	Number	of	columns
[1]	4

Subscripting	as	a	Matrix

In	Hour	3,	you	saw	that	you	can	subscript	a	matrix	using	square	brackets	and	two	inputs
(one	for	the	rows,	one	for	the	columns).	We	can	use	the	same	approach	to	subscript	a	data
frame,	where	each	input	can	be	one	of	the	standard	five	input	types:
Click	here	to	view	code	image

DATA.FRAME	[	Rows	to	return	,	Columns	to	return]

Blanks,	Positives,	and	Negatives

We	can	use	blank	subscripts	to	return	all	rows	and	columns	from	a	data	frame:
Click	here	to	view	code	image

>	weather[	,	]											#	Blank,	Blank
								Day		Date	TempF	TempC
1		Saturday	Jul	4				75				24
2				Sunday	Jul	5				86				30
3				Monday	Jul	6				83				28
4			Tuesday	Jul	7				83				28
5	Wednesday	Jul	8				87				31



If	we	use	vectors	of	positive	integers,	they	are	used	to	provide	an	index	of	the
rows/columns	to	return.	This	example	uses	positive	integers	to	return	the	first	four	rows
and	the	first	three	columns:
Click	here	to	view	code	image

>	weather[	1:4,	1:3	]				#	+ive,	+ive
							Day		Date	TempF
1	Saturday	Jul	4				75
2			Sunday	Jul	5				86
3			Monday	Jul	6				83
4		Tuesday	Jul	7				83

We	can	use	vectors	of	negative	integers	to	indicate	the	rows	and	columns	to	omit	in	the
return	result,	as	shown	in	this	example:
Click	here	to	view	code	image

>	weather[	-1,	-3	]						#	-ive,	-ive
								Day		Date	TempC
2				Sunday	Jul	5				30
3				Monday	Jul	6				28
4			Tuesday	Jul	7				28
5	Wednesday	Jul	8				31

In	the	preceding	examples,	we	have	used	the	same	input	type	for	both	rows	and	columns.
However,	we	can	mix	up	the	input	types,	as	illustrated	in	this	example,	where	we	select
the	first	four	rows	and	all	the	columns:
Click	here	to	view	code	image

>	weather[	1:4,	]								#	+ive,	Blank
							Day		Date	TempF	TempC
1	Saturday	Jul	4				75				24
2			Sunday	Jul	5				86				30
3			Monday	Jul	6				83				28
4		Tuesday	Jul	7				83				28

Logical	Subscripts

We	often	use	logical	subscripts	to	reference	specific	rows	of	the	data	to	return.	To	perform
this	action,	we	need	to	provide	a	logical	value	for	each	row	of	the	data:
Click	here	to	view	code	image

>	weather																							#	The	original	data
								Day		Date	TempF	TempC
1		Saturday	Jul	4				75				24
2				Sunday	Jul	5				86				30
3				Monday	Jul	6				83				28
4			Tuesday	Jul	7				83				28
5	Wednesday	Jul	8				87				31

>	weather[	c(F,	T,	F,	F,	T),	]		#	Logical,	Blank
								Day		Date	TempF	TempC
2				Sunday	Jul	5				86				30
5	Wednesday	Jul	8				87				31

As	before,	we	more	commonly	apply	a	logical	statement	to	a	column	(vector)	contained	in
the	data	frame	to	generate	the	logical	vector:
Click	here	to	view	code	image

>	weather[	weather$TempF	>	85,	]							#	Logical,	Blank



								Day		Date	TempF	TempC
2				Sunday	Jul	5				86				30
5	Wednesday	Jul	8				87				31

>	weather[	weather$Day	!=	“Sunday”,	]		#	Logical,	Blank
								Day		Date	TempF	TempC
1		Saturday	Jul	4				75				24
3				Monday	Jul	6				83				28
4			Tuesday	Jul	7				83				28
5	Wednesday	Jul	8				87				31

Character	Subscripts

We	often	use	vectors	of	character	strings	to	specify	the	columns	we	wish	to	return.
Although	a	data	frame	has	“row	names,”	we	tend	not	to	reference	rows	using	character
strings.	This	example	selects	the	Day	and	TempC	columns	from	the	data,	filtering	so	that
only	rows	with	temperatures	greater	than	85°F	are	returned:
Click	here	to	view	code	image

>	weather[	weather$TempF	>	85,	c(“Day”,	“TempC”)]		#	Logical,	Character
								Day	TempC
2				Sunday				30
5	Wednesday				31

Summary	of	Subscripting	Data	Frames
At	this	point,	it	is	worth	a	quick	review	of	some	of	the	key	syntax	used	to	select	subsets	of
a	data	frame.	In	particular,	consider	the	following	lines	of	code:
Click	here	to	view	code	image

>	weather$Day	[	weather$TempF	>	85	]																		#	Days	where	TempF	>	85
[1]	Sunday				Wednesday
Levels:	Monday	Saturday	Sunday	Tuesday	Wednesday

>	weather	[	weather$TempF	>	85	,	]																				#	All	data	where	TempF
>	85
								Day		Date	TempF	TempC
2				Sunday	Jul	5				86				30
5	Wednesday	Jul	8				87				31

>	weather	[	weather$TempF	>	85	,	c(“Day”,	“TempF”)	]		#	2	columns	where	TempF
>	85
								Day	TempF
2				Sunday				86
5	Wednesday				87

In	the	first	example,	we	are	subscripting	weather$Day.	This	is	a	vector,	so	we	provide	a
single	input	(a	logical	vector	in	this	case).	It	returns	the	two	values	of	the	Day	column
where	the	corresponding	TempF	column	is	greater	than	85.

In	the	second	example,	we	are	now	referencing	data	from	the	whole	weather	dataset.	As
such,	we	need	two	subscripts	(one	for	rows,	one	for	columns).	In	this	example,	we	use	a
logical	vector	for	the	rows	and	blank	for	the	columns,	returning	all	columns	but	only	rows
where	TempF	is	greater	than	85.	Attention	should	be	paid	to	the	use	of	the	comma	in	the
first	example	versus	the	second	example,	driven	by	the	fact	that	we	are	referencing	data
from	a	vector	(first	example)	versus	the	whole	data	frame	(second	example).



The	third	example	extends	the	second	example	to	pick	only	columns	Day	and	TempF
using	a	character	vector	for	the	column	input.

Exploring	Your	Data
Later	in	this	book,	you’ll	see	a	range	of	functionality	for	manipulating	data	frames.	For
now,	it	is	useful	for	you	to	look	at	a	few	simple	functions	that	will	help	you	to	quickly
understand	the	data	stored	in	a	data	frame.

The	Top	and	Bottom	of	Your	Data
A	function	called	head	allows	you	to	return	the	first	few	rows	of	the	data.	This	is
particularly	useful	when	you	have	a	large	data	frame	and	only	want	to	get	a	high-level
understanding	of	the	structure	of	the	data	frame.	The	head	function	accepts	any	data
frame	and	will	return	(by	default)	only	the	first	six	rows.	For	this	example,	we	use	the
built-in	iris	data	frame	(for	more	information,	open	the	help	file	for	the	iris	data
frame	using	the	?iris	command):
Click	here	to	view	code	image

>	nrow(iris)									#	Number	of	rows	in	iris
[1]	150
>	head(iris)									#	Return	only	the	first	6	rows
		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1										5.1									3.5										1.4									0.2		setosa
2										4.9									3.0										1.4									0.2		setosa
3										4.7									3.2										1.3									0.2		setosa
4										4.6									3.1										1.5									0.2		setosa
5										5.0									3.6										1.4									0.2		setosa
6										5.4									3.9										1.7									0.4		setosa

This	immediately	gives	us	a	view	on	the	structure	of	the	data.	We	can	see	that	the	iris
data	frame	has	five	columns:	Sepal.Length,	Sepal.Width,	Petal.Length,
Petal.Width,	and	Species.	All	columns	seem	to	be	numeric,	except	the	Species
column,	which	appears	to	be	character	(or	a	“factor,”	as	briefly	discussed	earlier).

The	second	argument	to	the	head	function	is	the	number	of	rows	to	return.	Therefore,	we
could	look	at	more	or	fewer	rows	if	we	wish:
Click	here	to	view	code	image

>	head(iris,	2)			#	Return	only	the	first	3	rows
		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1										5.1									3.5										1.4									0.2		setosa
2										4.9									3.0										1.4									0.2		setosa

If	instead	we	wanted	to	look	at	the	last	few	rows,	we	could	use	the	tail	function.	This
works	in	the	same	way	as	the	head	function,	with	the	data	frame	as	the	first	input	and
(optionally)	the	number	of	rows	to	return	as	the	second	input:
Click	here	to	view	code	image

>	tail(iris)						#	Return	only	the	last	6	rows
				Sepal.Length	Sepal.Width	Petal.Length	Petal.Width			Species
145										6.7									3.3										5.7									2.5	virginica
146										6.7									3.0										5.2									2.3	virginica
147										6.3									2.5										5.0									1.9	virginica



148										6.5									3.0										5.2									2.0	virginica
149										6.2									3.4										5.4									2.3	virginica
150										5.9									3.0										5.1									1.8	virginica
>	tail(iris,	2)			#	Return	only	the	last	2	rows
				Sepal.Length	Sepal.Width	Petal.Length	Petal.Width			Species
149										6.2									3.4										5.4									2.3	virginica
150										5.9									3.0										5.1									1.8	virginica

Viewing	Your	Data
If	you	are	using	the	RStudio	interface,	you	can	use	the	View	function	to	open	the	data	in	a
viewing	grid.	This	feature	in	RStudio	is	evolving	quickly,	so	readers	of	this	book	may	find
the	functionality	richer	than	that	presented	here	(the	version	of	RStudio	being	used	is
0.99.441).	See	Figure	4.1	for	an	example.

FIGURE	4.1	The	iris	dataset	viewed	in	the	RStudio	data	grid	viewer

If	we	use	the	View	function,	our	data	frame	is	opened	in	the	data	grid	viewer	in	RStudio:
Click	here	to	view	code	image

>	View(iris)					#	Open	the	iris	data	in	the	data	grid	viewer

This	window	allows	us	to	scroll	around	our	data,	and	tells	us	the	range	of	data	we	are
viewing	(for	example,	in	Figure	4.1	the	message	at	the	bottom	of	the	viewer	tells	us	that
we	are	looking	at	rows	“1	to	19	of	150”).

The	search	bar	(top	right	of	the	window)	allows	us	to	input	search	criteria	that	will	be	used
to	search	the	entire	dataset.	This	is	used	to	interactively	filter	the	data	based	on	a	partial
matching	of	the	search	term.	As	a	quick	example,	look	at	the	result	of	typing	4.5	in	the
search	bar,	as	shown	in	Figure	4.2.



FIGURE	4.2	Using	the	search	bar	in	the	data	grid	viewer

If	we	click	the	Filter	icon	from	the	top	of	the	data	grid	viewer	window,	we	will	see	a
number	of	filtering	fields	appear,	which	we	can	use	to	interactively	subset	the	data	in	a
more	data-driven	manner.	This	example	uses	the	filter	feature	to	look	only	at	rows	for	the
“setosa”	species	with	Sepal.Length	greater	than	5.5	(see	Figure	4.3).



FIGURE	4.3	Filtering	data	in	the	data	grid	viewer

Summarizing	Your	Data
We	can	use	the	summary	function	to	produce	a	range	of	statistical	summary	outputs	to
summarize	our	data.	The	summary	function	accepts	a	data	frame	and	produces	a	textual
summary	of	each	column	of	the	data:
Click	here	to	view	code	image

>	summary(iris)			#	Produce	a	textual	summary
		Sepal.Length				Sepal.Width					Petal.Length				Petal.Width										Species
	Min.			:4.300			Min.			:2.000			Min.			:1.000			Min.			:0.100			setosa				:50
	1st	Qu.:5.100			1st	Qu.:2.800			1st	Qu.:1.600			1st
Qu.:0.300			versicolor:50
	Median	:5.800			Median	:3.000			Median	:4.350			Median	:1.300			virginica
:50
	Mean			:5.843			Mean			:3.057			Mean			:3.758			Mean			:1.199
	3rd	Qu.:6.400			3rd	Qu.:3.300			3rd	Qu.:5.100			3rd	Qu.:1.800
	Max.			:7.900			Max.			:4.400			Max.			:6.900			Max.			:2.500

Note	that	the	summaries	produced	are	suitable	for	each	column	type	(statistical	summary
for	numeric	columns,	frequency	count	for	factor	columns).

Visualizing	Your	Data
In	this	book,	you	will	see	a	number	of	functions	for	creating	sophisticated	graphical
outputs.	However,	let’s	look	at	one	simple	function	that	creates	an	immediate	visualization
of	the	structure	of	our	data.

We	can	create	a	scatter-plot	matrix	plot	of	our	data	frame	using	the	pairs	function	as
follows:
Click	here	to	view	code	image

>	pairs(iris)			#	Scatter-plot	matrix	of	iris



In	the	graphic	shown	in	Figure	4.4,	each	variable	in	the	data	is	plotted	against	each	other.
For	example,	the	plot	in	the	top-right	corner	is	a	plot	of	Sepal.Length	(y	axis)	against
Species	(x	axis).

FIGURE	4.4	Scatter-plot	Matrix	of	the	iris	data	frame

From	this	plot	we	can	quickly	identify	a	number	of	characteristics	of	our	data:

	We	see	that	the	data	has	five	columns,	whose	names	are	printed	on	the	diagonal	of
the	plot.

	We	can	again	see	that	Species	is	a	factor	column,	whereas	the	rest	are	numeric.

	If	we	look	at	the	plots	on	the	right	side	of	the	chart,	we	can	see	each	numeric
variable	plotted	against	Species	and	note	that	the	numeric	data	would	seem	to
vary	across	each	level	of	Species.

	Columns	Petal.Length	and	Petal.Width	would	seem	to	be	highly
correlated.



Summary
In	this	hour,	we	focused	on	two	structures	that	store	“multi-mode”	data	(that	is,	data
containing	more	than	one	data	type).	First,	we	looked	at	lists,	which	allow	us	to	store	any
number	of	objects	of	varying	modes.	Then,	we	looked	at	data	frames	as	a	special	“type”	of
list	that	stores	rectangular	datasets	in	an	effective	manner.

Although	lists	are	very	powerful	structures,	when	we	import	data	into	R	(which	you’ll	see
in	Hour	10,	“Importing	and	Exporting”),	it	will	be	stored	as	a	data	frame.	Therefore,	you
need	to	be	very	comfortable	manipulating	this	structure	in	particular.	You	should	practice
the	syntax	relating	the	subscripting	of	data	frames	using	square	brackets	and	the	$	symbol,
because	this	is	a	fundamental	skill	useful	across	all	R	tasks.

Q&A
Q.	Can	we	create	nested	lists?

A.	Yes.	Because	lists	can	store	any	type	of	object,	they	can	themselves	store	other	lists.
Here’s	an	example:

Click	here	to	view	code	image
>	nestedList	<-	list(A	=	1,	B	=	list(C	=	3,	D	=	4))		#	Create	a	nested
list
>	nestedList																																									#	Print	the	nested
list
$A
[1]	1

$B
$B$C
[1]	3

$B$D
[1]	4

>	nestedList$B$C																	#	Extract	the	C	element	within	the	B
element
[1]	3

Q.	What	other	inputs	can	we	use	within	the	double	square	brackets?

A.	In	the	last	hour,	you	saw	that	you	can	use	integers	to	directly	reference	elements	of	a
list.	Refer	to	the	help	file	(opened	using	?"[[")	for	a	complete	list	of	possible
inputs.	However,	it	is	worth	nothing	that	you	can	use	single-character	strings	to
reference	columns.	Here’s	an	example:

Click	here	to	view	code	image
>	weather											#	The	full	dataset
								Day		Date	TempF	TempC
1		Saturday	Jul	4				75				24
2				Sunday	Jul	5				86				30
3				Monday	Jul	6				83				28
4			Tuesday	Jul	7				83				28
5	Wednesday	Jul	8				87				31
>	col	<-	“TempC”				#	The	column	we	want	to	select
>	weather[[col]]				#	Return	the	TempC	column



[1]	24	30	28	28	31

Q.	What	is	the	difference	between	DF[	]	and	DF[	,	]?

A.	As	shown	previously,	you	subscript	data	from	a	data	frame	using	square	brackets.
Here’s	an	example:

Click	here	to	view	code	image
>	weather	[	,	c(“Day”,	“TempC”)	]			#	All	rows,	2	columns
								Day	TempC
1		Saturday				24
2				Sunday				30
3				Monday				28
4			Tuesday				28
5	Wednesday				31

In	this	example,	we	provide	two	subscripts	for	the	data	frame:	blank	for	the	rows	(so
all	rows	are	returned)	and	a	character	vector	to	select	two	columns.	The	subscripts
are	separated	by	a	comma.	If	we	omit	the	comma,	we	appear	to	get	the	same	result:

Click	here	to	view	code	image
>	weather	[	c(“Day”,	“TempC”)	]					#	2	vector	elements
								Day	TempC
1		Saturday				24
2				Sunday				30
3				Monday				28
4			Tuesday				28
5	Wednesday				31

Here,	we	are	using	the	fact	that	a	data	frame	is	actually	a	named	list	of	vectors.	In
this	case,	we	are	creating	a	“sub-list”	containing	only	the	two	columns	specified.

Q.	Why,	when	I	select	a	single	column,	is	it	returned	as	a	vector?

A.	When	you	select	a	single	column	via	the	square	brackets	approach,	it	is	indeed
returned	as	a	vector:

Click	here	to	view	code	image
>	weather	[	,	c(“Day”,	“TempC”)	]			#	2	columns	-	returns	a	data	frame
								Day	TempC
1		Saturday				24
2				Sunday				30
3				Monday				28
4			Tuesday				28
5	Wednesday				31
>	weather	[	,	“TempC”	]													#	1	column	-	returns	a	vector
[1]	24	30	28	28	31

In	this	case,	the	last	line	is	equivalent	to	weather$TempC.	When	you	select	a
single	column	of	data,	R	simplifies	the	output	in	a	way	that’s	similar	to	how	you	saw
matrix	dimensions	dropped	in	Hour	3.	If	you	specifically	want	to	retain	the
dimensional	structure,	you	can	use	the	argument	drop	within	the	square	brackets,
as	follows:

Click	here	to	view	code	image
>	weather	[	,	“TempC”,	drop	=	F	]			#	1	column	-	retain	dimensions
		TempC
1				24
2				30



3				28
4				28
5				31

As	you	can	see	from	the	output,	the	use	of	drop	=	F	retains	the	structure,
returning	a	5×1	data	frame.

Workshop
The	workshop	contains	quiz	questions	and	exercises	to	help	you	solidify	your
understanding	of	the	material	covered.	Try	to	answer	all	questions	before	looking	at	the
“Answers”	section	that	follows.

Quiz
1.	What	is	a	“list”	object?

2.	How	do	we	reference	elements	from	a	list?

3.	What	is	the	“mode”	of	a	list?

4.	What’s	the	difference	between	a	list	and	a	data	frame?

5.	Name	two	ways	we	can	return	the	number	of	columns	of	a	data	frame.

6.	If	we	run	the	following	code,	what	would	the	contents	and	structure	of	result1
and	result2	contain?

Click	here	to	view	code	image
>	myDf	<-	data.frame(X	=	-2:2,	Y	=	1:5)
>	result1	<-	myDf$Y	[	myDf$X	>	0	]
>	result2	<-	myDf	[	myDf$X	>	0,	]

7.	What	is	the	difference	between	the	head	and	tail	functions?

Answers
1.	A	“list”	is	a	simple	R	object	that	can	contain	any	number	of	objects	of	any	“class.”

2.	We	can	reference	elements	of	a	list	using	the	“double	square	brackets”	notation.
Most	commonly,	we	provide	the	index	of	the	element	we	want	to	return	from	the	list
(for	example,	myList[[2]]	for	the	second	element).	If	a	list	has	element	names,
we	can	alternatively	use	the	dollar	notation,	specifying	the	name	of	the	list	element
(for	example,	myList$X	to	return	the	X	element	of	myList).

3.	Because	a	list	is	a	“multi-mode”	object,	it	has	no	explicit	“mode.”	If	you	ask	for	a
list’s	mode,	it	simply	returns	“list.”

4.	A	list	can	contain	any	number	of	objects	of	any	class—its	elements	may	be	named
or	unnamed.	A	data	frame	is	a	“named”	list	that	is	restricted	to	contain	only	same-
length	vectors—when	printing	a	data	frame,	it	uses	a	specific	method	so	the	data	is
presented	in	a	more	formatted	manner.

5.	We	can	use	the	length	function	to	return	the	number	of	columns	in	a	data	frame,
because	this	returns	the	number	of	vector	elements	in	the	underlying	“list”	structure.



Alternatively,	because	we	can	treat	a	data	frame	as	a	matrix,	we	can	use	the	ncol
function	to	achieve	the	same	result.

6.	The	result1	object	will	contain	a	vector	of	those	values	from	the	Y	column
where	the	corresponding	X	column	is	greater	than	0—specifically,	this	will	be	a
vector	containing	values	4	and	5.	The	result2	object	will	contain	a	data	frame
with	two	rows,	corresponding	to	the	rows	where	X	is	greater	than	0	(so	rows	4	and	5
of	the	original	data	frame).

7.	The	head	function	returns	the	first	six	rows	(by	default)	of	a	data	frame.	The	tail
function	returns	the	last	six	rows	(by	default)	of	a	data	frame.

Activities
1.	Create	a	“named”	list	containing	a	numeric	vector	with	10	values	(called	X)	and	a
character	vector	with	10	values	(called	Y)	and	a	sequence	of	values	from	1	to	10
(called	Z).	Use	this	list:

	Print	the	number	of	elements	and	the	element	names.

	Select	the	X	element.

	Select	the	Y	element.

	Select	values	of	the	X	element	that	are	greater	than	the	median	of	X.

	Select	values	of	the	Y	element	where	the	corresponding	X	element	is	greater	than
the	median	of	X.

2.	Adapt	your	code	to	instead	create	a	data	frame	containing	two	columns	(X	=	a
numeric	vector	with	10	elements,	Y	=	a	character	column	containing	10	elements,	Z
=	integers	1	to	10).	Use	this	structure:

	Print	the	number	of	columns	and	the	column	names.

	Select	the	X	column.

	Select	the	Y	column.

	Select	values	of	the	X	column	that	are	greater	than	the	median	of	X.

	Select	values	of	the	Y	column	where	the	corresponding	X	value	is	greater	than	the
median	of	X.

3.	Further	subset	the	data	in	the	data	frame	created	in	the	last	exercise	as	follows:

	Select	all	rows	of	the	data	where	Z	is	greater	than	5.

	Select	all	rows	of	the	data	where	Z	is	greater	than	3	and	X	is	greater	than	the
median	of	X.

	Select	just	the	X	and	Z	columns	from	the	data	where	Z	is	greater	than	5.

4.	Print	the	built-in	mtcars	data	frame.	Look	at	the	help	file	for	mtcars	to
understand	the	origin	of	the	data.	Use	this	data	frame:

	Print	only	the	first	five	rows.



	Print	the	last	five	rows.

	How	many	rows	and	columns	does	the	data	have?

	Look	at	the	data	in	the	RStudio	data	viewer	(if	you	are	using	RStudio).

	Print	the	mpg	column	of	the	data.

	Print	the	mpg	column	of	the	data	where	the	corresponding	cyl	column	is	6.

	Print	all	rows	of	the	data	where	cyl	is	6.

	Print	all	rows	of	the	data	where	mpg	is	greater	than	25,	but	only	for	the	mpg	and
cyl	columns.

	Create	a	scatter-plot	matrix	of	your	data.

	Create	a	scatter-plot	matrix	of	your	data,	but	only	using	the	first	six	columns	of
the	data.



Hour	5.	Dates,	Times,	and	Factors

What	You’ll	Learn	in	This	Hour:

	How	to	create	a	date	object

	How	to	create	a	time	object

	How	to	manipulate	date	and	time	objects

	What	a	factor	is	and	how	to	create	one

	How	to	manipulate	factors

In	Hour	3,	“Single-Mode	Data	Structures,”	and	Hour	4,	“Multi-Mode	Data	Structures,”
you	saw	how	to	create	the	basic	data	objects	in	R,	objects	that	allow	us	to	store	numeric,
logical,	and	character	data.

In	this	hour,	you	learn	more	about	some	of	the	special	data	types	in	R	that	enable	you	to
work	with	dates	and	times	and	with	categorical	data.

Working	with	Dates	and	Times
In	this	section,	we	look	at	how	to	convert	date	and	time	data	into	a	format	that	R	will
recognize	and	manipulate.

Creating	Date	Objects
We	can	create	a	date	object	in	R	using	the	function	as.Date.	With	this	function	we	can
create	a	vector	of	dates	we	can	index	in	the	same	way	we	did	in	Hour	3.	Most	often	our
dates	will	be	in	the	format	of	a	character	string,	which	we	will	convert	to	a	date	using	the
format	argument	to	specify	the	structure	of	the	date	in	the	character	string.	You	can	see
all	of	this	in	the	following	example:
Click	here	to	view	code	image

>	myDates	<-	c(“2015-06-21”,	“2015-09-11”,	“2015-12-31”)
>	myDates	<-	as.Date(myDates,	format	=	“%Y-%m-%d”)
>	myDates
[1]	“2015-06-21”	“2015-09-11”	“2015-12-31”
>	myDates[2:3]
[1]	“2015-09-11”	“2015-12-31”
class(myDates)
[1]	“Date”

As	you	can	see,	this	creates	a	special	Date	type	object.	When	this	is	printed	to	the	screen,
you	will	see	it	in	the	format	year-month-day.	This	is	the	standard	R	date	format.	In	actual
fact,	R	has	created	an	object	that	represents	an	integer	number	of	days	since	January	1,
1970:

>	as.numeric(myDates)
[1]	16607	16689	16800



Tip:	Date	Formats

In	these	examples	we	used	the	format	argument	to	as.Date.	This	argument
allows	us	to	specify	the	initial	format	of	our	date	string.	For	more	details	on	the
specification	of	the	format	argument,	see	the	help	file	for	the	function
strptime.

If	we	were	to	give	a	numeric	value	to	the	function	as.Date,	we	would	also	need	to
specify	the	origin,	or	starting	point,	for	the	counting	of	days.	For	instance,	if	we	were	to
pass	dates	that	were	generated	by	Microsoft	Excel,	which	start	counting	from	January	1,
1900,	we	would	need	to	tell	R	that	this	is	the	origin	or	date	from	which	the	counting
should	start.	Here’s	an	example:
Click	here	to	view	code	image

>	as.Date(42174,	origin	=	“1900-01-01”)
[1]	“2015-06-21”

So	what	if	our	date	is	in	a	numeric	format,	such	as	20150621?	In	this	instance	we	first
need	to	convert	our	date	to	a	character	string	and	then	convert	to	a	date	as	we	did
previously,	using	the	format	argument	to	specify	the	structure	of	the	dates:
Click	here	to	view	code	image

>	myDates	<-	c(20150621,	20150911,	20151231)
>	myDates	<-	as.character(myDates)
>	myDates	<-	as.Date(myDates,	format	=	“%Y%m%d”)
>	myDates
[1]	“2015-06-21”	“2015-09-11”	“2015-12-31”

You	will	see	very	soon	how	you	can	manipulate	and	work	with	this	type	of	object	further.

Creating	Objects	That	Include	Times
When	you	have	data	that	also	includes	times,	you	will	need	to	work	with	a	different	class
of	object	to	incorporate	the	additional	information.	Here,	we	will	use	POSIXct	and
POSIXlt	objects	to	store	dates	and	times	down	to	milliseconds.	The	two	classes	are	very
similar,	though	POSIXct	objects	are	more	suitable	for	storing	data	n	data	frames,
whereas	POSIXlt	objects	are	a	more	human-readable	format.

The	functions	that	we	use	to	create	these	objects	are	as.POSIXct	and	as.POSIXlt.
They	work	in	very	much	the	same	way	as	the	as.Date	function	we	used	in	the	previous
section,	but	we	can	now	include	hours,	minutes	and	seconds.	Both	functions	work	in	the
same	way,	so	here	we	will	only	look	at	as.POSIXct.	Here	is	an	example:
Click	here	to	view	code	image

>	myTimes	<-	c(“2015-06-21	14:22:00”,	“2015-09-11	10:23:32”,	“2015-12-31
23:59:59”)
>	myTimes	<-	as.POSIXct(myTimes,	format	=	“%Y-%m-%d	%H:%M:%S”)
>	myTimes
[1]	“2015-06-21	14:22:00	BST”	“2015-09-11	10:23:32	BST”	“2015-12-31	23:59:59
GMT”
>	class(myTimes)
[1]	“POSIXct”	“POSIXt”



Note:	Time	Zones

You	will	have	noticed	that	the	preceding	example	has	converted	the	dates	and	times
into	both	British	Summer	Time	and	Greenwich	Mean	Time.	The	default	for	the
POSIX	functions	is	to	use	the	locale	of	the	machine	you	are	working	on	and
account	for	daylight	savings	time,	but	we	can	control	the	time	zone	used	with	the
argument	tz,	for	instance:

Click	here	to	view	code	image
as.POSIXct(myTimes,	format	=	“%Y-%m-%d	%H:%M:%S”,	tz	=	“US/Pacific”)

For	more	information	on	how	to	define	time	zones,	take	a	look	at	the	help	pages	for
“timezones.”

As	with	dates,	times	are	stored	as	an	integer	value,	though	in	the	instance	of	times	it	is	the
number	of	seconds	starting	from	00:00:00	January	1,	1970	UTC.

Manipulating	Dates	and	Times
Once	we	have	converted	our	dates	and	times	to	the	appropriate	R	format,	we	can	do	things
like
Click	here	to	view	code	image

>	myDates	+	1
[1]	“2015-06-22”	“2015-09-12”	“2016-01-01”

which	makes	use	of	the	storage	as	numeric	values	to	add	a	day	(or	second	in	the	case	of
POSIX	objects)	to	the	time	we	provide.	When	it	comes	to	adding	other	amounts	of	time,
you	might	find	the	lubridate	package,	which	we	will	see	in	the	next	section,	useful.

A	number	of	functions	allow	us	to	extract	information	such	as	weekdays,	months,	and
quarters:
Click	here	to	view	code	image

>	weekdays(myDates)
[1]	“Sunday”			“Friday”			“Thursday”
>	months(myDates)
[1]	“June”						“September”	“December”
>	quarters(myDates)
[1]	“Q2”	“Q3”	“Q4”

However,	the	more	useful	functions	for	working	with	dates	and	times	are	diff	and
difftime.	These	two	functions	both	find	the	differences	between	given	dates	and	times
but	work	in	a	slightly	different	way.	First	of	all,	the	diff	function	takes	a	vector	of	date-
times	and	returns	a	vector	of	the	difference	between	consecutive	values.	Here’s	an
example:

>	diff(myDates)
Time	differences	in	days
[1]		82	111

The	function	difftime,	on	the	other	hand,	requires	two	separate	date	objects	and	finds
the	difference	between	the	two.	This	is	particularly	useful	if	you	want	to	find	the
difference	between	a	series	of	dates	and	a	specific	date—for	instance,	the	number	of	days



from	the	start	of	the	new	year	to	the	values	in	a	given	vector:
Click	here	to	view	code	image

>	difftime(myDates,	as.Date(“2015-07-04”))
Time	differences	in	days
[1]	-13		69	180

One	useful	feature	of	this	function	is	that	you	can	change	the	unit	used	for	the	difference
returned,	so	you	can	see	the	difference	in	weeks,	days,	hours,	minutes,	or	seconds:
Click	here	to	view	code	image

>	difftime(myDates,	as.Date(“2015-07-04”),	units	=	“weeks”)
Time	differences	in	weeks
[1]	-1.857143		9.857143	25.714286

Tip:	Date	Sequences

You	might	want	to	know	that	you	can	also	create	dates	and	times	using	a	special
version	of	the	seq	function.	For	instance,	try	the	following:

Click	here	to	view	code	image
seq	(as.Date(“2015-01-01”),	as.Date(“2015-12-01”),	by	=	“week”)

This	will	create	a	sequence	of	dates	from	January	1st	to	December	1st	in	weekly
increments.

The	lubridate	Package
Instead	of	using	the	functions	we	have	seen	so	far	that	are	in	the	base	R	installation,	we
can	use	a	number	of	additional	packages	for	working	with	dates	and	times.	In	this	section
we	look	at	the	lubridate	package,	which	has	been	designed	to	simplify	the	way	in	which
you	work	with	dates	and	times,	making	it	easier	to	read	them	in	to	R	and	easier	to
manipulate,	particularly	when	it	comes	to	adding	a	unit	of	time.	Because	this	package	is
not	available	in	the	standard	R	installation,	you	will	first	need	to	install	and	load	it.	See
Hour	2,	“The	R	Environment,”	for	a	reminder	on	installing	and	loading	an	R	package.

This	package	includes	a	number	of	useful	functions,	such	as	now,	which	gives	the	current
date	and	time:

>	now()

The	equivalent	to	this	in	the	base	functionality	of	R	would	be	Sys.time.	You	will	notice
functions	in	lubridate	have	been	named	in	what	is	intended	to	be	a	more	user-friendly
manner.	Before	we	look	at	some	of	the	other	useful	functions	in	this	package,	let’s	first
look	at	converting	our	character	strings	or	numeric	values	into	date	formats.	There	are
three	main	functions	in	lubridate	for	converting	to	a	date:	ymd,	mdy,	and	dmy.	The	one
to	use	will	depend	on	the	order	in	which	the	year,	month,	and	day	are	provided.
Click	here	to	view	code	image

>	myDates	<-	c(“2015-06-21”,	“2015-09-11”,	“2015-12-31”)
>	myDates	<-	ymd(myDates)
>	myDates
[1]	“2015-06-21	UTC”	“2015-09-11	UTC”	“2015-12-31	UTC”



You	will	notice	here	that	we	simply	provided	the	vector	of	dates;	we	did	not	need	to
provide	the	separator	or	any	other	formatting	for	the	dates.	Because	the	lubridate	package
is	intended	to	make	reading	data	easier,	it	will	try	to	automatically	determine	the	format
based	on	the	function	we	have	called.	In	this	example,	it	assumes	the	data	is	in	the	format
year,	month,	day.	In	most	instances	this	will	be	sufficient;	however,	in	the	case	of	mixed
separators,	it	may	not	be	able	to	determine	the	format	and	will	return	an	appropriate
warning	to	inform	you	of	that	fact.

You	will	also	notice	that	the	date	is	in	the	time	zone	UTC,	or	Universal	time.	As	with	the
usual	date	function,	we	can	change	the	time	zone	that	is	used	when	we	import	our	data
with	the	argument	tz.	Also,	the	useful	functions	force_tz	and	with_tz	allow	us	to
change	the	time	zone	after	converting	it.

When	it	comes	to	times,	we	continue	to	use	the	three	functions	from	earlier,	but	now	we
add	on	“_hms,”	or	simply	use	the	function	hm	or	hms.	Here	is	an	example:
Click	here	to	view	code	image

myTimes	<-	c(“14:22:00”,	“10:23:32”,	“23:59:59”)
myTimes	<-	hms(myTimes)
myTimes
[1]	“14H	22M	0S”		“10H	23M	32S”	“23H	59M	59S”

These	functions	make	it	much	easier	to	work	with	unconventional	date-time	data—for
instance,	when	you	only	have	the	date	and	hour	of	an	observation	rather	than	data	down	to
the	second.

Further	useful	functions	in	this	package	include	year,	month,	and	day,	which	allow	us
to	add	a	given	amount	of	a	specific	period,	for	instance	2	seconds	or	3	months,	to	a	date-
time:
Click	here	to	view	code	image

newYearEve	<-	ymd_hms(“2015-12-31	23:59:59”)
newYearEve	+	seconds(2)
[1]	“2016-01-01	00:00:01	UTC”
newYearEve	+	months(3)
[1]	“2016-03-31	23:59:59	UTC”
newYearEve	-	years(1)
[1]	“2014-12-31	23:59:59	UTC”

Working	with	Categorical	Data
When	we	work	with	categorical	data	in	R,	we	need	to	use	a	special	data	type	called	a
factor.	A	factor	is	simply	a	categorical	variable	that	is	made	up	of	levels	and	labels.	In	this
section	you	will	see	how	to	convert	a	vector	of	categorical	data	into	a	factor	and	how	to
further	manipulate	these	special	objects.	You	will	also	see	how	to	convert	continuous	data
to	a	factor	using	the	cut	function.

Creating	Factors
You	can	convert	a	vector	of	numeric	values	or	character	strings	into	a	factor	using	the
factor	function.	The	default	behavior	of	this	function	is	to	use	the	unique	values	of	the
vector	as	the	levels	and	labels	for	the	factor	in	alphanumeric	order.	As	an	example,
consider	Listing	5.1.



LISTING	5.1	Creating	a	Factor
Click	here	to	view	code	image

	1:	>	x	<-	c(“B”,	“B”,	“C”,	“A”,	“A”,	“A”,	“B”,	“C”,	“C”)
	2:	>	x
	3:	[1]	“B”	“B”	“C”	“A”	“A”	“A”	“B”	“C”	“C”
	4:	>	mode(x)
	5:	[1]	“character”
	6:	>	class(x)
	7:	[1]	“character”
	8:	>
	9:	>	y	<-	factor(x)
10:	>	y
11:	[1]	B	B	C	A	A	A	B	C	C
12:	Levels:	A	B	C
13:	>	mode(y)
14:	[1]	“numeric”
15:	>	class(y)
16:	[1]	“factor”

As	you	can	see	in	line	9,	you	can	very	simply	create	a	factor	from	a	vector	of	character
strings.	You	will	notice	in	lines	11	and	12	that	the	output	is	printed	differently	when	it	is
converted	to	a	factor,	displaying	not	only	the	vector	but	the	levels	of	the	factor.	There	are	a
few	things	to	take	note	of	in	the	factor	and	the	mode	of	the	object	itself.

Let’s	first	consider	the	mode,	or	the	way	in	which	a	factor	is	stored.	Notice	on	lines	13	and
14	that	the	mode	of	the	factor	is	numeric.	A	factor	in	R	is	actually	stored	as	integer	values
that	match	up	to	the	levels.	In	this	example,	any	elements	with	the	label	“A”	are	in	fact
stored	as	1,	“B”	stored	as	2,	and	“C”	as	3.	In	general,	this	will	not	impact	the	way	in	which
you	work	with	a	factor	but	is	worth	noting.

Caution:	Numeric	Factors

When	working	with	factors	that	have	numeric	levels,	be	aware	that	although	the
labels	will	take	the	values	of	the	individual	levels,	the	factor	will	be	stored	as
integer	values	starting	from	1.	If	you	want	to	convert	your	factor	back	to	numeric
values,	you	first	need	to	convert	to	character	strings	and	then	to	numeric	values.

The	second	thing	to	consider	is	the	way	in	which	factor	levels	are	determined.	As
mentioned	earlier	and	shown	in	Listing	5.1,	the	default	behavior	is	to	order	levels
alphanumerically.	In	the	preceding	example,	this	was	not	a	problem,	but	consider	the
following	example,	where	we	are	using	the	sample	function	to	randomly	select	20
values	from	a	vector	(see	Hour	6,	“Common	R	Utility	Functions,”	for	more	details	on	this
function):
Click	here	to	view	code	image

>	ratings	<-	c(“Poor”,	“Average”,	“Good”)
>	myRatings	<-	sample(ratings,	20,	replace	=	TRUE)
>	factorRatings	<-	factor(myRatings)
>	factorRatings
	[1]	Poor				Average	Good				Poor				Good				Good				Good				Poor
	[9]	Average	Poor				Average	Good				Average	Average	Average	Average
[17]	Good				Average	Poor				Good



Levels:	Average	Good	Poor

You	can	see	here	that	the	levels	of	the	factor	have	been	ordered	alphabetically,	even
though	there	is	an	ordering	that	is	more	sensible	for	this	case.	This	will	have	an	impact
when	you	want	the	ordering	of	a	factor	to	be	correct	(for	instance,	when	creating
graphics).	You	can	control	the	order	of	the	levels	of	your	factors	using	the	levels
argument,	as	shown	next:
Click	here	to	view	code	image

>	factorRatings	<-	factor(myRatings,	levels	=	ratings)
>	factorRatings
[1]	Poor				Average	Good				Poor				Good				Good				Good				Poor
	[9]	Average	Poor				Average	Good				Average	Average	Average	Average
[17]	Good				Average	Poor				Good
Levels:	Poor	Average	Good

Notice	here	that	the	levels	are	now	ordered	exactly	as	we	have	specified.

Tip:	Reordering	Factors

You	can	use	the	reorder	function	to	change	the	order	of	the	levels	of	a	factor
based	on	another	vector.	This	is	particularly	useful	when	creating	graphics.

Manipulating	Factor	Levels
After	creating	your	factor,	you	can	work	with	it	as	though	it	was	any	other	character
vector,	for	instance:
Click	here	to	view	code	image

>	y	==	“A”
[1]	FALSE	FALSE	FALSE		TRUE		TRUE		TRUE	FALSE	FALSE	FALSE

However,	if	you	want	to	change	the	levels	of	the	factor,	you	can’t	just	use	standard
methods	for	indexing	and	changing	vector	elements.	As	an	example,	suppose	we	want	to
change	the	levels	in	the	ratings	example	from	“Poor”	to	“Negative”:
Click	here	to	view	code	image

>	factorRatings[factorRatings	==	“Poor”]	<-	“Negative”
Warning	message:
In	`[<-.factor`(`*tmp*`,	factorRatings	==	“Poor”,	value	=	“Negative”)	:
		invalid	factor	level,	NA	generated

This	is	because	when	we	defined	the	levels	of	the	factor,	we	restricted	the	values	that	the
factor	could	take	to	these	groups,	so	we	can’t	use	the	usual	manipulation	techniques
because	we	have	to	change	the	set	of	allowed	values	for	the	factor.	Instead,	we	will	need
to	use	the	levels	function:
Click	here	to	view	code	image

>	levels(factorRatings)
[1]	“Poor”	“Average”	“Good”
>	levels(factorRatings)	<-	c(“Negative”,	“Average”,	“Positive”)
>	factorRatings
[1]	Negative	Average		Positive	Negative	Positive	Positive	Positive
	[8]	Negative	Average		Negative	Average		Positive	Average		Average
[15]	Average		Average		Positive	Average		Negative	Positive
Levels:	Negative	Average	Positive



Caution:	Missing	Values	in	a	Factor

If	you	have	introduced	missing	values	into	a	factor,	you	will	need	to	re-create	the
factor	or	replace	the	missing	values	with	the	previous	value	that	they	took,
otherwise	you	will	retain	missing	values	in	your	factor.

Here,	we	have	only	used	the	levels	function	to	change	the	names	of	existing	levels	to
unique	equivalent	levels,	but	we	can	also	use	this	function	to	reduce	the	set	of	levels.
Suppose	that	we	were	only	interested	in	which	elements	were	“Negative”	and	we	were	not
interested	in	the	distinction	between	“Average”	and	“Positive”.	We	might	want	to	combine
these	elements	as	one	level	of	the	factor:
Click	here	to	view	code	image

>	levels(factorRatings)	<-	c(“Negative”,	“Other”,	“Other”)
>	factorRatings
[1]	Negative	Other				Other				Negative	Other				Other				Other				Negative

	[9]	Other				Negative	Other				Other				Other				Other				Other				Other
[17]	Other				Other				Negative	Other

Levels:	Negative	Other

Creating	Factors	from	Continuous	Data
So	far	you	have	seen	how	to	create	a	factor	from	data	that	is	already	categorical,	but	what
about	if	you	want	to	use	a	continuous	variable	as	the	basis	for	a	factor?	In	this	case,	you
can	use	the	cut	function.	The	cut	function	has	a	number	of	arguments	that	can	help	you
control	exactly	how	the	categories	are	formed.	See	Table	5.1	for	a	list	of	the	main
arguments.

TABLE	5.1	Arguments	to	the	cut	Function

The	simplest	way	you	can	create	a	factor	is	by	providing	the	data	and	the	breaks
argument.	Therefore,	if	you	wanted	to	create	three	groups,	you	simply	give	breaks	=
3,	like	so:
Click	here	to	view	code	image

>	ages	<-	c(19,	38,	33,	25,	21,	27,	27,	24,	25,	32)



>	cut(ages,	breaks	=	3)
	[1]	(19,25.3]			(31.7,38]			(31.7,38]			(19,25.3]			(19,25.3]			(25.3,31.7]
	[7]	(25.3,31.7]	(19,25.3]			(19,25.3]			(31.7,38]
Levels:	(19,25.3]	(25.3,31.7]	(31.7,38]

You	can	see	in	this	example	that	the	data	has	been	split	into	three	equally	spaced	levels.
The	levels	are	based	on	the	range	of	the	data	rather	than	the	number	of	values	in	each
level.	The	levels	here	take	the	names	of	the	ranges.	You	can	have	much	more	control	over
the	ranges	by	instead	specifying	the	lower	and	upper	limits	of	each	of	the	levels:
Click	here	to	view	code	image

>	cut(ages,	breaks	=	c(18,	25,	30,	Inf))
[1]	(18,25]		(30,Inf]	(30,Inf]
(18,25]		(18,25]		(25,30]		(25,30]		(18,25]		(18,25]
[10]	(30,Inf]
Levels:	(18,25]	(25,30]	(30,Inf]

When	you	do	this,	you	need	to	keep	in	mind	that	if	the	whole	range	of	your	data	is	not
covered	by	the	break	points,	you	will	introduce	missing	values,	hence	the	use	of	Inf	at
the	upper	end.	The	arguments	include.lowest	and	right	let	you	control	exactly
where	the	group	break	points	fall.	Finally,	you	can	control	the	labels	that	are	given	to	the
levels	using	the	labels	argument:
Click	here	to	view	code	image

>	cut(data,	breaks	=	c(18,	25,	30,	Inf),	labels	=	c(“18-25”,	“25-30”,	“30+”))
[1]	18-25	30+			30+			18-25	18-25	25-30	25-30	18-25	18-25	30+
Levels:	18-25	25-30	30+

As	you	can	see,	you	can	easily	convert	your	continuous	data	to	categories.	You	can	see
from	Table	5.1	that	there	are	more	arguments	that	let	you	control	the	creation	of	the	factor
even	further,	including	whether	the	groups	are	closed	on	the	right	or	left	(it	defaults	to
left).	We	will	use	factors	more	when	we	manipulate	data	and	create	graphics,	in	particular
when	we	use	the	package	ggplot2	in	Hour	14,	“The	ggplot2	Package	for	Graphics.”

Summary
In	this	hour	we	looked	at	some	additional	data	types	that	allow	us	to	work	with	dates	and
times	and	categorical	data.	You	learned	how	to	convert	both	numeric	and	character	values
into	date	and/or	time	objects	and	then	how	to	manipulate	these	objects	using	the	base
functionality	in	R.	You	were	also	introduced	to	a	useful	package	that	can	make	these
manipulations	much	simpler.	Finally,	you	saw	how	R	manages	categorical	data,	how	you
can	convert	your	data	into	this	format,	and	how	you	can	use	continuous	data	to	create	your
own	categorical	data.	In	the	next	hour,	we	look	at	some	of	the	functions	that	we	can	use
for	working	with	the	standard	data	types.

Q&A
Q.	I	have	tried	to	convert	my	data	to	a	Date	object	but	it’s	just	returned	a	series	of
NA’s.	Why	doesn’t	it	recognize	my	data?

A.	If	you	find	you	have	been	returned	a	series	of	NA’s	after	converting	to	a	date	or
time,	it	is	most	likely	because	you	have	specified	the	wrong	format	in	the	format
argument.	Take	a	look	at	the	help	file	for	strptime	for	a	full	list	of	format	codes,



and	don’t	forget	to	include	any	spaces,	dashes,	or	slashes	in	your	dates.

Q.	Why	do	I	need	to	bother	converting	my	data	to	a	factor?

A.	For	general	data-manipulation	tasks,	you	will	find	that	it	makes	very	little	difference
whether	your	data	is	a	factor	or	not.	It	will	only	be	if	you	want	to	rename	elements
that	you	see	a	difference	in	behavior.	Converting	to	a	factor	type	is	important	when	it
comes	to	producing	graphics	and	modeling	your	data.	When	you’re	modeling,	if
your	data	is	really	categorical	and	you	treat	it	as	continuous,	you	will	see	a
significantly	different	result.	You	will	also	find	that	if	your	data	is	large,	then	storing
it	as	a	factor	is	more	efficient,	as	it	will	only	store	the	unique	values	rather	than
repeating	them	a	potential	large	number	of	times.

Workshop
The	workshop	contains	quiz	questions	and	exercises	to	help	you	solidify	your
understanding	of	the	material	covered.	Try	to	answer	all	questions	before	looking	at	the
“Answers”	section	that	follows.

Quiz
1.	What	date	does	R	use	as	the	origin	for	counting	dates	and	times?

2.	What	is	the	default	time	zone	for	creating	POSIX	objects?

3.	What	is	a	factor?

4.	How	are	the	levels	of	a	factor	determined?

5.	If	you	were	to	use	the	function	cut	with	the	argument	"breaks	=	3",	how
would	the	levels	be	determined?

A.	The	data	would	be	split	into	three	equally	sized	groups	based	on	the	number	of
elements.

B.	The	range	of	the	data	would	be	split	equally	into	three.

Answers
1.	The	origin	for	dates	and	times	in	R	is	January	1,	1970,	00:00:00	UTC.

2.	The	default	time	zone	is	the	locale	on	your	operating	system.	You	can	change	the
time	zone	using	the	tz	argument.	This	is	particularly	useful	if	you	are	working	with
people	across	time	zones	and	want	to	ensure	the	correct	time	zone	for	the	data	is
used.

3.	A	factor	is	the	way	of	storing	categorical	data	in	R.

4.	If	you	choose	not	to	give	the	appropriate	levels	using	the	levels	argument,	they
will	be	the	alphanumerically	ordered	unique	elements	of	the	data.

5.	The	answer	is	B.	The	range	of	the	data	is	split	equally	to	create	three	groups.	This
may	mean,	however,	that	the	groups	are	of	uneven	size	or	the	break	points	occur	at
locations	that	are	not	sensible	for	the	data.



Activities
1.	Create	a	vector	of	character	strings	that	contains	today’s	date	as	well	as	the	date	of
your	next	birthday	and	New	Year’s	Eve.	Convert	this	character	vector	to	a	Date
object.

2.	Use	the	vector	of	dates	to	work	out	what	day	of	the	week	your	next	birthday	and
New	Year’s	Eve	occur	on.

3.	How	many	days	are	there	from	now	until	your	next	birthday?

4.	Using	the	weather	data	we	created	in	Hour	4,	convert	the	Day	column	to	a	factor,
ensuring	that	all	possible	days	of	the	week	can	be	used	as	levels	and	they	are	in	the
correct	order,	starting	with	Monday.

5.	Change	the	levels	of	the	Day	factor	column	to	be	“Weekend”	and	“Weekday.”

6.	Using	the	cut	function,	create	a	new	column	in	the	data,	TempFactor,	that	takes	the
value	“low”	for	temperatures	less	than	25,	“medium”	for	temperatures	from	25	to
30,	and	“high”	for	temperatures	including	and	above	30	where	all	temperatures	are
in	degrees	Celsius.



Hour	6.	Common	R	Utility	Functions

What	You’ll	Learn	in	This	Hour:

	Common	functions	for	numeric	data

	How	to	simulate	data	in	R

	Simple	logical	summaries

	Functions	for	missing	data

	Useful	function	for	manipulating	character	data

So	far	you	have	seen	how	to	create	objects	of	different	modes	and	how	to	work	with
special	types	of	data—but	what	about	numeric,	logical,	and	character	data?	How	can	we
handle	missing	data	or	even	remove	it	from	our	data?	How	can	we	simulate	from
statistical	distributions?	In	this	hour,	we	answer	these	questions	by	introducing	you	to
some	of	the	most	common	utility	functions	in	R	that	you	will	find	yourself	using	every
day.

Using	R	Functions
You	have	already	used	a	number	of	functions	in	the	previous	hours,	including	seq,
matrix,	length,	and	factor.	However,	before	we	look	many	more	useful	functions,
it	is	handy	to	know	how	to	work	with	functions	in	R.

When	you	call	a	function	in	R,	you	use	the	function	name	with	a	number	of	arguments,
which	you	give	inside	round	brackets,	to	pass	information	to	that	function	about	how	it
should	run	and	what	data	it	should	use.	So	how	do	you	know	what	the	arguments	to	a
function	are?	You	can	either	look	in	the	help	file—using	?functionName	or
help("functionName")—or	you	can	use	a	function	called	args,	which	will	print
the	arguments	to	a	function	in	the	console.	As	an	example	of	using	a	function,	we	will
look	at	sample.	This	function	allows	us	to	randomly	sample	a	number	of	values	from	a
vector	of	given	values	(this	is	the	R	way	of	selecting	balls	from	an	urn).	So	let’s	take	a
look	at	the	arguments	to	this	function:
Click	here	to	view	code	image

>	args(sample)
function	(x,	size,	replace	=	FALSE,	prob	=	NULL)
NULL

You	can	see	that	we	have	four	arguments	to	this	function.	You	will	notice	that	the	first	two
are	simply	given	as	x	and	size,	whereas	the	second	two	are	followed	by	=	value.	This
indicates	that	they	have	a	default	value,	so	we	don’t	need	to	supply	an	alternative.	Because
x	and	size	do	not	have	a	default,	we	have	to	tell	R	what	value	we	want	them	to	take.	To
know	the	purpose	of	the	arguments,	you	will	need	to	take	a	look	at	the	help	files,	which
will	tell	you	more.	In	this	case,	x	is	the	vector	that	we	want	to	sample	from	and	size	is
the	number	of	samples	we	want	to	take,	whereas	replace	allows	us	to	put	values	back,



and	we	can	set	the	probability	of	each	value	with	prob.

When	it	comes	to	calling	the	function,	we	can	supply	the	arguments	in	a	number	of	ways.
To	start	with,	we	can	name	all	the	arguments	in	full:
Click	here	to	view	code	image

>	sample(x	=	c(“red”,	“yellow”,	“green”,	“blue”),	size	=	2,	replace	=	FALSE,
prob	=
NULL)

Because	replace	and	size	have	default	values,	this	is	the	same	as	the	following:
Click	here	to	view	code	image

>	sample(x	=	c(“red”,	“yellow”,	“green”,	“blue”),	size	=	2)

Using	this	form	of	complete	naming	of	arguments,	we	can	actually	supply	them	in	any
order	we	like.	Therefore,	the	preceding	would	do	the	same	as	this:
Click	here	to	view	code	image

>	sample(size	=	2,	x	=	c(“red”,	“yellow”,	“green”,	“blue”))

It’s	worth	remembering	that	when	you	actually	run	each	of	these	lines,	you	will	most
likely	get	a	different	result	because	the	function	is	randomly	sampling	from	the	vector	x.

If	you	provide	all	the	arguments	in	the	same	order	as	the	args	function	gives	them,	you
do	not	actually	need	to	give	the	names	of	the	arguments.	Therefore,	we	can	also	say	this:
Click	here	to	view	code	image

>	sample(c(“red”,	“yellow”,	“green”,	“blue”),	2)

In	reality,	you	will	often	see,	and	use,	a	combination	of	naming	and	ordering	of	arguments
because	you	will	tend	to	remember	what	should	come	first	but	not	the	order	of	other
arguments.	Therefore,	you	might	see	something	like	the	following:
Click	here	to	view	code	image

>	sample(c(“red”,	“yellow”,	“green”,	“blue”),	size	=	2,	replace	=	TRUE)

Now	that	you	know	more	about	how	to	call	functions,	we	will	look	at	some	useful
functions	for	various	types	of	data.

Functions	for	Numeric	Data
When	it	comes	to	working	with	numeric	data,	there	is	a	whole	host	of	functions	we	may
want	to	use—from	mathematical	functions	such	as	logarithms	to	simulating	from
statistical	distributions.	I	won’t	cover	every	single	function	available	in	R,	but	we	will
introduce	you	to	some	of	the	most	common.

Mathematical	Functions	and	Operators
You	have	already,	briefly,	seen	that	you	can	use	R	for	basic	arithmetic	using	functions
such	as	+,	-,	*,	and	/.	In	R,	these	are	known	as	operators,	and	other	useful	operators
include	^	(power)	and	%%	(mod).	Here’s	an	example:

>	3^2
[1]	9
>	5	%%	3



[1]	2

Other	useful	mathematical	functions	are	shown	in	Table	6.1.

TABLE	6.1	Mathematical	Functions

All	these	functions	are	used	very	simply	with	an	argument,	x,	with	the	data	of	interest,
typically	a	vector	or	matrix.	However,	for	logarithms,	you	can	also	provide	the	base,
which	is	the	exponential	base	(natural	logarithm)	by	default.	As	an	example,	let’s	create	a
simple	vector	of	values	to	pass	to	some	of	these	functions:
Click	here	to	view	code	image

>	x	<-	seq(1,	4,	by	=	0.5)
>	x
[1]	1.0	1.5	2.0	2.5	3.0	3.5	4.0
>	sqrt(x)
[1]	1.000000	1.224745	1.414214	1.581139	1.732051	1.870829	2.000000
>	log(x)
[1]	0.0000000	0.4054651	0.6931472	0.9162907	1.0986123	1.2527630	1.3862944
>	sin(x)
[1]		0.8414710		0.9974950		0.9092974		0.5984721		0.1411200	-0.3507832
-0.7568025

As	you	can	see,	these	are	very	simple	functions	to	use	and	they	follow	standard
mathematical	order	of	operations	(that	is,	brackets,	order,	division,	multiplication,
addition,	subtraction).

Statistical	Summary	Functions
When	it	comes	to	statistical	summaries,	there	is	a	whole	host	of	functions	you	could
choose	to	use	to	find	out	more	about	your	data.	Just	like	the	mathematical	functions	you
saw	in	the	previous	section,	these	are	all	very	simple	to	use,	and	often	you	need	only
provide	the	data	to	the	function.	Table	6.2	shows	some	of	the	most	common	summary
functions.

TABLE	6.2	Statistical	Summaries



The	first	argument	to	all	these	functions	is	the	data	and	should	be	a	single	vector	of	values.
Here’s	an	example:
Click	here	to	view	code	image

>	age	<-	c(38,	20,	44,	41,	46,	49,	43,	23,	28,	32)
>	median(age)
[1]	39.5
>	mad(age)
[1]	10.3782
>	range(age)
[1]	20	49

When	you	are	working	with	missing	data,	you	need	to	take	a	little	extra	care	with	these
functions.	Take	a	look	at	this	example:

>	age[3]	<-	NA
>	median(age)
[1]	NA

As	you	can	see,	when	you	have	missing	values	in	your	data,	the	median	function,	and	in
fact	all	the	statistical	summary	functions	in	Table	6.2,	will	return	NA.	Although	this	is	a
technically	correct	value	to	return,	you	are	typically	more	interested	in	the	value	of	the
summary	after	removing	the	missing	values.	By	using	the	argument	na.rm,	you	can	do
this	easily:

>	median(age,	na.rm	=	TRUE)
[1]	38

You	will	see	before	the	end	of	this	hour	how	to	remove	missing	values	from	a	vector
without	these	functions.

Simulation	and	Statistical	Distributions
For	working	with	statistical	distributions	in	R,	we	have	functions	for	working	with	all	of
the	common	distributions	and	all	the	common	actions.	All	the	functions	follow	the	same
pattern	of	naming,	which	starts	with	a	single	letter	to	identify	what	we	want	to	do	and	is
followed	by	the	R	code	name	for	the	distribution.	Table	6.3	shows	some	of	the	most
common	distributions	available	in	the	base	R	installation.	Many	other	distributions,	such
as	the	Pareto	distribution,	are	available	in	contributed	packages.

TABLE	6.3	R	Codes	for	Statistical	Distributions

The	list	of	distributions	in	Table	6.3	is	by	no	means	an	exhaustive	list,	and	many	more	can
be	found	in	the	help	pages	by	simply	searching	the	name	of	the	distribution.	As	stated
earlier,	you	will	need	to	combine	this	name	for	the	distribution	with	a	letter	that



determines	whether	you	want	to	sample	or	calculate	the	quantiles.	The	letters	you	will
need,	their	purpose,	and	an	example	of	structuring	the	function	name	with	the	Normal
distribution	is	shown	in	Table	6.4.

TABLE	6.4	Distribution	Functions

On	top	of	the	first	argument	shown	in	Table	6.4,	and	which	is	the	same	for	all	distribution
functions,	there	will	be	additional	arguments	specific	to	the	distribution.	For	example,	the
Normal	distribution	has	the	arguments	mean	and	sd	that	are	set	to	the	Standard	Normal
defaults	(0	and	1	respectively),	whereas	the	Poisson	distribution	has	the	argument
lambda,	which	does	not	have	a	default	value	set.	In	general	the	arguments	will	be	set	to
the	“standard”	values	for	that	distribution.	Where	the	distribution	does	not	have	a
standard,	default	values	will	not	be	set.	For	example,	if	you	wanted	to	simulate	five	values
from	the	Normal,	Poisson,	and	Exponential	distributions,	it	may	look	something	like	this:
Click	here	to	view	code	image

>	rnorm(5)
[1]	-0.23515046	-1.79043043	-0.03287786	-0.24937333	-1.00660505
>	rpois(5,	lambda	=	3)
[1]	4	6	6	3	1
>	rexp(5)
[1]	3.2443094	1.1198132	0.9365825	0.2731334	0.4363149

Although	this	allows	you	to	simulate	values	from	a	distribution,	you	may	want	to	generate
samples	from	existing	data.	You	have	already	seen	the	function	for	this:	sample.	As	you
have	seen,	this	function	allows	you	to	specify	the	vector	you	want	to	sample	from,	the
number	of	samples	you	want,	whether	you	want	to	replace	the	values	or	not,	and	whether
you	want	to	change	the	probability	of	sampling	particular	values,	which	are	equal	by
default.	As	an	example,	let’s	sample	from	our	vector	of	ages:
Click	here	to	view	code	image

>	sample(age,	size	=	5)
[1]	28	46	20	49	23
>sample(age,	size	=	5,	replace	=	TRUE)
[1]	20	20	23	28	41

As	we	saw	previously,	the	replace	argument	here	is	allowing	values	to	be	sampled	again
when	it	is	set	to	TRUE	whereas	when	it	is	set	to	FALSE	a	value	cannot	be	sampled	again
after	it	has	been	sampled	once.



Note:	Re-creating	Simulated	Values

If	you	want	to	be	able	to	re-create	the	random	samples	you	generated,	you	will	need
to	set	the	random	seed.	You	can	do	this	with	the	function	set.seed,	which	simply
takes	an	integer	value	to	indicate	the	seed	to	use.	You	can	also	use	this	function	to
change	the	type	of	random	number	generator	used.	See	the	help	documentation	for
more	details.

Logical	Data
One	of	the	main	ways	you	will	work	with	logical	data	is	to	subset	the	data	as	we	did	in
Hour	3,	“Single-Mode	Data	Structures.”	There	are,	however,	a	couple	of	functions	you
will	find	useful	for,	in	particular,	counting	the	number	of	cases	of	a	condition.

First	of	all,	it	is	worth	knowing	how	logical	data	is	stored	in	R.	As	you	have	seen,	a	logical
vector	contains	only	values	that	are	TRUE	or	FALSE.	In	R,	these	are	in	fact	stored	as	the
numeric	values	0	and	1.	You	can	see	this	by	using	the	as.numeric	function	to	force	the
numeric	representation	of	a	value,	like	so:
Click	here	to	view	code	image

>	as.numeric(c(TRUE,	FALSE))
[1]	1	0

Therefore,	when	you	have	a	logical	vector,	you	can	actually	use	the	numeric	functions	you
have	seen	to	manipulate	it.	Of	course,	finding	the	variance	of	TRUE	and	FALSE	values	is
not	generally	something	that	you	want	to	do,	but	the	sum	function	will	actually	allow	you
to	count	the	total	number	of	TRUE	occurrences.	As	an	example,	let’s	see	how	many	values
in	the	age	vector	from	the	previous	section	are	less	than	30:
Click	here	to	view	code	image

>	age
[1]	38	20	NA	41	46	49	43	23	28	32
>	age	<	30
[1]	FALSE		TRUE				NA	FALSE	FALSE	FALSE	FALSE		TRUE		TRUE	FALSE
>	sum(age	<	30,	na.rm	=	TRUE)
[1]	3

Another	useful	function	for	counting	the	TRUE	versus	FALSE	cases	is	table:
Click	here	to	view	code	image

>	table(age	<	30)

FALSE		TRUE
				6					3
>	table(age	<	30,	useNA	=	“ifany”)

FALSE		TRUE		<NA>
				6					3					1

You	can,	in	fact,	use	the	table	function	to	display	the	number	of	cases	for	any	vector,
but	as	you	can	see,	this	is	useful	for	tabulating	logical	cases.	You	will	also	notice	that	by
default	the	function	does	not	include	missing	values.	However,	if	you	set	the	argument
useNA	to	"ifany",	missing	values	will	be	included	when	they	are	present.



Missing	Data
Many	of	the	statistical	summary	functions	allow	you	to	easily	remove	your	missing	data
from	calculations.	As	you	will	see	when	we	look	at	graphics	and	model	fitting,	missing
data	is	simply	removed.	But	what	if	you	want	to	identify	the	missing	values	to,	for
example,	determine	how	many	missing	values	there	are	or	to	replace	them	in	some	way?

You	saw	in	the	last	section	that	you	can	easily	count	the	number	of	missing	values	using
the	sum	function,	if	you	are	able	to	create	a	logical	vector	indicating	which	values	are
missing.	If	you	were	to	simply	test	for	values	being	equal	to	the	missing	value	NA,	you
would	in	fact	just	be	returned	a	series	of	NA’s.	Here’s	an	example:
Click	here	to	view	code	image

>	age	<-	c(38,	20,	NA,	41,	46,	49,	43,	23,	28,	32)
>	age	==	NA
[1]	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

This	is	because	we	are	asking	R	whether	or	not	each	value	in	the	vector	is	equal	to	some
value	that	we	don’t	actually	know.	In	each	case,	R	doesn’t	know	the	answer!	Therefore,
you	need	to	use	an	alternative	function	for	determining	whether	a	value	is	missing:
is.na.	This	is	actually	one	of	a	whole	series	of	is.x	functions,	some	of	which	you	will
see	throughout	this	book,	that	allow	you	to	test	whether	data	is	of	a	particular	type.
Therefore,	in	this	case,	you	can	say	the	following:
Click	here	to	view	code	image

>	is.na(age)
[1]	FALSE	FALSE		TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE

Thus,	you	can	count	the	number	of	cases	of	missing	data	or	generate	a	table	showing	the
number	of	missing	and	non-missing	cases,	for	example:

>	sum(is.na(age))
[1]	1
>	table(is.na(age))
FALSE		TRUE
				9					1

Alternatively,	you	may	want	to	replace	your	missing	values	with	the	mean	of	the	data,	or
some	other	value.	A	useful	function	for	doing	this	is	the	replace	function.	Although	this
function	is	not	restricted	to	working	with	missing	data,	this	is	often	what	you’ll	be
interested	in	doing.	You	need	to	provide	this	function	with	three	pieces	of	information:
first,	the	vector	of	data;	second,	a	condition	that	returns	TRUE	and	FALSE	values	to
determine	which	values	should	be	replaced;	third,	the	value	to	be	inserted.	Suppose,	for
example,	we	wanted	to	replace	the	missing	age	value	in	the	age	vector	with	the	mean	of
the	remainder	of	the	age	values:
Click	here	to	view	code	image

>	meanAge	<-	mean(age,	na.rm	=	TRUE)
>	missingObs	<-	is.na(age)
>	age	<-	replace(age,	missingObs,	meanAge)
>	age
[1]	38.00000	20.00000	35.55556	41.00000	46.00000	49.00000	43.00000
[8]	23.00000	28.00000	32.00000

Of	course,	if	we	simply	wanted	to	remove	the	missing	values	from	our	data,	we	could	use



is.na	in	combination	with	the	“not”	operation	(!),	along	with	the	standard	subscripting
techniques	you	saw	in	Hour	3.	Here’s	how	to	remove	the	missing	values	from	our	age
vector:
Click	here	to	view	code	image

>	age[!is.na(age)]
[1]	38	20	41	46	49	43	23	28	32

Tip:	Missing	Data	Functions

A	number	of	useful	functions	for	working	with	missing	data	can	be	found	in	the
zoo	package.	This	includes	functions	such	as	na.locf	for	the	last	observation
carried	forward	and	na.trim	for	trimming	leading	and	trailing	missing	values.

Character	Data
We	can	often	find	ourselves	having	to	perform	string	manipulation	tasks	in	R,	including
creation	of	character	strings	and	searching	for	patterns	in	character	strings.	In	this	section,
we	look	at	some	of	the	functions	in	the	base	R	installation,	but	if	you	are	particularly
interested	in	manipulating	strings,	you	may	be	interested	in	the	stringr	and	stringi
packages.

Simple	Character	Manipulation
Some	of	the	basic	manipulations	you’ll	want	to	perform	are	counting	characters,
extracting	substrings,	and	combining	elements	to	create	or	update	a	string.	Let’s	start	with
counting	characters.	You	do	this	using	the	nchar	function,	simply	providing	the	string
that	you	are	interested	in:
Click	here	to	view	code	image

>	fruits	<-	“apples,	oranges,	pears”
>	nchar(fruits)
[1]	22

Notice	that	all	characters	are	counted,	including	the	spaces.	To	extract	substrings,	you	use
the	substring	function.	Here,	you	need	to	give	the	string	along	with	the	start	and	end
points	for	the	substring.	You	can	extract	multiple	substrings	by	giving	the	vectors	of	the
start	and	end	points.
Click	here	to	view	code	image

>	substring(fruits,	1,	6)
[1]	“apples”
>	fruits	<-	substring(fruits,	c(1,	9,	18),	c(6,	15,	22))
>	fruits
[1]	“apples”		“oranges”	“pears”

Finally,	you	can	create	a	character	string	from	a	series	of	strings	or	numeric	values	using
the	paste	function.	You	can	provide	as	many	strings	and	objects	as	you	wish	to	the
paste	function	and	they	will	all	be	converted	to	character	data	and	pasted	together.	Like
with	many	R	functions,	you	can	pass	vectors	to	the	paste	function.	Here’s	an	example:
Click	here	to	view	code	image



>	paste(5,	“apples”)
[1]	“5	apples”
>	nfruits	<-	c(5,	9,	2)
>	paste(nfruits,	fruits)
[1]	“5	apples”		“9	oranges”	“2	pears”

You	can	use	the	argument	sep	to	change	the	separator	between	the	pasted	strings,	which
as	you	can	see	in	the	preceding	example	is	a	space	by	default,	like	so:
Click	here	to	view	code	image

>	paste(fruits,	nfruits,	sep	=	”	=	“)
[1]	“apples	=	5”		“oranges	=	9”	“pears	=	2”

Searching	and	Replacing
Two	of	the	most	useful	functions	for	working	with	character	data	are	the	functions	grep
and	gsub.	These	functions	allow	you	to	search	elements	of	a	vector	for	a	particular
pattern	(grep)	and	replace	a	particular	pattern	with	a	given	string	(gsub).	You	search	for
patterns	using	regular	expressions	(that	is,	a	pattern	that	describes	the	character	string).

Tip:	Regular	Expressions

Much	more	information	on	regular	expressions	can	be	found	in	the	R	help	pages	for
the	function	regex.	If	you	are	familiar	with	Perl	expressions,	you	can	use	these
along	with	the	argument	perl	=	TRUE.

Let’s	start	by	looking	at	the	function	grep.	The	first	argument	that	we	are	going	to	give	is
the	pattern	to	search	for,	which	can	be	as	simple	as	the	string	"red".	The	second
argument	will	be	the	vector	to	search.
Click	here	to	view	code	image

>	colourStrings	<-	c(“green”,	“blue”,	“orange”,	“red”,	“yellow”,
+																				“lightblue”,	“navyblue”,	“indianred”)
>	grep(“red”,	colourStrings,	value	=	TRUE)
[1]	“red”							“indianred”

In	this	example,	we	have	used	an	additional	argument,	value.	This	allows	us	to	return
the	actual	values	of	the	vector	that	include	the	pattern	rather	than	simply	the	index	of	their
position	in	the	vector.	Some	more	examples	of	using	the	grep	function,	with	a	variety	of
regular	expressions,	are	shown	in	Listing	6.1.

LISTING	6.1	Searching	Character	Strings
Click	here	to	view	code	image

	1:	>	colourStrings	<-	c(“green”,	“blue”,	“orange”,	“red”,	“yellow”,
	2:	+																				“lightblue”,	“navyblue”,	“indianred”)
	3:	>
	4:	>	grep(“^red”,	colourStrings,	value	=	TRUE)
	5:	[1]	“red”
	6:	>	grep(“red$”,	colourStrings,	value	=	TRUE)
	7:	[1]	“indianred”
	8:	>
	9:	>	grep(“r+”,	colourStrings,	value	=	TRUE)
10:	[1]	“green”					“orange”				“red”							“indianred”



11:	>
12:	>	grep(“e{2}”,	colourStrings,	value	=	TRUE)
13:	[1]	“green”

In	lines	4	and	6	you	can	see	how	the	symbols	^	and	$	have	been	used	to	mark	the	start	and
end	of	the	string.	In	the	example	in	line	4,	we	are	specifying	that	immediately	following
the	start	of	the	string	is	the	pattern	"red",	whereas	in	line	6	the	string	ends	straight	after
the	pattern	"red".	The	examples	in	lines	9	and	12	show	how	to	specify	that	something
must	appear	a	given	number	of	times.	In	line	9,	the	+	indicates	that	the	letter	r	should
appear	at	least	once	in	the	string.	In	line	12,	the	{2}	following	the	e	indicates	that	there
should	be	two	occurrences	of	the	letter.

The	gsub	function,	which	allows	you	to	substitute	a	pattern	for	a	value,	is	very	similar,
because	you	also	use	regular	expressions	to	search	for	the	pattern.	The	only	additional
information	you	need	to	give	is	what	to	substitute	in	its	place.	Here	is	an	example:
Click	here	to	view	code	image

>	gsub(“red”,	“brown”,	colourStrings)
[1]	“green”							“blue”								“orange”						“brown”							“yellow”
[6]	“lightblue”			“navyblue”				“indianbrown”

As	with	grep,	you	can	use	any	regular	expression	to	match	the	pattern	you	wish	to
replace.

Summary
In	this	hour,	you	saw	a	number	of	useful	functions	when	working	with	a	variety	of	data
types.	You	saw	some	of	the	standard	mathematical	and	statistical	functions,	as	well	as
simulation	functions.	You	also	saw	how	to	manipulate	character	strings,	logical	values,
and	missing	data.	We	will	use	many	of	these	functions	throughout	the	rest	of	this	book,
though	this	is	by	no	means	an	exhaustive	list	of	useful	functions	you	will	find	in	R.	In	the
next	hour,	we	will	start	to	look	at	how	to	write	our	own	functions	for	common	actions	we
want	to	perform.

Q&A
Q.	I	want	to	simulate	data	from	a	distribution	that	is	not	listed	here.	What	do	I
do?

A.	First	of	all,	try	searching	the	help	documentation	using	the	name	of	the	distribution.
We	have	not	given	an	exhaustive	list	of	all	available	distributions	in	this	hour,	so
there	is	a	good	chance	we	just	haven’t	listed	it.	If	you	don’t	immediately	find	it	in
the	base	R	help	documentation,	it	may	be	that	there	is	a	package	that	includes	the
distribution	functions	you	need;	for	example,	the	Pareto	distribution	can	be	found	in
the	package	evir,	among	others.

Q.	I	am	trying	to	use	regular	expressions	to	find	a	particular	value	to	replace,	but
I	simply	get	back	the	original	vector.	Why	isn’t	it	replacing	my	pattern?

A.	If	you	find	that	while	using	gsub	you	are	returned	the	original	vector,	it	is	most
likely	because	your	pattern	or	regular	expression	is	not	specific	enough	to	find	the



pattern.	Try	being	even	more	specific	by	thinking	about	what	will	be	at	the	start	of
the	string,	whether	there	may	be	spaces,	and	how	many	occurrences	of	a	pattern
there	may	be.

Workshop
The	workshop	contains	quiz	questions	and	exercises	to	help	you	solidify	your
understanding	of	the	material	covered.	Try	to	answer	all	questions	before	looking	at	the
“Answers”	section	that	follows.

Quiz
1.	Take	a	look	at	the	following	three	function	calls.	Would	they	all	give	the	same
result?

A.	matrix(1:9,	3,	3)

B.	matrix(nrow	=	3,	ncol	=	3,	data	=	1:9)

C.	matrix(data	=	1:9,	nrow	=	3,	ncol	=	3)

2.	What	function	would	you	need	to	call	to	find	the	95%	quantile	of	the	standard
Exponential	distribution?

3.	How	is	logical	data	stored	in	R?

4.	What	function	would	you	use	to	test	whether	your	data	is	missing?

5.	What	is	the	purpose	of	the	function	paste?

Answers
1.	Yes,	all	three	would	produce	the	same	matrix.	When	you	name	the	arguments,	it
doesn’t	matter	what	order	you	provide	them	in,	and	as	long	as	you	give	the
arguments	in	the	correct	order	there	is	no	need	to	name	them.	Typically,	you	will	see
a	combination	of	naming	and	ordering	of	arguments.

2.	For	the	quantiles,	you	use	the	q*	functions	along	with	the	distribution	code,	which
in	this	case	would	be	exp,	so	you	would	call
>	qexp(0.95)

3.	Although	you	see	TRUE	and	FALSE	in	vectors	of	logical	data,	they	are	actually
stored	as	1	and	0.	This	is	what	allows	you	to	take	the	sum	to	find	the	number	of
TRUE	cases.

4.	You	test	for	missing	values	using	the	function	is.na.

5.	The	paste	function	allows	you	to	combine	character	strings	and	vectors	of	values.
This	is	particularly	useful	if	you	wanted	to,	for	example,	create	character	strings	for
a	plot	title	from	a	fixed	string	and	a	value	in	the	data.



Activities
1.	Using	the	Normal	distribution,	simulate	50	values	with	the	same	mean	and	standard
deviation	as	the	Ozone	variable	in	the	airquality	data.

2.	What	is	the	range	of	values	in	your	simulated	data?

3.	How	many	values	in	your	simulated	data	are	larger	than	the	mean	of	your	data?

4.	A	function	in	R	called	colors	returns	a	vector	of	all	colors	known	by	name.	Using
the	grep	function,	create	a	vector	that	contains	only	colors	that	contain	the	string
"blue".

5.	How	many	colors	do	you	have	in	your	vector	of	blues?

6.	Replace	the	pattern	"blue"	with	"green"	throughout	your	vector.



Hour	7.	Writing	Functions:	Part	I

What	You’ll	Learn	in	This	Hour:

	How	to	write	and	use	a	simple	R	function

	How	to	return	objects	from	a	function

	How	to	control	flow	through	a	function

So	far	in	this	book	you	have	seen	many	functions	being	used.	For	example,	in	the	earlier
hour	on	single-mode	data	structures	you	saw	that	you	could	create	vectors	using	functions
such	as	c,	seq,	and	rep.	One	of	the	strengths	of	R	is	that	you	can	extend	it	by	writing
your	own	functions.	This	allows	you	to	create	utilities	that	can	perform	a	variety	of	tasks.
In	this	hour,	we	look	at	ways	to	create	our	own	functions,	specify	inputs,	and	return	results
to	the	user.	We	also	introduce	the	“if/else”	structure	in	R,	and	we	use	this	to	control	the
flow	of	code	within	a	function.

The	Motivation	for	Functions
You	have	seen	that	functions	in	R	allow	you	to	perform	a	number	of	tasks	in	a	simple
command.	This	approach	has	parallels	in	most	programmable	languages,	such	as	“macros”
in	Visual	Basic	and	SAS.

Creating	your	own	functions	is	a	powerful	aspect	of	R	that	allows	you	to	“wrap	up”	a
series	of	steps	into	a	simple	container.	This	way,	you	can	capture	common	workflows	and
utilities	and	call	them	when	needed	instead	of	producing	long,	verbose	scripts	of	repeated
code	snippets	that	can	be	difficult	to	manage.

A	Closer	Look	at	an	R	Function
Before	we	write	our	own	functions,	let’s	take	a	closer	look	at	the	structure	of	an	existing	R
function.	Consider,	for	example,	the	upper.tri	function,	which	allows	us	to	identify
values	in	the	upper	triangle	of	a	matrix:
Click	here	to	view	code	image

>	myMat																							#	A	sample	matrix
					[,1]	[,2]	[,3]
[1,]				1				6				3
[2,]				1				3				8
[3,]				5				4				1
>	upper.tri(myMat)												#	Upper	triangle
						[,1]		[,2]		[,3]
[1,]	FALSE		TRUE		TRUE
[2,]	FALSE	FALSE		TRUE
[3,]	FALSE	FALSE	FALSE
>	myMat	[	upper.tri(myMat)	]		#	Values	from	upper	triangle
[1]	6	3	8

As	seen	here,	we	can	call	the	upper.tri	function	using	round	brackets,	specifying	the
matrix	as	the	first	input.	However,	if	we	simply	print	the	upper.tri	function,	we	can
see	its	contents:



Click	here	to	view	code	image
>	upper.tri								#	Print	the	upper.tri	function
function	(x,	diag	=	FALSE)
{
				x	<-	as.matrix(x)
				if	(diag)	row(x)	<=	col(x)
				else	row(x)	<	col(x)
}

The	function	is	split	into	two	parts:

	The	top	part	defines	the	inputs	to	the	function	(in	this	case,	the	inputs	are	x	and
diag).

	The	next	part,	captured	within	curly	brackets,	contains	the	main	“body”	of	the
function.

In	a	similar	way,	we	can	create	our	own	functions	by	specifying	a	function	name,	defining
the	function	inputs,	and	specifying	the	actions	we	wish	to	take	in	the	function	body.

Creating	a	Simple	Function
We	can	create	a	simple	function	in	R	using	the	function	keyword.	The	curly	brackets
are	used	to	contain	the	body	of	the	function.	In	this	simple	example,	we	create	a	function
that	accepts	a	single	input:

>	addOne	<-	function(x)	{
+			x	+	1
+	}

Our	new	addOne	function	adds	1	to	any	input	object.	Once	we’ve	created	a	function,	we
can	call	that	function	in	the	usual	way:
Click	here	to	view	code	image

>	addOne(x	=	1:5)			#	Call	the	addOne	function
[1]	2	3	4	5	6

Tip:	Saving	Outputs

Here,	we	see	the	values	2	to	6	returned	from	a	function.	If	we	want	to	save	the
output	from	a	function	for	later	use,	we	need	to	assign	the	output	from	the	function
to	an	object,	as	shown	here:

>	result	<-	addOne(1:5)
>	result
[1]	2	3	4	5	6

The	function	created	is	itself	an	R	object.	As	such,	it	exists	in	the	R	Workspace,	and	can
be	managed	and	reused	in	future	sessions	if	you	save	your	Workspace	objects,	as
discussed	in	Hour	2,	“The	R	Environment.”

The	body	of	our	simple	addOne	function	contains	only	one	line	of	code.	If	the	function
body	contains	only	a	single	line	of	code,	we	can	omit	the	curly	brackets,	as	follows:
Click	here	to	view	code	image

>	addOne	<-	function(x)	x	+	1



>	addOne(x	=	1:5)					#	Call	the	addOne	function
[1]	2	3	4	5	6

Note:	Named	Arguments

As	you	saw	in	Hour	6,	“Common	R	Utility	Functions,”	there	are	many	ways	to	call
functions	and	define	arguments.	In	the	preceding	example,	addOne(x	=	1:5)	is
equivalent	to	addOne(1:5).	In	this	hour,	we	will	name	all	arguments	when
calling	the	functions	to	aid	clarity,	but	common	convention	in	R	is	that	the	first
argument	(or	arguments)	is	not	directly	named.

Caution:	Continual	Prompts

In	many	of	our	examples,	we	see	the	familiar	command	prompt	for	the	first	line	of
the	function,	with	plus	(+)	symbols	prefixing	the	following	lines.	These	signify	the
“continuation”	prompt	in	R,	and	are	not	part	of	the	code	itself	(in	other	words,	you
should	not	type	these	symbols	when	creating	your	functions).

Tip:	Using	the	Script	Window

As	mentioned	earlier,	functions	typically	contain	more	than	one	line	of	code.	As
such,	the	script	window	(in	RStudio	or	other	interface)	is	preferred	to	the	console
window	when	developing	functions.

Naming	a	Function
A	function	is	an	R	object,	so	it	can	be	named	like	any	other	R	object.	Hence,	its	name

	Can	be	of	any	length

	Can	contain	any	combinations	of	letters,	numbers,	underscores,	and	period
characters

	Cannot	start	with	a	number

One	thing	to	note,	however,	is	that	creating	a	function	can	cause	existing	functions	to	be
“masked.”	Consider	the	following	example:
Click	here	to	view	code	image

>	X	<-	1:5																												#	Create	a	vector
>	median(X)																											#	The	median	of	the	vector	is	3
[1]	3
>	find(“median”)																						#	Where	is	the	“median”	function?
[1]	“package:stats”

>	median	<-	function(input)	“Hello”			#	Create	a	new	“median”	function
>	median(X)																											#	The	median	of	the	vector	is	“Hello”
[1]	“Hello”
>	find(“median”)																						#	Where	is	the	“median”	function?
[1]	“.GlobalEnv”				“package:stats”

>	rm(median)																										#	Remove	the	new	“median”	function	from
the



																																								workspace
>	median(X)																											#	The	median	of	the	vector	is	3
[1]	3

Here	we	have	created	a	new	median	function	in	the	R	Workspace,	thus	“masking”	the
original	median	function,	which	still	exists	in	the	stats	package.	As	such,	care	should	be
taken	when	naming	functions	to	ensure	you	don’t	“mask”	existing	key	functions.

Defining	Function	Arguments
In	the	previous	section,	we	created	a	very	simple	function	called	addOne,	defined	as
follows:

>	addOne	<-	function(x)	{
+			x	+	1
+	}

Note	that	this	function	takes	a	single	argument,	x.	If	we	wanted	to	extend	this	example,
we	could	add	a	second	argument:
Click	here	to	view	code	image

>	addNumber	<-	function(x,	number)	{
+	x	+	number
+	}
>	addNumber(x	=	1:5,	number	=	2)
[1]	3	4	5	6	7

Our	new	function	(addNumber)	now	accepts	two	arguments	(x	and	number)	and	adds
these	values	together.	Note,	however,	that	these	are	both	required	arguments	because	they
do	not	have	default	values.	As	such,	calling	the	function	without	both	arguments	defined
will	result	in	an	error:
Click	here	to	view	code	image

>	addNumber()																					#	Calling	with	no	arguments
Error	in	addNumber()	:	argument	“x”	is	missing,	with	no	default

>	addNumber(x	=	1:5)														#	Calling	with	only	the	“x”	argument
Error	in	addNumber(x	=	1:5)	:	argument	“number”	is	missing,	with	no	default

>	addNumber(number	=	2)											#	Calling	with	only	the	“number”	argument
Error	in	addNumber(number	=	2)	:	argument	“x”	is	missing,	with	no	default

>	addNumber(x	=	1:5,	number	=	2)		#	Calling	with	both	arguments
[1]	3	4	5	6	7

If	we	want	to	assign	default	values	for	arguments	to	a	function,	we	can	specify	them
directly	in	the	argument	definition,	as	follows:
Click	here	to	view	code	image

>	addNumber	<-	function(x,	number	=	0)	{
+			x	+	number
+	}
>	addNumber(x	=	1:5)															#	Call	function	with	default	(number	=	0)
[1]	1	2	3	4	5
>	addNumber(x	=	1:5,	number	=	1)			#	Call	function	with	number	=	1
[1]	2	3	4	5	6



Function	Scoping	Rules
When	we	define	a	function,	we	can	create	objects	within	the	function	body.	This	may	help
to	simplify	functions	or	make	them	generally	more	readable.	For	example,	we	may	create
an	object	to	be	returned:
Click	here	to	view	code	image

>	addNumber	<-	function(x,	number	=	0)	{
+			theAnswer	<-	x	+	number				#	Create	“theAnswer”	by	adding	“x”	and
“number”
+			theAnswer																		#	Return	the	value
+	}

If	we	call	the	function,	note	that	the	theAnswer	object	is	not	accessible	once	the
function	has	been	executed:
Click	here	to	view	code	image

>	output	<-	addNumber(x	=	1:5,	number	=	1)					#	Call	the	function	creating
																																																	“output”	object
>	output																																							#	Look	at	value	of	“output”
[1]	2	3	4	5	6

>	theAnswer																																				#	“theAnswer”	object	does	not
exist
Error:	object	‘theAnswer’	not	found

When	we	run	a	function,	R	loads	argument	inputs	and	objectives	created	into	a	separate,
temporary	area	of	memory	(a	memory	“frame”).	Once	the	execution	of	the	function	is
complete,	the	output	is	returned	and	the	temporary	area	of	memory	closed.	As	such,
objects	created	within	a	function	call	should	be	considered	“local”	to	that	function,	so	any
required	outputs	must	be	explicitly	returned	from	the	function.

Return	Objects
In	the	preceding	example,	you	saw	an	object	created	within	the	function	body.	Let’s
extend	that	example	to	include	the	creation	of	more	“local”	objects.	In	this	example,	we
create	a	function	called	plusAndMinus,	which	creates	two	“local”	objects	(called	PLUS
and	MINUS)	and	attempts	to	return	both	of	them:
Click	here	to	view	code	image

>	plusAndMinus	<-	function(x,	y)	{
+			PLUS	<-	x	+	y																	#	Define	“PLUS”
+			MINUS	<-	x	-	y																#	Define	“MINUS”
+			PLUS																										#	Return	“PLUS”
+			MINUS																									#	Return	“MINUS”
+	}
>	plusAndMinus(x	=	1:5,	y	=	1:5)		#	Call	function
[1]	0	0	0	0	0

As	you	can	see,	only	the	last	object	(the	MINUS	object)	is	returned	from	the	function—the
PLUS	object	value	is	not	returned	and,	as	discussed	earlier,	is	only	a	local	object,	so	the
value	cannot	be	retrieved.

R	functions	can	only	return	a	single	object,	which	is	the	result	of	the	last	line	of	code	in
the	function.	This	can	be	confirmed	by	swapping	the	order	of	the	PLUS	and	MINUS	return
objects:



Click	here	to	view	code	image
>	plusAndMinus	<-	function(x,	y)	{
+			PLUS	<-	x	+	y																	#	Define	“PLUS”
+			MINUS	<-	x	-	y																#	Define	“MINUS”
+			MINUS																									#	Return	“MINUS”
+			PLUS																										#	Return	“PLUS”
+	}
>	plusAndMinus(x	=	1:5,	y	=	1:5)		#	Call	function
[1]		2		4		6		8	10

If	we	want	to	return	more	than	one	value	from	a	function	(for	example,	the	PLUS	and
MINUS	objects),	we	need	to	combine	them	into	a	single	object.	First,	let’s	return	the	two
values	in	a	list:
Click	here	to	view	code	image

>	plusAndMinus	<-	function(x,	y)	{
+			PLUS	<-	x	+	y																	#	Define	“PLUS”
+			MINUS	<-	x	-	y																#	Define	“MINUS”
+			list(PLUS,	MINUS)													#	Return	“PLUS”	and	“MINUS”	in	a	list
+	}
>	plusAndMinus(x	=	1:5,	y	=	1:5)		#	Call	function
[[1]]
[1]		2		4		6		8	10

[[2]]
[1]	0	0	0	0	0

This	returns	a	single	object,	a	list,	containing	the	two	values.	When	we	return	a	list	in	this
way,	we	should	name	the	elements	so	we	can	more	easily	reference	the	values	later:
Click	here	to	view	code	image

>	plusAndMinus	<-	function(x,	y)	{
+			PLUS	<-	x	+	y																				#	Define	“PLUS”
+			MINUS	<-	x	-	y																			#	Define	“MINUS”
+			list(plus	=	PLUS,	minus	=	MINUS)	#	Return	“PLUS”	and	“MINUS”	in	a	list
+	}
>	output	<-	plusAndMinus(x	=	1:5,	y	=	1:5)		#	Call	function,	saving	the
output
>	output																																				#	Print	the	output
$plus
[1]		2		4		6		8	10

$minus
[1]	0	0	0	0	0

>	output$plus																															#	Print	the	“plus”	element
[1]		2		4		6		8	10

The	list	object	is	an	appropriate	structure	in	this	example,	because	we	are	returning
multiple	vectors.	However,	we	may	be	returning	a	number	of	single	values	from	a
function,	in	which	case	a	vector	may	be	more	suitable.	Consider	the	following	example,
where	we	return	some	summary	statistics	as	a	vector:
Click	here	to	view	code	image

>	summaryFun	<-	function(vec,	digits	=	3)	{
+
+			#	Create	some	summary	statistics
+			theMean	<-	mean(vec)
+			theMedian	<-	median(vec)
+			theMin	<-	min(vec)



+			theMax	<-	max(vec)
+
+			#	Combine	them	into	a	single	vector	and	round	the	values
+			output	<-	c(Mean	=	theMean,	Median	=	theMedian,	Min	=	theMin,	Max	=
theMax)
+			round(output,	digits	=	digits)
+	}
>
>	X	<-	rnorm(50)			#	Generate	50	samples	from	a	normal	distribution
>	summaryFun(X)				#	Produce	summaries	of	the	vector
		Mean	Median				Min				Max
-0.214	-0.051	-2.633		1.764

Note:	Checking	Function	Inputs

For	the	preceding	functions,	we	frequently	make	assumptions	about	the	structure	of
the	inputs.	For	example,	in	the	summaryFun	function	we	assume	the	vec	input	is
a	numeric	object	(otherwise	functions	such	as	mean	make	no	sense).	Later,	in	Hour
8,	“Writing	Functions:	Part	II,”	we	will	cover	ways	of	checking	function	inputs.
This	includes	functions	for	checking	the	structure	of	inputs	and	for	producing	error
or	warning	messages	when	those	inputs	are	not	appropriate	for	the	function.

The	If/Else	Structure
In	the	function	examples	you’ve	seen	so	far	in	this	hour,	the	“flow”	through	the	body	of
the	function	has	been	completely	linear	and	sequential.	However,	we	may	alternatively
wish	to	control	the	flow	based	on	decisions	using	an	“if/else”	statement.



Note:	What	Do	We	Mean	by	“If/Else”?

If	you	are	not	familiar	with	programming,	the	if/else	statement	is	a	common
structure,	where	code	is	executed,	or	not,	based	on	certain	decisions.	Consider	this
pseudo-code	example:

Click	here	to	view	code	image
IF	I	have	enough	money,	I	will	buy	a	can	of	soda	and	a	candy	bar
ELSE	I	will	just	buy	the	can	of	soda

Often,	we	will	only	need	an	“IF”	statement.	Note	that	because	either	option	in	this
example	involves	buying	a	can	of	soda,	we	can	rewrite	without	the	“ELSE”
statement:

Click	here	to	view	code	image
Buy	the	can	of	soda
IF	I	have	enough	money,	I	will	also	buy	a	candy	bar

We	can	also	have	nested	statements,	such	as	this:
Click	here	to	view	code	image

IF	I	have	enough	money,	I	will	buy	a	can	of	soda	and	a	candy	bar
ELSE	{
			IF	they	have	my	favorite	type	of	candy	bar	I	will	just	buy	that
			ELSE	I	will	just	buy	the	can	of	soda
}

We	can	use	a	similar	structure	within	our	code	to	control	the	flow	of	the	function
based	on	specific	choices.

The	basic	structure	of	an	if/else	statement	in	R	is	as	follows:
if	(something	is	TRUE)	{
		do	this
}
else	{
		do	this	instead
}

As	with	functions,	we	use	curly	brackets	to	contain	a	body	of	code.	However,	if	these	are
simple	one-line	statements,	we	may	omit	the	curly	brackets,	as	follows:
Click	here	to	view	code	image

if	(something	is	TRUE)	do	this
else	do	this	instead

The	“test”	that	is	performed	within	the	if	statement	(marked	as	“something	is
TRUE”	here)	is	called	the	“condition,”	and	should	take	the	form	of	a	single	TRUE	or
FALSE	value.

A	Simple	R	Example
Let’s	look	at	a	simple	example	of	this	in	action.	Here,	we	use	the	cat	function,	which
prints	text	to	the	screen	based	on	whether	the	number	passed	to	it	is	positive	or	negative:
Click	here	to	view	code	image

>	posOrNeg	<-	function(X)	{



+			if	(X	>	0)	{
+					cat(“X	is	Positive”)
+			}
+			else	{
+					cat(“X	is	Negative”)
+			}
+	}
>	posOrNeg(1)				#	is	1	positive	or	negative?
X	is	Positive
>	posOrNeg(-1)			#	is	-1	positive	or	negative?
X	is	Negative
>	posOrNeg(0)				#	is	0	positive	or	negative?
X	is	Negative

Note:	If/Else	in	a	Script

Note	that	the	above	example	of	if/else	is	contained	within	a	function.	If,	instead,	the
if/else	code	was	run	interactively	or	as	part	of	a	script,	it	would	interpret	the	if	part
of	the	statement	as	a	single	command	and	would	fail	when	the	else	statement	is
encountered:

Click	here	to	view	code	image
>	X	<-	1
>	if	(X	>	0)	{
+			cat(“X	is	Positive”)
+	}
X	is	Positive
>	else	{
Error:	unexpected	‘else’	in	“else”
>			cat(“X	is	Negative”)
X	is	Negative
>	}
Error:	unexpected	‘}’	in	“}”

To	guard	against	this	issue,	we	can	rewrite	the	command	positioning	the	else
statement	immediately	following	the	closing	curly	bracket	of	the	if	component	as
follows:

Click	here	to	view	code	image
>	X	<-	1
>	if	(X	>	0)	{
+			cat(“X	is	Positive”)
+	}	else	{						#	NOTE:	“else”	on	same	line	as	closing	}	of	“if”
+			cat(“X	is	Negative”)
+	}
X	is	Positive

Nested	Statements
In	this	example,	positive	and	negative	integers	are	handled	and	the	function	will	return	the
correct	message.	However,	when	we	pass	the	function	a	0,	this	would	be	reported	as	a
negative,	which	isn’t	true	(in	the	most	popular	definition	0	is	neither	positive	nor
negative).

We	can	improve	our	example	by	using	a	nested	if/else	statement:
Click	here	to	view	code	image



>	posOrNeg	<-	function(X)	{
+			if	(X	>	0)	{
+					cat(“X	is	Positive”)
+			}
+			else	{
+					if	(X	==	0)	cat(“X	is	Zero”)
+					else	cat(“X	is	Negative”)
+			}
+	}
>	posOrNeg(1)				#	is	1	positive	or	negative?
X	is	Positive
>	posOrNeg(0)				#	is	0	positive	or	negative?
X	is	Zero

Using	One	Condition
Consider	the	following	example:
Click	here	to	view	code	image

>	posOrNeg	<-	function(X)	{
+			if	(X	>	0)	{
+					cat(“X	is	Positive”)
+			}
+			else	{
+					cat(””)
+			}
+	}
>	posOrNeg(1)				#	is	1	positive	or	negative?
X	is	Positive
>	posOrNeg(0)				#	is	0	positive	or	negative?

In	this	example,	the	“else”	part	of	the	statement	does	nothing,	so	we	can	drop	it	and
simplify	as	follows:
Click	here	to	view	code	image

>	posOrNeg	<-	function(X)	{
+			if	(X	>	0)	{
+					cat(“X	is	Positive”)
+			}
+	}
>	posOrNeg(1)				#	is	1	positive	or	negative?
X	is	Positive
>	posOrNeg(0)				#	is	0	positive	or	negative?

Multiple	Test	Values
In	the	preceding	example,	the	posOrNeg	function	accepts	an	input	called	X	and	the
condition	is	X	>	0.	Running	this	condition	outside	the	if/else	statement	shows	that	it
returns	a	single	logical	value:
Click	here	to	view	code	image

>	X	<-	1		#	Set	X	to	1
>	X	>	0			#	Is	X	greater	than	0?
[1]	TRUE

>	X	<-	0		#	Set	X	to	0
>	X	>	0			#	Is	X	greater	than	0?
[1]	FALSE

If	we	instead	provide	a	vector	of	values	to	this	function,	we	get	the	following	warning



message:
Click	here	to	view	code	image

>	posOrNeg	<-	function(X)	{
+			if	(X	>	0)	cat(“X	is	Positive”)
+			else	cat(“X	is	Negative”)
+	}
>	posOrNeg(-2:2)				#	is	1	positive	or	negative?
X	is	Negative
Warning	message:
In	if	(X	>	0)	cat(“X	is	Positive”)	else	cat(“X	is	Negative”)	:
		the	condition	has	length	>	1	and	only	the	first	element	will	be	used

In	this	case,	when	running	the	condition	outside	the	if/else	statement,	we	can	see	that	the
result	is	a	vector	of	logicals:
Click	here	to	view	code	image

>	X	<-	-2:2		#	Set	X	to	-2:2
>	X	>	0						#	Is	X	greater	than	0?
[1]	FALSE	FALSE	FALSE		TRUE		TRUE

The	if/else	structure	is	looking	for	a	single	“choice”	(that	is,	should	it	run	the	first	“if”
section	of	code	or	the	second	“else”	section	of	code?).	In	this	example,	the	condition	has
returned	five	“answers”	(FALSE	FALSE	FALSE	TRUE	TRUE).

R	handles	this	mismatch	by	only	using	the	first	“answer”	(as	per	the	warning	message).
This	is	FALSE,	hence	the	result	(“X	is	Negative”).

Summarizing	to	a	Single	Logical
In	the	last	example,	you	saw	that	the	condition	should	be	a	single	TRUE	or	FALSE	value.
You	also	saw	that	warnings	and	unexpected	behaviors	can	occur	if	multiple	logical	values
are	generated	from	the	condition.

One	way	of	handling	this	is	to	use	the	all	and	any	functions	to	collapse	a	vector	of
logicals	into	a	single	TRUE	or	FALSE	value:
Click	here	to	view	code	image

>	X	<-	-2:2		#	Set	X	to	-2:2
>	X	>	0						#	Is	X	greater	than	0?
[1]	FALSE	FALSE	FALSE		TRUE		TRUE
>	all(X	>	0)	#	Are	all	values	of	X	greater	than	0?
[1]	FALSE
>	any(X	>	0)	#	Are	any	values	of	X	greater	than	0?
[1]	TRUE

We	can	use	these	functions	directly	in	the	condition	as	follows:
Click	here	to	view	code	image

>	posOrNeg	<-	function(X)	{
+			if	(all(X	>	0))	cat(“All	values	of	X	are	>	0”)
+			else	{
+					if	(any(X	>	0))	cat(“At	least	1	value	of	X	is	>	0”)
+					else	cat(“No	values	are	>	0”)
+			}
+	}
>	posOrNeg(-2:2)
At	least	1	value	of	X	is	>	0



>	posOrNeg(1:5)
All	values	of	X	are	>	0
>	posOrNeg(-(1:5))
No	values	are	>	0

Switching	with	Logical	Input
Sometimes	we	may	want	the	person	calling	the	function	to	choose	the	flow	of	the
function.	In	this	case,	we	can	provide	a	logical	argument	that	the	function	passes	directly
to	the	condition	in	the	if/else	statement:
Click	here	to	view	code	image

>	logVector	<-	function(vec,	logIt	=	FALSE)	{
+			if	(logIt	==	TRUE)	vec	<-	log(vec)
+			else	vec	<-	vec
+			vec
+	}
>	logVector(1:5)
[1]	1	2	3	4	5
>	logVector(1:5,	logIt	=	TRUE)	#	Call	the	function	with	logIt	=	TRUE
[1]	0.0000000	0.6931472	1.0986123	1.3862944	1.6094379

Again,	the	“else”	portion	of	this	statement	changes	nothing,	so	we	can	drop	it:
Click	here	to	view	code	image

>	logVector	<-	function(vec,	logIt	=	FALSE)	{
+			if	(logIt	==	TRUE)	vec	<-	log(vec)
+			vec
+	}
>	logVector(1:5)
[1]	1	2	3	4	5
>	logVector(1:5,	logIt	=	TRUE)	#	Call	the	function	with	logIt	=	TRUE
[1]	0.0000000	0.6931472	1.0986123	1.3862944	1.6094379

There	is	one	more	simplification	we	can	make.	Consider	the	possible	outcomes	from	the
condition:

	If	logIt	is	TRUE,	then	logIt	==	TRUE	will	be	TRUE.

	If	logIt	is	FALSE,	then	logIt	==	TRUE	will	be	FALSE.

So,	regardless	of	the	result,	logIt	==	TRUE	will	always	return	the	same	value	as
logIt.	Therefore,	we	can	simplify	the	condition	as	follows:
Click	here	to	view	code	image

>	logVector	<-	function(vec,	logIt	=	FALSE)	{
+			if	(logIt)	vec	<-	log(vec)
+			vec
+	}
>	logVector(1:5)
[1]	1	2	3	4	5
>	logVector(1:5,	logIt	=	TRUE)		#	Call	the	function	with	logIt	=	TRUE
[1]	0.0000000	0.6931472	1.0986123	1.3862944	1.6094379

Reversing	Logical	Values
Using	all	and	any,	we	can	summarize	logical	vectors	as	follows:
Click	here	to	view	code	image



>	X	<-	-2:2		#	Set	X	to	-2:2
>	X	>	0						#	Is	X	greater	than	0?
[1]	FALSE	FALSE	FALSE		TRUE		TRUE
>	all(X	>	0)	#	Are	all	values	of	X	greater	than	0?
[1]	FALSE
>	any(X	>	0)	#	Are	any	values	of	X	greater	than	0?
[1]	TRUE

We	can	introduce	the	!	notation	before	any	logical	statement	to	convert	TRUE	values	to
FALSE	values	and	FALSE	values	to	TRUE	values.	This	can	be	seen	here:
Click	here	to	view	code	image

>	X	<-	-2:2		#	Set	X	to	-2:2
>	X	>	0						#	Is	X	greater	than	0?
[1]	FALSE	FALSE	FALSE		TRUE		TRUE
>	!(X	>	0)			#	Reverse	logical	values
[1]		TRUE		TRUE		TRUE	FALSE	FALSE

We	can	also	use	the	!	notation	before	the	all	and	any	functions	to	reverse	the	meanings
of	the	conditions	as	follows:
Click	here	to	view	code	image

>	posOrNeg	<-	function(X)	{
+			if	(all(X	>	0))	cat(“\nAll	values	of	X	are	greater	than	0”)
+			if	(!all(X	>	0))	cat(“\nNot	all	values	of	X	are	greater	than	0”)
+			if	(any(X	>	0))	cat(“\nAt	least	1	value	of	X	is	greater	than	0”)
+			if	(!any(X	>	0))	cat(“\nNo	values	of	X	are	greater	than	0”)
+	}
>	posOrNeg(1:5)							#	All	>	0

All	values	of	X	are	greater	than	0
At	least	1	value	of	X	is	greater	than	0
>	posOrNeg(-2:2)						#	Some	>	0,	Some	<=	0

Not	all	values	of	X	are	greater	than	0
At	least	1	value	of	X	is	greater	than	0
>	posOrNeg(-(1:5))				#	All	<=	0

Not	all	values	of	X	are	greater	than	0
No	values	of	X	are	greater	than	0

Note:	New	Line	Characters

Note	the	use	of	the	\n	character	in	the	call	to	cat	in	the	preceding	example.	The
\n	character	specifies	that	a	new	line	is	written,	which	is	why	each	statement
printed	is	on	a	separate	line.	This	can	be	further	seen	in	this	example:

>	cat(“Hello\nthere”)
Hello
there

Mixing	Conditions
In	all	our	examples	so	far,	there	has	been	a	single	condition.	If	we	have	more	than	one
condition,	we	can	use	the	&	or	|	notation	to	combine	conditions.	Here	is	a	rather	contrived
example	to	show	the	use	of	these	operators:
Click	here	to	view	code	image



>	betweenValues	<-	function(X,	Min	=	1,	Max	=	10)	{
+			if	(X	>=	Min	&	X	<=	Max)	cat(paste(“X	is	between”,	Min,	“and”,	Max))
+			if	(X	<	Min	|	X	>	Max)	cat(paste(“X	is	NOT	between”,	Min,	“and”,	Max))
+	}
>	betweenValues(5)
X	is	between	1	and	10
>	betweenValues(5,	Min	=	-2,	Max	=	2)
X	is	NOT	between	-2	and	2

We	may	also	mix	conditions	that	come	from	different	sources.	Consider	the	following
example	that	mixes	a	condition	passed	from	the	user	with	one	derived	within	the	function:
Click	here	to	view	code	image

>	logVector	<-	function(vec,	logIt	=	FALSE)	{
+			if	(all(vec	>	0)	&	logIt)	vec	<-	log(vec)
+			vec
+	}
>	logVector(1:5,	logIt	=	TRUE)		#	Logs	the	data
[1]	0.0000000	0.6931472	1.0986123	1.3862944	1.6094379
>	logVector(-5:5,	logIt	=	TRUE)	#	Doesn’t	log	the	data	because	first
condition	not	met
	[1]	-5	-4	-3	-2	-1		0		1		2		3		4		5

Control	And/Or	Statements
When	multiple	conditions	are	combined	with	&	and/or	|	conditions,	each	condition	is
evaluated	separately,	and	the	each	result	is	compared.	To	illustrate	this,	consider	the
following	example:
Click	here	to	view	code	image

>	logVector	<-	function(vec)	{
+			if	(all(vec	>	0)	&	all(log(vec)	<=	2))	cat(“Numbers	in	range”)
+			else	cat(“Numbers	not	in	range”)
+	}
>	logVector(1:10)				#	Some	logged	values	are	greater	than	2
Numbers	not	in	range
>	logVector(1:5)					#	All	values	are	in	range
Numbers	in	range

Let’s	consider	the	way	in	which	the	condition	from	the	last	call	is	evaluated:

	The	all(vec	>	0)	statement	is	evaluated,	resulting	in	a	TRUE	value.

	The	all(log(vec)	<=	2)	statement	is	evaluated,	also	resulting	in	a	TRUE
value.

	The	results	of	the	two	statements	are	compared:	TRUE	&	TRUE	=	TRUE.

Now	consider	the	following	example:
>	logVector(-2:2)
Numbers	not	in	range
Warning	message:
In	log(vec)	:	NaNs	produced

In	this	example,	we	see	a	return	value	(“Numbers	not	in	range”)	and	also	a	warning
message.	This	message	occurs	because	both	conditions	are	evaluated	and	compared.	The
first	condition	returns	a	FALSE	value,	but	the	second	condition	generates	a	warning
message	because	the	function	is	attempting	to	calculate	logs	of	negative	numbers	(which



is	not	mathematically	possible).

To	remedy	these	issues,	we	can	use	the	“control”	versions	of	the	&	and	|	operators.	This
changes	the	flow	so	that	the	second	condition	is	only	evaluated	if	the	result	of	the	first	is
inconclusive.	To	use	the	“control”	and/or	statement,	we	use	double	notation	(&&	or	||).
Let’s	update	our	logVector	function	with	“control”	notation:
Click	here	to	view	code	image

>	logVector	<-	function(vec)	{
+			if	(all(vec	>	0)	&&	all(log(vec)	<=	2))	cat(“Numbers	in	range”)
+			else	cat(“Numbers	not	in	range”)
+	}
>	logVector(-2:2)
Numbers	not	in	range

You	can	see	that	the	earlier	message	has	been	avoided	because	we	specified	a	“control
and”	using	the	&&	notation.	Now,	the	flow	of	the	condition	is	as	follows:

	The	all(vec	>	0)	statement	is	evaluated,	resulting	in	a	FALSE	value.

	Because	the	first	condition	is	FALSE,	the	whole	statement	must	be	FALSE,	so	a
FALSE	value	is	returned	without	evaluating	the	second	condition.

Returning	Early
Earlier	in	this	hour,	in	the	“Return	Objects”	section,	you	saw	that	the	last	evaluated	line	of
code	within	a	function	generates	the	return	value.	Consider	this	example:
Click	here	to	view	code	image

>	verboseFunction	<-	function(X)	{
+			if	(all(X	>	0))	output	<-	X			#	if	all	values	of	X	>	0,	set	output	to	X
+			else	{
+					X	[	X	<=	0	]	<-	0.1									#	Set	all	values	<=0	to	0.1
+					output	<-	log(X)												#	Take	logs	of	the	X	input	data,	set	as
output
+			}
+			output																								#	Return	the	value	of	output
+	}
>	verboseFunction(-2:2)											#	Call	our	function
[1]	-2.3025851	-2.3025851	-2.3025851		0.0000000		0.6931472

If	all	the	values	of	X	are	greater	than	0,	we	set	the	output	to	0.	At	this	point	in	the	function
(that	is,	the	first	line	of	the	body	of	the	function)	we	already	know	the	value	we	want	to
return	from	the	function.	If	we	wish	to	return	the	result	of	the	function	early,	we	can	force
this	to	happen	using	the	return	function.	This	way,	we	can	rewrite	our	function	as
follows:
Click	here	to	view	code	image

>	verboseFunction	<-	function(X)	{
+			if	(all(X	>	0))	return(X)					#	Return	early	if	all	values	of	X	are	>	0
+
+			#	Carry	on	if	not	returned	already
+			X	[	X	<=	0	]	<-	0.1											#	Set	all	values	<=0	to	0.1
+			log(X)																								#	Return	the	logged	X	values
+	}
>	verboseFunction(-2:2)
[1]	-2.3025851	-2.3025851	-2.3025851		0.0000000		0.6931472



This	provides	a	clear,	readable	behavior	where	results	are	returned	earlier	in	the	function
when	certain	conditions	are	met.

A	Worked	Example
So	far	in	this	hour,	all	our	examples	have	been	very	simple	(and,	often,	rather	useless).
This	has	been	done	to	ensure	we	focus	on	the	basic	syntax	of	R	functions,	but	at	this	point
it	is	worth	exploring	a	more	complete	and	useful	worked	example	to	see	the	various
components	discussed	in	this	hour	in	action.

The	following	function	summarizes	a	numeric	object,	calculating	a	variety	of	statistics:
Click	here	to	view	code	image

>	summaryFun	<-	function(vec,	digits	=	3)	{
+			N	<-	length(vec)																					#	Calculate	the	number	of	values	in
“vec”
+			if	(N	==	0)	return(NULL)													#	Return	NULL	if	“vec”	is	empty
+
+			testMissing	<-	is.na(vec)												#	Look	for	missing	values
+			if	(all(testMissing))	{
+					output	<-	c(	N	=	N,	nMissing	=	N,	pMissing	=	100)
+					return(output)																					#	Return	simple	summary	if	all
missing
																																											values
+			}
+
+			nMiss	<-	sum(testMissing)												#	Calculate	the	number	of	missing
values
+			pMiss	<-	100	*	nMiss	/	N													#	Calculate	the	percentage	of
missing	values
+			vec	<-	vec	[	!testMissing	]										#	Remove	missing	values	from	the
vector
+			someStats	<-	c(Mean	=	mean(vec),	Median	=	median(vec),	SD	=	sd(vec),
+							Min	=	min(vec),	Max	=	max(vec))		#	Calculate	a	number	of	statistics
+
+			output	<-	c(someStats,	N	=	N,	nMissing	=	nMiss,	pMissing	=	pMiss)
+			round(output,	digits	=	digits)
+	}

>	summaryFun(c())																								#	Empty	Vector
NULL
>	summaryFun(rep(NA,	10))																#	Vector	of	missing	values
							N	nMissing	pMissing
						10							10						100
>	summaryFun(1:10)																							#	Basic	numeric	vector
				Mean			Median							SD						Min						Max								N	nMissing	pMissing
			5.500				5.500				3.028				1.000			10.000			10.000				0.000				0.000
>	summaryFun(airquality$Ozone)											#	Vector	containing	missings
				Mean			Median							SD						Min						Max								N	nMissing	pMissing
		42.129			31.500			32.988				1.000		168.000		153.000			37.000			24.183

Summary
In	this	hour,	we	have	covered	the	basic	structure	of	an	R	function,	and	you	have	seen	how
to	create	simple	functions	of	your	own.	In	particular,	you	saw	how	to	specify	the	function
inputs,	define	what	your	functions	“do”	with	those	inputs,	and	how	results	are	returned
from	your	functions.	Beyond	this,	we	covered	the	if/else	structure,	which	allows	you	to
control	the	overall	flow	through	a	function.



In	the	next	hour,	we	will	use	the	skills	you	learned	here	to	create	more	complex	functions,
including	the	use	of	error	messaging	and	the	checking	of	function	inputs.

Q&A
Q.	Is	there	a	convention	for	naming	functions	in	R?

A.	During	the	history	of	R,	a	number	of	naming	conventions	have	come	and	gone.	The
current	convention	(which	I’ve	followed	in	this	hour)	is	to	use	camel-case	starting
with	a	lower	case	letter	(e.g.	myFunction).	However,	there	are	no	specific	rules	as
to	how	functions	should	be	named.

Q.	How	do	I	load	and	share	my	functions?

A.	Functions	are	R	objects	so,	when	created,	they	exist	in	the	workspace	of	the	current
session.	If	you	save	that	workspace	and	restart	in	the	same	working	directory,	your
function	(and	other)	objects	should	still	exist.	If	you	want	to	share	with	other	users,
or	reuse	your	functions	in	other	projects,	we	can	do	the	following:

	Save	the	function	definitions	as	scripts,	then	open	and	re-execute	them	in	other
sessions.

	Save	your	functions	together	in	your	own	“package,”	which	can	be	shared	and
loaded	into	R	(you’ll	see	how	to	do	this	in	Hour	19,	“Package	Building”).

Q.	Can	I	“globally	assign”	local	objects	so	they	can	be	seen	later?

A.	Yes,	this	can	be	achieved	with	the	assign	function.	However,	this	practice	is
discouraged,	and	we	recommend	that	any	required	results	are	passed	back	to	the	user
in	the	manner	discussed	in	this	hour.

Q.	What	is	the	difference	between	the	cat	and	print	functions?

A.	In	this	section,	we	make	heavy	use	of	the	cat	function	to	demonstrate	the	flow	of	a
function	when	using	if/else	statements.	The	cat	function	simply	prints	the	value	of
an	object	without	printing	the	structure	of	that	object.	The	print	function	also
returns	the	structure	of	the	object.	This	can	be	seen	with	a	simple	example:
>	cat(“Hello”)
Hello
>	print(“Hello”)
[1]	“Hello”

Q.	How	do	missing	values	impact	“conditions”?

A.	If	the	condition	results	in	a	single	missing	value,	then	an	error	is	returned:
Click	here	to	view	code	image

>	testMissing	<-	function(X)	{
+			if	(X	>	0)	cat(“Success”)
+	}
>	testMissing(NA)
Error	in	if	(X	>	0)	cat(“Success”)	:
		missing	value	where	TRUE/FALSE	needed

If	you	use	the	all	function	with	a	condition	that	contains	any	missing	values,	the



result	is	missing,	which	will	also	result	in	an	error	(because	you	do	not	know	if	“all”
the	conditions	are	met):

Click	here	to	view	code	image
>	allMissings	<-	rep(NA,	5)			#	All	missing	values
>	someMissings	<-	c(NA,	1:4)		#	Some	missing	values
>	all(allMissings	>	0)
[1]	NA
>	all(someMissings	>	0)
[1]	NA

If	you	use	the	any	function	with	a	condition	that	contains	all	missing	values,	the
result	is	a	missing	value.	If,	however,	you	use	the	any	function	with	a	vector	where
not	all	values	are	missing,	some	conditions	may	be	met:
>	any(allMissings	>	0)
[1]	NA
>	any(someMissings	>	0)
[1]	TRUE

Workshop
The	workshop	contains	quiz	questions	and	exercises	to	help	you	solidify	your
understanding	of	the	material	covered.	Try	to	answer	all	questions	before	looking	at	the
“Answers”	section	that	follows.

Quiz
1.	How	do	you	specify	default	inputs	to	a	function?

2.	What	value	will	be	held	in	the	result1	object	when	the	following	code	is
executed?

Click	here	to	view	code	image
>	qaFun	<-	function(X)	{
+			addOne	<-	X	+	1
+			minusOne	<-	X	-	1
+			addOne
+			minusOne
+	}
>	result1	<-	qaFun(1)

3.	What	value	will	be	held	in	the	result2	object	when	the	following	code	is
executed?
>	qaFun	<-	function(X)	{
+			addOne	<-	X	+	1
+			minusOne	<-	X	-	1
+			c(ADD	=	addOne,	MINUS	=	minusOne)
+	}
>	result2	<-	qaFun(1)

4.	When	you	specify	an	if/else	statement,	what	object	should	the	“condition”	(that	is,
the	statement	within	the	if	call)	return?

5.	What	is	the	difference	between	all(X	>	0)	and	!all(X	>	0)?

6.	What	is	the	difference	between	&	and	&&	when	used	in	a	condition?



7.	What	function	can	you	use	to	return	an	object	early	(that	is,	before	the	last	line	of
the	function)?

Answers
1.	You	specify	default	values	directly	in	the	input	statement	with	“equals”	(for
example,	function(x	=	1)).

2.	The	result1	object	will	contain	a	0,	because	only	the	last	line	is	returned	(the
value	of	minusOne,	created	as	X	–	1	=	0).

3.	The	result2	object	will	contain	a	vector	of	length	2,	containing	the	values	2	and
0.	The	elements	of	the	vector	will	be	named	ADD	and	MINUS.

4.	The	condition	should	return	a	single	logical	value.	If	multiple	logical	values	are
returned,	unexpected	behaviors	can	occur.

5.	The	all	function	returns	a	TRUE	value	if	all	the	values	of	X	are	greater	than	0	(and
non-missing).	The	!	prefix	in	!all	reverses	the	logical	values,	so	this	would	return
a	TRUE	if	“not	all”	values	of	X	are	greater	than	0	(that	is,	at	least	one	is	less	than	or
equal	to	0).

6.	When	you	use	a	single	&,	the	conditions	each	side	of	the	&	are	evaluated	and	the
outputs	compared	to	see	whether	both	conditions	are	met.	Therefore,	if	you	have
test1	&	test2,	both	test1	and	test2	are	evaluated,	then	they	are	compared.
If	instead	you	use	the	“control”	&&	(for	example,	in	test1	&&	test2),	then	the
first	condition	(test1)	is	evaluated,	and	the	second	condition	(test2)	is	only
evaluated	if	the	first	condition	is	TRUE.

7.	You	can	use	the	return	function	to	return	a	result	earlier	in	the	function	call.

Activities
1.	Create	a	function	that	accepts	two	inputs	(X	and	Y)	and	returns	the	value	of	X	+	Y.
Test	your	function	by	calling	it	with	X	and	Y	inputs.

2.	Update	your	function	so	that	Y	has	a	default	value.	Test	your	function	by	calling	it
with	only	an	X	input,	then	try	specifying	a	value	for	Y.

3.	Create	a	function	called	firstLast	that	accepts	a	vector	and	returns	the	first	and
last	values.	Test	your	function.

4.	Update	your	firstLast	function	so	that,	if	the	vector	input	only	has	a	single
value	(that	is,	it	is	of	length	1),	only	that	single	value	is	returned.

5.	Update	your	firstLast	function	so	that,	if	all	values	of	the	vector	are	less	than
zero,	a	message	is	printed	to	the	user	informing	him	or	her	of	this	fact.

6.	Update	your	firstLast	function	so	that,	if	any	values	of	the	vector	are	missing,
the	first	value,	last	value,	and	the	number	of	missing	values	are	returned	to	the	user.



Hour	8.	Writing	Functions:	Part	II

What	You’ll	Learn	in	This	Hour:

	How	to	check	the	appropriateness	of	function	inputs

	How	to	return	errors	and	warnings	from	a	function

	How	to	use	function	“ellipsis”

In	the	last	hour,	you	saw	how	to	create	a	number	of	simple	R	functions.	This	included	the
definition	of	function	inputs,	the	creation	of	the	function	body,	and	the	management	of
results	back	to	the	user.	You	also	saw	how	to	control	the	overall	“flow”	through	a	function
with	the	if/else	structure.	This	hour	will	look	at	a	range	of	advanced	function	writing
topics,	such	as	returning	error	messaging,	checking	whether	inputs	are	appropriate	to	our
functions,	and	the	use	of	function	“ellipsis.”

Errors	and	Warnings
On	occasion,	we	may	wish	to	return	errors	or	warnings	to	the	users	of	our	functions.	This
allows	us	to	inform	our	users	of	unexpected	behavior	and	communicate	the	resulting
impact	on	the	execution	of	the	functions	(for	example,	stop	processing	or	continue	with
some	assumption).

First,	let’s	consider	a	simple	function.	Here’s	an	example	that	causes	unexpected	behavior:
Click	here	to	view	code	image

>	logRange	<-	function(X)	{
+			logX	<-	log(X)											#	Takes	logs	of	X
+			round(range(logX),	2)				#	Return	(rounded)	range	of	values
+	}
>	logRange(1:5)		#	Only	positive	integers
[1]	0.00	1.61
>	logRange(-2:2)	#	Positive	and	negative	integers
[1]	NaN	NaN
Warning	message:
In	log(X)	:	NaNs	produced

When	we	execute	our	logRange	function	with	a	vector	of	positive	integers,	the	function
executes	correctly.	However,	when	we	introduce	negative	integers,	the	function	produces
unexpected	results:	two	NaN	values	are	returned,	and	a	warning	message	is	produced.

Note:	Adding	the	na.rm	Argument

We	could,	of	course,	fix	this	function	by	removing	missing	values	(with	is.na)	or
calculating	the	range	without	missing	values	(using	the	na.rm	argument	to
range).	However,	we’ll	instead	use	error	and	warning	messages	to	illustrate	the
behavior	of	these	features.



Error	Messages
It	could	be	that	we	want	to	return	an	error	message	when	we	find	negative	integers	in	the
input	data	and	halt	the	execution	of	the	function.	We	can	achieve	this	with	the	stop
function,	which	accepts	an	error	message	to	return:
Click	here	to	view	code	image

>	logRange	<-	function(X)	{
+			stop(“Negative	Values	found!”)		#	Return	an	error	message
+			logX	<-	log(X)																		#	Takes	logs	of	X
+			round(range(logX),	2)											#	Return	(rounded)	range	of	values
+	}
>	logRange(1:5)		#	Only	positive	integers
Error	in	logRange(1:5)	:	Negative	Values	found!
>	logRange(-2:2)	#	Positive	and	negative	integers
Error	in	logRange(-2:2)	:	Negative	Values	found!

In	this	case,	we	can	see	that	an	error	message	is	returned	to	the	user.	However,	the	error
message	is	returned	regardless	of	whether	negative	values	are	found.	Let’s	update	our
function	to	return	an	error	only	when	a	particular	condition	is	met,	using	the	if/else
structure	from	the	last	hour:
Click	here	to	view	code	image

>	logRange	<-	function(X)	{
+			if	(any(X	<=	0))		stop(“Negative	Values	found!”)
+			logX	<-	log(X)																		#	Takes	logs	of	X
+			round(range(logX),	2)											#	Return	(rounded)	range	of	values
+	}
>	logRange(1:5)		#	Only	positive	integers
[1]	0.00	1.61
>	logRange(-2:2)	#	Positive	and	negative	integers
Error	in	logRange(-2:2)	:	Negative	Values	found!

Now	the	error	message	is	only	returned	if	there	are	any	values	of	X	less	than	or	equal	to	0,
and	we’ve	provided	a	(slightly)	more	informative	error	message	to	the	user.	Note	that	the
function	stops	executing	at	this	point	and	no	value	is	returned.	This	can	be	further
illustrated	by	introducing	an	artificial	message	using	cat:
Click	here	to	view	code	image

>	logRange	<-	function(X)	{
+			if	(any(X	<=	0))		stop(“Negative	Values	found!”)
+			cat(“Made	it	this	far!!\n”)
+			logX	<-	log(X)																		#	Takes	logs	of	X
+			round(range(logX),	2)											#	Return	(rounded)	range	of	values
+	}
>	logRange(1:5)		#	Only	positive	integers
Made	it	this	far!!
[1]	0.00	1.61
>	logRange(-2:2)	#	Positive	and	negative	integers
Error	in	logRange(-2:2)	:	Negative	Values	found!



Warning	Messages
In	the	last	example,	we	halted	the	flow	of	the	function	under	a	specific	condition	(that	is,	if
any	negative	values	exist).	We	sometimes	want	to	warn	the	user	that	something	has
happened,	inform	them	of	how	we’re	going	to	continue,	and	then	execute	the	rest	of	the
function.	For	example,	we	may	want	to	check	for	any	negative	values,	and	if	there	are	any,
we	want	to	do	the	following:

	Remove	the	negative	values.

	Inform	the	user	that	we’re	continuing	without	these	values.

We	can	achieve	this	using	the	warning	function,	which,	as	with	the	stop	function,
accepts	a	message	to	display	to	the	user:
Click	here	to	view	code	image

>	logRange	<-	function(X)	{
+			if	(any(X	<=	0))	{
+					warning(“Some	values	were	<=	0.	We	will	remove	them”)
+					X	<-	X	[	X	>	0	]
+			}
+			logX	<-	log(X)																		#	Takes	logs	of	X
+			round(range(logX),	2)											#	Return	(rounded)	range	of	values
+	}
>	logRange(1:5)		#	Only	positive	integers
[1]	0.00	1.61
>	logRange(-2:2)	#	Positive	and	negative	integers
[1]	0.00	0.69
Warning	message:
In	logRange(-2:2)	:	Some	values	were	<=	0.	We	will	remove	them

Note	that,	in	both	instances,	the	function	continues	and	a	result	is	provided.	However,
when	negative	integers	are	found,	the	user	is	warned.

We	could	extend	this	further	to	inform	the	user	of	the	number	of	values	we	have	removed:
Click	here	to	view	code	image

>	logRange	<-	function(X)	{
+			lessTest	<-	X	<=	0														#	Test	for	values	<=	0
+			if	(any(lessTest))	{
+					nLess	<-	sum(lessTest)								#	How	many	values
+					outMessage	<-	paste(nLess,	“values	were	<=	0.	We	will	remove	them”)
+					warning(outMessage)
+					X	<-	X	[	X	>	0	]
+			}
+			logX	<-	log(X)																		#	Takes	logs	of	X
+			round(range(logX),	2)											#	Return	(rounded)	range	of	values
+	}
>	logRange(1:5)		#	Only	positive	integers
[1]	0.00	1.61
>	logRange(-2:2)	#	Positive	and	negative	integers
[1]	0.00	0.69
Warning	message:
In	logRange(-2:2)	:	3	values	were	<=	0.	We	will	remove	them

Of	course,	if	we	removed	all	of	the	negatives	there	may	not	be	any	left,	so	perhaps	we
should	mix	both	the	“error”	and	“warn”	approaches:
Click	here	to	view	code	image



>	logRange	<-	function(X)	{
+			lessTest	<-	X	<=	0																														#	Test	for	values	<=	0
+			if	(all(lessTest))	stop(“All	values	are	<=	0”)		#	Stop	if	all	<=	0
+			if	(any(lessTest))	{
+					nLess	<-	sum(lessTest)								#	How	many	values
+					outMessage	<-	paste(nLess,	“values	were	<=	0.	We	will	remove	them”)
+					warning(outMessage)
+					X	<-	X	[	X	>	0	]
+			}
+			logX	<-	log(X)																		#	Takes	logs	of	X
+			round(range(logX),	2)											#	Return	(rounded)	range	of	values
+	}
>	logRange(1:5)				#	Only	positive	integers
[1]	0.00	1.61
>	logRange(-2:2)			#	Positive	and	negative	integers
[1]	0.00	0.69
Warning	message:
In	logRange(-2:2)	:	3	values	were	<=	0.	We	will	remove	them
>	logRange(-(1:5))	#	All	negative	integers
Error	in	logRange(-(1:5))	:	All	values	are	<=	0

Caution:	Missing	Values

We	should	also	consider	missing	values	in	the	preceding	example,	but	we	will	leave
it	at	this	now.

Checking	Inputs
In	the	last	example,	we	checked	whether	the	values	of	X	were	less	than	or	equal	to	0,	and
informed	the	user	of	the	impact	(with	either	an	error	or	warning	message).	However,	in
this	case,	we	are	assuming	the	input	to	the	function	is	a	numeric	object.	Consider,	instead,
if	we	pass	a	character	vector	to	the	logRange	function:
Click	here	to	view	code	image

>	logRange	<-	function(X)	{
+			if	(any(X	<=	0))		stop(“Negative	Values	found!”)
+			logX	<-	log(X)																		#	Takes	logs	of	X
+			round(range(logX),	2)											#	Return	(rounded)	range	of	values
+	}
>	logRange(LETTERS)		#	A	Character	vector
Error	in	log(X)	:	non-numeric	argument	to	mathematical	function

Because	we	often	write	functions	to	expect	a	particular	type	of	data	structure,	we
commonly	want	to	check	whether	these	assumptions	hold	at	the	start	of	the	function.	To
achieve	this,	R	contains	a	large	suite	of	functions	that	start	with	“is.”:
Click	here	to	view	code	image

>	apropos(“^is\.”)	#	Show	all	objects	starting	with	“is.”
	[1]	“is.array”																“is.atomic”															“is.call”
	[4]	“is.character”												“is.complex”														“is.data.frame”
	[7]	“is.double”															“is.element”														“is.empty.model”
[10]	“is.environment”										“is.expression”											“is.factor”
[13]	“is.finite”															“is.function”													“is.infinite”
[16]	“is.integer”														“is.language”													“is.leaf”
[19]	“is.list”																	“is.loaded”															“is.logical”
[22]	“is.matrix”															“is.mts”																		“is.na”
…



The	“is.”	functions	take	an	object	and	return	a	TRUE	or	FALSE	value,	depending	on
whether	the	object	matches	the	mode	or	class	we’re	testing	for.	Let’s	look	at	some
examples:
Click	here	to	view	code	image

>	letters								#	The	letters	vector
[1]	“a”	“b”	“c”	“d”	“e”	“f”	“g”	“h”	“i”	“j”	“k”	“l”	“m”	“n”	“o”
[16]	“p”	“q”	“r”	“s”	“t”	“u”	“v”	“w”	“x”	“y”	“z”
>	mode(letters)		#	It’s	a	character	vector
[1]	“character”

>	is.vector(letters)					#	Is	it	a	vector?
[1]	TRUE
>	is.character(letters)		#	Is	it	a	character?
[1]	TRUE
>	is.matrix(letters)					#	Is	it	a	matrix?
[1]	FALSE
>	is.numeric(letters)				#	Is	it	numeric?
[1]	FALSE

We	can	introduce	these	functions	to	check	the	mode	and	class	of	our	inputs	before
continuing:
Click	here	to	view	code	image

>	logRange	<-	function(X)	{
+			if	(!is.numeric(X)	|	!is.vector(X))	stop(“Need	a	numeric	vector!”)
+			if	(any(X	<=	0))	stop(“Negative	Values	found!”)
+			logX	<-	log(X)																		#	Takes	logs	of	X
+			round(range(logX),	2)											#	Return	(rounded)	range	of	values
+	}
>	logRange(1:10)								#	A	Numeric	vector
[1]	0.0	2.3
>	logRange(LETTERS)					#	A	Character	vector
Error	in	logRange(LETTERS)	:	Need	a	numeric	vector!
>	logRange(airquality)		#	A	Data	Frame
Error	in	logRange(airquality)	:	Need	a	numeric	vector!



Note:	Converting	Objects

In	addition	to	the	suite	of	“is.”	functions	to	check	our	object’s	mode	and	class,
there	is	an	equivalent	suite	of	“as.”	functions,	which	will	(attempt	to)	convert	an
object	from	one	mode/class	to	another.	Here	is	an	example:

Click	here	to	view	code	image
>	charNums	<-	c(“1.65”,	“2.03”,	“9.88”,	“3.51”)		#	Create	character	vector
>	charNums
[1]	“1.65”	“2.03”	“9.88”	“3.51”
>	is.numeric(charNums)																											#	Is	it	numeric?
[1]	FALSE
>	convertNums	<-	as.numeric(charNums)												#	Convert	to	numeric
>	is.numeric(convertNums)																								#	Is	it	numeric	now?
[1]	TRUE
>	is.matrix(convertNums)																									#	Is	it	a	matrix?
[1]	FALSE
>	matNums	<-	as.matrix(convertNums)														#	Convert	to	matrix
>	is.matrix(matNums)																													#	Is	it	a	matrix	now?
[1]	TRUE
>	matNums																																								#	Print	the	matrix
					[,1]
[1,]	1.65
[2,]	2.03
[3,]	9.88
[4,]	3.51

The	Ellipsis
As	discussed	in	Hour	6,	“Common	R	Utility	Functions,”	we	can	use	the	args	function	to
check	the	inputs	to	a	function.	Let’s	consider	two	examples:	the	runif	function	(which
creates	samples	from	a	Uniform	distribution)	and	the	paste	function	(which
concatenates	strings).	First,	let’s	use	the	runif	function:
Click	here	to	view	code	image

>	args(runif)																										#	Arguments	of	runif
function	(n,	min	=	0,	max	=	1)
NULL
>	runif(n	=	10,	min	=	1,	max	=	100)				#	Call	runif
	[1]	84.95420	51.39096	66.54084	91.43757	88.51552	66.70264	45.44668
	[8]	19.76205	82.41349	36.74277

As	you	can	see,	we’ve	specified	the	n,	min,	and	max	inputs	to	generate	some	random
numbers.	Now	let’s	consider	an	example	using	the	paste	function:
Click	here	to	view	code	image

>	fruits	<-	c(“apples”,	“bananas”,	“pears”,	“peaches”)
>	paste(“I	like”,	fruits[1])
[1]	“I	like	apples”
>	paste(“I	like”,	fruits[1],	“and”,	fruits[2])
[1]	“I	like	apples	and	bananas”
>	paste(“I	like”,	fruits[1],	“and”,	fruits[2],	“and”,	fruits[3])
[1]	“I	like	apples	and	bananas	and	pears”
>	paste(“I	like”,	fruits[1],	“and”,	fruits[2],	“and”,	fruits[3],	“and”,
fruits[4])
[1]	“I	like	apples	and	bananas	and	pears	and	peaches”



You	can	see	that	the	paste	function	accepts	any	number	of	inputs	that	are	simply
“pasted”	together.	Given	that	we	can	pass	“any	number	of	inputs,”	what	do	the	arguments
of	paste	look	like?	Let’s	find	out:
Click	here	to	view	code	image

>	args(paste)
function	(…,	sep	=	”	“,	collapse	=	NULL)
NULL

The	first	argument	for	paste	is	“...”,	which	is	referred	to	as	an	“ellipsis.”	The	ellipsis
here	refers	to	“one	or	more	inputs,”	and	the	help	file	describes	what	the	function	will	do
with	these	inputs.	In	the	case	of	the	paste	function,	the	inputs	are	described	as	follows:
Click	here	to	view	code	image

…			one	or	more	R	objects,	to	be	converted	to	character	vectors.
sep									a	character	string	to	separate	the	terms.	Not	NA_character_.
collapse				an	optional	character	string	to	separate	the	results.	Not
NA_character_.

Therefore,	we	can	pass	“one	or	more	R	objects”	as	the	ellipsis.

Using	the	Ellipsis
We	can	use	the	ellipsis	in	our	function	definitions	by	specifying	them	in	the	arguments	and
then	specifying	where	in	the	function	body	the	inputs	should	be	passed.	Consider	the
following	example,	which	allows	the	user	to	generate	random	samples	from	one	of	three
different	distributions:
Click	here	to	view	code	image

>	genRandoms	<-	function(N,	dist,	mean	=	0,	sd	=	1,	lambda,	min,	max)	{
+			switch(dist,
+					“norm”	=	rnorm(N,	mean	=	mean,	sd	=	sd),
+					“pois”	=	rpois(N,	lambda	=	lambda),
+					“unif”	=	runif(N,	min	=	min,	max	=	max))
+	}
>	genRandoms(10,	“norm”,	mean	=	5)
	[1]	4.071533	5.212119	5.610405	6.527552	4.519315	4.333632	4.518676
	[8]	5.242985	3.050987	5.969838
>	genRandoms(10,	“unif”,	min	=	1,	max	=	10)
	[1]	2.830932	8.213797	5.294915	1.089826	4.190719	9.482410	2.877680
	[8]	1.398005	9.294324	9.313718

Here,	we	define	many	arguments	that	are	parameters	to	the	distribution	functions	(mean,
sd,	lambda,	min,	and	max)	and	then	pass	them	directly	into	function	calls	with	syntax
such	as	mean	=	mean,	sd	=	sd.

Instead	of	defining	the	inputs	in	this	way,	we	could	use	the	ellipsis,	as	follows:
Click	here	to	view	code	image

>	genRandoms	<-	function(N,	dist,	…)	{
+			switch(dist,
+										“norm”	=	rnorm(N,	…),
+										“pois”	=	rpois(N,	…),
+										“unif”	=	runif(N,	…))
+	}
>	genRandoms(10,	“norm”,	mean	=	5)
	[1]	4.812319	4.330495	5.369091	4.205875	5.072567	4.029603	5.116522



	[8]	4.163062	6.231766	5.481158
>	genRandoms(10,	“unif”,	min	=	1,	max	=	10)
	[1]	2.141485	5.552706	5.114769	2.800839	9.396432	8.006636	3.249285
	[8]	7.320116	4.525931	9.238757

Tip:	Switching	Flow

Note	the	use	of	the	switch	function	in	the	preceding	example.	This	function
allows	for	a	number	of	alternative	flows	to	be	executed,	depending	on	the	outcome
of	an	initial	expression.	See	the	help	file	(?switch)	for	more	details.

Passing	Graphical	Parameters	Using	the	Ellipsis
We	see	many	examples	of	the	ellipsis	with	graphic	functions.	Consider	the	hist	function,
which	(as	you’ll	see	later)	produces	a	simple	histogram.	The	col	and	main	arguments	to
the	hist	function	control	the	color	of	the	plot	and	the	main	title,	respectively.	Let’s	see
an	example	of	producing	a	histogram	with	1,000	samples	from	a	Normal	distribution.	The
output	is	seen	in	Figure	8.1.
Click	here	to	view	code	image

>	hist(rnorm(1000),	main	=	“Nice	Red	Histogram”,	col	=	“red”)

FIGURE	8.1	Histogram	of	samples	from	a	normal	distribution



Note:	Graphics

We	will	cover	the	use	of	functions	such	as	hist	to	create	graphics	in	Hour	13,
“Graphics,”	but	they	are	useful	to	illustrate	the	ellipsis	at	this	point.	As	such,	in	this
section,	do	not	worry	too	much	about	the	uses	of	graphic	functions,	but	look	at	the
way	in	which	the	ellipsis	is	used.

Now	let’s	see	the	inputs	to	the	hist	function	using	args:
>	args(hist)
function	(x,	…)
NULL

From	the	help	file,	we	can	see	that	the	col	and	main	inputs	are	passed	via	the	ellipsis,
and	are	considered	“further	arguments	and	graphical	parameters	passed	to
plot.histogram.”

If	we	wanted	to	create	a	function	that	draws	a	specific	graphic,	we	could	also	use	the
ellipsis	to	pass	graphical	parameters	in	the	same	way.	Consider	the	following	example,
where	we	define	a	function	histFun	which	creates	a	histogram	and	(optionally)	adds	a
vertical	line	at	the	median.	The	output	from	this	function	can	be	seen	in	Figure	8.2.
Click	here	to	view	code	image

>	histFun	<-	function(X,	addLine	=	TRUE,	col	=	“lightblue”,	main	=
“Histogram”)	{
+			hist(X,	col	=	col,	main	=	main)
+			if	(addLine)	abline(v	=	median(X),	lwd	=	2)
+	}
>	histFun(rnorm(1000),	main	=	“New	Title”)



FIGURE	8.2	Output	from	histFun:	a	histogram	of	samples	from	a	normal	distribution

We	could	represent	many	graphic	parameters	in	this	way,	but	we	would	need	to	specify
them	as	inputs	before	our	users	can	control	those	aspects	of	the	graphic.	This	is	another
case	where	the	ellipsis	can	add	value.	In	this	example,	we’ve	updated	the	histFun
function	with	the	ellipsis,	then	passed	those	inputs	directly	to	the	call	to	hist.	The	output
from	this	example	can	be	seen	in	Figure	8.3.
Click	here	to	view	code	image

>	histFun	<-	function(X,	addLine	=	TRUE,	…)	{
+			hist(X,	…)
+			if	(addLine)	abline(v	=	median(X),	lwd	=	2)
+	}
>	histFun(rnorm(1000),	col	=	“plum”,	xlab	=	“X	AXIS	LABEL”)



FIGURE	8.3	Plum-colored	histogram	created	with	histFun



Caution:	Shortened	Argument	Calling

Earlier	you	saw	that	we	can	shorten	the	name	of	the	input	when	calling	a	function
as	follows:

Click	here	to	view	code	image
>	aFunction	<-	function(x,	inputWithLongName)	{
+			x	+	inputWithLongName
+	}
>	aFunction(x	=	1,	i	=	2)
[1]	3

When	there	is	an	ellipsis	in	the	argument	definition,	we	can	only	use	this	approach
for	inputs	defined	before	the	ellipsis,	as	shown	here:

Click	here	to	view	code	image
>	aFunction	<-	function(x,	inputWithLongName,	…)	{
+			x	+	inputWithLongName
+	}
>	aFunction(x	=	1,	i	=	2)
[1]	3
>	aFunction	<-	function(…,	x,	inputWithLongName)	{
+			x	+	inputWithLongName
+	}
>	aFunction(x	=	1,	i	=	2)
Error	in	aFunction(x	=	1,	i	=	2)	:
		argument	“inputWithLongName”	is	missing,	with	no	default

Checking	Multivalue	Inputs
In	the	previous	section	we	defined	a	function	called	genRandoms	that	generates	random
numbers	based	on	three	possible	distributions.	We	specify	the	distribution	using	the	dist
argument	as	follows:
Click	here	to	view	code	image

>	genRandoms	<-	function(N,	dist,	…)	{
+			switch(dist,
+										“norm”	=	rnorm(N,	…),
+										“pois”	=	rpois(N,	…),
+										“unif”	=	runif(N,	…))
+	}
>	genRandoms(10,	“norm”,	mean	=	5)
	[1]	4.152562	4.330108	6.580539	5.708272	5.872492	4.533635	4.295672
	[8]	5.654961	3.838976	4.474047
>	genRandoms(10,	“Normal”,	mean	=	5)

Note	that,	for	the	last	example,	we	specified	the	distribution	as	“Normal,”	which	isn’t	an
option	in	the	switch	function.	As	such,	no	tasks	are	performed—but	this	isn’t	very
intuitive.

We	could	improve	the	messaging	to	the	users	by	specifying	a	last,	unnamed	option	to	the
switch	function:
Click	here	to	view	code	image

>	genRandoms	<-	function(N,	dist,	…)	{
+			switch(dist,
+										“norm”	=	rnorm(N,	…),



+										“pois”	=	rpois(N,	…),
+										“unif”	=	runif(N,	…),
+										stop(paste0(“Distribution	"”,	dist,	“"	not	recognized”)))
+	}
>	genRandoms(10,	“norm”,	mean	=	5)
	[1]	3.213303	5.564620	4.029048	6.004051	4.965648	3.395951	5.754919
	[8]	5.019788	5.627128	4.528970
>	genRandoms(10,	“Normal”,	mean	=	5)
Error	in	genRandoms(10,	“Normal”,	mean	=	5)	:
		Distribution	“Normal”	not	recognized

This	produces	an	error	message	stating	that	the	input	“Normal”	is	not	recognized.
Alternatively,	we	could	use	the	match.arg	function,	which	provides	a	neat	mechanism
for	checking	that	an	input	is	one	of	a	list	of	“valid”	inputs.	The	simplest	way	to	use
match.arg	is	to	place	a	value	in	a	first	argument	to	be	matched	against	a	vector	of
possible	values	as	the	second	argument:
Click	here	to	view	code	image

>	match.arg(“norm”,	choices	=	c(“norm”,	“pois”,	“unif”))
[1]	“norm”
>	match.arg(“NORM”,	choices	=	c(“norm”,	“pois”,	“unif”))
Error	in	match.arg(“NORM”,	choices	=	c(“norm”,	“pois”,	“unif”))	:
		‘arg’	should	be	one	of	“norm”,	“pois”,	“unif”

We	could	include	this	approach	to	check	whether	an	input	is	valid:
Click	here	to	view	code	image

>	genRandoms	<-	function(N,	dist,	…)	{
+			dist	<-	match.arg(dist,	choices	=	c(“norm”,	“pois”,	“unif”))		#	Check
dist
+			switch(dist,
+										“norm”	=	rnorm(N,	…),
+										“pois”	=	rpois(N,	…),
+										“unif”	=	runif(N,	…))
+	}
>	genRandoms(10,	“norm”,	mean	=	5)
	[1]	4.503535	4.971087	3.758512	4.580493	6.297477	2.688116	5.637076
	[8]	4.921771	4.408372	4.484797
>	genRandoms(10,	“Normal”,	mean	=	5)
Error	in	match.arg(dist,	choices	=	c(“norm”,	“pois”,	“unif”))	:
		‘arg’	should	be	one	of	“norm”,	“pois”,	“unif”

We	can	alternatively	use	match.arg	in	“one-argument	form,”	which	matches	our	input
against	choices	set	in	the	argument	statement:
Click	here	to	view	code	image

>	genRandoms	<-	function(N,	dist	=	c(“norm”,	“pois”,	“unif”),	…)	{
+			dist	<-	match.arg(dist)		#	Check	validity	if	“dist”	input
+			switch(dist,
+										“norm”	=	rnorm(N,	…),
+										“pois”	=	rpois(N,	…),
+										“unif”	=	runif(N,	…))
+	}
>	genRandoms(10,	“norm”,	mean	=	5)
	[1]	6.243477	4.173172	6.449329	3.768405	5.283295	4.849446	5.190646
	[8]	4.464281	6.497654	3.584767
>	genRandoms(10,	“Normal”,	mean	=	5)
Error	in	match.arg(dist)	:	‘arg’	should	be	one	of	“norm”,	“pois”,	“unif”



Tip:	Getting	a	Function

If	we	wanted	to,	we	could	write	this	function	more	concisely	using	the	get
function,	which	returns	a	function,	given	its	name	as	a	character	string.	Therefore,
the	function	could	be	rewritten	as	follows:

Click	here	to	view	code	image
>	genRandoms	<-	function(N,	dist	=	c(“norm”,	“pois”,	“unif”),	…)	{
+			dist	<-	match.arg(dist)												#	Check	validity	if	“dist”	input
+			randFun	<-	get(paste0(“r”,	dist))		#	Get	the	function
+			randFun(N,	…)																				#	Run	the	function
+	}
>	genRandoms(10,	“norm”,	mean	=	5)
	[1]	5.698743	5.463239	6.596608	4.385926	5.288524	6.200866	5.537720
	[8]	3.854999	4.781841	5.588260
>	genRandoms(10,	“pois”,	lambda	=	3)
	[1]	5	3	1	1	2	2	3	2	2	1

Using	Input	Definition
Consider	the	following	code,	which	plots	two	variables	as	a	scatter	plot.	The	output	can	be
seen	in	Figure	8.4.
Click	here	to	view	code	image

>	Day	<-	1:7
>	Sales	<-	c(100,	120,	150,	130,	160,	210,	120)
>	plot(Day,	Sales,	type	=	“o”)



FIGURE	8.4	Simple	line	plot	of	Sales	versus	Day

Note	that	the	X	axis	is	labeled	“Day”	and	the	Y	axis	is	labeled	“Sales.”	This	occurs
because	R	is	able	to	access	the	argument	definitions	and	use	them	as	the	labels.	This	can
be	further	illustrated	using	a	modified	example,	the	result	of	which	can	be	seen	in	Figure
8.5.
Click	here	to	view	code	image

>	plot(Day	-	1,	log(Sales),	type	=	“o”)



FIGURE	8.5	Simple	line	plot	of	log(Sales)	versus	“Day	–	1”

As	you	can	see,	the	labels	reflect	the	modified	inputs.	This	ability	to	capture	not	just	the
input	values	but	also	the	definition	that	was	used	can	be	very	useful.	Consider,	for
example,	if	we	create	a	function	based	on	this	plot,	and	use	it	to	create	a	graph	of	our	Sales
data,	shown	in	Figure	8.6.
Click	here	to	view	code	image

>	nicePlot	<-	function(X,	Y)	{
+			plot(X,	Y,	type	=	“o”)
+	}
>	nicePlot(Day,	Sales)



FIGURE	8.6	Simple	line	plot	of	Y	versus	X

In	this	example,	the	plot	function	uses	the	calling	inputs	X	and	Y	for	the	axes.	What	if
we	instead	want	to	capture	the	input	definitions	(Day	and	Sales)	and	use	those	for	the
axis	labels?

To	do	this	we	use	two	functions	together:	substitute	and	deparse.	The
substitute	function	performs	the	action	of	capturing	the	definition,	and	the	deparse
function	then	converts	this	to	characters:
Click	here	to	view	code	image

>	x	<-	1	+	2																								#	Add	2	numbers
>	substitute(x	<-	1	+	2)												#	Capture	the	call
x	<-	1	+	2
>	deparse(substitute(x	<-	1	+	2))			#	Convert	this	to	character
[1]	“x	<-	1	+	2”

We	can	use	this	approach	to	capture	the	inputs	to	our	functions,	then	use	the	inputs	to
provide	better	labels	to	our	plots.	An	example	of	this	can	be	seen	here,	with	the	output
seen	in	Figure	8.7.
Click	here	to	view	code	image

>	nicePlot	<-	function(X,	Y)	{
+			xLab	<-	deparse(substitute(X))			#	Capture	X	input
+			yLab	<-	deparse(substitute(Y))			#	Capture	Y	input
+			plot(X,	Y,	type	=	“o”,	xlab	=	xLab,	ylab	=	yLab)
+	}
>	nicePlot(Day,	Sales)



FIGURE	8.7	Simple	line	plot	of	Sales	versus	Day,	with	correct	axis	labels

Summary
In	this	hour,	we	looked	at	some	more	approaches	that	can	enrich	our	R	functions.	In
particular,	we	focused	on	ways	in	which	we	can	check	the	inputs	to	a	function,	providing
feedback	to	the	function	user	if	the	inputs	are	not	appropriate.	In	the	next	hour,	we’ll	look
at	how	to	perform	tasks	in	a	repetitive	manner	using	loop	structures,	and	how	to	extend
into	frameworks	that	allow	us	to	apply	functions	to	structures	in	more	complex	ways.

Q&A
Q.	Is	it	possible	to	simplify	the	error	messages	by	removing	the	“call”?

A.	By	default,	the	call	made	is	included	in	the	error	message.	See	the	inclusion	of	“in
logFun(-2:2)”	in	the	following	error	message:

Click	here	to	view	code	image
>	logFun	<-	function(X)	stop(“Your	Error	Message	here!”)
>	logFun(-2:2)
Error	in	logFun(-2:2)	:	Your	Error	Message	here!

You	can	remove	the	call	itself	from	the	error	using	the	call.	argument,	which
accepts	a	single	logical	value.	(Note	the	period	character	in	this	argument	name!)
This	argument	can	be	used	in	both	stop	and	warning	functions.

Click	here	to	view	code	image



>	logFun	<-	function(X)	stop(“Your	Error	Message	here!”,	call.=F)
>	logFun(-2:2)
Error:	Your	Error	Message	here!

Q.	What	is	the	“environment”	tag	I	see	when	I	print	out	(some)	functions?

A.	Every	function	(with	the	exception	of	low-level	“primitive”	functions)	has	an
“environment,”	which	is	the	active	environment	when	the	function	was	created.

Q.	When	is	a	warning	message	printed?

A.	By	default,	a	warning	message	is	printed	after	a	function	completes;	therefore,
warnings	are	collated	on	the	last	line(s)	of	output:

Click	here	to	view	code	image
>	addFun	<-	function(x,	y)	{
+			warning(“This	is	a	warning!”)
+			x	+	y
+	}
>	addFun(1,	2)
[1]	3
Warning	message:
In	addFun(1,	2)	:	This	is	a	warning!

We	could,	instead,	issue	warnings	immediately	using	the	immediate.	argument	to
warning:

Click	here	to	view	code	image
>	addFun	<-	function(x,	y)	{
+			warning(“This	is	a	warning!”,	immediate.	=	T)
+			x	+	y
+	}
>	addFun(1,	2)
Warning	in	addFun(1,	2)	:	This	is	a	warning!
[1]	3

For	more	control	over	the	behavior	of	warning	messages,	see	the	details	for	the
warn	option	in	the	getOption	function	help	file.

Q.	Can	the	ellipsis	be	used	in	multiple	places	within	the	function	body?

A.	Yes,	although	care	has	to	be	taken	to	ensure	the	inputs	in	the	ellipsis	are	applicable
to	all	the	functions	we	pass	the	ellipsis	to.

Q.	Can	I	capture	the	inputs	contained	in	the	ellipsis?

A.	Yes,	you	can	directly	capture	the	input	values	using	a	line	such	as	X	<-
list(...)	and	then	process	them	in	any	manner	you	wish.	Here’s	an	example:

Click	here	to	view	code	image
>	getDots	<-	function(…)	{
+			list(…)
+	}
>	getDots(1,	2)
[[1]]
[1]	1

[[2]]
[1]	2



>	getDots(x	=	1,	y	=	2)
$x
[1]	1

$y
[1]	2

Workshop
The	workshop	contains	quiz	questions	and	exercises	to	help	you	solidify	your
understanding	of	the	material	covered.	Try	to	answer	all	questions	before	looking	at	the
“Answers”	section	that	follows.

Quiz
1.	What’s	the	difference	between	stop	and	warning?

2.	How	would	you	check	whether	an	input	to	a	function	is	a	character	matrix?

3.	What	is	the	difference	between	is.data.frame	and	as.data.frame?

4.	How	many	dots	make	up	the	ellipsis?

5.	What	are	the	two	ways	you’ve	seen	for	using	match.arg?

6.	What	do	the	deparse	and	substitute	functions	do?

Answers
1.	The	stop	and	warning	functions	both	issue	messages	to	the	user.	The	primary
difference	is	that	the	stop	function	causes	the	execution	of	the	function	to	halt,
whereas	the	warning	function	continues	to	execute	after	a	warning	is	reported—
unless	controlled	explicitly	with	getOption("warn").

2.	You	can	use	is.character	&	is.matrix	as	a	condition.

3.	The	is.data.frame	function	takes	an	object	and	returns	a	TRUE	value	if	the
object	is	a	data	frame.	The	as.data.frame	function	takes	an	object	and	attempts
to	convert	to	a	data	frame.

4.	The	ellipsis	is	represented	by	exactly	three	dots.

5.	You	can	call	match.arg	with	the	input	as	the	first	argument	and	a	vector	of
possible	“choices”	as	the	second	argument.	Alternatively,	you	can	use	match.arg
in	one-argument	mode,	where	you	pass	only	an	input	to	the	function	with	the
“choices”	defined	in	the	input	definition.	Here’s	an	example:

Click	here	to	view	code	image
>	genRandoms	<-	function(N,	dist	=	c(“norm”,	“pois”,	“unif”),	…)	{
+			dist	<-	match.arg(dist)		#	Check	validity	if	“dist”	input
+			dist
+	}

6.	The	substitute	function	returns	the	call	that	was	made	to	create	an	input.	The
deparse	function	converts	the	output	from	substitute	to	character	format.	By



using	them	together,	you	can	access	the	call	made	to	define	an	argument	in	a	suitable
(character)	format:
>	theCall	<-	function(x)	{
+			deparse(substitute(x))
+	}
>	theCall(x	=	mean(Sales))
[1]	“mean(Sales)”

Activities
1.	Create	a	function	that	accepts	a	vector	input,	X,	and	returns	the	mean	and	median	of
X.

2.	Update	your	function	so	that	a	warning	is	issued	if	any	missing	values	exist	in	X.

3.	Update	your	function	so	that	an	error	is	returned	if	all	values	of	X	are	missing.

4.	Update	your	function	to	ensure	that	X	is,	actually,	a	numeric	vector,	and	return	an
error	if	not.

5.	Add	an	argument	to	your	function	called	funs,	and	ensure	the	input	is	either
mean,	median,	sd,	min,	or	max.	When	called,	the	selected	function	defined	in
funs	should	be	used	to	summarize	X.

6.	Look	at	the	several.ok	argument	to	match.arg.	Update	your	function	so	that
multiple	summaries	(that	is,	multiple	values	of	funs)	are	returned	from	the
function.

7.	Update	your	function	so	the	input	definition	of	X	(that	is,	the	call	used	to	define	the
X	input)	is	printed	(via	a	called	to	cat)	before	the	summaries	are	returned.



Hour	9.	Loops	and	Summaries

What	You’ll	Learn	in	This	Hour:

	How	to	perform	iterative	“looping”	techniques	in	R

	How	to	apply	functions	to	complex	data	structures

	How	to	calculate	metrics	“by”	one	or	more	variables

Throughout	this	book	you	have	seen	how	to	use,	and	even	create,	simple	R	functions.	In
this	hour,	we	are	going	to	use	simple	functions	and	code	in	a	more	“applied”	fashion.	This
allows	us	to	perform	tasks	repeatedly	over	sections	of	our	data	without	the	need	to
produce	verbose,	repetitive	code.

Repetitive	Tasks
Imagine	we	want	to	perform	the	same	task	multiple	times—for	example,	on	each	row	of
some	dataset,	df.	We	might	first	create	a	simple	function,	performAction,	and	then
write	a	verbose	R	script	such	as	this:
Click	here	to	view	code	image

>	performAction(df[1,])		#	Perform	action	on	first	row
>	performAction(df[2,])		#	Perform	action	on	second	row
>	performAction(df[3,])		#	Perform	action	on	third	row
>	performAction(df[4,])		#	Perform	action	on	fourth	row
…

Writing	code	in	this	way	can	lead	to	large	scripts	that	can	be	very	difficult	to	manage;	for
example,	if	you	need	to	change	the	name	of	the	function,	you	need	to	do	it	in	a	variety	of
places.	This	code	is	also	not	overtly	reusable	because	we’ll	need	to	specify	a	call	for	each
row	in	our	data—if	we	try	to	apply	this	code	to	a	different	data	structure,	it	may	not	have
the	same	number	of	rows.

Instead	of	writing	scripts	in	this	manner,	we	can	use	a	“loop.”

What	Is	a	Loop?
A	loop	is	a	programming	structure	that	allows	us	to	perform	the	same	task	in	a	repetitive
manner.	Two	types	of	loops	are	supported	by	R:	the	“for”	loop	and	the	“while”	loop.

What	Is	a	For	Loop?

A	“for”	loop	will	perform	the	same	action	on	each	of	a	pre-specified	set	of	inputs.	For
example,	imagine	we	have	a	bag	containing	100	potato	chips	and	we	have	decided	we’re
going	to	eat	every	one.	In	this	case,	our	“for”	loop	may	be	structured	as	follows:
Click	here	to	view	code	image

For	each	of	our	100	chips:
				Reach	into	the	bag
				Remove	a	single	potato	chip
				Eat	the	potato	chip



This	is	a	simple	repetitive	pattern.	However,	we	do	need	to	pre-specify	the	inputs	over
which	we’re	going	to	iterate.	For	example,	if	we	didn’t	know	exactly	how	many	potato
chips	were	in	the	bag,	we	cannot	use	this	approach.

What	Is	a	While	Loop?

By	contrast,	a	“while”	loop	allows	us	to	perform	the	same	action	in	a	repeated	manner
until	a	condition	is	met.	For	example,	if	we	had	a	bag	of	potato	chips	and	we	wanted	to	eat
the	contents,	we	may	write	a	“while”	loop	as	follows:
Click	here	to	view	code	image

While	there	are	still	chips	left	in	the	bag:
				Reach	into	the	bag
				Remove	a	single	potato	chip
				Eat	the	potato	chip

Again,	this	is	a	simple	structure	and	will	work	well	in	our	case.	However,	we	need	to	be
sure	no	one	hands	us	a	bag	with	an	infinite	number	of	potato	chips,	in	which	case	we’ll
never	“leave”	the	loop	and	just	keep	on	eating.

The	for	Function
The	for	function	in	R	allows	us	to	implement	a	“for”	loop.	The	structure	of	the	loop	is	as
follows:
Click	here	to	view	code	image

for	(variable	in	set_of_values)	{
		#	do	this
}

The	variable	defined	will	iteratively	take	each	value	of	the	set_of_values,	and
the	body	of	the	“for”	loop	will	then	be	executed.	Here’s	an	example:
Click	here	to	view	code	image

>	for	(i	in	1:5)	{
+			cat(“\n	Hello”)		#	Say	Hello
+	}

	Hello
	Hello
	Hello
	Hello
	Hello

In	this	very	simple	example,	i	is	iteratively	set	to	each	value	in	vector	1:5	and	then	the
body	of	the	loop	is	executed—the	result	is	to	print	the	message	“Hello”	five	times.



Note:	Using	Curly	Brackets

In	this	example,	we	are	using	curly	brackets	to	encapsulate	the	body	of	code.	As
with	writing	functions,	we	can	omit	these	if	the	body	of	code	is	a	single	line;
therefore,	this	example	could	be	rewritten	as	follows:

Click	here	to	view	code	image
>	for	(i	in	1:10)	cat(“\n	Hello”)		#	Say	Hello

As	a	convention,	and	as	good	practice,	we	will	use	curly	brackets	throughout	this
hour.

Using	the	Loop	Variable

In	the	last	example,	we	set	i	to	each	value	in	vector	1:5.	If	we	use	i	in	the	body	of	the
loop,	we	can	more	easily	see	this	process:
Click	here	to	view	code	image

>	for	(i	in	1:5)	{
+			cat(“\n	i	has	been	set	to	the	value	of”,	i)
+	}

	i	has	been	set	to	the	value	of	1
	i	has	been	set	to	the	value	of	2
	i	has	been	set	to	the	value	of	3
	i	has	been	set	to	the	value	of	4
	i	has	been	set	to	the	value	of	5

Let’s	look	at	a	slightly	different	example,	this	time	involving	a	set	of	character	values	over
which	to	iterate:
Click	here	to	view	code	image

>	for	(let	in	LETTERS[1:5])	{
+			cat(“\n	The	Letter”,	let)
+	}

	The	Letter	A
	The	Letter	B
	The	Letter	C
	The	Letter	D
	The	Letter	E

Referencing	Data	with	Loops

For	loops	are	often	used	to	iterate	over	data	sources,	performing	actions	on	groupings
within	that	data.	Let’s	use	the	internal	airquality	dataset	for	this	example,	which
contains	air	quality	measurements	for	New	York	from	May	to	September	1973:
Click	here	to	view	code	image

>	head(airquality)
		Ozone	Solar.R	Wind	Temp	Month	Day
1				41					190		7.4			67					5			1
2				36					118		8.0			72					5			2
3				12					149	12.6			74					5			3
4				18					313	11.5			62					5			4
5				NA						NA	14.3			56					5			5
6				28						NA	14.9			66					5			6



The	Month	column	stores	the	month	number	(May	=	5	to	September	=	9).	We	can
generate	a	vector	of	unique	month	values	using	the	unique	function	as	follows:

>	unique(airquality$Month)
[1]	5	6	7	8	9

What	if	we	wanted	to	report	the	average	Ozone	value	for	each	month?	Without	a	loop,
we	might	write	code	like	this:
Click	here	to	view	code	image

>	#	Perform	summary	for	Month	5
>	ozoneValues	<-	airquality$Ozone	[	airquality$Month	==	5	]	#	Subset	the	data
>	theMean	<-	round(mean(ozoneValues,	na.rm	=	TRUE),	2)						#	Calculate	the
mean
>	cat(“\n	Average	Ozone	for	month	5	=”,	theMean)												#	Print	the
message

	Average	Ozone	for	month	5	=	23.62
>
>	#	Perform	summary	for	Month	6
>	ozoneValues	<-	airquality$Ozone	[	airquality$Month	==	6	]	#	Subset	the	data
>	theMean	<-	round(mean(ozoneValues,	na.rm	=	TRUE),	2)						#	Calculate	the
mean
>	cat(“\n	Average	Ozone	for	month	6	=”,	theMean)												#	Print	the
message

	Average	Ozone	for	month	6	=	29.44
>
>	#	Perform	summary	for	Month	7
>	ozoneValues	<-	airquality$Ozone	[	airquality$Month	==	7	]	#	Subset	the	data
>	theMean	<-	round(mean(ozoneValues,	na.rm	=	TRUE),	2)						#	Calculate	the
mean
>	cat(“\n	Average	Ozone	for	month	7	=”,	theMean)												#	Print	the
message

	Average	Ozone	for	month	7	=	59.12

Note	that	the	only	varying	aspect	between	these	sections	of	code	is	the	Month	value
itself.	Using	a	for	loop,	we	could	iterate	over	each	(unique)	month	value,	calculating
summaries	specific	to	that	month,	as	follows:
Click	here	to	view	code	image

>	for	(M	in	unique(airquality$Month))	{
+			ozoneValues	<-	airquality$Ozone	[	airquality$Month	==	M	]	#	Subset	the
data
+			theMean	<-	round(mean(ozoneValues,	na.rm	=	TRUE),	2)						#	Calculate	and
round
																																																																the	mean
+			cat(“\n	Average	Ozone	for	month”,	M,	“=”,	theMean)								#	Print	the
message
+	}

	Average	Ozone	for	month	5	=	23.62
	Average	Ozone	for	month	6	=	29.44
	Average	Ozone	for	month	7	=	59.12
	Average	Ozone	for	month	8	=	59.96
	Average	Ozone	for	month	9	=	31.45

In	this	example,	we	are	iterating	over	the	unique	values	of	Month.	We	use	the	iterator
variable	M	to	subset	the	data,	saving	the	result	each	time	as	ozoneValues.	We	then



calculate	the	mean	based	on	this	vector	and	report	the	result.

Nested	Loops

It	is	possible	to	perform	“nested”	loop	operations,	where	we	iterate	over	more	than	one	set
of	values.	For	example,	let’s	again	loop	through	sections	of	the	airquality	dataset,	but
this	time	report	the	average	values	of	the	Ozone,	Wind,	and	Solar.R	columns.	We
could	extend	the	last	loop	as	follows:
Click	here	to	view	code	image

>	for	(M	in	unique(airquality$Month))	{
+
+			cat(“\n\n	Month	=”,	M,	“\n	=========”)																				#	Write	Month
Number
+			subData	<-	airquality	[	airquality$Month	==	M,	]										#	Subset	the
data
+
+			theMean	<-	round(mean(subData$Ozone,	na.rm	=	TRUE),	2)				#	Calculate	the
mean
+			cat(“\n			Average	Ozone	=\t”,	theMean)																				#	Print	the
message
+
+			theMean	<-	round(mean(subData$Wind,	na.rm	=	TRUE),	2)					#	Calculate	the
mean
+			cat(“\n			Average	Wind	=\t”,	theMean)																					#	Print	the
message
+
+			theMean	<-	round(mean(subData$Solar.R,	na.rm	=	TRUE),	2)		#	Calculate	the
mean
+			cat(“\n			Average	Solar.R	=\t”,	theMean)																		#	Print	the
message
+
+	}

	Month	=	5
	=========
			Average	Ozone	=								23.62
			Average	Wind	=											11.62
			Average	Solar.R	=						181.3

	Month	=	6
	=========
			Average	Ozone	=								29.44
			Average	Wind	=											10.27
			Average	Solar.R	=						190.17

	Month	=	7
	=========
			Average	Ozone	=									59.12
			Average	Wind	=													8.94
			Average	Solar.R	=						216.48

	Month	=	8
	=========
			Average	Ozone	=										59.96
			Average	Wind	=														8.79
			Average	Solar.R	=								171.86

	Month	=	9



	=========
			Average	Ozone	=								31.45
			Average	Wind	=											10.18
			Average	Solar.R	=						167.43

Tip:	Tab	Characters

Note	the	use	\t	in	the	preceding	example.	This	allows	us	to	insert	a	“tab”	symbol
when	printing	text	in	this	way.	For	this	example,	it	left-aligns	the	numeric	mean
values	produced.	If	we	wanted	to	(more	correctly)	right-align	these	numeric	values,
we	could	additionally	call	the	format	function	to	convert	the	numeric	values	to	a
nicely	formatted	character	output.

We	could	instead	iterate	over	values	of	Month	and	then	iterate	over	the	columns	within
Month	using	a	nested	loop,	as	follows:
Click	here	to	view	code	image

>	for	(M	in	unique(airquality$Month))	{
+
+			cat(“\n\n	Month	=”,	M,	“\n	=========”)																			#	Write	Month
Number
+			subData	<-	airquality	[	airquality$Month	==	M,	]									#	Subset	the
data
+
+			for	(column	in	c(“Ozone”,	“Wind”,	“Solar.R”))	{										#	Iterate	over
columns
+					theMean	<-	round(mean(subData[[column]],	na.rm	=	TRUE),	2)			#
Calculate	the
																																																																					mean
+					cat(“\n			Average”,	column,	“=\t”,	theMean													#	Print	the
message
+			}
+
+	}

	Month	=	5
	=========
			Average	Ozone	=									23.62
			Average	Wind	=			11.62
			Average	Solar.R	=							181.3

	Month	=	6
	=========
			Average	Ozone	=									29.44
			Average	Wind	=			10.27
			Average	Solar.R	=						190.17

	Month	=	7
	=========
			Average	Ozone	=										59.12
			Average	Wind	=			8.94
			Average	Solar.R	=							216.48

	Month	=	8
	=========
			Average	Ozone	=										59.96
			Average	Wind	=			8.79
			Average	Solar.R	=							171.86



	Month	=	9
	=========
			Average	Ozone	=										31.45
			Average	Wind	=			10.18
			Average	Solar.R	=							167.43

Note:	Referencing	Columns

Note	that	we	used	the	double	square	brackets	notation	here	as	opposed	to	the	$
syntax	in	the	more	verbose	example.	This	is	because	we	can’t	parameterize	values
used	by	$,	as	shown	in	this	example:

Click	here	to	view	code	image
>	airquality$Wind[1:5]				#	The	Wind	column
[1]		7.4		8.0	12.6	11.5	14.3
>	airquality$“Wind”[1:5]		#	Also	works
[1]		7.4		8.0	12.6	11.5	14.3
>	whichColumn	<-	“Wind”			#	set	value	of	whichColumn
>	airquality$whichColumn		#	Reference	using	whichColumn
NULL

We	must	therefore	use	a	double	square	bracket	notation	(or	alternatively	the	[	,
whichColumn]	notation)	that	was	introduced	in	Hour	4,	“Multi-Mode	Data
Structures”.

Note:	Loop	Performance

Later,	in	Hour	18,	“Code	Efficiency,”	we	will	look	again	at	loops	and	discuss
performance	and	efficiency	gains.

Looping	through	data	frames	in	this	way	is	generally	not	recommended.	As	we	will	see
shortly,	and	again	in	Hour	12,	“Efficient	Data	Handling	in	R,”	there	are	many	simpler,
faster	ways	to	loop	through	columns	or	rows	in	a	data	frame.	However	the	concept	of	a	for
loop	is	a	much	more	widely	applicable	programming	concept	that	can	help	clean	up
repetitive,	unmaintainable	code.

The	while	Function
The	while	function	in	R	allows	us	to	implement	a	“while”	loop.	The	structure	of	the
“while”	loop	is	as	follows:

while	(condition)	{
		#	do	this
}

The	result	is	that	the	loop	will	iterate	constantly	until	the	condition	is	no	longer	TRUE.
Of	course,	if	the	condition	is	always	TRUE,	the	loop	will	never	stop	iterating,	so	we
need	to	exercise	caution.

Let’s	look	at	a	simple	example:
Click	here	to	view	code	image

>	index	<-	1														#	Set	value	of	index	to	1



>	while(index	<	6)	{
+			cat(“\n	Hello”)							#	Write	a	message
+			index	<-	index	+	1				#	Update	the	value	of	index
+	}

	Hello
	Hello
	Hello
	Hello
	Hello

Here,	we	initially	set	the	value	of	index	to	1.	Then,	we	iteratively	write	a	simple
message	and	increment	index.	The	loop	continues	to	iterate	until	the	condition	(index
<	6)	is	no	longer	true.

We	can	see	this	more	clearly	by	improving	the	message	produced:
Click	here	to	view	code	image

>	index	<-	1																																												#	Set	value	of	index
to	1
>	while(index	<	6)	{
+			cat(“\n	Setting	the	value	of	index	from”,	index)				#	Write	a	message
+			index	<-	index	+	1																																		#	Update	the	value	of
index
+			cat(”	to”,	index)																																			#	Write	a	message
+	}

	Setting	the	value	of	index	from	1	to	2
	Setting	the	value	of	index	from	2	to	3
	Setting	the	value	of	index	from	3	to	4
	Setting	the	value	of	index	from	4	to	5
	Setting	the	value	of	index	from	5	to	6

The	“apply”	Family	of	Functions
The	majority	of	functions	in	R	are	relatively	simple	and	designed	to	work	with	single-
mode	structures.	Consider,	for	example,	the	median	function,	which	can	be	used	to
calculate	the	median	of	a	numeric	data	object	(typically	a	vector).	Let’s	have	a	look	at	the
arguments	of	the	function	and	a	simple	example:
Click	here	to	view	code	image

>	args(median)
function	(x,	na.rm	=	FALSE)
NULL
>	median(	airquality$Wind	)		#	Median	of	Wind	column
[1]	9.7

We	can	see	that	median	has	two	arguments	(x	and	na.rm),	which	can	be	used	to	specify
the	values	for	which	the	median	is	to	be	calculated,	and	a	logical	value	specifying	whether
missing	values	should	be	removed	before	calculating	the	median.

What	if	we	wanted	to	apply	this	function	in	a	more	sophisticated	way?	Here	are	some
examples:

	The	median	of	rows	or	columns	of	a	matrix

	The	median	of	each	element	of	a	list

	The	median	of	some	variable	for	each	level	of	one	or	more	grouping	variables	(for



example,	median	sales	by	age	group)

As	you	have	seen	earlier	in	this	hour,	the	loop	structure	provides	a	way	to	iteratively	call	a
function	(for	example,	on	subsections	of	a	data	object).	Although	we	could	apply	a
function	using	loops,	much	of	our	code	would	be	needed	just	to	reference	the	subsections
of	the	data	we	need	given	the	values	over	which	we’re	iterating	(as	you	saw	previously).

Instead,	R	provides	a	set	of	functions	(the	“apply”	family	of	functions)	that	offer	a	more
natural	structure	for	applying	simple	functions	to	data	structures	in	a	more	sophisticated
way.

The	Set	of	“apply”	Functions
In	R,	many	functions	could	be	considered	part	of	the	“apply”	family	of	functions.	Let’s
start	by	looking	at	the	set	of	functions	in	R	of	the	form	“xapply,”	where	x	is	an	optional
letter,	using	the	apropos	function:
Click	here	to	view	code	image

>	apropos(“^[a-z]?apply$”)	#	Find	all	objects	ending	in	“apply”
[1]	“apply”		“eapply”	“lapply”	“mapply”	“rapply”
[6]	“sapply”	“tapply”	“vapply”

Note:	Other	Functions	in	the	“apply”	Family

We	could	conceivably	include	functions	such	as	by	and	aggregate	in	the
“apply”	family	given	their	aims	and	usage.	We’ll	cover	aggregate	in	Hour	11,
“Data	Manipulation	and	Transformation,”	but	will	not	cover	by	in	this	book	given
the	numerous	better	ways	of	performing	the	tasks	by	enables.

Tip:	Regular	Expressions

As	seen	in	the	apropos	call,	the	regular	expression	capabilities	of	R	are	very
useful	for	looking	for	patterns	in	vectors	of	characters.

The	call	to	apropos	returns	eight	functions,	which	are	listed	in	Table	9.1.

TABLE	9.1	Set	of	“apply”	Functions



For	now,	let’s	focus	on	the	first	four	functions	listed	in	Table	9.1	(apply,	lapply,
sapply	and	tapply).

The	apply	Function
The	apply	function	allows	us	to	apply	a	function	over	dimensions	of	a	data	object.
Acceptable	inputs	to	apply	include	any	object	that	has	a	“dimension”—for	example,
matrices,	data	frames,	and	arrays.	The	arguments	to	the	apply	function	are	as	follows:
Click	here	to	view	code	image

>	args(apply)
function	(X,	MARGIN,	FUN,	…)
NULL

Table	9.2	details	the	arguments	of	the	apply	function.

TABLE	9.2	Arguments	to	the	apply	Function

The	“Margin”
The	second	argument,	the	“Margin,”	specifies	the	“dimension	number”	over	which	to
apply	the	function,	as	described	in	Table	9.3.

TABLE	9.3	Margin	Values

We	typically	specify	the	margin	as	a	single	integer	value	or	vector	of	integer	values.

Note:	Named	Dimensions

If	your	structure	has	dimension	names	assigned,	a	character	vector	can	be	provided
instead	of	the	(more	commonly	used)	vector	of	integers.



A	Simple	apply	Example
The	apply	function	is	best	described	with	a	simple	example.	First,	let’s	create	a	structure
that	has	dimensions:
Click	here	to	view	code	image

>	myMat	<-	matrix(rpois(20,	3),	nrow	=	4)		#	Create	a	simple	matrix
>	myMat																																				#	Print	myMat
					[,1]	[,2]	[,3]	[,4]	[,5]
[1,]				5				6				4				2				2
[2,]				1				7				3				1				6
[3,]				2				3				0				3				4
[4,]				2				2				4				3				4
>	dim(myMat)																															#	Dimensions	of	myMat
[1]	4	5

Now	let’s	use	our	first	call	to	apply.	In	this	example,	we’ll	calculate	the	maximum	of
each	column	(dimension	2)	of	our	matrix:
Click	here	to	view	code	image

>	apply(myMat,	2,	max)			#	Column	Maxima
[1]	5	7	4	3	6

The	result	is	a	vector	that	holds	the	maximum	of	each	column	(for	example,	we	see	that
the	maximum	of	the	values	in	the	second	column	is	7).

Note:	The	Use	of	Random	Numbers

In	this	and	the	following	sections	I	use	functions	such	as	rpois	to	generate
random	samples.	Since	these	are	random	draws,	they	will	not	necessarily	match
your	results	if	you	run	the	same	code.

The	apply	function	operates	by	“breaking	apart”	the	structure	based	on	the	margin(s)
provided	and	then	applying	the	function	to	each	“piece”	of	the	partitioned	structure.	In	this
example,	the	matrix	is	split	into	separate	columns	with	the	max	function	applied	to	each
column,	as	illustrated	in	Figure	9.1.



FIGURE	9.1	A	visual	demonstration	of	the	apply	function	calculating	column
maxima

Now	let’s	look	at	another	simple	example—this	time	we’ll	calculate	the	minimum	of	each
row	(dimension	1)	of	our	matrix:
Click	here	to	view	code	image

>	apply(myMat,	1,	min)			#	Row	Minima
[1]	2	1	0	2

Again,	the	result	is	a	vector,	this	time	containing	the	minimum	of	each	row	of	the	matrix
(so	the	minimum	value	in	row	3	is	0).	This	time,	the	apply	function	“breaks	apart”	the
structure	by	rows	and	applies	the	min	function	to	each	“piece”	of	the	structure,	as
illustrated	in	Figure	9.2.

FIGURE	9.2	A	visual	demonstration	of	the	apply	function	calculating	row	minima

Using	Multiple	Margins
In	these	simple	examples,	we	specified	a	single	margin	in	each	call	(1	for	rows	or	2	for
columns).	We	can,	instead,	use	multiple	margins,	as	shown	here:
Click	here	to	view	code	image

>	myMat
					[,1]	[,2]	[,3]	[,4]	[,5]
[1,]				5				6				4				2				2
[2,]				1				7				3				1				6
[3,]				2				3				0				3				4
[4,]				2				2				4				3				4



>	apply(myMat,	c(1,	2),	median)			#	Median	by	row	AND	column
					[,1]	[,2]	[,3]	[,4]	[,5]
[1,]				5				6				4				2				2
[2,]				1				7				3				1				6
[3,]				2				3				0				3				4
[4,]				2				2				4				3				4

In	this	example,	we’ve	calculated	the	median	value	by	row	and	column	by	specifying	two
values	for	the	margin	(1	and	2).	This	calculates	the	median	of	each	cell	of	the	matrix	(that
is,	the	median	of	“5”	is	“5”)	and	thus	returns	exactly	the	same	matrix	that	we	started	with.
This	process	is	visualized	in	Figure	9.3.

FIGURE	9.3	A	visual	demonstration	of	the	apply	function	performing	cell
calculations

Although	this	is	not	of	any	practical	use,	it	does	further	illustrate	the	way	the	apply
function	works.

Using	apply	with	Higher	Dimension	Structures
Although	using	multiple	margins	may	not	be	useful	for	two-dimensional	structures	(that
is,	matrices	or	data	frames),	when	we	deal	with	structures	with	a	higher	number	of
dimensions	it	can	be	useful.	To	illustrate	this,	let’s	create	a	three-dimensional	array:
Click	here	to	view	code	image

>	myArray	<-	array(	rpois(18,	3),	dim	=	c(3,	3,	2))	#	Create	array
>	myArray																																											#	Print	myArray
,	,	1

					[,1]	[,2]	[,3]
[1,]				2				2				4
[2,]				4				3				1
[3,]				4				1				1



,	,	2

					[,1]	[,2]	[,3]
[1,]				0				6				3
[2,]				4				3				1
[3,]				1				5				1

>	dim(myArray)																																						#	Dimensions	of	myArray
[1]	3	3	2

Now,	there	are	three	dimensions	over	which	we	could	apply	our	functions.	Let’s	try	to
apply	a	function	over	dimension	3	of	the	array:

>	apply(myArray,	3,	min)
[1]	1	0

Here,	the	array	is	first	broken	apart	based	on	dimension	3,	resulting	in	2×2-dimensional
structures.	The	min	function	is	then	applied	to	each	of	the	two	structures,	as	illustrated	in
Figure	9.4.

FIGURE	9.4	The	apply	function	operating	over	the	third	dimension	of	an	array

Instead,	we	could	provide	multiple	margins.	For	example,	let’s	apply	the	max	function,
this	time	over	dimensions	1	and	2:
Click	here	to	view	code	image

>	apply(myArray,	c(1,	2),	max)
					[,1]	[,2]	[,3]
[1,]				2				6				4
[2,]				4				3				1
[3,]				4				5				1

This	time	the	structure	is	“collapsed”	over	the	third	dimension,	producing	a	matrix	of
outputs.	This	process	is	illustrated	in	the	Figure	9.5.



FIGURE	9.5	The	apply	function	operating	over	the	first	and	second	dimensions	of	an
array

Passing	Extra	Arguments	to	the	“applied”	Function
Let’s	return	to	our	matrix	example,	but	this	time	insert	a	missing	value:
Click	here	to	view	code	image

>	myMat[2,	2]	<-	NA			#	Add	a	missing	value	in	cell	2,	2
>	myMat															#	Print	the	matrix
					[,1]	[,2]	[,3]	[,4]	[,5]
[1,]				5				6				4				2				2
[2,]				1			NA				3				1				6
[3,]				2				3				0				3				4
[4,]				2				2				4				3				4

Now,	let’s	once	again	apply	a	function.	For	example,	let’s	calculate	the	maximum	of	each
column	(dimension	2)	of	the	matrix:
Click	here	to	view	code	image

>	apply(myMat,	2,	max)		#	Maximum	of	each	column
[1]		5	NA		4		3		6

This	time,	our	output	contains	a	missing	value.	The	reason	for	this	is	that	when	the	second
column	is	passed	into	the	max	function,	the	missing	value	causes	the	max	function	to
return	an	NA	value.	This	is	illustrated	in	Figure	9.6.



FIGURE	9.6	The	use	of	apply	with	missing	values

We	can	also	see	this	behavior	directly	by	calculating	the	maximum	of	the	second	column:
Click	here	to	view	code	image

>	max(myMat[,2])		#	Maximum	of	2nd	column
[1]	NA

As	you	saw	earlier,	functions	such	as	max	have	a	na.rm	argument,	which	allows	us	to
specify	that	missing	values	are	removed	before	performing	the	calculation:
Click	here	to	view	code	image

>	max(myMat[,2],	na.rm	=	TRUE)		#	Maximum	of	2nd	column
[1]	6

If	we	want	to	call	a	function	but	also	pass	additional	arguments,	we	can	take	advantage	of
the	ellipsis	argument	to	apply,	as	follows:
Click	here	to	view	code	image

>	args(apply)																										#	Ellipsis	is	4th	argument
function	(X,	MARGIN,	FUN,	…)
NULL
>	apply(myMat,	2,	max,	na.rm	=	TRUE)			#	Maximum	of	each	column
[1]	5	6	4	3	6

As	you	can	see,	the	max	function	is	now	called	with	the	argument	na.rm	set	to	TRUE,	so
the	maximum	of	the	(nonmissing)	values	of	column	2	is	now	reported.

We	can	pass	as	many	additional	arguments	as	we	need.	For	example,	let’s	calculate	the
quantiles	of	a	slightly	larger	matrix	using	the	quantile	function:
Click	here	to	view	code	image

>	biggerMat	<-	matrix(	rpois(300,	3),	ncol	=	3)			#	Create	a	100	x	3	matrix

>	head(biggerMat)																																	#	First	few	rows
					[,1]	[,2]	[,3]
[1,]				4				2				3
[2,]				5				3				5
[3,]				4				7				1
[4,]				5				3				3
[5,]				3				3				4
[6,]				1				5				4



>	apply(biggerMat,	2,	quantile)																			#	Column	quantiles
					[,1]	[,2]	[,3]
0%						0				0				0
25%					2				2				2
50%					3				3				3
75%					4				4				4
100%				8				8				8

Now,	let’s	artificially	add	a	number	of	missing	values;	therefore,	we	need	to	pass	the	extra
na.rm	argument	to	quantile:
Click	here	to	view	code	image

>	biggerMat	[	sample(	1:300,	50)	]	<-	NA										#	Randomly	add	some
missings

>	head(biggerMat)																																	#	First	few	rows
					[,1]	[,2]	[,3]
[1,]				4				2			NA
[2,]				5				3			NA
[3,]				4				7				1
[4,]				5				3				3
[5,]			NA			NA				4
[6,]				1			NA				4

>	apply(biggerMat,	2,	quantile,	na.rm	=	TRUE)					#	Column	quantiles
					[,1]	[,2]	[,3]
0%						0				0				0
25%					2				2				1
50%					3				3				3
75%					4				4				4
100%				8				8				8

The	quantile	function	has	an	argument,	probs,	that	allows	us	to	specify	that	a
different	set	of	quantiles	are	returned.	Let’s	additionally	pass	the	probs	argument	to
specify	some	new	quantiles:
Click	here	to	view	code	image

>	apply(biggerMat,	2,	quantile,
+			probs	=	c(0,	.05,	.5,	.95,	1),	na.rm	=	TRUE)					#	Column	quantiles
					[,1]	[,2]	[,3]
0%						0	0.00				0
5%						0	1.00				1
50%					3	3.00				3
95%					6	6.15				6
100%				8	8.00				8

Using	apply	with	Our	Own	Functions
So	far	in	this	hour,	we	have	used	simple	functions	to	illustrate	the	use	of	the	apply
function	(for	example,	row	minima,	column	maxima).	There	are	in	fact	several	utility
functions	designed	for	this	very	purpose,	for	example	rowMeans,	colMeans,
rowSums,	and	colSums.	However,	we	can	also	create	our	own	functions	and	“apply”
those	over	dimensions	instead.

Consider	the	matrix	we	created	earlier:
Click	here	to	view	code	image



>	myMat
					[,1]	[,2]	[,3]	[,4]	[,5]
[1,]				5				6				4				2				2
[2,]				1				7				3				1				6
[3,]				2				3				0				3				4
[4,]				2				2				4				3				4

Let’s	imagine	we	want	to	count	the	number	of	values	in	each	column	that	are	greater	than
3.	There	isn’t	currently	a	function	in	R	that	will	return	“the	number	of	values	greater	than
3,”	so	let’s	create	one:
Click	here	to	view	code	image

>	above3	<-	function(vec)	{
+			sum(vec	>	3)
+	}
>	above3(	c(1,	6,	5,	1,	2,	3)	)		#	Try	out	our	function
[1]	2

In	the	same	way	as	before,	we	can	now	“apply”	this	function	across	dimensions	of	our
matrix.	So	to	calculate	the	number	of	values	in	each	column	that	are	greater	than	3,	we	use
the	following	code:
Click	here	to	view	code	image

>	apply(myMat,	2,	above3)			#	Number	of	values	>	3	in	each	column
[1]	1	2	2	0	3

In	this	example,	we	created	the	function	above3	and	“applied”	it	to	our	structure.	If	we
wanted	to	use	above3	for	other	uses,	this	is	fine.	However,	if	this	is	only	something	we
want	to	do	once,	we	can	define	the	function	directly	in	the	apply	call	(so	it	is	never
created	as	an	R	object	in	our	session).	To	achieve	this,	we	replace	the	function	object	with
the	definition	as	follows:
Click	here	to	view	code	image

>	apply(myMat,	2,	function(vec)	{
+			sum(vec	>	3)
+	})
[1]	1	2	2	0	3

Tip:	One-Line	Function	Definitions

As	before,	we	can	omit	the	{}	(curly	brackets)	if	our	function	can	be	defined	on	a
single	line.	As	such,	the	preceding	code	could	be	rewritten	as	follows:

Click	here	to	view	code	image
>	apply(myMat,	2,	function(vec)	sum(vec	>	3))
[1]	1	2	2	0	3

As	a	convention,	we	will	use	the	curly	brackets	consistently	throughout	this	hour.

Passing	Extra	Arguments	to	Our	Functions
As	shown	earlier,	if	we	want	to	pass	additional	arguments,	we	can	list	them	after	the
function	call.	We	can	do	the	same	for	the	functions	we	write.	For	example,	let’s	update	our
function	with	a	second	argument	to	control	the	threshold	value	for	counting:
Click	here	to	view	code	image



>	aboveN	<-	function(vec,	N)	{
+			sum(vec	>	N)
+	}
>	someValues	<-	c(1,	6,	5,	1,	2,	3)
>	aboveN(	someValues,	N	=	3	)								#	Number	>	3
[1]	2
>	aboveN(	someValues,	N	=	5	)								#	Number	>	4
[1]	1

If	we	“apply”	this	function	to	columns	of	our	matrix,	we	need	to	additionally	pass	the	N
argument:
Click	here	to	view	code	image

>	myMat																													#	Print	the	matrix
					[,1]	[,2]	[,3]	[,4]	[,5]
[1,]				5				6				4				2				2
[2,]				1				7				3				1				6
[3,]				2				3				0				3				4
[4,]				2				2				4				3				4
>	apply(myMat,	2,	aboveN,	N	=	3)				#	Number	>	3
[1]	1	2	2	0	3
>	apply(myMat,	2,	aboveN,	N	=	4)				#	Number	>	4
[1]	1	2	0	0	1

If,	instead,	we	want	to	define	the	function	directly	in	the	apply	call,	we	would	need	to
list	the	additional	arguments	after	the	definition	itself:
Click	here	to	view	code	image

>	apply(myMat,	2,	function(vec,	N)	{
+			sum(vec	>	N)
+	},	N	=	3)
[1]	1	2	2	0	3

Applying	to	Data	Frames
Throughout	this	hour,	we	have	used	single-mode	structures	(matrices	and	arrays)	as
sample	inputs	to	the	apply	function.	However,	because	we	can	use	any	structure	that	has
a	dimension,	we	could	also	use	apply	with	data	frames.	As	an	example,	let’s	“apply”	the
median	function	to	columns	of	the	airquality	data	frame:
Click	here	to	view	code	image

>	head(airquality)																														#	First	few	rows
		Ozone	Solar.R	Wind	Temp	Month	Day
1				41					190		7.4			67					5			1
2				36					118		8.0			72					5			2
3				12					149	12.6			74					5			3
4				18					313	11.5			62					5			4
5				NA						NA	14.3			56					5			5
6				28						NA	14.9			66					5			6

>	apply(airquality,	2,	median,	na.rm	=	TRUE)				#	Median	of	each	column
		Ozone	Solar.R				Wind				Temp			Month					Day
			31.5			205.0					9.7				79.0					7.0				16.0

This	command	returns	the	median	of	each	column	(although,	perhaps	the	“median
Month”	and	“median	Day”	are	not	that	useful).	Now	let’s	consider	a	second	example,	this
time	using	the	iris	data	frame:
Click	here	to	view	code	image



>	head(iris)
		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1										5.1									3.5										1.4									0.2		setosa
2										4.9									3.0										1.4									0.2		setosa
3										4.7									3.2										1.3									0.2		setosa
4										4.6									3.1										1.5									0.2		setosa
5										5.0									3.6										1.4									0.2		setosa
6										5.4									3.9										1.7									0.4		setosa

>	apply(iris,	2,	median,	na.rm	=	TRUE)
Sepal.Length		Sepal.Width	Petal.Length		Petal.Width						Species
										NA											NA											NA											NA											NA
Warning	messages:
1:	In	mean.default(sort(x,	partial	=	half	+	0L:1L)[half	+	0L:1L])	:
		argument	is	not	numeric	or	logical:	returning	NA
2:	In	mean.default(sort(x,	partial	=	half	+	0L:1L)[half	+	0L:1L])	:
		argument	is	not	numeric	or	logical:	returning	NA
3:	In	mean.default(sort(x,	partial	=	half	+	0L:1L)[half	+	0L:1L])	:
		argument	is	not	numeric	or	logical:	returning	NA
4:	In	mean.default(sort(x,	partial	=	half	+	0L:1L)[half	+	0L:1L])	:
		argument	is	not	numeric	or	logical:	returning	NA
5:	In	mean.default(sort(x,	partial	=	half	+	0L:1L)[half	+	0L:1L])	:
		argument	is	not	numeric	or	logical:	returning	NA

This	time,	the	output	returns	missing	values	along	with	a	number	of	warning	messages—
but	why	is	this?

When	we	apply	functions	over	dimensions	of	single-mode	structures	(for	example,
matrices	and	arrays),	we	know	the	“mode”	of	data	being	passed	to	our	function	is	the	same
each	time	it	is	called	(that	is,	if	we	have	a	numeric	matrix,	we	know	that	each	column	will
necessarily	be	numeric).

By	comparison,	a	data	frame	is	a	multi-mode	structure,	so	each	column	may	(or	may	not)
be	of	the	same	mode.	When	we	call	“apply,”	R	will	first	break	the	data	and	store	it	in	a
single-mode	structure—at	this	point,	all	the	data	is	coerced	to	a	single	mode,	which	may
or	may	not	be	a	suitable	input	to	the	function.

With	the	airquality	example,	the	apply	function	first	structures	the	data	into	a
single-mode	(numeric)	object	and	then	applies	the	median	function	to	each	(numeric)
column.	With	the	iris	data	frame,	the	Species	column	is	not	a	numeric	column,	so
when	the	data	is	structured	into	a	single-mode	object,	the	resulting	data	is	no	longer
numeric.	We	can	see	this	in	the	following	call,	where	we	query	the	class	of	each	column
of	the	data:
Click	here	to	view	code	image

>	apply(iris,	2,	class)
Sepal.Length		Sepal.Width	Petal.Length		Petal.Width						Species
	“character”		“character”		“character”		“character”		“character”

So,	when	R	then	attempts	to	apply	the	median	function	to	each	column,	the	missing
values	and	warning	messages	are	produced.

So,	in	summary,	we	can	use	apply	with	data	frames,	but	we	have	to	take	care	that	data
over	which	we’re	“applying”	can	be	adequately	combined	into	a	single	mode.	For
example,	if	we	wanted	to	calculate	the	mean	of	all	numeric	columns	of	iris,	we	could
use	this	approach:



Click	here	to	view	code	image
>	#	Apply	median	function	over	the	first	4	columns	of	iris
>	apply(iris[,-5],	2,	median,	na.rm	=	TRUE)
Sepal.Length		Sepal.Width	Petal.Length		Petal.Width
								5.80									3.00									4.35									1.30

The	lapply	Function
The	lapply	function	applies	functions	to	each	element	of	a	list	and	always	returns	a	list
structure	as	its	output.	For	example,	let’s	create	a	list	of	numeric	vectors	and	calculate	the
median	of	each	element.	First,	we’ll	create	the	list:
Click	here	to	view	code	image

>	myList	<-	list(P1	=	rpois(10,	1),	P3	=	rpois(10,	3),	P5	=	rpois(10,	5))
>	myList
$P1
	[1]	1	2	2	2	1	0	0	1	1	4

$P3
	[1]	0	1	4	0	2	3	2	2	1	6

$P5
	[1]	5	4	9	6	6	4	6	5	3	5

To	use	the	lapply	function,	we	simply	pass	the	list	and	the	function	to	apply	(there	is	no
“margin”	here	because	the	data	is	already	“split”	into	list	elements):

>	lapply(myList,	median)
$P1
[1]	1

$P3
[1]	2

$P5
[1]	5

The	split	Function
In	the	preceding	example,	the	lapply	call	itself	was	actually	a	lot	simpler	(and	more
concise)	than	the	code	used	to	create	the	sample	list.	In	a	slight	departure,	let’s	quickly
look	at	a	simple	function	that	creates	lists	(which	we	could	then	use	as	examples	in
lapply).	This	function	is	called	split.

The	split	function	divides	a	data	structure	into	separate	parts	based	on	one	or	more
grouping	variables.	The	output	from	a	split	is	a	list.	As	a	first	example,	let’s	split	the
Wind	column	from	airquality	based	on	levels	of	Month.	We	can	achieve	that	by
calling	split	with	the	Wind	column	as	the	first	input	and	the	“grouping”	column
(Month)	as	the	second	argument.	Note	that	the	output	is	a	list:
Click	here	to	view	code	image

>	spWind	<-	split(airquality$Wind,	airquality$Month)
>	$`5`
	[1]		7.4		8.0	12.6	11.5	14.3	14.9		8.6	13.8	20.1		8.6		6.9		9.7		9.2
[14]	10.9	13.2	11.5	12.0	18.4	11.5		9.7		9.7	16.6		9.7	12.0	16.6	14.9
[27]		8.0	12.0	14.9		5.7		7.4



$`6`
	[1]		8.6		9.7	16.1		9.2		8.6	14.3		9.7		6.9	13.8	11.5	10.9		9.2		8.0
[14]	13.8	11.5	14.9	20.7		9.2	11.5	10.3		6.3		1.7		4.6		6.3		8.0		8.0
[27]	10.3	11.5	14.9		8.0

$`7`
	[1]		4.1		9.2		9.2	10.9		4.6	10.9		5.1		6.3		5.7		7.4		8.6	14.3	14.9
[14]	14.9	14.3		6.9	10.3		6.3		5.1	11.5		6.9		9.7	11.5		8.6		8.0		8.6
[27]	12.0		7.4		7.4		7.4		9.2

Given	that	this	structure	is	a	list,	it	is	a	suitable	input	to	the	lapply	function.	Let’s
calculate	the	median	value	of	each	element	of	spWind:

>	lapply(spWind,	median)
$`5`
[1]	11.5

$`6`
[1]	9.7

$`7`
[1]	8.6

$`8`
[1]	8.6

$`9`
[1]	10.3

This	result	is,	therefore,	the	median	Wind	value	for	each	level	of	Month,	or	the	“median
Wind	by	Month.”

Note:	Nested	Calls	to	lapply	and	split

In	the	preceding	example,	we	separated	the	split	and	lapply	calls	for	clarity.
We	could,	of	course,	combine	them	into	a	single	call,	as	follows:

Click	here	to	view	code	image
>	lapply(split(airquality$Wind,	airquality$Month),	median)

Or
Click	here	to	view	code	image

>	with(airquality,	lapply(split(Wind,	Month),	median))

Splitting	Data	Frames
In	the	preceding	example,	we	split	a	vector	based	on	levels	specified	in	another	vector.
The	split	function	can	also	be	used	to	divide	data	frames.	For	example,	let’s	split	our
airquality	data	based	on	Month:
Click	here	to	view	code	image

>	spAir	<-	split(airquality,	airquality$Month)		#	Split	the	data

>	length(spAir)																																	#	Length	of	list
[1]	5
>	names(spAir)																																		#	Element	names



[1]	“5”	“6”	“7”	“8”	“9”

>	head(spAir[[1]])																														#	First	element
		Ozone	Solar.R	Wind	Temp	Month	Day
1				41					190		7.4			67					5			1
2				36					118		8.0			72					5			2
3				12					149	12.6			74					5			3
4				18					313	11.5			62					5			4
5				NA						NA	14.3			56					5			5
6				28						NA	14.9			66					5			6

As	you	can	see,	this	creates	a	list	of	length	5	where	each	element	contains	a	data	frame
containing	data	for	only	one	month.	Now	let’s	use	lapply	to	apply	a	function	to	each
data	frame	stored	in	this	list.	We	need	to	apply	a	function	that	will	perform	an	operation	on
a	data	frame,	so	let’s	return	the	first	three	rows	in	each	element	of	the	list	using	head:
Click	here	to	view	code	image

>	lapply(spAir,	head,	n	=	3)
$`5`
		Ozone	Solar.R	Wind	Temp	Month	Day
1				41					190		7.4			67					5			1
2				36					118		8.0			72					5			2
3				12					149	12.6			74					5			3

$`6`
			Ozone	Solar.R	Wind	Temp	Month	Day
32				NA					286		8.6			78					6			1
33				NA					287		9.7			74					6			2
34				NA					242	16.1			67					6			3

$`7`
			Ozone	Solar.R	Wind	Temp	Month	Day
62			135					269		4.1			84					7			1
63				49					248		9.2			85					7			2
64				32					236		9.2			81					7			3

$`8`
			Ozone	Solar.R	Wind	Temp	Month	Day
93				39						83		6.9			81					8			1
94					9						24	13.8			81					8			2
95				16						77		7.4			82					8			3

$`9`
				Ozone	Solar.R	Wind	Temp	Month	Day
124				96					167		6.9			91					9			1
125				78					197		5.1			92					9			2
126				73					183		2.8			93					9			3

Perhaps	instead	we	could	lapply	our	own	function	to	each	data	frame.	For	example,
let’s	create	a	function	that	calculates	column	means	for	the	Ozone,	Solar.R,	Wind,	and
Temp	variables:
Click	here	to	view	code	image

>	lapply(spAir,	function(df)	{
+			apply(df[,1:4],	2,	median,	na.rm	=	TRUE)
+	})
$`5`
		Ozone	Solar.R				Wind				Temp
			18.0			194.0				11.5				66.0



$`6`
		Ozone	Solar.R				Wind				Temp
			23.0			188.5					9.7				78.0

$`7`
		Ozone	Solar.R				Wind				Temp
			60.0			253.0					8.6				84.0

$`8`
		Ozone	Solar.R				Wind				Temp
			52.0			197.5					8.6				82.0

$`9`
		Ozone	Solar.R				Wind				Temp
			23.0			192.0				10.3				76.0

Here,	each	element	of	spAir	is	passed	into	the	function	we	defined	as	input:	df.	Then,
for	each	df,	we	calculate	the	column	means	of	the	first	four	columns.

Note:	Splitting	on	Multiple	Variables

You’ve	seen	that	the	split	function	can	be	used	to	divide	data	structures	(such	as
vectors	or	data	frames)	into	elements	of	a	list	based	on	values	of	another	vector.	We
can	split	by	more	than	one	variable	by	passing	a	list	of	factors:

Click	here	to	view	code	image
>	split(airquality$Wind,	list(airquality$Month,	cut(airquality$Temp,	3)))
$`5.(56,69.7]`
	[1]		7.4	11.5	14.3	14.9		8.6	13.8	20.1		8.6		9.7		9.2	10.9	13.2	11.5	12.0
18.4	11.5		9.7
[18]		9.7		9.7	12.0	16.6	14.9		8.0	12.0

$`6.(56,69.7]`
[1]	16.1		9.2

$`7.(56,69.7]`
numeric(0)
…

This	could	then	be	passed	to	lapply	to	calculate	summaries	by	more	than	one
grouping	variable.

Using	lapply	with	Vectors
At	the	start	of	this	section,	we	said	that	the	lapply	function	will	apply	a	function	to	each
element	of	a	list.	However,	if	we	instead	pass	a	vector	to	the	lapply	function,	it	will
convert	it	to	a	list	using	the	as.list	function	as	follows:

>	as.list(1:5)
[[1]]
[1]	1

[[2]]
[1]	2

[[3]]
[1]	3



[[4]]
[1]	4

[[5]]
[1]	5

That	means	we	can	use	lapply	to	apply	a	function	to	each	element	of	a	vector.	Let’s
consider	a	simple	example,	where	we	apply	the	rnorm	function	to	values	1	to	5:
Click	here	to	view	code	image

>	lapply(1:5,	rnorm)
[[1]]
[1]	0.8168998

[[2]]
[1]	-0.8863575	-0.3315776

[[3]]
[1]	1.1207127	0.2987237	0.7796219

[[4]]
[1]		1.4557851	-0.6443284	-1.5531374	-1.5977095

[[5]]
[1]		1.8050975	-0.4816474		0.6203798		0.6121235	-0.1623110

This	is	equivalent	to	the	following:
Click	here	to	view	code	image

>	list(
+			rnorm(1),
+			rnorm(2),
+			rnorm(3),
+			rnorm(4),
+			rnorm(5)
+	)
[[1]]
[1]	0.8118732

[[2]]
[1]	2.196834	2.049190

[[3]]
[1]	1.6324456	0.2542712	0.4911883

[[4]]
[1]	-0.32408658	-1.66205024		1.76773385		0.02580105

[[5]]
[1]		1.1285108	-2.3803581	-1.0602656		0.9371405		0.8544517

Let’s	add	a	second	argument	to	rnorm.	For	example,	let’s	specify	a	mean	for	the	Normal
distribution:
Click	here	to	view	code	image

>	lapply(1:5,	rnorm,	mean	=	10)
[[1]]
[1]	11.46073

[[2]]
[1]		8.586901	10.567403



[[3]]
[1]	10.583188		8.693201		9.459614

[[4]]
[1]	11.947693	10.053590	10.351663		9.329023

[[5]]
[1]	10.277954	10.691171	10.823795	12.145065		7.653056

The	Order	of	“apply”	Inputs
When	the	lapply	function	(like	all	“apply”	functions)	passes	the	data	to	the	function,	the
data	is	passed	as	the	first	input	and	is	not	named.	So,	the	last	example	is	equivalent	to	this:
Click	here	to	view	code	image

>	list(
+			rnorm(1,	mean	=	10),
+			rnorm(2,	mean	=	10),
+			rnorm(3,	mean	=	10),
+			rnorm(4,	mean	=	10),
+			rnorm(5,	mean	=	10)
+	)
[[1]]
[1]	10.14959

[[2]]
[1]		8.657469	10.553303

[[3]]
[1]	11.589963		9.413120		8.167623

[[4]]
[1]	10.888139	11.593488	10.516855		8.704328

[[5]]
[1]	10.054616		9.215351		8.950647	12.330512	11.402705

Let’s	quickly	remind	ourselves	of	the	arguments	of	rnorm:
Click	here	to	view	code	image

>	args(rnorm)
function	(n,	mean	=	0,	sd	=	1)
NULL

The	first	argument	to	rnorm,	the	number	of	values	to	sample,	is	called	n.	Although	the
lapply	function	is	not	“naming”	the	first	input,	the	order-based	method	for	specifying
arguments	in	a	function	means	that	it	is	this	“n”	input	that	accepts	each	of	the	values,	1	to
5.	What	if	we,	instead,	specify	the	first	argument	(n)	as	an	extra	parameter?
Click	here	to	view	code	image

>	lapply(1:5,	rnorm,	n	=	5)
[[1]]
[1]	1.9426009	1.8262583	0.1884595	1.4762483	2.0212584

[[2]]
[1]	2.645383	3.043144	1.695631	4.477111	2.971221

[[3]]
[1]	4.867099	3.672042	2.692047	3.536524	3.824870



[[4]]
[1]	3.036099	3.144917	5.886947	3.608181	3.019367

[[5]]
[1]	5.687332	4.494956	7.157720	4.400202	4.305453

This	produces	a	slightly	different	output,	where	each	element	of	the	list	is	a	sample	of	five
values	from	a	Normal	distribution.	Here,	the	lapply	call	is	equivalent	to	the	following:
Click	here	to	view	code	image

>	list(
+			rnorm(1,	n	=	5),
+			rnorm(2,	n	=	5),
+			rnorm(3,	n	=	5),
+			rnorm(4,	n	=	5),
+			rnorm(5,	n	=	5)
+	)
[[1]]
[1]		1.2239254	-0.1562233		1.4224185	-0.3247553		1.1410843

[[2]]
[1]	1.463952	1.688394	3.556110	1.551967	2.321124

[[3]]
[1]	1.769828	1.675941	4.261242	4.319232	2.919246

[[4]]
[1]	3.494910	3.947846	4.628861	6.180002	3.930983

[[5]]
[1]	6.544864	6.321452	5.322152	6.530955	4.578760

In	this	case,	we	are	explicitly	naming	the	“n”	input	and	setting	it	to	5,	which	explains	why
five	samples	are	being	returned	in	each	list	element.	Therefore,	the	values	we	pass	to	the
function	(1	to	5)	are	instead	used	as	the	second	input:	the	mean	of	the	distribution	from
which	to	sample.	In	other	words,	this	code	returns	the	following:

	Five	samples	from	a	Normal	distribution	with	mean	1

	Five	samples	from	a	Normal	distribution	with	mean	2

	Five	samples	from	a	Normal	distribution	with	mean	3

	Five	samples	from	a	Normal	distribution	with	mean	4

	Five	samples	from	a	Normal	distribution	with	mean	5

As	a	natural	extension,	if	we	specify	the	n	and	mean	inputs,	then	each	value	of	1	to	5	will
move	to	the	third	argument	(the	standard	deviation).

Using	lapply	with	Data	Frames
As	you	saw	in	Hour	4,	data	frames	are	structured	as	lists	of	vectors.	Therefore,	we	can	use
lapply	to	apply	functions	to	each	column	of	a	data	frame	as	follows:
Click	here	to	view	code	image

>	lapply(airquality,	median,	na.rm	=	TRUE)
$Ozone



[1]	31.5

$Solar.R
[1]	205

$Wind
[1]	9.7

$Temp
[1]	79

$Month
[1]	7

$Day
[1]	16

This	is	a	similar	process	to	using	apply	to	apply	functions	over	columns	of	a	data	frame.
The	two	primary	differences	are	as	follows:

	The	lapply	function	always	returns	a	list.

	When	using	apply,	the	structures	are	first	put	into	a	single-mode	structure	before
processing,	whereas	the	lapply	function	does	not	attempt	to	combine	columns
between	processing.

The	last	point	here	can	be	illustrated	by	the	following	example,	where	we	look	at	the
class	of	each	column	in	our	data	frame:
Click	here	to	view	code	image

>	apply(airquality,	2,	class)
				Ozone			Solar.R						Wind						Temp					Month							Day
“numeric”	“numeric”	“numeric”	“numeric”	“numeric”	“numeric”
>	lapply(airquality,	class)
$Ozone
[1]	“integer”

$Solar.R
[1]	“integer”

$Wind
[1]	“numeric”

$Temp
[1]	“integer”

$Month
[1]	“integer”

$Day
[1]	“integer”

Note	that,	by	the	time	the	class	function	is	applied	in	our	first	example,	the	apply
function	has	already	structured	the	data	into	a	single-mode	structure	(so	all	data	is	forced
to	be	of	the	same	mode).	With	lapply,	this	coercion	is	not	done,	so	we	see	instances	of
“numeric”	(the	“Wind”	column)	and	“integer”	column	classes	reported.



The	sapply	Function
The	sapply	function	is	a	simple	wrapper	for	the	lapply	function.	In	fact,	the	call	to
lapply	can	be	clearly	seen	on	the	second	line	of	the	sapply	function	body:
Click	here	to	view	code	image

>	sapply
function	(X,	FUN,	…,	simplify	=	TRUE,	USE.NAMES	=	TRUE)
{
				FUN	<-	match.fun(FUN)
				answer	<-	lapply(X	=	X,	FUN	=	FUN,	…)
				if	(USE.NAMES	&&	is.character(X)	&&	is.null(names(answer)))	names(answer)
<-	X
				if	(!identical(simplify,	FALSE)	&&	length(answer))
								simplify2array(answer,	higher	=	(simplify	==	“array”))
				else	answer
}

Therefore,	as	with	lapply,	the	sapply	function	allows	us	to	apply	functions	to
elements	of	a	list	(or	vector).	The	primary	difference	is	that,	whereas	lapply	always
returns	a	list,	sapply	will	(by	default)	attempt	to	simplify	the	return	object	using	the
simplify2array	function.

To	illustrate	this,	let’s	look	back	at	an	earlier	example	where	we	use	lapply	and	split
to	calculate	the	median	values	of	Wind	by	Month:
Click	here	to	view	code	image

>	lapply(split(airquality$Wind,	airquality$Month),	median)
$`5`
[1]	11.5

$`6`
[1]	9.7

$`7`
[1]	8.6

$`8`
[1]	8.6

$`9`
[1]	10.3

If	we	replace	the	lapply	function	with	the	sapply	function,	we	get	a	simpler	output	(in
this	case,	a	named	vector):
Click	here	to	view	code	image

>	sapply(split(airquality$Wind,	airquality$Month),	median)
			5				6				7				8				9
11.5		9.7		8.6		8.6	10.3

For	another	example,	let’s	use	sapply	to	see	the	class	of	each	column	of	the	iris	data
frame:
Click	here	to	view	code	image

>	sapply(iris,	class)
Sepal.Length		Sepal.Width	Petal.Length		Petal.Width						Species
			“numeric”				“numeric”				“numeric”				“numeric”					“factor”



Returns	from	sapply
The	return	values	from	sapply	can	sometimes	be	rather	unpredictable.	That	is	because
sapply	will	attempt	to	simplify	the	return	structure	(which	may	result	in	a	nicely
formatted	structure)	but	is	often	not	able	to	simplify	the	return	(in	which	case	it	stays	as	a
list).	Table	9.4	summarizes	the	return	values,	which	depend	on	the	number	of	values
returned	from	the	“applied”	function.

TABLE	9.4	Return	Values	from	sapply

Some	examples	showing	the	various	return	objects	are	provided	here:
Click	here	to	view	code	image

>	myList	<-	list(P1	=	rpois(5,	1),	P3	=	rpois(5,	3),	P5	=	rpois(5,	5))
>
>	#	Function	that	(always)	returns	a	single	value	>	vector	output
>	sapply(myList,	median)
P1	P3	P5
	1		3		4

>	#	Function	that	(always)	returns	2	values	>	matrix	output
>	sapply(myList,	range)
					P1	P3	P5
[1,]		0		1		3
[2,]		3		4		6

>	#	Function	that	(always)	returns	5	values	>	matrix	output
>	sapply(myList,	quantile)
					P1	P3	P5
0%				0		1		3
25%			0		3		4
50%			1		3		4
75%			2		3		5
100%		3		4		6

>	#	Function	that	can	return	a	variable	number	of	values	>	list	output
>	sapply(myList,	function(X)	X	[	X	>	2	])
$P1



[1]	3

$P3
[1]	3	3	3	4

$P5
[1]	3	5	4	4	6

>	#	Function	that	can	return	a	variable	number	of	values
>	#	BUT	it	happens	that	the	return	values	are	of	the	same
>	#	length	in	this	instance	>	simplification	occurs
>	sapply(myList,	function(X)	min(X):max(X))
					P1	P3	P5
[1,]		0		1		3
[2,]		1		2		4
[3,]		2		3		5
[4,]		3		4		6

Why	Not	Just	Stick	with	sapply?
At	this	point,	you	may	be	wondering	why	we’d	ever	need	to	use	lapply	given	that
sapply	returns	a	“simpler”	output.

The	key	reason	for	using	lapply	instead	of	sapply	is	that	you	always	know	a	list	will
be	returned,	whereas	the	returns	from	sapply	can	be	unpredictable,	particularly	when
the	function	applied	can	return	a	variable	number	of	values	(as	seen	previously).	When	we
write	code,	we	need	to	be	sure	of	the	structure	returned	so	we	can	write	code	to	deal	with
that	structure—for	example,	imagine	writing	a	script	where	you	expect	the	return	output
from	an	sapply	call	to	be	a	list,	but	then	it	is	unexpectedly	simplified	to	an	array	(as
seen	in	the	last	example).

More	generally,	there	may	be	times	when	you	explicitly	don’t	want	to	try	and	simplify	the
output.	Consider	a	situation	where	we	have	a	list	containing	two	matrices:
Click	here	to	view	code	image

>	matList	<-	list(
+			P3	=	matrix(	rpois(8,	3),	nrow	=	2),
+			P5	=	matrix(	rpois(8,	5),	nrow	=	2)
+	)
>	matList
$P3
					[,1]	[,2]	[,3]	[,4]
[1,]				8				1				1				4
[2,]				4				2				8				2

$P5
					[,1]	[,2]	[,3]	[,4]
[1,]				5				4				3				2
[2,]				1				7				7				1

Now	let’s	use	our	lapply	and	sapply	functions	to	extract	the	first	row	of	each	matrix:
>	lapply(matList,	head,	1)
$P3
					[,1]	[,2]	[,3]	[,4]
[1,]				8				1				1				4

$P5
					[,1]	[,2]	[,3]	[,4]



[1,]				5				4				3				2

>	sapply(matList,	head,	1)
					P3	P5
[1,]		8		5
[2,]		1		4
[3,]		1		3
[4,]		4		2

As	you	can	see,	the	lapply	function	has	returned	a	list,	whereas	the	sapply	function
has	simplified	the	output	by	combining	the	results	into	a	single	(matrix)	structure.	If	these
two	matrices	were	measurements	on	two	different	systems,	we	may	want	to	ensure	the
results	are	analyzed	separately,	so	combining	them	into	a	single	structure	is	not	desirable.

The	tapply	Function
The	tapply	function	allows	us	to	apply	a	function	to	elements	of	a	vector,	grouped	by
levels	of	one	or	more	other	variables.	The	primary	arguments	to	tapply	are	described	in
Table	9.5.

TABLE	9.5	The	Primary	Arguments	of	tapply

Let’s	look	at	a	simple	example	of	tapply	used	to	calculate	the	median	Wind	by	Month
using	the	airquality	data:
Click	here	to	view	code	image

>	tapply(airquality$Wind,	airquality$Month,	median)
			5				6				7				8				9
11.5		9.7		8.6		8.6	10.3

As	you	can	see,	in	this	case	tapply	returns	a	named	vector	of	values,	containing	the
median	Wind	values	by	Month.

Note:	Similarity	to	split	+	sapply

This	is	very	similar	to	an	earlier	example	using	sapply	and	split:
Click	here	to	view	code	image

>	sapply(split(airquality$Wind,	airquality$Month),	median)
			5				6				7				8				9
11.5		9.7		8.6		8.6	10.3

In	fact,	tapply	is	primarily	a	wrapper	for	a	call	to	the	split	and	sapply
(technically,	lapply	with	a	simplify	step)	functions.



Multiple	Grouping	Variables
We	can	specify	more	than	one	grouping	variable	by	which	to	process	the	data—this	is
achieved	by	providing	a	list	of	factors	instead	of	a	single	factor.	Let’s	calculate	the	median
Wind	by	Month	and	grouped	Temp	(which	we’ll	create	using	the	cut	function):
Click	here	to	view	code	image

>	tapply(airquality$Wind,
+								list(airquality$Month,	cut(airquality$Temp,	3)),	median)
		(56,69.7]	(69.7,83.3]	(83.3,97]
5					11.50									8.0								NA
6					12.65									9.7							9.2
7								NA									9.2							7.4
8								NA								10.3							7.4
9					12.05								10.3							6.0

The	return	from	this	function	is	a	matrix	with	the	levels	of	the	first	grouping	variable
(Month)	set	as	the	rows	(dimension	1)	and	the	levels	of	the	second	grouping	variable
(Temp)	in	columns	(dimension	2).

Caution:	Missing	Values	in	Return	Structure

In	the	preceding	example,	a	number	of	missing	values	have	been	returned.	Usually
when	we	see	a	missing	value,	it	presents	a	value	that	“exists”	but	one	we	do	not
know.	Consider	the	missing	value	for	high	temperature	values	in	Month	5	in	this
example.	It	is	difficult	to	know	whether	this	value	is	generated	because

	There	were	Wind	values	in	Month	5	for	high	temperatures,	but	they	contained
missing	values	so	we	do	now	know	the	median	value.

	There	were	actually	no	values	in	Month	5	for	high	temperatures	(that	is,	there	is
no	data).

In	fact,	in	this	case,	the	latter	is	true—there	were	no	days	in	Month	5	when	the
temperature	went	above	83.3	degrees	Fahrenheit.	So,	this	missing	value	represents
a	“lack”	of	data.	However,	care	should	be	taken	when	interpreting	the	results.

Let’s	extend	this	example	a	little	further,	calculating	the	median	Wind	by	Month	levels	of
Temp	and	levels	of	Solar.R:
Click	here	to	view	code	image

>	tapply(airquality$Wind,
+								list(airquality$Month,	cut(airquality$Temp,	3),
cut(airquality$Solar.R,	2)),
+								median)
,	,	(6.67,170]

		(56,69.7]	(69.7,83.3]	(83.3,97]
5					12.60								10.3								NA
6						9.20									8.0								NA
7								NA									8.6					11.45
8								NA									9.7						8.60
9					13.45								10.3						7.40

,	,	(170,334]



		(56,69.7]	(69.7,83.3]	(83.3,97]
5					10.90							11.15								NA
6					16.10							12.65							9.2
7								NA								9.70							7.4
8								NA							10.90							8.0
9					12.05							10.30							4.6

This	now	creates	a	three-dimensional	array	of	output,	where	each	of	our	three	grouping
variables	is	aligned	to	a	dimension.

Multiple	Returns
In	the	preceding	example,	we	used	the	median	function	to	illustrate	the	use	of	tapply,
which	will	always	return	a	single	value.	If,	instead,	our	function	returns	multiple	values,
the	outputs	from	tapply	can	be	unexpected	and,	occasionally,	highly	complex.	Let’s
start	with	a	simple	example,	this	time	calculating	quantiles	of	Wind	values	by	Month:
Click	here	to	view	code	image

>	tapply(airquality$Wind,	airquality$Month,	quantile)
$`5`
			0%			25%			50%			75%		100%
	5.70		8.90	11.50	14.05	20.10

$`6`
		0%		25%		50%		75%	100%
	1.7		8.0		9.7	11.5	20.7

$`7`
		0%		25%		50%		75%	100%
	4.1		6.9		8.6	10.9	14.9

$`8`
		0%		25%		50%		75%	100%
	2.3		6.6		8.6	11.2	15.5

$`9`
				0%				25%				50%				75%			100%
	2.800		7.550	10.300	12.325	16.600

We	can	see	that,	with	multiple	return	values,	no	simplification	is	performed	and	a	list	is
returned.	This	is	the	equivalent	of	the	following:
Click	here	to	view	code	image

>	lapply(split(airquality$Wind,	airquality$Month),	quantile)
$`5`
			0%			25%			50%			75%		100%
	5.70		8.90	11.50	14.05	20.10

$`6`
		0%		25%		50%		75%	100%
	1.7		8.0		9.7	11.5	20.7

$`7`
		0%		25%		50%		75%	100%
	4.1		6.9		8.6	10.9	14.9

$`8`
		0%		25%		50%		75%	100%
	2.3		6.6		8.6	11.2	15.5



$`9`
				0%				25%				50%				75%			100%
	2.800		7.550	10.300	12.325	16.600

Now	let’s	extend	this	example	to	calculate	the	quantiles	by	Month	and	(grouped)	Temp:
Click	here	to	view	code	image

>	tapply(airquality$Wind,
+								list(airquality$Month,	cut(airquality$Temp,	3)),	quantile)
		(56,69.7]	(69.7,83.3]	(83.3,97]
5	Numeric,5	Numeric,5			NULL
6	Numeric,5	Numeric,5			Numeric,5
7	NULL						Numeric,5			Numeric,5
8	NULL						Numeric,5			Numeric,5
9	Numeric,5	Numeric,5			Numeric,5

The	“simplification”	process	has	now	forced	the	outputs	into	a	matrix,	creating	a	“matrix
of	lists,”	which	is	a	particularly	complex	and	unhelpful	structure:
Click	here	to	view	code	image

>	X	<-	tapply(airquality$Wind,
+								list(airquality$Month,	cut(airquality$Temp,	3)),	quantile)
>	class(X)
[1]	“matrix”
>	X
		(56,69.7]	(69.7,83.3]	(83.3,97]
5	Numeric,5	Numeric,5			NULL
6	Numeric,5	Numeric,5			Numeric,5
7	NULL						Numeric,5			Numeric,5
8	NULL						Numeric,5			Numeric,5
9	Numeric,5	Numeric,5			Numeric,5
>	X[1,1]
[[1]]
				0%				25%				50%				75%			100%
	7.400		9.700	11.500	13.925	20.100

Return	Values	from	tapply
As	with	sapply,	the	returns	from	tapply	can	sometimes	be	difficult	to	predict.	Table
9.6	summarizes	the	return	objects	from	tapply	based	on	the	number	of	return	values
from	a	function	and	the	number	of	grouping	variables.



TABLE	9.6	Return	Values	from	tapply

Given	that	tapply	may	return	unexpected	(and/or	highly	complex)	values,	we
recommend	the	use	of	lapply	and	split	instead	of	tapply,	unless	we	can	guarantee
the	number	of	return	values	from	the	function	(so	we	can	rely	on	the	outputs).

Tip:	The	plyr	Package

The	plyr	package	was	developed	and	is	maintained	by	popular	R	package	author,
Hadley	Wickham.	It	was	first	released	to	CRAN	in	2008	and	is	still	one	of	the	most
popular	R	packages	on	CRAN,	with	a	huge	number	of	packages	depending	on	plyr
functionality.	The	plyr	package	offers	a	more	consistent	“apply”	syntax	based	on
the	input	and	output	structures	to	which	we	apply	a	function.	Functions	follow	the
form	[i][o]ply,	where	i	and	o	represent	the	input	and	output	format
respectively.	For	example	the	function	llply	expects	a	list	input	and	produces	a
list	output:

Click	here	to	view	code	image
>	air	<-	split(airquality,	airquality$Month)
>	llply(air,	dim)

In	addition	to	providing	an	alternative	apply	framework	plyr	offers	data
manipulation	functionality	such	as	merging	and	aggregation.	However,	for	those
working	with	data	frames,	the	dplyr	package	that	you	will	be	introduced	to	in	Hour
12	provides	a	much	more	user-friendly	approach	to	data	manipulation	and
aggregation.

Summary
In	this	hour,	we	have	looked	at	a	number	of	ways	we	can	apply	simple	functions	to	data
structures	in	a	more	sophisticated	way.	Specifically,	we’ve	look	at

	The	use	of	loops	to	iterate	over	data	objects

	The	rich	set	of	“apply”	functions

Together,	this	provides	a	range	of	capabilities	of	summarizing	data	and	performing	tasks



in	a	repetitive	manner.	In	later	hours,	we’ll	extend	this	to	cover	higher-level	mechanisms
for	processing	and	aggregating	data,	with	a	focus	on	summarizing	data	frames.	In	Hour
18,	we’ll	also	look	again	at	loops	and	“apply”	functions	with	respect	to	coding	efficiency
and	performance.

Q&A
Q.	How	can	I	stop	a	“for”	loop	if	a	certain	condition	is	met?

A.	You	can	stop	the	for	loop	using	the	break	construct,	as	follows:
Click	here	to	view	code	image

>	for	(i	in	1:100)	{
+			cat(“\n	Hello”)											#	Writing	a	message
+			if	(runif(1)	>	.9)	{
+					cat(”	-	STOP!!”)
+					break		#	90%	chance	of	stopping	each	time
+			}
+	}

	Hello
	Hello
	Hello
	Hello
	Hello
	Hello
	Hello
	Hello
	Hello	-	STOP!!

Q.	How	do	I	stop	the	process	if	I	get	stuck	in	an	infinite	“while”	loop?

A.	You	can	use	the	Esc	key	(in	interactive	mode)	to	stop	the	process.

Q.	How	could	I	apply	a	function	over	multiple	lists	at	the	same	time?

A.	The	mapply	function	is	a	multivariate	version	of	sapply,	which	allows	us	to
apply	functions	over	multiple	lists	at	the	same	time.	For	example,	let’s	apply	the
rpois	function	over	elements	1:5	(for	the	number	of	values	to	sample)	and	5:1
(for	the	lambda	values	to	use):

Click	here	to	view	code	image
>	mapply(rpois,	n	=	1:5,	lambda	=	5:1)
[[1]]
[1]	2

[[2]]
[1]	7	3

[[3]]
[1]	4	1	1

[[4]]
[1]	1	0	2	4

[[5]]
[1]	3	0	1	0	2

Q.	How	performant	is	a	“for”	loop	compared	to,	say,	an	“apply”	function?



A.	Generally,	the	R	language	is	optimized	for	vectorized	operations,	and	it	is	quite
possible	to	write	very	underperforming	code	using	(nested)	for	loops.	The	“apply”
family	of	functions	can	add	some	gains	in	terms	of	both	performance	and	code
maintenance.	This	will	be	discussed	further	in	Hour	18.

Workshop
The	workshop	contains	quiz	questions	and	exercises	to	help	you	solidify	your
understanding	of	the	material	covered.	Try	to	answer	all	questions	before	looking	at	the
“Answers”	section	that	follows.

Quiz
1.	What	is	the	difference	between	a	“for”	and	a	“while”	loop?

2.	If	you	use	a	for	loop	to	iterate	over	a	vector	of	(character)	column	names,	how
would	you	use	each	value	to	reference	a	column	in	a	data	frame?

3.	When	using	the	apply	function,	what	does	the	MARGIN	argument	control?

4.	How	do	you	pass	additional	arguments	to	a	function	you	wish	to	“apply”?

5.	What	is	the	difference	between	sapply	and	lapply?

6.	What	does	the	split	function	do,	and	how	can	you	use	it	in	conjunction	with
lapply/sapply?

7.	When	using	tapply,	how	do	you	specify	that	a	summary	is	to	be	performed	“by”
more	than	one	variable?

Answers
1.	A	“for”	loop	will	iterative	for	a	predefined	set	of	values.	A	“while”	loop	instead
iterates	until	a	specified	condition	is	no	longer	true.

2.	If	the	condition	results	in	a	single	missing	value,	then	an	error	is	returned:
Click	here	to	view	code	image

>	testMissing	<-	function(X)	{
+			if	(X	>	0)	cat(“Success”)
+	}
>	testMissing(NA)
Error	in	if	(X	>	0)	cat(“Success”)	:
		missing	value	where	TRUE/FALSE	needed

If	you	use	the	all	function	with	a	condition	that	contains	any	missing	values,	the
result	is	missing	and	therefore	will	also	result	in	an	error	(since	you	do	not	know	if
“all”	the	conditions	are	met):

Click	here	to	view	code	image
>	allMissings	<-	rep(NA,	5)			#	All	missing	values
>	someMissings	<-	c(NA,	1:4)		#	Some	missing	values
>	all(allMissings	>	0)
[1]	NA
>	all(someMissings	>	0)
[1]	NA



If	we	use	the	any	function	with	a	condition	that	contains	all	missing	values,	the
result	is	a	missing	value.	If,	however,	you	use	the	any	function	with	a	vector	where
not	all	values	are	missing,	some	conditions	may	be	met:
>	any(allMissings	>	0)
[1]	NA
>	any(someMissings	>	0)
[1]	TRUE

3.	The	MARGIN	argument	controls	the	dimension	over	which	you	want	to	apply	your
function	(for	example,	1	for	rows,	2	for	columns).

4.	Each	“apply”	function	has	an	ellipsis	argument	where	you	list	additional	arguments
—for	example,	apply(Y,	X	min,	na.rm	=	TRUE).

5.	The	lapply	function	applies	a	function	to	elements	of	a	list	(or	vector)	and
(always)	returns	its	results	in	a	list.	The	sapply	function	performs	exactly	the	same
actions	but,	where	possible,	will	try	to	simplify	the	output	(for	example,	as	a	vector
or	array).

6.	The	split	function	will	take	a	data	object	(typically	a	vector	or	data	frame)	and
break	it	into	parts	based	on	one	or	more	grouping	variables,	storing	the	results	as	a
list.	When	the	results	are	“broken”	into	a	list	structure,	we	can	use	lapply	or
sapply	to	apply	a	function	to	each	element—for	example,	you	can	calculate	the
mean	Y	by	levels	of	X	using	the	following:
sapply(split(Y,	X),	mean)

7.	You	can	specify	multiple	“by”	variables	using	a	list	as	follows:
Click	here	to	view	code	image

tapply(Y,	list(X1,	X2),	mean)

Activities
1.	Create	a	“for”	loop	that	iteratively	prints	each	element	of	LETTERS	on	a	new	line.

2.	Create	a	“for”	loop	that	prints	the	mean	mpg	value	(from	the	mtcars	dataset)	for
each	unique	level	of	the	carb	variable.

3.	Look	at	the	provided	WorldPhones	matrix,	which	contains	the	total	number	of
phones	in	different	regions	of	the	world	between	1951	and	1961.	Use	the	apply
function	to	calculate	the	total	number	of	phones	by	year	and	the	maximum	number
of	phones	by	region.

4.	Create	a	list	containing	three	numeric	vectors.	Use	lapply	or	sapply	to	print	the
median	value	from	each	element	of	the	list.

5.	Use	split	together	with	sapply	to	calculate	the	median	value	of	mpg	(from	the
mtcars	data)	by	levels	of	carb.

6.	Use	split	together	with	lapply	to	calculate	a	summary	(?summary)	of	the
iris	data	by	levels	of	Species.



Hour	10.	Importing	and	Exporting

What	You’ll	Learn	in	This	Hour:

	Storage	of	data	in	R

	Working	with	flat	files

	Connecting	to	databases

	Working	with	Microsoft	Excel

In	Hours	3	through	6,	we	looked	at	the	various	mechanisms	for	storing	data	in	R	and	some
useful	functions	for	manipulating	modes	of	R	data.	In	this	hour,	you	are	introduced	to	the
common	methods	for	importing	and	exporting	data.	By	the	end	of	the	hour	you	will	have
seen	how	R	can	be	used	to	read	and	write	flat	files	and	connect	to	database	management
systems	(DBMSs)	as	well	as	Microsoft	Excel.

Working	with	Text	Files
Everyday	R	users	tend	to	prefer	importing	and	exporting	Comma	Separated	Value	(CSV)
and	other	text-based	(“flat	file”)	formats.	Text	files	are,	of	course,	completely	open	and
can	easily	be	generated	from	any	analysis	tool.	Reading	flat	files	in	to	R	(and	exporting
them)	is	very	straightforward.

Tip:	File	Navigation

The	file.choose	function	allows	us	to	browse	and	select	a	file	to	import	using
our	operating	system’s	standard	file	browsing	interface.

Perhaps	the	easiest	way	to	import	a	text	file	in	RStudio	is	via	the	menu	system.	The
Import	Wizard	can	be	started	by	navigating	to	Tools	>	Import	Dataset	>	From	Text	File
and	then	navigating	to	the	file	you	wish	to	import.	The	wizard	looks	at	the	file	and	tries	to
evaluate	whether	your	dataset	has	headers	and	which	character	separates	columns.	In	most
cases	the	defaults	are	correct,	and	you	simply	need	to	click	the	Import	button	when	you
are	ready	to	import	your	data.

Reading	in	Text	Files
The	RStudio	import	feature	is,	of	course,	unique	to	RStudio.	However,	if	you	try	it,	you
will	notice	that,	like	many	of	the	menu	features	in	RStudio,	it	produces	the	line	of	R	code
required	to	read	in	the	data,	which	is	great	if	you	work	in	a	heavily	regulated	industry
where	reproducible	code	is	a	necessity.	We	will	now	look	at	the	functions	read.table
and	read.csv	used	by	the	Import	Wizard.

The	read.table	function	reads	tabular	information	from	a	text	file	and	returns	a	data
frame.	An	example	of	using	read.table	to	read	in	djiData.csv,	embedded	within	the
mangoTraining	package,	is	shown	in	Listing	10.1.	In	the	example,	we	assume	that	the



data	has	been	copied	to	our	current	working	directory	for	simplified	file	referencing.	Note
that	when	we	call	read.table,	we	create	a	named	R	object.	This	is	how	we	will	refer	to
the	dataset	once	we	have	read	it	into	R.	If	we	don’t	do	this,	R	will	just	print	the	dataset	to
the	screen	and	we	won’t	be	able	to	access	it.

LISTING	10.1	Reading	in	Text	Files
Click	here	to	view	code	image

	1:	>	djiData	<-	read.table(“djiData.csv”,	header=	TRUE,	sep	=	“,”)
	2:	>	head(djiData,3)
	3:									Date	DJI.Open	DJI.High		DJI.Low	DJI.Close	DJI.Volume
DJI.Adj.Close
	4:	1	12/31/2014	17987.66	18043.22
17820.88		17823.07			82840000						17823.07
	5:	2	12/30/2014	18035.02	18035.02
17959.70		17983.07			47490000						17983.07
	6:	3	12/29/2014	18046.58	18073.04
18021.57		18038.23			53870000						18038.23

The	first	line	in	Listing	10.1	only	works	because	we	first	copy	djiData.csv	to	our	working
directory.	R	then	uses	relative	paths	to	find	and	import	the	data.	If	we	instead	place	the	file
within	a	“data”	directory	within	our	working	directory	then	we	can	import	using	the	line:
Click	here	to	view	code	image

>	djiData	<-	read.table(“data/djiData.csv”,	header=	TRUE,	sep	=	“,”)

Alternatively,	we	can	provide	the	full	file	path	to	the	file;	however,	this	makes	our	code
less	transferable,	particularly	when	importing	multiple	files	because	we	would	have	to
change	the	file	path	for	each	dataset	that	we	import.	As	we	discussed	in	Hour	2,	“The	R
Environment,”	it	is	important	to	remember	to	use	forward	slashes	when	referencing	file
paths.

Tip:	Package	Data

In	Listing	10.1,	we	copy	the	data	from	the	mangoTraining	package	to	our	working
directory	in	order	to	read	it	in.	This	highlights	the	ease	with	which	data	can	be
imported	from	our	working	directory.	We	normally	extract	data	from	an	R	package
using	the	package	argument	contained	within	the	system.file	function:

Click	here	to	view	code	image
>	system.file(package	=	“mangoTraining”,	“extdata/djiData.csv”)
[1]	“C:/Program	Files/R/R-3.1.2/library/mangoTraining/extdata/djiData.csv”

Using	the	package	argument	contained	within	the	system.file	function
allows	us	to	write	code	that	is	independent	of	our	own	operating	system	and
therefore	more	transferrable.



Caution:	Case-Sensitivity	for	File	Paths

The	import	and	export	functions	within	R	work	directly	with	the	operating	system.
If	you	use	an	operating	system	such	as	Windows	that	is	not	case-sensitive,	then
there	is	no	need	to	match	case	for	the	file	path.	In	other	words,	djiData.csv	is
equivalent	to	djidata.csv.	However,	if	you	use	an	operating	system	such	as	Linux,
which	is	case-sensitive,	then	this	case-sensitivity	must	be	respected	in	file	paths.

The	read.table	function	is	a	generic	function	for	reading	in	text	data,	and	it	makes
several	assumptions	about	your	data.	The	important	assumptions	(or	defaults)	are	that	the
dataset	does	not	have	a	row	of	column	headings,	that	header	=	FALSE,	and	that
elements	are	separated	using	a	space	(sep	=	"	").	There	are	also	function	arguments	to
specify	the	symbol	that	represents	missing	data	and	the	characters	used	for	marking
character	data.	In	addition,	we	can	choose	which	rows	to	start	and	stop	reading	the	data
from,	which	is	particularly	useful	for	text	output	where	the	first	few	lines	are	meta-
information	before	the	data	actually	begins.

Tip:	The	Windows	Clipboard

In	Windows	you	can	copy	and	paste	your	data	into	R	by	taking	advantage	of	the
“clipboard.”	Simply	set	the	file	argument	in	read.table	to	be
file="clipboard".	Setting	sep="\t"	specifies	a	tab	separator	and	allows
you	to	copy	and	paste	directly	from	Excel.	However,	this	practice	is	generally
discouraged	as	it	is	not	reproducible.

Tip:	Troublesome	Factors

As	you	saw	in	Hour	5,	“Dates,	Times,	and	Factors,”	when	R	creates	a	data	frame,
the	default	behavior	is	to	convert	anything	nonnumeric	into	factors.	This	means	that
you	have	to	carefully	handle	dates	and	other	columns	that	have	been	turned	into
factors,	as	well	as	reorder	or	relabel	factor	levels	for	the	factors	you	do	want.	If	this
becomes	a	major	part	of	your	workflow,	you	might	consider	the
stringsAsFactors	argument	to	read.table.	Setting
stringsAsFactors=FALSE	will	prevent	any	columns	being	turned	into
factors,	giving	you	more	control	over	how	your	data	is	represented	in	R.

Reading	in	CSV	Files
If	you	work	with	CSV	files,	sooner	or	later	you	will	become	tired	of	typing
header=TRUE,	sep=","	each	time	you	read	in	a	dataset.	The	read.csv	function	is
simply	a	wrapper	for	read.table	that	assumes	your	dataset	has	headers	and	that	the
separator	is	a	comma.	Note	that	we	are	still	required	to	provide	the	“.CSV”	file	extension
when	specifying	the	file	we	want	to	read	in,	assuming	that	file	has	the	correct	extension.
Click	here	to	view	code	image

>	djiData	<-	read.csv(“djiData.csv”,	header=	TRUE,	sep	=	“,”)



Note:	Comma	Used	as	a	Decimal	Point?

In	some	European	countries	and	other	countries	throughout	the	world,	a	comma	is
used	as	a	decimal	point	instead	of	a	period,	and	data	elements	are	instead	separated
by	semicolons.	If	you	work	with	such	data	or	have	colleagues	that	do,	then	the
read.csv2	function	is	designed	specifically	for	such	data.

Exporting	Text	Files
We	can	write	data	frames	to	CSV	or	other	simple	text	formats	using	the	write.csv	or
write.table	function,	respectively.	As	with	read.csv	and	read.table,	the
write.csv	function	is	simply	a	wrapper	for	write.table	that	reduces	the	number	of
required	arguments	when	exporting	.CSV	files.	Both	functions	expect	the	data	frame	that
you	want	to	export	as	the	first	argument	and	the	name	of	the	file	that	you	want	to	create	as
the	second.

As	with	the	read.*	functions,	there	are	a	number	of	other	useful	arguments	that	can
assist	with	writing	out	data.	In	particular,	the	argument	row.names	=	FALSE	prevents
the	row	names	(which	are	often	numbers)	from	being	written	to	the	output	file.	We	can
also	control	whether	quotes	are	placed	around	character	data	as	well	as	the	character	used
to	represent	missing	data.	Here,	we	write	out	the	internal	airquality	dataset	to	our
working	directory:
Click	here	to	view	code	image

>	write.csv(airquality,	“airquality.csv”,	row.names	=	FALSE)

Faster	Imports	and	Exports
The	package	data.table	has	a	function	called	fread	that	is	much	faster	for	large	files.
The	fread	function	is	also	generally	easier	to	use	than	read.table	because	it	guesses
the	separator	and	can	interpret	common	column	types	that	are	known	to	cause	trouble	for
R	users.	We	will	look	closer	at	data.table	and	fread	in	Hour	12,	“Efficient	Data
Handling	in	R.”

Another	alternative	for	flat	files	is	readr,	released	to	CRAN	by	popular	R	package	author
Hadley	Wickham	in	2015.	As	with	fread,	the	aim	of	the	functions	within	readr	is	to
improve	the	speed	at	which	(large)	CSV	and	other	flat	files	can	be	read	into	R	as	well	as	to
interpret	common	column	types	to	save	post-processing	effort	on	the	part	of	the	user.	The
package	also	produces	data	frames	in	a	“tbl_df”	format,	ready	for	use	with	the	dplyr
package,	which	we	will	look	at	in	Hour	11,	“Data	Manipulation	and	Transformation,”	and
Hour	12.	The	main	function	in	readr	for	reading	.CSV	files	into	R	is	the	read_csv
function.

Neither	data.table	nor	readr	are	installed	as	part	of	the	base	R	distribution	and	must
therefore	be	installed	separately.



Efficient	Data	Storage
As	you	saw	in	Hour	2,	when	we	close	R	(or	RStudio)	we	have	the	option	of	saving	our
workspace.	By	saving	the	objects	in	our	workspace,	we	are	moving	them	from	memory	to
a	single	“.RData”	file	stored	on	disc.	When	we	start	a	new	R	session,	our	workspace	is
restored	to	the	same	state	as	when	we	closed	R	down.

Caution:	Restoring	Sessions

When	we	start	a	new	session	using	an	.RData	file,	it	restores	all	of	the	objects	but	it
does	not	reload	all	of	the	packages	we	were	using.	Clearly	this	will	cause	some
problems	if	any	of	our	objects	rely	on	functionality	within	the	packages	that	were
loaded.	Be	sure	to	reload	any	necessary	packages	when	starting	a	new	session	from
an	.RData	file.

To	avoid	errors	and	ensure	reproducible	code,	it	is	generally	better	to	work	with	a	clean
environment	than	rely	on	a	saved	workspace.	The	.RData	format	is	exclusive	to	R	and	is
therefore	not	a	suitable	means	of	transferring	data	between	applications.	However,	it	can
be	used	as	an	efficient	means	of	storing	large	interim	datasets	during	an	analysis.	A	similar
.rds	format	can	be	used	for	saving	individual	datasets.

To	illustrate	the	efficiency	of	the	.RData	and	.rds	formats,	let’s	create	a	data	frame	with	10
million	rows	and	write	it	out	to.CSV,	.RData,	and	.rds	formats:
Click	here	to	view	code	image

>	longData	<-	data.frame(ID	=	1:10000000,	Value	=	rnorm(10000000))
>	write.csv(longData,	“longData.csv”,	row.names	=	F)
>	save(longData,	file	=	“longData.RData”)
>	saveRDS(longData,	file	=	“longData.rds”)

We	start	by	deleting	the	longData	object	from	our	session.	Now	let’s	read	in	the	.CSV
file	and	time	the	operation	with	a	function	called	system.time:
Click	here	to	view	code	image

>	rm(longData)
>	system.time(longData	<-	read.csv(“longData.csv”))
		user		system	elapsed
118.04				1.03		119.31

I’m	using	a	decent	machine	here	with	8GB	RAM	running	64-bit	R,	so	nearly	2	minutes	of
elapsed	time	is	pretty	slow.	So	how	does	load	perform	with	the	.RData	and	.rds	file
types?
Click	here	to	view	code	image

>	rm(longData)
>	system.time(load(“longData.RData”))
			user		system	elapsed
			0.78				0.03				0.81
>	rm(longData)
>	system.time(load(“longData.RData”))
			user		system	elapsed
			0.81				0.03				0.84

Using	the	R	formats,	we	are	down	to	less	than	a	second,	which	is	a	huge	difference.



Incidentally,	the	read_csv	function	from	readr	and	fread	from	data.table	both
managed	the	same	.CSV	import	in	less	than	10	seconds.	We	will	look	more	closely	at
some	R	packages	that	can	generally	improve	R’s	speed	and	efficiency	when	handling	large
data	during	Hour	11	and	Hour	12.	We	will	also	look	at	code	efficiency	in	Hour	18,	“Code
Efficiency.”

Proprietary	and	Other	Formats
If	you	have	previously	been	using	another	statistical	analysis	language	such	as	SAS	or
SPSS,	then	you	will	probably	find	yourself	needing	to	read	.SAS7BDAT	or	.SAV	files	into
R.	One	solution	would	be	to	use	SAS	or	SPSS	to	write	out	a	CSV	file,	which	can	easily	be
read	into	R;	however,	this	is	not	always	possible,	and	you	may	find	yourself	needing	to
read	in	data	from	SAS,	SPSS,	Stata,	Minitab,	and	so	on	into	R.	Such	data	can	(mostly)	be
read	into	R	using	the	foreign	package,	which	is	a	“recommended”	R	package	and
therefore	distributed	with	each	new	version	of	R.

The	foreign	package	is	a	small	collection	of	functions	to	read	and	write	data	to	some	well-
known	data	formats.	The	package	functions	very	well;	however,	it	is	limited	by
proprietary	formats.	For	example,	in	order	to	write	to	SAS,	the	package	actually	generates
an	intermediary	text	file	and	corresponding	SAS	script	that	it	tries	to	call	from	your	SAS
installation	in	order	to	read	the	text	into	SAS.

Note:	SAS	Users

If	you	are	a	SAS	user,	you	may	find	the	package	sas7bdat	useful	for	reading	and
writing	.SAS7BDAT	files.	However,	you	should	be	aware	that	the	package	is
documented	as	being	experimental	in	places	and	does	not	work	in	all	cases.	If	you
are	working	with	transport	files,	the	SASxport	package	provides	tools	for	writing
SAS	transport	files	from	R.

The	haven	package	provides	a	wrapper	for	Evan	Miller’s	ReadStat	C	library	and	offers	an
alternative	to	foreign.	The	package	is	still	in	its	infancy	and	limited	to	SAS,	SPSS,	and
STATA,	but	unlike	foreign	it	can	read	the	proprietary	.SAS7BDAT	format,	and	like	readr
it	can	correctly	interpret	some	date	formats	and	generate	data	that	is	ready	for	dplyr.

Relational	Databases
Unfortunately	there	is	no	“one-size-fits-all”	solution	to	working	with	relational	databases
in	R.	There	are	a	few	general-purpose	packages	for	working	with	databases,	but	for	the
best	results	you	are	better	off	looking	for	the	package	that	has	been	built	specifically	for
the	database	that	you	are	using.

The	approach	that	the	various	database	packages	take	in	R	is	very	much	the	same.	There
are	typically	one	or	more	functions	to	assist	with	making	a	connection	to	the	database,
plus	a	number	of	utility	functions	that	wrap	up	common	tasks	that	you	might	perform	in
SQL.	If	you	are	familiar	with	SQL,	though,	you	may	prefer	to	write	SQL	directly,	which
all	the	main	packages	allow	you	to	do.



RODBC
The	RODBC	package	is	probably	the	most	well	established	method	for	connecting	to	a
database	from	R.	Note	that	the	package	is	not	installed	by	default;	it	must	first	be	installed
and	loaded.	As	the	name	suggests,	it	implements	standard	ODBC	database	connectivity.
You	can	therefore	use	RODBC	to	connect	to	all	the	popular	DBMSs:	Oracle,	MySQL,
Microsoft	Access	as	well	as	SQL	Server,	PostgreSQL,	and	SQLite.	You	can	even	use
RODBC	to	connect	to	Excel	spreadsheets!

Let’s	look	at	an	example	of	an	RODBC	workflow	using	the	well-known	training	database
distributed	with	Microsoft	Access:	Northwind.mdb.	The	package	is	available	online	via
the	book’s	website	or	within	the	mangoTraining	package.	To	find	the	file	within
mangoTraining	we	can	use	the	following	line:
Click	here	to	view	code	image

>	system.file(package	=	“mangoTraining”,	“extdata/Northwind.mbd”)

The	RODBC	package	contains	a	general-purpose	odbcConnect	function	for
connecting	to	any	database,	though	for	Access	we	can	use	a	“convenience	wrapper,”
odbcConnectAccess.	As	always,	when	importing	or	connecting	to	external	data	from
R	it	is	important	that	we	name	the	connection	in	order	to	be	able	to	refer	to	it.	If	a
username	and	password	is	required,	these	can	be	entered	using	the	arguments	uid	and
pwd.	We	start	by	loading	the	RODBC	package	and	making	a	connection	to	the	database.
In	the	following	example,	it	is	assumed	that	the	database	has	been	placed	in	our	current
working	directory.	We	therefore	provide	the	file	name	only.	Alternatively,	a	full	file	path
can	be	specified.
Click	here	to	view	code	image

>	library(RODBC)
>	nWind	<-	odbcConnectAccess(“Northwind.mdb”)

Caution:	Windows	Architecture

The	odbcConnectAccess	function	only	works	with	32-bit	versions	of	the
Microsoft	drivers.	These	cannot	be	used	when	working	in	64-bit	R.	For	Access
2007	and	beyond,	there	is	the	option	to	install	64-bit	drivers,	though	the	drivers
cannot	be	installed	with	32-bit	Office.	These	compatibility	issues	can	make
RODBC	difficult	(but	not	impossible)	to	set	up	in	a	managed	IT	environment.	If
you	run	into	problems,	a	sensible	first	step	is	to	check	whether	you	are	running	32-
bit	or	64-bit	R	using	Sys.getenv("R_ARCH").

The	RODBC	package	contains	a	number	of	utility	functions,	such	as	sqlTables,	that
can	be	used	to	explore	the	database.	The	first	each	of	the	utility	functions	is	always	the
name	of	the	connection:
Click	here	to	view	code	image

>	nwTableData	<-	sqlTables(nWind)
>	nwTableData[1:3,	c(“TABLE_NAME”,	“TABLE_TYPE”)]				#	Preview	main
information
									TABLE_NAME			TABLE_TYPE
1	MSysAccessObjects	SYSTEM	TABLE



2										MSysACEs	SYSTEM	TABLE
3							MSysCmdbars	SYSTEM	TABLE

Another	useful	function	is	sqlColumns,	which	returns	information	about	the	columns
within	a	specific	table:

>	sqlColumns(nWind,	“Orders”)

In	order	to	extract	data	from	the	database,	we	can	use	wrappers	such	as	sqlFetch	to
import	an	entire	table	or	subsets	of	rows,	or	we	can	use	SQL	commands	directly	via
sqlQuery:
Click	here	to	view	code	image

>	orderQuery	<-	“SELECT	OrderID,	EmployeeID,	OrderDate,	ShipCountry	FROM
Orders”
>	keyOrderInfo	<-	sqlQuery(nWind,	orderQuery)
>	head(keyOrderInfo,	3)
		OrderID	EmployeeID		OrderDate	ShipCountry
1			10248										5	1996-07-04						France
2			10249										6	1996-07-05					Germany
3			10250										4	1996-07-08						Brazil

Further	utility	functions	exist	in	order	to	clear	the	rows	of	a	table	(sqlClear),	drop	the
table	entirely	(sqlDrop),	and	add	new	tables	(sqlSave).	When	we	have	finished
working	with	the	database,	it	is	important	to	remember	to	close	the	connection,	like	so:

>	odbcClose(nWind)

If	making	multiple	connections,	we	can	use	the	odbcCloseAll	function	to	close	all	of
them	in	a	single	command.

DBI
The	RODBC	package	is	an	extremely	popular,	well-tested	package,	but	it	is	certainly	not
the	only	option	available.	Away	from	RODBC,	the	vast	majority	of	R	packages	available
for	connecting	to	databases	implement	a	standard	database	interface	(DBI).	Packages	such
as	ROracle,	RJDBC,	RPostgreSQL,	RMySQL,	RMySQLite,	and	many	more	use	the
interface,	which	is	wrapped	in	an	R	package,	DBI.

The	aim	of	the	DBI	is	to	ensure	consistency	when	working	with	databases.	Each	of	the
packages	that	uses	the	interface	contains	a	common	set	of	functions	that	behave	in	the
same	way	regardless	of	which	package	you	are	using	or	which	database	you	are
connecting	to.	The	only	difference	is	the	connection	itself.	The	standard	set	of	functions
follow	the	format	db*	(for	example,	dbReadTable).	This	standardization	makes	it
incredibly	easy	to	switch	between	packages	because,	once	you’ve	learned	how	to	use	one,
you	can	essentially	use	them	all.	Alternatively,	you	can	use	DBI	directly,	as	Listing	10.2
demonstrates,	via	RSQLite.	Note	how	similar	the	approach	is	to	the	RODBC	package,
despite	the	fact	that	RODBC	does	not	follow	DBI.

LISTING	10.2	Using	DBI	Directly
Click	here	to	view	code	image

	1:	>	library(DBI)
	2:	>	library(RSQLite)				#	We	create	a	SQLite	DB
	3:	>	#	Create	a	new	SQLite	database	in-memory



	4:	>	dbiCon	<-	dbConnect(SQLite(),	dbname	=	“:memory:”)
	5:	>
	6:	>	#	Write	airquality	to	the	DB	as	a	new	table
	7:	>	dbWriteTable(dbiCon,	“airquality”,	airquality)
	8:	[1]	TRUE
	9:	>
10:	>	#	Check	what	columns	(fields)	are	in	the	airquality	table
11:	>	dbListFields(dbiCon,	“airquality”)
12:	[1]	“Ozone”			“Solar.R”	“Wind”				“Temp”				“Month”			“Day”
13:	>
14:	>	#	Send	a	query	and	return	the	result
15:	>	aQuery	<-	“SELECT	*	FROM	airquality	WHERE	Month	=	5	AND	Wind	>	15”
16:	>	dbiQuery	<-	dbSendQuery(dbiCon,	aQuery)
17:	>	dbFetch(dbiQuery)
18:			Ozone	Solar.R	Wind	Temp	Month	Day
19:	1					8						19	20.1			61					5			9
20:	2					6						78	18.4			57					5		18
21:	3				11					320	16.6			73					5		22
22:	4				NA						66	16.6			57					5		25
23:	>
24:	>	dbClearResult(dbiQuery)	#	Be	tidy!
25:	[1]	TRUE

Working	with	Microsoft	Excel
If	you	are	reading	this	book,	there	is	an	extremely	high	likelihood	that	either	you	or	one	of
your	close	colleagues	has	been	using	Excel	for	day-to-day	analysis.	And	why	not?!	So
long	as	it’s	not	pushed	beyond	its	limits,	it’s	a	fantastic,	easy-to-use	tool	for	generating
simple	summary	statistics.	It’s	also	a	tool	that	very	few	analysts	are	willing	to	throw	away,
even	after	they	have	seen	what	R	is	capable	of.	You	won’t	be	surprised	to	learn,	therefore,
that	there	are	a	million	and	one	R	packages	available	for	connecting	R	and	Excel	(well,
more	than	10	anyway).	It	probably	also	won’t	surprise	you	that	they	all	do	it	in	a	slightly
different	way.

Connecting	to	R	from	Excel
If	you	want	to	link	R	and	Excel,	you	can	either	call	R	from	Excel	or	call	Excel	from	R.
Those	who	want	to	call	R	from	Excel	usually	do	so	because	they	have	a	large	number	of
colleagues	who	are	extremely	comfortable	in	Excel	and	want	any	analysis	to	start	and	end
in	there.	This	approach	is	particularly	common	in	the	insurance	industry,	where	the
underwriters	typically	consume	advanced	algorithms	that	actuaries	have	developed	in	R
but	via	an	Excel	front	end.

There	are	a	number	of	ways	of	calling	R	from	Excel,	depending	on	the	level	of
sophistication	you	require.	At	some	point,	a	Microsoft	language	such	as	VBA	or	C#	will
be	required	to	call	to	R	either	via	command	line	or	using	a	technology	such	as	RServe.
The	focus	of	this	book	is	on	R,	however,	so	we	will	look	at	the	methods	for	connecting	to
Excel	from	R.



Reading	Structured	Data	from	Excel

If	you	have	structured	data—that	is,	data	that	is	neatly	laid	out	such	that	each	tab	of	your
workbook	contains	just	a	single	table	of	data,	usually	stored	in	the	top-left	corner	of	the
sheet—then	there	are	some	very	efficient	options	available	to	you	for	reading	in	data	from
Excel.	One	such	package	is	RODBC,	which	you	have	just	seen	in	the	context	of
databases.	Using	RODBC,	we	connect	to	a	workbook	using	the	odbcConnectExcel
function	for	.XLS	files	or	odbcConnectExcel2007	for	.XLSX	files.	We	then	treat	the
workbook	like	a	mini	database,	where	each	tab	is	a	separate	table.	All	of	the	standard	SQL
wrappers	work	in	the	same	way	as	for	other	types	of	database.	The	RJDBC	package	can
similarly	be	used	with	Excel.

An	alternative	solution	designed	specifically	to	work	with	structured	data	in	Excel	is
Hadley	Wickham’s	readxl	package.	This	package	was	released	in	2015	and,	in	a	similar
vein	to	readr,	aims	to	improve	the	speed	at	which	data	can	be	read	from	Excel.	Likewise,
it	also	produces	tbl_df	output	for	use	with	dplyr.

Let’s	start	with	a	simple	example	using	the	airquality.xlsx	workbook.	This	workbook	can
be	found	in	the	mangoTraining	package.	As	with	other	examples	in	this	hour,	we	can	use
the	following	line	to	locate	the	file	within	the	package:
Click	here	to	view	code	image

>	system.file(package	=	“mangoTraining”,	“extdata/airquality.xlsx”)

The	workbook	consists	of	a	single	sheet	named	“data”	containing	a	copy	of	the	internal
airquality	data	frame.	We	start	by	loading	the	package	and	using	the	excel_sheets
function	to	return	the	sheet	names.
Click	here	to	view	code	image

>	library(readxl)
>
>	#	What	sheets	does	the	workbook	contain?
>	excel_sheets(“airquality.xlsx”)
[1]	“data”

Next	we	use	the	primary	read_excel	function	to	read	the	airquality.xlsx	file.	We	pass
the	name	of	the	sheet	we	want	to	read	as	the	second	argument.	As	an	alternative,	we	can
provide	the	sheet	position,	in	this	case	1.	Since	1	is	also	the	default	sheet	number,	we
could	also	leave	out	the	argument	altogether	in	the	following	example:
Click	here	to	view	code	image

>	#	Read	in	the	“data”	sheet
>	air	<-	read_excel(“airquality.xlsx”,	sheet	=	“data”)
>	head(air,	3)
		Ozone	Solar.R	Wind	Temp	Month	Day
1				41					190		7.4			67					5			1
2				36					118		8.0			72					5			2
3				12					149	12.6			74					5			3

The	function	automatically	ignores	blank	rows	and	columns	until	it	finds	a	cell	containing
data;	however,	we	can	control	the	row	and	column	that	it	starts	reading	from	using	the
arguments	skip	and	col_names	respectively.	We	can	use	the	col_types	argument	to
specify	a	vector	of	types	of	data	contained	within	each	column,	including	date	("date")
type.	The	readxl	package	also	works	with	the	older	.xls	format.	It	cannot	be	used	to	write



to	Excel	workbooks,	however.	For	that	we	need	one	of	four	“all-rounder”	packages.

Connecting	to	Excel	from	R

At	the	time	of	writing	there	are	four	“all-rounder”	packages	that	can	both	read	and	write	to
Excel	from	R.	Two	of	these	four,	XLConnect	and	xlsx,	are	very	similar	in	their	approach
and	use	Java	with	the	rJava	package	underneath	to	make	the	connection.	The	other	two
are	the	openxlsx	package	and	the	excel.link	package,	the	most	different	of	the	four	in
terms	of	approach.

Each	of	the	first	three	packages	mentioned	implements	a	similar	workflow	idea,	albeit
implemented	in	slightly	different	ways	using	functions	with	slightly	different	names.	That
workflow	involves	creating	an	image	of	the	workbook	in	R	that	can	be	manipulated	before
saving	any	changes	back	to	the	workbook	or	to	a	new	file.	The	excel.link	package	uses	the
RDCOMClient	package	to	open	an	Excel	workbook	and	edit	it	live	using	R	code.

The	XLConnect	Package

Let’s	walk	through	an	example	of	a	typical	analysis	workflow	using	XLConnect.	In	this
workflow	we	will	take	the	following	steps:

1.	Connect	to	a	workbook.

2.	Import	data	from	one	of	the	tabs.

3.	Generate	some	statistical	summaries	of	the	key	columns.

4.	Create	a	simple	plot	(using	the	plot	function	from	the	graphics	package,	which	is
covered	in	Hour	13,	“Graphics.”)

5.	Write	the	summary	data	and	graphic	back	to	new	tabs	in	the	workbook.

6.	Save	the	workbook	with	a	new	filename.

Making	the	connection	results	in	a	named	R	object	that	we	must	reference	when	using	any
of	the	other	functions	within	the	package.	Note	that,	strictly	speaking,	we	are	not	actually
making	a	connection	but	a	copy	of	the	workbook,	which	is	held	in	memory:	The
workbook	can	still	be	opened	and	edited	from	Excel	while	we	are	making	changes	in	R.
The	loadWorkbook	function	can	also	be	used	to	create	new	workbooks.
Click	here	to	view	code	image

>	airWB	<-	loadWorkbook(“airquality.xlsx”)



Caution:	Java	Dependency

Loading	the	XLConnect	package	is	not	as	straightforward	as	for	other	packages
due	to	the	reliance	on	the	rJava	package,	which	itself	has	a	reliance	on	the	Java	SE
Development	Kit,	better	known	as	JDK.	If	JDK	is	not	installed,	R	cannot	find
JAVA_HOME	and	the	XLConnect	package	fails	to	load.	In	most	cases,	simply
installing	the	appropriate	version	of	JDK	(greater	than	1.4	is	required	for	rJava)	for
your	operating	system	and	architecture	(that	is,	the	32-bit	or	the	64-bit	version)	and
accepting	all	defaults	fixes	the	issue.	Instructions	for	installing	JDK	versions	and
the	required	executable	can	be	found	at	http://www.oracle.com.

Once	we	have	made	our	connection,	we	can	use	a	function	such	as	getSheets	or
getDefinedNames	to	explore	the	workbook:

>	getSheets(airWB)
[1]	“data”

Once	we’re	done	exploring,	we	can	use	a	function	such	as	readWorksheet,
readNamedRegion,	or	readTable	to	read	in	data	from	the	workbook.	In	this	case	we
use	readWorksheet.	The	function	automatically	ignores	blank	rows	and	columns	until
it	finds	a	cell	containing	data.	Otherwise,	we	can	use	the	arguments	startRow,	endRow,
startCol,	and	endCol	to	specify	the	exact	location	of	the	data	within	the	sheet.	Note
the	use	of	the	sheet	name	in	the	second	argument.	We	could	also	have	used	the	sheet
index.
Click	here	to	view	code	image

>	air	<-	readWorksheet(airWB,	“data”)
>	head(air)
		Ozone	Solar.R	Wind	Temp	Month	Day
1				41					190		7.4			67					5			1
2				36					118		8.0			72					5			2
3				12					149	12.6			74					5			3
4				18					313	11.5			62					5			4
5				NA						NA	14.3			56					5			5
6				28						NA	14.9			66					5			6

Tip:	Indexing	Columns

In	Excel,	rows	can	be	referenced	numerically,	whereas	columns	are	referenced
alphabetically.	In	R,	we	tend	to	work	with	numerical	referencing	for	both,	and	the
XLConnect	package	is	no	different.	The	col2idx	function	is	a	useful	function
for	converting	columns	such	as	AA	into	their	equivalent	numeric	position:

>	col2idx(“AA”)
[1]	27

Next,	we	summarize	the	data	using	the	aggregate	function	that	we	discuss	in	Hour	11	and
create	a	plot	in	our	working	directory	using	the	plot	function	from	the	graphics
package,	which	we	will	explore	fully	in	Hour	13.
Click	here	to	view	code	image

>	#	Summary	Data

http://www.oracle.com


>	averageOzone	<-	aggregate(data	=	air,	Ozone	~	Month,	mean,	na.rm	=	T)
>
>	#	Graphic	as	png
>	png(“Ozone_Levels.png”)
>	hist(air$Ozone,	col	=	“lightblue”,
+						main	=	“Histogram	of	Ozone	Levels	in	New	York\nMay	to	September	1973”,
+						xlab	=	“Ozone	(ppb)”)
>	dev.off()

In	this	next-to-last	step,	we	create	a	new	sheet	and	load	it	with	the	summary	data	and
graphic	we	just	created.	Note	the	use	of	createName	to	create	a	new	named	region
within	the	workbook,	which	is	then	used	to	place	the	graphic.	Note	also	the	use	of	the
argument	originalSize	=	TRUE.	This	ensures	that	the	image	dimensions	are
retained	and	that	it	is	not	resized	to	fit	the	named	region.
Click	here	to	view	code	image

>	#	New	tab
>	createSheet(airWB,	“Summary”)
>
>	#	Write	summary	data
>	writeWorksheet(airWB,	averageOzone,	“Summary”,	startRow	=	2,	startCol	=	2)
>
>	#	Add	graphic
>	createName(airWB,	“PlotGoesHere”,	“Summary!$E$2”)
>	addImage(airWB,	filename	=	“Ozone_Levels.png”,	name	=	“PlotGoesHere”,
+										originalSize	=	TRUE)

Finally,	we	set	the	Summary	tab	to	be	the	current	active	tab	so	that	when	we	next	open	the
workbook,	this	is	the	tab	we	see	and	then	save	the	workbook.	A	screenshot	of	the	final
workbook	open	in	Excel	is	show	in	Figure	10.1.
Click	here	to	view	code	image

>	#	Set	active	sheet	and	close
>	setActiveSheet(airWB,	“Summary”)
>	saveWorkbook(airWB,	“air_summary.xlsx”)



FIGURE	10.1	Writing	data	and	graphics	to	Excel	from	R

XLConnect	has	many	more	features,	many	of	which	are	replicated	using	similarly	named
functions	in	xlsx	and	openxlsx.	Such	features	include	formatting,	writing	Excel	formulas,
and	merging	cells.

In	our	experience,	the	biggest	restriction	of	XLConnect	(and	xlsx)	is	the	large	amount	of
memory	required	when	working	with	Excel	workbooks.	There	are	options	for	dealing	with
memory	issues,	but	eventually	you	will	reach	a	limit	and	may	need	to	explore	one	of	the
other	options.

Summary
In	this	hour,	we	looked	at	some	of	the	primary	methods	for	importing	data	into	R	for
analysis.	You	saw	how	to	easily	read	and	write	text	files	using	read.table	and
read.csv,	and	if	your	data	is	large	you	can	use	faster	alternatives	within	the	data.table
and	readr	packages.	You	also	saw	how	R’s	.RData	format	can	be	used	as	an	efficient
means	for	storing	data	on	disk.

You	also	saw	how	to	use	either	the	RODBC	or	DBI	syntax	to	connect	to	and	edit	a	DBMS
from	R	and	how	to	connect	to	an	Excel	spreadsheet	using	XLConnect.	The	“Activities”
section	provides	an	opportunity	for	you	to	try	these	tools	yourself.	In	the	next	hour,	we
will	continue	with	the	data	workflow	and	look	at	manipulation	and	transformation	in	R.



Q&A
Q.	A	colleague	of	mine	is	using	xlsx	to	connect	to	Excel.	Should	I	encourage	them
to	switch	to	XLConnect?

A.	After	installation	there	really	is	very	little	difference	between	the	two	packages	(or
openxlsx	for	that	matter).	In	certain	circumstances	you	may	experience	limitations
with	one	or	the	other,	but	if	your	colleague	is	using	xlsx	and	your	only	experience	of
XLConnect	to	date	is	what	you’ve	read	in	this	hour,	then	you	may	as	well	begin
learning	xlsx.

Q.	You	say	that	RODBC	can	be	used	to	read	structured	data	from	Excel.	Can	it	be
used	to	write	data	to	Excel	as	well?

A.	Absolutely.	For	reasons	of	efficiency	this	is	not	the	default	behavior,	but	if	you
specify	readOnly	=	FALSE	when	calling	odbcConnectExcel	or
odbcConnectExcel2007,	you	can	override	the	default	and	write	tables	back	to
the	spreadsheet.

Workshop
The	workshop	contains	quiz	questions	and	exercises	to	help	you	solidify	your
understanding	of	the	material	covered.	Try	to	answer	all	questions	before	looking	at	the
“Answers”	section	that	follows.

Quiz
1.	What	argument	prevents	row	numbers	or	names	being	written	to	a	CSV	file	when
using	write.csv?

2.	In	which	R	packages	would	you	find	the	functions	read.csv,	read_csv,	and
fread?

3.	What	binary	format	can	you	use	to	store	R	objects	on	disk?

4.	Is	it	possible	to	use	a	32-bit	ODBC	driver	to	connect	to	Excel	from	64-bit	R?

5.	Which	RMySQL	function	can	be	used	to	read	tables	from	a	database?

6.	Name	three	packages	that	can	be	used	to	connect	to	Excel	from	R.

Answers
1.	To	prevent	R’s	default	behavior	of	writing	out	what	are	known	as	“row	names,”	you
specify	row.names	=	FALSE.

2.	The	read.csv	function	is	in	the	utils	package	that	is	distributed	with	R.	The
read_csv	and	fread	functions	can	be	found	in	reader	and	data.table,
respectively.

3.	You	use	the	.RData	format	to	save	any	number	of	objects	from	your	workspace	to
disk.	This	facilitates	easy	loading	later	on.

4.	No.	You	need	to	ensure	that	the	R	architecture	matches	the	ODBC	driver



architecture	to	use	RODBC.

5.	We	didn’t	explicitly	cover	RMySQL,	but	it	is	a	DBI	package	and	therefore	the
dbReadTable	function	can	be	used.

6.	In	this	hour,	we	mentioned	several,	including	XLConnect,	xlsx,	openxlsx,
excel.link,	RODBC,	and	readxl.	There	is	also	the	gdata	package,	which	offers
general	programming	tools	for	data	manipulation.

Activities
1.	Read	the	NST-EST2014-01.csv	data	containing	annual	estimates	of	the	resident
population	for	the	United	States,	Regions,	States,	and	Puerto	Rico	from	April	1,
2010	to	July	1,	2014,	taken	from	the	U.S.	Census	Bureau.

2.	Write	out	R’s	internal	quakes	dataset	to	a	.CSV	file.	Ensure	that	row	numbers	are
not	written	to	the	file.

3.	Simulate	a	million	records	of	a	demographic	data	frame	containing	columns	ID,
Age,	Sex,	Weight,	and	Height	and	then	save	the	data	to	an	.RData	file.

4.	Make	a	connection	to	the	Northwind	database:

	Create	data	tables	from	the	Order	Details	and	Orders	tables.

	Merge	the	two	tables	based	on	the	Order	ID.

	Calculate	the	mean	unit	price	by	Customer	ID.

	Save	this	data	back	to	the	Northwind	database.

5.	Use	the	XLConnect	package	to	create	an	Excel	workbook	containing	R’s	internal
mtcars	data:

	Install	JDK	from	http://www.oracle.com.

	Install	and	load	the	XLConnect	package.

	Use	loadWorkbook	to	create	a	new	file.

	Write	the	mtcars	dataset	to	this	file.

	Save	the	workbook.

http://www.oracle.com


Hour	11.	Data	Manipulation	and	Transformation

What	You’ll	Learn	in	This	Hour:

	Sorting

	Setting	and	merging

	Handling	duplicate	values

	Restructuring	data	frames

	Data	Aggregation

In	the	previous	hour,	we	walked	through	a	variety	of	methods	for	reading	data	into	R	as
well	as	exporting	it.	This	included	working	with	flat	files,	R’s	.RData	format,	databases,
and	Microsoft	Excel.	However,	reading	data	into	R	is	only	the	start	of	the	data	analysis
workflow.	As	data	scientists	and	statisticians,	we	rarely	get	to	control	the	structure	and
format	of	our	data.	In	Hour	5,	“Dates,	Times,	and	Factors,”	and	Hour	6,	“Common	R
Utility	Functions,”	you	saw	some	useful	functions	for	working	with	the	format	of	your
data.	We	looked	at	dates,	times,	factors,	and	missing	data.	We	also	looked	at	common
functions	for	working	with	numeric	and	character	data.	Now	we	will	look	a	little	closer	at
the	structure	of	our	data.

Analysts	will	tend	to	quote	all	kinds	of	numbers	for	the	proportion	of	a	data	analysis
workflow	that	is	taken	up	with	data	manipulation,	or	“data	munging”	as	it	is	increasingly
being	referred	to.	However,	one	thing	that	most	people	agree	on	is	that	it	takes	more	time
than	it	should—and	takes	up	significantly	more	time	than	the	interesting	analysis	piece	at
the	end!	These	days	you	can	make	a	career	out	of	being	an	expert	data	wrangler!

Several	approaches	to	data	manipulation	in	R	have	evolved	over	time.	In	this	hour,	we
start	by	looking	at	what	could	be	called	“traditional”	approaches	to	the	data	manipulation
tasks	of	sorting,	setting,	and	merging.	We	will	then	look	at	the	popular	packages	reshape,
reshape2,	and	tidyr	for	data	restructuring.	We	will	then	continue	the	data	manipulation
theme	into	Hour	12,	“Efficient	Data	Handling	in	R,”	where	we	will	look	deeper	at	two	of
the	most	popular	packages	for	data	manipulation	and	aggregation,	data.table	and	dplyr.

Sorting
In	R	we	are	rarely	required	to	sort	our	data	in	order	to	use	a	particular	function.	Most
functions	do	it	for	us	if	it’s	needed.	However,	if	we	are	calculating	cumulative	sums,
analyzing	time	series,	or	if	we	just	want	to	view	our	data	in	a	way	that	makes	sense	to	us,
then	we	will	need	to	sort	the	data	ourselves.	Base	R	contains	a	function	named	sort	that
enables	us	to	easily	sort	vectors.	By	default,	the	function	sorts	vectors	from	low	to	high,
though	we	can	sort	in	descending	order	by	specifying	decreasing	=	TRUE.
Click	here	to	view	code	image

>	sort(airquality$Wind)[1:10]
	[1]	1.7	2.3	2.8	3.4	4.0	4.1	4.6	4.6	4.6	4.6



Unfortunately,	the	sort	function	only	works	with	vectors,	and	it	is	useless	to	us	if	we
want	to	sort	data	frames.	To	do	so,	we	need	to	use	the	order	function.

Sorting	Data	Frames
The	order	function	returns	a	vector	of	positions	or	indices	corresponding	to	the	elements
we	would	select	if	we	were	to	order	our	data.	Let’s	create	a	simple	numeric	vector,
myVec,	and	examine	the	output	when	we	feed	it	to	the	order	function:
Click	here	to	view	code	image

>	myVec	<-	c(63,	31,	48,	82,	51,	20,	72,	99,	84,	53)
>	order(myVec)
	[1]		6		2		3		5	10		1		7		4		9		8

The	first	value	of	the	output	vector	is	6.	This	tells	us	that	if	we	were	to	sort	our	data	from
low	to	high,	the	first	value	in	the	myVec	vector	that	we	should	select	is	the	sixth	value	(in
this	case,	the	number	20).	Next,	we	should	select	the	second	value,	which	is	31,	and	so	on.
The	sort	order	that	the	order	function	produces	can	be	used	to	sort	vectors;	however,	the
real	benefit	is	felt	when	working	with	data	frames.	In	Listing	11.1	we	use	order	to	sort
the	entire	airquality	data	frame	based	on	the	Wind	column.	The	order	function	is
used	to	select	rows	in	the	subscript.

LISTING	11.1	Sorting	Data	Frames
Click	here	to	view	code	image

	1:	>	sortedByWind	<-	airquality[order(airquality$Wind),	]
	2:	>	head(sortedByWind,	10)
	3:					Ozone	Solar.R	Wind	Temp	Month	Day
	4:	53					NA						59		1.7			76					6		22
	5:	121			118					225		2.3			94					8		29
	6:	126				73					183		2.8			93					9			3
	7:	117			168					238		3.4			81					8		25
	8:	99				122					255		4.0			89					8			7
	9:	62				135					269		4.1			84					7			1
10:	54					NA						91		4.6			76					6		23
11:	66					64					175		4.6			83					7			5
12:	98					66						NA		4.6			87					8			6
13:	127				91					189		4.6			93					9			4

Another	benefit	of	the	order	function	is	that	it	allows	us	to	order	data	by	more	than	one
variable.	Looking	again	at	Listing	11.1	we	can	see	that	each	of	the	last	four	printed	rows
has	a	Wind	value	of	4.6.	Where	two	or	more	values	match	like	this,	R	uses	the	original
order	of	the	data	for	the	sorting.	To	instead	specify	a	second	ordering	variable,	we	simply
have	to	add	the	variable	as	the	second	argument	to	order.	We	can	continue	to	add	as
many	ordering	variables	as	we	like	in	this	way.



Descending	Sorts
The	order	function	has	an	argument,	decreasing,	which	if	set	to	TRUE,	can	be	used
to	sort	from	high	to	low	instead	of	the	default	low	to	high.	However,	this	only	really	helps
us	if	we	are	sorting	a	single	variable	or	if	we	want	to	specify	that	all	the	order	variables
should	be	sorted	from	high	to	low.	If	we	want	to	be	specific	about	which	variables	will	be
ascending	and	which	are	descending,	then	we	accept	the	default	decreasing	=
FALSE	and	place	a	minus	sign	(-)	in	front	of	any	variables	that	require	a	descending	sort.
An	example	of	this	is	shown	in	Listing	11.2,	where	the	airquality	data	is	sorted	by
Wind	and	then	by	descending	values	of	Temp.

LISTING	11.2	Descending	Sorts
Click	here	to	view	code	image

1:	>	sortedByWindandDescTemp	<-	airquality[order(airquality$Wind,	-
airquality$Temp),	]
	2:	>	head(sortedByWindandDescTemp,	10)
	3:					Ozone	Solar.R	Wind	Temp	Month	Day
	4:	53					NA						59		1.7			76					6		22
	5:	121			118					225		2.3			94					8		29
	6:	126				73					183		2.8			93					9			3
	7:	117			168					238		3.4			81					8		25
	8:	99				122					255		4.0			89					8			7
	9:	62				135					269		4.1			84					7			1
10:	127				91					189		4.6			93					9			4
11:	98					66						NA		4.6			87					8			6
12:	66					64					175		4.6			83					7			5
13:	54					NA						91		4.6			76					6		23

Appending
Appending,	also	commonly	referred	to	as	combining	or	setting,	normally	occurs	when
data	are	arriving	to	us	in	chunks	over	a	time	period.	Each	dataset	we	receive	is	structurally
identical	to	the	last	but	contains	one	or	more	new	rows	of	data.	All	we	therefore	need	to	do
is	append	the	new	rows	to	our	existing	data.	In	R	this	can	be	achieved	using	the	rbind
function,	which	you	first	saw	in	action	with	data	frames	in	Hour	4,	“Multi-Mode	Data
Structures.”	To	use	rbind	with	data	frames,	we	need	to	ensure	that	the	column	names
and	the	type	of	data	contained	within	the	columns	matches	between	the	two	data	frames.
The	rbind	function	is	clever	enough	to	resolve	any	potential	issues	with	factor	levels.
Click	here	to	view	code	image

>	#	New	data	arrives	each	month
>	jan	<-	data.frame(Month	=	“Jan”,	Value	=	46.4)
>	feb	<-	data.frame(Month	=	“Feb”,	Value	=	55.2)
>	rbind(jan,	feb)
		Month	Value
1			Jan		46.4
2			Feb		55.2



Merging
For	some	reason	R	tends	not	to	be	compared	favorably	with	languages	such	as	SAS	when
it	comes	to	merging,	though	as	a	user	of	both	R	and	SAS	I	actually	find	it	slightly	easier	to
merge	data	in	R	than	in	SAS,	and	it	certainly	beats	Excel!	In	R,	there	is	no	need	to	sort
before	a	merge.	In	many	cases,	you	can	also	get	away	without	specifying	the	variable(s)
you	want	to	merge	by,	though	it’s	generally	considered	bad	practice	not	to	do	so	explicitly.
The	function	that	we	use	is	the	merge	function.

The	merge	function	allows	us	to	merge	two	datasets	by	one	or	more	common	variables.
The	function	has	a	number	of	arguments	that	can	be	used	to	control	the	“by”	variables	and
match	the	rows	in	each	dataset.	These	arguments	are	listed	in	Table	11.1.

TABLE	11.1	Arguments	to	the	merge	Function

A	Merge	Example
In	order	to	see	the	merge	function	in	action,	let’s	walk	through	an	example	using	two	of
the	datasets	contained	within	the	mangoTraining	package,	demoData	and	pkData.	The
data	frames	contain	data	from	a	fictitious	clinical	trial	in	which	33	subjects	were	given
doses	of	a	drug	and	then	monitored	over	time.	First	of	all,	let’s	preview	the	data	frames:
Click	here	to	view	code	image

>	head(demoData,	3)
		Subject	Sex	Age	Weight	Height		BMI	Smokes
1							1			M		43					57				166	20.7					No
2							2			M		22					71				179	22.2					No
3							3			F		23					72				170	25.1					No
>	head(pkData,	7)
		Subject	Dose	Time			Conc
1							1			25				0			0.00
2							1			25				1	660.13
3							1			25				6	178.92
4							1			25			12		88.99
5							1			25			24		42.71
6							2			25				0			0.00
7							2			25				1	445.55

For	each	of	the	33	subjects	in	demoData	there	are	five	corresponding	records	in



pkData	representing	times	at	which	blood	samples	were	taken	during	the	fictitious	study.
In	order	to	model	drug	concentration,	Conc,	as	a	response	to	Dose	and	each	subject’s
demographic	information,	we	would	need	to	create	a	single	data	frame	containing	all
relevant	information.	We	do	this	by	merging	the	two	data	frames	together	by	the
Subject	column:
Click	here	to	view	code	image

>	fullPk	<-	merge(x	=	demoData,	y	=	pkData,	by	=	“Subject”)

The	merge	function	requires	at	least	an	x	and	a	y	argument	to	specify	the	two	data
frames	that	we	want	to	merge	by.	Here,	we	specified	by	=	"Subject"	to	illustrate	that
we	were	merging	by	the	common	variable	Subject.	However,	because	this	is	a	common
variable,	we	could	just	as	easily	have	omitted	the	argument	and	let	R	find	the	common
variables	to	merge	by:
Click	here	to	view	code	image

>	fullPk	<-	merge(x	=	demoData,	y	=	pkData)

The	arguments	by.x	and	by.y	come	into	play	when	the	name	of	the	variable(s)	that	we
want	to	merge	by	differs	within	the	two	data	frames.	The	x	and	y	refer	to	the	first	two
arguments	of	the	function.	Therefore,	if	Subject	had	been	labeled	ID	in	the	pkData
data	frame	(our	“y”	data	frame),	we	would	have	specified	by.x	=	"Subject",
by.y	=	"ID".

Missing	Data
The	all,	all.x,	and	all.y	arguments	control	the	way	in	which	records	are	merged
when	a	value	of	the	by	variable	only	appears	in	one	of	the	two	data	frames.	By	default,
each	of	these	arguments	is	set	to	FALSE,	meaning	that	records	will	only	be	merged	if	the
value	of	the	by	variable	appears	in	both	data	frames.	In	database	terminology,	this	is
commonly	referred	to	as	an	inner	join.	This	is	probably	best	illustrated	with	an	example.
Suppose	we	take	tiny	subsets	of	demoData	and	pkData,	keeping	only	data	for	the	first
two	subjects	in	demoData	and	subjects	2	and	3	in	pkData.
Click	here	to	view	code	image

>	demo1and2	<-	demoData[demoData$Subject	%in%	1:2,	]
>	pk2and3	<-	pkData[pkData$Subject	%in%	2:3,	]
>
>	demo1and2
		Subject	Sex	Age	Weight	Height		BMI	Smokes
1							1			M		43					57				166	20.7					No
2							2			M		22					71				179	22.2					No
>	pk2and3
			Subject	Dose	Time			Conc
6								2			25				0			0.00
7								2			25				1	445.55
8								2			25				6	129.31
9								2			25			12		93.33
10							2			25			24		46.11
11							3			25				0			0.00
12							3			25				1	500.65
13							3			25				6	146.04
14							3			25			12	116.93



15							3			25			24		68.25

The	default	behavior	of	merge	only	merges	data	for	subject	2	because	this	is	the	only
subject	that	appears	in	both	data	frames:
Click	here	to	view	code	image

>	merge(demo1and2,	pk2and3)
		Subject	Sex	Age	Weight	Height		BMI	Smokes	Dose	Time			Conc
1							2			M		22					71				179	22.2					No			25				0			0.00
2							2			M		22					71				179	22.2					No			25				6	129.31
3							2			M		22					71				179	22.2					No			25			12		93.33
4							2			M		22					71				179	22.2					No			25			24		46.11
5							2			M		22					71				179	22.2					No			25				1	445.55

Specifying	all.x	=	TRUE	retains	all	records	in	our	“x”	data	(that	is,	demo1and2),
regardless	of	whether	they	appear	in	pk2and3	(a.k.a.	a	“left	join”).	Specifying	all.y	=
TRUE	does	likewise	for	pk2and3	(a	“right	join”).	An	“outer	join,”	where	all	records	in
each	data	frame	are	merged	regardless	of	whether	there	is	a	matching	value	to	merge	by	in
the	other	data	frame	is	achieved	by	specifying	all	=	TRUE.	An	example	of	an	outer
join	is	provided	next.	Notice	that	in	cases	where	the	merge	by	variable	only	has	records	in
the	“x”	data	frame,	values	for	all	other	variables	in	the	“y””	data	frame	are	set	to	NA,	and
vice	versa.
Click	here	to	view	code	image

>	merge(demo1and2,	pk2and3,	all	=	TRUE)
			Subject		Sex	Age	Weight	Height		BMI	Smokes	Dose	Time			Conc
1								1				M		43					57				166	20.7					No			NA			NA					NA
2								2				M		22					71				179	22.2					No			25				0			0.00
3								2				M		22					71				179	22.2					No			25				6	129.31
4								2				M		22					71				179	22.2					No			25			12		93.33
5								2				M		22					71				179	22.2					No			25			24		46.11
6								2				M		22					71				179	22.2					No			25				1	445.55
7								3	<NA>		NA					NA					NA			NA			<NA>			25			12	116.93
8								3	<NA>		NA					NA					NA			NA			<NA>			25				0			0.00
9								3	<NA>		NA					NA					NA			NA			<NA>			25				1	500.65
10							3	<NA>		NA					NA					NA			NA			<NA>			25				6	146.04
11							3	<NA>		NA					NA					NA			NA			<NA>			25			24		68.25

Note:	Naming	Common	Variables

If	our	two	datasets	have	common	variables	that	we	do	not	wish	to	merge	by,	then	R
will	append	“.x”	and	“.y”	to	the	column	names	in	the	resulting	data	frame.	The
suffixes	argument	can	be	used	to	create	an	alternative	suffix.

Duplicate	Values
The	duplicated	function	finds	duplicate	values.	It	does	so	by	asking	the	question,
“Have	I	seen	this	before?”	For	example,	take	the	Month	column	from	the	airquality
data	frame.	The	airquality	data	frame	contains	daily	records	for	five	months	(May
through	September).	In	total	there	are	therefore	153	individual	values	in	the	Month
column	but	most	are	repeats.	Calling	duplicated	on	the	column	yields	the	following:
Click	here	to	view	code	image

>	isMonthValueADuplicate	<-	duplicated(airquality$Month)



>	isMonthValueADuplicate[1:10]				#	View	first	10	records
	[1]	FALSE		TRUE		TRUE		TRUE		TRUE		TRUE		TRUE		TRUE		TRUE		TRUE

The	fact	that	we	can	generate	these	TRUE	and	FALSE	values	like	this	is	very	useful.	By
placing	!	in	front	of	the	call	to	duplicated,	we	switch	the	TRUE	and	FALSE	values
around.	The	corresponding	logical	vector	can	then	be	used	to	remove	duplicate	values	and
hence	subset	our	data	to	leave	only	the	first	instance	of	a	value	occurring.	Here,	we	use
this	to	extract	the	first	record	for	each	month	in	the	airquality	dataset:
Click	here	to	view	code	image

>	airquality[!duplicated(airquality$Month),	]
				Ozone	Solar.R	Wind	Temp	Month	Day
1						41					190		7.4			67					5			1
32					NA					286		8.6			78					6			1
62				135					269		4.1			84					7			1
93					39						83		6.9			81					8			1
124				96					167		6.9			91					9			1

Perhaps	a	more	standard	use	of	the	duplicated	function	is	to	find	and	remove
duplicated	records.	To	achieve	this,	we	can	call	duplicated	directly	on	a	data	frame:
Click	here	to	view	code	image

>	#	Create	data	with	a	duplicate	record	for	ID==2
>	duplicateData	<-	data.frame(ID	=	c(1,2,2,3,4),	Score	=	c(57,	45,	45,	63,
54))
>	duplicateData
		ID	Score
1		1				57
2		2				45
3		2				45
4		3				63
5		4				54
>	#	Remove	the	duplicate	record
>	duplicateData[!duplicated(duplicateData),]
		ID	Score
1		1				57
2		2				45
4		3				63
5		4				54

Tip:	Unique	Values

If	we	just	want	to	identify	the	unique	values	within	a	vector,	the	unique	function
removes	all	duplicates	within	a	vector	and	returns	a	smaller	subset	containing	the
unique	values.



Restructuring
Before	we	can	begin	to	fit	models	or	even	plot	our	data,	we	need	to	ensure	that	it	is	in	a
suitable	structure.	If	it	is	not,	we	will	need	to	restructure	the	data.	SAS	users	would	call
this	transposing	the	data.	Excel	users	might	call	it	pivoting.	Others	might	call	it	reshaping
or	tidying.	In	R,	the	best	known	and	most	used	packages	for	restructuring	data	are
reshape,	reshape2,	and	recently	tidyr.	Each	of	the	packages	has	been	written	by	Hadley
Wickham	and	is	based	around	the	notion	of	what	he	now	refers	to	as	“tidy”	data.	We	can
think	of	the	packages	as	an	evolution	(beginning	with	reshape	and	ending	with	tidyr).
The	terminology	and	usability	have	improved	slightly	with	each,	though	the	scope	of	these
packages	has	actually	decreased.	We	will	therefore	take	a	little	time	to	look	at	the
packages	in	turn.

Although	the	term	“tidy	data”	might	be	unfamiliar,	the	concept	is	nothing	new.	If	you	are
familiar	with	relational	databases,	the	basic	aim	is	to	structure	the	data	as	you	would	in	a
database	table.	In	other	words,	we	structure	the	data	such	that

	Each	variable	forms	a	column.

	Each	observation	forms	a	row.

This	differs	from	Excel,	for	which	it	is	common	to	spread	values	that	we	want	to	compare
across	multiple	columns	in	order	to	treat	them	as	separate	series	when	working	with
Excel’s	plotting	wizards.	The	tidy	structure	is,	however,	very	standard	in	R,	and	most	of
the	graphical	and	analytical	packages	in	R	expect	a	data	frame	in	the	tidy	format.

Restructuring	with	reshape
The	reshape	and	reshape2	packages	offer	essentially	the	same	functionality	for
restructuring	our	data.	We	will	work	through	an	example	using	reshape	and	highlight
differences	within	reshape2.	There	are	several	utility	functions	contained	within	the
reshape	package,	but	the	main	restructuring	functions	are	melt,	cast,	and	recast.
The	basic	idea	is	to	“melt”	a	data	frame	(using	the	melt	function)	into	a	very	long	and
thin	structure	and	then,	if	necessary,	“cast”	it	(using	the	cast	function	in	reshape	or
dcast	in	reshape2)	into	a	new	structure.

Tip:	Getting	to	Grips	with	reshape	via	reshapeGUI

Reshaping	data	can	be	hard!	The	melt	and	cast	functions	in	reshape	are	great
but	can	take	some	getting	used	to.	The	reshapeGUI	package	provides	an
interactive	graphical	user	interface	for	practicing	using	the	melt	and	cast
functions.	When	we	use	the	GUI	to	select	ID	and	measurement	variables,	it	builds
up	the	equivalent	line	of	R	code	for	us.	The	GUI	also	allows	us	to	preview	the
results	before	we	submit	to	the	R	console.



Melting
The	trick	to	understand	the	melt	function	is	to	be	able	to	identify	what	are	referred	to	as
ID	and	measurement	(“measured”)	variables	within	the	package.	ID	variables	represent
fixed	information	about	the	data	collected;	this	is	usually	IDs	or	names,	geographic
information	about	where	the	data	was	collected,	the	date	and	time	the	data	was	collected,
and	so	on.	The	measurement	variables	contain	the	data	we	have	collected.	If	you	consider
fitting	a	model	to	the	data,	then	as	a	rough	guide	the	measurement	variables	would	be	the
response	variables	and	the	ID	variables	would	be	the	explanatory	variables.

Once	we’ve	decided	what	our	ID	variables	are	and	what	our	measurement	variables	are,
we	feed	them	into	the	respective	id.vars	and	measure.vars	arguments.	Any
variables	we	are	not	interested	in	can	be	ignored	and	are	excluded	from	the	restructuring.
To	save	some	typing,	we	need	only	specify	one	of	id.vars	and	one	of
measure.vars.	R	will	assume	that	the	rest	of	our	variables	fall	into	the	unused
category.

The	melt	function	is	best	seen	through	an	example.	Listing	11.3	shows	a	simple	example
using	the	french_fries	data	contained	within	the	reshape	package.	The	data	was
originally	collected	from	a	sensory	experiment	to	investigate	fryer	oils	conducted	at	Iowa
State	University	in	2004.

LISTING	11.3	Melting	the	french_fries	Data
Click	here	to	view	code	image

	1:	>	#	Let’s	begin	by	loading	the	package	and	looking	at	the	data
	2:	>	library(reshape)
	3:	>	head(french_fries,	3)
	4:				time	treatment	subject	rep	potato	buttery	grassy	rancid	painty
	5:	61				1									1							3			1				2.9					0.0						0				0.0				5.5
	6:	25				1									1							3			2			14.0					0.0						0				1.1				0.0
	7:	62				1									1						10			1			11.0					6.4						0				0.0				0.0
	8:	>	tail(french_fries,	3)
	9:					time	treatment	subject	rep	potato	buttery	grassy	rancid	painty
10:	695			10									3						78			2				3.3							0						0				2.5				1.4
11:	666			10									3						86			1				2.5							0						0				7.0			10.5
12:	696			10									3						86			2				2.5							0						0				8.2				9.4
13:
14:	#	Now	we	‘melt’	having	identified	the	ID	variables
15:	>	fryMelt	<-	melt(french_fries,
16:	+					id.vars	=	c(“time”,	“treatment”,	“subject”,	“rep”))
17:
18:	#	Our	new	data	is	long	and	thin
19:	>	head(fryMelt,	3)
20:			time	treatment	subject	rep	variable	value
21:	1				1									1							3			1			potato			2.9
22:	2				1									1							3			2			potato		14.0
23:	3				1									1						10			1			potato		11.0
24:	>	tail(fryMelt,	3)
25:						time	treatment	subject	rep	variable	value
26:	3478			10									3						78			2			painty			1.4
27:	3479			10									3						86			1			painty		10.5
28:	3480			10									3						86			2			painty			9.4

Lines	1	to	11	of	the	listing	show	the	basic	structure	of	our	data.	We	can	deduce	from	the



data	that	at	each	time	point,	a	subject	was	given	two	French	fries	to	taste	that	had
undergone	one	of	three	treatments.	The	subject	rated	each	of	the	fries	using	the	criteria
defined	in	the	remaining	columns.	These	remaining	columns	are	therefore	our
measurement	variables.	The	variables	time,	treatment,	subject,	and	rep	are	our
ID	variables.	Once	we	have	identified	the	ID	and	measurement	variables,	the	code	is	fairly
straightforward;	we	call	the	melt	function	and	specify	the	ID	variables	using	id.vars.
As	can	be	seen	from	line	17	onward	in	the	listing,	the	resulting	data	is	very	long	and	thin.
The	column	names	for	the	measurement	variables	have	been	stacked	into	a	single	column
named	variable,	and	the	ID	variables	have	been	repeated	accordingly.	The	associated
values	for	the	measurement	variables	have	been	stacked	into	a	column	named	value.

Casting
Calling	the	melt	function	on	a	data	frame	will	normally	produce	a	data	frame	in	the
desired	format.	However,	more	often	than	not	some	further	work	is	required	in	order	to
“cast”	the	data	into	a	new	structure.	The	cast	function	in	reshape	(or	dcast	in
reshape2)	accepts	a	formula	that	describes	the	shape	of	the	output	format.	It	has	the
following	basic	form:
Click	here	to	view	code	image

untouched_column_1	+	untouched_column_2	~	column_to_split_1	+
column_to_split_2

On	the	left	side	we	specify	the	columns	that	are	to	remain	as	they	are.	On	the	right	side	we
specify	columns	that	are	to	be	split	apart	into	new	columns.	A	new	column	will	be	created
for	each	unique	combination	of	values	contained	within	the	variables	on	the	right	side	of
the	equation.	We	never	reference	the	value	column	because	this	represents	our	content
or	measured	data.	The	behavior	is	best	seen	using	an	example.	In	Listing	11.4	we	create
two	new	columns	from	the	fryMelt	data	we	created	in	Listing	11.3	based	on	the	rep
variable.	The	“...”	notation	is	used	to	mean	“all	other	columns.”	A	single	period	can
also	be	used	to	represent	“no	variable”	in	the	casting	formula.

LISTING	11.4	Casting	the	french_fries	Data
Click	here	to	view	code	image

	1:	>	#	Create	two	new	columns	based	on	the	rep	variable
	2:	>	fryReCast	<-	cast(fryMelt,	…	~	rep)
	3:	>	head(fryReCast,	3)
	4:			time	treatment	subject	variable			1		2
	5:	1				1									1							3			potato	2.9	14
	6:	2				1									1							3		buttery	0.0		0
	7:	3				1									1							3			grassy	0.0		0

Note:	Differences	Between	reshape	and	reshape2

In	reshape2	the	distinction	is	made	between	casting	to	data	frames	and	casting	to
arrays.	Instead	of	the	cast	function,	we	have	two	new	functions:	acast	for
arrays	and	dcast	for	data	frames.



Using	melt	and	then	cast	(or	dcast)	helps	break	up	the	reshaping	process.	For	more
complicated	examples,	it	can	be	really	useful	to	check	that	the	intermediate	“melted”	data
frame	is	as	expected	before	casting	into	a	new	shape.	However,	this	is	not	actually	a
necessary	step.	The	entire	transformation	can	be	performed	in	a	single	step	using	the
recast	function.	The	only	difference	when	using	recast	is	that	instead	of	the
id.vars	and	measure.vars	arguments	that	we	used	in	melt,	we	drop	the	“s”	and
use	id.var	and	measure.var	instead.
Click	here	to	view	code	image

>	recast(french_fries,
+					id.var	=	c(“time”,	“treatment”,	“subject”,	“rep”),
+					formula	=	…	~	rep)
		time	treatment	subject	variable				1				2
1				1									1							3			potato		2.9	14.0
2				1									1							3		buttery		0.0		0.0
3				1									1							3			grassy		0.0		0.0
…

Note:	Aggregation	Using	reshape

The	fun.aggregate	argument	to	cast	(and	dcast	in	reshape2)	provides	the
ability	to	aggregate	the	data	using	summary	functions	such	as	mean.

Click	here	to	view	code	image
>	#	Mean	across	replicates
>	replicateMeans	<-
+			cast(fryMelt,	time	+	treatment	+	subject	+	variable	~	.,	mean)
>	head(replicateMeans,	3)
		time	treatment	subject	variable	(all)
1				1									1							3			potato		8.45
2				1									1							3		buttery		0.00
3				1									1							3			grassy		0.00

Although	it	is	possible	to	aggregate	data	using	reshape,	we	will	look	at	more
straightforward	aggregation	techniques	later	in	the	hour	and	then	again	in	Hour	12.

Restructuring	with	tidyr
The	main	difference	between	the	reshape	approach	to	restructuring	and	tidyr	is	the
terminology.	The	functions	melt	and	cast	(or	dcast)	become	gather	and	spread.
Otherwise,	the	idea	is	very	much	the	same.	In	tidyr	we	also	have	a	third	option,
separate,	that	comes	in	handy	when	multiple	pieces	of	information	are	stored	together
in	a	single	variable.

Gather

When	the	values	of	a	particular	variable	are	spread	over	several	columns,	we	look	to
“gather”	the	data	into	a	single	column.	We	do	this	using	gather.	The	required	arguments
to	the	gather	function	are	shown	in	Table	11.2.



TABLE	11.2	Arguments	to	the	gather	Function

Let’s	look	at	how	we	would	use	gather	with	some	real	data.	For	this	example,	we	will
use	the	djiData	stock	data	contained	within	the	mangoTraining	package.	To	simplify
the	example,	we	will	first	subset	the	data	to	obtain	a	data	frame	with	three	columns;	the
date,	and	the	low	and	high	values	for	the	DJI	for	each	date:
Click	here	to	view	code	image

>	djiHighLow	<-	djiData[,	c(“Date”,	“DJI.High”,	“DJI.Low”)]
>	head(djiHighLow,	3)
								Date	DJI.High		DJI.Low
1	12/31/2014	18043.22	17820.88
2	12/30/2014	18035.02	17959.70
3	12/29/2014	18073.04	18021.57

Suppose	that	we	want	to	create	a	single	graphic	of	the	high	and	low	DJI	values	using	one
of	the	packages	described	in	Hours	13–15.	We	need	one	column	containing	the	values	to
plot	and	another	column	specifying	whether	each	value	was	a	high	or	a	low	value.	We	do
this	using	the	gather	function.

Having	loaded	the	package,	we	next	specify	each	of	the	columns	we	wish	to	gather,
separated	by	a	comma,	referencing	each	by	name	directly	and	without	wrapping	in	quotes.
As	highlighted	in	Table	12,	we	must	also	specify	names	for	the	key	and	value	columns
in	the	gathered	data	frame.	In	this	example,	we	gather	two	columns,	DJI.High	and
DJI.Low,	but	in	general	we	can	specify	as	many	columns	as	we	like:
Click	here	to	view	code	image

>	gatheredDJI	<-	gather(djiHighLow,	key=“DJI”,	value=“Value”,	DJI.High,
DJI.Low)
>	head(gatheredDJI,	4)
								Date						DJI				Value
1	2014-12-31	DJI.High	18043.22
2	2014-12-30	DJI.High	18035.02
3	2014-12-29	DJI.High	18073.04
4	2014-12-26	DJI.High	18103.45

Variables	that	are	not	listed,	such	as	Date	in	the	preceding	example,	are	unaffected	by	the
gathering	process.	If	we	find	the	need	to	gather	the	majority	of	columns	within	our	data,
then	instead	of	specifying	what	to	gather	we	can	specify	what	not	to	gather.	We	do	so	by
listing	columns	that	we	are	not	interested	in	and	placing	a	minus	sign	in	front	of	each	one.



Tip:	Lots	to	Gather?

The	tidyr	package	allows	a	special	use	of	the	:	operator	for	sequencing.	The
operator	allows	us	to	specify	a	“from”	and	a	“to”	in	terms	of	column	names.
Therefore,	a:z	would	be	interpreted	as	start	gathering	at	column	“a”	and	gather	all
columns	up	to	column	“z.”

Spread

The	term	“spread”	is	similar	to	“cast”	in	reshape.	It	enables	us	to	take	a	column	of	values
and	a	column	label	for	these	values	(the	“key”)	and	“spread”	the	contents	over	several
columns.	The	primary	arguments	to	spread	are	again	key	and	value.	A	new	column	is
created	for	each	label	in	the	key	column.	This	can	be	useful	if	we	need	to	calculate,	say,
changes	over	time.	We	take	a	column	of	values,	value,	and	a	column	of	times,	key,	at
which	these	values	occurred.	We	then	spread	the	information,	creating	a	new	column	for
each	time	point.	In	the	following	example,	we	undo	the	process	of	gathering	the	low	and
high	DJI	values	into	a	single	column,	spreading	back	into	the	two	original	columns:
Click	here	to	view	code	image

>	backToOriginal	<-	spread(gatheredDJI,	key	=	DJI,	value	=	Value)
>	head(backToOriginal,	3)
								Date	DJI.High		DJI.Low
1	01/02/2014	16573.07	16416.49
2	01/03/2014	16518.74	16439.30
3	01/06/2014	16532.99	16405.52

Tip:	Piping	Commands

The	tidyr	package	has	been	designed	to	work	with	magrittr’s	pipe	operator.	This
allows	us	to	chain	commands	together,	thus	avoiding	intermediate	data	frames.	You
will	learn	more	about	the	pipe	operator	in	Hour	12.

Separate

Occasionally	we	may	find	ourselves	in	a	situation	where	two	separate	pieces	of
information	are	joined	together	in	a	single	variable.	R	packages	provide	a	nice	example	of
this.	An	R	package	source	name	is	made	up	of	a	package	name	and	version	number.	An
example	of	this	is	shown	here:
Click	here	to	view	code	image

>	Packages	<-	data.frame(Source=c(“reshape_0.8.5”,	“tidyr_0.2.0”))
>	Packages
									Source
1	reshape_0.8.5
2			tidyr_0.2.0

We	can	use	the	separate	function	to	split	the	package	names	from	the	version	numbers.
Further	arguments	such	as	sep	are	used	to	specify	the	splitting	character:
Click	here	to	view	code	image

>	separate(Packages,	Source,	into	=	c(“Package”,	“Version”),	sep	=	“_”)



		Package	Version
1	reshape			0.8.5
2			tidyr			0.2.0

By	default,	the	original	variable	is	deleted.	We	override	this	behavior,	however,	by
specifying	remove	=	FALSE.

Data	Aggregation
In	Hour	9,	“Loops	and	Summaries,”	you	saw	two	ways	of	applying	simple	functions	to
more	complex	data	structures:

	Iterate	over	sections	of	data	with	a	loop.

	Use	one	of	the	apply	family	of	functions.

Let’s	consider	if	we	want	to	add	a	new	column	to	airquality,	containing	the
difference	between	the	Wind	speed	for	a	particular	day	and	the	median	Wind	speed	for
that	Month.	To	achieve	this,	we	need	to	perform	three	tasks:

	Calculate	the	median	Wind	speed	by	Month.

	Align	the	median	Wind	speed	value	calculated	with	the	daily	Wind	speed	data.

	Calculate	the	difference	between	the	daily	Wind	speed	and	the	“median”	data.

Using	a	“for”	Loop
If	we	choose	to	use	loops,	we	could	do	the	following,	for	example:

	Create	an	empty	column	in	our	data.

	For	each	row	in	the	data:

	Look	at	the	Month	value	for	this	row.

	Calculate	the	median	Wind	for	all	data	with	that	Month	value.

	Calculate	the	difference	between	the	daily	Wind	value	and	this	median.

	Insert	this	value	in	the	cell.

This	approach	is	very	inefficient.	For	example,	it	involves	calculating	a	median	repeatedly
(once	per	row).	Instead,	we	could	calculate	the	medians	using	one	loop	and	then	reference
the	values	in	a	second	loop,	using	an	approach	like	this:

	Create	an	empty	column	in	our	data.

	For	each	unique	Month	value,	calculate	and	store	the	mean	Wind.

	For	each	row	in	the	data:

	Look	at	the	Month	value	for	this	row.

	Reference	the	correct	median	Wind	for	that	Month	value	(from	previous	loop).

	Calculate	the	difference	between	the	daily	Wind	value	and	this	median.

	Insert	this	value	in	the	cell.



Again,	this	isn’t	ideal.	Let’s	instead	consider	(and	see)	an	approach	using	the	“apply”
functions	that	we	saw	in	Hour	9.

Using	an	“apply”	Function
The	first	thing	we	have	to	decide	is	which	“apply”	function	to	use.	Let’s	first	use	the
tapply	function	(or	split	and	sapply)	to	return	the	median	Wind	by	Month:
Click	here	to	view	code	image

>	head(airquality)			#	Print	airquality
		Ozone	Solar.R	Wind	Temp	Month	Day
1				41					190		7.4			67					5			1
2				36					118		8.0			72					5			2
3				12					149	12.6			74					5			3
4				18					313	11.5			62					5			4
5				NA						NA	14.3			56					5			5
6				28						NA	14.9			66					5			6

>	windMedians	<-	tapply(airquality$Wind,	airquality$Month,	median)
>	windMedians
			5				6				7				8				9
11.5		9.7		8.6		8.6	10.3

This	is	straightforward	and	calculates	the	median	Wind	speed	by	Month,	storing	the
results	in	a	named	vector.	The	next	step	is	to	align	the	daily	values	with	the	corresponding
windMedians	values	so	we	can	calculate	the	differences.	This	is,	perhaps,	the	most
complex	part	of	this	process.

As	you	saw	in	Hour	3,	“Single-Mode	Data	Structures,”	we	can	reference	values	from	a
vector	using	square	brackets	and	specifying	with	blank,	positive,	negative,	logical,	or
character	inputs.	In	this	case,	we	have	a	vector	of	Month	values	to	use	to	reference	values
from	the	windMedians	vector.	Let’s	convert	our	Month	values	to	characters	and	then
use	those	values	to	reference	the	(named)	elements	of	windMedians:
Click	here	to	view	code	image

>	charMonths	<-	as.character(airquality$Month)					#	Converted	character
values	of
																																																					Month
>	#	Use	character	values	to	reference	named	elements
>	head(windMedians	[	charMonths	])
			5				5				5				5				5				5
11.5	11.5	11.5	11.5	11.5	11.5

Now	we	can	create	a	column	of	means	in	our	dataset	and	calculate	differences	from	those.
Of	course,	we	don’t	have	to	create	the	column	of	intermediate	values,	but	we	included	it
here	to	help	illustrate	the	process:
Click	here	to	view	code	image

>	airquality$MedianWind	<-	windMedians	[	charMonths	]													#	Add
Median	Wind
																																																																				column
>	airquality$DiffWind	<-	airquality$Wind	-	airquality$MedianWind		#	Calculate
																																																																				differences
>	head(airquality,	3)																																													#	First	few
rows
		Ozone	Solar.R	Wind	Temp	Month	Day	MeanWind	DiffWind	MedianWind
1				41					190		7.4			67					5			1					11.5					-4.1							11.5



2				36					118		8.0			72					5			2					11.5					-3.5							11.5
3				12					149	12.6			74					5			3					11.5						1.1							11.5
>	tail(airquality,	3)																																													#	Last	few
rows
				Ozone	Solar.R	Wind	Temp	Month	Day	MeanWind	DiffWind	MedianWind
151				14					191	14.3			75					9		28					10.3						4.0							10.3
152				18					131		8.0			76					9		29					10.3					-2.3							10.3
153				20					223	11.5			68					9		30					10.3						1.2							10.3

This	approach	works,	but	the	second	step	(aligning	the	means	with	the	daily	values)	was
perhaps	a	little	complex.	If	we	decide	later	that	we	want	to	perform	the	same	process	for	a
number	of	columns,	the	solution	would	become	more	verbose/complex.	We	can	simplify
this	approach	using	the	aggregate	function.

The	aggregate	Function
The	aggregate	function	allows	us	apply	functions	over	sections	of	a	data	frame,
returning	a	data	frame	as	the	output.	We	can	use	aggregate	using	two	different
methods:

	We	can	supply	a	“formula”	to	describe	the	data	over	which	to	apply.

	We	can	specify	a	set	of	variables	to	summarize	and	a	set	of	variables	by	which	to
summarize	separately.

Let’s	first	see	an	example	using	a	formula	to	define	the	structure	of	the	data.

Using	aggregate	with	a	Formula
We	can	use	a	formula	with	aggregate	to	specify	the	variables	to	summarize	and	the
variables	by	which	to	perform	the	summary.	A	basic	formula	is	of	the	form	Y	~	X,	where
Y	is	the	variable	to	summarize	and	X	is	the	variable	by	which	to	summarize.	The
aggregate	function	additionally	accepts	a	data	argument	(specifying	the	data	frame
containing	the	data)	and	a	FUN	argument	(specifying	the	function	to	apply).	Let’s	look	at	a
simple	example	where	we	again	calculate	the	median	Wind	by	Month:
Click	here	to	view	code	image

>	aggregate(Wind	~	Month,	data	=	airquality,	FUN	=	median)
		Month	Wind
1					5	11.5
2					6		9.7
3					7		8.6
4					8		8.6
5					9	10.3

As	you	can	see,	the	return	structure	is	a	data	frame,	which	is	a	very	simple	and	useable
structure.

Summarizing	by	Multiple	Variables

If	we	want	to	apply	the	function	by	more	than	one	variable,	we	can	add	the	names	of	the
variables	to	the	set	of	variables	in	the	formula:
Click	here	to	view	code	image

>	aggregate(Wind	~	Month	+	cut(Temp,	2),	data	=	airquality,	FUN	=	median)



			Month	cut(Temp,	2)	Wind
1						5				(56,76.5]	11.5
2						6				(56,76.5]		9.7
3						7				(56,76.5]	10.6
4						8				(56,76.5]	12.6
5						9				(56,76.5]	10.9
6						5				(76.5,97]	10.3
7						6				(76.5,97]		9.7
8						7				(76.5,97]		8.6
9						8				(76.5,97]		8.3
10					9				(76.5,97]		7.7

Again,	the	return	structure	is	a	data	frame.

Summarizing	Multiple	Columns

If	we	want	to	perform	the	same	summary	on	a	number	of	variables	at	the	same	time,	we
can	combine	the	summary	variables	in	a	call	to	cbind.	For	example,	let’s	calculate	the
median	Wind	and	Ozone	values	by	Month:
Click	here	to	view	code	image

>	aggregate(cbind(Wind,	Ozone)	~	Month,	data	=	airquality,	FUN	=	median,
na.rm	=	TRUE)
		Month	Wind	Ozone
1					5	11.5				18
2					6	11.5				23
3					7		7.7				60
4					8		8.0				52
5					9	10.3				23

Multiple	Return	Values

In	the	preceding	examples,	we	used	the	median	function,	which	returns	a	single	value.	If,
instead,	we	used	a	function	that	returned	multiple	values,	these	would	be	returned	as
separate	columns.	To	illustrate	this	behavior,	let’s	repeat	the	last	three	examples	with	the
range	function:
Click	here	to	view	code	image

>	#	Range	of	Wind	values	by	Month
>	aggregate(Wind	~	Month,	data	=	airquality,	FUN	=	range,	na.rm	=	TRUE)
		Month	Wind.1	Wind.2
1					5				5.7			20.1
2					6				1.7			20.7
3					7				4.1			14.9
4					8				2.3			15.5
5					9				2.8			16.6

>	#	Range	of	Wind	AND	Ozone	values	by	Month
>	aggregate(cbind(Wind,	Ozone)	~	Month,	data	=	airquality,	FUN	=	range,	na.rm
=	TRUE)
		Month	Wind.1	Wind.2	Ozone.1	Ozone.2
1					5				5.7			20.1							1					115
2					6				8.0			20.7						12						71
3					7				4.1			14.9							7					135
4					8				2.3			15.5							9					168
5					9				2.8			16.6							7						96

>	#	Range	of	Wind	AND	Ozone	values	by	Month	AND	grouped	Temp
>	aggregate(cbind(Wind,	Ozone)	~	Month	+	cut(Temp,	2),	data	=	airquality,



+											FUN	=	range,	na.rm	=	TRUE)
			Month	cut(Temp,	2)	Wind.1	Wind.2	Ozone.1	Ozone.2
1						5				(56,76.5]				6.9			20.1							1						41
2						6				(56,76.5]				9.2			20.7						12						37
3						7				(56,76.5]				6.9			14.3						10						16
4						8				(56,76.5]				7.4			14.3							9						23
5						9				(56,76.5]				6.9			16.6							7						30
6						5				(76.5,97]				5.7			14.9						45					115
7						6				(76.5,97]				8.0			14.9						21						71
8						7				(76.5,97]				4.1			14.9							7					135
9						8				(76.5,97]				2.3			15.5							9					168
10					9				(76.5,97]				2.8			15.5						16						96

In	these	examples,	the	values	returned	are	named	based	on	the	column	that	was
summarized	and	an	index	of	the	return	value.	If,	instead,	the	function	returned	“named”
elements,	these	names	would	be	appended	to	the	summarized	column	names:
Click	here	to	view	code	image

>	aggregate(Wind	~	Month,	data	=	airquality,
+			FUN	=	function(X)	{
+					c(MIN	=	min(X),	MAX	=	max(X))
+			})
		Month	Wind.MIN	Wind.MAX
1					5						5.7					20.1
2					6						1.7					20.7
3					7						4.1					14.9
4					8						2.3					15.5
5					9						2.8					16.6

Using	aggregate	by	Specifying	Columns
Instead	of	the	formula,	we	can	use	aggregate	by	specifying	variables	separately	in	the
function	call.	Specifically,	we	specify	lists	of	variables,	which	we	can	rename	when
specifying	the	variables	if	we	want	to	control	the	names	of	the	resulting	summary
variables:

	The	first	input	specifies	the	variable(s)	to	summarize.

	The	second	input	specifies	the	grouping	variable(s).

	The	third	input	is	the	function	to	apply.

Let’s	again	calculate	the	median	Wind	by	Month,	this	time	specifying	the	inputs	as
described	earlier:
Click	here	to	view	code	image

>	aggregate(list(aveWind	=	airquality$Wind),	list(Month	=	airquality$Month),
median)
		Month	aveWind
1					5				11.5
2					6					9.7
3					7					8.6
4					8					8.6
5					9				10.3

The	output	is	a	data	frame,	with	the	variables	named	as	specified	in	the	input	lists.



Summarizing	by	Multiple	Variables

If	we	want	to	apply	the	function	by	more	than	one	variable,	we	can	add	these	variables	to
the	list,	as	follows:
Click	here	to	view	code	image

>	aggregate(list(aveWind	=	airquality$Wind),
+			list(Month	=	airquality$Month,	TempGroup	=	cut(airquality$Temp,	2)),
median)
			Month	TempGroup	aveWind
1						5	(56,76.5]				11.5
2						6	(56,76.5]					9.7
3						7	(56,76.5]				10.6
4						8	(56,76.5]				12.6
5						9	(56,76.5]				10.9
6						5	(76.5,97]				10.3
7						6	(76.5,97]					9.7
8						7	(76.5,97]					8.6
9						8	(76.5,97]					8.3
10					9	(76.5,97]					7.7

Again,	this	approach	allows	us	to	easily	control	the	names	of	the	resulting	variables	(for
example,	naming	the	TempGroup	and	aveWind	columns).

Summarizing	Multiple	Columns

If	we	want	to	perform	the	same	summary	on	a	number	of	variables	at	the	same	time,	we
can	provide	multiple	variables	in	the	first	input	list,	as	follows:
Click	here	to	view	code	image

>	aggregate(list(aveWind	=	airquality$Wind,	aveOzone	=	airquality$Ozone),
+											list(Month	=	airquality$Month),	median,	na.rm	=	TRUE)
		Month	aveWind	aveOzone
1					5				11.5							18
2					6					9.7							23
3					7					8.6							60
4					8					8.6							52
5					9				10.3							23



Tip:	Specifying	Inputs	as	Data	Frames

Because	a	data	frame	is,	structurally,	a	list	of	vectors,	we	can	supply	data	frame
inputs	directly	instead	of	lists,	if	preferred.	This	is	most	useful	when	there	are
multiple	variables	being	specified.	For	example,	we	could	rewrite	the	last	example
as	follows:

Click	here	to	view	code	image
>	aggregate(airquality[,c(“Wind”,	“Ozone”)],
+											list(Month	=	airquality$Month),	median,	na.rm	=	TRUE)
		Month	Wind	Ozone
1					5	11.5				18
2					6		9.7				23
3					7		8.6				60
4					8		8.6				52
5					9		10.3			23

Although	this	is	far	more	concise,	we	do	lose	the	ability	to	directly	rename	the
variables	(for	example,	to	aveWind	and	aveOzone	as	per	the	previous	example).

Multiple	Return	Values

As	with	the	example	where	we	specified	formulas,	we	can	apply	functions	that	return
multiple	values.	In	this	case,	the	index	of	values	is	appended	to	the	summarized	variable
name:
Click	here	to	view	code	image

>	aggregate(list(Wind	=	airquality$Wind),
+			list(Month	=	airquality$Month),	range)
		Month	Wind.1	Wind.2
1					5				5.7			20.1
2					6				1.7			20.7
3					7				4.1			14.9
4					8				2.3			15.5
5					9				2.8			16.6

Again,	if	our	function	returns	named	elements,	these	are	appended	instead	of	the	index
values:
Click	here	to	view	code	image

>	aggregate(list(Wind	=	airquality$Wind),
+											list(Month	=	airquality$Month),
+											function(X)	{
+													c(MIN	=	min(X),	MAX	=	max(X))
+											})
		Month	Wind.MIN	Wind.MAX
1					5						5.7					20.1
2					6						1.7					20.7
3					7						4.1					14.9
4					8						2.3					15.5
5					9						2.8					16.6



Calculating	Differences	from	Baseline
At	the	start	of	the	Data	Aggregation	section,	we	introduced	a	task	that	we	were	aiming	to
complete	and	discussed	how	the	previous	approaches	(for	loops	and	apply	functions)
could	be	used	to	achieve	that	task.	To	recap,	we	are	aiming	to	add	a	new	column	to
airquality,	containing	the	difference	between	the	Wind	speed	for	a	particular	day	and
the	median	Wind	speed	for	that	Month.

To	achieve	this,	we	need	to	perform	three	tasks:

	Calculate	the	median	Wind	speed	by	Month.

	Align	the	median	Wind	speed	value	calculated	with	the	daily	Wind	speed	data.

	Calculate	the	difference	between	the	daily	Wind	speed	and	the	“median”	data.

Using	the	aggregate	function,	we	can	calculate	the	median	Wind	by	Month,	returning
our	results	as	a	data	frame:
Click	here	to	view	code	image

>	windMedians	<-	aggregate(list(MedianWind	=	airquality$Wind),
+																										list(Month	=	airquality$Month),	median)
>	windMedians
		Month	MedianWind
1					5							11.5
2					6								9.7
3					7								8.6
4					8								8.6
5					9							10.3

Note:	Using	List	Inputs	to	Aggregate

In	this	example,	I’m	specifying	the	inputs	to	aggregate	as	list	elements,	instead	of	a
formula,	so	I	can	explicitly	control	the	naming	of	the	summary	(that	is,	the
MedianWind	column).	If	I	used	a	formula,	I’d	need	to	rename	the	column	to
MedianWind	as	a	second	step.

Now	that	we	have	our	median	Wind	values	in	a	data	frame,	we	can	merge	this	onto	our
original	dataset	to	create	the	MedianWind	column:
Click	here	to	view	code	image

>	airquality	<-	merge(airquality,	windMedians)
>	head(airquality)
		Month	Ozone	Solar.R	Wind	Temp	Day	MedianWind
1					5				41					190		7.4			67			1							11.5
2					5				36					118		8.0			72			2							11.5
3					5				12					149	12.6			74			3							11.5
4					5				18					313	11.5			62			4							11.5
5					5				NA						NA	14.3			56			5							11.5
6					5				28						NA	14.9			66			6							11.5



Summary
In	this	hour,	you	saw	how	to	sort,	set,	and	merge	data	using	traditional	R	functions.	We
looked	at	the	popular	reshape	(reshape2)	and	tidyr	packages	for	restructuring	our	data,
ready	for	plotting	and	modeling.	We	also	looked	at	various	options	for	aggregating	data
including	the	powerful	aggregate	function.

In	the	next	hour,	we	will	look	closer	at	two	packages	that	are	changing	the	way	people
manipulate	and	summarize	data	with	R.	The	data.table	and	dplyr	packages	offer	speed
and	efficiency,	borrowing	approaches	from	the	database	world.

Q&A
Q.	I	tried	to	sort	the	airquality	data	using
airquality[sort(airquality$Wind),]	but	got	strange	results.	What
happened?

A.	To	sort	a	data	frame	in	this	way,	you	need	to	know	which	rows	to	select.	The	sort
order	is	returned	by	the	order	function,	not	sort.

Q.	I	have	two	data	frames,	each	containing	data	for	specified	locations	at	specified
times.	Can	I	merge	by	both	variables?

A.	Absolutely.	You	can	specify	as	many	merge-by-variable	operations	as	you	like	using
merge.	Pass	the	names	to	merge	as	a	character	vector.

Q.	Is	it	possible	to	merge	three	data	frames	at	once	using	merge?

A.	Unfortunately,	no.	However,	the	merge_recurse	function	in	reshape	provides
this	functionality.

Q.	Should	I	be	using	reshape2	instead	of	reshape?

A.	Development	of	reshape	ceased	in	2011.	However,	it	depends	on	what	you	want	to
do.	In	some	sense,	reshape2	supersedes	reshape;	however,	there	is	arguably	more
functionality	contained	within	reshape.	If	you	want	to	use	reshape/reshape2	for
data	aggregation,	it	is	worth	noting	that	the	cast	function	can	handle	summary
functions	such	as	range	that	produce	a	vector	of	multiple	values,	whereas	dcast
cannot	and	fails	with	an	error.

Workshop
The	workshop	contains	quiz	questions	and	exercises	to	help	you	solidify	your
understanding	of	the	material	covered.	Try	to	answer	all	questions	before	looking	at	the
“Answers”	section	that	follows.

Quiz
1.	What	is	the	difference	between	sort	and	order?

2.	Which	function	can	be	used	to	return	the	unique	values	in	a	vector?

3.	What	function	would	you	use	to	append	rows	to	a	data	frame?



4.	What	does	the	“d”	represent	in	the	dcast	function?

Answers
1.	The	sort	function	is	used	to	sort	vectors.	It	cannot	be	used	to	sort	data	frames.	The
order	function	provides	a	sort	order	that	can	be	used	to	sort	vectors	or	data	frames.

2.	The	unique	function	directly	returns	the	unique	values.	Alternatively,
duplicated	could	be	used	as	a	means	to	subscript	and	obtain	the	same	result.

3.	The	rbind	function	is	a	simple	means	of	appending	new	rows	to	a	data	frame.

4.	The	“d”	stands	for	“data	frame.”	In	reshape2,	the	more	generic	cast	was	replaced
with	acast	and	dcast	functions	to	allow	casting	to	both	arrays	and	data	frames
via	separate	functions.

Activities
1.	Sort	the	mtcars	data	frame	by	the	number	of	cylinders	and	then	descending	by
miles	per	gallon.

2.	Extract	the	“Employees”	and	“Orders”	tables	from	the	Northwind.mdb	file
contained	within	the	mangoTraining	package	using	RODBC.	Merge	the	two	data
frames	by	EmployeeID.

3.	Use	melt	and	dcast	to	find	the	average	tip	size	by	the	sex	and	smoking	habit	of
the	bill	payer	using	the	tips	data	contained	within	the	reshape2	package.

4.	Separate	the	Date	column	within	djiData	into	three	new	columns:	Month,	Day,
and	Year.	Ensure	that	you	keep	the	original	Date	column.



Hour	12.	Efficient	Data	Handling	in	R

What	You’ll	Learn	in	This	Hour:

	The	dplyr	package

	Piping	commands	together

	The	data.table	package

	Options	for	improving	efficiency

In	Hour	11,	“Data	Manipulation	and	Transformation,”	we	looked	at	some	standard
methods	for	processing	data	in	R.	In	particular,	you	saw	how	to	sort	and	merge	data.	In
previous	hours	we	discussed	how	to	subscript	and	summarize	data	using	the	“apply”
family	of	functions.	Now	we	will	look	at	two	packages,	dplyr	and	data.table,	that	enable
us	to	do	all	of	these	tasks	for	data	frames	within	consistent,	highly	efficient	frameworks.

We	will	begin	the	hour	by	looking	at	Hadley	Wickham’s	incredibly	popular	dplyr
package.	Although	dplyr	is	actually	the	more	recent	of	the	two	packages	we’ll	discuss	in
this	hour,	it	fits	in	with	packages	such	as	readr	and	tidyr	from	the	previous	two	hours.
The	data.table	package	is	a	standalone	package	for	data	manipulation	that	offers	greater
efficiency	for	very	large	data.

dplyr:	A	New	Way	of	Handling	Data
The	dplyr	package	is	another	Hadley	Wickham	package	that	is	revolutionizing	the	way
people	work	with	data	in	R.	The	package,	which	was	first	released	in	January	2014,	fits
into	an	analysis	workflow	that	Hadley	Wickham	has	helped	define.	In	Hour	10,
“Importing	and	Exporting,”	you	saw	how	packages	such	as	readr,	haven,	and	readxl	can
be	used	to	import	data	into	R.	In	Hour	11,	you	saw	how	the	tidyr	package	can	be	used	to
transform	data	into	a	new	shape.	We	will	now	look	at	how	dplyr	can	be	used	to	sort,
subset,	merge	and	summarize	data.

The	dplyr	package	can	be	thought	of	as	an	evolution	of	the	popular	plyr	package,
although	it	focuses	solely	on	the	manipulation	of	rectangular	data	structures,	whereas	plyr
provides	a	more	general	framework.	The	focus	of	dplyr	is	very	much	on	usability;
however,	there	has	also	been	considerable	effort	to	ensure	that	dplyr	is	fast	and	efficient.

Creating	a	dplyr	(tbl_df)	Object
The	dplyr	package	is	intended	to	be	used	in	a	data	analysis	workflow	in	which	data	is
imported	using	packages	such	as	readr,	haven,	and	readxl	and	then	(possibly)
transformed	using	tidyr.	Each	of	these	packages	contains	functions	that	produce	an	object
of	the	tbl_df	class.	A	tbl_df	object	is	a	dplyr	construct	that	extends	a	data	frame,
affecting	the	way	it	prints.

The	tbl_df	class	extension	does	not	affect	standard	data	frame	operations;	however,
each	of	the	data-manipulation	functions	within	dplyr	returns	a	tbl_df	object	and	so	it	is



worth	us	spending	a	little	time	to	see	what	a	tbl_df	actually	looks	like.	We	can	create	a
tbl_df	object	directly	from	a	data.frame	using	the	tbl_df	function.	An	example
of	this	is	shown	in	Listing	12.1.

LISTING	12.1	Creating	tbl_df	Objects
Click	here	to	view	code	image

	1	:	>	library(dplyr)
	2	:	>
	3	:	>	#	Create	a	tbl_df	object	from	mtcars
	4	:	>	head(mtcars)
	5	:																				mpg	cyl	disp		hp	drat				wt		qsec	vs	am	gear	carb
	6	:	Mazda	RX4									21.0			6		160	110	3.90	2.620	16.46		0		1				4				4
	7	:	Mazda	RX4	Wag					21.0			6		160	110	3.90	2.875	17.02		0		1				4				4
	8	:	Datsun	710								22.8			4		108		93	3.85	2.320	18.61		1		1				4				1
	9	:	Hornet	4	Drive				21.4			6		258	110	3.08	3.215	19.44		1		0				3				1
10	:	Hornet	Sportabout	18.7			8		360	175	3.15	3.440	17.02		0		0				3				2
11	:	Valiant											18.1			6		225	105	2.76	3.460	20.22		1		0				3				1
12	:	>
13	:	>	carData	<-	tbl_df(mtcars)
14	:	>	carData
15	:	Source:	local	data	frame	[32	x	11]
16	:
17	:					mpg	cyl		disp		hp	drat				wt		qsec	vs	am	gear	carb
18	:	1		21.0			6	160.0	110	3.90	2.620	16.46		0		1				4				4
19	:	2		21.0			6	160.0	110	3.90	2.875	17.02		0		1				4				4
20	:	3		22.8			4	108.0		93	3.85	2.320	18.61		1		1				4				1
21	:	4		21.4			6	258.0	110	3.08	3.215	19.44		1		0				3				1
22	:	5		18.7			8	360.0	175	3.15	3.440	17.02		0		0				3				2
23	:	6		18.1			6	225.0	105	2.76	3.460	20.22		1		0				3				1
24	:	7		14.3			8	360.0	245	3.21	3.570	15.84		0		0				3				4
25	:	8		24.4			4	146.7		62	3.69	3.190	20.00		1		0				4				2
26	:	9		22.8			4	140.8		95	3.92	3.150	22.90		1		0				4				2
27	:	10	19.2			6	167.6	123	3.92	3.440	18.30		1		0				4				4
28	:..		…	…			…	…		…			…			…	..	..		…		…
29	:	>
30	:	>	class(carData)				#	A	dbl_df	object	is	just	an	extension	to	a
data.frame	object
31	:	[1]	“tbl_df”					“tbl”								“data.frame”

In	addition	to	changing	the	way	in	which	data	frames	print,	the	creation	of	a	tbl_df
object	also	removes	row	names.	In	Listing	12.1	we	can	see	how	the	creation	of	the
carData	“tbl_df”	removes	the	row	names	from	the	original	mtcars	data.	This	is
intentional	and	enforces	the	tidy	data	principle	that	all	meaningful	information	should	be
stored	in	the	same	way	(in	columns).	However,	it	can	of	course	be	a	little	frustrating	if	you
have	meaningful	row	names!	The	terms	“tbl_df”	and	“data	frame”	will	be	used
interchangeably	throughout	the	remainder	of	this	hour.

Note:	Working	with	Data	Tables

The	dplyr	package	allows	us	to	work	with	data	table	objects	via	the	tbl_dt
function,	which	extends	the	data.table	class	to	create	a	tbl_dt	object.	A
tbl_dt	object	behaves	just	like	a	tbl_df	object.



Sorting
In	dplyr	we	sort	data	using	the	arrange	function.	The	arrange	function	expects	a
data	frame	(or	a	tbl_df)	as	the	first	argument.	We	can	then	list	any	number	of	columns
as	the	subsequent	arguments.	The	data	is	sorted	by	the	first	column	we	provide,	then	by
the	second,	and	so	on.	By	default,	an	ascending	sort	is	used.	In	the	example	below,	we	sort
the	carData	data	by	carb	and	then	by	cyl:
Click	here	to	view	code	image

>	arrange(carData,	carb,	cyl)
Source:	local	data	frame	[32	x	11]

				mpg	cyl		disp		hp	drat				wt		qsec	vs	am	gear	carb
1		22.8			4	108.0		93	3.85	2.320	18.61		1		1				4				1
2		32.4			4		78.7		66	4.08	2.200	19.47		1		1				4				1
3		33.9			4		71.1		65	4.22	1.835	19.90		1		1				4				1
4		21.5			4	120.1		97	3.70	2.465	20.01		1		0				3				1
5		27.3			4		79.0		66	4.08	1.935	18.90		1		1				4				1
6		21.4			6	258.0	110	3.08	3.215	19.44		1		0				3				1
7		18.1			6	225.0	105	2.76	3.460	20.22		1		0				3				1
8		24.4			4	146.7		62	3.69	3.190	20.00		1		0				4				2
9		22.8			4	140.8		95	3.92	3.150	22.90		1		0				4				2
10	30.4			4		75.7		52	4.93	1.615	18.52		1		1				4				2
..		…	…			…	…		…			…			…	..	..		…		…

If	we	want	to	sort	by	descending	values	for	any	of	our	sort	columns,	we	can	wrap	the
column	name	in	a	call	to	the	desc	function;	for	example,	to	sort	by	carb	and	then
descending	values	of	cyl	we	would	write	arrange(carData,	carb,
desc(cyl)).	Alternatively,	we	can	simply	place	a	minus	sign	in	front	of	the	column
name,	as	shown	here:
Click	here	to	view	code	image

arrange(carData,	carb,	-cyl)

Subscripting
The	dplyr	package	defines	subscripting	as	two	distinct	operations:	choosing	rows	and
choosing	columns.	These	are	defined	respectively	as	filter	and	select.	As	with	all
of	the	dplyr	functions	we	are	discussing	in	this	hour,	each	function	expects	a	data	frame
(or	tbl_df	object)	as	the	first	argument.	This	allows	us	to	reference	variables	directly	in
subsequent	arguments	without	using	dollar	signs	or	square	brackets.	In	the	second
argument,	we	choose	how	we	wish	to	“filter”	the	rows	or	“select”	the	columns.	Let’s	start
by	using	the	filter	function	to	create	a	subset	of	carData	containing	only	four-
cylinder	cars:
Click	here	to	view	code	image

>	cyl4	<-	filter(carData,	cyl	==	4)
>	cyl4
Source:	local	data	frame	[11	x	11]

				mpg	cyl		disp		hp	drat				wt		qsec	vs	am	gear	carb
1		22.8			4	108.0		93	3.85	2.320	18.61		1		1				4				1
2		24.4			4	146.7		62	3.69	3.190	20.00		1		0				4				2
3		22.8			4	140.8		95	3.92	3.150	22.90		1		0				4				2
4		32.4			4		78.7		66	4.08	2.200	19.47		1		1				4				1



5		30.4			4		75.7		52	4.93	1.615	18.52		1		1				4				2
6		33.9			4		71.1		65	4.22	1.835	19.90		1		1				4				1
7		21.5			4	120.1		97	3.70	2.465	20.01		1		0				3				1
8		27.3			4		79.0		66	4.08	1.935	18.90		1		1				4				1
9		26.0			4	120.3		91	4.43	2.140	16.70		0		1				5				2
10	30.4			4		95.1	113	3.77	1.513	16.90		1		1				5				2
11	21.4			4	121.0	109	4.11	2.780	18.60		1		1				4				2

We	can	use	any	standard	logical	operations	to	filter	our	data.	In	addition	to	the	standard
ampersand	(&),	dplyr	also	permits	us	to	separate	“and”	operations	with	a	comma:
Click	here	to	view	code	image

>	filter(carData,	cyl	==	4,	gear	==	5)				#	equivalent	to	cyl	==	4	&	gear	==
5
Source:	local	data	frame	[2	x	11]

			mpg	cyl		disp		hp	drat				wt	qsec	vs	am	gear	carb
1	26.0			4	120.3		91	4.43	2.140	16.7		0		1				5				2
2	30.4			4		95.1	113	3.77	1.513	16.9		1		1				5				2

The	select	function	operates	in	much	the	same	way	as	filter.	We	can	either	use
column	names	or	column	numbers	to	select	which	columns	to	keep	or	drop,	much	like	the
select	option	in	the	subset	function.	The	standard	way	to	select	multiple	columns	is
to	separate	each	column	with	a	comma.	Note	again	that	we	do	not	use	quotes	to	specify
columns.
Click	here	to	view	code	image

>	select(carData,	mpg,	wt,	cyl)				#	Return	just	these	columns
Source:	local	data	frame	[32	x	3]

				mpg				wt	cyl
1		21.0	2.620			6
2		21.0	2.875			6
3		22.8	2.320			4
4		21.4	3.215			6
5		18.7	3.440			8
6		18.1	3.460			6
7		14.3	3.570			8
8		24.4	3.190			4
9		22.8	3.150			4
10	19.2	3.440			6
..		…			…	…
>	select(carData,	-vs,	-am)				#	Return	everything	except	these	columns
Source:	local	data	frame	[32	x	9]

				mpg	cyl		disp		hp	drat				wt		qsec	gear	carb
1		21.0			6	160.0	110	3.90	2.620	16.46				4				4
2		21.0			6	160.0	110	3.90	2.875	17.02				4				4
3		22.8			4	108.0		93	3.85	2.320	18.61				4				1
4		21.4			6	258.0	110	3.08	3.215	19.44				3				1
5		18.7			8	360.0	175	3.15	3.440	17.02				3				2
6		18.1			6	225.0	105	2.76	3.460	20.22				3				1
7		14.3			8	360.0	245	3.21	3.570	15.84				3				4
8		24.4			4	146.7		62	3.69	3.190	20.00				4				2
9		22.8			4	140.8		95	3.92	3.150	22.90				4				2
10	19.2			6	167.6	123	3.92	3.440	18.30				4				4
..		…	…			…	…		…			…			…		…		…

Another	nice	property	of	the	select	function	is	that	we	can	choose	a	sequence	of
columns	using	the	column	names	in	addition	to	the	column	numbers.	For	example,	we



could	specify	select(carData,	mpg:wt).	Choosing	the	columns	that	we	want	is
simplified	via	a	number	of	additional	utility	functions,	as	listed	in	Table	12.1.

TABLE	12.1	Utility	Functions	for	Selecting	Columns

Caution:	Specialist	functions	within	select

The	functions	described	in	Table	12.1	only	work	inside	the	select	function	and
cannot	be	used	to	find	patterns	in	standard	character	vectors.

Adding	New	Columns
The	mutate	function	enables	us	to	easily	add	new	columns	to	our	data.	We	can	either
provide	a	vector	of	values	in	the	same	way	we	would	with	a	standard	data	frame	or	we	can
create	new	columns	from	existing	variables.	In	the	following	example,	we	create	a	new
column	containing	the	original	row	names	from	the	mtcars	data	frame.	We	then	use	the
information	contained	with	the	hp	and	wt	columns	to	create	a	second	new	column
containing	the	power-to-weight	ratio.
Click	here	to	view	code	image

>	fullCarData	<-	mutate(carData,	type	=	rownames(mtcars),	pwr2wt	=	hp/wt)
>	fullCarData
Source:	local	data	frame	[32	x	13]

				mpg	cyl		disp		hp	drat				wt		qsec	vs	am	gear
carb														type			pwr2wt
1		21.0			6	160.0	110	3.90	2.620	16.46		0		1				4				4									Mazda	RX4
41.98473
2		21.0			6	160.0	110	3.90	2.875	17.02		0		1				4				4					Mazda	RX4	Wag
38.26087
3		22.8			4	108.0		93	3.85	2.320	18.61		1		1				4				1								Datsun	710
40.08621
4		21.4			6	258.0	110	3.08	3.215	19.44		1		0				3				1				Hornet	4	Drive
34.21462
5		18.7			8	360.0	175	3.15	3.440	17.02		0		0				3				2	Hornet	Sportabout
50.87209
6		18.1			6	225.0	105	2.76	3.460	20.22		1		0				3				1											Valiant
30.34682
7		14.3			8	360.0	245	3.21	3.570	15.84		0		0				3				4								Duster	360



68.62745
8		24.4			4	146.7		62	3.69	3.190	20.00		1		0				4				2									Merc	240D
19.43574
9		22.8			4	140.8		95	3.92	3.150	22.90		1		0				4				2										Merc	230
30.15873
10	19.2			6	167.6	123	3.92	3.440	18.30		1		0				4				4										Merc	280
35.75581
..		…	…			…	…		…			…			…	..	..		…		…															…						…

We	can	also	drop	columns	by	assigning	existing	names	to	NULL.	The	mutate	function	is
similar	to	the	base	R	function	transform.	However,	unlike	transform,	the	mutate
function	creates	variables	in	the	order	in	which	we	specify	them,	allowing	variables	that
we	create	to	themselves	create	new	variables.
Click	here	to	view	code	image

>	fullCarData	<-	mutate(carData,	type	=	rownames(mtcars),
+																							drat	=	NULL,	qsec	=	NULL,
+																							pwr2wt	=	hp/wt,	pwr2wt.Sq	=	pwr2wt^2)
>	head(fullCarData,3)
Source:	local	data	frame	[3	x	12]

			mpg	cyl	disp		hp				wt	vs	am	gear	carb										type			pwr2wt	pwr2wt.Sq
1	21.0			6		160	110	2.620		0		1				4				4					Mazda	RX4	41.98473		1762.718
2	21.0			6		160	110	2.875		0		1				4				4	Mazda	RX4	Wag	38.26087		1463.894
3	22.8			4		108		93	2.320		1		1				4				1				Datsun	710	40.08621		1606.904

Merging
In	Hour	11,	you	saw	how	the	merge	function	can	be	used	to	merge	data	frames.	The
merge	function	allows	us	to	specify	arguments	such	as	all.x	in	order	to	achieve	what
is	also	commonly	known	as	a	“left	join.”	In	contrast,	dplyr	splits	these	arguments	out	into
separate	functions.	These	can	be	seen	in	Table	12.2.	As	with	merge,	we	refer	to	our	two
datasets	as	x	and	y.

TABLE	12.2	Functions	for	Merging	Data	in	dplyr

The	first	four	functions	listed	in	Table	12.2	operate	in	the	same	way	as	the	merge
function.	For	example,	inner_join(demoData,	pkData)	provides	an	equivalent
to	merge(demoData,	pkData).	In	addition,	dplyr	offers	us	the	concepts	of	a	semi-
join	and	an	anti-join.	The	semi_join	function	does	not	actually	perform	a	merge.
Instead,	it	returns	rows	in	x	that	would	be	retained	if	we	were	to	merge	x	with	y.
Conversely,	the	anti_join	function	returns	rows	of	x	that	would	not	be	retained	if	we



were	to	merge	with	y.	Listing	12.2	illustrates	a	semi-join	and	an	anti-join	using	two
(fabricated)	sample	data	frames.
LISTING	12.2	Sample	Joins
Click	here	to	view	code	image

	1	:	>	#	Fabricate	two	datasets	to	merge
	2	:	>	beerData	<-	data.frame(ID	=	c(1,	2,	3),	Beer	=	c(75,	64,	92))
	3	:	>	diaperData	<-	data.frame(ID	=	c(1,	3,	4),	Diapers	=	c(51,	68,	32))
	4	:	>	beerData
	5	:			ID	Beer
	6	:	1		1			75
	7	:	2		2			64
	8	:	3		3			92
	9	:	>	diaperData
10	:			ID	Diapers
11	:	1		1						51
12	:	2		3						68
13	:	3		4						32
14	:	>
15	:	>	#	Rows	of	beerData	that	have	a	corresponding	“ID”	in	diaperData
16	:	>	semi_join(beerData,	diaperData,	by	=	“ID”)
17	:			ID	Beer
18	:	1		1			75
19	:	2		3			92
20	:	>	#	Rows	of	beerData	that	do	not	have	a	corresponding	“ID”	in	diaperData
21	:	>	anti_join(beerData,	diaperData,	by	=	“ID”)
22	:			ID	Beer
23	:	1		2			64
24	:	>	#	An	inner	join	of	the	two	datasets
25	:	>	inner_join(beerData,	diaperData,	by	=	“ID”)
26	:			ID	Beer	Diapers
27	:	1		1			75						51
28	:	2		3			92						68

Note	that	in	each	case	we	specified	the	“by”	variable	for	the	merge	as	"ID"	but	we	did
not	have	to.	Like	merge,	each	of	the	dplyr	*join	functions	will	automatically
determine	the	merge	by	variables	for	us	if	we	do	not	specify	it.	Because	we	stated	that	the
data	in	the	example	is	to	be	merged	by	the	ID	variable,	the	semi-join	looks	for	ID	values
in	beerData	that	also	appear	in	diaperData.	These	are	the	rows	that	would	be
merged	using	either	inner_join	(as	in	lines	25	to	28)	or	left_join.	Accordingly,
anti_join	returns	the	remaining	rows	that	would	not	be	merged.

Aggregation
In	addition	to	facilitating	data	manipulation,	dplyr	also	provides	an	easy-to-use	syntax	for
data	aggregation	that	is	a	marked	improvement	upon	the	more	generic	predecessor,	the
plyr	package.	In	dplyr	terminology,	data	aggregation	is	referred	to	as	a	data	summary.	We
therefore	use	a	function	called	summarize	to	obtain	numeric	summaries	of	our	data.	As
always,	when	using	dplyr	we	pass	the	data	as	the	first	argument.	In	the	subsequent
arguments	we	can	use	standard	summary	functions	to	summarize	columns	in	the	data.	In
the	following	example,	we	use	the	mean	function	to	summarize	the	mpg	column	within
carData:



Click	here	to	view	code	image
>	summarize(carData,	mean(mpg))
Source:	local	data	frame	[1	x	1]

		mean(mpg)
1		20.09062

We	can	summarize	using	any	function	we	like,	including	custom-written	functions.	The
only	restrictions	are	that	the	function	we	use	must	expect	a	vector	as	the	input	and	that	it
must	return	a	single	value.	We	cannot	therefore	use	a	function	such	as	range	because	this
returns	a	vector	of	length	2.	However,	we	can	make	as	many	summaries	as	we	like	in	a
single	call	to	summarize.
Click	here	to	view	code	image

>	summarize(carData,	min(mpg),	median(mpg),	max(mpg))
Source:	local	data	frame	[1	x	3]

		min(mpg)	median(mpg)	max(mpg)
1					10.4								19.2					33.9

When	creating	multiple	summaries	in	this	way,	it	can	be	helpful	to	be	able	to	manually
control	the	labels	of	the	resulting	data.	In	order	to	do	so	we	simply	specify	the	name	of	the
resulting	output	column	when	creating	the	summary,	as	follows:
Click	here	to	view	code	image

>	mpgSummary	<-	summarize(carData,	Min=min(mpg),	Median=median(mpg),
Max=max(mpg))
>	mpgSummary
Source:	local	data	frame	[1	x	3]

			Min	Median		Max
1	10.4			19.2	33.9

Sometimes	we	may	find	that	we	need	to	pass	additional	arguments	to	our	summary
functions.	For	example,	we	may	need	to	specify	na.rm	=	TRUE	when	summarizing	a
variable	with	missing	values.	In	order	to	pass	extra	arguments	to	our	summary	functions,
we	pass	the	arguments	as	if	we	were	calling	the	function	directly.	Here’s	an	example:
Click	here	to	view	code	image

summarize(airquality,	mean(Ozone,	na.rm	=	TRUE)).

Grouped	Data

If	all	we	needed	to	do	was	summarize	columns	of	data	using	standard	numeric	summary
functions,	then	dplyr	doesn’t	really	offer	anything	new.	If	anything,	it	makes	the	process
more	tedious.	However,	the	real	advantage	of	using	the	summarize	function	is	that	it
facilitates	easy	“by”	operations.	In	order	to	summarize	our	data	by	variable(s),	we	use	the
group_by	function	to	define	a	grouping	within	our	data.	We	can	actually	group	our	data
at	any	time,	and	the	grouping	will	be	retained	by	any	other	operations	we	perform.	We	can
group	by	as	many	variables	as	we	like.

To	demonstrate	the	concept	of	grouped	data,	let’s	group	carData	by	the	cyl	variable
and	observe	what	happens	when	we	filter	the	data	by	carb.	The	code	for	the	operation	is
shown	in	Listing	12.3.



LISTING	12.3	The	Effect	of	group_by
Click	here	to	view	code	image

	1:	>	cylGrouping	<-	group_by(carData,	cyl)
	2:	>	head(cylGrouping)
	3:	Source:	local	data	frame	[6	x	11]
	4:	Groups:	cyl
	5:
	6:				mpg	cyl	disp		hp	drat				wt		qsec	vs	am	gear	carb
	7:	1	21.0			6		160	110	3.90	2.620	16.46		0		1				4				4
	8:	2	21.0			6		160	110	3.90	2.875	17.02		0		1				4				4
	9:	3	22.8			4		108		93	3.85	2.320	18.61		1		1				4				1
10:	4	21.4			6		258	110	3.08	3.215	19.44		1		0				3				1
11:	5	18.7			8		360	175	3.15	3.440	17.02		0		0				3				2
12:	6	18.1			6		225	105	2.76	3.460	20.22		1		0				3				1
13:	>
14:	>	filter(cylGrouping,	carb	==	4)
15:	Source:	local	data	frame	[10	x	11]
16:	Groups:	cyl
17:
18:					mpg	cyl		disp		hp	drat				wt		qsec	vs	am	gear	carb
19:	1		21.0			6	160.0	110	3.90	2.620	16.46		0		1				4				4
20:	2		21.0			6	160.0	110	3.90	2.875	17.02		0		1				4				4
21:	3		14.3			8	360.0	245	3.21	3.570	15.84		0		0				3				4
22:	4		19.2			6	167.6	123	3.92	3.440	18.30		1		0				4				4
23:	5		17.8			6	167.6	123	3.92	3.440	18.90		1		0				4				4
24:	6		10.4			8	472.0	205	2.93	5.250	17.98		0		0				3				4
25:	7		10.4			8	460.0	215	3.00	5.424	17.82		0		0				3				4
26:	8		14.7			8	440.0	230	3.23	5.345	17.42		0		0				3				4
27:	9		13.3			8	350.0	245	3.73	3.840	15.41		0		0				3				4
28:	10	15.8			8	351.0	264	4.22	3.170	14.50		0		1				5				4

Notice	first	of	all	that	grouping	by	the	cyl	variable	has	the	effect	of	adding	a	line	to	the
output	(see	line	4).	As	can	be	seen	in	line	16,	the	cyl	grouping	was	retained	when	we
filtered	the	data.	In	both	cases	the	sort	order	remains	unaffected	by	the	grouping.	The
effect	of	grouping	our	data	is	only	felt	when	we	summarize	it.	In	the	following	example,
we	summarize	the	mpg	column	in	our	grouped	data,	cylGrouping:
Click	here	to	view	code	image

>	mpgSummaryByCyl	<-	summarize(cylGrouping,	min(mpg),	median(mpg),	max(mpg))
>	mpgSummaryByCyl
Source:	local	data	frame	[3	x	4]

		cyl	min(mpg)	median(mpg)	max(mpg)
1			4					21.4								26.0					33.9
2			6					17.8								19.7					21.4
3			8					10.4								15.2					19.2

The	result	of	performing	a	summary	operation	on	grouped	data	is	that	the	output	is
summarized	by	each	level	of	the	grouping	variable(s).	In	keeping	with	the	concept	of	tidy
data,	the	output	is	a	data	frame	(in	fact,	a	tbl_df).	The	operation	returns	a	separate
column	for	each	variable	that	we	grouped	by,	with	additional	columns	for	each	summary
we	specified.



Other	Uses	of	group_by

You	have	already	seen	that	when	we	filter	our	data,	the	grouping	variables	are	retained.
However,	we	can	also	use	the	grouping	to	our	advantage	within	the	filter	itself.	In	the
following	example,	we	use	a	grouping	on	the	cyl	variable	to	extract	the	maximum	mpg
value	for	each	value	of	cyl.	The	comparison	mpg	==	max(mpg)	is	performed	within
each	group	(that	is,	each	value	of	cyl).
Click	here	to	view	code	image

>	cylGrouping	<-	group_by(carData,	cyl)
>	#	Extract	maximum	mpg	by	for	each	cyl	category
>	filter(cylGrouping,	mpg	==	max(mpg))
Source:	local	data	frame	[3	x	11]
Groups:	cyl

			mpg	cyl		disp		hp	drat				wt		qsec	vs	am	gear	carb
1	21.4			6	258.0	110	3.08	3.215	19.44		1		0				3				1
2	33.9			4		71.1		65	4.22	1.835	19.90		1		1				4				1
3	19.2			8	400.0	175	3.08	3.845	17.05		0		0				3				2

Grouping	our	data	also	facilitates	the	generation	of	new	aggregation	variables.	For
example,	we	could	create	a	new	variable,	meanMPGbyCyl,	that	is	the	mean	of	the	mpg
column	for	each	value	of	cyl,	as	shown	here:
Click	here	to	view	code	image

>	mutate(cylGrouping,	meanMPGbyCyl	=	mean(mpg))
Source:	local	data	frame	[32	x	12]
Groups:	cyl

				mpg	cyl		disp		hp	drat				wt		qsec	vs	am	gear	carb	meanMPGbyCyl
1		21.0			6	160.0	110	3.90	2.620	16.46		0		1				4				4					19.74286
2		21.0			6	160.0	110	3.90	2.875	17.02		0		1				4				4					19.74286
3		22.8			4	108.0		93	3.85	2.320	18.61		1		1				4				1					26.66364
4		21.4			6	258.0	110	3.08	3.215	19.44		1		0				3				1					19.74286
5		18.7			8	360.0	175	3.15	3.440	17.02		0		0				3				2					15.10000
6		18.1			6	225.0	105	2.76	3.460	20.22		1		0				3				1					19.74286
7		14.3			8	360.0	245	3.21	3.570	15.84		0		0				3				4					15.10000
8		24.4			4	146.7		62	3.69	3.190	20.00		1		0				4				2					26.66364
9		22.8			4	140.8		95	3.92	3.150	22.90		1		0				4				2					26.66364
10	19.2			6	167.6	123	3.92	3.440	18.30		1		0				4				4					19.74286
..		…	…			…	…		…			…			…	..	..		…		…										…

Note:	Remove	a	Grouping

We	can	remove	any	groupings	in	our	data	using	the	ungroup	function.



The	Pipe	Operator
Functions	in	dplyr	have	been	written	in	order	to	take	advantage	of	what	is	commonly
referred	to	as	the	“pipe”	operator.	The	pipe	operator,	%>%,	originates	in	the	magrittr
package	and	is	by	no	means	restricted	to	usage	within	dplyr.	The	pipe	operator	allows	us
to	chain	functions	together	such	that	the	output	from	one	function	becomes	the	input	to	the
first	argument	(by	default)	of	the	next.	This	has	led	to	it	being	called	the	“then”	operator	in
some	quarters	(do	this,	then	this,	then	this,	and	so	on).	It	is	particularly	useful	if	we	have
many	steps	to	perform	on	a	single	type	of	object	such	as	a	data	frame.	The	advantage	of
this	approach	is	that	it	avoids	intermediary	objects	(that	is,	those	that	we	create	simply	to
break	up	nested	function	calls).

Note:	Piping	to	Other	Arguments

When	you	use	the	pipe	operator,	the	output	from	a	function	does	not	have	to	be
used	as	the	input	to	the	first	argument	of	the	next	function.	It	can	in	fact	become	the
input	to	any	argument	within	the	following	function.	However,	the	code	is	generally
a	lot	more	readable	if	we	feed	the	output	into	the	first	argument	of	the	following
function.

The	dplyr	package	has	been	written	with	the	pipe	operator	very	much	in	mind.	In	a	typical
analysis	workflow	we	might	arrange,	filter,	select,	mutate,	group_by,	and
summarize	several	times	over.	Each	of	these	functions	takes	a	data	frame	as	its	first
input	and	returns	another	data	frame	as	the	output.	This	is	ideal	for	piping	together
function	calls.	Consider	the	example	in	Listing	12.4	using	mtcars.	In	the	first	instance
we	use	the	traditional	approach	to	data	processing.	To	avoid	nesting,	we	end	up	creating
three	intermediate	datasets	on	the	way	to	obtaining	our	summary.	We	then	perform	the
same	operations	using	the	pipe	operator.	In	the	second	case,	no	intermediate	datasets	are
required.

LISTING	12.4	Workflow	Examples	With	and	Without	the	Pipe	Operator
Click	here	to	view	code	image

	1:	>	#	A	standard	workflow,	mean	mpg	by	cyl	for	manual	cars
	2:	>	#	The	traditional	way:
	3:	>	carsByCyl	<-	arrange(mtcars,	cyl)
	4:	>	groupByCyl	<-	group_by(carsByCyl,	cyl)
	5:	>	manualCars	<-	filter(groupByCyl,	am	==	1)
	6:	>	summarize(manualCars,	Mean.MPG=mean(mpg))
	7:	Source:	local	data	frame	[3	x	2]
	8:
	9:			cyl	Mean.MPG
10:	1			4	28.07500
11:	2			6	20.56667
12:	3			8	15.40000
13:	>
14:	>	#	Using	pipes
15:	>	mtcars	%>%
16:	+			arrange(cyl)	%>%
17:	+			group_by(cyl)	%>%
18:	+			filter(am	==	1)	%>%
19:	+			summarize(Mean.MPG=mean(mpg))



20:	Source:	local	data	frame	[3	x	2]
21:
22:			cyl	Mean.MPG
23:	1			4	28.07500
24:	2			6	20.56667
25:	3			8	15.40000

The	pipe	operator	is	not	to	everyone’s	taste,	and	it	can	be	harder	to	debug	than	well-
written	code	using	a	traditional	syntax.	However,	it	is	becoming	an	increasingly	popular
means	of	working	with	data—and	before	long	it	may	not	be	possible	to	avoid	it!

Efficient	Data	Handling	with	data.table
The	data.table	package	predates	dplyr	by	several	years,	having	been	first	released	to
CRAN	in	April	2006.	However,	it	is	still	actively	maintained	by	its	primary	author	and
maintainer	Matt	Dowle,	and	despite	the	growing	popularity	of	the	dplyr	package,
data.table	remains	one	of	the	most	popular	and	well-documented	packages	on	CRAN.	In
addition	to	the	standard	help	and	a	quick-start	guide,	Matt	Dowle	has	written	an	extensive
FAQ	document	for	the	package	tackling	some	of	the	less-obvious	aspects	of	the	package.

The	focus	of	the	package	is	very	much	on	reading,	processing,	and	aggregating	large	data
efficiently.	The	data.table	object	is	essentially	an	enhancement	to	the	data.frame
class.	It	allows	us	to	index,	merge,	and	group	data	much	faster	than	we	can	with	standard
data	frames.

Creating	a	data.table
Like	any	analysis	workflow	the	data.table	workflow	begins	with	importing	data.	In
Hour	10	we	looked	briefly	at	the	performance	of	the	fread	function	contained	within
data.table.	The	fread	function	is	similar	to	read.table	in	terms	of	usage,	though	it’s
much	faster	for	large	datasets.	Conveniently,	the	output	of	the	function	is	a	data.table
object.
Click	here	to	view	code	image

>	dji	<-	fread(“djiData.csv”)
>	dji
											Date	DJI.Open	DJI.High		DJI.Low	DJI.Close	DJI.Volume	DJI.Adj.Close
		1:	12/31/2014	17987.66	18043.22	17820.88		17823.07			82840000						17823.07
		2:	12/30/2014	18035.02	18035.02	17959.70		17983.07			47490000						17983.07
		3:	12/29/2014	18046.58	18073.04	18021.57		18038.23			53870000						18038.23
		4:	12/26/2014	18038.30	18103.45	18038.30		18053.71			52570000						18053.71
		5:	12/24/2014	18035.73	18086.24	18027.78		18030.21			42870000						18030.21
	–
248:	01/08/2014	16527.66	16528.88	16416.69		16462.74		103260000						16462.74
249:	01/07/2014	16429.02	16562.32	16429.02		16530.94			81270000						16530.94
250:	01/06/2014	16474.04	16532.99	16405.52		16425.10			89380000						16425.10
251:	01/03/2014	16456.89	16518.74	16439.30		16469.99			72770000						16469.99
252:	01/02/2014	16572.17	16573.07	16416.49		16441.35			80960000						16441.35

The	appearance	of	a	data	table	is	similar	to	that	of	a	standard	data	frame.	When	we	choose
to	print	a	small	dataset	(one	containing	100	rows	or	less),	the	entire	dataset	is	returned,	but
with	the	header	row	repeated	at	the	base	of	the	table.	For	larger	datasets,	only	the	first	and
last	five	rows	are	returned.	We	can	turn	existing	data	frames	into	data.table	objects



by	directly	calling	a	data.table	function—for	example,	air	<-
data.table(airquality).	We	can	also	create	a	data.table	from	scratch	in	the
same	way	we	would	using	the	data.frame	function.

Tip:	Keeping	Track	of	Tables

If	we	create	many	data	table	objects,	the	tables	function	can	be	used	to	find	out
what	tables	we	have,	what	they	contain,	and	how	much	memory	they	have	been
allocated.

Setting	a	Key
One	of	the	primary	focuses	of	the	data.table	package	is	performance.	To	achieve	this
performance,	we	define	a	key.	In	some	ways	this	is	similar	to	a	primary	key	that	would	be
used	in	a	relational	database.	However,	in	data.table	the	key	can	be	made	up	of	several
columns	and	does	not	have	to	be	unique.	In	fact,	it	is	often	more	useful	if	the	key	is	not
unique.	The	key	is	used	for	sorting,	indexing,	and	summarizing.	It	is	defined	using	a
function	called	setkey.	In	Listing	12.5	we	define	a	simple	data.table	using	the
demoData	data	in	the	mangoTraining	package	and	then	set	the	key	based	on	the
variables	Sex	and	Smokes.

LISTING	12.5	Defining	a	Key
Click	here	to	view	code	image

	1:	>	#	Create	a	data.table	and	define	the	key
	2:	>	demoDT	<-	data.table(demoData)
	3:	>	setkey(demoDT,	Sex,	Smokes)
	4:	>	head(demoDT)
	5:				Subject	Sex	Age	Weight	Height		BMI	Smokes
	6:	1:							3			F		23					72				170	25.1					No
	7:	2:							6			F		29					67				169	23.5					No
	8:	3:						12			F		32					77				182	23.1					No
	9:	4:						15			F		27					73				172	24.8					No
10:	5:						23			F		26					82				175	26.8					No
11:	6:						26			F		25					58				175	18.9					No

The	obvious	effect	of	defining	a	key	is	that	when	printing,	the	data	is	sorted	by	the	key
variables	from	left	to	right	as	we	defined	them.	In	Listing	12.5	they	are	sorted	by	Sex	and
then	by	Smokes.	The	purpose	of	defining	the	sort	key	is	not	just	for	printing	purposes,
however.	It	enables	faster	indexing	when	subscripting.

Notice	that	we	wrote	setkey(demog,	Sex,	Smokes)	as	opposed	to	demog	<-
setkey(demog,	Sex,	Smokes).	Functions	in	data.table	update	the	data	table
directly,	so	we	do	not	need	to	use	<-	to	copy/replace	the	original	data.	Updating	by
reference	in	this	way	reduces	the	memory	required	to	perform	manipulation	tasks	and
improves	speed.



Tip:	Querying	the	Key

We	can	find	out	if	a	data	table	has	a	key	using	the	function	haskey,	which	returns
TRUE	if	the	data	table	has	a	key	and	FALSE	otherwise.

The	key	function	tells	us	what	the	key	is.

Subscripting
In	the	data.table	syntax,	we	can	reference	columns	directly	as	if	they	were	objects	in	their
own	right.	In	other	words,	we	can	drop	the	“dataName$”	syntax.	This	saves	some
typing,	though	the	real	benefit	is	the	speed	gain	we	get	from	using	data.table	in	the	first
place.
Click	here	to	view	code	image

>	demoDT[Sex	==	“F”,]
				Subject	Sex	Age	Weight	Height		BMI	Smokes
	1:							3			F		23					72				170	25.1					No
	2:							6			F		29					67				169	23.5					No
	3:						12			F		32					77				182	23.1					No
	4:						15			F		27					73				172	24.8					No
	5:						23			F		26					82				175	26.8					No
	6:						26			F		25					58				175	18.9					No
	7:						28			F		28					69				172	23.4					No
	8:						30			F		33					61				175	19.9					No
	9:						17			F		41					62				172	20.9				Yes
10:						27			F		36					82				190	22.6				Yes

If	our	data	table	has	a	key	and	we	want	to	subset	by	that	key,	we	can	go	one	step	further
and	drop	the	reference	to	the	variable	we	want	to	subset	altogether	(for	example,
demoDT["F",]).	In	fact,	we	don’t	even	need	the	comma	to	specify	rows	as	we	would
with	a	data	frame,	though	it	can	be	sometimes	be	confusing	to	leave	it	out.

If	we	have	defined	a	key	using	multiple	variables,	we	can	provide	the	subset	values	by
separating	with	a	comma.	We	enclose	the	values	using	J(),	where	J	stands	for	“join.”	In
the	following	example,	we	subset	the	demography	data	to	return	female	smokers:
Click	here	to	view	code	image

>	key(demoDT)
[1]	“Sex”				“Smokes”
>	demoDT[J(“F”,	“Yes”),]
			Subject	Sex	Age	Weight	Height		BMI	Smokes
1:						17			F		41					62				172	20.9				Yes
2:						27			F		36					82				190	22.6				Yes

Note:	Alternatives	to	J

The	J	function	is	the	data.table	specification	of	a	“join”	of	two	keys.	The	practice
of	joining	based	on	keys	has	its	roots	in	SQL,	but	in	practice	it	is	just	a	means	of
separating	variables.	As	an	alternative,	the	function	list	(base)	or	.	(plyr)	could
be	used	in	exactly	the	same	way.

Occasionally	we	may	want	to	return	a	subset	in	which	the	variables	of	interest	match



multiple	criteria.	To	achieve	this	we	can	specify	a	vector	of	values.	If	we	have	defined	a
key	from	multiple	variables,	any	vector	we	specify	must	be	contained	within	a	call	to	the
J	function.	An	example	of	this	is	shown	here:
Click	here	to	view	code	image

>	setkey(demoDT,	Sex,	Weight)
>	demoDT[J(“M”,	c(76,	77)),]
			Subject	Sex	Age	Weight	Height		BMI	Smokes
1:							4			M		25					76				188	21.4					No
2:						31			M		25					76				174	25.1					No
3:						13			M		21					77				180	23.6					No
4:						20			M		22					77				183	23.1					No

Caution:	Numeric	Keys

The	data.table	package	allows	us	to	define	a	key	using	numeric	variables.
However,	in	order	to	subset	using	these	keys	we	must	use	the	.	function.	This	is
because,	like	data	frames,	data	tables	also	allow	us	to	subset	by	specifying	the	row
numbers.	If	we	wanted	to	return	all	the	rows	in	demoDT	for	which	Weight	is
equal	to	72,	we	would	write	the	following:

Click	here	to	view	code	image
>	setkey(demoDT,	Weight)
>	demoDT[.(72),]
			Subject	Sex	Age	Weight	Height		BMI	Smokes
1:								3			F		23						72				170	25.1						No

Adding	New	Columns	and	Rows
The	data.table	package	makes	adding	variables	to	an	existing	data	table	much	easier	and
quicker	than	when	working	with	standard	data	frames.	Whenever	we	add	a	column	to	a
standard	data	frame,	we	make	a	copy	of	the	data.	When	we	work	with	data	tables,	the	new
column	is	instead	appended	by	reference;	in	other	words,	R	points	to	the	existing	table	and
tells	it	to	add	a	new	column.	This	makes	it	much	faster	and	more	efficient.

Adding	and	Renaming	Columns

We	create	new	variables	in	our	data,	by	reference,	using	the	:=	operator.	To	create
variables	by	reference	we	use	square,	subscript	brackets	with	the	existing	data	table.	We
avoid	any	standard	R	assignment.	If	we	are	generating	the	new	variable	from	existing
variables,	we	refer	to	them	directly	as	in	the	following	example:
Click	here	to	view	code	image

>	demoDT[,	HeightInM.sq	:=	(Height^2)/10000]
>	head(demoDT)
			Subject	Sex	Age	Weight	Height		BMI	Smokes	HeightInM.sq
1:							1			M		43					57				166	20.7					No							2.7556
2:							2			M		22					71				179	22.2					No							3.2041
3:							3			F		23					72				170	25.1					No							2.8900
4:							4			M		25					76				188	21.4					No							3.5344
5:							5			M		29					82				175	26.8					No							3.0625
6:							6			F		29					67				169	23.5					No							2.8561



Caution:	Updating	the	Values	in	the	Key

If	we	update	the	values	in	any	of	the	columns	that	make	up	our	key,	we	need	to
redefine	the	key.

To	create	multiple	new	columns,	we	must	provide	the	names	of	the	new	columns	as	a
character	vector	and	the	transformations	as	a	list.	The	vector	of	names	and	list	of
transformations	should	be	separated	by	the	:=	operator,	as	shown	in	Listing	12.6.	We	can
also	remove	columns	by	setting	them	to	NULL	using	the	:=	operator.

LISTING	12.6	Creating	New	Columns
Click	here	to	view	code	image

	1:	>	demoDT[,	c(“SexNum”,	“SmokesNum”)	:=	list(as.numeric(Sex),
as.numeric(Smokes))]
	2:	>	head(demoDT)
	3:				Subject	Sex	Age	Weight	Height		BMI	Smokes	HeightInM.sq	SexNum
SmokesNum
	4:	1:							1			M		43					57				166
20.7					No							2.7556						2									1
	5:	2:						26			F		25					58				175
18.9					No							3.0625						1									1
	6:	3:						30			F		33					61				175
19.9					No							3.0625						1									1
	7:	4:						22			M		27					61				170
21.0					No							2.8900						2									1
	8:	5:						17			F		41					62				172
20.9				Yes							2.9584						1									2
	9:	6:						14			M		26					64				170
22.0					No							2.8900						2									1

We	can	rename	columns	using	the	setnames	function.	Once	again	the	renaming	is
performed	by	reference	to	avoid	copying	the	entire	dataset.	The	setnames	function
expects	a	data	table	as	its	first	argument,	with	further	arguments	old	and	new,	which
respectively	expect	a	vector	of	column	names	to	change	from	and	to.

Note:	Multiple	Ways	to	Create	New	Variables

There	are	normally	several	ways	of	doing	the	same	thing	with	data.table,	and
everyone	tends	to	have	their	preference.	In	order	to	create	new	variables	in	Listing
12.6,	we	could	also	have	used	the	following	syntax:

Click	here	to	view	code	image
demoDT[,	`:=`	(SexNum	=	as.numeric(Sex),	SmokesNum	=	as.numeric(Smokes))]

We	could	also	have	used	the	set	function	to	achieve	the	same	result.



Adding	Rows

Although	the	rbind	function	in	base	can	be	used	to	append	rows	to	a	data	table,	the
function	rbindlist	is	optimized	for	speed	and	memory	efficiency.	The	rbindlist
function	can	be	used	to	join	data	tables	and/or	regular	data	frames	that	are	stored	as	a	list.
We	can	join	together	as	many	datasets	as	we	wish,	but	we	must	first	store	them	together	in
a	list.	Unlike	the	standard	rbind	that	we	looked	at	in	Hour	11,	rbindlist	will	permit
us	to	bind	together	datasets	for	which	the	column	names	do	not	match	by	setting	fill	=
TRUE.	An	example	of	this	is	shown	in	Listing	12.7.	First	we	generate	a	list	by	splitting	the
airquality	data	by	the	Month	variable	and	combine	this	back	together	in	line	5.	Then
we	use	rbindlist	again	in	line	24	to	add	on	new	rows	of	data.

LISTING	12.7	Adding	New	Rows
Click	here	to	view	code	image

	1:	>	#	Create	a	list	containing	airquality	data	for	each	available	month
	2:	>	airSplit	<-	split(airquality,	airquality$Month)
	3:	>
	4:	>	#	Bind	these	together	into	a	single	data	table
	5:	>	airDT	<-	rbindlist(airSplit)
	6:	>	airDT
	7:						Ozone	Solar.R	Wind	Temp	Month	Day
	8:			1:				41					190		7.4			67					5			1
	9:			2:				36					118		8.0			72					5			2
10:			3:				12					149	12.6			74					5			3
11:			4:				18					313	11.5			62					5			4
12:			5:				NA						NA	14.3			56					5			5
13:		–
14:	149:				30					193		6.9			70					9		26
15:	150:				NA					145	13.2			77					9		27
16:	151:				14					191	14.3			75					9		28
17:	152:				18					131		8.0			76					9		29
18:	153:				20					223	11.5			68					9		30
19:	>
20:	>	#	Now	assume	two	new	records	arrive	but	with	missing	columns
21:	>	month10	<-	data.table(Ozone	=	c(24,	28),	Month	=	10,	Day	=	1:2)
22:	>
23:	>	#	Bind	this	to	our	original	data
24:	>	newAirDT	<-	rbindlist(list(airDT,	month10),	fill	=	TRUE)
25:	>	tail(newAirDT)
26:				Ozone	Solar.R	Wind	Temp	Month	Day
27:	1:				NA					145	13.2			77					9		27
28:	2:				14					191	14.3			75					9		28
29:	3:				18					131		8.0			76					9		29
30:	4:				20					223	11.5			68					9		30
31:	5:				24						NA			NA			NA				10			1
32:	6:				28						NA			NA			NA				10			2



Merging
Merging	data	tables	works	in	the	much	same	way	as	a	typical	merge	on	a	data	frame	using
the	merge	function.	However,	the	default	behavior	of	merge	for	data	tables	is	to	use	the
respective	keys	for	the	two	data	tables.	We	must	therefore	either	define	keys	for	the	two
data	tables	or	specify	the	“by”	variables	manually.	In	Listing	12.8	we	create	two	data
tables	from	the	demoData	and	pkData	data	frames	contained	within	the
mangoTraining	package	and	set	the	keys	accordingly.	In	line	8	we	perform	a	merge,
similar	to	that	used	in	Hour	11.

LISTING	12.8	Merging	Two	Data	Tables
Click	here	to	view	code	image

	1:	>	#	Create	data	tables	and	define	the	keys	accordingly
	2:	>	demoDT	<-	data.table(demoData)
	3:	>	setkey(demoDT,	Subject)
	4:	>	pkDT	<-	data.table(pkData)
	5:	>	setkey(pkDT,	Subject)
	6:	>
	7:	>	#	Merge	the	two	data	tables	together
	8:	>	allPKDT	<-	merge(demoDT,	pkDT)
	9:	>	allPKDT
10:						Subject	Sex	Age	Weight	Height		BMI	Smokes	Dose	Time			Conc
11:			1:							1			M		43					57				166	20.7					No			25				0			0.00
12:			2:							1			M		43					57				166	20.7					No			25				1	660.13
13:			3:							1			M		43					57				166	20.7					No			25				6	178.92
14:			4:							1			M		43					57				166	20.7					No			25			12		88.99
15:			5:							1			M		43					57				166	20.7					No			25			24		42.71
16:		–
17:	161:						33			M		30					80				180	24.8					No			25				0			0.00
18:	162:						33			M		30					80				180	24.8					No			25				1	453.13
19:	163:						33			M		30					80				180	24.8					No			25				6	205.30
20:	164:						33			M		30					80				180	24.8					No			25			12	146.69
21:	165:						33			M		30					80				180	24.8					No			25			24		46.84

For	large	datasets	you	will	notice	that	using	merge	with	data	tables	is	significantly	faster
than	the	with	data	frames.	For	those	that	need	that	little	bit	of	extra	performance,	however,
the	package	offers	an	alternative	that	is	even	faster.	To	perform	the	data	table	merge,	we
return	to	using	square	brackets.	For	a	standard	merge	(a.k.a.	an	inner	join),	we	put	one
data	table	inside	the	brackets	and	one	outside.	An	example	of	an	inner	join	or	standard
merge	is	shown	here:
Click	here	to	view	code	image

>	demoDT[pkDT]
					Subject	Sex	Age	Weight	Height		BMI	Smokes	Dose	Time			Conc
		1:							1			M		43					57				166	20.7					No			25				0			0.00
		2:							1			M		43					57				166	20.7					No			25				1	660.13
		3:							1			M		43					57				166	20.7					No			25				6	178.92
		4:							1			M		43					57				166	20.7					No			25			12		88.99
		5:							1			M		43					57				166	20.7					No			25			24		42.71
	–
161:						33			M		30					80				180	24.8					No			25				0			0.00
162:						33			M		30					80				180	24.8					No			25				1	453.13
163:						33			M		30					80				180	24.8					No			25				6	205.30
164:						33			M		30					80				180	24.8					No			25			12	146.69
165:						33			M		30					80				180	24.8					No			25			24		46.84



Aggregation
In	addition	to	transforming	and	manipulating	our	data,	we	can	also	use	data.table	to
summarize	our	data.	As	usual,	we	start	by	specifying	the	name	of	the	data	and	use	square
brackets	to	create	a	summary.	We	can	perform	simple	summary	operations	on	columns
using	standard	statistical	summary	functions	such	as	mean.
Click	here	to	view	code	image

>	#	Calculate	the	mean	height
>	demoDT	<-	data.table(demoData)
>	demoDT[	,	mean(Height)]
[1]	176.1515

So	far	we	have	seen	nothing	special.	However,	data.table	permits	the	use	of	a	“by”
argument,	which	allows	aggregation.	The	return	object	is	also	a	data	table.	Here,	we
calculate	the	mean	height	again	by	sex:
Click	here	to	view	code	image

>	demoDT[	,	mean(Height),	by	=	Sex]
			Sex							V1
1:			M	176.5652
2:			F	175.2000

Tip:	Counting	Records

In	data.table	we	can	use	.N	to	count	records	within	by-groups.	For	example,	to
count	the	number	of	males	and	females	in	the	demoDT	data	table,	we	would	write
demoDT[,	.N,	by	=	Sex].

We	can	summarize	by	multiple	variables	by	providing	them	as	a	list	using	.	or	list.	The
result	is	another	data	table	with	a	column	for	each	“by”	variable	and	an	additional	column
for	the	summary.
Click	here	to	view	code	image

>	demoDT[	,	mean(Height),	by	=	list(Sex,	Smokes)]
			Sex	Smokes							V1
1:			M					No	177.3158
2:			F					No	173.7500
3:			M				Yes	173.0000
4:			F				Yes	181.0000

We	can	provide	multiple	summaries	and	name	them	using	a	list.	Again,	the	result	is	a	data
table.
Click	here	to	view	code	image

>	demoDT[	,	list(Mean.Height	=	mean(Height),	Mean.Weight	=	mean(Weight)),
+	by	=	list(Sex,	Smokes)]
			Sex	Smokes	Mean.Height	Mean.Weight
1:			M					No				177.3158				74.10526
2:			F					No				173.7500				69.87500
3:			M				Yes				173.0000				74.25000
4:			F				Yes				181.0000				72.00000



Caution:	Summary	Functions	That	Return	Multiple	Values

It	is	possible	to	summarize	using	functions	that	return	multiple	values,	such	as
range	and	quantile.	However,	the	effect	is	that	a	new	row	is	created	for	each
element	of	the	return	vector—for	example,	one	for	the	minimum	and	one	for	the
maximum	if	using	range.	Other	than	the	sort	order,	there	is	no	way	to	tell	which
row	corresponds	to	which	value	in	the	output	vector.

The	aggregation	that	we	have	seen	thus	far	creates	a	new	data	table	that	we	can	use	for
publishing,	plotting,	or	modeling.	The	original	table	is	unaffected	by	the	operation.
However,	if	we	want	to	merge	the	results	of	the	aggregation	back	on	to	the	original	data,
we	can	easily	do	so	using	the	:=	operator.
Click	here	to	view	code	image

>	demoDT[,	MeanWeightBySex	:=	mean(Weight),	by	=	Sex]
>	head(demoDT,	5)
			Subject	Sex	Age	Weight	Height		BMI	Smokes	MeanWeightBySex
1:							1			M		43					57				166	20.7					No								74.13043
2:							2			M		22					71				179	22.2					No								74.13043
3:							3			F		23					72				170	25.1					No								70.30000
4:							4			M		25					76				188	21.4					No								74.13043
5:							5			M		29					82				175	26.8					No								74.13043

In	order	to	generate	multiple	summaries,	we	may	use	any	of	the	methods	associated	with
:=	for	creating	new	variables.

More	with	data.table

There	are	always	many	ways	of	achieving	the	same	goal	using	data.table,	and	we	have
presented	just	a	small	selection	of	options	in	most	cases.	There	are	also	many	more
features,	such	as	rolling	means,	that	we	simply	do	not	have	the	time	to	cover	in	any	detail.
If	you	are	interested	in	digging	into	data.table	further,	Matt	Dowle	has	crammed	the
package	help	files	full	of	examples.	The	package	FAQ	offers	further	guidance.

Too	Large	for	data.table
For	the	vast	majority	of	readers,	dplyr	and	data.table	will	be	more	than	sufficient	for
your	data	needs.	In	particular,	data.table	has	been	shown	to	be	extremely	performant.	On
a	standard	desktop,	it	can	comfortably	handle	basic	summary	operations	on	datasets	with	a
billion	rows,	containing	several	thousand	groups,	within	a	matter	of	minutes.	However,	for
some	that	might	still	not	be	enough!

Without	parallelizing	your	code	and/or	turning	to	high-performance	computing	solutions,
you	might	find	two	further	packages	to	be	of	assistance.	The	first	of	these	is	bigmemory.
The	bigmemory	package	is	designed	to	work	with	matrices	that	can	be	held	in	your
computer’s	memory	but	cannot	be	processed	by	standard	R	functions	for	data	structures.
The	package	takes	advantage	of	C++	and	allows	objects	to	be	shared	across	multiple
sessions	on	the	same	machine.

An	alternative	approach	to	handling	very	large	datasets	is	to	use	the	ff	package.	Instead	of
storing	large	datasets	in	memory,	the	ff	package	stores	data	on	disc.	Only	a	tiny	portion	of



the	data	is	ever	mapped	to	memory.	Though	the	data	is	stored	on	disk,	it	behaves	in	very
much	the	same	way	as	standard	R	objects	held	in	memory.	On	the	back	end,	C++	is	used
to	perform	the	requested	operations.
Still	further	options	are	available	beyond	the	two	packages	covered	in	this	hour,	though
typically	they	involve	parallelizing	your	operation	and	are	beyond	the	scope	of	this
tutorial.

Summary
In	this	hour,	we	have	looked	at	the	two	most	popular	packages	for	efficient	data	handling
in	R:	dplyr	and	data.table.	We	have	looked	at	the	basic	syntax	of	the	packages	as	well	as
common	data-handling	tasks	such	as	sorting,	subscripting,	merging,	and	aggregation.	If
you	are	still	unsure	as	to	which	is	right	for	you,	you	can	now	have	a	go	at	using	them	both
during	the	workshop.

Having	seen	how	R	can	be	used	to	import	and	manipulate	data,	we	will	spend	the	next
three	hours	looking	at	how	we	can	visualize	our	data	using	the	graphics	package	and	the
popular	alternatives	lattice	and	ggplot2.

Q&A
Q.	Which	is	better,	dplyr	or	data.table?

A.	In	short,	it	depends!	In	terms	of	speed,	most	benchmarking	examples	show	the
packages	to	be	comparable	to	a	point,	but	as	the	number	of	rows	and/or	groups
increases,	data.table	comes	out	on	top.	If	speed	or	memory	usage	matter	to	you	and
you	have	more	than	a	million	rows	or	100,000	groups	within	your	data,	you	should
probably	use	data.table.	If	data	size	(and	hence	performance)	is	not	that	important
to	you,	choose	whichever	you	feel	more	comfortable	with.

Q.	We	have	now	seen	a	data.frame,	a	tbl_df,	and	a	data.table.	Why	do	I
need	to	learn	about	three	different	structures?

A.	First	of	all,	both	a	tbl_df	and	a	data.table	are	just	an	extension	to	a
data.frame.	Generally,	there	is	therefore	very	little	difference,	though	functions
such	as	print	behave	in	a	slightly	different	manner	for	tbl_df	and
data.table	objects	than	they	do	with	a	data.frame.	This	is	due	to	R’s	S3
class	system,	which	we	will	look	at	more	closely	in	Hour	16,	“Introduction	to	R
Models	and	Object	Orientation,”	and	then	again	in	Hour	21,	“Writing	R	Classes.”

Workshop
The	workshop	contains	quiz	questions	and	exercises	to	help	you	solidify	your
understanding	of	the	material	covered.	Try	to	answer	all	questions	before	looking	at	the
“Answers”	section	that	follows.

Quiz
1.	True	or	false?	When	using	select,	you	must	provide	a	character	vector	of
columns	names.



2.	Which	of	the	following	is	a	dplyr	function	that	allows	you	to	create	new	columns?

A.	transform

B.	subset

C.	mutate

3.	Assuming	you	have	created	a	data.table	object	called	demoDT	from	the
demoData	data	frame	and	set	the	key	to	be	the	Smokes	column,	which	of	the
following	would	return	a	subset	containing	all	records	for	subjects	that	smoke?

A.	demoDT[demoDT$Smokes	==	"Yes",	]

B.	demoDT[Smokes	==	"Yes",	]

C.	demoDT["Yes",	]

D.	demoDT["Yes"]

4.	What	is	“wrong”	with	the	following	syntax	when	working	with	a	data.table	called
demoDT?

Click	here	to	view	code	image
demoDT$Height.Sq	<-	demoDT$Height^2

Answers
1.	False.	You	specify	each	column	name	as	a	separate	argument.	In	fact,	if	you	do	try
to	use	a	character	vector,	the	function	will	return	an	error.

2.	C.	The	transform	and	subset	functions	are	contained	in	the	base	R	package.
The	transform	function	is	actually	quite	similar	to	mutate,	though	it	does	not
allow	you	to	base	new	variables	on	other	variables	that	you	are	creating	within	the
call	to	transform.	The	subset	function	offers	similar	functionality	to	the	dplyr
functions	filter	and	select.

3.	A,	B,	C	and	D.	The	data.table	syntax	is	extremely	flexible,	and	all	four	methods
achieve	the	same	end	result.

4.	Nothing	is	technically	“wrong”	with	the	statement,	though	data.table	is	optimized
for	efficiency,	and	the	command	shown	is	a	standard,	less	efficient	way	of	creating	a
new	column,	Height.Sq.	The	more	efficient	method	in	data.table	would	be

Click	here	to	view	code	image
demoDT[,	Height.Sq	:=	Height^2]

Activities
1.	Using	the	dplyr	package,	perform	the	following	actions:

	Create	a	tbl_df	object	named	air	from	the	airquality	data	frame.

	Sort	the	data	by	the	Wind	column.



	Remove	any	rows	for	which	the	Ozone	column	has	a	missing	value.

	Remove	the	Solar.R	column	and	create	a	new	column	containing	the	ratio	of
Ozone	to	Wind.

	Create	a	subset	of	the	original	airquality	data	containing	just	three	columns:
Month,	Day,	and	Solar.R.	The	data	should	only	contain	data	for	June	and	July.
Name	the	output	solar.

	Merge	the	air	and	solar	datasets	together,	retaining	all	records	from	the	air
dataset	(that	is,	a	left	join).

	Calculate	the	median	Ozone	value	by	Month	for	the	merged	data.

2.	Now	using	the	data.table	package,	perform	the	same	following	actions:

	Create	a	data.frame	object	named	air	from	the	airquality	data	frame.

	Sort	the	data	by	the	Wind	column.

	Remove	any	rows	for	which	the	Ozone	column	has	a	missing	value.

	Remove	the	Solar.R	column	and	create	a	new	column	containing	the	ratio	of
Ozone	to	Wind.

	Create	a	subset	of	the	original	airquality	data	containing	just	three	columns:
Month,	Day,	and	Solar.R.	The	data	should	only	contain	data	for	June	and	July.
Name	the	output	solar.

	Merge	the	air	and	solar	datasets	together,	retaining	all	records	from	the	air
dataset	(that	is,	a	left	join).

	Calculate	the	median	Ozone	value	by	Month	for	the	merged	data.



Hour	13.	Graphics

What	You’ll	Learn	in	This	Hour:

	How	to	use	graphics	devices

	High-level	graphics	functions

	Low-level	graphics	functions

	Graphical	parameters

	How	to	control	the	device	layout

After	all	the	manipulations	to	our	data,	we	want	to	be	able	to	start	to	do	something	with	it.
In	this	hour,	we	look	at	how	to	create	graphics	using	the	base	graphics	functionality.	You
may	be	aware	that	there	are	other	packages	for	creating	graphics,	including	ggplot2	and
lattice,	which	we	will	look	at	in	the	next	two	hours.	Here,	however,	we	look	at	some	of
the	basics,	including	how	to	send	graphics	to	devices	such	as	a	PDF	and	the	standard
graphics	functions.	Finally,	we	look	at	how	to	control	the	layout	of	graphics	on	the	page.

Graphics	Devices	and	Colors
Before	we	start	to	create	graphics,	we	need	to	think	about	where	we	will	create	them	and
how	we	will	color	them.	In	this	section,	you	learn	how	to	control	the	device	that	is	used	to
create	the	graphic,	whether	this	is	the	default	plot	device	or	a	specific	file	type.	You	will
also	see	the	options	for	defining	color	in	R	graphics.

Devices
Whenever	we	create	a	graphic	in	R,	it	is	returned	to	a	device.	This	may	be	the	RStudio
Plot	tab	or	it	may	be	a	physical	file,	such	as	a	PDF,	that	we	want	to	return	to.	A	number	of
graphics	devices	are	available,	including	PDF,	PNG,	JPEG,	and	bitmap.	If	we	do	not
specify	the	device,	the	default	device	will	be	opened,	and	in	RStudio	this	is	the	Plot	tab.

If	we	want	to	create	a	graphic	in	a	specific	device,	we	do	so	by	first	creating	that	device.
We	create	devices	with	a	series	of	functions	that	take	the	name	of	the	file	type	(for
instance,	pdf	or	png).	This	opens	a	connection	between	R	and	the	device,	and	any
graphics	we	now	create	will	be	written	to	that	file.	A	vital	step	is	to	then	close	the	device
using	the	function	dev.off.	As	an	example,	let’s	create	a	graphic	in	a	PDF	file	that	we
will	name	myFirstGraphic.pdf:
Click	here	to	view	code	image

>	pdf(“myFirstGraphic.pdf”)
>	hist(rnorm(100))
>	dev.off()		#	remember	to	close	the	device!

In	our	current	working	directory	we	will	now	have	the	PDF	file	myFirstGraphic.	We	can,
of	course,	give	the	full	file	path	to	an	alternative	location	to	save	our	device.	Attributes	of
the	device,	such	as	width,	height,	and	resolution,	can	all	be	set	in	the	specific	device
functions.

http://myFirstGraphic.pdf


Tip:	Closing	Graphics	Devices

When	you	start	to	create	graphics	in	devices	in	this	way,	you	may	find	that	you
have	unintentionally	opened	a	number	of	devices	and	you	are	not	certain	where	the
graphic	is	being	written	to	anymore.	If	this	happens,	try	using	the	function
graphics.off,	with	no	arguments.	This	will	close	all	active	devices	and	allow
you	to	start	again	with	creating	your	graphic.

Colors
When	it	comes	to	specifying	colors	in	R,	we	have	a	few	options.	The	easiest	is	to	simply
name	the	color.	To	know	what	colors	we	can	name	in	this	way,	we	can	use	a	function	in	R
called	colors	(or	colours)	that	will	return	a	vector	of	all	the	colors	that	R	recognizes
by	name.	Here’s	an	example:
Click	here	to	view	code	image

>	sample(colors(),	10)
[1]	“wheat3”					“lightblue1”	“wheat”						“olivedrab1”	“lightblue4”	“grey11”
[7]	“peru”							“grey39”					“firebrick2”	“peachpuff4”

Alternatively,	we	can	provide	the	exact	hexadecimal	value	for	the	color	we	want	to	use.
For	instance,	#FF0000	is	the	hexadecimal	value	for	red.	If	you	are	not	certain	of	the
hexadecimal	value	but	do	know	the	red,	green,	and	blue	color	values,	you	can	use	the	rgb
function	to	help	you	out.	For	example,	here’s	how	to	find	the	hexadecimal	value	for	green:
Click	here	to	view	code	image

>	rgb(0,	255,	0,	maxColorValue	=	255)
[1]	“#00FF00”

High-Level	Graphics	Functions
Graphics	functions	in	the	base	graphics	package	are	split	into	two	types.	High-level
functions	are	those	that	allow	us	to	create	the	graphic.	Low-level	functions	allow	us	to	add
content,	such	as	points	and	lines	to	an	existing	graphic.	In	this	section,	we	look	at	the
high-level	functions	available	to	us.	These	have	been	split	into	univariate	graphics	and	the
plot	function.	We	also	look	at	how	to	control	aesthetics	and	the	type	of	plot	we	create.

Univariate	Graphics
In	this	section,	we	look	at	graphics	that	we	may	create	with	a	single	variable.	This
includes	histograms,	boxplots,	and	bar	charts,	as	well	as	QQ	plots.	Throughout	this	section
we	use	simple	vectors	of	simulated	values	to	plot.

To	start	with,	let’s	look	at	histograms	and	QQ	plots.	Both	are	very	simply	created	by
passing	a	vector	of	data	to	the	appropriate	function,	hist	or	qqnorm.	In	the	case	of	the
QQ	plot,	if	we	want	to	add	a	QQ	line,	we	need	to	additionally	use	the	function	qqline.
Click	here	to	view	code	image

>	x	<-	rnorm(100)
>	hist(x,	col	=	“lightblue”)
>	qqnorm(x)



>	qqline(x)

In	all	these	functions	there	is	an	argument,	col,	that	allows	us	to	set	the	color,	as	can	be
seen	in	the	preceding	hist	example.	The	graphics	that	these	calls	generate	can	be	seen	in
Figure	13.1.

FIGURE	13.1	Examples	of	the	default	histogram	and	QQ	plot,	with	corresponding	QQ
line

For	boxplots,	again	we	can	simply	provide	a	vector	of	the	data	we	want	to	plot.	Here’s
how:

>	boxplot(x)

If,	however,	we	want	to	plot	the	data	split	by	another	variable,	we	would	need	to	provide	a
formula	for	that	representation.	As	an	example,	we	will	create	a	new	vector	that	is	simply
a	random	sampling	of	values	from	"F"	and	"M"	to	assign	a	gender	to	each	value	in	the
vector	x.	We	then	want	to	plot	the	data	x	split	by	the	corresponding	gender	we	have
sampled.
Click	here	to	view	code	image

>	gender	<-	sample(c(“F”,	“M”),	size	=	100,	replace	=	TRUE)
>	boxplot(x	~	gender)

The	two	graphics	generated	here	can	be	seen	in	Figure	13.2.	In	the	case	where	we	have	the
data	stored	in	a	data	frame,	we	can	simply	provide	the	variable	names	and	then	specify	the
dataset	with	the	data	argument.	Here’s	an	example:
Click	here	to	view	code	image

>	genderData	<-	data.frame(gender	=	gender,	value	=	x)
>	boxplot(value~gender,	data	=	genderData)



FIGURE	13.2	A	simple	univariate	boxplot	and	boxplot	split	by	a	second	variable,	in
this	case	gender

The	final	example	to	consider	is	the	barplot	function.	This	allows	us	to	create	a	bar
chart	where	the	heights	of	the	bars	are	based	on	the	values	given	by	the	vector	input.
Consider	this	simple	example	of	a	vector	of	just	three	elements:

>	barplot(c(3,	9,	5))

This	bar	chart	is	shown	in	Figure	13.3.	There	are	additional	options	for	giving	names	to
each	of	the	bars,	for	instance,	and	for	coloring	the	bars,	as	you	have	seen	for	other	plots.
This	function	also	works	well	with	the	table	function	you	saw	in	Hour	6,	“Common	R
Utility	Functions.”	Consider	the	gender	vector	that	we	created.	Suppose	we	want	to	count
the	number	of	cases	of	each	gender	and	generate	a	bar	chart	showing	these	counts:
Click	here	to	view	code	image

>	genderCount	<-	table(gender)
>	barplot(genderCount)



FIGURE	13.3	Bar	charts	created	from	a	single	vector	and	a	named	vector,	the	output	of
the	table	function

This	is	also	shown	in	Figure	13.3.	You	will	notice	that	in	this	case	the	bars	are	already
named.	This	is	because	the	output	from	the	table	function	is	a	named	vector,	so	the
names	of	the	categories	in	the	data	are	passed	through	to	the	barplot	function	to	label
the	bars.

The	plot	Function
The	main	function	you	will	use	for	generating	graphics	is	the	plot	function.	As	you	will
see,	this	is	a	very	versatile	function	and	can	be	used	to	easily	generate	diagnostic	plots	for
models.	In	this	hour	we	use	it	only	to	plot	vectors	of	data.

Let’s	start	with	just	a	single	vector	of	data.	In	this	case,	just	as	with	the	preceding
univariate	graphics,	we	can	simply	pass	the	vector	to	the	plot	function:

>	plot(x[1:10])

This	plot	is	shown	in	Figure	13.4,	where	you	can	see	that	in	this	instance	the	values	of	the
vector	are	plotted	against	the	Y	axis.	On	the	X	axis	we	have	the	index	of	the	position	of
the	element	in	the	vector.



FIGURE	13.4	Using	plot	for	a	single	vector.	Here,	the	values	in	the	vector	are
plotted	against	their	index,	or	position	in	the	vector

When	it	comes	to	plotting	two	variables,	we	need	to	give	the	X	and	Y	axis	variables	in
that	order.	So	the	first	argument	to	plot	is	the	vector	of	values	on	the	X	axis,	and	the
second	is	the	vector	of	values	on	the	Y	axis.	Therefore,	let’s	create	a	plot	using	the
airquality	data.	In	this	instance,	we	are	going	to	plot	Ozone	against	Wind,	so	we
want	the	Wind	vector	on	the	X	axis	and	Ozone	on	the	Y	axis:
Click	here	to	view	code	image

>	plot(airquality$Wind,	airquality$Ozone,	pch	=	4)

In	this	example,	the	result	of	which	can	be	seen	in	Figure	13.5,	we	have	also	changed	the
plotting	symbol,	which	you	will	see	in	more	detail	in	the	next	section.	You	will	notice	that
this	has,	by	default,	added	axis	labels	that	are	simply	the	names	of	the	objects	we	passed
and	that	there	is	no	title.	All	of	these	things,	which	contribute	to	the	appearance	of	the
plot,	we	will	look	at	in	the	next	section.



FIGURE	13.5	Using	plot	to	create	a	bivariate	scatterplot.	Here,	we	have	also
changed	the	plotting	symbol

Aesthetics
For	all	of	the	plotting	functions	that	we	have	looked	at	in	this	hour,	there	are	a	number	of
arguments	we	can	use	to	change	the	way	that	the	plot	looks.	This	could	be	adding	a	title,
changing	the	point	styles,	or	adding	the	correct	axis	labels.	In	this	section,	we	discuss	how
to	do	all	these	things.

Titles	and	Axis	Labels

We	need	three	arguments	to	change	the	main	title	of	the	plot	along	with	the	X	and	Y	axis
labels:

	main,	for	controlling	the	plot	title

	xlab,	for	setting	the	X	axis	label

	ylab,	for	setting	the	Y	axis	label

We	can	use	these	arguments	in	all	the	plotting	functions	from	this	hour:



Click	here	to	view	code	image
>	hist(x,	main	=	“Histogram	of	Random	Normal	Data”,	xlab	=	“Simulated	Normal
Data”)
>	require(mangoTraining)
>	plot(pkData$Time,	pkData$Conc,
+						main	=	“Concentration	against	Time”,	xlab	=	“Time”,
+						ylab	=	“Concentration”)

The	plots	for	these	examples	are	shown	in	Figure	13.6,	where	you	can	see	we	now	have
more	appropriate	titles	and	axis	labels.

FIGURE	13.6	Changing	titles	and	axis	labels	in	both	histograms	and	scatterplots

Tip:	Including	Special	Characters

If	you	want	to	include	special	characters,	such	as	Greek	letters,	in	your	titles	and
axis	labels,	you	will	need	to	use	the	expression	function.	As	an	example,	the
axis	label	may	become	this:

Click	here	to	view	code	image
ylab	=	expression(“Concentration	(“*mu*“g/ml)”)

Here,	we	are	using	the	asterisk	(*)	to	combine	strings	with	the	Greek	character	mu.

Axis	Limits

The	default	behavior	of	the	plot	function	is	to	set	the	range	of	the	plot	limits	to	cover	the
range	of	the	data.	In	some	instances	this	is	sufficient;	however,	often	this	will	not	be
suitable	for	the	data	in	question—for	instance,	if	the	axis	limits	need	to	extend	to	zero.	In
this	case,	we	need	to	make	use	of	the	arguments	xlim	and	ylim.

Both	of	these	arguments	are	provided	in	the	same	way.	We	need	to	give	a	single	vector	of
length	two.	The	first	element	of	this	vector	is	the	minimum	value	for	the	axis	and	the
second	value	is	the	maximum	value	for	the	axis.	As	an	example,	suppose	we	want	to
extend	the	maximum	value	of	both	axes	in	the	Concentration	against	Time	plot:



Click	here	to	view	code	image
>	plot(pkData$Time,	pkData$Conc,	xlim	=	c(0,	50),	ylim	=	c(0,	3000))

The	plot	that	is	created	by	this	code	is	shown	in	Figure	13.7.	This	functionality	is
particularly	useful	if	we	want	to	plot	a	subset	of	the	data	across	the	range	of	the	full
dataset.	For	instance,	suppose	we	want	to	plot	the	Dose	25	data	from	the	pkData	dataset
but	with	the	axes	based	on	the	complete	data:
Click	here	to	view	code	image

>	plot(pkData$Time[pkData$Dose	==	25],	pkData$Conc[pkData$Dose	==	25],
+								ylim	=	range(pkData$Conc))

FIGURE	13.7	Changing	axis	limits

This	plot	can	also	be	seen	in	Figure	13.7,	and	you	can	see	how	we	have	used	the	range
function	from	Hour	6	to	determine	the	minimum	and	maximum	values	of	the	Y	axis	of	the
plot.

Plotting	Symbols

In	the	graphics	that	we	have	created	so	far,	we	have	mostly	left	the	plotting	symbol	as	the
default,	black,	unfilled	circle,	although	Figure	13.5	showed	that	we	can	change	the	symbol
itself	using	the	argument	pch,	and	Figure	13.1	showed	we	can	change	color	using	the
col	argument.

You	can	change	the	plotting	symbol	by	providing	a	numeric	value	to	indicate	the	symbol
you	want	to	use.	Figure	13.8	shows	symbols	0	to	20.	Additionally,	a	series	of	other
symbols	takes	values	in	the	region	21	to	25	(see	Figure	13.9).	The	difference	with	these
symbols	is	that,	in	addition	to	being	able	to	set	the	color,	we	can	also	set	the	fill.	The	fill	of
the	shapes	is	actually	set	with	the	argument	bg,	but	just	like	with	the	argument	col,	we
can	give	any	color	value.



FIGURE	13.8	Plotting	symbols	and	their	values

FIGURE	13.9	Plotting	symbols	21	to	25	with	just	the	col	argument	set	(bottom)	and
with	col	and	bg	set	(top)

As	well	as	setting	the	color	and	shape	of	the	symbols,	we	can	also	set	the	size.	We	do	this
with	the	argument	cex.	This	argument	is	simply	a	numeric	value	indicating	how	many
times	bigger	(or	smaller)	than	the	usual	size	we	want	our	points.	The	default	is	1.

The	following	example	shows	how	we	can	create	a	graphic	where	all	these	arguments	are
set.	Notice	that	we	are	using	the	plotting	symbol	24,	which	allows	us	to	use	the	bg
argument:
Click	here	to	view	code	image

>	plot(pkData$Time,	pkData$Conc,
+						main	=	“Concentration	against	Time”,	xlab	=	“Time”,
+						ylab	=	“Concentration”,	pch	=	24,	col	=	“navyblue”,
+						bg	=	“yellow”,	cex	=	2)

You	can	see	the	graphic	that	is	created	from	this	code	in	Figure	13.10.



FIGURE	13.10	Updating	the	plotting	symbol	and	its	attributes

Plot	Types

Clearly	it	is	very	simple	to	create	scatterplots	of	our	data,	but	what	about	alternative	plot
types?	You	haven’t	yet	seen	a	line	plot	or	step	plot.	How	about	lines	and	points?	We	can
switch	our	plot	to	any	of	these	graphics	by	using	the	type	argument.	We	pass	to	the
type	argument	one	of	a	series	of	letters.	The	default	is	p,	to	indicate	points,	but	we	can
also	have	l,	o,	and	s,	to	name	a	few.	The	complete	set	of	options	is	given	in	Table	13.1,
and	a	series	of	graphics	showing	different	types	when	plotting	the	same	random	10	points
is	shown	in	Figure	13.11.	Generating	graphics	of	this	type	would	look	something	like	this:
Click	here	to	view	code	image

>	x		<-	rnorm(100)
>	plot(x,	type	=	“l”,	main	=	‘type	=	“l”’)



TABLE	13.1	Available	Plot	Types

FIGURE	13.11	Setting	the	plot	type

It	is	probably	worth	noting	that	just	as	we	can	style	the	points,	as	you	saw	in	the	previous
section,	we	can	also	style	lines.	The	argument	lty	lets	us	set	the	line	type	and	again	takes
integer	values.	The	argument	lwd	allows	us	to	set	the	line	width	in	the	same	way	that	we
set	the	point	size	using	cex.	We	will	look	at	examples	of	setting	line	types	in	the	next
section.



Low-Level	Graphics	Functions
So	far	you	have	seen	only	the	high-level	graphics	functions	available	in	the	base	graphics
package.	This	package	has	allowed	us	to	create	an	entire	plot.	Often	we	will	want	to	add	a
component	to	the	graphic—such	as	lines	showing	the	mean	and	confidence	intervals,	or
text	to	identify	an	outlier.	For	this	we	need	the	low-level	graphics	functions.	All	the
functions	you	will	see	in	this	section	add	a	component	to	the	existing	graphics	device
rather	than	creating	a	new	plot	device.	This	is	where	the	type	=	"n"	option	you	saw	in
the	previous	section	is	particularly	useful.

Points	and	Lines
We	will	start	by	adding	simple	points	and	lines	to	our	graphics.	For	this	we	will	use	the
functions	points	and	lines.	Just	as	with	the	plot	function,	these	functions	add	points
at	the	X	and	Y	locations	specified,	or	join	the	locations	together	in	the	case	of	lines.	Just	as
with	the	plot	function,	therefore,	the	first	two	arguments	are	the	vector	of	x	values	and
the	vector	of	y	values.	As	an	example,	let’s	take	the	first	and	second	subjects	from	the
pkData.	On	a	single	plot	we	will	add	the	points	to	show	subject	1	and	a	line	to	show
subject	2:
Click	here	to	view	code	image

>	subject1	<-	pkData[pkData$Subject	==	1,	]
>	subject2	<-	pkData[pkData$Subject	==	2,	]
>	plot(pkData$Time,	pkData$Conc,	type	=	“n”)
>	points(subject1$Time,	subject1$Conc,	pch	=	16)
>	lines(subject2$Time,	subject2$Conc)

The	resulting	plot	is	shown	in	Figure	13.12.	The	lines	function	shown	here	has	simply
connected	together	supplied	X	and	Y	points.	What	if	we	wanted	to	add	a	straight	line	that
shows	the	median	concentration	value,	or	the	time	when	the	maximum	occurs,	or	even
some	form	of	trend?	In	this	case,	we	would	use	the	function	abline.	The	default
behavior	of	this	function	is	to	add	a	line	based	on	an	intercept	and	slope.	However,	we	can
also	use	the	arguments	h	and	v	to	add	horizontal	and	vertical	lines.	So,	here’s	how	to	add
the	median	concentration	and	the	time	of	the	maximum	concentration:
Click	here	to	view	code	image

>	abline(h	=	median(pkData$Conc),	lty	=	2)
>	abline(v	=	pkData$Time[pkData$Conc	==	max(pkData$Conc)],	lty	=	3)



FIGURE	13.12	Adding	points	and	lines	to	a	plot

Text
The	ability	to	add	text	to	a	graphic	is	incredibly	useful.	It	may	be	that	you	actually	want	to
use	text	as	the	plotting	symbol	itself	but	more	often	than	not	it	will	simply	be	that	you
want	to	label	a	particular	point,	typically	an	outlier.	We	would	perform	all	of	these	tasks
with	the	text	function.	Another	low	level	function,	this	will	allow	us	to	add	information
to	an	existing	plot	and	it	doesn’t	matter	if	this	was	created	using	only	a	high	level	function
or	a	combination	of	high	and	low	level	functions	as	we	saw	in	the	last	section.

To	start	with,	we	will	use	the	text	function	to	add	all	of	the	content	of	our	plot,	using
text	as	the	plotting	symbol.	Just	as	other	plot	functions,	the	first	two	arguments	are	the
vectors	of	the	X	and	Y	location	for	the	points.	The	third	argument	to	this	function	is	then
the	text	that	we	want	at	each	location.	This	is	typically	a	vector	of	the	values	for	each	X,	Y
pair.	So	if	we	were	to	plot	the	Concentration	against	Time	plot	of	the	pkData,	using	the
Dose	as	the	text	to	plot,	it	might	look	something	like	this:
Click	here	to	view	code	image

>	plot(pkData$Time,	pkData$Conc,	type	=	“n”)
>	text(pkData$Time,	pkData$Conc,	pkData$Dose)



This	graphic	is	shown	in	Figure	13.13,	and	as	you	can	see	the	doses	appear	as	text	on	the
plot.	A	more	effective	use	of	this	function	is	to	label	specific	points.	We	can	use	the	text
function	in	a	very	similar	way	with	the	X	and	Y	location	along	with	the	text,	but	as	you
will	notice,	this	centers	the	text	on	the	location.	If	you	also	have	a	point	here,	this	is	a
problem	because	the	text	will	be	obscured.	You	can,	of	course,	manually	adjust	the	X	or	Y
location	to	handle	this,	though	the	text	function	includes	a	number	of	arguments	for
controlling	the	positioning.	One	argument,	adj,	lets	us	specify	an	X	and	Y	adjustment	for
the	text.	We	can	also	use	the	arguments	pos	and	offset.	The	pos	argument	lets	us
control	which	side	of	the	point	to	position	the	text	and	takes	a	value	from	1	to	4,	with	1
being	the	bottom,	2	to	the	left,	3	above,	and	4	to	the	right.	The	offset	argument	is	used
in	conjunction	to	determine	how	far	away	from	the	point	to	center	the	text.

FIGURE	13.13	Using	the	text	function	to	plot	text	or	add	text	labels

As	an	example	of	using	text	in	this	way,	we	can	consider	labeling	the	maximum	value	at
each	time	point,	except	0,	with	the	Subject	number.	Here,	we	are	using	the	dplyr	package
to	retain	only	the	rows	of	data	that	correspond	to	the	maximum	concentration,	and	then	we
are	using	the	text	function	to	plot	the	Subject	label	to	the	right	of	the	corresponding
points.	This	graphic	can	be	seen	in	Figure	13.13.
Click	here	to	view	code	image

>	library(dplyr)
>	maxData	<-	filter(group_by(pkData,	Time),	Conc	==	max(Conc),	Time	!=	0)
>	plot(pkData$Time,	pkData$Conc,	pch	=	16)
>	text(maxData$Time,	maxData$Conc,	maxData$Subject,	pos	=	4,	offset	=	0.5)



Legends
Adding	a	legend	to	a	graphic	created	with	any	of	the	base	graphics	functions	requires	us	to
use	the	low-level	legend	function.	It	can	initially	seem	like	a	confusing	function	to	work
with,	but	in	reality	it	is	not	too	confusing	if	you	remember	to	always	give	the	groups	in	the
same	order	as	the	text	on	the	legend	itself.

The	first	argument	to	this	function	is	either	an	X	and	Y	location	for	the	position	of	the	top-
left	corner	of	the	legend	or	a	single	string	of	the	form	"topright"	or	"bottomleft",
among	others.	A	full	list	is	available	in	the	help	file	for	the	legend	function.

We	then	need	to	specify	the	legend	text.	To	the	argument	legend	we	pass	a	vector	of
character	strings	that	will	appear	as	the	labels	on	the	legend—for	instance,	legend	=
c("Subject	1",	"Subject	2").	We	can	give	the	text	in	any	order	we	want	the
groups	to	appear.	The	only	thing	we	need	to	remember	is	that	when	we	specify	colors,
points,	and	so	on,	we	need	to	maintain	this	ordering.

In	addition	to	the	location	and	the	legend	text,	we	can	then	provide	vectors	of	the	values
for	any	parameters	we	want	to	change.	For	instance,	if	we	have	set	the	color	for	each
group,	we	may	want	to	pass	a	vector	of	colors	to	the	col	argument.	If	we	have	changed
the	plotting	symbol	for	each	group,	we	may	want	to	pass	a	vector	of	the	plotting	symbols
—again,	remembering	for	each	to	maintain	the	ordering	we	gave	in	the	text.

As	an	example,	suppose	we	want	to	add	a	legend	to	the	pkData	plot,	where	subject	1	is
plotted	with	blue	filled	circles	and	subject	2	is	plotted	with	red,	unfilled	squares:
Click	here	to	view	code	image

>	subj1	<-	pkData[pkData$Subject	==	1,	]
>	subj2	<-	pkData[pkData$Subject	==	2,	]
>	plot(subj1$Time,	subj1$Conc,	pch	=	16,	col	=	“blue”)
>	points(subj2$Time,	subj2$Conc,	pch	=	0,	col	=	“red”)
>	legend(“topright”,	legend	=	c(“Subject	1”,	“Subject	2”),
+					pch	=	c(16,	0),	col	=	c(“blue”,	“red”))

This	graphic	is	shown	in	Figure	13.14,	and	you	can	see	that	in	this	case	the	legend	has
been	pushed	into	the	very	top-right	corner	and	sized	appropriately	based	on	the	legend	text
provided.



FIGURE	13.14	Adding	a	legend	to	a	graphic

Note:	Arguments	to	the	legend	Function

You	will	have	noticed	in	the	example	that	the	arguments	used	were	the	same	as
those	in	the	plot	and	points	functions.	For	many	of	the	graphics	parameters,
this	will	be	the	same.	However,	take	care	because	some,	such	as	cex,	will	actually
change	the	legend	itself.	You	can	still	change	the	size	of	the	points	in	the	legend,
but	you	will	need	the	argument	pt.cex	instead.	Much	more	information	is
available	in	the	help	file.



Other	Low-Level	Functions
In	addition	to	the	low-level	functions	you	have	seen	in	this	section,	a	few	others	are
available.	We	will	not	go	through	them	all	here,	but	Table	13.2	lists	many	of	the	functions
you	may	be	interested	in.	This	includes	functions	for	controlling	the	title,	text	in	the
margins,	and	the	axes.

TABLE	13.2	Low-Level	Graphics	Functions

Graphical	Parameters
In	the	graphics	we	created	in	this	hour,	we	have	set	any	parameters	related	to	the	graphics
in	the	plotting	functions.	We	can	also	set	these	inside	a	function	called	par.	The	par
function	actually	returns	a	list	that	contains	the	settings	for	graphics	parameters.	This	not
only	includes	arguments	such	as	col	and	pch,	but	also	mar	for	setting	the	margins	and
xpd,	which	allows	us	to	add	graphics	content	outside	of	the	figure	region.

When	it	comes	to	setting	margins	for	our	graphic,	it	is	useful	to	know	how	a	graphics
device	in	R	is	split.	Figure	13.15	shows	the	sub-regions	of	a	device,	including	the	outer
margins	and	the	figure	region.	You	will	notice	that	the	par	function	includes	arguments
for	the	outer	margin.	You	may	want	to	alter	this	when	you	have	multiple	graphics	in	one
device,	as	you	will	see	in	the	next	section,	because	they	all	share	an	outer	margin.



FIGURE	13.15	Regions	in	a	graphics	device

For	all	the	options	that	can	be	set	in	the	par	function,	their	usage,	and	their	default	values,
the	help	documentation	is	an	invaluable	resource.

Controlling	the	Layout
Once	we	are	able	to	create	all	the	graphics	we	are	interested	in,	we	typically	want	to	think
about	how	we	present	that	information.	When	we	looked	at	creating	a	graphics	device,	we
said	that	a	PDF	file	would	allow	us	to	create	a	single,	multipage	document	of	all	our
individual	plots.	In	this	section,	we	look	at	options	for	creating	a	single	page	containing
multiple	graphics.



Grid	Layouts
The	simplest	layout	of	our	graphics	is	in	a	grid-like	structure,	where	we	have	a	specified
number	of	rows	and/or	columns	of	graphics.	We	can	set	up	a	graphics	device	to	have	the
format	by	using	the	mfrow	option	to	the	par	function.	This	argument	takes	a	vector	of
the	number	of	rows	and	columns	into	which	our	device	should	be	split.	When	we	then
create	graphics,	they	will	be	entered	into	the	device	across	the	rows,	starting	in	the	top	left
of	the	grid.

As	an	example,	suppose	that	we	have	some	random	data	that	we	want	to	plot	as	a
histogram,	boxplot,	QQ	plot,	and	against	its	index.	We	may	want	to	set	this	up	as	a	2×2
plot	area,	like	so:

>	par(mfrow	=	c(2,	2))
>	x	<-	rnorm(100)
>	hist(x)
>	boxplot(x)
>	qqnorm(x)
>	plot(x)

The	graphic	that	this	generates	can	be	seen	in	Figure	13.16.	Once	set,	this	layout	of
graphics	will	be	maintained.	We	can	revert	to	the	default	by	setting	the	mfrow	argument
to	c(1,	1).



FIGURE	13.16	Splitting	up	the	plot	region	using	mfrow

The	layout	Function
For	much	finer	control	of	the	layout	of	our	graphics	we	can	use	the	layout	function.	As
well	as	being	able	to	control	the	width	and	height	of	each	of	the	columns	in	our	graphics
device,	we	have	much	finer	control	of	which	regions	a	graphic	appears	in.

The	main	argument	for	this	function	is	a	matrix	that	specifies	the	locations	for	each
graphic.	Each	graphic	is	represented	by	an	integer	value	and	appears	in	the	grid	in	all
regions	where	that	value	appears.	As	an	example,	suppose	we	want	to	plot	four	graphics,
as	in	the	previous	section,	but	we	want	the	first	histogram	to	take	up	the	entire	first	row
and	the	other	three	graphics	to	appear	underneath	in	one	row.	In	that	case,	we	would	create
the	following	matrix:

>	mat	<-	rbind(1,	2:4)
>	mat
					[,1]	[,2]	[,3]
[1,]				1				1				1
[2,]				2				3				4



Thus,	the	first	graphic	would	fill	all	cells	containing	the	value	1—in	this	case,	the	entire
first	row.	The	second	graphic	would	appear	in	the	position	of	the	2,	and	so	on.	To	set	this
as	our	layout,	we	pass	it	to	the	layout	function,	followed	by	the	graphics	in	order:

>	layout(mat)
>	x	<-	rnorm(100)
>	hist(x)
>	boxplot(x)
>	qqnorm(x)
>	plot(x)

The	result	is	shown	in	Figure	13.17.	Clearly	this	gives	us	a	large	amount	of	flexibility	over
which	graphics	appear	where	and	their	size.	If	you	don’t	want	a	region	to	include	a
graphic,	you	can	set	the	value	in	the	matrix	to	0.	To	see	the	layout	you	have	specified,	use
the	layout.show	function.	This	will	generate	a	graphic	showing	the	specified	layout.

FIGURE	13.17	Splitting	up	the	plot	region	using	layout



Tip:	Finer	Control	of	the	Layout

We	can	control	the	appearance	of	the	layout	further	by	using	the	widths	and
heights	arguments	to	the	layout	function.	We	simply	need	to	provide	a	vector
the	same	length	as	the	number	of	columns	(for	widths)	or	rows	(for	heights)
specifying	the	sizes.

Summary
In	this	hour,	you	saw	how	to	create	graphics	using	the	base	R	functionality.	Functions	for
graphics	are	split	into	two:	The	high-level	functions	create	a	whole	plot,	and	the	low-level
functions	allow	us	to	add	components	to	an	existing	graphic.	The	base	graphics	package
is	not	the	only	option	for	graphics,	and	in	the	next	two	hours	you	will	see	how	to	create
graphics	using	the	ggplot2	and	lattice	packages.

Q&A
Q.	Why	isn’t	my	plot	appearing	in	the	Plot	tab?

A.	This	is	usually	because	you	have	an	open	connection	to	a	graphics	device	other	than
the	default	Plot	tab	in	RStudio.	In	that	case,	your	graphics	are	being	written	to	an
alternative	graphics	device.	You	can	use	the	function	dev.off	to	close	the	current
connection,	but	if	you	are	not	sure	how	many	graphics	devices	you	have	open,	try
graphics.off.	This	will	close	all	active	devices,	and	you	can	start	again.

Q.	The	argument	bg	isn’t	changing	anything	in	my	graphic.	What	am	I	doing
wrong?

A.	What	plotting	symbol	are	you	using?	The	argument	bg	is	only	compatible	with
plotting	symbols	in	the	range	21	to	25.	If	you	are	using	any	other	symbol,	this
argument	won’t	change	anything	about	your	graphic.

Q.	How	can	I	remove	lines	or	points	after	I	have	added	them	with	the	low-level
functions?

A.	The	approach	taken	by	R	in	drawing	graphics	with	the	base	graphics	functions	is
similar	to	a	pen-and-paper	approach.	If	you	want	to	remove	a	component,	you	will
need	to	run	the	code	again,	excluding	the	component	you	don’t	want	anymore.

Q.	I	changed	the	layout	of	my	device	and	now	I	just	want	to	see	one	plot.	How	can
I	change	it	back?

A.	You	can	change	the	layout	back	to	the	default	(one	row,	one	column)	by	setting	the
argument	mfrow	of	the	par	function	to	c(1,	1).

Q.	Can	I	put	the	legend	outside	of	the	plot	region?

A.	Yes,	you	can.	You	will	need	to	extend	the	margins	and	set	the	argument	xpd	(in	the
par	function)	to	NA	to	allow	you	to	draw	in	the	margins.



Workshop
The	workshop	contains	quiz	questions	and	exercises	to	help	you	solidify	your
understanding	of	the	material	covered.	Try	to	answer	all	questions	before	looking	at	the
“Answers”	section	that	follows.

Quiz
1.	What	is	a	device	and	why	do	you	need	to	set	one?

2.	Which	functions	allow	you	to	create	the	following	graphics?

A.	A	QQ	plot	with	corresponding	line

B.	A	bar	chart	of	counts

C.	A	plot	of	a	variable	against	another

D.	A	histogram

3.	What	effect	would	setting	pch	=	6	have	on	a	scatterplot?

4.	Which	low-level	graphics	function	can	you	use	to	add	text	to	the	margins?

5.	When	would	you	use	the	mfrow	argument	of	the	par	function	and	when	would
you	use	the	layout	function?

Answers
1.	A	device	is	what	your	graphic	is	created	in.	This	could	be	the	default	RStudio
device	or	a	specific	file	type,	such	as	PDF	or	PNG.	If	you	want	to	use	a	device	that
is	not	the	default	device,	you	need	to	set	it.	You	use	a	function	such	as	pdf	or	png
to	set	the	device	and	dev.off	to	close	the	connection.

2.	You	would	need	the	following	functions:

A.	qqnorm	and	qqline

B.	barplot

C.	plot

D.	hist

3.	It	would	change	the	plotting	symbol	to	an	upside-down	triangle.

4.	To	add	text	in	the	margins,	you	would	need	to	use	the	mtext	function.

5.	You	would	use	both	to	change	the	layout	of	a	device	to	include	multiple	graphics	in
a	single	device.	The	mfrow	argument	is	sufficient	if	you	want	the	graphics	to	be	in
a	grid	layout	with	a	specified	number	of	rows	and	columns.	The	layout	function
gives	you	much	more	control	over	exactly	where	graphics	should	appear	and	the
widths	and	heights	of	rows	and	columns.



Activities
1.	Sample	100	values	from	a	Normal	distribution.	Create	a	histogram	of	this	data.

2.	For	each	month	in	the	airquality	data,	create	a	plot	of	Ozone	against	Wind.
Ensure	that	all	the	plots	are	on	the	same	axis	and	include	a	suitable	title	that
indicates	the	month—for	example,	“Ozone	against	Wind	for	Month	X.”

3.	Create	a	five-page	PDF	document	from	the	graphics	in	the	previous	exercise.

4.	Create	a	single-page	PNG	file	that	includes	all	five	graphics	created	in	Activity	2.
Choose	a	suitable	layout	to	show	the	data.

5.	Create	a	single	graphic	of	Wind	against	Day,	where	each	month	is	a	single	line,
each	in	a	different	color.	Add	a	legend	to	the	graphic.



Hour	14.	The	ggplot2	Package	for	Graphics

What	You’ll	Learn	in	This	Hour:

	Creating	simple	plots

	Changing	plot	types

	Control	of	aesthetics

	Groups	and	panels

	Themes	and	legend	control

In	Hour	13,	“Graphics,”	you	saw	how	the	graphics	package	can	be	used	to	create	highly
customized	graphics.	However,	as	you	have	seen,	the	graphics	package	can	be	hard	work
when	used	as	an	exploratory	tool.	To	compare	levels	of	a	variable,	we	typically	need	to
use	“for”	loops	or	a	clever	application	of	factors.	Items	such	as	the	legend	must	be	added
manually.

The	lattice	and	ggplot2	packages	offer	alternatives	to	the	graphics	package	that	are	much
easier	to	use	for	data	exploration.	Each	has	been	built	using	Paul	Murrell’s	grid	package,
thus	enabling	plots	to	be	created	as	objects	that	are	then	printed	when	required.	In	this
hour	we	start	by	looking	at	the	hugely	popular	ggplot2	package,	developed	(once	again)
by	Hadley	Wickham.

The	Philosophy	of	ggplot2
The	ggplot2	package	was	inspired	by	Leland	Wilkinson’s	book	The	Grammar	of
Graphics.	The	grammar	of	graphics	philosophy	breaks	a	graphic	into	a	series	of	layers.
Different	layers	describe	the	mapping	of	the	data	to	plot	features,	the	plot	type,	the
coordinate	system,	and	the	associated	scaling	of	plot	features.	To	follow	the	grammar	of
graphic	using	ggplot2,	we	need	just	one	plot	function,	ggplot,	to	which	we	add	the
required	layers.	Different	plot	types	can	be	achieved	through	geometric	layers,	or
“geoms.”

In	addition	to	the	relatively	pure	implementation	of	the	grammar	of	graphics	via	the
ggplot	function,	ggplot2	offers	an	additional	graphical	function,	qplot,	designed	to
speed	up	the	creation	of	graphics	by	making	assumptions	about	the	layers	we	want	to	use.
The	existence	of	qplot	in	ggplot2	is	divisive:	Several	vocal	supporters	of	the	grammar
of	graphics	concept	advocate	scrapping	qplot.	However,	as	passionate	ggplot2
supporters	that	use	and	teach	the	package	on	a	daily	basis,	the	authors	of	this	book	cannot
relate	to	this	opinion.	Our	clients	want	to	be	able	to	create	powerful	visualizations	as
quickly	and	easily	as	possible.	Why	would	anyone	want	to	remove	a	function	that	makes	it
quicker	and	easier	to	create	high	quality	graphics?!	By	the	end	of	the	hour,	you	can	decide
for	yourself	whether	you	prefer	the	quick-and-easy	approach,	the	true	grammar	of
graphics,	or	a	combination	of	the	two.	For	now	let’s	take	a	look	at	some	ggplot2	basics
using	the	qplot	function.



Quick	Plots	and	Basic	Control
The	“q”	in	qplot	stands	for	“quick.”	The	speed	mainly	relates	to	typing;	the	function
requires	a	lot	less	typing	than	its	ggplot	counterpart.	It	achieves	this	by	making
assumptions;	however,	the	function	is	also	far	more	flexible	than	most	people	realize	and
can	be	used	in	conjunction	with	a	layered	grammar	of	graphics	approach.

Using	qplot
We	have	stated	that	qplot	is	quick	because	it	makes	assumptions.	Thankfully	there	are
very	few	assumptions,	and	they	are	all	very	sensible!	Indeed,	most	of	the	assumptions	are
no	different	from	the	assumptions	made	by	graphics	functions	such	as	plot	and	hist.
In	addition	to	assumptions	about	the	coordinate	system,	axes,	plotting	character,	and	so
on,	qplot	also	makes	an	assumption	about	the	plot	type.	For	example,	if	we	provide	a
single	variable	to	qplot,	it	is	assumed	that	we	want	to	draw	a	histogram.	If	we	provide
two	variables,	it	is	assumed	that	we	want	to	draw	a	scatter	plot.

Later,	you’ll	see	how	to	easily	vary	the	plot	type	using	qplot,	but	for	now	we	start	with	a
simple	scatter	plot	using	the	mtcars	data.	We	specify	mtcars	as	the	data	frame	that	we
are	using	and	refer	to	the	wt	and	mpg	variables	directly.	The	output	is	displayed	in	Figure
14.1.
Click	here	to	view	code	image

>	#	Load	package	and	create	a	simple	plot
>	require(ggplot2)
>	theme_set(theme_bw(base_size=	14))			#	Set	the	theme	to	a	white	background
(more
																																									later)
>	qplot(x	=	wt,	y	=	mpg,	data	=	mtcars)



FIGURE	14.1	Creating	a	scatter	plot	using	the	qplot	function

Tip:	Changing	the	Default	Theme

In	the	code	block	that	creates	Figure	14.1,	we	include	a	line	to	set	the	“theme”.	This
line	of	code	changes	the	default	background	color	from	grey	with	white	gridlines	to
white	with	grey	gridlines.	At	the	same	time	we	increase	the	default	font	size.	This	is
a	global	setting	that	changes	the	appearance	of	each	of	the	subsequent	graphics
produced	in	this	hour.	We	look	at	themes	in	more	detail	later	in	the	hour.

Note:	Working	with	Vectors

The	qplot	function	allows	us	to	directly	pass	individual	vectors—for	example,
qplot(1:10,	rnorm(10)).	However,	it	is	generally	more	common	to	have
the	data	that	you	wish	to	plot	stored	within	a	data	frame.	In	this	case,	it	is	much
easier	to	specify	the	name	of	the	data	frame	using	the	data	argument	so	that	we
can	refer	to	variables	directly.



Titles	and	Axes
As	with	the	plotting	functions	contained	within	the	base	graphics	package,	we	can	add	a
main	title	to	our	plot	using	qplot	via	the	main	argument.	The	arguments	xlab	and
ylab	control	the	axis	labels	for	the	X	and	Y	axes,	respectively.	Similarly,	arguments
xlim	and	ylim	allow	users	to	control	the	X	and	Y	axis	limits.	These	arguments	must	be
provided	with	a	vector	of	length	2.	We	can	also	add	these	features	using	“layers.”

Working	with	Layers
To	follow	the	grammar	of	graphics,	we	build	a	plot	in	layers.	We	don’t	have	to	do	this
with	qplot,	but	each	of	the	title/axis	elements	that	we	have	looked	at	could	instead	have
been	added	using	a	layer.	A	main	title	as	well	as	X	and	Y	axis	labels	can	also	be	added	as
layers	using	the	ggtitle	function	and	the	xlab	and	ylab	functions,	respectively.	For
the	X	and	Y	axis	limits,	we	can	use	xlim	and	ylim	functions.	Listing	14.1	contains	two
sections	of	code	for	re-creating	the	graphic	in	Figure	14.1	with	an	appropriate	title	and
axis	labels.	The	two	code	sections	produce	an	identical	graphic;	the	first,	starting	on	line	2,
uses	a	single	call	to	qplot,	and	the	second,	starting	on	line	10,	uses	a	layered	approach.

LISTING	14.1	Optional	Layering
Click	here	to	view	code	image

	1:	>	#	Version	1:	Using	a	single	call	to	qplot
	2:	>	qplot(x	=	wt,	y	=	mpg,	data	=	mtcars,
	3:	+							main	=	“Miles	per	Gallon	vs	Weight\nAutomobiles	(1973–74
models)”,
	4:	+							xlab	=	“Weight	(lb/1000)”,
	5:	+							ylab	=	“Miles	per	US	Gallon”,
	6:	+							xlim	=	c(1,	6),
	7:	+							ylim	=	c(0,	40))
	8:	>
	9:	>	#	Version	2:	qplot	with	additional	layers
10:	>	qplot(x	=	wt,	y	=	mpg,	data	=	mtcars)	+
11:	+							ggtitle(“Miles	per	Gallon	vs	Weight\nAutomobiles	(1973–74
models)”)	+
12:	+							xlab(“Weight	(lb/1000)”)	+
13:	+							ylab(“Miles	per	US	Gallon”)	+
14:	+							xlim(c(1,	6))	+
15:	+							ylim(c(0,	40))

To	add	plots	as	layers,	we	use	the	“+”	symbol.	By	placing	a	+	at	the	end	of	the	line,	we	tell
R	to	expect	more	layers	to	our	plot,	much	like	adding	numbers.	When	we	add	ggplot2
functions	in	this	way,	we	say	we	are	adding	“layers.”

Tip:	Fixing	One	End	of	an	Axis

Sometimes	we’re	only	interested	in	fixing	one	end	of	an	axis	scale.	For	example,
we	may	wish	to	fix	the	lower	end	at	zero.	In	this	case,	NA	can	be	used	to	specify
that	we	are	happy	to	let	ggplot2	choose	a	bound	for	us.



Plots	as	Objects
Both	lattice	and	ggplot2	are	built	using	Paul	Murrell’s	grid	package.	This	allows	us	to
save	plots	as	objects.	The	qplot	function	creates	a	ggplot	object.	A	ggplot	object	is
essentially	a	set	of	instructions	that	explain	how	to	create	the	graphic.	Only	when	we	ask
R	to	print	the	object	are	the	instructions	followed	and	the	graph	created.	The	instructions
can	be	saved	and	used	at	any	time—for	example,	after	we	have	altered	some	theme
settings	and	we	are	ready	to	export	our	graphics.
Click	here	to	view	code	image

>	#	Create	a	basic	plot	and	save	it	as	an	object
>	basicCarPlot	<-	qplot(wt,	mpg,	data	=	mtcars)
>	#	Modify	the	plot	to	include	a	title
>	basicCarPlot	<-	basicCarPlot	+
+			ggtitle(“Miles	per	Gallon	vs	Weight\nAutomobiles	(1973–74	models)”)
>	#	Now	print	the	plot
>	basicCarPlot

We	can	use	layers	to	modify	a	ggplot	object,	adding	new	instructions	as	to	what	to
draw.	This	is	extremely	powerful	for	data	exploration	because	it	allows	us	to	create	a	base
graphic	and	use	a	variety	of	different	additional	layers	to	explore	covariates.

Tip:	Exporting	ggplot2	Graphics

In	Hour	13	you	saw	how	to	write	a	plot	to	file	by	opening	the	device,	drawing	the
plot,	and	then	closing	the	device	with	dev.off.	The	ggplot2	package	provides	an
alternative	workflow	via	ggsave.	To	export	using	ggsave,	we	first	save	our	plot
as	an	object.	When	we	are	ready	to	write	the	plot	to	file,	we	pass	ggsave	the
filename	and	ggplot	the	object	name,	for	example:

Click	here	to	view	code	image
>	carPlot	<-	qplot(x	=	wt,	y	=	mpg,	data	=	mtcars)				#	Create	ggplot
object
>	ggsave(file	=	“carPlot.png”,	carPlot)															#	Save	object	as	a
png
Saving	10.6	x	7.57	in	image

The	function	handles	the	opening	and	closing	of	devices	for	us,	selecting	the	device
based	on	the	file	extension	that	we	provide.

Changing	Plot	Types
Using	the	grammar	of	graphics	terminology,	plot	types	are	considered	to	be	geometric
shapes	that	describe	how	the	data	are	displayed.	We	vary	the	plot	type	using	the	geom
(short	for	“geometric”)	argument	to	qplot,	negating	the	need	for	separate	plotting
functions.	A	sample	call	is	shown	here	with	the	resulting	graphic	shown	in	Figure	14.2:
Click	here	to	view	code	image

>	#	Ensure	cyl	variable	is	of	the	right	type	by	fixing	in	the	data
>	mtcars$cyl	<-	factor(mtcars$cyl)
>	qplot(cyl,	mpg,	data	=	mtcars,	geom	=	“boxplot”)



FIGURE	14.2	Generating	boxplots

Caution:	Know	Your	Factors!

When	you’re	working	within	the	ggplot2	framework,	it	is	really	important	to	know
your	data	types.	You	need	to	pay	particular	attention	to	categorical	data	that	might
be	stored	as	numeric	(for	example,	the	cyl	variable	in	mtcars).	Such	variables
must	be	converted	to	factors	to	ensure	appropriate	representation	on	the	end
graphic.	Generally,	it	is	better	to	make	any	necessary	conversions	within	the	data	as
opposed	to	within	the	call	to	qplot	or	subsequent	layers.

Plot	Types
When	we	specify	the	geom	argument	within	qplot,	we	are	in	fact	calling	out	to	one	of
many	geometric	functions	that	tell	R	how	to	display	the	graphic.	Each	function	has	a
geom_	prefix.	We	can	therefore	use	a	regular	expression	to	find	all	geometric	functions
within	the	ggplot2	package.
Click	here	to	view	code	image

>	grep(“^geom”,	objects(“package:ggplot2”),	value	=	TRUE)
	[1]	“geom_abline”					“geom_area”							“geom_bar”								“geom_bin2d”
	[5]	“geom_blank”						“geom_boxplot”				“geom_contour”				“geom_crossbar”
	[9]	“geom_density”				“geom_density2d”		“geom_dotplot”				“geom_errorbar”
[13]	“geom_errorbarh”		“geom_freqpoly”			“geom_hex”								“geom_histogram”



[17]	“geom_hline”						“geom_jitter”					“geom_line”							“geom_linerange”
[21]	“geom_map”								“geom_path”							“geom_point”						“geom_pointrange”
[25]	“geom_polygon”				“geom_quantile”			“geom_raster”					“geom_rect”
[29]	“geom_ribbon”					“geom_rug”								“geom_segment”				“geom_smooth”
[33]	“geom_step”							“geom_text”							“geom_tile”							“geom_violin”
[37]	“geom_vline”

Caution:	Line	Graphs!

There	are	two	geoms	for	creating	a	standard	line	graph	in	ggplot2:	geom_line
and	geom_path.	The	geom_path	function	is	analogous	to	using	the	low-level
lines	function	in	the	graphics	package.	The	geom_line	function	is	best	used
with	time	series	data	because	it	ensures	that	the	x-values	are	plotted	from	low	to
high	by	reordering	the	coordinates	before	plotting.

When	working	with	qplot,	we	simply	remove	the	“geom_”	from	the	function	name	and
pass	the	rest,	in	quotes,	to	the	geom	argument.	As	with	the	title,	axis	labels,	and	axis	limit
options,	we	can	call	the	geometric	functions	directly	as	separate	layers.	However,	one	of
the	features	that	makes	qplot	“quick”	is	that	it	assumes	a	geometric	shape	or	plot	type	to
draw.	If	we	don’t	specify	a	plot	type,	qplot	chooses	one	for	us.	The	following	code
therefore	fails	to	exactly	re-create	Figure	14.2.	Instead,	the	boxplots	are	drawn	over	the
top	of	a	scatter	plot	as	shown	in	Figure	14.3.
Click	here	to	view	code	image

>	qplot(cyl,	mpg,	data	=	mtcars)	+	geom_boxplot()



FIGURE	14.3	The	effect	of	adding	a	geom_boxplot	layer	to	a	standard	qplot	call

The	previous	example	might	imply	that	it	is	difficult	to	use	qplot	to	create	complex
graphics.	However,	with	a	good	understanding	of	the	working	of	qplot	and	the	ggplot2
layers,	almost	anything	is	possible!

Combining	Plot	Types
Although	the	previous	example	(overlaying	points	and	a	boxplot)	may	in	itself	be
undesirable,	it	highlights	the	possibility	of	using	two	or	more	geometric	layers	in
conjunction	with	one	another.	One	example	is	using	multiple	layers	to	create	the	ggplot2
equivalent	to	a	type	=	"o"	plot	that	we	saw	in	the	previous	hour	by	overlaying	points
and	lines.	However,	there	are	many	more	possible	combinations.	The	following	example
adds	a	linear	smoothing	line	to	a	plot	of	mpg	against	wt	using	mtcars:
Click	here	to	view	code	image

>	qplot(wt,	mpg,	data	=	mtcars)	+	geom_smooth(method	=	“lm”)

We	do	not	necessarily	need	to	add	geometric	layers	to	create	the	desired	plot.	It	is	possible
to	create	the	exact	same	plot	as	the	preceding	line	using	a	single	call	to	qplot.	We	do	so
by	providing	the	geom	argument	with	a	character	vector	of	geometric	names.	In	this	case,
we	specify	a	vector	containing	both	"point"	and	"smooth".	Note	that	any	additional
arguments	to	the	geometric	functions,	such	as	method	=	"lm"	in	this	case,	can	also	be
passed	to	qplot.	An	example	of	this	with	the	output	displayed	follows	in	Figure	14.4.



Click	here	to	view	code	image
>	qplot(wt,	mpg,	data	=	mtcars,	geom	=	c(“point”,	“smooth”),	method	=	“lm”)

FIGURE	14.4	Passing	additional	arguments	to	geoms	when	using	qplot

When	combining	two	or	more	plot	types	together,	it	can	often	be	clearer	to	use	the
ggplot	function	instead	of	qplot.	We	will	look	more	closely	at	ggplot	later	in	the
hour.

Aesthetics
In	ggplot2	terminology,	the	word	“aesthetic”	has	a	special	meaning	and	can	refer	to	any
graph	element	that	is	affected	by	columns	within	our	data.	This	could	include	what	we
traditionally	think	of	as	aesthetics,	such	as	the	color,	shape,	or	size	of	plotting	characters,
but	also	arguments	such	as	x	and	y.	We	will	look	more	closely	at	the	idea	of	x	and	y	as
being	aesthetics	toward	the	end	of	the	hour,	but	for	now	let’s	focus	on	the	traditional
meaning.

A	big	advantage	of	ggplot2	over	the	graphics	package	is	the	ease	with	which	we	can
visually	explore	our	data	using	aesthetic	elements.	Using	qplot,	we	can	link	an	attribute
such	as	color	directly	to	a	variable.	Doing	so	creates	a	legend	automatically.	In	order	to
use	aesthetics,	we	can	either	specify	the	same	arguments	to	the	par	function	(col,	pch,
cex)	that	we	saw	in	Hour	13	or	we	can	use	more	memorable,	user-friendly	terms:	color,
shape	and	size.	We	can	also	use	alpha	to	vary	the	transparency,	fill	to	control



shaded	areas,	and	linetype	to	vary	the	line	type.	As	can	be	seen	in	the	following	code
block	and	Figure	14.5,	we	can	create	extremely	attractive	graphics	using	very	little	code.
In	this	example,	we	create	a	plot	of	earthquake	locations	in	a	region	of	Fiji,	where	the	size
of	the	plot	character	represents	the	magnitude	of	the	earthquake,	and	the	color	represents
the	depth	at	which	it	occurred.
Click	here	to	view	code	image

>	qplot(x	=	long,	y	=	lat,	data	=	quakes,	size	=	mag,	col	=	-depth)	+
+			ggtitle(“Locations	of	Earthquakes	off	Fiji”)	+
+			xlab(“Longitude”)	+	ylab(“Latitude”)

FIGURE	14.5	Varying	the	aesthetics	of	a	plot



Caution:	Make	Everything	Blue!

The	qplot	function	has	been	written	to	make	it	as	easy	as	possible	to	link
aesthetic	elements	with	variables	in	our	data.	As	a	consequence,	it’s	not	quite	so
easy	to	just	color	every	point	blue!	To	do	so,	we	have	to	use	a	function	called	I.
Here’s	an	example:

Click	here	to	view	code	image
>	qplot(wt,	mpg,	data	=	mtcars,	colour	=	I(“blue”))

Neglecting	to	use	the	I	function	in	this	example	would	result	in	the	text	“blue”
being	treated	as	a	variable	in	our	data.	This	does	not	cause	an	error	but	does	yield
some	interesting	results!

Control	of	Aesthetics
One	of	the	great	things	about	using	ggplot2	for	data	exploration	is	that	the	package
handles	the	aesthetics	for	us.	However,	when	it	comes	to	presenting	or	publishing	our
results,	there	are	usually	one	or	two	styling	elements	we	would	like	to	tweak.	In	ggplot2
the	appearance	of	the	aesthetics	is	controlled	by	scaling	layers.	The	scale	layer	functions
follow	a	very	consistent	naming	convention	that	depends	on	the	element	we	want	to
control	and	the	type	of	data	we	are	controlling.	The	general	format	is
Click	here	to	view	code	image

scale_[aestheticElement]_[scaleType]

Using	this	convention,	we	replace	aestheticElement	with	the	aesthetic	used	(for
example,	color).	We	replace	scaleType	by	an	appropriate	scale	for	our	data	type	(for
example,	continuous).	In	addition	to	the	more	obvious	discrete	and	continuous
scales,	a	number	of	other	useful	aesthetic	scales	are	available	in	ggplot2.	For	example,
scale_color_gradientn	creates	a	continuous	color	through	n	colors,	e.g.,
scale_color_gradientn(colours	=	rainbow(6)).

Consider	a	plot	of	mpg	against	wt	using	mtcars	for	which	we	decide	to	vary	the	shape
by	the	cyl	variable.	To	change	the	shapes	used	for	the	three	levels	of	the	cyl	variable,
we	use	the	scale	layer	function	scale_shape_manual.	The	example	is	shown	here
with	the	corresponding	output	displayed	in	Figure	14.6:
Click	here	to	view	code	image

>	#	Create	a	basic	plot
>	carPlot	<-	qplot(x	=	wt,	y	=	mpg,	data	=	mtcars,	shape	=	cyl,	#	cyl	is	a
factor
+							main	=	“Miles	per	Gallon	vs	Weight\nAutomobiles	(1973–74	models)”,
+							xlab	=	“Weight	(lb/1000)”,
+							ylab	=	“Miles	per	US	Gallon”,
+							xlim	=	c(1,	6),
+							ylim	=	c(0,	40))
>
>	#	Edit	plotting	symbols	and	print
carPlot	+	scale_shape_manual(“Number	of\nCylinders”,	values	=	c(3,5,2))



FIGURE	14.6	Manual	control	of	the	aesthetics

The	scale	function	chosen	must	match	the	data	type.	In	the	previous	example,	we	used	the
manual	suffix,	which	allows	us	to	be	specific	about	which	shapes	we	want	to	use.	This
manual	suffix	only	works	with	discrete	data.	We	provided	the	function	with	a	list	of
three	shapes	because	the	factor	version	of	the	cyl	variable	is	discrete	and	has	three	levels.

Note:	Universal	Spelling

Hadley	Wickham	is	a	New	Zealander	who	has	spent	much	of	his	adult	life	living	in
the	USA.	The	ggplot2	package	is	a	universally	friendly	package	that	accounts	for
variants	in	the	English	language,	such	as	the	two	ways	of	spelling	color/colour,	by
duplicating	functionality.	This	has	resulted	in	several	identical	functions	such	as
scale_color_manual	and	scale_colour_manual.



Scales	and	the	Legend
In	ggplot2	there	is	a	direct	link	between	the	aesthetic	elements	and	the	legend.	It	is	this
link	that	causes	a	legend	item	to	be	generated	whenever	we	vary	an	aesthetic	such	as	color
by	a	variable	in	our	data.	This	link	extends	to	the	aesthetic	scaling	functions,	which,	in
addition	to	controlling	the	aesthetics	themselves,	can	be	used	to	control	the	way	in	which
the	aesthetics	are	portrayed	within	the	legend.	As	you	may	have	noted	from	the	code	block
that	creates	Figure	14.6,	the	first	argument	to	each	of	the	aesthetic	scaling	functions
controls	the	name	that	appears	with	that	element	within	the	legend.	An	example	of
updating	the	legend	titles	is	shown	here	with	the	output	displayed	in	Figure	14.7:
Click	here	to	view	code	image

>	#	Create	a	basic	plot
>	carPlot	<-	qplot(x	=	wt,	y	=	mpg,	data	=	mtcars,
+																		shape	=	cyl,	size	=	disp,
+																		main	=	“Miles	per	Gallon	vs	Weight\nAutomobiles	(1973–74
models)”,
+																		xlab	=	“Weight	(lb/1000)”,
+																		ylab	=	“Miles	per	US	Gallon”,
+																		xlim	=	c(1,	6),
+																		ylim	=	c(0,	40))
>
>	#	Change	legend	titles	via	scale	layers
>	carPlot	+
+			scale_shape_discrete(“Number	of	Cylinders”)	+
+			scale_size_continuous(“Displacement	(cu.in.)”)



FIGURE	14.7	Updating	the	legend	titles

In	the	previous	example	we	chose	to	vary	the	size	of	the	plotting	character	by	each	car’s
displacement	value.	The	physical	size	of	the	points	representing	low	displacement	and
high	displacement	is	chosen	for	us.	However,	we	can	use	the	scale	layers	to	control	these
physical	properties.	For	a	continuous	scale	we	use	the	range	argument	to	control	the
minimum	and	maximum	values	that	a	scale	can	take.	Here’s	an	example	with	the	effect
displayed	in	Figure	14.8:
Click	here	to	view	code	image

>	carPlot	+	scale_size_continuous(“Displacement	(cu.in.)”,	range	=	c(4,8))



FIGURE	14.8	Using	the	range	argument	to	control	the	symbol	scaling

We	can	also	control	the	appearance	of	each	aesthetic	in	the	legend.	We	do	so	using	the
breaks	argument.	We	use	limits	to	ensure	that	the	values	we	provide	to	breaks	are
within	the	scale	limits.	Figure	14.9	shows	a	complete	example	using
scale_size_continuous	to	control	the	size	of	points	on	the	graph	as	well	as	the
legend	title	and	breaks.	The	corresponding	code	is	shown	here:
Click	here	to	view	code	image

>	carPlot	+
+			scale_shape_discrete(“Number	of	cylinders”)	+
+			scale_size_continuous(“Displacement	(cu.in.)”,
+																									range	=	c(4,8),
+																									breaks	=	seq(100,	500,	by	=	100),
+																									limits	=	c(0,	500))



FIGURE	14.9	Control	of	aesthetics

For	a	full	list	of	available	scales,	type	the	following	line	into	the	console:
Click	here	to	view	code	image

>	grep(“^scale”,	objects(“package:ggplot2”),	value	=	TRUE)

Note:	Axis	Scales

In	addition	to	scales	for	color,	shape,	size,	fill,	alpha,	and	linetype,
there	are	further	scales	to	control	the	X	and	Y	axes.	The	axis	scales	work	in	much
the	same	way	as	the	other	scales.	We	can	use	these	scales	to	control	axis	titles,
limits,	breakpoints,	and	so	on.

Working	with	Grouped	Data
Occasionally	our	data	may	be	inherently	grouped,	but	we	are	not	interested	in	visually
exploring	the	differences	between	these	groups	with	aesthetics.	A	good	example	of	this	is
repeated	measures	or	longitudinal	data.	Consider	the	following	pkData	dataset.	The
dataset	contains	repeated	measures	data	for	33	subjects.	For	each	subject,	five	drug
concentration	values	were	collected	at	times	0,	1,	6,	12,	and	24.	We	can	think	of	the
concentration	records	as	grouped	by	subject.

>	library(mangoTraining)



>	head(pkData)
		Subject	Dose	Time			Conc
1							1			25				0			0.00
2							1			25				1	660.13
3							1			25				6	178.92
4							1			25			12		88.99
5							1			25			24		42.71
6							2			25				0			0.00

To	see	how	this	grouping	affects	a	plot,	consider	a	line	plot	of	Conc	against	Time.	Using
qplot,	we	could	specify	either	geom	=	"path"	or	geom	=	"line".	Here’s	an
example:
Click	here	to	view	code	image

qplot(data	=	pkData,	x	=	Time,	y	=	Conc,	geom	=	“line”)				#	Not	the	desired
																																																													result!
qplot(data	=	pkData,	x	=	Time,	y	=	Conc,	geom	=	“path”)				#	Not	the	desired
																																																													result!

If	you	draw	these	plots	for	yourself,	you	can	see	that	there	is	something	wrong	with	each
one.	To	understand	what	is	happening,	imagine	drawing	the	plot	by	hand	but	not	taking
the	pen	off	the	page.	Specifying	geom	=	"line"	causes	the	data	to	be	sorted	by	Time
before	plotting.	Because	there	are	multiple	values	at	each	time	point,	we	end	up	with	a
slightly	odd-looking	plot	with	vertical	lines	at	each	time	point	where	every	Conc	value
has	been	joined	before	moving	to	the	next	time	point.	By	specifying	geom	=	"path",
we	create	what,	at	a	glance,	looks	like	the	desired	plot;	however,	because	we	don’t	take	the
pen	off	the	page,	we	end	up	with	lots	of	unwanted	lines	linking	the	24-hour	value	for	one
subject	back	to	the	zero-hour	value	for	the	next.

At	this	point	we	could	use	an	aesthetic	such	as	color	or	linetype	to	separate	the
lines.	However,	this	would	result	in	each	subject	being	plotted	in	a	different	color	or	using
a	different	line	type.	Because	we	are	not	interested	in	investigating	subjects	individually,
this	does	not	help	us.	We	need	a	group	option.	By	specifying	group	=	Subject,	we
metaphorically	take	the	pen	off	the	page	to	draw	each	new	subject.	The	grouping	is	not
linked	to	any	other	physical	property	of	the	plot	and	so	each	line	remains	consistent	in
appearance.	The	result	is	shown	in	Figure	14.10,	and	the	corresponding	code	is	shown
here:
Click	here	to	view	code	image

>	qplot(data	=	pkData,	x	=	Time,	y	=	Conc,	geom	=	“path”,	group	=	Subject,
+							ylab	=	“Concentration”)



FIGURE	14.10	Using	groups	to	separate	lines

The	concept	of	groups	is	also	useful	when	plotting	geographical	data	using	maps	because
groups	can	be	used	to	ensure	state	boundaries	are	separated	correctly	but	remain	a
consistent	color.

Paneling	(a.k.a	Faceting)
There	can	come	a	point	when	a	plot	is	simply	too	busy	to	effectively	compare	groups
using	aesthetics.	As	an	alternative,	we	can	split	the	information	into	separate	subplots,
commonly	known	as	panels,	and	instead	compare	the	information	contained	within	each
panel.	In	ggplot2	terminology,	the	concept	of	paneling	is	known	as	“faceting.”	To
panel/facet	by	a	variable,	we	must	invoke	one	of	two	facet_*	functions:	facet_grid
or	facet_wrap.

Using	facet_grid
To	see	the	difference	between	the	two	functions,	let’s	suppose	that	we	want	to	explore	the
relationship	between	mpg	and	wt	for	each	gear	in	the	mtcars	data.	We	create	a	graphic
with	a	separate	panel	for	each	level	of	gear	and	plot,	say,	side	by	side.	We	start	with	our
basic	carPlot	that	we	looked	at	earlier.

Next,	we	add	a	facet_grid	layer.	The	aim	of	the	facet_grid	function	is	to	allow	us
to	compare	plots	either	vertically	or	horizontally	across	the	levels	of	a	factor.	The



facet_grid	function	expects	a	formula	object.	In	R,	a	formula	is	a	class	of	object
that	is	commonly	used	for	statistical	modeling;	therefore,	we	will	look	at	formula
objects	in	greater	detail	in	Hour	16,	“Introduction	to	R	Models	and	Object	Orientation.”	A
formula	object	is	based	around	a	tilde	(~).	The	facet_grid	function	expects	a
formula	of	the	form	rows	~	cols	for	which	we	replace	rows	and	cols	with	variables	in
our	data.	Any	variables	specified	on	the	left	side	of	the	formula	are	split	across	the	rows.
In	other	words,	the	resulting	panels	are	stacked	on	top	of	each	other.	Any	variables
specified	on	the	right	side	are	split	across	columns	(that	is,	side	by	side).	In	order	to
compare	the	various	gears	side	by	side,	we	must	put	the	gear	variable	on	the	right	side	of
the	formula.	For	now,	we	are	not	interested	in	comparing	anything	else,	so	we	do	not
provide	a	variable	in	the	left	side	of	the	formula.	In	order	for	facet_grid	to	work,	we
must	provide	a	period	(.)	as	an	alternative	to	any	variables.	This	results	in	the	graphic
shown	in	Figure	14.11,	which	features	a	separate	panel	for	each	of	the	three	gears.	Note
that	the	varying	of	aesthetics	defined	in	carPlot	are	still	present	despite	the	faceting
performed.
Click	here	to	view	code	image

>	carPlot	+	facet_grid(.	~	gear)

FIGURE	14.11	Faceting	with	facet_grid

Had	we	decided	to	stack	the	same	three	panels	vertically,	we	could	have	written	the
following	instead:



Click	here	to	view	code	image
>	carPlot	+	facet_grid(gear	~	.)

Now	let’s	take	this	concept	further	and	look	at	paneling	by	a	second	variable,	cyl.	Given
that	we	decided	to	compare	gear	side	by	side,	we	compare	cyl	vertically.	We	replace
the	period	on	the	left	side	of	the	formula	with	the	cyl	variable.	This	creates	a	3×3	plot,
with	each	row	representing	a	different	value	of	cyl	and	each	column	representing	a
different	value	of	gear.	It	is	worth	noting	that	within	the	mtcars	dataset	there	are	no
records	of	cars	that	have	four	gears	and	eight	cylinders.	The	panel	that	represents	the	four-
gear,	eight-cylinder	combination	is	displayed	but	is	empty.

Alternatively,	we	may	prefer	to	visualize	each	combination	of	cyl	and	gear	side	by	side
as	shown	in	Figure	14.12.	In	this	case,	we	literally	add	cyl	as	a	variable	to	the	right	side
of	our	formula	using	a	+	sign,	leaving	the	left	side	untouched.
Click	here	to	view	code	image

>	carPlot	+	facet_grid(.	~	gear	+	cyl)

FIGURE	14.12	Multiple	variables	on	the	right-hand	side	of	the	facet_grid	formula

The	result	is	a	1×8	plot	with	eight	panels	representing	the	eight	combinations	of	gear	and
cyl	for	which	we	have	data	to	plot.	The	levels	of	the	gear	and	cyl	variables	appear	in
the	panel	headers,	commonly	known	as	“strip	headers.”	The	strip	header	is	split	into	two
rows	of	text.	In	the	first	are	the	levels	of	gear,	and	in	the	second	are	the	levels	of	cyl.



Using	facet_wrap
In	most	cases	it	is	much	easier	to	compare	plots	if	they	are	presented	side	by	side	or
vertically	stacked	on	top	of	each	other.	However,	if	the	faceting	variable	has	many	levels,
then	this	may	not	be	practically	possible.	The	facet_wrap	function	offers	an	alternative
to	facet_grid	that	“wraps”	the	plots	around	to	best	fill	the	available	page	and	avoid
long	and	thin	or	short	and	squat	panels,	which	may	result	from	comparing	too	many	levels
with	facet_grid.

To	illustrate	this,	consider	the	same	basic	carPlot	from	before,	but	let’s	now	look	to	the
panel	by	the	carb	variable,	representing	the	number	of	carburetors	for	each	car	in	the
data.	Plotting	panels	for	each	of	the	six	possible	values	for	the	carb	variable	side	by	side
using	facet_grid	creates	some	very	tall,	thin	panels.	Using	facet_wrap,	we	get
back	the	same	six	plots	but	laid	out	in	a	2×3	grid,	starting	in	the	top	left	and	moving	left	to
right,	then	down	the	page	through	each	of	the	possible	carb	values.	A	facet_wrap
function	call	differs	from	a	facet_grid	call	in	that	we	leave	the	left	side	of	the	faceting
formula	blank.	The	following	line	generates	the	graphic	shown	in	Figure	14.13:
Click	here	to	view	code	image

>	carPlot	+	facet_wrap(	~	carb)

FIGURE	14.13	Faceting	with	facet_wrap

If	we	want	to	facet	by	multiple	variables,	these	must	be	listed	on	the	right	side,	each	one



separated	by	a	+.

Note:	Axis	Scales

Neither	facet_grid	nor	facet_wrap	requires	a	factor	in	order	to	create	the
separate	panels.

Faceting	from	qplot
It	is	possible	to	create	faceted	plots	directly	using	qplot	without	having	to	add	a
facet_grid	or	facet_wrap	layer.	We	can	do	so	via	the	facets	argument	to
qplot,	providing	it	with	an	appropriate	formula	to	determine	which	of	facet_grid	or
facet_wrap	is	invoked.	The	key	to	determining	which	of	the	two	functions	is	invoked
by	qplot	is	the	left	side	of	the	faceting	formula.	To	invoke	facet_grid,	we	supply
either	a	variable	or	period	as	we	would	when	calling	facet_grid	directly.	To	invoke
facet_wrap,	we	leave	the	left	side	blank.

Custom	Plots
Each	of	the	examples	we	have	seen	thus	far	has	either	been	created	directly	using	qplot
or	with	qplot	and	additional	layers.	In	the	vast	majority	of	cases	this	is	absolutely	fine;
however,	as	the	examples	become	more	complex,	the	code	may	become	difficult	to	follow.
In	such	cases,	the	ggplot	function	may	offer	a	more	readable	alternative.

Working	with	ggplot
Unlike	qplot,	ggplot	makes	no	assumptions	about	the	plot	type	or	even	the	coordinate
system.	It	simply	creates	a	template	ggplot	object	from	which	to	build.	On	its	own	the
object	is	useless,	and	we	get	an	error	message	if	we	try	to	print	it.	It	is	the	equivalent	of	an
empty	recipe.	We	must	build	our	recipe	piece	by	piece	(layer	by	layer)	telling	R	precisely
how	to	build	the	plot.

Let’s	start	by	re-creating	Figure	14.1,	this	time	by	fully	embracing	the	grammar	of
graphics	with	the	ggplot	function.	For	comparison,	remind	yourself	of	the	two	qplot
approaches	in	Listing	14.1	that	can	be	used	to	create	the	plot.	To	achieve	the	desired
scatter	plot	of	mpg	against	wt,	we	start	by	adding	a	geom_point	layer	to	a	base
ggplot	object.	We	need	to	ensure	that	geom_point	knows	what	the	x	and	y	variables
are.	Unfortunately,	however,	it	is	not	as	simple	as	specifying	x	=	wt	and	y	=	mpg.	As
you	may	note	from	the	following	code,	we	must	use	a	new	function,	aes:
Click	here	to	view	code	image

>	ggplot()	+	geom_point(data	=	mtcars,	aes(x	=	wt,	y	=	mpg))



FIGURE	14.14	When	to	use	the	aes	function

If	we	want	to	add	elements	such	as	the	title,	axis	limits,	and	labels,	we	must	do	so	using
additional	layers.	This	layered	approach	is,	in	essence,	the	grammar	of	graphics.

The	aes	Function

For	the	ggplot2	newcomer,	the	aes	function	can	be	one	of	the	more	confusing	aspects	of
the	package.	I’ve	taught	training	courses	to	people	who	have	been	using	the	package	for
several	years	but	tell	me	that	they	still	don’t	fully	understand	how	or	when	to	use	it!	In
fact,	there’s	only	one	rule	you	need	to	know,	and	it’s	quite	straightforward	once	you	know
it.	First,	let’s	briefly	look	at	what	aes	means	and	where	it	comes	from.

In	the	grammar	of	graphics,	the	term	“aesthetics”	refers	not	only	to	the	appearance	of
points	on	a	graph	but	the	points	themselves.	In	fact,	it	need	not	necessarily	refer	to	points
at	all.	It	could	be	lines,	boxes,	or	bars	because	the	plot	type	is	defined	by	the	geometric
shape	or	“geom.”	The	aesthetics	are	essentially	just	information	about	how	variables	in	the
data	are	to	be	represented	(or	“mapped,”	to	use	the	grammar	of	graphics).	They	depend	on
the	plot	type,	coordinate	system,	faceting,	scaling,	and	so	on.

In	short,	the	aesthetics	describe	how	columns	of	data	are	to	be	mapped	to	elements	of	the
plot.	This	leads	to	the	following	rule	for	ggplot2	layers:

	Any	reference	to	a	variable	must	be	wrapped	within	a	call	to	the	aes	function.



Perhaps	what	confuses	people	is	that	the	rule	does	not	apply	to	facet_grid	and
facet_wrap,	which	use	a	formula.	As	we	have	seen,	it	also	does	not	apply	to	qplot.
However,	it	does	apply	to	subsequent	layers	that	are	added	to	an	object	generated	by
qplot.	Let’s	return	to	our	carPlot	example	and	suppose	we	now	wish	to	plot	each
point	using	a	different	plotting	character	depending	on	the	value	of	the	factor	cyl.
Click	here	to	view	code	image

>	ggplot()	+	geom_point(data	=	mtcars,	aes(x	=	wt,	y	=	mpg,	shape	=	cyl))

In	this	example,	we	mapped	the	three	variables	wt,	mpg,	and	cyl	to	the	aesthetics	x,	y,
and	shape,	respectively.	We	placed	each	mapping	within	a	call	to	aes.	The	data	frame
itself	is	never	placed	within	a	call	to	aes.

Working	with	ggplot

Switching	between	qplot	and	ggplot	with	layers	can	be	confusing	at	first.	When
working	outside	of	qplot,	we	don’t	need	to	use	the	I	function	to	refer	to	plot	elements
that	are	not	based	on	variables	within	our	data.	For	example,	to	create	a	scatter	plot	of
mpg	against	wt	using	large	triangles	as	the	plotting	character,	we	write	the	following:
Click	here	to	view	code	image

>	ggplot()	+	geom_point(data	=	mtcars,	aes(x	=	wt,	y	=	mpg),	shape	=	17,	size
=	3)

We	place	the	shape	and	size	arguments	outside	the	call	to	aes	because	they	do	not
refer	to	variables	in	the	data.	The	resulting	plot	is	shown	in	Figure	14.14.

Where	to	Specify	Aesthetics

So	far	we	have	looked	at	building	a	graphic	using	an	empty	ggplot	object.	However,	if
you	look	for	ggplot2	help	online,	you	can	find	plenty	of	examples	that	do	not	start	with	an
empty	object.	If	we’re	working	with	a	single	data	frame,	we	can	save	ourselves	some
typing	by	defining	the	data,	and	any	aesthetics	that	we	wish	to	pass	to	subsequent
geometric	layers,	within	the	ggplot	call.

Suppose	we	want	to	add	a	linear	line	of	best	fit	through	our	mpg	against	wt	plot.	We	use
two	geometric	layers:	geom_point	and	geom_smooth.	Rather	than	pass	the	data	and
aesthetics	to	each	layer	separately,	we	define	them	up	front:
Click	here	to	view	code	image

>	ggplot(data	=	mtcars,	aes(x	=	wt,	y	=	mpg))	+
+			geom_point(shape	=	17,	size	=	3)	+
+			geom_smooth(method	=	“lm”,	se	=	FALSE,	col	=	“red”)

An	advantage	of	writing	the	code	in	this	way	is	to	save	typing.	Providing	data	and
aesthetic	arguments	within	the	ggplot	function	call	does	not	prevent	us	from	changing
or	adding	new	aesthetics	in	subsequent	layers.	For	example,	as	shown	in	Figure	14.15,	we
can	modify	the	previous	code	block	to	vary	the	geom_point	plotting	symbol	by	the
cyl	variable:
Click	here	to	view	code	image

>	ggplot(data	=	mtcars,	aes(x	=	wt,	y	=	mpg))	+



+			geom_point(aes(shape	=	cyl),	size	=	3)	+
+			geom_smooth(method	=	“lm”,	se	=	FALSE,	col	=	“red”)

FIGURE	14.15	Use	of	aes	in	layers

There	is	nothing	to	stop	us	creating	this	plot	by	starting	with	qplot	and	adding	the
geom_smooth	layer.	However,	in	order	to	ensure	that	we	keep	a	single	best-fit	line,	we
do	need	to	“undo”	the	definition	of	cyl	as	the	shape	variable	by	setting	shape	=	NULL
in	the	call	to	geom_smooth:
Click	here	to	view	code	image

>	qplot(data	=	mtcars,	x	=	wt,	y	=	mpg,	shape	=	cyl,	size	=	I(3))	+
+			geom_smooth(method	=	“lm”,	se	=	FALSE,	col	=	“red”,	aes(shape	=	NULL))

Note	that	these	examples	draw	a	single	smoothing	line	through	the	data.	If	we	want	a
separate	smoothing	line	for	each	level	of	cyl,	we	either	need	to	specify	this	in	the
geom_smooth	layer	using	aes(linetype	=	cyl)	or	we	could	move	aes(shape
=	cyl)	in	geom_point	into	the	original	ggplot	call.



Working	with	Multiple	Data	Frames

The	qplot	function	cannot	directly	handle	multiple	data	frames.	However,	it	is	possible
to	use	qplot	so	long	as	you	have	a	good	understanding	of	layers	and	know	when	and
where	to	use	the	aes	function.	We	therefore	do	not	technically	need	to	use	ggplot	to
work	with	multiple	data	frames,	but	it	is	generally	much	easier	and	can	improve
readability.

In	the	following	example	we	use	ggplot2	to	create	a	“shadow”	plot.	We	panel	by	the	cyl
variable	in	mtcars	but	plot	a	copy	of	the	full	data	in	the	background	using	light	grey	to
create	the	shadow	effect.	The	resulting	plot	can	be	seen	in	Figure	14.16.	In	order	to
achieve	the	shadow	effect,	we	create	a	second	data	frame	that	does	not	contain	the	cyl
variable	in	order	to	avoid	the	paneling.
Click	here	to	view	code	image

>	#	Create	a	copy	of	the	mtcars	data	to	be	used	as	a	“shadow”
>	require(dplyr)				#	To	use	select	function
>	carCopy	<-	mtcars	%>%	select(-cyl)
>
>	#	Use	layers	to	control	the	color	of	points
>	ggplot()	+
+			geom_point(data	=	carCopy,	aes(x	=	wt,	y	=	mpg),	color	=	“lightgrey”)	+
+			geom_point(data	=	mtcars,	aes(x	=	wt,	y	=	mpg))	+
+			facet_grid(	~	cyl)	+		#	Note	that	cyl	only	exists	in	mtcars	not	carCopy
+			ggtitle(“MPG	vs	Weight	Automobiles	(1973–74	models)\nBy	Number	of
Cylinders”)	+
+			xlab(“Weight	(lb/1000)”)	+
+			ylab(“Miles	per	US	Gallon”)



FIGURE	14.16	A	“shadow”	plot	using	the	mtcars	data

The	previous	example	uses	what	might	be	considered	a	trick	to	create	the	shadow	affect.
However,	a	similar	approach	can	be	used	plot	any	information	contained	within	two	or
more	separate	data	frames.	The	only	restriction	is	that	the	axes	remain	on	the	same	scale.
It	is	not	possible	to	use	ggplot2	to	obtain	a	plot	with	two	completely	different	y	variables.

Tip:	Quick	Data	Summaries

The	stat_summary	function	enables	us	to	summarize	our	y	variable	at	each
unique	x	value.	This	is	particularly	useful	when	plotting	confidence	intervals	for
repeated	measures	data.

Coordinate	Systems
The	layered	grammar	of	graphics	approach	that	ggplot2	uses	enables	us	to	change	the
coordinate	system	completely	via	a	single	coordinate	layer.	Examples	include	transposing
the	axes	(coord_flip),	switching	from	a	Cartesian	to	a	polar	coordinate	system
(coord_polar),	and	allowing	for	the	Earth’s	curvature	when	plotting	maps
(coord_map).	Borrowing	functionality	from	the	mapproj	package,	we	can	plot
geographical	data	using	a	number	of	known	map	projections	such	as	the	default
"mercator"	projection	as	well	as	"cylindrical",	"mollweide",	and	many,
many	more.	The	following	code	block	generates	the	graphic	in	Figure	14.17.



Click	here	to	view	code	image
>	nz	<-	map_data(“nz”)										#	Extract	map	coordinates	for	New	Zealand
>	nzmap	<-	ggplot(nz,	aes(x=long,	y=lat,	group=group))	+
+			geom_polygon(fill=“white”,	colour=“black”)
>
>	#	Now	let’s	add	a	projection
>	nzmap	+	coord_map(“cylindrical”)

FIGURE	14.17	Adding	map	projections

A	similar	principle	can	be	used	to	create	a	pie	chart.	If	you	look	through	the	various
“geom”	layers	available	in	ggplot2,	you	will	notice	the	lack	of	a	geom_pie.	In	the
grammar	of	graphics,	a	pie	chart	is	actually	just	another	representation	of	a	bar	chart.	To
create	a	pie	chart	we	must	therefore	start	by	creating	a	stacked	bar	chart.	We	then	add	to
this	a	coord_polar	layer.	The	coord_polar	layer	converts	the	coordinate	system
from	a	Cartesian	system	to	a	polar	coordinate	system,	and	with	a	little	extra	work	to
modify	the	axes	and	other	features	we	end	up	with	a	reasonably	decent-looking	pie	chart.



Themes	and	Layout
One	of	the	reasons	that	the	ggplot2	package	is	so	popular	is	that	the	“out-of-the-box”
graphics	are	so	visually	appealing.	However,	if	we’re	sharing	our	graphic	either	in	a
document,	a	slide	show,	or	via	a	web	application,	we	typically	need	to	make	some	tweaks
to	the	general	appearance.	Thankfully	the	concept	of	themes	in	ggplot2	makes	it	very
straightforward	to	control	both	the	global	styling	options	and	the	styling	for	individual
plots.

At	first	the	ggplot2	theme	settings	can	appear	a	little	daunting,	but	once	you	understand
the	basic	format	that	is	required,	modifying	the	elements	is	a	very	straightforward,	logical
process.	Let’s	look	first	at	how	we	can	make	minor	theme	alterations	to	an	individual	plot
using	a	“theme”	layer.

Tweaking	Individual	Plots
Theme	layers	can	be	used	to	control	styling	elements	for	a	plot	such	as	axis	ticks	and
labels,	panel	headers,	and	the	legend.	We	can	add	a	theme	layer	to	a	plot	using	the	theme
function.	The	theme	function	accepts	a	number	of	arguments	relating	to	specific	plot
items.	Plot	items	are	classified	as	either	text,	such	as	the	plot	title;	an	area,	such	as	the
panel	background;	or	a	line,	such	as	the	X	or	Y	axis.	Depending	on	the	classification,	we
choose	one	of	four	element_*	functions,	corresponding	to	the	classifications	described,
or	element_blank	if	we	do	not	want	the	item	to	appear	on	our	plot.

The	modification	of	theme	elements	for	a	plot	is	best	illustrated	with	an	example.	Suppose
we	are	looking	to	publish	a	graphic	and	need	to	match	some	predefined	criteria	for
graphics	that	prevent	the	use	of	gridlines	and	require	that	strip	header	backgrounds	be
blank.	We	re-use	the	basic	carPlot	example	from	earlier	in	the	hour	and	panel	by	the
cyl	column.	To	make	the	necessary	modifications,	we	add	theme	layers	to	carPlot	as
follows:
Click	here	to	view	code	image

>	carPlot	+
+			facet_grid(~	cyl)	+
+			theme(
+					strip.background	=	element_rect(colour	=	“grey50”,	fill	=	NA),
+					panel.grid.minor	=	element_blank(),
+					panel.grid.major	=	element_blank()
+			)

In	this	example,	we	modified	the	strip	background,	strip.background,	and	the	major
and	minor	grid	lines,	panel.grid.major	and	panel.grid.minor,	respectively.
Each	was	specified	using	a	single	theme	layer	called	using	the	theme	function.	To
modify	the	strip	background,	we	used	the	element_rect	function,	which	defines
settings	for	an	area.	The	gridlines	are	lines	and	would	typically	be	modified	using	the
element_line	function.	However,	in	this	example	we	needed	to	remove	them	and	so
we	chose	element_blank.	If	we	had	needed	to	control	the	appearance	of	the	strip	text,
we	would	have	used	element_text.



Global	Themes
Rather	than	modify	plots	on	an	individual	basis,	it	is	usually	much	more	desirable	when
creating	several	graphics	to	modify	plot	styles	at	a	global	level.	We	can	define	and	modify
a	global	theme	using	the	theme_set	and	theme_update	functions,	respectively.	The
theme_set	function	allows	us	to	define	a	new	global	theme	based	on	predefined	global
themes.	We	pass	the	theme_set	function	one	of	a	number	of	predefined	global	themes,
which	include	the	default	gray	theme	and	a	black-and-white	theme	that	could	be	used	to
create	the	figures	in	this	hour.

Themes	are	actually	functions	in	their	own	right,	with	arguments	that	control	the	size	and
font	family	used	for	plotting.	Each	follows	the	convention	theme_[themeName],
where	[themeName]	would	be	gray	or	bw	in	the	examples	just	described.	For	example,
the	default	theme	could	be	defined	by	calling	theme_set(theme_gray()).	At	the
beginning	of	this	hour	we	set	the	global	theme	for	graphics	with	the	line
theme_set(theme_bw(base_size	=	14)).	The	base_size	argument	controls
the	base	font	size	used	for	titles	and	axis	labels.	Similarly	the	base_family	argument
controls	the	font	family.

The	global	theme	settings	are	independent	from	the	ggplot	objects	that	we	create	during
an	R	session.	When	we	ask	R	to	print	a	ggplot	object,	the	list	of	instructions	that	make
up	the	object	are	combined	with	the	global	theme	settings	to	create	the	plot.	In	other
words,	once	we	have	created	the	ggplot	object	we	can	easily	draw	and	redraw	using	any
theme	we	like.

Having	selected	a	base	global	theme,	we	can	use	the	theme_update	function	to	make
minor	modifications.	The	theme_update	function	allows	us	to	make	or	adjust	specific
plot	elements	in	the	same	way	as	the	theme	function.	However,	with	theme_update
the	changes	are	made	globally.

Tip:	More	Themes

The	ggthemes	package	provides	a	more	extensive	array	of	available	themes,
including	theme_economist	and	theme_wsj	for	the	popular	newspapers	as
well	as	color	scales	such	as	scale_color_excel!

Legend	Layout
You	saw	earlier	how	scaling	layers	can	be	used	to	control	the	legend	appearance,	including
both	the	title	and	the	display	of	legend	information.	We	have	also	now	seen	how	themes
can	be	used	to	control	the	styling	of	plot	elements,	including	the	legend.	For	example,	if
we	want	to	move	the	legend	from	the	right	side	to	the	base	of	the	plot,	we	could	add	a
theme	layer	specifying	the	option	legend.position	=	"bottom".

Additional	legend	control	is	provided	via	the	guides	function.	We	usually	end	up	using
a	combination	of	guides	and	the	guide_legend	function	to	control	the	layout	of
categorical	variables	for	plot	aesthetics	such	as	color,	shape,	and	size,	particularly



where	there	are	multiple	categories.	For	example,	suppose	we	have	created	a	ggplot
object,	mapOfUSA;	this	is	a	map	of	the	USA	where	each	state	is	represented	in	a	different
color.	To	ensure	that	all	50	states	appear	in	the	legend,	we	would	likely	need	to	specify
exactly	how	the	fill	color	is	represented.	Instead	of	listing	all	50	states	in	a	single	column,
we	could	use	the	ncol	argument	to	guide_legend	to	specify,	say,	10	columns,	as	in
the	following	example:
Click	here	to	view	code	image

>	mapOfUSA	+	guides(fill	=	guide_legend(title	=	“State”,
+																																							nrow	=10,	title.position	=	“top”))

The	code	required	to	create	the	mapOfUSA	object	is	provided	on	the	book’s	website,
http://www.mango-solutions.com/wp/teach-yourself-r-in-24-hours-book/.	Note	that	the
call	to	guide_legend	is	linked	directly	to	the	fill	aesthetic.	This	link	means	that	we
can	also	call	guide_legend	from	within	the	aesthetic	scale	layers.

Tip:	Removing	the	Legend

We	can	use	the	guides	function	to	remove	the	legend	by	setting	the	aesthetic	to
"none"	or	FALSE—for	example,	guides(color	=	FALSE).	Alternatively,
we	can	use	the	aesthetic	scale	layers,	setting	the	guide	argument	to	FALSE
instead—for	example,	scale_color_discrete(guide	=	FALSE).

The	ggvis	Evolution
As	you	have	seen,	the	ggplot2	package	is	a	fantastic	package	for	creating	high-quality
static	images.	In	recent	years,	however,	many	industries	have	seen	a	shift	away	from	static
graphics	toward	interactive	web	visualizations.	Today	there	are	several	R	packages	such	as
rCharts	that	provide	an	interface	to	JavaScript	graphical	libraries.	The	ggvis	package	is
built	on	top	of	vega	and	enables	interactivity	using	a	ggplot2-like	syntax.

The	ggvis	package	is	still	under	development	and	does	not	fully	replicate	ggplot2.
However,	it	is	already	a	useful	package.	Listing	14.2	creates	a	very	simple	ggvis	(non-
interactive)	version	of	the	mpg	against	wt	plot	we	explored	during	this	hour.	Note	how	we
use	the	fill	argument	to	vary	the	color	(as	opposed	to	color	in	ggplot2)	by	the	wt
variable.	Note	also	the	use	of	the	piping	operator	from	magrittr,	which	you	were
introduced	to	in	Hour	12,	“Efficient	Data	Handling	in	R.”

LISTING	14.2	A	Simple	Example	Using	ggvis
Click	here	to	view	code	image

	1:	>	#	Load	the	package
	2:	>	require(ggvis)
	3:	>
	4:	>	#	Vary	the	colour	by	the	factor	variable:	cyl
	5:	>	ggvis(mtcars,	x	=	~wt,	y	=	~mpg,	fill	=	~cyl)	%>%
	6:	+			layer_points()

The	example	in	Listing	14.2	produces	a	static	graphic,	one	much	less	appealing	than	its

http://www.mango-solutions.com/wp/teach-yourself-r-in-24-hours-book/


ggplot2	counterpart.	However,	this	example	doesn’t	do	ggvis	justice.	The	ggvis	package	is
at	its	best	when	graphics	are	interactive	and	accessed	from	a	web	browser.	In	Hour	24,
“Building	Web	Applications	with	Shiny,”	you	will	see	how	interactive	graphics	can	be
embedded	within	a	simple	web	application	that	we	build	entirely	with	R	code.

Summary
In	this	hour,	you	have	discovered	the	immensely	popular	graphical	package	ggplot2.
Along	the	way	you	have	been	introduced	to	the	concept	of	the	grammar	of	graphics	and
the	concept	of	layered	graphics.	You	saw	how	to	quickly	create	stylish	plots	using	qplot
and	take	a	layered	approach	to	graphics	with	ggplot.	In	the	“Activities”	section,	you
have	a	chance	to	try	out	many	of	the	techniques	you	just	read	about.

In	Hour	15,	“Lattice	Graphics,”	we	look	at	the	lattice	approach	to	graphics,	and	see	how	it
can	be	used	to	create	highly	customized	panel	plots.

Q&A
Q.	I’m	still	confused	as	to	whether	I	should	use	qplot	or	ggplot.	What	does
everyone	else	use?

A.	The	ggplot	function	follows	the	grammar	of	graphics.	The	qplot	function	does
not.	As	such,	you	will	find	that	the	principled	ggplot	fans	tend	to	be	more	vocal
on	social	media	and	in	help	forums.	However,	most	of	Hadley	Wickham’s	own
examples	were	written	with	qplot.	Besides,	there	are	enough	ggplot2	users	these
days	for	it	not	to	matter	which	you	choose.

Q.	Is	it	worth	taking	the	time	to	learn	more	about	ggplot2	if	ggvis	is	going	to
supersede	it?

A.	It	has	taken	some	time	for	ggvis	to	get	to	where	it	is	today,	and	yet	it	still	feels	very
much	like	a	package	under	development	when	compared	with	ggplot2.	The	decision
boils	down	to	whether	you	ever	need	to	produce	static	graphics.	If	you	do,	and	most
people	do,	then	ggplot2	is	worth	the	investment.	There	are	also	initiatives	underway
that	allow	us	to	convert	ggplot2	graph	outputs	to	interactive	formats,	such	as	the
ggplotly	function	from	the	plotly	package.

Workshop
The	workshop	contains	quiz	questions	and	exercises	to	help	you	solidify	your
understanding	of	the	material	covered.	Try	to	answer	all	questions	before	looking	at	the
“Answers”	section	that	follows.

Quiz
1.	Which	of	the	following	is	not	a	ggplot2	function	for	adding	layers	to	a	plot?

A.	main

B.	xlab



C.	ylim

D.	scale_x_log10

2.	Which	of	the	following	lines	creates	an	orange	histogram?

A.	qplot(Wind,	data	=	airquality,	binwidth	=	5,	fill	=
"orange")

B.	qplot(Wind,	data	=	airquality,	binwidth	=	5,	fill	=
I("orange"))

C.	qplot(Wind,	data	=	airquality,	binwidth	=	5,	aes(fill
=	"orange"))

3.	True	or	false?	In	order	to	create	a	paneled	plot	with	qplot,	you	must	explicitly	add
either	a	facet_grid	or	facet_wrap	layer	to	your	plot.

Answers
1.	A.	To	add	a	main	title	as	a	layer,	we	use	the	ggtitle	function.	We	haven’t	seen
the	scale_x_log10	function	in	this	hour,	but	it	can	be	used	to	create	an	X	axis	in
base	10	log.

2.	B.	When	using	qplot,	you	must	use	the	I	function	whenever	you	are	not	using
variables	to	control	an	aesthetic.	The	aes	function	is	used	when	referencing
variables	in	a	layered	approach	and	is	never	used	within	qplot.

3.	False.	If	using	qplot,	you	can	use	the	facets	argument	to	create	a	paneled	plot.

Activities
1.	Create	a	histogram	of	the	Wind	column	from	airquality.	Use	the	binwidth
argument	to	adjust	the	width	of	the	bins.

2.	Create	a	boxplot	of	the	Wind	values	for	each	Month	using	airquality.

3.	Create	a	plot	of	Ozone	against	Wind	from	airquality.	Ensure	that	the	plot	has
appropriate	titles	and	axis	labels:

	Ensure	that	the	Wind	axis	begins	at	zero.

	Add	a	linear	smoothing	line	to	the	plot,	removing	the	error	bars.

4.	Create	a	scatter	plot	of	Height	against	Weight	using	demoData.	Use	a	different
color	to	distinguish	between	males	and	females	and	a	different	plotting	symbol
dependent	on	whether	the	subject	smokes	or	not.

5.	Re-create	the	basic	plot	of	Height	against	Weight	using	demoData.	This	time,
panel/facet	the	plot	to	create	a	2×2	grid	such	that	the	first	column	contains	data	for
nonsmokers	and	the	first	row	contains	data	for	females.

6.	Using	the	maps	and	mapproj	packages,	import	the	state	data	using
map_data("state")	and	create	a	plot	of	the	USA,	where	each	state	is



represented	by	a	different	color.

	Ensure	that	there	is	sufficient	space	for	the	legend	by	moving	it	to	the	bottom	of
the	plot.	Spread	the	states	across	10	columns.

	Transform	the	plot	in	order	to	view	the	country	with	a	Mercator	projection.



Hour	15.	Lattice	Graphics

What	You’ll	Learn	in	This	Hour:

	How	to	create	simple	lattice	graphics

	How	to	show	structure	in	data	using	groups	and	panels

	How	to	create	custom	graphics

	How	to	control	styles	and	legends

In	the	previous	two	hours,	you	saw	how	to	create	graphics	using	either	the	base	graphic
system	or	the	ggplot2	package.	In	this	hour,	we	will	look	at	a	third	way	of	creating
graphics:	using	the	lattice	package.	This	graphic	system	is	well	suited	to	plotting	highly
grouped	data,	with	the	code	designed	to	closely	resemble	the	modeling	capabilities	of	R
that	we’ll	need	later	in	Hour	16,	“Introduction	to	R	Models	and	Object	Orientation.”

In	this	hour,	we’ll	look	at	how	to	create	simple	lattice	graphics,	building	up	to	more	fine
control	of	styling	and	the	creation	of	highly	customized	plots.

The	History	of	Trellis	Graphics
As	mentioned	in	Hour	1,	“The	R	Community,”	the	R	language	can	be	considered	an
implementation	of	the	S	language,	originally	developed	at	AT&T	Bell	Labs.	A	good
analytic	software	needs	strong	graphical	capabilities,	so	the	base	graph	system	was	created
(the	evolution	of	which	was	described	in	Hour	13,	“Graphics”).

During	the	1990s,	researchers	at	AT&T	designed	a	new	graphic	system,	whose	evolution
is	detailed	in	books	such	as	the	landmark	1993	book	Visualizing	Data	by	William
Cleveland.	Following	the	release	of	the	book,	William	Cleveland	and	Rick	Becker	evolved
the	system,	eventually	implementing	the	ideas	in	the	S	language.	They	named	the	graphic
system	“trellis”	because	the	display	style	(panels	arranged	in	regular	grids)	reminded	the
authors	of	garden	trelliswork.

The	Lattice	Package
The	lattice	package	in	R,	which	can	be	thought	of	as	a	port	of	the	S	Trellis	graphic
system,	was	created	by	Deepayan	Sarkar	of	the	University	of	Wisconsin.	Like	ggplot2,	it
is	based	on	Paul	Murrell’s	grid	package	and	therefore	requires	the	grid	add-on	package.
One	of	the	design	aims	of	lattice	was	to	be,	as	far	as	possible,	backward	compatible	with
code	created	in	trellis,	although	a	number	of	significant	changes	were	made.

Like	trellis,	the	lattice	system	is	designed	primarily	for	the	visualization	of	multivariable
datasets.	The	prominent	design	feature	is	the	arrangement	of	graphics	in	a	series	of
“panels,”	set	out	in	a	regular	grid,	with	each	“panel”	graphing	a	subset	of	the	data.	This
provides	strong	capabilities,	in	particular,	for	understanding	how	a	response	depends	on	a
range	of	explanatory	variables.



Creating	a	Simple	Lattice	Graph
Because	lattice	is	a	recommended	package,	the	first	thing	we	need	to	do	is	to	load	the
package,	providing	access	to	its	capabilities.	We	can	do	this	using	either	the	library	or
require	function:
Click	here	to	view	code	image

>	#	Load	the	lattice	package
>	require(lattice)
Loading	required	package:	lattice

To	create	a	lattice	graphic,	we	need	three	things:

	A	lattice	plotting	function

	A	formula	specifying	the	relationship	between	variables	to	create

	The	data	to	plot,	typically	contained	in	a	data	frame

For	our	lattice	plotting	function,	let’s	start	with	xyplot,	which	allows	us	to	create	a
scatter	plot.	To	define	the	relationship	between	variables	to	graph,	we	use	the	~	symbol	in
the	form	(Y	axis	~	X	axis).	As	with	the	previous	hour,	let’s	start	by	creating	a	scatter	plot
of	mpg	vs.	wt	using	the	mtcars	data	frame.
Click	here	to	view	code	image

>	xyplot(	mpg	~	wt,	data	=	mtcars	)

The	resulting	plot	can	be	seen	in	Figure	15.1.

FIGURE	15.1	A	simple	scatter	plot	of	mpg	vs.	wt

Here,	we	specified	the	data	frame	containing	our	data	using	the	data	argument,	and	we



specified	mpg	~	wt	as	the	relationship	to	visualize.

Note:	Working	with	Vectors

Like	ggplot2	functions,	we	can	specify	vector	data	inputs	to	our	lattice	function,
so	the	preceding	command	could	be	replaced	by	xyplot(mtcars$mpg	~
mtcars$wt).	However,	it	is	more	common	to	specify	the	name	of	the	data	frame
using	the	data	argument	so	that	we	can	refer	to	variables	directly.

Lattice	Graph	Types
Unlike	qplot	from	the	ggplot2	package,	which	selects	the	most	appropriate	graph	type
to	create,	with	the	lattice	package	we	specify	the	graph	type	we	want	based	on	the
function	we	select.	In	the	preceding	example	we	used	the	xyplot	function	to	create	a
scatter	plot,	but	there	are	many	others	to	choose	from.	A	complete	list	of	lattice	graph
functions	can	be	seen	in	Table	15.1.

TABLE	15.1	Lattice	Graph	Functions

Note	that	there	are	four	types	of	lattice	graph	functions:	univariate,	bivariate,	3D,	and	data.
When	we	choose	a	lattice	graph	function,	the	type	of	function	we	use	determines	the
structure	of	the	formula	we	must	use	to	specify	the	plotting	variables.

Univariate	Lattice	Graphics

The	lattice	package	contains	two	univariate	graphic	functions	that	allow	us	to	plot	a	single
variable.	We	specify	the	variable	we	want	to	plot	using	a	formula	that	only	has	a	variable
on	the	right,	such	as	~	mpg.	Let’s	see	a	simple	example	using	the	histogram	function.
The	created	histogram	can	be	seen	in	Figure	15.2.
Click	here	to	view	code	image



>	histogram(	~	mpg,	data	=	mtcars	)

FIGURE	15.2	A	histogram	of	mpg

Tip:	Controlling	Binning

As	with	other	implementations	(such	as	hist	or	geom_histogram),	a	default
binning	mechanism	is	used.	With	the	histogram	function	we	can	specify	the
number	of	bins	to	use	with	the	nint	argument.

The	densityplot	function	allows	us	to	produce	a	density	plot	of	a	single	variable.
Let’s	see	a	densityplot	of	the	wt	variable.	The	resulting	density	plot	can	be	seen	in
Figure	15.3.
Click	here	to	view	code	image

>	densityplot(	~	wt,	data	=	mtcars	)



FIGURE	15.3	A	density	plot	of	wt

Tip:	Controlling	the	Points

The	default	behavior	with	densityplot	is	to	add	“jittered”	points	along	the	X
axis	indicating	the	positions	of	the	observations.	Although	this	is	highly	useful,	we
can	control	(or	suppress)	these	points	using	the	plot.points	argument	to
densityplot,	which	accepts	four	possible	inputs,	as	listed	in	Table	15.2.

TABLE	15.2	Inputs	to	the	plot.points	Argument



Bivariate	Lattice	Graphics

The	lattice	package	contains	five	bivariate	graph	functions:	qq,	barchart,	xyplot,
bwplot,	dotplot,	and	strippplot.	As	seen	with	the	earlier	xyplot	example,	we
specify	the	relationship	with	a	two-sided	formula	with	the	structure	Y	~	X.	When	you	are
using	these	functions,	it	is	important	to	understand	which	variables	are	(by	default)	placed
on	the	Y	axis	(specified	by	the	left	side	of	the	formula)	and	which	variables	are	placed	on
the	X	axis	(specified	by	the	right	side	of	the	formula).	These	variables	are	listed	in	Table
15.3.

TABLE	15.3	Bivariate	Graph	Axes	Definitions

From	Table	15.3	we	can	see	that	for	the	functions	bwplot,	dotplot,	stripplot,	and
barchart,	the	factor	variable	is	by	default	on	the	Y	axis.	Let’s	see	an	example	using
dotplot	with	our	mtcars	data,	this	time	looking	at	how	the	miles	per	gallon	(mpg)
varies	based	on	the	number	of	carburetors	(carb).	The	output	can	be	seen	in	Figure	15.4.
Click	here	to	view	code	image

>	dotplot(	carb	~	mpg,	data	=	mtcars	)



FIGURE	15.4	A	dot	plot	of	carb	vs	mpg

Note:	The	Use	of	Factor	Axes

In	the	preceding	example,	we	specified	carb	as	the	(factor)	variable	on	the	Y	axis.
In	fact,	carb	is	a	numeric	variable.	Where	a	factor	is	expected,	the	provided
variable	will	be	converted	to	a	factor.

Transposing	the	Axes

We	previously	noted	that	the	functions	bwplot,	dotplot,	stripplot,	and
barchart	specify	the	categorical	variable	on	the	Y	axis	and	the	numeric	variable	on	the
X	axis.	This	is	based	on	the	design	in	the	book	Visualizing	Data	by	William	Cleveland,
but	this	behavior	may	be	unexpected.	For	example,	boxplots	are	more	commonly
produced	with	the	numeric	variable	on	the	Y	axis	and	the	categorical	variable	on	the	X
axis.	Each	of	these	functions	has	the	argument	horizontal,	which,	by	default,	is	set	to
TRUE	(producing	“horizontal”	charts).	We	can	instead	set	the	value	of	horizontal	to
FALSE	to	create	vertical	charts,	but	we	also	need	to	change	the	order	of	the	variables	in
the	formula	(with	the	categorical	variable	on	the	X	axis).	Let’s	see	an	example	using	the
bwplot	function.	The	resulting	plot	can	be	seen	in	Figure	15.5.
Click	here	to	view	code	image

>	bwplot(	mpg	~	carb,	data	=	mtcars,	horizontal	=	FALSE	)



FIGURE	15.5	A	vertical	box	and	whisker	plot	of	mpg	vs.	carb

3D	Lattice	Graphics

The	lattice	graph	functions	cloud	and	wireframe	can	be	used	to	plot	3D	scatter	plots
and	surfaces,	respectively.	When	you’re	specifying	the	variables	to	graph,	your	formula
should	be	of	the	format	Z	~	X	*	Y,	with	the	Z	variable	used	as	the	“height”	of	the	plot.
Let’s	use	the	cloud	function	to	create	a	3D	scatter	plot	of	some	variables	from	our
mtcars	data,	which	can	be	seen	in	Figure	15.6.
Click	here	to	view	code	image

>	cloud(	mpg	~	wt	*	hp,	data	=	mtcars)



FIGURE	15.6	A	3D	scatter	plot	of	mpg	vs.	wt	and	hp

An	alternative	way	to	provide	data	for	a	3D	lattice	graph	function	is	in	the	form	of	a
matrix.	When	a	matrix	is	provided,	the	lattice	graph	functions	will	use	the	rows	and
columns	of	the	matrix	as	the	X	and	Y	axes,	and	use	the	value	in	each	cell	as	the	height	of
the	plot.	Let’s	see	an	example	using	the	internal	volcano	matrix,	which	contains
topological	information	for	Maungawhau,	one	of	50	active	volcanoes	in	the	Auckland
volcanic	field.	This	time	we’ll	use	the	wireframe	function	to	create	a	3D	surface	plot.
The	resulting	3D	plot	can	be	seen	in	Figure	15.7.
Click	here	to	view	code	image

>	dim(volcano)		#	Dimensions	of	the	volcano	matrix
[1]	87	61
>	wireframe(	volcano,	shade	=	TRUE	)



FIGURE	15.7	A	3D	surface	plot	of	the	volcano	matrix

Tip:	Controlling	the	Color	Shading

Note	the	use	of	the	shade	argument	in	this	example,	which	specifies	that	color
shading	should	be	used	on	our	3D	surface	using	an	illumination	model	with	a	single
light	source.	We	can	additionally	control	the	colors	used	with	the
shade.colors.palette	argument,	and	the	light	source	itself	using	the
light.source	function.	For	more	information,	see	the	help	file	for	the
panel.3dwire	function	(?panel.3dwire).

When	creating	3D	graphics	in	this	way,	you’ll	often	want	to	control	the	perspective	of	the
graph—in	other	words,	the	view	point	from	which	you	are	looking	at	the	graph.	For
example,	in	the	previous	graph	we	cannot	really	see	the	crater	of	the	volcano,	but	we
could	rotate	the	graph	so	we’re	looking	at	the	other	side	of	the	volcano.	We	can	achieve
this	using	the	screen	argument,	which	accepts	a	list	with	elements	x,	y,	and	z
specifying	the	rotation	to	apply.	Let’s	use	the	screen	argument	to	view	the	volcano	from
a	different	perspective	so	we	can	see	the	crater.	This	can	be	seen	in	Figure	15.8.
Click	here	to	view	code	image

>	wireframe(	volcano,	shade	=	TRUE,
+												screen	=	list(x	=	-60,	y	=	-40,	z	=	-20))



FIGURE	15.8	A	3D	surface	plot	of	the	volcano	matrix	with	the	volcano’s	crater
visible

“Data”	Lattice	Graphics

Two	lattice	graph	functions	can	be	used	to	graph	the	structure	of	a	data	frame:	splom	and
parallelplot.	To	use	these	functions,	we	specify	the	data	frame	in	a	one-sided
formula	(~Data).	Let’s	first	look	at	the	splom	function,	which	creates	a	scatter-plot
matrix	(analogous	to	the	pairs	function	seen	in	previous	hours).	Instead	of	using	the
whole	dataset,	we’ll	select	four	columns	from	the	mtcars	data	to	plot.	In	Figure	15.9,	we
can	see	that	each	of	our	four	variables	are	plotted	against	each	other	in	a	matrix	of	scatter
plots:
Click	here	to	view	code	image

>	splom(	~	mtcars[,c(“mpg”,	“wt”,	“cyl”,	“hp”)])



FIGURE	15.9	A	scatter-plot	matrix	of	the	mpg,	wt,	cyl,	and	hp	variables	from
mtcars

Tip:	The	pairs	Function

The	pairs	function	is	the	base	graphics	equivalent	of	the	splom	function,	and
can	also	produce	a	scatter-plot	matrix	of	our	data.

Plotting	Subsets	of	Data
All	lattice	graph	functions	contain	a	subset	argument	that	allows	you	to	filter	the	data	as
you’re	plotting.	This	is	useful	for	plotting	sections	of	the	data	without	having	to	create	a
filtered	dataset	before	plotting.	Let’s	see	an	example	of	this,	where	we’ll	create	a	scatter
plot	of	mpg	vs.	wt	using	only	manual	cars	(where	am	==	1).	The	resulting	plot	can	be
seen	in	Figure	15.10.
Click	here	to	view	code	image

>	xyplot(	mpg	~	wt,	data	=	mtcars,	subset	=	am	==	1	)



FIGURE	15.10	Using	the	subset	argument	to	graph	a	section	of	the	data

Graph	Options
As	with	base	and	ggplot2	graphics,	each	of	the	lattice	graphics	listed	in	Table	15.1
accepts	common	graph	options	that	control	aspects	of	the	graph.	The	option	names
generally	follow	the	conventions	used	in	the	graphics	package.



FIGURE	15.11	Adding	titles	and	axis	controls	for	a	scatter	plot

Titles	and	Axes
First,	let’s	use	arguments	such	as	main,	xlab,	and	xlim	to	control	our	plot	titles	and
axes,	as	seen	in	Figure	15.11.	For	now,	we’ll	use	the	xyplot	function,	but	this	works	for
all	lattice	graph	functions.
Click	here	to	view	code	image

>	xyplot(mpg	~	wt,	data	=	mtcars,	main	=	“Miles	per	Gallon	vs	Weight”,
+								xlab	=	“Weight	(lb/1000)”,	ylab	=	“Miles/(US)	Gallon”,
+								xlim	=	c(1,	6),	ylim	=	c(10,	40))

Plot	Types	and	Formatting
As	with	the	graphics	system,	we	can	use	the	type	argument	to	control	the	type	of
(scatter)	plot	created	and	use	arguments	such	as	col	and	lwd	to	control	the	style	of	the
elements	graphed,	as	seen	in	Figure	15.12.	For	this	example,	let’s	use	a	different	dataset—
we’ll	use	the	cranlogs	package	to	extract	data	on	package	downloads.	First,	let’s	install
the	cranlogs	package	from	CRAN:
Click	here	to	view	code	image

>	install.packages	(“cranlogs”)



FIGURE	15.12	Scatter	plot	of	downloads	over	time

Next,	let’s	load	the	library	and	download	some	data	using	the	cran_downloads
function.	For	this	exercise,	we’ll	download	the	CRAN	logs	for	lattice	and	ggplot2	over
the	last	month:
Click	here	to	view	code	image

>	library(cranlogs)
>	cranData	<-	cran_downloads(packages	=	c(“lattice”,	“ggplot2”),	when	=
“last-month”)
>	head(cranData)
								date	count	package
1	2015-07-30		2100	lattice
2	2015-07-31		1804	lattice
3	2015-08-01			858	lattice
4	2015-08-02			874	lattice
5	2015-08-03		2234	lattice
6	2015-08-04		2991	lattice

Now	we’ll	create	a	scatter	plot	of	the	number	of	downloads	(count)	vs.	date	for	the
lattice	package.
Click	here	to	view	code	image

>	xyplot(count	~	date,	data	=	cranData,	subset	=	package	==	“lattice”,
+								main	=	“Lattice	package	downloads	over	the	last	month”,
+								ylab	=	“Number	of	Downloads”,	xlab	=	“Date”,
+								type	=	“b”,	col	=	“red”,	lwd	=	2,	cex	=	2,	pch	=	16)



Caution:	Background	Colors	of	Plot	Characters

Using	the	base	graphic	system,	we	can	use	plot	characters	with	filled	backgrounds
using	pch	values	21	to	25.	When	we	use	these	plot	characters,	we	use	the	bg
argument	to	control	the	background	color	of	each	plot	symbol.	In	lattice,	we	can
also	use	pch	values	21	to	25,	but	the	argument	for	controlling	the	background	color
is	fill	instead	of	bg.

Multiple	Variables
When	we	use	the	lattice	graph	functions,	we	can	choose	to	plot	multiple	variables.	We
achieve	this	by	specifying	multiple	variables	in	the	formula	of	the	format	Y1	+	Y2	~
X1	+	X2.	By	default,	this	will	superimpose	the	variables	onto	the	same	plot	using
different	colors	for	each	variable,	as	see	in	Figure	15.13.	In	this	example,	we	are	plotting
Miles	per	Gallon	(mpg)	on	the	Y	axis	vs.	two	X	axes:	Displacement	(disp)	and	Gross
Horsepower	(hp).
Click	here	to	view	code	image

>	xyplot(mpg	~	disp	+	hp,	data	=	mtcars,	auto.key	=	TRUE,	pch	=	16,	cex	=	2)

FIGURE	15.13	Scatter	plot	with	multiple	X	axes	plotted	on	the	same	graph



Caution:	Mismatched	legend

In	this	example,	we	used	the	pch	and	cex	arguments	to	make	the	plot	clearer.	We
also	use	the	auto.legend	argument	to	automatically	create	a	legend	for	the	plot
that	indicates	that	the	disp	variable	is	represented	with	blue	points	and	the	hp
variable	is	represented	with	pink	points.	Although	this	allows	us	to	identify	each
variable,	notice	that	the	legend	doesn’t	completely	match	the	plot	(the	legend	shows
empty	circles).	Later	in	this	hour,	you’ll	see	how	to	fix	this	issue.

As	you	can	see	in	Figure	15.13,	the	two	variables	on	the	X	axis	(disp	and	hp)	appear
superimposed	on	the	same	graph,	and	the	color	of	the	plotting	symbols	allows	us	to
distinguish	between	the	two	variables.	We	can	use	the	outer	argument	to	control
whether	the	multiple	variables	should	be	represented	as	groups	on	the	same	plot	(the
default	behavior)	or	should	be	split	into	separate	plots.	We	can	specify	that	separate	plots
should	be	created	by	specifying	outer	=	TRUE,	as	shown	in	Figure	15.14.
Click	here	to	view	code	image

>	xyplot(mpg	~	disp	+	hp,	data	=	mtcars,	pch	=	16,	cex	=	2,	outer	=	TRUE)

FIGURE	15.14	Scatter	plot	with	multiple	X	axes	plotted	in	different	“panels”

As	you	can	see,	the	two	graphs	are	produced	in	separate	“panels,”	each	with	the	same	X
and	Y	axis	scales.	This	is	very	similar	to	the	“facets”	you	saw	in	Hour	14,	“The	ggplot2
Package	for	Graphics.”	You’ll	see	more	on	panels	later	in	this	hour.



Groups	of	Data
If	we	have	groups	in	our	data,	we	can	represent	them	by	varying	plot	aspects	using	the
groups	argument.	Let’s	start	with	a	simple	example	using	our	mtcars	data.	Here,	we
will	plot	mpg	vs.	wt,	but	vary	the	color	of	the	plot	based	on	the	number	of	cylinders
(cyl)	using	the	groups	argument.	This	can	be	seen	in	Figure	15.15.
Click	here	to	view	code	image

>	xyplot(mpg	~	wt,	data	=	mtcars,	groups	=	cyl,
+			pch	=	16,	cex	=	2,	auto.key	=	TRUE)

FIGURE	15.15	Scatter	plot	with	levels	of	cyl	grouped

If	we	use	a	grouping	variable	together	with	multiple	variables,	the	outer	argument	is	set
to	TRUE,	such	that	the	multiple	variables	are	split	into	panels.	This	can	be	seen	in	Figure
15.16,	where	we	group	by	cyl	but	also	use	multiple	X	axis	variables:
Click	here	to	view	code	image

>	xyplot(mpg	~	disp		+	hp,	data	=	mtcars,	groups	=	cyl,
+								pch	=	16,	cex	=	2,	auto.key	=	TRUE)



FIGURE	15.16	Scatter	plot	with	multiple	X	axes	plotted	in	different	“panels”	and	the
plot	grouped	by	cyl

Note:	Plot	Layout

When	we	create	graphs	in	multiple	panels,	such	as	in	this	example,	the	layout	of	the
plots	is	determined	based	on	the	size	of	the	plot	device	available.	For	example,	in
RStudio,	we	may	see	different	panel	layouts	by	resizing	the	plot	window.	We	can
control	the	layout	of	panels	explicitly	using	the	layout	argument.	This	argument
also	allows	us	to	create	multiple	pages	of	plots	when	our	partitioning	variable	has	a
high	number	of	levels.

Tip:	More	Control	of	the	Legend

The	auto.key	argument	can,	instead,	accept	a	list	of	settings.	This	can	be	used	to
further	control	the	format	and	placement	of	the	legend.	For	example,	we	can	place
the	legend	on	the	right	side	of	the	plot	with	auto.key	=	list(space	=
"right").



Using	Panels
As	you’ve	seen	already	in	this	hour,	the	lattice	package	is	able	to	create	graphics	in
separate	“panels.”	We	can	specify	a	variable	to	be	used	to	partition	our	data	into	panels
directly	in	the	formula.	To	achieve	this,	we	simply	append	a	|	symbol	to	our	formula	and
specify	the	variable	by	which	to	partition	the	graph.	Let’s	first	revisit	the	data	we
downloaded	that	compared	recent	downloads	of	the	lattice	and	ggplot2	packages.	A
simple	plot	of	count	versus	date	can	be	seen	in	Figure	15.17.
Click	here	to	view	code	image

>	xyplot(count	~	date	|	package,	data	=	cranData,	type	=	“o”)

FIGURE	15.17	Scatter	plot	of	downloads	partitioned	by	package	(lattice	vs.	ggplot2)

As	you	can	see,	the	plot	is	now	partitioned	into	two	separate	panels	based	on	the
package	variable.	The	axis	scales	are	the	same	for	each	panel,	with	the	levels	of	the
package	variable	(“ggplot2”	and	“lattice”)	displayed	at	the	top	of	each	plot.

Tip:	Alternating	Axis	Ticks

The	default	behavior	of	lattice	is	to	alternate	the	tick	marks	between	panels,	which
explains	why	the	X	axis	ticks	appear	at	the	top	of	the	graph	for	the	“lattice”	panel.
We	can	control	this	behavior	with	the	alternating	attribute	of	the	scales
argument,	which	is	described	further	in	the	help	file	for	the	xyplot	function.



Controlling	the	Strip	Headers
Let’s	see	another	simple	example,	where	we’ll	attempt	to	create	a	plot	of	Miles	per	Gallon
(mpg)	vs.	Weight	(wt)	partitioned	on	levels	of	cylinder	(cyl).	This	can	be	seen	in	Figure
15.18.
Click	here	to	view	code	image

>	xyplot(	mpg	~	wt	|	cyl,	data	=	mtcars,
+									main	=	“Miles	per	Gallon	vs	Weight	by	Number	of	Cylinders”)

FIGURE	15.18	Scatter	plot	of	miles	per	gallon	vs.	weight	partitioned	by	number	of
cylinders

In	Figure	15.18	we	created	a	graph	containing	three	panels,	corresponding	to	the	three
levels	of	the	cyl	variable.	However,	the	labels	at	the	tops	of	each	panel	(the	“strip
headers”)	are	not	correctly	formed.	Instead,	the	text	“cyl”	is	repeated	for	each	strip	header,
along	with	some	darker	orange	segments.	The	strip	header	labeling	worked	in	the	previous
example	(Figure	15.17)	but	not	this	example	because	of	the	class	of	the	partitioning
variable.	In	Figure	15.17,	the	partitioning	variable	(package)	was	a	factor	variable.	In
this	more	recent	example	(Figure	15.18),	the	partitioning	variable	(cyl)	is	a	numeric
variable.	To	ensure	the	strip	headers	are	correct	for	our	data,	we	need	to	ensure	our
partitioning	(or	“by”)	variables	are	factors.	We	can	use	the	factor	function	directly	to
fix	this,	as	seen	in	Figure	15.19.
Click	here	to	view	code	image

>	xyplot(	mpg	~	wt	|	factor(cyl),	data	=	mtcars,
+									main	=	“Miles	per	Gallon	vs	Weight	by	Number	of	Cylinders”)



FIGURE	15.19	Scatter	plot	of	miles	per	gallon	vs.	weight	partitioned	by	number	of
cylinders	(fixing	headers)

Tip:	More	Control	of	the	Strip	Header

We	can	further	control	the	strip	headers	in	one	of	two	ways:

	Using	the	factor	function	to	further	define	labels	and	the	order	of	levels

	Using	the	strip	argument	to	the	lattice	functions

More	information	on	the	factor	function	can	be	found	in	the	factor	help	file
(?factor).	More	information	on	the	use	of	the	strip	argument	can	be	found	in
the	help	file	for	the	strip.default	function	(?strip.default).

Multiple	“By”	Variables
In	the	preceding	examples,	we	used	a	single	“by”	variable	to	create	a	partitioned	plot.	If
we	want	to	use	more	than	one	variable,	we	list	them	separated	by	the	asterisk	(*)	symbol.
Therefore,	if	we	want	to	create	a	plot	of	Miles	per	Gallon	(mpg)	vs.	Weight	(wt)
partitioned	on	levels	of	cylinder	(cyl)	and	Automatic/Manual	indicator	(am),	we	include
both	cyl	and	am	in	the	formula.	This	can	be	seen	in	Figure	15.20.	Here,	instead	of
providing	am	directly	as	a	factor,	the	ifelse	function	is	used	to	create	a	variable
containing	the	values	“Automatic”	and	“Manual.”
Click	here	to	view	code	image

>	xyplot(	mpg	~	wt	|	factor(cyl)	*	ifelse(am	==	0,	“Automatic”,	“Manual”),



+			data	=	mtcars,	cex	=	1.5,	pch	=	21,	fill	=	“lightblue”,
+			main	=	“Miles	per	Gallon	vs	Weight	\nby	Number	of	Cylinders	and
Transmission	Type”)

FIGURE	15.20	Scatter	plot	of	miles	per	gallon	vs.	weight	partitioned	by	number	of
cylinders	and	transmission	type

Panel	Functions
Each	lattice	graph	function	operates	in	a	similar	fashion.	First,	the	data	is	partitioned	based
on	the	formula	specified,	and	the	panels	are	created	based	on	the	number	of	partitions	to
be	plotted.	Then,	the	data	for	each	panel	is	passed	to	a	“panel	function”	that	draws	each
subset	of	data.	The	panel	function	is	specified	with	the	panel	argument	to	each	lattice
function.	The	default	panel	function	for	each	lattice	graph	function	follows	a	specific
naming	convention:	panel.functionName.	Therefore,	the	default	panel	function	for
xyplot	is	panel.xyplot.	The	panel.xyplot	help	file	lists	the	arguments	to
panel.xyplot	as	follows:
Click	here	to	view	code	image

panel.xyplot(x,	y,	type	=	“p”,	groups	=	NULL,	pch,	col,	col.line,	col.symbol,
font,	fontfamily,	fontface,	lty,	cex,	fill,	lwd,	horizontal	=	FALSE,	…,
grid	=	FALSE,	abline	=	NULL,	jitter.x	=	FALSE,	jitter.y	=	FALSE,	factor	=
0.5,
amount	=	NULL,	identifier	=	“xyplot”)

Note	that	the	first	two	arguments	are	x	and	y,	corresponding	to	the	X	and	Y	data	to	plot
for	each	panel.	Let’s	further	explore	the	workings	of	the	panel	functions	using	a	simple
example.	Here,	we	will	re-create	our	plot	of	mpg	vs.	wt	by	cyl,	but	will	replace	the
default	panel	function	(panel.xyplot)	with	a	simple	function	of	our	own.	The



resulting	graph	is	shown	in	Figure	15.21.
Click	here	to	view	code	image

>	myPanel	<-	function(x,	y,	…)	{
+			cat(“Panel	Function	Called!\n”)
+	}
>	xyplot(	mpg	~	wt	|	factor(cyl),	data	=	mtcars,	panel	=	myPanel)
Panel	Function	Called!
Panel	Function	Called!
Panel	Function	Called!

FIGURE	15.21	Empty	(!)	scatter	plot	of	miles	per	gallon	vs.	weight	partitioned	by
number	of	cylinders

In	this	example,	we	have	replaced	the	default	panel	function	with	myPanel,	which	prints
a	short	message	but	does	nothing	else.	In	particular,	note	that	myPanel	does	nothing	with
x	and	y	(that	is,	no	graph	elements	are	produced).	The	result	is	that	our	call	prints	our
simple	message	three	times,	one	for	each	panel	of	data	drawn.	Because	myPanel
performs	no	graphing,	each	panel	is	left	empty.

Let’s	change	the	myPanel	function	now	so	that	it	performs	some	graphical	routines.	We
can	achieve	this	be	reinserting	the	panel.xyplot	function	call	within	myPanel.	The
resulting	graph	can	be	seen	in	Figure	15.22.
Click	here	to	view	code	image

>	myPanel	<-	function(x,	y,	…)	{
+			panel.xyplot(x,	y,	…)
+	}
>	xyplot(	mpg	~	wt	|	factor(cyl),	data	=	mtcars,	panel	=	myPanel)



FIGURE	15.22	Scatter	plot	of	miles	per	gallon	vs.	weight	partitioned	by	number	of
cylinders

Now	the	plot	is	again	created,	but	this	time	xyplot	is	using	our	myPanel	function	to
pass	the	inputs	on	to	panel.xyplot.

Using	Other	Panel	Functions

Now	that	we	have	xyplot	using	our	panel	function,	we	may	choose	to	alter	the	graph
created	in	each	panel.	A	simple	way	to	do	that	is	to	include	other	“panel”	functions.	Let’s
use	the	apropos	function	to	list	all	the	available	panel.*	functions:
Click	here	to	view	code	image

>	apropos(“^panel”)
	[1]	“panel.3dscatter”								“panel.3dwire”											“panel.abline”
	[4]	“panel.arrows”											“panel.average”										“panel.axis”
	[7]	“panel.barchart”									“panel.brush.splom”						“panel.bwplot”
[10]	“panel.cloud”												“panel.contourplot”						“panel.curve”
[13]	“panel.densityplot”						“panel.dotplot”										“panel.error”
[16]	“panel.fill”													“panel.grid”													“panel.histogram”
[19]
“panel.identify”									“panel.identify.cloud”			“panel.identify.qqmath”
[22]	“panel.levelplot”								“panel.levelplot.raster”	“panel.linejoin”
[25]	“panel.lines”												“panel.link.splom”							“panel.lmline”
[28]	“panel.loess”												“panel.mathdensity”						“panel.number”
[31]	“panel.pairs”												“panel.parallel”									“panel.points”
[34]	“panel.polygon”										“panel.qq”															“panel.qqmath”
[37]	“panel.qqmathline”							“panel.rect”													“panel.refline”
[40]	“panel.rug”														“panel.segments”									“panel.smooth”
[43]	“panel.smoothScatter”				“panel.spline”											“panel.splom”
[46]	“panel.stripplot”								“panel.superpose”								“panel.superpose.2”
[49]	“panel.superpose.plain”		“panel.text”													“panel.tmd.default”
[52]	“panel.tmd.qqmath”							“panel.violin”											“panel.wireframe”



[55]	“panel.xyplot”

The	set	of	panel	functions	available	includes	the	default	panel	functions	for	each	of	the
lattice	graph	functions	listed	in	Table	15.1	(such	as	panel.histogram	and
panel.bwplot).	However,	there	are	many	other	panel	functions	listed	that	we	can	use
to	perform	alternative	behaviors	within	each	panel.	As	a	simple	example,	let’s	use	the
panel.abline	function	to	add	vertical	and	horizontal	reference	lines	as	the	median	x
and	y	points	in	each	panel.	We	can	achieve	this	by	specifying	the	h	and	v	inputs	to
panel.abline,	as	seen	next.	The	output	can	be	seen	in	Figure	15.23.
Click	here	to	view	code	image

>	myPanel	<-	function(x,	y,	…)	{
+			medX	<-	median(x,	na.rm	=	TRUE)																										#	Median	of	X
values
+			medY	<-	median(y,	na.rm	=	TRUE)																										#	Median	of	Y
values
+			panel.abline(v	=	medX,	h	=	medY,	lwd	=	2,	col	=	“red”)			#	Add	reference
lines
+			panel.xyplot(x,	y,	…)																																		#	Draw	the	points
+	}
>	xyplot(	mpg	~	wt	|	factor(cyl),	data	=	mtcars,	panel	=	myPanel,	pch	=	16)

FIGURE	15.23	Scatter	plot	of	miles	per	gallon	vs.	weight	by	number	of	cylinders	with
reference	lines	at	the	medians

There	are	many	other	panel.*	functions	we	could	use	in	a	similar	manner.	A	selection
of	these	are	listed	in	Table	15.4.



TABLE	15.4	Sample	of	Useful	Panel	Functions

Using	Other	Panel	Functions

In	the	previous	section	you	saw	a	range	of	“panel”	functions	we	can	use	to	customize	our
graphics.	Let’s	have	a	closer	look	at	a	few	of	the	panel	functions	mentioned:
Click	here	to	view	code	image

>	panel.points
function	(…)
lpoints(…)
<bytecode:	0x0efed2c8>
<environment:	namespace:lattice>
>	panel.text
function	(…)
ltext(…)
<bytecode:	0x0f80702c>
<environment:	namespace:lattice>
>	panel.lines
function	(…)
llines(…)
<bytecode:	0x2f2a1acc>
<environment:	namespace:lattice>

Many	of	the	panel.*	functions	use	low-level	graph	calls	to	add	elements	to	the	graph.
These	are	“lattice”	equivalents	of	the	low-level	graph	functions	you	saw	in	Hour	13.	Table
15.5	lists	a	few	of	these	low-level	graph	functions.



TABLE	15.5	Low-Level	Lattice	Graph	Functions

Let’s	see	an	example	using	the	ltext	function	to	add	some	text	in	each	panel.	Here,
we’ll	use	the	lm	function	to	fit	a	linear	regression	line	in	each	panel	and	use	ltext	to
report	the	intercept	and	slope.	The	resulting	graph	can	be	seen	in	Figure	15.24.
Click	here	to	view	code	image

>	myPanel	<-	function(x,	y,	…)	{
+			myLm	<-	lm(y	~	x)																																#	Fit	a	linear
regression	line
+			panel.abline(myLm,	col	=	“red”)																		#	Add	the	regression
line
+			panel.xyplot(x,	y,	…)																										#	Draw	the	points
+			params	<-	paste(c(“Intercept:”,	“Slope:”),							#	Parameters
+					signif(coef(myLm),	3),	collapse=”\n”)
+			ltext(max(x),	max(y),	params,	adj	=	1,	cex	=	.8)	#	Add	text	to	plot
+	}
>	xyplot(	mpg	~	wt	|	factor(cyl),	data	=	mtcars,	panel	=	myPanel,	pch	=	16)

FIGURE	15.24	Scatter	plot	of	miles	per	gallon	vs.	weight	by	number	of	cylinders	with
linear	regression	line



This	example	correctly	calculates	and	prints	the	parameters	of	the	regression	line.	In	this
example,	we	used	the	maximum	X	and	Y	positions	to	place	the	text,	which	doesn’t
produce	a	good	output.	We	could	“hard-code”	the	positions	of	the	text,	but	then	we’ll	not
be	able	to	reuse	our	code	if	the	data	changes.	We	can	resolve	this	issue	by	passing	another
variable	to	the	panel	function	directly,	as	discussed	next.

Passing	Additional	Arguments

In	the	previous	example,	we	saw	that	positioning	the	text	is	difficult.	Let’s	resolve	this	by
passing	the	positions	as	additional	arguments	to	the	lattice	call.	If	we	list	these	also	as
inputs	to	the	panel	function,	the	arguments	will	be	available	to	us.	Here	we’ll	specify
inputs	xPos	and	yPos	to	the	panel	function	and	pass	them	directly	into	our	high	level
xyplot	call.	The	result	can	be	seen	in	Figure	15.25.
Click	here	to	view	code	image

>	myPanel	<-	function(x,	y,	xPos,	yPos,	…)	{
+			myLm	<-	lm(y	~	x)																																#	Fit	a	linear
regression	line
+			panel.abline(myLm,	col	=	“red”)																		#	Add	the	regression
line
+			panel.xyplot(x,	y,	…)																										#	Draw	the	points
+			params	<-	paste(c(“Intercept:”,	“Slope:”),							#	Parameters
+																			signif(coef(myLm),	3),	collapse=”\n”)
+			ltext(xPos,	yPos,	params,	adj	=	1,	cex	=	.8)	#	Add	text	to	plot
+	}
>	xyplot(	mpg	~	wt	|	factor(cyl),	data	=	mtcars,	panel	=	myPanel,	pch	=	16,
+			xPos	=	max(mtcars$wt),	yPos	=	max(mtcars$mpg))

FIGURE	15.25	Scatter	plot	of	miles	per	gallon	vs.	weight	by	number	of	cylinders	with
linear	regression	line	(and	label	justified	on	the	plot)



Controlling	Styles
Earlier,	in	Figure	15.13,	you	saw	the	use	of	the	auto.key	argument	to	automatically	add
a	legend	to	our	graphics.	However,	you	also	saw	that	the	style	of	the	legend	didn’t	directly
reflect	the	styling	used	in	the	plot.	Let’s	see	another	simple	example	of	this	by	adding	a
grouping	variable	to	our	plot.	Figure	15.26	shows	the	resulting	plot,	where	the	plot
character	is	varied	based	on	the	transmission	type.
Click	here	to	view	code	image

>	xyplot(	mpg	~	wt	|	factor(cyl),	data	=	mtcars,
+			pch	=	c(15,	16),	col	=	c(“navy”,	“orange”),
+			groups	=	ifelse(am	==	0,	“Auto”,	“Manual”),	auto.key	=	TRUE)

FIGURE	15.26	Scatter	plot	of	miles	per	gallon	vs.	weight	by	number	of	cylinders
grouped	by	transmission	type

In	this	graph,	we	specify	that	the	two	groups	levels	should	be	represented	by	specific
colors	(navy	and	orange)	and	plot	characters	(filled	squares	and	filled	circles).	The	plot
seems	to	be	created	correctly,	but	the	styles	in	the	legend	produced	do	not	match.

This	situation	occurs	because	the	styling	of	lattice	graphics	is	controlled	by	underlying
stylesheets	(or	“themes”).	When	the	auto.key	option	is	set,	the	legend	is	constructed
based	on	these	underlying	styles	and	not	by	the	style	parameters	used	in	the	lattice	call.

Previewing	the	Styles
We	can	see	the	styles	currently	in	use	for	lattice	graphics	using	the	show.settings
function.	This	function	produces	a	set	of	graphics	to	visualize	the	range	of	styles	in	use,	as
seen	in	Figure	15.27.



>	show.settings()

FIGURE	15.27	Visualization	of	the	current	lattice	styles	in	use

From	this	visualization,	we	can	see	a	number	of	the	characters	shown	in	the	preceding
figures.	Here	are	some	examples:

	The	histogram[plot.polygon]	style	matches	the	style	of	the	histogram	we
created	in	Figure	15.2.

	The	dot.[symbol,	line]	style	matches	the	style	of	the	dot	plot	we	created	in
Figure	15.4.

	The	strip.background	style	controls	the	color	of	the	strip	header	on	each	plot.
The	default	color	is	the	light	orange	color	on	the	bottom	of	this	visualization,	but	the
second	level	(the	pale	green)	was	seen	when	we	used	multiple	by	variables	in	Figure
15.20.

	The	superpose.symbol	style	shows	the	default	plot	symbols	and	colors,	which
are	also	the	ones	used	to	create	the	legend	(blue	open	circle,	pink	open	circle).

Creating	a	Theme
The	styles	themselves	are	stored	as	nested	lists	of	vectors.	To	create	a	theme,	it	is	easiest
to	create	a	copy	of	the	existing	styles	and	then	alter	specific	aspects	of	them.	We	can
create	a	copy	of	the	current	styles	using	the	trellis.par.get	function,	as	shown
here:
Click	here	to	view	code	image

>	myTheme	<-	trellis.par.get()		#	Get	the	list	of	styles



>	names(myTheme)																#	Look	at	the	element	names
	[1]
“grid.pars”									“fontsize”										“background”								“panel.background”
	[5]
“clip”														“add.line”										“add.text”										“plot.polygon”
	[9]	“box.dot”											“box.rectangle”					“box.umbrella”						“dot.line”
[13]
“dot.symbol”								“plot.line”									“plot.symbol”							“reference.line”
[17]
“strip.background”		“strip.shingle”					“strip.border”						“superpose.line”
[21]	“superpose.symbol”		“superpose.polygon”
“regions”											“shade.colors”
[25]
“axis.line”									“axis.text”									“axis.components”			“layout.heights”
[29]
“layout.widths”					“box.3d”												“par.xlab.text”					“par.ylab.text”
[33]	“par.zlab.text”					“par.main.text”					“par.sub.text”

>	myTheme$superpose.symbol						#	Look	at	the	superpose.symbol	element
$alpha
[1]	1	1	1	1	1	1	1

$cex
[1]	0.8	0.8	0.8	0.8	0.8	0.8	0.8

$col
[1]	“#0080ff”			”#ff00ff”			“darkgreen”
“#ff0000”			“orange”				”#00ff00”			“brown”

$fill
[1]	“#CCFFFF”	“#FFCCFF”	“#CCFFCC”	“#FFE5CC”	“#CCE6FF”	“#FFFFCC”	“#FFCCCC”

$font
[1]	1	1	1	1	1	1	1

$pch
[1]	1	1	1	1	1	1	1

Once	we	have	our	styles,	we	can	update	the	elements	we	need.	For	example,	let’s	change
the	default	styles	for	the	points.	Let’s	also	change	the	default	color	of	the	strip	header:
Click	here	to	view	code	image

>	ss	<-	myTheme$superpose.symbol		#	Extract	the	superpose.symbol	element
>	names(ss)																							#	Names	of	the	superpose.symbol	element
[1]	“alpha”	“cex”			“col”			“fill”		“font”		“pch”
>	ss$col																										#	Current	colors
[1]	“#0080ff”			”#ff00ff”			“darkgreen”
“#ff0000”			“orange”				”#00ff00”			“brown”
>	ss$col	<-	c(“orange”,	“navy”,	“green”,	“red”,	“grey”)	#	Update	plot	colors
>	ss$pch	<-	c(16,	15,	17,	18,	19)	#	Updated	plot	symbols
>	myTheme$superpose.symbol	<-	ss		#	Update	the	styles
>	myTheme$strip.background$col				#	Current	strip	header	color
[1]	“#ffe5cc”	“#ccffcc”	“#ccffff”	“#cce6ff”	“#ffccff”	“#ffcccc”	“#ffffcc”
>	myTheme$strip.background$col	<-	c(“lightgrey”,	“lightblue”,	“lightgreen”)

We	can	use	the	show.settings	function	to	check	the	changes	we’ve	made	to	our
stylesheet.	The	changes	above	can	be	seen	in	Figure	15.28.

>	show.settings(myTheme)



FIGURE	15.28	Visualization	of	our	updated	stylesheet

Using	a	Theme
Now	we	can	use	our	theme	to	create	with	our	plot	using	the	par.settings	argument.
This	way,	the	styles	in	the	plot	and	legend	will	match.	To	see	this,	let’s	use	our	previous
example,	but	this	time	using	our	new	theme.	The	resulting	plot	can	be	seen	in	Figure
15.29.
Click	here	to	view	code	image

>	xyplot(	mpg	~	wt	|	factor(cyl),	data	=	mtcars,	par.settings	=	myTheme,
+									groups	=	ifelse(am	==	0,	“Auto”,	“Manual”),	auto.key	=	TRUE)



FIGURE	15.29	Scatter	plot	of	miles	per	gallon	vs.	weight	by	number	of	cylinders
grouped	by	transmission	type	(using	custom	stylesheet)

Tip:	Overwriting	Default	Settings

In	the	last	section	we	created	a	new	theme	and	used	it	in	our	graph	with	the
par.settings	argument.	If	instead	we	wanted	to	overwrite	the	default	theme
globally,	we	can	use	the	trellis.par.set	function	as	follows:
trellis.par.set(theme	=	myTheme).	Unlike	ggplot2	this	change	only
applies	to	current	active	devices,	so	care	must	be	taken	when	exporting	to	multiple
devices.

Summary
The	lattice	package	provides	a	rich	set	of	graphic	functions	that	are	particularly	useful	for
visualizing	relationships	in	grouped	data.	In	this	hour,	you	saw	how	to	create	simple	lattice
graphics	and	control	the	appearance	of	the	graph	using	standard	options.	You	also	saw
how	the	grouping	and,	in	particular,	panel	capabilities	of	lattice	can	help	you	to	better
explore	levels	of	information	in	your	data.	With	base	graphics,	ggplot2,	and	lattice,	R	has
an	incredible	array	of	graphical	capabilities	to	suit	the	needs	of	the	R	user	community.

Q&A
Q.	We’ve	seen	the	base,	ggplot2	and	lattice	systems.	Which	graph	system	should	I
use?

A.	This	is	a	difficult	question	to	answer.	A	familiarization	with	the	base	graphic	system



is	strongly	recommended,	because	it	is	still	(perhaps)	a	preferred	system	to	create
highly	bespoke	graphics.	There	are	also	elements	of	base	graphics	that	are	reflected
throughout	ggplot2	and	lattice.	Beyond	that,	it	is	good	advice	to	learn	at	least	one	of
ggplot2	or	lattice.	In	terms	of	capability,	the	ggplot2	and	lattice	packages	have
almost	100%	overlap,	so	when	choosing	between	them	it’s	a	question	of	style	and
future	direction.	Lattice	is	an	older	system,	and	those	users	familiar	with	the	S-
PLUS	Trellis	capabilities	may	find	it	a	more	natural	fit.	However,	ggplot2	is	the
more	modern	implementation,	with	more	support	and	documentation	and	more
ongoing	development.

Q.	Can	I	stop	each	panel	having	the	same	X	and	Y	axis	limits?

A.	Yes.	The	scales	argument	to	each	lattice	graph	allows	you	to	control	a	number	of
aspects	of	the	axes,	including	the	relationship	between	them.	The	scales	argument
itself	takes	a	list	of	controls,	which	can	include	an	element	called	relation	that
controls	the	relationship	between	axes.	In	particular,	relation	=	"same"	is	the
default,	whereas	relation	=	"free"	specifies	that	each	panel	can	be	drawn	on
a	different	scale.

Q.	What	does	the	latticeExtra	package	do?

A.	The	latticeExtra	package	extends	the	lattice	package,	adding	many	new	features.
Notable	features	include	the	addition	of	new	plot	types,	new	panel	functions
(including	one	with	a	transparent	smoother),	and	more	styles.

Q.	How	do	I	control	the	ordering	of	panels?

A.	There	are	two	ways	to	control	the	panel	order.	First,	the	order	of	panels	will	reflect
the	order	of	levels	in	the	“by”	variables.	By	default,	the	order	of	the	levels	will	be
alphabetical,	so	a	variable	may	have	levels	ordered	“High	>	Low	>	Medium.”	The
factor	function	can	help	you	order	the	levels	correctly.	The	other	thing	to	note	is
that,	by	default,	panels	are	positioned	on	the	device	from	the	bottom	left	to	the	top
right.	If	you	wish	to	change	this,	you	can	use	the	as.table	input	to	the	lattice
functions.	Setting	as.table	=	TRUE	will	result	in	panels	positioned	from	the	top
left	to	the	bottom	right.

Q.	Can	I	place	more	than	one	graph	on	the	same	page?

A.	Yes.	Each	lattice	graph	can	be	saved	as	an	object	and	then	placed	on	a	page	using
the	print.trellis	function.	For	more	information,	see	the	print.trellis
help	file.

Workshop
The	workshop	contains	quiz	questions	and	exercises	to	help	you	solidify	your
understanding	of	the	material	covered.	Try	to	answer	all	questions	before	looking	at	the
“Answers”	section	that	follows.

Quiz
1.	How	do	you	specify	the	variables	to	plot	with	a	univariate	lattice	graph	function?



2.	Which	lattice	function	creates	a	scatter-plot	matrix	of	a	data	frame?

3.	How	do	you	specify	multiple	“by”	variables	for	a	lattice	graph?

4.	What	argument	can	be	used	to	automatically	add	a	legend?

5.	How	can	you	customize	the	content	in	each	graph	panel?

Answers
1.	You	use	a	one-sided	formula,	such	as	histogram(	~	Y).

2.	The	splom	function	can	be	used	to	create	a	scatter-plot	matrix	of	a	data	frame.

3.	You	specify	multiple	“by”	variables	with	the	*	symbol.	For	example,	to	partition	a
plot	of	Y	vs.	X	by	variables	BY1	and	BY2,	you	would	specify	the	formula	as	Y	~	X
|	BY1	*	BY2.

4.	You	can	use	the	auto.key	argument	to	add	a	legend,	although	care	must	be	taken
to	ensure	the	styles	match	that	of	the	plot.

5.	You	can	create	a	“panel”	function	and	then	provide	it	as	the	panel	input	to	a	lattice
graph	function.

Activities
1.	Using	the	airquality	data	frame,	create	a	histogram	of	the	Wind	variable.

2.	Create	a	scatter	plot	of	Ozone	vs.	Wind	using	the	xyplot	function.	Add	titles	and
change	the	style	of	the	plotting	symbol.

3.	Extend	this	example	by	varying	the	color	of	the	plotting	symbol	by	Month.	Add	a
legend	to	your	plot.

4.	Change	this	graph	so	that,	instead,	each	Month	of	data	is	produced	in	a	separate
panel.

5.	Use	a	panel	function	to	add	a	linear	regression	line	to	each	panel.



Hour	16.	Introduction	to	R	Models	and	Object	Orientation

What	You’ll	Learn	in	This	Hour:

	How	to	fit	a	simple	statistical	model

	How	to	assess	the	model’s	appropriateness

	The	basic	concepts	of	object	orientation

The	R	Language	(and,	before	that,	S)	was	created	by	statisticians	to	enable	them	to
perform	statistical	analyses.	As	such,	R	is	primarily	a	statistical	software	and	provides	the
richest	set	of	analytic	methods	available	in	any	technology.	In	this	hour,	you	see	how	to	fit
a	simple	linear	model	and	assess	its	performance	using	a	range	of	textual	and	graphical
methods.	Beyond	this,	you’ll	be	introduced	to	“object	orientation”	and	see	how	the	R
statistical	modeling	framework	is	built	on	this	concept.	In	Hour	17,	“Common	R	Models,”
we’ll	extend	this	by	looking	at	other	modeling	approaches,	such	as	nonlinear,	survival,	and
time	series	models.	For	each	model	type	we	will	explain	some	of	the	basic	principles
behind	the	model	and	any	associated	terminology.	However,	the	focus	of	both	this	hour
and	Hour	17	is	on	the	practical	implementation	of	the	models	as	opposed	to	the
mathematics	behind	the	models.

Statistical	Models	in	R
Statistical	modeling	is	a	vital	technique	that	allows	us	to	understand	and	confirm	whether,
and	how,	responses	are	influenced	by	other	data.	R	provides	the	richest	set	of	statistical
modeling	capabilities	and	was	designed	from	the	outset	with	modeling	in	mind,	making	it
the	perfect	environment	in	which	to	fit	and	assess	models.	In	fact,	at	the	time	of	writing,
approximately	2,500	packages	are	available	on	CRAN	that	supply	model-fitting	functions
(based	on	an	analysis	of	package	descriptions).	The	majority	of	statistical	model-fitting
routines	are	designed	in	a	similar	fashion,	allowing	us	to	change	our	model-fitting
approach	without	having	to	relearn	a	completely	new	syntax.	In	many	ways,	this
consistent	design	and	approach	to	model	fitting	is	every	bit	as	valuable	as	the	range	of
models	available.	Let’s	focus	first	on	simple	linear	models	and	then	move	on	to	more
complex	model-fitting	approaches.

Simple	Linear	Models
A	linear	model	allows	us	to	relate	a	response,	or	“dependent,”	variable	to	one	or	more
explanatory,	or	“independent,”	variables	using	a	linear	function	of	parameters.	For	a	linear
model,	the	dependent	must	be	continuous;	however,	the	independent	variables	may	be
either	continuous	or	discrete.

The	lm	function	in	R	allows	us	to	fit	a	range	of	linear	models.	However,	we’ll	start	with	a
simple	linear	regression	of	one	continuous	dependent	variable	and	one	continuous
independent	variable.	In	this	case,	our	model	is	of	the	form	Y	=	α	+	β	*	X	+	ε,
where	the	Y	term	represents	our	dependent	variable,	and	X	represents	our	independent



variable(s).	The	α	and	β	are	parameters	to	be	estimated	and	ε	is	our	error	term.	For	this
hour,	let’s	use	the	mtcars	data	to	fit	simple	models,	starting	with	a	linear	regression	of
mpg	versus	wt,	which	can	be	visualized	in	Figure	16.1.
Click	here	to	view	code	image

>	plot(mtcars$wt,	mtcars$mpg,	main	=	“Miles	per	Gallon	vs	Weight”,
+						xlab	=	“Weight	(lb/1000)”,	ylab	=	“Miles	per	Gallon”,	pch	=	16)

FIGURE	16.1	A	scatter	plot	of	mpg	versus	wt

Note:	Base	Graphics

For	this	section,	we	will	use	the	base	graphics	system	to	produce	plots,	because	that
is	the	system	in	which	most	model-fitting	“diagnostic”	plots	are	implemented.

This	example	creates	a	scatter	plot	of	mpg	versus	wt.	From	the	plot,	it	is	clear	that	a
relationship	exists	between	mpg	and	wt	that	looks	approximately	linear,	with	miles	per
gallon	reducing	based	on	increased	vehicle	weights.



Fitting	the	Model
To	create	the	plot	in	Figure	16.1,	we	stated	our	x	and	y	variables	explicitly	using	the	$
syntax.	However,	we	can	also	create	the	same	basic	plot	using	formula	and	data
arguments,	plot(mpg	~	wt,	data	=	mtcars).	The	lm	function	works	in	much
the	same	way.	The	first	argument	to	lm	(and,	in	fact,	most	model-fitting	functions)	is	a
“formula”	defining	the	specific	relationship	to	model.	As	with	lattice	graphics,	we	use	the
~	symbol	to	establish	a	relationship	as	part	of	a	formula.	To	specify	a	linear	relationship
between	two	variables,	we	use	Y	~	X,	which	corresponds	to	a	model	of	Y	=	α	+	β	*
X	+	ε.	It	should	be	noted,	in	particular,	that	specifying	Y	~	X	denotes	a	relationship
that	includes	an	intercept	term	(α).	Let’s	go	ahead	and	fit	our	linear	model	of	mpg	versus
wt	using	the	lm	function.	We	will	save	the	output	from	the	model	fit	as	an	object	and
print	the	value	of	the	object.
Click	here	to	view	code	image

>	model1	<-	lm(mpg	~	wt,	data	=	mtcars)		#	Fit	the	model
>	model1

Call:
lm(formula	=	mpg	~	wt,	data	=	mtcars)

Coefficients:
(Intercept)											wt
					37.285							-5.344

Note:	The	data	Argument

Note	that	lm,	like	the	majority	of	model-fitting	functions	in	R,	accepts	a	data
argument	that	specifies	the	data	frame	from	which	the	model	variables	are	taken.	If
preferred,	we	can	omit	this	argument	and	fit	the	model	by	specifying	vector	inputs,
such	as	lm(Y	~	X)	or,	in	our	example,	lm(mtcars$mpg	~	mtcars$wt).

Tip:	Removing	the	Intercept

As	mentioned,	the	default	behavior	when	specifying	a	model	of	Y	~	X	is	to
include	an	intercept	term.	If	appropriate,	we	can	remove	the	intercept	term	by
instead	defining	the	formula	as	Y	~	X	–	1.

Assessing	a	Model	in	R
In	the	previous	section,	we	fitted	a	simple	linear	regression	of	mpg	versus	wt.	Printing	the
resulting	object	from	the	lm	function,	we	see	a	concise	text	output	containing	two
elements:

	The	“call”	that	was	made	to	the	function.	(A	model	always	knows	how	it	was
created.)

	The	estimated	coefficients	of	the	model	(α	=	37.285	and	β	=	-5.344).

The	next	step	is	to	assess	whether	our	model	is	a	“good”	model	and	look	for	areas	of



improvement.	To	assess	a	model’s	appropriateness,	we	can	investigate	the	following:

	The	overall	measures	of	fit,	such	as	the	Residual	Standard	Error

	Plots	of	“predicted”	(or	“fitted”)	values	and	model	“residuals”	(where	the	residuals
values	are	calculated	by	subtracting	the	fitted	values	from	the	observed	responses)

	Metrics	on	the	influence	of	each	independent	variable

Clearly,	the	printed	output	from	our	model	object	provides	very	little	insight	into	the
model	fit	itself.	For	that,	we	need	to	use	further	functions	that	allow	us	to	explore	other
aspects	of	our	model.

Model	Summaries
As	seen	in	the	previous	section,	the	printed	output	from	a	model	is	rather	concise,
reporting	only	the	function	call	and	the	estimated	parameters.	We	can	generate	a	more
detailed	textual	output	from	our	model	using	the	summary	function,	which	accepts	a
model	object	as	the	input.	The	output	from	this	is	shown	in	Listing	16.1.

LISTING	16.1	Output	from	Summary	of	Model
Click	here	to	view	code	image

	1:	>	summary(model1)		#	Summary	of	the	lm	model
	2:
	3:	Call:
	4:	lm(formula	=	mpg	~	wt,	data	=	mtcars)
	5:
	6:	Residuals:
	7:					Min						1Q		Median						3Q					Max
	8:	-4.5432	-2.3647	-0.1252		1.4096		6.8727
	9:
10:	Coefficients:
11:													Estimate	Std.	Error	t	value	Pr(>|t|)
12:	(Intercept)		37.2851					1.8776		19.858		<	2e-16	***
13:	wt											-5.3445					0.5591		-9.559	1.29e-10	***
14:	–
15:	Signif.	codes:		0	‘***’	0.001	‘**’	0.01	‘*’	0.05	‘.’	0.1	‘	‘	1
16:
17:	Residual	standard	error:	3.046	on	30	degrees	of	freedom
18:	Multiple	R-squared:		0.7528,		Adjusted	R-squared:		0.7446
19:	F-statistic:	91.38	on	1	and	30	DF,	p-value:	1.294e-10

As	you	can	see,	the	summary	function	results	in	considerably	more	metrics.	The
information	returned	is	shown	in	Table	16.1,	which	describes	the	output	shown	in	Listing
16.1.



TABLE	16.1	Metrics	from	Summary	of	Model

There	are	a	small	number	of	additional	arguments	we	can	provide	to	the	summary
function,	including	the	correlation	input,	which	allows	us	to	additionally	include	the
correlation	matrix	of	estimated	parameters,	as	shown	in	the	following	example.	For	more
information,	see	the	help	file	for	?summary.lm.

Model	Diagnostic	Plots
In	Hour	13,	“Graphics,”	we	introduced	the	plot	function,	which	allows	us	to	produce
scatter	plots	of	our	data.	In	fact,	we	used	the	plot	function	earlier	in	this	hour	to	create
the	scatter	plot	in	Figure	16.1.	We	can	also	use	the	plot	function	to	create	diagnostic
plots	for	model	objects,	such	as	our	model1	object.	By	default,	four	diagnostic	plots	will
be	created,	so	we	will	first	use	the	mfrow	layout	parameter	to	create	a	2×2	plot	surface
that	is	displayed	in	Figure	16.2:
Click	here	to	view	code	image

>	par(mfrow	=	c(2,	2))			#	Set	up	a	2x2	Graph	Page
>	plot(model1)											#	Create	diagnostic	plots	for	model1



FIGURE	16.2	Diagnostic	plots	for	linear	regression

The	four	plots	created	by	the	call	to	the	plot	function	are	described	in	Table	16.2.

TABLE	16.2	Diagnostic	Plots	Created



Tip:	Additional	Arguments	to	plot

We	can	provide	a	number	of	additional	arguments	to	plot.	Most	of	these	are
concerned	with	the	formatting	of	each	plot	(such	as	the	id.n	input,	which	controls
the	number	of	“extreme”	values	to	be	identified	on	each	plot).	Perhaps	the	most
interesting	is	the	which	argument,	which	controls	which	plots	are	to	be	produced
by	plot.	By	default,	which	is	set	to	c(1:3,	5),	indicating	the	index	of	the
four	plots	to	be	created.	If,	instead,	we	specify	which	=	1:6,	the	plot	function
will	create	six	plots	(the	four	described	previously	plus	two	that	visualize	Cook’s
distance	measures).	For	more	information,	see	the	help	file	for	?plot.lm.

Extracting	Model	Elements
R	provides	three	functions	that	will	return	key	elements	of	a	linear	model	object	(and,	in
fact,	the	majority	of	model	types).	The	three	functions	are	described	in	Table	16.3.

TABLE	16.3	Model	Extractor	Functions

The	use	of	these	functions	can	be	seen	here:
Click	here	to	view	code	image

>	coef(model1)											#	Model	coefficients
(Intercept)										wt
		37.285126			-5.344472
>	head(resid(model1))				#	Fitted	Values
								Mazda	RX4					Mazda	RX4	Wag								Datsun	710
							-2.2826106								-0.9197704								-2.0859521
			Hornet	4	Drive	Hornet	Sportabout											Valiant
								1.2973499								-0.2001440								-0.6932545
>	head(fitted(model1))			#	Residuals	(observed	-	fitted)
								Mazda	RX4					Mazda	RX4	Wag								Datsun	710
									23.28261										21.91977										24.88595
			Hornet	4	Drive	Hornet	Sportabout											Valiant
									20.10265										18.90014										18.79325

Let’s	use	the	resid	function	to	create	scatter	plots	of	our	residuals	versus	the	other	nine
variables	from	mtcars	(seen	in	Figure	16.3):
Click	here	to	view	code	image

>	whichVars	<-	setdiff(names(mtcars),	c(“wt”,	“mpg”))		#	Names	of	other
variables
																																																									in	mtcars
>	par(mfrow	=	c(3,	3))																																	#	Set	plot	layout
>	for	(V	in	whichVars)	{																															#	Loop	through	create
																																																									scatter	plots
+			plot(mtcars[[V]],	resid(model1),	main	=	V,	xlab	=””,	pch	=	16)
+			lines(loess.smooth(mtcars[[V]],	resid(model1)),	col	=	“red”)



+	}

FIGURE	16.3	Plots	of	model	residuals	versus	other	variables	in	mtcars

From	these	plots,	it	seems	that	there	are	other	variables	we	should	include	in	our	model—
we’ll	do	that	later	in	this	hour.

Models	as	List	Objects
In	the	previous	sections,	you	saw	a	number	of	ways	of	accessing	information	from	a
model:

	Printing	the	contents	of	the	model	object

	Using	the	summary	function	to	create	a	more	detailed	textual	output

	Using	the	plot	function	to	create	a	range	of	diagnostic	plots

	Using	functions	resid,	coef,	and	fitted	to	extract	key	model	elements

These	approaches	all	use	the	information	stored	in	the	model	object	(returned	from	the	call
to	lm).	From	the	“Value”	section	of	the	lm	help	file	(?lm),	we	can	see	that	the	function
returns	“an	object	of	class	lm,”	which	is	a	“list”	containing	a	number	of	components.
Because	our	object	is,	fundamentally,	a	list,	we	can	show	the	names	of	its	elements	using
the	names	function	(as	seen	in	Hour	4,	“Multi-Mode	Data	Structures”).	Let’s	check	the
class	of	our	model1	object	and	see	the	elements	it	contains:
Click	here	to	view	code	image

>	class(model1)			#	The	class	of	model1
[1]	“lm”
>	is.list(model1)	#	Is	model1	a	list?
[1]	TRUE



>	names(model1)			#	The	element	names	of	model1
	[1]	“coefficients”		“residuals”					“effects”							“rank”
	[5]	“fitted.values”	“assign”								“qr”												“df.residual”
	[9]	“xlevels”							“call”										“terms”									“model”

The	“Value”	section	of	the	lm	help	file	also	describes	these	elements;	this	information	can
be	seen	in	Table	16.4.

TABLE	16.4	Model	Elements

Given	that	our	object	is	a	list	and	we	know	the	element	names,	we	can	directly	extract
elements	using	the	$	symbol,	as	shown	here:
Click	here	to	view	code	image

>	model1$coefficients															#	Model	Coefficients
(Intercept)										wt
		37.285126			-5.344472
>	quantile(model1$residuals,								#	Specific	quantiles	of	residuals
+										probs	=	c(0.05,	0.5,	0.95))
								5%								50%								95%
-3.8071897	-0.1251956		6.1794815

Model	Summaries	as	List	Objects

You	have	seen	that	the	summary	function	allows	us	to	produce	a	detailed	textual
summary	of	our	model	fit.	In	fact,	the	summary	function	(when	applied	to	an	lm	object)
also	returns	a	list	object	that	can	be	queried.	This	is	shown	in	the	following	example:



Click	here	to	view	code	image
>	sModel1	<-	summary(model1)			#	Summary	of	model1
>	class(sModel1)															#	Class	of	summary	object
[1]	“summary.lm”
>	is.list(sModel1)													#	Is	it	a	list?
[1]	TRUE
>	names(sModel1)															#	Element	names
	[1]	“call”										“terms”									“residuals”					“coefficients”
	[5]	“aliased”							“sigma”									“df”												“r.squared”
	[9]	“adj.r.squared”	“fstatistic”				“cov.unscaled”
>	sModel1$adj.r.squared								#	Adjusted	R	Squared
[1]	0.7445939
>	sModel1$sigma^2														#	Estimate	variance
[1]	9.277398

The	elements	of	this	object	are	described	in	Table	16.5	(taken	from	the	summary.lm
help	file).

TABLE	16.5	Summary	Model	Elements



Adding	Model	Lines	to	Plots
At	the	start	of	this	hour,	we	created	a	scatter	plot	of	mpg	vs.	wt	(refer	to	Figure	16.1).	We
can	add	a	linear	regression	line	to	this	plot	based	on	our	model	fit	using	the	abline
function	(which	you	also	saw	earlier	in	Hour	13).	The	following	code	adds	a	solid	line
representing	our	model	fit;	the	resulting	plot	can	be	seen	in	Figure	16.4.
Click	here	to	view	code	image

>	plot(mtcars$wt,	mtcars$mpg,	main	=	“Miles	per	Gallon	vs	Weight”,
+						xlab	=	“Weight	(lb/1000)”,	ylab	=	“Miles	per	Gallon”,	pch	=	16)
>	abline(model1)

FIGURE	16.4	Scatter	plot	of	mpg	versus	wt	with	overlaid	regression	line

Caution:	Additional	Arguments	to	plot

When	our	models	are	more	complex,	involving	multiple	variables	or	nonlinear
relations,	a	simple	abline	call	will	not	work	and	other	approaches	must	be	taken.
However,	for	simple	models	such	as	the	one	in	this	example,	it	works	well.

Making	Model	Predictions
Once	we	have	a	model,	we	can	make	predictions	using	the	predict	function.	If	we
supply	only	the	model	object	to	predict,	then	fitted	values	are	returned:
Click	here	to	view	code	image

>	head(predict(model1))		#	Model	Predictions	using	model1
								Mazda	RX4					Mazda	RX4	Wag								Datsun	710
									23.28261										21.91977										24.88595
			Hornet	4	Drive	Hornet	Sportabout											Valiant



									20.10265										18.90014										18.79325
>	head(fitted(model1))			#	Fitted	Values	of	model1
								Mazda	RX4					Mazda	RX4	Wag								Datsun	710
									23.28261										21.91977										24.88595
			Hornet	4	Drive	Hornet	Sportabout											Valiant
									20.10265										18.90014										18.79325

We	can,	instead,	provide	a	data	frame	containing	the	set(s)	of	independent	variables	for
which	out-of-sample	predictions	are	to	be	made.	This	data	frame	is	supplied	as	the
newdata	input	to	predict,	as	shown	here:
Click	here	to	view	code	image

>	wtDf	<-	data.frame(wt	=	1:6)																									#	Independent
Variables
>	predVals	<-	predict(model1,	newdata	=	wtDf)										#	Make	predictions
using
																																																									model1
>	data.frame(wt	=	wtDf$wt,	Pred	=	round(predVals,	1))		#	Form	as	data	frame
		wt	Pred
1		1	31.9
2		2	26.6
3		3	21.3
4		4	15.9
5		5	10.6
6		6		5.2

Other	arguments	to	the	predict	function	allow	us	to	customize	our	predictions	in	a
number	of	ways.	For	example,	we	can	use	the	se.fit	and	interval	arguments	to
provide	standard	errors	and	confidence	intervals	related	to	our	predictions,	as	shown	here:
Click	here	to	view	code	image

>	predict(model1,	newdata	=	wtDf,	se.fit	=	TRUE,	interval	=	“confidence”)
$fit
								fit						lwr							upr
1	31.940655	29.18042	34.700892
2	26.596183	24.82389	28.368481
3	21.251711	20.12444	22.378987
4	15.907240	14.49018	17.324295
5	10.562768		8.24913	12.876406
6		5.218297		1.85595		8.580644

$se.fit
								1									2									3									4									5									6
1.3515519	0.8678067	0.5519713	0.6938618	1.1328743	1.6463754

$df
[1]	30

$residual.scale
[1]	3.045882



Multiple	Linear	Regression
Figure	16.3	showed	a	plot	of	the	residuals	from	our	model	versus	other	variables	in	the
mtcars	data	frame.	We	can	include	more	than	one	independent	variable	in	a	model	by
separating	variables	by	a	+	symbol	on	the	right	side	of	the	formula.	Therefore,	we	can
specify	a	formula	as	Y	~	X1	+	X2,	which	corresponds	to	a	model	of	Y	=	α	+	β1	*
X1	+	β2	*	X2	+	ε.	Here,	α,	β1	and	β2	are	parameters	to	be	estimated	and	ε	is	our
error	term.	Let’s	define	a	new	model	including	both	wt	and	the	hp	variable:
Click	here	to	view	code	image

>	model2	<-	lm(mpg	~	wt	+	hp,	data	=	mtcars)		#	Fit	new	model
>	summary(model2)

Call:
lm(formula	=	mpg	~	wt	+	hp,	data	=	mtcars)

Residuals:
			Min					1Q	Median					3Q				Max
-3.941	-1.600	-0.182		1.050		5.854

Coefficients:
												Estimate	Std.	Error	t	value	Pr(>|t|)
(Intercept)	37.22727				1.59879		23.285		<	2e-16	***
wt										-3.87783				0.63273		-6.129	1.12e-06	***
hp										-0.03177				0.00903		-3.519		0.00145	**
–
Signif.	codes:		0	‘***’	0.001	‘**’	0.01	‘*’	0.05	‘.’	0.1	‘	‘	1

Residual	standard	error:	2.593	on	29	degrees	of	freedom
Multiple	R-squared:		0.8268,		Adjusted	R-squared:		0.8148
F-statistic:	69.21	on	2	and	29	DF,		p-value:	9.109e-12

You	can	see	from	this	output	that	the	coefficient	of	the	hp	variable	is	significant	at	the	1%
level,	so	including	it	would	initially	seem	to	be	a	good	idea.

Updating	Models
In	the	last	example,	we	created	a	new	model	(model2)	including	two	independent
variables	(wt	and	hp).	It	is	common,	when	model	fitting,	to	create	a	new	model	by
varying	the	aspects	of	a	previous	model.	That	could	include	the	following:

	Adding	or	removing	a	model	term

	Removing	outlying	observations

	Changing	a	model-fitting	option

Instead	of	creating	new	models	directly,	we	can	create	new	models	by	updating	existing
models	with	the	update	function.	To	achieve	this,	we	supply	an	existing	model	and
identify	what	to	change.	As	an	example,	let’s	re-create	model2,	this	time	using	the
update	function:
Click	here	to	view	code	image

>	model2	<-	update(model1,	mpg	~	wt	+	hp)						#	Create	model2	based	on
model1
>	model2



Call:
lm(formula	=	mpg	~	wt	+	hp,	data	=	mtcars)

Coefficients:
(Intercept)											wt											hp
			37.22727					-3.87783					-0.03177

Although	this	example	is	very	simple,	when	we	have	more	complex	models,	this	approach
can	be	very	efficient.

Tip:	Updating	Formula

When	updating	the	model	in	this	example,	we	specified	the	new	formula	as	mpg	~
wt	+	hp.	However,	we	can	reduce	the	amount	of	typing	using	the	period
character	to	denote	all	formula	elements	of	the	previous	model.	Therefore,	we	could
rewrite	the	previous	example	as	follows:

Click	here	to	view	code	image
>	model2	<-	update(model1,	.	~	.	+	hp)						#	Create	model2	based	on
model1

Again,	when	we	have	large	models,	this	can	be	a	far	more	efficient	way	of
developing	models.

Comparing	Nested	Models
In	the	previous	section,	we	created	a	new	model,	model2,	with	an	added	term	(hp).	An
initial	look	at	the	summary	from	model2	suggests	that	hp	should	be	included	in	our
model.	Note	that	the	independent	variables	in	model1	are	a	subset	of	those	in	model2.
The	models	are	otherwise	identical.	In	cases	such	as	this,	we	say	that	model1	is	nested
within	model2.	Instead	of	looking	at	the	models	in	isolation,	we	can	compare	two	(or
more)	nested	models	using	the	following	approaches:

	Creating	comparative	diagnostic	plots

	Computing	analysis	of	variance	tables

Comparative	Diagnostic	Plots

Because	we	can	access	the	information	in	each	model,	either	directly	or	using	functions
such	as	resid	and	fitted,	we	can	create	plots	that	overlay	data	from	two	or	more
models.	Let’s	start	by	creating	a	plot	of	residuals	vs.	fitted	values	for	each	of	our	two
models.	The	output	can	be	seen	in	Figure	16.5.
Click	here	to	view	code	image

>	#	Extract	elements
>	res1	<-	resid(model1)
>	fit1	<-	fitted(model1)
>	res2	<-	resid(model2)
>	fit2	<-	fitted(model2)

>	#	Calculate	axis	range
>	resRange	<-	c(-1,	1)	*	max(abs(res1),	abs(res2))



>	fitRange	<-	range(fit1,	fit2)

>	#	Create	plot	for	model1	>	add	points	for	model2
>	plot(fit1,	res1,	xlim	=	fitRange,	ylim	=	resRange,
+			col	=	“red”,	pch	=	16,	main	=	“Residuals	vs	Fitted	Values”,
+			xlab	=	“Fitted	Values”,	ylab	=	“Residuals”)
>	points(fit2,	res2,	col	=	“blue”,	pch	=	16)

>	#	Add	reference	and	smooth	lines
>	abline(h	=	0,	lty	=	2)
>	lines(loess.smooth(fit1,	res1),	col	=	“red”)
>	lines(loess.smooth(fit2,	res2),	col	=	“blue”)
>	legend(“bottomleft”,	c(“mpg	~	wt”,	“mpg	~	wt	+	hp”),	fill	=	c(“red”,
“blue”))

FIGURE	16.5	Scatter	plot	of	residuals	vs.	fitted	values	for	two	linear	models

We	can	use	a	similar	approach	to	see	how	different	models	deal	with	variables	in	our	data.
For	example,	let’s	see	how	the	addition	of	the	hp	variable	in	model2	has	helped	to	deal
with	the	relationship	between	the	model1	residuals	and	hp	shown	in	Figure	16.3.	The
resulting	plot	can	be	seen	in	Figure	16.6.
Click	here	to	view	code	image

>	#	Create	plot	for	model1	>	add	points	for	model2
>	plot(mtcars$hp,	res1,	ylim	=	resRange,
+						col	=	“red”,	pch	=	16,	main	=	“Residuals	vs	Fitted	Values”,
+						xlab	=	“Fitted	Values”,	ylab	=	“Residuals”)
>	points(mtcars$hp,	res2,	col	=	“blue”,	pch	=	16)

>	#	Add	reference	and	smooth	lines
>	abline(h	=	0,	lty	=	2)
>	lines(loess.smooth(mtcars$hp,	res1,	span	=	.8),	col	=	“red”)
>	lines(loess.smooth(mtcars$hp,	res2,	span	=	.8),	col	=	“blue”)
>	legend(“bottomleft”,	c(“mpg	~	wt”,	“mpg	~	wt	+	hp”),	fill	=	c(“red”,
“blue”))



FIGURE	16.6	Scatter	plot	of	residuals	vs	hp	for	two	linear	models

Analysis	of	Variance

We	can	create	an	analysis	of	variable	table	for	one	or	more	linear	models	using	the	anova
functions.	For	this	to	make	statistical	sense,	the	models	provided	should	be	nested.	For
each	model,	the	residual	degrees	of	freedom	and	sum	of	squares	is	reported.	In	addition,
an	F	test	is	performed	for	each	step,	with	the	p-value	report.	Let’s	create	an	analysis	of
variance	table	to	compare	model1	and	model2:
Click	here	to	view	code	image

>	anova(model1,	model2)
Analysis	of	Variance	Table

Model	1:	mpg	~	wt
Model	2:	mpg	~	wt	+	hp
		Res.Df				RSS	Df	Sum	of	Sq						F			Pr(>F)
1					30	278.32
2					29	195.05		1				83.274	12.381	0.001451	**
–
Signif.	codes:		0	‘***’	0.001	‘**’	0.01	‘*’	0.05	‘.’	0.1	‘	‘	1

You	can	see	from	the	p-value	(the	value	below	Pr(>F))	that	the	inclusion	of	the	hp
variable	significantly	improved	the	model	fit	(assuming	a	p-value	of	0.05).



Interaction	Terms
We	may	wish	to	test	whether	there	is	a	significant	interaction	term	in	the	model.	For
example,	we	may	hypothesize	that	wt	has	a	different	effect	on	mpg	depending	on
differing	values	of	hp.	To	test	an	interaction	term,	we	specify	it	using	the	:	symbol.
Therefore,	we	can	specify	a	formula	as	Y	~	X1	+	X2	+	X1:X2,	which	corresponds	to
a	model	of	Y	=	α	+	β1	*	X1	+	β2	*	X2	+	β2	*	X1	*	X2	+	ε.	Here,	α,	β1,
β2,	and	β3	are	parameters	to	be	estimated	and	ε	is	our	error	term.	Let’s	update	model2	to
include	this	interaction	term.
Click	here	to	view	code	image

>	model3	<-	update(model2,	.	~	.	+	wt:hp)
>	summary(model3)

Call:
lm(formula	=	mpg	~	wt	+	hp	+	wt:hp,	data	=	mtcars)

Residuals:
				Min						1Q		Median						3Q					Max
-3.0632	-1.6491	-0.7362		1.4211		4.5513

Coefficients:
												Estimate	Std.	Error	t	value	Pr(>|t|)
(Intercept)	49.80842				3.60516		13.816	5.01e-14	***
wt										-8.21662				1.26971		-6.471	5.20e-07	***
hp										-0.12010				0.02470		-4.863	4.04e-05	***
wt:hp								0.02785				0.00742			3.753	0.000811	***
–
Signif.	codes:		0	‘***’	0.001	‘**’	0.01	‘*’	0.05	‘.’	0.1	‘	‘	1

Residual	standard	error:	2.153	on	28	degrees	of	freedom
Multiple	R-squared:		0.8848,		Adjusted	R-squared:		0.8724
F-statistic:	71.66	on	3	and	28	DF,		p-value:	2.981e-13

Assess	Addition	of	Interaction	Term
From	the	preceding	summary	output,	the	interaction	terms	certainly	seem	highly
significant,	as	are	the	other	parameters	when	assessed	in	the	presence	of	the	interaction.
Let’s	compare	our	models	with	a	quick	graphic,	seen	in	Figure	16.7.	This	time,	we’ll	add
horizontal	reference	lines	at	the	5%	and	95%	residual	quantiles.
Click	here	to	view	code	image

>	#	Extract	elements	for	model	3
>	res3	<-	resid(model3)
>	fit3	<-	fitted(model3)

>	#	Calculate	axis	range
>	resRange	<-	c(-1,	1)	*	max(resRange,	abs(res3))
>	fitRange	<-	range(fitRange,	fit3)

>	#	Create	plot	for	model1	>	add	points	for	model2
>	plot(fit1,	res1,	xlim	=	fitRange,	ylim	=	resRange,
+						col	=	“red”,	pch	=	16,	main	=	“Residuals	vs	Fitted	Values”,
+						xlab	=	“Fitted	Values”,	ylab	=	“Residuals”)
>	points(fit2,	res2,	col	=	“blue”,	pch	=	16)
>	points(fit3,	res3,	col	=	“black”,	pch	=	16)



>	#	Add	reference	and	smooth	lines
>	abline(h	=	0,	lty	=	2)
>	lines(loess.smooth(fit1,	res1),	col	=	“red”)
>	lines(loess.smooth(fit2,	res2),	col	=	“blue”)
>	lines(loess.smooth(fit3,	res3),	col	=	“black”)

>	#	Add	5%	and	95%	reference	lines	for	each	model
>	refFun	<-	function(res,	col)	abline(h	=	quantile(res,	c(.05,	.95)),	col	=
col,	lty	=	3)
>	refFun(res1,	“red”)
>	refFun(res2,	“blue”)
>	refFun(res3,	“black”)

>	legend(“bottomleft”,	c(“mpg	~	wt”,	“mpg	~	wt	+	hp”,	“mpg	~	wt	+	hp	+
wt:hp”),
+			fill	=	c(“red”,	“blue”,	“black”))

FIGURE	16.7	Scatter	plot	of	residuals	vs	fitted	values	for	three	linear	models

The	addition	of	the	interaction	term	certainly	seems	to	have	improved	our	model.	As	a	last
check,	let’s	create	an	analysis	of	the	variance	table	for	our	three	models:
Click	here	to	view	code	image

>	anova(model1,	model2,	model3)
Analysis	of	Variance	Table

Model	1:	mpg	~	wt
Model	2:	mpg	~	wt	+	hp
Model	3:	mpg	~	wt	+	hp	+	wt:hp
		Res.Df				RSS	Df	Sum	of	Sq						F				Pr(>F)
1					30	278.32
2					29	195.05		1				83.274	17.969	0.0002207	***
3					28	129.76		1				65.286	14.088	0.0008108	***
–
Signif.	codes:		0	‘***’	0.001	‘**’	0.01	‘*’	0.05	‘.’	0.1	‘	‘	1



In	this	case,	the	F	test	and	corresponding	p-values	are	derived	by	testing	each	model
against	the	largest	model	provided	(in	this	case	model3).	The	significance	of	the	two
comparisons	supports	our	claim	that	model3	is	an	improvement	over	each	of	the
previous	models.

Tip:	Linear	Combinations	Including	Interactions

In	the	previous	section,	you	saw	that	we	can	create	models	with	linear	combinations
of	variables	and	interaction	terms	using	a	formula	such	as	Y	~	X1	+	X2	+
X1:X2.	Another	way	of	writing	this	is	as	Y	~	X1*X2,	which	expands	to	Y	~	X1
+	X2	+	X1:X2.	This	works	for	any	number	of	variables;	for	example,	we	could
use	Y	~	X1*X2*X3	to	create	a	model	of	Y	~	X1	+	X2	+	X3	+	X1:X2	+
X1:X3	+	X2:X3	+	X1:X2:X3!

Factor	Independent	Variables
So	far	in	this	hour,	we	have	used	only	continuous	independent	variables.	In	fact,	the	lm
function	allows	us	to	include	factor	variables	as	independent	variables.	In	the	mtcars
dataset,	there	are	a	number	of	variables	we	could	treat	as	factor	variables,	each	of	which
may	be	influential	in	our	model.	Let’s	first	look	at	the	residuals	from	our	current	model
(model3)	versus	some	of	these	factor	variables,	seen	in	Figure	16.8.	Let’s	focus	on	three
variables	that	we’ll	treat	as	categorical:

	The	vs	variable,	an	indicator	for	whether	the	engine	is	a	“straight”	(0)	or	“V”
engine	(1)

	The	am	variable,	an	indicator	of	the	transmission	type:	0	for	automatic,	1	for
manual.

	The	cyl	variable,	which	contains	the	number	of	cylinders	(4,	6,	or	8).



FIGURE	16.8	Model	residuals	versus	vs,	am,	and	cyl

These	variables	are	actually	stored	as	numeric,	so	we	will	need	to	convert	them	to	factors
first:
Click	here	to	view	code	image

>	par(mfrow	=	c(1,	3))
>	plot(factor(mtcars$vs),	resid(model3),		col	=	“red”,
+			xlab	=	“0	=	Straight	Engine	\	1	=	‘V	Engine’”,	ylab	=	“Residuals”,
+			main	=	“Residuals	versus\n’V	Engine’	Flag”)
>	plot(factor(mtcars$am),	resid(model3),	col	=	“red”,
+			xlab	=	“0	=	Automatic	\	1	=	Manual”,	ylab	=	“Residuals”,
+			main	=	“Residuals	versus\nTransmission	Type”)
>	plot(factor(mtcars$cyl),	resid(model3),	col	=	“red”,
+			xlab	=	“Number	of	Cylinders”,	ylab	=	“Residuals”,
+			main	=	“Residuals	versus\nNumber	of	Cylinders”)

Including	Factors
Let’s	add	cyl	to	our	model	and	see	what	impact	it	has.	To	achieve	this,	we	will	specify
cyl	as	a	factor	variable;	otherwise,	it	would	be	handled	as	a	continuous	independent
variable.
Click	here	to	view	code	image

>	model4	<-	update(model3,	.	~	.	+	factor(cyl))
>	summary(model4)

Call:
lm(formula	=	mpg	~	wt	+	hp	+	factor(cyl)	+	wt:hp,	data	=	mtcars)

Residuals:
				Min						1Q		Median						3Q					Max



-3.5309	-1.6451	-0.4154		1.3838		4.4788

Coefficients:
														Estimate	Std.	Error	t	value	Pr(>|t|)
(Intercept)		47.337329			4.679790		10.115	1.67e-10	***
wt											-7.306337			1.675258		-4.361	0.000181	***
hp											-0.103331			0.031907		-3.238	0.003274	**
factor(cyl)6	-1.259073			1.489594		-0.845	0.405685
factor(cyl)8	-1.454339			2.063696		-0.705	0.487246
wt:hp									0.023951			0.008966			2.671	0.012865	*
–
Signif.	codes:		0	‘***’	0.001	‘**’	0.01	‘*’	0.05	‘.’	0.1	‘	‘	1

Residual	standard	error:	2.203	on	26	degrees	of	freedom
Multiple	R-squared:		0.888,		Adjusted	R-squared:		0.8664
F-statistic:	41.21	on	5	and	26	DF,		p-value:	1.503e-11

The	coefficients	are	reported	for	cyl	=	6	and	cyl	=	8,	with	the	first	level	(cyl	=
4)	taken	as	the	baseline.	This	is	because	“treatment”	contrasts	are	the	default	contrast
method	for	unordered	factors.	The	treatment	“contrast”	method	contrasts	each	level	with	a
baseline	level,	taken	(by	default)	as	the	first	level	of	the	variable.

Tip:	Control	of	Contrasts

There	are	five	contrast	methods	available	in	R:	contr.treatment	(the	default),
contr.sum,	contr.poly,	contr.helmert,	and	contr.SAS.	Each	of	the
contrast	options	is	represented	by	a	function	that	is	used	to	create	a	contrast	matrix
of	the	appropriate	size.	The	following	is	an	example	for	a	factor	with	three	levels:

Click	here	to	view	code	image
>	contr.treatment(3)				#	Matrix	of	dummy	variables	to	use	for	a	3-level
factor
																										(like	cyl)
		2	3
1	0	0
2	1	0
3	0	1

We	view	and	set	the	default	contrast	using	options("contrasts").

From	the	model	output,	it	is	clear	that	the	cyl	variable	is	not	significant	in	the	model.
This	is	further	supported	by	an	analysis	of	variance,	which	shows	that	very	little	additional
variance	is	explained	with	the	addition	of	the	cyl	variable	between	model3	and
model4:
Click	here	to	view	code	image

>	anova(model1,	model2,	model3,	model4)
Analysis	of	Variance	Table

Model	1:	mpg	~	wt
Model	2:	mpg	~	wt	+	hp
Model	3:	mpg	~	wt	+	hp	+	wt:hp
Model	4:	mpg	~	wt	+	hp	+	factor(cyl)	+	wt:hp
		Res.Df				RSS	Df	Sum	of	Sq							F				Pr(>F)
1					30	278.32
2					29	195.05		1				83.274	17.1624	0.0003219	***
3					28	129.76		1				65.286	13.4552	0.0011040	**



4					26	126.16		2					3.606		0.3716	0.6932114
–
Signif.	codes:		0	‘***’	0.001	‘**’	0.01	‘*’	0.05	‘.’	0.1	‘	‘	1

One	interesting	thing	from	the	summary	output,	however,	is	that	the	significance	of	the	hp
variable	(and	the	interaction	term)	were	slightly	lessened	with	the	inclusion	of	cyl.	The
reason	for	this	is	that	hp	and	cyl	are	highly	correlated	(as	seen	in	Figure	16.9),	so	the
“information”	provided	by	hp	is	very	similar	to	that	supplied	by	cyl.
Click	here	to	view	code	image

>	plot(factor(mtcars$cyl),	mtcars$hp,	col	=	“red”,
+						xlab	=	“Number	of	Cylinders”,	ylab	=	“Gross	Horsepower”,
+						main	=	“Gross	Horsepower	vs	Number	of	Cylinders”)

FIGURE	16.9	Gross	horsepower	vs.	number	of	cylinders	(cyl	versus	hp)

We	could,	as	a	next	step,	replace	hp	with	cyl	in	the	model	and	also	look	at	interaction
terms	between	wt	and	cyl.

Variable	Transformations
If	we	look	back	at	Figure	16.1,	which	plotted	mpg	versus	wt,	there	is	a	suggestion	of
curvature.	Let’s	see	this	plot	again,	this	time	alongside	of	plot	of	log(mpg)	versus	wt.
This	can	be	seen	in	Figure	16.10.
Click	here	to	view	code	image

>	par(mfrow	=	c(1,	2))
>	plot(mtcars$wt,	mtcars$mpg,	pch	=	16,	xlab	=	“Weight	(lb/1000)”,
+						ylab	=	“Miles	per	Gallon”,	main	=	“MPG	Gallon	versus	Weight”)
>	lines(loess.smooth(mtcars$wt,	mtcars$mpg),	col	=	“red”)
>	plot(mtcars$wt,	log(mtcars$mpg),	pch	=	16,	xlab	=	“Weight	(lb/1000)”,
+						ylab	=	“log(Miles	per	Gallon)”,	main	=	“Logged	MPG	versus	Weight”)



>	lines(loess.smooth(mtcars$wt,	log(mtcars$mpg)),	col	=	“red”)

FIGURE	16.10	Scatter	plots	of	miles	per	gallon	and	logged	miles	per	gallon	versus
weight

Based	on	this	visualization,	we	may	decide	to	try	to	model	logged	miles	per	gallon.	If	we
want	to	transform	any	of	our	dependent	or	independent	variables,	we	can	apply	a
transformation	function	directly	in	the	formula.	Let’s	create	a	simple	model	of	logged
miles	per	gallon	versus	weight	horsepower.	We’ll	look	at	the	detailed	summary	output	and
also	create	some	diagnostic	plots	(seen	in	Figure	16.11).
Click	here	to	view	code	image

>	lmodel1	<-	lm(log(mpg)	~	wt,	data	=	mtcars)
>	summary(lmodel1)

Call:
lm(formula	=	log(mpg)	~	wt,	data	=	mtcars)

Residuals:
						Min								1Q				Median								3Q							Max
-0.210346	-0.085932	-0.006136		0.061335		0.308623

Coefficients:
												Estimate	Std.	Error	t	value	Pr(>|t|)
(Intercept)		3.83191				0.08396			45.64		<	2e-16	***
wt										-0.27178				0.02500		-10.87	6.31e-12	***
–
Signif.	codes:		0	‘***’	0.001	‘**’	0.01	‘*’	0.05	‘.’	0.1	‘	‘	1

Residual	standard	error:	0.1362	on	30	degrees	of	freedom
Multiple	R-squared:		0.7976,	Adjusted	R-squared:		0.7908
F-statistic:	118.2	on	1	and	30	DF,		p-value:	6.31e-12

>	par(mfrow	=	c(2,	2))	#	Set	plot	layout



>	plot(lmodel1)								#	Create	diagnostics	plots

FIGURE	16.11	Diagnostic	plots	for	log	model	fit

If	we	want	to	overlay	this	model	onto	our	original	data,	it	is	better	to	exponentiate	some
predicted	results	and	use	the	lines	function	to	add	the	line	to	the	plot.	Let’s	compare	the
original	model	of	mpg	vs.	wt	with	the	new	model	of	log(mpg)	vs.	wt.	The	output	can
be	seen	in	Figure	16.12.
Click	here	to	view	code	image

>	plot(mtcars$wt,	mtcars$mpg,	pch	=	16,	xlab	=	“Weight	(lb/1000)”,
+						ylab	=	“Miles	per	Gallon”,	main	=	“MPG	Gallon	versus	Weight”)
>	abline(model1,	col	=	“red”)			#	Add	(straight)	model	line	(based	on	earlier
																																		model1	object)

>	wtVals	<-	seq(min(mtcars$wt),	max(mtcars$wt),	length	=	50)						#	Weights
to
																																																																				predict
at
>	predVals	<-	predict(lmodel1,	newdata	=	data.frame(wt	=	wtVals))	#	Make
																																																																				predictions
>	lines(	wtVals,	exp(predVals),	col	=	“blue”)																					#	Add	(log)
model
																																																																				line
>	legend(“topright”,	c(“mpg	~	wt”,	“log(mpg)	~	wt”),	fill	=	c(“red”,	“blue”))



FIGURE	16.12	Scatter	plot	of	miles	per	gallon	versus	weight,	overlaid	with	two
models

Caution:	Inhibiting	Interpretation

If	we	want	to	transform	dependent	or	independent	variables,	it	is	worth	noting	that
some	model	formula	syntax	has	special	meaning.	For	example,	if	we	wanted	to
model	a	response	Y	against	a	continuous	variable	X,	we’d	use	Y	~	X.	However,	if
we	instead	wanted	to	model	Y	against	“X	–	1”	(the	values	of	X	with	1	subtracted),
we	might	try	Y	~	X	–	1.	However,	this	syntax	denotes	a	model	of	Y	against	X
without	an	intercept	term.	If	we	literally	want	to	model	Y	against	“X	–	1”,	we
need	to	include	the	I	function,	which	inhibits	the	interpretation	of	the	formula.
Therefore,	our	formula	would	become	Y	~	I(X	–	1).	For	more	information	on
the	formula	syntax,	including	the	I	function,	see	the	?formula	help	file.

R	and	Object	Orientation
In	the	preceding	sections,	we	used	functions	such	as	summary	and	plot	to	understand
our	models.	However,	we	have	seen	these	functions	used	in	earlier	hours	to	summarize
and	graph	other	objects.	In	addition	to	the	outputs	from	summary	related	to	the	preceding
models,	consider	the	following	uses	of	the	summary	function:
Click	here	to	view	code	image

>	summary(mtcars$mpg)											#	Summary	of	a	numeric	vector
			Min.	1st	Qu.		Median				Mean	3rd	Qu.				Max.
		10.40			15.42			19.20			20.09			22.80			33.90
>	summary(factor(mtcars$cyl))			#	Summary	of	a	factor	vector
	4		6		8



11		7	14
>	summary(mtcars[,1:4])									#	Summary	of	a	data	frame
						mpg													cyl													disp													hp
	Min.			:10.40			Min.			:4.000			Min.			:	71.1			Min.			:	52.0
	1st	Qu.:15.43			1st	Qu.:4.000			1st	Qu.:120.8			1st	Qu.:	96.5
	Median	:19.20			Median	:6.000			Median	:196.3			Median	:123.0
	Mean			:20.09			Mean			:6.188			Mean			:230.7			Mean			:146.7
	3rd	Qu.:22.80			3rd	Qu.:8.000			3rd	Qu.:326.0			3rd	Qu.:180.0
	Max.			:33.90			Max.			:8.000			Max.			:472.0			Max.			:335.0

In	these	examples,	the	summary	function	produces	different	output	depending	on	the
type	of	object	it	is	provided.	The	summary	help	file	describes	it	as	a	“generic”	function,
which	provides	“methods”	for	many	“classes”	of	objects.	But	what	does	this	mean?

Object	Orientation
Many	features	of	the	R	language	are	based	on	the	object-oriented	programming	paradigm.
To	describe	object	orientation,	let’s	consider	the	following:

	If	someone	asks	us	to	open	a	door,	we	would	turn	the	handle.

	If	someone	asks	us	to	open	a	bottle,	we	would	twist	the	top.

	If	someone	asks	us	to	open	a	box,	we	would	lift	the	lid.

For	each	of	these	statements,	the	“command”	is	the	same:	“open.”	However,	we	behave
differently	based	on	the	type	of	object	we	are	to	“open.”	The	idea	behind	object-oriented
programming	is	similar.	Here,	the	“command”	is	called	a	“method,”	and	the	“type”	of
object	is	called	the	“class”	of	the	object.	We	have	seen	a	number	of	examples	of	this
behavior	in	this	hour,	such	as	the	previous	summary	function	uses,	which	are	described
in	Table	16.6.

TABLE	16.6	Summary	Methods

R	contains	a	number	of	systems	for	object-oriented	programming.	The	majority	of	the
statistical	modeling	functionality	available	in	R	is	based	on	the	“S3”	system,	which
implements	generic	functions	and	uses	a	simple	naming	convention.	When	a	method	is
called,	the	class	of	the	object	is	appended	to	the	name	of	the	method,	separated	by	a	period
character,	and	the	process	is	redirected	to	this	function.	So	when	we	perform	a	summary
of	an	object	of	class	“factor,”	we	instead	call	function	summary.factor,	as	shown	in
the	following	example:
Click	here	to	view	code	image

>	cylFactor	<-	factor(mtcars$cyl)
>	class(cylFactor)
[1]	“factor”
>	summary(cylFactor)



	4		6		8
11		7	14
>	summary.factor(cylFactor)
	4		6		8
11		7	14

Note:	Using	R	Classes

In	Hour	21,	“Writing	R	Classes,”	and	Hour	22,	“Formal	Class	Systems,”	we	will
look	more	closely	at	S3	and	other	object-oriented	programming	systems	provided
by	R.

Linear	Model	Methods
For	most	of	this	hour,	we’ve	been	using	functions	such	as	summary	and	plot	to
evaluate	linear	models,	which	we	fitted	with	the	lm	function.	The	“class”	of	these	objects
can	be	seen	with	the	class	function:

>	class(model1)
[1]	“lm”
>	class(model2)
[1]	“lm”
>	class(model3)
[1]	“lm”
>	class(model4)
[1]	“lm”

Using	this	fact,	we	now	know	the	names	of	the	functions	we	have	been	calling	throughout
the	previous	sections	of	this	hour,	many	of	which	are	summarized	in	Table	16.7.

TABLE	16.7	Methods	for	“lm”	Objects

Perhaps	the	most	important	reason	to	understand	this	mechanism	is	to	know	which	is	the
relevant	help	file	to	read	to	understand	the	options	available	to	us.	For	example,	if	we’re
using	the	summary	function	for	an	lm	object,	we	know	that	summary.lm	is	the	help
file	we	need	to	refer	to.



Summary
In	this	hour,	you	saw	how	to	fit	a	series	of	simple	linear	models	in	R.	This	includes	the
way	in	which	we	define	our	linear	model	via	the	use	of	a	“formula”	as	well	as	a	number	of
ways	to	assess	the	appropriateness	of	our	model	using	textual	and	graphical	means.	We
also	introduced	the	concept	of	object-oriented	programming	by	looking	at	the	behavior	of
generic	functions	such	as	print,	summary,	and	plot	when	given	linear	model	outputs.
Although	we	focused	on	linear	models	in	this	hour,	the	concepts	and	approach	we	used	is
similar	across	a	wide	range	of	statistical	models	provided	by	R.	In	the	next	hour,	we’ll
look	at	some	of	these	models	and	see	how	similar	the	approach	is	to	the	fitting	of	linear
models	covered	in	this	hour.

Q&A
Q.	Can	we	return	different	types	of	residuals	from	our	model	fits?

A.	Yes.	Other	types	of	residuals	(such	as	Pearson	and	partial	residuals)	can	be	also	be
returned	from	the	resid	function.	See	the	?residuals.lm	help	file	for	more
information.

Q.	What	other	high-level	metrics	relating	to	model	fit	are	available?

A.	A	number	of	additional	metrics	are	available,	such	as	Akaike’s	Information	Criteria
(?AIC),	Bayesian	Information	Criteria	(?BIC),	and	Log-Likelihood	(?logLik).
This	is	not	an	exhaustive	list,	and	we	recommend	searching	the	www.r-project.org
site	for	specific	methods	if	they	have	not	been	covered	here.

Q.	How	do	I	extract	the	variance-covariance	matrix	of	model	parameters?

A.	The	vcov	function	allows	you	to	extract	the	variance-covariance	matrix	of
parameters	given	a	model.

Q.	How	does	lm	deal	with	missing	values?

A.	The	handling	of	missing	values	in	lm	is	controlled	by	the	na.action	argument.
By	default,	the	na.action	argument	is	set	to	na.omit,	which	removes	rows
including	at	least	one	missing	based	on	the	variables	involved	in	the	model.

Q.	Can	I	perform	polynomial	regression	using	lm?

A.	Yes.	You	can	include	independent	variables	in	a	polynomial	manner.	However,	care
must	be	taken	because	the	^	symbol	in	a	formula	has	a	particular	meaning	(it
represents	parameter	crossing,	as	described	in	the	?formula	help	page).	Therefore,
to	include	variables	in	a	polynomial	manner	you	need	the	I	function	(for	example,
mpg	~	wt	+	I(wt^2)).	An	alternative	approach	is	to	use	the	poly	function,
which	allows	you	to	specify	this	as	mpg	~	poly(wt,	2,	raw	=	T).

Q.	Is	there	functionality	for	stepwise	regression	in	R?

A.	Yes.	The	step	function	can	be	used	to	perform	stepwise	regression,	which	uses
AIC	as	the	basis	for	deciding	which	steps	to	take.

http://www.r-project.org


Workshop
The	workshop	contains	quiz	questions	and	exercises	to	help	you	solidify	your
understanding	of	the	material	covered.	Try	to	answer	all	questions	before	looking	at	the
“Answers”	section	that	follows.

Quiz
1.	How	can	we	fit	a	model	of	Y	against	X	without	an	intercept	term?

2.	What	would	a	formula	of	Y	~	X1*X2	denote?

3.	Which	function	can	you	use	to	extract	the	residuals	from	a	model	fit?

4.	What	help	file	would	you	refer	to	if	you	wanted	to	control	the	behavior	of	the	plot
function	when	producing	diagnostic	plots	of	a	linear	model?

5.	What	are	the	default	contrast	methods	in	R?

Answers
1.	You	would	use	Y	~	X	–	1.

2.	This	denotes	a	model	of	Y	against	X1,	X2	and	the	interaction	of	X1	and	X2.
Therefore,	Y	~	X1*X2	is	equivalent	to	Y	~	X1	+	X2	+	X1:X2.

3.	You	can	use	the	resid	function	to	extract	residuals	from	a	linear	model.

4.	If	you	are	using	the	plot	function	with	an	object	of	class	“lm”	(which	contains	a
linear	model	output),	then	the	plot.lm	help	file	would	be	the	one	to	refer	to.

5.	The	default	contrast	methods	for	an	(unordered)	factor	variable	in	R	are	“treatment”
contrasts,	where	the	first	level	of	the	factor	is	taken	as	the	baseline	(as	described	in
the	?contr.treatment	help	file).

Activities
1.	Using	the	airquality	data	frame,	fit	a	linear	model	of	Ozone	versus	Wind.

2.	Create	detailed	textual	summaries	and	diagnostic	plots	to	assess	your	model	fit.

3.	Use	the	update	function	to	add	Temp	as	an	independent	variable.	Evaluate	your
new	model	and	create	an	analysis	of	variance	of	these	nested	models.

4.	Assess	the	inclusion	of	an	interaction	term	(Wind:Temp)	in	your	model.

5.	Add	Month	as	a	categorical	independent	variable	in	your	model.



Hour	17.	Common	R	Models

What	You’ll	Learn	in	This	Hour:

	How	to	fit	GLM	Models

	How	to	fit	Nonlinear	Models

	How	to	fit	Survival	Models

	How	to	fit	Time	Series	Models

In	Hour	16,	“Introduction	to	R	Models	and	Object	Orientation,”	we	explored	the	ways	in
which	we	can	fit	and	assess	statistical	models	in	R.	To	achieve	this,	we	used	a	simple
linear	modeling	approach	using	the	lm	function.	However,	as	mentioned,	R	has	the	most
rich	analytic	feature	set	in	any	technology	today.	In	this	hour,	we’ll	extend	the	ideas	of	the
previous	hour	to	other	modeling	approaches.	Specifically,	we’ll	look	at	Generalized	Linear
Models,	Nonlinear	Models,	Time	Series	Models,	and	Survival	Models.	We’ll	finish	this
hour	by	looking	at	other	modeling	approaches	provided	by	R,	and	see	where	to	access
further	information	on	these	model	types.

Note:	Theory	versus	Code

In	this	hour,	we	provide	a	high-level	overview	of	the	theory	for	each	modeling
approach	and	then	show	how	the	models	can	be	implemented	in	R.	Consequently,
we	will	not	spend	too	much	time	on	the	detailed	theory,	or	on	the	assessment	of
model	performance,	beyond	that	which	helps	you	understand	how	methods	can	be
applied	to	model	objects.

Generalized	Linear	Models
In	Hour	16,	we	used	the	lm	function	to	fit	Linear	Models	to	our	data.	The	“linear”	aspect,
here,	refers	to	the	fitting	of	a	dependent	variable	against	a	linear	function	of	independent
variables.	Here’s	an	example:

Y	=	θ0	+	θ1X1	+	θ2X2	+	…	+	θNXN	+	ε

Here,	our	Dependent	Variable	(Y)	is	modeled	against	N	Independent	Variables	(X1	to	XN),
with	parameters	(θ0	to	θN)	to	be	estimated	by	the	model-fitting	process.	With	the	Linear
Model,	such	as	that	fit	by	the	lm	function,	we	make	a	number	of	assumptions.	In
particular,	we	assume	that	the	Dependent	Variable	(Y)	is	continuous	and	Normally
distributed.	Furthermore,	we	assume	the	errors	(ε)	are	independent	and	identically
distributed	such	that	E(ε)	=	0	and	var	(ε)	=	σ2.	We	also	assume	that	the	errors	(ε)	are
Normally	distributed	with	mean	0	and	variance	σ2	for	the	purposes	of	tests.



GLM	Definition
The	Linear	Model,	described	here,	can	be	considered	a	special	case	of	the	Generalized
Linear	Model	(GLM)	framework.	The	GLM	approach	allows	us	to	fit	models	where

	The	Dependent	Variable	may	not	be	continuous	and	Normally	distributed.

	The	variance	of	the	Dependent	Variable	may	depend	on	the	mean.

The	GLM	framework	uses	four	elements	to	fit	a	model:

	A	probability	distribution	from	the	exponential	family

	A	“linear	predictor”	to	be	modeled

	A	“link	function”	defining	how	the	linear	predictor	is	related	to	the	Dependent
Variable

	A	“variance	function”	explaining	how	the	variance	depends	on	the	mean

In	the	GLM	framework,	the	Dependent	Variable	(Y)	is	assumed	to	be	generated	from	a
specific	distribution	from	the	exponential	family,	a	large	range	of	distributions.	A	number
of	common	distributions	are	listed	in	Table	17.1.

TABLE	17.1	Selection	of	Distributions	from	the	Exponential	Family

The	linear	predictor	is	of	the	following	form:

γ	=	θ0	+	θ1X1	+	θ2X2	+	…	+	θNXN
Here,	the	linear	predictor	(γ)	is	linearly	related	to	N	Independent	Variables	(X1	to	XN),	with
parameters	(θ0	to	θN)	to	be	estimated	by	the	model-fitting	process.

The	link	function	(g)	is	of	the	format	g(μ)	=	γ	and	specifies	how	the	linear	predictor	(γ)	is
related	to	the	mean	of	the	Dependent	Variable,	E(Y)	=	μ.

The	variance	function	(V)	explains	how	the	variance	of	the	Dependent	Variable	var	(Y),
depends	on	its	mean	(μ),	specified	as	var	(Y)	=	ϕV(μ).	The	variance	function	is	typically
dictated	by	the	selected	probability	distribution.

Fitting	a	GLM
We	can	use	the	glm	function	to	fit	a	Generalized	Linear	Model	(GLM)	in	R.	The	key
inputs	to	the	glm	function	are	listed	in	Table	17.2.



TABLE	17.2	Key	Inputs	to	glm

The	formula,	data,	and	na.action	inputs	are	similar	to	the	arguments	seen	with	the
lm	function.	Here,	the	formula	describes	the	linear	predictor	we	wish	to	model.	The
family	input	describes	the	link	and	variance	function	to	be	applied	by	the	GLM
framework.	The	family	argument	is	typically	specified	as	a	character	string	or	function.
Some	common	examples	are	seen	in	Table	17.3,	with	further	detail	found	in	the	?family
help	file.

TABLE	17.3	GLM	Family	Inputs

Fitting	Gaussian	Models
In	Hour	16,	we	used	the	lm	function	to	fit	Linear	Models	to	our	data.	This	is,	perhaps,	the
simplest	case	of	the	GLM	framework,	where

	The	probability	distribution	is	Gaussian.

	The	link	function	is	the	identity	function	(because	the	linear	predictor	describes	the
Dependent	Variance	directly,	without	transformation).

Thus,	we	can	re-create	a	model	from	the	previous	chapter	by	instead	using	the	glm
function,	as	shown	here:
Click	here	to	view	code	image

>	lmModel	<-	lm(mpg	~	wt	*	hp	+	factor(cyl),	data	=	mtcars)			#	Model	fit
with	lm
>	lmModel

Call:
lm(formula	=	mpg	~	wt	*	hp	+	factor(cyl),	data	=	mtcars)

Coefficients:
	(Intercept)												wt												hp		factor(cyl)6		factor(cyl)8									wt:hp
				47.33733						-7.30634						-0.10333						-1.25907						-1.45434							0.02395



>	glmModel	<-	glm(mpg	~	wt	*	hp	+	factor(cyl),	data	=	mtcars)	#	Model	fit
with	glm
>	glmModel

Call:		glm(formula	=	mpg	~	wt	*	hp	+	factor(cyl),	data	=	mtcars)

Coefficients:
	(Intercept)												wt												hp		factor(cyl)6		factor(cyl)8									wt:hp
				47.33733						-7.30634						-0.10333						-1.25907						-1.45434							0.02395

Degrees	of	Freedom:	31	Total	(i.e.	Null);		26	Residual
Null	Deviance:						1126
Residual	Deviance:	126.2					AIC:	148.7

We	can	see	that	the	coefficients	of	both	models	match,	as	do	the	residuals	produces	from
the	models:
Click	here	to	view	code	image

>	all(signif(resid(lmModel),	10)	==	signif(resid(glmModel),	10))
[1]	TRUE

Note:	Default	Family

Note	here	that	“gaussian”	is	the	default	value	of	the	family	input,	so	we	do	not
need	to	specify	it	here.

The	glm	Object
As	with	our	earlier	lm	examples,	the	glm	function	returns	an	object	that	can	be
interrogated	using	a	series	of	standard	methods.	A	number	of	these	standard	methods	can
be	seen	in	Table	17.4.

TABLE	17.4	Common	GLM	Methods



Detailed	Summary

We	can	see	a	detailed	model	summary	using	the	summary	function,	as	shown	here:
Click	here	to	view	code	image

>	summary(glmModel)

Call:
glm(formula	=	mpg	~	wt	*	hp	+	factor(cyl),	data	=	mtcars)

Deviance	Residuals:
				Min							1Q			Median							3Q						Max
-3.5309		-1.6451		-0.4154			1.3838			4.4788

Coefficients:
														Estimate	Std.	Error	t	value	Pr(>|t|)
(Intercept)		47.337329			4.679790		10.115	1.67e-10	***
wt											-7.306337			1.675258		-4.361	0.000181	***
hp											-0.103331			0.031907		-3.238	0.003274	**
factor(cyl)6	-1.259073			1.489594		-0.845	0.405685
factor(cyl)8	-1.454339			2.063696		-0.705	0.487246
wt:hp									0.023951			0.008966			2.671	0.012865	*
–
Signif.	codes:		0	‘***’	0.001	‘**’	0.01	‘*’	0.05	‘.’	0.1	‘	‘	1

(Dispersion	parameter	for	gaussian	family	taken	to	be	4.852119)

				Null	deviance:	1126.05		on	31		degrees	of	freedom
Residual	deviance:		126.16		on	26		degrees	of	freedom
AIC:	148.71

Number	of	Fisher	Scoring	iterations:	2

Diagnostic	Plots

We	can	use	the	plot	function	to	generate	diagnostic	plots	of	our	model	fit,	as	seen	in
Figure	17.1.

>	par(mfrow	=	c(2,	2))
>	plot(glmModel)



FIGURE	17.1	Diagnostic	plots	for	GLM

Functions	such	as	coef,	resid,	and	fitted	can	be	used	to	extract	model	aspects,	as
seen	in	the	following	example.	This	includes	the	creation	of	a	plot	of	residuals	versus
fitted	values,	as	seen	in	Figure	17.2.
Click	here	to	view	code	image

>	coef(glmModel)				#	Model	Coefficients
	(Intercept)											wt											hp	factor(cyl)6	factor(cyl)8								wt:hp
	47.33732893		-7.30633653		-0.10333117		-1.25907265		-1.45433929			0.02395121
>
>	res1	<-	resid(glmModel)																								#	Extract	residuals
>	fit1	<-	fitted(glmModel)																							#	Extract	fitted	values
>	yRange	<-	c(-1,	1)	*	max(abs(res1))												#	Calculate	Y	axis	Range
>	xRange	<-	range(fit1)																										#	Calculate	X	axis	Range
>	xRange	<-	xRange	+	c(-1,	1)	*	diff(xRange)/5			#	Extend	X	axis	Range
>
>	plot(fit1,	res1,	type	=	“n”,																			#	Empty	plot	with	axes
specified
+				ylim	=	yRange,	xlim	=	xRange,
+				xlab	=	“Fitted	Values”,	ylab	=	“Residuals”,
+				main	=	“Residuals	vs	Fitted	Values”)
>	text(fit1,	res1,	row.names(mtcars),	cex=1.2)			#	Add	text	based	on	car
names
>	abline(h	=	0,	lty	=	2)																									#	Add	horizontal	reference
line	at	0



FIGURE	17.2	Plot	of	residuals	versus	fitted	values	for	GLM

Logistic	Regression
Logistic	regression,	or	Logit	Regression,	is	part	of	the	GLM	framework	and	can	be
implemented	with	the	glm	function.	We	use	logistic	regression	to	model	the	probability	of
some	event	occurring,	based	on	a	“dichotomous”	Dependent	Variable	(that	is,	a	variable
with	two	levels	specifying	whether	an	event	occurred).	To	achieve	this,	we	model	the	log
odds,	so	our	link	function	(g)	relates	the	Dependent	Variable	(Y)	to	the	linear	predictor	(γ)
via	the	logit	function.	Thus,	 .	The	Variance	Function	(V)	is	V(μ)
=	μ(1	–	μ).

Fitting	a	Logistic	Regression

We	fit	a	Logistic	Regression	using	the	glm	function	by	specifying	the	binomial	family.
Our	response	variable	must	contain	values	0	and	1	(or	FALSE	and	TRUE).	As	a	simple
example,	let’s	model	the	am	variable	from	the	mtcars	data	based	on	wt.	Here,	we	model
the	log-odds	of	the	car	having	a	manual	transmission	(am	==	1)	rather	than	an	automatic
transmission	(am	==	0),	given	the	wt	variable.	The	odds	of	interest	can	be	calculated	as
the	ratio	of	the	probability	of	a	manual	transmission	over	that	of	an	automatic	one.	Thus,
log-odds	are	obtained	through	log	transformation	from	the	odds:
Click	here	to	view	code	image

>	lrModel	<-	glm(am	~	wt	-	1,	data	=	mtcars,	family	=	binomial)
>	summary(lrModel)

Call:
glm(formula	=	am	~	wt	-	1,	family	=	binomial,	data	=	mtcars)



Deviance	Residuals:
				Min							1Q			Median							3Q						Max
-0.9397		-0.8525		-0.7549			1.4023			1.5541

Coefficients:
			Estimate	Std.	Error	z	value	Pr(>|z|)
wt		-0.2388					0.1166		-2.049			0.0405	*
–
Signif.	codes:		0	‘***’	0.001	‘**’	0.01	‘*’	0.05	‘.’	0.1	‘	‘	1

(Dispersion	parameter	for	binomial	family	taken	to	be	1)

				Null	deviance:	44.361		on	32		degrees	of	freedom
Residual	deviance:	39.717		on	31		degrees	of	freedom
AIC:	41.717

Number	of	Fisher	Scoring	iterations:	4

Note:	Removing	the	Intercept

We’ve	removed	the	intercept	in	this	example	to	better	understand	the	resulting
model	coefficients.

Caution:	Modeling	Factor	Levels

If	the	Dependent	Variable	specified	is	a	two-level	factor	variable,	R	will	model	the
probability	of	the	second	level	occurring	(so	the	first	level	is	set	as	0,	and	the
second	level	as	1).	If	our	Dependent	Variable	is	a	factor	with	levels	“0”	and	“1,”
this	works	as	expected;	however,	care	should	be	taken	if	you	are	using	an	unordered
factor	where	the	levels	are	defined	alphabetically.	For	example,	in	the	following,	we
would	be	modeling	the	probability	of	Y	being	“Low”	instead	of	“High”	because	of
the	default	alphabetic	ordering	of	the	factor	levels:

Click	here	to	view	code	image
>	lrDf	<-	data.frame(Y	=	sample(c(“Low”,	“High”),	10,	T),	X	=	rpois(10,
3))
>	lrObj	<-	glm(Y	~	X,	data	=	lrDf,	family	=	binomial)					#	Logistic	Model
>	levels(lrDf$Y)																																										#	Ordering	of
levels
[1]	“High”	“Low”

Predictions	from	a	Logistic	Regression

When	we	use	the	predict	function,	we	are	(by	default)	predicting	on	the	scale	of	the
linear	predictors	(that	is,	we’re	not	directly	predicting	the	responses).	As	such,	the
prediction	function	for	our	logistic	example	will	return	the	log-odds	of	a	car	having	a
manual	transmission.	If	we	wish	to	see	the	predictions	on	the	scale	of	the	response,	we	set
the	type	input	to	"response",	which	instead	returns	the	probabilities.
Click	here	to	view	code	image

>	newDf	<-	data.frame(wt	=	1:5)
>	round(predict(lrModel,	newDf),	4)	#	Log	Odds
						1							2							3							4							5
-0.2388	-0.4776	-0.7164	-0.9552	-1.1940



>	round(predict(lrModel,	newDf,	type	=	“response”),	4)		#	Probability
					1						2						3						4						5
0.4406	0.3828	0.3282	0.2778	0.2325

Coefficients	from	a	Logistic	Regression

As	with	predictions,	the	coefficients	from	a	Logistic	Regression	are	reported	on	the	scale
of	the	linear	predictor.	If	we	want	to	interpret	the	estimated	effects	as	relative	odds	ratios,
we	simply	exponentiate	our	coefficients	as	follows:
Click	here	to	view	code	image

>	round(coef(lrModel),	3)								#	Log-Odds
				wt
-0.239
>	round(exp(coef(lrModel)),	3)			#	Odds
			wt
0.788

So,	for	every	single	unit	increase	in	Weight,	the	odds	of	the	car	being	manual	(am	=	1)	are
exected	to	decrease	by	a	factor	of	21%	(e.g.	Weight	=	1,	Odds	=	0.79;	Weight	=	2,	Odds	=
0.79^2	=	0.62).

Tip:	Confidence	Intervals	for	Coefficients

The	confint	function	will	provide	confidence	intervals	for	coefficients	in	a	glm
(and	lm)	model.	For	example,	we	could	provide	estimates	and	confidence	intervals
for	model	coefficients	on	the	log-odds	scale	using	the	following:

Click	here	to	view	code	image
>	cbind(coef(lrModel),	confint(lrModel))
Waiting	for	profiling	to	be	done…
													[,1]								[,2]
2.5	%		-0.2388045	-0.48456168
97.5	%	-0.2388045	-0.02093423

Poisson	Regression
We	can	use	Poisson	regression,	another	example	from	the	GLM	framework,	to	model
count	data.	This	way,	we	can	model	the	number	of	independent	“events”	to	occur	within	a
fixed	“interval.”	For	a	Poission	regression,	the	link	function	(g)	relates	the	Dependent
Variable	(Y)	to	the	linear	predictor	(γ)	via	the	log	function,	so	g(μ)	=	log	μ.	The	Variance
Function	(V)	is	V(μ)	=	μ.

Let’s	fit	a	simple	Poisson	regression	using	glm.	For	this	example,	we’ll	use	the
InsectSprays	data	frame,	which	has	the	counts	of	the	number	of	insects	based	on	the
use	of	a	variety	of	insecticides	(see	the	?InsectSprays	help	file	for	more	information).
Before	we	fit	the	model,	let’s	have	a	look	at	the	data	(seen	here	and	in	Figure	17.3):
Click	here	to	view	code	image

>	head(InsectSprays)
		count	spray
1				10					A
2					7					A
3				20					A



4				14					A
5				14					A
6				12					A
>	plot(factor(InsectSprays$spray),	InsectSprays$count,
+						xlab	=	“Insecticide”,	ylab	=	“Insect	Count”,
+						main	=	“Insect	Count	by	Insecticide”)

FIGURE	17.3	Plot	of	InsectSprays	data

Let’s	fit	a	simple	Poisson	model	of	count	versus	spray	with	no	intercept	term.	We
achieve	this	with	glm	by	specifying	poisson	as	the	family	input:
Click	here	to	view	code	image

>	prModel	<-	glm(count	~	factor(spray)	-	1,	data	=	InsectSprays,	family	=
poisson)
>	summary(prModel)

Call:
glm(formula	=	count	~	factor(spray)	-	1,	family	=	poisson,	data	=
InsectSprays)

Deviance	Residuals:
				Min							1Q			Median							3Q						Max
-2.3852		-0.8876		-0.1482			0.6063			2.6922

Coefficients:
															Estimate	Std.	Error	z	value	Pr(>|z|)
factor(spray)A		2.67415				0.07581		35.274		<	2e-16	***
factor(spray)B		2.73003				0.07372		37.032		<	2e-16	***
factor(spray)C		0.73397				0.20000			3.670	0.000243	***
factor(spray)D		1.59263				0.13019		12.233		<	2e-16	***
factor(spray)E		1.25276				0.15430			8.119	4.71e-16	***
factor(spray)F		2.81341				0.07071		39.788		<	2e-16	***
–
Signif.	codes:		0	‘***’	0.001	‘**’	0.01	‘*’	0.05	‘.’	0.1	‘	‘	1



(Dispersion	parameter	for	poisson	family	taken	to	be	1)

				Null	deviance:	2264.808		on	72		degrees	of	freedom
Residual	deviance:			98.329		on	66		degrees	of	freedom
AIC:	376.59

Number	of	Fisher	Scoring	iterations:	5

Note:	Including	the	Intercept

Note	that,	by	suppressing	the	intercept,	all	levels	of	the	factor	variable	are	estimated
(as	opposed	to	the	standard	use	of	contrasts,	where	the	first	level	would	be	set	as	the
baseline).	If,	instead,	we	included	an	intercept	term,	then	spray	“A”	would	be	set	as
the	baseline	and	other	coefficients	would	be	interpreted	in	relation	to	this	level:

Click	here	to	view	code	image
>	summary(glm(count	~	factor(spray),	data	=	InsectSprays,	family	=
poisson))$coef
																		Estimate	Std.	Error				z	value						Pr(>|z|)
(Intercept)					2.67414865		0.0758098	35.2744434	1.448048e-272
factor(spray)B		0.05588046		0.1057445		0.5284477		5.971887e-01
factor(spray)C	-1.94017947		0.2138857	-9.0711059		1.178151e-19
factor(spray)D	-1.08151786		0.1506528	-7.1788745		7.028761e-13
factor(spray)E	-1.42138568		0.1719205	-8.2676928		1.365763e-16
factor(spray)F		0.13926207		0.1036683		1.3433422		1.791612e-01

We	can	exponentiate	the	coefficients	to	see	them	on	the	scale	of	the	response	(that	is,
counts).	Let’s	see	the	exponentiated	coefficients	next	to	the	confidence	intervals:
Click	here	to	view	code	image

>	lc	<-	cbind(Est	=	coef(prModel),	confint(prModel))
Waiting	for	profiling	to	be	done…
>	round(exp(lc),	2)
																	Est	2.5	%	97.5	%
factor(spray)A	14.50	12.45		16.76
factor(spray)B	15.33	13.22		17.66
factor(spray)C		2.08		1.37			3.01
factor(spray)D		4.92		3.77			6.28
factor(spray)E		3.50		2.55			4.67
factor(spray)F	16.67	14.46		19.08

GLM	Extensions
So	far	we	have	looked	at	some	Generalized	Linear	Model	examples.	Specifically,	we	have
seen	an	example	of	a	General	Linear	Model,	a	Logistic	Regression,	and	a	Poisson
Regression.	There	are	many	related	approaches	and	extensions	that	may	be	useful,
including	the	following:

	We	have	bypassed	the	fitting	of	Analysis	of	Variance	models,	which	can	be
achieved	with	the	aov	function	(see	the	?aov	help	file	for	details).

	There	are	many	other	distributions	supported	by	glm,	which	can	be	seen	in	the	?
family	help	file.

	There	are	many	extensions	to	the	glm	function	itself,	such	as	the	glm.nb	function



from	the	MASS	package,	which	includes	the	estimation	of	the	additional	parameter
“theta.”

	Extensions	such	as	Generalized	Estimating	Equations	(GEEs)	allow	for	correlations
between	observations	and	are	implemented	in	packages	such	as	gee	and	geepack.

	Mixed	models	allow	for	random	effects	in	the	linear	predictor	and	can	be	fit	using
packages	such	as	lme4,	nlme,	and	glmm.

	Generalized	Additive	Models	(GAMs)	allow	the	linear	predictor	to	use	smoothing
functions	applied	to	the	Independent	Variables.	They	are	implemented	in	the	gam
package.

Nonlinear	Models
The	Generalized	Linear	Modeling	approach	allows	us	to	fit	a	range	of	models	where	a
Dependent	Variable	is	related	to	a	set	of	Independent	Variables	in	a	linear	manner.
However,	R	provides	a	range	of	functionality	for	fitting	models	where	the	function	is	a
Nonlinear	combination	of	parameters	and	depends	on	one	or	more	Independent	Variables.

Nonlinear	Regression
The	simplest	form	of	Nonlinear	model	is	a	Nonlinear	regression,	which	we	can	fit	in	R	via
least-squares	estimation	using	the	nls	function.	For	Nonlinear	regression,

Y	=	f(θ0,	…,	M,	X1,…,N)	+	ε

Here,	our	Dependent	Variable	(Y)	is	modeled	against	N	Independent	Variables	(X1	to	XN)
and	M	parameters	(θ0	to	θM)	to	be	estimated	by	the	model-fitting	process.	We	assume	the
errors	(ε)	are	independent	and	identically	distributed	such	that	E(ε)	=	0	and	var(ε)	=	σ2.
We	also	assume	that	the	errors	(ε)	are	Normally	distributed	with	mean	0	and	variance	σ2
for	the	purposes	of	the	tests.

Fitting	a	Nonlinear	Regression

We	can	fit	a	Nonlinear	model	using	least	squares	estimation	with	the	nls	function.	The
primary	arguments	accepted	by	nls	can	be	seen	in	Table	17.5.

TABLE	17.5	Key	Inputs	to	the	nls	Function

When	we	fit	a	Nonlinear	model,	it	is	common	to	define	the	relationship	in	terms	of	a
function	that	accepts	independent	variables	and	parameters	and	returns	a	response.

As	a	very	simple	example,	just	to	illustrate	the	use	of	nls,	let’s	fit	our	earlier	linear	model



(of	mpg	vs	wt).	First,	we’ll	define	a	function	we	can	use	in	our	model	fit	and	illustrate	the
use	of	the	function	with	a	two	possible	sets	of	input	parameters	(seen	in	Figure	17.4):
Click	here	to	view	code	image

>	linFun	<-	function(wt,	a,	b)	a	+	b	*	wt
>	plot(mtcars$wt,	mtcars$mpg,
+						main	=	“Miles	per	Gallon	versus	Weight”,
+						xlab	=	“Weight”,	ylab	=	“Miles	per	Gallon”)
>	lines(1:6,	linFun(1:6,	a	=	40,	b	=	-6),	col	=	“red”)
>	lines(1:6,	linFun(1:6,	a	=	35,	b	=	-4.5),	col	=	“blue”)
>	legend(“topright”,	paste(“Model”,	1:2),	fill	=	c(“red”,	“blue”))

FIGURE	17.4	Plot	of	miles	per	gallon	versus	weight	with	two	candidate	models

If	we	want	to	fit	this	as	a	Nonlinear(!)	model,	we	use	the	nls	function	as	follows:
Click	here	to	view	code	image

>	nlsMpg	<-	nls(mpg	~	linFun(wt,	a,	b),	data	=	mtcars)
Warning	message:
In	nls(mpg	~	linFun(wt,	a,	b),	data	=	mtcars)	:
		No	starting	values	specified	for	some	parameters.
Initializing	‘a’,	‘b’	to	‘1.’.
Consider	specifying	‘start’	or	using	a	selfStart	model

Unfortunately,	our	model	process	fails	because	we	have	not	provided	starting	values	for
the	parameters	(a	and	b).	We	can	provide	these	as	a	named	list	or	named	vector	of	inputs.
Based	on	the	previous	graph,	let’s	choose	a	=	40	and	b	=	-5	as	suitable	starting
parameters	for	our	model:
Click	here	to	view	code	image

>	nlsMpg	<-	nls(mpg	~	linFun(wt,	a,	b),	data	=	mtcars,
+															start	=	c(a	=	40,	b	=	-5))
>	nlsMpg



Nonlinear	regression	model
		model:	mpg	~	linFun(wt,	a,	b)
			data:	mtcars
					a						b
37.285	-5.344
	residual	sum-of-squares:	278.3

Number	of	iterations	to	convergence:	1
Achieved	convergence	tolerance:	1.765e-09

As	you	can	see,	we	have	successfully	fit	our	model	and	retrieved	the	parameters	we	would
have	achieved	using	a	linear	model	(with	the	lm	function):
Click	here	to	view	code	image

>	coef(nlsMpg)																										#	Coefficients	from	the	nls	fit
								a									b
37.285126	-5.344472
>	coef(lm(mpg	~	wt,	data	=	mtcars))					#	Coefficients	from	the	lm	fit
(Intercept)										wt
		37.285126			-5.344472

Let’s	switch	to	using	a	more	appropriate	example.

Nonlinear	Regression	of	the	Puromycin	Data

The	Puromycin	data	frame	in	R	contains	data	on	the	reaction	velocity	versus	substrate
concentration	in	an	enzymatic	reaction	with	Puromycin	(an	antibiotic).	The	data	contains
measurements	involving	untreated	and	treated	cells.	Let’s	look	at	the	data	before	we
perform	any	model	fitting,	including	a	plot	of	the	data	in	Figure	17.5:
Click	here	to	view	code	image

>	head(Puromycin)						#	A	look	at	the	data
		conc	rate			state
1	0.02			76	treated
2	0.02			47	treated
3	0.06			97	treated
4	0.06		107	treated
5	0.11		123	treated
6	0.11		139	treated
>	plot(Puromycin$conc,	Puromycin$rate,	pch	=	21,	cex	=	1.5,			#	Plot	the	data
+			xlab	=	“Instantaneous	reaction	rates	(counts/min/min)”,
+			ylab	=	“Substrate	Concentrations	(ppm)”,
+			main	=	“Instantaneous	reaction	rates	vs	Substrate	Concentrations”,
+			bg	=	ifelse(Puromycin$state	==	“treated”,	“red”,	“blue”))
>	legend(“bottomright”,	c(“Treated”,	“Untreated”),	fill	=	c(“red”,	“blue”))



FIGURE	17.5	Plot	of	reaction	rates	versus	concentration	from	the	Puromycin	data

Let’s	attempt	to	fit	a	Michaelis-Menten	model	to	this	data,	which	is	one	of	the	best-known
models	of	enzyme	kinetics.	Given	the	preceding	plot,	we’ll	fit	separate	models	for
“Treated”	and	“Untreated.”	First,	we’ll	define	the	function	and	look	at	some	possible
starting	values,	overlaid	on	the	previous	plot.	The	output	can	be	seen	as	Figure	17.6.
Click	here	to	view	code	image

>	micmen	<-	function(conc,	Vm,	K)	Vm	*	conc	/	(K	+	conc)		#	Define	function
>	X	<-	seq(0,	1.1,	length	=	25)																											#	Set	of
Concentrations
>
>	lines(X,	micmen(xConcs,	200,	0.1),	col	=	“pink”)								#	Treated:	Vm	=
200,	K	=	0.1
>	lines(X,	micmen(xConcs,	210,	0.03),	col	=	“pink”)							#	Treated:	Vm	=
210,	K	=	0.03
>	lines(X,	micmen(xConcs,	210,	0.05),	col	=	“red”)								#	Treated:	Vm	=
210,	K	=	0.05
>
>	lines(X,	micmen(xConcs,	150,	0.05),	col	=	“lightblue”)		#	Untreated:	Vm	=
150,	K	=	0.05
>	lines(X,	micmen(xConcs,	170,	0.1),	col	=	“lightblue”)			#	Untreated:	Vm	=
170,	K	=	0.1
>	lines(X,	micmen(xConcs,	165,	0.05),	col	=	“blue”)							#	Untreated:	Vm	=
165,	V	=	0.05



FIGURE	17.6	Plot	of	reaction	rates	versus	concentration	with	candidate	starting
parameters

Based	on	this,	let’s	fit	Nonlinear	models	to	both	the	“Treated”	and	“Untreated”	data:
Click	here	to	view	code	image

>	mmTreat	<-	nls(rate	~	micmen(conc,	Vm,	K),	data	=	Puromycin,
+			start	=	c(Vm	=	210,	K	=	0.05),	subset	=	state	==	“treated”)
>	mmUntreat	<-	nls(rate	~	micmen(conc,	Vm,	K),	data	=	Puromycin,
+			start	=	c(Vm	=	165,	K	=	0.05),	subset	=	state	==	“untreated”)
>	round(coef(mmTreat),	3)				#	Coefficients	for	Treated	data
					Vm							K
212.684			0.064
>	round(coef(mmUntreat),	3)		#	Coefficients	for	Untreated	data
					Vm							K
160.280			0.048



Tip:	Self-Starting	Functions

In	these	examples,	we	need	to	specify	starting	values	for	our	model	fit.	However,
there	are	a	number	of	“self-starting”	functions	in	R	that	deduce	starting	values	as
part	of	the	modeling	process.	These	functions	start	with	“SS”	and	can	be	listed
using	the	following	syntax:

Click	here	to	view	code	image
>	apropos(“^SS”)
	[1]	“SSasymp”					“SSasympOff”		“SSasympOrig”	“SSbiexp”
	[5]	“SSD”									“SSfol”							“SSfpl”							“SSgompertz”
	[9]	“SSlogis”					“SSmicmen”				“SSweibull”

Notice	the	SSmicmen	function,	which	is	a	“self-starting”	function	that	implements
the	Michaelis-Menten	model.	As	such,	we	could	simplify	the	preceding	call	as
follows:

Click	here	to	view	code	image
>	nls(rate	~	SSmicmen(conc,	Vm,	K),	data	=	Puromycin,	subset	=	state	==
“treated”)
Nonlinear	regression	model
		model:	rate	~	SSmicmen(conc,	Vm,	K)
			data:	Puromycin
							Vm									K
212.68371			0.06412
	residual	sum-of-squares:	1195

Number	of	iterations	to	convergence:	0
Achieved	convergence	tolerance:	1.93e-06

Making	Predictions

We	can	use	the	predict	function	to	make	predictions	from	a	Nonlinear	model	and	then
use	the	lines	function	to	add	the	model	lines	to	our	plot.	The	result	of	this	can	be	seen	in
Figure	17.7.
Click	here	to	view	code	image

>	plot(Puromycin$conc,	Puromycin$rate,	pch	=	21,	cex	=	1.5,
+						xlab	=	“Instantaneous	reaction	rates	(counts/min/min)”,
+						ylab	=	“Substrate	Concentrations	(ppm)”,
+						main	=	“Instantaneous	reaction	rates	vs	Substrate	Concentrations”,
+						bg	=	ifelse(Puromycin$state	==	“treated”,	“red”,	“blue”))
>
>	predDf	<-	data.frame(conc	=	seq(0,	1.1,	length	=	25))									#	Set	of
																																																																		Concentrations
>	lines(predDf$conc,	predict(mmTreat,	predDf),	col	=	“red”)					#	Model	for
Treated
																																																																		data
>	lines(predDf$conc,	predict(mmUntreat,	predDf),	col	=	“blue”)		#	Model	for
																																																																		Untreated
data
>	legend(“bottomright”,	c(“Treated”,	“Untreated”),	fill	=	c(“red”,	“blue”))



FIGURE	17.7	Plot	of	reaction	rates	versus	concentration	with	Nonlinear	model	fits

Extended	Model

We	could	extend	our	example	to	fit	a	single	model	that	includes	both	the	treated	and
untreated	data.	At	the	same	time,	we	could	add	a	new	parameter	to	explain	the	difference
in	Vm	between	the	two	states.	The	outcome	can	be	seen	in	Figure	17.8.
Click	here	to	view	code	image

>	#	Add	new	parameter	to	out	function	(vTrt)
>	micmen	<-	function(conc,	state,	Vm,	K,	vTrt)	{
+			newVm	<-	Vm	+	vTrt	*	(state	==	“treated”)
+			newVm	*	conc	/	(K	+	conc)		#	Define	function
+	}
>	mmPuro	<-	nls(rate	~	micmen(conc,	state,	Vm,	K,	vTrt),	data	=	Puromycin,
+					start	=	c(Vm	=	160,	K	=	0.05,	vTrt	=	50))
>	summary(mmPuro)

Formula:	rate	~	micmen(conc,	state,	Vm,	K,	vTrt)

Parameters:
						Estimate	Std.	Error	t	value	Pr(>|t|)
Vm			166.60396				5.80742		28.688		<	2e-16	***
K						0.05797				0.00591			9.809	4.37e-09	***
vTrt		42.02591				6.27214			6.700	1.61e-06	***
–
Signif.	codes:		0	‘***’	0.001	‘**’	0.01	‘*’	0.05	‘.’	0.1	‘	‘	1

Residual	standard	error:	10.59	on	20	degrees	of	freedom

Number	of	iterations	to	convergence:	5
Achieved	convergence	tolerance:	9.239e-06

>



>	plot(Puromycin$conc,	Puromycin$rate,	pch	=	21,	cex	=	1.5,
+						xlab	=	“Instantaneous	reaction	rates	(counts/min/min)”,
+						ylab	=	“Substrate	Concentrations	(ppm)”,
+						main	=	“Instantaneous	reaction	rates	vs	Substrate	Concentrations”,
+						bg	=	ifelse(Puromycin$state	==	“treated”,	“red”,	“blue”))
>	xConc	=	seq(0,	1.1,	length	=	25)									#	Set	of	Concentrations
>	trtPred	<-	data.frame(conc	=	xConc,	state	=	“treated”)
>	untrtPred	<-	data.frame(conc	=	xConc,	state	=	“untreated”)
>
>	lines(predDf$conc,	predict(mmPuro,	trtPred),	col	=	“red”)					#	Model	for
Treated
																																																																		data
>	lines(predDf$conc,	predict(mmPuro,	untrtPred),	col	=	“blue”)		#	Model	for
																																																																		Untreated
data
>	legend(“bottomright”,	c(“Treated”,	“Untreated”),	fill	=	c(“red”,	“blue”))

FIGURE	17.8	Plot	of	reaction	rates	versus	concentration	with	Nonlinear	model	fit

If	we	extract	the	coefficients	from	our	model,	we	can	see	the	highly	significant	vTrt
variable:
Click	here	to	view	code	image

>	round(cbind(Est	=	coef(mmPuro),	confint(mmPuro)),	3)
Waiting	for	profiling	to	be	done…
									Est				2.5%			97.5%
Vm			166.604	154.617	179.252
K						0.058			0.046			0.072
vTrt		42.026		28.957		55.199

Nonlinear	Model	Extensions
The	previous	section	contained	a	very	simple	introduction	to	the	Nonlinear	model-fitting
features	of	R.	There	are	a	number	of	extensions,	including	the	following:



	The	gnls	function,	which	additionally	allows	for	the	correlated	errors.	For	more
information,	see	the	?gnls	help	file.

	The	gnm	package,	which	fits	Generalized	Nonlinear	models	(analogous	to	the	glm
function	for	Nonlinear	fits).

	The	nlme	package,	which	provides	functionality	for	fitting	Nonlinear	Mixed	Effects
models.

Survival	Analysis
Earlier	in	this	hour,	you	saw	how	logistic	regression	can	be	used	to	model	the	probably	of
an	event	occurring.	Survival	analysis,	instead,	allows	us	to	model	the	time	until	an	event
happens.	For	example,	Survival	analysis	is	used	heavily	in	the	field	of	medicine	to
understand	the	time	until	an	event	occurs,	such	as	failure	of	an	organ	following	transplant
or	time	until	death	for	someone	with	a	terminal	disease.	We	are	interested	in	how	a	set	of
covariates	may	influence	the	time	to	event.

The	ovarian	Data	Frame
Throughout	this	section	we’ll	use	a	data	frame	called	ovarian,	which	contains	data	from
a	randomized	trial	comparing	two	treatments	for	ovarian	cancer.	This	data	frame	can	be
found	in	the	survival	package:
Click	here	to	view	code	image

>	library(survival)
>	head(ovarian)
		futime	fustat					age	resid.ds	rx	ecog.ps
1					59						1	72.3315								2		1							1
2				115						1	74.4932								2		1							1
3				156						1	66.4658								2		1							2
4				421						0	53.3644								2		2							1
5				431						1	50.3397								2		1							1
6				448						0	56.4301								1		1							2

The	columns	from	the	ovarian	data	frame	are	described	in	Table	17.6.

TABLE	17.6	Columns	of	the	ovarian	Data	Frame



Censoring
When	we	are	analyzing	the	time	until	an	event	occurs,	a	particular	challenge	is	that	the
data	may	be	“censored.”	In	this	case,	the	event	has	not	yet	occurred,	so	we	record	the	last
times	at	which	we	know	the	events	had	not	yet	occurred	and	flag	these	observations.
Consider	if	we	wanted	to	understand	the	time	an	organ	survives	following	a	transplant.
There	are	three	possible	outcomes:

	The	organ	is	still	functioning,	so	the	failure	of	this	organ	has	not	yet	occurred.

	The	patient	died	as	a	result	of	something	other	than	the	organ	failing.

	The	organ	failed,	so	the	“event”	has	occurred.

In	the	first	two	situations,	the	time	is	“censored”	as	we	know	the	time	until	the	“event”
had	not	occurred,	but	cannot	observe	the	time	until	the	“event”	itself.

In	the	case	of	our	ovarian	data	frame,	the	time	and	“censor”	flag	are	recorded	in	the
futime	and	fustat	variables.
Click	here	to	view	code	image

>	aggregate(ovarian$futime,	list(State	=	ovarian$fustat),
+			function(x)	c(Min	=	min(x),	Median	=	median(x),	Max	=	max(x)))
		State		x.Min	x.Median		x.Max
1					0		377.0				786.5	1227.0
2					1			59.0				359.0		638.0

Here,	the	censored	times	are	those	with	State	0.	We	can	create	an	object	that	combines
these	variables	into	a	single	object	with	the	Surv	function,	as	follows:
Click	here	to	view	code	image

>	ovSurv	<-	Surv(ovarian$futime,	event	=	ovarian$fustat)
>	ovSurv
[1]			59			115			156			421+		431			448+		464			475			477+		563			638			744+		769+		770+
[15]		803+		855+	1040+	1106+	1129+	1206+	1227+		268			329			353			365			377+

Note	the	+	suffix	for	censored	values	(that	is,	observations	where	the	event	has	not	yet
occurred).

Estimating	the	Survival	Function
Much	of	Survival	analysis	is	concerned	with	modeling	and	estimating	the	“Survival
Function”	(S),	which	provides	the	probability	that	an	individual	will	survive	a	certain	time
(t).	Formally,

S(t)	=	P(T	>	t)	for	times	T	≥	0

Consider	the	graphical	representation	of	an	example	of	a	Survival	Function	shown	in
Figure	17.9.



FIGURE	17.9	Example	of	a	Survival	Function

Note	that	the	probability	of	surviving	past	time	t	=	40	in	Figure	17.9	is	39%.	There	are
other	characteristics	of	a	Survival	Function	as	t	ranges	from	0	to	∞,	such	as	the	following:

	The	Survival	Function	is	decreasing	(or	at	least	is	non-increasing).

	Typically,	the	probability	of	surviving	past	time	0	is	1,	so	S(0)	=	1.

	The	probability	of	surviving	at	time	∞	is	0,	so	S(∞)	=	0.

We	can	estimate	the	Survival	Function	using	either	non-parametric	or	parametric
approaches.

Kaplan-Meier	Estimate

The	“Kaplan-Meier”	estimator	(or	“product	limit”	estimator)	is	the	most	popular	non-
parametric	method	statistic	used	to	estimate	the	Survival	Function.	We	can	produce	a
Kaplan-Meier	estimate	in	R	using	the	survfit	function.	The	first	argument	to	the
survfit	function	should	be	a	formula	with	a	survival	object	(such	as	the	one	we
produced	earlier)	on	its	left	hands	side.	To	estimate	a	single	Survival	Function,	we	specify
“1”	on	the	right	side,	as	follows:
Click	here	to	view	code	image

>	kmOv		<-	survfit(ovSurv	~	1)
>	kmOv
Call:	survfit(formula	=	ovSurv	~	1)

records			n.max	n.start		events		median	0.95LCL	0.95UCL
					26						26						26						12					638					464						NA



The	survfit	function	returns	an	object	of	class	“survfit,”	which	has	a	few	methods
available.	The	summary	method	returns	the	estimated	Survival	Function	along	with
confidence	intervals:
Click	here	to	view	code	image

>	summary(kmOv)
Call:	survfit(formula	=	ovSurv	~	1)

	time	n.risk	n.event	survival	std.err	lower	95%	CI	upper	95%	CI
			59					26							1				0.962		0.0377								0.890								1.000
		115					25							1				0.923		0.0523								0.826								1.000
		156					24							1				0.885		0.0627								0.770								1.000
		268					23							1				0.846		0.0708								0.718								0.997
		329					22							1				0.808		0.0773								0.670								0.974
		353					21							1				0.769		0.0826								0.623								0.949
		365					20							1				0.731		0.0870								0.579								0.923
		431					17							1				0.688		0.0919								0.529								0.894
		464					15							1				0.642		0.0965								0.478								0.862
		475					14							1				0.596		0.0999								0.429								0.828
		563					12							1				0.546		0.1032								0.377								0.791
		638					11							1				0.497		0.1051								0.328								0.752

The	plot	method	allows	us	to	produce	a	graph	of	the	Kaplan-Meier	estimate,	seen	in
Figure	17.10.
Click	here	to	view	code	image

>	plot(kmOv,	col	=	“blue”,
+			main	=	“Kaplan-Meier	Plot	of	Ovarian	Data”,
+			xlab	=	“Time	(t)”,	ylab	=	“Survival	Function	S(t)”)

FIGURE	17.10	Kaplan-Meier	plot	of	ovarian	data



Parametric	Methods

We	can	estimate	the	Survival	Function	using	parametric	methods	with	probability
distributions	such	as	Weibull,	Exponential,	and	Log-Normal.	In	this	case,	we	use
maximum	likelihood	estimation	to	estimate	the	(unknown)	parameters	of	the	selected
distribution.	Let’s	use	the	Weibull	distribution	to	model	the	Survival,	such	that	S(t)	=	exp
(–	α	*	tγ).	We	can	fit	a	parametric	survival	model	using	the	survreg	function,	which	has
a	dist	input	for	specifying	the	distribution:
Click	here	to	view	code	image

>	wbOv	<-	survreg(ovSurv	~	1,	dist	=	“weibull”)
>	summary(wbOv)

Call:
survreg(formula	=	ovSurv	~	1,	dist	=	“weibull”)
													Value	Std.	Error						z									p
(Intercept)		7.111						0.293	24.292	2.36e-130
Log(scale)		-0.103						0.254	-0.405		6.86e-01

Scale=	0.902

Weibull	distribution
Loglik(model)=	-98			Loglik(intercept	only)=	-98
Number	of	Newton-Raphson	Iterations:	5
n=	26

If	we	want	to	plot	the	line,	there	are	two	possible	options:

	Manually	transform	the	parameters	into	a	Weibull	curve

	Use	the	predict	function

Let’s	use	the	predict	function,	which	allows	us	to	produce	a	number	of	predictions
from	a	“survfit”	object.	We	can	specify	“quantile”	predictions	using	type	=
"quantile",	using	the	p	argument	to	specify	the	quantiles	for	which	to	provide
predictions.	Because	we	have	no	covariates,	we	need	to	provide	a	“dummy”	dataset	for	the
newdata	argument	as	follows:
Click	here	to	view	code	image

>	pct	<-	seq(.0,.99,by=.01)																						#	Quantiles	at	which	to
predict
>	dummyDf	<-	data.frame(1)																							#	Dummy	dataset
>	predOv	<-	predict(wbOv,	newdata	=	dummyDf,					#	Make	Quantile	predictions
+			type	=	“quantile”,	p	=	pct)
>	head(predOv)
[1]		0.00000	19.28838	36.22041	52.46544	68.33554	83.97347

This	returns	a	set	of	predicted	time	points	for	the	specified	quantiles.	We	can	overlay	these
predictions	onto	our	Kaplan-Meier	plot,	the	output	of	which	can	be	seen	in	Figure	17.11.
Click	here	to	view	code	image

>	plot(kmOv,	col	=	“blue”,
+						main	=	“Kaplan-Meier	Plot	of	Ovarian	Data”,
+						xlab	=	“Time	(t)”,	ylab	=	“Survival	Function	S(t)”)
>	lines(predOv,	1	-	pct,	col	=	“red”)
>	legend(“bottomleft”,	c(“Kaplan-Meier”,	“Weibull”),	fill	=	c(“blue”,	“red”))



FIGURE	17.11	Survival	plot	of	ovarian	data	with	Kaplan-Meier	and	Weibull

Adding	Covariates

We	can	easily	add	independent	variables	in	the	parametric	model	fit	by	specifying	them	on
the	right	side	of	our	formula.	Let’s	model	survival	against	age	using	our	ovarian	data:
Click	here	to	view	code	image

>	wbOv2	<-	survreg(ovSurv	~	age,	dist	=	“weibull”,	data	=	ovarian)
>	summary(wbOv2)

Call:
survreg(formula	=	ovSurv	~	age,	data	=	ovarian,	dist	=	“weibull”)
														Value	Std.	Error					z								p
(Intercept)	12.3970					1.4821		8.36	6.05e-17
age									-0.0962					0.0237	-4.06	4.88e-05
Log(scale)		-0.4919					0.2304	-2.14	3.27e-02

Scale=	0.611

Weibull	distribution
Loglik(model)=	-90			Loglik(intercept	only)=	-98
				Chisq=	15.91	on	1	degrees	of	freedom,	p=	6.7e-05
Number	of	Newton-Raphson	Iterations:	5
n=	26

Let’s	again	use	the	predict	function	to	create	estimated	Survival	curves	from	different
age	groups.	The	output	can	be	seen	in	Figure	17.12.
Click	here	to	view	code	image

>	ageDf	<-	data.frame(age	=	10*4:6)													#	Set	of	ages	for	predictions
>	theCols	<-	c(“red”,	“blue”,	“green”)										#	Colors	to	use
>	predOv	<-	predict(wbOv2,	newdata	=	ageDf,					#	Make	Quantile	predictions
+			type	=	“quantile”,	p	=	pct)



>	matplot(t(predOv),	1-pct,	xlim	=	c(0,	1200),		#	Matrix	plot	of	predicted
survival
+			type	=	“l”,	lty	=	1,	col	=	theCols,
+			main	=	“Parametric	Estimation	of	Survival	Curve	by	Age”,
+			xlab	=	“Time	(t)”,	ylab	=	“Survival	Function	S(t)”)
>	legend(“bottomleft”,	paste(“Age	=”,	ageDf$age),	fill	=	theCols)

FIGURE	17.12	Estimated	survival	by	age

Proportional	Hazards
Proportional	Hazards	regression	(or	“Cox”	regression)	provides	an	excellent	framework
for	modeling	time	to	event	data	when	we	want	to	test	many	independent	variables.	In
particular,	Proportional	Hazards	regression	provides	a	framework	for	understanding	how
differing	levels	of	covariates	increase	the	“risk”	on	a	subject.

Proportional	Hazards	regression	focuses	on	models	of	the	“Hazard”	Function	(h),	which
can	be	considered	as	the	probability	of	an	event	during	an	infinitesimally	small	period	of
time,	and	thus	represents	the	“risk”	of	an	event	occurring	at	a	specific	point	in	time	given
that	it	hasn’t	happened	up	to	that	point.

When	we	introduce	Independent	Variables	into	a	Proportional	Hazards	regression,	we	can
consider	the	Survival	Model	to	have	two	components:

	An	underlying	baseline	Hazard	Function	describing	the	“risk”	over	time	at	baseline
levels	of	covariates

	The	effect	parameters	describing	how	the	Hazard	varies	due	to	other	(non-baseline)
levels	of	covariates

For	a	Proportional	Hazards	model	to	be	suitable,	the	“Proportional	Hazards	condition”
must	hold,	which	states	that	covariates	are	related	to	the	hazard	in	a	multiplicative	sense.



We’ll	check	this	assumption	later.

To	fit	a	Proportional	Hazards	model	in	R,	we	use	the	coxph	function,	and	again	we
define	the	model	to	fit	as	a	formula	with	a	survival	object	on	the	left	side:
Click	here	to	view	code	image

>	coxModel	<-	coxph(ovSurv	~	age	+	factor(rx),	data	=	ovarian)
>	summary(coxModel)
Call:
coxph(formula	=	ovSurv	~	age	+	factor(rx),	data	=	ovarian)

		n=	26,	number	of	events=	12

																coef	exp(coef)	se(coef)						z	Pr(>|z|)
age										0.14733			1.15873		0.04615		3.193		0.00141	**
factor(rx)2	-0.80397			0.44755		0.63205	-1.272		0.20337
–
Signif.	codes:		0	‘***’	0.001	‘**’	0.01	‘*’	0.05	‘.’	0.1	‘	‘	1

												exp(coef)	exp(-coef)	lower	.95	upper	.95
age												1.1587						0.863				1.0585					1.268
factor(rx)2				0.4475						2.234				0.1297					1.545

Concordance=	0.798		(se	=	0.091	)
Rsquare=	0.457			(max	possible=	0.932	)
Likelihood	ratio	test=	15.89		on	2	df,			p=0.0003551
Wald	test												=	13.47		on	2	df,			p=0.00119
Score	(logrank)	test	=	18.56		on	2	df,			p=9.341e-05

The	age	variable	is	significant	in	our	model,	but	not	the	rx	variable.	Because	the	model
is	based	on	the	hazard,	the	coefficients	of	the	model	can	be	interpreted	in	relation	to	the
baseline	level	for	each	covariate.	In	fact,	the	coefficients	returned	are	the	log-hazards
relative	to	the	baseline,	so	the	exponentiated	coefficients	(also	reported)	are	the	relative
risk	of	change.

	For	factor	variables,	the	exp(coef)	values	are	the	risks	relative	to	the	baseline
level.	So,	in	our	example,	the	risk	in	treatment	group	2	is	approximately	45%	of	that
of	group	1.

	For	continuous	variables,	the	exp(coef)	values	are	the	risks	relative	to	a	unit
change	in	the	covariate.	So,	in	our	example,	the	increased	risk	for	a	subject	5	years
older	than	another	is	exp(5	*	0.147)	=	2.085.



Tip:	Testing	the	Proportional	Hazards	Assumption

We	can	use	the	cox.zph	function	to	test	the	assumption	of	Proportional	Hazards.
We	look	for	small	p-values	as	an	indication	that	the	proportionality	assumption	is
not	met.

Click	here	to	view	code	image
>	cox.zph(coxModel)
																rho	chisq					p
age									-0.0918	0.113	0.736
factor(rx)2		0.2072	0.518	0.472
GLOBAL											NA	0.729	0.695

So,	it	looks	like	the	assumption	holds	for	our	model.

Plotting	a	Proportional	Hazards	Model

The	plot	and	survfit	functions	can	be	used	together	to	produce	survival	plots	on	the
basis	of	a	Proportional	Hazards	model.	First	of	all,	we	call	survfit	with	our	model
object.	Note	that	we	are	including	only	the	significant	age	variable	in	this	model:
Click	here	to	view	code	image

>	coxModel	<-	coxph(ovSurv	~	age,	data	=	ovarian)
>	coxSurv	<-	survfit(coxModel)
>	summary(coxSurv)
Call:	survfit(formula	=	coxModel)

	time	n.risk	n.event	survival	std.err	lower	95%	CI	upper	95%	CI
			59					26							1				0.988		0.0142								0.961								1.000
		115					25							1				0.974		0.0244								0.927								1.000
		156					24							1				0.955		0.0364								0.886								1.000
		268					23							1				0.933		0.0482								0.844								1.000
		329					22							1				0.897		0.0621								0.783								1.000
		353					21							1				0.862		0.0724								0.732								1.000
		365					20							1				0.824		0.0819								0.678								1.000
		431					17							1				0.775		0.0934								0.612								0.982
		464					15							1				0.724		0.1032								0.548								0.958
		475					14							1				0.673		0.1112								0.487								0.931
		563					12							1				0.596		0.1226								0.398								0.892
		638					11							1				0.520		0.1287								0.321								0.845

Now	we	can	use	the	plot	function	to	produce	our	survival	curves,	as	seen	in	Figure
17.13.
Click	here	to	view	code	image

>	plot(coxSurv,	col	=	“blue”,	xlab	=	“Time	(t)”,
+						ylab	=	“Survival	Function	S(t)”,
+						main	=	“Proportional	Hazards	Model”)



FIGURE	17.13	Estimated	survival	using	Proportional	Hazards	model

We	can	provide	a	new	data	frame	to	the	survfit	function	if	we	want	to	produce
Survival	curves	for	different	sets	of	covariates.	For	example,	let’s	produce	different
Survival	curves	for	the	different	age	values	as	we	did	for	the	parametric	model	fits.	We’ll
overlay	the	original	parametric	model	fits	for	these	age	values	using	dashed	lines	for
comparison.	The	output	can	be	seen	in	Figure	17.14.
Click	here	to	view	code	image

>	coxSurv	<-	survfit(coxModel,	newdata	=	ageDf)										#	Survival	curves
for	age
																																																											values
>	plot(coxSurv,	col	=	theCols,	xlab	=	“Time	(t)”,								#	Plot	the	survival
curves
+						ylab	=	“Survival	Function	S(t)”,
+						main	=	“Proportional	Hazards	Model”)
>	matlines(t(predOv),	1-pct,																													#	Add	parametric
curves
+			type	=	“l”,	lty	=	2,	col	=	theCols)
>	legend(“bottomleft”,	paste(“Age	=”,	ageDf$age),	fill	=	theCols)



FIGURE	17.14	Estimated	survival	for	different	ages	using	Proportional	Hazards	model

Survival	Model	Extensions
R	provides	a	rich	set	of	capabilities	for	the	analysis	of	time	to	event	data.	The	best	source
of	information	is	the	Survival	Analysis	Task	View	(https://cran.r-
project.org/web/views/Survival.html),	which	lists	over	200	packages	that	are	related	the
study	of	survival	data.

Time	Series	Analysis
R	is	used	heavily	in	areas	such	as	quantitative	finance	and	econometrics;	unsurprisingly,	it
provides	a	wide	range	of	time	series	analysis	functionality.	Although	a	number	of
packages	provide	time	series	analysis	capabilities,	we	will	focus	here	on	the	functions
loaded	in	the	basic	stats	package	that	is	loaded	when	we	start	R.	In	this	section,	we	will
see

	How	to	create	and	manage	time	series	objects

	How	to	perform	simple	decomposition	and	smoothing

	How	to	fit	an	ARIMA	model

Time	Series	Objects
We	can	create	a	time	series	object	in	R	with	the	ts	function.	Once	created,	these	objects
can	be	used	in	a	range	of	analytic	and	graphical	routines.	The	ts	function	accepts	a	vector
or	matrix	containing	the	data.

https://cran.r-project.org/web/views/Survival.html


As	an	example,	the	website	boxofficemojo.com	reports	daily	gross	income	for	film
releases.	One	of	the	highest	grossing	films	of	2015	was	Avengers:	Age	of	Ultron,	which
grossed	over	$425m	in	its	first	month	(May	2015).	The	daily	takings	during	that	first
month	are	as	follows:
Click	here	to	view	code	image

>	ultron	<-	c(84.4,	56.5,	50.3,	13.2,	13.1,	9.4,	8.6,	21.2,	33.8,	22.7,
+			5.4,	6,	4.3,	4,	10,	17.2,	11.6,	3.4,	3,	2.3,	2.4,	5.4,	8.3,	8,	6.5,
+			1.9,	1.4,	1.4,	2.9,	4.9,	3.6)

If	we	wanted	to	create	a	time	series	of	this	data,	we	could	use	the	ts	function.	We	often
specify	time	series	elements	such	as	the	“start”	date/time	of	the	series,	but	for	this	example
we’ll	simply	specify	the	data	and	the	frequency	as	7	(that	is,	weekly	data).
Click	here	to	view	code	image

>	tsUltron	<-	ts(ultron,	frequency	=	7)
>	tsUltron
Time	Series:
Start	=	c(1,	1)
End	=	c(5,	3)
Frequency	=	7
	[1]	84.4	56.5	50.3	13.2	13.1		9.4		8.6	21.2	33.8	22.7		5.4		6.0		4.3
[14]		4.0	10.0	17.2	11.6		3.4		3.0		2.3		2.4		5.4		8.3		8.0		6.5		1.9
[27]		1.4		1.4		2.9		4.9		3.6

Once	we	have	a	time	series	object	created,	we	can	use	the	plot	function	to	create	a
simple	time	series	plot,	as	shown	in	Figure	17.15.
Click	here	to	view	code	image

>	plot(tsUltron,	main	=	“Daily	Box	Office	Daily	for	Avengers:	Age	of	Ultron”,
+						xlab	=	“Week	during	May	2015”,	ylab	=	“Daily	Gross	($m)”)
>	points(tsUltron,	pch	=	21,	bg	=	“red”)

http://boxofficemojo.com


FIGURE	17.15	Time	series	plot	of	daily	grossing	of	Avengers:	Age	of	Ultron

If,	as	in	this	example,	the	data	is	not	linear,	we	may	want	to	apply	a	transformation.	For
example,	let’s	apply	a	log	transformation	to	our	example,	which	can	be	seen	in	Figure
17.16.
Click	here	to	view	code	image

>	plot(log(tsUltron),	main	=	“Daily	Box	Office	Daily	for	Avengers:	Age	of
Ultron”,
+						xlab	=	“Week	during	May	2015”,	ylab	=	“Log	Daily	Gross	($m)”)
>	points(log(tsUltron),	pch	=	21,	bg	=	“red”)



FIGURE	17.16	Time	series	plot	of	(logged)	daily	grossing	of	Avengers:	Age	of	Ultron

Tip:	Selecting	a	Subset	of	the	Time	Series

If	we	want	to	subset	a	time	series,	we	can	use	the	window	function.	To	specify	the
subset,	we	need	to	provide	a	start	and/or	end	relative	to	the	frequency.	So,	to	select
only	data	for	the	first	week,	we	request	the	series	up	to	the	seventh	element	of	the
first	week,	as	follows:

Click	here	to	view	code	image
>	window(tsUltron,	end	=	c(1,	7))
Time	Series:
Start	=	c(1,	1)
End	=	c(1,	7)
Frequency	=	7
[1]	84.4	56.5	50.3	13.2	13.1		9.4		8.6

Decomposing	Time	Series
A	common	task	in	the	field	of	time	series	analysis	is	decomposition,	where	we	attempt	to
separate	a	time	series	into	components.	This	could	include

	A	seasonal	element	(for	example,	weekly,	monthly,	or	annually)

	An	overall	trend

	Remaining	data	not	fully	explained	by	the	first	two	elements

We	can	perform	a	simple	seasonal	decomposition	in	R	using	the	stl	function,	which	uses
loess	smoothers	to	decompose	a	time	series	into	seasonal,	trend,	and	irregular	components.
Let’s	use	the	stl	function	to	perform	a	simple	decomposition	of	our	Age	of	Ultron	data,



which	we	can	graph	directly	using	the	plot	function.	The	resulting	graphic	can	be	seen
in	Figure	17.17.
Click	here	to	view	code	image

>	stlUltron	<-	stl(log(tsUltron),	s.window	=	“periodic”)
>	plot(stlUltron,	main	=	“Decomposition	of	the	Ultron	Time	Series”)

FIGURE	17.17	Decomposition	of	(logged)	daily	grossing	of	Avengers:	Age	of	Ultron

The	output	from	the	stl	function	is	an	object	of	class	“stl.”	It	includes	a	time.series
element	we	can	query	or	plot	directly:
Click	here	to	view	code	image

>	window(stlUltron$time.series,	end	=	c(1,	7))
Time	Series:
Start	=	c(1,	1)
End	=	c(1,	7)
Frequency	=	7
											seasonal				trend				remainder
1.000000		0.4330473	3.598952		0.403568367
1.142857		0.8490648	3.441404	-0.256228394
1.285714		0.7104135	3.283857	-0.076264998
1.428571	-0.2510144	3.131462	-0.300230859
1.571429	-0.4588637	2.979068		0.052408283
1.714286	-0.6741455	2.868556		0.046299129
1.857143	-0.6085021	2.758045		0.002219731

We	can	also	use	this	to	remove	components	from	our	time	series.	For	example,	we	could
remove	the	seasonal	element	from	our	time	series	and	then	plot	the	remaining	data,	as
seen	in	Figure	17.18.
Click	here	to	view	code	image

>	seUltron	<-	log(tsUltron)	-	stlUltron$time.series[,“seasonal”]



>	plot(seUltron,
+			main	=	“Logged	Daily	Box	Office	Gross\n(Weekly	seasonality	removed)”,
+			xlab	=	“Weeks	in	May	2015”,	ylab	=	“Logged	Daily	Box	Office	Gross	($m)”)

FIGURE	17.18	Logged	daily	grossing	of	Avengers:	Age	of	Ultron	with	seasonality
removed

Note:	Outlying	Value

The	large	spike	in	this	time	series	was	May	25,	2015,	which	was	Memorial	Day,	so
figures	were	higher	than	expected	for	a	Monday.

Smoothing
We	may	want	to	perform	some	smoothing	on	our	time	series	to	provide	short-term
forecasts.	Exponential	smoothing	techniques	apply	exponentially,	decreasing	weights	to
less	recent	observations,	and	therefore	can	be	a	more	appropriate	approach	than	using
moving	averages.	However,	simple	exponential	smoothing	can	only	be	used	for	data
without	systematic	trend	or	seasonality.

The	Holt-Winters	method	can	be	applied	to	time	series,	which	contain	both	trend	and
seasonality.	This	approach	can	be	performed	using	the	HoltWinters	function	in	R.	The
primary	inputs	to	the	HoltWinters	function	are	described	in	Table	17.7.



TABLE	17.7	Key	Inputs	to	the	HoltWinters	Function

Let’s	use	the	Holt-Winters	method	with	our	Age	of	Ultron	data.	The	results	are	visualized
in	Figure	17.19.
Click	here	to	view	code	image

>	hwUltron	<-	HoltWinters(log(tsUltron))
>	plot(hwUltron)

FIGURE	17.19	Holt-Winters	filtering	of	the	logged	daily	box	office	takings	for
Avengers:	Age	of	Ultron

Once	we	have	used	the	Holt-Winters	method,	we	can	make	predictions	using	the
predict	function,	which	accepts	the	argument	n.ahead	to	specify	the	number	of
predictions	to	make.	We	can	also	specify	the	argument	prediction.interval	to
request	for	(95%	by	default)	prediction	intervals.	Because	we	have	the	actual	values,	we
have	overlaid	these	too,	as	shown	in	Figure	17.20.
Click	here	to	view	code	image



>	predUltron	<-	predict(hwUltron,	n.ahead	=	7,														#	Predict	7	days
with
																																																														H-W	method
+			prediction.interval	=	TRUE)
>	plot(hwUltron,	predUltron,	col	=	“red”,																			#	Plot	data	and
																																																														predictions
+			col.predicted	=	“blue”,	col.intervals	=	“blue”,
+			lty.intervals	=	2)
>	actuals	<-	c(1.08,	1.26,	.97,	.95,	1.84,	2.66,	1.84)						#	Actual	values
>	tsActuals	<-	ts(actuals,	frequency	=	7,	start	=	c(5,	4))		#	Create	time
series
>	lines(log(tsActuals),	col	=	“darkgreen”)																		#	Add	line
>	points(log(tsActuals),	pch	=	4,	col	=	“darkgreen”)								#	Add	points
>	legend(“bottomleft”,	c(“Original	Data”,	“Holt-Winters	Filter”,	“Actual
Data”),
+			fill	=	c(“red”,	“blue”,	“grey”))

FIGURE	17.20	Holt-Winters	predictions	versus	actual	logged	daily	box	office	takings
for	Avengers:	Age	of	Ultron

Autocorrelations
Although	smoothing	approaches	can	provides	us	with	a	mechanism	for	generating	short-
term	forecasts,	to	understand	the	mechanisms	for	a	time	series	we	must	first	investigate	its
autocorrelation.	That	is,	the	cross-correlation	of	a	time	series	with	lagged	values	of	the
same	series.	We	can	create	a	plot	of	the	Autocorrelation	Function	(a	“correlogram”)	using
the	acf	function	in	R.	We	can	also	create	Partial	Autocorrelation	plots	using	the	pacf
function.	Both	of	these	plots	can	be	seen	in	Figure	17.21.
Click	here	to	view	code	image

>	par(mfrow	=	c(1,	2))
>	acf(log(tsUltron),	main	=	“Autocorrelation”)
>	pacf(log(tsUltron),	main	=	“Partial	Autocorrelation”)



FIGURE	17.21	Correlograms	of	logged	daily	box	office	takings	for	Avengers:	Age	of
Ultron

Tip:	The	forecast	Package

The	forecast	package	provides	excellent	resources	for	time	series	analysis.	Among
other	things,	it	provides	enhanced	versions	of	acf	and	pacf	called	Acf	and
Pacf.

Fitting	ARIMA	Models
An	Autoregressive	Integrated	Moving	Average	(or	“ARIMA”)	Model	can	be	fit	to
understand	and	predict	time	series	data.	The	ARIMA	Model	consists	of	three	components:

	AR:	Autoregressive

	I:	Integrated	(differencing	that	can	be	applied)

	MA:	Moving	Average

We	can	fit	an	ARIMA	Model	in	R	using	the	arima	function,	which	accepts	a	time	series
object.	We	specify	the	order	of	the	time	series	using	a	vector	of	length	three	(p,	d,	q),
which	specifies

	p,	the	AR	order

	d,	the	degree	of	differencing

	q,	the	MA	order

Based	on	these	autocorrelations,	let’s	fit	an	ARIMA	(1,	0,	1)	Model	to	our	time	series:



Click	here	to	view	code	image
>	arimaUltron	<-	arima(log(tsUltron),	order	=	c(1,	0,	1))
>	arimaUltron

Call:
arima(x	=	log(tsUltron),	order	=	c(1,	0,	1))

Coefficients:
									ar1					ma1		intercept
						0.7627		0.3782					2.1785
s.e.	0.1428		0.1883					0.5470

sigma^2	estimated	as	0.3278:		log	likelihood	=	-27.46,		aic	=	62.93

We	can	see	a	visual	representation	of	the	time	series	fit	using	the	tsdiag	function,	which
produces	diagnostic	plots	for	time	series	fits.	Specifically,	it	will	plot	standardized
residuals,	an	autocorrelation	of	the	residuals,	and	p-values	from	a	Portmanteau	test.	This
output	is	shown	in	Figure	17.22.

>	tsdiag(arimaUltron)

FIGURE	17.22	Diagnostic	plots	from	ARIMA	(1,	0,	1)	fit

The	residuals	still	exhibit	signs	of	seasonality,	which	is	understandable	since	we	are	fitting
an	ARIMA	Model	to	a	time	series	with	seasonality.	At	this	point,	we	could	de-trend	the
time	series	and	remove	the	seasonal	trend	(for	example,	using	the	stl	function)	and	then
refit	the	model.	Alternatively,	we	could	fit	a	seasonal	ARIMA	Model	using	the
seasonal	argument	to	arima,	which	also	accepts	a	vector	of	length	3	(specifying	the
autoregressive,	differencing,	and	moving	average	components	of	the	seasonal	element	to
the	time	series).	Let’s	fit	a	seasonal	ARIMA	model	to	our	data,	as	seen	in	Figure	17.23.
Click	here	to	view	code	image



>	sarimaUltron	<-	arima(log(tsUltron),	order	=	c(1,	0,	1),
+			seasonal	=	list(order	=	c(1,	0,	1)))
>	tsdiag(sarimaUltron)

FIGURE	17.23	Diagnostic	plots	from	seasonal	ARIMA	(1,	0,	1)	fit

Predicting	from	ARIMA	Models

We	can	predict	values	from	an	ARIMA	Model	using	the	predict	function,	which
accepts	an	n.ahead	input.	Let’s	see	our	model	predictions	plotted	against	the	real
observations.	The	output	can	be	seen	in	Figure	17.24.
Click	here	to	view	code	image

>	predUltron	<-	predict(sarimaUltron,	n.ahead	=	7,			#	Predict	next	7	days
with
																																																							ARIMA	model
+						prediction.interval	=	TRUE)
>	plot(log(tsUltron),	type	=	“n”,
+						main	=	“Predictions	from	ARIMA(1,0,1)	Model”,
+						ylab	=	“Logged	Daily	Box	Office	Takings”,
+						xlab	=	“Day”,	xlim	=	c(1,	6.3),	ylim	=	c(-1,	5))
>	lines(log(tsUltron),	col	=	“red”)																					#	Add	original	data
>	lines(predUltron$pred,	col	=	“blue”)																		#	Add	predictions
>	lines(predUltron$pred	-	2	*	predUltron$se,	col	=	“blue”,	lty	=	2)		#	Add
errors
>	lines(predUltron$pred	+	2	*	predUltron$se,	col	=	“blue”,	lty	=	2)		#	Add
errors
>	lines(log(tsActuals),	col	=	“darkgreen”)														#	Add	line
>	points(log(tsActuals),	pch	=	4,	col	=	“darkgreen”)				#	Add	line
>
>	legend(“bottomleft”,
+			c(“Original	Data”,	“ARIMA	Predictions”,	“Actual	Data”),
+			fill	=	c(“red”,	“blue”,	“grey”))



FIGURE	17.24	Time	series	predictions	from	ARIMA	Model

Tip:	Covariates

We	can	add	covariates	to	an	ARIMA	Model	using	the	xreg	input	to	the	arima
function.

Note:	Time	Series	Analysis	Extensions

The	Time	Series	Task	View,	found	at	https://cran.r-
project.org/web/views/TimeSeries.html,	lists	a	wider	range	of	packages	that	allow
the	user	to	perform	a	range	of	time	series	tasks	and	analyses.

Summary
This	hour	covered	a	range	of	modeling	approaches	that	can	be	used	to	study	different	data
types.	Specifically,	we	saw	how	the	glm	function	allows	us	to	fit	Generalized	Linear
Models,	looked	at	the	nls	function	for	Nonlinear	Model	Nonlinearfits,	used	the	survival
package	to	model	time-to-event	data,	and	covered	a	few	of	the	time	series	analysis
capabilities	of	R.	The	capabilities	seen	in	this	and	the	previous	hour	demonstrate	only	a
small	portion	of	the	analytic	functionality	provided	by	R.

Q&A
Q.	Is	there	a	way	of	fitting	Generalized	Linear	Models	on	very	large	data	sizes?

A.	Although	limitations	exist,	the	biglm	package	provides	the	function	bigglm,

https://cran.r-project.org/web/views/TimeSeries.html


which	allows	out-of-memory	Generalized	Linear	Model	fitting.

Q.	Can	I	create	my	own	“self-starting”	functions?

A.	Yes,	the	selfStart	function	can	be	used	to	define	a	self-starting	function	that	can
then	be	used	in	a	function	such	as	nls.

Q.	How	do	I	define	left	or	interval	censored	data?

A.	The	Surv	function	allows	you	to	specify	left,	right,	or	interval	censored	data	using
the	time,	time2,	and	type	arguments.

Q.	Does	R	provide	ARCH	time	series	modeling	capabilities?

A.	Yes,	there	are	a	number	of	packages	(such	as	fGarch)	that	implement	(G)ARCH
models.

Workshop
The	workshop	contains	quiz	questions	and	exercises	to	help	you	solidify	your
understanding	of	the	material	covered.	Try	to	answer	all	questions	before	looking	at	the
“Answers”	section	that	follows.

Quiz
1.	What	argument	in	glm	controls	the	probability	distribution	to	use?

2.	How	would	you	fit	a	logistic	regression?

3.	Under	what	condition	would	you	not	have	to	specify	starting	values	in	an	nls	fit?

4.	In	which	package	would	you	find	the	coxph	function?

5.	How	would	you	fit	a	“seasonal	ARIMA”	model?

Answers
1.	The	family	argument.

2.	You	specify	a	dichotomous	response	variable	and	select	“binomial”	as	the
distribution.

3.	When	you	are	using	a	“self-starting”	modeling	function.

4.	In	the	survival	package.

5.	Using	the	arima	function,	specifying	the	order	and	seasonal	inputs.

Activities
1.	Using	the	mtcars	data	frame,	fit	a	logistic	model	of	vs	versus	other	variables	in
the	data.

2.	For	a	(Nonlinear)	logistic	function	of	circumference	versus	age	from	the
Orange	data	frame,	either	specify	the	model	function	directly	or	use	the	SSlogis
function.



3.	Fit	a	Cox	Proportional	Hazards	regression	model	to	the	lung	data	frame	from	the
survival	package.

4.	Fit	an	ARIMA	model	of	the	LakeHuron	time	series.



Hour	18.	Code	Efficiency

What	You’ll	Learn	in	This	Hour:

	How	to	profile	code	to	find	the	bottlenecks

	How	to	vectorize	code

	What	initialization	is	and	how	it	makes	code	more	efficient

	How	to	handle	memory	usage

	The	basics	of	Rcpp

Up	to	this	point	we	have	thought	a	lot	about	the	data	analysis	workflow	in	R—how	we	can
read	in	data,	analyze	the	data,	and	produce	professional	graphics—but	we	have	not	really
thought	about	the	impact	of	what	we	are	doing	and	how	long	it	will	take	to	run	the	code	in
practice.	Although	we	have	already	looked	at	packages	such	as	dplyr	and	data.table	that
will	help	us	to	make	working	with	data	more	efficient,	we	should	do	more	to	ensure	our
code	is	performant	and	robust.	In	this	chapter,	we	are	going	to	look	at	some	of	the
techniques	we	can	use	to	improve	the	efficiency	and,	importantly,	the	professionalism	of
our	R	code.

Determining	Efficiency
Before	we	dive	in	and	start	spending	large	amounts	of	time	making	our	code	more
efficient,	it’s	worth	thinking	about	where	we	should	start	on	improving	our	code	and	how
we	know	if	a	change	has	made	a	difference.	We	will	start	by	looking	at	ways	in	which	we
can	profile	code	to	find	out	where	the	slow	points	are	and	then	look	at	functions	we	can
use	to	see	how	long	it	takes	to	run	our	code.

Tip:	Making	Accurate	Changes

As	well	as	making	updates	that	ensure	that	our	code	runs	faster,	we	also	need	to
ensure	that	any	changes	do	not	impact	the	accuracy.	Although	it	would	be	great	to
have	a	function	that	is	1,000	times	faster,	it	is	no	use	if	this	adversely	changes	what
the	function	does.	At	a	basic	level,	we	can	simply	compare	the	output	of	different
variants	of	the	function.	For	more	professional	and	robust	code,	we	can	use	a	unit
test	framework	such	as	testthat	to	continuously	check	our	changes.	See	Hour
20,	“Advanced	Package	Building,”	for	more	information	on	unit	testing.



Profiling	Code
Profiling	allows	us	to	determine	where	the	bottlenecks	are	in	code,	what	is	actually
slowing	us	down.	Profiling	allows	us	to	see	which	lines	or	functions	we	are	spending	the
most	time	running.	The	benefit	of	this	is	that	by	knowing	where	our	code	is	slowest,	we
can	spend	our	time	on	increasing	the	efficiency	of	the	right	components	of	our	code.	After
all,	there	is	little	point	in	increasing	the	efficiency	of	a	line	of	code	that	is	only	a	tiny
percentage	of	the	overall	running	time.	You	may	as	well	put	your	time	and	effort	into
making	changes	in	the	right	place.

A	number	of	different	packages	are	available	for	profiling	R	code,	but	here	we	will	use	the
Rprof	function	available	in	base	R.	When	we	use	this	function,	we	run	our	code	between
start	and	close	instances.	This	will	then	check	at	a	specified	interval	what	function	is	being
run	by	our	code.	The	output	is	returned	to	file,	and	we	can	then	analyze	it	to	determine
where	our	code	was	spending	most	of	its	time.	In	more	recent	versions	of	R,	it	is	possible
to	return	this	output	at	the	line	level	so	that	we	can	see	which	lines	of	code	we	spent	the
most	time	on.

As	an	example,	we	will	profile	the	function	in	Listing	18.1	shown	in	the	next	section.
Because	this	function	will	run	quite	quickly,	we	will	run	the	function	a	number	of	times
using	replicate.
Click	here	to	view	code	image

>	tmp	<-	tempfile()
>	Rprof(filename	=	tmp,	line.profiling	=	TRUE)
>	replicate(100,	f1(100))
>	Rprof(NULL)
>	summaryRprof(filename	=	tmp,	lines	=	“show”)
$by.line
			self.time	self.pct	total.time	total.pct
#9						0.06						100							0.06							100

In	this	example,	we	have	included	line	profiling,	which	makes	it	much	easier	to	see	which
line	the	most	time	was	spent	on.	In	this	particular	case,	the	output	returns	only	one	line
(line	9),	which	would	indicate	that	the	most	time	is	spent	performing	the	ifelse	inside
of	the	for	loop	(see	Listing	18.1	in	the	next	section).	This	suggests	that	this	is	the
component	we	should	focus	on	trying	to	improve.	Note	that	the	specific	output	you	see	in
this	case	will	depend	on	exactly	how	long	the	code	takes	to	run,	which	will	depend	upon
the	machine	used	and	the	operating	system,	among	other	things.



Benchmarking
If	we	are	going	to	start	making	changes	to	code,	we	want	to	know	that	it	is	making	a
difference	and	actually	speeding	up	our	functions.	Benchmarking	tools	let	us	time	the
running	of	code,	typically	at	the	nanosecond	level.	Just	as	with	profiling,	there	are	a
number	of	ways	of	doing	this,	but	here	we	will	use	the	microbenchmark	package,	which
is	widely	used	for	code	analysis.	Using	the	microbenchmark	function,	we	can	pass	any
number	of	functions	to	be	run.	Each	will	be	run	a	specified	number	of	times,	as	defined	by
the	times	argument.	We	need	to	run	a	function	more	than	once	to	determine	the	average
time	to	run	because	there	may	be	faster	and	slower	occurrences,	which	would	impact	our
results	if	we	compared	on	a	single	run.	The	microbenchmark	function	helps	us	handle
this	and	returns	a	series	of	statistics,	such	as	the	median	and	upper	and	lower	quantiles	of
all	the	times.

As	an	example	of	benchmarking,	we	will	start	with	the	function	defined	in	Listing	18.1.
This	is	a	simple	function	that	samples	0	and	1	to	give	a	vector	of	the	length	specified	by
the	argument	len.	We	will	use	this	function	as	an	example	throughout	this	hour	to	show
how	we	can	improve	our	code.	We	can	use	this	function	in	the	microbenchmark
function	by	simply	passing	the	function	call—for	example,	f1(100).	By	default,	this
will	be	replicated	100	times.
Click	here	to	view	code	image

>	microbenchmark(f1(100))
Unit:	microseconds
				expr					min						lq					mean	median							uq					max	neval
	f1(100)	597.087	616.146	731.2236	624.21	662.5125	2026.94			100

As	you	can	see,	the	output	to	this	function	is	a	series	of	summary	statistics	for	the	running
time	of	each	replicate.	The	main	value	of	interest	is	the	median,	though	in	some
instances	the	spread	may	also	be	of	interest.

LISTING	18.1	Sampling	Function
Click	here	to	view	code	image

	1:	f1	<-	function(len){
	2:
	3:			x	<-	NULL
	4:
	5:			for(i	in	seq_len(len)){
	6:
	7:					s	<-	runif(1)
	8:
	9:					x[i]	<-	ifelse(s	>	0.5,	1,	0)
10:
11:			}
12:
13:			x
14:
15:	}



Tip:	How	Fast	Is	Fast	Enough?

Before	you	start	to	make	changes	to	your	code,	it	is	worth	having	an	aim	for	how
much	you	are	looking	to	speed	up	your	code	by.	How	long	will	be	sufficient	to	wait
for	your	code	to	run?	There	are	many	small	changes	you	can	make	to	improve
efficiency,	but	this	will	typically	take	more	of	your	time	than	it	is	worth	for	the
speed	up	you	will	achieve.	Having	an	aim	will	allow	you	to	focus	on	the	changes
that	will	help	you	achieve	that	rather	than	endlessly	making	changes	for	minimal
gains.

Initialization
When	you	first	start	writing	code,	and	particularly	if	you	have	a	background	in	other
languages	such	as	C++,	you	are	likely	to	write	lots	of	loops.	You	have	seen	functions,	such
as	the	apply	family	of	functions,	that	allow	you	to	write	some	of	these	actions	in	an
alternative	way	that	would	be	recommended	for	production	code.

However,	sometimes	you	do	just	need	to	use	a	for	loop.	One	of	the	common	pitfalls
when	you	do	this	is	to	create	an	object	and	then	simply	append	to	it	each	time	you	work
around	the	loop.	You	can	see	an	example	of	this	in	Listing	18.1.	In	this	example,	you	can
see	that	on	line	3	an	object	called	x	is	created,	and	then	inside	the	for	loop,	on	line	9,	we
append	to	this	for	each	iteration	of	the	loop.	In	R,	this	makes	our	code	much	slower
because	a	copy	is	made	of	the	vector	at	each	iteration.

A	very	simple	way	to	speed	this	up	is	to	prevent	R	from	making	the	copy	each	time.	We
can	do	this	via	initialization,	or	pre-allocation.	This	simply	means	that	we	create	the	object
(in	this	case,	a	vector)	before	we	start	our	loop	as	an	object	of	the	appropriate	type	and
size	(for	instance,	a	numeric	vector	of	length	10	or	character	vector	of	length	5).	Now	each
time	we	work	around	our	loop,	we	simply	overwrite	the	values.	This	alternative
implementation	can	be	seen	in	Listing	18.2.

LISTING	18.2	Initialized	Sampling	Function
Click	here	to	view	code	image

	1:	f2	<-	function(len){
	2:
	3:			x	<-	numeric(len)
	4:
	5:			for(i	in	seq_len(len)){
	6:
	7:					s	<-	runif(1)
	8:
	9:					x[i]	<-	ifelse(s	>	0.5,	1,	0)
10:
11:			}
12:
13:			x
14:
15:	}

Let’s	compare	this	to	the	original	version	of	the	function	using	microbenchmark.



Click	here	to	view	code	image
>	microbenchmark(f1(100),	f2(100))
Unit:	microseconds
				expr					min							lq					mean			median						uq						max	neval
	f1(100)	582.059	616.6960	637.9074	631.3575	651.883		744.434			100
	f2(100)	532.576	567.5805	642.1922	583.8910	602.401	2666.544			100

You	can	see	that	this	has	made	the	function	faster,	though	in	this	case	there	is	still	a
significant	amount	more	we	can	do	to	improve	the	efficiency.

Tip:	Creating	the	Correct	Type

In	this	example,	we	have	used	the	function	numeric	to	create	a	numeric	vector	of
0s.	We	can	also	create	character	and	logical	vectors	with	the	functions	character
and	logical,	respectively.	The	advantage	of	this	is	that	the	vector	is	of	the	correct
type	before	we	start,	and	this	will	prevent	R	from	having	to	convert	the	object	to	a
different	type.	It	can	also	help	us	out	because	we	don’t	need	to	change	the	value
unless	we	want	to	change	it	from	0	(for	numeric),	""	(for	character),	or	FALSE
(for	logical).

Vectorization
As	stated	in	the	previous	section,	one	of	the	common	pitfalls	when	starting	to	write	R
code,	especially	for	those	coming	to	R	from	other	programming	languages,	is	to	use	a	for
loop	to	perform	an	action	over	a	vector	of	values.	In	R	this	is	actually	often	unnecessary
and	makes	our	code	run	much	slower.	Instead,	we	can	use	R’s	vectorization	to	perform	a
series	of	actions	at	the	same	time.	This	will	not	only	make	the	code	much	faster,	but	is	a
much	more	professional	approach	to	take	in	coding	in	R.

What	Is	Vectorization?
Vectorization	allows	us	to	perform	an	action	on	an	array	of	values,	such	as	a	vector,
simultaneously.	As	an	example,	suppose	we	wanted	to	multiply	the	values	1	to	10	by	4.
Rather	than	first	multiply	1	by	4	and	then	2	by	4	and	so	on,	we	can	use	vectorization	to
perform	all	10	calculations	at	the	same	time.	In	R	we	would	do	the	following:
Click	here	to	view	code	image

>	4	*	(1:10)
[1]		4		8	12	16	20	24	28	32	36	40

As	you	can	see,	we	were	able	to	perform	10	calculations	with	just	a	single	expression	and
no	need	for	any	loops.	This	will	significantly	speed	up	the	code,	as	you	will	see	when	we
look	again	at	the	example	from	Listing	18.1.

Note	that	in	this	particular	example	the	brackets	are	not	strictly	necessary,	but	they	help	to
make	your	code	much	clearer	to	read,	particularly	for	someone	picking	up	your	code	for
the	first	time.	Because	we	are	looking	at	efficiency,	it	is	worth	mentioning	that	brackets
will	slow	down	your	code	very	slightly,	so	where	your	preference	is	for	very	fast	code,
you	may	want	to	remove	them.	However,	this	will	not	generally	be	the	primary	cause	of
slow-running	code,	and	in	the	latest	versions	of	R	the	difference	is	barely	measurable.



How	Code	Can	Be	Vectorized
Vectorization	in	R	is	very	simple	because	most	functions	have	been	designed	to	accept	a
vector	of	values	as	input	rather	than	a	single,	scalar	value.	As	an	example,	think	about	the
paste	function	introduced	in	Hour	6,	“Common	R	Utility	Functions.”	We	actually	made
use	of	vectorization	there	to	create	a	vector	of	values	that	were	the	strings	of	fruits	with
numeric	values	pasted	together:
Click	here	to	view	code	image

>	fruits	<-	c(“apples”,	“oranges”,	“pears”)
>	nfruits	<-	c(5,	9,	2)
>	paste(fruits,	nfruits,	sep	=	”	=	“)
[1]	“apples	=	5”		“oranges	=	9”	“pears	=	2”

So	rather	than	having	to	loop	round	and	paste	the	fruit	to	the	number	in	turn,	we	do	it	all	in
one	step.	Some	functions	have	even	been	written	as	a	vectorized	version	of	functions	that
you	know.	For	instance,	the	function	ifelse	used	in	the	examples	in	this	hour	is	a
vectorized	version	of	the	if/else	structure	introduced	in	Hour	7,	“Writing	Functions:
Part	I.”	Other	examples	include	pmin	and	pmax,	which	we	can	use	to	find	the	minimum
and	maximum,	respectively,	for	each	value	in	a	vector	of	values.	Here’s	an	example:

>	pmin(0,	-1:1)
[1]	-1		0		0
>	pmax(-1:1,	1:-1)
[1]	1	0	1

Let’s	now	return	to	our	sampling	function	that	we	have	been	improving.	You	saw	how	we
could	initialize	this	function	in	Listing	18.2,	but	we	can	actually	remove	the	loop	here
altogether	by	vectorizing	the	code.	There	are	multiple	ways	we	can	do	this,	and	two	are
shown	in	Listing	18.3.

LISTING	18.3	Vectorized	Sampling	Function
Click	here	to	view	code	image

	1:	f3	<-	function(len){
	2:
	3:			s	<-	runif(len)
	4:
	5:			x	<-	ifelse(s	>	0.5,	1,	0)
	6:
	7:			x
	8:
	9:	}
10:
11:
12:	f4	<-	function(len){
13:
14:			x	<-	numeric(len)
15:
16:			s	<-	runif(len)
17:
18:			x[s	>	0.5]	<-	1
19:
20:			x
21:
22:	}



In	the	first	of	these	functions,	f3,	we	have	used	the	ifelse	function.	Rather	than
generate	a	single	value	from	a	uniform	distribution,	we	have	generated	a	complete	vector
of	values	that	we	will	use	in	a	single	step	(line	3).	We	can	then	use	the	vectorized	ifelse
(line	5)	to	test	all	values	and	return	the	appropriate	1	or	0	for	each	value	in	the	vector.
Before	we	look	at	the	second	way	of	doing	this,	let’s	compare	f3	to	our	previous
implementations:
Click	here	to	view	code	image

>	microbenchmark(f1(100),	f2(100),	f3(100))
Unit:	microseconds
				expr					min							lq						mean			median							uq						max	neval
	f1(100)	570.696	593.6045	999.40998	601.1185	616.8795	32061.20			100
	f2(100)	524.512	533.8590	598.32525	550.7200	562.4485		1758.27			100
	f3(100)		30.056		32.2560		47.34957		33.7220		36.8370		1211.40			100

Just	looking	at	the	median	values	here,	you	can	see	that	this	is	a	massive	improvement
over	the	original	version,	and	even	the	initialized	version.	This	approach	gives	us	huge
improvements	in	the	running	of	our	code,	but	in	actual	fact	the	second	approach	we	can
take	to	vectorizing	this	function	will	make	even	more	gains.

Take	a	look	at	the	function	f4	that	we	defined	in	Listing	18.3	(starting	on	line	12).	In	this
example,	we	are	again	initializing	a	vector	that	we	will	return.	Just	like	in	f3,	we	have
generated	our	uniform	samples	in	a	single	step,	but	rather	than	using	ifelse,	we	have
directly	subscripted	the	vector	x	based	on	the	values	in	the	vector	s.	You	might	also	notice
that	we	have	only	done	this	to	generate	the	values	that	need	to	be	1.	This	is	because	the
initialization	creates	a	vector	of	0s,	so	we	can	cut	out	a	step	by	only	making	a	single
change	that	we	need.	If	we	compare	the	two	vectorized	versions,	we	will	see	that	this	is
faster	yet.
Click	here	to	view	code	image

>	microbenchmark(f3(100),	f4(100))
Unit:	microseconds
				expr				min					lq					mean	median					uq				max	neval
	f3(100)	28.956	29.690	31.40153	30.057	30.973	59.012			100
	f4(100)		9.530	10.264	11.19091	10.630	11.363	50.583			100

Although	there	are	vectorized	functions	that	will	speed	up	compared	to	the	non-vectorized
versions,	it	is	sometimes	better	to	work	directly	on	the	vector	using	basic	subscripting
methods.

Tip:	Don’t	Remove	Error	Handling

Functions	such	as	pmin	and	pmax	are	slower	because	they	include	a	variety	of
arguments	and	checks	for	the	data	types	and	such.	As	you	can	see,	the	direct
version	is	much	faster,	but	that	doesn’t	mean	we	should	start	to	remove	all	error
handling	from	our	functions.	If	you	are	sharing	your	code,	it	is	much	better	practice
—and	key	to	production	level	code—to	include	the	error	handling	and	make	other
parts	of	your	code	more	efficient	with	the	methods	you	have	seen	here.



Using	Alternative	Functions
Often	we	don’t	actually	need	to	do	much	to	our	code	other	than	use	an	alternative	function
that	has	solved	the	problem	for	us	or	is	more	specific	in	its	implementation.	It	is	quite
possible	that	someone	has	already	done	what	you	are	trying	to	do	and	solved	the	problem
already,	so	it	is	always	worth	searching	available	resources	for	an	alternative	function	or
package.	As	a	reminder	of	some	of	the	ways	in	which	you	can	search	for	functions	and
packages,	take	a	look	at	Hour	2,	“The	R	Environment.”

The	example	we	have	been	using	in	this	hour	is	a	great	illustration	of	such	a	case.	The
function	we	wrote	in	Listing	18.1	is	designed	to	randomly	sample	a	series	of	0s	and	1s.	In
Hour	6,	you	were	introduced	to	the	sample	function.	Clearly	someone	has	already
implemented	the	problem	we	are	trying	to	solve,	and	it	is	likely	that	they	have	already	put
in	the	effort	to	make	it	as	efficient	as	possible.	A	final	version	of	this	function,	f5,	is	given
in	Listing	18.4,	where	we	have	simply	changed	the	implementation	to	use	the	sample
function.	Let’s	compare	this	final	implementation	to	all	the	other	variants	we	have	seen	in
this	hour.
Click	here	to	view	code	image

>	microbenchmark(	f1(100),	f2(100),	f3(100),	f4(100),	f5(100))
Unit:	microseconds
				expr					min							lq						mean			median							uq						max	neval
	f1(100)	574.727	582.4245	672.98853	596.7200	616.8795	1895.354			100
	f2(100)	524.146	545.4050	638.65877	554.0190	568.3130	1768.899			100
	f3(100)		30.423		32.6220		36.03099		33.7220		39.0365			78.806			100
	f4(100)		10.263		10.9970		23.79963		11.5465		12.0965	1211.766			100
	f5(100)			6.231			7.5145			9.31053			8.4310		10.4470			16.862			100

LISTING	18.4	Using	the	sample	Function
Click	here	to	view	code	image

	1:	f5	<-	function(len){
	2:
	3:			sample(0:1,	size	=	len,	replace	=	TRUE)
	4:
	5:	}

Obviously,	if	you	don’t	know	that	the	function	exists,	you	can’t	use	it.	A	great	way	to	find
functions	that	can	help	you	solve	a	problem	is	to	read	other	people’s	code	and	take	a	look
online	at	the	ways	in	which	people	solve	similar	problems	to	your	own.	Many	resources
are	available	that	can	help	you	out,	and	we	have	tried	to	introduce	many	useful	functions
to	you	in	the	appropriate	places	in	this	book.

Managing	Memory	Usage
When	it	comes	to	memory	usage	in	R,	there	is	actually	very	little	we	need	to	do	to	manage
it	ourselves.	Although	memory	in	R	is	taken	up	by	temporary	objects,	it	is	automatically
made	available	when	it	is	needed.	There	is	no	need	for	us	to	manually	free	the	memory	on
a	regular	basis.	One	of	the	main	things	we	need	to	do	is	consider	what	objects	we	have
created	and	how	we	will	work	with	them.

Suppose	we	are	working	with	big	data	sets.	The	packages	you	saw	in	Hour	12,	“Efficient



Data	Handling	in	R,”	have	been	designed	to	use	memory	in	an	efficient	manner,	so	they
are	strongly	recommended	in	this	case.	If	you	do	find	that	you	are	getting	errors	due	to	a
lack	of	available	memory,	the	first	thing	to	do	is	to	take	a	look	at	what	objects	you	have
created	in	your	current	R	session,	the	size	of	those	objects,	and	whether	you	can	remove
them.
In	RStudio,	this	is	made	simple	with	the	environment	pane.	This	pane	gives	us	summary
information	about	all	the	objects	in	our	environment,	what	each	object	is,	and,	importantly,
its	size.

Tip:	Checking	the	Size	of	Objects

To	see	the	size	of	an	object	in	the	environment	pane,	you	will	need	to	use	the	grid
view.	In	the	top-left	corner	of	the	pane,	you	will	see	a	menu	labeled	either	“Grid”	or
“List.”	If	it	says	“List,”	you	can	use	this	to	menu	to	switch	your	view.	If	you	are	not
using	RStudio,	you	will	need	to	use	the	object.size	function	on	each	object.
Remember	that	you	can	use	a	function	such	as	sapply	to	do	this	for	a	number	of
objects	at	the	same	time.

We	can	remove	objects	from	our	session	either	using	the	interface	in	RStudio	or
programmatically	using	the	function	rm.	For	example,	to	remove	object	x,	we	would	run

>	rm(x)

If	the	object	is	large,	we	may	want	to	force	R	to	make	the	memory	available	again.	We	do
this	in	R	by	using	the	function	gc	for	garbage	collection.	This	is	usually	done
automatically	when	needed	without	the	need	for	us	to	intervene.

Tip:	Restart	to	Clear	Completely

If	you	have	been	working	on	an	analysis	and	creating	objects	to	test	out	your
method,	you	may	want	to	restart	R	to	completely	clear	the	workspace	of	any	unused
objects,	including	classes	and	unused	packages	or	functions.	If	you	have	been
writing	a	script,	it	will	be	easy	to	re-run	all	of	your	code	and	get	back	to	where	you
were	in	a	completely	clean	environment.

Integrating	with	C++
We	have	been	looking	at	some	of	the	ways	in	which	you	can	rewrite	your	code	in	R	to
make	it	more	efficient,	but	in	some	instances	it	is	simply	not	possible	to	improve	the	speed
of	your	code	using	R.	In	those	instances,	you	may	want	to	turn	to	other	tools	that	are	more
suitable	for	the	task.	In	R,	one	of	the	simplest	ways	to	extend	code	with	much	faster
alternatives	is	by	using	C++,	and	more	specifically	the	Rcpp	package.

C++	is	a	statically	typed	language,	which	means	we	have	to	specify	object	types	when
they	are	created;	it	is	also	compiled,	which	tends	to	make	it	a	much	faster	language	than	R.
Although	it	has	always	been	possible	to	integrate	C	and	C++	code	in	R,	the	Rcpp	package
has	made	this	much	more	accessible;	you	only	need	to	take	a	look	at	the	length	of	the	list
of	reverse	dependencies	to	see	how	popular	it	now	is.



When	to	Think	about	C++	and	Rcpp
Adding	C++	code	to	your	R	packages	obviously	requires	that	you	start	to	learn	another
programming	language,	so	it	may	not	always	be	the	answer.	The	overhead	in	learning	C++
in	the	first	place	may	be	larger	than	the	gains	it	will	give	you.	However,	if	you	already
know	C++	or	you	find	that	there	are	a	number	of	cases	where	your	code	could	benefit
from	being	written	in	C++,	you	may	find	that	it	is	worth	the	effort.

There	are	two	main	cases	when	C++	will	be	beneficial	to	your	code:

	When	you	have	no	choice	but	to	use	a	for	loop.	For	example,	when	there	is	a
dependency	on	the	previous	value	in	the	loop.

	When	what	you	want	to	do	has	already	been	implemented	efficiently	in	C++.

The	advantage	of	using	Rcpp	for	your	C++	implementations	is	that	it	has	solved	many
problems	for	you	in	terms	of	passing	data	between	R	and	C++,	handling	the	memory
usage,	and	providing	many	commonly	used	R	functions	to	C++.	This	means	that	rather
than	having	to	learn	how	to	do	all	of	these	things	yourself	in	C++,	you	can	simply	use
existing,	well-tested	functionality.

A	Basic	Function
We	won’t	go	into	lots	of	detail	here	on	how	to	start	writing	C++	code,	but	we	will
introduce	some	of	the	basics	with	the	aim	of	demonstrating	how	you	can	use	the	Rcpp
package	to	integrate	your	C++	code	with	R	in	an	easy	way.	To	continue	the	theme	of	this
hour,	we	will	implement	the	sampling	function.	This	actually	uses	a	number	of	features
specific	to	C++,	so	it’s	a	helpful	introduction.	You	can	see	an	example	of	this
implementation	in	Listing	18.5.

LISTING	18.5	Implementing	with	Rcpp
Click	here	to	view	code	image

	1:	#include	<Rcpp.h>
	2:	using	namespace	Rcpp;
	3:
	4:	//	[[Rcpp::export]]
	5:	IntegerVector	sampleInC(int	len){
	6:
	7:			//	Initialize	x	to	create	output
	8:			IntegerVector	x(len);
	9:
10:			//	Initialize	and	create	s	by	using	the	Rcpp	runif	function
11:			NumericVector	s	=	runif(len);
12:
13:			//	Loop	to	do	sampling,	using	if…else…
14:			for(int	i	=	0;	i	<	len;	++i)	{
15:
16:					if(s[i]	>	0.5)
17:							x[i]	=	1;
18:					else
19:							x[i]	=	0;
20:			}
21:
22:			//	Explicitly	return	x



23:			return	x;
24:	}

Differences	Between	R	and	C++

First	of	all,	you	should	be	aware	of	the	key	differences	between	R	and	C++	that	you	will
come	across	when	defining	functions:

	You	must	declare	the	types	of	all	objects,	including	the	type	of	input	and	output
objects	and	the	type	of	any	intermediate	objects	created.

	All	expressions	end	with	a	semicolon.

	You	define	for	loops	in	a	different	way,	specifying	the	start	value,	the	end
condition,	and	the	increment.

	Counting	of	indexes	starts	at	zero	in	C++.

You	saw	all	of	these	features	in	the	code	in	Listing	18.5.

Writing	a	Function

We	can	write	a	C++	function	directly	in	R	using	cppFunction;	however,	once	our	C++
function	is	more	than	a	line	or	two	long,	this	can	be	tricky,	so	it	is	much	more	sensible	to
write	our	function	as	a	C++	script	and	then	source	this	using	sourceCpp.	This	is	the
approach	we	take	here,	so	the	code	in	Listing	18.5	should	be	saved	in	a	file	ending	.cpp.

Tip:	Rcpp	and	RStudio

Support	for	Rcpp	is	well	integrated	with	RStudio.	If	you	open	a	new	script	and
instead	of	selecting	R	select	“C++	File,”	you	will	get	the	template	structure	for
Rcpp.	You	can	then	source	this	by	using	the	Source	button	at	the	top	of	the	script,
which	will	run	sourceCpp	for	you.

The	first	four	lines	of	Listing	18.5	(1	to	4)	need	to	be	at	the	top	of	any	C++	script,	where
you	want	to	use	Rcpp.	These	lines	make	the	functionality	of	Rcpp	available	to	C++.	They
also	allow	R	to	recognize	this	as	a	function	you	want	to	be	available	in	R.

Data	Types

Starting	on	line	5	of	Listing	18.5	we	have	our	function	definition.	You	will	notice	that	in
C++	we	do	not	use	the	function	keyword,	but	we	have	stated	IntegerVector
before	the	function	name	(sampleInC).	This	is	to	indicate	to	C++	that	the	return	value
of	the	function	will	be	an	integer	vector.	It	is	very	important	in	C++	to	get	this	correct.
You	will	also	notice	that	we	have	specified	that	the	argument	len	will	be	of	type	int,
which	means	we	will	pass	an	integer	to	the	function.	All	of	this	is	done	for	us	in	R,	so	we
need	to	remember	to	include	it	when	we	write	C++.	The	definition	of	various	data	types
for	scalars,	vectors,	and	matrices	are	shown	in	Table	18.1.	Note	that	some	of	these	types
are	specific	to	Rcpp	and	are	not	the	standard	type	definitions	for	C++.



TABLE	18.1	Data	Types	in	Rcpp

When	you	look	through	the	remainder	of	the	code,	you	will	notice	that	this	is	very	similar
to	the	original	example	in	Listing	18.1.	We	have	created	our	vector,	x,	and	the	samples,
and	we	will	return	to	them	in	the	next	section.	Just	like	in	the	R	version,	we	have	used	a
for	loop	with	an	if/else	structure,	which	is	the	same	as	the	R	equivalent	of	the
if/else	structure,	although	different	from	the	ifelse	function	we	have	used	in	this
hour.	The	main	difference	is	the	structure	of	the	for	loop.

Loops	in	C++

In	C++	we	define	a	for	loop	in	a	different	manner.	First	of	all,	we	create	an	object	and
give	it	a	starting	value.	Notice	that	in	the	example	in	Listing	18.5,	line	14,	this	is
initialized	to	0.	This	is	because	we	are	going	to	index	a	vector,	and	the	counting	starts	at	0
in	C++.	This	is	very	important	to	remember	when	working	with	C++.	The	next	component
of	the	for	loop	is	the	condition	that	will	cause	the	loop	to	stop.	In	this	case,	we	are
looping	while	the	object	i	is	less	than	the	length	of	the	final	vector.	Note	the	“less	than”
here.	Because	we	start	counting	at	0,	the	final	element	will	be	len-1.	The	final
component	is	the	increment	for	the	loop.	Note	the	syntax	here	of	++i.	In	C++,	this	is
special	notation	for	adding	one	to	the	value	of	the	object.	So	in	this	example,	we	are
adding	one	to	the	value	of	i	on	each	iteration.

Returning	from	Functions

To	return	from	a	function	in	R,	we	can	optionally	use	the	function	return.	In	C++,	this
is	not	the	case;	we	must	use	the	keyword	return.	We	must	also	ensure	that	what	we
return	is	of	the	same	type	that	we	stated	the	function	would	return.	In	this	case	we
specified,	on	line	5	of	Listing	18.5,	that	we	would	return	an	IntegerVector,	so	this	is
what	we	must	return.	Here,	we	are	returning	x,	which	we	declared	to	be	an
IntegerVector	on	line	8.

Using	R	Functions	in	C++
You	might	have	noticed	that	in	the	function	in	Listing	18.5	we	used	the	function	runif.
This	is	because	Rcpp	provides	many	additional	functions	to	C++	that	you	are	familiar
with	in	R,	including	distribution	functions.	In	fact,	thanks	to	the	way	the	distribution
functions	are	implemented,	they	make	use	of	the	same	random	number	generation,
meaning	that	you	can	still	test	your	functions	comparing	to	an	R	implementation.

Other	than	the	distribution	functions,	we	can	implement	in	C++	vectorized	versions	of



standard	arithmetic	operators	(+,	-,	*,	/,	etc.)	and	many	mathematical	functions
such	as	sin,	cos,	and	so	on,	along	with	round,	abs,	ceiling,	and	floor.

In	addition	to	the	statistical	distributions,	there	are	also	implementations	of	summary
functions,	such	as	mean,	sd,	var,	sum,	and	diff.	This	is	not	an	exhaustive	list,	and	it	is
worth	checking	the	vignette	for	Rcpp	Sugar	(vignette("Rcpp-sugar"))	to	see
other	functions	that	are	available.

The	advantage	of	this	is	that	we	can	implement	our	R	functions	using	Rcpp	in	a	much
faster	way.	Obviously	to	get	the	most	from	C++	you	will	need	to	learn	more	of	the
language	itself,	but	as	a	means	of	quickly	getting	the	benefits	of	speed	gains,	this	is	a	great
start.

Tip:	Learning	More

In	this	hour,	we	have	only	touched	on	the	basics	of	C++,	specifically	for	working
with	Rcpp.	There	are	many	available	resources,	but	a	good	starting	point	is	the	user
documentation	provided	with	Rcpp.	For	a	list	of	all	the	vignettes	available	in	this
package,	you	can	use	vignette(package	=	"Rcpp").

Summary
In	this	hour,	we	looked	at	many	of	the	methods	you	can	use	to	not	only	make	your	code
more	efficient	but	also	more	professional.	The	more	you	use	R,	the	more	you	will	find	that
you	implement	many	of	these	approaches—in	particular,	vectorization—without	thinking
about	them	as	being	a	way	to	speed	up	your	code.	You	will	also	find	more	and	more
functions	that	help	you	write	more	efficient	code.	We	also	briefly	introduced	the	Rcpp
package,	which	can	be	beneficial	when	other	approaches	we	have	suggested	are	not
possible	or	simply	make	no	difference.	One	of	the	key	points	to	remember	when	you	are
adapting	your	code	is	to	ensure	that	you	test	whether	it	is	still	performing	in	the	same	way.
Although	this	can	simply	be	an	informal	test,	you	will	see	in	Hour	20	that	you	can,	and
should,	make	use	of	test	frameworks	to	continuously	verify	that	you	are	not	adversely
changing	your	code.

Q&A
Q.	I	don’t	mind	waiting	for	my	code	to	finish	running.	Do	I	need	to	do	any	of	this?

A.	If	you	are	happy	with	the	speed	of	your	code,	you	don’t	need	to	make	any	changes;
however,	many	of	these	points	are	what	will	make	your	code	more	professional	and
suitable	for	wider	production	usage.	It	is	advisable	that	you	take	all	of	these	points
into	consideration	when	writing	R	code	(many	you	may	be	doing	already),	and
eventually	they	will	become	a	natural	part	of	your	R	code.

Workshop
The	workshop	contains	quiz	questions	and	exercises	to	help	you	solidify	your
understanding	of	the	material	covered.	Try	to	answer	all	questions	before	looking	at	the
“Answers”	section	that	follows.



Quiz
1.	Before	you	jump	into	changing	your	code,	what	should	you	do	and	what	function
can	you	use	to	help	you	do	it?

2.	Why	should	you	initialize	when	writing	for	loops?

3.	Why	are	vectorized	functions,	such	as	pmin,	slower	than	working	directly	with	a
vector?

4.	Do	you	need	to	handle	memory	usage	in	R?

5.	What	are	the	main	differences	between	R	and	C++?

Answers
1.	Before	making	any	changes,	you	should	first	profile	your	code	to	determine	where
the	slowest	components	are.	You	can	do	this	in	R	using	the	Rprof	function,	which
will	generate	a	series	of	summary	statistics	to	show	where	your	code	spends	most	of
its	time.

2.	Initializing	objects	when	you	are	writing	for	loops	means	that	R	will	not
continuously	make	copies	of	the	objects	you	are	adding	values	to.	This	is	more
efficient	because	you	are	simply	writing	over	a	value.

3.	Vectorized	functions	are	typically	slower	because	they	contain	several	function
arguments	and	a	series	of	error	checks	on	the	arguments.	This	is	to	ensure	that	the
function	is	run	in	the	way	intended,	and	if	incorrect	arguments	are	passed,	a	more
informative	error	message	is	returned.	For	code	that	you	will	reuse	regularly	and
particularly	share	with	others,	this	error	checking	is	vital	and	shouldn’t	be	removed
to	make	small	speed	gains.

4.	No,	this	is	done	automatically	when	a	temporary	object	is	no	longer	being	used.	The
main	reason	to	manage	memory	would	be	to	remove	large	objects	that	you	no	longer
need	but	that	you	previously	created.

5.	There	are	four	points	that	you	should	keep	in	mind:

A.	You	must	declare	the	type	of	all	objects.

B.	All	expressions	end	with	a	semicolon.

C.	Loops	are	defined	in	a	different	way.

D.	Indexes	start	counting	from	0!

Activities
1.	Write	a	function	that	takes	a	vector	of	input	and,	using	a	loop,	iterates	around	all	of
the	values,	calculating	the	sum	up	to	that	value	(that	is,	the	cumulative	sum)	so	that
when	you	pass	the	vector	of	values	1	to	10,	you	get	the	following	return	value:

Click	here	to	view	code	image
[1]		1		3		6	10	15	21	28	36	45	55



2.	Use	microbenchmark	to	determine	the	median	time	it	takes	to	run	your	function.

3.	Use	any	of	the	initialization	and	vectorization	techniques	to	improve	the	speed	of
your	function,	using	microbenchmark	to	check	that	you	are	making	the	code
more	efficient.

4.	Can	you	find	a	function	in	R	that	will	do	this	for	you?	Compare	the	speed	of	that
function	to	your	most	efficient	version.

5.	Have	a	go	at	writing	this	function	in	C++	using	Rcpp.	If	you	are	finding	the
cumulative	sum	a	little	tricky,	start	out	with	just	taking	the	sum	of	all	the	values	in
the	vector.



Hour	19.	Package	Building

What	You’ll	Learn	in	This	Hour:

	Why	you	should	build	R	packages

	What	an	R	package	contains

	What	you	need	to	include	in	all	the	directories	and	files

	Things	to	consider	for	maintaining	good	quality	code

	How	to	easily	create	documentation	with	roxygen2

	How	to	build	a	package	with	devtools

In	this	hour,	we	will	look	at	one	of	the	key	aspects	for	professionalizing	your	code:
package	building.	When	you	put	your	code	into	a	package,	it	helps	you	to	ensure	that	your
code	is	of	a	high	standard	and	you	are	adhering	to	good	practices	such	as	documenting
your	code.	In	the	next	hour,	we	will	look	at	some	further	components	such	as
incorporating	unit	tests,	but	we	will	focus	here	on	making	sure	our	code	is	well	written
and	documented.	This	is	the	starting	point	for	high	quality,	professional	code	that	is	easy
to	share	and	reuse.

Why	Build	an	R	Package?
Most	of	us	don’t	think	about	writing	our	own	packages	when	we	work	with	R	despite	the
fact	that	we	use	other	packages	on	a	regular	basis,	as	you	have	done	in	the	previous	hours
in	this	book.	We	typically	start	out	by	writing	code	in	one	or	more	R	scripts	that	contain
lots	of	library/require	calls	or	calls	to	source	at	the	top	of	the	script.	This	type	of	coding
can	cause	us	problems	for	many	reasons.

Code	written	in	this	way	is	difficult	to	share.	We	have	to	determine	all	of	the	files	that	we
need	to	run	the	code	and	all	of	the	package	dependencies.	We	also	have	to	spend	time
explaining	to	our	colleagues	what	the	code	does	and	how	to	use	it	if	we	do	not	document
it.	It	can	be	difficult	to	know	which	version	is	the	latest	because	we	might	have	slightly
different	versions	stored	in	different	places.	What’s	more,	it	can	often	be	difficult	to	be
certain	that	the	code	has	not	been	affected	by	a	change	we	have	made.

However,	as	we	know	from	using	other	R	packages,	we	can	solve	many	of	these
challenges.	An	R	package	allows	us	to	keep	all	of	our	code	and	documentation	in	a	single
place	and	implement	a	more	formal	approach	to	testing.	Building	an	R	package	allows	us
to	do	the	following:

	Keep	track	of	versions	of	our	code	and	easily	know	whether	we	are	using	the	same
or	different	versions.

	Keep	documentation	with	the	code	and	save	time	in	having	to	explain	how	to	use
functions	and	the	workflow	of	the	code.

	Easily	provide	demo	code	and	examples.



	Easily	use	test	frameworks	to	ensure	that	any	changes	to	the	code	do	not	change	the
output	of	the	function.

	Easily	incorporate	and	call	functions	written	in	other	languages	such	as	C++.

Overall	the	advantages	of	converting	our	code	to	be	structured	as	an	R	package	are	huge
and	well	worth	considering,	and	as	you	will	see	in	this	hour,	it	is	very	simple	to	do	using
tools	such	as	devtools	and	roxygen2.

The	Structure	of	an	R	Package
As	you	know,	R	packages	contain	various	components	and	objects,	including	functions
and	documentation.	You	will	see	the	basic	structure	and	components	in	this	hour,	and	in
Hour	20,	“Advanced	Package	Building,”	we	will	look	at	some	of	the	additional
components	such	as	unit	tests.

The	basic	structure	of	a	package	contains	four	components:

	A	DESCRIPTION	file

	A	NAMESPACE	file

	An	R	directory

	A	man	directory

We	will	look	at	all	these	components	in	turn,	but	before	we	do	we	will	cover	how	to	create
the	correct	package	structure—in	particular,	how	to	set	up	a	package	for	working	with
RStudio.

Creating	the	Package	Structure
Traditionally,	we	created	the	package	structure	by	using	a	function	called
package.skeleton.	Although	we	can	still	use	this	function,	it	is	much	better	to	use
the	create	function	in	the	package	devtools.	The	devtools	package	has	been	created	to
simplify	the	package-building	process	by	wrapping	up	functionality	such	as	creating	and
building	packages.

Tip:	Creating	a	Package	Project

In	RStudio,	you	may	also	create	an	R	package	from	the	project	menu	in	the	top-
right	corner.	By	selecting	New	Project	>	New	Directory	>	R	Package,	you	will	be
given	a	menu	that	allows	you	to	give	the	package	name	as	well	as	the	location	for
the	package	on	your	file	system,	and	you	can	optionally	select	existing	R	files	that
will	be	included	in	the	package.

The	purpose	of	the	create	function	is	to	set	up	the	basic	structure	of	an	R	package.	As
you	will	see	later	in	this	hour,	it	has	been	designed	around	a	workflow	whereby	we	add
our	own	R	code	separately	and	document	packages	using	roxygen2.	As	an	example,	as
stated	earlier,	an	R	package	requires	a	man	directory.	This	will	not	be	created	when	we	run
create	but	will	instead	be	created	when	we	generate	our	documentation.



To	create	the	package	structure,	we	simply	give	the	name	of	the	package	by	defining	the
file	path	to	where	the	package	directory	should	be	created.	Here’s	an	example:
Click	here	to	view	code	image

>	create(“../simTools”,	rstudio	=	TRUE)
Creating	package	simTools	in	.
No	DESCRIPTION	found.	Creating	with	values:

Package:	simTools
Title:	What	the	package	does	(one	line)
Version:	0.1
Authors@R:	“First	Last	<first.last@example.com>	[aut,	cre]”
Description:	What	the	package	does	(one	paragraph)
Depends:	R	(>=	3.1.2)
License:	What	license	is	it	under?
LazyData:	true
Adding	RStudio	project	file	to	simTools

You	will	see	here	that	we	have	specified	that	the	package	structure	should	be	created	in	a
directory	called	simTools.	Although	it	is	not	strictly	necessary,	it	is	good	practice	to	give
the	directory	the	same	name	as	your	final	package.	You	will	also	see	in	this	code	that	a
default	DESCRIPTION	file	has	been	created	that	includes	this	package	name.	We	will
return	to	this	shortly,	but	for	now	it	is	sufficient	to	note	that	a	default	set	of	values	has
been	provided	to	this	file.

You	may	also	notice	in	the	preceding	code	we	have	set	an	option	called	rstudio.	If	you
are	working	in	RStudio,	you	may	find	that	this	is	a	handy	feature	because	it	creates	an
RStudio	package	project.	You	can	then	open	this	from	the	projects	menu	by	selecting
Open	Project	and	then	navigating	to	and	selecting	the	.Rproj	file	created.	This	is	in	fact	the
default	behavior	of	this	function.	If	you	don’t	want	to	create	an	RStudio	project	you	will
need	to	set	this	option	to	FALSE.

Having	run	create,	or	using	the	project	menu,	you	will	now	have	a	directory	at	the
specified	location	that	contains	the	directories	and	files	listed	(with	the	exception	of	the
man	directory).	We	will	look	at	each	of	these	in	turn	in	the	following	sections.

Tip:	Additional	Package	Files

Having	used	create	or	the	project	menu	system,	you	may	notice	that	some
hidden	files	have	been	created.	You	will	need	to	have	your	explorer	window	set	up
to	show	hidden	files,	which	include	.gitignore	and	.Rbuildignore.	These	files	allow
us	to	include	files	within	our	package	locally	but	stop	git	and/or	the	R	build	process
from	using	these	files.	By	default,	the	.Rproj	files	will	be	listed	in	these	files.

The	DESCRIPTION	File
The	first	file	in	an	R	package	is	the	DESCRIPTION	file.	This	file	is	used	to	list	important
package	information,	including	the	authors	and	the	current	maintainer	of	the	package,	the
version	number,	and	the	license	for	the	package.	It	is	in	this	file	that	we	also	specify	any
package	dependencies.



You	will	have	noticed	when	we	ran	the	create	function	that	a	DESCRIPTION	file	was
being	created	with	certain	default	values.	We	can	actually	specify	options	for	devtools	to
automatically	populate	some	of	these	fields	for	us,	but	for	occasional	packages	it	is	simple
enough	to	update	the	file.	An	example	of	a	DESCRIPTION	file	for	the	simTools	package
for	which	we	created	the	structure	is	given	in	Listing	19.1.

LISTING	19.1	Example	of	a	DESCRIPTION	File
Click	here	to	view	code	image

Package:	simTools
Title:	Simulation	Analysis	Tools
Version:	1.0-0
Authors@R:	c(
			person(“Aimee”,	“Gott”,	email	=	“agott@mango-solutions.com”,	role	=
c(“aut”,	“cre”)),
			person(“Andy”,	“Nicholls”,	email	=	“anicholls@mango-solutions.com”,	role	=
“aut”),
			person(“Rich”,	“Pugh”,	email	=	rpugh@mango-solutions.com,	role	=	“ctb”)
		)
Description:	A	series	of	tools	for	simulation	analysis	used	for	learning
about
		distributions.
Depends:
				R	(>=	3.1.2)
Imports:
				ggplot2	(>=	1.0.0)
License:	GPL-2
LazyData:	true

Tip:	Package	License

Note	that	the	default	License	is	the	relatively	open	GPL-2,	the	same	license	as	R
itself.	There	are	several	standard	licenses	for	R	packages	that	are	listed	on	the	R-
Project	website,	https://www.r-project.org/Licenses/,	although	it	is	not	necessary	to
apply	one	of	these	licenses.	Licenses	should	be	chosen	carefully	as	they	describe
what	others	can	do	with	your	code.

The	NAMESPACE	File
The	NAMESPACE	file	is	now	a	compulsory	file	when	you	develop	a	package.	It	allows
us	to	specify	which	functions	in	our	package	will	be	“exported”	so	that	the	end	user	can
see	them.	This	is	useful	if	we	want	to	have	some	utility	functions	that	we	want	to	use	in
our	code	but	we	don’t	want	the	end	user	to	see	them.	It	also	allows	us	to	import
namespaces	from	other	packages	(that	is,	make	the	user-visible	functions	in	another
package	available	to	our	package).	We	will	return	to	this	topic	later	in	this	hour	because	it
is	possible	to	allow	the	“roxygen”	headers	we	add	to	our	functions	to	handle	this	for	us.

https://www.r-project.org/Licenses/


The	R	Directory
The	R	directory	is	where	all	our	R	functions	will	be	stored.	When	we	have	simply	used	the
create	function,	this	directory	will	be	empty	and	we	can	start	to	add	R	script	files	(that
is,	files	ending	in	“.R”).	You	could	add	all	your	functions	in	a	single	file,	though	it	is	good
practice	to	include	multiple	R	scripts	for	individual	groups	of	functionality.	It	is	worth
noting,	however,	that	you	will	often	see	a	file	called	utils.R.	This	is	typically	where	short
utility	functions	(of	just	a	couple	lines)	that	are	not	intended	to	be	used	by	the	end	user	are
stored.

For	our	sample	package,	we	will	create	a	function	called	sampleFromData.	The	code
for	this	function	can	be	seen	in	Listing	19.2.	This	code	should	be	contained	in	an	R	script
in	the	R	directory.

LISTING	19.2	R	Function	for	the	simTools	Package
Click	here	to	view	code	image

sampleFromData	<-	function(data,	size,	replace	=	TRUE,	…){
		if	(!is.numeric(size))	{
				stop(“Size	must	be	a	numeric	integer	value”)
		}

		lengthData	<-	nrow(data)

		if	(!replace	&	size	>	lengthData){
				stop(“Cannot	sample	greater	than	the	data	size	without	replacement”)
		}

		#	Sample	a	number	of	rows	from	the	given	dataset
		samples	<-	sample(seq_len(lengthData),	size	=	size,	replace	=	replace,	…)
		invisible(data[samples,	])

}

The	man	Directory
The	man	directory	is	where	we	store	all	the	files	that	contain	the	user	documentation	for
the	functions	in	our	package.	We	can,	and	should,	create	help	files	for	all	functions	in	a
package.	We	must	document	any	exported	functions,	i.e.	functions	that	an	end	user	will
see.

Although	you	will	be	familiar	with	the	HTML	format	of	help	files	from	running	?mean,
for	instance,	this	is	not	the	way	in	which	we	write	help	files.	They	are	written	in	a	TeX-
like	format	and	saved	in	files	ending	with	an	.Rd	extension.	We	need	to	generate	one	file
for	each	of	the	functions	and	the	package	itself.	Generating	these	files	can	be	quite	time
consuming,	and	it	is	easy	to	forget	to	update	the	files	if	you	make	changes	to	the	function
itself.	For	these	reasons	we	will	instead	generate	the	documentation	using	a	package	called
roxygen2.	We	will	return	to	this	topic	later	in	the	hour.



Code	Quality
When	it	comes	to	putting	our	code	into	a	package,	the	quality	of	the	code	is	of	huge
importance.	Typically	code	in	a	package	will	be	shared,	will	be	returned	to	later,	or	is
collecting	together	a	large	amount	of	functionality—or	all	these	things.	As	such,	it	is	vital
that	we	think	about	the	quality	of	our	code.

Code	quality	doesn’t	just	refer	to	whether	the	code	works	or	not,	but	relates	to	the	styling,
documentation,	and	usability	of	the	code.	All	these	can	be	taken	account	by	following
some	guidelines	for	writing	code.	At	Mango,	code	quality	is	vital,	and	since	there	is
typically	more	than	one	developer	working	on	the	code	at	a	time,	using	a	consistent	style
makes	it	much	easier	to	work	on	the	code	in	a	collaborative	manner.	We	have	introduced
many	good	coding	practices	throughout	this	book,	and	if	you	follow	these	practices	you
will	be	well	on	your	way	to	high-quality,	well-written	code.	Although	we	suggest	some
guidelines	for	styling	in	this	section,	you	do	not	need	to	follow	these	guidelines
specifically.	However,	we	recommend	that	you	decide	on	a	consistent	way	to	style	your
code	and	stick	with	it.

As	mentioned,	all	of	the	R	code	for	our	packages	is	stored	in	the	R	directory	in	a	series	of
files.	These	files	should	have	descriptive	names	that	help	you	to	identify	the	contents
when	you	return	to	the	code.	Also,	they	should	all	take	the	file	extension	“.R”	(note	the
capitalization).	The	functions	and	objects	referenced	in	these	files	should	be	named	in	a
way	that	helps	to	inform	the	user	of	their	purpose.	A	consistent	means	of	naming	the
objects	should	be	used.	A	popular	convention,	and	one	that	is	used	at	Mango,	is
lowerCamelCase,	where	each	new	word	is	capitalized.

In	terms	of	the	documentation,	all	functions	should	have	a	“roxygen”	header,	which	will
be	discussed	further	in	the	next	section.	The	code	itself	should	be	well	commented	to
clarify	its	purpose,	with	comments	for	roughly	every	10	lines	of	code.

When	it	comes	to	the	layout	of	the	code,	it	is	considered	a	good	practice	to	indent	and
space	the	code	in	a	consistent	manner.	It	is	typical	to	include	spaces	after	operators	such	as
+	or	*	as	well	as	after	a	comma.	It	is	convention	to	indent	code	inside	a	function	call	as
well	as	inside	for	loops	and	if/else	structures.	We	recommend	two	spaces	for	each
indentation.

In	addition	to	the	styling	of	our	code	and	the	coding	practices	we	have	discussed,	such	as
not	appending	in	a	for	loop,	we	should	also	consider	what	our	code	does	to	the	R
session.	It	is	considered	bad	practice	to	do	anything	inside	a	function	that	changes	the
environment	in	any	way,	including	the	assignment	of	objects	and	changing	options	or
settings.	If	there	is	a	need	to	make	a	change	(for	instance,	if	you	need	to	change	the
working	directory),	your	function	should	set	it	back	to	the	original	value	before	exiting.

Automated	Documentation	with	roxygen2
To	the	end	user,	the	most	important	part	of	your	package	is	the	documentation.	A	package
that	is	well	documented	is	much	easier	for	someone	to	pick	up	and	work	with,	and	it’s
much	easier	to	return	to	when	you	need	to	update	or	change	the	functionality	in	the	future.

Package	documentation	can	take	many	forms,	though	the	most	widely	used,	and	the	aspect



we	will	focus	on	here,	is	the	function	help	files.	We	can	also	write	user	guides,	known	as
vignettes,	which	we	will	look	at	in	Hour	20.

From	reading	help	files	for	other	functions,	you	will	be	familiar	with	the	format	of	this
documentation.	Function	help	files	list	all	the	arguments	and	they	detail	the	purpose	and
usage	of	each.	We	can	also	add	information	about	the	output	of	each	function,	additional
details	about	the	function,	who	wrote	the	function,	and	so	on.

We	are	going	to	generate	the	documentation	using	roxygen	headers.	These	headers	go
above	the	function	to	which	they	refer.	This	makes	it	much	simpler	to	produce	the
documentation	because	we	can	do	it	alongside	the	function	development.	It	is	also	easier
to	update	if	we	make	a	change	to	the	function	because	the	header	is	there	while	we	are
working	on	the	function.

Tip:	Document	as	You	Write

As	you	will	see,	it	is	very	simple	to	create	the	roxygen	headers	for	functions.	As
such,	it	is	a	good	habit	to	write	them	even	if	you	are	not	thinking	of	putting	your
functions	into	a	package.	This	means	that	the	code	is	well	documented	and	easy	for
you	or	others	to	work	with.	It	also	means	that	if	you	do	decide	to	turn	the	code	into
a	package,	it	is	already	documented,	so	you	don’t	have	to	go	back	and	do	so.

Function	Headers
We	include	a	roxygen	header	above	the	function	definition.	Each	line	of	the	roxygen
header	starts	with	the	symbols	#'.	This	allows	R	to	treat	the	lines	as	comments,	but	they
will	be	recognized	by	roxygen	as	function	headers.	Following	this	we	use	special	tags	to
indicate	a	particular	component	of	the	help	file.	Some	tags	and	their	uses	are	shown	in
Table	19.1.

TABLE	19.1	roxygen2	Header	Tags

Some	components	do	not	need	their	tags	explicitly	written	out	because	the	first	three
paragraphs	without	tags	are	treated	in	a	special	way.	The	first	three	paragraphs	are	as



follows:

1.	The	title	of	the	help	page	(short,	one	sentence)

2.	The	description	for	the	help	page	(brief	description	of	the	function)

3.	The	details	section,	which	can	provide	much	more	information	about	the	function,
what	it	implements,	and	so	on

For	including	special	formatting	we	can	use	LaTeX	formatting	components.	If	you	are	not
familiar	with	LaTeX,	this	won’t	impact	your	ability	to	write	documentation	unless	you
need	to	include	mathematical	formulas.	The	main	thing	to	point	out	is	usage	of	%.	In
LaTeX	the	%	symbol	indicates	a	comment,	so	we	actually	need	to	use	\%	if	we	don’t	want
everything	after	it	to	be	treated	as	a	comment.

Listing	19.3	shows	how	this	might	look	for	a	sample	function	in	the	simTools	package	we
created	earlier.	Notice	that,	although	we	have	not	included	the	complete	function
definition	again,	this	header	goes	directly	above	the	function	definition,	in	this	case	the
one	given	in	Listing	19.2.

LISTING	19.3	Roxygen	Header	for	the	sampleFromData	Function
Click	here	to	view	code	image

	1:	#’	Sample	from	a	dataset
	2:	#’
	3:	#’	This	function	has	been	designed	to	sample	from	the	rows	of	a	two
	4:	#’	dimensional	data	set	returning	all	columns	of	the	sampled	rows.
	5:	#’
	6:	#’	@param	data	The	matrix	or	data.frame	from	which	rows	are	to	be
	7:	#’	sampled.
	8:	#’	@param	size	The	number	of	samples	to	take.
	9:	#’	@param	replace	Should	values	be	replaced?	By	default	takes	the
10:	#’	value	TRUE.
11:	#’	@param	…	Any	other	parameters	to	be	passed	to	the	sample
12:	#’	function.
13:	#’
14:	#’	@return	Returns	a	dataset	of	the	same	type	as	the	input	data	with
15:	#’	\code{size}	rows.
16:	#’
17:	#’	@author	Aimee	Gott	<agott@@mango-solutions.com>
18:	#’
19:	#’	@export
20:	#’	@examples
21:	#’	sampleFromData(airquality,	100)
22:	#’
23:	sampleFromData	<-	function(data,	size,	replace	=	TRUE,	…){

One	of	the	key	tags,	which	you	can	see	here	on	line	19,	is	@export.	This	tag	is	what
makes	this	function	visible	to	the	end	user.	When	we	generate	the	documentation,	the
NAMESPACE	file	will	be	automatically	updated	to	indicate	that	it	will	be	exported,
meaning	that	we	do	not	need	to	manually	generate	the	NAMESPACE	file.	There	are
similar	tags,	@import	and	@importFrom,	that	allow	us	to	specify	functions	or
packages	that	we	need	to	make	available	to	run	our	functions.

Other	tags	to	note	include	@param,	which	can	be	seen	on	lines	6,	8,	9,	and	11.	This	tag	is



used	to	identify	the	arguments	of	the	function.	Notice	that	following	the	tag	we	give	the
name	of	the	argument,	and	after	a	space	the	text	that	describes	that	particular	argument.	As
you	can	see,	the	text	can	span	multiple	lines,	and	text	is	treated	as	belonging	to	the	last	tag
until	another,	new	tag	is	encountered.

You	may	also	notice	that	in	giving	an	email	address	in	line	17	we	have	used	@@.	This	is
due	to	the	fact	that	the	@	symbol	is	used	before	a	tag,	so	we	need	to	indicate	that	we	really
want	an	@	symbol	by	duplication	of	the	symbol.

Documenting	the	Package
In	addition	to	documenting	our	functions	using	roxygen2,	we	can	also	document	the
package	itself.	Obviously	in	this	case	we	do	not	have	a	function	to	put	the	header	above.
The	typical	approach	to	this	documentation	is	to	create	a	single	file	named	with	the
package	name.	In	the	example	we	have	used	in	this	hour,	that	would	be	a	file	named
simTools.R.	The	header	itself	is	then	contained	above	the	statement	NULL	or	NA.

An	example	of	package	documentation	for	the	example	we	have	used	in	this	hour	is	given
in	Listing	19.4.	Just	like	with	the	function	documentation,	the	first	line	is	the	title	of	the
help	page,	and	the	second	is	the	description	text.	We	can	also	include	tags	such	as
@author,	@examples,	and	even	@references,	as	we	would	in	function	headers.

LISTING	19.4	Roxygen	Header	for	the	simTools	Package
Click	here	to	view	code	image

	1:	#’	A	package	for	performing	common	simulation	tasks
	2:	#’
	3:	#’	This	package	provides	a	series	of	tools	for	common	simulation	tasks
such	as
	4:	#’	sampling	from	a	data	frame	and	generating	plots	of	simulation
experiments.
	5:	#’
	6:	#’	@author	Aimee	Gott	\email{agott@@mango-solutions.com}
	7:	#’	@docType	package
	8:	#’	@name	simTools
	9:	NULL

The	main	difference	is	that	we	need	to	include	the	tags	@docType	and	@name.	For	the
first	of	these	tags,	we	identify	that	the	specific	documentation	is	for	a	package.	You	can
see	this	in	line	7	of	the	example	in	Listing	19.4.	As	you	will	see	in	Hour	20,	we	will	also
use	this	tag	when	documenting	other	package	components	such	as	data.	The	tag	@name	is
used	to	label	the	help	document.	This	is	what	the	user	will	call	to	see	the	help	document
for	the	package,	and	it	takes	the	name	of	the	package	itself,	as	you	can	see	in	line	8	of
Listing	19.4.

Creating	and	Updating	the	Help	Pages
Once	we	have	created	the	headers	for	all	of	the	functions	and	for	the	package,	we	can
generate	the	Rd	files.	The	function	roxygenize,	in	the	roxygen2	package,	can	be	used
to	do	this,	but	there	is	also	a	function	available	in	devtools	called	document.	Both
functions	work	in	the	same	way,	but	here	we	will	demonstrate	the	use	of	document.



As	you	saw	with	the	function	create	earlier	in	this	hour,	we	need	only	point	to	the	top
level	of	the	package	directory	to	generate,	or	update	where	it	already	exists,	the	package
documentation.
Click	here	to	view	code	image

>	document(“../simTools”)
Updating	simTools	documentation
Loading	simTools
Writing	NAMESPACE
Writing	sampleFromData.Rd
Writing	simTools.Rd

You	can	see	from	the	output	messages	that	this	updates	the	NAMESPACE	file	along	with
the	Rd	files	for	the	functions	and	the	package	itself.	When	we’re	working	with	RStudio,	it
is	actually	possible	to	open	the	Rd	files	and	preview	them.	After	opening	an	Rd	file	in
RStudio,	simply	click	the	Preview	button	to	see	the	HTML	preview	in	the	Help	tab.	Figure
19.1	shows	the	preview	of	the	help	file	defined	in	Listing	19.3.

FIGURE	19.1	HTML	preview	of	the	simFromData	help	page

As	part	of	the	package	building	workflow,	this	stage	should	be	completed	before	the	build



and	check	stages	we	will	see	in	the	next	section.	In	practice,	it	is	common	to	cycle	around
all	of	these	stages	multiple	times	in	the	process	of	creating	and	testing	a	package.

Tip:	Documenting	with	Projects

As	mentioned	previously,	if	we	are	developing	a	package	as	a	project	in	RStudio,
we	have	quick	access	to	a	number	of	build	features	through	the	Build	tab,	which	is
made	available	in	a	package	project.	This	includes	the	option	to	generate	package
documentation.	This	can	be	done	by	either	selecting	the	Document	option,	typically
in	the	More	drop-down	menu	of	the	Build	tab,	or	using	the	keyboard	shortcut
Ctrl+Shift+D.

Building	a	Package	with	devtools
Once	we	have	put	together	all	of	the	components	of	our	package,	whether	that	is	simply	R
code	and	help	files,	as	we	have	seen	here,	or	additional	components	as	we	will	see	in	Hour
20,	we	need	to	go	through	the	process	of	preparing	the	package	to	be	shared	and	then
building	it.	Traditionally	this	was	entirely	done	by	using	a	series	of	command-line	tools.
We	now	have	an	easier	way	to	handle	this	in	the	form	of	the	package	devtools.	The
package	itself	still	uses	the	command-line	tools	but	provides	us	with	a	simple,	familiar
interface	to	them.

Caution:	Building	a	Package	in	Windows

In	order	to	build	packages	in	Windows,	you	will	need	to	have	installed	RTools.	This
is	an	additional	component	available	on	CRAN	that	provides	the	command-line
tools	needed	for	R	package	development.	It’s	important	to	make	sure	that	the
correct	version	of	R	is	installed	and	that	the	system	path	has	been	set	up	correctly.
For	details	of	how	to	install	RTools,	see	the	Appendix,	“Installation,”	of	this	book.

Checking
The	first	thing	we	should	do	before	building	our	package	to	share	is	to	run	a	series	of
checks.	Before	a	package	can	be	made	available	on	CRAN,	it	must	pass	a	series	of	checks
relating	to	the	structure	of	the	package,	aspects	of	the	code,	the	documentation,	and	even
whether	the	examples	run	without	error.	Even	if	we	don’t	intend	to	make	a	package
available	on	CRAN,	it	is	good	practice	to	run	these	checks	and	ensure	that	our	own
package	passes	all	of	them.	We	can	run	these	checks	in	devtools	with	the	function	check.

You	can	see	an	example	of	running	check	and	partial	output	in	Listing	19.5.	As	you	can
see	from	the	output	in	line	2,	the	first	thing	that	check	does	is	run	the	document
function.	This	ensures	that	the	documentation	is	up	to	date	because	there	are	a	number	of
documentation-related	checks.	The	package	is	then	built	into	a	source	version.	This	is	to
ensure	that	there	are	no	files	included	in	the	check	that	would	not	be	present	in	the	final
version	of	the	package.	The	checks	themselves	then	start	from	line	20.	In	the	lines	shown
in	Listing	19.5,	checks	are	being	run	against	the	DESCRIPTION	and	NAMESPACE	files.
In	these	cases,	they	pass	the	checks,	which	you	can	see	from	the	OK	line	ending.



LISTING	19.5	Running	the	check	Function
Click	here	to	view	code	image

	1:	>	check(“../simTools”)
	2:	Updating	simTools	documentation
	3:	Loading	simTools
	4:	Writing	NAMESPACE
	5:	Writing	sampleFromData.Rd
	6:	Writing	simTools.Rd
	7:	“C:/PROGRA~1/R/R-31~1.2/bin/i386/R”	—vanilla	CMD	build
	8:	“C:\Users\agott\Documents\simTools”	—no-manual	—no-resave-data
	9:
10:	*	checking	for	file	‘C:\Users\agott\Documents\simTools/DESCRIPTION’	…	OK
11:	*	preparing	‘simTools’:
12:	*	checking	DESCRIPTION	meta-information	…	OK
13:	*	checking	for	LF	line-endings	in	source	and	make	files
14:	*	checking	for	empty	or	unneeded	directories
15:	*	building	‘simTools_1.0-0.tar.gz’
16:
17:	“C:/PROGRA~1/R/R-31~1.2/bin/i386/R”	—vanilla	CMD	check		\
18:			“C:\Users\agott\AppData\Local\Temp\RtmpwNk65n/simTools_1.0-0.tar.gz”	—
timings
19:
20:	*	using	log	directory
‘C:/Users/agott/AppData/Local/Temp/RtmpwNk65n/simTools.Rcheck’
21:	*	using	R	version	3.1.2	(2014-10-31)
22:	*	using	platform:	i386-w64-mingw32	(32-bit)
23:	*	using	session	charset:	ISO8859-1
24:	*	checking	for	file	‘simTools/DESCRIPTION’	…	OK
25:	*	this	is	package	‘simTools’	version	‘1.0-0’
26:	*	checking	package	namespace	information	…	OK
27:	*	checking	package	dependencies	…	OK
28:	…

Where	there	are	any	issues,	they	will	be	raised	with	an	ERROR,	WARNING,	or	NOTE,
depending	on	the	severity.	You	should	try	to	solve	all	issues	that	are	raised;	many	can	be
solved	easily,	particularly	those	that	relate	to	inaccurate	documentation.	However,
although	it	is	very	important	to	resolve	any	ERRORs	that	are	raised,	it	is	less	important	for
WARNINGs	and	NOTEs	if	you	are	not	going	to	share	your	code,	or	at	least	not	going	to
make	it	widely	available	or	available	on	CRAN.	For	packages	to	be	used	in	production
code,	we	would	recommend	that	you	strive	to	resolve,	or	at	least	understand,	all	issues	that
are	raised	by	the	checks.

This	check	function	can	be	repeatedly	re-run	until	you	are	satisfied	with	the	output	and
ready	to	build	the	package.



Building
We	are	now	at	a	point	where	we	can	build	the	package.	We	do	this	using	the	build
function	in	devtools.	When	building	the	package,	we	need	to	consider	the	type	of	package
we	want	or	need	to	create.	We	can	either	generate	a	source	package	or	a	binary	package.	A
source	package	contains	the	source	files	for	the	code,	whereas	the	binary	versions	have
been	compiled	for	either	the	Windows	or	OS	X	operating	system.	If	you	plan	to	share	your
code	with	other	Windows	(or	OS	X)	users,	you	will	typically	want	to	create	the	binary
package.

The	only	difference	if	we	want	to	create	the	binary	version	of	the	package	is	that	we	set
the	value	of	the	argument	binary	to	be	TRUE.	An	example	of	running	the	build
function,	along	with	the	output	generated,	is	shown	in	Listing	19.6.

LISTING	19.6	Building	the	Package
Click	here	to	view	code	image

	1:	>	build(“../simTools”,	binary	=	TRUE)
	2:	“C:/PROGRA~1/R/R-31~1.2/bin/i386/R”	—vanilla	CMD	INSTALL		\
	3:			“C:\Users\agott\Documents\simTools”	—build
	4:	*	installing	to	library
‘C:/Users/agott/AppData/Local/Temp/RtmpwNk65n/file105078613584’
	5:	*	installing	*source*	package	‘simTools’	…
	6:	**	R
	7:	**	preparing	package	for	lazy	loading
	8:	**	help
	9:	***	installing	help	indices
10:	**	building	package	indices
11:	**	testing	if	installed	package	can	be	loaded
12:	***	arch	-	i386
13:	***	arch	-	x64
14:	*	MD5	sums
15:	packaged	installation	of	‘simTools’	as	simTools_1.0-0.zip
16:	*	DONE	(simTools)
17:	[1]	“C:/Users/agott/Documents/simTools_1.0-0.zip”

You	can	see	from	this	example	that	when	we	generate	the	binary	version	of	the	package,	it
is	first	installed	and	then	packaged	up	in	the	installed	format.	The	package	name	and
version	number	are	taken	from	the	DESCRIPTION	file	values	that	we	set	previously,	so
we	do	not	need	to	separately	inform	the	build	function	of	these	values.	Because	we	have
built	a	Windows	binary	package,	you	will	notice	on	lines	15	and	17	that	the	package	has
the	file	extension	.zip.	If	we	had	instead	built	a	source	package,	it	would	have	had	the
extension	.tar.gz.

Installing
After	we	have	built	our	package,	whether	that	is	in	the	form	of	a	binary	package	or	a
source	package,	we	are	then	ready	to	install	it.	The	package	that	you	have	built	is	in	the
same	format	as	any	other	package	you	would	install,	and	as	such	can	be	installed,	loaded,
and	used	in	the	same	way,	as	you	can	see	below:
Click	here	to	view	code	image

>	install.packages(“../simTools_1.0-0.zip”,	repos	=	NULL)



Installing	package	into	‘C:/Users/agott/Documents/R/win-library/3.1’
(as	‘lib’	is	unspecified)
package	‘simTools’	successfully	unpacked	and	MD5	sums	checked
>	library(simTools)
>	simDat	<-	sampleFromData(airquality,	2)
>	simDat
			Ozone	Solar.R	Wind	Temp	Month	Day
58				NA						47	10.3			73					6		27
36				NA					220		8.6			85					6			5

Summary
In	this	hour,	we	have	looked	at	all	the	components	required	to	create	a	simple	R	package
with	the	basic	components	required.	We	have	introduced	some	of	the	good	practices	for
package	development,	including	considerations	around	the	code	itself	as	well	as	how	we
can	provide	useful	documentation	components.	We	have	looked	at	what	is	required	to
build	a	package	and	how	to	build	one.	In	the	next	hour,	we	will	discuss	how	to	add	further
components	to	our	packages	to	make	them	more	production	ready,	including	unit	tests	and
user	guides.

Q&A
Q.	I	use	another	package	in	my	code.	What	do	I	need	to	do	to	make	sure	it	is
available	for	my	package?

A.	When	it	comes	to	dependencies	of	your	code,	you	can	list	them	in	one	of	a	number
of	ways.	A	package	is	typically	listed	under	Depends	or	Imports,	Suggests	or
LinkingTo.	You	use	LinkingTo	to	specify	that	your	function	requires	the	C
code	of	another	package.	A	package	listed	as	Suggests	is	one	that	is	needed	to	run
unit	tests	or	examples,	or	for	only	very	specific	functionality	as	an	option	in	maybe
only	one	function	in	your	package.	Any	package	that	contains	functions	required	for
the	running	of	your	package	should	be	listed	in	either	Depends	or	Imports.	It	is
now	best	practice	to	use	only	the	Imports	field,	although	there	are	some	occasions
when	Depends	is	still	needed;	hence,	it	is	still	available.

Q.	Who	should	be	listed	as	an	author	of	a	package?

A.	This	is	entirely	up	to	you.	Typically	an	author	has	made	substantial	contributions	to
a	package,	whereas	a	contributor	has	made	only	a	small	contribution,	such	as	a	bug
fix.	The	one	role	to	consider	with	care	is	who	is	listed	as	the	creator	or	maintainer
(cre)	or	the	package.	This	is	the	person	who	can	be	contacted	by	the	R	Core	team
or	by	users	of	the	package.	It	is	important	that	a	single	person	is	named	in	this	role
and	that	an	email	address	is	provided	that	can	be	used	to	contact	the	maintainer.

Q.	I	am	just	writing	a	couple	of	functions.	Should	I	create	a	package	from	them?

A.	When	you	are	getting	started	with	package	building,	you	might	find	that	it	helps	you
to	learn	how	to	do	so	by	creating	a	small	package	first.	In	general,	although	you	may
not	actually	build	the	package	or	want	to	share	it	further,	by	following	the	practices
in	this	chapter	and	organizing	code	in	this	way,	you	make	it	much	easier	to	work
with,	which	means	it’s	easy	to	create	a	package	if	you	need	to	later.



Q.	Can	I	use	roxygen	headers	even	if	I	am	not	creating	a	package?

A.	Yes,	and	we	would	strongly	recommend	that	you	do.	Documenting	functions	you
write	in	this	way	makes	them	much	easier	to	work	with	and	return	to,	as	well	as	to
convert	into	a	package	at	a	later	date.

Workshop
The	workshop	contains	quiz	questions	and	exercises	to	help	you	solidify	your
understanding	of	the	material	covered.	Try	to	answer	all	questions	before	looking	at	the
“Answers”	section	that	follows.

Quiz
1.	What	are	the	minimum	required	components	for	an	R	package?

2.	How	can	you	generate	help	documentation	for	functions?

3.	What	extra	tags	do	you	need	to	document	a	package?

4.	What	is	the	difference	between	a	source	package	and	a	binary	package?

5.	If	you	don’t	plan	to	make	a	package	available	on	CRAN,	do	you	need	to	ensure	that
all	of	the	checks	pass?

6.	How	do	you	install	a	package	that	you	have	developed?

Answers
1.	At	a	minimum,	you	require	the	directories	man	and	R	and	the	files	NAMESPACE
and	DESCRIPTION.

2.	You	can	generate	documentation	for	functions	by	including	roxygen	headers	in	the
function	R	scripts.	You	use	special	tags	that	start	with	the	@	symbol	to	document
components	of	the	function.

3.	For	the	overall	package	documentation,	you	need	to	include	the	additional	tags
@docType	and	@name.	The	name	tag	should	give	the	package	name,	which	is
what	the	user	will	call	to	access	the	help	file.	The	docType	tag	simple	needs	to
state	the	package.

4.	A	source	package	contains	all	the	source	code	for	the	package	but	excludes	the
additional	files	that	may	be	included	in	the	package	as	you	develop,	such	as	RStudio
project	files.	The	binary	package	is	the	packaged-up	version	for	a	specific	operating
system	such	as	Windows	or	OS	X.

5.	Although	it	is	not	a	requirement	to	run	the	checks	if	you	are	not	submitting	to
CRAN,	it	is	good	practice	to	do	so.	It	is	particularly	recommended	if	you	will	be
sharing	your	code	with	others	or	if	it	is	intended	to	be	used	in	production	code.	A
package	that	passes	the	checks	is	generally	considered	to	be	of	a	higher	quality	than
a	package	that	does	not.

6.	You	install	a	package	that	you	have	developed	in	the	same	way	that	you	would
install	any	other	package	you	have	been	provided	in	source	or	binary	format.	Take	a



look	back	at	Hour	2,	“The	R	Environment,”	for	a	reminder	on	how	to	do	this.

Activities
1.	Use	devtools	to	create	a	skeleton	package	for	a	package	called	summaryTools.

2.	Add	in	the	appropriate	location	of	an	R	function	called	numericSummary.	This
function	should	take	two	arguments:	a	numeric	vector	and	the	argument	na.rm.
The	function	should	call	a	helper	function	that	generates	numeric	summaries,
including	the	mean	and	standard	deviation.	It	should	also	call	a	helper	function	that
returns	the	number	and	proportion	of	missing	values.	The	numericSummary
function	should	return	all	this	information	in	a	suitable	format.

3.	Use	roxygen2	to	create	headers	to	document	all	three	of	the	functions	you	have	just
written.	Choose	carefully	which	of	these	functions	need	to	be	visible	to	the	end	user.

4.	Update	the	DESCRIPTION	file	and	all	other	package	documentation.

5.	Build	and	check	your	package.	Once	you	have	resolved	any	issues	raised	by	the
check	and	have	rebuilt	the	package,	install	it	and	then	try	calling	your	function.



Hour	20.	Advanced	Package	Building

What	You’ll	Learn	in	This	Hour:

	What	you	can	do	to	extend	an	R	package

	Why	testing	is	important	and	how	to	use	testthat

	How	to	include	datasets	in	a	package

	How	to	include	a	user	guide	in	a	package

	What	you	need	to	do	to	use	C++	code	in	a	package

In	the	last	hour,	you	saw	how	to	put	all	of	your	code	together	in	the	form	of	a	package	to
simplify	the	sharing	and	maintenance	of	code,	as	well	as	to	aid	in	the	development	of
high-quality,	production-ready	code.	There	are,	however,	a	number	of	ways	you	can
extend	a	package	to	make	it	more	robust	to	changes	and	easier	for	users	to	get	started
with.	You	will	see	the	most	common	of	these	extra	components	in	this	hour.

Extending	R	Packages
We	have	now	managed	to	create	a	package	that	contains	all	the	functions	we	need	and
even	contains	the	help	files	for	those	functions—so	why	do	we	need	to	add	more?	Surely
this	is	sufficient.	In	many	respects,	this	is	true.	We	can	simply	share	our	package	as	it	is
with	no	need	to	do	anything	more,	but	there	are	many	advantages	to	the	extensions	you
will	see	in	this	hour.

The	first	additional	component	we	will	cover	is	a	test	framework.	As	you	have	seen
throughout	this	book,	once	we	have	code	we	may	want	to	update	it	to	make	it	more
efficient	or	simply	change	the	functionality	as	we	find	bugs	or	need	new	features.	A	test
framework	becomes	a	vital	component	here	for	ensuring	that	we	do	not	introduce	more
errors	into	our	code	or	revert	back	to	issues	we	have	already	resolved.

There	are	many	instances	when	we	may	need	to	share	data	with	our	end	users.	This	may
be	simply	for	examples;	it	may	be	data	relevant	to	the	field	that	we	want	to	share,	or	it
may	be	reference	data	required	by	functions	in	the	code.	This	last	point	is	particularly
common	in	the	development	of	code	for	analytics.	Whatever	the	reason	for	needing	to
share	the	data,	we	can	incorporate	it	all	in	our	package	so	there	is	no	need	to	also	send	out
data	separately	to	the	package	we	have	developed.

The	next	component	we’ll	implement	is	the	user	guide.	Whether	you	are	just	sharing	code
with	colleagues	or	you	plan	to	share	widely	with	the	R	community,	the	end	users	of	your
package	are	going	to	need	to	know	how	to	use	it.	The	individual	function	help	files	will
help	users	with	questions	of	“How	do	I	use	this	function?”	and	“What	are	all	the	options
for	this	function?”	However,	they	will	not	typically	help	with	the	overall	workflow	of	your
package.	A	user	guide	is	aimed	at	helping	to	get	users	started	with	a	general	workflow	for
your	package.	Just	as	with	data,	we	have	written	this	anyway	and	intended	to	simply	email
it	to	people	who	need	it,	but	incorporating	it	in	the	package	ensures	that	it	is	up	to	date	and
always	available	for	the	end	users.



The	final	additional	component	we	cover	in	this	hour	is	C++	code,	or	more	specifically,
code	we	have	written	with	Rcpp.	This	is	not	going	to	be	a	component	that	you	will
include	in	every	package	you	write,	but	as	you	saw	in	Hour	18,	“Code	Efficiency,”	you
may	have	chosen	to	incorporate	such	code	into	a	function	for	efficiency,	so	you	need	to
know	how	to	include	such	code	in	an	R	package.

As	you	can	probably	see,	inclusion	of	these	two	components,	data	and	C++	code,	will	be
dependent	upon	the	package	itself	and	its	requirements	and	implementation.	When	it
comes	to	the	user	guide	and	unit	tests,	they	are	again	optional.	However,	it	is	considered	to
be	a	best	practice	to	include	these	components,	and	we	would	recommend	that	you	get
into	the	habit	of	including	them	as	standard	in	any	package	you	write.	As	you	will	see	in
this	hour,	they	are	very	simple	to	add,	with	devtools	functionality	available	to	help	you
with	the	package	structure,	and	they	don’t	take	much	additional	effort	once	you	are
familiar	with	them.

Developing	a	Test	Framework
Whenever	we	develop	code,	we	test	it	in	some	way.	As	we	start	out	this	might	just	be	with
an	ad-hoc	running	of	a	function	to	ensure	it	does	what	we	expect.	Usually	this	is	with
small	amounts	of	data,	and	typically	we	test	the	main	functionality	we	have	implemented.
As	we	write	more	code	and	begin	to	change	it	to	handle	any	issues	that	arise,	we	might
write	a	script	that	can	be	run	regularly	where	there	are	known	expected	outputs	we	are
looking	for.	This	is	the	beginning	of	a	test	framework.	For	all	development,	but	especially
production	development,	it	is	recommended	that	these	informal	tests	are	formalized	so	that
they	can	easily	be	re-run	with	specific	cases	at	any	point.	We	can	then	include	these	tests
within	a	package	so	that	they	are	always	kept	together,	and	even	the	end	user	can	run	them
to	ensure	the	package	is	still	working	as	it	should.

An	Introduction	to	testthat
There	are	a	number	of	options	for	providing	a	test	framework	in	R,	but	the	one	introduced
here,	testthat,	is	both	widely	used	and	easy	to	get	started	with.	Before	we	consider	how	to
include	tests	in	an	R	package,	we	will	simply	look	at	how	to	write	what	are	known	as	“unit
tests”	using	testthat.

As	an	example	in	this	hour,	we	will	implement	tests	for	the	function	we	included	in	the	R
package	that	we	developed	in	the	previous	hour,	sampleFromData.	This	function	is
defined	in	Listing	19.2	and	simply	randomly	samples	rows	from	a	dataset	we	provide.	You
will	also	notice	that	this	function	includes	some	error	handling	by	checking	that	sensible
arguments	have	been	provided.

While	we	write	the	tests,	we	will	need	to	consider	what	we	might	test.	We	will	return	to
this	topic	shortly,	but	for	now	we	will	simply	write	some	tests	to	ensure	that	data	is
returned	as	expected.	If	we	were	to	ask	you	to	check	that	this	function	worked	correctly,
you	would	most	likely	pick	a	simple	dataset	and	test	the	function	with	argument	values
that	are	easy	to	check	the	output	of.	For	example,	you	might	try	the	following:
Click	here	to	view	code	image

>	library(mangoTraining)
>	set.seed(20)



>	testData	<-	sampleFromData(demoData,	3)
>	testData
			Subject	Sex	Age	Weight	Height		BMI	Smokes
29						29			M		44					81				175	26.4				Yes
26						26			F		25					58				175	18.9					No
10						10			M		23					71				188	20.1					No

In	this	case,	we	have	used	the	function	set.seed,	which	allows	us	to	set	the	value	of	the
random	seed	to	ensure	that	we	can	consistently	reproduce	the	random	sampling	in	this
function.	However	many	times	we	run	all	these	lines	of	code,	we	will	consistently
reproduce	these	same	sampled	rows.	This	is	a	really	useful	function	when	it	comes	to
testing.	We	use	testthat	to	formalize	this	test	and	to	check	for	us	that	the	correct	data	is
returned.

We	create	individual	tests	using	functions	named	with	the	pattern	expect_.	The	names
are	then	appended	with	elements	such	as	equal,	named,	is,	and	error,	among	others.
All	of	the	functions	follow	a	similar	pattern	whereby	we	provide	the	object	we	want	to	test
as	the	first	argument,	followed	by	the	value	we	want	to	test	against	as	the	second
argument.	In	the	preceding	example,	we	might	ensure	that	the	correct	three	rows	are
returned	with	tests	such	as	these:
Click	here	to	view	code	image

>	expect_is(testData,	“data.frame”)
>	expect_named(testData,	c(“Subject”,	“Sex”,	“Age”,	“Weight”,	“Height”,
“BMI”,	“Smokes”))
>	expect_equal(testData[,“Subject”],	c(29,	26,	10))

So	we	have	checked	that	the	correct	structure	is	returned,	that	it	has	the	correct	columns,
and	that	the	elements	of	the	Subject	column	are	correct.	We	could	extensively	test	the
whole	returned	structure,	but	in	this	case,	because	rows	are	unique	based	on	the	subject
number,	we	can	be	confident	that	the	same	data	has	been	returned	if	the	subject	values	are
the	same	each	time.	You	will	notice	that	if	you	run	all	of	these	statements,	nothing	is
returned	when	the	output	is	as	expected.	Only	if	the	test	fails	will	you	see	any	output.

We	can	write	such	statements	to	test	a	range	of	functionality	in	the	sampleFromData
function.	Typically	we	want	to	test	that	arguments	work	as	expected	and	change	the	output
in	some	way,	and	we	want	to	ensure	that	errors	and	warnings	are	thrown	when	expected.	It
is	also	highly	recommended	that	we	write	a	test	for	what	the	correct	behavior	should	be
whenever	a	bug	is	identified.	This	will	help	us	to	resolve	the	bug	and	ensure	that	we	don’t
do	anything	that	puts	the	bug	back	into	our	code.

Rather	than	simply	writing	a	script	full	of	expect_	statements,	we	use	a	function	called
test_that	to	group	expectations	together.	Therefore,	we	would	typically	group	the
statements	we	wrote	previously	as	a	test	for	expected	default	behavior,	for	instance,	which
would	mean	that	our	test	script	might	look	something	like	the	example	given	in	Listing
20.1.

LISTING	20.1	Example	of	a	Test	Script	for	sampleFromData
Click	here	to	view	code	image

	1:	context(“sampleFromData	must	return	data	frames	of	the	correct	format”)
	2:



	3:	test_that(“Default	arguments	return	correctly”,	{
	4:
	5:			require(mangoTraining)
	6:
	7:			set.seed(20)
	8:
	9:			testData	<-	sampleFromData(demoData,	3)
10:
11:			expect_is(testData,	“data.frame”)
12:
13:			expect_named(testData,
14:																c(“Subject”,	“Sex”,	“Age”,	“Weight”,	“Height”,	“BMI”,
“Smokes”))
15:
16:			expect_equal(testData[,“Subject”],	c(29,	26,	10))
17:
18:	})
19:
20:	test_that(“Throws	an	error	correctly”,	{
21:
22:			expect_error(sampleFromData(airquality,	“Subject”),
23:																“Size	must	be	a	numeric	integer	value”)
24:
25:	})

You	can	see	that	lines	5	to	16	are	the	same	as	we	previously	ran,	but	this	time	they	are
inside	the	test_that	function.	As	you	can	see	on	line	3,	the	first	argument	is	a
character	string	to	indicate	what	the	purpose	of	this	group	of	tests	is,	and	the	second	is	the
group	of	code,	contained	inside	curly	brackets,	that	is	to	be	run,	including	all	of	the
expectations.	In	this	example,	we	have	included	a	second	test_that	function	call	that
we	are	using	to	test	that	the	function	handles	errors	correctly.	We	can	have	as	many
test_that	groups	as	we	want	in	a	single	script.	It	is	a	best	practice	to	collect
test_that	statements	in	a	script	for	a	single	function	or	group	of	functionality	so	that
tests	are	organized	in	an	easy-to-find	way.	We	will	look	in	the	next	section	at	how	to
structure	tests	for	a	package.

You	will	also	notice	in	this	example	that	on	line	1	we	have	called	a	function	context	and
that	it	contains	a	character	string.	This	is	simply	a	way	of	grouping	together	a	series	of
test_that	statements.	The	context	indicates	that	all	of	the	following	tests	are	related	to
a	specific	piece	of	functionality—in	this	case,	the	sampleFromData	function.

When	it	comes	to	running	these	tests,	we	can	make	use	of	the	functions	test_file	and
test_dir.	The	function	test_file	will	run	all	of	the	tests	in	a	single	file,	whereas
the	function	test_dir	will	run	all	of	the	scripts	in	a	single	directory.	As	an	example,
suppose	that	we	had	saved	the	code	in	Listing	20.1	as	the	file	test-sampleFromData.R.	We
would	run	all	of	these	tests	with	the	following	lines:
Click	here	to	view	code	image

>	test_file(“test-sampleFromData.R”)
sampleFromData	must	return	data	frames	of	the	correct	format	:	….

Notice	that	the	context	has	been	used	to	label	all	the	tests	that	have	been	run,	and	the	.	in
the	output	indicates	that	a	test	has	been	run	and	has	passed.



Incorporating	Tests	into	a	Package
Although	we	could	simply	write	tests	in	a	script	that	we	can	run	as	we	did	earlier,	if	we	are
writing	a	package	it	is	much	better	to	include	the	tests	in	the	package.	This	way,	we
always	know	where	to	find	tests	for	specific	code,	we	can	very	easily	re-run	the	tests	for
the	whole	package	after	we	have	made	changes,	and	we	can	easily	provide	the	tests	to
others	who	may	want	to	re-run	them.	This	final	point	is	quite	common	in	controlled
environments	where	it	is	necessary	to	be	certain	that	there	have	not	been	changes	to	the
software	or	environment	that	impact	the	results	of	running	specific	code.

As	you	saw	in	the	last	hour,	components	of	a	package	are	structured	in	a	specific	way,	and
tests	are	no	exception.	Although	the	devtools	functions	we	have	seen	so	far	have	not
created	this	for	us,	we	can	add	a	test	structure	to	a	package	we	have	already	created	with
the	function	use_testthat.	Thus,	to	add	the	test	structure	to	the	package	we	started	to
develop	in	Hour	19,	“Package	Building,”	we	can	run	the	following	line:
Click	here	to	view	code	image

>	use_testthat(“../simTools”)

This	will	create	in	the	package	structure	a	directory	called	“tests,”	which	contains	a	file,
testthat.R,	that	houses	the	required	code	to	run	the	tests	for	the	package	and	doesn’t	need
to	be	changed,	as	well	as	a	directory	called	“testthat.”	It	is	in	this	directory	that	we	should
store	all	our	test	scripts.	We	can	include	as	many	or	as	few	scripts	as	we	want,	but	all	files
need	to	start	with	“test-”.

When	you	use	devtools	to	set	up	the	correct	package	structure	for	tests,	you	will	also	find
that	it	updates	the	DESCRIPTION	file	to	include	testthat	as	a	suggested	package.	The
package	is	only	included	as	a	suggestion	because	it	is	not	a	requirement	to	have	testthat	to
run	your	code;	however,	if	someone	wants	to	run	your	tests,	they	will	need	this	package.

Once	we	have	included	tests	inside	our	package,	we	no	longer	need	to	use	the
test_file	and	test_dir	functions	in	testthat	to	run	them.	As	with	all	the	other
components	of	package	building,	we	can	run	the	tests	from	RStudio	using	the	Build	tab
options,	or	we	can	use	the	devtools	function	test.	Running	the	tests	in	the	simTools
package	would	become
Click	here	to	view	code	image

>	test(“../simTools”)
Testing	simTools
sampleFromData	must	return	data	frames	of	the	correct	format	:	….

As	you	can	see,	the	output	is	just	the	same	as	if	we	had	run	test_file.	When	we	have
structured	the	tests	in	this	format,	they	will	be	run	when	we	run	the	package	checks	from
Hour	19.	However,	it	is	good	practice	to	run	your	tests	before	this	point	if	you	have	made
changes	to	the	code	so	that	you	don’t	get	to	building	your	package	before	you	realize	that
you	have	introduced	an	error.	Given	the	ease	with	which	we	can	run	tests	inside	a
package,	it	won’t	take	a	lot	of	effort	to	run	test	on	a	regular	basis.



Tip:	Test-Driven	Development

One	means	of	code	development	that	you	might	find	useful	is	an	idea	known	as
test-driven	development.	In	this	approach	to	development,	we	start	by	writing	tests
for	what	we	want	our	package	to	do	that	will	initially	fail,	and	then	we	develop	the
code.	When	the	test	passes,	we	have	completed	that	component.	This	is	a	useful
way	to	develop	code	if	you	have	a	large	number	of	requirements	or	if	you	are
adding	requirements,	because	you	can	always	see	what	you	have	done	so	far	and
what	is	left	to	do.

Including	Data	in	Packages
As	you	will	know	from	using	other	R	packages,	it	is	not	only	code	that	can	be
incorporated	but	also	data.	This	is	useful	if	you	have	a	dataset	that	you	want	to	be	able	to
use	for	examples	or	that	you	want	to	make	available	to	others	for	a	specific	purpose	or
even	as	a	reference	dataset	for	functionality	in	your	package.	Just	as	with	all	other
components	of	a	package,	we	can	use	devtools	to	simplify	adding	data	to	a	package.

Where	we	add	the	data	will	depend	on	what	its	purpose	is.	Data	that	we	want	to	be
available	to	end	users	or	available	for	examples	or	user	guides	should	be	stored	in	the
“data”	directory.	If	we	haven’t	yet	added	data,	this	won’t	exist	in	our	package	structure	but
will	be	added	when	we	run	the	use_data	function.	This	function,	in	the	devtools
package,	both	sets	up	the	correct	structure	and	adds	the	data	we	want	to	include	in	an
appropriately	compressed	format.	The	dual	purpose	of	this	function	means	that	it	is
slightly	different	in	usage	from	other	devtools	functions	for	which	we	simply	provide	the
file	path	to	the	package.	As	an	example,	let’s	create	a	simple	dataset	that	we	will	add	to
our	package:
Click	here	to	view	code	image

>	exampleData	<-	data.frame(ID	=	1:10,	Value	=	rpois(10,	lambda	=	5))
>	use_data(exampleData,	pkg	=	“../simTools”)
Saving	exampleData	to	data/exampleData.rda

You	will	notice	here	that	in	the	use_data	function,	we	have	first	listed	the	data	objects
we	want	to	have	included.	Because	we	can	provide	any	number	of	data	objects,	we	need	to
specify	the	package	in	which	to	include	the	data	using	the	pkg	argument.	This	will	create
the	“data”	directory	for	us	as	well	as	compress	the	data	and	add	it	to	the	package	structure.

With	the	data	in	this	format,	we	can	now	load	the	package	and	see	the	data,	just	as	we	use
data	in	any	other	package,	by	giving	the	name	of	the	data	set.	Note	that	it	retains	the	name
we	gave	the	object	when	it	was	created	(in	this	case,	exampleData).

If	you	were	to	run	the	package	checks	now,	you	would	find	that	this	creates	a	warning	in
the	check	because	any	object	that	can	be	seen	by	the	user	must	have	a	corresponding	help
file.	So	the	next	step	we	need	to	take	is	to	provide	the	documentation.	As	you	saw	in	Hour
19,	we	can	use	roxygen2	to	create	package	documentation,	and	this	extends	to	help	files
for	data	sets.	This	is	very	similar	to	how	we	document	a	function,	but	we	use	an
alternative	tag,	@format,	to	describe	the	structure	of	the	dataset.	In	addition,	rather	than
giving	the	function	call	after	the	header,	we	give	the	name	of	the	dataset.	As	an	example,



consider	Listing	20.2,	where	we	have	created	simple	documentation	for	the	dataset	we	just
added	to	the	package.	This	header	needs	to	be	saved	in	an	R	script	in	the	R	directory.	As
discussed	in	the	previous	hour,	the	naming	of	these	files	is	up	to	you	but	it	is	generally
good	practice	to	name	so	that	it	is	easy	to	identify	the	file.
LISTING	20.2	Roxygen	Header	for	a	Dataset
Click	here	to	view	code	image

	1:	#’	Simple	example	of	including	data
	2:	#’
	3:	#’	This	is	a	simple	example	of	how	we	can	include	data	in	a	package
	4:	#’	and	provide	the	corresponding	documentation.
	5:	#’
	6:	#’		@format	A	data.frame	with	10	rows	and	two	columns:
	7:	#’		\describe{
	8:	#’				\item{ID}{Unique	identity	variable}
	9:	#’				\item{Value}{Simulated	value	(g)}
10:	#’		}
11:	#’
12:	#’		@source	Simulated	data
13:	“exampleData”

You	will	see	that	we	have	documented	each	column	of	the	data.	It	is	a	good	idea	here	to
state	what	the	column	of	data	contains	as	well	as	any	units	relevant	to	that	column—for
instance,	“inches”	or	“pounds”	if	you	were	giving	measurements	of	distance	or	weight.
You	might	also	notice	in	this	example	that	we	have	used	the	tag	@source,	which	is	a
handy	way	of	detailing	where	the	data	came	from—obviously,	in	this	case,	the	data	was
simply	simulated,	but	this	may	be	details	of	the	location	of	the	original	data.

Tip:	Adding	More	Data

We	can	still	use	the	use_data	function	to	add	datasets	later	in	the	package
development,	even	if	we	have	already	set	up	the	package	structure.	We	use	the
function	in	the	same	way,	but	the	function	itself	won’t	create	(or	overwrite)	a	data
directory.

If	we	want	to	include	reference	data	that	is	used	by	a	function	in	our	package	but	is	not
visible	to	the	end	user,	we	save	the	data	in	a	file	named	sysdata.rda	in	the	R	directory.
Again,	we	can	use	the	use_data	function	to	incorporate	such	data,	but	in	this	instance
we	add	the	argument	internal	=	TRUE.	Unlike	the	user-visible	data	in	the	data
directory,	we	do	not	need	to	document	this	data.	Including	a	dataset	in	this	way	would
look	like	the	following:
Click	here	to	view	code	image

>	hiddenData	<-	data.frame(ID	=	1:5,	Ref	=	rnorm(5))
>	use_data(hiddenData,	pkg	=	“../simTools”,	internal	=	TRUE)
Saving	hiddenData	to	R/sysdata.rda



Including	a	User	Guide
In	R,	a	user	guide	is	typically	referred	to	as	a	vignette	and	is	typically	a	means	of
extending	the	package	help	files	to	describe	the	typical	workflow	of	your	package	or	to
give	extended	details	of	what	you	have	implemented	in	your	package.	If	you	are	sharing
your	package	with	others,	you	will	typically	need	to	provide	some	form	of	documentation
to	help	them	get	started.	By	including	this	in	the	package	itself,	you	can	be	sure	that	it	is
always	available	to	the	users,	that	you	can	easily	keep	it	up	to	date,	and	that	the	code	in	the
vignette	actually	runs	without	error	because	it	is	checked	as	part	of	the	package	checks.

You	can	see	the	vignettes	available	for	a	package	by	using	the	browseVignettes
function.	This	will	allow	you	to	navigate	vignettes	for	all	packages	or	for	a	specific
package.	Here	is	an	example:
Click	here	to	view	code	image

>	#browse	all	vignettes
>	browseVignettes()
>	#	browse	for	a	specific	package
>	browseVignettes(“roxygen2”)

A	package	can	include	multiple	vignettes,	which	is	useful	if	you	want	to	include	more
detailed	information	about	specific	components	of	your	package.

Including	a	Vignette	in	a	Package
When	it	comes	to	writing	a	vignette,	we	now	have	multiple	options	for	the	tools	we	use.
Traditionally	we	used	Sweave,	which	requires	knowledge	of	LaTeX,	a	markup	language
that	allows	us	to	combine	text,	R	code,	and	mathematical	expressions.	Since	R	version
3.0.0,	we	can	use	any	package	to	create	a	vignette	that	can	produce	HTML	of	PDF	files.
This	means	that	we	can	now	use	the	package	knitr,	which	allows	us	to	use	R	Markdown
for	our	vignettes.	In	this	section,	we	will	look	at	how	to	incorporate	a	vignette	in	a
package	and	get	started	with	creating	one.

As	with	all	other	aspects	of	our	package,	we	are	going	to	use	devtools	to	help	us	get
started.	It	is	now	a	best	practice	to	include	package	vignettes	in	a	vignettes	directory.	We
can	of	course	create	this	directory	directly;	however,	the	use_vignette	function	will
not	only	create	that	directory	but	it	will	add	all	the	required	components	to	the
DESCRIPTION	file,	and	it	will	create	a	template	vignette	file	for	us	to	start	working	with.
To	get	started	on	a	quick-start	guide	to	using	our	simTools	package,	we	would	run	the
following	line:
Click	here	to	view	code	image

>	use_vignette(“QuickStart”,	pkg	=	“../simTools”)

The	first	argument	here	gives	the	name	of	the	vignette	that	we	want	to	create	so	that	the
template	file	takes	the	correct	filename.	There	will	now	be	a	vignette	directory	containing
the	file	QuickStart.Rmd.	You	will	also	find	that	the	package	knitr	has	been	added	to	the
list	of	suggested	packages	in	the	DESCRIPTION	file	and	that	a	new	field,
VignetteBuilder,	will	also	have	been	added	with	knitr	listed	as	the	required	package
to	build	the	vignette.

The	vignette	file	incorporated	in	your	package	will	be	checked	when	you	run	the	usual



package	checks,	and	it	will	be	built	into	an	HTML	file	when	you	build	the	package.
During	development	of	the	vignette	itself,	the	easiest	way	to	preview	the	file	you	are
creating	is	to	simply	use	the	Knit	button	in	RStudio.	First	of	all,	open	the	file	that	was
created	for	you.	This	is	a	“.Rmd,”	or	RMarkdown,	file.	We	will	return	to	how	to	write	this
in	the	next	section,	but	you	will	initially	find	that	the	file	has	been	populated	with	some
sample	text.	In	RStudio,	opening	this	file	will	have	given	you	some	alternative	options
across	the	top	of	the	file	viewer,	one	of	which	being	“Knit.”	Selecting	this	option,	you	will
build	the	file	into	the	corresponding	HTML	file	and	a	preview	will	be	opened	in	the
Viewer	tab.

Tip:	Building	Vignettes	Without	RStudio

If	you	don’t	want	to	use	the	built-in	options	in	RStudio,	you	can	build	your
vignettes	by	running	the	function	build_vignettes	in	the	devtools	package.
This	is	used	the	same	as	other	devtools	functions,	passing	the	package	as	the	main
argument.	This	will	create	the	directory	inst/docs,	which	will	contain	the	.Rmd	file,
an	R	script,	and	the	built	HTML	vignette.

Writing	a	Vignette
R	Markdown	is	simple	to	read	and	write	markup	language	that	allows	us	to	incorporate
text,	R	code,	and	output	in	a	single	file.	In	this	section,	we	introduce	the	basics	of
markdown.	For	more	details	on	creating	documentation	and	reports	in	R,	see	Hour	23,
“Dynamic	Reporting.”

Because	the	step	we	took	in	the	previous	section	created	a	sample	file	for	us,	we	will	start
with	this.	All	R	Markdown	documents	use	a	header	at	the	top	of	the	file	to	give	details
such	as	the	title,	author,	and	date,	as	well	as	details	on	the	type	of	file	to	generate.	For	a
vignette	we	also	have	some	extra	components.	Listing	20.3	shows	what	this	template
header	looks	like.	As	you	can	see,	we	have	the	title	and	author	components	that	we	can
update	as	well	as	the	date	(which	in	this	case	updates	dynamically).	We	can	optionally
remove	these	components,	if	we	don’t	want	the	date	to	appear,	for	instance.	The	remainder
of	the	header	gives	instructions	relating	to	building	the	vignette	and	creating	an	index	of
vignettes,	as	we	saw	when	we	ran	browseVignettes.	The	only	thing	that	we	need	to
change	here	is	on	line	7,	where	we	need	to	update	the	Vignette	Title	text	to	match
the	title	on	line	2.

LISTING	20.3	Vignette	Header
Click	here	to	view	code	image

	1:	–
	2:	title:	“Vignette	Title”
	3:	author:	“Vignette	Author”
	4:	date:	“`r	Sys.Date()`”
	5:	output:	rmarkdown::html_vignette
	6:	vignette:	>
	7:		%\VignetteIndexEntry{Vignette	Title}
	8:		%\VignetteEngine{knitr::rmarkdown}
	9:		%\VignetteEncoding{UTF-8}
10:	–



The	actual	content	of	the	guide	is	up	to	you	to	determine,	but	a	useful	guide	to	produce
would	walk	the	user	through	the	main	workflow.	How	do	you	get	started	using	your
package?	What	are	the	main	functions	in	your	package	that	a	user	should	look	at?	There	is
no	need	to	go	into	all	of	the	details	about	all	the	function	arguments,	but	this	type	of	guide
will	point	a	user	in	the	right	direction,	and	they	can	then	use	your	function	help	files	for
more	details.	As	an	example,	we	might	produce	a	guide	for	our	simTools	package	that
guides	the	user	to	the	sampleFromData	function	as	a	starting	point	for	their	simulation.

When	it	comes	to	starting	to	write	the	document,	we	need	to	know	the	basics	of
markdown.	It	is	quite	a	limited	markup	language,	but	that	shouldn’t	prevent	you	from
being	able	to	create	a	functional	user	guide	to	your	package.	Some	examples	of	markdown
syntax	can	be	seen	in	Table	20.1.

TABLE	20.1	Basic	Markdown	Notation

An	example	of	how	a	user	guide	for	the	simTools	package	might	look	can	be	seen	in
Listing	20.4.	You	will	notice	that	the	file	created	for	us	by	devtools	contains	text,	which
can	be	deleted,	and	that	also	includes	examples	of	many	of	these	features.

LISTING	20.4	Example	of	User	Guide	Content
Click	here	to	view	code	image

	1:	This	guide	is	intended	as	a	means	of	quickly	getting	started	with	the
package
	2:	**simTools**.	It	will	introduce	the	main	workflow	of	the	package.
	3:
	4:	##	Getting	Started
	5:



	6:	The	main	function	in	the	**simTools**	package	is	`sampleFromData`.	This
function	will
	7:	allow	you	to	generate	random	samples	from	a	given	data	set.	It	is	useful
for
	8:	simulation	experiments.
	9:
10:	###	Loading	the	package
11:
12:	Before	starting	you	will	need	to	load	the	package	in	the	usual	way	using
either
13:	`library`	or	`require`.
14:
15:	###	Running	the	main	function
16:
17:	Once	the	package	is	loaded	we	can	run	the	function	as	follows:

One	of	the	main	components	of	interest	to	the	reader	of	your	vignette	will	be	examples	of
code	and	how	to	run	the	functions	in	your	package.	We	include	code	in	vignettes	in	special
code	blocks.	An	example	of	a	code	block	is	shown	in	Listing	20.5.	We	use	the	triple	back
ticks	to	mark	the	start	and	end	of	the	code	block,	as	you	can	see	on	lines	1	and	5.	You	will
also	notice	the	{r}	after	the	back	ticks	on	line	1.	This	indicates	that	the	code	in	this	block
should	be	executed	as	R	code.	We	can	also	include	options	for	the	code	block	inside	these
curly	brackets.	We	will	return	to	this	in	Hour	23.

LISTING	20.5	Including	a	Code	Block
Click	here	to	view	code	image

	1:	“`{r}
	2:	library(mangoTraining)
	3:	example1	<-	sampleFromData(demoData,	size	=	5)
	4:	example1
	5:	“`

Inside	the	code	block	we	can	include	any	executable	code	we	want,	including	code	that
generates	graphics.	Note	that	the	code	will	be	checked	during	the	standard	package	checks
as	well	as	the	build,	and	any	packages	used	to	run	examples	in	the	vignette	need	to	be
included	in	the	suggests	field	in	your	DESCRIPTION	file	as	a	minimum.	When	this
code	block	is	included	in	our	vignette,	it	will	include	not	only	the	code	run	but	also	the
output	generated.	An	example	of	how	the	code	block	in	Listing	20.5	would	be	rendered	is
shown	in	Figure	20.1.



FIGURE	20.1	Example	of	the	HTML	version	of	code	blocks	in	vignettes

We	can	include	as	much	text	and	as	many	code	blocks	as	we	want	into	a	vignette,	but	it	is
worth	remembering	the	reader.	If	you	find	your	vignette	is	quite	long,	you	may	want	to
split	it	into	multiple	files	so	it	does	not	seem	as	long	and	difficult	to	read.	However,	this	is
entirely	up	to	you.

Code	Using	Rcpp
You	saw	in	Hour	18	that	we	could	easily	incorporate	code	written	in	C++	using	the
package	Rcpp.	If	we	have	done	this	and	we	then	wanted	to	put	that	code	into	our
packages,	we	would	need	to	know	how	to	include	the	code	in	our	packages.	As	you	have
seen	in	the	previous	section,	devtools	has	simplified	all	aspects	of	incorporating	additional
package	components,	and	the	function	use_rcpp	will	help	us	at	this	point.

Any	source	code	that	is	not	R	code	is	included	in	a	directory	called	src.	The	use_rcpp
function	will	create	this	directory	for	us,	along	with	handling	the	updating	of	the
DESCRIPTION	file.	As	an	example,	in	our	simTools	package	we	would	run	the
following:
Click	here	to	view	code	image

>	use_rcpp(“../simTools”)
Adding	Rcpp	to	LinkingTo	and	Imports
Creating	src/	and	src/.gitignore
Next,	include	the	following	roxygen	tags	somewhere	in	your	package:
#’	@useDynLib	simTools
#’	@importFrom	Rcpp	sourceCpp

You	will	notice	that	this	also	tells	us	to	add	some	roxygen	tags	in	the	package.	You	can
include	this	anywhere	in	the	package,	but	the	most	sensible	place	would	be	in	the	overall
package	help	file.	These	two	tags	will	ensure	that	the	C++	code	is	loaded	when	the
package	is	loaded.

At	this	point,	we	can	include	the	.cpp	files,	which	we	discussed	in	Hour	18,	in	the	source
directory.	As	an	example,	suppose	that	we	included	the	sampleInC	function	that	we
wrote	in	Listing	18.5	of	Hour	18	in	our	package.	Including	this	in	a	.cpp	file	in	the	src
directory	with	the	same	structure	that	we	saw	previously,	we	cause	the	check	and	build



process	for	the	R	package	to	create	the	appropriate	additional	files	in	both	the	src	and	R
directories	for	us.	If	we	are	simply	using	this	function	in	other	R	functions	and	we	do	not
intend	the	end	user	to	see	the	function,	this	is	all	we	need	to	do	and	we	can	start	to	use	the
function	in	our	code.	The	function	will	not	be	exported	but	will	be	available	to	any	code
that	requires	it.
If	we	want	to	export	this	function	to	be	visible	to	the	end	user,	we	will	need	to	include	an
equivalent	roxygen	header	in	the	.cpp	file.	This	will	be	identical	to	the	headers	for	R
functions	as	we	saw	in	Hour	19,	but	we	use	the	C++	comment	character	to	indicate	the
header	rather	than	the	R	comment	character.	An	example	of	what	the	file	header	would
look	like	can	be	seen	in	Listing	20.6.

LISTING	20.6	Including	a	Code	Block
Click	here	to	view	code	image

	1:	#include	<Rcpp.h>
	2:	using	namespace	Rcpp;
	3:
	4:	//’	Sample	a	series	of	0s	and	1s
	5:	//’
	6:	//’	@param	len	A	single	integer	giving	the	final	length.
	7:	//’	@export
	8:	//	[[Rcpp::export]]

After	you	have	updated	the	file,	you	will	need	to	update	the	package	documentation	in	the
usual	manner	before	building	your	package.	You	will	then	have	the	function	sampleInC
available	to	the	end	user	and	a	corresponding	help	file	for	the	user	to	reference.	Of	course,
just	like	R	functions,	it	is	beneficial	to	include	this	header	for	all	functions	but	simply	omit
the	@export	tag	if	you	do	not	want	the	function	to	be	available	to	the	end	user.

Summary
In	this	hour,	you	saw	how	to	improve	packages,	making	them	more	robust,	user	friendly,
and	easier	to	manage.	Although	these	components	are	not	a	requirement	of	a	package,
they	are	considered	to	be	best	practices,	and	we	would	recommend	that	you	get	into	the
habit	of	structuring	your	packages	in	this	way,	in	particular	with	tests	and	user	guides.	In
the	next	hour,	we	will	introduce	classes	and	how	to	develop	our	own	classes	to	make	code
more	robust	and	user	friendly.

Q&A
Q.	Do	I	really	need	to	include	tests?	Isn’t	it	going	to	take	a	long	time?

A.	You	do	not	need	to	include	any	of	the	package	components	mentioned	in	this	hour;
however,	it	is	good	practice	to	include	tests	and	a	vignette.	Tests	will	help	you	to
ensure	the	quality	of	your	code	and	make	it	much	easier	to	make	changes	to	the	code
in	the	future	knowing	that	they	will	not	impact	the	code	adversely.	The	first	time	you
write	tests	it	may	take	you	longer	as	you	get	used	to	the	structure,	but	this	will
quickly	become	second	nature,	and	if	you	do	it	as	you	write	the	code	rather	than	all
at	the	end,	it	won’t	add	much	to	the	development	time.



Q.	Can	I	include	data	in	a	.csv	file	in	my	package?

A.	Yes,	you	can	include	any	raw	data	file	that	you	like	in	your	package,	but	this	is	done
in	a	slightly	different	way.	In	this	case,	you	should	create	a	directory	in	the	inst
directory	to	contain	the	data	(for	instance,	inst/extdata).	You	can	then	access	this
data	using	the	system.file	function	and	pointing	to	the	rawdata	directory	of	the
package,	like	so:

Click	here	to	view	code	image
system.file(“extdata”,	“myFile.csv”,	package	=	“simTools”)

Q.	I	know	LaTeX.	Can	I	use	this	for	my	vignette	instead	of	markdown?

A.	Yes,	you	can.	You	simply	create	your	vignette	in	an	.Rnw	file	rather	than	an	.Rmd
file.	You	will	need	to	include	lines	7–9	in	Listing	20.3	in	your	document	header.

Workshop
The	workshop	contains	quiz	questions	and	exercises	to	help	you	solidify	your
understanding	of	the	material	covered.	Try	to	answer	all	questions	before	looking	at	the
“Answers”	section	that	follows.

Quiz
1.	Why	should	you	include	tests	in	a	package?

2.	How	would	you	include	data	in	your	package	that	is	not	intended	to	be	seen	by	the
end	user?

3.	What	are	user	guides	known	as	in	R?

4.	What	is	the	simple	markup	language	that	you	can	use	for	vignettes?

5.	In	which	directory	do	you	put	C++	code?

Answers
1.	Tests	help	you	to	ensure	that	your	code	does	what	it	is	meant	to	do.	If	you	make
changes	to	the	code,	you	can	re-run	the	tests	to	ensure	that	the	code	still	runs	as
expected.	You	can	also	write	tests	for	any	bugs	you	identify	so	that	you	can
continually	check	that	they	don’t	end	up	back	in	your	code	due	to	changes	that	you
make.

2.	You	can	include	data	in	your	package	using	the	use_data	function.	You	can
ensure	that	this	is	only	available	to	the	package	by	using	the	argument	internal
=	TRUE,	which	will	store	the	data	in	the	R	directory	rather	than	the	data	directory.

3.	Longer	user	guides	in	R	are	referred	to	as	vignettes.	You	can	see	all	of	the	package
vignettes	by	using	the	browseVignettes	function.

4.	You	use	the	markup	language	markdown.	We	can	also	use	LaTeX	for	writing
vignettes.

5.	Any	C++	code,	or	other	compiled	code,	is	included	in	the	src	directory.



Activities
1.	In	the	activities	for	the	last	hour	we	developed	a	package	called	summaryTools	and
we	wrote	two	functions	for	this	package.	Using	the	methods	introduced	in	this	hour,
add	a	test	framework	and	tests	for	each	of	the	functions	you	created.

2.	Update	both	functions	to	include	some	simple	error	checking	of	the	arguments.
Ensure	that	the	tests	you	have	written	still	pass,	and	add	further	tests	to	test	the	error
handling.

3.	Create	a	simple	dataset,	summaryData,	that	contains	three	columns:	ID,	which
should	be	a	numeric	factor	that	is	unique	for	each	row;	Group,	which	is	a	random
sample	of	the	values	“A”	and	“B”	to	identify	the	group	each	value	is	in;	and	finally
“Observed,”	which	is	a	sample	from	a	random	normal	distribution.

4.	Include	this	data	in	your	package	and	ensure	that	it	is	well	documented.

5.	Create	a	simple	vignette	for	your	package	that	explains	how	the	user	should	run
your	functions.

6.	Rebuild	and	check	your	package,	ensure	that	all	tests	pass,	and	that	you	can	access
the	data	and	vignette	once	your	package	is	loaded.



Hour	21.	Writing	R	Classes

What	You’ll	Learn	in	This	Hour:

	What	a	class	is

	How	to	create	an	S3	class

	Generic	functions	and	methods

	Inheritance	in	S3

	Documenting	in	S3

	Limitations	of	S3

Now	that	you	have	seen	how	to	build	an	R	package,	we	will	take	a	closer	look	at	the	class
structures	available	in	R	and	the	benefits	of	implementing	such	structures	in	an	R	package.
Classes	and	object	orientation	are	concepts	that	will	be	more	than	familiar	to	anyone	who
has	majored	in	computer	science.	Any	readers	familiar	with	these	concepts	will	also	be
aware	that	despite	many	common	themes	between	languages,	there	is	no	standard	cross-
language	approach	to	object	orientation.

It	may	come	as	no	surprise	to	learn	that	R	has	several	takes	on	what	constitutes	object-
oriented	programming.	In	this	hour,	we	take	a	general	look	at	some	key	features	of	object-
oriented	programming	before	focusing	in	on	R’s	S3	implementation.	In	Hour	22,	“Formal
Class	Systems,”	we	will	look	more	closely	at	some	of	the	other	options	available	to	us	in
R.

What	Is	a	Class?
In	Hour	16,	“Introduction	to	R	Models	and	Object	Orientation,”	and	Hour	17,	“Common
R	Models,”	you	saw	how	to	build	and	compare	various	types	of	models	in	R.	In	order	to
do	so	we	took	advantage	of	R’s	S3	class	structure.	Our	model	objects	had	classes	such	as
lm	and	survreg.	We	used	the	print,	plot,	and	summary	functions	to	analyze	the
models.	For	each	class	of	object,	the	print,	plot,	and	summary	functions	behaved	in
different	ways,	producing	output	appropriate	to	the	class	of	model.	Functions	that	behave
differently	depending	on	the	class	of	input	are	known	as	“methods.”

The	class	and	method	concepts	are	fundamental	to	object-oriented	programming.	When
we	refer	to	a	“class	system”	in	R,	we	are	talking	about	an	object-oriented	system,	of	which
R	has	several.



Object	Orientation	in	R
Back	in	Hour	1,	“The	R	Community,”	we	discussed	the	history	of	S	and	its	impact	on	R
today.	Nowhere	is	this	impact	felt	more	greatly	than	on	R’s	class	system,	particularly
when	it	comes	to	modeling.	Another	claim	we	made	in	Hour	2,	“The	R	Environment,”
was	that	R	is	“loosely”	object-oriented.	In	R,	everything	is	an	object	and	has	a	name	and	a
class.	There	is	also	a	clear	distinction	between	data	objects	and	function	objects.	The
distinction	between	objects	and	functions	that	act	on	objects	is	the	basis	of	an	object-
oriented	programming	environment.	However,	the	functions	that	we	write	do	not	have	to
be	associated	with	a	particular	class	of	object.	We	must	therefore	choose	to	use	the	object-
oriented	features	available	in	R.	In	R	today,	there	are	actually	four	common	class
implementations:	S3,	S4,	reference	classes	(a.k.a	R5),	and	R6.	The	“S”	in	S3	and	S4	refers
directly	to	S,	whereas	the	numbers	refer	to	the	S	versions	within	which	the	classes	were
unveiled.	Those	that	use	the	term	“R5”	for	reference	classes	or	R6	are	simply	continuing
the	number	sequence.	The	terms	have	absolutely	nothing	to	do	with	R	versions.

Despite	the	sequential	release	of	new	class	structures	in	R,	the	vast	majority	of	R	packages
on	CRAN	today	either	implement	an	S3	system	or	no	system	at	all.	The	S3	system	is
particularly	appealing	for	package	developers	with	an	analytical	background	due	to	its
relative	simplicity	and	less	rigid	rules.	This	makes	it	more	accessible	when	sharing	code
with	other	analysts.	As	you	will	see	in	Hour	22,	the	more	rigid	structures	of	the	other	class
systems	lend	themselves	more	toward	application	development	in	R.	However,	even	these
implementations	could	be	considered	relaxed	when	compared	with	traditional	object-
oriented	development	languages	such	as	Java.

Why	Bother	with	Object	Orientation?
In	order	to	write	professional-level	code,	we	need	to	ensure	that	we	are	following	good
programming	practice.	Everyone	tends	to	have	their	own	definition	of	precisely	what	this
means,	but	the	central	concepts	are	based	around

	Readability

	Maintainability

	Efficiency

In	Hour	18,	“Code	Efficiency,”	we	looked	closely	at	code	efficiency.	In	Hour	19,
“Package	Building,”	we	then	discussed	code	quality	and	talked	about	how	adherence	to	a
naming	convention,	regular	commenting,	and	consistent	layout	and	spacing	can	improve
readability.	In	Hour	20,	“Advanced	Package	Building,”	we	looked	at	building	a	test
framework	to	help	improve	the	maintainability	of	our	code.	Object	orientation	builds	upon
the	theme	of	maintainability.

It	is	much	easier	to	develop,	test,	and	hence	maintain	modular	code.	We	write	modular
code	by	ensuring	that	functions	remain	small	and,	where	possible,	have	a	single	purpose.
The	modular	approach	facilitates	the	development	of	unit	tests.	In	many	cases,	just	writing
modular	code	is	sufficient	to	ensure	that	our	code	base	is	maintainable.	The	concept	of
object-oriented	programming	extends	the	idea	of	modular	code	and	introduces	other	useful
concepts	such	as	type	checking	and	inheritance.



Fundamentally,	a	class	structure	lets	us	define	a	consistent	behavior	for	objects	of	that
class.	Once	we	can	be	sure	that	an	object	is	of	a	particular	structure,	we	can	construct
methods	(functions)	that	understand	this	structure	and	react	accordingly.

Class	Example

Let’s	imagine	for	a	second	that	the	data.frame	class	did	not	exist.	Hopefully	you
would	agree	that	with	only	vectors,	matrices,	arrays,	and	lists	to	store	information,
analyzing	data	would	be	pretty	tough!	We	are	used	to	thinking	of	data	as	a	rectangular
structure	with	a	number	of	rows	and	columns.	Each	column	contains	a	different	type	of
information	in	which	we	are	interested	(dates,	times,	numeric	values,	character,	and	so
on).	Given	that	vectors,	matrices,	and	arrays	are	all	single-mode	objects	and	can	only	store
data	of	a	single	type,	the	only	option	available	to	us	would	be	to	store	our	data	as	a	list.
However,	a	list	can	store	any	object,	whereas	we	only	want	to	store	columns	of	data.	We
therefore	need	to	impose	some	rules	on	our	list:

	Every	element	must	be	a	vector	(to	ensure	we	have	“columns”	containing	a	single
type	of	data)

	Each	vector	must	have	the	same	length	(to	ensure	that	we	have	a	fixed	dimension)

	Each	“column”	should	have	a	name	attribute	(for	easy	referencing	of	columns)

These	rules	ensure	that	our	list	functionally	behaves	like	a	rectangular	data	structure,	but
we	also	need	it	to	look	like	one.	We	therefore	impose	the	further	rule:

	The	list	looks	like	a	rectangular	data	structure

To	see	what	an	object	looks	like,	we	usually	just	type	its	name	and	press	Enter.	In	R,
typing	an	object’s	name	is	a	shortcut	for	calling	the	print	function	on	the	object.	When
we	say,	“the	list	looks	like	a	rectangular	data	structure”	what	we	really	mean	is,	“when	we
call	print	on	the	object,	it	looks	like	a	rectangular	data	structure.”	In	summary,	we	have
defined	three	rules	that	specify	the	structure	of	a	data	frame	object	and	one	rule	that
defines	how	the	print	function	should	behave	when	we	pass	it	a	data	frame	object.	In
other	words,	we	have	defined	a	“data	frame”	class	and	a	print	method	for	this	class.

We	don’t	just	want	to	print	data	frames,	however.	Once	we	have	defined	the	structure,	we
can	also	define	what	happens	when	we	call	subset	on	the	structure.	We	can	write
additional	methods	such	as	head	and	tail,	which	return	the	first	and	last	few	rows	of
data,	respectively.	We	can	write	nrow,	ncol,	and	dim	methods.	We	can	also	define	what
happens	when	we	call	plot	or	aggregate.	What	we	get	from	defining	classes	is
structure	and	control.	So	long	as	we	create	an	object	of	the	right	structure,	we	know	that
our	methods	will	function	as	expected.



Inheritance

In	object-oriented	programming,	inheritance	is	extremely	useful	to	us	because	it	keeps	our
code	modular	and	saves	us	from	duplicating	code.	When	programmers	talk	about	the
benefits	of	inheritance,	they	typically	talk	about	defining	animals.	Let’s	imagine	we	want
to	define	a	cat	object	and	a	dog	object.	Cats	and	dogs	have	a	lot	in	common.	Among	the
many	things	they	do,	they	eat	and	they	sleep.	However,	a	cat	meows	and	a	dog	barks.
Defining	cats	and	dogs	separately	results	in	duplication;	for	each	animal	we	must	define
what	it	means	to	eat	and	what	it	means	to	sleep.	The	idea	of	inheritance	allows	us	to	define
an	object	hierarchy.	First,	we	define	what	it	means	to	be	an	“animal”	object.	An	animal
eats	and	an	animal	sleeps.	We	say	that	“cat”	and	“dog”	objects	inherit	these	properties
from	the	“animal”	object.	We	can	then	define	the	additional	“meows”	property	for	cats
and	“barks”	property	for	dogs.	Should	we	ever	need	to	change	what	it	means	to	eat	or
sleep,	we	need	only	make	a	single	change	to	the	“animal”	object.

Each	of	the	object-oriented	systems	in	R	benefits	from	inheritance.	Consider	the
data.table	class	from	the	data.table	package	you	saw	in	Hour	12,	“Efficient	Data
Handling	in	R.”	We	can	think	of	a	data.table	object	as	a	data	frame	that,	among	other
things,	prints	nicely	when	there	are	many	rows.	There	are	actually	only	a	handful	of
methods	that	respond	specifically	to	data.table	objects.	The	rest	of	the	functionality	is
inherited	primarily	from	the	data.frame	class.	Where	a	method	has	not	been	defined
for	the	data.table	class,	R	defaults	to	the	method	for	the	data.frame	class.	Beyond
that,	R	defaults	to	the	default	method	for	an	S3	object	(of	which	data.frame	objects
belong).	For	example,	calling	summary	on	a	data.table	object	still	returns	a
statistical	summary	of	each	column	as	it	would	for	a	data.frame	object,	even	though
no	summary	method	has	been	specifically	written	for	the	data.table	class.
Inheritance	is	a	powerful	idea	that	enables	us	to	easily	build	upon	the	work	of	others.

Note:	Multi-Level	Hierarchy

The	tbl_df	class	actually	inherits	from	a	tbl	class,	which	in	turn	inherits	from	a
data.frame.	This	is	an	example	of	multi-level	hierarchy.	We	can	use	this
property	to	build	hierarchical	class	structures.

Why	Use	S3?
We	begin	our	tour	of	R	classes	by	looking	at	R’s	most	common	class	implementation,	S3.
Each	of	the	basic	data	structures	we	have	looked	at	throughout	the	book	use	an	S3
structure.	Standard	linear	models,	generalized	linear	models,	survival	models,	and	mixed
effects	models	all	use	an	S3	class	structure.	We	therefore	know	that	we	can	print,	plot,	or
summarize	these	objects	in	a	consistent	manner.	By	developing	our	own	packages	with	S3,
we	can	take	advantage	of	this	consistency	by	defining	our	own	print,	plot,	and
summary	methods	for	a	new	class	of	object.	We	can	also	use	S3	to	create	new	methods
specific	to	our	new	class	of	object.

The	S3	class	implementation	is	a	form	of	generic	function	object-oriented	programming.
In	generic	function	object-oriented	programming,	we	call	generic	functions	that	then



determine	which	function	is	appropriate	to	use	with	our	object.	For	example,	when	we
pass	an	object	of	class	lm	to	the	generic	plot	method,	the	method	determines	that	the
plot.lm	function	should	be	used.	This	type	of	implementation	is	rare	among
programming	languages	and	is	often	frowned	upon	by	experienced	software	developers.
However,	like	R	itself,	the	S3	class	system	is	relatively	straightforward	to	learn	and	is
extremely	popular	among	data	scientists	and	statisticians	alike.	The	implementation	strikes
a	nice	balance	between	the	full	flexibility	of	the	R	language	and	the	more	controlled	rigor
of	other	object-oriented	programming	languages.

Creating	a	New	S3	Class
In	most	object-oriented	programming	environments,	we	begin	by	formally	defining	the
structure	of	the	class.	We	also	place	restrictions	on	each	element	of	the	class.	However,	S3
implements	a	lazy	form	of	object-oriented	programming	that	allows	us	to	instantiate
(create	instances	of)	a	new	class	without	formally	defining	the	class.

Instantiating	S3	objects	is	incredibly	straightforward.	Remember	that	every	object	in	R	has
a	class.	We	can	query	the	class	of	an	object	using	the	class	function.	Here’s	an	example:

>	x	<-	5
>	class(x)
[1]	“numeric”

The	same	class	function	can	be	used	to	change	the	class	of	an	object.	In	the	following
example,	we	change	the	class	of	our	numeric	x	value	to	a	new	class	called
superNumber.
Click	here	to	view	code	image

>	class(x)	<-	“superNumber”
>	x
[1]	5
attr(,“class”)
[1]	“superNumber”

In	this	ad-hoc	manner,	we	can	change	the	class	of	any	object	to	anything	we	like,	whether
we	have	defined	the	new	class	or	not.	Note	that	the	class	of	an	object	is	returned	as	an
attribute.	Objects	can	have	several	attributes	that	are	returned	via	the	attributes
function:

>	attributes(x)
$class
[1]	“superNumber”



Tip:	Removing	a	Class

We	can	return	an	object	without	its	class	attribute	using	the	unclass	function.
The	unclass	function	removes	the	class	attribute,	leaving	only	the	underlying
object	and	any	attributes,	as	shown	here:

Click	here	to	view	code	image
>	aDF	<-	data.frame(X	=	1:3,	Y	=	rnorm(3))
>	aDF
		X											Y
1	1		0.52409671
2	2	-2.26076788
3	3	-0.01967972
>	unclass(aDF)
$X
[1]	1	2	3

$Y
[1]		0.52409671	-2.26076788	-0.01967972

attr(,“row.names”)	[1]	1	2	3

Note	that	unclass	returns	a	new	object	and	does	not	affect	the	original	object.

A	More	Formal	Approach	to	Creating	Classes
As	you	have	seen,	it	is	very	easy	to	change	the	class	of	an	object.	However,	it	is	not
considered	good	practice	to	do	so,	nor	is	it	particularly	useful,	especially	if	our	goal	is
writing	packages.	A	more	standard	approach	is	to	define	the	structure	that	our	class	should
take	and	then	write	a	function	that	creates	objects	of	that	class.	This	is	known	as	a
“constructor”	function.	Traditionally,	functions	that	generate	objects	of	a	particular	class
are	named	after	the	class	of	object	that	they	create.	For	example,	the	ts	function	creates
time	series	(ts)	objects.

Because	we	are	introducing	a	formal	method	for	creating	a	class,	let’s	start	with	a	more
formal	example	and	write	a	class	for	modular	arithmetic.	If	you	are	not	familiar	with
modular	arithmetic,	consider	time	as	specified	by	a	typical	12-hour	clock.	Imagine	it	is
three	o’clock	(we	ignore	a.m.	and	p.m.	for	this	example).	In	10	hours’	time,	we	will	say
it’s	one	o’clock.	We	won’t	say	it’s	13	o’clock.	A	12-hour	clock	is	an	example	of	“mod	12”
arithmetic.	We	call	the	number	12	our	“modulus.”	Numbers	must	always	be	between	0	and
11	(when	we	hit	12,	we	restart	at	zero).	We	now	define	this	formally	in	R	using	an	S3	class
structure.	In	lines	1	to	11	in	Listing	21.1,	we	create	a	new	class	called	modInt.	Our
object	consists	of	an	integer	value	and	a	modulus	attribute.	Some	examples	are	also
provided	to	illustrate	the	behavior	of	the	constructor	function.

LISTING	21.1	Writing	a	Function	to	Generate	a	New	Class
Click	here	to	view	code	image

	1:	>	modInt	<-	function(x,	modulus)	{
	2:	+			#	Create	the	object	from	the	starting	number	and	modulus,	“mod”
	3:	+			#	Divide	by	the	modulus	to	get	new	number	appropriate	for	that
modulus



	4:	+			object	<-	x	%%	modulus
	5:	+			#	Assign	a	class	attribute	to	the	object
	6:	+			class(object)	<-	“modInt”
	7:	+			#	Store	the	modulus	as	an	attribute
	8:	+			attr(object,	“modulus”)	<-	modulus
	9:	+			#	Return	the	new	object
10:	+			object
11:	+	}
12:	>	#	Examples
13:	>	modInt(3,	12)
14:	[1]	3
15:	attr(,“class”)
16:	[1]	“modInt”
17:	attr(,“modulus”)
18:	[1]	12
19:	>	modInt(13,	12)
20:	[1]	1
21:	attr(,“class”)
22:	[1]	“modInt”
23:	attr(,“modulus”)
24:	[1]	12

We	have	now	created	a	constructor	function	that	generates	objects	of	our	chosen	modInt
class.	On	its	own	this	could	perhaps	be	a	useful	function.	However,	to	really	see	the
benefit	of	the	S3	class	structure,	we	need	to	define	some	generic	functions.

Generic	Functions	and	Methods
Generic	functions	are	functions	that	can	behave	differently	depending	on	the	class	of
object	passed	to	them.	The	precise	behavior	is	controlled	by	further	functions	known	as
methods.	You	saw	the	generic	methods	print,	plot,	and	summary	in	Hour	16.	If	we
inspect	the	source	code	of	the	print	function,	for	example,	we	see	that	it	calls	the
UseMethod	function.	It	is	the	UseMethod	function	that	determines	which	method
function	to	call.
Click	here	to	view	code	image

>	print
function	(x,	…)
UseMethod(“print”)
<bytecode:	0x00000000094cda60>
<environment:	namespace:base>

As	you	saw	in	Hour	16,	the	S3	class	structure	provides	a	simple	naming	convention	that
we	can	use	to	create	methods	for	a	new	class.	The	naming	convention	is	as	follows:

[genericFunction].[class]

A	dot	(.)	is	used	to	separate	out	the	generic	function	from	the	class.	The	function
print.lm	defines	what	happens	when	we	call	the	print	function	on	an	object	with
class	lm.	Let’s	return	to	our	sample	modInt	class	that	we	defined	in	Listing	21.1.	The
two	examples	from	line	12	onward	were	functional	but	not	particularly	nice	to	look	at.	We
start	by	defining	a	print	method	to	control	the	appearance	of	modInt	objects.	In	order
to	do	so,	we	create	a	function	called	print.modInt,	shown	next,	and	let	R’s	S3	class
system	do	the	rest:
Click	here	to	view	code	image



>	print.modInt	<-	function(aModIntObject){
+			#	Extract	the	relevant	components	from	the	object
+			theValue	<-	as.numeric(aModIntObject)
+			theModulus	<-	attr(aModIntObject,	“modulus”)
+			#	Print	the	object	in	the	desired	form
+			cat(theValue,	”	(mod	“,	theModulus,	“)\n”,	sep	=	””)
+	}
>	x	<-	modInt(3,	12)
>	x
3	(mod	12)

Note:	Naming	Conventions

In	the	print.modInt	function,	we	use	the	argument	name	aModIntObject.
This	is	to	illustrate	that	we	should	pass	a	modInt	object	to	the	function.	However,
it	is	much	better	practice	to	follow	the	naming	convention	of	the	generic	function
that	will	call	the	method	(in	this	case,	print).	The	print	function	takes	x	and	an
ellipsis	(...),	and	in	practice	these	are	the	arguments	that	a	print.modInt
function	would	take.	The	primary	benefit	of	following	this	convention	is	that	the
help	files	are	much	easier	to	follow.	A	user	unfamiliar	with	classes	is	far	more
likely	to	type	?print	than	they	are	to	type	?print.modInt.	Further,	the	names
should	be	in	the	same	order	as	the	generic	and	adhere	to	any	default	values	defined
in	the	generic.	Following	these	conventions	will	vastly	improve	the	usability	of
your	class.

Note:	Updating	Methods

As	with	any	function,	the	impact	of	updating	a	method	is	immediate.	For	example,
if	we	update	the	print	method	for	a	class,	then	the	next	time	we	print	an	object	of
that	class,	it	will	print	differently.

We	can	see	what	methods	have	been	defined	for	a	class	via	the	class	argument	to	the
methods	function:
Click	here	to	view	code	image

>	methods(class	=	“modInt”)
[1]	print
see	‘?methods’	for	accessing	help	and	source	code

The	same	function	can	be	used	to	query	all	methods	for	a	particular	generic:
Click	here	to	view	code	image

>	methods(“plot”)
	[1]	plot.acf*											plot.data.frame*				plot.decomposed.ts*	plot.default
	[5]	plot.dendrogram*				plot.density*							plot.ecdf											plot.factor*
	[9]
plot.formula*							plot.function							plot.hclust*								plot.histogram*
[13]
plot.HoltWinters*			plot.isoreg*								plot.lm*												plot.medpolish*
[17]
plot.mlm*											plot.ppr*											plot.prcomp*								plot.princomp*
[21]	plot.profile.nls*			plot.raster*								plot.spec*										plot.stepfun
[25]
plot.stl*											plot.table*									plot.ts													plot.tskernel*



[29]	plot.TukeyHSD*
see	‘?methods’	for	accessing	help	and	source	code

Defining	Methods	for	Arithmetic	Operators
Mathematical	operators	can	also	be	used	as	generic	functions.	We	define	an	operator	in
exactly	the	same	way	we	do	any	generic	function:

[operator].[class]

Returning	to	our	modInt	example,	we	can	use	the	+	operator	to	define	what	happens
when	we	add	two	modInt	objects	together.	The	function	and	some	examples	are	shown
in	Listing	21.2.	Note	than	when	defining	methods	that	involve	operators,	we	place	back
ticks	around	the	function	name	to	avoid	errors.

Caution:	Defining	Each	Operator	Separately!

Defining	a	method	for	+	does	not	automatically	create	a	method	for	-,	*,	or	/.
These	must	be	defined	separately.

LISTING	21.2	Defining	Operator	Methods
Click	here	to	view	code	image

	1:	>	#	Define	a	new	method	‘add’	method	for	the	modInt	class
	2:	>	`+.modInt`	<-	function	(x,	y){
	3:	+			#	We	can	only	add	objects	that	are	of	the	same	modulus
	4:	+			if(attr(x,	“mod”)	!=	attr(y,	“mod”)){
	5:	+					stop(“Cannot	add	numbers	of	differing	modulus”)
	6:	+			}
	7:	+			#	Add	the	numbers	together
	8:	+			totalNumber	<-	as.numeric(x)	+	as.numeric(y)
	9:	+			#	Ensure	a	number	in	the	correct	modulus	is	returned
10:	+			theResult	<-	modInt(totalNumber,	attr(x,	“mod”))
11:	+			#	Next	step	useful	for	inheritance	(later)
12:	+			class(theResult)	<-	class(x)
13:	+			theResult
14:	+	}
15:	>
16:	>	#	Examples
17:	>	a	<-	modInt(7,	12)
18:	>	b	<-	modInt(9,	12)
19:	>	a	+	b
20:	4	(mod	12)
21:	>	c	<-	modInt(3,	4)
22:	>	a	+	c
23:	Error	in	`+.modInt`(a,	c)	:	Cannot	add	numbers	of	differing	modulus

Caution:	Operations	on	Different	Classes	of	Objects

If	we	try	to	use	an	arithmetic	operator	such	as	+	to	combine	objects	of	differing
classes,	R	will	attempt	to	use	the	method	that	is	higher	up	the	search	path.	This
often	results	in	an	error.	Attempting	to	combine	S3	classes	via	an	operator	in	this
way	is	generally	not	recommended.



Lists	vs.	Attributes
Usually	S3	classes	are	generated	as	lists	(for	example,	the	data.frame	and	lm	classes).
However,	to	create	our	modInt	example,	we	used	an	attribute.	This	slightly	simplifies
numeric	operations	on	objects	of	the	modInt	class	and	ensures	that	our	numbers	behave
like	regular	integers	in	cases	where	we	have	not	defined	a	method.	However,	it	is	just	as
easy	to	define	the	structure	as	a	list,	as	the	following	example	shows.	Here,	we	create	a
modIntList	class	and	a	suitable	print	method:
Click	here	to	view	code	image

>	#	Define	a	new	modIntList	class	using	a	list	structure
>	modIntList	<-	function(x,	modulus)	{
+			#	Define	a	list	with	two	elements	containing	the	number	and	modulus
+			object	<-	list(number	=	x	%%	modulus,
+																		modulus	=	modulus)
+			#	Assign	a	class	attribute	to	the	object
+			class(object)	<-	“modIntList”
+			#	Return	the	new	object
+			object
+	}
>
>	#	Now	define	the	print	method
>	print.modIntList	<-	function(aModIntListObject){
+			#	Extract	the	relevant	components	from	the	object
+			theValue	<-	aModIntListObject$number
+			theModulus	<-	aModIntListObject$modulus
+			#	Print	the	object	in	the	desired	form
+			cat(theValue,	”	(mod	“,	theModulus,	“)\n”,	sep	=	””)
+	}
>
>	#	Examples
>	modIntList(14,	6)
2	(mod	6)

The	modInt	and	modIntList	examples	are	relatively	straightforward	examples	of
using	classes.	Generally	we	recommend	using	lists	to	create	S3	classes.	A	list	enables	us	to
easily	store	different	types	of	objects	within	our	class.	The	list	approach	is	also	more
similar	to	the	S4	“slot”	approach	that	we	will	discuss	in	Hour	22.

Creating	New	Generics
When	generating	your	own	classes,	you	might	find	it	sufficient	to	use	existing	generics
such	as	print,	plot,	and	summary.	However,	it	can	sometimes	be	useful	to	define
new	generic	functions,	particularly	if	you	want	others	to	build	on	your	work.

We	can	use	the	UseMethod	function	to	create	our	own	generic	functions.	New	generics
should	call	the	UseMethod	function	and	do	nothing	else.	The	methods	themselves
should	do	all	the	work.	Always	define	a	default	method	using	[genericFunction].
[default].	The	default	method	is	invoked	in	the	absence	of	any	other	methods.	If	there
is	no	obvious	“one	size	fits	all”	default,	then	a	default	method	that	returns	a	sensible	error
message	should	be	defined.

Consider	writing	a	generic	version	that	mimics	the	mathematical	square	operation.	For	a
numeric	value	x,	this	is	just	x2.	But	what	would	such	a	function	do	for	a	character	value	or



an	object	in	our	modInt	class?	In	Listing	21.3	we	define	a	new	generic	named	square
along	with	some	methods	for	the	cases	we	have	just	highlighted.	Having	very	simply
defined	the	generic	in	line	2,	we	proceed	to	define	some	methods	starting	with	the	default
method.	Some	examples	of	the	new	generics	are	shown	toward	the	end	of	the	listing.
LISTING	21.3	Creating	a	New	Generic
Click	here	to	view	code	image

	1:	>	#	Define	a	new	generic
	2:	>	square	<-	function(x)	{	UseMethod(“square”,	x)	}
	3:	>
	4:	>	#	Define	default	method!
	5:	>	square.default	<-	function(x)	x^2
	6:	>
	7:	>	#	Define	some	more	methods
	8:	>	square.character	<-	function(x)	paste(x,	x,	sep	=	””)
	9:	>
10:	>	square.modInt	<-	function(x)	{
11:	+			#	Standard	square
12:	+			simpleSquare	<-	as.numeric(x)^2
13:	+			#	Use	correct	modulus
14:	+			modInt(simpleSquare,	attr(x,	“mod”))
15:	+	}
16:	>
17:	>	#	Check	functionality
18:	>	square(2)
19:	[1]	4
20:	>	square(“A”)
21:	[1]	“AA”
22:	>	x	<-	modInt(3,	4)
23:	>	square(x)
24:	1	(mod	4)

Inheritance	in	S3
One	of	the	primary	reasons	for	implementing	a	class	structure	is	that	it	enables	others	to
build	upon	it.	Inheritance	is	a	concept	that	allows	us	to	take	a	class	that	has	previously
been	defined	and	extend	it.	The	benefit	is	that	we	need	only	define	a	handful	of	new
generic	functions.	The	rest	are	inherited	from	the	base	class.	As	we	discussed	earlier	in	the
hour,	a	good	example	of	this	is	the	data.table	class	of	object	used	by	data.table.	The
data.table	class	extends/inherits	from	the	data.frame	class.	We	can	see	this
inheritance	when	looking	at	the	class	of	a	data.table	object:
Click	here	to	view	code	image

>	airDT	<-	data.table(airquality)
>	class(airDT)
[1]	“data.table”	“data.frame”

As	you	saw	in	Hour	12,	the	data.table	class	changes	the	way	a	data	frame	prints.	This
is	because	the	author	has	written	a	new	print	method	specifically	for	the	class.	Other
data.frame	operations	are	unaffected	by	the	extension.	The	summary	and	plot
functions	behave	in	exactly	the	same	way	for	a	data.table	object	as	they	do	for	a
data.frame	object.



When	we	query	the	class	of	a	data.table	object,	a	vector	of	classes	is	returned.	To
construct	a	new	class	that	inherits	from	an	existing	class,	we	overwrite	the	class	of	our
object	with	a	vector	of	classes.	For	example,	if	we	want	to	create	a	clockTime	class
representing	integers	as	“mod	12”	from	our	modInt	class,	we	do	so	as	follows:
Click	here	to	view	code	image

>	clockTime	<-	function(x){
+			#	Fix	x	as	mod	12
+			x	<-	modInt(x,	12)
+			#	Define	inheritance
+			class(x)	<-	c(“clockTime”,	class(x))
+			x
+	}
>	theTime	<-	clockTime(13)
>	class(theTime)
[1]	“clockTime”	“modInt”

Earlier	in	the	hour	we	defined	a	print	method	for	our	class.	We	also	defined	a	method
for	the	new	square	generic,	the	+	operator.	All	of	these	are	perfectly	functional	for	our
class,	though	for	a	clockTime	class	we	expect	a	slightly	different	print	method.	In
Listing	21.4	we	define	a	new	print	method	and	add	two	instances	of	this	class	together.
When	we	add	them	together,	the	modInt	method	is	used	because	we	haven’t	defined	a
`+.clockTime`.	However,	the	result	still	prints	in	the	clockTime	format	due	to
inheritance.

LISTING	21.4	Inheritance	in	Action
Click	here	to	view	code	image

	1:	>	#	Define	a	new	print	method	for	the	clockTime	class
	2:	>	print.clockTime	<-	function(aClockTimeObject){
	3:	+			cat(as.numeric(aClockTimeObject),	“:00\n”,	sep	=	””)
	4:	+	}
	5:	>
	6:	>	#	Examples
	7:	>	time1	<-	clockTime(5)
	8:	>	time2	<-	clockTime(42)
	9:	>	time1
10:	5:00
11:	>	time2
12:	6:00
13:	>
14:	>	#	Add	together	to	demonstrate	inheritance
15:	>	time1	+	time2
16:	24:	11:00

The	example	on	line	15	works	because	of	a	sensible	step	that	we	took	earlier	when
defining	the	`+.modInt`	method	in	Listing	21.2.	In	line	12	we	overwrote	the	class	of
the	return	object	with	the	original	class	of	one	of	the	two	objects	we	started	with.	If	we
hadn’t	done	so,	then	adding	the	two	clockTime	objects	would	return	a	modInt	object,
and	we	would	lose	one	of	the	primary	benefits	of	inheritance.



Note:	Extending	the	Class	Hierarchy

We	can	continue	to	extend	classes	indefinitely.	However,	it	is	rare	to	see	S3	classes
extended	more	than	three	or	four	times.

Tip:	Checking	Inheritance

Occasionally	we	may	need	to	check	that	an	object	inherits	from	a	particular	class	in
order	to	ensure	that	a	particular	method	will	behave	as	expected.

Documenting	S3
When	building	packages,	it	is	important	to	document	everything	you	can.	You	will	see	in
Hour	22	that	documenting	more	complex	classes	requires	us	to	use	new	roxygen2	tags;
S3,	on	the	other	hand,	is	much	more	straightforward.	To	start	with,	the	class	itself	has	no
formal	definition,	so	the	only	things	we	can	document	are	the	class	constructor	function,
the	methods,	and	any	generics	that	we	define.	Each	of	these	is	a	regular	R	function,	and	so
we	use	standard	tags	such	as	@param	and	the	others	listed	in	Table	19.1	of	Hour	19.

Technically	we	don’t	have	to	generate	help	files	for	every	method	that	we	define,
particularly	if	the	method	follows	the	argument-naming	structure	of	the	generic;	you	may
notice	that	several	of	the	methods	in	base	R	do	not	have	help	files	(try	?print.lm,	for
example).	However,	it’s	always	good	practice	to	create	documentation,	and	roxygen2
makes	it	so	easy,	so	why	wouldn’t	you?!	Though	this	may	be	obvious,	it	is	also	helpful	to
mention	in	the	title	and	description	that	the	method	relates	to	a	particular	class	of	object.

Limitations	of	S3
One	of	the	reasons	that	the	S3	concept	is	not	popular	among	software	developers	is	that
we	cannot	formally	define	a	new	class	of	object	before	instantiating	the	object,	whereas	in
most	class	implementations	it	is	common	to	check	that	the	components	of	an	object	are	of
the	expected	structure	for	the	class	object.	The	lack	of	a	formal	class	definition	leaves	S3
open	to	user	error,	unless	we	decide	to	go	the	extra	mile	and	write	checks	for	both	the
constructor	function	and	the	individual	methods.	Not	only	does	this	involve	a	lot	of
duplication,	we	may	soon	find	that	half	our	code	base	is	dedicated	to	error	handling.	If	the
prevention	of	user	error	matters	that	much,	it’s	time	to	step	up	to	S4	classes	or	beyond.

The	concept	of	inheritance	is	also	fairly	weak	in	S3;	we	have	to	be	very	careful	to	ensure
that	our	methods	allow	for	inheritance	and	do	not	force	the	creation	of	objects	of	one
particular	class.	In	class	systems	such	as	S4,	inheritance	is	more	formal,	and	type	checking
and	validity	are	passed	from	the	parent	class	through	to	the	child	class.

Summary
Following	on	from	Hours	19	and	20,	where	you	saw	how	to	construct	an	R	package,	you
have	now	seen	how	classes—and	S3	classes	in	particular—can	be	used	to	improve
package	maintainability	and	add	structure	to	our	code	base.



In	Hour	22,	we	look	at	the	more	formal	forms	of	object	orientation	available	in	R,	starting
with	S4	classes.	This	will	open	the	door	to	new	concepts	such	as	validity	checking,
multiple	dispatch,	and	message-passing	object	orientation.

Q&A
Q.	If	S3	was	the	first	implementation	in	S,	isn’t	it	time	to	move	on	to	something
more	advanced?

A.	Perhaps.	Many	people	don’t	like	S3,	saying,	“It’s	lazy,”	“It’s	not	a	proper	class
implementation,”	and	so	on.	However,	most	of	the	good	bits	of	R	use	S3	classes,	and
it’s	usually	better	to	try	to	build	on	top	of	the	good	bits!

Q.	I’ve	heard	that	S3	isn’t	actually	a	class	system	at	all.	Is	this	true?

A.	It’s	not	a	very	strict	system,	but	it	is,	nevertheless,	a	class	system.	Technically	it	is
an	informal	form	of	generic	function	object-oriented	programming.

Q.	If	an	S3	method	takes	the	form	[genericFunction].[class],	what	is
going	on	with	data.frame?

A.	R	has	its	quirks!	It	can	be	confusing	to	understand	what	is	going	on	with	functions
such	as	print.data.frame.	To	confuse	things	even	more,	it	is	entirely	possible
to	create	a	frame	class	and	define	a	print.data	method	for	that	class,	but	I
suggest	you	don’t!	The	overall	message	here	is	that	R	is	flexible,	and	though	a
period	can	indicate	the	presence	of	an	S3	class	implementation,	it	can	also	just	be
part	of	an	object’s	name.	That	said,	it’s	good	practice	not	to	use	periods	when
naming	variables.

Workshop
The	workshop	contains	quiz	questions	and	exercises	to	help	you	solidify	your
understanding	of	the	material	covered.	Try	to	answer	all	questions	before	looking	at	the
“Answers”	section	that	follows.

Quiz
1.	True	or	false?	S3	and	S4	classes	were	first	introduced	in	S	version	3	and	S	version
4,	respectively.

2.	Which	of	the	following	should	be	used	to	plot	the	object	myLm	of	lm	class?

A.	plot

B.	plot.lm

C.	plot.myLm

D.	myLm.plot

3.	How	do	you	find	out	what	methods	are	available	for	an	S3	class?

4.	What	is	the	name	of	the	function	used	to	define	new	generics?



5.	True	or	false?	You	must	document	an	S3	method	when	building	an	R	package.

Answers
1.	True.	This	is	another	case	of	R	inheriting	behavior	from	S.

2.	A.	Technically	plot.lm	can	be	used	directly;	however,	directly	invoking	a	method
is	generally	discouraged.

3.	You	use	the	methods	function	and	specify	the	class=	option.

4.	The	UseMethod	function	enables	us	to	create	new	generics.	We	define	a	generic
by	writing	a	function	that	calls	UseMethod.

5.	False.	However,	you	really	should	document	it,	particularly	if	the	method	does
anything	sophisticated.

Activities
1.	Define	a	new	S3	class.	The	aim	of	the	class	is	to	store	simulated	data	from	various
known	statistical	distributions.	In	order	to	construct	the	new	class,	create	the
following	items:

	A	constructor	function	that	takes	inputs	n	and	distribution,	representing	the
number	of	values	to	sample	and	the	distribution	to	sample	from.	Ensure	that	the
function	has	the	option	for	other	parameter	arguments,	as	needed.

	A	print	method	that	displays	a	table	of	summary	statistics	for	the	simulated	data
(mean,	median,	standard	deviation,	min,	and	max).

	A	plot	method	that	draws	a	histogram	of	the	random	numbers,	with	a	default	title
that	states	from	which	distribution	the	data	has	been	simulated	and	how	many
values	have	been	simulated.



Hour	22.	Formal	Class	Systems

What	You’ll	Learn	in	This	Hour:

	S4	classes

	Reference	classes

	R6	classes

	Other	available	class	systems

In	Hour	21,	“Writing	R	Classes,”	you	were	introduced	to	the	concept	of	classes,	and	we
walked	through	the	basic	features	of	an	S3	class	in	R.	The	S3	system	provides	a	soft
introduction	to	classes,	allowing	much	of	the	flexibility	that	we	have	become	accustomed
to	with	R.	In	order	to	provide	this	flexibility,	however,	some	of	the	main	benefits	of	a
more	formal	class	system	have	been	sacrificed.	When	developing	S3	classes,	we	still	need
to	be	very	careful	to	check	that	the	input	values	are	handled	appropriately.	Further,
inheritance	is	not	formally	defined	and	we	must	be	careful	to	write	functions	that	allow	for
it.

During	this	hour,	we	look	closely	at	two	alternative	class	systems	available	in	R:	the	S4
system	and	Reference	Classes.	Along	the	way,	you	will	be	introduced	to	new	concepts
such	as	validity	checking,	multiple	dispatch,	message-passing	object	orientation,	and
mutable	objects.

S4
The	S4	system	was	introduced	in	S	version	4.	Like	S3,	the	S4	system	is	a	form	of	generic
function	object-oriented	programming.	However,	the	system	is	much	more	formal	and
requires	that	we	define	the	class	structure	before	instantiating	objects.	This	makes	it	easier
to	write	methods	because	it	is	not	possible	to	pass	an	object	with	the	wrong	structure	to	an
S4	method.

The	S4	system	also	benefits	from	a	more	formal	form	of	inheritance	that	is	specified	when
we	define	a	class.	When	we	extend	an	S4	class,	all	of	the	type	and	structure	checking	from
the	parent	class	is	passed	on	to	the	child,	thus	reducing	the	need	for	duplicate	code.
Finally,	S4	supports	something	called	multiple	dispatch,	meaning	that	generic	functions
can	operate	based	on	multiple	inputs.

Instances	of	S4	structures	are	rare	in	the	base	and	recommended	R	packages,	though	the
structure	is	used	in	several	of	the	additional	packages	available	on	CRAN	and	throughout
the	BioConductor	package	repository.	There	is	a	tendency	for	S4	package	names	to	end	in
4,	particularly	where	they	implement	something	that	has	already	been	implemented	in	an
S3	structure.	This	is	not	strictly	adhered	to,	however.



Working	with	S4	Classes
It	is	slightly	easier	to	find	information	about	S4	classes	and	methods	than	it	is	with	S3.	To
start	with,	we	can	find	out	if	any	object	is	an	S4	object	using	the	function	isS4,	to	which
we	pass	any	R	object.	The	isS4	function	simply	returns	TRUE	if	an	object	is	an	S4	object
and	FALSE	otherwise.	Once	we	know	that	we	have	an	S4	object	and	have	ascertained	the
class	(using	the	class	function),	we	can	call	upon	a	number	of	other	useful	functions	to
find	out	more	information	about	the	class.	Table	22.1	lists	three	functions	that	can	be	used
to	find	out	more	information	about	a	class.	The	table	also	describes	their	usage,	with	an
example	of	usage	for	the	merMod	class	contained	within	the	lme4	modeling	package.

TABLE	22.1	Querying	S4	Classes

If	we	are	working	with	a	new	package,	we	can	find	out	what	classes	it	contains	using	the
getClasses	function—for	example,	getClasses("package:lme4").	The	same
function	can	also	be	used	to	list	all	classes	currently	defined	within	in	an	R	session.
Similarly,	the	getGenerics	function	can	be	used	to	list	all	available	generics	within	a
package	or	an	R	session	generally.

A	list	of	all	the	methods	available	for	a	generic	function	may	be	obtained	via	the
showMethods	function.	Here’s	an	example:
Click	here	to	view	code	image

>	showMethods(“tail”)
Function:	tail	(package	utils)
x=“ANY”
x=“Matrix”
x=“sparseVector”

The	methods	function	you	saw	in	Hour	21	also	works	with	S4	classes.

Tip:	Help	with	S4

Constructors	and	generics	are	named	R	functions,	and	we	can	find	help	in	the
standard	way,	either	via	the	RStudio	GUI	or	by	typing	?functionName.	Unlike
S3	classes,	S4	classes	are	formally	defined	and	can	therefore	be	documented.	We
use	a	special	syntax	of	the	form	class?className	in	order	to	find	out	more
about	the	class.



Defining	an	S4	Class
In	the	previous	section,	we	stated	that	an	S4	class	must	first	be	defined	before	we	can
instantiate	objects.	In	other	words,	we	cannot	simply	take	an	object	and	assign	it	a	new
class	as	we	could	with	S3.	This	means	that	S4	classes	can	take	longer	to	construct;
however,	the	more	formal	definition	provides	us	with	benefits,	such	as	the	following:

	Type-checking

	Validity

Type-checking	and	validity	ensure	that	when	we	define	a	class,	objects	within	that	class
adhere	to	a	particular	structure	and	type.	Unlike	with	S3,	we	can	therefore	assume	that	the
structure	is	correct	when	we	write	methods	for	our	class.	This	saves	us	from	having	to
write	additional	error-handling	steps	within	the	methods	and	avoids	duplication	of	code,
thereby	improving	the	maintainability	of	our	code.

Setting	the	Class

To	formally	define	an	S4	class,	we	use	the	setClass	function.	The	setClass	function
lives	in	the	methods	package,	which	is	loaded	by	default	when	we	start	R	interactively.
Structurally,	you	can	think	of	an	S4	class	as	being	a	bit	like	an	R	list,	where	each	element
of	the	list	is	an	R	object	with	its	own	type	and	structure.	In	S4	terminology,	we	refer	to
these	elements	as	“slots.”	The	formal	structure	of	an	S4	class	requires	that	we	define	the
required	structure	for	each	slot—for	example,	integer,	numeric,	character,
matrix,	and	so	on.	The	two	primary	arguments	to	the	setClass	function	are	therefore
the	name	of	the	class	and	a	slots	argument	that	defines	the	structure	of	the	class.	The
slots	argument	expects	either	a	list	or	a	named	character	vector,	where	the	names
represent	the	names	of	the	slots	and	the	data	represents	the	object	type.

Caution:	Loading	the	methods	Package

When	we	start	R	in	interactive	mode,	the	methods	package	is	loaded	by	default.
However,	R	can	also	be	executed	in	batch	mode	via	Rscript,	which	does	not	load
the	methods	package	by	default.	When	integrating	an	S4	structure	into	your	own
package,	you	should	add	a	dependency	on	the	methods	package.

Let’s	start	by	looking	back	at	the	modInt	structure	that	we	defined	in	Hour	21.	We	take
the	basic	concept	of	the	structure	and	define	it	instead	as	an	S4	class	named	modInt4.
For	any	object	in	our	class,	we	must	store	two	important	pieces	of	information:	the	base
number	and	its	modulus.	Each	of	these	is	integer,	so	we	specify	their	structure	using	the
integer	class.	Note	that	although	modular	arithmetic	only	works	with	integer	values,
we	don’t	actually	need	to	store	the	data	as	integer,	because	numeric	would	suffice.
However,	we	later	use	the	data	type	to	illustrate	the	impact	of	this	formal	definition.
Click	here	to	view	code	image

>	setClass(“modInt4”,	slots=c(x	=	“integer”,	modulus	=	“integer”))



Caution:	Change	in	Definition

Historically,	S4	slots	were	defined	via	a	representation	argument	within	the
setClass	function.	A	representation	function	was	then	used	to	define	both
the	slot	structure	and	any	inheritance.	Although	this	functionality	is	now
deprecated,	representation	is	still	the	second	argument	to	setClass	for
compatibility	reasons.	The	S3methods,	access,	and	version	arguments	are
similarly	deprecated.	Further	information	is	provided	within	the	setClass	help
file.

We	also	use	the	setClass	function	to	define	inheritance,	which	we’ll	return	to	later	in
the	hour.

Creating	a	New	S4	Instance

Once	we	have	formally	defined	a	class,	we	can	begin	to	create	objects	of	that	class.	As
with	S3,	it	is	good	practice	to	do	so	via	a	class	constructor	function,	though	again	it	is	not
necessary.	To	generate	an	S4	object,	the	constructor	function	must	include	a	call	to	the
new	function.	The	new	function	does	the	hard	work	of	creating	a	prototype	object	from
the	class	definition	and	populating	the	slots	with	any	inputs	we	provide.	The	call	to	new
ensures	that	our	class	has	the	required	slots	and	that	the	information	contained	within	each
slot	is	of	the	correct	type.

The	first	argument	is	the	Class	argument.	This	tells	R	what	class	is	to	be	instantiated.
Any	slot	names	for	the	class	are	passed	via	an	ellipsis	(...).	In	the	following	example	we
create	a	constructor	function	for	the	modInt4	class	that	we	previously	defined.	The	final
line	contains	the	required	call	to	the	new	function.
Click	here	to	view	code	image

>	modInt4	<-	function(x,	modulus){
+			#	Divide	by	the	modulus	to	get	new	number	appropriate	for	that	modulus
+			x	<-	x	%%	modulus
+			#	Create	a	new	instance
+			new(“modInt4”,	x	=	x,	modulus	=	modulus)
+	}

Having	defined	the	constructor,	we	are	now	ready	to	create	objects	of	our	class.	The
following	examples	demonstrate	the	behavior	of	the	type	checking.	In	the	first	example,
we	pass	the	non-integer	pi	value	and	the	integer	12L.	We	use	L	to	ensure	that	the	value	is
stored	as	integer	as	opposed	to	numeric.

Because	pi	is	non-integer,	the	object	cannot	be	created,	and	we	receive	an	appropriate
error	message.	In	the	second	example,	we	pass	two	integer	values	that	are	actually	stored
as	numeric	in	R.	Again,	the	object	cannot	be	created	because	both	x	and	modulus
must	be	of	integer	type.	In	the	final	example,	we	pass	4L	and	12L.	Both	are	integers,
and	our	object	is	successfully	created.	Note	that	by	default	the	name	of	the	class	is	printed
along	with	each	of	the	slots.
Click	here	to	view	code	image

>	#	Try	to	create	some	objects	of	our	class



>	modInt4(pi,	12L)
Error	in	validObject(.Object)	:
		invalid	class	“modInt4”	object:	invalid	object	for	slot	“x”	in	class
“modInt4”:
		got	class	“numeric”,	should	be	or	extend	class	“integer”

>	modInt4(4,	12)
Error	in	validObject(.Object)	:
		invalid	class	“modInt4”	object:	1:	invalid	object	for	slot	“x”	in	class
“modInt4”:
		got	class	“numeric”,	should	be	or	extend	class	“integer”
invalid	class	“modInt4”	object:	2:	invalid	object	for	slot	“modulus”	in	class
“modInt4”:
		got	class	“numeric”,	should	be	or	extend	class	“integer”

>	modInt4(4L,	12L)
An	object	of	class	“modInt4”
Slot	“x”:
[1]	4

Slot	“modulus”:
[1]	12

Here	we	match	the	name	of	the	constructor	function	to	the	name	of	the	class	as	well	as	the
names	of	the	arguments	to	the	names	of	the	class	slots.	This	is	a	very	simple	example	of	a
class,	and	it	makes	sense	to	do	so.	However,	the	constructor	function	can	take	any
arguments	so	long	as	the	arguments	that	are	eventually	passed	to	new	match	those	we
defined	using	setClass.	A	good	example	of	this	is	the	lmer	function	in	lme4,	which
takes	arguments	such	as	formula	and	data,	fits	a	linear	mixed-effects	model,	and
generates	an	object	of	class	merMod,	which	contains	slots	such	as	theta	and	beta.

Validity

As	you	have	seen,	the	slot	structure	of	an	S4	class	provides	a	handy	mechanism	for
checking	that	the	information	provided	is	of	the	correct	type.	Occasionally	we	may	need	to
provide	some	additional	checks	to	ensure	that	an	object	conforms	to	expectations.
Consider	the	data	frame	definition	that	we	provided	in	Hour	21.	A	data	frame	consists	of	a
list	of	vectors,	but	these	vectors	must	also	be	of	consistent	length.	In	the	S4	framework,
we	can	provide	such	a	check	using	a	validity	function.

A	validity	function	is	simply	a	function	that	contains	all	the	checks	we	require	in	order	to
ensure	that	an	object	is	of	the	correct	structure.	There	are	no	naming	restrictions	on
validity	functions;	however,	it	is	standard	practice	to	include	the	name	of	the	class	within
the	name.	The	“lowerCamelCase”	convention	is	most	commonly	used,	and	periods
should	be	avoided	because	they	can	falsely	imply	an	S3	structure.

We	now	define	a	validity	function	for	our	modInt4	class.	The	check	ensures	that	the	two
values	are	positive	integers	and	that	the	base	number	is	less	than	the	modulus.	Validity
functions	should	return	TRUE	if	the	object	is	considered	valid	and	FALSE	if	any	of	the
checks	are	violated.	The	validity	function	should	expect	an	S4	object	as	its	only	argument.
It	is	good	practice	to	name	the	argument	object.
Click	here	to	view	code	image

validModInt4Object	<-	function(object)	{



		#	Define	checks
		#	Note	that	the	class	definition	already	ensures	that	x	and	mod	are	integer
		xNonNeg																	<-	object@x	>=	0
		modulusPositive									<-	object@modulus	>	0
		xLessThanEqualToModulus	<-	object@x	<=	object@modulus
		#	Combine	checks
		isObjectValid	<-	xNonNeg	&	modulusPositive	&	xLessThanEqualToModulus
		#	Return	TRUE	or	FALSE
		isObjectValid
}

Once	we	have	defined	the	check,	we	need	to	link	it	to	our	class.	We	do	so	via	the
setValidity	function.	The	setValidity	function	expects	two	main	arguments:

	Class—The	name	of	the	class	as	a	character	string

	method—The	name	of	the	validity	function

We	can	now	link	the	validModInt4Object	validity	function	to	our	modInt4	class,
like	so:
Click	here	to	view	code	image

>	setValidity(“modInt4”,	validModInt4Object)
Class	“modInt4”	[in	“.GlobalEnv”]

Slots:

Name:								x	modulus
Class:	integer	integer

Note:	Defining	Validity	with	setClass

In	addition	to	setValidity,	we	can	use	the	validity	argument	to	the
setClass	function	to	link	the	function	to	the	class	that	it	checks.

Methods
As	with	S3,	the	S4	framework	implements	generic	function	object	orientation.	In	order	to
define	a	method	for	our	class,	we	must	first	define	a	generic.	We	then	link	the	method
back	to	the	generic	and	our	class	using	the	setMethod	function.	Let’s	look	first	at	the
setMethod	function.	Table	22.2	lists	the	three	required	arguments	to	setMethod,
along	with	a	description	of	how	they	are	used.

TABLE	22.2	The	setMethod	Function



As	with	S3,	a	number	of	generic	functions	are	available	“out	of	the	box.”	In	particular,	S4
objects	have	a	default	show	method,	equivalent	to	print	in	S3.	We	can	define	a	new
show	method	to	control	how	an	object	prints	to	screen.	In	the	following	example,	we
define	a	new	show	method	for	the	modInt4	class	and	then	use	the	setMethod
function	to	link	the	method	to	the	class	and	generic	function:
Click	here	to	view	code	image

>	showModInt4	<-	function(object){
+			#	Extract	the	relevant	components	from	the	object
+			theValue	<-	object@x
+			theModulus	<-	object@modulus
+			#	Print	the	object	in	the	desired	form
+			cat(theValue,	”	(mod	“,	theModulus,	“)\n”,	sep	=	””)
+	}
>
>	#	Link	the	previous	function	to	the	show	generic	and	modInt4	class
>	setMethod(“show”,	signature	=	“modInt4”,	showModInt4)
[1]	“show”
>
>	#	Display	an	object
>	modInt4(3L,	12L)
3	(mod	12)

The	more	formal	S4	framework	and	validity	checking	ensures	that	any	object	of
modInt4	class	is	of	the	correct	structure	and	that	any	slots	are	of	the	correct	type.	The
show	method	requires	no	additional	checking.	It	is	very	clear	and	straightforward	to
follow.

Caution:	Editing	Methods

Methods	must	be	linked	to	a	generic	and	class	via	setMethod.	If	we	redefine	a
method,	we	must	then	call	setMethod	again	to	relink	the	method	to	the	generic
and	class.

Defining	New	Generics
In	the	previous	example,	we	defined	a	new	method	for	an	existing	generic,	show.	As	with
S3	classes,	it	is	also	possible	to	define	new	generics.	We	do	so	via	the	setGeneric
function,	which	has	two	main	arguments,	as	described	in	Table	22.3.

TABLE	22.3	Main	Arguments	to	setGeneric

In	the	following	example,	we	first	define	a	function	called	square4,	an	S4	equivalent	of
the	square	function	we	defined	in	Hour	21.	We	then	turn	the	function	into	a	generic	with
setGeneric.

>	square4	<-	function(x){



+			x^2
+	}
>	setGeneric(“square4”)
[1]	“square4”

Once	the	generic	has	been	created,	we	can	define	new	methods,	which	we	link	to	classes
via	the	setMethod	function:
Click	here	to	view	code	image

>	squareModInt4	<-	function(x)	{
+				#	Standard	square
+				simpleSquare	<-	as.integer(x@x^2)			#	Ensure	value	is	valid
+				#	Use	correct	modulus
+				modInt4(simpleSquare,	x@modulus)
+	}
>
>	#	Link	the	modInt4	method	to	the	square4	generic	and	modInt4	class
>	setMethod(“square4”,	signature	=	“modInt4”,	squareModInt4)
[1]	“square4”
>
>	#	Test	the	method
>	a	<-	modInt4(5L,	12L)
>	a
5	(mod	12)
>	square4(a)
1	(mod	12)

It	is	important	to	ensure	that	argument	names	match	between	the	methods	and	the	generic.
If	they	don’t,	this	is	not	only	bad	practice,	but	R	throws	a	warning	to	tell	you	that	it	has
changed	the	argument	name	in	the	method	to	match	the	generic.

Multiple	Dispatch
In	the	following	example,	we	create	a	new	generic,	add,	and	define	what	happens	when
we	add	two	objects	of	class	modInt4.	This	is	an	example	of	multiple	dispatch,	whereby	a
generic	function	can	dispatch	(pick	a	method)	based	on	multiple	arguments.	Note	that
although	we	provide	two	objects	of	the	same	class,	the	multiple	dispatch	mechanism	could
be	used	to	define	what	happens	when	we	add	objects	of	a	different	class.	As	in	the
previous	example,	we	start	by	defining	a	function,	add,	and	then	turn	it	into	a	generic
with	setGeneric.

>	add	<-	function(a,	b){
+			a	+	b
+	}
>	setGeneric(“add”)
[1]	“add”

The	add	function	we	defined	acts	as	the	default	method	for	the	generic.	Next,	we	define	a
method	for	our	modInt4	object.	Because	the	add	function	requires	two	objects,	we	must
be	careful	to	define	an	appropriate	signature	to	ensure	that	the	generic	dispatches
correctly.
Click	here	to	view	code	image

>	#	Define	a	function	that	adds	modInt4	objects
>	addModInt4Objects	<-		function(a,	b){
+			#	Sometimes	we	still	need	to	define	checks	within	the	method
+			if(a@modulus	!=	b@modulus){



+					stop(“Cannot	add	numbers	of	differing	modulus”)
+			}
+			#	Add	the	numbers	together
+			totalNumber	<-	a@x	+	b@x
+			#	Return	the	correct	class
+			theResult	<-	modInt4(totalNumber,	a@modulus)
+			theResult
+	}
>
>	#	Link	the	previous	function	to	the	add	generic	and	modInt4	class
>	setMethod(“add”,	signature	=	c(a	=	“modInt4”,	b	=	“modInt4”),
+											addModInt4Objects)
[1]	“add”
>
>	#	Test	the	function
>	p	<-	modInt4(3L,	12L)
>	q	<-	modInt4(7L,	12L)
>	add(p,	q)
10	(mod	12)
>	add(q,	q)
2	(mod	12)

Inheritance
You	were	introduced	to	the	idea	of	inheritance	in	the	previous	hour.	It	is	possible	for	S3
objects	to	inherit	from	one	another,	but	as	with	much	of	S3	it	is	not	formally	defined.
Inheritance	is	much	better	defined	for	S4	classes.	We	specify	the	inheritance	when
defining	the	class	with	setClass	using	the	contains	argument.	Though	the	argument
name	may	seem	counterintuitive,	we	use	contains	to	specify	superclasses—in	other
words,	classes	that	our	class	inherits	from.

Consider	the	example	of	the	12-hour	clock	and	the	clockTime	class	we	discussed	in
Hour	21.	We	define	an	S4	equivalent	that	inherits	from	modInt4	as	follows:
Click	here	to	view	code	image

>	setClass(“clockTime4”,	contains	=	“modInt4”)

At	this	point,	our	class	is	exactly	the	same	as	the	modInt4	class	and	contains	slots	x	and
modulus.	It	has	also	inherited	all	of	the	methods	from	the	modInt4	class	without	us
having	to	think	about	inheritance	when	defining	the	modInt4	methods.
Click	here	to	view	code	image

>	getSlots(“clockTime4”)
								x			modulus
“integer”	“integer”
>
>	methods(class	=	“clockTime4”)
[1]	add		show
see	‘?methods’	for	accessing	help	and	source	code

In	Listing	22.1	we	walk	through	a	complete	example,	defining	the	class	as	we	did	earlier
and	then	walking	through	some	of	the	possible	follow-on	actions.	In	particular,	we	define
a	constructor	function	(lines	5	through	10)	and	a	validity	function	(lines	14	through	17)	to
ensure	that	the	modulus	is	equal	to	12.	We	also	define	the	print	(show)	method	(lines
31	through	36).	If	we	felt	the	need,	we	could	define	any	additional	methods	specific	to	our
clockTime4	class.



LISTING	22.1	Building	a	clockTime4	Class
Click	here	to	view	code	image

	1:	>	#	Define	the	class
	2:	>	setClass(“clockTime4”,	contains	=	“modInt4”)
	3:	>
	4:	>	#	Define	constructor
	5:	>	clockTime4	<-	function(x){
	6:	+			#	Ensure	that	x	is	in	mod	12
	7:	+			x	<-	x	%%	12L
	8:	+			#	Create	a	new	instance
	9:	+			new(“clockTime4”,	x	=	x,	modulus	=	12L)
10:	+	}
11:	>
12:	>	#	Define	validity
13:	>	#	Existing	modInt4	validity	is	inherited
14:	>	validclockTime4Object	<-	function(object)	{
15:	+			isMod12	<-	object@modulus	==	12L
16:	+			isMod12
17:	+	}
18:	>
19:	>	#	Link	the	validity	function	with	the	clockTime4	class
20:	>	setValidity(“clockTime4”,	validclockTime4Object)
21:	Class	“clockTime4”	[in	“.GlobalEnv”]
22:
23:	Slots:
24:
25:	Name:								x	modulus
26:	Class:	integer	integer
27:
28:	Extends:	“modInt4”
29:	>
30:	>	#	Redefine	show	method
31:	>	showclockTime4	<-	function(object){
32:	+			#	Print	the	object	in	the	desired	form
33:	+			cat(object@x,	“:00\n”,	sep	=	””)
34:	+	}
35:	>	setMethod(“show”,	signature	=	“clockTime4”,	showclockTime4)
36:	[1]	“show”
37:	>
38:	>	#	Test	the	class
39:	>	clockTime4(5L)
30:	5:00
41:	>	clockTime4(13L)
42:	1:00

Listing	22.1	highlights	another	property	of	S4	inheritance,	which	is	that	validity	is	also
inherited.	This	significantly	cuts	down	on	the	amount	of	checking	we	have	to	do.

Documenting	S4
The	formal	declaration	of	an	S4	class	requires	some	additional	effort	when	it	comes	to
documenting	the	class	with	roxygen2.	The	call	to	setClass	should	be	documented	with
a	standard	title	and	description	of	the	class.	Each	slot	should	be	documented	using	the
@slot	tag.
Click	here	to	view	code	image

#’	An	S4	Class	that	implements	modular	arithmetic



#’
#’	@slot	x	An	integer	value	in	the	specified	\code{modulus}
#’	@slot	modulus	An	integer	value	representing	the	modulus	for	\code{x}
setClass(“modInt4”,	slots=c(x	=	“integer”,	modulus	=	“integer”))

We	must	document	S4	methods,	but	we	have	a	choice	as	to	whether	to	document	in	the
class,	in	the	generic,	or	separately	within	its	own	specific	help	file.	Generally	the	decision
as	to	where	to	document	the	method	depends	on	how	complicated	the	method	is	and	how
the	method	is	to	be	used.	Clearly	we	can	only	document	the	method	via	the	generic	if	we
created	the	generic	ourselves,	however.

We	can	control	where	the	method	is	documented	using	either	the	@describeIn	tag	or
@rdname	tag.	For	example,	to	document	the	addModInt4Objects	function	within
the	help	file	for	the	add	generic,	we	first	create	an	roxygen2	header	for	the	generic	add
function	and	separately	add	a	single	roxygen2	header	line	above	the	function	definition
for	addModInt4Objects	that	contains	a	@describeIn	tag.
Click	here	to	view	code	image

#’	@describeIn	add	Adds	two	modInt4	objects	of	the	same	modulus
addModInt4Objects	<-		function(a,	b){
		#	Sometimes	we	still	need	to	define	checks	within	the	method
		if(a@modulus	!=	b@modulus){
				stop(“Cannot	add	numbers	of	differing	modulus”)
		}
		#	Add	the	numbers	together
		totalNumber	<-	a@x	+	b@x
		#	Return	the	correct	class
		theResult	<-	modInt4(totalNumber,	a@modulus)
		theResult
}

Reference	Classes
Reference	Classes	were	developed	by	John	Chambers	and	have	been	available	in	the
methods	package	since	R	version	2.12.	Because	they	were	the	first	new	class
implementation	in	R	and	because	they	followed	S3	and	S4,	they	are	often	referred	to	as
“R5”	classes.	However,	unlike	with	the	S3	and	S4	classes,	the	number	5	has	nothing	to	do
with	the	R	version	and	is	essentially	meaningless.

Reference	Classes	are	quite	different	from	S3	and	S4	and	implement	a	much	more
common	form	of	object-orientated	programming	known	as	message-passing	object
orientation.	In	message-passing	object	orientation,	methods	belong	to	the	class	and	generic
functions	are	not	required.	Message-passing	object	orientation	is	also	used	in	Python,
C++,	and	Java.

Creating	a	New	Reference	Class
Much	like	S4,	we	begin	by	defining	the	class.	We	do	so	via	the	function	setRefClass.
In	terms	of	usage,	the	main	difference	between	setClass	and	setRefClass	is	that
with	setRefClass	we	use	the	term	“fields”	instead	of	“slots.”	The	similarity	extends	to
inheritance,	for	which	we	use	the	contains	argument.

One	important	difference	with	Reference	Classes	is	that	we	save	the	output	of	the



setRefClass	function	as	an	object.	The	object	should	have	the	same	name	as	the	class
as	defined	by	the	first	argument	to	setRefClass.	We’ll	walk	through	Reference	Classes
using	a	variant	on	the	modular	arithmetic	example	that	we	used	for	S3	and	S4	classes.
However,	message-passing	object	orientation	is	very	different	from	generic	function
object	orientation,	and	in	practice	message-passing	object	orientation	is	typically	used	to
solve	a	different	kind	of	problem.	In	particular,	message-passing	tends	to	be	better	suited
to	software	development.
Click	here	to	view	code	image

>	modIntRef	<-	setRefClass(“modIntRef”,
+																										fields=c(x	=	“integer”,	modulus	=	“integer”))

This	is	the	first	time	we	have	created	a	class	as	an	object.	Like	with	any	R	object,	we	can
type	its	name	to	see	what	it	looks	like	and	query	its	class.

>	class(modIntRef)
[1]	“refObjectGenerator”
attr(,“package”)
[1]	“methods”

The	object	that	we	have	created	is	a	refObjectGenerator	object.	The
refObjectGenerator	object	is	a	function	that	generates	new	objects	from	the	class.
The	object	that	it	generates	is	an	environment	much	like	a	package	environment	or	the
global	environment.	The	subject	of	environments	is	an	advanced	topic,	but	in	essence	an
environment	is	a	lot	like	a	list,	and	we	can	access	elements	using	the	$	syntax
myEnvironmentName$ObjectName.	It	can	be	very	useful	to	think	of	Reference
Classes	and	the	objects	we	create	from	them	as	lists.	We	store	all	relevant	information	for
the	class	in	this	list,	including	the	fields,	inheritance,	and	methods.	There	is	no	need	for
generic	functions.

Caution:	S4	or	Reference	Class?

Reference	Classes	are	actually	implemented	as	S4	classes	with	the	data	stored	in	an
environment.	Because	the	Reference	Classes	system	is	built	on	top	of	the	S4
system,	the	isS4	function	also	returns	TRUE	for	Reference	Class	objects.

Defining	the	class	effectively	creates	our	constructor	function	for	us.	We	can	instantiate
new	modIntRef	objects	using	the	modIntRef	function	that	was	created	by	the	call	to
setRefClass.
Click	here	to	view	code	image

>	a	<-	modIntRef(x	=	3L,	modulus	=	12L)
>	a
Reference	class	object	of	class	“modIntRef”
Field	“x”:
[1]	3
Field	“modulus”:
[1]	12

Because	Reference	Classes	are	based	on	S4	classes,	we	can	use	the	new	function	to
generate	classes	directly,	though	the	practice	is	generally	discouraged.	The	new	function
is	also	a	method	for	our	class,	however,	and	can	be	invoked	in	the	standard	Reference



Class	manner.
Click	here	to	view	code	image

>	b	<-	modIntRef$new(x	=	4L,	modulus	=	6L)
>	b
Reference	class	object	of	class	“modIntRef”
Field	“x”:
[1]	4
Field	“modulus”:
[1]	6

Tip:	What	Does	a	Reference	Class	Contain?

Because	Reference	Class	objects	are	environments,	we	can	use	the	objects
function	to	see	what	they	contain.	Here’s	an	example:

Click	here	to	view	code	image
>	objects(a)
[1]	“copy”					“field”				“getClass”	“modulus”		“show”					“x”

Defining	Methods
With	Reference	Classes,	methods	are	stored	as	part	of	the	object	that	defines	the	class.
They	can	be	accessed	and	modified	using	className$methods	syntax.	We	can	also
think	of	the	methods	element	itself	as	another	list,	where	each	element	is	a	defined
method.	Because	there	are	no	generic	functions,	we	can	generally	name	methods	in	any
way	we	like,	though	some	methods	have	a	special	meaning	(for	example,	initialize).

Tip:	Using	setRefClass	to	Define	Methods

Methods	can	also	be	defined	directly	when	calling	setRefClass.

In	the	following	sections,	we	look	at	redefining	our	modular	arithmetic	class	using	a
Reference	Class	context.	We	briefly	revisit	some	of	the	key	themes	we	have	just	seen	with
S4	classes.

Initialization

The	initialize	method	is	the	Reference	Class	equivalent	to	a	constructor	function.
However,	instead	of	generating	an	object	containing	the	required	fields	(slots),	we
generate	each	field	separately	using	a	special	assignment	operator,	<<-.	When	we	call	the
new	function,	the	class	structure	does	the	rest	for	us,	ensuring	that	new	objects	of	our
class	contain	the	correct	fields.

Caution:	The	<<-	Operator

The	<<-	operator	assigns	directly	to	a	function’s	parent	environment.	This	can
make	it	difficult	to	track	what	a	function	is	doing;	therefore,	the	use	of	<<-	should
generally	be	avoided.



In	Listing	22.2	we	create	an	initialize	method	for	our	modIntRef	class	based	on
the	constructor	function	we	defined	earlier	for	modInt4	objects.	We	must	explicitly
create	both	x	and	modulus	using	the	<<-	assignment	operator,	even	though	the
modulus	argument	is	unaltered	by	the	function.	This	is	due	to	scoping,	but	it	is	not
something	we	will	explore	any	further.

LISTING	22.2	Defining	an	initialize	Method
Click	here	to	view	code	image

	1:	>	modIntRef$methods(list(initialize	=	function(x,	modulus){
	2:	+			#	Create	the	object	from	the	starting	number,	x	and	modulus,	modulus
	3:	+			#	Divide	by	the	modulus	to	get	new	number	appropriate	for	that
modulus
	4:	+			#	Assign	fields	*if*	they	are	provided	(ensures	we	can	copy	the
object)
	5:	+			if	(!missing(x))	{
	6:	+					x	<<-	x	%%	modulus
	7:	+			}
	8:	+			if	(!missing(modulus))	{
	9:	+					modulus	<<-	modulus
10:	+			}
11:	+	}))

Notice	the	syntax	in	the	first	line	of	Listing	22.2.	We	are	updating	the	methods	argument
to	modIntRef	by	defining	a	list.	All	methods	are	stored	as	a	named	list	of	method
names.	When	creating	new	methods,	however,	we	do	not	need	to	redefine	old	methods.
Another	important	step	here	is	to	ensure	that	variables	are	only	assigned	if	they	are
provided	by	the	user.	This	enables	us	to	create	a	template	object	if	required	but	also
enables	us	to	copy	the	object	later	on.

Mutable	Objects

Mutability	is	quite	a	common	term	in	object-oriented	programming;	however,	it	may	be
unfamiliar	if	you	come	from	an	analytic	background.	Generally	R	is	not	mutable,	meaning
that	we	do	not	directly	edit	or	change	objects	when	we	execute	functions.	Instead,	we	have
to	force	R	to	overwrite	an	object.	For	example,	suppose	we	define	a	vector,	x,	that	we
want	to	sort:

>	x	<-	c(1,	3,	2)

We	can	use	the	sort	function	to	sort	x,	but	the	operation	does	not	actually	update	x:
>	sort(x)
[1]	1	2	3
>	x
[1]	1	3	2

To	overwrite	x,	we	need	to	assign	the	result	back	to	x,	like	so:
>	x	<-	sort(x)
>	x
[1]	1	2	3

Because	R	stores	values	in	memory,	what	we	actually	do	here	is	copy	the	result	to	memory
before	overwriting	x.	Reference	Classes	are	mutable,	meaning	that	the	methods	we	define



directly	update	the	object.	This	is	a	behavior	you	briefly	saw	in	Hour	12,	“Efficient	Data
Handling	in	R,”	when	working	with	the	data.table	package.	We	referred	to	mutable
behavior	as	“updating	by	reference.”

The	fact	that	Reference	Classes	are	mutable	changes	the	way	in	which	we	think	about
objects.	Methods	are	applied	directly	to	an	object	in	order	to	change	it.	For	that	reason,	the
application	of	Reference	Classes	usually	differs	from	standard	S3	or	S4	applications.	We
must	therefore	write	methods	in	a	similar	vein	to	the	initialize	function	defined	in
Listing	22.2	by	updating	fields	directly.

Method	Definition

When	developing	methods	for	a	Reference	Class,	we	are	working	within	the	class’s
environment.	At	the	time	the	method	is	called,	we	can	be	sure	that	all	the	fields	we	require
exist	and	are	of	the	correct	type	and	structure,	as	defined	by	the	initialize	function.
We	do	not	therefore	need	to	pass	field	names	to	any	methods	we	write.	Arguments	that	are
not	available	as	fields	in	our	class	are	passed	in	the	standard	way.

Let’s	look	at	an	example	of	defining	and	calling	a	method.	In	Listing	22.3	we	define	an
addNumber	method	that	adds	a	number	to	an	object	of	the	modIntRef	class.	The
number	is	provided	by	the	user	of	our	function,	but	the	x	and	modulus	values	that	we
refer	to	in	lines	3	and	5	come	from	the	class	fields.	Note	that	we	use	the	double-headed
assignment	arrow,	<<-,	to	update	x	in	the	original	object.	From	line	8	onward,	we
demonstrate	the	mutability	of	the	object	by	adding	1	and	then	10	to	the	object,	which	is
updated	directly.

Caution:	Local	Variables

As	with	any	R	function,	we	can	create	temporary	objects	within	the	body	of	our
function.	These	objects	are	removed	once	the	function	has	finished	executing.	Due
to	functional	scoping,	you	should	avoid	naming	dummy	variables	after	field	names
because	the	function	can	be	confusing.	If	you	do,	R	throws	a	warning	at	the	point	at
which	the	method	is	defined.

LISTING	22.3	Defining	Methods
Click	here	to	view	code	image

	1:	>	modIntRef$methods(list(addNumber	=	function(aNumber){
	2:	+			#	Add	aNumber	to	x	locally
	3:	+			x	<<-	x	+	aNumber
	4:	+			#	Ensure	x	is	correct	for	the	modulus
	5:	+			x	<<-	x	%%	modulus
	6:	+	}))
	7:	>
	8:	>	a	<-	modIntRef$new(x	=	3L,	modulus	=	12L)
	9:	>	a
10:	Reference	class	object	of	class	“modIntRef”
11:	Field	“x”:
13:	[1]	3
13:	Field	“modulus”:
14:	[1]	12
15:	>	a$addNumber(1L)



16:	>	a
17:	Reference	class	object	of	class	“modIntRef”
18:	Field	“x”:
19:	[1]	4
20:	Field	“modulus”:
21:	[1]	12
22:	>	a$addNumber(10L)
23:	>	a
24:	Reference	class	object	of	class	“modIntRef”
25:	Field	“x”:
26:	[1]	2
27:	Field	“modulus”:
28:	[1]	12

Copying	Reference	Class	Objects
For	the	immutable	objects	we	worked	with	in	previous	hours,	copying	an	object	was	very
straightforward.	Once	we	have	copied	an	object,	all	links	between	the	new	object	and	the
original	object	are	lost.	For	example,	consider	an	object,	y,	that	we	clone	from	another
object,	x,	in	the	following	example:

>	x	<-	5
>	y	<-	x

The	object	y	is	a	clone	of	x,	and	at	this	point	both	objects	have	the	same	value,	5.
However,	there	is	no	link	between	them.	We	can	change	the	value	of	x	to	6,	but	y	still
retains	the	value	5,	as	you	can	see	here:

>	x	<-	6
>	x
[1]	6
>	y
[1]	5

Mutable	objects	do	not	behave	like	this.	Consider	the	object	a	that	we	created	and
modified	in	Listing	22.3.	The	object	has	the	modIntRef	class	and	is	therefore	mutable.
Now	let’s	try	to	copy	a	in	the	traditional	way	to	create	a	new	object,	b:
Click	here	to	view	code	image

>	#	Remind	ourselves	of	the	value	of	a
>	a
Reference	class	object	of	class	“modIntRef”
Field	“x”:
[1]	2
Field	“modulus”:
[1]	12
>	#	Create	b	as	a	copy	of	a	in	the	traditional	way
>	b	<-	a
>	b
Reference	class	object	of	class	“modIntRef”
Field	“x”:
[1]	2
Field	“modulus”:
[1]	12

Now	we	add	1	to	a	using	our	addNumber	method:
Click	here	to	view	code	image



>	a$addNumber(1L)
>	a
Reference	class	object	of	class	“modIntRef”
Field	“x”:
[1]	3
Field	“modulus”:
[1]	12
>	b
Reference	class	object	of	class	“modIntRef”
Field	“x”:
[1]	3
Field	“modulus”:
[1]	12

The	object	b	has	also	been	updated!	This	is	updating	by	reference	and	is	a	property	of
mutable	objects.	It	can	be	extremely	useful,	but	to	those	unfamiliar	with	the	concept,	it	is
also	a	potentially	dangerous	trap.	Luckily	all	Reference	Classes	inherit	from	a	base
envRefClass	object	that	has	a	copy	method.	The	copy	method	enables	us	to	copy	in
the	traditional	manner.	Here’s	an	example:
Click	here	to	view	code	image

>	a	<-	modIntRef$new(x	=	3L,	modulus	=	12L)
>	b	<-	a$copy()
>	b
Reference	class	object	of	class	“modIntRef”
Field	“x”:
[1]	3
Field	“modulus”:
[1]	12

Documenting	Reference	Classes
It	is	actually	much	simpler	to	document	a	Reference	Class	system	than	an	S4	system.	This
is	because	methods	are	stored	with	the	class	as	opposed	to	being	linked	via	generic
functions.	We	therefore	need	only	document	the	class.	A	special	@field	tag	is	used	for
documenting	class	fields.

R6	Classes
The	R6	class	system	was	developed	by	Winston	Chang	and	first	released	to	CRAN	in
2014.	The	name	builds	on	the	“R5”	nickname	given	to	R’s	standard	Reference	Class
implementation.	The	R6	implementation	is	essentially	a	variant	of	the	Reference	Class
implementation	that	does	not	rely	on	S4	classes.

The	R6	system	is	not	part	of	base	R.	It	is	contained	within	a	package	called	R6	that	must
be	installed	from	CRAN.	Once	it	is	loaded,	we	can	create	a	new	instance	of	an	R6	class	by
using	the	R6Class	function.	After	that,	the	syntax	of	the	R6	system	is	extremely	similar
to	that	of	R’s	standard	Reference	Class	system.	We	instantiate	new	objects	using	the	new
method	and	can	define	an	initialize	method	to	check	inputs	and	construct	the	class.



Public	and	Private	Members
One	potential	advantage	of	using	the	R6	implementation	is	that	it	contains	the	notion	of
public	and	private	fields	and	methods,	an	object-oriented	programming	concept	generally
known	as	encapsulation.	The	terminology	gets	very	confusing	very	quickly,	but	the	basic
idea	is	to	distinguish	between	members	(fields	or	methods)	that	are	accessible	from
anywhere	(public)	and	members	that	are	only	accessible	from	within	the	class	itself
(private).

The	benefits	of	encapsulation	are	probably	best	described	elsewhere,	but	the	main	aim	is
to	provide	control	over	what	others	have	access	to	in	your	class.	Because	private	methods
are	not	generally	available,	no	other	classes	can	depend	on	them.	This	leaves	you	free	to
adjust	or	change	the	method	at	a	later	date.	In	contrast,	a	public	method	is	one	that	you	are
happy	for	someone	else	to	use	and	build	upon.

An	R6	Example
The	example	in	Listing	22.4	walks	through	a	brief	but	complete	example	of	creating	an	R6
class	with	public	and	private	methods.	The	example	contains	a	complete	definition	of	the
class,	modInt6,	and	three	public	methods:	initialize,	show,	and	square.	To
illustrate	the	concept	of	private	methods,	a	private	method,	adjustForModulus,	has
also	been	defined.	This	method	ensures	that	the	value	of	x	is	always	less	than	the
modulus.	The	method	is	accessed	by	the	public	square	method	via
private$adjustForModulus	and	updates	by	reference	when	called.

One	of	the	main	differences	in	terms	of	usage	between	R6	and	standard	Reference	Classes
is	the	use	of	self	to	refer	to	the	object	instead	of	the	double-headed	assignment	arrow,
<<-.

LISTING	22.4	Defining	an	R6	Class
Click	here	to	view	code	image

	1:	>	library(“R6”)
	2:	>	modInt6	<-	R6Class(“modInt6”,
	3:	+									#	Define	public	elements
	4:	+									public	=	list(
	5:	+											#	Fields
	6:	+											x	=	NA,
	7:	+											modulus	=	NA,
	8:	+											#	Methods
	9:	+											initialize	=	function(x,	modulus){
10:	+													if	(!missing(x))	{
12:	+															self$x	<-	x	%%	modulus
13:	+													}
14:	+													if	(!missing(modulus))	{
15:	+															self$modulus	<-	modulus
16:	+													}
17:	+											},
18:	+											show	=	function(){
19:	+													cat(self$x,	”	(mod	“,	self$modulus,	“)”,	sep	=	””)
20:	+											},
21:	+											square	=	function(){
22:	+													self$x	<-	self$x^2
23:	+													#	Use	private	method	to	ensure	x	<	modulus



24:	+													private$adjustForModulus()
25:	+											}
26:	+									),
27:	+									#	Define	private	methods
28:	+									private	=	list(
29:	+											#	Function	to	ensure	correct	modulus
30:	+											adjustForModulus	=	function(){
31:	+													self$x	<-	self$x	%%	self$modulus
32:	+											}
33:	+									)
34:	+	)
35:	>	a	<-	modInt6$new(3L,	12L)
36:	>	a$show()
37:	3	(mod	12)
38:	>	#	Now	square	a
39:	>	a$square()
40:	>	a$show()
41:	9	(mod	12)

There	is	plenty	more	that	R6	classes	can	offer;	however,	the	usage	is	very	similar	to	that	of
standard	Reference	Classes.

Note:	Active	Bindings

The	notion	of	active	bindings	is	also	supported	in	R6.	Active	bindings	look	like
fields	but	call	a	function	each	time	they	are	accessed.

Other	Class	Systems
The	object-oriented	programming	options	available	in	R	are	by	no	means	limited	to	the	set
you	have	seen	in	the	past	two	hours.	The	R.oo	package	has	been	around	since	2001	and
provides	convenience	wrappers	for	setting	up	S3	classes	as	well	as	an	Object	class	from
which	you	are	able	to	extend	in	order	to	create	objects	that	can	be	modified	by	reference.

Another	relatively	popular	alternative	is	the	proto	package.	The	proto	package	enables
prototype	programming,	a	form	of	object-oriented	programming	with	no	classes!	Beyond
that,	there	are	a	few	more	packages	that	implement	forms	of	object-oriented	programming,
but	we	won’t	describe	them	all	here.	No	doubt	more	will	be	written	in	the	future.

Summary
Following	on	from	Hour	21,	where	we	were	introduced	you	to	the	concept	of	writing	an
S3	class,	we	have	now	looked	in	greater	detail	at	R’s	more	formal	class	systems,	S4	and
Reference	Classes,	including	a	brief	tour	of	the	R6	implementation	and	some	of	the	other
options	available.	Each	of	the	implementations	has	its	advantages	and	disadvantages,	and
it	is	up	to	you	to	decide	which,	if	any,	is	of	most	use	to	you.	It’s	worth	bearing	in	mind,
however,	that	R	has	been	written	in	order	to	be	flexible	and	fast	to	type.	It	has	not	been
written	in	order	to	facilitate	object-oriented	programming!

In	the	“Activities”	section,	you	now	have	the	opportunity	to	build	your	own	S4	and
Reference	Classes	and	develop	methods	for	these	classes.



Q&A
Q.	What’s	best	for	me?	S3,	S4,	standard	Reference	Classes,	or	R6?

A.	If	you’re	starting	out	with	classes,	then	S3	or	S4	classes	are	a	good	place	to	start
because	they’re	not	too	dissimilar	from	standard	R	coding.	If	you’re	comfortable
with	the	concepts	of	object-oriented	programming,	however,	then	one	of	the	two
forms	of	reference	classes	discussed	in	this	hour	will	give	you	a	lot	more	control.
However,	be	aware	that	as	the	level	of	control	increases,	flexibility	tends	to	be
reduced.

Q.	If	S3	classes	have	the	convention	[genericFunction].[class],	what	are
the	S4	and	Reference	Class	naming	conventions?

A.	There	is	no	required	naming	convention	due	to	the	different	dispatch	mechanism
used	by	setMethod	for	S4	classes	and	the	message-passing	approach	used	in
Reference	Classes.	The	“lowerCamelCase”	naming	convention	is	extremely
popular	for	classes	and	indeed	any	objects	in	R.	There	is	also	a	growing	trend	of
using	underscores	to	separate	words	within	an	object	name.

Workshop
The	workshop	contains	quiz	questions	and	exercises	to	help	you	solidify	your
understanding	of	the	material	covered.	Try	to	answer	all	questions	before	looking	at	the
“Answers”	section	that	follows.

Quiz
1.	True	or	false?	An	S4	object	is	a	special	type	of	list.

2.	True	or	false?	A	Reference	Class	object	is	a	special	type	of	list.

3.	What	is	multiple	dispatch?

4.	What	is	a	mutable	object?

5.	What	is	the	difference	between	a	slot	and	a	field?

Answers
1.	False.	It	can	be	helpful	to	think	of	an	S4	object	as	being	like	a	list,	but	it	is	not.	For
one	thing,	we	access	elements	using	@	as	opposed	to	$.

2.	False.	A	Reference	Class	object	may	appear	even	more	like	a	list	than	an	S4	object
due	to	the	$	syntax	we	use.	However,	it	is	actually	an	environment,	not	a	list.

3.	In	generic	function	object	orientation,	method	dispatch	controls	which	method	is
selected	when	a	generic	function	is	called.	When	the	dispatch	mechanism	can
depend	on	multiple	arguments,	we	call	this	multiple	dispatch.

4.	A	mutable	object	is	simply	one	that	can	be	changed.	In	R,	we	typically	deal	with
immutable	objects.	Instead	of	changing	an	object,	we	overwrite	it	with	a	new	value.
Reference	Class	objects	are	mutable,	however.



5.	We	say	“slots”	when	working	with	S4	classes	and	“fields”	when	working	with	all
forms	of	reference	class,	but	they	essentially	refer	to	the	same	thing.

Activities
1.	Define	a	new	S4	class.	The	aim	of	the	class	is	to	store	simulated	data	from	various
known	statistical	distributions.	In	order	to	construct	the	new	class,	you	need	to	create
the	following:

	A	constructor	function	that	takes	inputs	n	and	distribution,	representing	the
number	of	values	to	sample	and	the	distribution	to	sample	from.	Ensure	that	the
function	has	the	option	for	other	parameter	arguments,	as	needed.

	A	print	method	that	displays	a	table	of	summary	statistics	for	the	simulated	data
(mean,	median,	standard	deviation,	min,	and	max).

	A	new	generic	combine	method	that	enables	two	objects	(provided	they	are	of
the	same	distribution)	to	be	combined	to	form	a	new	set	of	samples,	where	the
total	number	of	samples	is	the	sum	of	the	number	of	samples	from	the	original
objects.

2.	Define	a	new	Reference	Class.	The	aim	of	the	class	is	to	store	financial	account
information:

	Define	the	class	as	standardAccount.	The	class	should	have	a	single	field,
balance,	that	defaults	to	$50	(a	minimum	initial	deposit	to	set	up	the	account).

	Write	methods	called	deposit	and	withdraw	that	update	the	account
balance	field	when	called.	The	withdraw	method	should	not	allow	the
balance	to	go	into	the	red	(that	is,	fall	below	zero).

	Extend	the	class	by	creating	a	new	class,	goldAccount.	The	goldAccount
class	should	allow	an	overdraft	of	$1,000.



Hour	23.	Dynamic	Reporting

What	You’ll	Learn	in	This	Hour:

	What	dynamic	reporting	is

	How	to	create	a	report	in	R

	Including	R	code	in	reports

	The	basics	of	markdown	and	LaTeX

Up	to	this	point	you	have	seen	the	fundamentals	of	the	R	language	as	well	as	aspects	of	R
that	allow	us	to	ensure	that	we	write	high-quality,	well-documented,	and	easily	shareable
code.	In	this	hour,	we	are	going	to	take	a	look	at	one	of	the	ways	you	can	extend	your	use
of	R,	specifically	for	simplifying	the	generation	of	reports	that	rely	heavily	on	R-generated
output.

What	Is	Dynamic	Reporting?
We	all	produce	reports	for	a	variety	of	reasons	on	a	regular	basis.	If	you	have	used	R	to
manipulate	data,	perform	analysis,	or	produce	graphics,	you	are	likely	at	some	point	to
have	copied	results	or	inserted	a	graphic	into	a	report.	This	usually	means	that	you	have	all
of	your	analysis	saved	in	one	place	and	your	final	report	in	another,	and	you	need	to
ensure	that	you	keep	both	up	to	date.	This	can	be	particularly	challenging	if	your	data
changes	on	short	notice	and	you	need	to	quickly	regenerate	your	report,	or	if	you	need	to
produce	the	same	report	on	a	regular	basis.

Dynamic	reporting,	also	commonly	referred	to	as	automated	reporting	or	reproducible
reporting,	is	a	means	by	which	we	can	generate	a	report	entirely	in	R.	The	content	of	the
report	and	the	code	to	perform	any	manipulation	or	analysis	are	stored	together.	There	are
a	number	of	advantages	to	writing	reports	in	this	way,	including	the	following:

	No	need	to	copy	and	paste	into	a	separate	report

	Easy	to	track	what	code	was	used	for	the	analysis	in	a	report

	Simple	to	re-run	the	report	if	the	data	changes

	Easy	to	run	reports	that	need	to	be	produced	on	a	regular	basis

Traditionally,	we	did	this	in	R	using	Sweave.	Sweave	allows	us	to	combine	R	code	inside
LaTeX	documents.	LaTeX	is	a	markup	language	that	is	used	commonly	in	scientific
reporting.	It	was	designed	for	writing	technical	documents	and	requires	a	TeX	installation.
Although	a	very	powerful	tool,	it	has	quite	a	steep	learning	curve.	More	recently	the
package	knitr	was	introduced	to	R.	Although	it	still	allows	users	to	produce	documents
using	LaTeX,	it	also	allows	us	to	use	Markdown,	which	is	another	markup	language.
Markdown	is	much	simpler	to	get	started	with,	having	a	restricted	syntax.	Also,	rather
than	only	producing	static	PDF	documents,	it	allows	us	to	generate	HTML	or	Microsoft
Word	files	as	well	as	PDF.	This	makes	it	very	simple	to	embed	any	HTML	content	that	we
want	into	reports,	and	as	you	will	see	in	the	final	hour	of	this	book,	this	means	we	can



generate	interactive	documents.

An	Introduction	to	knitr
As	just	mentioned,	the	package	knitr	has	been	designed	to	simplify	the	way	in	which	we
generate	documents	in	R.	You	already	saw	the	package	knitr	in	Hour	20,	“Advanced
Package	Building,”	when	we	generated	a	user	guide	for	a	package.

Although	we	commonly	think	of	reports	as	long	documents	that	contain	an	analysis	or
summary	of	results	that	we	can	produce	in	Microsoft	Word	or	similar	software,	we	can
also	think	about	reports	as	being	presentations	that	we	typically	produce	using	Microsoft
PowerPoint	or	other	similar	software.	We	can	use	knitr	to	produce	both	types	of
documents,	in	either	PDF	or	HTML	format,	primarily	depending	on	whether	we	choose	to
use	LaTeX	or	Markdown	to	write	our	documents	(although	Markdown	is	more	flexible	in
the	file	type	that	can	be	produced).

Simple	Reports	with	RMarkdown
You	have	already	seen	the	basics	of	RMarkdown	in	Hour	20.	Markdown	itself	is	a	simple,
plain-text	markup	language	that	has	a	number	of	variants	that	are	all	very	similar.
RMarkdown	is	the	variant	that	allows	us	to	include	chunks	of	R	code	inside	a	document	to
be	rendered	to	HTML.	Note	that	the	RStudio	options	make	it	very	simple	to	render	an
RMarkdown	document	as	a	PDF,	which	requires	a	Tex	installation,	or	as	a	Microsoft	Word
document.	In	this	hour,	we	will	only	work	with	HTML	documents	for	simplicity.

A	Basic	RMarkdown	Document
To	create	an	RMarkdown	document,	we	need	to	create	a	file	with	the	extension	.Rmd.
Using	RStudio,	we	can	create	a	template	RMarkdown	document	that	includes	sample
RMarkdown	content.	We	can	create	this	file	by	selecting	R	Markdown	from	the	“File	>
New	File”	menu.	This	presents	an	options	window	that	allows	us	to	select	the	type	of
document	that	we	want	to	generate.	An	example	of	this	options	window	is	shown	in
Figure	23.1.	As	you	can	see,	you	can	select	the	type	of	document	you	want	to	create	as
well	as	the	output	you	want	to	generate.	In	this	case,	we	will	simply	use	the	default
document	and	create	HTML	output.	You	will	also	notice	that	this	screen	allows	you	to
insert	the	title	of	the	document	and	the	author	name.	Adding	these	components	on	this
screen	will	automatically	insert	them	correctly	into	the	document	header.	After	you	click
OK,	a	template	document	will	be	opened.



FIGURE	23.1	RMarkdown	file	creation	options	in	RStudio

All	RMarkdown	documents	begin	with	a	header	that	defines	certain	components,	such	as
the	title,	author,	and	date,	as	well	as	the	output	format	and	any	options	for	the	output
format	such	as	styling.	An	example	of	the	header	is	shown	in	Listing	23.1,	lines	1	to	5.

LISTING	23.1	RMarkdown	Example
Click	here	to	view	code	image

	1:	–
	2:	title:	“Automated	Reporting”
	3:	author:	“Aimee	Gott”
	4:	output:	html_document
	5:	–
	6:
	7:	The	following	report	contains	an	analysis	of	the	data	from	2015.
	8:
	9:	##	Analysis
10:	A	simple	linear	model	was	fitted	to	the	data	to	determine	the	main
factors	that
11:	contribute	to	a	change	in	the	dependent	variable.	We	can	see	below	some
simple
12:	summaries	of	the	data.
13:

After	this	header	we	can	simply	start	writing	our	document.	This	could	be	plain	text,	but
we	can	also	format	the	text	using	the	Markdown	formatting	options	you	saw	in	Table	20.1
in	Hour	20.	An	example	of	how	a	Markdown	document	might	look	can	be	seen	in	Listing
23.1.



Tip:	Creating	Presentations

As	you	will	have	noticed	from	the	options	in	Figure	23.1,	you	can	also	create	a
presentation	using	Markdown.	Selecting	the	HTML	presentation	options	will
control	all	of	the	setup	for	you.	The	main	difference	to	note	is	that	new	slides	are
started	with	a	new	Level	1	or	Level	2	heading;	otherwise,	all	markdown	formatting
and	code	chunks	are	the	same.

Building	an	HTML	File
Because	we	are	writing	our	document	in	a	markup	language,	we	will	need	to	build	the
RMarkdown	file	to	generate	the	HTML.	The	easiest	way	to	do	this	is	using	the	interface	in
RStudio.	You	will	notice	that	after	opening	an	RMarkdown	file	you	have	the	additional
option	at	the	top	of	your	file	viewer	labelled	“Knit	HTML.”	Before	generating	the	HTML,
you	will	need	to	save	the	RMarkdown	file	with	the	extension	.Rmd.	Selecting	the	“Knit
HTML”	option	will	generate	the	corresponding	HTML	file	and	open	a	preview	for	you,	as
well	as	save	the	HTML	file	in	the	same	location	as	the	RMarkdown	file.	This	HTML	file
can	be	opened	by	any	web	browser	and	can	be	shared	in	the	same	way	as	any	other	static
file.

Including	R	Code	and	Output
We	include	sections	of	R	code	in	documents	inside	code	“chunks”.	These	chunks	in
RMarkdown	are	indicated	by	three	back	ticks	at	the	start	and	end	of	the	chunk.	We	also
use	curly	brackets	to	indicate	that	the	code	is	R	code	and	include	any	additional	options
we	wish	to	set.	Three	examples	of	code	chunks	are	shown	in	Listing	23.2.

LISTING	23.2	RMarkdown	Code	Chunks
Click	here	to	view	code	image

	1:	“`{r,	collapse	=	TRUE}
	2:	library(mangoTraining)
	3:	summary(pkData$Conc)
	4:	“`
	5:
	6:	“`{r,	echo	=	FALSE}
	7:	library(ggplot2)
	8:	qplot(Time,	Conc,	data	=	pkData)
	9:	“`
10:
11:	“`{r,	echo	=	FALSE}
12:	library(knitr)
13:	kable(head(pkData))
14:	“`

As	you	can	see	in	these	examples,	we	can	include	any	executable	R	code	inside	these
chunks,	whether	the	code	generates	console	output	or	graphics	output.	The	final	code
chunk,	in	lines	11	to	14,	even	includes	table	output.	The	knitr	function	kable	will
convert	data	output	to	Markdown	table	code,	resulting	in	an	HTML	table	in	your
document.



You	will	also	notice	in	these	code	chunks	that	we	have	set	some	options	inside	the	curly
brackets,	called	collapse	and	echo.	The	first	of	these,	collapse,	keeps	the	code	and
output	in	the	same	box	in	the	output.	This	is	useful	if	you	have	a	number	of	lines	of	code
and	output	that	you	want	to	group	together.	This	is	useful	in	vignettes,	but	in	general	you
would	not	want	to	include	the	R	code	in	a	formal	document.	In	this	case,	the	echo	option
is	particularly	useful.	The	echo	option	controls	whether	the	code	is	returned	in	the
document	as	well	as	the	output.	You	will	notice	that	this	has	been	set	in	the	second	two
code	chunks,	on	lines	6	and	11.	In	these	cases,	when	the	document	is	created	you	will	see
that	only	the	output	appears	(in	these	cases,	a	graphic	and	a	table).

Tip:	Setting	Up	Your	Document

You	will	notice	that	in	the	sample	code	chunks	here,	each	chunk	loads	an	R	package
that	is	then	used.	It	is	actually	good	practice	to	include	all	these	components	in	a
single	code	chunk	at	the	start	of	the	document,	as	you	would	any	other	R	script.	We
would	recommend	that	you	also	include	in	this	chunk	any	sourcing	of	additional	R
scripts	or	reading	of	data.	As	you	will	see	in	Table	23.1,	there	are	options	you	can
set	to	ensure	that	this	chunk	is	run	but	no	output	included	in	the	report.

TABLE	23.1	knitr	Options	for	Code	Chunks

There	are	many	more	options	you	can	set	to	control	the	behavior	and	output	of	code
chunks,	whether	this	is	how	or	if	the	code	is	run	or	the	look	of	graphics	output.	Some	of



the	most	commonly	used	options	can	be	seen	in	Table	23.1.

Tip:	Additional	Code	Chunk	Options

We	can	set	many	more	options	for	a	code	chunk.	The	easiest	way	to	see	all	these
options	is	to	take	a	look	at	the	knitr	webpage	at	http://yihui.name/knitr/.	This	site	is
maintained	by	the	package	author,	Yihui	Xie,	and	includes	a	complete	listing	of	all
the	options	that	can	be	set.	To	see	these	options,	navigate	to	the	Options	page.

The	final	thing	to	mention	in	relation	to	including	R	code	is	how	to	include	code	inline—
that	is,	in	the	body	of	the	text.	This	is	again	done	inside	back	ticks,	but	this	time	just	one	at
each	end	of	the	code.	We	need	to	indicate	that	this	is	R	code	that	should	be	executed,	but
otherwise	we	can	include	a	line	of	code	that	will	be	run	when	the	document	is	built.	For
example,	we	may	have	the	following	line	in	our	RMarkdown	document:
Click	here	to	view	code	image

The	median	concentration	for	dose	group	25	was	`r
median(pkData$Conc[pkData$Dose==25])`

In	this	instance,	the	median	value	would	be	inserted	for	us	on	creation	of	the	document.
This	makes	it	very	simple	to	reference	values	in	the	text	and	not	have	to	worry	about
having	to	update	the	text	if	the	data	changes.	An	example	of	how	the	HTML	for	the
content	shown	in	this	hour	may	look	can	be	seen	in	Figure	23.2.

http://yihui.name/knitr/


FIGURE	23.2	Extract	of	a	rendered	HTML	file	generated	from	RMarkdown

Reporting	with	LaTeX
When	it	comes	to	creating	documents	in	LaTeX,	you	will	need	to	ensure	that	you	first
have	a	TeX	installation.	This	is	separate	software	that	is	not	supplied	with	R,	and	the	exact
requirements	will	depend	on	your	operating	system.	Windows	users	can	install	MiKTeX,
OS	X	users	will	need	to	install	MacTex,	and	Linux	users	TeX	Live.	For	the	remaining
sections,	it	is	assumed	that	you	have	been	able	to	install	the	appropriate	software	for	your
operating	system.

As	previously	mentioned,	LaTeX	is	a	markup	language	that	is	widely	used	in	scientific
reporting.	One	of	its	primary	advantages	is	that	it’s	very	simple	to	incorporate	scientific



notation	into	documents.	A	full	introduction	to	LaTeX	is	beyond	the	scope	of	this	book,
but	we	will	introduce	some	of	the	basics	here.	More	specifically,	we	will	focus	on	how	to
generate	LaTeX	documents	from	R	and	how	to	include	R	code	and	output,	which	will	be
new	to	those	already	familiar	with	LaTeX.

A	Basic	LaTeX	Document
When	we	are	generating	documents	using	LaTeX	in	R,	we	create	.Rnw	files.	These	are
Sweave	files,	but	they	can	be	converted	to	PDF	using	knitr,	giving	us	all	the	options
available	in	the	knitr	package.	We	can	open	a	Sweave	file	from	the	RStudio	New	File
menu	by	selecting	R	Sweave.	In	RStudio,	this	will	open	a	document	that	contains	some
initial	LaTeX	tags	for	us	to	get	started	with.	The	whole	document	begins	with	the	tag
\documentclass,	which	identifies	the	type	of	document	we	will	produce.	The	next	tag
in	the	template	will	be	\begin{document},	followed	by	\end{document}.	It	is
between	these	tags	that	we	will	contain	all	the	content	of	our	document.

To	add	content	to	our	document,	we	must	again	use	specific	format	options.	Table	23.2
shows	the	main	LaTeX	tags	required	for	the	components	equivalent	to	those	we
introduced	in	Markdown	in	Hour	20.

TABLE	23.2	Basic	LaTeX	Notation

As	an	example	of	how	a	LaTeX	document	might	look,	Listing	23.3	shows	the	LaTeX
equivalent	of	Listing	23.1.

LISTING	23.3	A	Basic	LaTeX	Document
Click	here	to	view	code	image

	1:	\documentclass{article}
	2:
	3:	\title{Automated	Reporting	with	LaTeX}



	4:	\author{Aimee	Gott}
	5:	\date{}
	6:
	7:	\begin{document}
	8:
	9:	\maketitle
10:
11:	The	following	report	contains	an	analysis	of	the	data	from	2015.
12:
13:	\section{Analysis}
14:	A	simple	linear	model	was	fitted	to	the	data	to	determine	the	main
factors	that
15:	contribute	to	a	change	in	the	dependent	variable.	We	can	see	below	some
simple
16:	summaries	of	the	data.
17:	\end{document}

You	will	notice	that	just	like	the	Markdown	document,	we	have	a	header	that	gives	the
document	type,	the	title,	and	the	author.	It	is	also	worth	noting	that	to	have	the	header
appear	in	your	document,	you	will	need	to	include	the	\maketitle	tag,	shown	on	line
9.

Tip:	Creating	the	PDF

Just	like	for	Markdown	documents,	much	functionality	has	been	incorporated	into
RStudio,	and	this	includes	compiling	the	PDF.	Rather	than	any	knit	option,
however,	you	will	see	the	option	“Compile	PDF.”	This	will	require	the	TeX
installation	we	mentioned.	To	ensure	that	you	are	using	knitr,	and	therefore	have
all	knitr	options	available,	you	will	need	to	check	the	Sweave	global	options.	From
the	Tools	menu	select	“Global	Options”,	and	then	select	the	“Sweave”	tab.	You	will
notice	in	this	menu	system	the	option	for	how	to	weave	the	files	(that	is,	Weave
Rnw	files	using).	Ensure	that	this	is	set	to	knitr.	If	you	created	the	file	before
changing	these	options,	you	will	need	to	remove	the	concordance	line	that	will	have
been	inserted	by	RStudio.

Including	Code	in	a	LaTeX	Document
Just	as	with	Markdown,	we	can	include	R	code	in	our	documents	by	incorporating	code
chunks.	When	we	are	using	knitr,	we	have	all	the	same	chunk	options,	but	in	terms	of	the
code	the	only	difference	is	the	way	in	which	a	code	chunk	is	identified.	Listing	23.4	gives
the	same	code	chunks	as	we	included	for	Markdown	in	Listing	23.2.

LISTING	23.4	Sweave	Code	Chunks
Click	here	to	view	code	image

	1:	<<collapse	=	TRUE>>=
	2:	library(mangoTraining)
	3:	summary(pkData$Conc)
	4:	@
	5:
	6:	<<echo	=	FALSE>>=
	7:	library(ggplot2)
	8:	qplot(Time,	Conc,	data	=	pkData)



	9:	@
10:
11:	<<echo	=	FALSE>>=
12:	library(knitr)
13:	kable(head(pkData))
14:	@

As	you	can	see,	the	code	chunks	when	we	are	writing	Sweave	documents	start	with	<<
>>=,	with	any	options	being	set	inside	the	inner	<	>.	We	can	use	all	the	same	knitr	code
chunk	options	listed	in	Table	23.1.	The	code	chunks	end	with	the	@	symbol.	We	can
include	in	the	code	chunks	any	executable	R	code	that	generates	any	form	of	output,
including	graphics,	and	using	the	kable	function	again	we	can	generate	a	table,	this	time
in	LaTeX	format.

As	with	Markdown,	we	can	also	include	inline	code.	The	Sweave	equivalent	is	\Sexpr.
As	an	example,	we	might	have	the	following	line	in	our	document:
Click	here	to	view	code	image

The	median	concentration	for	dose	group	25	was
\Sexpr{median(pkData$Conc[pkData$Dose==25])}

Anything	inside	the	Sexpr	will	be	executed	as	a	single	line	of	code	and	the	output
inserted	into	the	text	when	the	PDF	is	compiled.	An	example	of	the	PDF	that	would	be
generated	from	the	examples	in	this	hour	can	be	seen	in	Figure	23.3.



FIGURE	23.3	Extract	of	the	output	PDF	file	created	from	the	Sweave	content	shown

Summary
You	have	now	seen	the	basics	of	how	to	generate	a	static	report	in	R.	There	are	many	more
things	you	can	do	to	these	reports,	such	as	including	styles	to	ensure	that	the	reports	look
well	presented	and,	where	necessary,	follow	a	required	company	or	institution	template.
However,	here	we	have	introduced	the	basics	of	what	can	be	done.	In	the	final	hour,	we
are	going	to	see	how	to	extend	some	of	these	ideas	to	generate	interactive	web
applications	and	interactive	reports.

Q&A
Q.	I	am	just	starting	out	creating	reports	in	R.	Which	should	I	learn,	Markdown
or	LaTeX?



A.	If	you	have	never	used	LaTeX	before,	I	would	recommend	starting	with	Markdown.
Its	limited	syntax	means	that	it	is	much	easier	to	get	started	with,	but	allows	the
flexibility	to	create	documents	in	a	number	of	formats.	However,	if	you	need	to
include	a	large	number	of	mathematical	formulas	or	a	more	sophisticated	layout	in
your	documents,	you	may	find	that	it	is	more	beneficial	to	learn	LaTeX.	You	can
include	formulas	in	a	Markdown	document,	but	this	requires	an	additional
component,	mathjax,	that	allows	you	to	write	LaTeX	inside	a	Markdown	document.

Q.	Can	I	customize	the	style	of	my	documents?

A.	The	styling	or	template	you	use	will	depend	on	the	type	of	document	you	are
creating,	but	it	is	straightforward	to	do.	If	you	are	creating	an	HTML	file,	you	will
need	to	have	or	create	a	CSS	file	that	defines	the	styles	for	components	of	HTML.
You	can	then	simply	add	this	information	to	the	header	of	your	Markdown
document.	If	you	are	using	LaTeX,	you	will	need	to	create	a	LaTeX-style	file	to
apply	to	your	documents.	This	can	be	challenging	to	do	initially,	but	if	the	style
already	exists,	you	will	typically	only	need	to	change	the	type	of	document	that	is
created	in	the	documentclass	option.

Workshop
The	workshop	contains	quiz	questions	and	exercises	to	help	you	solidify	your
understanding	of	the	material	covered.	Try	to	answer	all	questions	before	looking	at	the
“Answers”	section	that	follows.

Quiz
1.	What	are	the	two	markup	languages	you	have	seen	for	creating	documents	from	R?

2.	How	do	you	refer	to	blocks	of	R	code	in	a	document?

3.	Do	you	have	to	include	R	code	in	your	final	document?

4.	What	file	extension	do	you	give	to	Markdown	files	and	Sweave	files,	respectively?

Answers
1.	The	two	markup	languages	are	Markdown	(or	more	specifically,	RMarkdown)	and
LaTeX.

2.	Blocks	of	R	code	are	referred	to	as	“code	chunks.”

3.	No,	you	can	set	the	option	echo	to	be	FALSE,	and	this	will	prevent	the	code	from
appearing	in	the	final	document.

4.	You	give	the	extension	.Rmd	to	RMarkdown	files	and	.Rnw	to	Sweave	files.

Activities
1.	Create	a	simple	RMarkdown	document	that	has	the	following	attributes:

	Has	a	title,	your	name,	and	today’s	date

	Has	three	sections—introduction,	analysis,	and	conclusion—each	containing	a



paragraph	of	simple	text

	Includes	a	code	chunk	that	generates	a	plot	of	Ozone	against	Wind	from	the
airquality	data

	Fits	a	simple	linear	model	of	Ozone	against	Wind,	returning	the	coefficients	of
the	model	in	a	table

	Ensures	that	none	of	the	R	code	or	any	warnings	or	messages	are	displayed	in	the
final	document

2.	Generate	the	HTML	file	for	the	RMarkdown	document	you	have	just	created.

3.	Try	creating	this	same	document	using	LaTeX.



Hour	24.	Building	Web	Applications	with	Shiny

What	You’ll	Learn	in	This	Hour:

	The	structure	of	a	simple	application

	The	basics	of	reactive	programming

	Creating	interactive	documents

	Sharing	Shiny	applications

In	this	final	hour,	we	are	going	to	look	at	another	of	the	tools	that	allows	you	to	extend
your	R	code,	in	particular	giving	you	the	ability	to	interactively	share	your	analysis	and
results.	Although	you	might	initially	be	put	off	by	the	idea	of	building	a	web	application,
we	are	going	to	introduce	a	package	that	allows	you	to	generate	web	applications	entirely
in	R,	writing	only	R	code.	This	is	currently	one	of	the	most	popular	packages	available	in
R,	with	more	and	more	packages	being	added	to	CRAN	that	use	this	framework.

A	Simple	Shiny	Application
The	package	we	are	going	to	use	to	generate	web	applications	is	shiny.	This	package	has
been	available	through	CRAN	for	almost	three	years,	but	its	widespread	usage	has	grown
rapidly	over	the	last	year.	One	of	the	main	reasons	it	has	become	so	popular	is	that	it
makes	the	power	of	a	web	application	available	to	R	users	without	the	need	to	learn
HTML	or	JavaScript.	In	this	section,	we	look	at	the	basics	of	creating	an	application.

Structure	of	a	Shiny	Application
Before	we	get	started	with	writing	code,	it	is	worth	getting	familiar	with	the	components
that	make	up	a	Shiny	application.	During	development	we	need	to	think	about	two	main
components:	First	of	all,	the	user	interface.	What	will	the	application	look	like?	How	will
components	be	arranged	on	the	page?	Second	of	all,	we	need	to	think	about	what	is	called
“the	server.”	What	will	the	application	do?	When	an	option	is	changed,	what	needs	to
happen?

It	is	possible—and	for	bigger	applications,	recommended—to	build	a	Shiny	application	in
two	scripts	named	ui.R	and	server.R,	but	here	we	will	work	in	just	a	single	file.
Throughout	this	hour,	we	are	simply	going	to	create	a	ui	object	and	a	server	object	that
will	be	passed	to	the	function	shinyApp.	We	are	going	to	contain	all	these	components
in	a	single	script.	If	we	save	this	script	as	app.R,	we	will	obtain	some	shortcuts	in	RStudio
that	allow	us	to	run	the	application	at	the	click	of	a	button.

You	can	see	an	example	of	how	the	file	will	look	in	RStudio	in	Figure	24.1.	In	the	script
app.R,	you	can	see	the	overall	structure	of	the	script	and	the	outlines	for	the	ui	and
server	components,	which	we	will	return	to	in	the	next	sections,	along	with	the	call	to
the	shinyApp	function.	Also,	you	can	see	the	Run	App	button	at	the	top	of	the	script
window.	By	selecting	the	drop-down	menu,	you	can	see	the	options	available	in	this
graphic.	This	controls	whether	the	app	is	opened	in	a	separate	window,	in	the	viewer	pane,



or	in	your	default	web	browser.	As	you	can	see	in	the	example	in	Figure	24.1,	this
particular	application,	which	at	this	point	is	empty,	will	open	in	the	viewer	pane.

FIGURE	24.1	Example	of	the	app.R	file	in	RStudio	and	the	additional	Run	App
options

Having	seen	the	empty	components	of	a	Shiny	application,	we	now	need	to	think	about
what	will	go	into	them.	We	start	off	by	looking	at	the	user	interface,	which	is	controlled	by
the	ui	object.

The	ui	Component
As	stated	earlier,	the	ui	object	is	where	we	define	how	our	application	is	going	to	look.	It
is	here	that	we	specify	the	input	components,	the	type	of	outputs,	and	how	they	will	all	be
arranged.

As	a	very	simple	example,	let’s	consider	an	application	that	has	a	simple	text	input	and
uses	it	as	the	title	for	a	histogram,	which	we	will	also	output	in	the	application.	The	code
for	this	application	can	be	seen	in	Listing	24.1.

LISTING	24.1	A	Simple	User	Interface
Click	here	to	view	code	image

	1:	library(shiny)
	2:
	3:	ui	<-	fluidPage(
	4:
	5:			textInput(inputId	=	“title”,	label	=	“Enter	title	text:”),
	6:
	7:			plotOutput(outputId	=	“histogram”)
	8:
	9:	)
10:
11:	server	<-	function(input,	output){}
12:
13:	shinyApp(ui	=	ui,	server	=	server)

You	will	notice	that	the	only	component	we	have	changed	here	is	the	ui	object.	We	will
return	to	the	server	object	in	the	next	section.	The	ui	object	is	created	initially	by	a	call
to	the	function	fluidPage.	This	is	a	function	that	controls	the	layout	of	the	application.



There	are	many	more	layout	options	that	are	beyond	the	scope	of	this	hour.

Let’s	consider	the	elements	we	have	contained	in	our	ui	object.	The	first	element	we	have
provided	is	the	textInput	function,	which	creates	a	text	input	box	in	the	application.
This	is	one	of	many	input	functions	that	includes	check	boxes,	numeric	selectors	and
sliders,	and	drop-down	selections,	to	name	a	few.	All	of	these	input	functions	follow	the
same	structure,	with	the	first	two	arguments	always	being	the	same,	as	shown	in	line	5	of
Listing	24.1.	The	first	argument	is	inputId.	This	is	the	name	we	are	going	to	use	to
refer	to	this	element	in	the	code	for	our	application.	Each	input	object	needs	to	have	a
unique	name	so	that	it	can	be	identified,	and	you	will	see	how	this	name	is	used	in	the	next
section.	The	next	argument	is	label.	This	is	a	character	string	that	appears	in	the	user
interface	to	tell	the	user	what	the	purpose	of	the	component	is.	If	this	is	not	included,	the
user	won’t	know	what	they	are	supposed	to	put	into	this	text	box	or	what	it	will	do.

Note:	Input	Functions	and	Shiny	Documentation

The	shiny	package	is	maintained	by	RStudio,	who	provides	extensive
documentation	both	in	the	shiny	package	and	online.	For	more	information	on	all
the	available	input	functions,	as	well	as	outputs	and	layouts,	see	the	documentation
available	on	the	Shiny	web	pages	at	shiny.rstudio.com.

Before	we	consider	the	next	component,	notice	that	on	line	5	of	Listing	24.1	there	is	a
comma	to	end	the	line.	This	is	because	we	are	about	to	provide	another	argument	to	the
function	fluidPage.	Although	it	is	easy	to	forget	to	include	commas	and	brackets	in	the
correct	places,	when	we	start	creating	the	Shiny	application,	it	does	get	much	easier.	A
good	indicator	of	a	missed	comma	is	the	error	message	Unexpected	symbol,
although	the	latest	versions	of	RStudio	now	includes	in-editor	error	checking	to	help	you
identify	a	missed	component	a	little	easier.

The	final	component	in	the	user	interface	object	is	an	output	function.	In	this	case,	we	are
returning	a	plot,	so	we	are	using	the	plotOutput	function.	Just	as	with	inputs,	there	are
a	variety	of	output	objects	we	can	create,	and	the	output	function	we	will	use	depends	on
the	object	we	are	creating.	Outputs	can	include	text,	tables,	and	images	as	well	as	HTML.
Just	like	with	the	input	object,	we	need	to	give	an	output	object	a	name.	Here,	we	have
used	the	argument	outputId	to	give	a	unique	name	to	this	component.	You	will	see	how
this	is	used	in	the	next	section.

At	this	point	we	can	run	the	application,	but	you	will	notice	that	the	only	thing	you	see	is
the	text	entry.	Entering	text	will	not	do	anything	because	we	haven’t	told	the	application
what	to	do	with	that	text.	We	don’t	have	a	plot	at	the	moment	because	we	haven’t	told	the
application	to	create	one.	We	will	do	all	of	this	with	the	server	component.

http://shiny.rstudio.com


The	server	Component
The	server	element	of	a	Shiny	application	is	the	part	that	controls	what	the	application
does.	In	our	simple	example	it	would	control	what	output	is	generated	and	what	happens
when	we	change	the	plot	title.	The	server	component	is	actually	a	function	with	two
arguments:	input	and	output.	We	must	always	use	these	exact	arguments.	You	can	see
this	in	both	Figure	24.1	and	Listing	24.1,	line	11.	Inside	the	function	we	then	create	the
output	objects	that	will	be	rendered	in	the	user	interface.	Let’s	continue	the	example	we
started	in	the	last	section.	Listing	24.2	shows	the	extended	code	with	the	server
function	now	completed.

LISTING	24.2	Adding	the	server	Function
Click	here	to	view	code	image

	1:	library(shiny)
	2:
	3:	ui	<-	fluidPage(
	4:
	5:			textInput(inputId	=	“title”,	label	=	“Enter	title	text:”),
	6:
	7:			plotOutput(outputId	=	“histogram”)
	8:
	9:	)
10:
11:	server	<-	function(input,	output){
12:
13:				output$histogram	<-	renderPlot({
14:
15:						hist(rnorm(100),	main	=	input$title,	xlab	=	“Simulated	Data”)
16:
17:				})
18:	}
19:
20:	shinyApp(ui	=	ui,	server	=	server)

You	can	see	on	line	13	that	we	have	created	an	element	in	the	output	list	called
histogram.	This	is	going	to	be	an	output	object	that	is	passed	to	an	output	function—in
this	case,	it	is	being	passed	to	the	plotOutput	function	in	the	ui	object.	The	name	of
the	element	that	we	create	in	the	server	needs	to	match	the	name	we	have	given	to	the
output	function	in	the	user	interface	so	that	the	object	will	be	displayed.

We	create	the	objects	themselves	by	using	“render”	functions.	There	is	a	corresponding
render	function	for	each	output	function	we	use	in	the	user	interface.	Inside	of	the	render
function	we	put	all	of	the	code	that	we	need	to	create	the	output	object.	In	this	case	we
have	included	a	call	to	the	function	hist,	which	generates	some	random	normal	data	to
plot.	Included	in	this	function	call	is	the	reference	to	input$title.	Here,	we	are	asking
Shiny	to	get	the	input	object	named	title	that	we	created	in	the	user	interface.	Again,
notice	that	the	name	matches	the	inputId	element	that	we	gave	in	the	ui	object	(line	5
of	Listing	24.2).	This	means	that	when	the	plot	is	created,	it	will	take	the	value	of	the
input$title	element	and	pass	it	to	the	main	argument	of	hist.	As	you	will	see
when	you	run	this	application,	whenever	we	change	the	title,	the	plot	will	update	to	have



the	new	value	of	input$title.

This	is	now	a	complete	application	with	inputs	and	reactive	outputs.	If	you	run	this
application,	you	will	see	something	similar	to	Figure	24.2;	note	that	the	layout	may	be
slightly	different	depending	on	window	size.	You	will	notice	that	as	you	change	the	text	in
the	text	input	box,	the	application	updates	the	graphic	to	include	this	new	text.

FIGURE	24.2	Complete	application	generated	from	code	in	Listing	24.2

Although	this	is	just	a	simple	application,	we	can	extend	the	number	of	inputs	and	outputs
to	generate	much	more	complex	applications,	with	multiple	inputs	contributing	to	multiple
outputs.	One	of	the	great	advantages	of	shiny	is	that	it	is	based	entirely	in	R,	so	we	have
access	to	all	the	manipulation,	visualization,	and	analysis	tools	we	have	seen	throughout
this	book.	All	of	them	can	be	run	from	a	Shiny	application,	with	their	outputs	returned	and
updated	as	inputs	change.	An	example	of	a	more	extensive	application	built	on	shiny	is
shown	in	Figure	24.3.	This	application	has	been	extended	further	with	the	package
shinydashboard	and	contains	a	number	of	pages	that	allow	the	user	to	interact	with	their
data	in	different	ways.	To	get	to	an	application	of	this	kind,	we	need	to	look	at	another
concept	that	is	going	to	help	us	a	lot	as	we	build	bigger	and	more	complex	applications.



FIGURE	24.3	Example	of	a	more	extensive	Shiny	application

Reactive	Functions
You	might	have	noticed	when	running	the	application	in	Listing	24.2	that	every	time	you
changed	the	title,	the	plot	was	regenerated,	and	this	caused	the	data	to	be	resampled.	This
was	because	both	the	simulation	of	the	data	and	the	updating	of	the	plot	were	contained
within	the	same	“reactive”	function,	in	this	case	a	“render”	function.	Therefore,	when	the
input	element	changed,	shiny	knew	to	update	the	plot,	but	this	also	re-simulated	the	data.
If	you	look	back	at	the	code,	you	will	notice	that	in	line	15	we	have	both	the	rnorm
function	and	the	input$title	object.	We	can	actually	change	this	behavior	by	working
with	multiple	reactive	functions.

Why	Do	We	Need	Reactive	Functions?
Hopefully	at	this	point	you	can	see	that	a	reactive	function	is	useful.	In	this	example,	it
may	be	undesirable	to	the	end	user	that	the	data	re-simulates	just	because	we	want	to
change	the	title.	But	suppose	that	the	simulation	was	very	large,	or	we	wanted	to	read	in	a
large	dataset,	or	even	perform	a	complex	analysis	before	generating	a	graphic.	We	don’t
want	changing	the	title	to	be	connected	to	re-running	all	of	these	components.	Reactive
functions	therefore	allow	us	to	separate	out	each	of	the	components	of	our	application	so
that	we	can	run	the	code	as	few	times	as	possible.

When	we	start	to	develop	larger	applications,	it	is	vital	that	we	think	about	what	is	being
run	and	how	often.	It’s	so	important,	in	fact,	that	we	should	start	to	practice	this	with	small
applications	that	we	create.	When	it	comes	to	a	Shiny	application,	we	want	to	run	code	as
little	as	possible.	For	any	application,	you	need	to	consider,	how	often	do	I	want	to	run	this
section	of	code?	Do	I	really	want	to	run	it	each	time	I	change	any	option?

It	is	important	to	be	aware	that	any	element	that	is	contained	within	the	input	list	(for
example,	input$title)	is	a	reactive	value.	A	reactive	value	must	be	contained	inside	a
reactive	function	in	a	Shiny	application.	We	didn’t	mention	this	earlier,	but	the	render



functions	are	actually	reactive	functions,	which	is	why	they	can	appear	here.	There	are,
however,	a	number	of	other	reactive	functions	that	we	can	use	to	aid	the	development	of
our	applications	and	to	reduce	how	often	code	is	run.

Creating	a	Simple	Reactive	Function
As	mentioned	earlier,	all	of	the	render	functions	are	reactive	functions,	but	it	is	often	the
case	that	there	is	some	action	we	want	to	perform	separately	to	generating	the	output.	This
could	be	reading	in	data,	manipulating	data,	fitting	a	model,	or	all	of	these	components.
The	simplest	and	most	versatile	function	for	performing	these	actions	is	the	function
reactive.

This	function	allows	us	to	create	a	function	that	will	only	be	called	again	when	any	of	the
inputs	inside	the	function	are	changed.	Consider	the	example	we	have	been	working	with,
but	let’s	add	in	an	extra	component	that	tells	our	application	how	many	random	normal
values	to	simulate.	Instead	of	putting	this	simulation	inside	the	renderPlot	function,
we	are	going	to	contain	it	inside	a	reactive	function.	The	code	we	would	use	to	do	this
can	be	seen	in	Listing	24.3.

LISTING	24.3	Incorporating	Reactive	Functions
Click	here	to	view	code	image

	1:	library(shiny)
	2:
	3:	ui	<-	fluidPage(
	4:
	5:			numericInput(inputId	=	“num”,	label	=	“Number	of	Simulations:”,	value	=
100),
	6:
	7:			textInput(inputId	=	“title”,	label	=	“Enter	title	text:”),
	8:
	9:			plotOutput(outputId	=	“histogram”)
10:
11:	)
12:
13:	server	<-	function(input,	output){
14:
15:				data	<-	reactive(rnorm(input$num))
16:
17:				output$histogram	<-	renderPlot({
18:
19:						hist(data(),	main	=	input$title,	xlab	=	“Simulated	Data”)
20:
21:				})
22:	}
23:
24:	shinyApp(ui	=	ui,	server	=	server)

The	main	thing	to	notice	here	is	how	we	have	incorporated	the	reactive	function.	You
will	notice	on	line	15	that	we	have	created	an	object	called	data.	This	is	in	fact	a	function
object	that	we	will	call	later.	We	have	then	included	the	call	to	rnorm	inside	the
reactive	function.	At	the	point	that	we	want	to	use	this	data,	in	the	call	to	hist	on	line
19,	we	now	call	this	data	function.	The	difference	now	is	that	the	data	function	will



only	regenerate	the	simulated	data	when	the	input$num	value	changes,	rather	than	each
time	the	hist	function	is	called.	You	will	be	able	to	see	this	behavior	if	you	run	this	code
and	try	changing	both	the	numeric	value	and	the	title.

You	can	have	as	many	reactive	functions	as	you	want	in	an	application,	and	you	can
even	have	nested	reactive	functions.	For	instance,	you	may	have	a	renderPlot
function	that	plots	the	output	from	a	model.	This	renderPlot	may	call	a	reactive
function	that	fits	the	model,	which	in	turn	calls	a	reactive	function	that	reads	in	or
simulates	your	data.	In	addition,	some	other	reactive	functions	are	available	in	the	shiny
package	that	will	handle	reactive	values	differently.	For	more	information,	take	a	look	at
the	help	files	for	the	functions	isolate,	observeEvent,	and	eventReactive.

Interactive	Documents
In	the	last	hour,	you	saw	how	to	create	dynamic	documents	that	allow	you	to	generate	a
report	or	even	a	presentation	entirely	from	R,	mixing	both	the	document	content	and	the	R
code.	Here,	you	have	now	seen	another	means	of	sharing	analysis,	in	the	form	of	Shiny
applications.	However,	we	can	in	fact	combine	the	two.	We	are	able	to	create	a	document
that	includes	Shiny	components.	We	can	quickly	open	a	template	document	of	the	correct
format	from	RStudio	using	the	New	R	Markdown	menu	you	saw	in	Hour	23,	“Dyanmic
Reporting.”	Instead	of	selecting	the	Document	option,	we	can	instead	choose	Shiny.	You
will	notice	that	this	gives	you	the	additional	“runtime”	option	in	the	document	header.

We	include	Shiny	components	inside	an	R	code	chunk	in	the	same	way	we	would	include
any	other	code.	When	it	comes	to	the	Shiny	component,	we	include	inputs	in	exactly	the
same	way.	We	can	use	an	inputPanel	function	to	group	together	all	of	the	inputs.	In	a
Shiny	document,	we	don’t	need	to	include	the	usual	output	functions;	we	simple	include
the	render	functions	that	would	usually	be	in	the	server	function.	So	if	we	wanted	to
include	the	same	inputs	and	outputs	as	we	have	seen	in	this	hour,	but	inside	a	markdown
document,	our	code	chunk	would	look	like	the	following:
Click	here	to	view	code	image

“`{r,	echo=FALSE}
inputPanel(
		numericInput(inputId	=	“num”,	label	=	“Number	of	Simulations:”,	value	=
100),

		textInput(inputId	=	“title”,	label	=	“Enter	title	text:”)
)

data	<-	reactive(rnorm(input$num))

renderPlot({

				hist(data(),	main	=	input$title,	xlab	=	“Simulated	Data”)

				})
“`

An	example	of	how	this	would	render	in	the	document	can	be	seen	in	Figure	24.4.	The
important	thing	to	note	is	that	this	is	no	longer	a	static	file.	Because	we	have	a	Shiny
element	in	the	document,	we	need	to	have	an	R	session	available	to	run	it.	You	will	notice



that	the	options	in	RStudio	are	no	longer	“Knit,”	but	“Run	Document.”

FIGURE	24.4	A	Shiny	element	inside	a	reactive	document

If	you	have	an	existing	Shiny	application	and	you	simply	want	to	embed	it	into	a
document,	you	can	do	so	by	using	the	shinyAppDir	function,	pointing	to	the	location
of	your	Shiny	application	and	setting	elements	such	as	the	width	and	height	of	the
application	in	the	document.

Sharing	Shiny	Applications
Creating	a	Shiny	application	that	will	allow	you	to	share	your	work	is	very	simple	and
flexible,	but	an	important	thing	to	consider	is	how	you	are	going	to	share	your	application.
Up	to	this	point	you	have	probably	just	run	your	examples	on	your	own	machine	with
your	own	version	of	R.	If	you	want	to	allow	others	to	work	with	you	and	run	analysis	or
investigate	outcomes,	you	need	to	be	able	to	provide	your	application.	You	can	of	course
simply	send	the	files	to	other	users	or	incorporate	the	application	into	an	R	package,	but
this	requires	the	users	to	have	R	installed	and	all	of	the	correct	packages.	However,	often
the	reason	you	want	to	create	a	Shiny	application	is	to	share	what	you	are	doing	with	non-
R	users.

The	best	way	to	share	your	application	in	this	case	is	to	have	your	application	hosted	on	a
server	that	allows	you	to	send	a	single	URL	to	the	end	users.	There	are	a	couple	of	ways



you	can	do	this.	First	of	all,	you	can	have	your	application	hosted	by	RStudio	with
shinyapps.io.	This	is	a	service	for	which	you	can	sign	up,	with	one	of	a	range	of	packages
that	allows	you	to	have	RStudio	host	your	application	for	you.	Alternatively,	you	can	host
your	application	on	your	own	server	using	Shiny	Server.	There	is	both	a	free	and	a	pro
version	available,	with	the	pro	version	adding	features	such	as	authentication.	Much	more
information	about	all	of	these	services	is	available	from	the	RStudio	website,	which	will
allow	you	to	determine	the	best	approach	for	you.

Summary
In	this	final	hour,	we	introduced	the	basics	of	the	package	shiny,	giving	you	enough	tools
to	get	started.	There	is	much,	much	more	that	you	can	do	with	a	Shiny	application	that	is
beyond	the	scope	of	this	hour.	The	shiny	package	is	maintained	by	RStudio,	which	offers
extensive	material	describing	some	of	the	features	not	covered	here,	including	controlling
the	layout	of	an	application,	many	more	of	the	input	and	output	options,	how	you	can
work	with	data,	and	how	you	can	customize	your	application	with	CSS	components,	just
to	name	a	few.	Everything	you	have	seen	in	this	book	has	given	you	the	foundations	to	go
on	and	learn	more	about	what	can	be	done	with	R	and	understand	for	yourself	the
corresponding	documentation.	In	the	final	two	hours,	we	have	introduced	just	two	of	the
popular	means	of	sharing	R	with	non-R	users,	but	what	can	be	achieved	goes	far	beyond
our	coverage.	Hopefully	this	has	given	you	a	taste	of	what	is	possible	so	that	you	can	jump
in	and	try	it	out	for	yourself.

Q&A
Q.	Can	I	open	my	Shiny	application	in	my	web	browser?

A.	Yes,	you	can.	You	can	do	this	by	changing	the	default	option	in	the	Run	App	drop-
down	menu,	or	you	can	use	the	Open	in	New	Window	button	in	the	viewer
window/pane.

Q.	Why	can’t	I	run	any	other	code	while	my	Shiny	app	is	running?

A.	While	you	are	running	your	Shiny	application,	your	R	session	will	be	blocked.	This
is	because	while	the	app	is	active,	R	code	is	being	run	and	re-run.	Because	you	can’t
run	multiple	processes	at	the	same	time	in	R,	you	cannot	run	any	other	code	while
you	run	your	Shiny	application.

Workshop
The	workshop	contains	quiz	questions	and	exercises	to	help	you	solidify	your
understanding	of	the	material	covered.	Try	to	answer	all	questions	before	looking	at	the
“Answers”	section	that	follows.

Quiz
1.	Which	component	controls	what	the	application	will	look	like?

2.	What	two	arguments	do	you	need	to	give	to	all	input	functions?

3.	There	are	two	arguments	you	must	give	to	a	server	function.	Which	of	the



following	options	is	not	required?

A.	input

B.	output

C.	session

4.	What	are	the	main	benefits	of	using	a	reactive	function?

Answers
1.	The	ui	component	controls	how	the	application	will	look	to	the	end	user.

2.	All	of	the	input	functions,	whether	text,	a	number,	or	a	drop-down	menu,	start	with
the	arguments	inputId	and	label.	The	argument	inputId	is	used	by	the
application	to	reference	the	objects,	whereas	the	label	argument	is	used	in	the	user
interface	to	tell	the	user	the	purpose	of	the	element.

3.	Both	the	input	and	output	arguments	are	required	arguments	to	the	server
function	that	you	need	to	give	in	exactly	this	format.	You	can	optionally	use	the
session	argument	to	pass	session	information	to	the	Shiny	application	server
function.

4.	One	of	the	main	benefits	of	using	a	reactive	function	is	that	you	can	break	up
the	running	of	the	application.	Rather	than	tasks	being	re-run	when	they	do	not	need
to	be,	you	can	use	reactive	functions	to	ensure	that	they	are	only	re-run	when	an
input	option	is	changed.

Activities
1.	Create	an	application	that	takes	three	inputs:

	A	numeric	slider	of	values	between	1	and	500

	A	drop-down	menu	to	select	color	values

	A	text	string	to	give	the	plot	title

2.	Update	the	application	to	return	a	histogram	of	simulated	values	using	all	of	the
preceding	options.

3.	Extend	the	application	to	include	a	check	box	that	adds	a	vertical	reference	line	at
the	median	value	of	the	data.

4.	Ensure	that	the	data	is	not	re-simulated	each	time	an	option	is	changed.

5.	Use	the	available	documentation	to	update	the	layout	of	the	application	to	ensure
that	all	the	inputs	are	in	a	column	on	the	left	and	outputs	in	a	column	to	the	right.



Appendix:	Installation

This	appendix	provides	some	details	for	installing	R	on	Windows,	OS	X,	and	Linux
distributions.	Instructions	for	installing	the	Rtools	component	required	for	building	R
packages	on	Windows	are	also	provided.	Up-to-date	instructions	are	maintained	on	the
book’s	website,	http://www.mango-solutions.com/wp/teach-yourself-r-in-24-hours-book/.

Installing	R
R	is	installed	from	a	central	repository	named	CRAN.	Most	users	typically	navigate	to
CRAN	via	www.r-project.org,	although	you	can	also	navigate	directly	to	CRAN.

1.	Click	the	“download	R”	link	on	the	R	Project	main	page.

2.	Choose	the	most	local	CRAN	mirror.	Each	mirror	is	exactly	the	same,	so	it	does	not
actually	matter	which	one	you	choose,	although	it	helps	reduce	traffic	if	you	choose
a	local	mirror.

3.	From	the	main	home	page	of	CRAN,	there	are	three	options,	depending	on	your
operating	system.	Click	the	appropriate	link.

Installing	R	on	Windows
The	following	steps	describe	the	process	of	installing	R	on	Windows:

1.	There	are	three	available	“subdirectories.”	Click	the	link	to	“base.”

2.	At	the	top	of	the	page	the	most	recent	R	release	on	Windows	is	available	for
download	via	a	link—for	example,	“Download	R	3.2.2	for	Windows.”	Click	the	link
to	download	the	installer	to	a	temporary	location	(or	choose	“run”	if	presented	with
the	option).

3.	Choose	your	language	and	follow	the	instructions	in	the	wizard.

	When	presented	with	the	option	to	configure	startup	options,	as	shown	in	Figure
A.1,	it	is	advised	that	you	select	No	and	accept	the	defaults.

http://www.mango-solutions.com/wp/teach-yourself-r-in-24-hours-book/
http://www.r-project.org


FIGURE	A.1	Startup	Options

	Keep	clicking	Next	through	all	the	options,	assuming	you	are	happy	with	what	the
wizard	is	going	to	do.

	When	you	are	ready,	click	the	Finish	button.

Installing	R	on	Mac	OS	X
Carefully	read	the	notes	at	the	top	of	the	page	before	downloading	R	on	OS	X.

The	first	link	under	the	Files	heading	contains	a	link	to	the	most	recent	version	of	R
available	on	OS	X—for	example,	R-3.2.2.pkg.	Select	this	link	and	run	the	installer.

1.	Once	the	file	has	downloaded,	run	the	.pkg	file.

2.	Choose	your	language	and	follow	the	instructions	in	the	wizard.

	Keep	clicking	Next	through	all	the	options,	assuming	you	are	happy	with	what	the
wizard	is	going	to	do.

	When	you	are	ready,	click	the	Finish	button.

Installing	R	on	Linux
Choose	the	appropriate	link	for	your	Linux	distribution.	Each	distribution	contains	its	own
instructions	and/or	README	file	for	installing	R.	For	Debian	and	Ubuntu,	the	latest
stable	version	of	R	is	available	in	official	repositories.	An	example	of	the	help	for	Ubuntu
is	shown	in	Figure	A.2.	Detailed	instructions	for	downloading	and	installing	R	are
provided	on	the	home	page.



FIGURE	A.2	Installing	R	on	Ubuntu

Installing	Rtools	for	Windows
Building	packages	requires	a	number	of	additional	command-line	tools	that	are	not
available	by	default	on	Windows.	You	can	access	them	by	installing	Rtools,	a	set	of
development	utilities	available	on	CRAN.	Linux	users	will	typically	install	r-base-dev
(Debian)	or	similar	in	the	same	way	you	would	install	R.	OS	X	users	will	typically	need	to
install	XCode,	available	via	the	AppStore,	and	then	install	Command	Line	Tools	from
within	XCode.	Up-to-date	instructions	for	installing	these	additional	components	are
maintained	on	the	book’s	website,	http://www.mango-solutions.com/wp/teach-yourself-r-
in-24-hours-book/.

You	can	navigate	directly	to	CRAN.	Otherwise,	start	by	navigating	to	the	R-Project
website.

1.	Click	the	“download	R”	link.

2.	Choose	the	most	local	CRAN	mirror.

From	the	main	home	page	of	CRAN:

1.	Click	the	Download	R	for	Windows	link.

2.	Click	the	Rtools	link	(https://cran.rstudio.com/bin/windows/Rtools/).

3.	There	is	a	table	of	Rtools	versions	available	for	download.	You	must	install	the
correct	version	of	Rtools	for	the	version	of	R	you	are	using.	The	“R	Compatibility”
column	lists	which	versions	of	R	are	appropriate	for	each	Rtools	release.	See	Figure
A.3	for	an	example.

http://www.mango-solutions.com/wp/teach-yourself-r-in-24-hours-book/
https://cran.rstudio.com/bin/windows/Rtools/


FIGURE	A.3	Rtools	download	table

As	an	example	of	which	version	to	download,	if	you	are	using	R	3.1.2,	you	will	need
to	install	Rtools31.

4.	Click	the	appropriate	version	of	Rtools.

5.	If	you	are	asked	whether	you	wish	to	run	or	save	the	.exe	file,	choose	“run.”

6.	Once	the	file	has	downloaded,	click	Run.

7.	Choose	your	language	and	follow	the	instructions	in	the	wizard.	Pay	attention	to	the
following:

	When	you	are	asked	to	choose	a	location	for	the	installation,	as	shown	in	Figure
A.4,	Rtools	typically	downloads	directly	to	C:.	If	you	wish	to	change	this,	do	so	at
this	point.	It	is	good	practice	to	include	the	version	number	(excluding	the	period)
in	the	name	of	the	destination	directory.	For	example,	save	Rtools	3.3	to	Rtools33.
This	will	help	keep	track	of	Rtools	versions	when	you	are	working	with	multiple
versions	of	R.



FIGURE	A.4	The	Select	Destination	Location	screen

	In	order	to	build	C	.dll	files,	ensure	that	all	components	are	selected	when	you	are
presented	with	this	option.	Do	not	install	the	“Extras	to	Build	32	bit	R:	TCL/TK”
or	“Extras	to	Build	64	bit	R:	TCL/TK”	unless	you	actually	intend	to	do	so	(it	is
not	advised	that	you	do).

	During	the	install	process,	you	will	be	asked	if	you	want	to	update	your	system	path
(see	Figure	A.5).	This	is	important	to	be	able	to	build	packages;	if	you	choose	not	to
let	the	install	process	handle	this,	you	will	need	to	add	it	manually.	Check	the	box	to
save	the	version	information	to	the	registry.

FIGURE	A.5	The	Select	Additional	Tasks	screen



8.	When	you	are	ready,	click	the	Install	button.

Installing	the	RStudio	IDE
RStudio	is	installed	from	RStudio’s	own	website,	www.rstudio.com.	Please	be	aware	that
these	instructions	may	change	as	RStudio	changes	its	website.	Specifically,	buttons	may
be	moved	or	their	names	changed.

1.	The	RStudio	home	page	has	traditionally	contained	one	or	more	obvious	links	in
order	install	the	RStudio	IDE.	The	IDE	is	currently	available	via	a	link	that	states
“Powerful	IDE	for	R.”	Select	the	link	to	take	you	to	the	RStudio	IDE	download
page.

2.	You	are	presented	with	the	option	of	installing	the	Desktop	or	Server	version	of	the
IDE.	Select	the	“Desktop”	link	(see	Figure	A.6).

FIGURE	A.6	Install	RStudio	Desktop	button

3.	The	“Desktop”	link	takes	you	to	the	appropriate	section	of	the	page,	where	you	are
presented	with	the	option	to	download	the	Open	Source	edition	or	the	Commercial
License	version.	Assuming	you	do	not	wish	to	purchase	the	commercial	version	at
this	time,	click	the	DOWNLOAD	RSTUDIO	DESKTOP	button.

4.	Clicking	the	DOWNLOAD	RSTUDIO	DESKTOP	button	takes	you	to	a	page	with	a
number	of	links	to	installers	for	the	open-source	version	of	RStudio	Desktop.	Scroll
down	through	the	page	until	you	see	an	installer	that	is	appropriate	for	your
operating	system	(for	example,	RStudio	0.99.484	–	Windows	Vista/7/8/10).	Click
the	link	to	download	the	installer.

5.	Run	the	installer.	If	you	are	on	Mac	OS	X,	you	are	presented	with	an	install	wizard:

	Navigate	through	the	wizard,	clicking	Next	to	accept	the	default	options.

	When	you	are	ready,	click	the	Finish	button	to	install	RStudio.

http://www.rstudio.com


Index

Symbols	&	Numerics
%>%	(pipe	operator),	271-273

:	(colon),	interaction	terms,	396

…	(ellipsis),	157-159

=	(equal	sign),	19

$	(dollar	sign)

referencing	list	elements,	77-79

shortened	$	referencing,	78-79

\	(double	backslash),	21

/	(forward	slash),	21

&	operator,	144-145

[]	(square	brackets),	43

double	square	bracket	referencing,	76-77

~	(tilde),	formula	relationships,	381

3D	lattice	graphics,	352-354

A
abline	function,	389-390

acf	function,	448

active	bindings,	544

adding

columns,	266,	277-278

list	elements,	79-80

rows,	278-279

aggregate	function,	252

specifying	variables,	254-256

using	with	a	formula,	252-254

multiple	return	values,	253-254

summarizing	by	multiple	variables,	252-253

summarizing	multiple	columns,	253

aggregating	data,	246



data.table	package,	280-282

dplyr	package,	268-271

grouped	data,	269-270

analysis	of	variance,	comparing	nested	models,	395

anova	function,	395

appending,	237-238.	See	also	combining

applications,	Shiny

server	component,	564-566

sharing,	570

structure,	561-562

ui	component,	562-564

apply	functions,	181-195,	250-251

applying	to	data	frames,	193-195

example,	184-186

lapply,	195-204

order	of	“apply”	inputs,	201-203

using	with	vectors,	199-201

margin	values,	183-184

multiple	margins,	186-187

passing	extra	arguments	to	“applied”	function,	188-191

sapply	function,	204-208

returns,	205-207

tapply

multiple	grouping	variables,	209-210

multiple	returns,	210-212

return	values,	212

using	with	higher	dimension	structures,	187-188

xapply,	182

arguments,	116

apply	function,	183

breaks,	111

defining,	132-133



ellipsis,	passing	graphical	parameters,	159-161

for	merge	function,	238

named	arguments,	131

arima	function,	449

ARIMA	models,	in	time	series	analysis,	448-451

arrange	function,	263

arrays,	34,	58-60

creating,	58-60

subscripting,	60

as.numeric	function,	121

assessing	models,	382

abline	function,	389-390

extractor	functions,	385-386

interaction	terms,	396-398

as	list	objects,	386-388

plot	function,	383-385

predict	function,	390-391

summary	function,	382-383

assignment	arrows,	19-20

attributes

of	data	frames,	querying,	87

of	lists,	72-73

of	matrices,	52-54

of	single	mode	data	structures,	comparing,	60-62

of	vectors,	41-43

autocorrelations,	in	time	series	analysis,	448

axis	limits,	setting	for	plots,	294-295

B
bar	charts,	291

Becker,	Rick,	345

benchmarking,	457-458

bigmemory	package,	282



binaries,	installing	packages	from,	26

bivariate	lattice	graphics,	350-351

blank	inputs,	44-45,	74

boxplots,	290

breaks	argument,	111

bugs,	reporting,	8

building	packages,	471-472,	482-485

C
c	function,	creating	vectors,	35-36

C++

incorporating	code	in	R,	501-502

integrating	with,	464-468

using	R	functions	in,	467-468

capturing	input	definitions,	164-167

case	sensitivity	for	file	paths,	219

cast	function,	245-246

categorical	data,	108-112

cbind	function,	49

censoring	in	survival	analysis,	431-432

Chambers,	John,	2,	535

character	data

manipulating,	123-124

searching	and	replacing,	124-125

character	value	inputs,	48,	57-58,	76

checking

function	inputs,	136,	155-157

multivalue	inputs,	162-164

packages,	482-484

classes,	505-509

creating,	constructor	functions,	510-511

example	of,	507-508

extending,	518



generics,	511-516

creating,	515-516

naming	conventions,	512

methods

defining	for	arithmetic	operators,	513-514

updating,	513

object	orientation,	506-508

inheritance,	508

R6,	542-544

active	bindings,	544

example	of,	543-544

private	members,	542

public	members,	542

Reference	Classes,	535-542

creating,	535-537

documenting,	542

methods,	defining,	537-540

objects,	copying,	540-542

removing,	510

S3,	509

creating,	509-511

documenting,	518

inheritance,	516-518

limitations	of,	518-519

lists	versus	attributes,	514-515

naming	conventions,	512

S4,	523-535

defining,	525-529

documenting,	534-535

inheritance,	532-534

methods,	529-530

multiple	dispatch,	531-532



summary	function	and,	405

writing,	505

Cleveland,	William,	345

clipboard,	219

closing	graphics	devices,	288

code

C++,	incorporating	in	R,	501-502

improving	efficiency

benchmarking,	457-458

initialization,	458-459

integrating	with	C++,	464-468

with	memory	management,	463-464

using	alternative	functions,	462-463

vectorization,	459-462

including	in	documents

LaTex	documents,	556

RMarkdown	documents,	550-552

profiling,	456

quality	of,	476-477

coef	function,	385-386

coefficients	from	logistic	regression,	419-420

colon	(:),	interaction	terms,	396

color	function,	288

colors,	specifying,	288

column	index,	55

columns

adding,	266,	277-278

referencing,	179-180

selecting,	264-266

selecting	from	data	frames,	88

subscripting,	88-90

combining



data.tables,	279-280

lists,	80

plot	types,	318-321

vectors,	49-51

comment	blocks,	15

comparing

attributes	and	lists,	514-515

nested	models,	393-395

R	and	C++,	465-466

reshape	and	reshape2	packages,	245

single	mode	data	structures,	60-62

conferences,	6

confint	function,	420

connecting

to	Excel	from	R,	228

to	R	from	Excel,	226

constructor	functions,	510-511

continuation	prompts,	15

continuous	variables,	creating	factors,	111-112

contrast	methods,	400

controlling

aesthetics	in	ggplot2	package,	322-324

layout,	305-308

grid	layouts,	306-307

layout	function,	307-308

strip	headers,	363-364

styles	for	lattice	graphics,	372-376

converting	objects,	156-157

coordinate	systems,	338-339

copying	Reference	Class	objects,	540-542

core	packages,	23

counting	records,	281



covariates,	in	survival	analysis,	436

coxph	function,	438-439

CRAN,	7

METACRAN	website,	24

navigating	to,	573

packages

finding,	23-24

installing,	25-26

create	function,	472-474

creating

arrays,	58-60

classes

constructor	functions,	510-511

S3,	509-511

data	frames,	86-87

data.tables,	273-274

date	objects,	103-104

factors,	108-110

from	continuous	data,	111-112

functions,	130-136,	151-155

error	messages,	152-153

warnings,	153-155

generics,	515-516

lattice	graphs,	346-355

lists,	71-72

with	element	names,	71

empty	lists,	69

non-empty	lists,	70

matrices,	49-52

with	a	single	vector,	51-52

package	structure,	472-474

reactive	functions,	567-568



Reference	Classes,	535-537

sequence	of	integers,	37-38

sequence	of	numeric	values,	38-39

sequence	of	repeated	values,	39-41

tbl_df	objects,	262-263

themes	for	lattice	graphics,	374-376

time	objects,	104-105

vectors,	35-41

with	c	function,	35-36

CSV	files,	reading,	220

custom	functions

applying	over	dimensions,	191-192

passing	extra	arguments,	192-193

custom	plots,	333-339

aes	function,	333-336

coordinate	systems,	338-339

ggplot	function,	333

multiple	data	frames,	336-338

cut	function,	111

D
data,	including	in	packages,	494-496

data	aggregation

aggregate	function,	252

apply	functions,	250-251

calculating	differences	from	baseline,	257-258

“for”	loops,	250

data	argument	(lm	function),	381

data	frames,	86-93

apply	functions,	193-195

attributes,	querying,	87

columns,	selecting,	88

creating,	86-87



factors,	creating,	108-110

graphing,	97-98

lapply	function,	203-204

referencing	as	a	matrix,	90-92

returning	top	and	bottom	of	data,	93-94

sorting,	236-237

splitting,	197-199

subscripting,	92-93

summarizing,	96

viewing,	94-96

working	with	multiple,	336-338

“data”	lattice	graphics,	354-355

data	munging,	235

data	types,	33-34

factors,	108-112

manipulating	levels,	110-111

numeric	factors,	109

reordering,	110

DataCamp,	5

data.table	package,	273-282

aggregation,	280-282

columns

adding,	277-278

renaming,	277-278

rows,	adding,	278-279

setting	a	key,	274-275

subscripting,	275-276

data.tables

counting	records,	281

creating,	273-274

merging,	279-280

date	objects,	creating,	103-104



dates

lubridate	package,	107-108

manipulating,	105-106

DBI	(database	interface),	225-226

decomposition,	in	time	series	analysis,	443-445

defining

function	arguments,	132-133

keys,	274-275

methods

for	arithmetic	operators,	513-514

for	Reference	Classes,	537-540

S4	classes,	525-529

S4	generics,	530-531

time	zones,	105

deleting	packages,	24

deparse	function,	166

dependencies,	27

descending	sorts,	237

DESCRIPTION	file,	474-475

developing	a	test	framework,	490-494

incorporating	tests	into	packages,	493-494

test_that	function,	490-493

devices	(graphics)

closing,	287-288

creating,	287-288

devtools,	building	packages,	482-485

diagnostic	plots,	383-385

comparing,	387-394

in	GLM	framework,	416

for	time	series	analysis,	449-450

diff	function,	106

difftime	function,	106



dimensions

dropping,	56

functions,	applying,	191-192

dimnames	function,	53-54

distribution	types,	GLM	framework,	412

distributions

hist	function,	160-162

statistical	distributions,	119-120

documentation.	See	also	dynamic	reporting;	reporting

interactive	documents,	569-570

package	documentation,	generating,	477-482

function	headers,	478-480

help	pages,	480-482

R	Documentation,	5

R	manuals,	4-5

Reference	Classes,	542

S3	class	system,	518

S4	class	system,	534-535

vignettes

including	in	packages,	496-498

markdown	notation,	499

writing,	498-501

double	square	bracket	referencing,	76-77

dplyr	package,	261-273

aggregation,	268-271

grouped	data,	269-270

merge	function,	267-268

mutate	function,	266

pipe	operator,	271-273

sorting,	263

subscripting,	264-266

with	filter	function,	264



with	select	function,	264-265

tbl_df	objects,	creating,	262-263

dropping	dimensions,	56

duplicated	function,	241-242

dynamic	reporting,	547-548

LaTex,	553-556

RMarkdown,	548-552

code	chunks,	including,	550-552

HTML	files,	building,	550

dynamic	typing,	19

E
EARL	(Effective	Applications	of	the	R	Language)	conference,	6

Eclipse,	13

efficiency	of	code,	improving

benchmarking,	457-458

initialization,	458-459

integrating	with	C++,	464-468

with	memory	management,	463-464

profiling,	456

using	alternative	functions,	462-463

vectorization,	459-462

elements

extracting	from	named	lists,	84

list	elements

adding,	79-80

referencing,	76-79

ellipsis,	157-159

passing	graphical	parameters,	159-161

empty	lists,	creating,	69

errors

bugs,	reporting,	8

returning,	152-153



escape	sequences,	21

estimating	survival	function	in	survival	analysis,	432-436

example

of	apply	function,	184-186

of	classes,	507-508

of	merge	function,	239

of	R6	class	system,	543-544

Excel

connecting	to	R,	226

reading	structured	data,	226-227

XLConnect	package,	228-231

exporting	text	files,	220

extending

classes,	518

packages,	489-490

extensions

to	GLM	framework,	422-423

to	nonlinear	models,	430

to	survival	analysis,	441

to	time	series	analysis,	452

extracting	elements	from	named	lists,	84

extractor	functions,	385-386

F
facet_grid	function,	329-331

facet_wrap	function,	331-332

factor	variables

in	linear	models,	398-401

in	logistic	regression,	419

factors,	108-112

creating,	108-110

from	continuous	data,	111-112

manipulating	levels,	110-111



numeric	factors,	109

reordering,	110

ff	package,	282

file.choose	function,	217

filter	function,	264

finding

duplicate	values,	241-242

packages,	23-24

fitted	function,	385-386

flow	control,	if/else	statements,	136-146

&	and	|	operators,	144-145

example,	145-146

mixing	conditions,	143

multiple	test	values,	139-140

nested	statements,	138-139

returning	early,	145

reversing	logical	values,	142-143

summarizing	to	a	single	logical,	140-141

switching	with	logical	input,	141-142

using	one	condition,	139

for	function,	174-176

loop	variable,	175-176

“for”	loops,	174,	250

foreign	package,	222

formulas,	using	with	aggregate	function,	252-254

multiple	return	values,	253-254

summarizing	by	multiple	variables,	252-253

summarizing	multiple	columns,	253

fread	function,	221

function	keyword,	130-131

functions

abline,	389-390



acf,	448

aes,	333-336

aggregate,	252-254

aggregate	function,	specifying	variables,	254-256

anova,	395

apply,	181-195,	250-251

applying	to	data	frames,	193-195

example,	184-186

margin	values,	183-184

multiple	margins,	186-187

passing	extra	arguments	to	“applied”	function,	188-191

using	with	higher	dimension	structures,	187-188

arguments,	116

defining,	132-133

named	arguments,	131

arima,	449

arrange,	263

as.numeric,	121

c,	creating	vectors,	35-36

calling,	116

shortened	argument	calling,	162-161

cast,	245-246

cbind,	49

coef,	385-386

color,	288

confint,	420

constructor	functions,	510-511

coxph,	438-439

create,	472-474

creating,	130-136,	151-155

cut,	111

deparse,	166



diff,	106

difftime,	106

dimnames,	53-54

distribution	functions,	119-120

duplicated,	241-242

error	handling,	462

error	messages,	creating,	152-153

extractor	functions,	385-386

facet_grid,	329-331

facet_wrap,	331-332

file.choose,	217

filter,	264

fitted,	385-386

for,	174-176

loop	variable,	175-176

fread,	221

gather,	247-248

gc,	464

get,	164

ggplot,	333

glm,	413

logistic	regression,	418-419

methods	for,	415-416

Poisson	regression,	420-422

grep,	124-125

group_by,	269-271

gsub,	124-125

head,	93-94

help,	28-29

hist,	160-162

HoltWinters,	446-447

I,	404



ifelse,	461

if/else	structure,	136-146

example,	145-146

mixing	conditions,	143

multiple	test	values,	139-140

nested	statements,	138-139

returning	early,	145

reversing	logical	values,	142-143

summarizing	to	a	single	logical,	140-141

switching	with	logical	input,	141-142

using	one	condition,	139

inputs

capturing,	164-167

checking,	136,	155-157,	162-164

ellipsis,	157-159

is.x,	122

lapply,	195-204

order	of	“apply”	inputs,	201-203

using	with	data	frames,	203-204

using	with	vectors,	199-201

layout,	307-308

legend,	302-304

length,	41-42,	53

library,	27

lines,	299-300

in	nonlinear	models,	428

lm,	380-381

methods	for,	406-407

logRange,	155

ls.str,	18-19

mathematical	functions,	117-118

matrix,	51-52



melt,	243-245

merge,	238-241,	267-268

inner	joins,	240

outer	joins,	240-241

missing	data	functions,	122-123

mode,	34

mutate,	266

names,	42-43,	386-388

naming,	132

nchar,	123

ncol,	53

nested	calls,	41

nls,	423-425

nrow,	53

objects,	18

odbcConnectAccess,	224

order,	236-237

output,	saving,	131

pacf,	448

panel	functions,	365-371

par,	304-305

paste,	124,	157-158

plot,	291-299,	383-385

in	GLM	framework,	416

parameters,	setting,	304-305

in	proportional	hazards	regression,	439-441

in	survival	analysis,	434

in	time	series	analysis,	442-443

plyr,	213

points,	299-300

predict,	390-391

in	ARIMA	models,	450-451



in	logistic	regression,	419

in	nonlinear	models,	428

in	survival	analysis,	435

in	time	series	analysis,	447

qplot,	314-315

layers,	316

rbind,	50,	237-238

reactive,	566-568

read.table,	218

remove.packages,	24

rep,	39-41

replace,	122

resid,	385-386

return	objects,	134-136

Rprof,	456

runif,	157

sapply,	204-208

returns,	205-207

save,	22

scoping	rules,	133-134

searchpaths,	17-18

select,	264-265

self-starting,	427

separate,	249

seq,	38-39

split,	195-197

spread,	248

sqlcolumns,	224

statistical	summary	functions,	118-119

stl,	443-445

stop,	152

structure,	129-130



substitute,	166

substring,	123

summary,	96,	382-383,	405

classes	and	methods,	405

in	GLM	framework,	415-416

with	names	function,	388

in	survival	analysis,	433-434

survfit,	433-434

in	proportional	hazards	regression,	439-441

switch,	159

table	function,	121

tail,	94

tapply,	208-213

multiple	grouping	variables,	209-210

multiple	returns,	210-212

return	values,	212

test_that,	490-493

text,	300-302

ts,	441-443

tsdiag,	449-450

update,	392-393

UseMethod,	512

warning,	153

warnings,	153-155

while,	180-181

window,	443

xapply,	182

G
garbage	collection,	464

gather	function,	247-248

Gaussian	model	fitting,	414

gc	function,	464



generating

classes	with	constructor	function,	510-511

documentation

with	LaTex,	553-556

with	RMarkdown,	548-552

package	documentation	with	roxygen	headers,	477-482

function	headers,	478-480

help	pages,	480-482

reports,	547-548

generics,	511-516

creating,	515-516

multiple	dispatch,	531-532

naming	conventions,	512

S4,	defining,	530-531

Gentleman,	Robert,	3

get	function,	164

ggplot	function,	333

ggplot2	package,	313

aes	function,	333-336

aesthetics,	321-329

controlling,	322-324

grouped	data,	327-329

legend,	324-327

combining	plot	types,	318-321

custom	plots,	333-339

coordinate	systems,	338-339

working	with	multiple	data	frames,	336-338

ggplot	function,	333

global	themes,	340-341

legend	layout,	341

paneling,	329-333

facet_grid	function,	329-331



facet_wrap	function,	331-332

philosophy	of,	313-314

plots

changing,	317-320

as	objects,	316-317

qplot	function,	314-315

layers,	316

theme	layers,	339-340

ggvis	package,	342

GitHub,	installing	packages	from,	26-27

GLM	(Generalized	Linear	Model)	framework

defined,	412-413

distribution	types,	412

extensions,	422-423

Gaussian	model	fitting,	414

glm	function,	413

logistic	regression,	417-420

methods	for,	415-416

Poisson	regression,	420-422

glm	function,	413

logistic	regression,	418-419

methods	for,	415-416

Poisson	regression,	420-422

Global	Environment.	See	workspaces

global	themes,	340-341

graphical	parameters,	passing,	159-161

graphics

colors,	288

devices

closing,	288

creating,	287-288

ggplot2	package,	313



aes	function,	333-336

aesthetics,	321-329

combining	plot	types,	318-321

custom	plots,	333-339

ggplot	function,	333

global	themes,	340-341

legend	layout,	341

philosophy	of,	313-314

plots	as	objects,	316-317

qplot	function,	314-315

theme	layers,	339-340

ggvis	package,	342

high-level	graphics	functions,	plot,	291-299

lattice	graphics,	345

3D,	352-354

bivariate,	350-351

“data”	graphics,	354-355

graph	options,	356-358

graph	types,	347

graphs,	creating,	346-355

groups	of	data,	representing,	360-362

panels,	362-371

plotting	multiple	variables,	358-360

plotting	subsets	of	data,	355

styles,	controlling,	372-376

themes,	creating,	374-376

transposing	the	axes,	351-352

univariate,	348-350

layout,	controlling,	305-308

grid	layouts,	306-307

layout	function,	307-308

low-level	graphics	functions,	299-304



legend,	302-304

lines,	299-300

points,	299-300

text,	300-302

parameters,	304-305

trellis	graphics,	345

univariate	graphics,	289-291

graphing

bar	charts,	291

data	frames,	97-98

hist	function,	160-162

Greek	letters,	adding	to	plots,	294

grep	function,	124-125

grid	layouts,	306-307

group_by	function,	269-271

grouped	data,	327-329

gsub	function,	124-125

H
head	function,	93-94

help	function,	28-29

help	pages,	generating,	480-482

Help	pane	(RStudio),	28-29

high-level	graphics	functions,	plot,	291-299

hist	function,	160-162

histograms,	289

HoltWinters	function,	446-447

Holt-Winters	method,	446-447

HTML	files,	building,	550

I
I	function,	404

IDEs	(integrated	development	environments),	13



Eclipse,	13

Notepad++,	13

R	GUI,	11-12

RStudio,	12-13

ifelse	function,	461

if/else	statements

&	and	|	operators,	144-145

example,	145-146

mixing	conditions,	143

multiple	test	values,	139-140

nested	statements,	138-139

returning	early,	145

reversing	logical	values,	142-143

structure,	136-146

summarizing	to	a	single	logical,	140-141

switching	with	logical	input,	141-142

using	one	condition,	139

Ihaka,	Ross,	3

Import	Wizard,	218

importing	text	files,	218

improving	code	efficiency

benchmarking,	457-458

initialization,	458-459

integrating	with	C++,	464-468

with	memory	management,	463-464

profiling,	456

using	alternative	functions,	462-463

vectorization,	459-462

incorporating	tests	into	packages,	493-494

independent	variables

factor	variables	as,	398-401

indexed	printing,	36



inheritance,	508

in	S3,	516-518

in	S4,	532-534

inhibiting	formula	interpretation,	404

initialization,	458-459

inner	joins,	240

inputs

ellipsis,	157-159

function	inputs

capturing,	164-167

checking,	136,	155-157,	162-164

order	of	“apply”	inputs,	201-203

list	subscripting	inputs

blank	inputs,	74

negative	integer	inputs,	75

positive	integer	inputs,	74-75

vector	subscripting	inputs,	44

blank	inputs,	44-45

character	values,	48

logical	values,	46-47

negative	integer,	45-46

positive	integers,	45

installing

packages,	24-27

from	binaries,	26

from	CRAN,	25-26

from	source,	26-27

R,	573

on	Linux,	574-575

on	Mac	OS	X,	574

on	Windows,	573-574

RStudio,	577-578



Rtools	on	Windows,	575-577

integers,	creating	sequence	of,	37-38

interaction	terms,	396-398

interactive	documents,	569-570

intercepts,	removing,	381

is.x	functions,	122

iteration,	loops

“for”	loops,	250

nested	loops,	177-179

performance,	180

referencing	data	with,	176-177

“while”	loops,	176-177

J
J	function,	275-276

joins

inner	joins,	240

merging	data	in	dplyr	package,	267-268

outer	joins,	240-241

K
Kaplan-Meier	estimates,	433-434

keys

defining,	274-275

numeric	keys,	276-277

keywords,	function,	130-131

knitr	package,	548

L
lapply	function,	195-204

order	of	“apply”	inputs,	201-203

using	with	data	frames,	203-204

using	with	vectors,	199-201

LaTex,	548



dynamic	reporting,	553-556

lattice	graphics,	345

3D,	352-354

bivariate,	350-351

“data”	graphics,	354-355

graph	options

plot	types	and	formatting,	357-358

title	and	axes,	356-357

graphs

creating,	346-355

types,	347

groups	of	data,	representing,	360-362

panels,	362-371

controlling	strip	headers,	363-364

functions,	365-371

multiple	“by”	variables,	364-365

plotting	multiple	variables,	358-360

plotting	subsets	of	data,	355

styles

controlling,	372-376

previewing,	373

themes,	creating,	374-376

transposing	the	axes,	351-352

univariate,	348-350

layers	in	quick	plots,	316

layout

controlling,	305-308

layout	function,	307-308

grid	layouts,	306-307

legend	function,	302-304

length	function,	41-42,	53

library	function,	27



licenses	for	R	packages,	475

limitations	of	S3,	518-519

linear	models,	380-381

assumptions,	411-412

factor	variables,	398-401

interaction	terms,	396-398

methods	for,	406-407

multiple	linear	regression

comparing	nested	models,	393-395

creating	new	models,	391-392

updating	existing	models,	392-393

variable	transformations,	402-404

lines	function,	299-300

in	nonlinear	models,	428

lines	on	plots,	adding,	389-390

Linux

installing	R,	574-575

installing	Rtools,	575

list	objects,	models	as,	386-388

listing

empty	lists,	creating,	69

non-empty	lists,	creating,	70

objects,	18-19

lists,	68-86

attributes,	72-73

combining,	80

creating,	71-72

with	element	names,	creating,	71

elements

adding,	79-80

referencing,	76-79

motivation	for	using,	flexible	simulation,	83-84



named	lists,	81-82

extracting	elements	from,	84

printing,	72,	85-86

subscripting,	73

blank	inputs,	74

character	value	inputs,	76

logical	value	inputs,	75

negative	integer	inputs,	75

positive	integer	inputs,	74-75

subsetting,	73

unnamed	lists,	81

lm	function,	380-381

methods	for,	406-407

loading	packages,	27-28

logical	values

as	list	subscripting	input,	75

as	matrix	subscripting	input,	56-57

reversing,	142-143

specifying,	36

as	vector	subscripting	input,	46-47

logistic	regression,	417-420

logRange	function,	155

loop	variable,	175-176

loops

in	C++,	467

“for”	loops,	174,	250

initialization,	458-459

nested	loops,	177-179

performance,	180

referencing	data	with,	176-177

“while”	loops,	174

low-level	graphics	functions,	299-304



legend,	302-304

lines,	299-300

points,	299-300

text,	300-302

ls.str	function,	18-19

lubridate	package,	107-108

M
Mac	OX	S

installing	R,	574

installing	RStudio,	577-578

installing	Rtools,	575

mailing	lists,	4

manipulating.	See	also	sorting

character	data,	123-124

dates,	105-106

factor	levels,	110-111

times,	105-106

manuals,	4-5

margin	values	(apply	function),	183-184

Markdown,	548.	See	also	RMarkdown

masking,	27-28

mathematical	functions,	117-118

matrices,	34,	49-58

attributes,	52-54

column	index,	55

creating,	49-52

with	a	single	vector,	51-52

dropping	dimensions,	56

referencing	data	frames	as,	90-92

subscripting,	55

character	values,	57-58

logical	values,	56-57



transposing,	50-51

matrix	function,	51-52

melt	function,	243-245

memory	management,	463-464

merge	function,	238-241,	267-268

inner	joins,	240

outer	joins,	240-241

merging	data.tables,	279-280

METACRAN	website,	24

methods,	512

defining	for	arithmetic	operators,	513-514

for	GLM	framework,	415-416

for	linear	models,	406-407

parametric	methods	in	survival	analysis,	434-435

for	Reference	Classes,	defining,	537-540

S4,	529-530

summary	function	and,	405

updating,	513

microbenchmark	package,	457-458

Microsoft	Excel.	See	Excel

missing	data	functions,	122-123

mode	function,	34

models,	379

assessing,	382

abline	function,	389-390

extractor	functions,	385-386

interaction	terms,	396-398

as	list	objects,	386-388

plot	function,	383-385

predict	function,	390-391

summary	function,	382-383

GLM	framework



defined,	412-413

distribution	types,	412

extensions,	422-423

Gaussian	model	fitting,	414

glm	function,	413

logistic	regression,	417-420

methods	for,	415-416

Poisson	regression,	420-422

linear	models,	380-381

assumptions,	411-412

factor	variables,	398-401

interaction	terms,	396-398

methods	for,	406-407

variable	transformations,	402-404

multiple	linear	regression

comparing	nested	models,	393-395

creating	new	models,	391-392

updating	existing	models,	392-393

nonlinear	regression

assumptions,	423

extensions,	430

nls	function,	423-425

Puromycin	data	example,	425-429

survival	analysis,	430

censoring	in,	431-432

estimating	survival	function,	432-436

extensions,	441

ovarian	data	frame	example,	431

proportional	hazards	regression,	437-441

time	series	analysis

ARIMA	models,	448-451

autocorrelations,	448



decomposition,	443-445

extensions,	452

smoothing,	446-447

ts	function,	441-443

modes.	See	data	types

motivation	for	using	lists,	flexible	simulation,	83-84

multimode	data	structures,	36,	67-68

data	frames,	86-93

apply	functions,	193-195

attributes,	querying,	87

columns,	selecting,	88

columns,	subscripting,	88-90

creating,	86-87

graphing,	97-98

lapply	function,	203-204

referencing	as	a	matrix,	90-92

returning	top	and	bottom	of	data,	93-94

sorting,	236-237

splitting,	197-199

subscripting,	92-93

viewing,	94-96

working	with	multiple,	336-338

lists,	68-86

attributes,	72-73

creating,	71-72

with	element	names,	creating,	71

empty	lists,	creating,	69

motivation	for	using,	83-84

named	lists,	81-82

non-empty	lists,	creating,	70

printing,	72,	85-86

subscripting,	73



unnamed	lists,	81

multiple	dispatch,	531-532

multiple	linear	regression

comparing	nested	models,	393-395

creating	new	models,	391-392

updating	existing	models,	392-393

Murrell,	Paul,	313

mutable	objects,	538-539

mutate	function,	266

N
named	arguments,	131

named	lists,	81-82

extracting	elements	from,	84

names	function,	42-43,	386-388

NAMESPACE	file,	475-476

naming

functions,	132

generics,	512

objects,	20

S3	classes,	512

variables,	241

navigating	to	CRAN,	573

nchar	function,	123

ncol	function,	53

negative	integer	inputs,	45-46,	75

nested	calls,	41

nested	loops,	177-179

nested	models,	comparing,	393-395

nicknames,	7

nls	function,	423-425

non-empty	lists,	creating,	70

nonlinear	regression



assumptions,	423

extensions,	430

nls	function,	423-425

Puromycin	data	example,	425-429

Notepad++,	13

nrow	function,	53

numeric	factors,	109

numeric	keys,	276-277

numeric	values

creating	sequence	of,	38-39

simulating,	83-84

O
object	orientation,	505-508

inheritance,	508

R	and,	405-406

objects,	16-22.	See	also	packages

converting,	156-157

date	objects,	creating,	103-104

listing,	18-19

mutable	objects,	538-539

naming,	20

packages,	17

search	path,	17-18

plots	as,	316-317

Reference	Class	objects,	copying,	540-542

removing	from	workspace,	20

return	objects,	134-136

saving,	22

tbl_df	objects,	creating,	262-263

time	objects,	creating,	104-105

workspaces,	19-22

objects	function,	18



odbcConnectAccess	function,	224

online	resources,	4-5

operating	systems

Mac	OX	S

installing	R,	574

installing	RStudio,	577-578

installing	Rtools,	575

Windows

building	packages,	482

clipboard,	219

operators,	117-118

&,	144-145

arithmetic	operators,	defining	methods	for,	513-514

pipe,	248,	271-273

order	function,	236-237

outer	joins,	240-241

output	of	functions,	saving,	131

ovarian	data	frame	example	(survival	analysis),	431

P
pacf	function,	448

packages,	7,	17,	23-28

bigmemory,	282

building,	471-472

with	devtools,	482-485

checking,	482-484

code	quality,	476-477

data,	including,	494-496

data.table,	273-282

aggregation,	280-282

columns,	adding,	277-278

columns,	renaming,	277-278

merging	data	tables,	279-280



rows,	adding,	278-279

setting	a	key,	274-275

subscripting,	275-276

deleting,	24

dependencies,	27

documentation,	generating	with	roxygen	headers,	477-482

dplyr,	261-273

aggregation,	268-271

merge	function,	267-268

mutate	function,	266

pipe	operator,	271-273

sorting,	263

subscripting,	264-266

dplyr	package,	creating	tbl_df	objects,	262-263

extending,	489-490

ff,	282

finding,	23-24

foreign,	222

ggplot2,	313

aes	function,	333-336

aesthetics,	321-329

combining	plot	types,	318-321

paneling,	329-333

philosophy	of,	313-314

plots	as	objects,	316-317

qplot	function,	314-315

ggplot2	package

ggplot	function,	333

global	themes,	340-341

legend	layout,	341

theme	layers,	339-340

ggvis	package,	342



installing,	24-27,	485

from	binaries,	26

from	CRAN,	25-26

from	source,	26-27

knitr,	548

lattice,	346

licenses,	475

loading,	27-28

lubridate,	107-108

masking,	28

METACRAN	website,	24

microbenchmark,	457-458

proto,	544

Rcpp,	501-502

repositories,	23

reshape,	243

cast	function,	245-246

melt	function,	243-245

RODBC,	223-225

sas7bdat,	223

search	path,	17-18

Shiny,	561-566

applications,	561-566

interactive	documents,	569-570

reactive	functions,	566-568

sharing	applications,	570

structure,	472-476

creating,	472-474

DESCRIPTION	file,	474-475

NAMESPACE	file,	475-476

tests,	incorporating,	493-494

tidyr,	246-249



gather	function,	247-248

separate	function,	249

spread	function,	248

vignettes,	496-498

markdown	notation,	499

writing,	498-501

XLConnect,	228-231

zoo,	123

Packages	pane	(RStudio),	24

paneling,	329-333

facet_grid	function,	329-331

facet_wrap	function,	331-332

with	lattice	graphics,	362-371

controlling	strip	headers,	363-364

functions,	365-371

multiple	“by”	variables,	364-365

par	function,	304-305

parameters,	setting	for	plotting	functions,	304-305

parametric	methods	in	survival	analysis,	434-435

passing	graphical	parameters,	159-161

paste	function,	124,	157-158

performance,	loop	performance,	180

pipe	operator,	248,	271-273

plot	function,	291-299,	383-385

in	GLM	framework,	416

paneling,	facet_grid	function,	329-331

parameters,	setting,	304-305

in	proportional	hazards	regression,	439-441

qplots,	layers,	316

in	survival	analysis,	434

in	time	series	analysis,	442-443

plots



custom	plots,	333-339

aes	function,	333-336

coordinate	systems,	338-339

ggplot	function,	333

mulltiple	data	frames,	336-338

diagnostic	plots,	383-385

comparing,	387-394

in	GLM	framework,	416

for	time	series	analysis,	449-450

lines	on,	adding,	389-390

in	nonlinear	models,	428-429

as	objects,	316-317

paneling,	329-333

quick	plots,	314-315

faceting,	333

layers,	316

symbols,	296-297

types,	298-299

changing,	317-320

types,	combining,	318-321

plyr	function,	213

points	function,	299-300

Poisson	regression,	420-422

positive	integer	inputs,	45,	74-75

POSIX	functions,	105

pre-allocation,	458-459

predict	function,	390-391

in	ARIMA	models,	450-451

in	logistic	regression,	419

in	nonlinear	models,	428

in	survival	analysis,	435

in	time	series	analysis,	447



previewing	lattice	graphics	styles,	373

printing

indexed	printing,	36

lists,	72,	85-86

profiling	code,	456

proportional	hazards	regression,	437-441

proto	package,	544

Puromycin	data	example	(nonlinear	regression),	425-429

Q
qplot	function,	314-315

faceting,	333

layers,	316

QQ	plots,	289

quality	of	code,	476-477

querying

data	frame	attributes,	87

vector	attributes,	41-43

quotes,	34

object	naming	conventions,	20

development	of,	3,	7-8

installing,	573

on	Linux,	574-575

on	Mac	OS	X,	574

on	Windows,	573-574

nicknames,	7

object	orientation	and,	405-406

resources,	4-6

syntax,	14-16

user	events,	6

versions,	7-8

R



R	Console,	14-15

R	Consortium,	3,	5-6

R	Development	Core	Team,	3

R	Documentation,	5

R	GUI,	11-12

R	models.	See	models

R6	class	system,	542-544

active	bindings,	544

example	of,	543-544

private	members,	542

public	members,	542

rbind	function,	50,	237-238

Rcpp	package,	464-468,	501-502

.RData	format,	221

reading

CSV	files,	220

structured	data	from	Excel,	226-227

text	files,	218-220

read.table	function,	218

recommended	packages,	23

records,	counting,	281

re-creating	simulated	values,	120

Reference	Classes,	535-542

creating,	535-537

documenting,	542

methods,	defining,	537-540

objects,	copying,	540-542

referencing

columns,	179-180

data	frames	as	a	matrix,	90-92

data	with	loops,	176-177

list	elements,	76-79



with	$,	77-79

double	square	bracket	referencing,	76-77

regular	expressions,	124,	182

relational	databases,	223-226

DBI,	225-226

RODBC	package,	223-225

remove.packages	function,	24

removing

classes,	510

intercepts,	381

objects	from	workspace,	20

renaming	columns,	277-278

reordering	factors,	110

rep	function,	39-41

repeated	values,	creating	sequence	of,	39-41

replace	function,	122

reporting

bugs,	8

dynamic	reporting,	547-548

LaTex,	553-556

RMarkdown,	548-552

repositories

CRAN

METACRAN	website,	24

packages,	finding,	23-24

for	packages,	23

representing	groups	of	data,	360-362

reshape	package,	243

cast	function,	245-246

melt	function,	243-245

resid	function,	385-386

restoring	R	sessions,	221



restructuring,	242-249

with	reshape	package,	243

cast	function,	245-246

melt	function,	243-245

with	tidyr	package,	246-249

gather	function,	247-248

spread	function,	248

return	objects,	134-136

returning	error	messages,	152-153

reversing	logical	values,	142-143

RExcel,	13

RMarkdown,	dynamic	reporting,	548-552

code	chunks,	including,	550-552

HTML	files,	building,	550

RODBC	package,	223-225

rows,	adding,	278-279

roxygen	headers,	generating	documentation	with,	477-482

function	headers,	478-480

help	pages,	480-482

Rprof	function,	456

RStudio,	12-13

data	frames,	viewing,	94-96

Help	pane,	28-29

Import	Wizard,	218

Installing,	577-578

packages,	loading,	27-28

Packages	pane,	24

script	window,	132

sessions,	restoring,	221

Source	pane,	16

text	files

importing,	218



reading,	218-220

Rtools,	installing	on	Windows,	575-577

runif	function,	157

R	Console,	14-15

R	Consortium,	3,	5-6

R	Development	Core	Team,	3

R	Documentation,	5

R	GUI,	11-12

R	models.	See	models

R6	class	system,	542-544

active	bindings,	544

example	of,	543-544

private	members,	542

public	members,	542

rbind	function,	50,	237-238

Rcpp	package,	464-468,	501-502

.RData	format,	221

reading

CSV	files,	220

structured	data	from	Excel,	226-227

text	files,	218-220

read.table	function,	218

recommended	packages,	23

records,	counting,	281

re-creating	simulated	values,	120

Reference	Classes,	535-542

creating,	535-537

documenting,	542

methods,	defining,	537-540

objects,	copying,	540-542

referencing

columns,	179-180



data	frames	as	a	matrix,	90-92

data	with	loops,	176-177

list	elements,	76-79

with	$,	77-79

double	square	bracket	referencing,	76-77

regular	expressions,	124,	182

relational	databases,	223-226

DBI,	225-226

RODBC	package,	223-225

remove.packages	function,	24

removing

classes,	510

intercepts,	381

objects	from	workspace,	20

renaming	columns,	277-278

reordering	factors,	110

rep	function,	39-41

repeated	values,	creating	sequence	of,	39-41

replace	function,	122

reporting

bugs,	8

dynamic	reporting,	547-548

LaTex,	553-556

RMarkdown,	548-552

repositories

CRAN

METACRAN	website,	24

packages,	finding,	23-24

for	packages,	23

representing	groups	of	data,	360-362

reshape	package,	243

cast	function,	245-246



melt	function,	243-245

resid	function,	385-386

restoring	R	sessions,	221

restructuring,	242-249

with	reshape	package,	243

cast	function,	245-246

melt	function,	243-245

with	tidyr	package,	246-249

gather	function,	247-248

spread	function,	248

return	objects,	134-136

returning	error	messages,	152-153

reversing	logical	values,	142-143

RExcel,	13

RMarkdown,	dynamic	reporting,	548-552

code	chunks,	including,	550-552

HTML	files,	building,	550

RODBC	package,	223-225

rows,	adding,	278-279

roxygen	headers,	generating	documentation	with,	477-482

function	headers,	478-480

help	pages,	480-482

Rprof	function,	456

RStudio,	12-13

data	frames,	viewing,	94-96

Help	pane,	28-29

Import	Wizard,	218

Installing,	577-578

packages,	loading,	27-28

Packages	pane,	24

script	window,	132

sessions,	restoring,	221



Source	pane,	16

text	files

importing,	218

reading,	218-220

Rtools,	installing	on	Windows,	575-577

runif	function,	157

S
S,	development	of,	1-3

S3	class	system,	406,	509

classes,	creating,	509-511

documenting,	518

inheritance,	516-518

limitations	of,	518-519

lists	versus	attributes,	514-515

naming	conventions,	512

S4	class	system,	523-535

defining	classes,	525-529

documenting,	534-535

generics,	defining,	530-531

inheritance,	532-534

methods,	529-530

multiple	dispatch,	531-532

sapply	function,	204-208

returns,	205-207

Sarkar,	Deepayan,	346

sas7bdat	package,	223

save	function,	22

saving

function	output,	131

workspace	objects,	22

workspaces,	221-222

scoping	rules	for	functions,	133-134



script	window	(RStudio),	132

scripting,	16

search	path,	17-18

masking,	28

searching	and	replacing	character	data,	124-125

searchpaths	function,	17-18

select	function,	264-265

selecting	columns	from	data	frames,	88

self-starting	functions,	427

separate	function,	249

seq	function,	38-39

sequence	of	repeated	values,	creating,	39-41

server	component	of	Shiny	applications,	564-566

sharing	Shiny	applications,	570

Shiny	package,	561-566

applications

server	component,	564-566

sharing,	570

structure,	561-562

ui	component,	562-564

interactive	documents,	569-570

reactive	functions,	566-568

shortened	$	referencing,	78-79

simulated	values,	re-creating,	120

simulating	numeric	values,	83-84

single	mode	data	structures,	34-35.	See	also	multimode	data	structures

arrays,	58-60

creating,	58-60

comparing,	60-62

matrices,	49-58

attributes,	52-54

column	index,	55



creating,	49-52

dropping	dimensions,	56

subscripting,	55

transposing,	50-51

vectors,	35-49

attributes,	41-43

combining,	49-51

creating,	35-41

lapply	function,	199-201

subscripting,	43-49

smoothing	in	time	series	analysis,	446-447

sorting

with	arrange	function,	263

data	frames,	236-237

descending	sorts,	237

Source	pane	(RStudio),	16

special	characters,	adding	to	plots,	294

specifying

colors,	288

logical	values,	36

variables	for	aggregate	function,	254-256

split	function,	195-197

splitting	data	frames,	197-199

S-PLUS,	3

spread	function,	248

sqlcolumns	function,	224

statistical	distributions,	119-120

statistical	models.	See	models

Statistical	Sciences,	Inc.,	3

statistical	summary	functions,	118-119

missing	data,	122-123

stl	function,	443-445



stop	function,	152

structure

of	functions,	129-130

of	if/else	statements,	136-146

of	R	packages,	472-476

creating,	472-474

DESCRIPTION	file,	474-475

NAMESPACE	file,	475-476

of	Shiny	applications,	561-562

tidy	structure,	243

structured	data,	reading	from	Excel,	226-227

styles	for	lattice	graphics

controlling,	372-376

previewing,	373

subscripting,	60-62

arrays,	60

columns,	88-90

data	frames,	92-93

data.tables,	275-276

with	filter	function,	264

lists,	73

blank	inputs,	74

character	value	inputs,	76

logical	values,	75

negative	integer	inputs,	75

positive	integer	inputs,	74-75

matrices,	55

character	values,	57-58

logical	values,	56-57

with	select	function,	264-265

vectors,	43-49

blank	inputs,	44-45



character	values,	48

logical	values,	46-47

negative	integers,	45-46

positive	integers,	45

subsets	of	time	series,	443

subsetting	lists,	73

substitute	function,	166

substring	function,	123

summarizing	data	frames,	96

summary	function,	96,	382-383,	405

classes	and	methods,	405

in	GLM	framework,	415-416

with	names	function,	388

in	survival	analysis,	433-434

survfit	function,	433-434

in	proportional	hazards	regression,	439-441

survival	analysis,	430

censoring	in,	431-432

estimating	survival	function,	432-436

extensions,	441

ovarian	data	frame	example,	431

proportional	hazards	regression,	437-441

switch	function,	159

symbols,	plotting	symbols,	296-297

syntax

comment	blocks,	15

continuation	prompts,	15

lists

named	lists,	81-82

unnamed	lists,	81

R	Console,	14-15

T



table	function,	121

tail	function,	94

tapply	function,	208-213

multiple	grouping	variables,	209-210

multiple	returns,	210-212

return	values,	212

Task	Views,	23-24

tbl_df	objects,	creating,	262-263

test	framework,	developing,	490-494

incorporating	tests	into	packages,	493-494

test_that	function,	490-493

test_that	function,	490-493

test-driven	development,	494

text	files,	217-223

exporting,	220

importing,	218

reading,	218-220

text	function,	300-302

theme	layers,	339-340

themes,	creating	for	lattice	graphics,	374-376

tidy	data,	243

tidyr	package,	246-249

gather	function,	247-248

separate	function,	249

spread	function,	248

tilde	(~),	formula	relationships,	381

time

lubridate	package,	107-108

manipulating,	105-106

time	objects,	creating,	104-105

time	series	analysis

ARIMA	models,	448-451



autocorrelations,	448

decomposition,	443-445

extensions,	452

smoothing,	446-447

ts	function,	441-443

time	zones,	defining,	105

titles,	labeling	on	plots,	293-294

transforming	variables,	402-404

transposing	matrices,	50-51

trellis	graphics,	345

ts	function,	441-443

tsdiag	function,	449-450

U
ui	component	of	Shiny	applications,	562-564

univariate	graphics,	289-291

lattice,	348-350

unnamed	lists,	81

update	function,	392-393

updating	methods,	513

UseMethod	function,	512

user	events,	6

V
variables

continuous	variables,	creating	factors,	111-112

factor	variables

in	linear	models,	398-401

in	logistic	regression,	419

loop,	175-176

naming,	241

plotting,	358-360

specifying	for	aggregate	function,	254-256



transforming,	402-404

univariate	graphics,	289-291

lattice,	348-350

vectorization,	459-462

vectors,	15,	34-49

attributes,	41-43

combining,	49-51

creating,	35-41

with	c	function,	35-36

lapply	function,	199-201

subscripting,	43-49

blank	inputs,	44-45

character	values,	48

logical	values,	46-47

negative	integers,	45-46

positive	integers,	45

versions	of	R,	7-8

nicknames,	7

viewing	data	frames,	94-96

vignettes,	477

including	in	packages,	496-498

markdown	notation,	499

writing,	498-501

Visualizing	Data,	345

visualizing	data	frames,	97-98

W
warnings	for	functions,	returning,	153-155

websites

METACRAN,	24

R	Documentation,	5

R	Project	website,	3

which	argument	(plot	function),	385



while	function,	180-181

“while”	loops,	174

white	space,	45

Wickham,	Hadley,	213,	242,	261,	313

window	function,	443

Windows	operating	system

building	packages,	482

clipboard,	219

installing	R,	573-574

installing	RStudio,	577-578

installing	Rtools,	575

working	directory,	21

workspaces,	19-22

objects

removing,	20

saving,	22

saving,	221-222

working	directory,	21

writing

classes,	505

generics,	511-516

object	orientation,	506-508

S3,	509

vignettes,	498-501

X
xapply	function,	182

X-axis,	labeling	on	plots,	293-295

XCode,	installing	Rtools,	575

XLConnect	package,	228-231

Y-Z
Y-axis,	labeling	on	plots,	293-295



zoo	package,	123







Code	Snippets
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