
www.allitebooks.com

http://www.allitebooks.org

PROGRAMMING WITH

MICROSOFT® VISUAL BASIC® 2015

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

S e v e n t h e d i t i o n

PROGRAMMING

W ITH M ICROSOFT®

V I SUAL BAS IC® 2015

D I A N E Z A K

A u s t r a l i a • B r a z i l • M e x i c o • S i n g a p o r e • U n i t e d K i n g d o m • U n i t e d S t a t e s

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed
content does not materially affect the overall learning experience. The publisher reserves the right
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for
materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product
text may not be available in the eBook version.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

Programming with Microsoft® Visual Basic®
2015, Seventh Edition
Diane Zak

Product Director: Kathleen McMahon

Product Team Manager: Kristin McNary

Senior Product Manager: Jim Gish

Senior Content Developer: Alyssa Pratt

Product Assistant: Abigail Pufpaff

Marketing Manager: Eric LaScola

Senior Production Director:
Wendy Troeger

Production Director: Patty Stephan

Senior Content Project Manager:
Jennifer K. Feltri-George

Managing Art Director: Jack Pendleton

Cover image(s):
© Rudchenko Liliia/Shutterstock.com

Unless otherwise noted all screenshots are
courtesy of Microsoft Corporation

Open Clip art source: OpenClipArt

Printed in the United States of America
Print Number: 01 Print Year: 2016

© 2016 Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored or used in any form or by
any means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the publisher.

Library of Congress Control Number: 2015940168
ISBN: 978-1-285-86026-8

Cengage Learning
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with employees residing in nearly 40 different countries and sales in more
than 125 countries around the world. Find your local representative at
www.cengage.com

Cengage Learning products are represented in Canada by
Nelson Education, Ltd.

For your course and learning solutions, visit www.cengage.com

Purchase any of our products at your local college store or at our
preferred online store www.cengagebrain.com

Notice to the Reader
Publisher does not warrant or guarantee any of the products described herein or
perform any independent analysis in connection with any of the product informa-
tion contained herein. Publisher does not assume, and expressly disclaims, any
obligation to obtain and include information other than that provided to it by the
manufacturer. The reader is expressly warned to consider and adopt all safety
 precautions that might be indicated by the activities described herein and to avoid
all potential hazards. By following the instructions contained herein, the reader
 willingly assumes all risks in connection with such instructions. The publisher
makes no representations or warranties of any kind, including but not limited to,
the warranties of fitness for particular purpose or merchantability, nor are any such
 representations implied with respect to the material set forth herein, and the
 publisher takes no responsibility with respect to such material. The publisher shall
not be liable for any special, consequential, or exemplary damages resulting, in
whole or part, from the readers’ use of, or reliance upon, this material.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all
requests online at www.cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WCN: 02-200-203

www.allitebooks.com

http://www.allitebooks.org

v

Brief Contents

 Preface xvi i

 Read This Before You Begin xxi i

overview An Introduct ion to Programming 1

Chapter 1 An Introduct ion to V isual Basic 2015 9

Chapter 2 Designing Appl icat ions 59

Chapter 3 Us ing Var iables and Constants 111

Chapter 4 The Select ion Structure 179

Chapter 5 More on the Select ion Structure 247

Chapter 6 The Repet i t ion Structure 315

Chapter 7 Sub and Funct ion Procedures 389

Chapter 8 Str ing Manipulat ion 449

Chapter 9 Arrays 499

Chapter 10 Structures and Sequent ia l Access F i les 559

Chapter 11 C lasses and Objects 609

Chapter 12 Web Appl icat ions 671

Chapter 13 Work ing wi th Access Databases and L INQ 723

Chapter 14 Access Databases and SQL 777

appendix a F ind ing and F ix ing Program Errors 821

appendix B GUI Design Guidel ines 839

appendix C V isual Basic Convers ion Funct ions 845

appendix d V isual Basic 2015 Cheat Sheet 847

appendix e Case Projects 865

appendix F Mul t ip le Forms and Dia log Boxes online

 Index 869

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

vi

Contents

 Preface xvi i
 Read This Before You Begin xxi i

overview An Introduct ion to Programming 1

Programming a Computer 2
The Programmer’s Job 2
Employment Opportunities 2

Visual Basic 2015 3
A Visual Basic 2015 Demonstration 4

Using the Chapters Effectively 5
Summary 6
Key Terms 6

Chapter 1 An Introduct ion to V isual Basic 2015 9

LeSSon a The Splash Screen Appl icat ion 11
Managing the Windows in the IDE 14
The Windows Form Designer Window 15
The Solution Explorer Window 16
The Properties Window 17

Properties of a Windows Form 19
The Name Property 20
The Text Property 20
The StartPosition Property 20
The Font Property 21
The Size Property 21

Setting and Restoring a Property’s Value 21
Saving a Solution 22
Closing the Current Solution 22
Opening an Existing Solution 23
Exiting Visual Studio 2015 23
Lesson A Summary 23
Lesson A Key Terms 25
Lesson A Review Questions 26
Lesson A Exercises 27

LeSSon B The Toolbox Window 28
The Label Tool 29

Setting the Text Property 31
Setting the Location Property 31

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

vii

Changing a Property for Multiple Controls 31
Using the Format Menu’s Order Option 32

The PictureBox Tool 33
Using the Format Menu to Align and Size 35

The Button Tool 36
Starting and Ending an Application 36
The Code Editor Window 38

The Me Close() Instruction 40
Lesson B Summary 42
Lesson B Key Terms 43
Lesson B Review Questions 44
Lesson B Exercises 45

LeSSon C Us ing the T imer Tool 48
Setting the FormBorderStyle Property 50
The MinimizeBox, MaximizeBox, and ControlBox Properties 50
Printing the Application’s Code and Interface 51
Lesson C Summary 52
Lesson C Key Terms 53
Lesson C Review Questions 53
Lesson C Exercises 54

Chapter 2 Designing Appl icat ions 59

LeSSon a Creat ing an Object -Or iented Appl icat ion 62
Planning an Object-Oriented Application 62

Identifying the Application’s Tasks 63
Identifying the Objects 64
Identifying the Events 65
Drawing a Sketch of the User Interface 66

Lesson A Summary 69
Lesson A Key Terms 69
Lesson A Review Questions 70
Lesson A Exercises 70

LeSSon B Bui ld ing the User Inter face 72
Including Graphics in the User Interface 73
Selecting Fonts for the Interface 73
Adding Color to the Interface 74
The BorderStyle, AutoSize, and TextAlign Properties 75
Adding a Text Box to the Form 76

Locking the Controls on a Form 77
Assigning Access Keys 77
Controlling the Tab Order 78
Lesson B Summary 81
Lesson B Key Terms 82
Lesson B Review Questions 83
Lesson B Exercises 83

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

C o n t e n t S

viii

LeSSon C Coding the Appl icat ion 86
Using Pseudocode to Plan a Procedure 87
Using a Flowchart to Plan a Procedure 88

Coding the btnClear_Click Procedure 89
Assigning a Value to a Property During Run Time 90
Using the Focus Method 91
Internally Documenting the Program Code 92

Coding the btnPrint_Click Procedure 93
Showing and Hiding a Control 94

Writing Arithmetic Expressions 95
Coding the btnCalc_Click Procedure 97

The Val Function 98
The Format Function 100

Testing and Debugging the Application 101
Assembling the Documentation 103
Lesson C Summary 105
Lesson C Key Terms 105
Lesson C Review Questions 107
Lesson C Exercises 107

Chapter 3 Us ing Var iables and Constants 111

LeSSon a Us ing Var iables to Store Informat ion 114
Selecting a Data Type for a Variable 114
Selecting a Name for a Variable 116
Declaring a Variable 117

Assigning Data to an Existing Variable 118
The TryParse Method 119
The Convert Class 121

The Scope and Lifetime of a Variable 123
Variables with Procedure Scope 123
Variables with Class Scope 126

Static Variables 128
Named Constants 130
Option Statements 133

Option Explicit and Option Infer 133
Option Strict 133

Lesson A Summary 136
Lesson A Key Terms 137
Lesson A Review Questions 138
Lesson A Exercises 140

LeSSon B Modi fy ing the Meyer ’s Purple Bakery Appl icat ion 144
Modifying the Calculate Button’s Code 145
Using the ToString Method to Format Numbers 152
Concatenating Strings 153
The InputBox Function 155
The ControlChars NewLine Constant 158
Designating a Default Button 159
Lesson B Summary 162

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

ix

Lesson B Key Terms 162
Lesson B Review Questions 163
Lesson B Exercises 164

LeSSon C Modi fy ing the Load and Cl ick Event Procedures 167
Coding the TextChanged Event Procedure 170
Associating a Procedure with Different Objects and Events 170
Lesson C Summary 174
Lesson C Key Terms 174
Lesson C Review Questions 175
Lesson C Exercises 175

Chapter 4 The Select ion Structure 179

LeSSon a Making Decis ions in a Program 182
Flowcharting a Selection Structure 185
Coding Selection Structures in Visual Basic 187
Comparison Operators 189

Using Comparison Operators: Swapping Numeric Values 191
Using Comparison Operators: Displaying Net Income or Loss 194

Logical Operators 197
Using the Truth Tables 200

Comparing Strings Containing One or More Letters 203
Converting a String to Uppercase or Lowercase 205

Using the ToUpper and ToLower Methods: Displaying a Message 206
Summary of Operators 208
Lesson A Summary 209
Lesson A Key Terms 210
Lesson A Review Questions 211
Lesson A Exercises 213

LeSSon B Creat ing the Treel ine Resor t Appl icat ion 216
Adding a Group Box to the Form 216

Coding the Treeline Resort Application 218
Coding the btnCalc Control’s Click Event Procedure 219

The MessageBox Show Method 222
Completing the btnCalc_Click Procedure 226
Lesson B Summary 229
Lesson B Key Terms 230
Lesson B Review Questions 230
Lesson B Exercises 231

LeSSon C Coding the KeyPress Event Procedures 233
Coding the Enter Event Procedures 235
Lesson C Summary 239
Lesson C Key Terms 239
Lesson C Review Questions 240
Lesson C Exercises 241

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C o n t e n t S

x

Chapter 5 More on the Select ion Structure 247

LeSSon a Nested Select ion Structures 250
Flowcharting a Nested Selection Structure 252
Coding a Nested Selection Structure 255
Logic Errors in Selection Structures 257

First Logic Error: Using a Compound Condition Rather than a Nested
Selection Structure 260

Second Logic Error: Reversing the Outer and Nested Decisions 261
Third Logic Error: Using an Unnecessary Nested Selection Structure 262
Fourth Logic Error: Including an Unnecessary Comparison in a Condition 263

Multiple-Alternative Selection Structures 264
The Select Case Statement 267

Specifying a Range of Values in a Case Clause 269
Lesson A Summary 272
Lesson A Key Terms 272
Lesson A Review Questions 272
Lesson A Exercises 275

LeSSon B Modi fy ing the Treel ine Resor t Appl icat ion 280
Adding a Radio Button to the Interface 282
Adding a Check Box to the Interface 283

Modifying the Calculate Button’s Code 285
Comparing Boolean Values 288

Modifying the ClearLabels Procedure 291
Lesson B Summary 294
Lesson B Key Terms 295
Lesson B Review Questions 295
Lesson B Exercises 296

LeSSon C Us ing the TryParse Method for Data Val idat ion 300
Generating Random Integers 302
Completing the Roll ‘Em Game Application 306
Lesson C Summary 309
Lesson C Key Terms 309
Lesson C Review Questions 309
Lesson C Exercises 310

Chapter 6 The Repet i t ion Structure 315

LeSSon a Repeat ing Program Instruct ions 317
The Projected Sales Application 320
The Do Loop Statement 323

Coding the Modified Projected Sales Application 325
Counters and Accumulators 328

The Addition Application 330
Arithmetic Assignment Operators 333
The For Next Statement 335

A Different Version of the Projected Sales Application 337
Comparing the For Next and Do Loop Statements 340

Lesson A Summary 340

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xi

Lesson A Key Terms 341
Lesson A Review Questions 342
Lesson A Exercises 345

LeSSon B Creat ing the Month ly Payment Appl icat ion 350
Including a List Box in an Interface 351

Adding Items to a List Box 352
Clearing the Items from a List Box 353
The Sorted Property 354

Coding the Monthly Payment Application 355
The SelectedItem and SelectedIndex Properties 356
The SelectedValueChanged and SelectedIndexChanged Events 358
Coding the Calculate Button’s Click Event Procedure 358

The Financial Pmt Method 359
Lesson B Summary 363
Lesson B Key Terms 364
Lesson B Review Questions 364
Lesson B Exercises 365

LeSSon C The Electr ic Bi l l Appl icat ion 371
Nested Repetition Structures 376
The Refresh and Sleep Methods 378
Trixie at the Diner 379

The Savings Account Application 380
A Caution About Real Numbers 382

Lesson C Summary 385
Lesson C Key Terms 385
Lesson C Review Questions 385
Lesson C Exercises 386

Chapter 7 Sub and Funct ion Procedures 389

LeSSon a Sub Procedures 392
Passing Variables 394

Passing Variables by Value 394
Passing Variables by Reference 397

Function Procedures 404
Lesson A Summary 412
Lesson A Key Terms 412
Lesson A Review Questions 413
Lesson A Exercises 416

LeSSon B Inc luding a Combo Box in an Inter face 420
Lesson B Summary 424
Lesson B Key Terms 425
Lesson B Review Questions 425
Lesson B Exercises 426

LeSSon C Creat ing the Cerrut i Company Appl icat ion 428
Coding the FormClosing Event Procedure 429

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C o n t e n t S

xii

Coding the btnCalc_Click Procedure 431
Creating the GetFwt Function 433

Completing the btnCalc_Click Procedure 437
Rounding Numbers 437

Lesson C Summary 444
Lesson C Key Terms 445
Lesson C Review Questions 445
Lesson C Exercises 445

Chapter 8 Str ing Manipulat ion 449

LeSSon a Work ing wi th Str ings 452
Determining the Number of Characters in a String 452
Removing Characters from a String 453

The Product ID Application 454
Inserting Characters in a String 455

Aligning the Characters in a String 456
The Net Pay Application 457

Searching a String 458
The City and State Application 460

Accessing the Characters in a String 461
The Rearrange Name Application 462

Using Pattern Matching to Compare Strings 464
Modifying the Product ID Application 466
Lesson A Summary 468
Lesson A Key Terms 469
Lesson A Review Questions 469
Lesson A Exercises 472

LeSSon B Adding a Menu to a Form 475
Assigning Shortcut Keys to Menu Items 478
Coding the Exit Menu Item 480
Coding the txtLetter Control’s KeyPress Event 480

Lesson B Summary 481
Lesson B Key Terms 481
Lesson B Review Questions 481
Lesson B Exercises 482

LeSSon C Complet ing the Pizza Game Appl icat ion 483
Coding the File Menu’s New Game Option 484

Completing the Check Button’s Click Event Procedure 487
Lesson C Summary 493
Lesson C Key Terms 494
Lesson C Review Questions 494
Lesson C Exercises 495

Chapter 9 Arrays 499

LeSSon a Arrays 501
One-Dimensional Arrays 502

Declaring a One-Dimensional Array 502

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xiii

Storing Data in a One-Dimensional Array 504
Determining the Number of Elements in a One-Dimensional Array 505
Determining the Highest Subscript in a One-Dimensional Array 505
Traversing a One-Dimensional Array 506

The For Each Next Statement 507
Calculating the Average Stock Price 508
Finding the Highest Value 511
Sorting a One-Dimensional Array 515
Lesson A Summary 517
Lesson A Key Terms 517
Lesson A Review Questions 518
Lesson A Exercises 521

LeSSon B Arrays and Col lect ions 525
Accumulator and Counter Arrays 528
Parallel One-Dimensional Arrays 532
The Die Tracker Application 536
Lesson B Summary 540
Lesson B Key Terms 540
Lesson B Review Questions 541
Lesson B Exercises 541

LeSSon C Two-Dimensional Arrays 544
Traversing a Two-Dimensional Array 547

Totaling the Values Stored in a Two-Dimensional Array 548
Searching a Two-Dimensional Array 550
Lesson C Summary 553
Lesson C Key Term 554
Lesson C Review Questions 554
Lesson C Exercises 555

Chapter 10 Structures and Sequent ia l Access F i les 559

LeSSon a Structures 562
Declaring and Using a Structure Variable 563
Passing a Structure Variable to a Procedure 564
Creating an Array of Structure Variables 568
Lesson A Summary 573
Lesson A Key Terms 573
Lesson A Review Questions 573
Lesson A Exercises 574

LeSSon B Sequent ia l Access F i les 578
Writing Data to a Sequential Access File 578
Closing an Output Sequential Access File 581
Reading Data from a Sequential Access File 582
Closing an Input Sequential Access File 586
Lesson B Summary 589
Lesson B Key Terms 589
Lesson B Review Questions 590
Lesson B Exercises 591

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C o n t e n t S

xiv

LeSSon C Coding the eBook Col lect ion Appl icat ion 594
Coding the frmMain_Load Procedure 595
Coding the btnAdd_Click Procedure 597
Aligning Columns of Information 598
Coding the btnRemove_Click Procedure 600
Coding the frmMain_FormClosing Procedure 601
Lesson C Summary 605
Lesson C Key Terms 605
Lesson C Review Questions 606
Lesson C Exercises 606

Chapter 11 C lasses and Objects 609

LeSSon a Object -Or iented Programming Terminology 612
Creating a Class 613
Example 1—A Class That Contains Public Variables Only 614
Example 2—A Class That Contains Private Variables, Public Properties, and Methods 618

Private Variables and Property Procedures 620
Constructors 623
Methods Other than Constructors 625
Coding the Sunnyside Decks Application 626

Example 3—A Class That Contains a Parameterized Constructor 629
Example 4—Reusing a Class 633
Lesson A Summary 636
Lesson A Key Terms 637
Lesson A Review Questions 638
Lesson A Exercises 639

LeSSon B Example 5—A Class That Contains a ReadOnly Property 644
Example 6—A Class That Contains Auto-Implemented Properties 649
Example 7—A Class That Contains Overloaded Methods 651
Lesson B Summary 657
Lesson B Key Terms 658
Lesson B Review Questions 658
Lesson B Exercises 658

LeSSon C Example 8—Using a Base Class and a Der ived Class 662
Lesson C Summary 668
Lesson C Key Terms 668
Lesson C Review Questions 668
Lesson C Exercises 669

Chapter 12 Web Appl icat ions 671

LeSSon a Web Appl icat ions 673
Adding the Default aspx Web Page to the Application 677

Including a Title on a Web Page 679
Adding Static Text to a Web Page 679

Adding Another Web Page to the Application 681
Adding a Hyperlink Control to a Web Page 681

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xv

Starting a Web Application 683
Adding an Image to a Web Page 685
Closing and Opening an Existing Web Application 687
Repositioning a Control on a Web Page 688
Lesson A Summary 689
Lesson A Key Terms 691
Lesson A Review Questions 691
Lesson A Exercises 692

LeSSon B Dynamic Web Pages 695
Coding the Submit Button’s Click Event Procedure 699
Validating User Input 701
Lesson B Summary 704
Lesson B Key Term 705
Lesson B Review Questions 705
Lesson B Exercises 705

LeSSon C Creat ing the Sate l l i te Radio Appl icat ion 709
Using the RadioButtonList Tool 710
Using the CheckBox Tool 711

Coding the Calculate Button’s Click Event Procedure 712
Clearing the Previous Subscription Costs 715
Lesson C Summary 717
Lesson C Key Terms 718
Lesson C Review Questions 718
Lesson C Exercises 719

Chapter 13 Work ing wi th Access Databases and L INQ 723

LeSSon a Database Terminology 726
Connecting an Application to a Microsoft Access Database 728

Previewing the Contents of a Dataset 731
Binding the Objects in a Dataset 732

Having the Computer Create a Bound Control 733
The DataGridView Control 736

Visual Basic Code 739
Handling Errors in the Code 740

The Copy to Output Directory Property 743
Binding to an Existing Control 744
Coding the Next Record and Previous Record Buttons 747
Formatting the Data Displayed in a Bound Label Control 748
Lesson A Summary 749
Lesson A Key Terms 750
Lesson A Review Questions 751
Lesson A Exercises 752

LeSSon B Creat ing a Query 754
Customizing a BindingNavigator Control 758
Using the LINQ Aggregate Operators 760
Lesson B Summary 763
Lesson B Key Terms 763

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C o n t e n t S

xvi

Lesson B Review Questions 764
Lesson B Exercises 765

LeSSon C Complet ing the Games Galore Appl icat ion 767
Coding the Games Galore Application 769
Lesson C Summary 771
Lesson C Key Terms 771
Lesson C Review Questions 771
Lesson C Exercises 773

Chapter 14 Access Databases and SQL 777

LeSSon a Adding Records to a Dataset 780
Sorting the Records in a Dataset 785
Deleting Records from a Dataset 786
Lesson A Summary 790
Lesson A Key Terms 791
Lesson A Review Questions 791
Lesson A Exercises 792

LeSSon B Structured Query Language 794
The SELECT Statement 794
Creating a Query 796
Lesson B Summary 801
Lesson B Key Terms 801
Lesson B Review Questions 802
Lesson B Exercises 803

LeSSon C Parameter Quer ies 805
Saving a Query 807
Invoking a Query from Code 809
The INSERT and DELETE Statements 811
Lesson C Summary 818
Lesson C Key Terms 819
Lesson C Review Questions 819
Lesson C Exercises 820

appendix a F ind ing and F ix ing Program Errors 821

appendix B GUI Design Guidel ines 839

appendix C V isual Basic Convers ion Funct ions 845

appendix d V isual Basic 2012 Cheat Sheet 847

appendix e Case Projects 865

appendix F Mul t ip le Forms and Dia log Boxes online

 Index 869

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xvii

Programming with Microsoft Visual Basic 2015, Seventh Edition uses Visual Basic 2015, an
object-oriented language, to teach programming concepts. This book is designed for a beginning
programming course. However, it assumes students are familiar with basic Windows skills and
file management.

organization and Coverage
Programming with Microsoft Visual Basic 2015, Seventh Edition contains an Overview and 14
chapters that present hands-on instruction; it also contains five appendices (A through E).
An additional appendix (Appendix F) covering multiple-form applications and the FontDialog,
ColorDialog, and TabControl tools is available online at CengageBrain.com.

In the chapters, students with no previous programming experience learn how to plan and create
their own interactive Windows applications. GUI design skills, OOP concepts, and planning
tools (such as TOE charts, pseudocode, and flowcharts) are emphasized throughout the book.
The chapters show students how to work with objects and write Visual Basic statements such as
If...Then...Else, Select Case, Do...Loop, For...Next, and For Each...Next. Students also learn how
to create and manipulate variables, constants, strings, sequential access files, structures, classes,
and arrays. Chapter 12 shows students how to create both static and dynamic Web applications.
In Chapter 13, students learn how to connect an application to a Microsoft Access database,
and then use Language-Integrated Query (LINQ) to query the database. Chapter 14 continues
the coverage of databases, introducing the student to more advanced concepts and Structured
Query Language (SQL).

Appendix A, which can be covered after Chapter 3, teaches students how to locate and correct
errors in their code. The appendix shows students how to step through their code and also how
to create breakpoints. Appendix B recaps the GUI design guidelines mentioned in the chapters,
and Appendix C lists the Visual Basic conversion functions. The Visual Basic 2015 Cheat Sheet
contained in Appendix D summarizes important concepts covered in the chapters, such as the
syntax of statements, methods, and so on. The Cheat Sheet provides a convenient place for
students to locate the information they need as they are creating and coding their applications.
Appendix E contains Case Projects that can be assigned after completing specific chapters in
the book.

Approach
Programming with Microsoft Visual Basic 2015, Seventh Edition teaches programming concepts
using a task-driven rather than a command-driven approach. By working through the chapters,
which are each motivated by a realistic case, students learn how to develop applications they
are likely to encounter in the workplace. This is much more effective than memorizing a list of
commands out of context. The book motivates students by demonstrating why they need to
learn the concepts and skills covered in each chapter.

Preface

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

p r e Fa C e Organization and Coverage

xviii

Features
Programming with Microsoft Visual Basic 2015, Seventh Edition is an exceptional textbook
because it also includes the following features:

read thiS BeFore YoU BeGin This section is consistent with Cengage Learning’s
unequaled commitment to helping instructors introduce technology into the classroom.
Technical considerations and assumptions about hardware, software, and default settings are
listed in one place to help instructors save time and eliminate unnecessary aggravation.

YoU do it! BoxeS These boxes provide simple applications that allow students to
demonstrate their understanding of a concept before moving on to the next concept. The YOU
DO IT! boxes are located almost exclusively in Lesson A of each chapter.

viSUaL StUdio 2015 MethodS The book focuses on Visual Studio 2015 methods rather
than on Visual Basic functions. Exceptions to this are the Val and Format functions, which are
introduced in Chapter 2. These functions are covered in the book simply because it is likely that
students will encounter them in existing Visual Basic programs. However, in Chapter 3, the
student is taught to use the TryParse method and the Convert class methods rather than the
Val function. Also in Chapter 3, the Format function is replaced with the ToString method.

option StateMentS All programs include the Option Explicit, Option Strict, and Option
Infer statements.

Start here arrowS These arrows indicate the beginning of a tutorial steps section in
the book.

dataBaSeS, LinQ, and SQL The book includes two chapters (Chapters 13 and 14) on
databases. LINQ is covered in Chapter 13. SQL is covered in Chapter 14.

FiGUreS Figures that introduce new statements, functions, or methods contain both the
syntax and examples of using the syntax. Including the syntax in the figures makes the examples
more meaningful, and vice versa.

Chapter CaSeS Each chapter begins with a programming-related problem that students
could reasonably expect to encounter in business, followed by a demonstration of an application
that could be used to solve the problem. Showing the students the completed application before
they learn how to create it is motivational and instructionally sound. By allowing the students to
see the type of application they will be able to create after completing the chapter, the students
will be more motivated to learn because they can see how the programming concepts they are
about to learn can be used and, therefore, why the concepts are important.

LeSSonS Each chapter is divided into three lessons—A, B, and C. Lesson A introduces
the programming concepts that will be used in the completed application. The concepts are
illustrated with code examples and sample applications. The user interface for each sample
application is provided to the student. Also provided are tutorial-style steps that guide the
student on coding, running, and testing the application. Each sample application allows the
student to observe how the current concept can be used before the next concept is introduced.
In Lessons B and/or C, the student creates the application required to solve the problem
specified in the Chapter Case.

appendiCeS Appendix A, which can be covered after Chapter 3, teaches students how to locate
and correct errors (syntax, logic, and run time) in their code. The appendix shows
students how to step through their code and also how to create breakpoints. Appendix B
summarizes the GUI design guidelines taught in the chapters, making it easier for the student to
follow the guidelines when designing an application’s interface. Appendix C lists the Visual Basic

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

Organization and Coverage

xix

conversion functions. Appendix D contains a Cheat Sheet that summarizes important concepts
covered in the chapters, such as the syntax of statements, methods, and so on. The Cheat Sheet
provides a convenient place for students to locate the information they need as they are creating and
coding their applications. Appendix E contains Case Projects that can be assigned after completing
specific chapters in the book. Appendix F, which is available online at CengageBrain.com, covers
multiple-form applications and the FontDialog, ColorDialog, and TabControl tools.

GUi deSiGn tip BoxeS The GUI DESIGN TIP boxes contain guidelines and
recommendations for designing applications that follow Windows standards. Appendix B
provides a summary of the GUI design guidelines covered in the chapters.

tip These notes provide additional information about the current concept. Examples
include alternative ways of writing statements or performing tasks, as well as warnings
about common mistakes made when using a particular command and reminders of related
concepts learned in previous chapters.

SUMMarY Each lesson contains a Summary section that recaps the concepts covered in
the lesson.

KeY terMS Following the Summary section in each lesson is a listing of the key terms
introduced throughout the lesson, along with their definitions.

review QUeStionS Each lesson contains Review Questions designed to test a student’s
understanding of the lesson’s concepts.

exerCiSeS The Review Questions in each lesson are followed by Exercises, which provide
students with additional practice of the skills and concepts they learned in the lesson. The
Exercises are designated as INTRODUCTORY, INTERMEDIATE, ADVANCED, DISCOVERY,
and SWAT THE BUGS. The DISCOVERY Exercises encourage students to challenge and
independently develop their own programming skills while exploring the capabilities of Visual
Basic 2015. The SWAT THE BUGS Exercises provide an opportunity for students to detect and
correct errors in an application’s code.

New to This Edition!
 Updated videoS These notes direct students to videos that accompany each
chapter in the book. The videos explain and/or demonstrate one or more of the
chapter’s concepts. The videos have been revised from the previous edition and are
available via the optional MindTap for this text.

new Chapter CaSeS, exaMpLeS, appLiCationS, review QUeStionS, and
exerCiSeS The chapters contain new Chapter Cases, code examples, sample applications,
Review Questions, and Exercises.

ChapterS 2, 5, 6, and 12 The Visible property is now introduced in Chapter 2 rather than
in Chapter 5. Coverage of the priming and update reads was moved from Chapter 6’s Lesson A
to Chapter 6’s Lesson B. The topics covered in Chapter 6’s Lesson B are now covered in its
Lesson C and vice versa. The Financial.Pmt function is covered in Chapter 6’s Lesson B. Chapter 12,
which covers Web applications, has been revamped.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

p r e Fa C e MindTap

xx

Steps and Figures
The tutorial-style steps in the book assume you are using Microsoft Visual Studio Ultimate 2015
and a system running Microsoft Windows 8. The figures in the book reflect how your screen will
look if you are using a Microsoft Windows 8 system. Your screen may appear slightly different in
some instances if you are using a different version of Microsoft Windows.

instructor resources
The following teaching tools are available for download at our Instructor Companion Site.
Simply search for this text at sso.cengage.com. An instructor login is required.

inStrUCtor’S ManUaL The Instructor’s Manual that accompanies this textbook includes
additional instructional material to assist in class preparation, including items such as Sample
Syllabi, Chapter Outlines, Technical Notes, Lecture Notes, Quick Quizzes, Teaching Tips,
Discussion Topics, and Additional Case Projects.

teSt BanK Cengage Learning Testing Powered by Cognero is a flexible, online system that
allows you to:

 • author, edit, and manage test bank content from multiple Cengage Learning solutions

 • create multiple test versions in an instant

 • deliver tests from your LMS, your classroom or wherever you want

powerpoint preSentationS This book offers Microsoft PowerPoint slides for each
chapter. These are included as a teaching aid for classroom presentation, to make available
to students on the network for chapter review, or to be printed for classroom distribution.
Instructors can add their own slides for additional topics they introduce to the class.

SoLUtion FiLeS Solutions to the Lesson applications and the end-of-lesson Review
Questions and Exercises are provided.

data FiLeS Data Files are necessary for completing the computer activities in this book.
Data Files can also be downloaded by students at CengageBrain.com.

Mindtap
MindTap is a personalized teaching experience with relevant assignments that guide students to
analyze, apply, and improve thinking, allowing you to measure skills and outcomes with ease.

 • Personalized Teaching: Becomes yours with a Learning Path that is built with key student
objectives. Control what students see and when they see it. Use it as-is or match to your
syllabus exactly–hide, rearrange, add and create your own content.

 • Guide Students: A unique learning path of relevant readings, multimedia and activities
that move students up the learning taxonomy from basic knowledge and comprehension to
analysis and application.

 • Promote Better Outcomes: Empower instructors and motivate students with analytics
and reports that provide a snapshot of class progress, time in course, engagement and
completion rates.

The MindTap for Programming with Microsoft Visual Basic 2015 includes videos, study tools,
and interactive quizzing, all integrated into a full eReader that contains the full content from
the printed text.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Acknowledgments

xxi

acknowledgments
Writing a book is a team effort rather than an individual one. I would like to take this
opportunity to thank my team, especially Alyssa Pratt (Senior Content Developer), Heidi Aguiar
(Full Service Project Manager), Serge Palladino and John Freitas (Quality Assurance), Jennifer
Feltri-George (Senior Content Project Manager), and the compositors at GEX Publishing
Services. Thank you for your support, enthusiasm, patience, and hard work. Last, but certainly
not least, I want to thank the following reviewers for their invaluable ideas and comments: Cliff
Brozo, Monroe College; Anthony Cameron, Fayetteville Technical Community College, and
Tatyana Feofilaktova, ASA College. And a special thank you to Sally Douglas (College of Central
Florida) for suggesting the YOU DO IT! boxes several editions ago.

Diane Zak

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xxii

Read This Before
You Begin

technical information
Data Files
You will need data files to complete the computer activities in this book. Your instructor may
provide the data files to you. You may obtain the files electronically at CengageBrain.com and
then navigating to the page for this book.

Each chapter in this book has its own set of data files, which are stored in a separate folder
within the VB2015 folder. The files for Chapter 1 are stored in the VB2015\Chap01 folder.
Similarly, the files for Chapter 2 are stored in the VB2015\Chap02 folder. Throughout this book,
you will be instructed to open files from or save files to these folders.

You can use a computer in your school lab or your own computer to complete the steps and
Exercises in this book.

Using Your Own Computer
To use your own computer to complete the computer activities in this book, you will need the
following:

 • A Pentium® 4 processor, 1.6 GHz or higher, personal computer running Microsoft Windows.
This book was written using Microsoft Windows 8, and Quality Assurance tested using
Microsoft Windows 10.

 • Either Microsoft Visual Studio Ultimate 2015 or Visual Studio Community Edition
installed on your computer. This book was written and Quality Assurance tested using
Microsoft Visual Studio Ultimate 2015. At the time of this writing, you can download a
free copy of the Community Edition at https://www.visualstudio.com/en-us/downloads/
visual-studio-2015-downloads-vs.

To control the display of filename extensions in Windows 8:
1. Press and hold down the Windows logo key on your keyboard as you tap the letter x.

Click Control Panel, click Appearance and Personalization, click Folder Options, and
then click the View tab.

2. Deselect the Hide extensions for known file types check box to show the extensions; or,
select the check box to hide them. Click the OK button, and then close the Appearance
and Personalization window.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Technical Information

xxiii

To always display the underlined letters (called access keys)
in Windows 8:

1. Press and hold down the Windows logo key on your keyboard as you tap the letter x.
Click Control Panel, and then click Appearance and Personalization.

2. In the Ease of Access Center section, click Turn on easy access keys, and then select
the Underline keyboard shortcuts and access keys check box. Click the OK button, and
then close the Ease of Access Center window.

To start and configure Visual Studio to match the figures and tutorial
steps in this book:

1. Use the steps on Page 11 to start Visual Studio.

2. Use the steps on Pages 12 and 13 to configure Visual Studio.

To install Microsoft Visual Basic PowerPacks 12 0:
1. Locate the vb_vbpowerpacks.exe file, which is contained in the VB2015\PowerPacks

folder. Right-click the filename and then click Run as administrator. Click the Yes button.

2. Select the “I agree to the License Terms and Privacy Policy.” check box. Either select
or deselect the check box that asks if you want to join the Visual Studio Experience
Improvement program. Click Install.

3. When the “Setup Successful!” message appears, click the Close button.

4. Start Visual Studio. Open the Toolbox window (if necessary) by clicking View on the
menu bar and then clicking Toolbox. Right-click the Toolbox window and then click
Add Tab. Type Visual Basic PowerPacks and press Enter.

5. Right-click the Visual Basic PowerPacks tab, and then click Choose Items. If necessary,
click the .NET Framework Components tab in the Choose Toolbox Items dialog box.

6. In the Filter box, type PowerPacks. You may see one or more entries for the PrintForm
control. Select Version 12’s PrintForm control, as shown in Figure 1. (Although this
book uses only the PrintForm control, you can also select Version 12’s DataRepeater,
LineShape, OvalShape, and RectangleShape controls.)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xxiv

r e a d t h i S Technical Information

7. Click the OK button to close the Choose Toolbox Items dialog box. If the message “The
following controls were successfully added to the toolbox but are not enabled in the
active designer:” appears, click the OK button. The PrintForm control (as well as any
other PowerPacks controls you selected) will not appear in the Toolbox window until
you either create a new Visual Basic application or open an existing one. You will learn
how to perform both of those tasks in Chapter 1.

Figures
The figures in this book reflect how your screen will look if you are using Microsoft Visual
Studio Ultimate 2015 and a Microsoft Windows 8 system. Your screen may appear slightly
different in some instances if you are using another version of either Microsoft Visual Studio or
Microsoft Windows.

Visit Our Web Site
Additional materials designed for this textbook might be available at CengageBrain.com. Search
this site for more details.

To the Instructor
To complete the computer activities in this book, your students must use a set of data files.
These files can be obtained on the Instructor Companion Site or at CengageBrain.com.

The material in this book was written using Microsoft Visual Studio Ultimate 2015 on a
Microsoft Windows 8 system. It was Quality Assurance tested using Microsoft Visual Studio
Ultimate 2015 on a Microsoft Windows 10 system.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

O V E R V I E W

An Introduction to
Programming

After studying the Overview, you should be able to:

�� Define the terminology used in programming

�� Explain the tasks performed by a programmer

�� Understand the employment opportunities for programmers
and software engineers

�� Run a Visual Basic 2015 application

�� Understand how to use the chapters effectively

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

O V E R V I E W An Introduction to Programming

2

Programming a Computer
In essence, the word programming means giving a mechanism the directions to accomplish a
task. If you are like most people, you have already programmed several mechanisms, such as
your digital video recorder (DVR), cell phone, or coffee maker. Like these devices, a computer
also is a mechanism that can be programmed.

The directions (typically called instructions) given to a computer are called computer programs
or, more simply, programs. The people who write programs are called programmers.
Programmers use a variety of special languages, called programming languages, to
communicate with the computer. Some popular programming languages are Visual Basic, C#,
C++, and Java. In this book, you will use the Visual Basic programming language.

The Programmer’s Job
When a company has a problem that requires a computer solution, typically it is a programmer
who comes to the rescue. The programmer might be an employee of the company; or he or she
might be a freelance programmer, which is a programmer who works on temporary contracts
rather than for a long-term employer.

First the programmer meets with the user, who is the person (or people) responsible for
describing the problem. In many cases, this person will also eventually use the solution.
Depending on the complexity of the problem, multiple programmers may be involved, and
they may need to meet with the user several times. Programming teams often contain subject
matter experts, who may or may not be programmers. For example, an accountant might be
part of a team working on a program that requires accounting expertise. The purpose of the
initial meetings with the user is to determine the exact problem and to agree on a solution.

After the programmer and user agree on the solution, the programmer begins converting
the solution into a computer program. During the conversion phase, the programmer meets
periodically with the user to determine whether the program fulfills the user’s needs and to
refine any details of the solution. When the user is satisfied that the program does what he
or she wants it to do, the programmer rigorously tests the program with sample data before
releasing it to the user, who will test it further to verify that it correctly solves the problem. In
many cases, the programmer also provides the user with a manual that explains how to use the
program. As this process indicates, the creation of a good computer solution to a problem—in
other words, the creation of a good program—requires a great deal of interaction between the
programmer and the user.

Employment Opportunities
When searching for a job in computer programming, you will encounter ads for “computer
programmers” as well as for “computer software engineers.” Although job titles and
descriptions vary, computer software engineers typically are responsible for designing an
appropriate solution to a user’s problem, while computer programmers are responsible
for translating the solution into a language that the computer can understand—a process
called coding. Software engineering is a higher-level position that requires the ability to
envision solutions. Using a construction analogy, software engineers are the architects, while
programmers are the carpenters.

Keep in mind that depending on the employer as well as the size and complexity of the user’s
problem, the design and coding tasks may be performed by the same employee, no matter what
his or her job title is. In other words, it is not unusual for a software engineer to code his or her
solution or for a programmer to have designed the solution he or she is coding.

Overview-Programmers

Overview-Programmer
Qualities

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3

Visual Basic 2015

Programmers and software engineers need to have strong problem-solving and analytical skills,
as well as the ability to communicate effectively with team members, end users, and other
nontechnical personnel. Typically, computer software engineers are expected to have at least
a bachelor’s degree in software engineering, computer science, or mathematics, along with
practical work experience, especially in the industry in which they are employed. Computer
programmers usually need at least an associate’s degree in computer science, mathematics, or
information systems, as well as proficiency in one or more programming languages.

Computer programmers and software engineers are employed by companies in almost every
industry, such as telecommunications companies, software publishers, financial institutions,
insurance carriers, educational institutions, and government agencies. The U.S. Bureau of
Labor Statistics predicts that employment of computer software engineers will increase by
22% from 2012 to 2022. The employment of computer programmers, on the other hand,
will increase by 8% over the same period. In addition, consulting opportunities for freelance
programmers and software engineers are expected to increase as companies look for ways to
reduce their payroll expenses.

There is a great deal of competition for programming and software engineering jobs, so
jobseekers need to keep up to date with the latest programming languages and technologies.
A competitive edge may be gained by obtaining vendor-specific or language-specific
certifications, as well as knowledge of a prospective employer’s business. More information
about computer programmers and computer software engineers can be found on the U.S.
Bureau of Labor Statistics Web site at www.bls.gov.

Visual Basic 2015
In this book, you will learn how to create programs, called applications, using the Visual Basic
2015 programming language. Visual Basic 2015 is one of the languages built into Microsoft’s
newest integrated development environment: Visual Studio 2015. An integrated development
environment (IDE) is an environment that contains all of the tools and features you need to
create, run, and test your programs.

Visual Basic 2015 is an object-oriented programming language, which is a language that
allows the programmer to use objects to accomplish a program’s goal. An object is anything that
can be seen, touched, or used. In other words, an object is nearly any thing. The objects in an
object-oriented program can take on many different forms. Programs written for the Windows
environment typically use objects such as check boxes, list boxes, and buttons. A payroll
program, on the other hand, might utilize objects found in the real world, such as a time card
object, an employee object, and a check object.

Every object in an object-oriented program is created from a class, which is a pattern that the
computer uses to create the object. The class contains the instructions that tell the computer
how the object should look and behave. An object created from a class is called an instance of
the class and is said to be instantiated from the class. An analogy involving a cookie cutter and
cookies is often used to describe a class and its objects: The class is the cookie cutter, and the
objects instantiated from the class are the cookies. You will learn more about classes and objects
throughout this book.

You can use Visual Basic to create applications for the Windows environment or for the Web.
A Windows application has a Windows user interface and runs on a personal computer. A user
interface is what the user sees and interacts with while an application is running. Examples
of Windows applications include graphics programs, data-entry systems, and games. A Web
application, on the other hand, has a Web user interface and runs on a server. You access a Web

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

O V E R V I E W An Introduction to Programming

4

3. Use the application to calculate the monthly payment for a $22,000 loan at 3.75%
interest for five years. Type 22000 in the Principal text box. Scroll down the Interest
list box and then click 3.75 %. The radio button corresponding to the five-year term is
already selected, so you just need to click the Calculate button to compute the monthly
payment. The application indicates that your monthly payment would be $402.69.
See Figure 2.

application using your computer’s browser. Examples of Web applications include e-commerce
applications available on the Internet and employee handbook applications accessible on a
company’s intranet. You can also use Visual Basic to create applications for tablet PCs and
mobile devices, such as cell phones.

A Visual Basic 2015 Demonstration
In the following set of steps, you will run a Visual Basic 2015 application that shows you some
of the objects you will learn about in the chapters. For now, it is not important for you to
understand how these objects were created or why the objects perform the way they do. Those
questions will be answered in the chapters.

To run the Visual Basic 2015 application:

1. Use Windows to locate and then open the VB2015\Overview folder on your computer’s
hard disk or on the device designated by your instructor. Right-click Monthly Payment
Calculator (Monthly Payment Calculator.exe) in the list of filenames and then click
the Open button. (Depending on how Windows is set up on your computer, you may
or may not see the .exe extension on the filename. Refer to the Overview’s Summary
section to learn how to show/hide filename extensions.)

2. After a few moments, the Monthly Payment Calculator application shown in Figure 1
appears on the screen. The interface contains a text box, a list box, buttons, radio
buttons, and labels. You can use the application to calculate the monthly payment for
a car loan.

START HERE

You can also
double-click the
filename to run
the application.

Don’t be
 concerned if
some of the
letters on
your screen

are not underlined.
You can show/hide the
 underlined letters by
pressing the Alt key.

text box

list box

labels

radio buttons

buttons

Figure 1 Monthly Payment Calculator application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

5

Using the Chapters Effectively

4. Now determine what your monthly payment would be if you borrowed $5,000 at 4.5%
interest for four years. Type 5000 in the Principal text box, click 4.50 % in the Interest
list box, click the 4 years radio button, and then click the Calculate button. The
Monthly payment box shows $114.02.

5. Click the Exit button to close the application.

Using the Chapters Effectively
This book is designed for a beginning programming course. However, it assumes students are
familiar with basic Windows skills and file management. The chapters in this book will help you
learn how to write programs using Microsoft Visual Basic 2015. The chapters are designed to be
used at your computer. Begin by reading the text that explains the concepts. When you come to
the numbered steps, follow the steps on your computer. Read each step carefully and completely
before you try it. As you work, compare your screen with the figures to verify your results. The
figures in this book reflect how your screen will look if you are using Visual Studio Ultimate 2015
and a Microsoft Windows 8 system. Your screen may vary in some instances if you are using
a different edition of Visual Studio or if you are using another version of Microsoft Windows.
Don’t worry if your screen display differs slightly from the figures. The important parts of the
screen display are labeled in each figure. Just be sure you have these parts on your screen.

Do not worry about making mistakes; that’s part of the learning process. Tip notes identify
common problems and explain how to get back on track. They also provide additional information
about a procedure—for example, an alternative method of performing the procedure.

Each chapter is divided into three lessons. You might want to take a break between lessons.
Following each lesson is a Summary section that lists the important elements of the lesson.
After the Summary section is a list of the key terms (including definitions) covered in the lesson.
Following the Key Terms section are questions and exercises designed to review and reinforce
the lesson’s concepts. You should complete all of the end-of-lesson questions and several
exercises before continuing to the next lesson. It takes a great deal of practice to acquire the
skills needed to create good programs, and future chapters assume that you have mastered the
information found in the previous chapters.

Tip notes are
designated by
the icon.

Figure 2 Computed monthly payment

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

O V E R V I E W An Introduction to Programming

6

Some of the end-of-lesson exercises are Discovery exercises, which allow you to both “discover”
the solutions to problems on your own and experiment with material that is not covered in
the chapter. Some lessons also contain one or more Debugging exercises. In programming, the
term debugging refers to the process of finding and fixing any errors, called bugs, in a program.
Debugging exercises provide opportunities for you to find and correct the errors in existing
applications. Appendix A, which can be covered after completing Chapter 3, guides you through
the process of locating and correcting a program’s errors (bugs).

Throughout the book, you will find GUI (graphical user interface) design tips. These tips
contain guidelines and recommendations for designing applications. You should follow these
guidelines and recommendations so that your applications conform to the Windows standards.

Summary
 • Programs are the step-by-step instructions that tell a computer how to perform a task.

 • Programmers use various programming languages to communicate with the computer.

 • The creation of a good program requires a great deal of interaction between the programmer
and the user.

 • Programmers rigorously test a program with sample data before releasing the program to
the user.

 • It’s not unusual for the same person to perform the duties of both a software engineer and a
programmer.

 • An object-oriented programming language, such as Visual Basic 2015, enables programmers
to use objects to accomplish a program’s goal. An object is anything that can be seen,
touched, or used.

 • Every object in an object-oriented program is instantiated (created) from a class, which is a
pattern that tells the computer how the object should look and behave. An object is referred
to as an instance of the class.

 • The process of locating and correcting the errors (bugs) in a program is called debugging.

 • To control the display of filename extensions, press and hold down the Windows logo
key on your keyboard as you tap the letter x. Click Control Panel, click Appearance and
Personalization, click Folder Options, and then click the View tab. Deselect the Hide
extensions for known file types check box to show the extensions; or, select the check box
to hide them.

Key Terms
Applications—programs created for the Windows environment, the Web, or mobile devices

Class—a pattern that the computer uses to create (instantiate) an object

Coding—the process of translating a solution into a language that the computer can understand

Computer programs—the directions given to computers; also called programs

Debugging—the process of locating and correcting the errors (bugs) in a program

IDE—integrated development environment

The Windows
logo key looks
like this .

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7

Key Terms

Instance—an object created (instantiated) from a class

Instantiated—the process of creating an object from a class

Integrated development environment—an environment that contains all of the tools
and features you need to create, run, and test your programs; also called an IDE

Object—anything that can be seen, touched, or used

Object-oriented programming language—a programming language that allows the
programmer to use objects to accomplish a program’s goal

Programmers—the people who write computer programs

Programming—the process of giving a mechanism the directions to accomplish a task

Programming languages—languages used to communicate with a computer

Programs—the directions given to computers; also called computer programs

User interface—what the user sees and interacts with while an application is running

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1
An Introduction to
Visual Basic 2015

Creating a Splash Screen

In this chapter, you will use Visual Basic 2015, Microsoft’s newest version of the
Visual Basic language, to create a splash screen for the Crighton Zoo. A splash
screen is the first image that appears when an application is started. It is used to
introduce the application and to hold the user’s attention while the application is
being read into the computer’s internal memory.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 An Introduction to Visual Basic 2015

10

Previewing the Splash Screen
Before you start the first lesson in this chapter, you will preview the completed splash screen
contained in the VB2015\Chap01 folder.

To preview the completed splash screen:

1. Use Windows to locate and then open the VB2015\Chap01 folder on your computer’s
hard disk or on the device designated by your instructor. Right-click Zoo Splash (Zoo
Splash.exe) in the list of filenames and then click the Open button. (Depending on
how Windows is set up on your computer, you may or may not see the .exe extension
on the filename. Refer to the Overview’s Summary section to learn how to show/hide
filename extensions.) After a few moments, the splash screen shown in Figure 1-1
appears on the screen. The splash screen closes when six seconds have elapsed.

You can also
double-click the
filename to run
the application.

START HERE

Photos courtesy of the Nashville Zoo and Diane Zak
Figure 1-1 Splash screen for the Crighton Zoo

Chapter 1 is designed to help you get comfortable with the Visual Studio 2015 integrated
development environment (IDE). As you learned in the Overview, an IDE is an environment that
contains all of the tools and features you need to create, run, and test your programs. Like all the
chapters in this book, Chapter 1 contains three lessons. You should complete a lesson in full and
do all of the end-of-lesson questions and several exercises before continuing to the next lesson.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11

The Splash Screen Application L E S S O N A

❚ LESSON A
After studying Lesson A, you should be able to:

 • Start and customize Visual Studio 2015

 • Create a Visual Basic 2015 Windows application

 • Manage the windows in the IDE

 • Set the properties of an object

 • Restore a property to its default setting

 • Save a solution

 • Close and open an existing solution

The Splash Screen Application
In this chapter, you will create a splash screen using Visual Basic 2015. The following set of steps
will guide you in starting Visual Studio Ultimate 2015 from Windows 8. Your steps may differ
slightly if you are using another edition of Visual Studio 2015.

To start Visual Studio Ultimate 2015:

1. If necessary, tap the Windows logo key to switch to the Windows 8 tile-based mode,
and then click the Visual Studio 2015 tile.

2. If the Choose Default Environment Settings dialog box appears, click Visual Basic
Development Settings and then click Start Visual Studio.

 If the Choose Default Environment Settings dialog box does not appear, click Tools on
the menu bar, click Import and Export Settings, select the Reset all settings radio
button, click the Next button, select the No, just reset settings, overwriting my
current settings radio button, click the Next button, click Visual Basic, and then click
the Finish button. Click the Close button to close the Import and Export Settings
Wizard dialog box.

3. Click Window on the menu bar, click Reset Window Layout, and then click the Yes
button. When you start Visual Studio Ultimate 2015, your screen will appear similar to
Figure 1-2. However, your menu bar may not contain underlined letters, called access
keys. You will learn about access keys in Chapter 2. (You can show/hide the access keys
by pressing the Alt key on your keyboard.)

START HERE

The Windows
logo key looks
like this .

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 An Introduction to Visual Basic 2015

12

Figure 1-2 Microsoft Visual Studio Ultimate 2015 startup screen

Next, you will configure Visual Studio so that your screen and tutorial steps agree with the
figures and tutorial steps in this book. As mentioned in the Overview, the figures reflect how
your screen will look if you are using Visual Studio Ultimate 2015 and a Microsoft Windows 8
system. Your screen may vary in some instances if you are using a different edition of Visual
Studio or if you are using another version of Microsoft Windows. Don’t worry if your screen
display differs slightly from the figures.

To configure Visual Studio:

1. Click Tools on the menu bar and then click Options to open the Options dialog box.
Click the Projects and Solutions node. Use the information shown in Figure 1-3 to
select and deselect the appropriate check boxes.

Figure 1-3 Options dialog box

START HERE

The color of
your dialog
boxes depends
on your
 computer’s

desktop theme.

Projects and
Solutions node

select and
deselect the
appropriate
check boxes

Start Page window
Solution Explorer
window

Team Explorer
window’s tab

Toolbox
window’s tab

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13

The Splash Screen Application L E S S O N A

2. Expand the Text Editor node and then expand the All Languages node. Click
CodeLens and then deselect the Enable CodeLens check box.

3. Click the Debugging node and then deselect the Step over properties and operators
(Managed only) check box. Also deselect the Show elapsed time PerfTip while
debugging check box, which appears at the bottom of the list.

4. Click the OK button to close the Options dialog box.

Note: If you change your default environment settings after performing the previous
four steps, you will need to perform the steps again.

The splash screen will be a Windows application, which means it will have a Windows user
interface and run on a desktop (or laptop) computer. Recall that a user interface is what the user
sees and interacts with while an application is running. Windows applications in Visual Basic are
composed of solutions, projects, and files. A solution is a container that stores the projects and
files for an entire application. Although the solutions in this book contain only one project,
a solution can contain several projects. A project is also a container, but it stores only the files
associated with that particular project.

To create a Visual Basic 2015 Windows application:

1. Click File on the menu bar and then click New Project to open the New Project dialog
box. If necessary, click the Visual Basic node in the Installed Templates list, and then
click Windows Forms Application in the middle column of the dialog box.

2. Change the name entered in the Name box to Splash Project.

3. Click the Browse button to open the Project Location dialog box. Locate and then
click the VB2015\Chap01 folder. Click the Select Folder button to close the Project
Location dialog box.

4. If necessary, select the Create directory for solution check box in the New Project
dialog box. Change the name entered in the Solution name box to Splash Solution.
Figure 1-4 shows the completed New Project dialog box in Visual Studio Ultimate 2015.
(Your dialog box may look slightly different if you are using another edition of Visual
Studio. Do not be concerned if your dialog box shows a different version of the .NET
Framework.)

Figure 1-4 Completed New Project dialog box in Visual Studio Ultimate 2015

START HERE

your drive letter might
be different

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 An Introduction to Visual Basic 2015

14

5. Click the OK button to close the New Project dialog box. The computer creates a
solution and adds a Visual Basic project to the solution. The names of the solution and
project, along with other information pertaining to the project, appear in the Solution
Explorer window. See Figure 1-5. In addition to the windows shown earlier in Figure 1-2,
three other windows appear in the IDE: Windows Form Designer, Properties, and Data
Sources. (Don’t be concerned if different properties appear in your Properties window.)

Figure 1-5 Solution and Visual Basic project

Managing the Windows in the IDE
In most cases, you will find it easier to work in the IDE if you either close or auto-hide the
windows you are not currently using. The easiest way to close an open window is to click the
Close button on its title bar. In most cases, the View menu provides an appropriate option
for opening a closed window. In addition to closing a window, you can also auto-hide it. You
auto-hide a window using the Auto Hide button (refer to Figure 1-5) on the window’s title
bar. The Auto Hide button is a toggle button: Clicking it once activates it, and clicking it again
deactivates it. The Toolbox and Data Sources windows in Figure 1-5 are auto-hidden windows.

To close, open, auto-hide, and display windows in the IDE:

1. Click the Close button on the Properties window’s title bar to close the window. Then
click View on the menu bar and click Properties Window to open the window.

2. If your IDE contains the Team Explorer window, click the Team Explorer tab and then
click the Close button on the window’s title bar.

3. Click the Auto Hide (vertical pushpin) button on the Solution Explorer window. The
Solution Explorer window is minimized and appears as a tab on the edge of the IDE.

4. To temporarily display the Solution Explorer window, click the Solution Explorer tab.
Notice that the Auto Hide button is now a horizontal pushpin rather than a vertical
pushpin. To return the Solution Explorer window to its auto-hidden state, click the
Solution Explorer tab again.

To size the
 Solution
Explorer and
Properties
 windows,

 position your mouse
pointer on the left
border of one of the
windows until the
mouse pointer becomes
a sizing pointer (a
horizontal line with an
arrowhead at each
end), and then drag the
border to either the left
or the right.

START HERE

Windows Form
Designer window

Auto Hide
button

solution and
project names
and information

Properties
window

Data Sources
window’s tab

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

15

The Splash Screen Application L E S S O N A

5. To permanently display the Solution Explorer window, click the Solution Explorer tab
and then click the Auto Hide (horizontal pushpin) button on the window’s title bar.
The vertical pushpin replaces the horizontal pushpin on the button.

6. If necessary, close the Data Sources window.

7. If necessary, click Form1.vb in the Solution Explorer window. If the items in the
Properties window do not appear in alphabetical order, click the Alphabetical button.
(Refer to Figure 1-6 for the button’s location.)

8. Figure 1-6 shows the current status of the windows in the IDE. Only the Windows Form
Designer, Solution Explorer, and Properties windows are open; the Toolbox window is
auto-hidden.

Figure 1-6 Current status of the windows in the IDE

In the next several sections, you will take a closer look at the Windows Form Designer, Solution
Explorer, and Properties windows. (The Toolbox window is covered in Lesson B.)

The Windows Form Designer Window
Figure 1-7 shows the Windows Form Designer window, where you create (or design) your
application’s graphical user interface, more simply referred to as a GUI. Only a Windows Form
object appears in the designer window shown in the figure. A Windows Form object, or form, is
the foundation for the user interface in a Windows application. You create the user interface by
adding other objects, such as buttons and text boxes, to the form.

Notice that a title bar appears at the top of the form. The title bar contains a default caption
(Form1) along with Minimize, Maximize, and Close buttons. At the top of the designer window
is a tab labeled Form1.vb [Design]. Form1.vb is the name of the file (on your computer’s hard
disk or on another device) that contains the Visual Basic instructions associated with the form,
and [Design] identifies the window as the designer window.

To reset the
window layout
in the IDE, click
Window on the
menu bar, click

Reset Window Layout,
and then click the Yes
button.

Alphabetical button

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 An Introduction to Visual Basic 2015

16

Figure 1-7 Windows Form Designer window

As you learned in the Overview, all objects in an object-oriented program are instantiated
(created) from a class. A form, for example, is an instance of the Windows Form class. The form
(an object) is automatically instantiated for you when you create a Windows application.

The Solution Explorer Window
The Solution Explorer window displays a list of the projects contained in the current solution
and the items contained in each project. Figure 1-8 shows the Solution Explorer window for
the Splash Solution, which contains one project named Splash Project. One of the items within
the project is a file named Form1.vb. The .vb extension on the filename indicates that the file is
a Visual Basic source file, which is a file that contains program instructions, called code. The
Form1.vb file contains the code associated with the form displayed in the designer window. You
can view the code using the Code Editor window, which you will learn about in Lesson B.

Recall that
a class is a
 pattern that
the computer
uses to create
an object.

name of the disk file that
contains the instructions
associated with the form

title bar

form

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

17

The Splash Screen Application L E S S O N A

Figure 1-8 Solution Explorer window

The Form1.vb source file is referred to as a form file because it contains the code associated
with a form. The code associated with the first form included in a project is automatically stored
in a form file named Form1.vb. The code associated with the second form in the same project
is stored in a form file named Form2.vb, and so on. Because a project can contain many forms
and, therefore, many form files, it is a good practice to give each form file a more meaningful
name. Doing this will help you keep track of the various form files in the project. You can use the
Properties window to change the filename.

The Properties Window
Like everything in an object-oriented language, a file is an object. Each object has a set of
attributes that determine its appearance and behavior. The attributes are called properties and
are listed in the Properties window. When an object is created, a default value is assigned to
each of its properties. The Properties window shown in Figure 1-9 lists the default values
assigned to the properties of the selected object. (You do not need to size your Properties
window to match Figure 1-9.)

The name of the selected object (in this case, the Form1.vb file) appears in the window’s
Object box. The window’s Properties list has two columns. The left column displays the
names of the selected object’s properties, which can be viewed either alphabetically or
by category. However, it’s usually easier to work with the Properties window when the
properties are listed in alphabetical order, as they are in Figure 1-9. The right column in
the Properties list is called the Settings box, and it displays the current value (or setting) of
each of the object’s properties. A brief description of the selected property appears in the
Description pane.

To display the
properties of
the Form1.vb
form file,
Form1.vb

must be selected in the
 Solution Explorer window.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 An Introduction to Visual Basic 2015

18

Figure 1-9 Properties window

To use the Properties window to change the form file’s name:

1. Form1.vb should be selected in the Solution Explorer window. Click File Name in the
Properties list. Type Splash Form.vb and press Enter. (Be sure to include the .vb
extension on the filename; otherwise, the computer will not recognize the file as a
source file.) Splash Form.vb appears in the Solution Explorer and Properties windows
and on the designer window’s tab, as shown in Figure 1-10.

Figure 1-10 Form file’s name shown in various locations

START HERE

You can also
change the File
Name property
by right-clicking
Form1.vb in the

Solution Explorer window
and then clicking Rename
on the context menu.

Object box

Alphabetical button

Description
pane

Settings box

Categorized
button

Properties
list

form file’s name

form file’s name

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

19

Properties of a Windows Form L E S S O N A

Properties of a Windows Form
Like a file, a Windows form also has a set of properties. The form’s properties will appear in the
Properties window when you select the form in the designer window.

To view the properties of the form:

1. Click the form in the designer window. Figure 1-11 shows a partial listing of the
properties of a Windows form.

START HERE

Figure 1-11 Properties window showing a partial listing of the form’s properties

class name form
name

location of the
Form class

Notice that Form1 System.Windows.Forms.Form appears in the Object box in Figure 1-11.
Form1 is the name of the form. The name is automatically assigned to the form when the form
is instantiated (created). In System.Windows.Forms.Form, Form is the name of the class used
to instantiate the form. System.Windows.Forms is the namespace that contains the Form class
definition. A class definition is a block of code that specifies (or defines) an object’s appearance
and behavior. All class definitions in Visual Basic 2015 are contained in namespaces, which you
can picture as blocks of memory cells inside the computer. Each namespace contains the code
that defines a group of related classes. The System.Windows.Forms namespace contains the
definition of the Windows Form class. It also contains the class definitions for objects you add to
a form, such as buttons and text boxes.

The period that separates each word in System.Windows.Forms.Form is called the dot member
access operator. Similar to the backslash (\) in a folder path, the dot member access operator
indicates a hierarchy, but of namespaces rather than folders. In other words, the backslash
in the path E:\VB2015\Chap01\Splash Solution\Splash Project\Splash Form.vb indicates
that the Splash Form.vb file is contained in (or is a member of) the Splash Project folder,
which is a member of the Splash Solution folder, which is a member of the Chap01 folder, which
is a member of the VB2015 folder, which is a member of the E: drive. Likewise, the name
System.Windows.Forms.Form indicates that the Form class is a member of the Forms namespace,
which is a member of the Windows namespace, which is a member of the System namespace.
The dot member access operator allows the computer to locate the Form class in the computer’s
internal memory, similar to the way the backslash (\) allows the computer to locate the Splash
Form.vb file on your computer’s disk.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 An Introduction to Visual Basic 2015

20

The Name Property
As you do to a form file, you should assign a more meaningful name to a Windows form
because doing so will help you keep track of the various forms in a project. But unlike a form
file, a Windows form has a Name property rather than a File Name property. You use the
name entered in an object’s Name property to refer to the object in code, so each object must
have a unique name. The name you assign to an object must begin with a letter and contain
only letters, numbers, and the underscore character. The name cannot include punctuation
characters or spaces.

There are several conventions for naming objects in Visual Basic. In this book, you will use
a naming convention called Hungarian notation. Names in Hungarian notation begin with
an ID of three (or more) characters that represents the object’s type, with the remaining
characters in the name representing the object’s purpose. For example, using Hungarian
notation, you might assign the name frmSplash to the current form. The “frm” identifies the
object as a form, and “Splash” reminds you of the form’s purpose. Hungarian notation names
are entered using camel case, which means you enter the ID characters in lowercase and
then capitalize the first letter of each subsequent word in the name. Camel case refers to the
fact that the uppercase letters appear as “humps” in the name because they are taller than the
lowercase letters.

To change the name of the form:

1. Drag the scroll box in the Properties window to the top of the vertical scroll bar. As you
scroll, notice the various properties associated with a form. Also notice that the items
within parentheses appear at the top of the Properties list.

2. Click (Name) in the Properties list. Type frmSplash and press Enter. The asterisk
(*) that now appears on the designer window’s tab indicates that the form has been
changed since the last time it was saved.

The Text Property
In addition to changing the form’s Name property, you should also change its Text property,
which controls the text displayed in the form’s title bar. Form1 is the default value assigned to
the Text property of the first form in a project. In this case, “Crighton Zoo” would be a more
descriptive value.

To set the Text property of the form:

1. Locate the Text property in the Properties list. Click Text. Type Crighton Zoo and
press Enter. The new text appears in the property’s Settings box and also in the form’s
title bar.

The Name and Text properties of a Windows form should always be changed to more
meaningful values. The Name property is used by the programmer when coding the
application. The Text property, on the other hand, is read by the user while the application
is running.

The StartPosition Property
When an application is started, the computer uses the form’s StartPosition property to
determine the form’s initial position on the screen. The frmSplash form represents a splash
screen, which typically appears in the middle of the screen.

START HERE

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

21

Setting and Restoring a Property’s Value L E S S O N A

To center a form on the screen when the application is started:

1. Click StartPosition in the Properties list, click the list arrow in the Settings box, and
then click CenterScreen in the list.

The Font Property
A form’s Font property determines the type, style, and size of the font used to display the text
on the form. A font is the general shape of the characters in the text. Segoe UI, Tahoma, and
Microsoft Sans Serif are examples of font types. Font styles include regular, bold, and italic.
The numbers 9, 12, and 18 are examples of font sizes, which typically are measured in points,
with one point (pt) equaling 1/72 of an inch. The recommended font for applications created
for systems running Windows 8 is Segoe UI because it offers improved readability. Segoe is
pronounced “SEE-go,” and UI stands for user interface. For most of the elements in the interface,
you will use a 9pt font size. However, to make the figures in the book more readable, many of the
interfaces created in this book will use a larger font size.

To set the form’s Font property:

1. Click Font in the Properties list and then click the … (ellipsis) button in the Settings
box to open the Font dialog box.

2. Locate and then click the Segoe UI font in the Font box. Click 9 in the Size box and
then click the OK button. (Do not be concerned if the size of the form changes.)

The Size Property
As you can with any Windows object, you can size a form by selecting it and then dragging the
sizing handles that appear around it. You can also size an object by selecting it and then pressing
and holding down the Shift key as you press the up, down, right, or left arrow key on your
keyboard. In addition, you can set the object’s Size property.

To set the form’s Size property:

1. Click Size in the Properties list. The first number in the Setting box represents the
width of the form, measured in pixels. The second number represents the height, also
measured in pixels. A pixel, which is short for “picture element,” is one spot in a grid
of thousands of such spots that form an image either produced on the screen by a
computer or printed on a page by a printer.

2. Type 405, 340 and press Enter. Expand the Size property by clicking the plus box
that appears next to the property. Notice that the first number listed in the property
represents the width, and the second number represents the height. Click the minus
box to collapse the property.

Setting and Restoring a Property’s Value
In the next set of steps, you will practice setting and then restoring the value of the form’s
BackColor property, which determines the background color of the form.

To set and then restore the form’s BackColor property value:

1. Click BackColor in the Properties list, click the list arrow, click the Custom tab, and
then click a red square to change the background color of the form to red.

2. Right-click BackColor in the Properties list and then click Reset on the context menu.
The background color of the form returns to its default setting. Figure 1-12 shows the
status of the form in the IDE.

START HERE

START HERE

START HERE

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 An Introduction to Visual Basic 2015

22

Figure 1-12 Status of the form in the IDE

Saving a Solution
The asterisk (*) that appears on the designer tab in Figure 1-12 indicates that a change was made
to the form since the last time it was saved. It is a good idea to save the current solution every
10 or 15 minutes so that you will not lose a lot of your work if a power outage unexpectedly
occurs. You can save the solution by clicking File on the menu bar and then clicking Save All.
You can also click the Save All button on the Standard toolbar. When you save the solution,
the computer saves any changes made to the files included in the solution. It also removes the
asterisk that appears on the designer window’s tab.

To save the current solution:

1. Click File on the menu bar and then click Save All. The asterisk is removed from the
designer window’s tab, indicating that all changes made to the form have been saved.

Closing the Current Solution
When you are finished working on a solution, you should close it. Closing a solution closes all
projects and files contained in the solution.

To close the Splash Solution:

1. Click File on the menu bar. Notice that the menu contains a Close option and a Close
Solution option. The Close option closes the designer window in the IDE; however, it
does not close the solution itself. Only the Close Solution option closes the solution.

2. Click Close Solution. The Solution Explorer window indicates that no solution is
currently open in the IDE.

START HERE

START HERE

The Save All
button on
the Standard
 toolbar looks
like this: .

the asterisk
indicates that
the form has
been changed
since the last
time it was
saved

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

23

Lesson A Summary L E S S O N A

Opening an Existing Solution
You can use the File menu to open an existing solution. The names of solution files end with .sln.
If a solution is already open in the IDE, you will be given the option of closing it before another
solution is opened.

To open the Splash Solution:

1. Click File on the menu bar and then click Open Project to open the Open Project
dialog box.

2. Locate and then open the VB2015\Chap01\Splash Solution folder. Click Splash
Solution (Splash Solution.sln) in the list of filenames and then click the Open button.
(Depending on how Windows is set up on your computer, you may or may not see the
.sln extension on the filename. Refer to the Overview’s Summary section to learn how
to show/hide filename extensions.)

3. The Solution Explorer window indicates that the solution is open. If the designer
window is not open, right-click Splash Form.vb in the Solution Explorer window and
then click View Designer.

Exiting Visual Studio 2015
Finally, you will learn how to exit Visual Studio 2015. You will complete the splash screen in the
remaining two lessons. You can exit Visual Studio using either the Close button on its title bar or
the Exit option on its File menu.

To exit Visual Studio 2015:

1. Click File on the menu bar and then click Exit.

Lesson A Summary
 • To start Visual Studio 2015:

Tap the Windows logo key (if necessary) to switch to the Windows 8 tile-based mode and
then click the Visual Studio 2015 tile.

 • To change the default environment settings:

Click Tools, click Import and Export Settings, select the Reset all settings radio button, click
the Next button, select the appropriate radio button, click the Next button, click the settings
collection you want to use, click the Finish button, and then click the Close button to close
the Import and Export Settings Wizard dialog box.

 • To reset the window layout in the IDE:

Click Window, click Reset Window Layout, and then click the Yes button.

 • To configure Visual Studio:

Click Tools, click Options, click the Projects and Solutions node, and then use the information
shown earlier in Figure 1-3 to select and deselect the appropriate check boxes. Next, expand
the Text Editor node, expand the All Languages node, click CodeLens, and then deselect
the Enable CodeLens check box. Finally, click the Debugging node, deselect the Step over
properties and operators (Managed only) check box, deselect the Show elapsed time PerfTip
while debugging check box, and then click the OK button to close the Options dialog box.

START HERE

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 An Introduction to Visual Basic 2015

24

 • To create a Visual Basic 2015 Windows application:

Start Visual Studio 2015. Click File, click New Project, click the Visual Basic node, and then
click Windows Forms Application. Enter an appropriate name and location in the Name and
Location boxes, respectively. Select the Create directory for solution check box. Enter an
appropriate name in the Solution name box and then click the OK button.

 • To close and open a window in the IDE:

Close the window by clicking the Close button on its title bar. Use the appropriate option on
the View menu to open the window.

 • To auto-hide a window in the IDE:

Click the Auto Hide (vertical pushpin) button on the window’s title bar.

 • To temporarily display an auto-hidden window in the IDE:

Click the window’s tab.

 • To permanently display an auto-hidden window in the IDE:

Click the window’s tab to display the window, and then click the Auto Hide (horizontal
pushpin) button on the window’s title bar.

 • To set the value of a property:

Select the object whose property you want to set and then select the appropriate property
in the Properties list. Type the new property value in the selected property’s Settings box, or
choose the value from the list, color palette, or dialog box.

 • To give a more meaningful name to an object:

Set the object’s Name property.

 • To control the text appearing in the form’s title bar:

Set the form’s Text property.

 • To specify the starting location of the form:

Set the form’s StartPosition property.

 • To specify the type, style, and size of the font used to display text on the form:

Set the form’s Font property.

 • To size a form:

Drag the form’s sizing handles. You can also set the form’s Size, Height, and Width values in
the Properties window. In addition, you can select the form and then press and hold down
the Shift key as you press the up, down, left, or right arrow key on your keyboard.

 • To change the background color of a form:

Set the form’s BackColor property.

 • To restore a property to its default setting:

Right-click the property in the Properties list and then click Reset.

 • To save a solution:

Click File on the menu bar and then click Save All. You can also click the Save All button on
the Standard toolbar.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

25

Lesson A Key Terms L E S S O N A

 • To close a solution:

Click File on the menu bar and then click Close Solution.

 • To open an existing solution:

Click File on the menu bar and then click Open Project. Locate and then open the
application’s solution folder. Click the solution filename, which ends with .sln. Click the Open
button. If the designer window is not open, right-click the form file’s name in the Solution
Explorer window and then click View Designer.

 • To exit Visual Studio 2015:

Click the Close button on the Visual Studio 2015 title bar. You can also click File on the menu
bar and then click Exit.

Lesson A Key Terms
Camel case—used when entering object names in Hungarian notation; the practice of entering
the object’s ID characters in lowercase and then capitalizing the first letter of each subsequent
word in the name

Class definition—a block of code that specifies (or defines) an object’s appearance and behavior

Code—program instructions

Dot member access operator—a period; used to indicate a hierarchy

Form—the foundation for the user interface in a Windows application; also called a Windows
Form object

Form file—a file that contains the code associated with a Windows form

GUI—the acronym for graphical user interface

Namespace—a block of memory cells inside the computer; contains the code that defines a
group of related classes

Object box—the section of the Properties window that contains the name of the selected object

Point—used to measure font size; 1/72 of an inch

Properties—the attributes that control an object’s appearance and behavior

Properties list—the section of the Properties window that lists both the names and the values of
the selected object’s properties

Properties window—the window that lists an object’s attributes (properties)

Settings box—the right column of the Properties list; displays each property’s current value
(setting)

Solution Explorer window—the window that displays a list of the projects contained in the
current solution and the items contained in each project

Source file—a file that contains code

Windows Form Designer window—the window in which you create an application’s GUI

Windows Form object—the foundation for the user interface in a Windows application; referred
to more simply as a form

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 An Introduction to Visual Basic 2015

26

Lesson A Review Questions
1. When a form has been modified since the last time it was saved, what appears on its

tab in the designer window?

a. an ampersand (&)
b. an asterisk (*)

c. a percent sign (%)
d. a plus sign (+)

2. Which window is used to set the characteristics that control an object’s appearance and
behavior?

a. Characteristics
b. Object

c. Properties
d. Toolbox

3. Which window lists the projects and files included in a solution?

a. Object
b. Project

c. Properties
d. Solution Explorer

4. What is the three-character extension appended to solution files in Visual Basic 2015?

a. .prg
b. .sln

c. .src
d. .vbs

5. Which of the following statements is true?

a. You can auto-hide a window by clicking the Auto Hide (vertical pushpin) button on
its title bar.

b. An auto-hidden window appears as a tab on the edge of the IDE.
c. You temporarily display an auto-hidden window by clicking its tab.
d. all of the above

6. Which property controls the text displayed in a form’s title bar?

a. Caption
b. Text

c. Title
d. TitleBar

7. Which property is used to give an object a more meaningful name?

a. Application
b. Caption

c. Name
d. Text

8. Which property determines the initial position of a form when the application is
started?

a. InitialLocation
b. Location

c. StartLocation
d. StartPosition

9. Explain the difference between a form’s Text property and its Name property.

10. Explain the difference between a form file and a form.

11. What does the dot member access operator indicate in the text System.Windows.Forms.
Label?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

27

Lesson A Exercises L E S S O N A

Lesson A Exercises
1. If necessary, start Visual Studio 2015 and permanently display the Solution Explorer

window. Use the File menu to open the VB2015\Chap01\Jackson Solution\Jackson
Solution (Jackson Solution.sln) file. If necessary, right-click the form file’s name in the
Solution Explorer window and then click View Designer. Change the form file’s name
to Main Form.vb. Change the form’s Name property to frmMain. Change the form’s
BackColor property to light purple. Change the form’s Font property to Segoe UI, 9pt.
Change the form’s StartPosition property to CenterScreen. Change the form’s Text
property to Jackson Company. Click File on the menu bar and then click Save All to
save the solution. Click File on the menu bar and then click Close Solution to close
the solution.

2. If necessary, start Visual Studio 2015 and permanently display the Solution Explorer
window. Create a Visual Basic Windows application. Use the following names for
the solution and project, respectively: Merriton Solution and Merriton Project. Save
the application in the VB2015\Chap01 folder. Change the form file’s name to Main
Form.vb. Change the form’s name to frmMain. The form’s title bar should say Merriton
 Township; set the appropriate property. The form should be centered on the screen
when it first appears; set the appropriate property. Change the background color of the
form to light pink. Any text on the form should appear in the Segoe UI, 12pt font; set
the appropriate property. Save and then close the solution.

3. If necessary, start Visual Studio 2015 and permanently display the Solution Explorer
window. Create a Visual Basic Windows application. Use the following names for
the solution and project, respectively: Millers Solution and Millers Project. Save the
 solution in the VB2015\Chap01 folder. Change the form file’s name to Main Form.vb.
Change the form’s name to frmMain. The form’s title bar should say Millers Tires;
set the appropriate property. The form should be centered on the screen when it
first appears; set the appropriate property. Any text on the form should appear in the
Segoe UI, 9pt font; set the appropriate property. Save and then close the solution.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 An Introduction to Visual Basic 2015

28

❚ LESSON B
After studying Lesson B, you should be able to:

 • Add a control to a form

 • Set the properties of a label, picture box, and button control

 • Select multiple controls

 • Change the layering order of controls

 • Center controls on the form

 • Open the Project Designer window

 • Start and end an application

 • Enter code in the Code Editor window

 • Terminate an application using the Me.Close() instruction

 • Run the project’s executable file

The Toolbox Window
In Lesson A, you learned about the Windows Form Designer, Solution Explorer, and Properties
windows. In this lesson, you will learn about the Toolbox window, referred to more simply
as the toolbox. The toolbox contains the tools you use when creating your application’s user
interface. Each tool represents a class from which an object, such as a button or text box, can be
instantiated. The instantiated objects, called controls, will appear on the form.

To open the Splash Solution from Lesson A and then display the Toolbox window:

1. If necessary, start Visual Studio 2015 and open the Solution Explorer window. Open
the VB2015\Chap01\Splash Solution\Splash Solution (Splash Solution.sln) file. If
necessary, open the designer window.

2. Permanently display the Properties and Toolbox windows, and then auto-hide the
Solution Explorer window.

3. If necessary, expand the Common Controls node in the toolbox. Rest your mouse
pointer on the word Label in the toolbox. The tool’s purpose appears in a box. See
Figure 1-13.

START HERE

The Ch01B video
demonstrates most of
the steps contained in
Lesson B.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

29

The Label Tool L E S S O N B

Figure 1-13 Toolbox window showing the purpose of the Label tool

The Label Tool
You use the Label tool to add a label control to a form. The purpose of a label control is to
display text that the user is not allowed to edit while the application is running, such as the zoo’s
name or the “Come visit our residents!” message.

To use the Label tool to instantiate a label control:

1. Click the Label tool in the toolbox, but do not release the mouse button. Hold down
the mouse button as you drag the mouse pointer to the upper-left corner of the form.
See Figure 1-14. The designer provides blue margin lines to assist you in spacing the
controls properly on the form.

START HERE

2. Release the mouse button. A label control appears on the form. See Figure 1-15.
(If the wrong control appears on the form, right-click the control, click Delete, and
then repeat Steps 1 and 2.) Notice that Label1 System.Windows.Forms.Label appears
in the Object box in the Properties window. (You do not need to size your Properties

Figure 1-14 Label tool being dragged to the form

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 An Introduction to Visual Basic 2015

30

window to match Figure 1-15.) Label1 is the default name assigned to the label
control. System.Windows.Forms.Label indicates that the control is an instance of
the Label class, which is defined in the System.Windows.Forms namespace.

Label1 is the default value assigned to the Text and Name properties of the first label control
added to a form. The value of the Text property appears inside the label control, as indicated
in Figure 1-15.

To add another label control to the form:

1. Click the Label tool in the toolbox and then drag the mouse pointer to the form,
positioning it below the existing label control. (Do not worry about the exact location.)

2. Release the mouse button. Label2 is assigned to the control’s Text and Name properties.

Some programmers assign meaningful names to all of the controls in an interface, while others
do so only for controls that are either coded or referred to in code. In subsequent chapters
in this book, you will follow the latter convention. In this chapter, however, you will assign a
meaningful name to each control in the interface. The three-character ID used for naming
labels is lbl.

To assign meaningful names to the label controls:

1. Click the Label1 control on the form. This selects the control and displays its
properties in the Properties window. Click (Name) in the Properties list. Type lblName
and then press Enter.

2. Click the Label2 control on the form. Change the control’s name to lblMsg and then
press Enter.

START HERE

START HERE

You can also
add a control
to the form
by clicking a
tool and then

clicking the form. In
addition, you can click
a tool, place the mouse
pointer on the form,
and then press the
left mouse button and
drag the mouse pointer
until the control is the
desired size. You can
also double-click a tool.

Label object’s
name

Text property
value

location of the
Label class class name

Figure 1-15 Label control added to the form

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

31

Changing a Property for Multiple Controls L E S S O N B

Setting the Text Property
As you learned earlier, a label control’s Text property determines the value that appears inside
the control. In this application, you want the words “Crighton Zoo” to appear in the lblName
control, and the words “Come visit our residents!” to appear in the lblMsg control.

To set each label control’s Text property:

1. Currently, the lblMsg control is selected on the form. Click Text in the Properties list.
Type Come visit our residents! and then press Enter. Because the default setting of
a Label control’s AutoSize property is set to True, the designer automatically sizes the
lblMsg control to fit its current contents. (You can verify the setting by viewing the
AutoSize property in the Properties window.)

2. Click the lblName control on the form. Change its Text property to Crighton Zoo and
then press Enter. The lblName control stretches automatically to fit the contents of its
Text property.

Setting the Location Property
You can move a control to a different location on the form by placing your mouse pointer on the
control until it becomes a move pointer, and then dragging the control to the desired location.
You can also select the control and then press and hold down the Control (Ctrl) key as you press
the up, down, left, or right arrow key on your keyboard. In addition, you can set the control’s
Location property, which specifies the position of the upper-left corner of the control.

To set each label control’s Location property:

1. Click the lblMsg control to select it. Click Location in the Properties list. Expand the
Location property by clicking its plus box. The X value specifies the number of pixels
from the left border of the form to the left border of the control. The Y value specifies
the number of pixels between the top border of the form and the top border of the
control. In other words, the X value refers to the control’s horizontal location on the
form, whereas the Y value refers to its vertical location.

2. Type 180, 115 in the Location property and then press Enter. The lblMsg control
moves to its new location. Click the minus box to collapse the property.

3. In addition to selecting a control by clicking it on the form, you can also select a control
by clicking its entry (name and class) in the Object box in the Properties window. Click
the list arrow in the Properties window’s Object box, and then click lblName System.
Windows.Forms.Label in the list. Set the control’s Location property to 180, 70.

Changing a Property for Multiple Controls
In Lesson A, you changed the form’s Font property to Segoe UI, 9pt. When you add a control to
the form, the control’s Font property is set to the same value as the form’s Font property. Using
object-oriented programming terminology, the control “inherits” the Font attribute of the form.
In this case, for example, the lblName and lblMsg controls inherit the form’s Font property
setting: Segoe UI, 9pt.

At times, you may want to use a different font type, style, or size for a control’s text. One reason
for doing this is to bring attention to a specific part of the screen. In the splash screen, for
example, you can make the text in the two label controls more noticeable by increasing the size
of the font used to display the text. You can change the font size for both controls at the same
time by clicking one control and then pressing and holding down the Ctrl (Control) key as you
click the other control on the form. You can use the Ctrl+click method to select as many controls

START HERE

START HERE

The move
pointer is a
horizontal line
and a vertical
line with an

arrowhead at each of
the four ends.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 An Introduction to Visual Basic 2015

32

as you want. To cancel the selection of one of the selected controls, press and hold down the Ctrl
key as you click the control. To cancel the selection of all of the selected controls, release the Ctrl
key and then click the form or any unselected control on the form.

To easily select a group of controls on a form, place the mouse pointer slightly above and to the
left of the first control you want to select, and then press and hold down the left mouse button as
you drag the mouse pointer. A dotted rectangle will appear as you drag. When all of the controls
you want to select are within (or at least touched by) the dotted rectangle, release the mouse
button. All of the controls surrounded or touched by the dotted rectangle will be selected.

To select both label controls and then set their Font property:

1. Verify that the lblName control is selected. Press and hold down the Ctrl (Control)
key as you click the lblMsg control, and then release the Ctrl key. Both controls are
selected, as shown in Figure 1-16.

START HERE

Figure 1-16 Label controls selected on the form

both label controls
are selected

2. Open the Font dialog box by clicking Font in the Properties list and then clicking
the … (ellipsis) button in the Settings box. Click 12 in the Size box and then click the
OK button. The text in the two label controls appears in the new font size.

3. Click the form to deselect the label controls.

4. Click the lblName control and then use its Font property to change its font style
to Bold.

5. Click the lblMsg control and then use its Font property to change its font style to
Semibold Italic.

6. Click the lblMsg control’s ForeColor property. Click the list arrow, click the
Custom tab, and then click a red square to change the font color to red.

7. Click the form to return to the designer window. Click File on the menu bar and then
click Save All to save the solution.

Using the Format Menu’s Order Option
The Format menu contains an Order option that allows you to control the layering of one or
more controls on a form.

To use the Format menu’s Order option:

1. Change the form’s BackColor property to dark green.

2. Add another label control to the form. Set its BackColor property to pale green. Set its
AutoSize property to False and its Location property to 10, 10.

3. Place your mouse pointer on the sizing handle located in the lower-right corner of the
label control. Drag the sizing handle until the control is the size shown in Figure 1-17
and then release the mouse button. As the figure shows, the lblName and lblMsg

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

33

The PictureBox Tool L E S S O N B

controls are hidden by the Label1 control. This is because the designer places the Label1
control on the layer above the one occupied by the lblName and lblMsg controls.

You can also
right-click the
Label1 control
and then click
Send to Back.

Figure 1-17 New label on top of previous labels

4. Click the Label1 control on the form. Click Format on the menu bar, point to Order,
and then click Send to Back. Doing this sends the layer containing the Label1 control
behind the one occupied by the lblName and lblMsg controls. See Figure 1-18.

Figure 1-18 Result of sending Label1’s layer to the back

5. Click the Label1 control’s Text property in the Properties window. Press the Backspace
key and then press Enter to remove the property’s value.

6. Click the lblName control and then Ctrl+click the lblMsg control. Change the selected
controls’ BackColor property to the same pale green used for the Label1 control.

7. Click the form’s title bar and then save the solution.

The PictureBox Tool
The splash screen you previewed at the beginning of the chapter showed two images. You
can include an image on a form using a picture box control, which you instantiate using the
PictureBox tool.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 An Introduction to Visual Basic 2015

34

To add two picture box controls to the form:

1. Click the PictureBox tool in the toolbox and then drag the mouse pointer to the
upper-left corner of the Label1 control. Release the mouse button. The picture box
control’s properties appear in the Properties list, and a box containing a triangle
appears in the upper-right corner of the control. The box is referred to as the task box
because when you click it, it displays a list of tasks associated with the control. Each
task in the list is associated with one or more properties. You can set the properties
using the task list or the Properties window.

2. Click the task box on the PictureBox1 control. See Figure 1-19.

Figure 1-19 Open task list for a picture box

3. Click Choose Image to open the Select Resource dialog box. The Choose Image task is
associated with the Image property in the Properties window.

4. To include the image file within the project itself, the Project resource file radio button
must be selected in the dialog box. Verify that the radio button is selected, and then
click the Import button to open the Open dialog box.

5. Open the VB2015\Chap01 folder. Click Iguanas (Iguanas.jpg) in the list of filenames
and then click the Open button. See Figure 1-20.

START HERE

task box

the picture
box inherits
the BackColor
property of
the form

Figure 1-20 Completed Select Resource dialog box
Photo courtesy of the Nashville Zoo and Diane Zak

image file’s name

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

35

The PictureBox Tool L E S S O N B

6. Click the OK button to close the dialog box. A small portion of the image appears in the
picture box control on the form, and Splash_Project.My.Resources.Resources.Iguanas
appears in the control’s Image property in the Properties window.

7. If necessary, click the task box on the control to open the task list. Click the list arrow
in the Size Mode box and then click StretchImage in the list. Click the picture box
control to close the task list.

8. The three-character ID used when naming picture box controls is pic. Change the
picture box’s name to picIguanas.

9. On your own, add another picture box control to the form. Position the picture box
below the lblMsg control. The picture box should display the image stored in the
Storks.jpg file, which is contained in the VB2015\Chap01 folder. Change its size mode
to StretchImage and its name to picStorks. Position and size the picture boxes as
shown in Figure 1-21.

Figure 1-21 Picture boxes added to the form
Photo courtesy of the Nashville Zoo and Diane Zak

Using the Format Menu to Align and Size
The Format menu provides a Center in Form option for centering one or more controls either
horizontally or vertically on the form. The menu also provides an Align option for aligning two
or more controls by their left, right, top, or bottom borders. You can use the menu’s Make Same
Size option to make two or more controls the same width and/or height.

Before you can use the Format menu to change the alignment or size of two or more controls,
you first must select the controls. You should always select the reference control first. The
reference control is the one whose size and/or location you want to match. The reference
control will have white sizing handles, whereas the other selected controls will have black
sizing handles.

To experiment
with the
options on the
Format menu,
 complete

 Discovery Exercise 4 at
the end of this lesson.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 An Introduction to Visual Basic 2015

36

To size and align the picture boxes:

1. Click the picIguanas control (the reference control) and then Ctrl+click the picStorks
control. Click Format, point to Make Same Size, and then click Both.

2. Click the lblMsg control (the reference control) and then Ctrl+click the picStorks
control. Click Format, point to Align, and then click Rights.

3. Click the form’s title bar and then save the solution.

The Button Tool
Every application should give the user a way to exit the program. Most Windows applications
accomplish this task by using either an Exit option on the File menu or an Exit button. In
this lesson, the splash screen will provide a button for ending the application. In Windows
applications, a button control is commonly used to perform an immediate action when
clicked. The OK and Cancel buttons are examples of button controls found in many Windows
applications.

To add a button control to the form:

1. Use the Button tool in the toolbox to add a button control to the form. Position the
control in the upper-right corner of the pale green label control.

2. The three-character ID used when naming button controls is btn. Change the button
control’s name to btnExit.

3. The button control’s Text property determines the text that appears on the button’s
face. Set the button control’s Text property to Exit.

4. Save the solution.

Starting and Ending an Application
Now that the user interface is complete, you can start the splash screen application to see how
it will appear to the user. Before you start an application for the first time, you should open the
Project Designer window and verify the name of the startup form, which is the form that the
computer automatically displays each time the application is started. You can open the Project
Designer window by right-clicking My Project in the Solution Explorer window and then
clicking Open on the context menu. Or, you can click Project on the menu bar and then click
<project name> Properties on the menu.

To verify the name of the startup form:

1. Auto-hide the Toolbox and Properties windows. Temporarily display the Solution
Explorer window. Right-click My Project and then click Open to open the Project
Designer window.

2. If necessary, click the Application tab to display the Application pane, which is shown
in Figure 1-22. If frmSplash does not appear in the Startup form list box, click the
Startup form list arrow and then click frmSplash in the list. (Do not be concerned if
your Target framework list box shows a different value.)

START HERE

START HERE

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

37

Starting and Ending an Application L E S S O N B

Project Designer
window’s Close button

Figure 1-22 Application pane in the Project Designer window

Application tab

name of the
executable file

name of the
startup form

You can start an application by clicking Debug on the menu bar and then clicking Start
Debugging. You can also press the F5 key on your keyboard or click the Start button on the
Standard toolbar.

When you start a Visual Basic application, the computer automatically creates a file that can
be run outside of the IDE, like the The Zoo Splash.exe file you ran at the beginning of this
chapter. The file is referred to as an executable file. The executable file’s name is the same as the
project’s name, except it ends with .exe. The name of the executable file for the Splash Project,
for example, is Splash Project.exe. However, you can use the Project Designer window to change
the executable file’s name.

The computer stores the executable file in the project’s bin\Debug folder. In this case, the Splash
Project.exe file is stored in the VB2015\Chap01\Splash Solution\Splash Project\bin\Debug
folder. When you are finished with an application, you typically give the user only the executable
file because it does not allow the user to modify the application’s code. To allow someone to
modify the code, you need to provide the entire solution.

To change the name of the executable file, and then start and end the application:

1. The Project Designer window should still be open. Change the filename in the
Assembly name box to Zoo Splash. Save the solution and then close the Project
Designer window by clicking its Close button. (Refer to Figure 1-22 for the location of
the Close button.)

2. Click Debug on the menu bar and then click Start Debugging to start the application.
See Figure 1-23. (Do not be concerned about any windows that appear at the bottom of
the screen.)

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 An Introduction to Visual Basic 2015

38

3. Recall that the purpose of the Exit button is to allow the user to end the application.
Click the Exit button on the splash screen. Nothing happens because you have not yet
entered the instructions that tell the button how to respond when clicked.

4. Click the Close button on the form’s title bar to stop the application. (You can also click
the designer window to make it the active window, then click Debug on the menu bar,
and then click Stop Debugging.)

The Code Editor Window
After creating your application’s interface, you can begin entering the Visual Basic instructions
(code) that tell the controls how to respond to the user’s actions. Those actions—such as
clicking, double-clicking, and scrolling—are called events. You tell an object how to respond
to an event by writing an event procedure, which is a set of Visual Basic instructions that
are processed only when the event occurs. You enter the procedure’s code in the Code Editor
window. In this lesson, you will write a Click event procedure for the Exit button, which should
end the application when it is clicked.

To open the Code Editor window:

1. Right-click the form and then click View Code on the context menu. The Code Editor
window opens in the IDE, as shown in Figure 1-24. The window contains the Class
statement, which is used to define a class in Visual Basic. In this case, the Class
statement begins with the Public Class frmSplash clause and ends with the End
Class clause. Within the Class statement, you enter the code to tell the form and its
objects how to react to the user’s actions.

START HERE

The Public
keyword in the
Class state-
ment indicates
that the class

can be used by code
defined outside of
the class.

Figure 1-23 Result of starting the splash screen application
Photo courtesy of the Nashville Zoo and Diane Zak

startup form form’s Close button

The color of
the form’s
title bar and
 borders
depends

on your computer’s
 desktop theme.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

39

The Code Editor Window L E S S O N B

If the Code Editor window contains many lines of code, you might want to hide the sections of
code that you are not presently working with or that you do not want to print. You hide a section
(or region) of code by clicking the minus box that appears next to it. To unhide a region of
code, you click the plus box that appears next to the code. Hiding and unhiding the code is also
referred to as collapsing and expanding the code, respectively.

To collapse and expand a region of code in the Code Editor window:

1. Click the minus box that appears next to the Public Class frmSplash clause
in the Code Editor window. Doing this collapses the Class statement, as shown in
Figure 1-25.

START HERE

designer
window’s tab

Figure 1-24 Code Editor window opened in the IDE

Code Editor
window’s tab

use this list box to increase or
decrease the size of the code font

click the minus
box to collapse
the code

Figure 1-25 Code collapsed in the Code Editor window

Project list box Object list box Method list box
click the plus box to
expand the code

2. Click the plus box to expand the code.

As Figure 1-25 indicates, the Code Editor window contains three dropdown list boxes named
Project, Object, and Method. The Project box contains the name of the current project,
Splash Project. The Object box lists the names of the objects included in the user interface,
and the Method box lists the events to which the selected object is capable of responding. In
object-oriented programming (OOP), an event is considered a behavior of an object because it
represents an action to which the object can respond. In the context of OOP, the Code Editor
window “exposes” an object’s behaviors to the programmer. You use the Object and Method
list boxes to select the object and event, respectively, that you want to code. In this case, you
will select btnExit in the Object list box, and you will select Click in the Method list box. This is
because you want the application to end when the Exit button is clicked.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 An Introduction to Visual Basic 2015

40

To select the btnExit control’s Click event:

1. Click the Object list arrow and then click btnExit in the list. Click the Method list
arrow and then click Click in the list. A code template for the btnExit control’s Click
event procedure appears in the Code Editor window. See Figure 1-26.

START HERE

procedure footer

procedure header

insertion point

Figure 1-26 btnExit control’s Click event procedure

The Code Editor provides the code template to help you follow the rules of the Visual Basic
language. The rules of a programming language are called its syntax. The first line in the code
template is called the procedure header, and the last line is called the procedure footer. The
procedure header begins with the keywords Private Sub. A keyword is a word that has a
special meaning in a programming language. Keywords appear in a different color from the
rest of the code. The Private keyword in Figure 1-26 indicates that the button’s Click event
procedure can be used only within the current Code Editor window. The Sub keyword is an
abbreviation of the term sub procedure, which is a block of code that performs a specific task.

Following the Sub keyword is the name of the object, an underscore, the name of the event, and
parentheses containing some text. For now, you do not have to be concerned with the text that
appears between the parentheses. After the closing parenthesis is the following Handles clause:
Handles btnExit.Click. This clause indicates that the procedure handles (or is associated
with) the btnExit control’s Click event. It tells the computer to process the procedure only when
the btnExit control is clicked.

The code template ends with the procedure footer, which contains the keywords End Sub.
You enter your Visual Basic instructions at the location of the insertion point, which appears
between the Private Sub and End Sub clauses in Figure 1-26. The Code Editor automatically
indents the line between the procedure header and footer. Indenting the lines within a
procedure makes the instructions easier to read and is a common programming practice. In
this case, the instruction you enter will tell the btnExit control to end the application when it
is clicked.

The Me.Close() Instruction
The Me.Close() instruction tells the computer to close the current form. If the current form is
the only form in the application, closing it terminates the entire application. In the instruction,
Me is a keyword that refers to the current form, and Close is one of the methods available in
Visual Basic. A method is a predefined procedure that you can call (or invoke) when needed.
For example, if you want the computer to close the current form when the user clicks the Exit
button, you enter the Me.Close() instruction in the button’s Click event procedure. Notice
the empty set of parentheses after the method’s name in the instruction. The parentheses are
required when calling some Visual Basic methods. However, depending on the method, the
parentheses may or may not be empty. If you forget to enter the empty set of parentheses, the
Code Editor will enter them for you when you move the insertion point to another line in the
Code Editor window.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

41

The Code Editor Window L E S S O N B

To code the btnExit_Click procedure:

1. You can type the Me.Close() instruction on your own or use the Code Editor
window’s IntelliSense feature. In this set of steps, you will use the IntelliSense feature.
Type me. (be sure to type the period, but don’t press Enter). When you type the period,
the IntelliSense feature displays a list of properties, methods, and so on from which you
can select.

Note: If the list of choices does not appear, the IntelliSense feature may have been turned
off on your computer system. To turn it on, click Tools on the menu bar, click Options,
expand the Text Editor node, click Basic, select the Auto list members check box, and
then click the OK button.

2. Type clo (but don’t press Enter). The IntelliSense feature highlights the Close method
in the list. See Figure 1-27. For now, don’t be concerned with the LightBulb indicator
or the red jagged line (called a squiggle) below Me.clo; you will learn about those two
features in Chapter 2.

START HERE

Figure 1-27 List displayed by the IntelliSense feature

LightBulb indicator

the box contains
a description of
the selected item

3. Press Tab to include the Close method in the instruction and then press Enter. See
Figure 1-28.

Figure 1-28 Completed btnExit_Click procedure

It’s a good idea to test a procedure after you have coded it. By doing this, you’ll know where
to look if an error occurs. You can test the Exit button’s Click event procedure by starting the
application and then clicking the button. When the button is clicked, the computer will process
the Me.Close() instruction contained in the procedure.

To test the btnExit_Click procedure and the executable file:

1. Save the solution and then click the Start button on the Standard toolbar (or press the
F5 key) to start the application. The splash screen appears.

2. Click the Exit button to end the application. Close the Code Editor window and then
close the solution.

START HERE

The Start
 button looks
like this: .

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 An Introduction to Visual Basic 2015

42

3. Use Windows to locate and then open the VB2015\Chap01\Splash Solution\Splash
Project\bin\Debug folder. Right-click Zoo Splash (Zoo Splash.exe) and then click the
Open button.

4. When the splash screen appears, click the Exit button.

Lesson B Summary
 • To add a control to a form:

Click a tool in the toolbox, but do not release the mouse button. Hold down the mouse
button as you drag the tool to the form, and then release the mouse button. You can also click
a tool and then click the form. In addition, you can click a tool, place the mouse pointer on
the form, and then press the left mouse button and drag the mouse pointer until the control
is the desired size. You can also double-click a tool in the toolbox.

 • To display text that the user cannot edit while the application is running:

Use the Label tool to instantiate a label control. Set the label control’s Text property.

 • To move a control to a different location on the form:

Drag the control to the desired location. You can also set the control’s Location property. In
addition, you can select the control and then press and hold down the Ctrl (Control) key as
you press the up, down, right, or left arrow key on your keyboard.

 • To specify the type, style, and size of the font used to display text in a control:

Set the control’s Font property.

 • To select multiple controls on a form:

Click the first control you want to select, and then Ctrl+click each of the other controls you
want to select. You can also select a group of controls on the form by placing the mouse
pointer slightly above and to the left of the first control you want to select, and then pressing
the left mouse button and dragging. A dotted rectangle appears as you drag. When all of
the controls you want to select are within (or at least touched by) the dotted rectangle,
release the mouse button. All of the controls surrounded or touched by the dotted rectangle
will be selected.

 • To cancel the selection of one or more controls:

You cancel the selection of one control by pressing and holding down the Ctrl key as you click
the control. You cancel the selection of all of the selected controls by releasing the Ctrl key
and then clicking the form or any unselected control on the form.

 • To specify the color of a control’s text:

Set the control’s ForeColor property.

 • To control the layering of a control:

Select the control. Click Format on the menu bar, point to Order, and then click the
appropriate option: either Send to Back or Bring to Front. You can also right-click the control
and then click the appropriate option.

 • To center one or more controls on the form:

Select the controls you want to center. Click Format on the menu bar, point to Center in
Form, and then click either Horizontally or Vertically.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

43

Lesson B Key Terms L E S S O N B

 • To align the borders of two or more controls on the form:

Select the reference control and then select the other controls you want to align. Click Format
on the menu bar, point to Align, and then click the appropriate option.

 • To make two or more controls on the form the same size:

Select the reference control and then select the other controls you want to size. Click Format
on the menu bar, point to Make Same Size, and then click the appropriate option.

 • To display a graphic in a control in the user interface:

Use the PictureBox tool to instantiate a picture box control. Use the task box or Properties
window to set the control’s Image and SizeMode properties.

 • To display a standard button that performs an action when clicked:

Use the Button tool to instantiate a button control.

 • To verify or change the names of the startup form and/or executable file:

Use the Application pane in the Project Designer window. You can open the Project Designer
window by right-clicking My Project in the Solution Explorer window, and then clicking
Open on the context menu. Or, you can click Project on the menu bar and then click <project
name> Properties on the menu.

 • To start and stop an application:

You can start an application by clicking Debug on the menu bar and then clicking Start
Debugging. You can also press the F5 key on your keyboard or click the Start button on the
Standard toolbar to start an application. You can stop an application by clicking the form’s
Close button. You can also first make the designer window the active window, then click
Debug on the menu bar, and then click Stop Debugging to stop an application.

 • To open the Code Editor window:

Right-click the form and then click View Code on the context menu.

 • To display an object’s event procedure in the Code Editor window:

Open the Code Editor window. Use the Object list box to select the object’s name, and then
use the Method list box to select the event.

 • To allow the user to close the current form while an application is running:

Enter the Me.Close() instruction in an event procedure.

 • To run a project’s executable file:

Locate the .exe file in the project’s bin\Debug folder. Right-click the filename and then click
Open. You can also double-click the filename.

Lesson B Key Terms
Button control—the control commonly used to perform an immediate action when clicked

Controls—objects (such as a label, a picture box, or a button) added to a form

Event procedure—a set of Visual Basic instructions that tell an object how to respond to an event

Events—actions to which an object can respond; examples include clicking and double-clicking

Executable file—a file that can be run outside of the Visual Studio IDE; the file has the .exe
extension on its filename

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 An Introduction to Visual Basic 2015

44

Keyword—a word that has a special meaning in a programming language

Label control—the control used to display text that the user is not allowed to edit while an
application is running

Method—a predefined Visual Basic procedure that you can call (invoke) when needed

OOP—the acronym for object-oriented programming

Picture box control—the control used to display an image on a form

Procedure footer—the last line in a procedure

Procedure header—the first line in a procedure

Reference control—the first control selected in a group of controls; this is the control whose
size and/or location you want the other selected controls to match

Startup form—the form that appears automatically when an application is started

Sub procedure—a block of code that performs a specific task

Syntax—the rules of a programming language

Toolbox—refers to the Toolbox window

Toolbox window—the window that contains the tools used when creating an interface (each tool
represents a class); referred to more simply as the toolbox

Lesson B Review Questions
1. You use the _____________________ control to display text that the user is not allowed

to edit while the application is running.

a. Button
b. DisplayBox

c. Label
d. PictureBox

2. The text displayed on a button’s face is stored in which property?

a. Caption
b. Label

c. Name
d. Text

3. Which of the following can be accomplished using the Format menu?

a. aligning the borders of two or more controls
b. centering one or more controls horizontally on the form
c. making two or more controls the same size
d. all of the above

4. Which instruction terminates an application that contains only one form?

a. Me.Close()

b. Me.Done()

c. Me.Finish()

d. Me.Stop()

5. Define the term “syntax.”

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

45

Lesson B Exercises L E S S O N B

Lesson B Exercises
1. Create a Visual Basic Windows application. Use the following names for the solution

and project, respectively: Warren Solution and Warren Project. Save the application in
the VB2015\Chap01 folder.

a. Change the form file’s name to Main Form.vb.
b. Change the form’s name to frmMain. Change its Font property to Segoe UI, 9pt.

The form’s title bar should say Warren Fire Department; set the appropriate
property. The form should be centered on the screen when it first appears; set the
appropriate property.

c. Add a label control to the form. The label should contain the text “We put out
fires!” (without the quotation marks); set the appropriate property. Display the
label’s text in italics using the Segoe UI, 16pt font. The label should be located
20 pixels from the top of the form, and it should be centered horizontally on
the form.

d. Add a picture box control to the form. The control should display the image stored
in the VB2015\Chap01\FireTruck.png file. (The image is provided courtesy of
OpenClipArt.org/rdevries.) Set the picture box’s size mode to StretchImage. Change
the size of the picture box to 170, 140. Center the picture box on the form, both
vertically and horizontally.

e. Add a button control to the form. Position the button in the lower-right corner of
the form. Change the button’s name to btnExit. The button should display the text
“Exit” (without the quotation marks); set the appropriate property.

f. Open the Code Editor window. Enter the Me.Close() instruction in the btnExit
control’s Click event procedure.

g. Display the Project Designer window. Verify that the name of the startup form is
frmMain. Also, use the Assembly name box to change the executable file’s name to
Warren. Close the Project Designer window.

h. Save the solution and then start the application. Use the Exit button to stop the
application. Close the Code Editor window and then close the solution.

i. Use Windows to open the project’s bin\Debug folder, and then run the project’s
executable file.

2. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Valley Solution and Valley Project. Save the application in
the VB2015\Chap01 folder. Change the form file’s name to Main Form.vb. Change the
form’s Font property to Segoe UI, 9pt. Create the user interface shown in Figure 1-29.
The picture box should display the image stored in the VB2015\Chap01\Carnival.png
file. You can use any font style, size, and color for the label controls. The form should
be centered on the screen when the application is started. Code the Exit button so that
it closes the application when it is clicked. Use the Project Designer window to verify
that the name of the startup form is correct, and to change the executable file’s name to
Valley Park. Save the solution and then start the application. Use the Exit button to stop
the application. Close the Code Editor window and then close the solution. Use Win-
dows to open the project’s bin\Debug folder, and then run the project’s executable file.

INTRODUCTORY

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 An Introduction to Visual Basic 2015

46

3. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Penguin Solution and Penguin Project. Save the application in
the VB2015\Chap01 folder. Change the form file’s name to Main Form.vb. Change the
form’s Font property to Segoe UI, 9pt. Create the user interface shown in Figure 1-30.
You can use any font style, size, and color for the label control. The form should be
centered on the screen when the application is started. Assign appropriate names to
the form and button. The picture box should display the image stored in the VB2015\
Chap01\Penguin.png file. Code the Exit button so that it closes the application when
it is clicked. Change the executable file’s name to Penguin. Save the solution and then
start the application. Use the Exit button to stop the application. Close the Code Editor
window and then close the solution. Use Windows to open the project’s bin\Debug
folder, and then run the project’s executable file.

INTERMEDIATE

frmMain

Figure 1-29 User interface for the Valley Park application

btnExit

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

47

Lesson B Exercises L E S S O N B

4. In this exercise, you learn about the Format menu’s Align, Make Same Size, and Center
in Form options.

a. Open the VB2015\Chap01\Format Solution\Format Solution (Format Solution.sln)
file. If necessary, open the designer window.

b. Click the Button2 control, and then press and hold down the Ctrl (Control) key as
you click the other two button controls. Release the Ctrl key. Notice that the sizing
handles on the first button you selected (Button2) are white, while the sizing handles
on the other two buttons are black. The Align and Make Same Size options on the
Format menu use the control with the white sizing handles as the reference control
when aligning and sizing the selected controls. First, you will practice with the Align
option by aligning the three buttons by their left borders. Click Format, point to
Align, and then click Lefts. The left borders of the Button1 and Button3 controls are
aligned with the left border of the Button2 control, which is the reference control.

c. The Make Same Size option makes the selected objects the same height or width,
or both. Here again, the first object you select determines the size. Click the form to
deselect the three buttons. Click Button1, Ctrl+click Button2, and then Ctrl+click
Button3. Click Format, point to Make Same Size, and then click Both. The height
and width of the Button2 and Button3 controls now match the height and width of
the reference control (Button1).

d. Click Format, point to Center in Form, and then click Horizontally to center the
controls horizontally on the form.

e. Click the form to deselect the buttons. Save and then close the solution.

DISCOVERY

Figure 1-30 User interface for the Penguin Grille application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 An Introduction to Visual Basic 2015

48

❚ LESSON C
After studying Lesson C, you should be able to:

 • Set the properties of a timer control

 • Delete a control from the form

 • Delete code from the Code Editor window

 • Code a timer control’s Tick event procedure

 • Prevent the user from sizing a form

 • Remove and/or disable a form’s Minimize, Maximize, and Close buttons

 • Print an application’s code and interface

Using the Timer Tool
In Lesson B, you added an Exit button to the splash screen created for the Crighton Zoo. Splash
screens usually do not contain an Exit button. Instead, they use a timer control to automatically
remove themselves from the screen after a set period of time. In this lesson, you will remove the
Exit button from the splash screen and replace it with a timer control.

To open the Splash Solution from Lesson B:

1. If necessary, start Visual Studio 2015 and open the Solution Explorer window. Open the
VB2015\Chap01\Splash Solution\Splash Solution (Splash Solution.sln) file. If necessary,
open the designer window.

2. Permanently display the Properties and Toolbox windows, and then auto-hide the
Solution Explorer window.

You instantiate a timer control using the Timer tool, which is located in the Components section
of the toolbox. When you drag the Timer tool to the form and then release the mouse button,
the timer control will be placed in the component tray rather than on the form. The component
tray is a special area of the IDE. Its purpose is to store controls that do not appear in the user
interface during run time, which occurs while an application is running. In other words, the
timer will not be visible to the user when the interface appears on the screen.

The purpose of a timer control is to process code at one or more regular intervals. The length
of each interval is specified in milliseconds and entered in the timer’s Interval property.
A millisecond is 1/1000 of a second; in other words, there are 1,000 milliseconds in a second.
The timer’s state—either running or stopped—is determined by its Enabled property, which
can be set to either the Boolean value True or the Boolean value False. When its Enabled
property is set to True, the timer is running; when it is set to False (the default), the timer
is stopped.

If the timer is running, its Tick event occurs each time an interval has elapsed. Each time the
Tick event occurs, the computer processes any code contained in the Tick event procedure. If
the timer is stopped, the Tick event does not occur and, therefore, any code entered in the Tick
event procedure is not processed.

START HERE

The Boolean
values (True
and False)
are named
after the

English mathematician
George Boole.

The Ch01C video
demonstrates most of
the steps contained in
Lesson C.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

49

Using the Timer Tool L E S S O N C

You no longer need the Exit button, so you can delete it and its associated code. You then will
enter the Me.Close() instruction in the timer’s Tick event procedure.

To delete the Exit button and its code, and then code and test the timer:

1. Auto-hide the Toolbox and Properties windows. Click the Exit button to select it and
then press Delete to delete the control from the form.

2. Deleting a control from the form does not delete the control’s code, which remains in
the Code Editor window. Open the Code Editor window. Select (highlight) the entire
btnExit_Click procedure, as shown in Figure 1-32.

START HERE

Figure 1-31 Timer control placed in the component tray
Photos courtesy of the Nashville Zoo and Diane Zak

Timer tool
component tray

Figure 1-32 btnExit_Click procedure selected in the Code Editor window

highlight
(select)
the entire
Click event
procedure

To add a timer control to the splash screen:

1. If necessary, expand the Components node in the toolbox. Click the Timer tool and then drag the
mouse pointer to the form. (Do not worry about the exact location.) When you release the mouse
button, a timer control appears in the component tray at the bottom of the IDE.

2. The three-character ID used when naming timer controls is tmr. Change the timer’s name to
tmrExit, and then set its Enabled property to True.

3. You will have the timer end the application after six seconds, which are equal to 6,000 milliseconds.
Set the timer’s Interval property to 6000 and press Enter. See Figure 1-31.

START HERE

timer control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 An Introduction to Visual Basic 2015

50

3. Press Delete to delete the selected code from the Code Editor window.

4. Use the Object and Method list boxes to open the code template for the tmrExit
control’s Tick event procedure. Type Me.Close() and press Enter.

5. Save the solution and then start the application. The splash form appears on the screen.

6. Place your mouse pointer on the form’s right border until it becomes a horizontal
sizing pointer, and then drag the form’s border to the left. Notice that you can change
the form’s size during run time. Typically, a user is not allowed to change the size of a
splash screen. You can prevent the user from sizing the form by changing the form’s
FormBorderStyle property, which you will do in the next section.

7. When six seconds have elapsed, the application ends and the splash form disappears.
Click the Splash Form.vb [Design] tab to make the designer window the active
window.

Setting the FormBorderStyle Property
A form’s FormBorderStyle property determines the border style of the form. For most
applications, you will leave the property at its default setting: Sizable. Doing this allows the user
to change the form’s size by dragging its borders while the application is running. When a form
represents a splash screen, however, you typically set the FormBorderStyle property to either
None or FixedSingle. The None setting removes the form’s border, whereas the FixedSingle
setting draws a fixed, thin line around the form.

To change the FormBorderStyle property:

1. Click the form’s title bar to select the form. Temporarily display the Properties
window, and then set the FormBorderStyle property to FixedSingle.

2. Save the solution and then start the application. Try to size the form by dragging one of
its borders. You will notice that you cannot size the form using its border.

3. When six seconds have elapsed, the application ends. Start the application again.
Notice that the splash screen’s title bar contains a Minimize button, a Maximize
button, and a Close button. As a general rule, most splash screens do not contain these
elements. You will learn how to remove the elements, as well as the title bar itself, in the
next section. Again, the application ends after six seconds have elapsed.

The MinimizeBox, MaximizeBox, and ControlBox Properties
You can use a form’s MinimizeBox property to disable the Minimize button that appears on
the form’s title bar. Similarly, you can use the MaximizeBox property to disable the Maximize
button. You will experiment with both properties in the next set of steps.

To experiment with the MinimizeBox and MaximizeBox properties:

1. If necessary, click the form’s title bar to select the form. First, you will disable the
Minimize button. Temporarily display the Properties window, and then set the form’s
MinimizeBox property to False. Notice that the Minimize button appears dimmed
(grayed out) on the title bar. This indicates that the button is not available for use.

2. Next, you will enable the Minimize button and disable the Maximize button. Set the
MinimizeBox property to True, and then set the MaximizeBox property to False. Now
only the Maximize button appears dimmed (grayed out) on the title bar.

3. Observe what happens if both the MinimizeBox and MaximizeBox properties are set
to False. Set the MinimizeBox property to False. (The MaximizeBox property is already

The horizontal
sizing pointer
is a horizontal
line with an
arrowhead at

each end.

START HERE

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

51

Printing the Application’s Code and Interface L E S S O N C

set to False.) Notice that when both properties are set to False, the buttons are not
disabled; instead, they are removed from the title bar.

4. Now, return the buttons to their original state by setting the form’s MinimizeBox and
MaximizeBox properties to True.

Unlike most applications, splash screens typically do not contain a title bar. You can remove the
title bar by setting the form’s ControlBox property to False, and then removing the text from its
Text property. You will try this next.

To remove the title bar from the splash screen:

1. Set the form’s ControlBox property to False. Doing this removes the title bar elements
(icon and buttons) from the form; however, it does not remove the title bar itself. To
remove the title bar, you must delete the contents of the form’s Text property. Click the
Text property, press the Backspace key, and then press Enter.

2. Save the solution and then start the application. The splash screen appears without a
title bar. See Figure 1-33. The application ends after six seconds have elapsed.

START HERE

Photos courtesy of the Nashville Zoo and Diane Zak
Figure 1-33 Completed splash screen

Printing the Application’s Code and Interface
You should always print a copy of your application’s code because the printout will help you
understand and maintain the application in the future. To print the code, the Code Editor
window must be the active (current) window. You should also print a copy of the application’s
user interface.

To print the splash screen’s interface and code:

1. Press the Windows logo key to switch to tile-based mode. Begin typing the words
snipping tool. When you see Snipping Tool in the list of applications, click
Snipping Tool.

2. Click the New button. Drag the cursor around the form and then release the mouse button.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 An Introduction to Visual Basic 2015

52

3. Click File and then click Save As. Locate and then open the VB2015\Chap01\Splash
Solution folder. If necessary, change the entry in the Save as type box to Portable
Network Graphic file (PNG) (*.PNG). Type Zoo Splash in the File name box and then
click the Save button. Close the Snipping Tool application.

4. If your computer is connected to a printer, use Windows to open the VB2015\Chap01\
Splash Solution folder. Right-click Zoo Splash.PNG and then click Print on the context
menu. If necessary, select the appropriate printer in the Printer box. Click the Print button.

5. Click the Splash Form.vb tab to make the Code Editor window the active window.
Click File on the menu bar, and then click Print to open the Print dialog box. See
Figure 1-34. Notice that you can include line numbers in the printout. You can also
choose to hide the collapsed regions of code. Currently, the Hide collapsed regions
check box is grayed out because no code is collapsed in the Code Editor window.

6. If your computer is connected to a printer, click the OK button to begin printing; otherwise,
click the Cancel button. If you clicked the OK button, your printer prints the code.

7. Close the Code Editor window and then close the solution.

Lesson C Summary
 • To process code at specified intervals of time:

Use the Timer tool to instantiate a timer control. Set the timer’s Interval property to the
number of milliseconds for each interval. Turn on the timer by setting its Enabled property to
True. Enter the timer’s code in its Tick event procedure.

Figure 1-34 Print dialog box

dimmed (grayed out)
because no code is
collapsed in the Code
Editor window

allows you to include
line numbers in the
printout

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

53

Lesson C Review Questions L E S S O N C

 • To delete a control:

Select the control you want to delete and then press Delete. If the control contains code, open
the Code Editor window and delete the code contained in the control’s event procedures.

 • To control the border style of the form:

Set the form’s FormBorderStyle property.

 • To enable/disable the Minimize button on the form’s title bar:

Set the form’s MinimizeBox property.

 • To enable/disable the Maximize button on the form’s title bar:

Set the form’s MaximizeBox property.

 • To control whether the icon and buttons appear in the form’s title bar:

Set the form’s ControlBox property.

 • To print the user interface:

Make the designer window the active window. Open the Snipping Tool application. Click
the New button. Drag the cursor around the form and then release the mouse button. Use
the File menu to save the file as a PNG file, and then close the Snipping Tool application. Use
Windows to locate the PNG file. Right-click the file’s name and then click Print on the context
menu. If necessary, select the appropriate printer in the Printer box. Click the Print button.

 • To print the Visual Basic code:

Make the Code Editor window the active window. Collapse any code you do not want to
print. Click File on the menu bar and then click Print. If you don’t want to print the collapsed
code, select the Hide collapsed regions check box. If you want to print line numbers, select
the Include line numbers check box. Click the OK button in the Print dialog box.

Lesson C Key Terms
Component tray—a special area in the IDE; stores controls that do not appear in the interface
during run time

Run time—the state of an application while it is running

Timer control—the control used to process code at one or more regular intervals

Lesson C Review Questions
1. If a timer is running, the code in its _____________________ event procedure is pro-

cessed each time an interval has elapsed.

a. Interval
b. Tick

c. Timed
d. Timer

2. Which of the following is false?

a. When you add a timer control to a form, the control appears in the component tray.
b. The user can see a timer control during run time.
c. You stop a timer by setting its Enabled property to False.
d. The number entered in a timer’s Interval property represents the number of mil-

liseconds for each interval.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 An Introduction to Visual Basic 2015

54

3. To disable the Minimize button on a form’s title bar, set the form’s
_____________________ property to False.

a. ButtonMinimize
b. Minimize

c. MinimizeBox
d. MinimizeButton

4. You can remove the Minimize, Maximize, and Close buttons from a form’s title bar by
setting the form’s _____________________ property to False.

a. ControlBox
b. ControlButton

c. TitleBar
d. TitleBarElements

5. Explain how to delete a control that contains code.

Lesson C Exercises
1. In this exercise, you modify the Warren Fire Department application created in

 Lesson B’s Exercise 1.

a. Open the VB2015\Chap01\Warren Solution\Warren Solution (Warren Solution.sln)
file. If necessary, open the designer window.

b. Delete the Exit button from the form and then delete the button’s code from the
Code Editor window.

c. Add a timer control to the form. Change the timer’s name to tmrExit. Set the timer’s
Enabled property to True. The timer should end the application after eight seconds
have elapsed; set the appropriate property. Enter the Me.Close() instruction in the
appropriate event procedure in the Code Editor window.

d. Save the solution and then start the application. When eight seconds have elapsed,
the application ends.

e. Add a label control to the form. Position the label below the picture box. Change the
label’s Text property to “Warren Fire Department” (without the quotation marks).
Change its font size to 16pt. Center the label horizontally on the form.

f. Set the form’s FormBorderStyle property to FixedSingle. Also, remove the elements
(icon and buttons) and text from the form’s title bar.

g. Save the solution and then start the application. Close the Code Editor window and
then close the solution.

2. In this exercise, you modify the Valley Park application created in Lesson B’s Exercise 2.

a. Open the VB2015\Chap01\Valley Solution\Valley Solution (Valley Solution.sln) file.
If necessary, open the designer window.

b. Replace the Exit button with a timer control named tmrExit. The timer should end
the application after six seconds have elapsed.

c. Save the solution and then start the application. When six seconds have elapsed, the
application ends.

d. Change the label’s text to “Come join the fun at Valley Park!” (without the quotation
marks). Center the label horizontally on the form.

e. Set the form’s FormBorderStyle property to FixedSingle. Also, remove the elements
(icon and buttons) and text from the form’s title bar.

f. Save the solution and then start the application. Close the Code Editor window and
then close the solution.

INTRODUCTORY

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

55

Lesson C Exercises L E S S O N C

3. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Characters Solution and Characters Project. Save the
 application in the VB2015\Chap01 folder. Change the form file’s name to Main
Form.vb. Create the interface shown in Figure 1-35. The picture boxes should display
the images stored in the Darth.png and Trooper.png files contained in the VB2015\
Chap01 folder. Include a timer that ends the application after five seconds have
elapsed. Now, use the Project Designer window to change the executable file’s name
to Characters. Save the solution and then start the application. Close the Code Editor
 window and then close the solution. Use Windows to open the project’s bin\Debug
folder, and then run the project’s executable file.

INTERMEDIATE

4. Create a Visual Basic Windows application. Name the solution, project, and form file
My Splash Solution, My Splash Project, and Splash Form.vb, respectively. Save the
application in the VB2015\Chap01 folder. Create your own splash screen. Save the
 solution and then start the application. Close the Code Editor window and then close
the solution.

5. The Internet contains a vast amount of code snippets that you can use in your Visual
Basic applications. And in many cases, you can use the snippet without fully under-
standing each line of its code. In this exercise, you will use a code snippet that rounds
the corners on a splash screen.

a. Open the Rounded Corners Solution (Rounded Corners Solution.sln) file contained
in the VB2015\Chap01\Rounded Corners Solution folder. If necessary, open the
designer window. The image that appears on the form is displayed by the form’s
BackgroundImage property. The form’s BackgroundImageLayout property is set
to Stretch.

b. For the code snippet to work properly, the splash screen cannot have a border.
Therefore, change the form’s FormBorderStyle property to None.

INTERMEDIATE

DISCOVERY

Figure 1-35 Interface for the Star Wars Characters application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 An Introduction to Visual Basic 2015

56

c. Save the application and then start the solution. Notice that the splash screen
contains the standard corners, which are not rounded. Click the Exit button to end
the application.

d. Open the Code Editor window. Select (highlight) the lines of code contained in the
form’s Load event procedure, which is processed when the application is run and the
form is loaded into the computer’s internal memory. See Figure 1-36.

e. Click the Uncomment the selected lines button on the Standard toolbar. (Refer
to Figure 1-36 for the button’s location.) Save the solution and then start the
application. The splash screen now has rounded corners. See Figure 1-37.

Figure 1-37 Splash screen with rounded corners
Photo courtesy of the Nashville Zoo and Diane Zak

Figure 1-36 Form’s Load event procedure selected in the Code Editor window

Uncomment
the selected
lines button

f. Click the Exit button to end the application. Close the Code Editor window and then
close the solution.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

57

Lesson C Exercises L E S S O N C

6. In this exercise, you will create a splash screen that has a transparent background.

a. Open the VB2015\Chap01\Transparency Solution\Transparency Solution
(Transparency Solution.sln) file. If necessary, open the designer window.

b. Click the form’s title bar to select the form. Set the form’s FormBorderStyle property
to None.

c. Click TransparencyKey in the Properties window. The TransparencyKey property
determines the color that will appear transparent when the application is run. To
make the form transparent, you set its TransparencyKey property to the same color
as its BackColor property. Click the TransparencyKey property’s list arrow, then click
the System tab, and then click Control.

d. Open the Code Editor window, which contains the Me.Close() instruction in the
picHeart_Click event. Save the solution and then start the application. Because the
color specified in the form’s BackColor property is the same as the color specified in
the TransparencyKey property, the form appears transparent. As a result, the splash
screen shows only the image contained in the picture box. See Figure 1-38.

DISCOVERY

e. Click the picture box to end the application. Close the Code Editor window and then
close the solution.

7. In this exercise, you will learn how to display a splash screen followed by another form.

a. Open the Two Form Solution (Two Form Solution.sln) file contained in the
VB2015\Chap01\Two Form Solution folder. If necessary, open the Solution
Explorer and designer windows. Notice that the project contains one form named
Splash Form.vb.

b. Now you will add a new form to the project. Click Project on the menu bar, then
click Add Windows Form, and then click the Add button. Change the new form
file’s name to Main Form.vb. Change the form’s name to frmMain, and then set its
StartPosition property to CenterScreen. Also set its Text property to Main Form.

DISCOVERY

Figure 1-38 Splash screen with a transparent background

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 An Introduction to Visual Basic 2015

58

c. Right-click My Project in the Solution Explorer window and then click Open.
Change the entry in the Startup form box to frmMain. Change the entry in the
Splash screen box to frmSplash. Close the Project Designer window.

d. Save the solution and then start the application. The splash screen (frmSplash)
appears first. After a few seconds, the splash screen disappears automatically and the
startup form (frmMain) appears. Click the Close button on the startup form’s title
bar, and then close the solution.

8. In this exercise, you learn how to display a tooltip. Open the VB2015\Chap01\ToolTip
Solution\ToolTip Solution (ToolTip Solution.sln) file. If necessary, open the designer
window. Click the ToolTip tool in the toolbox and then drag the tool to the form.
Notice that a tooltip control appears in the component tray rather than on the form. Set
the btnExit control’s ToolTip on ToolTip1 property to “Ends the application” (without
the quotation marks). Save the solution and then start the application. Hover your
mouse pointer over the Exit button. The tooltip “Ends the application” appears in a
tooltip box. Click the Exit button and then close the solution.

9. Open the VB2015\Chap01\Debug Solution\Debug Solution (Debug Solution.sln) file.
If necessary, open the designer window. Start the application. The application is not
working correctly because the splash screen does not disappear after four seconds have
elapsed. Click Debug on the menu bar and then click Stop Debugging. Locate and then
correct the error(s). Save the solution and then start the application again to verify that
it is working correctly. Close the Code Editor window and then close the solution.

DISCOVERY

SWAT THE BUGS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2
Designing Applications

Creating the Meyer’s Purple Bakery Application

In this chapter, you will create an application that prints a sales receipt for Meyer’s
Purple Bakery, a small bakery that sells a variety of doughnuts and muffins for
$0.50 each. The application will allow the salesclerk to enter the current date and
the number of doughnuts and muffins sold to a customer. It then will calculate and
display the total number of items sold and the total sales amount.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Designing Applications

60

Previewing the Meyer’s Purple Bakery Application
Before you start the first lesson in this chapter, you will preview the completed application
contained in the VB2015\Chap02 folder.

To preview the completed application:

1. Use Windows to locate and then open the VB2015\Chap02 folder on your computer’s
hard disk or on the device designated by your instructor. Right-click Bakery (Bakery.exe)
in the list of filenames and then click the Open button. The interface shown in Figure 2-1
appears on the screen. In addition to the picture box, label, and button controls that you
learned about in Chapter 1, the interface contains three text boxes. A text box gives a user
an area for entering data.

START HERE

 Note: If the underlined letters, called access keys, do not appear on your screen, press
the Alt key on your keyboard. You will learn about access keys in Lesson B.

2. The insertion point is located in the first text box. The label control to the left of the
text box identifies the information the user should enter. Type 7/25/2016 as the date,
and then press Tab twice to move the insertion point to the Muffins text box.

3. Type 2 and then press Shift+Tab (press and hold down the Shift key as you tap the
Tab key) to move the insertion point to the Doughnuts text box.

4. Type 6 and then click the Calculate button. The button’s Click event procedure
calculates and displays the total number of items sold (8) and the total sales ($4.00).

5. Click the Muffins text box. Change the number 2 in the box to 3, and then click the
Calculate button. The button’s Click event procedure recalculates the total number of
items sold (9) and the total sales ($4.50). See Figure 2-2.

Figure 2-1 Meyer’s Purple Bakery interface

label text box

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

61

6. Click the Print Receipt button. The sales receipt appears in the Print preview window.
(It may take a few seconds for the window to open.) Click the Zoom button’s list arrow,
and then click 75%. If necessary, size the Print preview window to view the entire sales
receipt. See Figure 2-3.

Figure 2-2 Completed sales receipt

Previewing the Meyer’s Purple Bakery Application

7. If your computer is connected to a printer, click the Print button (the printer) on the
Print preview window’s toolbar to send the output to the printer.

8. Click the Close button on the Print preview window’s toolbar.

9. Click the Clear Screen button to remove the sales information (except the date) from
the interface, and then click the Exit button to end the application.

The Meyer’s Purple Bakery application is an object-oriented program because it uses objects
(such as buttons and text boxes) to accomplish its goal. In Lesson A, you will learn how a
programmer plans an object-oriented program. You will create the application in Lessons B
and C. Be sure to complete each lesson in full and do all of the end-of-lesson questions and
several exercises before continuing to the next lesson.

Figure 2-3 Print preview window

Zoom button

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Designing Applications

62

❚ LESSON A
After studying Lesson A, you should be able to:

 • Plan an object-oriented Windows application in Visual Basic 2015

 • Complete a TOE (Task, Object, Event) chart

 • Follow the Windows standards regarding the layout and labeling of controls

Creating an Object-Oriented Application
As Figure 2-4 indicates, the process a programmer follows when creating an object-oriented (OO)
application is similar to the process a builder follows when building a home. The planning
step, which is Step 2 in the process, is covered in this lesson. Steps 3 through 6 are covered in
Lessons B and C.

A builder’s process
1. Meet with the client.
2. Plan the home (blueprint).
3. Build the frame.
4. Complete the home.
5. Inspect the home and fix any problems.
6. Assemble the documentation.

A programmer’s process
1. Meet with the client.
2. Plan the application (TOE chart).
3. Build the user interface.
4. Code the application.
5. Test and debug the application.
6. Assemble the documentation.

Figure 2-4 Processes used by a builder and a programmer

Planning an OO application
1. Identify the tasks the application needs to perform.
2. Identify the objects to which you will assign the tasks.
3. Identify the events required to trigger an object to perform its assigned tasks.
4. Draw a sketch of the user interface.

Figure 2-5 Steps for planning an OO application

Planning an Object-Oriented Application
As any builder will tell you, the most important aspect of a home is not its beauty. Rather, it is
how well the home satisfies the buyer’s wants and needs. The same is true of an OO application.
For an application to fulfill the wants and needs of the user, it is essential for the programmer
to plan the application jointly with the user. It cannot be stressed enough that the only way to
guarantee the success of an application is to actively involve the user in the planning phase. The
steps for planning an OO application are listed in Figure 2-5.

You can use a TOE (Task, Object, Event) chart to record the application’s tasks, objects, and
events, which are identified in the first three steps of the planning phase. In the next section, you
will begin completing a TOE chart for the Meyer’s Purple Bakery application. The first step is to
identify the application’s tasks.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

63

Planning an Object-Oriented Application L E S S O N A

Identifying the Application’s Tasks
Realizing that it is essential to involve the user when planning the application, you meet with the
bakery’s manager, Mr. Cortane, to determine his requirements. You ask Mr. Cortane to bring
a sample of the bakery’s current sales receipt; the sample is shown in Figure 2-6. Viewing the
bakery’s current forms and procedures will help you better understand the application you need
to create. You can also use the current form as a guide when designing the user interface.

When identifying the major tasks an application needs to perform, it is helpful to ask the
questions italicized in the following bulleted items. The answers pertaining to the bakery
application follow each question.

 • What information will the application need to display on the screen and/or print on the
printer? The application should display and also print the following information: the date, the
number of doughnuts sold, the number of muffins sold, the total number of items sold, and
the total sales amount.

 • What information will the user need to enter into the user interface to display and/or print the
desired information? The salesclerk (the user) must enter the date, the number of doughnuts
sold, and the number of muffins sold.

 • What information will the application need to calculate to display and/or print the desired
information? The application needs to calculate the total number of items sold and the total
sales amount.

 • How will the user end the application? All applications should provide a way for the user to
end the application. The bakery application will provide an Exit button.

 • Will previous information need to be cleared from the screen before new information is
entered? The previous customer’s sales information will need to be cleared from the screen
before the next customer’s transaction begins.

Figure 2-7 shows the application’s tasks listed in a TOE chart. The tasks do not need to be
listed in any particular order. In this case, the data-entry tasks are listed first, followed by
the calculation tasks, the display and printing tasks, the application-ending task, and the
screen-clearing task.

Figure 2-6 Sample of the bakery’s current sales receipt

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Designing Applications

64

Identifying the Objects
After completing the Task column of the TOE chart, you then assign each task to an object in
the user interface. For this application, the only objects you will use besides the Windows form
itself are the button, label, and text box controls. As you already know, you use a label to display
information that you do not want the user to change while the application is running, and you
use a button to perform an action immediately after the user clicks it. You use a text box to give
the user an area for entering data.

The first task listed in Figure 2-7 is to get the sales information from the user. Because you need
to provide the salesclerk with areas in which to enter the information, you will assign the first
task to three text boxes named txtDate, txtDonuts, and txtMuffins. The three-character ID used
when naming text boxes is txt.

The second task listed in the TOE chart is to calculate the total number of items sold and the
total sales amount. You will assign the task to a button named btnCalc so that the salesclerk can
calculate both amounts at any time.

The third task listed in the TOE chart is to display five items of information. The first three
items pertain to the sales information, which is displayed automatically when the user enters
that information in the three text boxes. The last two items, however, are not entered by the
user. Instead, those amounts are calculated by the btnCalc control. Because the user should not
be allowed to change the calculated results, you will have the btnCalc control display the results
in two label controls named lblTotalItems and lblTotalSales. If you look ahead to Figure 2-8, you
will notice that “(from btnCalc)” was added to the last two display tasks in the Task column.

The last three tasks listed in the TOE chart will be assigned to three buttons named
btnPrint, btnExit, and btnClear. Assigning the tasks to buttons will give the user control over
when the tasks are performed. Figure 2-8 shows the TOE chart with the Task and Object
columns completed.

You can draw
a TOE chart by
hand or use the
table feature
in a word
processor.

Figure 2-7 Tasks entered in a TOE chart

Task Object Event
Get the following sales information from the user:
 Current date
 Number of doughnuts sold
 Number of muffins sold

Calculate total items sold and total sales amount

Display the following information:
 Current date
 Number of doughnuts sold
 Number of muffins sold
 Total items sold
 Total sales amount

Print the sales receipt

End the application

Clear the screen for the next sale

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

65

Planning an Object-Oriented Application L E S S O N A

Identifying the Events
After defining the application’s tasks and assigning the tasks to objects in the interface, you then
determine which event (if any) must occur in order for an object to carry out its assigned task.
The three text boxes listed in the TOE chart in Figure 2-8 are assigned the tasks of getting and
displaying the sales information. Text boxes accept and display information automatically, so
no special event is necessary for them to do their assigned tasks. The two label controls listed
in the TOE chart are assigned the task of displaying the two calculated amounts. Label controls
automatically display their contents; so, here again, no special event needs to occur. (Recall that
the label controls will get their values from the btnCalc control.) The remaining objects listed
in the TOE chart are the four buttons. You will have the buttons perform their assigned tasks
when the user clicks them. Figure 2-9 shows the completed TOE chart.

Figure 2-8 Tasks and objects entered in a TOE chart

Task Object Event
Get the following sales information from the user:
 Current date txtDate
 Number of doughnuts sold txtDonuts
 Number of muffins sold txtMuffins

Calculate total items sold and total sales amount btnCalc

Display the following information:
 Current date txtDate
 Number of doughnuts sold txtDonuts
 Number of muffins sold txtMuffins
 Total items sold (from btnCalc) lblTotalItems
 Total sales amount (from btnCalc) lblTotalSales

Print the sales receipt btnPrint

End the application btnExit

Clear the screen for the next sale btnClear

Figure 2-9 Completed TOE chart ordered by task

Task Object Event
Get the following sales information from the user:
 Current date txtDate None
 Number of doughnuts sold txtDonuts None
 Number of muffins sold txtMuffins None

Calculate total items sold and total sales amount btnCalc Click

Display the following information:
 Current date txtDate None
 Number of doughnuts sold txtDonuts None
 Number of muffins sold txtMuffins None
 Total items sold (from btnCalc) lblTotalItems None
 Total sales amount (from btnCalc) lblTotalSales None

Print the sales receipt btnPrint Click

End the application btnExit Click

Clear the screen for the next sale btnClear Click

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Designing Applications

66

If the application you are creating is small, like the bakery application, you can use the TOE
chart in its current form to help you write the Visual Basic code. When the application is large,
however, it is often helpful to rearrange the TOE chart so that it is ordered by object rather than
by task. To do so, you list all of the objects in the Object column of a new TOE chart, being sure
to list each object only once. You then list each object’s tasks and events in the Task and Event
columns, respectively. Figure 2-10 shows the rearranged TOE chart ordered by object rather
than by task.

After completing the TOE chart, the next step is to draw a rough sketch of the user interface.

Drawing a Sketch of the User Interface
Although the TOE chart lists the objects to include in the interface, it does not indicate
where the objects should be placed on the form. While the design of an interface is open to
creativity, there are some guidelines to which you should adhere so that your interface is
consistent with the Windows standards. This consistency will give your interface a familiar look,
which will make your application easier for users to both learn and use. The guidelines are
referred to as GUI (graphical user interface) guidelines.

The first GUI guideline covered in this book pertains to the organization of the controls in the
interface. In Western countries, the user interface should be organized so that the information
flows either vertically or horizontally, with the most important information always located in the
upper-left corner of the interface. In a vertical arrangement, the information flows from top to
bottom: The essential information is located in the first column of the interface, while secondary
information is placed in subsequent columns. In a horizontal arrangement, on the other hand,
the information flows from left to right: The essential information is placed in the first row of
the interface, with secondary information placed in subsequent rows.

Related controls should be grouped together using either white (empty) space or one of the tools
located in the Containers section of the toolbox. Examples of tools found in the Containers
section include the GroupBox, Panel, and TableLayoutPanel tools.

A company’s
standards for
interfaces
used within
the company

supersede the Windows
standards.

Ch02A-Containers

Figure 2-10 Completed TOE chart ordered by object

Task Object Event
1. Calculate total items sold and total sales amount btnCalc Click
2. Display total items sold and total sales amount in
 lblTotalItems and lblTotalSales

Print the sales receipt btnPrint Click

End the application btnExit Click

Clear the screen for the next sale btnClear Click

Display total items sold (from btnCalc) lblTotalItems None

Display total sales amount (from btnCalc) lblTotalSales None

Get and display the sales information txtDate, txtDonuts, None
 txtMuffins

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

67

Planning an Object-Oriented Application L E S S O N A

Figures 2-11 and 2-12 show two different sketches of the bakery application’s interface. In
Figure 2-11, the information is arranged vertically, and white space is used to group related
controls together. In Figure 2-12, the information is arranged horizontally, with related controls
grouped together using a group box. Each box and button in both figures is labeled so the user
knows its purpose. For example, the “Date:” label tells the user the type of information to enter
in the box that appears to its right. Similarly, the “Calculate” caption on the first button indicates
the action the button will perform when it is clicked.

Usually, program output (such as the result of calculations) is displayed in one or more label
controls in the interface. Label controls that display program output should be labeled to make
their contents obvious to the user. In the interfaces shown in Figures 2-11 and 2-12, the “Total
items:” and “Total sales:” labels identify the contents of the lblTotalItems and lblTotalSales
controls, respectively.

The text contained in a label control that identifies another control’s contents should be
meaningful and left-aligned within the label. In most cases, an identifying label should consist
of one to three words only and appear on one line. In addition, the identifying label should be
positioned either above or to the left of the control it identifies. An identifying label should
end with a colon (:), which distinguishes it from other text in the user interface (such as
the heading text “Sales Receipt”). Some assistive technologies, which are technologies that
provide assistance to individuals with disabilities, rely on the colons to make this distinction.
The Windows standard is to use sentence capitalization for identifying labels. Sentence
capitalization means you capitalize only the first letter in the first word and in any words that
are customarily capitalized.

Chef hat

image
Sales Receipt

Date:

Doughnuts:

Muffins:

Total items:

Total sales:

Calculate

Print Receipt

Clear Screen

Exit

Figure 2-11 Vertical arrangement of the Meyer’s Purple Bakery interface

Chef hat

image
Sales Receipt

Sales information

Date: Doughnuts: Muffins:

Total items: Total sales:

Calculate Print Receipt Clear Screen Exit

Figure 2-12 Horizontal arrangement of the Meyer’s Purple Bakery interface

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Designing Applications

68

As you learned in Chapter 1, buttons are identified by the text that appears on the button’s face.
The text is often referred to as the button’s caption. The caption should be meaningful, consist
of one to three words only, and appear on one line. A button’s caption should be entered using
book title capitalization, which means you capitalize the first letter in each word, except for
articles, conjunctions, and prepositions that do not occur at either the beginning or end of the
caption. If the buttons are stacked vertically, as they are in Figure 2-11, all the buttons should be
the same height and width. If the buttons are positioned horizontally, as they are in Figure 2-12,
all the buttons should be the same height, but their widths may vary if necessary. In a group of
buttons, the most commonly used button typically appears first—either on the top (in a vertical
arrangement) or on the left (in a horizontal arrangement).

When positioning the controls in the interface, place related controls close to each other and
be sure to maintain a consistent margin from the edges of the form. Also, it is helpful to align
the borders of the controls wherever possible to minimize the number of different margins
appearing in the interface. Doing this allows the user to more easily scan the information. You
can align the borders using the snap lines that appear as you are building the interface. Or, you
can use the Format menu to align (and also size) the controls.

In this lesson, you learned some basic guidelines to follow when sketching a GUI. You will
learn more GUI guidelines in the remaining lessons and in subsequent chapters. You can find a
complete list of the GUI guidelines in Appendix B of this book.

GUI DESIGN TIP Layout and Organization of the User Interface

 • Organize the user interface so that the information flows either vertically or
horizontally, with the most important information always located in the upper-left
corner of the interface.

 • Group related controls together using either white (empty) space or one of the tools
from the Containers section of the toolbox.

 • Use a label to identify each text box in the user interface. Also use a label to
identify other label controls that display program output. The label text should be
meaningful, consist of one to three words only, and appear on one line. Left-align the
text within the label and position the label either above or to the left of the control
it identifies. Enter the label text using sentence capitalization, and insert a colon (:)
following the label text.

 • Display a meaningful caption on the face of each button. The caption should indicate
the action the button will perform when clicked. Enter the caption using book title
capitalization. Place the caption on one line and use from one to three words only.

 • When a group of buttons are stacked vertically, all buttons in the group should be
the same height and width. When a group of buttons are positioned horizontally, all
buttons in the group should be the same height. In a group of buttons, the most
commonly used button is typically placed first in the group.

 • Align the borders of the controls wherever possible to minimize the number of
different margins appearing in the interface.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

69

Lesson A Key Terms L E S S O N A

Lesson A Summary
 • To create an OO application:

Follow these six steps in this order:

1. Meet with the client.

2. Plan the application.

3. Build the user interface.

4. Code the application.

5. Test and debug the application.

6. Assemble the documentation.

 • To plan an OO application in Visual Basic:

Perform these four steps in this order:

1. Identify the tasks the application needs to perform.

2. Identify the objects to which you will assign the tasks.

3. Identify the events required to trigger an object to perform its assigned tasks.

4. Draw a sketch of the user interface.

 • To help you identify the major tasks an application needs to perform, ask the following
questions:

1. What information will the application need to display on the screen and/or print on
the printer?

2. What information will the user need to enter into the user interface in order to display
and/or print the desired information?

3. What information will the application need to calculate in order to display and/or print
the desired information?

4. How will the user end the application?

5. Will prior information need to be cleared from the screen before new information is
entered?

Lesson A Key Terms
Book title capitalization—the capitalization used for a button’s caption; refers to capitalizing the
first letter in each word, except for articles, conjunctions, and prepositions that do not occur at
either the beginning or end of the caption

Sentence capitalization—the capitalization used for identifying labels; refers to capitalizing
only the first letter in the first word and in any words that are customarily capitalized

Text box—a control that provides an area in the form for the user to enter data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Designing Applications

70

Lesson A Review Questions
1. In which corner should the most important information be placed in a user interface?

a. lower left
b. lower right

c. upper left
d. upper right

2. A button’s caption should be entered using which type of capitalization?

a. book title
b. sentence

c. either book title or sentence

3. Which of the following statements is false?

a. The text contained in identifying labels should be left-aligned within the label.
b. An identifying label should be positioned either above or to the right of the control

it identifies.
c. Identifying labels should use sentence capitalization.
d. Identifying labels should end with a colon (:).

4. Listed below are the four steps you should follow when planning an OO application.
Put the steps in the proper order by placing a number (1 through 4) on the line to the
left of the step.

_____________________ Identify the objects to which you will assign the tasks.
_____________________ Draw a sketch of the user interface.
_____________________ Identify the tasks the application needs to perform.
_____________________ Identify the events required to trigger an object to perform its

assigned tasks.

5. Listed below are the six steps you should follow when creating an OO application. Put
the steps in the proper order by placing a number (1 through 6) on the line to the left of
the step.

_____________________ Test and debug the application.
_____________________ Build the user interface.
_____________________ Code the application.
_____________________ Assemble the documentation.
_____________________ Plan the application.
_____________________ Meet with the client.

Lesson A Exercises
1. The annual property tax in Richardson County is $1.50 for each $100 of a property’s

assessed value. The county clerk wants you to create an application that will display the
property tax after he enters the property’s assessed value. Prepare a TOE chart ordered
by task, and then rearrange the TOE chart so that it is ordered by object. Be sure to
include buttons that allow the user to both clear and print the screen. Draw a sketch of
the user interface. (You will create the interface in Lesson B’s Exercise 1 and then code
the application in Lesson C’s Exercise 1.)

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

71

Lesson A Exercises L E S S O N A

2. All employees at Jordan Sports Store are paid based on an annual salary rather than an
hourly wage. However, some employees are paid weekly, while others are paid every
other week. Employees paid weekly receive 52 paychecks; employees paid every other
week receive 26 paychecks. The payroll clerk wants you to create an application that
allows her to enter an employee’s annual salary. The application should display both
the weekly gross pay and the biweekly gross pay. Prepare a TOE chart ordered by task,
and then rearrange the TOE chart so that it is ordered by object. Be sure to include
 buttons that allow the user to both clear and print the screen. Draw a sketch of the
user interface. (You will create the interface in Lesson B’s Exercise 2 and then code the
 application in Lesson C’s Exercise 2.)

3. Cranston Berries sells three types of berries: strawberries, blueberries, and raspberries.
Sales have been booming this year and are expected to increase next year. The sales
manager wants you to create an application that allows him to enter the projected
increase (expressed as a decimal number) in berry sales for the following year. He will
also enter the current year’s sales for each type of berry. The application should display
the projected sales total for each berry type. For example, if the projected increase
in berry sales is .05 (the decimal equivalent of 5%) and the current sales amount for
strawberries is $25,000, the projected sales total of strawberries for the following year
is $26,250. Prepare a TOE chart ordered by task, and then rearrange the TOE chart so
that it is ordered by object. Be sure to include buttons that allow the user to both clear
and print the screen. (You will create the interface in Lesson B’s Exercise 3 and then
code the application in Lesson C’s Exercise 3.)

INTRODUCTORY

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Designing Applications

72

❚ LESSON B
After studying Lesson B, you should be able to:

 • Build the user interface using your TOE chart and sketch

 • Follow the Windows standards regarding the use of graphics, fonts, and color

 • Set a control’s BorderStyle, AutoSize, and TextAlign properties

 • Add a text box to a form

 • Lock the controls on the form

 • Assign access keys to controls

 • Set the TabIndex property

Building the User Interface
In Lesson A, you planned the Meyer’s Purple Bakery application. Planning the application is
the second of the six steps involved in creating an OO application. Now you are ready to tackle
the third step, which is to build the user interface. You will use the TOE chart and sketch you
created in the planning step as guides when building the interface, which involves placing the
appropriate controls on the form and setting the applicable properties of the controls.

To save you time, the VB2015\Chap02\Bakery Solution folder contains a partially completed
application for the bakery. When you open the solution, you will find that most of the user
interface has been created and most of the properties have been set. You will complete the
interface in this lesson.

To open the partially completed application:

1. If necessary, start Visual Studio 2015 and open the Solution Explorer window. Open
the Bakery Solution (Bakery Solution.sln) file contained in the VB2015\Chap02\Bakery
Solution folder. If necessary, open the designer window.

2. Permanently display the Properties and Toolbox windows, and then auto-hide the
Solution Explorer window. Figure 2-13 shows the partially completed interface, which
resembles the sketch shown in Figure 2-11 in Lesson A.

START HERE

Figure 2-13 Partially completed interface for the bakery application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

73

Building the User Interface L E S S O N B

The application’s user interface follows the GUI guidelines covered in Lesson A. The information
is arranged vertically, and the controls are aligned wherever possible. Each text box and
button, as well as each label control that displays program output, is labeled so the user knows
the control’s purpose. The text contained in the identifying labels is entered using sentence
capitalization. In addition, the text ends with a colon and is left-aligned within the label. The
identifying labels are positioned to the left of the controls they identify. Each button’s caption is
entered using book title capitalization. The button captions and identifying labels appear on one
line and do not exceed the three-word limit. Because the buttons are stacked in the interface,
each button has the same height and width, and the most commonly used button (Calculate) is
placed at the top of the button group.

When building the user interface, keep in mind that you want to create a screen that no one
notices. Interfaces that contain a lot of different colors, fonts, and graphics may get “oohs” and
“aahs” during their initial use, but they become tiresome after a while. The most important point
to remember is that the interface should not distract the user from doing his or her work. The
next three sections provide some guidelines to follow regarding the use of these elements in
an interface.

Including Graphics in the User Interface
The human eye is attracted to pictures before text, so use graphics sparingly. Designers typically
include graphics to either emphasize or clarify a portion of the screen. However, a graphic can
also be used merely for aesthetic purposes, as long as it is small and placed in a location that
does not distract the user. The small graphic in the Meyer’s Purple Bakery interface is included
for aesthetics only. The graphic is purposely located in the upper-left corner of the interface,
which is where you want the user’s eye to be drawn first anyway. (Remember that the most
important information usually begins there.) The graphic adds a personal touch to the sales
receipt form without distracting the user.

GUI DESIGN TIP Adding Graphics

 • Use graphics sparingly. If the graphic is used solely for aesthetics, use a small
graphic and place it in a location that will not distract the user.

Selecting Fonts for the Interface
As you learned in Chapter 1, an object’s Font property determines the type, style, and size of
the font used to display the object’s text. You should use only one font type (typically Segoe UI)
for all of the text in the interface, and use no more than two different font sizes. In addition,
avoid using italics and underlining in an interface because both font styles make text difficult
to read. The use of bold text should be limited to titles, headings, and key items that you want
to emphasize.

The graphics,
font, and color
guidelines do
not pertain
to game
applications.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Designing Applications

74

GUI DESIGN TIP Selecting Font Types, Styles, and Sizes

 • Use only one font type (typically Segoe UI) for all of the text in the interface.

 • Use no more than two different font sizes in the interface.

 • Avoid using italics and underlining because both font styles make text difficult
to read.

 • Limit the use of bold text to titles, headings, and key items that you want to
emphasize.

Adding Color to the Interface
The human eye is attracted to color before black and white; therefore, use color sparingly in an
interface. It is a good practice to build the interface using black, white, and gray first, and then
add color only if you have a good reason to do so. Keep the following three points in mind when
deciding whether to include color in an interface:

1. People who have some form of either color blindness or color confusion will have
trouble distinguishing colors.

2. Color is very subjective: A color that looks pretty to you may be hideous to
someone else.

3. A color may have a different meaning in a different culture.

Usually, it is best to use black text on a white, off-white, or light gray background because dark
text on a light background is the easiest to read. You should never use a dark color for the
background or a light color for the text. This is because a dark background is hard on the eyes,
and light-colored text can appear blurry.

If you are going to include color in an interface, limit the number of colors to three, not
including white, black, and gray. Be sure that the colors you choose complement each other.
Although color can be used to identify an important element in the interface, you should never
use it as the only means of identification. In the bakery application’s interface, for example, the
colored box helps the salesclerk quickly locate the total sales amount. However, color is not
the only means of identifying the contents of that box; the box also has an identifying label
(Total sales:).

GUI DESIGN TIP Selecting Colors

 • Build the interface using black, white, and gray. Only add color if you have a good
reason to do so.

 • Use white, off-white, or light gray for the background. Use black for the text.

 • Never use a dark color for the background or a light color for the text. A dark
background is hard on the eyes, and light-colored text can appear blurry.

 • Limit the number of colors in an interface to three, not including white, black, and
gray. The colors you choose should complement each other.

 • Never use color as the only means of identification for an element in the interface.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

75

Building the User Interface L E S S O N B

The BorderStyle, AutoSize, and TextAlign Properties
A control’s border is determined by its BorderStyle property, which can be set to None,
FixedSingle, or Fixed3D. Controls with a BorderStyle property set to None have no border.
Setting the BorderStyle property to FixedSingle surrounds the control with a thin line, and
setting it to Fixed3D gives the control a three-dimensional appearance. In most cases, a text
box’s BorderStyle property should be left at the default setting: Fixed3D. The BorderStyle
property for each text box in the bakery application’s interface follows this convention.
The appropriate setting for a label control’s BorderStyle property depends on the control’s
purpose. Label controls that identify other controls (such as those that identify text boxes)
should have a BorderStyle property setting of None, which is the default setting. Label controls
that display program output, such as the result of a calculation, typically have a BorderStyle
property setting of FixedSingle. You should avoid setting a label control’s BorderStyle property
to Fixed3D because in Windows applications, a control with a three-dimensional appearance
implies that it can accept user input.
A label control’s AutoSize property determines whether the control automatically sizes to fit
its current contents. The appropriate setting depends on the label’s purpose. Label controls that
identify other controls use the default setting: True. However, you typically use False for the
AutoSize property of label controls that display program output.
A label control’s TextAlign property determines the alignment of the text within the label. The
TextAlign property can be set to nine different values, such as TopLeft, MiddleCenter, and
BottomRight.
In the next set of steps, you will change the AutoSize, BorderStyle, and TextAlign properties of
the lblTotalSales control. (The AutoSize, BorderStyle, and TextAlign properties of the other label
that displays program output have already been set.) You will also delete the contents of the
control’s Text property and then size the control to match the height of the lblTotalItems control.

To change the properties of the lblTotalSales control and then size the control:

1. Click the lblTotalSales control. Set the AutoSize and BorderStyle properties to False
and FixedSingle, respectively.

2. Click TextAlign in the Properties list and then click the list arrow in the Settings box.
Click the center button to change the property’s setting to MiddleCenter.

3. Click Text in the Properties list, press the Backspace key, and then press Enter.

4. Click the lblTotalItems control and then Ctrl+click the lblTotalSales control. Click
Format on the menu bar, point to Make Same Size, and then click Height.

5. Click the form to deselect the two labels.

GUI DESIGN TIP Setting the BorderStyle Property of a Text Box or Label

 • Keep the BorderStyle property of text boxes at the default setting: Fixed3D.

 • Keep the BorderStyle property of identifying labels at the default setting: None.

 • Use FixedSingle for the BorderStyle property of labels that display program output,
such as the result of a calculation.

 • Avoid setting a label control’s BorderStyle property to Fixed3D because in Windows
applications, a control with a three-dimensional appearance implies that it can
accept user input.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Designing Applications

76

GUI DESIGN TIP Setting the AutoSize and TextAlign Properties of a Label

 • Keep the AutoSize property of identifying labels at the default setting: True.

 • In most cases, use False for the AutoSize property of label controls that display
program output.

 • Use the TextAlign property to specify the alignment of the text within the label.

Adding a Text Box to the Form
As mentioned earlier, a text box provides an area in the form in which the user can enter data.
Missing from the bakery application’s interface is the text box for entering the number of
muffins sold. You will add the missing text box in the next set of steps.

To add the missing text box to the form:

1. Use the TextBox tool to add a text box to the form. Position the text box immediately
below the txtDonuts control. Change the text box’s name to txtMuffins and
press Enter.

2. Click the txtDonuts control and then Ctrl+click the txtMuffins control. Click Format,
point to Make Same Size, and then click Both.

3. You can align the txtMuffins control using either the Format menu or the snap lines.
You will use the snap lines. Click the form to deselect the text boxes. Place your
mouse pointer on the txtMuffins control, and then press and hold down the left
mouse button as you drag the control to the location shown in Figure 2-14. The blue
snap lines help you align the txtMuffins control with the txtDonuts control. The pink
snap line allows you to align the text in the txtMuffins control with the text in its
identifying label.

A text box is an
instance of the
TextBox class.

START HERE

4. When the txtMuffins control is in the correct location, release the mouse button.

Figure 2-14 Snap lines shown in the interface

blue snap line

pink snap line

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

77

Assigning Access Keys L E S S O N B

Locking the Controls on a Form
After placing all of the controls in their appropriate locations, it is a good idea to lock the
controls on the form. Locking the controls prevents them from being moved inadvertently as
you work in the IDE. You can lock the controls by clicking the form (or any control on the form)
and then clicking the Lock Controls option on the Format menu; you can follow the same
procedure to unlock the controls. You can also lock and unlock the controls by right-clicking the
form (or any control on the form) and then clicking Lock Controls on the context menu. When a
control is locked, a small lock appears in the upper-left corner of the control.

To lock the controls on the form and then save the solution:

1. Right-click the form and then click Lock Controls. A small lock appears in the
upper-left corner of the form.

2. Save the solution. Try dragging one of the controls to a different location on the form.
You will not be able to do so.

Assigning Access Keys
In Figure 2-14, the text in many of the controls contains an underlined letter. The underlined
letter is called an access key, and it allows the user to select an object using the Alt key in
combination with a letter or number. For example, you can select the Exit button in the bakery
application’s interface by pressing Alt+x because the letter x is the Exit button’s access key.
Access keys are not case sensitive. Therefore, you can select the Exit button by pressing either
Alt+x or Alt+X. If you do not see the underlined access keys while an application is running,
you can show them temporarily by pressing the Alt key. (To always display access keys, see the
Summary section at the end of this lesson.)

In an interface, you should assign access keys to each control that can accept user input, such
as text boxes and buttons. This is because the user can enter information in a text box and
click a button. The only exceptions to this rule are the OK and Cancel buttons, which typically
do not have access keys in Windows applications. It is important to assign access keys for the
following reasons:

 • They allow users to work with the application even when their mouse becomes inoperative.

 • They allow users who are fast typists to keep their hands on the keyboard.

 • They allow people who cannot work with a mouse, such as people with disabilities, to use the
application.

You assign an access key by including an ampersand (&) in the control’s caption or identifying
label. If the control is a button, you include the ampersand in the button’s Text property, which
is where a button’s caption is stored. If the control is a text box, you include the ampersand in
the Text property of its identifying label. (As you will learn later in this lesson, you must also set
the TabIndex properties of the text box and its identifying label appropriately.) You enter the
ampersand to the immediate left of the character you want to designate as the access key.

Each access key in an interface should be unique. The first choice for an access key is the first
letter of the caption or identifying label, unless another letter provides a more meaningful
association. For example, the letter x is the access key for an Exit button because it provides
a more meaningful association than does the letter E. If you can’t use the first letter (perhaps
because it is already used as the access key for another control) and no other letter provides
a more meaningful association, then use a distinctive consonant in the caption or label. The last
choices for an access key are a vowel or a number.

A locked
control can be
deleted. It can
also be moved
by setting its

Location property.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Designing Applications

78

Missing from the interface shown in Figure 2-14 are the access keys for the Calculate button
and Date text box. You will assign those access keys in the next set of steps. However, notice
that the Total items: and Total sales: labels also do not have access keys. This is because
those labels do not identify controls that accept user input; rather, they identify other label
controls (lblTotalItems and lblTotalSales). Recall that users cannot access label controls
while an application is running, so it is inappropriate to assign an access key to their
identifying labels.

To assign access keys to the Calculate button and Date text box:

1. Click the Calculate button. Change the button’s Text property to &Calculate and then
press Enter. The letter C in the button’s caption is now underlined.

2. Next, change the Date: label’s Text property to Da&te: and then press Enter.

GUI DESIGN TIP Assigning Access Keys

 • Assign a unique access key to each control that can accept user input.

 • When assigning an access key to a control, use the first letter of the control’s
caption or identifying label, unless another letter provides a more meaningful
association. If you can’t use the first letter and no other letter provides a more
meaningful association, then use a distinctive consonant. As a last resort, use a
vowel or a number.

Controlling the Tab Order
While you are creating the interface, each control’s TabIndex property contains a number that
represents the order in which the control was added to the form. The first control added to a
form has a TabIndex value of 0, the second control has a TabIndex value of 1, and so on. The
TabIndex values determine the tab order, which is the order in which each control receives the
focus when the user either presses the Tab key or employs an access key while an application is
running. A control whose TabIndex is 2 will receive the focus immediately after the control
whose TabIndex is 1, and so on. When a control has the focus, it can accept user input. Not all
controls have a TabIndex property; a PictureBox control, for example, does not have a
TabIndex property.

Most times, you will need to reset the TabIndex values for an interface. This is because controls
rarely are added to a form in the desired tab order. To determine the appropriate TabIndex
values, you first make a list of the controls that can accept user input. The list should reflect the
order in which the user will want to access the controls. In the bakery application’s interface, the
user typically will want to access the txtDate control first, followed by the txtDonuts control, the
txtMuffins control, the btnCalc control, and so on.

If a control that accepts user input is identified by a label control, you also include the label
control in the list. (A text box is an example of a control that accepts user input and is identified
by a label control.) You place the name of the label control immediately above the name of the
control it identifies in the list. In the bakery application’s interface, the Label2 control (which
contains Date:) identifies the txtDate control. Therefore, Label2 should appear immediately
above txtDate in the list.

START HERE

When a text
box has the
focus, an
insertion point
appears inside

it. When a button has
the focus, a dotted
 rectangle appears
inside its darkened
border.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

79

Controlling the Tab Order L E S S O N B

The names of controls that do not accept user input and are not used to identify controls that
do should be placed at the bottom of the list; these names do not need to appear in any specific
order. After listing the control names, you then assign a TabIndex value to each control in the
list, beginning with the number 0. If a control does not have a TabIndex property, you do not
assign it a TabIndex value in the list. You can tell whether a control has a TabIndex property by
viewing its Properties list.

Figure 2-15 shows the list of controls and TabIndex values for the bakery application’s interface.
Notice that the TabIndex value assigned to each text box’s identifying label is one number less
than the value assigned to the text box itself. This is necessary for a text box’s access key (which
is defined in its identifying label) to work correctly.

You can set each control’s TabIndex property using either the Properties window or the Tab
Order option on the View menu. The Tab Order option is available only when the designer
window is the active window.

To set the TabIndex values and then verify the tab order:

1. Click the form to make the designer window the active window. Click View on the
menu bar and then click Tab Order. The current TabIndex values appear in blue boxes
on the form. (The picture box does not have a TabIndex property.)

2. According to Figure 2-15, the first control in the tab order should be the Label2 control,
which displays the Date: text. Click the blue box that contains the number 1. (You
can also click the Label2 control directly.) The number 0 replaces the number 1 in the
box, and the color of the box changes from blue to white to indicate that you have set
the control’s TabIndex value.

3. The second control in the tab order should be the txtDate control, which currently has
a TabIndex value of 6. Click the blue box that contains the number 6. The number 1
replaces the number 6 in the box, and the color of the box changes from blue to white.

START HERE

Figure 2-15 List of controls and TabIndex values

Controls that accept user input,
along with their identifying labels TabIndex value
Label2 (Date:) 0
txtDate 1
Label3 (Doughnuts:) 2
txtDonuts 3
Label4 (Muffins:) 4
txtMuffins 5
btnCalc 6
btnPrint 7
btnClear 8
btnExit 9

Other controls
Label1 (Sales Receipt) 10
Label5 (Total items:) 11
Label6 (Total sales:) 12
lblTotalItems 13
lblTotalSales 14
PictureBox1 N/A

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Designing Applications

80

4. Use the information shown in Figure 2-16 to set the TabIndex properties for the
remaining controls, which have TabIndex values of 2 through 14. Be sure to set the
values in numerical order. If you make a mistake, press the Esc key to remove the
TabIndex boxes from the form, and then repeat Steps 1 through 4. When you have
finished setting all of the TabIndex values, the color of the boxes will automatically
change from white to blue, as shown in Figure 2-16.

Figure 2-16 TabIndex boxes showing the correct TabIndex values

5. Press Esc (or click View and then click Tab Order) to remove the TabIndex boxes from
the form.

6. Save the solution, and then start the application. If the access keys do not appear in
the interface, press the Alt key. When you start an application, the computer sends
the focus to the control whose TabIndex is 0. In the bakery application’s interface, that
control is the Label2 (Date:) control. However, because label controls cannot receive
the focus, the computer sends the focus to the next control in the tab order sequence
(txtDate). The blinking insertion point indicates that the text box has the focus and is
ready to receive input from you. See Figure 2-17.

TabIndex is 0

TabIndex is 1

insertion point

Figure 2-17 Result of starting the bakery application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

81

7. Type 7/25/2016 in the Date text box. The information you entered is recorded in the
text box’s Text property.

8. In Windows applications, the Tab key moves the focus forward, and the Shift+Tab key
combination moves the focus backward. Press Tab to move the focus to the Doughnuts
text box, and then press Shift+Tab to move the focus back to the Date text box.

9. Now use the Tab key to verify the tab order of the controls in the interface. Press Tab,
slowly, three times. The focus moves to the Doughnuts text box, then to the Muffins
text box, and then to the Calculate button. Notice that when a button has the focus,
a dotted rectangle appears inside its darkened border. Press Tab, slowly, three more
times. The focus moves to the Print Receipt button, then to the Clear Screen button,
and finally to the Exit button.

10. Pressing the Enter key when a button has the focus invokes the button’s Click event,
causing the computer to process any code contained in the Click event procedure. Press
Enter to have the computer process the btnExit_Click procedure, which contains the
Me.Close() instruction. The application ends.

11. You can also move the focus using a text box’s access key. Start the application. If the
access keys do not appear in the interface, press the Alt key to display them. Next, press
Alt+m to move the focus to the Muffins text box. Then press Alt+t to move the focus
to the Date text box. Finally, press Alt+d to move the focus to the Doughnuts text box.

12. Unlike pressing a text box’s access key, which moves the focus, pressing a button’s
access key invokes the button’s Click event. Press Alt+x to invoke the Exit button’s Click
event, which ends the application.

13. Close the solution.

GUI DESIGN TIP Using the TabIndex Property to Control the Focus

 • Assign a TabIndex value (starting with 0) to each control in the interface, except for
controls that do not have a TabIndex property. The TabIndex values should reflect
the order in which the user will want to access the controls.

 • To allow users to access a text box using the keyboard, assign an access key to the
text box’s identifying label. Set the identifying label’s TabIndex property to a value
that is one number less than the value stored in the text box’s TabIndex property.

Lesson B Summary
 • To use appropriate graphics, fonts, and colors in an interface:

Refer to the GUI guidelines listed in Appendix B for this chapter’s lesson.

 • To specify a control’s border:

Set the control’s BorderStyle property.

 • To specify whether a label control should automatically size to fit its current contents:

Set the label control’s AutoSize property.

Lesson B Summary L E S S O N B

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Designing Applications

82

 • To specify the alignment of the text within a label control:

Set the label control’s TextAlign property.

 • To lock/unlock the controls on the form:

Right-click the form or any control on the form, and then select Lock Controls on the context
menu. You can also click the Lock Controls option on the Format menu.

 • To assign an access key to a control:

Type an ampersand (&) in the Text property of the control or identifying label. The
ampersand should appear to the immediate left of the character that you want to designate as
the access key.

 • To provide keyboard access to a text box:

Assign an access key to the text box’s identifying label. Set the identifying label’s TabIndex
property to a value that is one number less than the text box’s TabIndex value.

 • To employ an access key:

If necessary, press the Alt key to display the access keys, and then release the key. Press and
hold down the Alt key as you tap the access key.

 • To set the tab order:

Set each control’s TabIndex property to a number (starting with 0) that represents the order
in which the control should receive the focus. You can set the TabIndex property using either
the Properties window or the Tab Order option on the View menu.

 • To always display access keys:

Open the Windows Control Panel, and then click Appearance and Personalization. In the
Ease of Access Center section, click Turn on easy access keys. Select the Underline keyboard
shortcuts and access keys check box, and then click the OK button. Close the Control Panel
window.

Lesson B Key Terms
Access key—the underlined character in an object’s identifying label or caption; allows the user
to select the object using the Alt key in combination with the underlined character

AutoSize property—determines whether a control automatically sizes to fit its current
contents

BorderStyle property—determines the appearance of a control’s border

Focus—indicates that a control is ready to accept user input

Tab order—the order in which each control receives the focus when the user either presses the
Tab key or employs an access key while an application is running

TabIndex property—specifies a control’s position in the tab order

TextAlign property—determines the alignment of the text within a control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

83

Lesson B Exercises L E S S O N B

Lesson B Review Questions
1. Which property determines the tab order for the controls in an interface?

a. SetOrder
b. SetTab

c. TabIndex
d. TabOrder

2. Which letter should always be used for the Exit button’s access key?

a. E
b. x

c. i
d. t

3. A control’s access key is specified in which of its properties?

a. Access
b. Caption

c. Key
d. Text

4. Which of the following specifies the letter D as the access key?

a. &Display
b. #Display

c. ^Display
d. D&isplay

5. Explain the method for providing keyboard access to a text box.

Lesson B Exercises
1. In this exercise, you will continue creating the Richardson County application from

 Lesson A’s Exercise 1. Open the VB2015\Chap02\Richardson Solution\Richardson
Solution (Richardson Solution.sln) file. If necessary, open the designer window.
Figure 2-18 shows the completed interface. Add the missing txtAssessed and lblTax
controls to the form. Set the lblTax control’s TextAlign property to MiddleCenter. Lock
the controls on the form. Assign the access keys (shown in the figure) to the text box
and buttons. Set the TabIndex values appropriately. Save the solution and then start the
application. Verify that the tab order is correct. Also verify that the access keys work
appropriately. Use the Exit button to end the application. (You will code the Calculate,
Print, and Clear Screen buttons in Lesson C’s Exercise 1.)

INTRODUCTORY

Figure 2-18 Richardson County application’s interface

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Designing Applications

84

2. In this exercise, you will continue creating the Jordan Sports Store application from
Lesson A’s Exercise 2. Create a Visual Basic Windows application. Use the following
names for the solution and project, respectively: Jordan Solution and Jordan Project.
Save the application in the VB2015\Chap02 folder. Change the form file’s name to Main
Form.vb. Change the form’s name to frmMain. The form should be centered on the
screen when it first appears; set the appropriate property. Create the interface shown in
Figure 2-19. Use the following names for the text box, labels, and buttons: txtAnnual,
lblWeekly, lblBiweekly, btnCalc, btnPrint, btnClear, and btnExit. (Or, use the names
from the TOE chart you created in Lesson A’s Exercise 2.) The contents of the lblWeekly
and lblBiweekly controls should be centered; set the appropriate property. Lock the
controls on the form. Set the TabIndex values appropriately. The Exit button should
end the application when it is clicked; code the appropriate event procedure. Save the
solution, and then start the application. Verify that the tab order is correct. Also verify
that the access keys work properly. Use the Exit button to end the application. (You will
code the Calculate, Print, and Clear buttons in Lesson C’s Exercise 2.)

INTRODUCTORY

Figure 2-19 Jordan Sports Store application’s interface

3. In this exercise, you will continue creating the Cranston Berries application from
 Lesson A’s Exercise 3. Create a Visual Basic Windows application. Use the following
names for the solution and project, respectively: Cranston Solution and Cranston
Project. Save the application in the VB2015\Chap02 folder. Change the form file’s name
to Main Form.vb. Change the form’s name to frmMain. The form should be centered
on the screen when it first appears; set the appropriate property. Create the interface
shown in Figure 2-20. Use the following names for the text boxes, labels, and buttons:
txtProjIncrease, txtStraw, txtBlue, txtRasp, lblStraw, lblBlue, lblRasp, btnCalc, btnPrint,
btnClear, and btnExit. (Or, use the names from the TOE chart you created in Lesson A’s
Exercise 3.) The contents of the three label controls that display the projected sales
should be right-aligned; set the appropriate property. Lock the controls on the form. Set
the TabIndex values appropriately. The Exit button should end the application when it
is clicked; code the appropriate event procedure. Save the solution and then start the
application. Verify that the tab order is correct. Also verify that the access keys work
properly. Use the Exit button to end the application. (You will code the Calculate, Print,
and Clear buttons in Lesson C’s Exercise 3.)

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

85

Lesson B Exercises L E S S O N B

4. Open the Age Solution (Age Solution.sln) file contained in the VB2015\Chap02\Age
Solution folder. If necessary, open the designer window. The application allows you
to enter the year you were born and the current year. When it is coded, the Calculate
 button will calculate your age by subtracting your birth year from the current year.
Lay out and organize the interface so that it follows all of the GUI design guidelines
you have learned so far. (Refer to Appendix B for a listing of the guidelines covered in
Chapter 1 and in Lessons A and B of Chapter 2.) Lock the controls on the form. Code
the Exit button’s Click event procedure so it ends the application. Save the solution and
then start the application. Verify that the tab order is correct. Also verify that the access
keys work properly. Use the Exit button to end the application. Close the solution.
(You will code the Calculate and Print buttons in Lesson C’s Exercise 4.)

INTRODUCTORY

Figure 2-20 Cranston Berries application’s interface

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Designing Applications

86

❚ LESSON C
After studying Lesson C, you should be able to:

 • Code an application using its TOE chart as a guide

 • Plan an object’s code using either pseudocode or a flowchart

 • Write an assignment statement

 • Send the focus to a control during run time

 • Include internal documentation in the code

 • Print an interface from code

 • Show and hide a control during run time

 • Write arithmetic expressions

 • Use the Val and Format functions

 • Locate and correct syntax errors

Coding the Application
In Lessons A and B, you created a TOE chart and user interface for the Meyer’s Purple Bakery
application. The user interface and TOE chart are shown in Figures 2-21 and 2-22, respectively.

Figure 2-21 Bakery application’s interface from Lesson B

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

87

Coding the Application L E S S O N C

After planning an application and building its user interface, you then can begin coding the
application. You code an application so that the objects in the interface perform their assigned
tasks when the appropriate event occurs. The objects and events that need to be coded, as well
as the tasks assigned to each object and event, are listed in the application’s TOE chart. The TOE
chart in Figure 2-22 indicates that only the four buttons require coding; they are the only objects
with an event listed in the third column of the chart.

Before you begin coding an object’s event procedure, you should plan it. Many programmers use
planning tools such as pseudocode and flowcharts. You do not need to create both a flowchart
and pseudocode for a procedure; you need to use only one of these planning tools. The tool
you use is really a matter of personal preference. For simple procedures, pseudocode works just
fine. When a procedure becomes more complex, however, the procedure’s steps may be easier
to understand in a flowchart. The programmer uses either the procedure’s pseudocode or its
flowchart as a guide when coding the procedure.

Using Pseudocode to Plan a Procedure
Pseudocode uses short phrases to describe the steps a procedure must take to accomplish its
goal. Even though the word pseudocode might be unfamiliar to you, you have already written
pseudocode without even realizing it. Consider the last time you gave written directions to
someone. You wrote each direction down on paper, in your own words; your directions were a
form of pseudocode.

Task Object Event
1. Calculate total items sold and total sales amount btnCalc Click
2. Display total items sold and total sales amount in
 lblTotalItems and lblTotalSales

Print the sales receipt btnPrint Click

End the application btnExit Click

Clear the screen for the next sale btnClear Click

Display total items sold (from btnCalc) lblTotalItems None

Display total sales amount (from btnCalc) lblTotalSales None

Get and display the sales information txtDate, txtDonuts, None
 txtMuffins

Figure 2-22 TOE chart (ordered by object) for the bakery application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Designing Applications

88

btnExit Click event procedure
end the application

btnCalc Click event procedure
1. calculate total items sold = doughnuts sold + muffins sold
2. calculate total sales = total items sold * item price
3. display total items sold and total sales in lblTotalItems and lblTotalSales

btnPrint Click event procedure
print the sales receipt

btnClear Click event procedure
1. clear the contents of the txtDonuts and txtMuffins text boxes
2. clear the contents of the lblTotalItems and lblTotalSales controls
3. send the focus to the txtDonuts control so the user can begin entering the next sale

Figure 2-23 Pseudocode for the bakery application

Using a Flowchart to Plan a Procedure
Unlike pseudocode, which consists of short phrases, a flowchart uses standardized symbols
to show the steps a procedure must follow to reach its goal. Figure 2-24 shows the flowcharts
for the procedures that need to be coded in the bakery application. The logic illustrated in the
flowcharts is the same as the logic shown in the pseudocode in Figure 2-23.

The flowcharts contain three different symbols: an oval, a rectangle, and a parallelogram. The
oval symbol is called the start/stop symbol. The start and stop ovals indicate the beginning
and end, respectively, of the flowchart. The rectangles are called process symbols. You use
the process symbol to represent tasks such as making assignments and calculations. The
parallelogram in a flowchart is called the input/output symbol, and it is used to represent
input tasks (such as getting information from the user) and output tasks (such as displaying
information). The parallelograms in Figure 2-24 represent output tasks. The lines connecting
the symbols in a flowchart are called flowlines.

Figure 2-23 shows the pseudocode for the procedures that need to be coded in the bakery
application. Notice that the btnClear control’s Click event procedure doesn’t clear the date
entered in the txtDate control, and it sends the focus to the txtDonut control rather than to the
txtDate control. This is because after the salesclerk enters the date for the first sale of the day,
there is no reason to have him or her enter it again for subsequent sales made on the same day.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

89

Coding the btnClear_Click Procedure L E S S O N C

btnExit Click event procedure btnPrint Click event procedure

btnCalc Click event procedure btnClear Click event procedure

start

clear the contents of
txtDonuts and txtMuffins

clear the contents of
lblTotalItems and

lblTotalSales

send the focus to
txtDonuts

stop

end the application

start

stop

start

total items sold =
doughnuts sold +

muffins sold

total sales = total items
sold * item price

display total
items sold in
lblTotalItems

display total
sales in

lblTotalSales

stop

start

stop

print the
sales receipt

Figure 2-24 Flowcharts for the bakery application

Coding the btnClear_Click Procedure
According to its pseudocode and flowchart, the btnClear_Click procedure should clear the Text
property of two of the text boxes and two of the labels in the interface. It then should send the
focus to the txtDonuts control. You can clear the Text property of an object by assigning a zero-
length string to it. A string is defined as zero or more characters enclosed in quotation marks.
The word “Jones” is a string. Likewise, “45” is a string, but 45 (without the quotes) is a number.
“Jones” is a string with a length of five because there are five characters between the quotation
marks. “45” is a string with a length of two because there are two characters between the
quotation marks. Following this logic, a zero-length string, also called an empty string, is a set
of quotation marks with nothing between them, like this: "". Assigning a zero-length string to the
Text property of an object during run time removes the contents of the object. You can also clear
an object’s Text property by assigning the value String.Empty to it while an application is
running. When you do this, the computer assigns an empty string to the Text property, thereby
removing its contents.

You can also
clear the
 contents of
a text box
using the

Clear method, which is
covered in Lesson C’s
Exercise 11.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Designing Applications

90

Assigning a Value to a Property During Run Time
In Chapter 1, you learned how to use the Properties window to set an object’s properties during
design time, which is when you are building the interface. You can also set an object’s properties
during run time by using an assignment statement. An assignment statement is one of many
different types of Visual Basic instructions. Its purpose is to assign a value to something (such as
to the property of an object) while an application is running.

The syntax of an assignment statement is shown in Figure 2-25 along with examples of
using the syntax. In the syntax, object and property are the names of the object and property,
respectively, to which you want the value of the expression assigned. The expression can be a
string, a keyword, a number, or a calculation. You use a period to separate the object name from
the property name. Recall that the period is the dot member access operator. In this case, the
operator indicates that the property is a member of the object. You use an equal sign between
the object.property information and the expression. The equal sign in an assignment statement
is called the assignment operator. When the computer processes an assignment statement, it
assigns the value of the expression that appears on the right side of the assignment operator to
the object and property that appear on the left side of the assignment operator.

Assigning a Value to a Property During Run Time

Syntax
object.property = expression

Examples
 assigns the string “Akron” to the txtCity’s Text property

 assigns the empty string to the lblSum’s Text property
 assigns the Boolean value False to the picLogo’s

 Visible property
 assigns the number 120 to the lblDue’s Width property

 multiplies 100 by .05 and then assigns the result to the
 lblTax’s Text property

Figure 2-25 Syntax and examples of assigning a value to a property during run time

You will use assignment statements to code the btnClear_Click procedure. According to its
pseudocode and flowchart (shown earlier in Figures 2-23 and 2-24, respectively), the procedure
should clear the contents of the txtDonuts and txtMuffins text boxes. You can do this by using
either the textbox.Text = String.Empty instruction or the textbox.Text = "" instruction,
where textbox is the name of the appropriate text box.

To begin coding the btnClear_Click procedure:

1. If necessary, start Visual Studio 2015 and open the Solution Explorer window. Open the
Bakery Solution (Bakery Solution.sln) file from Lesson B.

2. Auto-hide the Solution Explorer window. If necessary, auto-hide the Properties and
Toolbox windows.

3. Open the Code Editor window, which contains the btnExit_Click procedure. Open
the code template for the btnClear_Click procedure. Press Enter to insert a blank line
below the procedure header.

4. You will use the Code Editor’s IntelliSense feature to enter the txtDonuts.Text =
String.Empty assignment statement in the procedure. Type the five letters txtdo to

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

91

Coding the btnClear_Click Procedure L E S S O N C

highlight txtDonuts in the list of choices, and then press Tab to enter txtDonuts in the
assignment statement.

5. Now type . (a period) to display a listing of the properties and methods of the txtDonuts
control. Type te to highlight Text in the list. At this point, you can either press the
Tab key to enter the Text property in the assignment statement, or you can type the
character that follows Text in the statement. In this case, the next character is the
assignment operator. Type = to enter the Text property and the assignment operator in
the statement.

6. Next, type stri to highlight String in the list, and then type .e to highlight Empty. Press
Enter. See Figure 2-26.

Figure 2-26 First assignment statement entered in the procedure

When entering code, you can type the names of commands, objects, and properties in
lowercase letters. When you move to the next line in the Code Editor window, the Code Editor
automatically changes your code to reflect the proper capitalization of those elements. This
provides a quick way of verifying that you entered an object’s name and property correctly,
and that you entered the code using the correct syntax. If the capitalization does not change, it
means that the Code Editor does not recognize the object, command, or property. In subsequent
steps in this book, you will always be given the complete instruction to enter, including the
appropriate capitalization. Keep in mind that you can either type the instruction on your own or
use the IntelliSense feature to enter the instruction.

To continue coding the btnClear_Click procedure:

1. Type txtMuffins.Text = String.Empty and press Enter.

2. Next, the procedure should clear the contents of the lblTotalItems and lblTotalSales
controls. Enter the following two assignment statements. Press Enter twice after typing
the last statement.

lblTotalItems.Text = String.Empty
lblTotalSales.Text = String.Empty

The last step in the procedure’s pseudocode and flowchart is to send the focus to the txtDonuts
control. You can accomplish this task using the Focus method. Recall that a method is a
predefined Visual Basic procedure that you can call (or invoke) when needed.

Using the Focus Method
You can use the Focus method to move the focus to a specified control while an application
is running. As you learned in Lesson B, a control that has the focus can accept user input. The
Focus method’s syntax is object.Focus(), in which object is the name of the object to which you
want the focus sent.

To enter the Focus method in the btnClear_Click procedure:

1. Type txtDonuts.Focus() and press Enter. Then save the solution.

START HERE

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Designing Applications

92

Internally Documenting the Program Code
It is a good practice to include comments, called internal documentation, as reminders in the
Code Editor window. Programmers use comments to indicate a procedure’s purpose and also
to explain various sections of a procedure’s code. Including comments in your code will make
the code more readable and easier to understand by anyone viewing it. You create a comment
in Visual Basic by placing an apostrophe (‘) before the text that represents the comment. The
computer ignores everything that appears after the apostrophe on that line. Although it is not
required, some programmers use a space to separate the apostrophe from the comment text;
you will follow that convention in this book.

To add comments to the btnClear_Click procedure:

1. Click the blank line above the first assignment statement. Type ' prepare screen for
the next sale (be sure to type the apostrophe followed by a space) and press Enter.
Notice that comments appear in a different color from the rest of the code.

2. Click the blank line above the statement containing the Focus method. Type ' send
the focus to the Doughnuts box and then click the blank line above the procedure’s
End Sub clause. See Figure 2-27.

START HERE

Figure 2-27 btnClear_Click procedure

It is a good idea to test a procedure after you have coded it because, by doing so, you will know
where to look if an error occurs.

To test the btnClear_Click procedure:

1. Save the solution and then start the application. Type 5 in each of the three text boxes.
You haven’t coded the Calculate button yet, so the Total items and Total sales boxes are
empty at this point. Therefore, you will only be able to observe whether the Clear Screen
button clears the Doughnuts and Muffins text boxes and moves the focus appropriately.
You will need to test the Clear Screen button again after the Calculate button is coded.

2. Click the Clear Screen button to process the instructions contained in its Click event
procedure. The instructions remove the contents of the Doughnuts and Muffins text
boxes (and also the contents of the two labels, which are currently empty) and then
send the focus to the Doughnuts box. Click the Exit button to end the application.

Many programmers also use comments to document the project’s name and purpose, the
programmer’s name, and the date the code was either created or modified. Such comments are
placed above the Public Class clause in the Code Editor window. The area above the Public Class
clause is called the General Declarations section.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

93

Coding the btnPrint_Click Procedure L E S S O N C

To include comments in the General Declarations section:

1. Click before the letter P in the Public Class frmMain line and then press Enter to
insert a blank line. Now, click the blank line.

2. Type the comments shown in Figure 2-28 and then save the solution. In the comments,
replace <your name> and <current date> with your name and the current date, respectively.

START HERE

Figure 2-28 Comments entered in the General Declarations section

enter
these four
comments in
the General
Declarations
section

Coding the btnPrint_Click Procedure
Visual Basic provides the PrintForm tool for printing an interface from code. The tool is
contained in the Visual Basic PowerPacks section of the toolbox. When you drag the PrintForm
tool to a form, the instantiated print form control appears in the component tray. You can use
the control to send the printout to a file or the Print preview window, or directly to the printer.
You will have the Print Receipt button send the sales receipt to the Print preview window so that
the user will have more control over when the receipt is printed.

To add a print form control to the application:

1. Click the designer window’s tab to make the designer window the active window.

2. Temporarily display the toolbox. Scroll down the toolbox until you see the Visual Basic
PowerPacks section. If necessary, expand the section’s node. See Figure 2-29. (Your
Visual Basic PowerPacks section may contain additional tools.)

START HERE

Figure 2-29 Visual Basic PowerPacks section in the toolbox

 Note: If your toolbox does not contain the Visual Basic PowerPacks section, refer to the
Read This Before You Begin page in this book.

3. Click PrintForm and then drag your mouse pointer to the form. When you release the
mouse button, a print form control appears in the component tray.

4. In the Properties window, set the control’s PrintAction property to PrintToPreview.

5. Return to the Code Editor window. Open the code template for the btnPrint_Click
procedure. Type ' print the sales receipt and press Enter twice. Then type
PrintForm1.Print() and press Enter.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Designing Applications

94

6. Save the solution and then start the application. Click the Print Receipt button.
A printout of the interface appears in the Print preview window. (It may take a few
seconds for the window to open.) Click the Zoom button’s list arrow and then click
75%. See Figure 2-30. Notice that the four buttons appear on the sales receipt. You will
fix that problem in the next set of steps.

7. You won’t need to print the sales receipt, so click the Close button on the Print preview
window’s toolbar, and then click the Exit button in the interface.

You can prevent the buttons from appearing on the printed receipt by hiding them on the form
before the receipt is printed and then showing them again after the receipt is printed.

Showing and Hiding a Control
A control’s Visible property, which can be set to either True or False, determines whether the
control is visible (True) or hidden (False) while an application is running.

To finish coding the btnPrint_Click procedure:

1. Enter the eight assignment statements indicated in Figure 2-31.

START HERE

Figure 2-30 Print preview window

Zoom button’s
list arrow

Close button

Figure 2-31 Completed btnPrint_Click procedure

enter
these eight
assignment
statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

95

Writing Arithmetic Expressions L E S S O N C

2. Save the solution and then start the application. Click the Print Receipt button to
display the sales receipt in the Print preview window. Notice that the four buttons do
not appear on the sales receipt.

3. If your computer is connected to a printer, click the Print button (the printer) on the
Print preview window’s toolbar.

4. Click the Close button on the Print preview window’s toolbar, and then click the
Exit button in the interface.

Before you can code the btnCalc_Click procedure, you need to learn how to write arithmetic
expressions in Visual Basic.

Note: You have learned a lot so far in this lesson. You may want to take a break at this point
before continuing.

Writing Arithmetic Expressions
Most applications require the computer to perform at least one calculation. You instruct the
computer to perform a calculation by writing an arithmetic expression, which is an expression
that contains one or more arithmetic operators. Figure 2-32 lists the most commonly used
arithmetic operators available in Visual Basic, along with their precedence numbers. The
precedence numbers indicate the order in which the computer performs the operation in an
expression. Operations with a precedence number of 1 are performed before operations with
a precedence number of 2, and so on. However, you can use parentheses to override the order
of precedence because operations within parentheses are always performed before operations
outside parentheses.

Operator Operation Precedence number
^ exponentiation (raises a number to a power) 1
– negation (reverses the sign of a number) 2
*, / multiplication and division 3
\ integer division 4
Mod modulus (remainder) arithmetic 5
+, – addition and subtraction 6

Figure 2-32 Most commonly used arithmetic operators

Although the negation and subtraction operators listed in Figure 2-32 use the same symbol
(a hyphen), there is a difference between them: the negation operator is unary, whereas the
subtraction operator is binary. Unary and binary refer to the number of operands required
by the operator. Unary operators require one operand. The expression –10, for example, uses
the unary negation operator to turn its one operand (the positive number 10) into a negative
number. Binary operators, on the other hand, require two operands. The expression 8 – 2, for
instance, uses the binary subtraction operator to subtract its second operand (the number 2)
from its first operand (the number 8).
Two of the arithmetic operators listed in Figure 2-32 might be less familiar to you: the integer
division operator (\) and the modulus (remainder) operator (Mod). You use the integer division
operator to divide two integers (whole numbers) and then return the result as an integer.
For instance, the expression 211 \ 4 results in 52, which is the integer result of dividing 211
by 4. (If you use the standard division operator [/] to divide 211 by 4, the result is 52.75 rather
than 52.) You might use the integer division operator in a program that determines the number

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Designing Applications

96

Examples Results
211 \ 4 52
211 Mod 4 3
53 \ 25 2
53 Mod 25 3
75 \ 2 37
75 Mod 2 1
100 \ 2 50
100 Mod 2 0

Figure 2-33 Examples of the integer division and Mod (remainder) operators

of quarters, dimes, and nickels to return as change to a customer. For example, if a customer
should receive 53 cents in change, you could use the expression 53 \ 25 to determine the number
of quarters to return; the expression evaluates to 2.

The modulus operator (sometimes referred to as the remainder operator) is also used to
divide two numbers, but the numbers do not have to be integers. After dividing the numbers,
the modulus operator returns the remainder of the division. For instance, 211 Mod 4 equals
3, which is the remainder of 211 divided by 4. A common use for the modulus operator is to
determine whether a number is even or odd. If you divide the number by 2 and the remainder
is 0, the number is even; if the remainder is 1, however, the number is odd. Figure 2-33 shows
several examples of using the integer division and Mod operators.

You may have noticed that some of the operators listed in Figure 2-32, such as the addition
and subtraction operators, have the same precedence number. When an expression contains
more than one operator having the same priority, those operators are evaluated from left to
right. In the expression 7 – 8 / 2 + 5, for instance, the division (/) is performed first, then the
subtraction (–), and then the addition (+). The result of the expression is the number 8, as
shown in Example 1 in Figure 2-34. You can use parentheses to change the order in which the
operators in an expression are evaluated. As Example 2 shows, the expression 7 – (8 / 2 + 5)
evaluates to –2 rather than to 8. This is because the parentheses tell the computer to perform
the division first, then the addition, and then the subtraction.

Ch02C-Arithmetic
Operators

Example 1
Original expression 7 – 8 / 2 + 5
The division is performed first 7 – 4 + 5
The subtraction is performed next 3 + 5
The addition is performed last 8

Example 2
Original expression 7 – (8 / 2 + 5)
The division is performed first 7 – (4 + 5)
The addition is performed next 7 – 9
The subtraction is performed last –2

Figure 2-34 Expressions containing more than one operator having the same precedence

When entering an arithmetic expression in code, you do not enter a comma or special
characters, such as the dollar sign or percent sign. If you want to include a percentage in an
arithmetic expression, you do so by using its decimal equivalent; for example, you enter .05
rather than 5%.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

97

Coding the btnCalc_Click Procedure L E S S O N C

Coding the btnCalc_Click Procedure
According to its pseudocode and flowchart (shown earlier in Figures 2-23 and 2-24), the
btnCalc_Click procedure should calculate the total number of items sold by adding together
the number of doughnuts sold and the number of muffins sold. The number of doughnuts sold
is recorded in the txtDonuts control’s Text property as the user enters that information in the
interface. Likewise, the number of muffins sold is recorded in the txtMuffins control’s Text
property. You can use an assignment statement to first add together the Text property of the two
text boxes and then assign the sum to the Text property of the lblTotalItems control. The total
items sold calculation is illustrated in Figure 2-35.

Pseudocode: total items sold = doughnuts sold + muffins sold

Assignment statement: lblTotalItems.Text = txtDonuts.Text + txtMuffins.Text

Figure 2-35 Illustration of the total items sold calculation

Next, the procedure should calculate the total sales by multiplying the total number of items sold
(which is recorded in the lblTotalItems control) by the item price ($0.50). The total sales should
be displayed in the lblTotalSales control. The total sales calculation is illustrated in Figure 2-36.

Pseudocode: total sales = total items sold * item price

Assignment statement: lblTotalSales.Text = lblTotalItems.Text * 0.50

Figure 2-36 Illustration of the total sales calculation

Finally, the procedure should display the total items sold and the total sales amount in the
appropriate label controls. The assignment statements shown in Figures 2-35 and 2-36
accomplish this task.

To code the btnCalc_Click procedure and then test it:

1. Open the code template for the btnCalc_Click procedure. Type ' calculate number of
items sold and total sales and press Enter twice.

2. Next, enter the following two assignment statements:

 lblTotalItems.Text = txtDonuts.Text + txtMuffins.Text
lblTotalSales.Text = lblTotalItems.Text * .5

3. Save the solution and then start the application. Click the Doughnuts text box. Type 6
and then press Tab. Type 2 as the number of muffins sold and then click the Calculate
button. The button’s Click event procedure calculates the total number of items sold
and total sales, displaying the results in the two label controls. As Figure 2-37 indicates,
the displayed results are incorrect. Instead of mathematically adding the two sales
quantities together, giving 8, the second sales quantity was appended to the first sales
quantity, giving 62. When the total items sold amount is incorrect, the total sales
will also be incorrect because the total items sold amount is used in the total sales
calculation.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Designing Applications

98

Figure 2-37 Interface showing the incorrect results of the calculations

both amounts are
incorrect

4. Click the Exit button to end the application.

Even though you do not see the quotation marks around the value, a value stored in the Text
property of an object is treated as a string rather than as a number. Adding strings together does
not give you the same result as adding numbers together. Adding the string “2” to the string “5”
results in the string “25”, whereas adding the number 2 to the number 5 results in the number 7.
To add together the contents of two text boxes, you need to tell the computer to treat the
contents as numbers rather than as strings. The easiest way, although not one of the preferred
ways, is to use the Val function. However, because this lesson’s topics are difficult for many
beginning programmers, you will use the Val function in this lesson (and only in this lesson) so
as not to complicate those topics.

The Val Function
A function is a predefined procedure that performs a specific task and then returns a value after
completing the task. The Val function, for instance, temporarily converts a string to a number
and then returns the number. The number is stored in the computer’s internal memory only
while the function is processing.

The syntax of the Val function is shown in Figure 2-38. The item within the parentheses is
called an argument and represents information that the function needs to perform its task. In
this case, the string argument represents the string you want treated as a number. Because the
Val function must be able to interpret the string as a numeric value, the string cannot include a
letter, a comma, or a special character (such as the dollar sign or percent sign); it can, however,
include a period or a space. When the Val function encounters an invalid character in its string
argument, it stops converting the string to a number at that point. Figure 2-38 shows some
examples of how the Val function converts various strings.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

99

Coding the btnCalc_Click Procedure L E S S O N C

To include the Val function in the btnCalc_Click procedure:

1. Make the modifications highlighted in Figure 2-39.

START HERE

Figure 2-39 Val function entered in the assignment statements

2. Save the solution and then start the application. Type 6 in the Doughnuts box and 2 in
the Muffins box. Click the Calculate button. The application correctly calculates and
displays the total number of items sold (8) and total sales amount (4). See Figure 2-40.

Figure 2-40 Interface showing the correct results of the calculations

both amounts are
correct

Figure 2-38 Syntax and examples of the Val function

Val Function

Syntax
Val(string)

Example
 456

24
123
25

1234
0
0
0

Numeric result

3. In the next section, you will improve the appearance of the total sales amount by
including a dollar sign, a thousands separator (if appropriate), and two decimal places.
Click the Exit button.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Designing Applications

100

Format Function

Syntax
Format(expression, style)

Format style Description
Currency Formats the number with a dollar sign, two decimal places, and (if appropriate) a
 thousands separator; negative numbers are enclosed in parentheses

Fixed Formats the number with at least one digit to the left of the decimal point and two
 digits to the right of the decimal point

Standard Formats the number with at least one digit to the left of the decimal point, two
 digits to the right of the decimal point, and (if appropriate) a thousands separator

Percent Multiplies the number by 100 and then formats the result with a percent sign and
 two digits to the right of the decimal point

Figure 2-41 Format function’s syntax and some of the predefined format styles

The Format Function
You can use the Format function to improve the appearance of numbers in an interface. The
function’s syntax is shown in Figure 2-41. The expression argument specifies the number, date,
time, or string whose appearance you want to format. The style argument can be a predefined
Visual Basic format style; some of these styles are explained in the figure. The style argument can
also be a string containing special symbols that indicate how you want the expression displayed.
(You can display the Help screen for the Format function to learn more about these special
symbols.) In this case, you will use one of the predefined format styles.

To format the total sales amount:

1. Enter the additional assignment statement highlighted in Figure 2-42.

START HERE

Figure 2-42 Format function entered in the procedure

You can also
include the
 Format
function in the
 calculation

statement, like this:
lblTotalSales.

Text = Format(Val

(lblTotalItems.

Text) * 0.5,

"currency").
2. Save the solution and then start the application. Type 11/23/2016 in the Date box,

12 in the Doughnuts box, and 3 in the Muffins box. Click the Calculate button. See
Figure 2-43.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

101

Testing and Debugging the Application L E S S O N C

3. Click the Exit button.

You have completed the first four of the six steps involved in creating an OO application:
meeting with the client, planning the application, building the user interface, and coding the
application. The fifth step is to test and debug the application.

Testing and Debugging the Application
You test an application by starting it and entering some sample data. The sample data should
include both valid and invalid data. Valid data is data that the application is expecting the user
to enter, whereas invalid data is data that the application is not expecting the user to enter. The
bakery application expects the user to enter a numeric value in the Doughnuts box; it does not
expect the user to enter a letter. In most cases, invalid data is a result of a typing error made
by the user. You should test an application as thoroughly as possible to ensure that it displays
the correct output when valid data is entered and does not end abruptly when invalid data
is entered.

Debugging refers to the process of locating and correcting the errors, called bugs, in a program.
Program bugs are typically categorized as syntax errors, logic errors, or run time errors. As you
learned in Chapter 1, the term syntax refers to the set of rules you must follow when using a
programming language. A syntax error occurs when you break one of the language’s rules. Most
syntax errors are a result of typing errors that occur when entering instructions, such as typing
Me.Clse() instead of Me.Close(). The Code Editor detects most syntax errors as you enter
the instructions.

Logic errors, on the other hand, are much more difficult to find because the Code Editor cannot
detect them for you. A logic error can occur for a variety of reasons, such as forgetting to
enter an instruction or entering the instructions in the wrong order. Some logic errors occur
as a result of calculation statements that are correct syntactically but incorrect mathematically.
Consider the statement lblSquared.Text = Val(txtNum.Text) + Val(txtNum.Text),
which is supposed to square the number entered in the txtNum control. The statement’s syntax
is correct; however, the statement is incorrect mathematically because you square a value by
multiplying it by itself, not by adding it to itself.

Figure 2-43 Formatted total sales amount shown in the interface

formatted using
the Currency style

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Designing Applications

102

A run time error is an error that occurs while an application is running. A procedure that
continues to run, because it contains an endless loop, will eventually result in a run time error.
You will learn more about run time errors as you progress through this book.

To test the bakery application:

1. Start the application. First, test the application by clicking the Calculate button
without entering any data. The application displays 0 and $0.00 as the total number of
items sold and total sales, respectively. (Recall that the Val function converts the empty
string to the number 0.)

2. Next, you will test the application by typing a letter in the Doughnuts and Muffins
boxes. Click the Clear Screen button to clear the calculated results from the label
controls. Type p in the Doughnuts and Muffins boxes. Click the Calculate button.
The application displays 0 and $0.00 as the total number of items sold and total sales,
respectively. (Recall that the Val function converts a letter to the number 0.)

3. Finally, you will test the application with valid data. Click the Clear Screen button.
Type 2/28/2016 in the Date box, 6 in the Doughnuts box, and 3 in the Muffins box.
Click the Calculate button. The application correctly calculates and displays the total
number of items sold (9) and total sales amount ($4.50).

4. Click the Print Receipt button. If your computer is connected to a printer, print the
sales receipt. Close the Print preview window.

5. Click the Clear Screen button and then practice with other entries to see how the
application responds. When you are finished testing the application, click the Exit
button to end the application.

In the following set of steps, you will introduce syntax errors in the application’s code. You will
also learn how to locate and correct the errors.

To introduce syntax errors in the code and also debug the code:

1. Change the statement in the btnExit_Click procedure to Me.Clse() and then click
the blank line above the procedure header. The jagged line, called a squiggle, below
the statement indicates that the statement contains a syntax error. Hover your mouse
pointer over the statement. See Figure 2-44.

START HERE

START HERE

Figure 2-44 Result of hovering the mouse pointer over the statement containing the
syntax error

red squiggle
indicates a
syntax error

click here for a list
of potential fixes

2. Click Show potential fixes (or click the lightbulb’s list arrow) and then click Change
‘Clse’ to ‘Close’. in the list. Doing this changes the statement to Me.Close() and also
removes the red squiggle.

3. In this step, you will observe what happens when you start an application whose code
contains a syntax error. First, delete the ending parenthesis in the last assignment
statement in the btnCalc_Click procedure. A red squiggle appears after the closing

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

103

Assembling the Documentation L E S S O N C

quotation mark in the statement. Click the blank line below the statement. Save
the solution and then start the application. The message dialog box shown in
Figure 2-45 appears.

Figure 2-45 Message dialog box

4. Click the No button. The Error List window shown in Figure 2-46 opens at the bottom
of the IDE. The window indicates that the code contains one error, and it provides both
a description and the location of the error in the Code Editor window.

5. Double-click the error message in the Error List window. Doing this positions the
insertion point at the end of the statement that contains the syntax error. Type) (the
missing ending parentheses). The Code Editor removes both the red squiggle from the
end of the statement and the error message from the Error List window.

6. Close the Error List window. Save the solution and then start the application. Test the
application to verify that it works correctly, and then click the Exit button to end the
application.

7. Close the Code Editor window and then close the solution.

Assembling the Documentation
After you have tested an application thoroughly, you can move to the last step involved in
creating an OO application: assemble the documentation. Assembling the documentation
refers to putting your planning tools and a printout of the application’s interface and code in
a safe place so you can refer to them if you need to change the application in the future. Your
planning tools include the TOE chart, a sketch of the user interface, and either the flowcharts
or the pseudocode.

line 12

Figure 2-46 Error List window in the IDE

description
and location
of error

Error List
window

line 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Designing Applications

104

The code for the bakery application is shown in Figure 2-47. If you want to display line numbers
in the Code Editor window, click Tools on the menu bar, click Options, expand the Text Editor
node, click Basic, select the Line numbers check box, and then click the OK button.

Figure 2-47 Meyer’s Purple Bakery application’s code

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

105

Lesson C Key Terms L E S S O N C

Lesson C Summary
 • To plan an object’s code:

Use pseudocode or a flowchart.

 • To clear the Text property of an object while an application is running:

Assign either the String.Empty value or the empty string ("") to the property.

 • To assign a value to an object’s property while an application is running:

Use an assignment statement that follows the syntax object.property = expression.

 • To move the focus to an object while an application is running:

Use the Focus method. The method’s syntax is object.Focus().

 • To show or hide an object during run time:

Set the object’s Visible property.

 • To create a comment in Visual Basic:

Begin the comment text with an apostrophe (').

 • To divide two integers and then return the result as an integer:

Use the integer division operator (\).

 • To divide two numbers and then return the remainder:

Use the modulus (remainder) operator (Mod).

 • To print the interface from code:

Use the PrintForm tool to instantiate a print form control. The tool is located in the Visual
Basic PowerPacks section of the toolbox.

 • To temporarily convert a string to a number:

Use the Val function. The function’s syntax is Val(string).

 • To improve the appearance of numbers in the user interface:

Use the Format function. The function’s syntax is Format(expression, style).

 • To display line numbers in the Code Editor window:

Click Tools on the menu bar, click Options, expand the Text Editor node, click Basic, select
the Line numbers check box, and then click the OK button.

Lesson C Key Terms
Assignment operator—the equal sign in an assignment statement

Assignment statement—an instruction that assigns a value to something, such as to the
property of an object

Bugs—the errors in a program

Debugging—the process of locating and correcting the bugs (errors) in a program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Designing Applications

106

Empty string—a set of quotation marks with nothing between them (""); also called a zero-
length string

Flowchart—a planning tool that uses standardized symbols to show the steps a procedure must
take to accomplish its goal

Flowlines—the lines connecting the symbols in a flowchart

Focus method—moves the focus to a specified control during run time

Format function—used to improve the appearance of numbers in an interface

Function—a procedure that processes a specific task and returns a value

General Declarations section—the area above the Public Class clause in the Code Editor
window

Input/output symbol—the parallelogram in a flowchart; used to represent input and output
tasks

Integer division operator—represented by a backslash (\); divides two integers and then returns
the quotient as an integer

Invalid data—data that an application is not expecting the user to enter

Logic error—occurs when you neglect to enter an instruction or enter the instructions in the
wrong order; also occurs as a result of calculation statements that are correct syntactically but
incorrect mathematically

Modulus operator—represented by the keyword Mod; divides two numbers and returns the
remainder of the division

PrintForm tool—used to instantiate a print form control; located in the Visual Basic PowerPacks
section of the toolbox

Process symbols—the rectangle symbols in a flowchart; used to represent assignment and
calculation tasks

Pseudocode—a planning tool that uses phrases to describe the steps a procedure must take to
accomplish its goal

Run time error—an error that occurs while an application is running; an example is an
expression that attempts to divide by 0

Start/stop symbol—the oval symbol in a flowchart; used to indicate the beginning and end of
the flowchart

String—zero or more characters enclosed in quotation marks

String.Empty—the value that represents the empty string in Visual Basic

Syntax error—occurs when an instruction in an application’s code breaks one of a
programming language’s rules

Val function—temporarily converts a string to a number and then returns the number

Valid data—data that an application is expecting the user to enter

Visible property—determines whether a control is visible in the interface during run time

Zero-length string—a set of quotation marks with nothing between them (""); also called an
empty string

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

107

Lesson C Exercises L E S S O N C

Lesson C Review Questions
1. Which of the following assignment statements will not calculate correctly?

a. lblTotal.Text = Val(txtSales1.Text) + Val(txtSales2.Text)

b. lblTotal.Text = 4 – Val(txtSales1.Text)

c. lblTotal.Text = Val(txtQuantity.Text + 3)

d. All of the above assignment statements will calculate correctly.

2. Which function temporarily converts a string to a number and then returns the number?

a. Format
b. FormatNumber

c. StringToNumber
d. Val

3. Which symbol is used in a flowchart to represent an output task?

a. circle
b. oval

c. parallelogram
d. rectangle

4. What value is assigned to the lblNum control when the lblNum.Text = 99 \ 25
instruction is processed by the computer?

5. What value is assigned to the lblNum control when the lblNum.Text = 99 Mod 25
instruction is processed by the computer?

Lesson C Exercises
Note: In several exercises in this lesson, you perform the second through sixth steps involved in
creating an OO application. Recall that the six steps are:

1. Meet with the client.
2. Plan the application. (Prepare a TOE chart that is ordered by object, and then draw a sketch of

the user interface.)
3. Build the user interface. (Refer to Appendix B for a listing of the GUI guidelines you have

learned so far. To help you remember the names of the controls as you are coding, print the
application’s interface and then write the names next to each object.)

4. Code the application. (Write pseudocode for each of the objects that will be coded. Include
appropriate comments in the code.)

5. Test and debug the application.
6. Assemble the documentation (your planning tools and a printout of the interface and code).

1. In this exercise, you complete the Richardson County application from Exercise 1
in both Lesson A and Lesson B. Open the VB2015\Chap02\Richardson Solution\
Richardson Solution (Richardson Solution.sln) file.

a. The Calculate button should display the annual property tax, which is $1.50 for each
$100 of a property’s assessed value. Code the button’s Click event procedure using
the Val function. Use the Format function to display the tax with a dollar sign, a
thousands separator, and two decimal places.

b. Code the Clear Screen button. Send the focus to the Assessed value text box.
c. Add a print form control to the application. The control should send the printout

to the Print preview window. Code the Print button, being sure to hide the buttons
before printing, and then display them after printing.

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Designing Applications

108

d. Add appropriate comments in the General Declarations section and in the coded
procedures.

e. Save the solution and then start the application. Test the application using 120500 as
the assessed value. The tax should be $1,807.50. If your computer is connected to a
printer, print the interface.

f. Clear the screen. Now test the application using invalid data. More specifically, test
it without entering any data. Then test it using a letter as the assessed value.

2. In this exercise, you complete the Jordan Sports Store application from Exercise 2
in both Lesson A and Lesson B. Open the VB2015\Chap02\Jordan Solution\Jordan
Solution (Jordan Solution.sln) file.

a. The Calculate button should display two amounts: the weekly gross pay and the
biweekly gross pay. Employees paid weekly receive 52 paychecks; employees paid
biweekly receive 26 paychecks. Code the button’s Click event procedure using the
Val function. Use the Format function to display the gross pay amounts with a dollar
sign, a thousands separator, and two decimal places.

b. Code the Clear button. Send the focus to the Annual salary text box.
c. Add a print form control to the application. The control should send the printout

to the Print preview window. Code the Print button, being sure to hide the buttons
before printing, and then display them after printing.

d. Add appropriate comments in the General Declarations section and in the coded
procedures.

e. Save the solution and then start the application. Test the application using 75000 as
the annual salary. The gross pay amounts should be $1,442.31 and $2,884.62. If your
computer is connected to a printer, print the interface.

f. Clear the screen. Now test the application using invalid data. More specifically, test
it without entering any data. Then test it using a letter as the annual salary.

3. In this exercise, you complete the Cranston Berries application from Exercise 3 in
both Lesson A and Lesson B. Open the VB2015\Chap02\Cranston Solution\Cranston
 Solution (Cranston Solution.sln) file.

a. The Calculate button should display the projected sales for each type of berry. Code
the button’s Click event procedure using the Val function. Use the Format function
to display the projected sales amounts with a dollar sign, a thousands separator, and
two decimal places.

b. Code the Clear button. Send the focus to the projected increase’s text box.
c. Add a print form control to the application. The control should send the printout

to the Print preview window. Code the Print button, being sure to hide the buttons
before printing, and then display them after printing.

d. Add appropriate comments in the General Declarations section and in the coded
procedures.

e. Save the solution and then start the application. Test the application using .05 (the
decimal equivalent of 5%) as the projected increase, 25000 as the strawberry sales,
20200 as the blueberry sales, and 16750 as the raspberry sales. The projected sales
amounts should be $26,250.00, $21,210.00, and $17,587.50. If your computer is
connected to a printer, print the interface.

f. Clear the screen. Now test the application using invalid data. More specifically, test
it without entering any data. Then test it using letters as the projected increase and
sales amounts.

INTRODUCTORY

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

109

Lesson C Exercises L E S S O N C

4. In this exercise, you complete the application from Lesson B’s Exercise 4. Open the
VB2015\Chap02\Age Solution\Age Solution (Age Solution.sln) file. The Calculate
 button should calculate your age by subtracting your birth year from the current year.
Code the Calculate button using the Val function. Add a print form control to the
application. The control should send the printout to the Print preview window. Code
the Print button so that it prints the interface with the buttons. Add appropriate
 comments in the General Declarations section and in the coded procedures. Save the
solution and then start the application. Test the application using your birth year and
the current year. Also test it without entering any data. Finally, test it using a dollar sign
($) for the birth year and a percent sign (%) for the current year.

5. Jefferson Sales wants you to create an application that displays a salesperson’s
monthly commission, given his or her monthly sales and commission rate (entered in
decimal form). The commission is calculated by multiplying the monthly sales by the
commission rate.

a. Perform the steps involved in creating an OO application. (See the Note at the
beginning of the Exercises section.) Include a button for clearing the screen.

b. Create an application, using the following names for the solution and project,
respectively: Jefferson Solution and Jefferson Project. Save the application in the
VB2015\Chap02 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain. Code the application using the Val and Format functions.
Add appropriate comments in the General Declarations section and in the coded
procedures.

c. Test the application using 5600 as the monthly sales amount and 10% as the
commission rate. Then test it without entering any data. Also test it using a letter as
the sales amount and commission rate.

6. Your science teacher has asked you to create an application that displays how much
a person would weigh on the following planets: Venus, Mars, and Jupiter. The
 application’s interface should allow the user to enter the person’s weight on Earth.

a. Perform the steps involved in creating an OO application. (See the Note at the
beginning of the Exercises section.) Include a button for clearing the screen.

b. Create an application, using the following names for the solution and project,
respectively: Planet Solution and Planet Project. Save the application in the
VB2015\Chap02 folder. Change the form file’s name to Main Form.vb. Change
the form’s name to frmMain. Code the application using the Val and Format
functions. One pound on Earth is equal to 0.91, 0.38, and 2.53 pounds on Venus,
Mars, and Jupiter, respectively. Add appropriate comments in the General
Declarations section and in the coded procedures. Test the application using both
valid and invalid data.

7. In this exercise, you modify the bakery application from the chapter. Use Windows
to make a copy of the Bakery Solution folder contained in the VB2015\Chap02 folder.
Rename the copy Modified Bakery Solution. Open the Bakery Solution (Bakery
 Solution.sln) file contained in the Modified Bakery Solution folder. Open the designer
window. Modify the interface so that it allows the user to enter the item price. Also
modify the application’s code. The Clear Screen button should not clear the item
price’s text box. Save the solution and then start the application. Test the application
using .65, 5, and 7 as the item price, number of doughnuts, and number of muffins,
respectively.

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Designing Applications

110

8. Create an application that displays the average of three test scores entered by the user.
Use the following names for the solution and project, respectively: Average Solution
and Average Project. Save the application in the VB2015\Chap02 folder. Change the
form file’s name to Main Form.vb. Change the form’s name to frmMain. Display the
average with two decimal places. Code the application using the Val and Format
functions. Add appropriate comments in the General Declarations section and in the
coded procedures. Test the application using both valid and invalid data.

9. A group of people needs to be transported to a concert. If an SUV can accommodate
seven people, how many SUVs will be completely full and how many people will
still need transportation? Create an application that displays the answers. The user
will enter the number of people in the group. You can assume that the group will
always contain at least seven people. Use the following names for the solution and
project, respectively: Transportation Solution and Transportation Project. Save the
application in the VB2015\Chap02 folder. Change the form file’s name to Main Form.
vb. Change the form’s name to frmMain. Code the application using the Val function.
Add appropriate comments in the General Declarations section and in the coded
procedures. Test the application using 73 as the number of people going to the concert.
Also test it using invalid data.

10. The payroll clerk at Photo Workshop has asked you to create an application that
 displays an employee’s net pay. The application should allow the payroll clerk to enter
the employee’s name, hours worked, and rate of pay. For this application, you do not
have to worry about overtime because this company does not allow anyone to work
more than 40 hours. The application should calculate and display the gross pay, federal
withholding tax (FWT), Social Security tax (FICA), state income tax, and net pay. The
FWT, FICA tax, and state income tax are 20%, 8% and 3% of the gross pay, respectively.
First, perform the steps involved in creating an OO application. (See the Note at the
beginning of the Exercises section.) Then, create an application, using the following
names for the solution and project, respectively: Photo Solution and Photo Project.
Save the application in the VB2015\Chap02 folder. Change the form file’s name to
Main Form.vb. Change the form’s name to frmMain. Code the application. Format the
 calculated amounts using the Standard format style. Test the application using both
valid and invalid data.

11. In this exercise, you learn about a text box’s Clear method, which can be used to
remove the contents of the text box during run time. Use Windows to make a copy
of the Bakery Solution folder from the chapter. Rename the copy Discovery Bakery
Solution. Open the Bakery Solution (Bakery Solution.sln) file contained in the
Discovery Bakery Solution folder. Open the designer window. The Clear method’s
syntax is textbox.Clear(). Use the Clear method in the btnClear_Click procedure
to remove the contents of the txtDonuts and txtMuffins controls. (You cannot use the
Clear method to remove the contents of label controls.) Save the solution and then start
the application. Enter any date and sales amounts, and then click the Calculate button.
Click the Clear Screen button to verify that the Clear method worked correctly.

12. Open the VB2015\Chap02\Debug Solution\Debug Solution (Debug Solution.sln) file.
Locate and then correct the syntax errors in the Code Editor window. Save the solution,
and then start and test the application.

INTERMEDIATE

ADVANCED

ADVANCED

DISCOVERY

SWAT THE BUGS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3
Using Variables and
Constants

Revising the Meyer’s Purple Bakery Application

In this chapter, you will modify the bakery application from Chapter 2. The
modified application will calculate a 2% sales tax and then display the result in
the interface. It will also display the name of the salesclerk who entered the sales
information.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

112

Previewing the Modified Bakery Application
Before you start the first lesson in this chapter, you will preview the completed application
contained in the VB2015\Chap03 folder.

To preview the completed application:

1. Use Windows to locate and then open the VB2015\Chap03 folder on your computer’s hard
disk or on the device designated by your instructor. Right-click Bakery (Bakery.exe) in the
list of filenames and then click the Open button. A sales receipt similar to the one created
in Chapter 2 appears on the screen.

2. Type 11/8/2016 in the Date box, type 4 in the Doughnuts box, and type 3 in the
Muffins box.

3. Although the Calculate button does not have the focus, you can select it by pressing
the Enter key because it is the default button in the interface. You will learn how
to designate a default button in Lesson B. Press Enter. The Name Entry dialog box
appears and requests the salesclerk’s name, as shown in Figure 3-1.

START HERE

Figure 3-2 Completed sales receipt

4. Type Melinda Hazelton and then press Enter to select the dialog box’s OK button.
The completed sales receipt is shown in Figure 3-2. The application uses string
concatenation, which is covered in Lesson B, to display the sales tax amount and the
salesclerk’s name on the receipt.

Figure 3-1 Name Entry dialog box

if the underlined
letters do not
appear in your
interface, press
the Alt key

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

113

Previewing the Modified Bakery Application

5. Change the number of muffins sold to 12. The application clears the contents of the
label controls that display the total number of items sold, the total sales amount, and
the message. In Lesson C, you will learn how to clear the contents of a control when a
change is made to the value stored in a different control.

6. Click the Calculate button. The Name Entry dialog box appears and displays the
salesclerk’s name. Press Enter to select the dialog box’s OK button. The application
recalculates the appropriate amounts and then displays the information on the sales
receipt.

7. Click the Clear Screen button to clear the sales information (except the date) from the
form, and then click the Exit button to end the application.

In Lesson A, you will learn how to store information temporarily in memory locations inside the
computer. Then you will modify the bakery application in Lessons B and C. Be sure to complete
each lesson in full and do all of the end-of-lesson questions and several exercises before
continuing to the next lesson.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

114

❚ LESSON A
After studying Lesson A, you should be able to:

 • Declare variables and named constants

 • Assign data to an existing variable

 • Convert string data to a numeric data type using the TryParse method

 • Convert numeric data to a different data type using the Convert class methods

 • Explain the scope and lifetime of variables and named constants

 • Explain the purpose of Option Explicit, Option Infer, and Option Strict

Using Variables to Store Information
In the bakery application from Chapter 2, all of the sales information is temporarily stored
in the properties of the controls on the sales receipt form. For example, the numbers
of doughnuts and muffins sold are stored in the Text properties of the txtDonuts and
txtMuffins controls, respectively. Recall that the btnCalc_Click procedure uses the
Text properties of those controls to calculate the total number of items sold, like this:
lblTotalItems.Text = Val(txtDonuts.Text) + Val(txtMuffins.Text). The
procedure then uses the lblTotalItems control’s Text property to calculate the total sales
amount, like this: lblTotalSales.Text = Val(lblTotalItems.Text) * 0.5.

Besides storing data in the properties of controls, a programmer can also temporarily store data
in memory locations inside the computer. The memory locations are called variables because
the contents of the locations can change (vary) as the application is running. It may be helpful
to picture a variable as a small box inside the computer. You can enter and store data in the box,
but you cannot actually see the box. One use for a variable is to hold information that is not
stored in a control on the form. For example, if you didn’t need to display the total number of
items sold on the bakery’s sales receipt, you could eliminate the lblTotalItems control from the
form and store the total number of items sold in a variable instead. You then would use the value
stored in the variable, rather than the value stored in the control’s Text property, in the total
sales calculation.

You can also use a variable to store the data contained in a control’s property, such as the data
contained in a control’s Text property. Programmers typically do this when the data is a numeric
amount that will be used in a calculation. As you will learn in the next section, assigning
numeric data to a variable allows you to control the preciseness of the data. It also makes your
code run more efficiently because the computer can process data stored in a variable much
faster than it can process data stored in the property of a control.

Every variable has a data type, name, scope, and lifetime. First, you will learn how to select an
appropriate data type for a variable.

Selecting a Data Type for a Variable
Each variable used in an application should be assigned a data type by the programmer. The
data type determines the type of data the variable can store. Figure 3-3 describes most of the
basic data types available in Visual Basic 2015. Each data type is a class, which means that each is
a pattern from which one or more objects—in this case, variables—are instantiated (created).

Ch03A-Variables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

115

Using Variables to Store Information L E S S O N A

As Figure 3-3 indicates, variables assigned the Integer, Long, or Short data type can store integers
(whole numbers), which are positive or negative numbers that do not have any decimal places.
These three data types differ in the range of integers each can store and the amount of memory
each needs to store the integer.
Decimal, Double, and Single variables can store numbers containing a decimal place. Here again,
these three data types differ in the range of numbers each can store and the amount of memory
each needs to store the numbers. However, calculations involving Decimal variables are not
subject to the small rounding errors that may occur when using Double or Single variables. In
most cases, these errors do not create any problems in an application. One exception to this is
when the application contains complex equations involving money, where you need accuracy to
the penny. In those cases, you should use the Decimal data type.
The Char data type can store one Unicode character, while the String data type can store from
zero to approximately 2 billion Unicode characters. Unicode is the universal coding scheme for
characters. It assigns a unique numeric value to each character used in the written languages of
the world. (For more information, see The Unicode Consortium Web site at http://unicode.org.)

Don’t be
 overwhelmed by
the number of
data types listed
in Figure 3-3.

This book will use only
the Boolean, Decimal,
Double, Integer, and
String data types.

Data Type

Boolean

Char

Date

Decimal

Double

Integer

Long

Object

Short

Single

String

Memory Required

2 bytes

2 bytes

8 bytes

16 bytes

8 bytes

4 bytes

8 bytes

4 bytes

2 bytes

4 bytes

Stores

a logical value (True, False)

one Unicode character

date and time information
 Date range: January 1, 0001 to December 31, 9999
 Time range: 0:00:00 (midnight) to 23:59:59

a number with a decimal place
 Range with no decimal place:
 +/–79,228,162,514,264,337,593,543,950,335
 Range with a decimal place:
 +/–7.9228162514264337593543950335

a number with a decimal place
 Range: +/–4.94065645841247 X 10-324 to
 +/–1.79769313486231 X 10308

integer
 Range: –2,147,483,648 to 2,147,483,647

integer
 Range: –9,223,372,036,854,775,808 to
 9,223,372,036,854,775,807

data of any type

integer
 Range: –32,768 to 32,767

a number with a decimal place
 Range: +/–1.401298 X 10-45 to +/–3.402823 X 1038

text; 0 to approximately 2 billion characters

Figure 3-3 Basic data types in Visual Basic

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

116

Also listed in Figure 3-3 are the Boolean, Date, and Object data types. You use a Boolean
variable to store a Boolean value (either True or False) and a Date variable to store date and time
information. The Object data type can store any type of data. However, your application will pay
a price for this flexibility: It will run more slowly because the computer must determine the type
of data currently stored in an Object variable. It is best to avoid using the Object data type.
The applications in this book will use the Integer data type for variables that will store integers
used in calculations, even when the integers are small enough to fit into a Short variable. This is
because a calculation containing Integer variables takes less time to process than the equivalent
calculation containing Short variables. Either the Decimal data type or the Double data type will
be used for numbers that contain decimal places and are used in calculations. The applications
will use the String data type for variables that contain either text or numbers not used in
calculations and the Boolean data type to store Boolean values (either True or False).

Selecting a Name for a Variable
A variable’s name, also called its identifier, should describe its contents. A good variable name is
meaningful right after you finish a program and also years later when you (or perhaps a co-worker)
need to modify the program. There are several conventions for naming variables in Visual Basic.
This book uses Hungarian notation, which is the same naming convention used for controls. Each
variable name will begin with a three-character ID that represents the variable’s data type. The
three-character IDs for the most commonly used data types are listed in Figure 3-4 along with
examples of variable names. Like control names, variable names are entered using camel case,
which means you lowercase the ID and then uppercase the first letter of each word in the name.

Data type
Boolean
Decimal
Double
Integer
String

ExampleID
bln
dec
dbl
int
str

Figure 3-4 Three-character IDs and examples

Rules for Naming Variables

1. The name must begin with a letter or an underscore.
2. The name can contain only letters, numbers, and the underscore character. No punctuation
 characters, special characters, or spaces are allowed in the name.
3. Although the name can contain thousands of characters, 32 characters is the recommended
 maximum number to use.
4. The name cannot be a reserved word, such as or .

Valid names

Invalid names Problem
 The name must begin with a letter or an underscore.

 The name cannot contain a space.
 The name cannot contain punctuation.
 The name cannot contain a special character.

Figure 3-5 Variable naming rules and examples

Figure 3-5 lists the rules for naming variables and includes examples of valid and invalid
variable names.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

117

Using Variables to Store Information L E S S O N A

Declaring a Variable
Once you have chosen its data type and name, you can declare the variable in code.
Declaring a variable tells the computer to set aside a small section of its internal memory,
and it allows you to refer to the section by the variable’s name. The size of the section is
determined by the variable’s data type. You declare a variable using a declaration statement.
Figure 3-6 shows the syntax of a declaration statement and includes examples of declaring
variables. The {Dim | Private | Static} portion of the syntax indicates that you can
select only one of the keywords appearing within the braces. In most instances, you declare a
variable using the Dim keyword. (You will learn about the Private and Static keywords
later in this lesson.)

Dim comes
from the word
dimension,
which is how
 programmers

in the 1960s referred
to the process
of allocating the
 computer’s memory.
 Dimension refers to the
size of something.

Variable Declaration Statement

Syntax
{Dim | Private | Static} variableName As dataType [= initialValue]

Example 1
Dim intQuantity As Integer
Dim dblDiscountRate As Double
declares an Integer variable named intQuantity and a Double variable named
dblDiscountRate; the variables are automatically initialized to 0

Example 2
Dim decSales As Decimal
declares a Decimal variable named decSales; the variable is automatically initialized to 0

Example 3
Dim blnInsured As Boolean = True
declares a Boolean variable named blnInsured and initializes it using the keyword True

Example 4
Dim strMsg As String = "Total due: "
declares a String variable named strMsg and initializes it using the string “Total due: ”

Figure 3-6 Syntax and examples of a variable declaration statement

As mentioned earlier, a variable is considered an object in Visual Basic and is an instance of the
class specified in the dataType information. The Dim intQuantity As Integer statement, for
example, uses the Integer class to create a variable (object) named intQuantity.

In the syntax, initialValue is the value you want stored in the variable when it is created in the
computer’s internal memory. The square brackets in the syntax indicate that the “= initialValue”
part of a variable declaration statement is optional. If you do not assign an initial value to a
variable when it is declared, the computer stores a default value in the variable. The default
value depends on the variable’s data type. A variable declared using one of the numeric data
types is automatically initialized to—in other words, given a beginning value of—the number 0.
The computer automatically initializes a Boolean variable using the keyword False and a Date
variable to 1/1/0001 12:00:00 AM. Object and String variables are automatically initialized using
the keyword Nothing. Variables initialized to Nothing do not actually contain the word Nothing;
rather, they contain no data at all.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

118

Assigning Data to an Existing Variable
In Chapter 2, you learned how to use an assignment statement to assign a value to a control’s
property during run time. An assignment statement is also used to assign a value to a variable
during run time; the syntax for doing this is shown in Figure 3-7. In the syntax, expression can
contain items such as literal constants, object properties, variables, keywords, and arithmetic
operators. A literal constant is an item of data whose value does not change while the
application is running; examples include the string literal constant “Mary” and the numeric
literal constant 500. When the computer processes an assignment statement, it assigns the value
of the expression that appears on the right side of the assignment operator (=) to the variable
(memory location) whose name appears on the left side of the assignment operator. In other
words, the computer evaluates the expression first and then stores the result in the variable.

Assigning a Value to a Variable During Run Time

Syntax
variableName = expression

Note: In each of the following examples, the data type of the expression assigned to the variable
 is the same as the data type of the variable itself.

Example 1
intYear = 2017
assigns the integer 2017 to the intYear variable

Example 2
strCity = "Boise"
assigns the string “Boise” to the strCity variable

Example 3
strState = txtState.Text
assigns the string contained in the txtState control’s Text property to the strState variable

Example 4
dblRate = 0.25
assigns the Double number 0.25 to the dblRate variable

Example 5
decRaiseRate = 0.03D
converts the Double number 0.03 to Decimal and then assigns the result to the decRaiseRate
variable

Example 6
dblNewPay = dblCurrentPay * 1.03
multiplies the contents of the dblCurrentPay variable by the Double number 1.03 and then
assigns the result to the dblNewPay variable

Figure 3-7 Syntax and examples of assigning a value to a variable during run time

The data type of the expression assigned to a variable should be the same data type as the variable
itself; this is the case in all of the examples included in Figure 3-7. The assignment statement
in Example 1 stores the numeric literal constant 2017 (an integer) in an Integer variable named
intYear. Similarly, the assignment statement in Example 2 stores the string literal constant
“Boise” in a String variable named strCity. Notice that string literal constants are enclosed in
quotation marks, but numeric literal constants and variable names are not. The quotation marks

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

119

Assigning Data to an Existing Variable L E S S O N A

differentiate a string from both a number and a variable name. In other words, “2017” is a string,
but 2017 is a number. Similarly, “Boise” is a string, but Boise (without the quotation marks) would
be interpreted by the computer as the name of a variable. When the computer processes an
assignment statement that assigns a string to a String variable, it assigns only the characters that
appear between the quotation marks; it does not assign the quotation marks themselves.

The assignment statement in Example 3 assigns the string contained in the txtState control’s
Text property to a String variable named strState. (Recall that the value stored in the Text
property of an object is always treated as a string.) The assignment statement in Example 4
assigns the Double number 0.25 to a Double variable named dblRate. This is because a
numeric literal constant that has a decimal place is automatically treated as a Double number
in Visual Basic. When entering a numeric literal constant, you do not enter a comma or special
characters, such as the dollar sign or percent sign. If you want to include a percentage in an
assignment statement, you do so using its decimal equivalent; for example, you enter 0.25 rather
than 25%. (If you enter .25 in the Code Editor window, the editor will change the number to 0.25
when you move the insertion point to a different line.)

The decRaiseRate = 0.03D statement in Example 5 shows how you convert a numeric literal
constant of the Double data type to the Decimal data type, and then assign the result to a
Decimal variable. The D that follows the number 0.03 in the statement is one of the literal type
characters in Visual Basic. A literal type character forces a literal constant to assume a data
type other than the one its form indicates. In this case, the D forces the Double number 0.03 to
assume the Decimal data type.

Finally, the dblNewPay = dblCurrentPay * 1.03 statement in Example 6 multiplies the contents
of the dblCurrentPay variable by the Double number 1.03 and then assigns the result to the
dblNewPay variable. When an assignment statement’s expression contains the name of a variable,
the computer uses the value stored inside the variable to evaluate the expression. Notice that the
calculation appearing on the right side of the assignment operator is performed first, and then the
result is assigned to the variable whose name appears on the left side of the assignment operator.

A variable can store only one value at any one time. When you use an assignment statement to
assign another value to the variable, the new value replaces the existing value, as illustrated in
Figure 3-8.

You will learn
about another
literal type
character, the
letter C, in
Chapter 8.

In all of the assignment statements shown in Figures 3-7 and 3-8, the expression’s data type is the
same as the variable’s data type. At times, however, you may need to store a value of a different
data type in a variable. You can change the value’s data type to match the variable’s data type
using either the TryParse method or one of the methods in the Convert class.

The TryParse Method
Like the Val function, which you learned about in Chapter 2, the TryParse method converts
a string to a number. However, unlike the Val function, which returns a Double number, the
TryParse method allows the programmer to specify the number’s data type; for this reason,

Figure 3-8 Assignment statements entered in the btnCalc_Click procedure

initializes the
variable to 0

replaces 0 with 100

replaces 100 with 300

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

120

most programmers prefer to use the TryParse method. Every numeric data type in Visual Basic
has a TryParse method that converts a string to that particular data type.

Figure 3-9 shows the basic syntax of the TryParse method and includes examples of using the
method. In the syntax, dataType is one of the numeric data types available in Visual Basic. The
dot member access operator in the syntax indicates that the method is a member of the dataType
class. The method’s arguments (string and numericVariableName) represent information that
the method needs to perform its task. The string argument is the string you want converted to
a number of the dataType type. The string argument is typically either the Text property of a
control or the name of a String variable. The numericVariableName argument is the name of a
numeric variable that the TryParse method can use to store the number. The numeric variable
must have the same data type as specified in the dataType portion of the syntax. For example,
when using the TryParse method to convert a string to a Double number, you need to provide the
method with the name of a Double variable in which to store the number.

The TryParse method parses its string argument to determine whether the string can be
converted to a number. In this case, the term parse means to look at each character in the
string. If the string can be converted, the TryParse method converts the string to a number and
then stores the number in the variable specified in the numericVariableName argument. If the
TryParse method determines that the string cannot be converted to the appropriate data type, it
assigns the number 0 to the variable.

TryParse Method

Basic syntax
dataType.TryParse(string, numericVariableName)

Example 1
Double.TryParse(txtPaid.Text, dblPaid)
If the string contained in the txtPaid control’s Text property can be converted to a Double
number, the TryParse method converts the string and then stores the result in the dblPaid
variable; otherwise, it stores the number 0 in the variable.

Example 2
Decimal.TryParse(txtTotal.Text, decTotal)
If the string contained in the txtTotal control’s Text property can be converted to a Decimal
number, the TryParse method converts the string and then stores the result in the decTotal
variable; otherwise, it stores the number 0 in the variable.

Example 3
Integer.TryParse(strQuantity, intQuantity)
If the string contained in the strQuantity variable can be converted to an Integer number, the
TryParse method converts the string and then stores the result in the intQuantity variable;
otherwise, it stores the number 0 in the variable.

Figure 3-9 Basic syntax and examples of the TryParse method

You will learn
more about
the TryParse
method in
Chapter 5.

Figure 3-10 shows how the TryParse method of the Double, Decimal, and Integer data types
would convert various strings. As the figure indicates, the three methods can convert a string
that contains only numbers. They can also convert a string that contains a leading sign as
well as one that contains leading or trailing spaces. In addition, the Double.TryParse and
Decimal.TryParse methods can convert a string that contains a decimal point or a comma.
However, none of the three methods can convert a string that contains a dollar sign, a
percent sign, a letter, a space within the string, or an empty string.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

121

Assigning Data to an Existing Variable L E S S O N A

The Convert Class
At times, you may need to convert a number (rather than a string) from one data type to
another. Visual Basic provides several ways of accomplishing this task. One way is to use the
Visual Basic conversion functions, which are listed in Appendix C in this book. You can also
use one of the methods defined in the Convert class. In this book, you will use the Convert
class methods because they can be used in any of the languages built into Visual Studio. The
conversion functions, on the other hand, can be used only in the Visual Basic language. The
more commonly used methods in the Convert class are the ToDecimal, ToDouble, ToInt32, and
ToString methods. The methods convert a value to the Decimal, Double, Integer, and String data
types, respectively.

The syntax for using the Convert class methods is shown in Figure 3-11 along with examples of
using the methods. The dot member access operator in the syntax indicates that the method is
a member of the Convert class. In most cases, the value argument is a numeric value that you
want converted either to the String data type or to a different numeric data type (for example,
from Double to Decimal). Although you can use the Convert methods to convert a string to a
numeric data type, the TryParse method is the recommended method to use for that task. This
is because, unlike the Convert methods, the TryParse method does not produce an error when
it tries to convert an empty string. Instead, the TryParse method assigns the number 0 to its
numericVariableName argument.

Figure 3-10 Results of the TryParse method for the Double, Decimal, and Integer data types

can be
converted

can be
converted
by only
two of the
methods

can’t be
converted

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

122

In the statement shown in Example 1, the Convert.ToDecimal method converts the Double
number 0.15 to Decimal. (Recall that a number with a decimal place is automatically treated as a
Double number in Visual Basic.) The statement then assigns the result to the decRate variable.
You could also write the statement as decRate = 0.15D. However, some programmers would
argue that using the Convert.ToDecimal method, rather than the literal type character D, makes
the code clearer.

In Example 2’s statement, the Convert.ToString method converts the integer stored in the
intQuantity variable to String before the statement assigns the result to the lblQuantity
control’s Text property. The statement in Example 3 uses the Convert.ToDecimal method to
convert the Double number 0.05 to Decimal. The statement multiplies the result by the contents
of the decSales variable and then assigns the product to the decBonus variable. You could also
write this statement as decBonus = decSales * 0.05D.

Convert Class Methods

Syntax
Convert.method(value)

Example 1
decRate = Convert.ToDecimal(0.15)
converts the Double number 0.15 to Decimal and then assigns the result to the decRate variable

Example 2
lblQuantity.Text = Convert.ToString(intQuantity)
converts the integer stored in the intQuantity variable to String and then assigns the result to
the lblQuantity control’s Text property

Example 3
decBonus = decSales * Convert.ToDecimal(0.05)
converts the Double number 0.05 to Decimal, then multiplies the result by the contents of the
decSales variable, and then assigns that result to the decBonus variable

Figure 3-11 Syntax and examples of the Convert class methods

YOU DO IT 1!

Create an application named YouDoIt 1 and save it in the VB2015\Chap03 folder. Add a
text box, a label, and a button to the form. The button’s Click event procedure should store
the contents of the text box in a Double variable named dblCost. It then should display
the variable’s contents in the label. Code the procedure. Save the solution, and then start
and test the application. Close the solution.

Note: You have learned a lot so far in this lesson. You may want to take a break at this point
before continuing.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

123

The Scope and Lifetime of a Variable L E S S O N A

The Scope and Lifetime of a Variable
Besides a name, a data type, and an initial value, every variable also has a scope and a lifetime. A
variable’s scope indicates where the variable can be used in an application’s code, and its lifetime
indicates how long the variable remains in the computer’s internal memory. Variables can have
class scope, procedure scope, or block scope. However, most of the variables used in an application
will have procedure scope. This is because fewer unintentional errors occur in applications when
the variables are declared using the minimum scope needed, which usually is procedure scope.

A variable’s scope and lifetime are determined by where you declare the variable. Typically,
you enter the declaration statement either in a procedure (such as an event procedure) or
in the Declarations section of a form. A form’s Declarations section is not the same as the
General Declarations section, which you learned about in Chapter 2. The General Declarations
section is located above the Public Class clause in the Code Editor window, whereas the form’s
Declarations section is located between the Public Class and End Class clauses.

Variables declared in a form’s Declarations section have class scope. Variables declared in a
procedure, on the other hand, have either procedure scope or block scope, depending on where
in the procedure they are declared. In the next two sections, you will learn about procedure
scope variables and class scope variables. Variables with block scope are covered in Chapter 4.

Variables with Procedure Scope
When you declare a variable in a procedure, the variable is called a procedure-level variable.
Procedure-level variables have procedure scope because they can be used only by the
procedure in which they are declared. Procedure-level variables are typically declared at the
beginning of a procedure, and they remain in the computer’s internal memory only while the
procedure is running. Procedure-level variables are removed from memory when the procedure
in which they are declared ends. In other words, a procedure-level variable has the same lifetime
as the procedure that declares it. As mentioned earlier, most of the variables in your applications
will be procedure-level variables.

The Commission Calculator application that you will view next illustrates the use of procedure-
level variables. As the interface shown in Figure 3-12 indicates, the application displays the
amount of a salesperson’s commission. The commission is calculated by multiplying the
salesperson’s sales by the appropriate commission rate: either 8% or 10%.

Ch03A-Scope and
Lifetime

Variables can
also have
namespace
scope and are
referred to as

namespace variables,
global variables, or
public variables. Such
variables can lead to
unintentional errors in a
program and should be
avoided, if possible. For
this reason, they are not
covered in this book.

Procedure-level
variables are
also called local
variables and
their scope

is often referred to as
local scope.

In the Static
 Variables
 section of this
chapter, you
will learn how to

declare a procedure-level
variable that remains
in the computer’s
memory even when the
procedure in which it is
declared ends.

Figure 3-12 User interface for the Commission Calculator application

Figure 3-13 shows the Click event procedures for the 8% Rate and 10% Rate buttons. The
comments in the figure indicate the purpose of each line of code. When each procedure ends,
its procedure-level variables are removed from the computer’s memory. The variables will be
created again the next time the user clicks the button.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

124

Figure 3-13 Click event procedures using procedure-level variables

Private Sub btnRate8_Click(sender As Object, e As EventArgs)
Handles btnRate8.Click
 ' calculates and displays an 8% commission

 ' the Dim statements declare two procedure-level
 ' variables that can be used only within the
 ' btnRate8_Click procedure
 Dim dblSales As Double
 Dim dblComm8 As Double

 ' the TryParse method converts the contents of the
 ' txtSales control to Double and then stores the
 ' result in the procedure-level dblSales variable
 Double.TryParse(txtSales.Text, dblSales)

 ' the assignment statement multiplies the value
 ' stored in the procedure-level dblSales variable
 ' by the Double number 0.08 and then assigns the
 ' result to the procedure-level dblComm8 variable
 dblComm8 = dblSales * 0.08

 ' the Convert method converts the value stored in
 ' the procedure-level dblComm8 variable to String,
 ' and the assignment statement assigns the result
 ' to the lblComm control's Text property
 lblComm.Text = Convert.ToString(dblComm8)
End Sub

Private Sub btnRate10_Click(sender As Object, e As EventArgs)
Handles btnRate10.Click
 ' calculates and displays a 10% commission

 ' the Dim statements declare two procedure-level
 ' variables that can be used only within the
 ' btnRate10_Click procedure
 Dim dblSales As Double
 Dim dblComm10 As Double

 ' the TryParse method converts the contents of the
 ' txtSales control to Double and then stores the
 ' result in the procedure-level dblSales variable
 Double.TryParse(txtSales.Text, dblSales)

 ' the assignment statement multiplies the value
 ' stored in the procedure-level dblSales variable
 ' by the Double number 0.1 and then assigns the
 ' result to the procedure-level dblComm10 variable
 dblComm10 = dblSales * 0.1

 ' the Convert method converts the value stored in
 ' the procedure-level dblComm10 variable to String,
 ' and the assignment statement assigns the result
 ' to the lblComm control's Text property
 lblComm.Text = Convert.ToString(dblComm10)
End Sub

removed from memory
when the btnRate8_Click
procedure ends

removed from memory
when the btnRate10_Click
procedure ends

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

125

The Scope and Lifetime of a Variable L E S S O N A

Notice that both procedures in Figure 3-13 declare a variable named dblSales. When you use
the same name to declare a variable in more than one procedure, each procedure creates its own
variable when the procedure is invoked. Each procedure also destroys its own variable when the
procedure ends. In other words, although both procedures declare a variable named dblSales,
each dblSales variable will refer to a different section in the computer’s internal memory, and
each will be both created and destroyed independently from the other.

To code and then test the Commission Calculator application:

1. If necessary, start Visual Studio 2015. Open the Commission Solution (Commission
Solution.sln) file contained in the VB2015\Chap03\Commission Solution-Procedure-
level folder. The user interface shown earlier in Figure 3-12 appears on the screen.

2. Open the Code Editor window. See Figure 3-14. For now, do not be concerned about
the three Option statements that appear in the window. You will learn about them later
in this lesson. Replace <your name> and <current date> in the comments with your
name and the current date, respectively.

START HERE

Figure 3-14 Code Editor window for the Commission Calculator application

3. Open the code templates for the btnRate8_Click and btnRate10_Click procedures. In
the procedures, enter the comments and code shown earlier in Figure 3-13.

4. Save the solution and then start the application. If necessary, press Alt to display the
access keys in the interface.

 Note: The figures in this book usually show the interface’s access keys. However, from
now on, you will not be instructed to press Alt to display the access keys. Instead, you
can choose whether or not to display them.

5. First, calculate and display an 8% commission on $55,000. Type 55000 in the Sales box
and then click the 8% Rate button. The number 4400 appears in the Commission box,
as shown in Figure 3-15.

you will learn
about these
statements
later in this
lesson

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

126

6. Next, test the btnRate8_Click procedure using an invalid sales amount. Change the
sales amount to the letter a and then click the 8% Rate button. The number 0 appears
in the Commission box.

7. Change the sales amount to 15000 and then click the 10% Rate button. The number
1500 appears in the Commission box.

8. Now test the btnRate10_Click procedure using an invalid sales amount. Change the
sales amount to $5999 (be sure to type the dollar sign) and then click the 10% Rate
button. The number 0 appears in the Commission box.

9. Click the Exit button. Close the Code Editor window and then close the solution.

Variables with Class Scope
In addition to declaring a variable in a procedure, you can also declare a variable in the form’s
Declarations section, which begins with the Public Class clause and ends with the End Class
clause. When you declare a variable in the form’s Declarations section, the variable is called
a class-level variable and it has class scope. Class-level variables can be used by all of the
procedures in the form, including the procedures associated with the controls contained
on the form. Class-level variables retain their values and remain in the computer’s internal
memory until the application ends. In other words, a class-level variable has the same
lifetime as the application itself.

Unlike a procedure-level variable, which is declared using the Dim keyword, you declare a
class-level variable using the Private keyword. You typically use a class-level variable when
you need more than one procedure in the same form to use the same variable. However, a
class-level variable can also be used when a procedure needs to retain a variable’s value after
the procedure ends. The Total Scores application, which you will view next, illustrates this
use of a class-level variable. The application’s interface is shown in Figure 3-16. As the
interface indicates, the application calculates and displays the total of the scores entered by
the user.

Although you
can also use the
Dim keyword
to declare a
class-level

 variable, most Visual
Basic programmers use
the Private keyword
so that the scope is
more obvious to anyone
 reading the code.

Figure 3-15 Commission shown in the interface

Figure 3-16 User interface for the Total Scores application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

127

The Scope and Lifetime of a Variable L E S S O N A

Figure 3-17 shows most of the Total Scores application’s code. The code uses a class-level
variable named decTotal to accumulate (add together) the scores entered by the user. Class-
level variables are declared after the Public Class clause, but before the first Private Sub clause, in
the form’s Declarations section.

When the user starts the Total Scores application, the computer will process the Private
decTotal As Decimal statement first. The statement creates and initializes the class-level
decTotal variable. The variable is created and initialized only once, when the application starts.
It remains in the computer’s internal memory until the application ends.

Each time the user clicks the Add to Total button, the button’s Click event procedure
creates and initializes a procedure-level variable named decScore. The TryParse method
then converts the contents of the txtScore control to Decimal, storing the result in the
decScore variable. The first assignment statement in the procedure adds the contents of
the procedure-level decScore variable to the contents of the class-level decTotal variable.
At this point, the decTotal variable contains the sum of all of the scores entered so far. The
last assignment statement in the procedure converts the contents of the decTotal variable
to String and then assigns the result to the lblTotal control. The procedure then sends
the focus to the txtScore control. When the procedure ends, the computer removes the
procedure-level decScore variable from its memory. However, it does not remove the class-
level decTotal variable. The decTotal variable is removed from the computer’s memory
only when the application ends.

To code and then test the Total Scores application:

1. Open the Total Scores Solution (Total Scores Solution.sln) file contained in the Total
Scores Solution-Class-level folder. The user interface shown earlier in Figure 3-16
appears on the screen.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

START HERE

Figure 3-17 Most of the Total Scores application’s code using a class-level variable

Public Class frmMain
 ' class-level variable for accumulating the scores
 Private decTotal As Decimal

 Private Sub btnAdd_Click(sender As Object,
 e As EventArgs) Handles btnAdd.Click
 ' totals the scores entered by the user

 ' procedure-level variable for getting each score
 Dim decScore As Decimal

 ' total the scores and display the result
 Decimal.TryParse(txtScore.Text, decScore)
 decTotal = decTotal + decScore
 lblTotal.Text = Convert.ToString(decTotal)

 txtScore.Focus()

 End Sub

class-level
variable
declared in
the form’s
Declarations
section

procedure-
level variable
declared in the
btnAdd_Click
procedure

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

128

3. First, declare the class-level decTotal variable in the form’s Declarations section. Enter
the following comment and declaration statement in the blank line below the Public
Class clause:

' class-level variable for accumulating the scores
Private decTotal As Decimal

4. Open the code template for the btnAdd_Click procedure. Enter the comments and
code shown earlier in Figure 3-17.

5. Save the solution and then start the application. Type 89 as the score and then click the
Add to Total button. The number 89 appears in the Total scores box.

6. Change the score to 75 and then click the Add to Total button. The number 164
appears in the Total scores box.

7. Change the score to 100 and then click the Add to Total button. The number 264
appears in the Total scores box, as shown in Figure 3-18.

Figure 3-18 Interface showing the total of the scores you entered

8. Click the Exit button. Close the Code Editor window and then close the solution.

Static Variables
A static variable is a procedure-level variable that remains in memory and also retains its value,
even when the procedure in which it is declared ends. Like a class-level variable, a static variable
is not removed from the computer’s internal memory until the application ends. However, unlike
a class-level variable, which can be used by all of the procedures in a form, a static variable can
be used only by the procedure in which it is declared. In other words, a static variable has a
narrower (or more restrictive) scope than does a class-level variable. As mentioned earlier, you
can prevent many unintentional errors from occurring in an application by declaring the
variables using the minimum scope needed.

In the previous section, you viewed the interface and code for the Total Scores application,
which uses a class-level variable to accumulate the scores entered by the user. Rather than using
a class-level variable for that purpose, you can also use a static variable, as shown in the code in
Figure 3-19.

The Static
keyword can
be used only in
a procedure.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

129

Static Variables L E S S O N A

The first time the user clicks the Add to Total button, the button’s Click event procedure creates
and initializes (to 0) a procedure-level variable named decScore and a static variable named
decTotal. The TryParse method then converts the contents of the txtScore control to Decimal,
storing the result in the decScore variable. The first assignment statement in the procedure
adds the contents of the decScore variable to the contents of the static decTotal variable. The
last assignment statement in the procedure converts the contents of the decTotal variable to
String and assigns the result to the lblTotal control. The procedure then sends the focus to the
txtScore control. When the procedure ends, the computer removes the variable declared using
the Dim keyword (decScore) from its internal memory. But it does not remove the variable
declared using the Static keyword (decTotal).

Each subsequent time the user clicks the Add to Total button, the computer re-creates and
re-initializes the decScore variable declared in the btnAdd_Click procedure. However, it
does not re-create or re-initialize the static decTotal variable because that variable, as well
as its current value, is still in the computer’s memory. After re-creating and re-initializing the
decScore variable, the computer processes the remaining instructions contained in the button’s
Click event procedure. Here again, each time the procedure ends, the decScore variable is
removed from the computer’s internal memory. The decTotal variable is removed only when
the application ends.

To use a static variable in the Total Scores application:

1. Open the Total Scores Solution (Total Scores Solution.sln) file contained in the Total
Scores Solution-Static folder. The user interface shown earlier in Figure 3-16 appears on
the screen.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Delete the comment and the Private declaration statement entered in the form’s
Declarations section.

START HERE

Figure 3-19 Most of the Total Scores application’s code using a static variable

Public Class frmMain

 Private Sub btnAdd_Click(sender As Object,
 e As EventArgs) Handles btnAdd.Click
 ' totals the scores entered by the user

 ' procedure-level variable for getting each score
 Dim decScore As Decimal
 ' static variable for accumulating the scores
 Static decTotal As Decimal

 ' total the scores and display the result
 Decimal.TryParse(txtScore.Text, decScore)
 decTotal = decTotal + decScore
 lblTotal.Text = Convert.ToString(decTotal)

 txtScore.Focus()

 End Sub

static variable
declared in the
btnAdd_Click
procedure

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

130

4. Modify the btnAdd_Click procedure so that it uses a static variable rather than a
class-level variable. Use the code shown in Figure 3-19 as a guide.

5. Save the solution and then start the application.

6. Use the application to total the following three scores: 89, 75, and 100. Be sure to click
the Add to Total button after typing each score. Also be sure to delete the previous
score before entering the next score. When you are finished entering the scores, the
number 264 appears in the Total scores box, as shown earlier in Figure 3-18.

7. Click the Exit button. Close the Code Editor window and then close the solution.

YOU DO IT 2!

Create an application named YouDoIt 2 and save it in the VB2015\Chap03 folder.
Add a label and a button to the form. The button’s Click event procedure should add
the number 1 to the contents of a class-level Integer variable named intNumber
and then display the variable’s contents in the label. Code the application. Save the
solution, and then start and test the application. Next, change the class-level variable
to a static variable. Save the solution, and then start and test the application. Close
the solution.

Named Constants
In addition to using literal constants and variables in your code, you can also use named
constants. Like a variable, a named constant is a memory location inside the computer.
However, unlike the value stored in a variable, the value stored in a named constant cannot
be changed while the application is running. You declare a named constant using the
Const statement. The statement’s syntax is shown in Figure 3-20. In the syntax, expression is
the value you want stored in the named constant when it is created in the computer’s internal
memory. The expression’s value must have the same data type as the named constant. The
expression can contain a literal constant, another named constant, or an arithmetic operator;
however, it cannot contain a variable or a method.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

131

Named Constants L E S S O N A

To differentiate the name of a constant from the name of a variable, many programmers
lowercase the three-character ID that represents the constant’s data type and then uppercase
the remaining characters in the name, as shown in the examples in Figure 3-20. When entered
in a procedure, the Const statements shown in the first three examples create procedure-level
named constants. To create a class-level named constant, you precede the Const keyword with
the Private keyword, as shown in Example 4. In addition, you enter the Const statement in the
form’s Declarations section. Notice that Example 4 uses the literal type character D to convert
the Double number 0.05 to Decimal. The Convert.ToDecimal method was not used for this
purpose because, as mentioned earlier, the expression assigned to a named constant cannot
contain a method.

Named constants make code more self-documenting and easier to modify because they allow
you to use meaningful words in place of values that are less clear. The named constant dblPI, for
example, is much more meaningful than the number 3.141593, which is the value of pi rounded
to six decimal places. Once you create a named constant, you then can use the constant’s name,
rather than its value, in the application’s code. Unlike the value stored in a variable, the value
stored in a named constant cannot be inadvertently changed while the application is running.
Using a named constant to represent a value has another advantage: If the value changes in the
future, you will need to modify only the Const statement in the program rather than all of the
program statements that use the value.

The Area Calculator application that you will view next illustrates the use of a named constant.
As the interface shown in Figure 3-21 indicates, the application displays a circle’s area, given its
radius. The formula for calculating the area of a circle is πr2, where π stands for pi (3.141593).

Figure 3-20 Syntax and examples of the Const statement

Declaring a Named Constant

Syntax
[Private] Const constantName As dataType = expression

Example 1
Const dblPI As Double = 3.141593
declares dblPI as a Double named constant and initializes it to the Double number 3.141593

Example 2
Const intMAX_SPEED As Integer = 70
declares intMAX_SPEED as an Integer named constant and initializes it to the integer 70

Example 3
Const strTITLE As String = "Vice President of Sales"
declares strTITLE as a String named constant and initializes it to the string “Vice President of
Sales”

Example 4
Private Const decRATE As Decimal = 0.05D
declares decRATE as a Decimal named constant and initializes it to the Decimal number 0.05

changes the
number’s type from
Double to Decimal

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

132

Figure 3-22 shows the code for the Calculate Area button’s Click event procedure. The
declaration statements declare and initialize a named constant and two variables. The TryParse
method converts the contents of the txtRadius control to Double, storing the result in the
dblRadius variable. The first assignment statement calculates the circle’s area using the values
stored in the dblPI named constant and the dblRadius variable; it then assigns the result to the
dblArea variable. In the second assignment statement, the Format function (which returns a
string) formats the contents of the dblArea variable. The assignment statement then displays
the resulting string in the lblArea control. When the procedure ends, the computer removes the
named constant and two variables from its internal memory.

You can also
calculate the
area using the
 expression
dblPI *

dblRadius ^ 2.

Figure 3-21 User interface for the Area Calculator application

To code and then test the Area Calculator application:

1. Open the Area Calculator Solution (Area Calculator Solution.sln) file contained in the
Area Calculator Solution folder. The user interface shown earlier in Figure 3-21 appears
on the screen.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Open the code template for the btnCalc_Click procedure, and then enter the comments
and code shown earlier in Figure 3-22.

START HERE

Figure 3-22 Calculate Area button’s Click event procedure

Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click
 ' calculates and displays the area of a circle

 ' declare named constant and variables
 Const dblPI As Double = 3.141593
 Dim dblRadius As Double
 Dim dblArea As Double

 ' calculate and display area
 Double.TryParse(txtRadius.Text, dblRadius)
 dblArea = dblPI * dblRadius * dblRadius
 lblArea.Text = Format(dblArea, "standard")

End Sub

named constant
declaration
statement

assignment
statement
containing the
named constant

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

133

Option Statements L E S S O N A

4. Save the solution and then start the application. Type 10 in the Circle’s radius box and
then click the Calculate Area button. The number 314.16 appears in the Circle’s area
box, as shown in Figure 3-23.

Figure 3-23 Interface showing the circle’s area

Option Statements
Finally, you will learn about the three Option statements shown earlier in Figure 3-14. The
Option statements appeared in the Code Editor window for all of the applications you viewed in
this lesson. You will learn about the Option Explicit and Option Infer statements first.

Option Explicit and Option Infer
It is important to declare every variable used in your code. This means every variable should appear
in a declaration statement, such as a Dim, Static, or Private statement. The declaration statement
is important because it allows you to control the variable’s data type. Declaration statements also
make your code more self-documenting. A word of caution is in order at this point: In Visual
Basic, you can create variables “on the fly.” This means that if a statement in your code refers to an
undeclared variable, Visual Basic will create the variable for you and assign the Object data type to
it. Recall that the Object type is not a very efficient data type, and its use should be limited.

Because it is so easy to forget to declare a variable—and so easy to misspell a variable’s name while
coding, thereby inadvertently creating an undeclared variable—Visual Basic provides a statement
that tells the Code Editor to flag any undeclared variables in your code: Option Explicit On.
You enter the statement in the General Declarations section (located above the Public Class
clause) of the Code Editor window. When you also enter the Option Infer Off statement in the
General Declarations section, the Code Editor ensures that every variable and named constant is
declared with a data type. In other words, the statement tells the computer not to infer (or assume)
a memory location’s data type based on the data assigned to the memory location.

Option Strict
As you learned earlier, the data type of the value assigned to a memory location should be the
same as the data type of the memory location itself. If the value’s data type does not match
the memory location’s data type, the computer uses a process called implicit type conversion
to convert the value to fit the memory location. For example, when processing the statement
Dim dblLength As Double = 9, the computer converts the integer 9 to the Double number
9.0 before storing the value in the dblLength variable. When a value is converted from one data
type to another data type that can store either larger numbers or numbers with greater precision,

5. Click the Exit button. Close the Code Editor window and then close the solution.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

134

the value is said to be promoted. In this case, if the dblLength variable is used subsequently in a
calculation, the results of the calculation will not be adversely affected by the implicit promotion
of the number 9 to the number 9.0.

On the other hand, if you inadvertently assign a Double number to a memory location that can
store only integers, the computer converts the Double number to an integer before storing the
value in the memory location. It does this by rounding the number to the nearest whole number
and then truncating (dropping off) the decimal portion of the number. When processing the
statement Dim intScore As Integer = 78.4, for example, the computer converts the
Double number 78.4 to the integer 78 before storing the integer in the intScore variable. When
a value is converted from one data type to another data type that can store only smaller numbers
or numbers with less precision, the value is said to be demoted. If the intScore variable is used
subsequently in a calculation, the implicit demotion of the number 78.4 to the number 78 will
probably cause the calculated results to be incorrect.

With implicit type conversions, data loss can occur when a value is converted from one data
type to a narrower data type, which is a data type with less precision or smaller capacity. You
can eliminate the problems that occur as a result of implicit type conversions by entering the
Option Strict On statement in the General Declarations section of the Code Editor window.
When the Option Strict On statement appears in an application’s code, the computer uses
the type conversion rules listed in Figure 3-24. The figure also includes examples of these rules.

According to the first rule, the computer will not implicitly convert a string to a number. As
a result, the Code Editor will issue the warning message “Option Strict On disallows implicit
conversions from ‘String’ to ‘Double’” when your code contains the statement dblRadius =
txtRadius.Text. As you learned earlier, you should use the TryParse method to explicitly
convert a string to the Double data type before assigning it to a Double variable. The appropriate
TryParse method to use in this case is shown in Figure 3-24.

Figure 3-24 Rules and examples of type conversions

Type Conversion Rules

1. Strings will not be implicitly converted to numbers. The Code Editor will display a warning
 message when a statement attempts to use a string where a number is expected.

 Incorrect: dblRadius = txtRadius.Text
 Correct: Double.TryParse(txtRadius.Text, dblRadius)

2. Numbers will not be implicitly converted to strings. The Code Editor will display a warning
 message when a statement attempts to use a number where a string is expected.

 Incorrect: lblArea.Text = dblArea
 Correct: lblArea.Text = Convert.ToString(dblArea)
 Correct: lblArea.Text = Format(dblArea, "standard")

3. Wider data types will not be implicitly demoted to narrower data types. The Code Editor will
 display a warning message when a statement attempts to use a wider data type where a
 narrower data type is expected.

 Incorrect: Dim decRate As Decimal = 0.05
 Correct: Dim decRate As Decimal = 0.05D
 Correct: Dim decRate As Decimal = Convert.ToDecimal(0.05)

4. Narrower data types will be implicitly promoted to wider data types.

 Correct: dblAverage = dblTotal / intNum

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

135

Option Statements L E S S O N A

According to the second rule, the computer will not implicitly convert a number to a string.
Therefore, the Code Editor will issue an appropriate warning message when your code contains
the statement lblArea.Text = dblArea. You can use either the Convert class methods or the
Format function to explicitly convert a number to the String data type, as shown in Figure 3-24.

The third rule states that wider data types will not be implicitly demoted to narrower data
types. A data type is wider than another data type if it can store either larger numbers or
numbers with greater precision. Because of this rule, a Double number will not be implicitly
demoted to the Decimal or Integer data types. If your code contains the statement Dim
decRate As Decimal = 0.05, the Code Editor will issue an appropriate warning message
because the statement assigns a Double number to a Decimal variable. You can use either the
literal type character D or the Convert.ToDecimal method to convert a Double number to the
Decimal data type, as shown in Figure 3-24.

According to the last rule listed in Figure 3-24, the computer will implicitly promote
narrower data types to wider data types. This means that when processing the statement
dblAverage = dblTotal / intNum, the computer will implicitly promote the integer
stored in the intNum variable to Double before dividing it into the contents of the dblTotal
variable. The result, a Double number, will be assigned to the dblAverage variable.

Figure 3-25 shows the three Option statements entered in the General Declarations section
of the Code Editor window. If a project contains more than one form, the statements must be
entered in each form’s Code Editor window.

Rather than entering the Option statements in the Code Editor window, you can set the options
using either the Project Designer window or the Options dialog box. However, it is strongly
recommended that you enter the Option statements in the Code Editor window because doing
so makes your code more self-documenting and ensures that the options are set appropriately.
The steps for setting the options in the Project Designer window and the Options dialog box are
listed in Lesson A’s Summary section.

In Visual Basic
2015, the
default setting
for Option
Explicit and

Option Infer is On,
whereas the default
setting for Option Strict
is Off.

Figure 3-25 Option statements entered in the General Declarations section

General
Declarations
section

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

136

Lesson A Summary
 • To declare a variable:

The syntax of a variable declaration statement is {Dim | Private | Static}
variableName As dataType [= initialValue]. Use camel case for a variable’s name.

 • To declare a procedure-level variable:

Enter the variable declaration statement in a procedure. Use the Dim keyword to declare a
procedure-level variable that will be removed from the computer’s internal memory when the
procedure ends. Use the Static keyword to declare a procedure-level variable that remains
in the computer’s internal memory and also retains its value until the application ends.

 • To declare a class-level variable:

Enter the variable declaration statement in a form’s Declarations section. Use the Private
keyword.

 • To use an assignment statement to assign data to an existing variable:

Use the syntax variableName = expression.

 • To force a Double literal constant to assume the Decimal data type:

Append the letter D to the end of the Double literal constant.

 • To convert a string to a numeric data type:

Use the TryParse method. The method’s syntax is dataType.TryParse(string,
numericVariableName).

 • To convert a numeric value to a different data type:

Use one of the Convert methods. Each method’s syntax is Convert.method(value).

 • To declare a named constant:

Use the Const statement. The statement’s syntax is [Private] Const constantName As
dataType = expression. Enter the three-character ID in lowercase, and enter the remainder of
the name in uppercase.

YOU DO IT 3!

Create an application named YouDoIt 3 and save it in the VB2015\Chap03 folder. Add
a text box, a label, and a button to the form. In the General Declarations section of the
Code Editor window, enter the following three Option statements: Option Explicit On,
Option Strict Off, and Option Infer Off. In the button’s Click event procedure,
declare a Double variable named dblNum. Use an assignment statement to assign the
contents of the text box to the Double variable. Then, use an assignment statement to
assign the contents of the Double variable to the label. Save the solution, and then start
and test the application. Stop the application. Finally, change the Option Strict Off
statement to Option Strict On and make the necessary modifications to the code.
Save the solution, and then start and test the application. Close the solution.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

137

Lesson A Key Terms L E S S O N A

 • To declare a procedure-level named constant:

Enter the Const statement (without the Private keyword) in a procedure.

 • To declare a class-level named constant:

Enter the Const statement, preceded by the keyword Private, in a form’s Declarations
section.

 • To prevent the computer from creating an undeclared variable:

Enter the Option Explicit On statement in the General Declarations section of the Code
Editor window.

 • To prevent the computer from inferring a variable’s data type:

Enter the Option Infer Off statement in the General Declarations section of the Code
Editor window.

 • To prevent the computer from making implicit type conversions that may result in a loss
of data:

Enter the Option Strict On statement in the General Declarations section of the Code
Editor window.

 • To use the Project Designer window to set Option Explicit, Option Strict, and Option Infer
for an entire project:

Open the solution that contains the project. Right-click My Project in the Solution Explorer
window and then click Open to open the Project Designer window. Click the Compile tab.
Use the Option explicit, Option strict, and Option infer boxes to set the options. Save the
solution and then close the Project Designer window.

 • To use the Options dialog box to set Option Explicit, Option Strict, and Option Infer for all of
the projects you create:

Click Tools on the Visual Studio menu bar and then click Options. When the Options dialog
box opens, expand the Projects and Solutions node and then click VB Defaults. Use the
Option Explicit, Option Strict, and Option Infer boxes to set the options. Click the OK button
to close the Options dialog box.

Lesson A Key Terms
Class scope—the scope of a class-level variable or named constant; refers to the fact that the
memory location can be used by any procedure in the form

Class-level variable—a variable declared in a form’s Declarations section; it has class scope and
should be declared using the Private keyword

Const statement—the statement used to create a named constant

Convert class—contains methods that return the result of converting a value to a specified
data type

Data type—indicates the type of data a memory location (variable or named constant) can store

Demoted—the process of converting a value from one data type to another data type that can
store only smaller numbers or numbers with less precision

Form’s Declarations section—located between the Public Class and End Class clauses in the
Code Editor window; the section of the Code Editor window where class-level variables and
class-level named constants are declared

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

138

Implicit type conversion—the process by which a value is automatically converted to fit the
memory location to which it is assigned

Lifetime—indicates how long a variable or named constant remains in the computer’s internal
memory

Literal constant—an item of data whose value does not change during run time

Literal type character—a character (such as the letter D) appended to a literal constant for the
purpose of forcing the literal constant to assume a different data type (such as Decimal)

Named constant—a computer memory location whose contents cannot be changed during run
time; declared using the Const statement

Procedure scope—the scope of a procedure-level variable or named constant; refers to the fact
that the memory location can be used only by the procedure in which it is declared

Procedure-level variable—a variable declared in a procedure; the variable has procedure scope

Promoted—the process of converting a value from one data type to another data type that can
store either larger numbers or numbers with greater precision

Scope—indicates where a memory location (variable or named constant) can be used in an
application’s code

Static variable—a procedure-level variable that remains in memory and retains its value until
the application (rather than the declaring procedure) ends

TryParse method—used to convert a string to a number of a specified data type

Unicode—the universal coding scheme that assigns a unique numeric value to each character
used in the written languages of the world

Variables—computer memory locations where programmers can temporarily store data, as well
as change the data, while an application is running

Lesson A Review Questions
1. Which of the following keywords is used to declare a class-level variable?

a. Class

b. Dimension

c. Global

d. Private

2. Which of the following is a data item whose value does not change during run time?

a. literal constant
b. literal variable

c. named constant
d. variable

3. Which of the following statements declares a procedure-level variable that remains in
the computer’s memory until the application ends?

a. Dim Static intScore As Integer

b. Private Static intScore As Integer

c. Static intScore As Integer

d. both b and c

4. Which of the following keywords can be used to declare a variable within a procedure?

a. Dim

b. Procedure

c. Static

d. both a and c

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

139

Lesson A Review Questions L E S S O N A

5. Which of the following statements declares a class-level variable?

a. Class intNum As Integer

b. Private intNum As Integer

c. Private Class intNum As Integer

d. Private Dim intNum As Integer

6. Which of the following declares a procedure-level String variable?

a. Dim String strCity

b. Dim strCity As String

c. Private strCity As String

d. both b and c

7. Which of the following are computer memory locations that can temporarily store
information?

a. literal constants
b. named constants

c. variables
d. both b and c

8. If Option Strict is set to On, which of the following statements will assign the contents
of the txtSales control to a Double variable named dblSales?

a. dblSales = txtSales.Text

b. dblSales = txtSales.Text.Convert.ToDouble

c. Double.TryParse(txtSales.Text, dblSales)

d. TryParse.Double(txtSales.Text, dblSales)

9. Which of the following declares a named constant having the Double data type?

a. Const dblRATE As Double = 0.09

b. Const dblRATE As Double

c. Constant dblRATE = 0.09

d. both a and b

10. If Option Strict is set to On, which of the following statements assigns the sum of two
Integer variables to the Text property of the lblTotal control?

a. lblTotal.Text = Convert.ToInteger(intN1 + intN2)

b. lblTotal.Text = Convert.ToInt32(intN1 + intN2)

c. lblTotal.Text = Convert.ToString(intN1) + Convert.
ToString(intN2)

d. none of the above

11. Which of the following statements prevents data loss due to implicit type conversions?

a. Option Explicit On

b. Option Strict On

c. Option Implicit Off

d. Option Convert Off

12. A static variable has the same _____________________ as a procedure-level variable but
the same _____________________ as a class-level variable.

a. lifetime, scope
b. scope, lifetime

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

140

Lesson A Exercises
1. A procedure needs to store a salesperson’s name and bonus amount (which may

have decimal places). Write the appropriate Dim statements to declare the necessary
procedure-level variables.

2. A procedure needs to store a person’s height and weight. The height may have a
decimal place; the weight will always be a whole number. Write the appropriate Dim
statements to declare the necessary procedure-level variables.

3. A procedure needs to store the name of a business, the number of its employees at the
beginning of the current year, the number of new employees hired during the current
year, the number of employees who left the business during the current year, and the
number of its employees at the end of the current year. Write the appropriate Dim
statements to declare the necessary procedure-level variables.

4. Write an assignment statement that assigns Georgia to a String variable named
strState.

5. Write an assignment statement that assigns the name Carol Jones to a String variable
named strEmployee. Also write assignment statements that assign the numbers 34
and 15.99 to variables named intAge and dblPayRate, respectively.

6. Write the statement to declare the procedure-level decINTEREST_RATE named
constant whose value is 0.075.

7. Write the statement to store the contents of the txtAge control in an Integer variable
named intAge.

8. Write the statement to assign the contents of the dblTotalSales variable to the
lblTotal control.

9. Write a Private statement to declare a class-level variable named dblGrandTotal.

10. Write an assignment statement that subtracts the contents of the dblExpenses
variable from the contents of the dblIncome variable and then assigns the result to
the dblNet variable.

11. Open the VB2015\Chap03\Mileage Solution\Mileage Solution (Mileage Solution.sln)
file. The application displays the miles per gallon, given the miles driven and gallons
used. In the General Declarations section of the Code Editor window, enter your name,
the current date, and the three Option statements. Use variables and the TryParse
method to code the btnCalc_Click procedure. Use the Format function to display
the miles per gallon with two decimal places. Save the solution and then start the
application. Enter 324 and 17 as the miles driven and gallons used, respectively. The
miles per gallon should be 19.06. Clear the screen. Now test the application using
invalid data. More specifically, test it without entering any data, and then test it using
letters as the input. When invalid data is entered, the Miles per gallon box will say either
NaN (which stands for Not a Number) or Infinity. Both messages are a result of the
miles per gallon calculation attempting to divide a Double number by the number 0.
In Chapter 4, you will learn how to prevent these error mesages by using a selection
structure.

12. Open the VB2015\Chap03\Tax Solution\Tax Solution (Tax Solution.sln) file. The
application displays a 5% sales tax on the purchase amount entered by the user. In the
General Declarations section of the Code Editor window, enter your name, the current
date, and the three Option statements. Use variables and the TryParse method to code

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

141

Lesson A Exercises L E S S O N A

the Calculate button. Declare a named constant for the sales tax rate, which will be
5%. Use the Format function to display the sales tax with a dollar sign and two decimal
places. Save the solution and then start the application. Test the application without
entering any data. Then test it using 100.57 as the purchase amount. Finally, test it using
$67.98 for the purchase amount.

13. Write an assignment statement that increases the contents of the decPrice variable
by 2%.

14. Write an assignment statement that adds together the values stored in the
decDomestic and decInternational variables and then assigns the result to a
String variable named strIncome.

15. Write the statement to declare a Double variable that can be used by two procedures
in the same form. Name the variable dblNetIncome. Also specify where you will
need to enter the statement in the Code Editor window and whether the variable is a
procedure-level or class-level variable.

16. Open the VB2015\Chap03\Floor Solution\Floor Solution (Floor Solution.sln) file. The
application displays the area of a floor in square yards, given its length and width (both
measured in feet). In the General Declarations section of the Code Editor window,
enter your name, the current date, and the three Option statements. Use variables and
the TryParse method to code the Calculate button. Use the Format function to display
the calculated results using the Standard format style. Save the solution and then start
the application. Test the application using 20 as the length and 15 as the width. Next,
test the application using invalid data. More specifically, test it without entering any
data, and then test it using letters as the input.

17. Open the VB2015\Chap03\Width Solution\Width Solution (Width Solution.sln)
file. The application calculates a rectangle’s width, given its perimeter and length.
In the General Declarations section of the Code Editor window, enter your name,
the current date, and the three Option statements. Use variables and the TryParse
method to code the Calculate button. Use the Format function to display the width
with two decimal places. Save the solution and then start the application. Test the
application using 100 and 24 as the perimeter and the length, respectively. The width
should be 26. Test the application without entering any data. Also test it using letters
as the input.

18. In this exercise, you experiment with procedure-level and class-level variables.
Open the VB2015\Chap03\Scope Solution\Scope Solution (Scope Solution.sln)
file. The application allows the user to calculate either a 5% or 10% commission on
a sales amount. It displays the sales and commission amounts in the lblSales and
lblCommission controls, respectively.

a. Open the Code Editor window and then open the code template for the btnSales_
Click procedure. Code the procedure so that it performs the following three tasks:
declares a variable named dblSales, uses an assignment statement to assign
the number 500 to the variable, and displays the contents of the variable in the
lblSales control.

b. Save the solution and then start the application. Click the Display Sales button.
What does the btnSales_Click procedure display in the lblSales control? When the
procedure ends, what happens to the dblSales variable? Click the Exit button.

c. Open the code template for the btnComm5_Click procedure. In the procedure,
enter an assignment statement that multiplies a variable named dblSales by
0.05, assigning the result to the lblCommission control. When you press Enter

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

DISCOVERY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

142

after typing the assignment statement, a red squiggle appears below dblSales
in the instruction. The red squiggle indicates that the code contains a syntax
error. To determine the problem, rest your mouse pointer on the variable name,
dblSales. The message in the box indicates that the variable is not declared.
In other words, the btnComm5_Click procedure cannot locate the variable’s
declaration statement, which you previously entered in the btnSales_Click
procedure. As you learned in Lesson A, only the procedure in which a variable
is declared can use the variable. No other procedure is even aware that the
variable exists.

d. Now observe what happens when you use the same name to declare a variable
in more than one procedure. Insert a blank line above the assignment statement
in the btnComm5_Click procedure. In the blank line, type a statement that
declares the dblSales variable, and then click the assignment statement to
move the insertion point away from the current line. Notice that the red squiggle
disappears from the assignment statement. Save the solution and then start the
application. Click the Display Sales button. The value stored in the dblSales
variable declared in the btnSales_Click procedure (500) appears in the lblSales
control. Click the 5% Commission button. Why does the number 0 appear in
the lblCommission control? What happens to the dblSales variable declared
in the btnComm5_Click procedure when the procedure ends? Click the Exit
button. As this example shows, when you use the same name to declare a
variable in more than one procedure, each procedure creates its own procedure-
level variable. Although the variables have the same name, each refers to a
different location in memory.

e. Next, you use a class-level variable in the application. Insert a blank line below the
Public Class clause. Enter a statement that declares a class-level variable named
dblSales.

f. Delete the Dim statement from the btnSales_Click procedure. Also delete the Dim
statement from the btnComm5_Click procedure.

g. Open the code template for the btnComm10_Click procedure. In the procedure,
enter an assignment statement that multiplies the dblSales variable by 0.1,
assigning the result to the lblCommission control.

h. Save the solution and then start the application. The variable declaration
statement in the form’s Declarations section creates the class-level dblSales
variable and initializes it to 0. Click the Display Sales button. The button’s
Click event procedure stores the number 500 in the class-level variable and
then displays the contents of the variable (500) in the lblSales control. Click
the 5% Commission button. The button’s Click event procedure multiplies the
contents of the class-level variable (500) by 0.05 and then displays the result (25)
in the lblCommission control. Click the 10% Commission button. The button’s
Click event procedure multiplies the contents of the class-level variable (500)
by 0.1 and then displays the result (50) in the lblCommission control. As this
example shows, any procedure in the form can use a class-level variable. Click
the Exit button. What happens to the class-level dblSales variable when the
application ends?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

143

Lesson A Exercises L E S S O N A

19. Open the VB2015\Chap03\Debug Solution-Lesson A\Debug Solution (Debug Solution.sln)
file. The application is supposed to display the number of times the Count button is pressed,
but it is not working correctly.

a. Start the application. Click the Count button. The message indicates that
you have pressed the Count button once, which is correct. Click the Count
button several more times. The message still displays the number 1. Click the
Exit button.

b. Open the Code Editor window and study the code. What are two ways to
correct the code? Which way is the preferred way? Modify the code using
the preferred way. Save the solution and then start the application. Click the
Count button several times. Each time you click the Count button, the message
should change to indicate the number of times the button was pressed. Click the
Exit button.

SWAT THE BUGS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

144

❚ LESSON B
After studying Lesson B, you should be able to:

 • Include procedure-level and class-level variables in an application

 • Concatenate strings

 • Get user input by using the InputBox function

 • Include the ControlChars.NewLine constant in code

 • Designate the default button for a form

 • Format numbers using the ToString method

Modifying the Meyer’s Purple Bakery Application
Your task in this chapter is to modify the bakery application created in Chapter 2. The modified
application will calculate and display a 3% sales tax. It will also display the name of the salesclerk
who entered the sales information. Before making modifications to an application’s existing
code, you should review the application’s documentation and revise the necessary documents.
In this case, you need to revise the application’s TOE chart and also the pseudocode for the
Calculate button. The revised TOE chart is shown in Figure 3-26. The changes made to
the original TOE chart from Chapter 2 are shaded in the figure. (You will view the revised
pseudocode for the Calculate button later in this lesson.)

Notice that the revised TOE chart includes two additional objects (the form and a label control)
as well as an additional event (Load). A form’s Load event occurs when the application is
started and the form is displayed the first time. According to the TOE chart, the Load event is
responsible for getting the salesclerk’s name. Also notice that the btnCalc control’s Click event
procedure now has two additional tasks: It must calculate the sales tax and also display the sales
tax and the salesclerk’s name in the lblMsg control.

Figure 3-26 Revised TOE chart for the bakery application

Task Object Event
1. Calculate total items sold and total sales amount btnCalc Click
2. Display total items sold and total sales amount in
 lblTotalItems and lblTotalSales
3. Calculate the sales tax
4. Display sales tax and salesclerk’s name in lblMsg

Print the sales receipt btnPrint Click

End the application btnExit Click

Clear the screen for the next sale btnClear Click

Display total items sold (from btnCalc) lblTotalItems None

Display total sales amount (from btnCalc) lblTotalSales None

Get and display the sales information txtDate, txtDonuts, None
 txtMuffins

Get the salesclerk’s name frmMain Load

Display sales tax and salesclerk’s name (from btnCalc) lblMsg None

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

145

Modifying the Calculate Button’s Code L E S S O N B

To open the bakery application:

1. If necessary, start Visual Studio 2015. Open the VB2015\Chap03\Bakery Solution\
Bakery Solution (Bakery Solution.sln) file. See Figure 3-27.

START HERE

Figure 3-27 Bakery application’s modified interface

lblMsg

Two modifications were made to the application created in Chapter 2: The lblMsg control was
added to the interface, and the statement lblMsg.Text = String.Empty was added to the
btnClear_Click procedure. The statement will remove the contents of the lblMsg control when
the user clicks the Clear Screen button.

Modifying the Calculate Button’s Code
Currently, the Calculate button uses the Val function and the Text properties of controls to make
the necessary calculations. In this lesson, you will modify the button’s code to use the TryParse
method and variables.

To begin modifying the application’s code:

1. Open the Code Editor window. Replace <your name> and <current date> with your
name and the current date, respectively.

2. The code will contain variables, so you will enter the three Option statements in the
Code Editor window. Click the blank line above the Public Class clause, and then press
Enter to insert another blank line. Enter the following three statements:

Option Explicit On
Option Infer Off
Option Strict On

3. If necessary, scroll down the Code Editor window until the entire btnCalc_Click procedure
is visible. Notice that red squiggles appear below the expressions in the two calculations.
The squiggles indicate that the expressions contain one or more syntax errors.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

146

4. Position your mouse pointer on the first squiggle, as shown in Figure 3-28. An
error message appears in a box. (Don’t be concerned if your error message contains
additional information.) The error message says “Option Strict On disallows implicit
conversions from ‘Double’ to ‘String’.” You received this error message because the
expression on the right side of the assignment operator results in a Double number,
and the assignment statement is attempting to assign that Double number to the Text
property of a control. (Recall that the Val function returns a Double number, and the
Text property of a control is a string.)

Figure 3-28 A red squiggle indicates a syntax error

Figure 3-29 Lines to delete from the procedure

5. Highlight (select) the three lines of code and the blank line that appears below them, as
shown in Figure 3-29. Press Delete to remove the highlighted (selected) lines from the
procedure.

Figure 3-30 shows the revised pseudocode and flowchart for the btnCalc_Click procedure.
Changes made to the original pseudocode and flowchart from Chapter 2 are shaded in the
figure. The procedure includes two additional calculations: one for the subtotal and one for the
sales tax. The subtotal is computed by multiplying the total number of items sold by the item
price. The sales tax is computed by multiplying the subtotal by the sales tax rate. Notice that the
total sales expression has changed; it now adds the subtotal to the sales tax. Last, the procedure
displays the sales tax and the salesclerk’s name in the lblMsg control.

mouse pointer

highlight
(select)
these lines
and then
press Delete

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

147

Modifying the Calculate Button’s Code L E S S O N B

Before you begin coding a procedure, you first study the procedure’s pseudocode (or flowchart) to
determine the variables and named constants (if any) the procedure will use. When determining
the named constants, look for items whose value should be the same each time the procedure
is invoked. In the btnCalc_Click procedure, the item price and sales tax rate will always be $0.50
and 0.02 (the decimal equivalent of 2%), respectively; therefore, you will assign both values to
Decimal named constants.
When determining a procedure’s variables, look in the pseudocode (or flowchart) for items
whose value is allowed to change each time the procedure is processed. In the btnCalc_Click
procedure, the numbers of doughnuts and muffins sold will likely be different each time the
procedure is processed. As a result, the total number of items sold, subtotal, sales tax, and total

Figure 3-30 Revised pseudocode and flowchart for the btnCalc_Click procedure

btnCalc Click event procedure
1. calculate total items sold = doughnuts sold + muffins sold
2. calculate subtotal = total items sold * item price
3. calculate sales tax = subtotal * sales tax rate
4. calculate total sales = subtotal + sales tax
5. display total items sold and total sales in lblTotalItems and lblTotalSales
6. display sales tax and salesclerk’s name in lblMsg

total items sold = doughnuts
sold + muffins sold

subtotal = total items sold *
item price

sales tax = subtotal * sales
tax rate

total sales = subtotal + sales
tax

display total
items sold in
lblTotalItems

start

stop

display total
sales in

lblTotalSales

display sales
tax and

salesclerk’s
name in lblMsg

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

148

sales amounts will also vary because they are based on the numbers of doughnuts and muffins
sold. Therefore, you will assign those six values to variables. Integer variables are a good choice
for storing the number of doughnuts sold, the number of muffins sold, and the total number
of items sold because a customer can buy only a whole number of items. You will use Decimal
variables to store the subtotal, sales tax, and total price because these amounts may contain a
decimal place. Figure 3-31 lists the names and data types of the two named constants and
six variables you will use in the procedure.

When declaring named constants and variables in the Code Editor window, be sure to enter the
name using the exact capitalization you want. Then, any time you want to refer to the named
constant or variable in the code, you can enter its name using any case. The Code Editor will
automatically adjust the name to match the case used in the declaration statement.

To declare the named constants and variables:

1. The insertion point should be located in the blank line above the End Sub clause in the
btnCalc_Click procedure. If necessary, press Tab until the blinking insertion point is
aligned with the apostrophe in the comment.

2. First, you will declare the named constants. Enter the following declaration statements.
(For now, don’t be concerned about the green squiggle that appears below each
statement after you press Enter.)

Const decITEM_PRICE As Decimal = 0.5D
Const decTAX_RATE As Decimal = 0.02D

3. Next, enter the following six variable declaration statements. Press Enter twice after
typing the last statement.

Dim intDonuts As Integer
Dim intMuffins As Integer
Dim intTotalItems As Integer
Dim decSubtotal As Decimal
Dim decSalesTax As Decimal
Dim decTotalSales As Decimal

4. Place your mouse pointer on the green squiggle that appears below the last Dim
statement. A warning message appears in a box, as shown in Figure 3-32. The message
alerts you that the decTotalSales variable has been declared but has not been used
yet. In other words, the variable name does not appear in any other statement in the
code. The squiggle will disappear when you include the variable name in another
statement in the procedure.

START HERE

Figure 3-31 List of named constants and variables for the btnCalc_Click procedure

Named constants Data type Value
decITEM_PRICE Decimal 0.5D
decTAX_RATE Decimal 0.02D

Variables Data type
intDonuts Integer
intMuffins Integer
intTotalItems Integer
decSubtotal Decimal
decSalesTax Decimal
decTotalSales Decimal

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

149

Modifying the Calculate Button’s Code L E S S O N B

After declaring the named constants and variables, you can begin coding either each step in the
procedure’s pseudocode or each symbol (other than the start and stop ovals) in its flowchart.
Keep in mind that some steps and symbols may require more than one line of code. You will
use the pseudocode shown earlier in Figure 3-30 to code the procedure. The first step in the
pseudocode calculates the total number of items sold by adding the number of doughnuts sold
to the number of muffins sold. The numbers of doughnuts and muffins sold are stored in the
Text properties of the txtDonuts and txtMuffins controls, respectively. You will use the TryParse
method to convert the Text properties to integers and then store the results in the intDonuts
and intMuffins variables. You then will use an assignment statement to add together the
contents of both variables, assigning the sum to the intTotalItems variable.

To continue coding the btnCalc_Click procedure:

1. The insertion point should be positioned as shown earlier in Figure 3-32. Enter the
following comment and TryParse methods. When you press Enter after typing each
TryParse method, the Code Editor removes the green squiggle from the respective
variable’s Dim statement.

' calculate total number of items sold
Integer.TryParse(txtDonuts.Text, intDonuts)
Integer.TryParse(txtMuffins.Text, intMuffins)

2. Next, type the following assignment statement and then press Enter twice. (Notice that
all of the variables in the assignment statement have the same data type: Integer.)

intTotalItems = intDonuts + intMuffins

3. The second step in the pseudocode calculates the subtotal by multiplying the total
number of items sold by the item price. You will assign the subtotal to the decSubtotal
variable. When processing the assignment statement, the computer will implicitly
convert the integer stored in the intTotalItems variable to Decimal before
multiplying it by the Decimal number stored in the decITEM_PRICE constant. It then
will assign the result to the decSubtotal variable. Enter the following comment and
assignment statement. Press Enter twice after typing the assignment statement.

' calculate the subtotal
decSubtotal = intTotalItems * decITEM_PRICE

START HERE

Figure 3-32 Const and Dim statements entered in the procedure

insertion point
warning message

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

150

4. The third step in the pseudocode calculates the sales tax by multiplying the subtotal
by the sales tax rate. You will assign the sales tax to the decSalesTax variable. Enter
the following comment and assignment statement. Press Enter twice after typing the
assignment statement. (Notice that the variables and named constant in the assignment
statement have the same data type: Decimal.)
' calculate the sales tax
decSalesTax = decSubtotal * decTAX_RATE

5. The fourth step in the pseudocode calculates the total sales by adding together the
subtotal and the sales tax. You will assign the result to the decTotalSales variable.
Enter the following comment and assignment statement. Press Enter twice after typing
the assignment statement. (Notice that all of the variables in the assignment statement
have the same data type: Decimal.)
' calculate the total sales
decTotalSales = decSubtotal + decSalesTax

6. Step 5 in the pseudocode displays the total number of items sold and the total sales in
their respective label controls. The total number of items sold and the total sales are
stored in the intTotalItems and decTotalSales variables, respectively. Because both
variables have a numeric data type, you will need to convert their contents to the String
data type before assigning the contents to the label controls. You can use the Convert
class’s ToString method to make the conversions. Enter the following comment and
assignment statements. Press Enter twice after typing the last assignment statement.
' display total amounts
lblTotalItems.Text = Convert.ToString(intTotalItems)
lblTotalSales.Text = Convert.ToString(decTotalSales)

7. The last step in the pseudocode displays both the sales tax and the salesclerk’s name
in the lblMsg control. For now, you will display only the sales tax. Enter the following
comment and assignment statement:
' display tax and salesclerk’s name
lblMsg.Text = Convert.ToString (decSalesTax)

8. Save the solution. Figure 3-33 shows the code entered in the btnCalc_Click procedure.

Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click
 ' calculate number of items sold and total sales

 Const decITEM_PRICE As Decimal = 0.5D
 Const decTAX_RATE As Decimal = 0.02D
 Dim intDonuts As Integer
 Dim intMuffins As Integer
 Dim intTotalItems As Integer
 Dim decSubtotal As Decimal
 Dim decSalesTax As Decimal
 Dim decTotalSales As Decimal

 ' calculate total number of items sold
 Integer.TryParse(txtDonuts.Text, intDonuts)
 Integer.TryParse(txtMuffins.Text, intMuffins)
 intTotalItems = intDonuts + intMuffins

 ' calculate the subtotal
 decSubtotal = intTotalItems * decITEM_PRICE

 ' calculate the sales tax
 decSalesTax = decSubtotal * decTAX_RATE

 ' calculate the total sales
 decTotalSales = decSubtotal + decSalesTax

 ' display total amounts
 lblTotalItems.Text = Convert.ToString(intTotalItems)
 lblTotalSales.Text = Convert.ToString(decTotalSales)

 ' display tax and salesclerk's name
 lblMsg.Text = Convert.ToString(decSalesTax)

End Sub

Figure 3-33 Code entered in the btnCalc_Click procedure (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

151

Modifying the Calculate Button’s Code L E S S O N B

To start and then test the application:

1. Start the application. Type 3/23/2016 in the Date box, type 12 in the Doughnuts box,
and type 2 in the Muffins box. Click the Calculate button. The total number of items
sold, total sales, and sales tax appear in the interface, as shown in Figure 3-34. Although
the calculated results are correct, the total sales and sales tax amounts should be
formatted to show two decimal places rather than three decimal places. You will fix this
problem in the next section.

START HERE

Figure 3-34 Calculated amounts shown in the interface

Private Sub btnCalc_Click(sender As Object,
e As EventArgs) Handles btnCalc.Click
 ' calculate number of items sold and total sales

 Const decITEM_PRICE As Decimal = 0.5D
 Const decTAX_RATE As Decimal = 0.02D
 Dim intDonuts As Integer
 Dim intMuffins As Integer
 Dim intTotalItems As Integer
 Dim decSubtotal As Decimal
 Dim decSalesTax As Decimal
 Dim decTotalSales As Decimal

 ' calculate total number of items sold
 Integer.TryParse(txtDonuts.Text, intDonuts)
 Integer.TryParse(txtMuffins.Text, intMuffins)
 intTotalItems = intDonuts + intMuffins

 ' calculate the subtotal
 decSubtotal = intTotalItems * decITEM_PRICE

 ' calculate the sales tax
 decSalesTax = decSubtotal * decTAX_RATE

 ' calculate the total sales
 decTotalSales = decSubtotal + decSalesTax

 ' display total amounts
 lblTotalItems.Text = Convert.ToString(intTotalItems)
 lblTotalSales.Text = Convert.ToString(decTotalSales)

 ' display tax and salesclerk's name
 lblMsg.Text = Convert.ToString(decSalesTax)

End Sub

(continued)

Figure 3-33 Code entered in the btnCalc_Click procedure

2. Click the Clear Screen button to clear the sales receipt (except for the date), and then
click the Exit button.

these amounts should
be formatted to show
two decimal places

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

152

Figure 3-35 Syntax and examples of the ToString method (continues)

Using the ToString Method to Format Numbers
Numbers representing monetary amounts are usually displayed with either zero or two decimal
places and may include a dollar sign and a thousands separator. Similarly, numbers representing
percentage amounts are displayed with zero or more decimal places and a percent sign.
Specifying the number of decimal places and the special characters to display in a number is
called formatting. In Chapter 2, you learned how to use the Format function to format a number
for output as a string. Although you can still use the Format function, many programmers now
use the ToString method because it can be used in any language built into Visual Studio.

The ToString method’s syntax is shown in Figure 3-35. In the syntax, numericVariableName
is the name of a numeric variable. The ToString method formats the number stored in the
numeric variable and then returns the result as a string. The formatString argument in the
syntax specifies the format you want to use. The formatString argument must take the form
“Axx”, where A is an alphabetic character called the format specifier and xx is a sequence of
digits called the precision specifier. The format specifier must be one of the built-in format
characters. The most commonly used format characters are listed in Figure 3-35. Notice that
you can use either an uppercase letter or a lowercase letter as the format specifier. When used
with one of the format characters listed in the figure, the precision specifier controls the number
of digits that will appear after the decimal point in the formatted number. Also included in
Figure 3-35 are examples of using the ToString method.

Using the ToString Method to Format a Number

Syntax
numericVariableName.ToString(formatString)

Format specifier (Name)
C or c (Currency)

N or n (Number)

F or f (Fixed-point)

P or p (Percent)

Example 1
intSales = 75000
lblSales.Text = intSales.ToString("C2")
assigns the string “$75,000.00” to the lblSales control’s Text property

Example 2
decTotal = 4599.639D
lblTotal.Text = decTotal.ToString("N2")
assigns the string “4,599.64” to the lblTotal control’s Text property

Example 3
dblRate = 0.15
lblRate.Text = dblRate.ToString("P0")
assigns the string “15 %” to the lblRate control’s Text property

Description
displays the string with a dollar sign and includes a thousands
separator (if appropriate); negative values are enclosed in
parentheses

similar to the Currency format but does not include a dollar sign
and negative values are preceded by a minus sign

same as the Number format but does not include a thousands
separator

multiplies the numeric variable’s value by 100 and formats the
result with a percent sign; negative values are preceded by a
minus sign

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

153

Concatenating Strings L E S S O N B

Concatenating Strings
You use the concatenation operator, which is the ampersand (&), to concatenate (connect or
link together) strings. For the Code Editor to recognize the ampersand as the concatenation
operator, the ampersand must be both preceded and followed by a space. Figure 3-37 shows
some examples of string concatenation.

You can also
use the plus
sign (+) to
 concatenate
strings.

 However, for clarity in
your programs, you
should use the plus
sign for addition and
the ampersand for
concatenation.

To format the total sales and sales tax amounts:

1. Change the statement that displays the total sales amount as follows:

lblTotalSales.Text = decTotalSales.ToString("C2")

2. Next, change the statement that displays the sales tax amount as follows:

lblMsg.Text = decSalesTax.ToString("C2")

3. Save the solution and then start the application. Type 12 in the Doughnuts box and type
2 in the Muffins box. Click the Calculate button. The formatted amounts appear in the
interface, as shown in Figure 3-36. However, it’s not obvious to the user that $0.14 is the
sales tax. You can fix this problem by displaying the message “The sales tax was” before
the sales tax amount. However, before you can accomplish this task, you must learn how
to concatenate (link together) strings. String concatenation is covered in the next section.

4. Click the Exit button.

START HERE

Figure 3-36 Formatted amounts shown in the interface

formatted amounts

Figure 3-35 Syntax and examples of the ToString method

Using the ToString Method to Format a Number

Syntax
numericVariableName.ToString(formatString)

Format specifier (Name)
C or c (Currency)

N or n (Number)

F or f (Fixed-point)

P or p (Percent)

Example 1
intSales = 75000
lblSales.Text = intSales.ToString("C2")
assigns the string “$75,000.00” to the lblSales control’s Text property

Example 2
decTotal = 4599.639D
lblTotal.Text = decTotal.ToString("N2")
assigns the string “4,599.64” to the lblTotal control’s Text property

Example 3
dblRate = 0.15
lblRate.Text = dblRate.ToString("P0")
assigns the string “15 %” to the lblRate control’s Text property

Description
displays the string with a dollar sign and includes a thousands
separator (if appropriate); negative values are enclosed in
parentheses

similar to the Currency format but does not include a dollar sign
and negative values are preceded by a minus sign

same as the Number format but does not include a thousands
separator

multiplies the numeric variable’s value by 100 and formats the
result with a percent sign; negative values are preceded by a
minus sign

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

154

You will use the concatenation operator to concatenate the following three strings: “The sales tax
was ”, the contents of the decSalesTax variable after it has been converted to a string, and “ . ” .
Using the examples shown in Figure 3-37 as a guide, the correct assignment statement is
lblMsg.Text = "The sales tax was " & decSalesTax.ToString("C2") & ".".

The assignment statement is rather long and, depending on the size of the font used in your
Code Editor window, you may not be able to view the entire statement without scrolling the
window. Fortunately, the Code Editor allows you to break a line of code into two or more
physical lines as long as the break comes either before a closing parenthesis or after one of
the following: a comma, an opening parenthesis, or an operator (arithmetic, assignment,
comparison, logical, or concatenation). If you want to break a line of code anywhere else, you
will need to use the line continuation character, which is an underscore (_) that is immediately
preceded by a space. However, if you use the line continuation character, it must appear at the
end of a physical line of code. In this case, you will break the assignment statement after the first
concatenation operator.

To concatenate the strings and then test the code:

1. Change the last assignment statement in the procedure as shown in Figure 3-38. The
modifications are shaded in the figure.

START HERE

Figure 3-38 String concatenation included in the assignment statement

2. Save the solution and then start the application. Type 5 in the Doughnuts box and
type 4 in the Muffins box. Click the Calculate button. The lblMsg control contains the
sentence “The sales tax was $0.09.”, as shown in Figure 3-39.

Concatenating Strings

Variables
strCity
strState
intPop

Contents
Nashville
Tennessee
43500

Concatenated string
strCity & strState
strState & " " & strCity
strCity & ", " & strState
"He lives in " & strCity & "."
"Population: " & Convert.ToString(intPop)

Result
NashvilleTennessee
Tennessee Nashville
Nashville, Tennessee
He lives in Nashville.
Population: 43500

Figure 3-37 Examples of string concatenation

modify this
assignment
statement

space

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

155

The InputBox Function L E S S O N B

3. Click the Exit button.

You also need to display the salesclerk’s name in the lblMsg control. You can use the InputBox
function to obtain the name from the user.

The InputBox Function
The InputBox function displays an input dialog box, which is one of the standard dialog boxes
available in Visual Basic. An example of an input dialog box is shown in Figure 3-40. The
message in the dialog box should prompt the user to enter the appropriate information in the
input area. The user closes the dialog box by clicking the OK button, Cancel button, or Close
button. The value returned by the InputBox function depends on the button the user chooses.
If the user clicks the OK button, the function returns the value contained in the input area of
the dialog box; the return value is always treated as a string. If the user clicks either the Cancel
button in the dialog box or the Close button on the dialog box’s title bar, the function returns an
empty (or zero-length) string.

Figure 3-39 Concatenated strings displayed in the lblMsg control

Figure 3-40 Example of an input dialog box

message
and sales
tax amount

prompt message

input area

Figure 3-41 shows the basic syntax of the InputBox function. The prompt argument contains
the message to display inside the dialog box. The optional title and defaultResponse arguments
control the text that appears in the dialog box’s title bar and input area, respectively. If you omit
the title argument, the project name appears in the title bar. If you omit the defaultResponse
argument, a blank input area appears when the dialog box opens. The prompt, title, and
defaultResponse arguments can be string literal constants, String named constants, or String
variables. The Windows standard is to use sentence capitalization for the prompt but book title
capitalization for the title. The capitalization (if any) you use for the defaultResponse depends
on the text itself. In most cases, you assign the value returned by the InputBox function to a
String variable, as shown in the first three examples in Figure 3-41.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

156

Using the InputBox Function

Note: The InputBox function’s syntax also includes optional XPos and YPos arguments
for specifying the dialog box’s horizontal and vertical positions, respectively. If both
arguments are omitted, the dialog box appears centered on the screen.

Basic syntax
InputBox(prompt[, title][, defaultResponse])

Example 1
strSales =
 InputBox("Enter a sales amount. Click Cancel to end.",
 "Sales Entry", "0.00")
Displays the input dialog box shown in Figure 3-40. When the user closes the dialog box, the
assignment statement assigns the function’s return value to the strSales variable.

Example 2
strCity = InputBox("City name:", "City")
Displays an input dialog box that shows “City name:” as the prompt, “City” in the title bar, and
an empty input area. When the user closes the dialog box, the assignment statement assigns the
function’s return value to the strCity variable.

Example 3
Const strPROMPT As String = "Enter the discount rate:"
Const strTITLE As String = "Discount Rate"
strRate = InputBox(strPROMPT, strTITLE, ".00")
Displays an input dialog box that shows the contents of the strPROMPT constant as the prompt,
the contents of the strTITLE constant in the title bar, and .00 in the input area. When the user
closes the dialog box, the assignment statement assigns the function’s return value to the
strRate variable.

Example 4
Integer.TryParse(InputBox("How old are you?",
 "Discount Verification"), intAge)
Displays an input dialog box that shows “How old are you?” as the prompt, “Discount Verification”
in the title bar, and an empty input area. When the user closes the dialog box, the TryParse
method converts the function’s return value from String to Integer and then stores the result in
the intAge variable.

Figure 3-41 Basic syntax and examples of the InputBox function

You will use the InputBox function to prompt the salesclerk to enter his or her name. The
function should be entered in the form’s Load event procedure because that procedure is
responsible for getting the name. Recall that a form’s Load event occurs before the form appears
on the screen. After the Load event procedure obtains the salesclerk’s name, you will have the
btnCalc_Click procedure concatenate the name to the message displayed in the lblMsg control.

GUI DESIGN TIP InputBox Function’s Prompt and Title Capitalization

 • Use sentence capitalization for the prompt but book title capitalization for the title.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

157

The InputBox Function L E S S O N B

Before entering the InputBox function in the Load event procedure, you must decide where to
declare the String variable that will store the function’s return value. In other words, should the
variable have procedure scope or class scope? When deciding, consider the fact that the form’s
Load event procedure needs to store a value in the variable, and the btnCalc_Click procedure
needs to display the variable’s value in the lblMsg control. Recall from Lesson A that when two
procedures in the same form need access to the same variable, you declare the variable as a class-
level variable by entering its declaration statement in the form’s Declarations section.

To continue coding the bakery application:

1. Scroll to the top of the Code Editor window. Insert two blank lines immediately below
the Public Class clause. First, you will declare a class-level String variable named
strClerk. Enter the comment and declaration statement shown in Figure 3-42.

START HERE

Figure 3-42 Class-level variable declared in the form’s Declarations section

Figure 3-43 frmMain_Load procedure

2. Next, you will enter the InputBox function in the form’s Load event procedure. You
access the form’s procedures by selecting (frmMain Events) in the Object list box. Click
the Object list arrow and then click (frmMain Events) in the list. Click the Method
list arrow to view a list of the form’s events. Scroll down the list, and then click Load to
open the code template for the frmMain_Load procedure.

3. To make the assignment statement that contains the InputBox function shorter and easier to
understand, you will create named constants for the function’s prompt and title arguments,
and then you will use the named constants (rather than the longer strings) in the function.
You use named constants rather than variables because the prompt and title will not change
as the application is running. Enter the comments and code shown in Figure 3-43.

4. Next, you will concatenate the strClerk variable to the message assigned to the lblMsg
control. Locate the btnCalc_Click procedure. Click immediately after the closing
quotation mark in the "." entry. Press the Spacebar to enter a space character, and
then type & and press Enter. Finally, type strClerk and then click the blank line above
the End Sub clause.

enter this
comment and
declaration
statement

enter these
comments and
lines of code

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

158

6. Type your name in the input area of the dialog box and then click the OK button. The
sales receipt appears. Type 4 in the Doughnuts box and then click the Calculate button.
Notice that your name appears much too close to the period in the lblMsg control. You
can correct the spacing problem by replacing the period in the assignment statement with
a period and two spaces (". "). Or, you can use the ControlChars.NewLine constant to
display the salesclerk’s name on the next line in the lblMsg control. Click the Exit button.

The ControlChars.NewLine Constant
The ControlChars.NewLine constant instructs the computer to advance the insertion point
to the next line in a control. (You can also use it to advance the insertion point in a file or on
a document sent to the printer.) Whenever you want to start a new line, you simply enter the
constant at the appropriate location in your code. In this case, you want to advance to a new line
after displaying the period—in other words, before displaying the salesclerk’s name.

To display the salesclerk’s name on a separate line:

1. Modify the last assignment statement in the btnCalc_Click procedure as indicated in
Figure 3-45. The modifications are shaded in the figure.

START HERE

The Control-
Chars.NewLine
constant is
an intrinsic
 constant, which

is a named constant
built into Visual Basic.

Figure 3-45 Modified assignment statement

2. Save the solution and then start the application. The Name Entry dialog box shown
in Figure 3-46 appears. The blinking insertion point indicates that the dialog box’s
input area has the focus. However, notice that the OK button in the dialog box has a
darkened border even though it does not have the focus. In Windows terminology, a
button that has a darkened border when it does not have the focus is called the default
button. You can select a default button by pressing Enter at any time.

Figure 3-44 Dialog box created by the InputBox function

5. Save the solution and then start the application. The Name Entry dialog box created by
the InputBox function appears first. See Figure 3-44.

make the shaded
modifications

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

159

Designating a Default Button L E S S O N B

3. Type Jasmine Chou and then press Enter. The sales receipt appears.

4. Type 16 in the Doughnuts box. Click the Calculate button. The salesclerk’s name now
appears on a separate line in the lblMsg control, as shown in Figure 3-47.

Figure 3-47 Salesclerk’s name shown on the sales receipt

Figure 3-46 Name Entry input dialog box

5. Click the Exit button.

Designating a Default Button
As you already know from using Windows applications, you can select a button either by
clicking it or by pressing the Enter key when the button has the focus. If you make a button the
default button, you can also select it by pressing the Enter key even when the button does not
have the focus. When a button is selected, the computer processes the code contained in the
button’s Click event procedure.

An interface does not have to have a default button. However, if one is used, it should be the
button that is most often selected by the user, except in cases where the tasks performed by the
button are both destructive and irreversible. For example, a button that deletes information
should not be designated as the default button unless the application provides a way for the
information to be restored. If you assign a default button in an interface, it typically is the first
button on the left when the buttons are positioned horizontally but the first button on the top
when they are stacked vertically. A form can have only one default button. You specify the
default button (if any) by setting the form’s AcceptButton property to the name of the button.

 Forms also have
a CancelButton
property, which
is covered in
Lesson B’s
 Exercise 12.

GUI DESIGN TIP Assigning a Default Button

 • The default button should be the button that is most often selected by the user,
except in cases where the tasks performed by the button are both destructive and
irreversible. If a form contains a default button, it typically is the first button.

the input area
has the focus

the salesclerk’s
name appears on
a separate line

the default button
has a darkened
border

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

160

Figure 3-48 Bakery application’s code at the end of Lesson B (continues)

To make the Calculate button the default button:
1. Return to the designer window and set the form’s AcceptButton property to btnCalc.

A darkened border appears around the Calculate button.
2. Save the solution and then start the application. Type your name in the Name Entry

dialog box and press Enter. The sales receipt appears.
3. Type any date in the Date box, type 5 in the Doughnuts box, and type 12 in the Muffins

box. Press Enter to select the Calculate button. The btnCalc_Click procedure calculates
and displays the total number of items sold (17) and the total sales ($8.67). In addition, the
message “The sales tax was $0.17.” and your name appear in the lblMsg control. Click the
Exit button. Close the Code Editor window and then close the solution. See Figure 3-48.

START HERE

 1 ' Name: Bakery Project
 2 ' Purpose: Calculates the total number of
 3 ' items sold and the total sales
 4 ' Programmer: <your name> on <current date>
 5
 6 Option Explicit On
 7 Option Infer Off
 8 Option Strict On
 9
10 Public Class frmMain
11
12 ' class-level variable for storing salesclerk's name
13 Private strClerk As String
14
15 Private Sub btnCalc_Click(sender As Object,
 e As EventArgs) Handles btnCalc.Click
16 ' calculate number of items sold and total sales
17
18 Const decITEM_PRICE As Decimal = 0.5D
19 Const decTAX_RATE As Decimal = 0.02D
20 Dim intDonuts As Integer
21 Dim intMuffins As Integer
22 Dim intTotalItems As Integer
23 Dim decSubtotal As Decimal
24 Dim decSalesTax As Decimal
25 Dim decTotalSales As Decimal
26
27 ' calculate total number of items sold
28 Integer.TryParse(txtDonuts.Text, intDonuts)
29 Integer.TryParse(txtMuffins.Text, intMuffins)
30 intTotalItems = intDonuts + intMuffins
31
32 ' calculate the subtotal
33 decSubtotal = intTotalItems * decITEM_PRICE
34
35 ' calculate the sales tax
36 decSalesTax = decSubtotal * decTAX_RATE
37
38 ' calculate the total sales
39 decTotalSales = decSubtotal + decSalesTax
40
41 ' display total amounts
42 lblTotalItems.Text = Convert.ToString(intTotalItems)
43 lblTotalSales.Text = decTotalSales.ToString("C2")
44
45 ' display tax and salesclerk's name
46 lblMsg.Text = "The sales tax was " &
47 decSalesTax.ToString("C2") & "." &
48 ControlChars.NewLine & strClerk
49
50 End Sub
51
52 Private Sub btnClear_Click(sender As Object,
 e As EventArgs) Handles btnClear.Click
53 ' prepare screen for the next sale
54
55 txtDonuts.Text = String.Empty
56 txtMuffins.Text = String.Empty
57 lblTotalItems.Text = String.Empty
58 lblTotalSales.Text = String.Empty
59 lblMsg.Text = String.Empty
60 ' send the focus to the Doughnuts box
61 txtDonuts.Focus()
62
63 End Sub
64
65 Private Sub btnExit_Click(sender As Object,
 e As EventArgs) Handles btnExit.Click
66 Me.Close()
67 End Sub
68
69 Private Sub btnPrint_Click(sender As Object,
 e As EventArgs) Handles btnPrint.Click
70 ' print the sales receipt
71
72 btnCalc.Visible = False
73 btnClear.Visible = False
74 btnExit.Visible = False
75 btnPrint.Visible = False
76 PrintForm1.Print()
77 btnCalc.Visible = True
78 btnClear.Visible = True
79 btnExit.Visible = True
80 btnPrint.Visible = True
81
82 End Sub
83
84 Private Sub frmMain_Load(sender As Object,
 e As EventArgs) Handles Me.Load
85 ' get the salesclerk's name
86
87 Const strPROMPT As String = "Salesclerk's name:"
88 Const strTITLE As String = "Name Entry"
89 ' assign name to class-level variable
90 strClerk = InputBox(strPROMPT, strTITLE)
91
92 End Sub
93 End Class

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

161

Designating a Default Button L E S S O N B

Figure 3-48 Bakery application’s code at the end of Lesson B

 1 ' Name: Bakery Project
 2 ' Purpose: Calculates the total number of
 3 ' items sold and the total sales
 4 ' Programmer: <your name> on <current date>
 5
 6 Option Explicit On
 7 Option Infer Off
 8 Option Strict On
 9
10 Public Class frmMain
11
12 ' class-level variable for storing salesclerk's name
13 Private strClerk As String
14
15 Private Sub btnCalc_Click(sender As Object,
 e As EventArgs) Handles btnCalc.Click
16 ' calculate number of items sold and total sales
17
18 Const decITEM_PRICE As Decimal = 0.5D
19 Const decTAX_RATE As Decimal = 0.02D
20 Dim intDonuts As Integer
21 Dim intMuffins As Integer
22 Dim intTotalItems As Integer
23 Dim decSubtotal As Decimal
24 Dim decSalesTax As Decimal
25 Dim decTotalSales As Decimal
26
27 ' calculate total number of items sold
28 Integer.TryParse(txtDonuts.Text, intDonuts)
29 Integer.TryParse(txtMuffins.Text, intMuffins)
30 intTotalItems = intDonuts + intMuffins
31
32 ' calculate the subtotal
33 decSubtotal = intTotalItems * decITEM_PRICE
34
35 ' calculate the sales tax
36 decSalesTax = decSubtotal * decTAX_RATE
37
38 ' calculate the total sales
39 decTotalSales = decSubtotal + decSalesTax
40
41 ' display total amounts
42 lblTotalItems.Text = Convert.ToString(intTotalItems)
43 lblTotalSales.Text = decTotalSales.ToString("C2")
44
45 ' display tax and salesclerk's name
46 lblMsg.Text = "The sales tax was " &
47 decSalesTax.ToString("C2") & "." &
48 ControlChars.NewLine & strClerk
49
50 End Sub
51
52 Private Sub btnClear_Click(sender As Object,
 e As EventArgs) Handles btnClear.Click
53 ' prepare screen for the next sale
54
55 txtDonuts.Text = String.Empty
56 txtMuffins.Text = String.Empty
57 lblTotalItems.Text = String.Empty
58 lblTotalSales.Text = String.Empty
59 lblMsg.Text = String.Empty
60 ' send the focus to the Doughnuts box
61 txtDonuts.Focus()
62
63 End Sub
64
65 Private Sub btnExit_Click(sender As Object,
 e As EventArgs) Handles btnExit.Click
66 Me.Close()
67 End Sub
68
69 Private Sub btnPrint_Click(sender As Object,
 e As EventArgs) Handles btnPrint.Click
70 ' print the sales receipt
71
72 btnCalc.Visible = False
73 btnClear.Visible = False
74 btnExit.Visible = False
75 btnPrint.Visible = False
76 PrintForm1.Print()
77 btnCalc.Visible = True
78 btnClear.Visible = True
79 btnExit.Visible = True
80 btnPrint.Visible = True
81
82 End Sub
83
84 Private Sub frmMain_Load(sender As Object,
 e As EventArgs) Handles Me.Load
85 ' get the salesclerk's name
86
87 Const strPROMPT As String = "Salesclerk's name:"
88 Const strTITLE As String = "Name Entry"
89 ' assign name to class-level variable
90 strClerk = InputBox(strPROMPT, strTITLE)
91
92 End Sub
93 End Class

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

162

Lesson B Summary
 • To format a number for output as a string:

Use the ToString method. The method’s syntax is numericVariableName.ToString
(formatString).

 • To concatenate strings:

Use the concatenation operator (&). Be sure to include a space before and after the
ampersand.

 • To display an input dialog box:

Use the InputBox function. The function’s syntax is InputBox(prompt[, title]
[, defaultResponse]). The prompt, title, and defaultResponse arguments can be string literal
constants, String named constants, or String variables. Use sentence capitalization for the
prompt but book title capitalization for the title.

If the user clicks the OK button, the InputBox function returns the value contained in the
input area of the dialog box. The return value is always treated as a string. If the user clicks
either the dialog box’s Cancel button or its Close button, the InputBox function returns an
empty string.

 • To advance the insertion point to the next line:

Use the ControlChars.NewLine constant in code.

 • To break up a long instruction into two or more physical lines in the Code Editor window:

Break the line after a comma, after an opening parenthesis, before a closing parenthesis, or
after an operator (arithmetic, assignment, comparison, logical, or concatenation). You can
also use the line continuation character, which is an underscore (_). The line continuation
character must be immediately preceded by a space and appear at the end of a physical line
of code.

 • To make a button the default button:

Set the form’s AcceptButton property to the name of the button.

Lesson B Key Terms
&—the concatenation operator

Concatenation operator—the ampersand (&); used to concatenate strings; must be both
preceded and followed by a space character

ControlChars.NewLine constant—used to advance the insertion point to the next line

Default button—a button that can be selected by pressing the Enter key even when the button
does not have the focus

Formatting—specifying the number of decimal places and the special characters to display in a
number

InputBox function—a Visual Basic function that displays an input dialog box containing a
message, OK and Cancel buttons, and an input area

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

163

Lesson B Review Questions L E S S O N B

Line continuation character—an underscore that is immediately preceded by a space and
located at the end of a physical line of code; used to split a long instruction into two or more
physical lines in the Code Editor window

Load event—an event associated with a form; occurs when the application is started and the
form is displayed the first time

ToString method—formats a number stored in a numeric variable and then returns the result as
a string

Lesson B Review Questions
1. The name of a form’s default button is specified in the _____________________

property.

a. button’s AcceptButton
b. button’s DefaultButton

c. form’s AcceptButton
d. form’s DefaultButton

2. The InputBox function displays a dialog box containing which of the following?

a. input area
b. OK and Cancel buttons

c. prompt
d. all of the above

3. Which of the following is the concatenation operator?

a. @
b. &

c. $
d. #

4. Which of the following Visual Basic constants advances the insertion point to the next
line?

a. Advance
b. ControlChars.Advance

c. ControlChars.NewLine
d. none of the above

5. The strWord1 and strWord2 variables contain the strings “Input” and “Box”,
respectively. Which of the following will display the string “InputBox” (one word) in the
lblWord control?

a. lblWord.Text = strWord1 & strWord2

b. lblWord.Text = "strWord1" & "strWord2"

c. lblWord.Text = strWord1 @ strWord2

d. lblWord.Text = strWord1 # strWord2

6. The strCity and strState variables contain the strings “Louisville” and “KY”,
respectively. Which of the following will display the string “Louisville, KY” (the city,
a comma, a space, and the state) in the lblCityState control?

a. lblCityState.Text = strCity & ', ' & strState

b. lblCityState.Text = strCity & ", " & strState

c. lblCityState.Text = "strCity" & ", " & "strState"

d. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

164

7. Which of the following statements correctly assigns the InputBox function’s return
value to a Double variable named dblNum?

a. Double.TryParse(InputBox(strMSG, "Number"), dblNum)

b. dblNum = Double.TryParse(InputBox(strMSG, "Number"))

c. dblNum = InputBox(strMSG, "Number")

d. TryParse.Double(InputBox(strMSG, "Number"), dblNum)

8. Which of the following statements correctly assigns the InputBox function’s return
value to a String variable named strCity?

a. String.TryParse(InputBox(strMSG, "City"), strCity)

b. strCity = String.TryParse(InputBox(strMSG, "City"))

c. strCity = InputBox(strMSG, "City")

d. none of the above

9. The InputBox function’s prompt argument should be entered using which type of
capitalization?

a. book title
b. sentence

10. If the decPay variable contains the number 1200.76, which of the following statements
displays the number as 1,200.76?

a. lblPay.Text = decPay.ToString("C2")

b. lblPay.Text = decPay.ToString("F2")

c. lblPay.Text = decPay.ToString("D2")

d. lblPay.Text = decPay.ToString("N2")

Lesson B Exercises
1. This exercise assumes you have completed the Richardson County application from

Exercise 1 in each of Chapter 2’s lessons. Use Windows to copy the Richardson Solution
folder from the VB2015\Chap02 folder to the VB2015\Chap03 folder, and then open
the Richardson Solution (Richardson Solution.sln) file. Open the Code Editor window
and enter the three Option statements in the General Declarations section. Modify the
application’s code to use variables and the TryParse and ToString methods rather than
the Val and Format functions. Save the solution, and then start and test the application.

2. This exercise assumes you have completed the Jordan Sports Store application from
Exercise 2 in each of Chapter 2’s lessons. Use Windows to copy the Jordan Solution
folder from the VB2015\Chap02 folder to the VB2015\Chap03 folder, and then open
the Jordan Solution (Jordan Solution.sln) file. Open the Code Editor window and
enter the three Option statements in the General Declarations section. Modify the
application’s code to use variables and the TryParse and ToString methods rather than
the Val and Format functions. Save the solution, and then start and test the application.

INTRODUCTORY

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

165

Lesson B Exercises L E S S O N B

3. This exercise assumes you have completed the Cranston Berries application from
Exercise 3 in each of Chapter 2’s lessons. Use Windows to copy the Cranston Solution
folder from the VB2015\Chap02 folder to the VB2015\Chap03 folder, and then open
the Cranston Solution (Cranston Solution.sln) file. Open the Code Editor window and
enter the three Option statements in the General Declarations section. Modify the
application’s code to use variables and the TryParse and ToString methods rather than
the Val and Format functions. Save the solution, and then start and test the application.

4. Open the VB2015\Chap03\Bonus Solution\Bonus Solution (Bonus Solution.sln) file.
The application displays a salesperson’s total sales and bonus amounts. The bonus is
calculated by multiplying the total sales by 10%. Make the Calculate button the default
button. Open the Code Editor window and enter your name, the current date, and the
three Option statements in the General Declarations section. Code the application
using variables, a named constant for the bonus rate, and the TryParse and ToString
methods. Display the total sales and bonus amounts with a dollar sign, two decimal
places, and a thousands separator (if appropriate). Save the solution and then start the
application. Test the application by calculating the bonus for a salesperson whose sales
are $2000, $4550.89, and $5650.99.

5. In this exercise, you modify the bonus application from Exercise 4. Use Windows to
make a copy of the Bonus Solution folder. Rename the copy Modified Bonus Solution.
Open the Bonus Solution (Bonus Solution.sln) file contained in the Modified Bonus
Solution folder. Code the frmMain_Load event so that it asks the user for the bonus
rate. Then, use the bonus rate entered by the user in the btnCalc_Click procedure.
Save the solution and then start the application. Test the application by calculating a
10% bonus for a salesperson whose sales are $2000, $4550.89, and $5650.99. Stop the
application, and then test it again using a 5% bonus rate and sales of $12,200, $14,300,
and $13,000.

6. In this exercise, you modify the bakery application from this lesson. Use Windows
to make a copy of the Bakery Solution folder. Rename the copy Modified Bakery
Solution-Lesson B. Open the Bakery Solution (Bakery Solution.sln) file contained in the
Modified Bakery Solution-Lesson B folder. Modify the application’s code to allow the
user to enter the item price each time the application is started. Save the solution, and
then start and test the application.

7. The strFirst and strLast variables contain the strings “Kate” and “Juarez”,
respectively. Write an assignment statement to display the string “Kate Juarez” in the
lblName control.

8. The strCity and strState variables contain the strings “Scottsdale” and “AZ”,
respectively. Write an assignment statement to display the string “They live in
Scottsdale, AZ.” in the lblMsg control.

9. The strFirst, strMiddle, strLast, and strNickname variables contain the
strings “Addison”, “Grace”, “Carson”, and “Addi G”, respectively. Write an assignment
statement that will display the string “My name is Addison Grace Carson, but you can
call me Addi G.” in the lblMsg control.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

166

10. K & L Clothiers wants you to create an application that prints a customer’s sales receipt.
A sample receipt is shown in Figure 3-49. Use the following names for the solution and
project, respectively: Clothiers Solution and Clothiers Project. Save the application in the
VB2015\Chap03 folder. Change the form file’s name to Main Form.vb. Change the form’s
name to frmMain. The interface you design does not have to match exactly the one
shown in Figure 3-49, but it should include all of the information shown on the receipt.
(To display an ampersand in a label control, you will need to include two ampersands
in its Text property, like this: K && L.) Before coding the procedure that calculates and
displays the discount amount and balance due, write the procedure’s pseudocode. Be
sure to use variables and the TryParse method in the code. (Do not use the Val function.)
Also be sure to enter the three Option statements in the General Declarations section.
Save the solution, and then test the application using the data shown in Figure 3-49.
Then test it again using your own data.

INTERMEDIATE

Figure 3-49 Sample sales receipt for K & L Clothiers

11. Create an application that displays a circle’s area and circumference, given its radius.
Use the following names for the solution and project, respectively: Circle Solution and
Circle Project. Save the application in the VB2015\Chap03 folder. Change the form file’s
name to Main Form.vb. Change the form’s name to frmMain. Be sure to use variables,
a named constant for the value of pi (3.14), and the TryParse method in the code. (Do
not use the Val function.) Also be sure to enter the three Option statements in the
General Declarations section. Display the area and circumference with two decimal
places. Save the solution and then test the application.

12. In this exercise, you will learn about a form’s CancelButton property, which specifies
the button whose Click event procedure is processed when the user presses the Esc key.
Open the VB2015\Chap03\Cancel Solution\Cancel Solution (Cancel Solution.sln) file.

a. Open the Code Editor window and review the existing code. Start the application.
Type your first name in the text box and then press Enter to select the Clear button,
which is the form’s default button. The Clear button removes your name from the
text box. Click the Undo button. Your name reappears in the text box. Click the
Exit button.

b. Return to the designer window. Set the form,s CancelButton property to btnUndo.
Doing this tells the computer to process the btnUndo_Click procedure when the
user presses the Esc key. Save the solution and then start the application. Type your
first name in the text box and then press Enter to select the Clear button. Press Esc
to select the Undo button. Your name reappears in the text box.

INTERMEDIATE

DISCOVERY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

167

Modifying the Load and Click Event Procedures L E S S O N C

❚ LESSON C
After studying Lesson C, you should be able to:

 • Include a static variable in code

 • Code the TextChanged event procedure

 • Create a procedure that handles more than one event

Modifying the Load and Click Event Procedures
Currently, the Meyer’s Purple Bakery application allows the user to enter the salesclerk’s name
only when the application first starts. In this lesson, you will modify the code so that it asks for
the name each time the Calculate button is clicked. This will allow another salesclerk to enter his
or her name on the sales receipt without having to start the application again.

As you learned in Lesson B, you should review an application’s documentation and revise the
necessary documents before making modifications to the code. Figure 3-50 shows the revised
TOE chart. Changes made to the TOE chart from Lesson B are shaded in the figure. Notice that
the Calculate button’s Click event procedure, rather than the form’s Load event procedure, is
now responsible for getting the salesclerk’s name.

Task

1. Get the salesclerk’s name
2. Calculate total items sold and total sales amount
3. Display total items sold and total sales amount in
 lblTotalItems and lblTotalSales
4. Calculate the sales tax
5. Display sales tax and salesclerk’s name in lblMsg

Print the sales receipt

End the application

Clear the screen for the next sale

Display total items sold (from btnCalc)

Display total sales amount (from btnCalc)

Get and display the sales information

Get the salesclerk’s name

Display sales tax and salesclerk’s name (from btnCalc)

btnPrint

btnExit

btnClear

lblTotalItems

lblTotalSales

txtDate, txtDonuts
txtMuffins

frmMain

lblMsg

Click

Click

Click

None

None

None

Load

None

Object

btnCalc

Event

Click

Figure 3-50 Revised TOE chart for the bakery application in Lesson C

Figure 3-51 shows the revised pseudocode for the Calculate button’s Click event procedure.
Changes made to the pseudocode from Lesson B are shaded in the figure.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

168

First, you will open the bakery application from Lesson B and move the code contained in the
frmMain_Load procedure to the btnCalc_Click procedure.

To open the bakery application and then move some of the code:

1. If necessary, start Visual Studio 2015. Open the Bakery Solution (Bakery Solution.sln)
file from Lesson B.

2. Open the Code Editor window and locate the frmMain_Load procedure. Highlight
(select) the two Const statements in the procedure, and then press Ctrl+x to cut the
statements from the procedure.

3. Locate the btnCalc_Click procedure. Click the blank line above the first Const statement in
the procedure, and then press Enter to insert a new blank line. With the insertion point in
the new blank line, press Ctrl+v to paste the two Const statements in the procedure. (Don’t
be concerned about the squiggles that appear below the two Const statements. They will
disappear when you use the constants in another statement within the procedure.)

4. Return to the frmMain_Load procedure. Highlight the second comment and the assignment
statement, and then press Ctrl+x to remove the selected lines from the procedure.

5. Return to the btnCalc_Click procedure. Click the blank line below the last Dim
statement, and then press Enter to insert a new blank line. With the insertion point in
the new blank line, press Ctrl+v to paste the comment and assignment statement in
the procedure, and then press Enter to insert a new blank line below the assignment
statement. Change the pasted comment to ' assign name to variable.

6. Return to the frmMain_Load procedure, and then delete the entire procedure from the
Code Editor window.

Now that you have moved the InputBox function from the frmMain_Load procedure to the
btnCalc_Click procedure, only one procedure—the btnCalc_Click procedure—needs to use the
strClerk variable. Therefore, you should change the variable from a class-level variable to a
procedure-level variable. You can do this by moving the variable’s declaration statement from
the form’s Declarations section to the btnCalc_Click procedure and then changing the keyword
in the declaration statement from Private to Dim.

To move the declaration statement and then modify it:

1. First, delete the comment from the form’s Declarations section. Next, highlight the
Private strClerk As String statement, and then press Ctrl+x to cut the statement
from the Declarations section.

2. Click the blank line below the last Dim statement in the btnCalc_Click procedure.
Press Ctrl+v to paste the Private statement in the procedure, and then press Enter to
insert a blank line below the statement.

START HERE

START HERE

btnCalc Click event procedure
1. get the salesclerk’s name
2. calculate total items sold = doughnuts sold + muffins sold
3. calculate subtotal = total items sold * item price
4. calculate sales tax = subtotal * sales tax rate
5. calculate total sales = subtotal + sales tax
6. display total items sold and total sales in lblTotalItems and lblTotalSales
7. display sales tax and salesclerk’s name in lblMsg

Figure 3-51 Revised pseudocode for the Calculate button in Lesson C

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

169

Modifying the Load and Click Event Procedures L E S S O N C

3. The red squiggle below the Private keyword indicates that the statement contains a
syntax error. Rest your mouse pointer on the Private keyword. The error message
indicates that the keyword is not valid on a local variable declaration. Change Private
in the variable declaration statement to Dim.

4. Save the solution and then start the application. Click the Calculate button. Type your
name in the Name Entry dialog box and then press Enter. The message “The sales tax
was $0.00.” and your name appear in the lblMsg control.

5. Click the Calculate button again. Notice that the Name Entry dialog box requires the
user to enter the salesclerk’s name again. It would be more efficient for the user if the
name appeared as the default response the second and subsequent times the Calculate
button is clicked.

6. Click the Cancel button in the dialog box. The InputBox function returns an empty
string, so no name appears in the lblMsg control. Click the Exit button.

To display the salesclerk’s name in the dialog box when the Calculate button is clicked the
second and subsequent times, you can declare the strClerk variable as either a class-level
variable or a static variable and then use the variable as the defaultResponse argument in the
InputBox function. In this case, a static variable is a better choice because static variables have
a lesser (more restrictive) scope than class-level variables. Recall that a static variable is really
just a special type of procedure-level variable. As you learned in Lesson A, fewer unintentional
errors occur in applications when variables are declared using the minimum scope needed. In
this case, the minimum scope required for the strClerk variable is procedure scope because
only one procedure needs to use the variable.

To modify the btnCalc_Click procedure:

1. In the btnCalc_Click procedure, change the Dim in the Dim strClerk As String
statement to Static.

2. Next, change the statement that contains the InputBox function as follows, and then
click the blank line below the statement:

strClerk = InputBox(strPROMPT, strTITLE, strClerk)

3. Save the solution and then start the application. Type any date in the Date box, type
5 in the Doughnuts box, and type 1 in the Muffins box. Press Enter. Type your name
in the Name Entry dialog box and then press Enter. The application calculates and
displays the total items sold (6) and total sales ($3.06). In addition, the message “The
sales tax was $0.06.” and your name appear in the lblMsg control.

4. Change the number of muffins sold to 4. At this point, the calculated amounts on the
sales receipt are incorrect because they do not reflect the change in the number of
muffins sold. To display the correct amounts, you will need to recalculate the amounts
by selecting the Calculate button. Press Enter to select the Calculate button. Your name
appears highlighted in the input area of the Name Entry dialog box.

5. Press Enter to select the dialog box’s OK button. The application calculates and displays
the total items sold (9) and total sales ($4.59). The message “The sales tax was $0.09.”
and your name appear in the lblMsg control. Click the Exit button.

Having the previously calculated amounts remain on the screen when a change is made to the
interface could be misleading. A better approach is to clear the amounts when a change is made
to either the number of doughnuts sold or the number of muffins sold.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

170

Coding the TextChanged Event Procedure
A control’s TextChanged event occurs when a change is made to the contents of the control’s
Text property. This can happen as a result of either the user entering data into the control or the
application’s code assigning data to the control’s Text property. In the next set of steps, you will
code the txtDonuts_TextChanged procedure so that it clears the contents of the lblTotalItems,
lblTotalSales, and lblMsg controls when the user changes the number of doughnuts sold.

To code the txtDonuts_TextChanged procedure:

1. Open the code template for the txtDonuts_TextChanged procedure. Type the following
comment and then press Enter twice:

' clear the total items, total sales, and message

2. Enter the following three assignment statements:

lblTotalItems.Text = String.Empty
lblTotalSales.Text = String.Empty
lblMsg.Text = String.Empty

3. Save the solution and then start the application. Type any date in the Date box, type
3 in the Doughnuts box, and type 2 in the Muffins box. Press Enter. Type your name
in the Name Entry dialog box and then press Enter. The application displays the
calculated amounts and your name.

4. Change the number of doughnuts sold to 4. When you make this change, the
txtDonuts_TextChanged procedure clears the total items sold, total sales, and message
information from the form. Click the Exit button.

Recall that you also want to clear the calculated amounts when a change is made to the number of
muffins sold. One way of accomplishing this is to copy the code from the txtDonuts_TextChanged
procedure to the txtMuffins_TextChanged procedure; you then would have two procedures
with the exact same code. However, another way is to create one procedure for the computer to
process when the TextChanged event of either of the two controls occurs.

Associating a Procedure with Different Objects and Events
The Handles clause in an event procedure’s header indicates the object and event associated
with the procedure. The Handles clause in Figure 3-52, for example, indicates that the procedure
is associated with the TextChanged event of the txtDonuts control. As a result, the procedure
will be processed when the txtDonuts control’s TextChanged event occurs.

START HERE

Figure 3-52 TextChanged event procedure associated with the txtDonuts control

Private Sub txtDonuts_TextChanged(sender As Object,
 e As EventArgs) Handles txtDonuts.TextChanged

procedure name

Handles keyword followed
by object and event names

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

171

Associating a Procedure with Different Objects and Events L E S S O N C

Although an event procedure’s name contains the names of its associated object and event
separated by an underscore, that is not a requirement. You can change the name of an event
procedure to almost anything you like as long as the name follows the same rules for naming
variables. Unlike variable names, however, procedure names are usually entered using
Pascal case, which means you capitalize the first letter in the name and the first letter of
each subsequent word in the name. For example, you can change the name of the procedure
in Figure 3-52 from txtDonuts_TextChanged to ClearLabels and the procedure will still
work correctly. This is because the Handles clause, rather than the event procedure’s name,
determines when the procedure is invoked.

You can associate a procedure with more than one object and event as long as each event contains
the same parameters in its procedure header. To do so, you list each object and event in the
procedure’s Handles clause. You separate the object and event with a period, like this: object.event.
You use a comma to separate each object.event from the next object.event. In the next set of steps,
you will change the name of the txtDonuts_TextChanged procedure to ClearLabels and then
associate the procedure with the txtDonuts.TextChanged and txtMuffins.TextChanged events.

To change the procedure’s name and then associate it with different objects and events:

1. In the procedure header, change txtDonuts_TextChanged to ClearLabels.

2. Next, click immediately before the letter H in the keyword Handles. Type _ (an
underscore, which is the line continuation character). Be sure there is a space between
the ending parenthesis and the underscore. Then press Enter to move the Handles
clause to the next line in the procedure.

3. In the Handles clause, click immediately after TextChanged. The ClearLabels
procedure is already associated with the txtDonuts.TextChanged event. You just need
to associate it with the txtMuffins.TextChanged event. Type , (a comma) and then press
the Spacebar. Scroll the list of object names until you see txtMuffins. Click txtMuffins
in the list, and then press Tab to enter the object name in the Handles clause.

4. Type . (a period). Scroll the list of event names until you see TextChanged. Click
TextChanged, press Tab, and then click the blank line below the comment.
Figure 3-53 shows the completed ClearLabels procedure.

START HERE

Figure 3-53 Completed ClearLabels procedure

5. Save the solution and then start the application. Type 2/23/2016 in the Date box,
type 13 in the Doughnuts box, and type 7 in the Muffins box. Press Enter. Type your
name in the Name Entry dialog box and then press Enter. The application displays the
calculated amounts and message.

Handles clause

line continuation
character

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

172

6. Change the number of doughnuts sold to 2. The ClearLabels procedure clears the
calculated amounts and message from the form.

7. Press Enter to select the Calculate button, and then press Enter again to select the
OK button in the Name Entry dialog box. The application displays the new calculated
amounts and message.

8. Change the number of muffins sold to 4. The ClearLabels procedure clears the
calculated amounts and message from the form.

9. Press Enter to select the Calculate button. Type Peter Harrison in the Name Entry
dialog box, and then press Enter to select the OK button. See Figure 3-54.

Figure 3-54 Completed sales receipt

10. Click the Exit button. Close the Code Editor window and then close the solution.
Figure 3-55 shows the bakery application’s code at the end of Lesson C.

Figure 3-55 Bakery application’s code at the end of Lesson C (continues)

 1 ' Name: Bakery Project
 2 ' Purpose: Calculates the total number of
 3 ' items sold and the total sales
 4 ' Programmer: <your name> on <current date>
 5
 6 Option Explicit On
 7 Option Infer Off
 8 Option Strict On
 9
10 Public Class frmMain
11
12 Private Sub btnCalc_Click(sender As Object,
 e As EventArgs) Handles btnCalc.Click
13 ' calculate number of items sold and total sales
14
15 Const strPROMPT As String = "Salesclerk's name:"
16 Const strTITLE As String = "Name Entry"
17 Const decITEM_PRICE As Decimal = 0.5D
18 Const decTAX_RATE As Decimal = 0.02D
19 Dim intDonuts As Integer
20 Dim intMuffins As Integer
21 Dim intTotalItems As Integer
22 Dim decSubtotal As Decimal
23 Dim decSalesTax As Decimal
24 Dim decTotalSales As Decimal
25 Static strClerk As String
26
27 ' assign name to variable
28 strClerk = InputBox(strPROMPT, strTITLE, strClerk)
29
30 ' calculate total number of items sold
31 Integer.TryParse(txtDonuts.Text, intDonuts)
32 Integer.TryParse(txtMuffins.Text, intMuffins)
33 intTotalItems = intDonuts + intMuffins
34
35 ' calculate the subtotal
36 decSubtotal = intTotalItems * decITEM_PRICE
37
38 ' calculate the sales tax
39 decSalesTax = decSubtotal * decTAX_RATE
40
41 ' calculate the total sales
42 decTotalSales = decSubtotal + decSalesTax
43
44 ' display total amounts
45 lblTotalItems.Text = Convert.ToString(intTotalItems)
46 lblTotalSales.Text = decTotalSales.ToString("C2")
47
48 ' display tax and salesclerk's name
49 lblMsg.Text = "The sales tax was " &
50 decSalesTax.ToString("C2") & "." &
51 ControlChars.NewLine & strClerk
52
53 End Sub
54
55 Private Sub btnClear_Click(sender As Object,
 e As EventArgs) Handles btnClear.Click
56 ' prepare screen for the next sale
57
58 txtDonuts.Text = String.Empty
59 txtMuffins.Text = String.Empty
60 lblTotalItems.Text = String.Empty
61 lblTotalSales.Text = String.Empty
62 lblMsg.Text = String.Empty
63 ' send the focus to the Doughnuts box
64 txtDonuts.Focus()
65
66 End Sub
67
68 Private Sub btnExit_Click(sender As Object,
 e As EventArgs) Handles btnExit.Click
69 Me.Close()
70 End Sub
71
72 Private Sub btnPrint_Click(sender As Object,
 e As EventArgs) Handles btnPrint.Click
73 ' print the sales receipt
74
75 btnCalc.Visible = False
76 btnClear.Visible = False
77 btnExit.Visible = False
78 btnPrint.Visible = False
79 PrintForm1.Print()
80 btnCalc.Visible = True
81 btnClear.Visible = True
82 btnExit.Visible = True
83 btnPrint.Visible = True
84
85 End Sub
86
87 Private Sub ClearLabels(sender As Object, e As EventArgs) _
88 Handles txtDonuts.TextChanged, txtMuffins.TextChanged
89 ' clear the total items, total sales, and message
90
91 lblTotalItems.Text = String.Empty
92 lblTotalSales.Text = String.Empty
93 lblMsg.Text = String.Empty
94
95 End Sub
96 End Class

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

173

Associating a Procedure with Different Objects and Events L E S S O N C

 1 ' Name: Bakery Project
 2 ' Purpose: Calculates the total number of
 3 ' items sold and the total sales
 4 ' Programmer: <your name> on <current date>
 5
 6 Option Explicit On
 7 Option Infer Off
 8 Option Strict On
 9
10 Public Class frmMain
11
12 Private Sub btnCalc_Click(sender As Object,
 e As EventArgs) Handles btnCalc.Click
13 ' calculate number of items sold and total sales
14
15 Const strPROMPT As String = "Salesclerk's name:"
16 Const strTITLE As String = "Name Entry"
17 Const decITEM_PRICE As Decimal = 0.5D
18 Const decTAX_RATE As Decimal = 0.02D
19 Dim intDonuts As Integer
20 Dim intMuffins As Integer
21 Dim intTotalItems As Integer
22 Dim decSubtotal As Decimal
23 Dim decSalesTax As Decimal
24 Dim decTotalSales As Decimal
25 Static strClerk As String
26
27 ' assign name to variable
28 strClerk = InputBox(strPROMPT, strTITLE, strClerk)
29
30 ' calculate total number of items sold
31 Integer.TryParse(txtDonuts.Text, intDonuts)
32 Integer.TryParse(txtMuffins.Text, intMuffins)
33 intTotalItems = intDonuts + intMuffins
34
35 ' calculate the subtotal
36 decSubtotal = intTotalItems * decITEM_PRICE
37
38 ' calculate the sales tax
39 decSalesTax = decSubtotal * decTAX_RATE
40
41 ' calculate the total sales
42 decTotalSales = decSubtotal + decSalesTax
43
44 ' display total amounts
45 lblTotalItems.Text = Convert.ToString(intTotalItems)
46 lblTotalSales.Text = decTotalSales.ToString("C2")
47
48 ' display tax and salesclerk's name
49 lblMsg.Text = "The sales tax was " &
50 decSalesTax.ToString("C2") & "." &
51 ControlChars.NewLine & strClerk
52
53 End Sub
54
55 Private Sub btnClear_Click(sender As Object,
 e As EventArgs) Handles btnClear.Click
56 ' prepare screen for the next sale
57
58 txtDonuts.Text = String.Empty
59 txtMuffins.Text = String.Empty
60 lblTotalItems.Text = String.Empty
61 lblTotalSales.Text = String.Empty
62 lblMsg.Text = String.Empty
63 ' send the focus to the Doughnuts box
64 txtDonuts.Focus()
65
66 End Sub
67
68 Private Sub btnExit_Click(sender As Object,
 e As EventArgs) Handles btnExit.Click
69 Me.Close()
70 End Sub
71
72 Private Sub btnPrint_Click(sender As Object,
 e As EventArgs) Handles btnPrint.Click
73 ' print the sales receipt
74
75 btnCalc.Visible = False
76 btnClear.Visible = False
77 btnExit.Visible = False
78 btnPrint.Visible = False
79 PrintForm1.Print()
80 btnCalc.Visible = True
81 btnClear.Visible = True
82 btnExit.Visible = True
83 btnPrint.Visible = True
84
85 End Sub
86
87 Private Sub ClearLabels(sender As Object, e As EventArgs) _
88 Handles txtDonuts.TextChanged, txtMuffins.TextChanged
89 ' clear the total items, total sales, and message
90
91 lblTotalItems.Text = String.Empty
92 lblTotalSales.Text = String.Empty
93 lblMsg.Text = String.Empty
94
95 End Sub
96 End Class

(continued)

Figure 3-55 Bakery application’s code at the end of Lesson C (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

174

(continued)

 1 ' Name: Bakery Project
 2 ' Purpose: Calculates the total number of
 3 ' items sold and the total sales
 4 ' Programmer: <your name> on <current date>
 5
 6 Option Explicit On
 7 Option Infer Off
 8 Option Strict On
 9
10 Public Class frmMain
11
12 Private Sub btnCalc_Click(sender As Object,
 e As EventArgs) Handles btnCalc.Click
13 ' calculate number of items sold and total sales
14
15 Const strPROMPT As String = "Salesclerk's name:"
16 Const strTITLE As String = "Name Entry"
17 Const decITEM_PRICE As Decimal = 0.5D
18 Const decTAX_RATE As Decimal = 0.02D
19 Dim intDonuts As Integer
20 Dim intMuffins As Integer
21 Dim intTotalItems As Integer
22 Dim decSubtotal As Decimal
23 Dim decSalesTax As Decimal
24 Dim decTotalSales As Decimal
25 Static strClerk As String
26
27 ' assign name to variable
28 strClerk = InputBox(strPROMPT, strTITLE, strClerk)
29
30 ' calculate total number of items sold
31 Integer.TryParse(txtDonuts.Text, intDonuts)
32 Integer.TryParse(txtMuffins.Text, intMuffins)
33 intTotalItems = intDonuts + intMuffins
34
35 ' calculate the subtotal
36 decSubtotal = intTotalItems * decITEM_PRICE
37
38 ' calculate the sales tax
39 decSalesTax = decSubtotal * decTAX_RATE
40
41 ' calculate the total sales
42 decTotalSales = decSubtotal + decSalesTax
43
44 ' display total amounts
45 lblTotalItems.Text = Convert.ToString(intTotalItems)
46 lblTotalSales.Text = decTotalSales.ToString("C2")
47
48 ' display tax and salesclerk's name
49 lblMsg.Text = "The sales tax was " &
50 decSalesTax.ToString("C2") & "." &
51 ControlChars.NewLine & strClerk
52
53 End Sub
54
55 Private Sub btnClear_Click(sender As Object,
 e As EventArgs) Handles btnClear.Click
56 ' prepare screen for the next sale
57
58 txtDonuts.Text = String.Empty
59 txtMuffins.Text = String.Empty
60 lblTotalItems.Text = String.Empty
61 lblTotalSales.Text = String.Empty
62 lblMsg.Text = String.Empty
63 ' send the focus to the Doughnuts box
64 txtDonuts.Focus()
65
66 End Sub
67
68 Private Sub btnExit_Click(sender As Object,
 e As EventArgs) Handles btnExit.Click
69 Me.Close()
70 End Sub
71
72 Private Sub btnPrint_Click(sender As Object,
 e As EventArgs) Handles btnPrint.Click
73 ' print the sales receipt
74
75 btnCalc.Visible = False
76 btnClear.Visible = False
77 btnExit.Visible = False
78 btnPrint.Visible = False
79 PrintForm1.Print()
80 btnCalc.Visible = True
81 btnClear.Visible = True
82 btnExit.Visible = True
83 btnPrint.Visible = True
84
85 End Sub
86
87 Private Sub ClearLabels(sender As Object, e As EventArgs) _
88 Handles txtDonuts.TextChanged, txtMuffins.TextChanged
89 ' clear the total items, total sales, and message
90
91 lblTotalItems.Text = String.Empty
92 lblTotalSales.Text = String.Empty
93 lblMsg.Text = String.Empty
94
95 End Sub
96 End Class

Figure 3-55 Bakery application’s code at the end of Lesson C

Lesson C Summary
 • To create a procedure-level variable that remains in memory and also retains its value until

the application ends:

Declare the variable in a procedure using the Static keyword.

 • To process code when a change is made to the contents of a control’s Text property:

Enter the code in the control’s TextChanged event procedure.

 • To associate a procedure with more than one object or event:

List each object and event (using the syntax object.event) after the Handles keyword in the
procedure header. Use a comma to separate each object and event from the previous object
and event.

Lesson C Key Terms
Pascal case—used when entering procedure names; the process of capitalizing the first letter in
the name and the first letter of each subsequent word in the name

TextChanged event—occurs when a change is made to the contents of a control’s Text property

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

175

Lesson C Exercises L E S S O N C

Lesson C Review Questions
1. Which of the following events occurs when a change is made to the contents of a text

box?

a. Change
b. Changed

c. TextChanged
d. TextChange

2. A _____________________ variable is a procedure-level variable that retains its value
after the procedure in which it is declared ends.

a. constant
b. static

c. stationary
d. term

3. Which of the following clauses associates a procedure with the TextChanged event of
the txtMid and txtFinal controls?

a. Associates txtMid_TextChanged, txtFinal_TextChanged

b. Handled txtMid_TextChanged, txtFinal_TextChanged

c. Controls txtMid.TextChanged And txtFinal.TextChanged

d. Handles txtMid.TextChanged, txtFinal.TextChanged

4. Which of the following statements declares a procedure-level variable that is removed
from the computer’s memory when the procedure ends?

a. Const intCounter As Integer

b. Dim intCounter As Integer

c. Local intCounter As Integer

d. Static intCounter As Integer

5. Which of the following statements declares a procedure-level variable that retains its
value after the procedure in which it is declared ends?

a. Const intCounter As Integer

b. Dim intCounter As Constant

c. Dim intCounter As Integer

d. Static intCounter As Integer

Lesson C Exercises
1. In this exercise, you modify the bakery application from this lesson. Use Windows to make

a copy of the Bakery Solution folder. Rename the copy Modified Bakery Solution-Lesson
C-Intro. Open the Bakery Solution (Bakery Solution.sln) file contained in the Modified
Bakery Solution-Lesson C-Intro folder. An hour before the bakery closes, the price of the
doughnuts and muffins drops to $0.35. Modify the btnCalc_Click procedure to allow the
user to enter the item price. Save the solution, and then start and test the application.

2. Create an application using the following names for the solution and project,
respectively: Chopkins Solution and Chopkins Project. Save the application in the
VB2015\Chap03 folder. Change the form file’s name to Main Form.vb. Change the

INTRODUCTORY

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

176

form’s name to frmMain. Create the interface shown in Figure 3-56. The application
displays the total number of packs ordered and the total price of the order. The prices
of a 12 pack, 5 pack, and 2 pack are $14.99, $6.99, and $2.50, respectively. Be sure to
use variables, named constants, and the TryParse method in your code. Also be sure
to enter the three Option statements in the General Declarations section. The total
sales amount should be displayed with a dollar sign and two decimal places. Clear the
calculated amounts when a change is made to the number of 12 packs, 5 packs, or 2
packs. Save the solution, and then start and test the application.

Figure 3-56 Interface for Chopkins Toys

3. Create an application using the following names for the solution and project, respectively:
Tile Solution and Tile Project. Save the application in the VB2015\Chap03 folder.
Change the form file’s name to Main Form.vb. Change the form’s name to frmMain. The
manager of Tile Unlimited wants you to create an application that displays the area of a
rectangular floor (in square feet) and the total cost of tiling the floor. Use text boxes to
get the floor’s length and width measurements (in feet). Use the InputBox function to get
the price of a square foot of tile. The price may vary, so it will need to be entered before
each calculation. Be sure to use variables and the TryParse method in your code. Also be
sure to enter the three Option statements in the General Declarations section. Display
the total cost amount with a dollar sign and two decimal places. Display the area with
two decimal places. Clear the calculated amounts when a change is made to the floor
measurements. Save the solution, and then start and test the application.

4. In this exercise, you modify the bakery application from this lesson. Use Windows to
make a copy of the Bakery Solution folder. Rename the copy Modified Bakery Solution-
Lesson C-Intermediate. Open the Bakery Solution (Bakery Solution.sln) file contained
in the Modified Bakery Solution-Lesson C-Intermediate folder. Recently, the bakery has
had to increase the price of its muffins. Modify the btnCalc_Click procedure to allow
the user to enter the doughnut price and also the muffin price. Save the solution, and
then start and test the application.

5. Create an application using the following names for the solution and project, respectively:
Van Solution and Van Project. Save the application in the VB2015\Chap03 folder. Change
the form file’s name to Main Form.vb. Change the form’s name to frmMain. Rent-A-Van
wants you to create an application that calculates the total cost of renting a van. Customers
pay a base fee plus a charge per mile driven. The user will enter the base fee and the charge

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

177

Lesson C Exercises L E S S O N C

per mile driven when the application is started. Use text boxes to get the customer’s name,
the mileage at the beginning of the rental period, and the mileage at the end of the rental
period. Use labels to display the base fee, the charge per mile driven, the number of miles
driven, and the total rental cost. Be sure to use variables and the TryParse method in
your code. Also be sure to enter the three Option statements in the General Declarations
section. The total rental cost should be displayed with a dollar sign and two decimal places.
Clear the calculated amounts when a change is made to the beginning or ending mileage.
Save the solution, and then start and test the application.

6. Create an application using the following names for the solution and project,
respectively: Retirement Solution and Retirement Project. Save the application in the
VB2015\Chap03 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain. Pamela receives 52 weekly paychecks each year. Each week,
she contributes a specific percentage of her gross weekly pay to her retirement plan
at work. Her employer also contributes to her retirement plan but at a different rate.
Create an interface that allows Pamela to enter the amount of her gross weekly pay, her
contribution rate, and her employer’s contribution rate. The interface should display
her annual contribution, her employer’s annual contribution, and the total annual
contribution. Be sure to use variables and the TryParse method in your code. Also be
sure to enter the three Option statements in the General Declarations section. The
contribution amounts should be displayed with a dollar sign and two decimal places.
Clear the calculated amounts when a change is made to any of the input items. Save the
solution, and then start and test the application.

7. In this exercise, you modify the Chopkins Toys application from Exercise 2. Use Windows
to make a copy of the Chopkins Solution folder. Rename the copy Modified Chopkins
Solution. Open the Chopkins Solution (Chopkins Solution.sln) file contained in the
Modified Chopkins Solution folder. Modify the interface as shown in Figure 3-57.
The interface will now display the sale totals for each of the different packs. For example,
if the customer purchased five 12 packs, the label that appears next to the associated text
box should display 74.95 (5 * 14.99). Modify the btnCalc_Click procedure appropriately.
The procedure should also allow the user to enter the shipping charge, which should be
added to the total sale amount. Save the solution, and then start and test the application.

INTERMEDIATE

INTERMEDIATE

Figure 3-57 Modified interface for Chopkins Toys

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Using Variables and Constants

178

8. Create an application using the following names for the solution and project,
respectively: Pennies Solution and Pennies Project. Save the application in the VB2015\
Chap03 folder. Change the form file’s name to Main Form.vb. Change the form’s name
to frmMain. Create an interface that allows the user to enter the number of pennies
saved in a jar. The application should display the number of dollars, quarters, dimes,
nickels, and pennies the user will receive when the pennies are cashed in at a bank.
(It might be helpful to review the information in Figures 2-32 and 2-33 in Chapter 2.)
Clear the calculated amounts when a change is made to the number of pennies entered
by the user. Be sure to use variables and the TryParse method in your code. Also be
sure to enter the three Option statements in the General Declarations section. Save the
solution and then start the application. Test the application twice using the following
data: 653 pennies and 250 pennies.

9. Create an application using the following names for the solution and project, respectively:
Credit Card Solution and Credit Card Project. Save the application in the VB2015\
Chap03 folder. Change the form file’s name to Main Form.vb. Change the form’s name
to frmMain. Create an interface that allows the user to enter the total amount charged
to his or her credit card for each of the following six expense categories: Merchandise,
Restaurants, Gasoline, Travel/Entertainment, Services, and Supermarkets. Use text boxes
to get the six input items. The application should display the total charged to the credit
card and the percentage that each category contributed to the total amount charged. Be
sure to use variables and the TryParse method in your code. Also be sure to enter the
three Option statements in the General Declarations section. Display each category’s
percentage with a percent sign and one decimal place. Save the solution, and then start
and test the application.

10. Create an application using the following names for the solution and project,
respectively: Pink Elephant Solution and Pink Elephant Project. Save the application in
the VB2015\Chap03 folder. Change the form file’s name to Main Form.vb. Change the
form’s name to frmMain. The application’s interface should allow the owner of the Pink
Elephant Photo Studio to enter the studio’s quarterly sales amount. The application
should display the amount of state, county, and city sales tax the studio must pay. It
should also display the total sales tax. The sales tax rates for the state, county, and
city are 2.5%, 0.5%, and 0.25%, respectively. Each sales tax is calculated by multiplying
the appropriate rate by the quarterly sales amount. Be sure to use variables, named
constants, and the TryParse method in your code. Also be sure to enter the three
Option statements in the General Declarations section. Display the sales taxes with
a dollar sign and two decimal places. Save the solution, and then start and test the
application.

11. Open the VB2015\Chap03\Debug Solution-Lesson C\Debug Solution (Debug Solution.
sln) file. Start and then test the application. Locate and correct any errors.

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

SWAT THE BUGS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4
The Selection Structure

Creating the Treeline Resort Application

In this chapter, you will create a reservation application for Treeline Resort. The
application should allow the user to enter the following information: the number
of rooms to reserve, the length of stay (in nights), the number of adult guests,
and the number of child guests. Each room can accommodate a maximum of six
guests. The resort charges $225.50 per room per night. It also charges a 16.25%
sales and lodging tax, which is based on the room charge. In addition, there is
a $12.50 resort fee per room per night. The application should display the total
room charge, the sales and lodging tax, the total resort fee, and the total due.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

180

Previewing the Treeline Resort Application
Before you start the first lesson in this chapter, you will preview the completed application
contained in the VB2015\Chap04 folder.

To preview the completed application:

1. Use Windows to locate and then open the VB2015\Chap04 folder. Right-click Treeline
(Treeline.exe) and then click the Open button. The application’s user interface appears
on the screen.

2. Type 1 in the Rooms box, type 3 in the Nights box, type 2 in the Adults box, and type 3
in the Children box. Click the Calculate button. See Figure 4-1.

START HERE

3. Recall that only six guests are allowed in a room. Change the number of adults to 4 and
then click the Calculate button. The message box shown in Figure 4-2 appears on the
screen. You will learn how to create a message box in Lesson B.

Figure 4-1 Interface showing the calculated amounts

Figure 4-2 Message box

a message box
appears on top
of the form

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

181

Previewing the Treeline Resort Application

4. Click the OK button to close the message box. Try to type a $ in the Nights box. Notice
that the text box does not accept the entry. You will learn how to prevent a text box
from accepting unwanted characters in Lesson C.

5. Change the number of nights and the number of adults to 1 and 2, respectively. Also
change the number of children to 2. Click the Calculate button. See Figure 4-3.

6. Click the Exit button to end the application.

The Treeline Resort application uses the selection structure, which you will learn about in
Lesson A. In Lesson B, you will complete the application’s interface and also begin coding the
application. You will finish coding the application in Lesson C. Be sure to complete each lesson
in full and do all of the end-of-lesson questions and several exercises before continuing to the
next lesson.

Figure 4-3 New charges shown in the interface

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

182

❚ LESSON A
After studying Lesson A, you should be able to:

 • Write pseudocode for the selection structure

 • Create a flowchart to help you plan an application’s code

 • Write an If...Then...Else statement

 • Include comparison operators in a selection structure’s condition

 • Include logical operators in a selection structure’s condition

 • Change the case of a string

Making Decisions in a Program
All of the procedures in an application are written using one or more of three basic control
structures: sequence, selection, and repetition. The procedures in the previous three chapters
used the sequence structure only. When one of the procedures was invoked during run
time, the computer processed its instructions sequentially—in other words, in the order the
instructions appeared in the procedure. Every procedure you write will contain the sequence
structure.

Many times, however, a procedure will need the computer to make a decision before selecting
the next instruction to process. A procedure that calculates an employee’s gross pay, for
example, typically has the computer determine whether the number of hours an employee
worked is greater than 40. The computer then would select either an instruction that computes
regular pay only or an instruction that computes regular pay plus overtime pay. Procedures that
need the computer to make a decision require the use of the selection structure (also called the
decision structure).

The selection structure indicates that a decision (based on some condition) needs to be made,
followed by an appropriate action derived from that decision. But how does a programmer
determine whether a problem’s solution requires a selection structure? The answer is by
studying the problem specification.

The first problem specification you will examine in this lesson involves an evil scientist named
Dr. N. The problem specification and an illustration of the problem are shown in Figure 4-4
along with a solution to the problem. The solution, which is written in pseudocode, requires
only the sequence structure.

Ch04A-Selection

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

183

Making Decisions in a Program L E S S O N A

Now we’ll make a slight change to the problem specification from Figure 4-4. In this case, Dr. N
should open the door only if the visitor knows the secret password. The modified problem
specification and solution are shown in Figure 4-5. The solution contains both the sequence and
selection structures. The selection structure’s condition directs Dr. N to make a decision about
the visitor’s password. More specifically, he needs to determine whether the visitor’s password
matches the secret password. The condition in a selection structure must be phrased so that it
evaluates to an answer of either true or false. In this case, either the visitor’s password matches
the secret password (true) or it doesn’t match the secret password (false). Only if both passwords
are the same does Dr. N need to follow the two indented instructions. The selection structure
in Figure 4-5 is referred to as a single-alternative selection structure because it requires one
or more actions to be taken only when its condition evaluates to true. Other examples of
single-alternative selection structures include “if it’s raining, take an umbrella” and “if you are
driving your car at night, turn your car’s headlights on”.

In pseudocode,
use the words
if and end
if to denote
the beginning

and end, respectively,
of a selection struc-
ture. Also indent the
instructions within the
structure.

Figure 4-4 A problem that requires the sequence structure only
Image by Diane Zak; created with Reallusion CrazyTalk Animator

Problem Specification

Dr. N is sitting in a chair in his lair, facing a control deck and an electronic screen. At times, visitors
come to the door located at the rear of the lair. Before pressing the blue button on the control deck
to open the door, Dr. N likes to view the visitor on the screen. He can do so by pressing the orange
button on the control deck. Write the instructions that direct Dr. N to view the visitor first and then
open the door and say “Welcome”.

Solution
1. press the orange button on the control deck to view the visitor on the screen
2. press the blue button on the control deck to open the door
3. say “Welcome”

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

184

Problem Specification

Dr. N is sitting in a chair in his lair, facing a control deck and an electronic screen. At times, visitors
come to the door located at the rear of the lair. Before pressing the blue button on the control deck
to open the door, Dr. N likes to view the visitor on the screen. He can do so by pressing the orange
button on the control deck. Write the instructions that direct Dr. N to view the visitor first and then
ask the visitor for the password. He should open the door and say “Welcome” only if the visitor
knows the secret password. If the visitor does not know the secret password, Dr. N should say
“Sorry, you are wrong” and then destroy the visitor by pressing the big red button on the control
deck.

Solution 1
1. press the orange button on the control deck to view the visitor on the screen
2. ask the visitor for the password

3. if the visitor’s password matches the secret password
 press the blue button on the control deck to open the door
 say “Welcome”
 else
 say “Sorry, you are wrong”
 press the big red button on the control deck to destroy the visitor
 end if

Solution 2
1. press the orange button on the control deck to view the visitor on the screen
2. ask the visitor for the password

3. if the visitor’s password does not match the secret password
 say “Sorry, you are wrong”
 press the big red button on the control deck to destroy the visitor
 else
 press the blue button on the control deck to open the door
 say “Welcome”
 end if

Figure 4-5 A problem that requires the sequence structure and a single-alternative selection structure

Problem Specification

Dr. N is sitting in a chair in his lair, facing a control deck and an electronic screen. At times, visitors
come to the door located at the rear of the lair. Before pressing the blue button on the control deck
to open the door, Dr. N likes to view the visitor on the screen. He can do so by pressing the orange
button on the control deck. Write the instructions that direct Dr. N to view the visitor first and then
ask the visitor for the password. He should open the door and say “Welcome” only if the visitor
knows the secret password.

Solution
1. press the orange button on the control deck to view the visitor on the screen
2. ask the visitor for the password

3. if the visitor’s password matches the secret password
 press the blue button on the control deck to open the door
 say “Welcome”
 end if

Figure 4-6 A problem that requires the sequence structure and a dual-alternative selection
structure (continues)

followed only when
the condition is true

true path

false path

Figure 4-6 shows a modified version of the previous problem specification. In this version, Dr. N
will say “Sorry, you are wrong” and then destroy the visitor if the passwords do not match. Also
shown in Figure 4-6 are two possible solutions to the problem; both solutions produce the same
result. The condition in Solution 1’s selection structure determines whether the visitor’s password is
correct, whereas the condition in Solution 2’s selection structure determines whether it is incorrect.

condition

condition—determines
if password is correct

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

185

Flowcharting a Selection Structure L E S S O N A

Figure 4-6 A problem that requires the sequence structure and a dual-alternative selection structure

Problem Specification

Dr. N is sitting in a chair in his lair, facing a control deck and an electronic screen. At times, visitors
come to the door located at the rear of the lair. Before pressing the blue button on the control deck
to open the door, Dr. N likes to view the visitor on the screen. He can do so by pressing the orange
button on the control deck. Write the instructions that direct Dr. N to view the visitor first and then
ask the visitor for the password. He should open the door and say “Welcome” only if the visitor
knows the secret password. If the visitor does not know the secret password, Dr. N should say
“Sorry, you are wrong” and then destroy the visitor by pressing the big red button on the control
deck.

Solution 1
1. press the orange button on the control deck to view the visitor on the screen
2. ask the visitor for the password

3. if the visitor’s password matches the secret password
 press the blue button on the control deck to open the door
 say “Welcome”
 else
 say “Sorry, you are wrong”
 press the big red button on the control deck to destroy the visitor
 end if

Solution 2
1. press the orange button on the control deck to view the visitor on the screen
2. ask the visitor for the password

3. if the visitor’s password does not match the secret password
 say “Sorry, you are wrong”
 press the big red button on the control deck to destroy the visitor
 else
 press the blue button on the control deck to open the door
 say “Welcome”
 end if

Unlike the selection structure in Figure 4-5, which provides instructions for Dr. N to follow
only when the selection structure’s condition is true, the selection structures in Figure 4-6
require Dr. N to perform one set of instructions when the condition is true and a different
set of instructions when the condition is false. The instructions to follow when the condition
evaluates to true are called the true path. The true path begins with the instruction
immediately below the if and ends with either the else (if there is one) or the end if. The
instructions to follow when the condition evaluates to false are called the false path. The
false path begins with the instruction immediately below the else and ends with the end if.
For clarity, the instructions in each path should be indented as shown in Figure 4-6. Selection
structures that contain instructions in both paths, like the ones in Figure 4-6, are referred to
as dual-alternative selection structures.

Flowcharting a Selection Structure
As you learned in Chapter 2, many programmers use flowcharts (rather than pseudocode)
when planning solutions to problems. Figure 4-7 shows a problem specification along with
two correct solutions in flowchart form. The diamond in a flowchart is called the decision
symbol because it is used to represent the condition (decision) in both the selection and
repetition structures. The diamonds in Figure 4-7 represent the conditions in selection
structures. Flowchart A contains a single-alternative selection structure because it requires
a set of actions to be taken only when its condition evaluates to true. Flowchart B contains
a dual-alternative selection structure because it requires two different sets of actions: one to
be taken only when its condition evaluates to true, and the other to be taken only when its
condition evaluates to false.

condition—determines
if password is incorrect

(continued)

true path

false path

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

186

Figure 4-7 Two correct solutions shown in flowchart form

Problem Specification

Create an application that displays an employee’s weekly gross pay, given the number of hours
worked and hourly pay rate. Employees working more than 40 hours are paid their hourly rate plus
an additional one-half of their hourly rate for each hour worked over 40.

TF

gross = hours *
rate

display gross
in lblGross

gross = hours * rate
+ (hours – 40) * rate

/ 2

hours less
than or equal

to 40

stop

start

gross = hours * rate

hours
over 40

TF

gross = gross + (hours
 – 40) * rate / 2

display gross
in lblGross

stop

store hours and rate in
variables

start

store hours and rate in
variables

Flowchart A—single-alternative selection
structure

Flowchart B—dual-alternative selection
structure

Notice that the conditions in both diamonds evaluate to either true or false only. Also notice
that both diamonds have one flowline entering the symbol and two flowlines leaving the
symbol. One of the flowlines leading out of a diamond in a flowchart should be marked with
a T (for true) and the other should be marked with an F (for false). The T flowline points to
the next instruction to be processed when the condition evaluates to true. In Flowchart A, the
next instruction calculates the gross pay with overtime; in Flowchart B, it calculates the gross
pay without any overtime. The F flowline points to the next instruction to be processed when
the condition evaluates to false. In Flowchart A, that instruction displays the gross pay; in
Flowchart B, it calculates the gross pay with overtime. You can also mark the flowlines leading
out of a diamond with a Y and an N (for yes and no, respectively).

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

187

Coding Selection Structures in Visual Basic L E S S O N A

Coding Selection Structures in Visual Basic
Visual Basic provides the If...Then...Else statement for coding single-alternative and dual-
alternative selection structures. The statement’s syntax is shown in Figure 4-8. The square
brackets in the syntax indicate that the Else portion, referred to as the Else clause, is optional.
The boldfaced items in the syntax are required; however, the Else keyword is necessary only in
a dual-alternative selection structure.

Italicized items in the syntax indicate where the programmer must supply information. In the If...
Then...Else statement, the programmer must supply the condition that the computer needs to
evaluate before further processing can occur. The condition must be a Boolean expression, which
is an expression that results in a Boolean value (True or False). Besides providing the condition,
the programmer must provide the statements to be processed in the true path and (optionally) in
the false path. The set of statements contained in each path is referred to as a statement block.
(In Visual Basic, a statement block is a set of statements terminated by an Else, End If, Loop, or
Next clause. You will learn about the Loop and Next clauses in Chapters 6 and 7.)

The examples in Figure 4-8 illustrate how to use the If...Then...Else statement to code the
selection structures shown earlier in Figure 4-7. The examples use comparison operators
(> and <=) to compare the hours worked to the number 40. Comparison operators are covered
in the next section.

Figure 4-8 Syntax and examples of the If...Then...Else statement (continues)

If...Then...Else Statement

Syntax
If condition Then
 statement block to be processed when the condition is true
[Else
 statement block to be processed when the condition is false]
End If

Example 1

Example 2

single-alternative
selection structure

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

188

To code and then test the Gross Pay Calculator application:

1. If necessary, start Visual Studio 2015. Open the Gross Solution (Gross Solution.sln)
file contained in the VB2015\Chap04\Gross Solution-Single folder. Open the Code
Editor window. Replace <your name> and <current date> in the comments with your
name and the current date, respectively.

2. Locate the btnCalc_Click procedure, and then enter the single-alternative selection
structure shown in Example 1 in Figure 4-8.

3. Save the solution and then start the application. First, calculate the gross pay using 40
and 10 as the hours worked and the hourly rate, respectively. The gross pay is $400.00.
See Figure 4-9.

START HERE

(continued)

Figure 4-8 Syntax and examples of the If...Then...Else statement

Figure 4-9 Interface showing the gross pay

If...Then...Else Statement

Syntax
If condition Then
 statement block to be processed when the condition is true
[Else
 statement block to be processed when the condition is false]
End If

Example 1

Example 2

dual-alternative
selection structure

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

189

Comparison Operators L E S S O N A

4. Next, calculate the gross pay using 45 as the hours worked and 11.65 as the hourly rate.
$553.38 appears in the Gross pay box.

5. Click the Exit button. Close the Code Editor window and then close the solution.

6. Open the Gross Solution (Gross Solution.sln) file contained in the VB2015\Chap04\
Gross Solution-Dual folder. Open the Code Editor window. Replace <your name> and
<current date> in the comments with your name and the current date, respectively.

7. Locate the btnCalc_Click procedure, and then enter the dual-alternative selection
structure shown in Example 2 in Figure 4-8.

8. Save the solution and then start the application. First, calculate the gross pay using 40
and 10 as the hours worked and the hourly rate, respectively. $400.00 appears in the
Gross pay box.

9. Next, calculate the gross pay using 45 as the hours worked and 11.65 as the hourly rate.
$553.38 appears in the Gross pay box.

10. Click the Exit button. Close the Code Editor window and then close the solution.

As mentioned earlier, an If...Then...Else statement’s condition must be a Boolean expression,
which is an expression that evaluates to either True or False. The expression can contain
variables, constants, properties, methods, keywords, arithmetic operators, comparison
operators, and logical operators. You already know about variables, constants, properties,
methods, keywords, and arithmetic operators. You will learn about comparison operators and
logical operators in this lesson. We’ll begin with comparison operators.

Comparison Operators
Figure 4-10 lists the most commonly used comparison operators in Visual Basic. Comparison
operators (also referred to as relational operators) are used in expressions to compare two
values. When making comparisons, keep in mind that equal to (=) is the opposite of not equal to
(<>), greater than (>) is the opposite of less than or equal to (<=), and less than (<) is the opposite
of greater than or equal to (>=). Expressions containing a comparison operator always evaluate
to a Boolean value: either True or False. Also included in Figure 4-10 are examples of using
comparison operators in an If...Then...Else statement’s condition.

YOU DO IT 1!

Create an application named YouDoIt 1 and save it in the VB2015\Chap04 folder. Add
a text box, a label, and a button to the form. The button’s Click event procedure should
display the string “Over 100” in the label when the value in the text box is greater
than the number 100; otherwise, it should display the string “Not Over 100”. Code the
procedure. Save the solution, and then start and test the application. Close the solution.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

190

Unlike arithmetic operators, comparison operators in Visual Basic do not have an order of
precedence. When an expression contains more than one comparison operator, the computer
evaluates the comparison operators from left to right in the expression. Comparison operators
are evaluated after any arithmetic operators. For example, when processing the expression
14 / 2 < 15 – 2 * 3, the computer will evaluate the three arithmetic operators before it evaluates
the comparison operator. The result of the expression is the Boolean value True, as shown in
Figure 4-11. Also included in the figure are the evaluation steps for two other expressions that
contain arithmetic and comparison operators.

Figure 4-10 Listing and examples of commonly used comparison operators

Comparison Operators

Operator
=
>
>=
<
<=
<>

Operation
equal to
greater than
greater than or equal to
less than
less than or equal to
not equal to

Example 1

The condition evaluates to True when the variable contains the string “IL”; otherwise, it
evaluates to False.

Example 2

The condition evaluates to True when the value stored in the variable is greater than 40;
otherwise, it evaluates to False.

Example 3

The condition evaluates to True when the value stored in the variable is greater than or
equal to 75.65; otherwise, it evaluates to False. You can also write the condition as

.

Example 4

The condition evaluates to True when the value stored in the variable is less than the
value stored in the variable; otherwise, it evaluates to False.

Example 5

The condition evaluates to True when the value stored in the variable is less than or
equal to 999.99; otherwise, it evaluates to False.

Example 6

The condition evaluates to True when the variable does not contain the string “N”;
otherwise, it evaluates to False.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

191

Comparison Operators L E S S O N A

Figure 4-11 Evaluation steps for expressions containing arithmetic and comparison operators

YOU DO IT 2!

On a piece of paper, write down the answers to the following four expressions:

4 + 3 * 2 > 2 * 10 – 11

8 + 3 – 6 + 85 < 5 * 26

10 / 5 + 3 – 6 * 2 > 0

75 / 25 + 2 * 5 * 6 <= 8 * 8

Next, create an application named YouDoIt 2 and save it in the VB2015\Chap04 folder.
Add four labels and a button to the form. The button’s Click event procedure should
display the results of the four expressions shown here. Code the procedure. Save the
solution, and then start and test the application. Compare the application’s results with
your answers. Close the solution.

In the next two sections, you will view two procedures that contain a comparison operator in
an If...Then...Else statement’s condition. The first procedure uses a single-alternative selection
structure, and the second procedure uses a dual-alternative selection structure.

Using Comparison Operators: Swapping Numeric Values
Figure 4-12 shows a sample run of an application that displays the lowest and highest of two
scores entered by the user. Figure 4-13 shows the pseudocode and flowchart for the Display
button’s Click event procedure. The procedure contains a single-alternative selection structure
whose condition determines whether the first score entered by the user is greater than the
second score. If it is, the selection structure’s true path takes the appropriate action.

Original expression
The division is performed �rst.
The multiplication is performed next.
The subtraction is performed next.
The < comparison is performed last.

Original expression
The �rst multiplication is performed �rst.
The remaining multiplication is performed next.
The addition is performed next.
The >= comparison is performed last.

Original expression
The �rst multiplication is performed �rst.
The remaining multiplication is performed next.
The addition is performed next.
The subtraction is performed next.
The > comparison is performed last.

Result
14 / 2 < 15 – 2 * 3
7 < 15 – 2 * 3
7 < 15 – 6
7 < 9
True

6 * 2 + 3 >= 5 * 4
12 + 3 >= 5 * 4
12 + 3 >= 20
15 >= 20
False

12 + 4 * 3 * 2 – 2 > 65
12 + 12 * 2 – 2 > 65
12 + 24 – 2 > 65
36 – 2 > 65
34 > 65
False

Evaluation steps

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

192

Figure 4-12 Sample run of the Lowest and Highest application

Figure 4-13 Pseudocode and flowchart containing a single-alternative selection structure

Flowchart for the Display button’s Click event procedure

stop

score in first
variable > score

in second
variable

swap both scores so that
the first variable contains

the lowest of the two scores

TF

start

store the two scores in two variables

display the lowest and
highest scores (and

appropriate messages)
in lblMessage

Pseudocode for the Display button’s Click event procedure

1. store the two scores in two variables
2. if the score in the first variable is greater than the score in the second variable
 swap both scores so that the first variable contains the lowest of the two scores
 end if
3. display the lowest and highest scores (and appropriate messages) in lblMessage

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

193

Comparison Operators L E S S O N A

Figure 4-14 shows the code entered in the Display button’s Click event procedure. The
condition in the If clause compares the contents of the intScore1 variable with the contents
of the intScore2 variable. If the value in the intScore1 variable is greater than the value in
the intScore2 variable, the condition evaluates to True and the four instructions in the If...
Then...Else statement’s true path swap both values. Swapping the values places the smaller
number in the intScore1 variable and places the larger number in the intScore2 variable. If
the condition evaluates to False, on the other hand, the true path instructions are skipped over
because the intScore1 variable already contains a number that is smaller than (or possibly
equal to) the number stored in the intScore2 variable.

Figure 4-14 Display button’s Click event procedure

The first instruction in the If...Then...Else statement’s true path declares and initializes a variable
named intTemp. Like a variable declared at the beginning of a procedure, a variable declared
within a statement block—referred to as a block-level variable—remains in memory until the
procedure ends. However, unlike a variable declared at the beginning of a procedure, block-level
variables have block scope rather than procedure scope.

A variable that has block scope can be used only within the statement block in which it is
declared. More specifically, it can be used only below its declaration statement within the
statement block. In this case, the procedure-level intScore1 and intScore2 variables can be
used anywhere below their Dim statements within the btnDisplay_Click procedure, but the
block-level intTemp variable can be used only after its Dim statement within the If...Then...Else
statement’s true path.

You may be wondering why the intTemp variable was not declared at the beginning of the
procedure along with the other variables. Although there is nothing wrong with declaring the
variable in that location, there is no reason to create it until it is needed, which (in this case) is
only when a swap is necessary.

single-alternative
selection structure

comparison
operator

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

194

To code and then test the Lowest and Highest application:

1. Open the Lowest and Highest Solution (Lowest and Highest Solution.sln) file contained
in the VB2015\Chap04\Lowest and Highest Solution folder. Open the Code Editor
window. Replace <your name> and <current date> in the comments with your name
and the current date, respectively.

2. Locate the btnDisplay_Click procedure, and then enter the single-alternative selection
structure shown earlier in Figure 4-14.

3. Save the solution and then start the application. Type 84 in the Score 1 box and
then type 77 in the Score 2 box. Click the Display button. The button’s Click event
procedure displays the lowest and highest scores, as shown earlier in Figure 4-12.

4. Click the Exit button. Close the Code Editor window and then close the solution.

Using Comparison Operators: Displaying Net Income or Loss
Figure 4-16 shows two sample runs of an application that displays either the net income using
a black font or the net loss using a red font. Figure 4-17 shows the pseudocode, flowchart,
and code for the Calculate button’s Click event procedure, which contains a dual-alternative
selection structure.

START HERE

Figure 4-15 Illustration of the swapping concept

values stored in the variables immediately
before the statement
is processed

result of the statement

result of the statement

result of the statement

84

84

77

77

77

77

77

84

0

84

84

84

The second instruction in the If...Then...Else statement’s true path assigns the intScore1
variable’s value to the intTemp variable. If you do not store that value in the intTemp variable, it
will be lost when the computer processes the next statement, intScore1 = intScore2, which
replaces the contents of the intScore1 variable with the contents of the intScore2 variable.
Finally, the intScore2 = intTemp instruction assigns the intTemp variable’s value to the
intScore2 variable; this completes the swap. Figure 4-15 illustrates the concept of swapping,
assuming the user enters the numbers 84 and 77 in the Score 1 and Score 2 boxes, respectively.

Ch04A-Swapping

the values
were swapped

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

195

Comparison Operators L E S S O N A

Figure 4-17 Pseudocode, flowchart, and code containing a dual-alternative selection structure (continues)

Figure 4-16 Sample runs of the Net Income or Loss application

Pseudocode for the Calculate button’s Click event procedure
1. store income and expenses in variables
2. calculate net = income – expenses
3. if net is less than 0
 change the lblNet control’s font color to red
 else
 change the lblNet control’s font color to black
 end if
4. display net in lblNet

Flowchart for the Calculate button’s Click event procedure

stop

change lblNet’s font color to redchange lblNet’s font color to black

display net in
lblNet

TF

start

store income and
expenses in variables

net = income – expenses

net < 0

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

196

To code and then test the Net Income or Loss application:

1. Open the VB2015\Chap04\Net Solution\Net Solution (Net Solution.sln) file. Open the
Code Editor window. Replace <your name> and <current date> in the comments with
your name and the current date, respectively.

2. Locate the btnCalc_Click procedure, and then enter the dual-alternative selection
structure shown in Figure 4-17.

3. Save the solution and then start the application. Test the application twice, using the
income and expense amounts shown earlier in Figure 4-16.

4. Click the Exit button. Close the Code Editor window and then close the solution.

START HERE

YOU DO IT 3!

Create an application named YouDoIt 3 and save it in the VB2015\Chap04 folder. Add
a text box, a label, and a button to the form. If the user enters a number that is greater
than or equal to 100 in the text box, the button’s Click event procedure should display
the result of multiplying the number by the number 5; otherwise, it should display the
result of dividing the number by the number 5. Code the procedure. Save the solution,
and then start and test the application. Close the solution.

(continued)

Figure 4-17 Pseudocode, flowchart, and code containing a dual-alternative selection structure

dual-alternative
selection structure

comparison operator

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

197

Logical Operators L E S S O N A

 Note: You have learned a lot so far in this lesson. You may want to take a break at this point
before continuing.

Logical Operators
An If...Then...Else statement’s condition can also contain logical operators, which are always
evaluated after any arithmetic or comparison operators in an expression. Visual Basic provides the
six logical operators listed in Figure 4-18. All of the logical operators, with the exception of the Not
operator, allow you to combine two or more conditions, called subconditions, into one compound
condition. The compound condition will always evaluate to either True or False, which is why logical
operators are often referred to as Boolean operators. Even though this book only uses the Not,
AndAlso, and OrElse operators, you should familiarize yourself with the And, Or, and Xor operators
because you may encounter them when modifying another programmer’s code. Also included in
Figure 4-18 are examples of using logical operators in the If...Then...Else statement’s condition.

YOU DO IT 4!

Create an application named YouDoIt 4 and save it in the VB2015\Chap04 folder. Add
two text boxes, a label, and a button to the form. The button’s Click event procedure
should assign the contents of the text boxes to Double variables named dblNum1 and
dblNum2. It then should divide the dblNum1 variable’s value by the dblNum2 variable’s
value, assigning the result to a Double variable named dblAnswer. Display the answer in
the label. Code the procedure. Save the solution and then start the application. Test the
application using the numbers 6 and 2; the number 3 appears in the label control. Now
test it using the numbers 6 and 0. The word Infinity appears in the label control because,
as in math, division by 0 is not possible. Add a selection structure to the procedure. The
selection structure should perform the division only if the value in the dblNum2 variable
is not 0. Save the solution, and then start and test the application. Close the solution.

Figure 4-18 Listing and examples of logical operators (continues)

Logical Operators

Operator
Not

And

AndAlso

Or

OrElse

Xor

Operation
reverses the truth-value of the condition; 1
True becomes False, and False becomes True

all subconditions must be true for the Ω 2
compound condition to evaluate to True

same as the And operator, except performs 2
short-circuit evaluation

only one of the subconditions needs to be true 3
for the compound condition to evaluate to True

same as the Or operator, except performs 3
short-circuit evaluation

only one of the subconditions can be true 4
for the compound condition to evaluate to True

Precedence number

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

198

You already are familiar with logical operators because you use them on a daily basis. Examples
of this include the following:

 • if you finished your homework and you studied for tomorrow’s exam, watch a movie

 • if your cell phone rings and (it’s your spouse calling or it’s your child calling), answer the
phone

 • if you are driving your car and (it’s raining or it’s foggy or there is bug splatter on your
windshield), turn your car’s wipers on

As mentioned earlier, all expressions containing a logical operator evaluate to either True or
False only. The tables shown in Figure 4-19, called truth tables, summarize how the computer
evaluates the logical operators in an expression.

(continued)

Figure 4-18 Listing and examples of logical operators

Example 1

The condition evaluates to True when the variable contains the Boolean value
False; otherwise, it evaluates to False. The clause also could be written more clearly as

.

Example 2

The compound condition evaluates to True when the value in the variable is greater
than 0 and, at the same time, less than 0.15; otherwise, it evaluates to False.

Example 3

The compound condition evaluates to True when the variable contains the string
“1” and, at the same time, the value in the variable is greater than 4999.99;
otherwise, it evaluates to False.

Example 4

The compound condition evaluates to True when the variable contains the string
“1” or when the value in the variable is greater than 4999.99; otherwise, it
evaluates to False.

Example 5

The compound condition evaluates to True when only one of the variables contains the string
“USE”; otherwise, it evaluates to False.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

199

Logical Operators L E S S O N A

Figure 4-19 Truth tables for the logical operators

value of Not condition
True
False

False
True

Not operator

value of condition

AndAlso operator

subcondition1 subcondition2

True
True
False

True
False
(not evaluated)

OrElse operator

subcondition1 subcondition2

True
False
False

(not evaluated)
True
False

And operator

subcondition1 subcondition2

True
True

True
False

Or operator

subcondition1 subcondition2

True
True
False

True
False
True

Xor operator

subcondition1 subcondition2

True True
True
False

False
True

Truth Tables for the Logical Operators Not Used in This Book

Truth Tables for the Logical Operators Used in This Book

False
False

True
False

False False

False False

subcondition1 AndAlso subcondition2

True
False
False

subcondition1 OrElse subcondition2

True
True
False

subcondition1 Or subcondition2

True
True
True

subcondition1 Xor subcondition2

False
True
True

subcondition1 And subcondition2

True
False
False
False

False

False

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

200

As the figure indicates, the Not operator reverses the truth-value of the condition. If the value
of the condition is True, then the value of Not condition is False. Likewise, if the value of the
condition is False, then the value of Not condition is True.

When you use either the And operator or the AndAlso operator to combine two subconditions,
the resulting compound condition evaluates to True only when both subconditions are True.
If either subcondition is False or if both subconditions are False, then the compound condition
evaluates to False. The difference between the And and AndAlso operators is that the And
operator always evaluates both subconditions, while the AndAlso operator performs a
short-circuit evaluation, which means it does not always evaluate subcondition2. Because both
subconditions combined with the AndAlso operator need to be True for the compound condition
to evaluate to True, the AndAlso operator does not evaluate subcondition2 when subcondition1 is
False; this makes the AndAlso operator more efficient than the And operator.

When you combine two subconditions using either the Or operator or the OrElse operator, the
compound condition evaluates to True when either one or both of the subconditions is True. The
compound condition will evaluate to False only when both subconditions are False. The difference
between the Or and OrElse operators is that the Or operator always evaluates both subconditions,
while the OrElse operator performs a short-circuit evaluation. In this case, because only one of the
subconditions combined with the OrElse operator needs to be True for the compound condition
to evaluate to True, the OrElse operator does not evaluate subcondition2 when subcondition1 is
True. As a result, the OrElse operator is more efficient than the Or operator.

Finally, when you combine conditions using the Xor operator, the compound condition
evaluates to True when only one of the subconditions is True. If both subconditions are True
or both subconditions are False, then the compound condition evaluates to False. In the next
section, you will use the truth tables to determine which logical operator to use in an If...Then...
Else statement’s condition.

Using the Truth Tables
An application needs to display an employee’s weekly gross pay, given the number of hours
worked and the hourly pay rate. The number of hours worked must be at least 0 but not more
than 40. Before making the gross pay calculation, the application should verify that the number of
hours is within the expected range. Programmers refer to the process of verifying the input data
as data validation. If the number of hours is valid, the application should calculate and display
the gross pay; otherwise, it should display the message “N/A” (for “Not Available”). Figure 4-20
shows the problem specification and two partially completed If clauses that could be used to
verify the number of hours. Missing from each If clause is the appropriate logical operator.

Figure 4-20 Problem specification and partially completed If clauses

Problem Specification

If clause 1

If clause 2

Create an application that displays an employee’s weekly gross pay, given the number of hours
worked and the hourly pay rate. The number of hours worked must be at least 0 but not more
than 40. If the number of hours worked is not valid, the application should display the string “N/A”
(for “Not Available”).

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

201

Logical Operators L E S S O N A

The first If clause contains two subconditions that determine whether the number of hours
is within the expected range of 0 through 40. For the number of hours to be valid, both
subconditions must be True at the same time. In other words, the number of hours must be
greater than or equal to 0 and also less than or equal to 40. If both subconditions are not True,
it means that the number of hours is outside the expected range. Which logical operator should
you use to combine both subconditions into one compound condition? Looking at the AndAlso
and OrElse truth tables, you will notice that only the AndAlso operator evaluates the compound
condition as True when both subconditions are True, while evaluating the compound condition
as False when at least one of the subconditions is False. Therefore, the correct compound
condition to use here is decHours >= 0 AndAlso decHours <= 40.

The second If clause in Figure 4-20 contains two subconditions that determine whether the
number of hours is outside the expected range of 0 through 40. For the number of hours to be
invalid, at least one of the subconditions must be True. In other words, the number of hours
must be either less than 0 or greater than 40. If both subconditions are False, it means that
the number of hours is within the expected range. Which logical operator should you use to
combine both subconditions into one compound condition? According to the AndAlso and
OrElse truth tables, only the OrElse operator evaluates the compound condition as True when
at least one of the subconditions is True, while evaluating the compound condition as False
when both subconditions are False. Therefore, the correct compound condition to use here is
decHours < 0 OrElse decHours > 40.

The dual-alternative selection structures shown in Figure 4-21 contain the completed If clauses.
Both selection structures produce the same result and simply represent two different ways of
performing the same task.

Figure 4-21 Problem specification and dual-alternative selection structures

Problem Specification

Create an application that displays an employee’s weekly gross pay, given the number of hours
worked and the hourly pay rate. The number of hours worked must be at least 0 but not more than
40. If the number of hours worked is not valid, the application should display the string “N/A”
(for “Not Available”).

Dual-alternative selection structure 1

Dual-alternative selection structure 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

202

Figure 4-22 Sample run of the application using valid data

Figure 4-23 Sample run of the application using invalid data

5. Change the number of hours worked to 43 and then click the Calculate-AndAlso
button. See Figure 4-23.

To code and then test the dual-alternative selection structures:

1. Open the Gross Solution (Gross Solution.sln) file contained in the VB2015\Chap04\
Gross Solution-Logical folder. Open the Code Editor window. Replace <your name>
and <current date> in the comments with your name and the current date, respectively.

2. Locate the btnAndAlso_Click procedure, and then click the blank line above the End
Sub clause. Enter the first dual-alternative selection structure shown in Figure 4-21.

3. Locate the btnOrElse_Click procedure, and then click the blank line above the End
Sub clause. Enter the second dual-alternative selection structure shown in Figure 4-21.

4. Save the solution and then start the application. Type 10 and 8 in the Hours worked and
Hourly rate boxes, respectively. Click the Calculate-AndAlso button. See Figure 4-22.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

203

Comparing Strings Containing One or More Letters L E S S O N A

YOU DO IT 5!

Create an application named YouDoIt 5 and save it in the VB2015\Chap04 folder. Add
a text box, a label, and a button to the form. If the user enters a number that is either
less than 0 or greater than 100, the button’s Click event procedure should display the
string “Invalid number” in the label; otherwise, it should display the string “Valid number”.
Code the procedure. Save the solution and then start and test the application. Close
the solution.

Comparing Strings Containing One or More Letters
A procedure needs to display the message “Senior discount” when the user enters the letter Y
in the txtAtLeast65 control, and the message “No discount” when the user enters anything else.
Figure 4-24 shows five ways of writing the code to display the appropriate message.

6. Type 10 in the Hours worked box and then click the Calculate-OrElse button. The
gross pay is $80.00, as shown earlier in Figure 4-22. Change the number of hours
worked to 43 and then click the Calculate-OrElse button. The “N/A” message appears
in the Gross pay box, as shown earlier in Figure 4-23.

7. Click the Exit button.

If you are unsure whether to use AndAlso or OrElse in an If clause, test the selection structure
using both operators; only the correct operator will give you the expected results. For example,
let’s see what happens if you switch the logical operators in the dual-alternative selection
structures.

To test the selection structures with different logical operators:

1. In the btnAndAlso_Click procedure, change AndAlso to OrElse. Save the solution and
then start the application. Type 10 and 8 in the Hours worked and Hourly rate boxes,
respectively. Click the Calculate-AndAlso button. $80.00 appears in the Gross pay
box, which is correct.

2. Next, change the number of hours worked to 43 and then click the Calculate-AndAlso
button. $344.00, rather than the “N/A” message, appears in the Gross pay box, which is
incorrect.

3. Click the Exit button. In the btnAndAlso_Click procedure, change OrElse to AndAlso.

4. In the btnOrElse_Click procedure, change OrElse to AndAlso. Save the solution and
then start the application. Type 10 and 8 in the Hours worked and Hourly rate boxes,
respectively. Click the Calculate-OrElse button. $80.00 appears in the Gross pay box,
which is correct.

5. Finally, change the number of hours worked to 43 and then click the Calculate-OrElse
button. $344.00, rather than the “N/A” message, appears in the Gross pay box, which is
incorrect.

6. Click the Exit button. In the btnOrElse_Click procedure, change AndAlso to OrElse.

7. Close the Code Editor window and then close the solution.

START HERE

 Always be sure
to use data
that will test
both paths in
a selection
structure.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

204

The compound condition in Example 1’s dual-alternative selection structure determines
whether the value stored in the strSenior variable is either the uppercase letter Y or the
lowercase letter y. When the variable contains one of those two letters, the compound
condition evaluates to True and the selection structure’s true path displays the message “Senior
discount” on the screen; otherwise, its false path displays the message “No discount”. You may
be wondering why you need to compare the contents of the variable with both the uppercase

Figure 4-24 Examples of string comparisons containing one or more letters

Comparing Strings Containing One or More Letters

Example 1 – using the OrElse operator

Example 2 – using the AndAlso operator

Example 3 – inefficient solution

Example 4 – using the ToUpper method

Example 5 – using the ToLower method

unnecessary
evaluation

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

205

Converting a String to Uppercase or Lowercase L E S S O N A

and lowercase forms of the letter Y. As is true in many programming languages, string
comparisons in Visual Basic are case sensitive, which means that the uppercase version of a
letter and its lowercase counterpart are not interchangeable. So, although a human recognizes
Y and y as being the same letter, a computer does not; to a computer, a Y is different from a y.
The reason for this differentiation is that each character on the computer keyboard is stored
using a different Unicode character in the computer’s internal memory.

In Example 2’s dual-alternative selection structure, the compound condition determines whether
the value stored in the strSenior variable is not equal to the uppercase letter Y and also not
equal to the lowercase letter y. When the variable does not contain either of those two letters,
the compound condition evaluates to True and the selection structure’s true path displays the
words “No discount” on the screen; otherwise, its false path displays the words “Senior discount”.

Example 3 uses two single-alternative selection structures rather than one dual-alternative
selection structure. Although Example 3’s code produces the same results as the code in
Examples 1 and 2, it does so less efficiently. For instance, if the strSenior variable contains
the letter Y, the compound condition in the first selection structure in Example 3 will evaluate
to True, and the structure’s true path will display the “Senior discount” message. Although the
appropriate message already appears in the interface, the procedure will still evaluate the second
selection structure’s compound condition to determine whether to display the “No discount”
message. The second evaluation is unnecessary and makes Example 3’s code less efficient than
the code shown in Examples 1 and 2.

The dual-alternative selection structures in Examples 4 and 5 in Figure 4-24 also contain a string
comparison in their condition. However, notice that the conditions do not use a logical operator.
Instead, Example 4’s condition uses the ToUpper method, and Example 5’s condition uses the
ToLower method. You will learn about the ToUpper and ToLower methods in the next section.

Converting a String to Uppercase or Lowercase
As already mentioned, string comparisons in Visual Basic are case sensitive, which means that
the string “Yes” is not the same as either the string “YES” or the string “yes”. Because of this, a
problem may occur when comparing strings that are entered by the user, who may enter the
string using any combination of uppercase and lowercase letters. Although you can change a text
box’s CharacterCasing property from its default value of Normal to either Upper (which
converts the user’s entry to uppercase) or Lower (which converts the user’s entry to lowercase),
you may not want to change the case of the user’s entry as he or she is typing it. To fix the
comparison problem, you can use either the ToUpper method or the ToLower method to
temporarily convert the string to either uppercase or lowercase, respectively, and then use the
converted string in the comparison.

Figure 4-25 shows the syntax of the ToUpper and ToLower methods and includes examples
of using the methods. In each syntax, string is usually either the name of a String variable or
the Text property of an object. Both methods copy the contents of the string to a temporary
location in the computer’s internal memory. The methods convert the temporary string to
the appropriate case (if necessary) and then return the temporary string. Keep in mind that
the ToUpper and ToLower methods do not change the contents of the string; they change
the contents of the temporary location only. In addition, the ToUpper and ToLower methods
affect only letters of the alphabet, which are the only characters that have uppercase and
lowercase forms.

 You will use the
CharacterCas-
ing property in
Exercise 19 at
the end of this
lesson.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

206

When using the ToUpper method in a comparison, be sure that everything you are comparing
is uppercase, as shown in Example 1 in Figure 4-25; otherwise, the comparison will not evaluate
correctly. For instance, the clause If strSenior.ToUpper = "y" Then is not correct. The
condition will always evaluate to False because the uppercase version of a letter will never be
equal to its lowercase counterpart. Likewise, when using the ToLower method in a comparison,
be sure that everything you are comparing is lowercase, as shown in Example 2. The statement
in Example 3 temporarily converts the contents of the strState variable to uppercase and then
assigns the result to the lblState control. As Example 4 indicates, you can also use the ToUpper
and ToLower methods to permanently convert the contents of either a String variable or a
control’s Text property to uppercase or lowercase, respectively.

Using the ToUpper and ToLower Methods: Displaying a Message
Figure 4-26 shows the problem specification for the Mount Rushmore application. It also shows
a sample run of the application and two ways of writing the code for the Display button’s Click
event procedure.

Figure 4-25 Syntax and examples of the ToUpper and ToLower methods

ToUpper and ToLower Methods

Syntax
string.ToUpper
string.ToLower

Example 1

temporarily converts the contents of the variable to uppercase and then compares the
result with the uppercase letter Y

Example 2

temporarily converts the contents of the and variables to lowercase and
then compares both results

Example 3

temporarily converts the contents of the variable to uppercase and then assigns the
result to the lblState control’s Text property

Example 4

changes the contents of the variable to uppercase and changes the contents of the
txtState control’s Text property to lowercase

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

207

Converting a String to Uppercase or Lowercase L E S S O N A

When the computer processes the compound condition in Example 1, it temporarily converts
the contents of the strName variable to uppercase and then compares the result to the
string “GEORGE WASHINGTON”. If the comparison evaluates to False, the computer again
temporarily converts the contents of the variable to uppercase, this time comparing the result to
the string “THOMAS JEFFERSON”. Each time the comparison evaluates to False, the computer
must temporarily convert the strName variable’s contents to uppercase before comparing the
result to the next string. Depending on the result of each subcondition, the computer might
need to temporarily convert the contents of the strName variable to uppercase four times.

Example 2 in Figure 4-26 provides a more efficient way of writing Example 1’s code. The
strName = txtName.Text.ToUpper statement in Example 2 temporarily converts the
contents of the txtName control’s Text property to uppercase and then assigns the result to

Figure 4-26 Problem specification, sample run, and code

Problem Specification

An application needs to display the message “On Mount Rushmore” when the user enters the name
of any of the four Mount Rushmore presidents; otherwise, it should display the message “Not on
Mount Rushmore”.

Example 1 – using the ToUpper method in a condition

Example 2 – using the ToUpper method in an assignment statement

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

208

YOU DO IT 6!

Create an application named YouDoIt 6 and save it in the VB2015\Chap04 folder. Add
a text box, a label, and a button to the form. If the user enters the letter A (in either
uppercase or lowercase), the button’s Click event procedure should display the string
“Addition” in the label; otherwise, it should display the string “Subtraction”. Code the
procedure. Save the solution, and then start and test the application. Close the solution.

Summary of Operators
Figure 4-27 shows the order of precedence for the arithmetic, concatenation, comparison, and
logical operators you have learned so far. Recall that when an expression contains more than one
operator with the same precedence number, those operators are evaluated from left to right. The
figure also shows the evaluation steps for an expression that contains two arithmetic operators,
two comparison operators, and one logical operator. Notice that the arithmetic operators are
evaluated first, followed by the comparison operators and then the logical operator. (Keep in
mind that you can use parentheses to override the order of precedence.)

Ch04A-Operators

the strName variable. When the selection structure is processed, its compound condition
compares the contents of the variable (which now contains uppercase letters) to the string
“GEORGE WASHINGTON”. If the comparison evaluates to False, the computer compares the
variable’s contents to the string “THOMAS JEFFERSON”, and so on. Rather than having to
convert the contents of the strName variable to uppercase each time a comparison is made,
as in Example 1, Example 2 stores the uppercase letters in the variable before the selection
structure is processed. However, although Example 2’s code is more efficient than Example
1’s code, there may be times when you will not want to change the case of the string stored
in a variable. For example, you may need to display (on the screen or in a printed report) the
variable’s contents using the exact case entered by the user.

To code and then test the Mount Rushmore application:

1. Open the Mount Rushmore Solution (Mount Rushmore Solution.sln) file contained in
the VB2015\Chap04\Mount Rushmore Solution folder. Open the Code Editor window.
Replace <your name> and <current date> in the comments with your name and the
current date, respectively.

2. Locate the btnDisplay_Click procedure, and then click the blank line above the End
Sub clause. Enter the dual-alternative selection structure shown in Example 2 in
Figure 4-26.

3. Save the solution and then start the application. Type thomas jefferson in the Name
box, and then press Enter to select the Display button. The message “On Mount
Rushmore” appears in the interface.

4. Change the name to john adams and then press Enter. The message “Not on Mount
Rushmore” appears in the interface.

5. On your own, test the code using the names of the other three presidents on Mount
Rushmore. When you are finished testing the code, click the Exit button. Close the
Code Editor window and then close the solution.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

209

Lesson A Summary L E S S O N A

Lesson A Summary
 • To code single-alternative and dual-alternative selection structures:

Use the If...Then...Else statement. The statement’s syntax is shown in Figure 4-8.

 • To compare two values:

Use the comparison operators listed in Figure 4-10.

 • To swap the values contained in two variables:

Assign the first variable’s value to a temporary variable. Assign the second variable’s value to
the first variable, and then assign the temporary variable’s value to the second variable. An
illustration of the swapping concept is shown in Figure 4-15.

 • To create a compound condition:

Use the logical operators and truth tables listed in Figures 4-18 and 4-19, respectively.

Figure 4-27 Listing of arithmetic, concatenation, comparison, and logical operators

Operator
^
–
*, /
\
Mod
+, –
&
=, >, >=,
<, <=, <>
Not

AndAlso, And

OrElse, Or

Xor

Operation
exponentiation (raises a number to a power)
negation (reverses the sign of a number)
multiplication and division
integer division
modulus (remainder) arithmetic
addition and subtraction
concatenation
equal to, greater than, greater than or equal to,
less than, less than or equal to, not equal to
reverses the truth-value of the condition;
True becomes False, and False becomes True
all subconditions must be True for the
compound condition to evaluate to True
only one of the subconditions needs to be True
for the compound condition to evaluate to True
only one of the subconditions can be True for
the compound condition to evaluate to True

Precedence number
 1
 2
 3
 4
 5
 6
 7
 8

 9

 10

 11

 12

Example

Evaluation steps
Original expression
75 / 3 is evaluated first.
10 * 2 is evaluated second.
30 > 25 is evaluated third.
5 < 20 is evaluated fourth.
True AndAlso True is evaluated last.

Result
30 > 75 / 3 AndAlso 5 < 10 * 2
30 > 25 AndAlso 5 < 10 * 2
30 > 25 AndAlso 5 < 20
True AndAlso 5 < 20
True AndAlso True
True

concatenation

comparison

logical

arithmetic

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

210

 • To convert the user’s text box entry to either uppercase or lowercase as the user is typing the text:

Change the text box’s CharacterCasing property from Normal to either Upper or Lower.

 • To temporarily convert a string to uppercase:

Use the ToUpper method. The method’s syntax is string.ToUpper.

 • To temporarily convert a string to lowercase:

Use the ToLower method. The method’s syntax is string.ToLower.

 • To evaluate an expression containing arithmetic, comparison, and logical operators:

Evaluate the arithmetic operators first, followed by the comparison operators and then
the logical operators. Figure 4-27 shows the order of precedence for the arithmetic,
concatenation, comparison, and logical operators you have learned so far.

Lesson A Key Terms
And operator—one of the logical operators; same as the AndAlso operator, but less efficient
because it does not perform a short-circuit evaluation

AndAlso operator—one of the logical operators; when used to combine two subconditions,
the resulting compound condition evaluates to True only when both subconditions are True,
and it evaluates to False only when one or both of the subconditions are False; same as the And
operator but more efficient because it performs a short-circuit evaluation

Block scope—the scope of a variable declared within a statement block; a variable with block
scope can be used only within the statement block in which it is declared and only after its
declaration statement

Block-level variable—a variable declared within a statement block; the variable has block scope

CharacterCasing property—controls the case of the text entered in a text box

Comparison operators—operators used to compare values in an expression; also called
relational operators

Condition—specifies the decision you are making and must be phrased so that it evaluates to an
answer of either true or false

Data validation—the process of verifying that a program’s input data is within the expected range

Decision symbol—the diamond in a flowchart; used to represent the condition in selection and
repetition structures

Dual-alternative selection structure—a selection structure that requires one set of actions to
be performed when the structure’s condition evaluates to True and requires a different set of
actions to be performed when the structure’s condition evaluates to False

False path—contains the instructions to be processed when a selection structure’s condition
evaluates to False

If...Then...Else statement—used to code single-alternative and dual-alternative selection
structures in Visual Basic

Logical operators—operators used to combine two or more subconditions into one compound
condition; also called Boolean operators

Not operator—one of the logical operators; reverses the truth-value of a condition

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

211

Lesson A Review Questions L E S S O N A

Or operator—one of the logical operators; same as the OrElse operator but less efficient because
it does not perform a short-circuit evaluation

OrElse operator—one of the logical operators; when used to combine two subconditions, the
resulting compound condition evaluates to True when at least one of the subconditions is True
and evaluates to False only when both subconditions are False; same as the Or operator but
more efficient because it performs a short-circuit evaluation

Selection structure—one of the three basic control structures; tells the computer to make a decision
based on some condition and then select the appropriate action; also called the decision structure

Short-circuit evaluation—refers to the way the computer evaluates two subconditions
connected by either the AndAlso or OrElse operator (for example, when the AndAlso operator
is used, the computer does not evaluate subcondition2 if subcondition1 is False; when the OrElse
operator is used, the computer does not evaluate subcondition2 if subcondition1 is True)

Single-alternative selection structure—a selection structure that requires a special set of
actions to be performed only when the structure’s condition evaluates to True

Statement block—in a selection structure, the set of statements terminated by an Else or End If
clause

ToLower method—temporarily converts a string to lowercase

ToUpper method—temporarily converts a string to uppercase

True path—contains the instructions to be processed when a selection structure’s condition
evaluates to True

Truth tables—tables that summarize how the computer evaluates the logical operators in an
expression

Lesson A Review Questions
1. An If...Then...Else statement in the btnCalc_Click procedure declares a variable in its

false path. Where can the variable be used?

a. in the entire Code Editor window
b. in the entire btnCalc_Click procedure
c. in both paths in the If...Then...Else statement
d. only in the false path in the If...Then...Else statement

2. Which of the following compound conditions can be used to determine whether the
value in the intQuantity variable is outside the range of 0 through 500?

a. intQuantity < 0 OrElse intQuantity > 500
b. intQuantity > 0 AndAlso intQuantity < 500
c. intQuantity <= 0 OrElse intQuantity >= 500
d. intQuantity < 0 AndAlso intQuantity > 500

3. Which of the following If clauses should you use to compare the string contained in the
txtId control with the state abbreviation CA?

a. If txtId.Text = ToUpper(“CA”) Then
b. If txtId.Text = ToLower(“ca”) Then
c. If txtId.Text.ToUpper = “CA” Then
d. If ToUpper(txtId.Text) = “CA” Then

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

212

4. The six logical operators are listed below. Indicate their order of precedence by
placing a number (1, 2, and so on) on the line to the left of the operator. If two or more
operators have the same precedence, assign the same number to each.

_____________________ Xor
_____________________ And
_____________________ Not
_____________________ Or
_____________________ AndAlso
_____________________ OrElse

5. An expression can contain arithmetic, comparison, and logical operators. Indicate the
order of precedence for the three types of operators by placing a number (1, 2, or 3) on
the line to the left of the operator type.

_____________________ Arithmetic
_____________________ Logical
_____________________ Comparison

6. The expression 6 > 12 OrElse 4 < 5 evaluates to _____________________.

a. True
b. False

7. The expression 6 + 3 > 7 AndAlso 11 > 2 * 5 evaluates to
_____________________.

a. True
b. False

8. The expression 8 >= 4 + 6 OrElse 5 > 6 AndAlso 4 < 7 evaluates to
_____________________.

a. True
b. False

9. The expression 7 + 3 * 2 > 5 * 3 AndAlso True evaluates to
_____________________.

a. True
b. False

10. The expression 5 * 4 > 6 ˆ 2 evaluates to _____________________.

a. True
b. False

11. The expression 5 * 4 > 6 ˆ 2 AndAlso True OrElse False evaluates to
_____________________.

a. True
b. False

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

213

Lesson A Exercises L E S S O N A

Lesson A Exercises
1. Write an If...Then...Else statement that displays the string “Columbia” in the lblCapital

control when the txtState control contains the string “SC” (in any case).

2. Write an If...Then...Else statement that displays the string “Please enter ZIP code” in the
lblMsg control when the txtZip control does not contain any data.

3. Write an If...Then...Else statement that displays the string “Incorrect quantity” in the
lblMsg control when the intQuantity variable contains a number that is less than 0;
otherwise, display the string “Valid quantity”.

4. Write an If...Then...Else statement that displays the string “Time to reorder” in the
lblMsg control when the intInStock variable contains a number that is less than 250;
otherwise, display the string “We have enough in stock”.

5. Write an If...Then...Else statement that assigns the number 35 to the intCommission
variable when the decSales variable contains a number that is less than or equal to
$250; otherwise, assign the number 50.

6. Write an If...Then...Else statement that displays the value 25 in the lblShipping control
when the strState variable contains the string “Alaska” (in any case); otherwise,
display the value 15.

7. Write an If...Then...Else statement that displays the string “Cat” in the lblAnimal control
when the strAnimal variable contains the letter “C” (in any case); otherwise, display
the string “Dog”. Also draw the flowchart.

8. A procedure should calculate a 2.5% commission when the strCommType variable
contains the string “Prime” (in any case); otherwise, it should calculate a 2%
commission. The commission is calculated by multiplying the commission rate by the
contents of the dblSales variable. Display the commission in the lblComm control.
Draw the flowchart and then write the Visual Basic code.

9. In this exercise, you modify one of the Gross Pay Calculator applications from the
lesson. Use Windows to make a copy of the Gross Solution-Single folder. Rename the
copy Modified Gross Solution-Single. Open the Gross Solution (Gross Solution.sln)
file contained in the Modified Gross Solution-Single folder. Locate the btnCalc_Click
procedure in the Code Editor window. Change the selection structure’s true path as
indicated in Figure 4-28. Save the solution, and then start and test the application.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

Figure 4-28 Pseudocode for Exercise 9

1. store hours and rate in variables
2. gross = hours * rate
3. if hours are greater than 40
 overtime = (hours – 40) * rate / 2
 gross = gross + overtime
 end if
4. display gross in lblGross

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

214

10. In this exercise, you modify the Net Income or Loss application from the lesson. Use
Windows to make a copy of the Net Solution folder. Rename the copy Modified Net
Solution. Open the Net Solution (Net Solution.sln) file contained in the Modified
Net Solution folder. Locate the btnCalc_Click procedure in the Code Editor window.
Change the selection structure’s condition so that it tests for the opposite of what it
does now, and then make the necessary modifications to the structure’s paths. Save the
solution, and then start and test the application.

11. In this exercise, you modify one of the Gross Pay Calculator applications from the
lesson. Use Windows to make a copy of the Gross Solution-Dual folder. Rename the
copy Modified Gross Solution-Dual. Open the Gross Solution (Gross Solution.sln)
file contained in the Modified Gross Solution-Dual folder. Locate the btnCalc_Click
procedure in the Code Editor window. Change the selection structure as indicated in
Figure 4-29. You will need to provide the overtime calculation. Save the solution, and
then start and test the application.

INTRODUCTORY

INTERMEDIATE

Figure 4-29 Pseudocode for Exercise 11

1. store hours and rate in variables
2. if hours are less than or equal to 40
 gross = hours * rate
 else
 gross = 40 * rate
 overtime = ______________
 gross = gross + overtime
 end if
3. display gross in lblGross

you will need to provide the
overtime calculation

12. Sam’s Paper Shoppe wants you to create an application that allows a salesclerk to enter
an item’s price and the quantity purchased by a customer. When the quantity purchased
is greater than 5, the customer is given a 15% discount. The application should display
the total amount the customer owes. Use the following names for the solution and
project, respectively: Sam Solution and Sam Project. Save the application in the
VB2015\Chap04 folder. Test the application using 10 and 5 as the price and quantity
purchased, respectively; the total owed is $50.00. Then test the application using 9 and
6 as the price and quantity purchased, respectively; the total owed is $45.90.

13. Create an application that displays a salesperson’s annual bonus amount, given his
or her annual sales amount. The bonus rate is 10% when the sales amount is at least
$25,000; otherwise, the bonus rate is 8%. Use the following names for the solution and
project, respectively: Bonus Solution and Bonus Project. Save the application in the
VB2015\Chap04 folder. Test the application appropriately.

14. Create an application that determines whether a customer is entitled to free shipping
when ordering from Savannah’s Web site. Savannah’s does not charge shipping when
the customer uses his or her Savannah’s credit card to pay for an order totaling $100 or
more. Customers who do not meet these two requirements are charged $9 for shipping.
The application should display the appropriate shipping charge: either $0 or $9. Use
the following names for the solution and project, respectively: Savannah Solution
and Savannah Project. Save the application in the VB2015\Chap04 folder. Test the
application appropriately.

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

215

Lesson A Exercises L E S S O N A

15. Create an application that determines whether a customer is entitled to free shipping
when ordering from JimJoe’s Web site. JimJoe’s does not charge shipping on any order
when the customer belongs to the JimJoe’s Free Shipping Club. It also doesn’t charge
shipping for any order totaling $100 or more. The application should display one of
the following messages: “Your shipping is free!” or “You will be charged for shipping.”
Use the following names for the solution and project, respectively: JimJoe Solution and
JimJoe Project. Save the application in the VB2015\Chap04 folder. Test the application
appropriately.

16. In this exercise, you modify the Sam’s Paper Shoppe application from Exercise 12. Use
Windows to make a copy of the Sam Solution folder. Rename the copy Modified Sam
Solution. Open the Sam Solution (Sam Solution.sln) file contained in the Modified Sam
Solution folder. Change the code to give a 15% discount when the quantity purchased
is at least 10 and a 5% discount when the quantity purchased is less than 10. Test the
application appropriately.

17. Create an application that displays a salesperson’s monthly commission amount, given
his or her monthly sales amount and commission ID. Salespeople who have one of the
following commission IDs receive a 15% commission: A1, B2, C3. All other salespeople
receive a 12% commission. Use the following names for the solution and project,
respectively: Commission Solution and Commission Project. Save the application in the
VB2015\Chap04 folder. Test the application appropriately.

18. In this exercise, you modify the commission application from Exercise 17. Use
Windows to make a copy of the Commission Solution folder. Rename the copy
Modified Commission Solution. Open the Commission Solution (Commission
Solution.sln) file contained in the Modified Commission Solution folder. The
requirements for a 15% commission have changed: In addition to having one of the
three IDs mentioned in Exercise 17, the salesperson’s monthly sales must be at least
$25,000. Salespeople who do not meet these requirements receive a 12% commission.
Modify the code to reflect these changes. Test the application appropriately.

19. In this exercise, you learn how to use a text box’s CharacterCasing property. Open the
VB2015\Chap04\CharCase Solution\CharCase Solution (CharCase Solution.sln) file.

a. Open the Code Editor window and study the code contained in the btnDisplay_Click
procedure. The code compares the contents of the txtId control with the strings
“AB12”, “XY59”, and “TV45”. However, it does not convert the contents of the text box
to uppercase. Start the application. Enter ab12 as the ID and then click the Display
button. The button’s Click event procedure displays the “Invalid ID” message, which
is incorrect. Click the Exit button.

b. Use the Properties window to change the txtId control’s CharacterCasing property to
Upper. Save the solution and then start the application. Enter ab12 as the ID. Notice
that the letters appear in uppercase in the text box. Click the Display button. The
button’s Click event procedure displays the “Valid ID” message, which is correct.
Click the Exit button.

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

ADVANCED

DISCOVERY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

216

Adding a Group Box to the Form
You use the GroupBox tool, which is located in the Containers section of the toolbox, to add a
group box to the interface. A group box serves as a container for other controls and is typically
used to visually separate related controls from other controls on the form. You can include an
identifying label on a group box by setting the group box’s Text property. Labeling a group box is
optional; but if you do label it, the label should be entered using sentence capitalization. A group
box and its controls are treated as one unit. Therefore, when you move or delete a group box,
the controls inside the group box are also moved or deleted, respectively.

❚ LESSON B
After studying Lesson B, you should be able to:

 • Group objects using a GroupBox control

 • Create a message box using the MessageBox.Show method

 • Determine the value returned by a message box

Creating the Treeline Resort Application
Recall that your task in this chapter is to create a reservation application for Treeline Resort.
The application will allow the user to enter the following information: the number of rooms to
reserve, the length of stay (in nights), the number of adults, and the number of children. Each
room can accommodate a maximum of six people. The resort charges $225.50 per room per
night. It also charges a 16.25% sales and lodging tax, which is based on the room charge. In
addition, there is a $12.50 resort fee per room per night. The application should display the total
room charge, the sales and lodging tax, the total resort fee, and the total due.

To open the partially completed Treeline Resort application:

1. If necessary, start Visual Studio VB2015. Open the VB2015\Chap04\Treeline Solution\
Treeline Solution (Treeline Solution.sln) file. See Figure 4-30. In the next section, you
will add a second group box to the interface.

START HERE

Figure 4-30 Partially completed interface for Treeline Resort

these controls and their
identifying labels will be
placed in their own group
box

this group box contains
the controls associated
with the input

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

217

Creating the Treeline Resort Application L E S S O N B

Figure 4-31 Interface showing the location and size of the additional group box

GUI DESIGN TIP Labeling a Group Box

 • Use sentence capitalization for the optional identifying label, which is entered in the
group box’s Text property.

To add a group box to the interface:

1. If necessary, expand the Containers node in the toolbox. Click the GroupBox tool and
then drag the mouse pointer to the form. You do not need to worry about the exact
location. Release the mouse button. The GroupBox2 control appears on the form.

2. Change the group box’s Text property to Charges, and then position and size the group
box as shown in Figure 4-31.

START HERE

3. Next, you will drag the eight controls related to the calculated amounts into the Charges
group box. You then will center the controls within the group box. Place your mouse
pointer slightly above and to the left of the Room: label. Press and hold down the left
mouse button as you drag the mouse pointer down and to the right. A dotted rectangle
appears as you drag. Continue to drag until the dotted rectangle surrounds the eight
controls, as shown in Figure 4-32.

Figure 4-32 Dotted rectangle surrounding the eight controls

dotted rectangle

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

218

4. When the dotted rectangle surrounds the eight controls, release the mouse button to
select them. Place your mouse pointer on one of the selected controls. The mouse pointer
turns into the move pointer. Press and hold down the left mouse button as you drag the
selected controls into the Charges group box, and then release the mouse button.

5. Use the Format menu’s Center in Form option to center the selected controls both
horizontally and vertically in the group box.

6. Click the form to deselect the controls. Use the sizing handle to move the form’s
bottom border closer to the buttons (you can look ahead to Figure 4-33 and use it as a
guide), and then lock the controls on the form.

7. Click View on the menu bar and then click Tab Order. Notice that the TabIndex values
of the controls contained within each group box begin with the TabIndex value of the
group box itself. This indicates that the controls belong to the group box rather than to
the form. As mentioned earlier, if you move or delete the group box, the controls that
belong to the group box will also be moved or deleted. The numbers that appear after
the period in the TabIndex values indicate the order in which each control was added
to the group box.

8. Use the information shown in Figure 4-33 to set each control’s TabIndex value.

The move
pointer men-
tioned in Step 4
looks like this:

Figure 4-33 Correct TabIndex values for the interface

9. When you are finished setting the TabIndex values, press Esc to remove the TabIndex
boxes, and then save the solution.

Coding the Treeline Resort Application
According to the application’s TOE chart, which is shown in Figure 4-34, the Click event
procedures for the two buttons need to be coded. The TextChanged, KeyPress, and Enter events for
the four text boxes also need to be coded. When you open the Code Editor window, you will notice
that the btnExit_Click procedure has already been coded and so have the TextChanged event
procedures for the four text boxes. In this lesson, you will code only the btnCalc_Click procedure.
You will code the KeyPress and Enter event procedures for the four text boxes in Lesson C.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

219

Coding the Treeline Resort Application L E S S O N B

Figure 4-34 TOE chart for the Treeline Resort application

Task

1. Calculate the total room charge, tax, total
 resort fee, and total due

2. Display the calculated amounts in lblRoomChg,
 lblTax, lblResortFee, and lblTotalDue

End the application

Display the total room charge (from btnCalc)

Display the tax (from btnCalc)

Display the total resort fee (from btnCalc)

Display the total due (from btnCalc)

Get and display the number of rooms reserved,
number of nights, number of adults, and
number of children

Clear the contents of lblRoomChg, lblTax,
lblResortFee, and lblTotalDue

Allow the text box to accept only numbers and
the Backspace key

Select the contents of the text box

Object

btnCalc

btnExit

lblRoomChg

lblTax

lblResortFee

lblTotalDue

txtRooms, txtNights,
txtAdults, txtChildren

txtRooms, txtNights,
txtAdults, txtChildren

txtRooms, txtNights,
txtAdults, txtChildren

txtRooms, txtNights,
txtAdults, txtChildren

Event

Click

Click

None

None

None

None

None

TextChanged

KeyPress

Enter

Coding the btnCalc Control’s Click Event Procedure
The btnCalc_Click procedure is responsible for calculating and displaying the total room charge,
tax, total resort fee, and total due. The procedure’s pseudocode is shown in Figure 4-35.

Figure 4-35 Pseudocode for the btnCalc_Click procedure

btnCalc Click event procedure
1. store user input (numbers of rooms reserved, nights, adults, and children) in variables
2. calculate the total number of guests = number of adult guests + number of child guests
3. calculate the number of rooms required = total number of guests / maximum number
 of guests per room, which is 6
4. if the number of rooms reserved < number of rooms required
 display the message “You have exceeded the maximum guests per room.”
 else
 calculate total room charge = number of rooms reserved * number of nights
 * daily room charge of $225.50
 calculate tax = total room charge * tax rate of 16.25%
 calculate total resort fee = number of rooms reserved * number of nights
 * daily resort fee of $12.50
 calculate total due = total room charge + tax + total resort fee
 display total room charge, tax, total resort fee, and total due
 end if

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

220

To begin coding the btnCalc_Click procedure:

1. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. Open the code template for the btnCalc_Click procedure. Type the comments shown
in Figure 4-36, and then position the insertion point as shown in the figure.

START HERE

Named constants Values
6
225.50
0.1625 (the decimal equivalent of 16.25%)
12.50
“You have exceeded the maximum guests per room.”

Now, study the procedure’s pseudocode to determine any named constants or variables the
procedure will use. When determining the named constants, look for items whose value should
remain the same each time the procedure is invoked. In the btnCalc_Click procedure, those
items are the maximum number of guests per room, the daily room charge, the tax rate, the
daily resort fee, and the message. Figure 4-37 shows the named constants that the procedure
will use for these items. The named constants will make the code easier to understand, and they
will allow you (or another programmer) to quickly locate those values should they need to be
changed in the future.

Figure 4-36 Comments entered in the procedure

position the
insertion point
here

enter these
comments

When determining the procedure’s variables, look in the pseudocode for items whose value is
allowed to change each time the procedure is processed. The btnCalc_Click procedure has 10
such items: the four input items and the six calculated items. Figure 4-38 shows the variables
that the procedure will use.

Figure 4-37 Listing of named constants and their values

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

221

Coding the Treeline Resort Application L E S S O N B

To continue coding the btnCalc_Click procedure:

1. Enter the Const and Dim statements shown in Figure 4-39, and then position the
insertion point as shown in the figure.

START HERE

Variable names Stores
the number of rooms reserved
the number of nights
the number of adult guests
the number of child guests
the total number of guests, which is calculated by adding together the
number of adult guests and the number of child guests
the number of rooms required, which is calculated by dividing the
total number of guests by the maximum number of guests per room
(may contain a decimal place)
the total room charge, which is calculated by multiplying the number
of rooms reserved by the number of nights and then multiplying the
result by the daily room charge
the tax, which is calculated by multiplying the total room charge by
the tax rate
the total resort fee, which is calculated by multiplying the number of
rooms reserved by the number of nights and then multiplying the
result by the daily resort fee
the total due, which is calculated by adding together the total room
charge, tax, and total resort fee

Figure 4-38 Listing of variables and what each stores

Figure 4-39 Const and Dim statements entered in the procedure

position the insertion
point here

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

222

2. Step 1 in the pseudocode is to store the input items in variables. Enter the following
comment and TryParse methods. Press Enter twice after typing the last TryParse
method.

 ' store input in variables
 Integer.TryParse(txtRooms.Text, intRoomsReserved)
 Integer.TryParse(txtNights.Text, intNights)
 Integer.TryParse(txtAdults.Text, intAdults)
 Integer.TryParse(txtChildren.Text, intChildren)

3. Step 2 in the pseudocode calculates the total number of guests by adding together the
number of adult guests and the number of child guests. Enter the following comment
and assignment statement:

 ' calculate total number of guests
 intNumGuests = intAdults + intChildren

4. Step 3 in the pseudocode calculates the number of rooms required by dividing the total
number of guests by the maximum number of guests per room. Enter the following
comment and assignment statement. Press Enter twice after typing the assignment
statement.

 ' calculate number of rooms required
 dblRoomsRequired = intNumGuests / intMAX_PER_ROOM

5. Step 4 in the pseudocode is a selection structure that determines whether the number
of rooms reserved is adequate for the number of guests. If the number of reserved
rooms is less than the number of required rooms, the selection structure’s true path
displays an appropriate message. In the next section, you will learn how to display the
message in a message box. For now, enter the following comments and If clause. When
you press Enter after typing the If clause, the Code Editor will automatically enter the
End If clause for you.

 ' determine whether number of reserved rooms is
 ' adequate and then either display a message or
 ' calculate and display the charges
 If intRoomsReserved < dblRoomsRequired Then

6. Save the solution.

The MessageBox.Show Method
At times, an application may need to communicate with the user during run time. One
means of doing this is through a message box. You display a message box using the
MessageBox.Show method. The message box contains text, one or more buttons, and an
icon. Figure 4-40 shows the method’s syntax and lists the meaning of each argument. The
figure also includes examples of using the method. Figures 4-41 and 4-42 show the message
boxes created by the two examples.

Using a blank
line to separate
related blocks
of code in the
Code Editor

window makes the
code easier to read and
understand.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

223

The MessageBox.Show Method L E S S O N B

MessageBox.Show Method
Syntax
MessageBox.Show(text, caption, buttons, icon[, defaultButton])

Argument Meaning
text text to display in the message box; use sentence capitalization

caption text to display in the message box’s title bar; use book title capitalization

buttons buttons to display in the message box; can be one of the following constants:

 (default setting)

icon icon to display in the message box; typically, one of the following constants:

defaultButton button automatically selected when the user presses Enter; can be
 one of the following constants:
 (default setting)

Example 1

displays the information message box shown in Figure 4-41

Example 2

displays the warning message box shown in Figure 4-42

Figure 4-40 Syntax and examples of the MessageBox.Show method

Figure 4-41 Message displayed by the code in Example 1 in Figure 4-40

the user can close an information
message box using either the OK
button or the Close button

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

224

After displaying the message box, the MessageBox.Show method waits for the user to
choose one of the buttons. It then closes the message box and returns an integer indicating
the button chosen by the user. Sometimes you are not interested in the value returned by
the MessageBox.Show method. This is the case when the message box is for informational
purposes only, such as the message box shown in Figure 4-41. Many times, however, the
button selected by the user determines the next task performed by the application. Selecting
the Yes button in the message box shown in Figure 4-42 tells the application to delete the
record; selecting the No button tells it not to delete the record.

Figure 4-43 lists the integer values returned by the MessageBox.Show method. Each value is
associated with a button that can appear in a message box. The figure also lists the DialogResult
values assigned to each integer as well as the meaning of the integers and values. As the figure
indicates, the MessageBox.Show method returns the integer 6 when the user selects the Yes
button. The integer 6 is represented by the DialogResult value DialogResult.Yes. When
referring to the method’s return value in code, you should use the DialogResult values rather than
the integers because the values make the code more self-documenting and easier to understand.
Figure 4-43 also shows two examples of using the MessageBox.Show method’s return value.

Figure 4-42 Message displayed by the code in Example 2 in Figure 4-40

GUI DESIGN TIP MessageBox.Show Method

 • Use sentence capitalization for the text argument, but use book title capitalization
for the caption argument.

 • Display the Exclamation icon to alert the user that he or she must make a decision
before the application can continue. You can phrase the message as a question.
Message boxes that contain the Exclamation icon typically contain more than one
button.

 • Display the Information icon along with an OK button in a message box that displays
an informational message.

 • Display the Stop icon to alert the user of a serious problem that must be corrected
before the application can continue.

 • The default button in the message box should represent the user’s most likely action
as long as that action is not destructive.

the Close button is
automatically disabled

the user must select one of
these two buttons to close
a warning message box

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

225

The MessageBox.Show Method L E S S O N B

In the first example in Figure 4-43, the MessageBox.Show method’s return value is assigned to a
DialogResult variable named dlgButton. The selection structure in the example compares the
contents of the dlgButton variable with the DialogResult.Yes value. In the second example,
the method’s return value is not stored in a variable. Instead, the method appears in the selection
structure’s condition, where its return value is compared with the DialogResult.Yes value.
The selection structure in Example 2 performs one set of tasks when the user selects the Yes
button in the message box, and it performs a different set of tasks when the user selects the No
button. Many programmers document the Else portion of the selection structure as shown in
Example 2 because it clearly states that the Else portion is processed only when the user selects
the No button.

In the next set of steps, you will use the MessageBox.Show method to display the appropriate
message when the number of reserved rooms is less than the number of required rooms. The
message box is for informational purposes only. Therefore, it should contain the Information
icon and the OK button, and you do not need to be concerned with its return value.

MessageBox.Show Method’s Return Values
Integer
1
2
3
4
5
6
7

DialogResult value Meaning
user chose the OK button
user chose the Cancel button
user chose the Abort button
user chose the Retry button
user chose the Ignore button
user chose the Yes button
user chose the No button

Example 1

 instructions to delete the record

Example 2

instructions to start another game

instructions to close the game application

Figure 4-43 Values returned by the MessageBox.Show method

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

226

To add the MessageBox.Show method to the btnCalc_Click procedure:

1. The insertion point should be positioned in the blank line above the End If clause. Enter
the following lines of code:

 MessageBox.Show(strMSG, "Treeline Resort",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)

Completing the btnCalc_Click Procedure
Recall that Step 4 in the btnCalc_Click procedure’s pseudocode is a selection structure that
determines whether the number of rooms reserved is adequate for the number of guests. In the
previous section, you completed the selection structure’s true path. You will complete the false
path in this section. According to the pseudocode, the false path should calculate and display the
total room charge, tax, total resort fee, and total due.

To complete the btnCalc_Click procedure and then test it:

1. In the blank line above the End If clause, type else and press Enter.

2. The total room charge is calculated by first multiplying the number of rooms reserved
by the number of nights and then multiplying the result by the daily room charge. Enter
the following comment and assignment statement:

 ' calculate charges
 dblTotalRoomChg = intRoomsReserved *
 intNights * dblDAILY_ROOM_CHG

3. The tax is calculated by multiplying the total room charge by the tax rate. Enter the
following assignment statement:

 dblTax = dblTotalRoomChg * dblTAX_RATE

4. The total resort fee is calculated by first multiplying the number of rooms reserved by
the number of nights and then multiplying the result by the daily resort fee. Enter the
following assignment statement:

 dblTotalResortFee = intRoomsReserved *
 intNights * dblDAILY_RESORT_FEE

5. The total due is calculated by adding together the total room charge, tax, and total
resort fee. Enter the following assignment statement:

 dblTotalDue = dblTotalRoomChg +
 dblTax + dblTotalResortFee

6. Finally, you will display the calculated amounts in the interface. Press Enter to insert
another blank line below the last assignment statement. Enter the following comment
and assignment statements:

 ' display charges
 lblRoomChg.Text = dblTotalRoomChg.ToString("n2")
 lblTax.Text = dblTax.ToString("n2")
 lblResortFee.Text = dblTotalResortFee.ToString("n2")
 lblTotalDue.Text = dblTotalDue.ToString("c2")

7. If necessary, delete the blank line above the End If clause.

START HERE

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

227

Completing the btnCalc_Click Procedure L E S S O N B

8. Save the solution and then start the application. Type 1 in the Rooms box, type 2 in
the Nights box, type 4 in the Adults box, and type 4 in the Children box. Click the
Calculate button. The message box shown in Figure 4-44 opens.

9. Click the OK button to close the message box. Change the number of adults to 2. Also
change the number of children to 2. Click the Calculate button. See Figure 4-45.

Figure 4-44 Message box created by the MessageBox.Show method

Figure 4-45 Calculated amounts shown in the interface

10. Click the Exit button.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

228

Figure 4-46 Treeline Resort application’s code at the end of Lesson B (continues)

Figure 4-46 shows the application’s code at the end of Lesson B.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

229

Lesson B Summary L E S S O N B

Figure 4-46 Treeline Resort application’s code at the end of Lesson B

(continued)

Lesson B Summary
 • To group controls together using a group box:

Use the GroupBox tool to add a group box to the form. Drag controls from either the form or
the toolbox into the group box. To include an optional identifying label on a group box, set
the group box’s Text property. The TabIndex value of a control contained within a group box
is composed of two numbers separated by a period. The number to the left of the period is
the TabIndex value of the group box itself. The number to the right of the period indicates the
order in which the control was added to the group box.

 • To display a message box that contains text, one or more buttons, and an icon:

Use the MessageBox.Show method. The method’s syntax is shown in Figure 4-40, and its
return values are explained in Figure 4-43.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

230

Lesson B Key Terms
Group box—a control that is used to contain other controls; instantiated using the GroupBox
tool, which is located in the Containers section of the toolbox

MessageBox.Show method—displays a message box that contains text, one or more buttons,
and an icon; allows an application to communicate with the user while the application is running

Lesson B Review Questions
1. Which of the following statements is false?

a. When you delete a group box, the controls contained within the group box are also
deleted.

b. Moving a group box also moves all of the controls contained within the group box.
c. A group box’s Label property specifies its identifying label.
d. You can drag a control from the form into a group box.

2. What is the TabIndex value of the first control added to a group box whose TabIndex
value is 3?

a. 3
b. 3.0

c. 3.1
d. none of the above

3. You use the _____________________ constant to include the Exclamation icon in a
message box.

a. MessageBox.Exclamation
b. MessageBox.IconExclamation

c. MessageBoxIcon.Exclamation
d. MessageBox.WarningIcon

4. If a message is for informational purposes only and does not require the user to make a
decision, the message box should display which of the following?

a. an OK button and the Information icon
b. an OK button and the Exclamation icon
c. a Yes button and the Information icon
d. any button and the Information icon

5. If the user clicks the Yes button in a message box, the message box returns the
number 6, which is equivalent to which value?

a. DialogResultButton.Yes
b. DialogResult.Yes

c. DialogResult.YesButton
d. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

231

Lesson B Exercises L E S S O N B

2. In this exercise, you modify the Net Income or Loss application from Lesson A. Use
Windows to make a copy of the Net Solution folder. Rename the copy Net Solution-
Print. Open the Net Solution (Net Solution.sln) file contained in the Net Solution-Print
folder. Locate the btnCalc_Click procedure in the Code Editor window. After displaying
the output, use the MessageBox.Show method to ask the user whether he or she wants
to print the interface. If the user wants to print the interface, send the printout to the
Print preview window. (Use the examples shown earlier in Figure 4-43 as a guide.) Test
the application appropriately.

3. Tea Time Company wants you to create an application that allows a clerk to enter the
number of pounds of tea ordered, the price per pound, and whether the customer
should be charged a $15 shipping fee. The application should calculate and display
the total amount the customer owes. Use the following names for the solution and
project, respectively: Tea Time Solution and Tea Time Project. Save the application
in the VB2015\Chap04 folder. The total amount owed should be removed from the
interface when a change is made to the contents of a text box in the interface. Use
the MessageBox.Show method to determine whether the user should be charged
for shipping. (Use the examples shown earlier in Figure 4-43 as a guide.) Test the
application appropriately.

INTRODUCTORY

INTERMEDIATE

Lesson B Exercises
1. Create an application that converts American dollars to the three currencies indicated in

Figure 4-47. Use the following names for the solution and project, respectively: Converter
Solution and Converter Project. Save the application in the VB2015\Chap04 folder.
Make the Convert button the default button. Use the Internet to determine the current
conversion rates. Display the output with two decimal places. Clear the output when a
change is made to the number of American dollars. Use a selection structure to verify
that the American dollar box is not empty. If the box is empty, use the MessageBox.Show
method to display an appropriate message. Test the application appropriately.

INTRODUCTORY

Figure 4-47 Interface for Exercise 1

group box

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

232

4. Triple County Electric wants you to create an application that calculates a customer’s
monthly electric bill, given the customer’s name and his or her current and previous
meter readings. If the current reading is less than the previous reading, use the
MessageBox.Show method to display an appropriate message. The charge per unit of
electricity is $0.13. Use the following names for the solution and project, respectively:
Triple County Solution and Triple County Project. Save the application in the
VB2015\Chap04 folder. The total charge for the month should be removed from the
interface when a change is made to the contents of a text box in the interface. Test the
application appropriately.

5. Create an application that displays the result of dividing the larger of two numbers
entered by the user by the smaller one, as indicated in Figure 4-48. Use the following
names for the solution and project, respectively: Division Solution and Division Project.
Save the application in the VB2015\Chap04 folder. If the smaller number is 0, the
application should display the message “Cannot divide by 0” in a message box. Test the
application by entering 150.72 and 3 in the First and Second boxes, respectively. Then
test it by entering 4 and 100 in the First and Second boxes, respectively. Also test it
using 0 and 5, and then test it again using 0 and –3.

INTERMEDIATE

ADVANCED

Figure 4-48 Interface for Exercise 5

group box

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

233

Coding the KeyPress Event Procedures L E S S O N C

❚ LESSON C
After studying Lesson C, you should be able to:

 • Prevent the entry of unwanted characters in a text box

 • Select the existing text in a text box

Coding the KeyPress Event Procedures
To complete the Treeline Resort application, you need to code the KeyPress and Enter event
procedures for the four text boxes. You will code the KeyPress event procedures first.

To open the Treeline Resort application:

1. If necessary, start Visual Studio 2015. Open the Treeline Solution (Treeline Solution.sln)
file from Lesson B.

The application provides text boxes for the user to enter the numbers of rooms, nights, adults,
and children. The user should enter those items using only numbers. The items should not
contain any letters, spaces, punctuation marks, or special characters. Unfortunately, you can’t
stop the user from trying to enter an inappropriate character into a text box. However, you
can prevent the text box from accepting the character by coding the text box’s KeyPress event
procedure.

To view the code template for the txtRooms_KeyPress procedure:

1. Open the Code Editor window, and then open the code template for the
txtRooms_KeyPress procedure. See Figure 4-49.

START HERE

START HERE

A control’s KeyPress event occurs each time the user presses a key while the control has the
focus. The procedure associated with the KeyPress event has two parameters, which appear
within the parentheses in the procedure header: sender and e. A parameter represents
information that is passed to the procedure when the event occurs. When the KeyPress event
occurs, a character corresponding to the pressed key is sent to the event’s e parameter. For
example, when the user presses the period (.) while entering data into a text box, the text box’s
KeyPress event occurs and a period is sent to the event’s e parameter. Similarly, when the Shift
key along with a letter is pressed, the uppercase version of the letter is sent to the e parameter.

To prevent a text box from accepting an inappropriate character, you first use the e parameter’s
KeyChar property to determine the pressed key. (KeyChar stands for key character.) You then
use the e parameter’s Handled property to cancel the key if it is an inappropriate one. You
cancel the key by setting the Handled property to True, like this: e.Handled = True.

Figure 4-50 shows examples of using the KeyChar and Handled properties in the KeyPress
event procedure. The condition in Example 1’s selection structure compares the contents of the
KeyChar property with a dollar sign. If the condition evaluates to True, the e.Handled = True

Figure 4-49 Code template for the txtRooms_KeyPress procedure

sender parameter e parameter

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

234

instruction in the selection structure’s true path cancels the $ key before it is entered in the
txtSales control. You can use the selection structure in Example 2 to allow the text box to accept
only numbers and the Backspace key (which is used for editing). You refer to the Backspace key
on your keyboard using Visual Basic’s ControlChars.Back constant.

Controlling the Characters Accepted by a Text Box

Example 1

Example 2

Figure 4-50 Examples of using the KeyChar and Handled properties in the KeyPress event procedure

According to the application’s TOE chart, each text box’s KeyPress event procedure should allow
the text box to accept only numbers and the Backspace key. All other keys should be canceled.
(The TOE chart is shown in Figure 4-34 in Lesson B.)

To code and then test the KeyPress event procedures:

1. Change txtRooms_KeyPress in the procedure header to CancelKeys.

2. Place the insertion point immediately before the) (closing parenthesis) in the
procedure header, and then press Enter to move the parenthesis and the Handles
clause to the next line in the procedure. (You can look ahead to Figure 4-51 and use it
as a guide.)

3. Place the insertion point at the end of the Handles clause. Type the following text
and press Enter. (Be sure to type the comma before and after txtNights.KeyPress.)

, txtNights.KeyPress,

4. Now type the following text and press Enter:

txtAdults.KeyPress, txtChildren.KeyPress

5. Enter the comments and code shown in Figure 4-51.

START HERE

 The KeyPress
event automati-
cally allows the
use of the
Delete key for
editing.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

235

Coding the Enter Event Procedures L E S S O N C

6. Save the solution and then start the application. Try to enter a letter in the Rooms
box, and then try to enter a dollar sign. Type 10 in the Rooms box and then press
Backspace to delete the 0. The Rooms box now contains only the number 1.

7. Try to enter a letter in the Nights box, and then try to enter a percent sign. Type 21 in
the Nights box and then press Backspace to delete the 1. The Nights box now contains
only the number 2.

8. Try to enter a letter in the Adults box, and then try to enter an ampersand. Type 20 in
the Adults box and then press Backspace to delete the 0. The Adults box now contains
only the number 2.

9. Try to enter a letter in the Children box, and then try to enter a period. Type 13 in the
Children box and then press Backspace to delete the 3. The Children box now contains
only the number 1.

10. Click the Calculate button to display the calculated amounts in the interface.

11. Press Tab twice to move the focus to the Rooms box. Notice that the insertion point
appears at the end of the number 1. It is customary in Windows applications to have a
text box’s existing text selected (highlighted) when the text box receives the focus. You
will learn how to select the existing text in the next section. Click the Exit button to end
the application.

Coding the Enter Event Procedures
To complete the Treeline Resort application, you just need to code the Enter event procedures
for the four text boxes. A text box’s Enter event occurs when the text box receives the focus,
which can happen as a result of the user tabbing to the control or using the control’s access key.
It also occurs when the Focus method is used to send the focus to the control. In the current
application, the Enter event procedure for each text box is responsible for selecting (highlighting)
the contents of the text box. When the text is selected in a text box, the user can remove the text
simply by pressing a key on the keyboard, such as the letter n; the pressed key—in this case, the
letter n—replaces the selected text.

Visual Basic provides the SelectAll method for selecting a text box’s existing text. The method’s
syntax is shown in Figure 4-52 along with an example of using the method. In the syntax,
textbox is the name of the text box whose contents you want to select.

Figure 4-51 CancelKeys procedure

the procedure
is associated
with each text
box’s KeyPress
event

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

236

7. Press Tab three times, slowly, to move the focus to each of the other three text boxes.
Each text box’s Enter event procedure selects the contents of the text box.

8. Click the Exit button. Close the Code Editor window and then close the solution.

To code and then test each text box’s Enter event procedure:

1. Open the code template for the txtRooms_Enter procedure. Type the following
comment and then press Enter twice:

' select contents when text box receives focus

2. Type txtRooms.SelectAll() and then click the blank line below the comment.

3. Open the code template for the txtNights_Enter procedure. Copy the comment and
the SelectAll method from the txtRooms_Enter procedure to the txtNights_Enter
procedure. Change txtRooms in the SelectAll method to txtNights and then click the
blank line below the comment.

4. Open the code templates for the txtAdults_Enter and txtChildren_Enter procedures.
On your own, enter the appropriate comment and SelectAll method in each procedure.

5. Save the solution and then start the application. Type 1 in the Rooms box, type 1 in
the Nights box, type 2 in the Adults box, and type 2 in the Children box. Click the
Calculate button to display the calculated amounts in the interface.

6. Press Tab twice to move the focus to the Rooms box. The txtRooms_Enter procedure
selects the contents of the text box, as shown in Figure 4-53.

START HERE

SelectAll Method

Syntax
textbox.SelectAll ()

Example

selects the contents of the txtRooms control

Figure 4-52 Syntax and an example of the SelectAll method

Figure 4-53 Existing text selected in the txtRooms control

the existing
text is selected
when the text
box receives
the focus

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

237

Coding the Enter Event Procedures L E S S O N C

Figure 4-54 shows the application’s code at the end of Lesson C.

(continues)Figure 4-54 Treeline Resort application’s code at the end of Lesson C

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

238

(continued)

Figure 4-54 Treeline Resort application’s code at the end of Lesson C (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

239

Lesson C Key Terms L E S S O N C

Figure 4-54 Treeline Resort application’s code at the end of Lesson C

(continued)

Lesson C Summary
 • To allow a text box to accept only certain keys:

Code the text box’s KeyPress event procedure. The key the user pressed is stored in the
e.KeyChar property. You use the e.Handled = True statement to cancel the key pressed by
the user.

 • To select the existing text in a text box:

Use the SelectAll method. The method’s syntax is textbox.SelectAll().

 • To process code when a control receives the focus:

Enter the code in the control’s Enter event procedure.

Lesson C Key Terms
ControlChars.Back constant—the Visual Basic constant that represents the Backspace key on
your keyboard

Enter event—occurs when a control receives the focus, which can happen as a result of the
user either tabbing to the control or using the control’s access key; also occurs when the Focus
method is used to send the focus to the control

Handled property—a property of the KeyPress event procedure’s e parameter; when assigned
the value True, it cancels the key pressed by the user

KeyChar property—a property of the KeyPress event procedure’s e parameter; stores the
character associated with the key pressed by the user

KeyPress event—occurs each time the user presses a key while a control has the focus

Parameter—an item contained within parentheses in a procedure header; represents
information passed to the procedure when the procedure is invoked

SelectAll method—used to select all of the text contained in a text box

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

240

Lesson C Review Questions
1. When entering data in a text box, each key the user presses invokes the text box’s

_____________________ event.

a. Focus
b. Key

c. KeyFocus
d. KeyPress

2. When entered in the appropriate event procedure, which of the following statements
cancels the key pressed by the user?

a. e.Cancel = True

b. e.Cancel = False

c. e.Handled = True

d. e.Handled = False

3. Which of the following If clauses determines whether the user pressed the Backspace
key?

a. If e.KeyChar = ControlChars.Back Then

b. If e.KeyChar = Backspace Then

c. If e.KeyChar = ControlChars.Backspace Then

d. If ControlChars.BackSpace = True Then

4. Which of the following If clauses determines whether the user pressed the % key?

a. If ControlChars.PercentSign = True Then

b. If e.KeyChar.ControlChars = "%" Then

c. If e.KeyChar = Chars.PercentSign Then

d. If e.KeyChar = "%" Then

5. When a user tabs to a text box, the text box’s _____________________ event occurs.

a. Access
b. Enter

c. TabOrder
d. TabbedTo

6. Which of the following tells the computer to highlight all of the text contained in the
txtName control?

a. txtName.SelectAll()

b. txtName.HighlightAll()

c. Highlight(txtName)

d. SelectAll(txtName.Text)

7. The statement txtHours.Focus() invokes the txtHours _____________________
event.

a. Click
b. Enter

c. Focus
d. SetFocus

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

241

Lesson C Exercises L E S S O N C

Lesson C Exercises
1. Create an application that displays a person’s maximum heart rate, given his or her age.

The maximum heart rate is calculated by subtracting the person’s age from the number
220. The application should also display the person’s target heart rate zone, which is
50% to 85% of the maximum heart rate. Use the following names for the solution and
project, respectively: Heart Solution and Heart Project. Save the application in the
VB2015\Chap04 folder. Create the interface shown in Figure 4-55. The image of the
heart is stored in the VB2015\Chap04\Heart.png file. The Age text box should accept
only numbers and the Backspace key. When the Age text box receives the focus, its
existing text should be selected. Test the application with both valid data (numbers and
the Backspace key) and invalid data (letters and special characters).

Figure 4-55 Interface for Exercise 1

2. In this exercise, you modify the bakery application from Chapter 3. Use Windows to
copy the Bakery Solution folder from the VB2015\Chap03 folder to the VB2015\Chap04
folder, and then open the Bakery Solution (Bakery Solution.sln) file. When a text box
in the interface receives the focus, its existing text should be selected. The Date text
box should accept only numbers, the slash (/), the hyphen (-), and the Backspace key.
The Doughnuts and Muffins boxes should accept only numbers and the Backspace key.
Modify the code to reflect these changes. Test the application appropriately.

3. Open the MessageBox Value Solution (MessageBox Value Solution.sln) file
contained in the VB2015\Chap04\MessageBox Value Solution folder. Open the Code
Editor window. When the Hours worked text box receives the focus, its existing
text should be selected. The text box should accept only numbers, the period, and
the Backspace key. Before displaying the gross pay, the btnCalc_Click procedure
should ask whether the user wants to include a dollar sign in the gross pay amount.
Use the MessageBox.Show method with Yes and No buttons. If the user clicks
the Yes button, the procedure should display the gross pay amount using the “C2”
format; otherwise, the amount should be displayed using the “N2” format. Test the
application appropriately.

4. Create an application, using the following names for the solution and project,
respectively: Dahlia Solution and Dahlia Project. Save the application in the VB2015\
Chap04 folder. Create the interface shown in Figure 4-56. The interface provides text
boxes for the salesclerk to enter the numbers of DVDs and Blu-rays purchased by a

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

242

customer. All DVDs sell for $9.99 each; all Blu-rays are $11.99 each. The sales tax rate
is 6.5%. In addition to displaying the subtotal, sales tax, and total due, the application
should display a message indicating the amount of Dahlia Cash the customer earned;
however, it should leave the message area blank when the customer hasn’t earned any
Dahlia Cash. Customers earn $10 in Dahlia Cash for every $50 he or she spends, not
including the sales tax. The DVDs and Blu-rays text boxes should accept only numbers
and the Backspace key. Clear the calculated amounts and the message when a change
is made to the number of either DVDs or Blu-rays. When a text box receives the focus,
select its existing text. Test the application appropriately.

Figure 4-56 Interface for Exercise 4

5. Marcy’s Department store is having a BoGoHo (Buy One, Get One Half Off) sale. The
store manager wants an application that allows the salesclerk to enter the prices of
two items. The application should calculate and display the total amount the customer
owes. The half-off should always be applied to the item that has the lowest price. Use
the MessageBox.Show method to display the amount the customer saved. For example,
if the two items cost $24.99 and $10.00, the half-off would be applied to the $10.00
item, and the message box would indicate that the customer saved $5.00. Use the
following names for the solution and project, respectively: Marcy Solution and Marcy
Project. Save the application in the VB2015\Chap04 folder. The total amount owed
should be removed from the interface when a change is made to the contents of a text
box in the interface. When a text box receives the focus, its existing text should be
selected. Each text box should accept only numbers, the period, and the Backspace key.
Test the application appropriately.

6. In this exercise, you create an application for Beachwood Industries. Use the
following names for the solution and project, respectively: Beachwood Solution
and Beachwood Project. Save the application in the VB2015\Chap04 folder.

INTERMEDIATE

INTERMEDIATE

display the
message in
a label

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

243

Lesson C Exercises L E S S O N C

The application’s interface should provide text boxes for the user to enter two values:
the quantity of an item ordered and the item’s price. The application should calculate
the discount (if any) and total due. Before calculating the discount, the application
should use the MessageBox.Show method to determine whether the customer is a
wholesaler because all wholesalers receive a 15% discount. The discount and total due
should be removed from the interface when a change is made to the contents of a text
box in the interface. When a text box receives the focus, its existing text should be
selected. The text box that contains the quantity ordered should accept only numbers
and the Backspace key. The text box that contains the price should accept only
numbers, the period, and the Backspace key. Test the application appropriately.

7. Create an application that can be used to teach the Italian words for the colors red,
yellow, and green. Use the following names for the solution and project, respectively:
Colors Solution and Colors Project. Save the application in the VB2015\Chap04 folder.
Create the interface shown in Figure 4-57. The interface contains three text boxes,
five buttons, and one label. Use the Internet to research the appropriate Italian words.
After entering the Italian word corresponding to a button’s color, the user will need
to click the button to verify the entry. If the Italian word is correct, the button’s Click
event procedure should change the color of the text box to match the button’s color.
(Hint: Assign the button’s BackColor property to the text box’s BackColor property.)
Otherwise, the Click event procedure should display the appropriate Italian word in
a message box. The Clear button should change each text box’s background color to
white and clear the contents of each text box. Test the application appropriately.

Figure 4-57 Interface for Exercise 7

8. Patti Garcia owns two cars, referred to as Car 1 and Car 2. She wants to drive one of the
cars to her vacation destination, but she’s not sure which one (if any) would cost her the
least amount in gas. Use the following names for the solution and project, respectively:
Car Solution and Car Project. Save the application in the VB2015\Chap04 folder.

a. The application’s interface should provide text boxes for Patti to enter the following
five items: the total miles she will drive, Car 1’s miles per gallon, Car 2’s miles per
gallon, Car 1’s cost per gallon of gas, and Car 2’s cost per gallon of gas. (The cost per
gallon of gas must be entered separately for each car because one car uses regular gas
and the other uses premium gas.) The interface should display the total cost of the
gas if she takes Car 1 as well as the total cost of the gas if she takes Car 2. It should
also display a message that indicates which car she should take and approximately
how much she will save by taking that car (show the savings with no decimal places).

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

244

Display the message in either a label or a message box. If the total cost of gas would
be the same for both cars, Patti should take Car 1 because that’s her favorite car.

b. The three text boxes that get the trip miles and the miles per gallon should accept
only numbers and the Backspace key. The two text boxes that get the cost per gallon
should accept only numbers, the period, and the Backspace key.

c. When a text box receives the focus, its existing text should be selected.
d. The calculated amounts and message (if you are using a label) should be cleared

when a change is made to the contents of a text box in the interface.
e. Test the application using 1200, 28, 35, 3.69, and 3.38 as the trip miles, Car 1’s

miles per gallon, Car 2’s miles per gallon, Car 1’s cost per gallon, and Car 2’s cost
per gallon, respectively. (Hint: The total costs for Car 1 and Car 2 are $158.14 and
$115.89, respectively. By taking Car 2, Patti will save approximately $42.)

f. Now, change Car 1’s miles per gallon to 35. Also change Car 2’s miles per gallon to
28. Which car should Patti take, and how much (approximately) will she save?

g. Next, change Car 1’s miles per gallon and cost per gallon to 28 and 3.38, respectively.
Which car should Patti take, and how much (approximately) will she save?

9. Create an application that displays the number of round tables needed to seat only
the guests at a wedding reception. (In other words, the bridal party does not need to
be included in this calculation.) Each round table can accommodate a maximum of 8
guests. The interface should provide a text box for the user to enter the total number of
guests who need to be seated. Display the number of tables in a label. Use the following
names for the solution and project, respectively: Wedding Solution and Wedding
Project. Save the application in the VB2015\Chap04 folder. When the text box receives
the focus, its existing text should be selected. The text box should accept only numbers
and the Backspace key. The output should be cleared when a change is made to the
contents of the text box. Test the application appropriately. (Hint: If the number of
guests is 235, the number of required tables is 30.)

10. In this exercise, you modify the wedding reception application from Exercise 9. The
modified application will display the number of rectangular tables needed to seat
the bridal party as well as the number of round tables required for the guests. Each
rectangular table can accommodate a maximum of 10 people. As in Exercise 9, a
maximum of 8 guests can fit at each round table. Use Windows to make a copy of the
Wedding Solution folder. Rename the copy Modified Wedding Solution. Open the
Wedding Solution (Wedding Solution.sln) file contained in the Modified Wedding
Solution folder. In addition to entering the number of guests, the interface should
now allow the user to also enter the number of people in the bridal party. Test the
application appropriately.

11. Create an application, using the following names for the solution and project,
respectively: Jerome Solution and Jerome Project. Save the application in the VB2015\
Chap04 folder. Create the interface shown in Figure 4-58. The Calculate button’s Click
event procedure should add the item price to the total of the prices already entered; this
amount represents the subtotal owed by the customer. The procedure should display
the subtotal on the form. It also should display a 5% sales tax, the shipping charge, and
the grand total owed by the customer. The grand total is calculated by adding together
the subtotal, the 5% sales tax, and a $6.50 shipping charge. For example, if the user
enters 15.75 as the price and then clicks the Calculate button, the button’s Click event
procedure should display 15.75 as the subtotal, 0.79 as the sales tax, 6.50 as the shipping
charge, and 23.04 as the total due. If the user subsequently enters 10 as the price and

INTERMEDIATE

INTERMEDIATE

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

245

Lesson C Exercises L E S S O N C

then clicks the Calculate button, the button’s Click event procedure should display 25.75
as the subtotal, 1.29 as the sales tax, 6.50 as the shipping charge, and 33.54 as the total
due. However, when the subtotal is at least $100, the shipping charge is 0.00. Test the
application appropriately.

Figure 4-58 Interface for Exercise 11

12. In this exercise, you learn how to specify the maximum number of characters that
can be entered in a text box. Open the VB2015\Chap04\Zip Solution\Zip Solution
(Zip Solution.sln) file. Click the txtZip control, and then search the Properties list for
a property that allows you to specify the maximum number of characters that can
be entered in the text box. When you locate the property, set its value to 10. Save the
solution and then start the application. Test the application by trying to enter more
than 10 characters in the text box.

13. Open the VB2015\Chap04\Debug Solution\Debug Solution (Debug Solution.sln)
file. Open the Code Editor window and review the existing code. The btnCalc_Click
procedure should calculate a 5% commission when the code entered by the user is 1,
2, or 3 and, at the same time, the sales amount is greater than $5,000; otherwise, the
commission rate is 3%. Also, the CancelKeys procedure should allow the two text boxes
to accept only numbers, the period, and the Backspace key.

a. Start the application. Type the number 1 in the Code box and then press the
Backspace key. Notice that the Backspace key is not working correctly. Stop the
application and then make the appropriate change to the CancelKeys procedure.

b. Save the solution and then start the application. Type the number 12 in the Code
box and then press the Backspace key to delete the 2. The Code box now contains
the number 1.

DISCOVERY

SWAT THE BUGS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 The Selection Structure

246

c. Type 2000 in the Sales amount box and then click the Calculate button. A message
box appears and indicates that the commission amount is $100.00 (5% of $2,000),
which is incorrect; it should be $60.00 (3% of $2,000). Close the message box. Stop
the application and then make the appropriate change to the btnCalc control’s Click
event procedure.

d. Save the solution and then start the application. Type the number 1 in the Code box.
Type 2000 in the Sales amount box and then click the Calculate button. The message
box should indicate that the commission amount is $60.00. Close the message box.

e. Test the application using the data shown in Figure 4-59.

Sales amount
7000
5000
5000.75
175.55
9000.65
2000
6700

Code
1
2
2
3
3
4
4

Figure 4-59 Test data for Exercise 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5
More on the Selection
Structure

Revising the Treeline Resort Application

In this chapter, you will modify the Treeline Resort application from Chapter 4.
In addition to the previous input data, the application’s interface will now allow
the user to select the number of beds (either two queen beds or one king bed),
the view (either standard or atrium), and whether the guest should be charged
a vehicle parking fee. The resort charges a nightly fee of $225.50 for two
queen beds with a standard view, $275 for two queen beds with an atrium view,
$245.50 for one king bed with a standard view, and $325 for one king bed with
an atrium view. The vehicle parking fee is $8.50 per night. In addition to displaying
the total room charge, the sales and lodging tax, the resort fee, and the total due,
the application should now also display the total parking fee.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

248

Previewing the Modified Treeline Resort Application
Before you start the first lesson in this chapter, you will preview the completed application
contained in the VB2015\Chap05 folder.

To preview the completed application:

1. Use Windows to locate and then open the VB2015\Chap05 folder. Right-click Treeline
(Treeline.exe) and then click the Open button. The application’s user interface appears
on the screen. Type 1, 1, 2, and 2 in the Rooms, Nights, Adults, and Children boxes,
respectively. Click the Calculate button. See Figure 5-1.

START HERE

2. The interface contains radio buttons and a check box. These controls are covered in
Lesson B. Click the One king and Atrium radio buttons to select both. Also click the
Vehicle parking fee check box to select it. Click the Calculate button. See Figure 5-2.

Figure 5-1 Interface showing the calculated amounts

radio button check box

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

249

3. Click the Exit button to end the application.

The modified Treeline Resort application uses nested selection structures, which you will learn
about in Lesson A. You will also learn about multiple-alternative selection structures. In Lesson B,
you will add a radio button and a check box to the Treeline Resort application’s interface, and also
modify the application’s code. In Lesson C, you will learn how to use the TryParse method for
data validation. You will also learn how to generate random integers. Be sure to complete each
lesson in full and do all of the end-of-lesson questions and several exercises before continuing to
the next lesson.

Figure 5-2 Recalculated amounts shown in the interface

Previewing the Modified Treeline Resort Application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

250

Problem Specification

Maleek is practicing for an upcoming basketball game. Write the instructions that direct Maleek to
shoot the basketball and then say one of two phrases, depending on whether or not the basketball
went through the hoop.

 Result of shot Phrase
 Basketball went through the hoop I did it!
 Basketball did not go through the hoop Missed it!

Solution
1. shoot the basketball

2. if the basketball went through the hoop
 say “I did it!”
 else
 say “Missed it!”
 end if

❚ LESSON A
After studying Lesson A, you should be able to:

 • Include a nested selection structure in pseudocode and in a flowchart

 • Code a nested selection structure

 • Desk-check an algorithm

 • Recognize common logic errors in selection structures

 • Include a multiple-alternative selection structure in pseudocode and in a flowchart

 • Code a multiple-alternative selection structure

Nested Selection Structures
Both the true and false paths in a selection structure can include instructions that declare
variables, perform calculations, and so on. Both paths can also include other selection
structures. When either a selection structure’s true path or its false path contains another
selection structure, the inner selection structure is referred to as a nested selection structure
because it is contained (nested) entirely within the outer selection structure.

A programmer determines whether a problem’s solution requires a nested selection structure
by studying the problem specification. The first problem specification you will examine in
this chapter involves a basketball player named Maleek. The problem specification and an
illustration of the problem are shown in Figure 5-3 along with an appropriate solution. The
solution requires a selection structure but not a nested one. This is because only one
decision—whether the basketball went through the hoop—is necessary.

Ch05A-Nested Selection

true path

false path

condition

Figure 5-3 A problem that requires the selection structure
Image by Diane Zak; created with Reallusion CrazyTalk Animator; OpenClipArt.org/Tom Kolter/tawm1972

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

251

Nested Selection Structures L E S S O N A

Now we’ll make a slight change to the problem specification. This time, Maleek should say
either one or two phrases, depending not only on whether or not the ball went through the
hoop, but also on where he was standing when he made the basket. Figure 5-4 shows the
modified problem specification and solution. The modified solution contains an outer dual-
alternative selection structure and a nested dual-alternative selection structure. The outer
selection structure begins with “if the basketball went through the hoop”, and it ends with the
last “end if ”. The last “else” belongs to the outer selection structure and separates the structure’s
true path from its false path. Notice that the instructions in both paths are indented within
the outer selection structure. Indenting in this manner clearly indicates the instructions to be
followed when the basketball went through the hoop, as well as the ones to be followed when the
basketball did not go through the hoop.

The nested selection structure in Figure 5-4 appears in the outer selection structure’s true path.
The nested selection structure begins with “if Maleek was either inside or on the 3-point line”,
and it ends with the first “end if ”. The indented “else” belongs to the nested selection structure
and separates the nested structure’s true path from its false path. For clarity, the instructions
in the nested selection structure’s true and false paths are indented within the structure. For
a nested selection structure to work correctly, it must be contained entirely within either the
outer selection structure’s true path or its false path. The nested selection structure in Figure 5-4
appears entirely within the outer selection structure’s true path.

Problem Specification

Maleek is practicing for an upcoming basketball game. Write the instructions that direct Maleek to
shoot the basketball and then say either one or two of four phrases, depending on whether or not
the basketball went through the hoop and also where Maleek was standing when he made the
basket.

 Result of shot Phrase
 Basketball went through the hoop I did it!
 Maleek made the basket from either inside or on the 3-point line 2 points for me
 Maleek made the basket from behind the 3-point line 3 points for me
 Basketball did not go through the hoop Missed it!

Solution
1. shoot the basketball
2. if the basketball went through the hoop
 say “I did it!”
 if Maleek was either inside or on the 3-point line
 say “2 points for me”
 else
 say “3 points for me”
 end if
 else
 say “Missed it!”
 end if

Figure 5-4 A problem that requires a nested selection structure

nested dual-alternative
selection structure

outer dual-alternative
selection structure

Figure 5-5 shows a modified version of the previous problem specification, along with the
modified solution. In this version of the problem, Maleek should still say “Missed it!” when the
basketball misses its target. However, if the basketball hits the rim, he should also say “So close”. In
addition to the nested dual-alternative selection structure from the previous solution, the modified
solution also contains a nested single-alternative selection structure, which appears in the outer

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

252

Flowcharting a Nested Selection Structure
Figure 5-6 shows a problem specification for a voter eligibility application. The application
determines whether a person can vote and then displays one of three messages. The appropriate
message depends on the person’s age and voter registration status. If the person is younger than
18 years old, the application should display the message “You are too young to vote.” However,
if the person is at least 18 years old, it should display one of two messages. The correct message
to display is determined by the person’s voter registration status. If the person is registered, then
the appropriate message is “You can vote.”; otherwise, it is “You must register before you can
vote.” Notice that determining the person’s voter registration status is important only after his or
her age is determined. Because of this, the decision regarding the age is considered the primary
decision, while the decision regarding the registration status is considered the secondary
decision because whether it needs to be made depends on the result of the primary decision.
A primary decision is always made by an outer selection structure, while a secondary decision is
always made by a nested selection structure.

Also included in Figure 5-6 is a correct solution to the problem in flowchart form. The first
diamond in the flowchart represents the outer selection structure’s condition, which checks
whether the age entered by the user is greater than or equal to 18. If the condition evaluates

selection structure’s false path. The nested single-alternative selection structure begins with
“if the basketball hit the rim”, and it ends with the second “end if”. Notice that the nested single-
alternative selection structure is contained entirely within the outer selection structure’s false path.

Figure 5-5 A problem that requires two nested selection structures

Problem Specification

Maleek is practicing for an upcoming basketball game. Write the instructions that direct Maleek to
shoot the basketball and then say either one or two of five phrases, depending on whether or not
the basketball went through the hoop and also where Maleek was standing when he made the
basket.

 Result of shot Phrase
 Basketball went through the hoop I did it!
 Maleek made the basket from either inside or on the 3-point line 2 points for me
 Maleek made the basket from behind the 3-point line 3 points for me
 Basketball did not go through the hoop Missed it!
 Maleek’s missed shot hit the rim So close

Solution
1. shoot the basketball
2. if the basketball went through the hoop
 say “I did it!”
 if Maleek was either inside or on the 3-point line
 say “2 points for me”
 else
 say “3 points for me”
 end if
 else
 say “Missed it!”
 if the basketball hit the rim
 say “So close”
 end if
 end if

nested dual-
alternative
selection
structure

nested single-alternative
selection structure

outer dual-
alternative
selection
structure

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

253

Flowcharting a Nested Selection Structure L E S S O N A

to False, it means that the person is not old enough to vote. In that case, the outer structure’s
false path will display the “You are too young to vote.” message before the outer structure ends.
However, if the outer selection structure’s condition evaluates to True, it means that the person
is old enough to vote. Before displaying the appropriate message, the outer structure’s true path
gets the registration status from the user. After that, it uses a nested selection structure first
to determine whether the person is registered and then to take the appropriate action. The
nested structure’s condition is represented by the second diamond in Figure 5-6. If the person
is registered, the nested structure’s true path displays the “You can vote.” message; otherwise, its
false path displays the “You must register before you can vote.” message. After the appropriate
message is displayed, the nested and outer selection structures end. Notice that the nested
structure is processed only when the outer structure’s condition evaluates to True.

Problem Specification

Create an application that displays one of three messages, as shown here. The application’s
interface will provide a text box for entering the person’s age. It will use a message box to ask
the user whether the person is registered to vote.

Messages
You are too young to vote.
You can vote.

You must register before you can vote.

Criteria
person is younger than 18 years old
person is at least 18 years old and is registered to
vote
person is at least 18 years old but is not registered to
vote

start

age >= 18

T

F

display “You
can vote.”

ask whether
person is
registered

registered

T

display “You
are too young

to vote.”

F

display “You
must register

before you can
vote.”

store age in a variable

stop

Figure 5-6 Problem specification and a correct solution for the voter eligibility problem

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

254

Even small problems can have more than one solution. Figure 5-7 shows another correct
solution, also in flowchart form, for the voter eligibility problem. As in the previous solution,
the outer selection structure in this solution determines the age (the primary decision), and the
nested selection structure determines the voter registration status (the secondary decision). In
this solution, however, the outer structure’s condition is the opposite of the one in Figure 5-6:
It checks whether the person’s age is less than 18 rather than checking if it is greater than or
equal to 18. (Recall that less than is the opposite of greater than or equal to.) In addition, the
nested structure appears in the outer structure’s false path in this solution, which means it will
be processed only when the outer structure’s condition evaluates to False. The solutions in
Figures 5-6 and 5-7 produce the same results. Neither solution is better than the other; each
simply represents a different way of solving the same problem.

Problem Specification

Create an application that displays one of three messages, as shown here. The application’s
interface will provide a text box for entering the person’s age. It will use a message box to ask
the user whether the person is registered to vote.

.

Messages
You are too young to vote.
You can vote.

You must register before you can vote.

Criteria
person is younger than 18 years old
person is at least 18 years old and is registered to
vote
person is at least 18 years old but is not registered to
vote

start

age < 18

T

F

display “You
can vote.”

ask whether
person is
registered

registered

T

display “You
are too young

to vote.”

F

display “You
must register

before you can
vote.”

store age in a variable

stop

Figure 5-7 Another correct solution for the voter eligibility problem

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

255

Coding a Nested Selection Structure L E S S O N A

Coding a Nested Selection Structure
Figure 5-8 shows examples of code that could be used for the voter eligibility application. The
first example corresponds to the flowchart in Figure 5-6, and the second example corresponds
to the flowchart in Figure 5-7.

Example 1: Code for the flowchart in Figure 5-6
Const strTOO_YOUNG As String = "You are too young to vote."
Const strMUST_REGISTER As String =
 "You must register before you can vote."
Const strCAN_VOTE As String = "You can vote."
Const strPROMPT As String = "Are you registered to vote?"
Dim intAge As Integer
Dim dlgButton As DialogResult

Integer.TryParse(txtAge.Text, intAge)

If intAge >= 18 Then
 dlgButton = MessageBox.Show(strPROMPT,
 "Voter Eligibility",
 MessageBoxButtons.YesNo,
 MessageBoxIcon.Exclamation)
 If dlgButton = DialogResult.Yes Then
 lblMsg.Text = strCAN_VOTE
 Else
 lblMsg.Text = strMUST_REGISTER
 End If
Else
 lblMsg.Text = strTOO_YOUNG
End If

Example 2: Code for the flowchart in Figure 5-7
Const strTOO_YOUNG As String = "You are too young to vote."
Const strMUST_REGISTER As String =
 "You must register before you can vote."
Const strCAN_VOTE As String = "You can vote."
Const strPROMPT As String = "Are you registered to vote?"
Dim intAge As Integer
Dim dlgButton As DialogResult

Figure 5-8 Code for the flowcharts in Figures 5-6 and 5-7 (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

256

To code and then test the Voter Eligibility application:

1. If necessary, start Visual Studio 2015. Open the VB2015\Chap05\Voter Solution\Voter
Solution (Voter Solution.sln) file. Open the Code Editor window. Replace <your name>
and <current date> in the comments with your name and the current date, respectively.

2. Locate the btnDisplay_Click procedure. Enter the selection structures shown in either
of the examples in Figure 5-8.

3. Save the solution and then start the application. Type 27 in the Enter age box and
then press Enter. A message box opens and displays the “Are you registered to vote?”
message. Click the No button. See Figure 5-9.

START HERE

Figure 5-9 Sample run of the Voter Eligibility application

Integer.TryParse(txtAge.Text, intAge)

If intAge < 18 Then
 lblMsg.Text = strTOO_YOUNG
Else
 dlgButton = MessageBox.Show(strPROMPT,
 "Voter Eligibility",
 MessageBoxButtons.YesNo,
 MessageBoxIcon.Exclamation)
 If dlgButton = DialogResult.Yes Then
 lblMsg.Text = strCAN_VOTE
 Else
 lblMsg.Text = strMUST_REGISTER
 End If
End If

Figure 5-8 Code for the flowcharts in Figures 5-6 and 5-7

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

257

Logic Errors in Selection Structures L E S S O N A

4. Click the Display Message button, and then press Enter to select the Yes button in the
message box. The “You can vote.” message appears in the lblMsg control.

5. Change the age to 17 and then press Enter. The “You are too young to vote.” message
appears in the lblMsg control.

6. Click the Exit button. Close the Code Editor window and then close the solution.

YOU DO IT 1!

Create an application named YouDoIt 1 and save it in the VB2015\Chap05 folder. Add
a label and two buttons to the form. The application should display the price of a CD
(compact disc) in the label. The prices are shown below. Code the first button’s Click
event procedure using a nested selection structure in the outer selection structure’s
true path. Code the second button’s Click event procedure using a nested selection
structure in the outer selection structure’s false path. In both Click event procedures,
use a message box with Yes and No buttons to determine whether the customer has a
coupon. If the customer has a coupon, use a message box with Yes and No buttons to
determine whether they have the $2 coupon. (A customer can use only one coupon.)
Save the solution, and then start and test the application. Close the solution.

 Prices Criteria

 $12 customer does not have a coupon

 $10 customer has a $2 coupon

 $ 8 customer has a $4 coupon

Logic Errors in Selection Structures
In the next few sections, you will observe some of the common logic errors made when writing
selection structures. Being aware of these errors will help you avoid making them. In most cases,
logic errors in selection structures are a result of one of the following four mistakes:

1. using a compound condition rather than a nested selection structure

2. reversing the decisions in the outer and nested selection structures

3. using an unnecessary nested selection structure

4. including an unnecessary comparison in a condition

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

258

Notice that the car’s classification determines whether the renter is charged an additional
amount. If the car is classified as a luxury vehicle, then whether the customer is a club member
determines the appropriate additional amount. In this case, the decision regarding the car’s
classification is the primary decision, while the decision regarding the customer’s membership
status is the secondary decision.

You can verify that the algorithm in Figure 5-10 works correctly by desk-checking it.
Desk-checking refers to the process of reviewing the algorithm while seated at your desk
rather than in front of the computer. Desk-checking is also called hand-tracing because you use
a pencil and paper to follow each of the algorithm’s instructions by hand. You desk-check an
algorithm to verify that it is not missing any instructions and that the existing instructions are
correct and in the proper order.

Before you begin the desk-check, you first choose a set of sample data for the input values,
which you then use to manually compute the expected output values. Figure 5-11 shows the
input values you will use to desk-check Figure 5-10’s algorithm four times; it also includes the
expected output values.

The Ch05A-Rental
 Correct Desk-Check

Problem Specification

Sam’s Car Rental wants an application that displays the daily fee for renting a car. The daily fee is
$55; however, there is an additional charge for renting a luxury car. The additional charge depends
on whether the customer belongs to Sam’s Car Rental Club, as indicated in the chart shown here:

 Daily fee: $55
 Additional daily charge for luxury car:
 Club member $20
 Nonmember $30

Correct algorithm
1. daily fee = 55
2. if luxury car
 if club member
 add 20 to the daily fee
 else
 add 30 to the daily fee
 end if
 end if
3. display the daily fee

Figure 5-10 Problem specification and a correct algorithm for Sam’s Car Rental

It’s easier to understand these four logic errors by viewing them in a procedure. We will present
the first three errors using a procedure that displays the daily fee for renting a car, and we’ll
illustrate the last error using a procedure that displays an item’s price. Let’s begin with the daily
car rental fee procedure. The procedure’s problem specification along with a correct algorithm
(written in pseudocode) are shown in Figure 5-10. An algorithm is the set of step-by-step
instructions for accomplishing a task.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

259

Logic Errors in Selection Structures L E S S O N A

 Car Membership Expected
Desk-check classification status daily fee
1 standard member $55
2 standard nonmember $55
3 luxury member $75
4 luxury nonmember $85

Figure 5-11 Sample data and expected results for the algorithm shown in Figure 5-10

In Figure 5-11, the first set of test data is for a club member renting a standard vehicle. Step 1
in Figure 5-10’s algorithm assigns $55 as the daily fee. Next, the condition in the outer selection
structure determines whether the car is a luxury vehicle. The condition evaluates to False; as a
result, the outer selection structure ends without processing the nested selection structure. This
is because the membership information is not important when the car is not a luxury vehicle.
The last step in the algorithm displays the expected daily fee of $55.

Next, we’ll desk-check the algorithm using the second set of test data: standard vehicle and
nonmember. The algorithm begins by assigning $55 as the daily fee. The condition in the outer
selection structure then determines whether the car is a luxury vehicle. The condition evaluates
to False; as a result, the outer selection structure ends. The last step in the algorithm displays the
expected daily fee, $55.

Next, we’ll desk-check the algorithm using the third set of test data: luxury vehicle and club
member. First, the algorithm assigns $55 as the daily fee. Then the condition in the outer
selection structure determines whether the car is a luxury vehicle. In this case, the condition
evaluates to True, so the nested selection structure’s condition checks whether the customer is a
club member. This condition also evaluates to True, so the nested structure’s true path adds $20
to the daily fee, giving $75; after doing this, both selection structures end. The last step in the
algorithm displays the expected daily fee, $75.

Finally, we’ll desk-check the algorithm using the fourth set of test data: luxury vehicle and
nonmember. Step 1 assigns $55 as the daily fee. The condition in the outer selection structure
determines whether the car is a luxury vehicle. The condition evaluates to True, so the nested
selection structure’s condition checks whether the customer is a club member. This condition
evaluates to False, so the nested structure’s false path adds $30 to the daily fee, giving $85; after
doing this, both selection structures end. The last step in the algorithm displays the expected
daily fee of $85. The results of desk-checking the algorithm using the data from Figure 5-11
agree with the expected values, as indicated in Figure 5-12.

 Car Membership Expected Actual
Desk-check classification status daily fee result
1 standard member $55 $55 (correct)
2 standard nonmember $55 $55 (correct)
3 luxury member $75 $75 (correct)
4 luxury nonmember $85 $85 (correct)

Figure 5-12 Actual results included in the desk-check chart

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

260

First Logic Error: Using a Compound Condition Rather than a Nested
Selection Structure
A common error made when writing selection structures is to use a compound condition in
the outer selection structure when a nested selection structure is needed. Figure 5-13 shows
an example of this error in the car rental algorithm. The correct algorithm is included in the
figure for comparison. Notice that the incorrect algorithm uses one selection structure rather
than two selection structures and that the selection structure contains a compound condition.
Consider why the selection structure in the incorrect algorithm cannot be used in place of the
selection structures in the correct one. In the correct algorithm, the outer and nested structures
indicate that a hierarchy exists between the car classification and membership status decisions:
The car classification decision is always made first, followed by the membership status decision
(if necessary). In the incorrect algorithm, the compound condition indicates that no hierarchy
exists between the classification and membership decisions. Consider how this difference
changes the algorithm.

Figure 5-13 Correct algorithm and an incorrect algorithm containing the first logic error

Correct algorithm Incorrect algorithm (first logic error)
1. daily fee = 55 1. daily fee = 55
2. if luxury car 2. if luxury car and club member
 if club member add 20 to the daily fee
 add 20 to the daily fee else
 else add 30 to the daily fee
 add 30 to the daily fee end if
 end if 3. display the daily fee
 end if
3. display the daily fee

uses a compound
condition instead
of a nested
selection structure

To understand why the incorrect algorithm in Figure 5-13 will not work correctly, we will
desk-check it using the same test data used to desk-check the correct algorithm. Step 1 in
the incorrect algorithm assigns $55 as the daily fee. Next, the compound condition in Step 2
determines whether the car is classified as a luxury vehicle and, at the same time, whether the
renter is a club member. Using the first set of test data (standard and member), the compound
condition evaluates to False because the car is not a luxury vehicle. As a result, the selection
structure’s false path adds $30 to the daily fee, giving $85, and then the selection structure ends.
The last step in the incorrect algorithm displays $85 as the daily fee, which is not correct; the
correct fee is $55, as shown earlier in Figure 5-12.

Next, we’ll desk-check the incorrect algorithm using the second set of test data: standard and
nonmember. The algorithm begins by assigning $55 as the daily fee. The compound condition
then determines whether the car is a luxury vehicle and, at the same time, whether the renter
is a club member. The compound condition evaluates to False, so the selection structure’s false
path adds $30 to the daily fee, giving $85, and then the selection structure ends. The last step in
the incorrect algorithm displays $85 as the daily fee, which is not correct; the correct fee is $55,
as shown earlier in Figure 5-12.

Next, we’ll desk-check the incorrect algorithm using the third set of test data: luxury and
member. First, the algorithm assigns $55 as the daily fee. The compound condition then
determines whether the car is a luxury vehicle and, at the same time, whether the renter

The Ch05A-First Logic
Error Desk-Check

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

261

Logic Errors in Selection Structures L E S S O N A

is a club member. In this case, the compound condition evaluates to True, so the selection
structure’s true path adds $20 to the daily fee, giving $75, and then the selection structure
ends. The last step in the incorrect algorithm displays the expected daily fee, $75. Even
though its selection structure is phrased incorrectly, the incorrect algorithm produces the
same result as the correct algorithm using the third set of test data.

Finally, we’ll desk-check the incorrect algorithm using the fourth set of test data: luxury and
nonmember. Step 1 assigns $55 as the daily fee. Next, the compound condition determines
whether the car is a luxury vehicle and, at the same time, whether the renter is a club member.
The compound condition evaluates to False because the renter is not a club member. As a result,
the selection structure’s false path adds $30 to the daily fee, giving $85, and then the selection
structure ends. The last step in the incorrect algorithm displays $85 as the daily fee, which
is correct. Here, too, even though its selection structure is phrased incorrectly, the incorrect
algorithm produces the same result as the correct algorithm using the fourth set of test data.

Figure 5-14 shows the desk-check table for the incorrect algorithm from Figure 5-13. As
indicated in the figure, only the results of the third and fourth desk-checks are correct.

 Car Membership Expected Actual
Desk-check classification status rental fee result
1 standard member $55 $85 (incorrect)
2 standard nonmember $55 $85 (incorrect)
3 luxury member $75 $75 (correct)
4 luxury nonmember $85 $85 (correct)

Figure 5-14 Results of desk-checking the incorrect algorithm from Figure 5-13

We cannot overemphasize the importance of desk-checking an algorithm several times using
different data. For example, if we had used only the last two sets of data to desk-check the
incorrect algorithm, we would not have discovered that the algorithm did not work as intended.

Second Logic Error: Reversing the Outer and Nested Decisions
Another common error made when writing selection structures is to reverse the order of the
decisions made by the outer and nested structures. Figure 5-15 shows an example of this error
in the car rental algorithm. The correct algorithm is included in the figure for comparison.
Unlike the selection structures in the correct algorithm, which determine the car classification
before determining the membership status, the selection structures in the incorrect algorithm
determine the membership status before determining the car classification.

Consider how this difference changes the algorithm. In the correct algorithm, the selection
structures indicate that only renters of luxury cars pay an additional amount. The selection
structures in the incorrect algorithm, on the other hand, indicate that the additional amount
is paid by club members only. Figure 5-16 shows the result of desk-checking the incorrect
algorithm from Figure 5-15. As indicated in the figure, only two of the four results are correct.

The Ch05A-Second
Logic Error Desk-Check

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

262

 Car Membership Expected Actual
Desk-check classification status rental fee result
1 standard member $55 $85 (incorrect)
2 standard nonmember $55 $55 (correct)
3 luxury member $75 $75 (correct)
4 luxury nonmember $85 $55 (incorrect)

Figure 5-16 Results of desk-checking the incorrect algorithm from Figure 5-15

Third Logic Error: Using an Unnecessary Nested Selection Structure
Another common error made when writing selection structures is to include an unnecessary
nested selection structure. In most cases, a selection structure containing this error will still
produce the correct results. However, it will do so less efficiently than selection structures that
are properly structured.

Figure 5-17 shows an example of this error in the car rental algorithm. The correct algorithm
is included in the figure for comparison. Unlike the correct algorithm, which contains two
selection structures, the inefficient algorithm contains three selection structures. The condition
in the third selection structure determines whether the renter is not a member of the rental club
and is processed only when the second selection structure’s condition evaluates to False. In other
words, it is processed only when the procedure has already determined that the renter is not
a club member. Therefore, the third selection structure is unnecessary. Figure 5-18 shows the
results of desk-checking the inefficient algorithm. Although the results of the four desk-checks
are correct, the result of the last desk-check is obtained in a less efficient manner.

The Ch05A-Third Logic
Error Desk-Check

Figure 5-15 Correct algorithm and an incorrect algorithm containing the second logic error

Correct algorithm Incorrect algorithm (second logic error)
1. daily fee = 55 1. daily fee = 55
2. if luxury car 2. if club member
 if club member if luxury car
 add 20 to the daily fee add 20 to the daily fee
 else else
 add 30 to the daily fee add 30 to the daily fee
 end if end if
 end if end if
3. display the daily fee 3. display the daily fee

the outer and
nested decisions
are reversed

Correct algorithm Inefficient algorithm (third logic error)
1. daily fee = 55 1. daily fee = 55
2. if luxury car 2. if luxury car
 if club member if club member
 add 20 to the daily fee add 20 to the daily fee
 else else
 add 30 to the daily fee if nonmember
 end if add 30 to the daily fee
 end if end if
3. display the daily fee end if
 end if
 3. display the daily fee

Figure 5-17 Correct algorithm and an inefficient algorithm containing the third logic error

unnecessary
nested selection
structure

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

263

Logic Errors in Selection Structures L E S S O N A

result obtained
in a less efficient
manner

 Car Membership Expected Actual
Desk-check classification status daily fee result
1 standard member $55 $55 (correct)
2 standard nonmember $55 $55 (correct)
3 luxury member $75 $75 (correct)
4 luxury nonmember $85 $85 (correct)

Figure 5-18 Results of desk-checking the inefficient algorithm from Figure 5-17

Fourth Logic Error: Including an Unnecessary
Comparison in a Condition
Another common error made when writing selection structures is to include an unnecessary
comparison in a condition. Like selection structures containing the third logic error, selection
structures containing this error also produce the correct results in an inefficient way. We’ll
demonstrate this error using a procedure that displays an item’s price, which is based on the
quantity purchased. Figure 5-19 shows the problem specification, a correct algorithm, and an
inefficient algorithm that contains the fourth logic error.

The Ch05A-Fourth
Logic Error Desk-Check

In the correct
algorithm, the
nested selec-
tion structure’s
if clause can

also be written as
if quantity >= 100,
as long as you then
reverse the instructions
in the two paths.

Problem Specification

Create an application that displays the price of an item. The price depends on the quantity
purchased, as shown here:

 Quantity purchased Price per item ($)
 Less than or equal to 0 0.0
 1–99 9.50
 Greater than 99 7.75

Correct algorithm Inefficient algorithm
1. if quantity <= 0 1. if quantity <= 0
 price = 0 price = 0
 else else
 if quantity < 100 if quantity > 0 and quantity < 100
 price = 9.50 price = 9.50
 else else
 price = 7.75 price = 7.75
 end if end if
 end if end if
2. display the price 2. display the price

Figure 5-19 Problem specification, a correct algorithm, and an inefficient algorithm

unnecessary
comparison

Unlike the nested selection structure in the correct algorithm, the nested structure in the
inefficient algorithm contains a compound condition that compares the quantity to both 0
and 100. Consider why the comparison to 0 in the compound condition is unnecessary. If the
quantity is less than or equal to 0, the outer selection structure’s condition will evaluate to
True. As a result, the outer selection structure’s true path will assign the number 0 as the price
before the outer structure ends. In other words, a quantity that is either less than or equal to
0 will be handled by the outer structure’s true path. The nested selection structure’s condition
will be evaluated only when the quantity is greater than 0. Therefore, the comparison to 0
is unnecessary in the compound condition. Figure 5-20 shows the results of desk-checking

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

264

Note: You have learned a lot so far in this lesson. You may want to take a break at this point
before continuing.

Multiple-Alternative Selection Structures
Figure 5-21 shows the problem specification for the Snowboard Shop application. The
application’s solution requires a selection structure that can choose from several different item
codes. As the figure indicates, when the code is 12, the application should display “Tennessee” as
the warehouse location. When the code is 36, it should display “Kentucky”. And when the code
is either 40 or 43, it should display “Louisiana”. Finally, when the code is not 12, 36, 40, or 43, it
should display the “Invalid code” message. Selection structures containing several alternatives
are referred to as multiple-alternative selection structures or extended selection structures.

the correct and inefficient algorithms. Although the results of the three desk-checks for the
inefficient algorithm are correct, the results of the second and third desk-checks are obtained in
a less efficient manner.

Figure 5-20 Results of desk-checking the algorithms from Figure 5-19

Correct Algorithm
 Expected Actual
Desk-check Quantity price result
1 –2 0 0 (correct)
2 83 9.50 9.50 (correct)
3 105 7.75 7.75 (correct)

Inefficient Algorithm
 Expected Actual
Desk-check Quantity price result
1 –2 0 0 (correct)
2 83 9.50 9.50 (correct)
3 105 7.75 7.75 (correct)

results obtained
in a less efficient
manner

Problem Specification

Each item sold by the Snowboard Shop has a code that identifies the location of the warehouse in
which it is stored. Create an application that displays the location corresponding to the code
entered by the user. The valid codes and their corresponding warehouse locations are shown here.
If the item code entered by the user is not listed here, the application should display the “Invalid
code” message.

Item code Warehouse location
12 Tennessee
36 Kentucky
40, 43 Louisiana

Figure 5-21 Problem specification for the Snowboard Shop application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

265

Multiple-Alternative Selection Structures L E S S O N A

Figure 5-22 shows the pseudocode and flowchart for a procedure that displays the appropriate
output. The diamond in the flowchart represents the condition in the multiple-alternative
selection structure. Recall that the diamond is also used to represent the condition in both the
single-alternative and dual-alternative selection structures. However, unlike the diamond in
both of those selection structures, the diamond in a multiple-alternative selection structure
has several flowlines (rather than only two flowlines) leading out of the symbol. Each flowline
represents a possible path and must be marked appropriately, indicating the value or values
necessary for the path to be chosen.

1. assign the code to a variable
2. if the code is one of the following:
 12 display “Tennessee”
 36 display “Kentucky”
 40, 43 display “Louisiana”
 else
 display “Invalid code”
 end if

start

code

stop

12

display
“Tennessee”

assign code to a variable

36 40, 43

display
“Kentucky”

display
“Louisiana”

display
“Invalid
code”

Other

Figure 5-22 Pseudocode and flowchart containing a multiple-alternative selection structure

Figure 5-23 shows two versions of the code corresponding to the multiple-alternative selection
structure from Figure 5-22; both versions use If...Then...Else statements. Although both versions
produce the same result, Version 2 provides a more convenient way of coding a multiple-
alternative selection structure.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

266

To code and then test the Snowboard Shop application:

1. Open the Snowboard Solution (Snowboard Solution.sln) file contained in the VB2015\
Chap05\Snowboard Solution-If folder. Open the Code Editor window. Replace
<your name> and <current date> in the comments with your name and the current
date, respectively.

2. Locate the btnDisplay_Click procedure. Beginning in the blank line below the
assignment statement, enter the multiple-alternative selection structure shown in
Version 2 in Figure 5-23.

3. Save the solution and then start the application. Type 40 and then click the Display
button. See Figure 5-24.

START HERE

Version 1

Version 2

Figure 5-23 Two versions of the code containing a multiple-alternative selection structure

you get here when
the code is not 12

you get here when
the code is not 12
and not 36

you get here when
the code is not 12,
36, 40, or 43

three End If clauses
are required

only one End If
clause is required

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

267

The Select Case Statement L E S S O N A

4. On your own, test the application using the following codes: 12, 36, 43, and 7. When
you are finished testing, click the Exit button. Close the Code Editor window and then
close the solution.

YOU DO IT 2!

Create an application named YouDoIt 2 and save it in the VB2015\Chap05 folder. Add
a text box, a label, and a button to the form. The button’s Click event procedure should
display (in the label) either the price of a concert ticket or the N/A message. The ticket
price is based on the code entered in the text box, as shown below. Code the procedure.
Save the solution, and then start and test the application. Close the solution.

 Code Ticket price

 1 $15

 2 $15

 3 $25

 4 $35

 5 $37

 Other N/A

The Select Case Statement
When a multiple-alternative selection structure has many paths from which to choose, it is often
simpler and clearer to code the selection structure using the Select Case statement rather than
several If...Then...Else statements. The Select Case statement’s syntax is shown in Figure 5-25.
The figure also shows how you can use the statement to code the multiple-alternative selection
structure from Figure 5-23.

Figure 5-24 Louisiana message shown in the interface

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

268

The Select Case statement begins with the keywords Select Case, followed by a
selectorExpression. The selectorExpression can contain any combination of variables, constants,
keywords, functions, methods, operators, and properties. In the example in Figure 5-25,
the selectorExpression is a String variable named strCode. The Select Case statement ends
with the End Select clause. Between the Select Case and End Select clauses are the individual
Case clauses. Each Case clause represents a different path that the computer can follow. It is
customary to indent each Case clause and the instructions within each Case clause, as shown in
the figure. You can have as many Case clauses as necessary in a Select Case statement. However,
if the Select Case statement includes a Case Else clause, the Case Else clause must be the last
clause in the statement.

Each of the individual Case clauses except the Case Else clause must contain an expressionList,
which can include one or more expressions. To include more than one expression in an
expressionList, you separate each expression with a comma, like this: Case "40", "43". The
selectorExpression needs to match only one of the expressions listed in an expressionList. The
data type of the expressions must be compatible with the data type of the selectorExpression.
If the selectorExpression is numeric, the expressions in the Case clauses should be numeric.
Likewise, if the selectorExpression is a string, the expressions should be strings. In the example
in Figure 5-25, the selectorExpression (strCode) is a string, and so are the expressions
"12", "36", "40", and "43".

Select Case Statement

Syntax
Select Case selectorExpression
 Case expressionList1
 instructions for the first Case
 [Case expressionList2
 instructions for the second Case]
 [Case expressionListN
 instructions for the Nth Case]
 [Case Else
 instructions for when the selectorExpression does not match any of the expressionLists]
End Select

Example
Dim strCode As String

strCode = txtCode.Text
Select Case strCode
 Case "12"
 lblLocation.Text = "Tennessee"
 Case "36"
 lblLocation.Text = "Kentucky"
 Case "40", "43"
 lblLocation.Text = "Louisiana"
 Case Else
 lblLocation.Text = "Invalid code"
End Select

Figure 5-25 Syntax and an example of the Select Case statement

the selectorExpression
needs to match only
one of these values

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

269

The Select Case Statement L E S S O N A

The Select Case statement looks more complicated than it really is. When processing the
statement, the computer simply compares the value of the selectorExpression with the value or
values listed in each of the Case clauses, one Case clause at a time beginning with the first. If
the selectorExpression matches at least one of the values listed in a Case clause, the computer
processes only the instructions contained in that Case clause. After the Case clause instructions
are processed, the Select Case statement ends and the computer skips to the instruction
following the End Select clause. For instance, if the strCode variable in the example shown in
Figure 5-25 contains the string “12”, the computer will display the “Tennessee” message and then
skip to the instruction following the End Select clause. Similarly, if the variable contains the
string “40”, the computer will display the “Louisiana” message and then skip to the instruction
following the End Select clause. Keep in mind that if the selectorExpression matches a value in
more than one Case clause, only the instructions in the first match’s Case clause are processed.

If the selectorExpression does not match any of the values listed in any of the Case clauses, the
next instruction processed depends on whether the Select Case statement contains a Case Else
clause. If there is a Case Else clause, the computer processes the instructions in that clause and
then skips to the instruction following the End Select clause. (Recall that the Case Else clause
and its instructions immediately precede the End Select clause.) If there isn’t a Case Else clause,
the computer just skips to the instruction following the End Select clause.

To use the Select Case statement in the Snowboard Shop application:

1. Open the Snowboard Solution (Snowboard Solution.sln) file contained in the VB2015\
Chap05\Snowboard Solution-Select Case folder. Open the Code Editor window.
Replace <your name> and <current date> in the comments with your name and the
current date, respectively.

2. Locate the btnDisplay_Click procedure. Beginning in the blank line below the
assignment statement, enter the Select Case statement shown in Figure 5-25.

3. Save the solution and then start the application. Type 40 and then click the Display
button. The “Louisiana” message appears in the interface, as shown earlier in
Figure 5-24.

4. On your own, test the application using the following codes: 12, 36, 43, and 7. When
you are finished testing, click the Exit button. Close the Code Editor window and then
close the solution.

Specifying a Range of Values in a Case Clause
In addition to specifying one or more discrete values in a Case clause, you can also specify a
range of values, such as the values 1 through 4 or values greater than 10. You do this using either
the keyword To or the keyword Is. You use the To keyword when you know both the upper and
lower values in the range. The Is keyword is appropriate when you know only one end of the
range (either the upper or lower end).

Figure 5-26 shows the syntax for using the Is and To keywords in a Case clause. It also
contains an example of a Select Case statement that assigns a price based on the number of
items ordered.

The Ch05A-Select Case

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

270

According to the price chart shown in the figure, the price for 1 to 5 items is $25 each. Using
discrete values, the first Case clause would look like this: Case 1, 2, 3, 4, 5. However, a
more convenient way of writing that range of numbers is to use the To keyword, like this:
Case 1 To 5. The expression 1 To 5 specifies the range of numbers from 1 to 5, inclusive. The
expression 6 To 10 in the second Case clause in the example specifies the range of numbers
from 6 through 10. Notice that both Case clauses state both the lower (1 and 6) and upper
(5 and 10) values in each range.

The third Case clause, Case Is > 10, contains the Is keyword rather than the To keyword.
Recall that you use the Is keyword when you know only one end of the range of values. In
this case, you know only the lower end of the range, 10. The Is keyword is always used in
combination with one of the following comparison operators: =, <, <=, >, >=, <>. The Case
Is > 10 clause specifies all numbers greater than the number 10. Because intQuantity is an
Integer variable, you can also write this Case clause as Case Is >= 11. The Case Else clause in
the example in Figure 5-26 is processed only when the intQuantity variable contains a value
that is not included in any of the previous Case clauses.

You can also
enter Case > 10.

Specifying a Range of Values in a Case Clause

Syntax
Case smallest value in the range To largest value in the range
Case Is comparisonOperator value

Note: Be sure to test your code thoroughly because the computer will not display an error
message when the value preceding in a Case clause is greater than the value following

. Instead, the Select Case statement will not give the correct results.

Example
The ABC Corporation’s price chart is shown here:
 Quantity ordered Price per item
 1–5 $25
 6–10 $23
 More than 10 $20
 Fewer than 1 $0

Figure 5-26 Syntax and an example of specifying a range of values

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

271

The Select Case Statement L E S S O N A

4. On your own, test the application using 4, 11, and 0 as the quantity ordered. When you
are finished testing, click the Exit button. Close the Code Editor window and then close
the solution.

Figure 5-27 Price per item shown in the interface

YOU DO IT 3!

Create an application named YouDoIt 3 and save it in the VB2015\Chap05 folder.
Add a text box, a label, and a button to the form. The button’s Click event procedure
should display (in the label) either the price of a concert ticket or the N/A message.
The ticket price is based on the code entered in the text box, as shown here. Code the
procedure using the Select Case statement. Save the solution, and then start and test
the application. Close the solution.

 Code Ticket price

 1 $15

 2 $15

 3 $25

 4 $35

 5 $37

 Other N/A

To code and then test the ABC Corporation application:

1. Open the VB2015\Chap05\ABC Solution\ABC Solution (ABC Solution.sln) file. Open
the Code Editor window. Replace <your name> and <current date> in the comments
with your name and the current date, respectively.

2. Locate the btnDisplay_Click procedure. Beginning in the blank line below the second
comment, enter the Select Case statement shown in Figure 5-26.

3. Save the solution and then start the application. Type 7 in the Quantity ordered box
and then press Enter. See Figure 5-27.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

272

Lesson A Summary
 • To create a selection structure that evaluates both a primary and a secondary decision:

Place (nest) the secondary decision’s selection structure entirely within either the true or false
path of the primary decision’s selection structure.

 • To verify that an algorithm works correctly:

Desk-check (hand-trace) the algorithm.

 • To code a multiple-alternative selection structure:

Use either If...Then...Else statements or the Select Case statement.

 • To specify a range of values in a Select Case statement’s Case clause:

Use the To keyword when you know both the upper and lower values in the range. Use the Is
keyword when you know only one end of the range. The Is keyword is used in combination
with one of the following comparison operators: =, <, <=, >, >=, <>.

Lesson A Key Terms
Algorithm—a set of step-by-step instructions for accomplishing a task

Desk-checking—the process of using sample data to manually walk through the steps in an
algorithm; also called hand-tracing

Extended selection structures—another name for multiple-alternative selection structures

Hand-tracing—another term for desk-checking

Multiple-alternative selection structures—selection structures that contain several
alternatives; also called extended selection structures; can be coded using either If...Then...Else
statements or the Select Case statement

Nested selection structure—a selection structure that is wholly contained (nested) within
either the true or false path of another selection structure

Select Case statement—used to code a multiple-alternative selection structure in Visual Basic

Lesson A Review Questions
Use the code shown in Figure 5-28 to answer Review Questions 1 through 4.

If dblSales <= 0 Then
 dblRate = 0
ElseIf dblSales < 460 Then
 dblRate = 0.05
ElseIf dblSales < 1000 Then
 dblRate = 0.1
Else
 dblRate = 0.15
End If

Figure 5-28 Code for Review Questions 1 through 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

273

Lesson A Review Questions L E S S O N A

1. What will the code in Figure 5-28 assign to the dblRate variable when the dblSales
 variable contains the number 459.99?

a. 0
b. 0.05

c. 0.1
d. 0.15

2. What will the code in Figure 5-28 assign to the dblRate variable when the dblSales
variable contains the number 0?

a. 0
b. 0.05

c. 0.1
d. 0.15

3. What will the code in Figure 5-28 assign to the dblRate variable when the dblSales
variable contains the number 999.75?

a. 0
b. 0.05

c. 0.1
d. 0.15

4. What will the code in Figure 5-28 assign to the dblRate variable when the dblSales
variable contains the number 1000?

a. 0
b. 0.05

c. 0.1
d. 0.15

Use the code shown in Figure 5-29 to answer Review Questions 5 through 8.

5. What will the code in Figure 5-29 assign to the lblStatus control when the strLevel
 variable contains the string “2”?

a. Bronze
b. Gold

c. Platinum
d. Silver

6. What will the code in Figure 5-29 assign to the lblStatus control when the strLevel
 variable contains the string “5”?

a. Bronze
b. Gold

c. Platinum
d. Silver

7. What will the code in Figure 5-29 assign to the lblStatus control when the strLevel
variable contains the string “10”?

a. Bronze
b. Gold

c. Platinum
d. Silver

If strLevel = "1" OrElse strLevel = "2" Then
 lblStatus.Text = "Bronze"
ElseIf strLevel = "3" OrElse strLevel = "4" Then
 lblStatus.Text = "Silver"
ElseIf strLevel = "5" Then
 lblStatus.Text = "Gold"
Else
 lblStatus.Text = "Platinum"
End If

Figure 5-29 Code for Review Questions 5 through 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

274

 8. What will the code in Figure 5-29 assign to the lblStatus control when the strLevel
 variable contains the string “3”?

a. Bronze
b. Gold

c. Platinum
d. Silver

 9. A nested selection structure can appear _____________________.

a. only in an outer selection structure’s false path
b. only in an outer selection structure’s true path
c. in either an outer selection structure’s true path or its false path

10. Which of the following Case clauses is valid in a Select Case statement whose
 selectorExpression is an Integer variable named intCode?

a. Case Is > 7

b. Case 3, 5

c. Case 1 To 4

d. all of the above
Use the code shown in Figure 5-30 to answer Review Questions 11 through 14.

11. What will the code in Figure 5-30 assign to the strStatus variable when the
 intLevel variable contains the number 4?

a. Bronze
b. Gold

c. Platinum
d. Silver

12. What will the code in Figure 5-30 assign to the strStatus variable when the
 intLevel variable contains the number 8?

a. Bronze
b. Gold

c. Platinum
d. Silver

13. What will the code in Figure 5-30 assign to the strStatus variable when the
 intLevel variable contains the number 7?

a. Bronze
b. Gold

c. Platinum
d. Silver

14. What will the code in Figure 5-30 assign to the strStatus variable when the
 intLevel variable contains the number 1?

a. Bronze
b. Gold

c. Platinum
d. Silver

15. List the four errors commonly made when writing selection structures. Which errors
produce the correct results but in a less efficient way?

16. Explain the meaning of the term desk-checking.

Figure 5-30 Code for Review Questions 11 through 14

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

275

Lesson A Exercises L E S S O N A

Lesson A Exercises
1. Travis is standing in front of two containers: one marked Trash and the other marked

Recycle. In his right hand, he is holding a bag that contains either trash or recyclables.
Travis needs to lift the lid from the appropriate container (if necessary), then drop the
bag in the container, and then put the lid back on the container. Write an appropriate
algorithm using only the instructions listed in Figure 5-31. (An instruction can be used
more than once.)

INTRODUCTORY

2. Caroline is at a store’s checkout counter. She’d like to pay for her purchase using either
her credit card or her debit card, but preferably her credit card. However, she is not
sure whether the store accepts either card. If the store doesn’t accept either card, she
will need to pay cash for the items. Write an appropriate algorithm using only the
instructions listed in Figure 5-32. (An instruction can be used more than once.)

INTRODUCTORY

else
end if
drop the bag of recyclables in the Recycle container
drop the bag of trash in the Trash container
if the bag contains trash
if the lid is on the Recycle container
if the lid is on the Trash container
lift the Recycle container’s lid using your left hand
lift the Trash container’s lid using your left hand
put the lid back on the Recycle container using your left hand
put the lid back on the Trash container using your left hand

Figure 5-31 Instructions for Exercise 1

else
end if
pay for your items using your credit card
pay for your items using your debit card
pay for your items using cash
if the store accepts your credit card
if the store accepts your debit card
ask the store clerk whether the store accepts your credit card
ask the store clerk whether the store accepts your debit card

Figure 5-32 Instructions for Exercise 2

3. What is wrong with the algorithm shown in Figure 5-33? INTRODUCTORY

1. shoot the basketball
2. if the basketball went through the hoop
 say “I did it!”
 else
 if the basketball did not go through the hoop
 say “Missed it!”
 end if
 end if

Figure 5-33 Algorithm for Exercise 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

276

4. Write the Visual Basic code for the algorithm shown in Figure 5-10 in this lesson. The
car classification (either S for standard or L for luxury) is stored, in uppercase, in a vari-
able named strClass. The club membership information (either M for member or N
for nonmember) is stored, in uppercase, in a variable named strClub. Assign the fee
to a variable named intDailyFee. Display the fee in the lblFee control.

5. Write the Visual Basic code that displays the message “Use the Kanton room” when
the number of seminar participants is at least 75. When the number is 40 through
74, display the message “Use the Harris room”. When the number is 10 through 39,
 display the message “Use the small conference room”. When the number is less than 10,
 display the message “Cancel the seminar”. The number of participants is stored in the
 intParticipants variable. Display the appropriate message in the lblMsg control.
Code the multiple-alternative selection structure using the If...Then...Else statement.

6. Rewrite the code from Exercise 5 using the Select Case statement.

7. Open the Movie Ticket Solution (Movie Ticket Solution.sln) file contained in the
VB2015\Chap05\Movie Ticket Solution folder. If necessary, open the designer window.
Use the If...Then...Else statement to code the If...Then...Else button’s Click event proce-
dure. Use the Select Case statement to code the Select Case button’s Click event pro-
cedure. Both procedures should display the appropriate ticket price, which is based on
the customer’s age as shown below. Test each button’s Click event procedure five times,
using the numbers 1, 3, 64, 65, and 70.

 Age Price ($)
 Under 3 0
 3 to 64 9
 65 and over 6

 8. Does the algorithm in Figure 5-34 produce the same results as the solution shown in
Figure 5-4 in this lesson? If not, why not?

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

1. shoot the basketball
2. if the basketball went through the hoop and Maleek was either inside or on the 3-point line
 say “I did it!”
 say “2 points for me”
 else
 if Maleek was behind the 3-point line
 say “I did it!”
 say “3 points for me”
 else
 say “Missed it!”
 end if
 end if

Figure 5-34 Algorithm for Exercise 8

 9. Does the algorithm in Figure 5-35 produce the same results as the solution shown in
Figure 5-4 in this lesson? If not, why not?

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

277

Lesson A Exercises L E S S O N A

10. Does the algorithm in Figure 5-36 produce the same results as the solution shown in
Figure 5-5 in this lesson? If not, why not?

INTERMEDIATE

1. shoot the basketball
2. if the basketball did not go through the hoop
 say “Missed it!”
 else
 say “I did it!”
 if Maleek was either inside or on the 3-point line
 say “2 points for me”
 else
 say “3 points for me”
 end if
 end if

Figure 5-35 Algorithm for Exercise 9

1. shoot the basketball
2. if the basketball hit the rim
 say “So close”
 else
 if the basketball went through the hoop
 say “I did it!”
 if Maleek was outside the 3-point line
 say “3 points for me”
 else
 say “2 points for me”
 end if
 else
 say “Missed it!”
 end if
 end if

Figure 5-36 Algorithm for Exercise 10

11. Does the algorithm in Figure 5-37 produce the same results as the solution shown in
Figure 5-5 in this lesson? If not, why not?

INTERMEDIATE

1. shoot the basketball
2. if the basketball did not go through the hoop
 say “Missed it!”
 if the basketball hit the rim
 say “So close”
 end if
 else
 say “I did it!”
 if Maleek was outside the 3-point line
 say “3 points for me”
 else
 say “2 points for me”
 end if
 end if

Figure 5-37 Algorithm for Exercise 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

278

13. Open the VB2015\Chap05\Carillo Solution\Carillo Solution (Carillo Solution.sln) file.
The txtSales control should accept only numbers, the period, and the Backspace key;
code the appropriate procedure. The btnCalc_Click procedure calculates a 3.5% com-
mission when the annual sales are greater than $165,000; otherwise, it calculates a 2.5%
commission. Modify the procedure to use the commission rates shown below. Use the
If...Then...Else statement to code the multiple-alternative selection structure. Test the
application seven times, using 125000, 165000, 15000, 165000.99, 200000, 50000, and
50000.01 as the annual sales.
 Annual sales ($) Commission rate
 0–50,000 1.5%
 50,000.01–75,000 2.0%
 75,000.01–165,000 2.5%
 Over 165,000 3.5%

INTERMEDIATE

code

1, 2, 3, 4, 5 6 7, 8, 9, 10 Other

rate = 0.03 rate = 0.07 rate = 0.12 rate = –1

rate = –1 TF

display bonus
in lblBonus

bonus = sales * rate display
“Invalid code”
in lblBonus

Figure 5-38 Flowchart for Exercise 12

12. Open the VB2015\Chap05\Bonus Solution\Bonus Solution (Bonus Solution.sln) file.
Use the Select Case statement to finish coding the Calculate button’s Click event pro-
cedure. Use the partial flowchart shown in Figure 5-38 as a guide. Test the application
appropriately.

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

279

Lesson A Exercises L E S S O N A

14. In this exercise, you modify the Carillo application from Exercise 13. Use Windows to
make a copy of the Carillo Solution folder. Rename the copy Modified Carillo Solution.
Open the Carillo Solution (Carillo Solution.sln) file contained in the Modified Carillo
Solution folder. In the btnCalc_Click procedure, code the multiple-alternative selection
structure using the Select Case statement rather than the If...Then...Else statement. Test
the application seven times, using 125000, 165000, 15000, 165000.99, 200000, 50000,
and 50000.01 as the annual sales.

15. Open the VB2015\Chap05\Jetters Solution\Jetters Solution (Jetters Solution.sln) file.
The txtPrice control should accept only numbers, the period, and the Backspace key;
code the appropriate procedure. The txtQuantity control should accept only numbers
and the Backspace key; code the appropriate procedure. Jetters now uses the discount
rates shown below. Make the appropriate modifications to the btnCalc_Click proce-
dure. Test the application appropriately.

 Quantity purchased Discount rate
 0–10 0
 11–15 2%
 16–20 2.5%
 Over 20 3%

16. Open the VB2015\Chap05\Canton Solution\Canton Solution (Canton Solution.sln)
file. Canton Ltd. sells economic development software to cities around the country. The
company is having its annual users’ forum next month. The price per person depends
on the number of people a user registers. The first 5 people a user registers are charged
$90 per person. Registrants 6 through 11 are charged $70 per person. Registrants 12
through 20 are charged $60 per person. Registrants over 20 are charged $40 per person.
For example, if a user registers 13 people, then the total amount owed is $990. The $990
is calculated by first multiplying 5 by 90, giving 450. You then multiply 6 by 70, giving
420. Then, you multiply 2 by 60, giving 120. Finally, you add together the numbers 450,
420, and 120, giving 990. Display the total amount owed in the lblTotal control. Use the
Select Case statement to complete the Calculate button’s Click event procedure. Test
the application appropriately.

17. Open the Golf Solution (Golf Solution.sln) file contained in the VB2015\Chap04\Golf
Solution-Ex17 folder. Test the application using the data shown in Figure 5-39. Modify
the code to produce the correct results.

INTERMEDIATE

INTERMEDIATE

ADVANCED

SWAT THE BUGS

18. Open the Golf Solution (Golf Solution.sln) file contained in the VB2015\Chap04\Golf
Solution-Ex18 folder. Test the application using the data shown in Exercise 17’s
Figure 5-39. Modify the code to produce the correct results.

SWAT THE BUGS

Desk-check
1
2
3
4

Membership
status
member
member
nonmember
nonmember

Day
information
weekday
weekend
weekday
weekend

Expected
golf fee
$25
$25
$40
$45

Figure 5-39 Test data for Exercises 17 and 18

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

280

❚ LESSON B
After studying Lesson B, you should be able to:

 • Include a group of radio buttons in an interface

 • Designate a default radio button

 • Include a check box in an interface

 • Compare Boolean values

Modifying the Treeline Resort Application
Your task in this chapter is to modify the Treeline Resort application from Chapter 4. In addition
to the previous input data, the application’s interface will now allow the user to select the
number of beds (either two queen beds or one king bed), the view (either standard or atrium),
and whether the guest should be charged a vehicle parking fee of $8.50 per night. In addition
to displaying the total room charge, the sales and lodging tax, the resort fee, and the total due,
the application should now also display the total parking fee. Figure 5-40 shows the application’s
revised TOE chart. The changes made to the original TOE chart from Chapter 4 are shaded in
the figure.

Task

1. Calculate the total room charge, tax, total
 resort fee, total parking fee, and total due
2. Display the calculated amounts in lblRoomChg,
 lblTax, lblResortFee, lblParkingFee,
 and lblTotalDue

End the application

Display the total room charge (from btnCalc)

Display the tax (from btnCalc)

Display the total resort fee (from btnCalc)

Display the total parking fee (from btnCalc)

Display the total due (from btnCalc)

Specifies whether the guest should be charged
the vehicle parking fee

Get and display the number of rooms reserved,
number of nights, number of adults, and
number of children

Get number of beds

Get room view

Clear the contents of lblRoomChg, lblTax,
lblResortFee, lblParkingFee, and lblTotalDue

Allow the text box to accept only numbers and
the Backspace key

Select the contents of the text box

Object

btnCalc

btnExit

lblRoomChg

lblTax

lblResortFee

lblParkingFee

lblTotalDue

chkParkingFee

txtRooms, txtNights,
txtAdults, txtChildren

radQueen, radKing

radStandard,
radAtrium

txtRooms, txtNights,
txtAdults, txtChildren

radQueen, radKing,
radStandard, radAtrium,
chkParkingFee

txtRooms, txtNights,
txtAdults, txtChildren

txtRooms, txtNights,
txtAdults, txtChildren

Event

Click

Click

None

None

None

None

None

None

None

None

None

TextChanged

CheckedChanged

KeyPress

Enter

Figure 5-40 Revised TOE chart for the Treeline Resort application (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

281

Modifying the Treeline Resort Application L E S S O N B

The revised TOE chart indicates that the interface will now include six additional controls: a
label, a check box, and four radio buttons. The additional label will display the total parking fee.
The check box will specify whether the vehicle parking fee is applicable to the guest. Two of the
four radio buttons pertain to the number of beds, while the other two pertain to the room view.

To open the Treeline Resort application:

1. If necessary, start Visual Studio 2015. Open the VB2015\Chap05\Treeline Solution\
Treeline Solution (Treeline Solution.sln) file. See Figure 5-41.

START HERE

Four of the additional six controls listed in the TOE chart have already been added to the
interface, as shown in Figure 5-41. The interface also includes two group boxes that will serve
as containers for the radio buttons. (Controls whose purpose is to contain other controls do not
need to be listed in the TOE chart.) Missing from the interface are the Atrium radio button and
the Vehicle parking fee check box.

Clear the contents of lblRoomChg, lblTax,
lblResortFee, lblParkingFee, and lblTotalDue

Allow the text box to accept only numbers and
the Backspace key

Select the contents of the text box

txtRooms, txtNights,
txtAdults, txtChildren

radQueen, radKing,
radStandard, radAtrium,
chkParkingFee

txtRooms, txtNights,
txtAdults, txtChildren

txtRooms, txtNights,
txtAdults, txtChildren

TextChanged

CheckedChanged

KeyPress

Enter

Task Object Event

(continued)

Figure 5-40 Revised TOE chart for the Treeline Resort application

Figure 5-41 Partially completed interface for the Treeline Resort application

this group box
contains the
radStandard
control

lblParkingFee

this group box contains the
radQueen and radKing controls

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

282

Adding a Radio Button to the Interface
You create a radio button using the RadioButton tool in the toolbox. Radio buttons allow you
to limit the user to only one choice from a group of two or more related but mutually exclusive
options. Each radio button in an interface should be labeled so the user knows the choice it
represents. You enter the label using sentence capitalization in the radio button’s Text property.
Each radio button should also have a unique access key that allows the user to select the button
using the keyboard. The three-character ID for a radio button’s name is rad.

The Treeline Resort interface will use two groups of radio buttons: one for selecting the number of
beds and one for selecting the room view. To include two groups of radio buttons in an interface, at
least one of the groups must be placed within a container, such as a group box. Otherwise, the radio
buttons are considered to be in the same group and only one can be selected at any one time. In
this case, the radio buttons pertaining to the number of beds are contained in the Type group box,
and the radio buttons pertaining to the room view are contained in the View group box. Placing
each group of radio buttons in a separate group box allows the user to select one button from each
group. During run time, you can determine whether a radio button is selected or unselected by
looking at the value in its Checked property. If the property contains the Boolean value True, the
radio button is selected. If it contains the Boolean value False, the radio button is not selected.

The minimum number of radio buttons in a group is two. This is because the only way to
deselect a radio button is to select another radio button. The recommended maximum number
of radio buttons in a group is seven. In the next set of steps, you will add the missing Atrium
radio button to the View group box.

To add the Atrium radio button to the View group box:

1. Click the RadioButton tool in the toolbox, and then drag the mouse pointer into the
View group box, placing it below the Standard radio button. Release the mouse button.
The RadioButton1 control appears in the group box.

2. Change the RadioButton1 control’s name to radAtrium, and then change its Text
property to A&trium. If necessary, position the radio button as shown in Figure 5-42.

Ch05B-RadioButtons

START HERE

It is customary in Windows applications to have one of the radio buttons in each group already
selected when the user interface first appears. The automatically selected radio button is called
the default radio button and is either the radio button that represents the user’s most likely
choice or the first radio button in the group. You designate the default radio button by setting
the button’s Checked property to the Boolean value True.

To designate a default radio button in each group:

1. Click the Two queen radio button, and then use the Properties window to set the radio
button’s Checked property to True. When you do this, a colored dot appears inside the
button’s circle to indicate that the button is selected.

2. Set the Standard radio button’s Checked property to True.

START HERE

radAtrium control

Figure 5-42 Atrium radio button added to the View group box

radAtrium
control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

283

Modifying the Treeline Resort Application L E S S O N B

GUI DESIGN TIP Radio Button Standards

 • Use radio buttons to limit the user to one choice in a group of related but mutually
exclusive options.

 • The minimum number of radio buttons in a group is two, and the recommended
maximum number is seven.

 • The label in the radio button’s Text property should be entered using sentence
capitalization.

 • Assign a unique access key to each radio button in an interface.

 • Use a container (such as a group box) to create separate groups of radio buttons.
Only one button in each group can be selected at any one time.

 • Designate a default radio button in each group of radio buttons.

Adding a Check Box to the Interface
You create a check box using the CheckBox tool in the toolbox. Like radio buttons, check
boxes can be either selected or deselected. Also like radio buttons, you can determine whether
a check box is selected by looking at the value in its Checked property during run time: A
True value indicates that the check box is selected, whereas a False value indicates that it is
not selected. However, unlike radio buttons, check boxes provide one or more independent
and nonexclusive items from which the user can choose. Whereas only one button in a group
of radio buttons can be selected at any one time, any number of check boxes on a form can be
selected at the same time. Each check box in an interface should be labeled to make its purpose
obvious. You enter the label using sentence capitalization in the check box’s Text property. Each
check box should also have a unique access key that allows the user to select it by using the
keyboard. The three-character ID for a check box’s name is chk.

To add a check box to the interface:

1. Click the CheckBox tool in the toolbox, and then drag the mouse pointer onto the
form. Position it to the right of the View group box, and then release the mouse button.

2. Change the CheckBox1 control’s name to chkParkingFee, and then change its Text
property to &Vehicle parking fee. If necessary, position the check box as shown in
Figure 5-43.

START HERE

Figure 5-43 Vehicle parking fee check box added to the interface

chkParkingFee
control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

284

GUI DESIGN TIP Check Box Standards

 • Use check boxes to allow the user to select any number of choices from a group of
one or more independent and nonexclusive options.

 • The label in the check box’s Text property should be entered using sentence
capitalization.

 • Assign a unique access key to each check box in an interface.

Now that you have completed the user interface, you can lock the controls in place and then set
each control’s TabIndex property.

To lock the controls and then set each control’s TabIndex property:

1. Lock the controls on the form, and then use the information shown in Figure 5-44 to
set the TabIndex values for the controls. (As you learned in Chapter 2, picture boxes
do not have a TabIndex property.) When you are finished, press Esc to remove the
TabIndex boxes from the form.

START HERE

Figure 5-44 Correct TabIndex values

Next, you will start the application to observe how you select and deselect radio buttons and
check boxes.

To select and deselect radio buttons and check boxes:

1. Save the solution and then start the application. Notice that the first radio button in
each group is already selected.

2. You can select a different radio button by clicking it. You can click either the circle or
the text that appears inside the radio button. Click the One king radio button. The
computer selects the One king radio button as it deselects the Two queen radio button.
This is because both radio buttons belong to the same group, and only one radio button
in a group can be selected at any one time.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

285

Modifying the Calculate Button’s Code L E S S O N B

3. Click the Atrium radio button. The computer selects the Atrium radio button as it
deselects the Standard radio button. Here again, the radio buttons associated with the
room view belong to the same group, so selecting one deselects the other.

4. You can select a check box by clicking either the square or the text that appears
inside the control. Click the Vehicle parking fee check box to select it. A check mark
appears inside the check box to indicate that the check box is selected. Now, click the
Vehicle parking fee check box again. The check box is deselected, as the absence of
the check mark indicates. Click the Exit button.

Modifying the Calculate Button’s Code
According to the application’s TOE chart (shown earlier in Figure 5-40), the btnCalc control’s
Click event procedure will now need to calculate and display the total parking fee. However,
that is not the only modification you will need to make to the procedure. You will also need to
change the way it calculates the total room charge because the daily room charge now depends
on both the number of beds and the room view. Figure 5-45 shows the modified pseudocode,
with the changes made to the original pseudocode from Chapter 4 shaded in the figure.

btnCalc Click event procedure
1. store user input (numbers of rooms reserved, nights, adults, and children) in variables
2. calculate the total number of guests = number of adult guests + number of child guests
3. calculate the number of rooms required = total number of guests / maximum number
 of guests per room, which is 6
4. if the number of rooms reserved < number of rooms required
 display the message “You have exceeded the maximum guests per room.”
 else
 if the Two queen radio button is selected
 if the Standard radio button is selected
 daily room charge is $225.50
 else
 daily room charge is $275
 end if
 else
 if the Standard radio button is selected
 daily room charge is $245.50
 else
 daily room charge is $325
 end if
 end if
 calculate total room charge = number of rooms reserved * number of nights
 * daily room charge
 calculate tax = total room charge * tax rate of 16.25%
 calculate total resort fee = number of rooms reserved * number of nights
 * daily resort fee of $12.50
 if the Vehicle parking fee check box is selected
 calculate total parking fee = number of nights * 8.50
 end if
 calculate total due = total room charge + tax + total resort fee + total parking fee
 display total room charge, tax, total resort fee, total parking fee, and total due
 end if

Figure 5-45 Modified pseudocode for the btnCalc_Click procedure

nested
dual-alternative
selection structure

nested
dual-alternative
selection structure

nested
dual-alternative
selection
structure

nested
single-alternative
selection
structure

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

286

Notice that the outer selection structure’s false path in Figure 5-45 now includes a nested dual-
alternative selection structure and a nested single-alternative selection structure. Each path in
the nested dual-alternative selection structure also contains a nested dual-alternative selection
structure.

Figure 5-46 contains a list of the modified procedure’s named constants and variables. The
changes made to the list from Chapter 4 are shaded in the figure. As the figure indicates, the
dblDaily_Room_Chg named constant has been replaced with four named constants, each
representing one of the four different daily room charges. The fifth new named constant,
dblDAILY_PARKING_FEE, will store the daily vehicle parking fee. The two additional variables in
the list will store the total parking fee and the appropriate daily room charge.

Figure 5-46 Modified list of named constants and variables

Named constants
intMAX_PER_ROOM
dblDAILY_ROOM_CHG
dblDAILY_ROOM_CHG_QUEEN_STAND
dblDAILY_ROOM_CHG_QUEEN_ATRIUM
dblDAILY_ROOM_CHG_KING_STAND
dblDAILY_ROOM_CHG_KING_ATRIUM
dblDAILY_PARKING_FEE
dblTAX_RATE
dblDAILY_RESORT_FEE
strMSG

Values
6
225.50
225.50
275.00
245.50
325.00
8.50
0.1625 (the decimal equivalent of 16.25%)
12.50
“You have exceeded the maximum guests per
room.”

Variable names
intRoomsReserved
intNights
intAdults
intChildren
intNumGuests

dblRoomsRequired

dblParkingFee

dblDailyRoomChg

dblTotalRoomChg

dblTax

dblTotalResortFee

dblTotalDue

Stores
the number of rooms reserved
the number of nights
the number of adult guests
the number of child guests
the total number of guests, which is calculated by adding together the
number of adult guests and the number of child guests
the number of rooms required, which is calculated by dividing the total
number of guests by the maximum number of guests per room (may
contain a decimal place)
the total parking fee, which is calculated by multiplying the number of
nights by the daily parking fee
the daily room charge, which depends on the number of beds and
room view
the total room charge, which is calculated by multiplying the number of
rooms reserved by the number of nights and then multiplying the result
by the daily room charge
the tax, which is calculated by multiplying the total room charge by the
tax rate
the total resort fee, which is calculated by multiplying the number of
rooms reserved by the number of nights and then multiplying the result
by the daily resort fee
the total due, which is calculated by adding together the total room
charge, tax, total resort fee, and total parking fee

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

287

Modifying the Calculate Button’s Code L E S S O N B

3. Insert a blank line below the Dim statement that declares the dblRoomsRequired variable,
and then enter the two Dim statements indicated in Figure 5-48.

Figure 5-47 Named constants added to the procedure

Figure 5-48 Variables added to the procedure

According to the procedure’s pseudocode, you need to add three nested dual-alternative
selection structures to the outer selection structure’s false path. The conditions in the nested
structures will determine whether the Two queen and Standard radio buttons are selected. As
you learned earlier, you can determine the status of a radio button by looking at the value in its
Checked property. If the property contains the Boolean value True, the radio button is selected.
If it contains the Boolean value False, the radio button is not selected.

enter these
Const
statements

enter these Dim
statements

To begin modifying the btnCalc_Click procedure:

1. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. Locate the btnCalc_Click procedure. Delete the Const statement that declares the
dblDAILY_ROOM_CHG constant, and then enter the five Const statements indicated in
Figure 5-47.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

288

Comparing Boolean Values

Example 1

The condition evaluates to True when the variable contains the Boolean value
True; otherwise, it evaluates to False. You can also write the If clause like this:

.

Example 2

As you learned in Chapter 4, the Not operator reverses the truth-value of a condition. Therefore,
the condition evaluates to True when the variable contains the Boolean value
False; otherwise, it evaluates to True. You can also write the If clause like this:

.

Example 3

The condition evaluates to True when the chkParkingFee check box is selected; otherwise, it
evaluates to False. You can also write the If clause like this:

.

Example 4

 instructions to process when the check box is selected

 instructions to process when the check box is not selected

The instructions in the first Case clause will be processed when the chkParkingFee check box is
selected. The instructions in the second Case clause will be processed when the check box is not
selected. Because a check box’s Checked property can only be either True or False, you can
replace the clause with .

Example 5

 instructions to process when the radStandard radio button is selected

 instructions to process when the radAtrium radio button is selected

The instructions in the first Case clause will be processed when the radStandard radio button is
selected. The instructions in the second Case clause will be processed when the radAtrium radio
button is selected. Because the Standard and Atrium radio buttons are the only radio buttons in
their group, you can replace the second case clause with .

Figure 5-49 Examples of comparing Boolean values

Comparing Boolean Values
In addition to comparing numbers and strings, you can also compare Boolean values in If...Then...
Else and Select Case statements. Examples of such comparisons are shown in Figure 5-49.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

289

Modifying the Calculate Button’s Code L E S S O N B

To finish modifying the btnCalc_Click procedure:

1. First, you’ll enter the three nested dual-alternative selection structures. Insert a blank
line below the ' calculate charges comment, and then enter the nested structures
indicated in Figure 5-50. The nested structures determine the selected radio buttons
and then assign the appropriate daily room charge to the dblDailyRoomChg variable.

START HERE

2. In the assignment statement below the nested selection structures, change
dblDAILY_ROOM_CHG to dblDailyRoomChg.

3. You also need to include a single-alternative selection structure that determines
whether the check box is selected. If it is, the procedure should calculate the total
parking fee by multiplying the number of nights by the daily parking fee. Insert a blank
line above the statement that calculates the total due, and then enter the selection
structure indicated in Figure 5-51.

Figure 5-51 Nested single-alternative selection structure entered in the procedure

You can also
write the If
clause as If
chkParking-

Fee.Checked

= True Then.

Figure 5-50 Nested dual-alternative selection structures entered in the procedure

You can also
write the If
clauses as If
radQueen.

Checked =
True Then and If rad-
Standard.Checked =
True Then.

enter these selection
structures

enter this selection
structure

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

290

4. Finally, you need to add the total parking fee to the total due and also display the
total parking fee in the lblParkingFee control. Make the modifications indicated in
Figure 5-52.

Figure 5-52 Final modifications made to the procedure

Figure 5-53 Calculated amounts shown in the interface

5. Save the solution and then start the application. Type 1, 1, and 2 in the Rooms, Nights,
and Adults boxes, respectively, and then click the Calculate button. See Figure 5-53.

6. Click the Atrium radio button. Notice that the calculated amounts still appear in the
interface. You will fix that problem in the next section.

7. Change the number of nights to 2 and then click the Calculate button. The total due is
now $664.38.

8. Click the Vehicle parking fee check box and then click the Calculate button. The total
due is now $681.38.

9. Click the Exit button.

enter this
statement

enter this
code

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

291

Modifying the ClearLabels Procedure L E S S O N B

Modifying the ClearLabels Procedure
According to the application’s TOE chart (shown earlier in Figure 5-40), the CheckedChanged
events of the radio buttons and check box need to be coded. The CheckedChanged event
occurs when the value in a control’s Checked property changes. For example, when you select
a check box, its Checked property changes from False to True and its CheckedChanged event
occurs. Deselecting a check box changes its Checked property from True to False, thereby
invoking its CheckedChanged event. Similarly, when you select a radio button, its Checked
property changes from False to True and its CheckedChanged event occurs. In addition, the
Checked property of the previously selected radio button in the same group changes from True
to False, thereby invoking that radio button’s CheckedChanged event.

The TOE chart indicates that the CheckedChanged events should clear the contents of five
label controls in the interface. The ClearLabels procedure that you created in Chapter 4 will
perform that task. All you need to do is add the lblParkingFee.Text = String.Empty
statement to the procedure, and then include the CheckedChanged events for the radio buttons
and check box in the procedure’s Handles cause.

To modify and then test the ClearLabels procedure:

1. Locate the ClearLabels procedure, and then make the modifications indicated in Figure 5-54.
(Be sure to type the comma after txtChildren.TextChanged in the Handles clause.)

START HERE

Figure 5-54 Modified ClearLabels procedure

be sure to type
the comma

enter this code

enter this statement

2. Save the solution and then start the application. Type 1, 1, and 2 in the Rooms, Nights,
and Adults boxes, respectively, and then click the Calculate button. The total due is
$274.64, as shown earlier in Figure 5-53.

3. Click the Atrium radio button. The ClearLabels procedure removes the calculated
amounts from the interface. Click the Calculate button. The total due is now $332.19.

4. Click the Vehicle parking fee check box. The ClearLabels procedure removes the
calculated amounts from the interface. Click the Calculate button. The total due is now
$340.69.

5. On your own, verify that the ClearLabels procedure removes the calculated amounts when
the One king radio button is clicked and also when the Standard radio button is clicked.

6. Click the Exit button. Close the Code Editor window and then close the solution.

Figure 5-55 shows the application’s code at the end of Lesson B.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

292

Figure 5-55 Completed Treeline Resort application’s code (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

293

Modifying the ClearLabels Procedure L E S S O N B

(continued)

Figure 5-55 Completed Treeline Resort application’s code (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

294

Figure 5-55 Completed Treeline Resort application’s code

Lesson B Summary
 • To limit the user to only one choice in a group of two or more related but mutually exclusive

options:

Use the RadioButton tool to add two or more radio buttons to the form. To include two
groups of radio buttons on a form, at least one of the groups must be placed within a
container, such as a group box.

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

295

Lesson B Review Questions L E S S O N B

 • To allow the user to select any number of choices from a group of one or more independent
and nonexclusive options:

Use the CheckBox tool to add one or more check box controls to the form.

 • To determine whether a radio button or check box is selected or unselected:

Use the Checked property of the radio button or check box. The property will contain the
Boolean value True if the control is selected; otherwise, it will contain the Boolean value False.

 • To process code when the value in the Checked property of a radio button or check box changes:

Enter the code in the radio button’s or check box’s CheckedChanged event procedure.

Lesson B Key Terms
Check boxes—controls used to offer the user one or more independent and nonexclusive choices

Checked property—the property of radio button and check box controls that indicates whether
or not the control is selected; contains either the Boolean value True or the Boolean value False

CheckedChanged event—an event associated with radio buttons and check boxes; occurs
when the value in a control’s Checked property changes

Default radio button—the radio button that is automatically selected when an interface first appears

Radio buttons—controls used to limit the user to only one choice from a group of two or more
related but mutually exclusive options

Lesson B Review Questions
1. What is the minimum number of radio buttons in a group?

a. one
b. two

c. three
d. There is no minimum number of

radio buttons.

2. If a check box is not selected, what value is contained in its Checked property?

a. True
b. Unchecked

c. False
d. Unselected

3. Which capitalization should be used for the text appearing in check boxes and radio
buttons?

a. sentence capitalization
b. book title capitalization
c. either book title capitalization or sentence capitalization

4. It is customary in Windows applications to designate a default check box.

a. True b. False

5. A form contains six radio buttons. Three of the radio buttons are located in a group
box. How many of the radio buttons on the form can be selected at the same time?

a. one
b. two

c. three
d. six

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

296

6. A form contains six check boxes. Three of the check boxes are located in a group box.
How many of the check boxes on the form can be selected at the same time?

a. one
b. two

c. three
d. six

7. If a radio button is selected, its _____________________ property contains the Boolean
value True.

a. Checked
b. On

c. Selected
d. Selection

8. Which of the following If clauses will evaluate to True when the Bonus check box is
selected?

a. If chkBonus.Check = True Then

b. If chkBonus.Checked Then

c. If chkBonus.Selected = True Then

d. If chkBonus.Selected Then

9. Which of the following events occurs when a check box is clicked?

a. Check
b. Checked

c. CheckedChange
d. CheckedChanged

10. If the blnSenior variable contains the Boolean value False, then the Not blnSenior
condition will evaluate to______________________.

a. True
b. False

Lesson B Exercises
1. In this exercise, you modify the Treeline Resort application from this lesson. Use

Windows to make a copy of the Treeline Solution folder. Rename the copy Treeline
Solution-Select Case. Open the Treeline Solution (Treeline Solution.sln) file contained
in the Treeline Solution-Select Case folder. In the btnCalc_Click procedure, replace
the If...Then...Else statement that determines the number of beds with the Select Case
 statement. Test the application appropriately.

2. In this exercise, you create an application for Brazilian Tea, which sells both hot and
iced tea in three different cup sizes. Use the following names for the solution and
 project, respectively: Tea Solution and Tea Project. Save the application in the VB2015\
Chap05 folder. The application’s interface, which is shown in Figure 5-56, provides
radio buttons for selecting the cup size. The check box is used to specify whether the
 customer is ordering iced tea. The price for each cup size is shown in the interface;
however, the store must also charge a 4% sales tax. The Calculate button should
 calculate the total price of a cup of tea. It then should display (in the label control) a
message that indicates the cup size, the total price, and whether the tea is hot or iced.
Use the If...Then...Else statement to code the multiple-alternative selection structure.
The CheckedChanged event procedures for the radio buttons and check box should
clear the message from the label control. Test the application appropriately.

INTRODUCTORY

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

297

Lesson B Exercises L E S S O N B

3. In this exercise, you modify the Brazilian Tea application from Exercise 2. Use Windows
to make a copy of the Tea Solution folder. Rename the copy Modified Tea Solution.
Open the Tea Solution (Tea Solution.sln) file contained in the Modified Tea Solution
folder. Use the Select Case statement (rather than the If...Then...Else statement) to code
the multiple-alternative selection structure. Test the application appropriately.

4. In this exercise, you code an application that allows the user to select one radio button
from each of two groups: an English group and a Spanish group. Open the VB2015\
Chap05\Language Solution\Language Solution (Language Solution.sln) file. When a
radio button is selected, its CheckedChanged event procedure should clear the contents
of the lblMsg control. The Verify Answer button’s Click event procedure should verify
that the selected English word is the proper translation for the selected Spanish word.
If it is, the procedure should display the message “Correct”; otherwise, it should display
the message “Incorrect”. Code the procedure using one dual-alternative selection struc-
ture. Test the application appropriately.

5. Willow Hill Athletic Club offers personal training sessions to its members. The sessions
are either 30 or 60 minutes in length, and members can sign up to meet either two or three
times per week. The application’s interface is shown in Figure 5-57. Each 30- minute ses-
sion costs $17.50; each 60-minute session costs $30. However, members who sign up for
three 60-minute sessions per week receive a 10% discount. Additionally, members who are
at least 60 years old receive a senior discount, which is an additional 5% off the total cost.
Use the following names for the solution and project, respectively: Willow Solution and
Willow Project. Save the application in the VB2015\Chap05 folder. The application should
display the total cost for four weeks of personal training. Test the application appropriately.
(Hint: The monthly cost for a member who signs up for three 60-minute sessions per week
is $324.00. If the member is entitled to the senior discount, the cost is $307.80.)

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

Figure 5-56 Interface for Exercise 2

label

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

298

6. In this exercise, you modify the Treeline Resort application from this lesson. Use
Windows to make a copy of the Treeline Solution folder. Rename the copy Modified
Treeline Solution. Open the Treeline Solution (Treeline Solution.sln) file contained in
the Modified Treeline Solution folder.

a. Currently, the application calculates the total parking fee by multiplying the daily
parking fee by the number of nights. However, this calculation is based on the
assumption that the guest will have only one vehicle to park, when it is entirely
possible that he or she (or other members of the guest’s party) may have two or more
vehicles. Add a label control and a text box to the form, positioning both below the
check box. Change the label’s Text property to N&umber of vehicles: (including
the colon). The user will enter the number of vehicles in this new text box. When
the user selects the check box, display the number 1 in the text box. When the user
deselects the check box, clear the contents of the text box. (Hint: A check box also
has a Click event.)

b. Modify the code so it now calculates the total parking fee by multiplying the daily
parking fee by the number of nights, and then multiplying that result by the number
of vehicles. As is currently done, the parking fee should be charged only when
the check box is selected. Clear the calculated amounts when a change is made to
the number of vehicles. Make the appropriate modifications to the code. Test the
application appropriately.

7. Shopper Stoppers wants you to create an application that displays the number of reward
points a customer earns each month. The reward points are based on the customer’s
membership type and total monthly purchase amount, as shown in Figure 5-58. Use
the following names for the solution and project, respectively: Shopper Solution and
Shopper Project. Save the application in the VB2015\Chap05 folder. Create a suitable
interface, using radio buttons to get the membership type. Display the reward points as
whole numbers. Test the application appropriately.

INTERMEDIATE

ADVANCED

Figure 5-57 Interface for Exercise 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

299

Lesson B Exercises L E S S O N B

Membership type
Basic

Standard

Premium

Total monthly
purchase ($)
Less than 100
100–249.99
250 and over

Less than 50
50 and over

Less than 200
200 and over

Reward points
0
5% of the total monthly purchase
6% of the total monthly purchase

2% of the total monthly purchase
7% of the total monthly purchase

7% of the total monthly purchase
9% of the total monthly purchase

Figure 5-58 Reward points for Exercise 7

Figure 5-59 Interface for Exercise 8

8. Create an application, using the following names for the solution and project, respec-
tively: Songs Solution and Songs Project. Save the application in the VB2015\Chap05
folder.

a. Create the interface shown in Figure 5-59. The four radio buttons contain song
titles. The Artist Name button’s Click event procedure should display the name of
the artist associated with the selected radio button. The names of the artists are
Andrea Bocelli, Michael Jackson, Beyonce, and Josh Groban. Code the application,
and then test it appropriately.

b. Remove the Artist Name button from the interface. Also remove the button’s
code from the Code Editor window. Code the application so that the artist name
automatically appears when a radio button is selected. Save the solution and then
start the application. The name “Andrea Bocelli” should appear in the Artist box
because the Because We Believe radio button is selected. Click the Billie Jean radio
button. The name “Michael Jackson” should appear in the Artist box. Test the
remaining radio buttons.

DISCOVERY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

300

❚ LESSON C
After studying Lesson C, you should be able to:

 • Validate data using the TryParse method

 • Generate random numbers

Using the TryParse Method for Data Validation
In Chapter 3, you learned how to use the TryParse method to convert a string to a number of
a specific data type. Recall that if the conversion is successful, the TryParse method stores the
number in the variable specified in the method’s numericVariableName argument; otherwise,
it stores the number 0 in the variable. What you didn’t learn in Chapter 3 was that in addition
to storing a number in the variable, the TryParse method also returns a Boolean value that
indicates whether the conversion was successful (True) or unsuccessful (False). You can assign
the value returned by the TryParse method to a Boolean variable, as shown in the syntax and
example in Figure 5-60. You then can use a selection structure to take the appropriate action
based on the result of the conversion. For example, you might want a selection structure’s true
path to calculate an employee’s gross pay only when the user’s input (hours worked and pay rate)
can be converted to numbers; otherwise, its false path should display an “Input Error” message.

Using the Boolean Value Returned by the TryParse Method

Syntax
booleanVariable = dataType.TryParse(string, numericVariableName)

Example

txtSales.Text
“12”
“25.7”
“Ab”
“25%”
“”

12.0
25.7
0
0
0

True
True
False
False
False

Test data for Result of assignment statement

Figure 5-60 Syntax and an example of using the Boolean value returned by the TryParse method

The TryParse method in the assignment statement in Figure 5-60 will attempt to convert the
string stored in the txtSales control’s Text property to a Double number. If the conversion is
successful, the method stores the Double number in the dblSales variable and also returns the
Boolean value True. If the conversion is not successful, the method stores the number 0 in the
dblSales variable and returns the Boolean value False. The assignment statement assigns the
TryParse method’s return value (either True or False) to the blnIsValid variable.

To use the Boolean value returned by the TryParse method:

1. If necessary, start Visual Studio 2015. Open the New Pay Solution (New Pay Solution.sln)
file contained in the VB2015\Chap05\New Pay Solution folder. Open the Code Editor
window. Replace <your name> and <current date> in the comments with your name
and the current date, respectively.

2. Locate the btnCalc_Click procedure. Before modifying the code to use the Boolean
value returned by the TryParse method, you will observe how the procedure currently

START HERE

empty string

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

301

Using the TryParse Method for Data Validation L E S S O N C

works. Start the application. Type 10 in the Old pay box and then click the Calculate
button. Rather than alerting the user that the Raise rate box is empty, the procedure
displays the old pay amount ($10.00) in the New pay box.

3. Type a in the Raise rate box and then click the Calculate button. Even though the raise
rate is invalid, the procedure displays the old pay amount ($10.00) in the New pay box.
See Figure 5-61.

4. Change the raise rate to .05 and then click the Calculate button. The procedure
displays $10.50 in the New pay box, which is correct. Click the Exit button.

5. Use the code shown in Figure 5-62 to modify the btnCalc_Click procedure. The
modifications are shaded in the figure.

Figure 5-62 Modified btnCalc_Click procedure

Figure 5-61 Sample run of the original btnCalc_Click procedure

the procedure displays
the old pay amount
even when the raise
rate is invalid

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

302

6. Save the solution and then start the application. Type 10 in the Old pay box and then
click the Calculate button. Because no raise rate was entered, the procedure displays
the “Invalid data” message in the New pay box.

7. Type .05 in the Raise rate box and then click the Calculate button. The procedure
calculates and displays $10.50 as the new pay amount, which is correct.

8. Change the old pay to the letter a and then click the Calculate button. The procedure
displays the “Invalid data” message, which is correct.

9. Click the Exit button. Close the Code Editor window and then close the solution.

YOU DO IT 4!

Create an application named YouDoIt 4 and save it in the VB2015\Chap05 folder. Add a
text box, a label, and a button to the form. If the user enters a value that can be converted
to the Integer data type, the button’s Click event procedure should display the integer in
the label; otherwise, it should display the string “Can’t be converted”. Code the procedure.
Save the solution and then start the application. Test the application using the following
values: 12, 12.75, 2, $45, 3, 5%, 6, and the empty string. Close the solution.

Generating Random Integers
Many computer game programs use random numbers. The numbers can be integers or real
numbers, which are numbers containing a decimal place. In this section, you will learn how to
generate random integers. If you want to learn how to generate random real numbers, refer to
Exercise 11 at the end of this lesson.

Most programming languages provide a pseudo-random number generator, which is a
mathematical algorithm that produces a sequence of numbers that, although not completely
random, are sufficiently random for practical purposes. The pseudo-random number generator
in Visual Basic is represented by an object whose data type is Random.

Figure 5-63 shows the syntax for generating random integers in Visual Basic, and it includes
examples of using the syntax. As the figure indicates, you first create a Random object to
represent the pseudo-random number generator in your application’s code. You create the
Random object by declaring it in a Dim statement, which you enter in the procedure that will
use the number generator. After the Random object is created, you can use the object’s Random.
Next method to generate random integers. In the method’s syntax, randomObjectName is the
name of the Random object. The minValue and maxValue arguments must be integers, and
minValue must be less than maxValue. The Random.Next method returns an integer that is
greater than or equal to minValue but less than maxValue. You will use random integers to code
the Roll ‘Em Game application, which simulates the rolling of two dice.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

303

Generating Random Integers L E S S O N C

Generating Random Integers

Syntax
Dim randomObjectName As New Random
randomObjectName.Next(minValue maxValue)

Example 1

The Dim statement creates a Random object named . The
expression generates a random integer that is greater than or equal to 1 but less than 51. The
assignment statement assigns the random integer to the variable.

Example 2

The Dim statement creates a Random object named . The
expression generates a random integer that is greater than or equal to –10 but less than 0. The
assignment statement assigns the random integer to the variable.

,

Figure 5-63 Syntax and examples of generating random integers

To open the Roll ‘Em Game application:

1. Open the Roll Em Solution (Roll Em Solution.sln) file contained in the
VB2015\Chap05\Roll Em Solution folder. See Figure 5-64.

START HERE

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

Figure 5-64 Roll 'Em Game application’s interface

picDie1 picDie2

lblTotal

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

304

When the user clicks the Roll the Dice button, the button’s Click event procedure will
generate two random integers from 1 through 6. It will use the random integers to select one
of the images located below the buttons in the interface. The images are named picOneDot,
picTwoDots, picThreeDots, picFourDots, picFiveDots, and picSixDots. The procedure will
display the selected images in the picDie1 and picDie2 controls. It will also total the number of
dots appearing on both dice and then display the total in the lblTotal control. Figure 5-65 shows
the procedure’s pseudocode.

btnRoll Click event procedure
1. generate a random integer from 1 through 6 and assign to a variable named intNum1
2. generate a random integer from 1 through 6 and assign to a variable named intNum2
3. use the intNum1 variable’s value to display the appropriate image in the picDie1 control
 if intNum1 contains:
 1 display the picOneDot image
 2 display the picTwoDots image
 3 display the picThreeDots image
 4 display the picFourDots image
 5 display the picFiveDots image
 6 display the picSixDots image
4. use the intNum2 variable’s value to display the appropriate image in the picDie2 control
 if intNum2 contains:
 1 display the picOneDot image
 2 display the picTwoDots image
 3 display the picThreeDots image
 4 display the picFourDots image
 5 display the picFiveDots image
 6 display the picSixDots image
5. calculate the total number of dots on both dice by adding together the integers stored in
 the intNum1 and intNum2 variables
6. display the total in the lblTotal control

Figure 5-65 Pseudocode for the Roll the Dice button’s Click event procedure

To code the btnRoll_Click procedure:

1. Open the code template for the btnRoll_Click procedure. Type the following comment
and then press Enter twice:

 ' simulates a game of rolling dice

2. First, you will declare the random number generator. Type the following Dim statement
and then press Enter:

 Dim randGen As New Random

3. Next, you will declare the intNum1 and intNum2 variables, which will store the random
integers. You will also declare an Integer variable to store the total of the dots on both
dice. Enter the following three Dim statements. Press Enter twice after typing the last
Dim statement.

 Dim intNum1 As Integer
 Dim intNum2 As Integer
 Dim intTotal As Integer

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

305

Generating Random Integers L E S S O N C

4. The first two steps in the pseudocode generate two random integers from 1 through
6 and assign them to the intNum1 and intNum2 variables. To generate integers in
that range, you will need to use 1 for the Random.Next method’s minValue argument
and 7 for its maxValue argument. Enter the following comment and two assignment
statements. Press Enter twice after typing the second assignment statement.

 ' assign random integer from 1 through 6
 intNum1 = randGen.Next(1, 7)
 intNum2 = randGen.Next(1, 7)

5. Step 3 in the pseudocode uses the intNum1 variable’s value to display the appropriate
image in the picDie1 control. Enter the following comment and Select Case statement:

 ' display appropriate image in picDie1

 Select Case intNum1
 Case 1
 picDie1.Image = picOneDot.Image
 Case 2
 picDie1.Image = picTwoDots.Image
 Case 3
 picDie1.Image = picThreeDots.Image
 Case 4
 picDie1.Image = picFourDots.Image
 Case 5
 picDie1.Image = picFiveDots.Image
 Case 6
 picDie1.Image = picSixDots.Image
 End Select

6. Similarly, Step 4 uses the intNum2 variable’s value to display the appropriate image in
the picDie2 control. Insert another blank line above the End Sub clause, and then enter
the following comment and Select Case statement:

 ' display appropriate image in picDie2
 Select Case intNum2
 Case 1
 picDie2.Image = picOneDot.Image
 Case 2
 picDie2.Image = picTwoDots.Image
 Case 3
 picDie2.Image = picThreeDots.Image
 Case 4
 picDie2.Image = picFourDots.Image
 Case 5
 picDie2.Image = picFiveDots.Image
 Case 6
 picDie2.Image = picSixDots.Image
 End Select

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

306

7. The last two steps in the pseudocode calculate the total number of dots on both dice
and then display the result in the lblTotal control. Insert another blank line above the
End Sub clause, and then enter the following comment and assignment statements:

 ' calculate and display total number of dots
 intTotal = intNum1 + intNum2
 lblTotal.Text = intTotal.ToString

8. Save the solution and then start the application. Click the Roll the Dice button. See
Figure 5-66. Because random numbers are used to select the appropriate images for the
picDie1 and picDie2 controls, your dice and total might be different from the dice and
total shown in the figure.

9. Click the Roll the Dice button several more times to verify that different images
appear in the picDie1 and picDie2 controls. Also verify that the number in the Total
box is correct. When you are finished testing the application, click the Exit button, and
then close the Code Editor window.

YOU DO IT 5!

Close the Roll Em Solution file. Create an application named YouDoIt 5 and save it in the
VB2015\Chap05 folder. Add a label and a button to the form. The button’s Click event
procedure should display an integer from 1 through 10 in the label. Code the procedure.
Save the solution, and then start and test the application. Close the solution.

Completing the Roll ‘Em Game Application
The six picture boxes located at the bottom of the form should not appear while the application
is running. As you learned in Chapter 2, you can hide a control during run time by changing its
Visible property from True to False.

Figure 5-66 Result of clicking the Roll the Dice button

total number of dots
on the two dice

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

307

Completing the Roll ‘Em Game Application L E S S O N C

To hide the six picture boxes and then resize the form:

1. If necessary, open the Roll Em Solution (Roll Em Solution.sln) file. Select the six picture
boxes located at the bottom of the form, and then use the Properties window to change
the Visible property to False. Click the form to deselect the picture boxes.

2. Drag the form’s bottom sizing handle up until the form is approximately the size shown
in Figure 5-67.

START HERE

Figure 5-67 Resized form

Figure 5-68 Interface with six of the picture boxes hidden

4. Click the Exit button and then close the solution.

3. Lock the controls on the form. Save the solution and then start the application. Click
the Roll the Dice button. See Figure 5-68. Notice that the picture boxes located at the
bottom of the form are hidden from view.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

308

Figure 5-69 Roll the Dice button’s Click event procedure

Figure 5-69 shows the code entered in the btnRoll_Click procedure.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

309

Lesson C Review Questions L E S S O N C

Lesson C Summary
 • To determine whether the TryParse method converted a string to a number of the specified

data type:

Use the syntax booleanVariable = dataType.TryParse(string, numericVariableName). The
TryParse method returns the Boolean value True when the string can be converted to the
numeric dataType; otherwise, it returns the Boolean value False.

 • To generate random integers:

Create a Random object to represent the pseudo-random number generator. Then use the
object’s Random.Next method to generate a random integer. Refer to the syntax and examples
shown earlier in Figure 5-63.

Lesson C Key Terms
Pseudo-random number generator—a mathematical algorithm that produces a sequence of
random numbers; in Visual Basic, the pseudo-random generator is represented by an object
whose data type is Random

Random object—represents the pseudo-random number generator in Visual Basic

Random.Next method—used to generate a random integer that is greater than or equal to a
minimum value but less than a maximum value

Lesson C Review Questions
1. If the txtPrice control contains the value 75, what value will the

Decimal.TryParse(txtPrice.Text, decPrice) method return?

a. False
b. True

c. 75
d. 75.00

2. Which of the following statements will hide the picCar control?

a. picCar.Hide

b. picCar.Hide = True

c. picCar.Invisible = True

d. picCar.Visible = False

3. Which of the following statements declares an object to represent the pseudo-random
number generator in a procedure?

a. Dim randGen As New RandomNumber
b. Dim randGen As New Generator
c. Dim randGen As New Random
d. Dim randGen As New RandomObject

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

310

4. Which of the following statements generates a random integer from 1 to 25, inclusive?

a. intNum = randGen.Next(1, 25)
b. intNum = randGen.Next(1, 26)
c. intNum = randGen(1, 25)
d. intNum = randGen.NextNumber(1, 26)

5. If the txtAge control is empty, the blnIsOk = Integer.TryParse(txtAge.
Text, intAge) statement will store ____________________ in the intAge variable
and also assign ____________________ to the blnIsOk variable.

a. 0, True
b. 0, False

c. False, the empty string
d. the empty string, False

Lesson C Exercises
1. Open the VB2015\Chap05\Riley Solution\Riley Solution (Riley Solution.sln) file.

The btnCalc_Click procedure should display the message “Please enter the price.” in
a message box when the contents of the txtPrice control cannot be converted to a
Double number. Otherwise, it should display the 25% discount and new price amounts.
Make the appropriate modifications to the procedure’s code. Test the application
appropriately.

2. Create an application, using the following names for the solution and project, respec-
tively: Lottery Solution and Lottery Project. Save the application in the VB2015\
Chap05 folder. Create the interface shown in Figure 5-70. The image for the picture
box is stored in the VB2015\Chap05\BagOfMoney.png file. The Select Numbers but-
ton should display six lottery numbers. Each lottery number can range from 1 through
54 only. An example of six lottery numbers would be: 4 8 35 15 20 3. For now, do not
worry if the lottery numbers are not unique. You will learn how to display unique num-
bers in Chapter 9. Test the application appropriately.

INTRODUCTORY

INTRODUCTORY

Figure 5-70 Interface for Exercise 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

311

Lesson C Exercises L E S S O N C

3. Create an application, using the following names for the solution and project, respec-
tively: Zander Solution and Zander Project. Save the application in the VB2015\
Chap05 folder. Create the interface shown in Figure 5-71. The text box should accept
only numbers, the period, and the Backspace key. It also should have its existing text
selected when it receives the focus. The amounts in the Shipping and Total due boxes
should be cleared when a change is made to any of the input items (i.e., price, region, or
delivery). The application should display the appropriate shipping charge and total due.
The shipping charges are included in Figure 5-71. The total due is calculated by adding
together the price and the shipping charge. Only calculate the shipping charge and total
due when the contents of the text box can be converted to a number; otherwise, display
an appropriate message. (Hint: Although you are allowing the text box to accept only
numbers, the period, and the Backspace key, the user might inadvertently enter more
than one period in the price. An entry that contains more than one period cannot be
converted to a number.) Test the application appropriately.

INTRODUCTORY

Region
1
2
3
4

 Standard delivery charge ($)
4.99
6.99
7.99
2.99

Overnight delivery: add $10 to the standard delivery charge
Two-day delivery: add $5 to the standard delivery charge

Figure 5-71 Interface and shipping information for Exercise 3

4. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Concert Solution and Concert Project. Save the application
in the VB2015\Chap05 folder. Create the interface shown in Figure 5-72. The three
text boxes should be invisible when the application starts. When the user selects a
check box, its corresponding text box should appear in the interface and remain vis-
ible until the user deselects the check box. The user will enter the number of tickets
he or she wants to purchase in the appropriate text box. Allow only numbers and the
Backspace key. When the user deselects a check box, the contents of its corresponding
text box should be cleared. Keep in mind that the user can purchase any combination of
 tickets, such as 3 box tickets and 5 lawn tickets, or 2 pavilion tickets, 1 box ticket, and
2 lawn tickets. The application should display the total number of tickets purchased
and the total due. The tickets for box, pavilion, and lawn seats are $97.50, $55.50,
and $21, respectively. The 10% check box in the interface allows the user to specify
whether the customer is entitled to a 10% discount on the total due. Test the application
appropriately.

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

312

5. Create an application, using the following names for the solution and project, respec-
tively: Guessing Game Solution and Guessing Game Project. Save the application in
the VB2015\Chap05 folder. The application should generate a random integer from
1 through 30, inclusive. It then should give the user as many chances as necessary to
guess the integer. Each time the user makes a guess, the application should display one
of three messages: “Guess higher”, “Guess lower”, or “Correct. The random integer is
x.”, where x is the random integer. The application should also display the number of
chances that were required for the user to guess the number. Create a suitable interface,
and then code the application. Test the application appropriately.

6. In this exercise, you modify the application from Exercise 5. Use Windows to make a
copy of the Guessing Game Solution folder. Rename the copy Modified Guessing Game
Solution. Open the Guessing Game Solution (Guessing Game Solution.sln) file con-
tained in the Modified Guessing Game Solution folder. The application should allow
the user to make only five incorrect guesses. When the user has made the fifth incor-
rect guess, display the random integer. Modify the code to reflect these changes. Test
the application appropriately.

7. Create an application, using the following names for the solution and project, respec-
tively: MacroTech Solution and MacroTech Project. Save the application in the
VB2015\Chap05 folder. Create the interface shown in Figure 5-73. MacroTech sells a
software package that is available in three editions. The application should display the
price of the edition a customer wants to purchase. The retail prices for the Ultimate,
Professional, and Student editions are $775.99, $499.99, and 149.99, respectively. Some
customers may have a coupon worth 10% off the price of the Ultimate edition, while
others may have a coupon worth 20% off the price of the Student edition. Test the
application appropriately.

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Figure 5-72 Interface for Exercise 4

Figure 5-73 Interface for Exercise 7

the three text boxes
should be invisible when
the application starts

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

313

Lesson C Exercises L E S S O N C

8. Create an application, using the following names for the solution and project, respec-
tively: Kerry Cable Solution and Kerry Cable Project. Save the application in the
VB2015\Chap05 folder. Kerry Cable Company wants you to create an application that
displays a customer’s monthly cable bill, which is based on the information shown in
Figure 5-74. Use radio buttons for the different packages, and use check boxes for the
additional features. Test the application appropriately.

INTERMEDIATE

Packages
Basic
Silver
Gold
Diamond

Monthly charge ($)
39.99
45.99
74.99
99.99

Additional features
Cinnematic movie channels
HBI movie channels
Showtimer movie channels
Local stations

Monthly charge ($)
10.50
10.50
11.50
 5.00

Figure 5-74 Information for Exercise 8

9. Create an application, using the following names for the solution and project, respec-
tively: Marshall Solution and Marshall Project. Save the application in the VB2015\
Chap05 folder. Create the interface shown in Figure 5-75. Each salesperson at Marshall
Sales Corporation receives a commission based on the amount of his or her sales. The
commission rates are included in Figure 5-75. If the salesperson has worked at the com-
pany for more than 10 years, he or she receives an additional $500. If the salesperson is
classified as a traveling salesperson, he or she receives an additional $700. The text box
should accept only numbers, the period, and the Backspace key, and its text should be
selected when it receives the focus. Make the appropriate calculations only when the
sales amount can be converted to a Double number; otherwise, display an appropriate
message. (Hint: Although you are allowing the text box to accept only numbers, the
period, and the Backspace key, the user might inadvertently enter more than one period
in the sales amount. An entry that contains more than one period cannot be converted
to a number.) The calculated amounts should be cleared when a change is made to any
of the input items. Test the application appropriately.

ADVANCED

Sales ($)
1–5,999.99
6,000–29,999.99
30,000 and over

Commission
10% of sales
$120 plus 13% of the sales over 6,000
$3,120 plus 14% of the sales over 30,000

Figure 5-75 Interface and commission information for Exercise 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 More on the Selection Structure

314

10. In this exercise, you create an application for Sunnyside Products. The application dis-
plays the price of an order based on the number of units ordered and the customer’s
status (either wholesaler or retailer). The price per unit is shown in Figure 5-76. Create
an application, using the following names for the solution and project, respectively:
Sunnyside Solution and Sunnyside Project. Save the application in the VB2015\Chap05
folder. Create a suitable interface. Use radio buttons to determine the customer’s status.
Code the application, and then test it appropriately.

ADVANCED

Number of units
1–100
101–200
Over 200

Price per unit ($)
19
17
13

Number of units
1–50
Over 50

Price per unit ($)
25
20

Wholesaler Retailer

Figure 5-76 Pricing chart for Exercise 10

Total price
At least $100 but less than $501
At least $501 but less than $1,001
At least $1,001
Less than $100

Shipping
$10
$ 7
$ 5
$13

Figure 5-77 Shipping charges for Exercise 12

11. This exercise will show you how to generate and display random numbers containing
decimal places. Open the Random Double Solution (Random Double Solution.sln) file
contained in the VB2015\Chap05\Random Double Solution folder.

a. Open the Code Editor window. You can use the Random.NextDouble method to
return a random number that is greater than or equal to 0.0 but less than 1.0. The
syntax of the Random.NextDouble method is randomObjectName.NextDouble.
Code the btnDisplay_Click procedure so that it displays a random number in the
lblNumber control. Save the solution and then start the application. Click the
Display Random Number button several times. Each time you click the button, a
random number that is greater than or equal to 0.0 but less than 1.0 appears in the
lblNumber control.

b. You can use the following formula to generate random numbers within a specified
range: (maxValue – minValue + 1) * randomObjectName.NextDouble + minValue.
For example, if the Random object’s name is randGen, the formula (10 – 1 + 1) *
randGen.NextDouble + 1 generates random numbers that are greater than or equal
to 1.0 but less than 11.0. Modify the btnDisplay_Click procedure to display a random
number that is greater than or equal to 25.0 but less than 51.0. Display two decimal
places in the number. Test the application several times.

12. The purpose of this exercise is to demonstrate the importance of testing an
 application thoroughly. Open the VB2015\Chap05\Debug Solution\Debug Solution
(Debug Solution.sln) file. The application displays a shipping charge that is based
on the total price entered by the user, as shown in Figure 5-77. Test the application
using the following total prices: 100, 501, 1500, 500.75, 30, 1000.33, and 2000.
Notice that the application does not always display the correct shipping charge.
Correct the application’s code, and then test it appropriately.

DISCOVERY

SWAT THE BUGS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6
The Repetition Structure

Creating the Monthly Payment Application

In this chapter, you create an application that displays the monthly payments on a
mortgage loan using terms of 15, 20, 25, and 30 years. The term is the number
of years the borrower has to pay off the loan. The user will enter the loan amount,
called the principal, in a text box. He or she will select the interest rate from a list
box that displays rates from 2.0% to 7.0% in increments of 0.5%.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

316

Previewing the Monthly Payment Application
Before you start the first lesson in this chapter, you will preview the completed application
contained in the VB2015\Chap06 folder.

To preview the completed application:

1. Use Windows to locate and then open the VB2015\Chap06 folder. Right-click Payment
(Payment.exe) and then click the Open button. The application’s interface contains a
list box. List box controls are covered in Lesson B.

2. Type 120000 in the Principal box, and then click 2.5 in the Rate list box. Click the
Calculate button. The monthly payments for the different terms appear in the Monthly
payment box. See Figure 6-1.

START HERE

Figure 6-1 Monthly payments shown in the interface

list box

3. Click the Exit button to end the application.

The Monthly Payment application uses the repetition structure, which is covered in this chapter.
You will code the application in Lesson B. Be sure to complete each lesson in full and do all of
the end-of-lesson questions and several exercises before continuing to the next lesson.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

317

Repeating Program Instructions L E S S O N A

❚ LESSON A
After studying Lesson A, you should be able to:

 • Differentiate between a looping condition and a loop exit condition

 • Explain the difference between a pretest loop and a posttest loop

 • Include pretest and posttest loops in pseudocode and in a flowchart

 • Write a Do...Loop statement

 • Stop an infinite loop

 • Utilize counters and accumulators

 • Abbreviate assignment statements using the arithmetic assignment operators

 • Code a counter-controlled loop using the For...Next statement

Repeating Program Instructions
Programmers use the repetition structure, referred to more simply as a loop, when they need
the computer to repeatedly process one or more program instructions. The loop contains a
condition that controls whether the instructions are repeated. In many programming languages,
the condition can be phrased in one of two ways: It can either specify the requirement for
repeating the instructions or specify the requirement for not repeating them. The requirement
for repeating the instructions is referred to as the looping condition because it indicates when
the computer should continue “looping” through the instructions. The requirement for not
repeating the instructions is referred to as the loop exit condition because it tells the computer
when to exit (or stop) the loop. Every looping condition has an opposing loop exit condition; one
is the opposite of the other.

Some examples may help illustrate the difference between the looping condition and the loop
exit condition. You may have heard the old adage “Make hay while the sun shines.” The “while
the sun shines” part is the looping condition because it tells you when to continue making
hay. The adage could also be phrased as “Make hay until the sun is no longer shining.” In this
case, the “until the sun is no longer shining” part is the loop exit condition because it indicates
when you should stop making hay. Figure 6-2 contains two other examples of looping and loop
exit conditions. As mentioned earlier, the looping and loop exit conditions are the opposite of
each another.

Recall that
the three
 programing
control
 structures are

sequence, selection,
and repetition.

Looping condition examples Loop exit condition examples
Make hay while the sun shines. Make hay until the sun is no longer shining.

Keep your car’s windshield wipers Keep your car’s windshield wipers
on while it is raining. on until it stops raining.

Listen while the speaker is talking. Listen until the speaker stops talking.

Figure 6-2 Examples of looping and loop exit conditions

specifies when
to continue

specifies when
to stop

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

318

Now, let’s change the problem specification slightly. This time, rather than taking only one
shot, Sahirah can take as many shots as needed to destroy the spider. Because of this, she
will never need to tell the king and queen to run for their lives again. Figure 6-4 shows the
modified problem specification along with two solutions. (As mentioned in Chapter 5, even
small problems can have more than one solution.) Both solutions contain the sequence and
repetition structures. The repetition structure in Solution 1 begins with the “repeat while

The programmer determines whether a problem’s solution requires a loop by studying the
problem specification. The first problem specification you will examine in this chapter involves
a superheroine named Sahirah. The problem specification and an illustration of the problem are
shown in Figure 6-3, along with a correct solution written in pseudocode. The solution uses only
the sequence and selection structures because no instructions need to be repeated.

Ch06A-Repetition

Problem Speci�cation

A superheroine named Sahirah must prevent a poisonous yellow spider from attacking King
Khafra and Queen Rashida. Sahirah has one weapon at her disposal: a laser beam that shoots out
from her right hand. Unfortunately, Sahirah gets only one shot at the spider, which is �ying
around the palace looking for the king and queen. Before taking the shot, she needs to position
both her right arm and her right hand toward the spider. After taking the shot, she should return
her right arm and right hand to their original positions. In addition, if the laser beam hit the spider,
she should say “You are safe now. The spider is dead.”; otherwise, she should say “Run for your
lives, my king and queen!”

Solution
1. position both your right arm and your right hand toward the spider
2. shoot a laser beam at the spider
3. return your right arm and your right hand to their original positions
4. if the laser beam hit the spider
 say “You are safe now. The spider is dead.”
 else
 say “Run for your lives, my king and queen!”
 end if

Figure 6-3 A problem that requires the sequence and selection structures
Image by Diane Zak; created with Reallusion CrazyTalk Animator

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

319

Repeating Program Instructions L E S S O N A

Problem Speci�cation

A superheroine named Sahirah must prevent a poisonous yellow spider from attacking King
Khafra and Queen Rashida. Sahirah has one weapon at her disposal: a laser beam that shoots out
from her right hand. Sahirah can take as many shots as needed to destroy the spider, which is
�ying around the palace looking for the king and queen. Before taking each shot, she needs to
position both her right arm and her right hand toward the spider. When the laser beam hits the
spider, she should return her right arm and right hand to their original positions and then say “You
are safe now. The spider is dead.”

Solution 1
1. position both your right arm and your right hand toward the spider
2. shoot a laser beam at the spider
3. repeat while the laser beam did not hit the spider
 position both your right arm and your right hand toward the spider
 shoot a laser beam at the spider
 end repeat while
4. return your right arm and your right hand to their original positions
5. say “You are safe now. The spider is dead.”

Solution 2
1. position both your right arm and your right hand toward the spider
2. shoot a laser beam at the spider
3. repeat until the laser beam hits the spider
 position both your right arm and your right hand toward the spider
 shoot a laser beam at the spider
 end repeat until
4. return your right arm and your right hand to their original positions
5. say “You are safe now. The spider is dead.”

looping condition
specifies when to
continue

loop body

loop body

loop exit condition
specifies when
to stop

Figure 6-4 A problem that requires the sequence and repetition structures

The shaded portion in each solution in Figure 6-4 specifies the repetition structure’s condition.
The condition in Solution 1 is phrased as a looping condition because it tells Sahirah when
to continue repeating the instructions. In this case, she should repeat the instructions as long
as (or while) the laser beam did not hit the spider. The condition in Solution 2 is phrased as a
loop exit condition because it tells Sahirah when to stop repeating the instructions. In this case,
she should stop when the laser beam hits the spider. Notice that the loop exit condition is the
opposite of the looping condition. Whether you use a looping condition or a loop exit condition,
the condition must evaluate to a Boolean value (either True or False).

the laser beam did not hit the spider” clause and ends with the “end repeat while” clause. The
repetition structure in Solution 2, on the other hand, begins with the “repeat until the laser beam
hits the spider” clause and ends with the “end repeat until” clause. The instructions between
both clauses are called the loop body, and they are indented to indicate that they are part of the
repetition structure.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

320

The Projected Sales Application
Figure 6-5 shows the next problem specification you will examine in this chapter, along with
the pseudocode and code for the Calculate Projected Sales button’s Click event procedure. The
procedure requires only the sequence structure. It does not need a selection structure or a loop
because no decisions need to be made and no instructions need to be repeated to display the
projected sales amount for the following year.

YOU DO IT 1!

Using only the seven instructions shown here, write two solutions for printing the pages
in a document that contains at least one page. Use a looping condition in the first
solution. Use a loop exit condition in the second solution.

end repeat until
end repeat while
print the next page
print the first page
repeat until there are no more pages to print
repeat while there is another page to print
say “Done printing”

Problem Speci�cation

Create an application that displays the amount of a company’s projected sales for the following
year, using a 3% growth rate per year.

Pseudocode for the Calculate Projected Sales button’s Click event procedure
1. store current sales in sales variable
2. increase = sales * growth rate
3. sales = sales + increase
4. display sales

Code for the Calculate Projected Sales button’s Click event procedure

Figure 6-5 Problem specification, pseudocode, and code for the Projected Sales application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

321

The Projected Sales Application L E S S O N A

To run the Projected Sales application:

1. If necessary, start Visual Studio 2015. Open the VB2015\Chap06\Sales Solution\Sales
Solution (Sales Solution.sln) file. Open the Code Editor window. Replace <your name>
and <current date> in the comments with your name and the current date, respectively.

2. Locate the btnCalc_Click procedure, which contains the code shown in Figure 6-5. Save
the solution and then start the application. Type 92000 in the Current sales box and
then click the Calculate Projected Sales button. See Figure 6-6.

START HERE

Figure 6-6 Sample run of the Projected Sales application

3. Click the Exit button.

Now, we’ll make a slight change to the problem specification from Figure 6-5. The application
will now need to display the number of years required for the projected sales to reach at least
$150,000. It will also need to display the projected sales amount at that time. Consider the
changes you will need to make to the Calculate Projected Sales button’s original pseudocode.

The first step in the original pseudocode is to store the current sales amount in a variable; the
modified pseudocode will still need this step. Steps 2 and 3 calculate the projected increase and
projected sales, respectively, for the following year. The modified pseudocode will need to repeat
both steps either while the projected sales amount is less than $150,000 (looping condition) or
until it is greater than or equal to $150,000 (loop exit condition). Here, too, notice that the loop
exit condition is the opposite of the looping condition. The loop in the modified pseudocode
will also need to keep track of the number of times the instructions in Steps 2 and 3 are
processed because each time represents a year. The last step in the original pseudocode displays
the projected sales amount. The modified pseudocode will need to display the projected sales
amount as well as the number of years.

The modified problem specification is shown in Figure 6-7 along with four versions of the
modified pseudocode for the Calculate Projected Sales button’s Click event procedure. (Here
again, notice that even small procedures can have many solutions.) Only the loop is different in
each version.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

322

The loops in Versions 1 and 2 are pretest loops. In a pretest loop, the condition appears at the
beginning of the loop, indicating that it is evaluated before the instructions within the loop are
processed. The condition in Version 1 is a looping condition because it tells the computer when
to continue repeating the loop instructions. Version 2’s condition, on the other hand, is a loop
exit condition because it tells the computer when to stop repeating the instructions. Depending
on the result of the evaluation, the instructions in a pretest loop may never be processed. For
example, if the sales amount entered by the user is greater than or equal to 150,000, the “while
sales < 150,000” looping condition in Version 1 will evaluate to False and the loop instructions
will be skipped over. Similarly, the “until sales >= 150,000” loop exit condition in Version 2 will
evaluate to True, causing the loop instructions to be bypassed.

The loops in Versions 3 and 4 in Figure 6-7, on the other hand, are posttest loops. In a posttest
loop, the condition appears at the end of the loop, indicating that it is evaluated after the
instructions within the loop are processed. The condition in Version 3 is a looping condition,
whereas the condition in Version 4 is a loop exit condition. Unlike the instructions in a pretest
loop, the instructions in a posttest loop will always be processed at least once before the loop
ends. Posttest loops should be used only when you are certain that the loop instructions should
be processed one or more times.

The Visual Basic language provides three different statements for coding loops: Do...Loop,
For...Next, and For Each...Next. The Do...Loop statement can be used to code both pretest and
posttest loops, whereas the For...Next and For Each...Next statements are used only for pretest
loops. You will learn about the Do...Loop and For...Next statements in this lesson. The For
Each...Next statement is covered in Chapter 9.

Pretest and
posttest loops
are also called
top-driven and
bottom-driven

loops, respectively.

Figure 6-7 Modified problem specification and pseudocode for the Projected Sales application

Problem Speci�cation

Create an application that displays the number of years required for a company’s projected sales
amount to reach at least $150,000, using a 3% growth rate per year. The application should also
display the projected sales amount at that time.

Pseudocode for the Calculate Projected Sales button’s Click event procedure

Version 1 – pretest loop
1. store current sales in sales variable
2. repeat while sales < 150,000
 increase = sales * growth rate
 sales = sales + increase
 add 1 to number of years
 end repeat while
3. display sales and number of years

Version 2 – pretest loop
1. store current sales in sales variable
2. repeat until sales >= 150,000
 increase = sales * growth rate
 sales = sales + increase
 add 1 to number of years
 end repeat until
3. display sales and number of years

Version 3 – posttest loop
1. store current sales in sales variable
2. repeat
 increase = sales * growth rate
 sales = sales + increase
 add 1 to number of years
 end repeat while sales < 150,000
3. display sales and number of years

Version 4 – posttest loop
1. store current sales in sales variable
2. repeat
 increase = sales * growth rate
 sales = sales + increase
 add 1 to number of years
 end repeat until sales >= 150,000
3. display sales and number of years

looping condition
specifies when to
continue

looping condition
specifies when to
continue

loop exit condition
specifies when
to stop

loop exit condition
specifies when
to stop

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

323

The Do...Loop Statement L E S S O N A

The Do...Loop Statement
Figure 6-8 shows two versions of the syntax for the Do...Loop statement: one for coding a
pretest loop and the other for coding a posttest loop. The {While | Until} portion in each syntax
indicates that you can select only one of the keywords appearing within the braces. You follow
the keyword with a condition, which can be phrased as either a looping condition or a loop exit
condition. You use the While keyword in a looping condition to specify that the loop body
should be processed while (in other words, as long as) the condition is true. You use the Until
keyword in a loop exit condition to specify that the loop body should be processed until the
condition becomes true, at which time the loop should stop. Like the condition in an If...Then...
Else statement, the condition in a Do...Loop statement can contain variables, constants,
properties, methods, keywords, and operators; it also must evaluate to a Boolean value. The
condition is evaluated with each repetition of the loop and determines whether the computer
processes the loop body. Notice that the keyword (either While or Until) and the condition
appear in the Do clause in a pretest loop, but they appear in the Loop clause in a posttest loop.

You can use
the Exit Do
statement to
exit the Do...
Loop statement

before the loop has
finished processing.
You may need to do
this if the computer
encounters an error
when processing the
loop instructions.

Figure 6-8 also shows examples of using both syntax versions to display the numbers 1, 2, and
3 in a label control, and it includes a sample run of an application that contains either example.
Figure 6-9 describes the way the computer processes the code shown in the examples.

Figure 6-8 Syntax versions and examples of the Do...Loop statement

Do...Loop Statement

Syntax for a pretest loop
Do {While | Until} condition
 loop body instructions to be
 processed either while
 the condition is true or until
 the condition becomes true
Loop

Syntax for a posttest loop
Do
 loop body instructions to be
 processed either while
 the condition is true or until
 the condition becomes true
Loop {While | Until} condition

Pretest loop example Posttest loop example

Result of using either of the above examples

loop body loop body

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

324

Although both examples in Figure 6-8 produce the same results, pretest and posttest loops are
not always interchangeable. For instance, if the intNum variable in the pretest loop in Figure 6-8 is
initialized to 10 rather than to 1, the instructions in the pretest loop will not be processed because
the intNum <= 3 condition (which is evaluated before the instructions are processed) evaluates to
False. However, if the intNum variable in the posttest loop is initialized to 10 rather than to 1, the
instructions in the posttest loop will be processed one time because the intNum > 3 condition is
evaluated after (rather than before) the loop instructions are processed.

It’s often easier to understand loops by viewing them in flowchart form. Figure 6-10 shows
the flowcharts associated with the loop examples from Figure 6-8. The diamond in each
flowchart indicates the beginning of a repetition structure (loop). Like the diamond in a
selection structure, the diamond in a repetition structure contains a condition that evaluates
to either True or False only. The condition determines whether the instructions within the
loop are processed. Also, like the diamond in a selection structure, the diamond in a repetition
structure has one flowline entering the symbol and two flowlines leaving the symbol. The two
flowlines leading out of the diamond should be marked so that anyone reading the flowchart can
distinguish the true path from the false path. Typically, the flowlines are marked with a T (for
true) and an F (for false); however, they can also be marked with a Y (for yes) and an N (for no).

Ch06A-Do Loop

Processing steps for the pretest loop example
1. The variable is created and initialized to 1.
2. The Do clause checks whether the value in the variable (1) is less than or equal to 3.
 It is, so the loop body instructions display the number 1 in the lblNums control and then add 1
 to the contents of the variable, giving 2.
3. The Loop clause returns processing to the Do clause (the beginning of the loop).
4. The Do clause checks whether the value in the variable (2) is less than or equal to 3.
 It is, so the loop body instructions display the numbers 1 and 2 (separated by spaces) in the
 lblNums control and then add 1 to the contents of the variable, giving 3.
5. The Loop clause returns processing to the Do clause (the beginning of the loop).
6. The Do clause checks whether the value in the variable (3) is less than or equal to 3.
 It is, so the loop body instructions display the numbers 1, 2, and 3 (separated by spaces) in
 the lblNums control and then add 1 to the contents of the variable, giving 4.
7. The Loop clause returns processing to the Do clause (the beginning of the loop).
8. The Do clause checks whether the value in the variable (4) is less than or equal to 3.
 It isn’t, so the loop ends. Processing will continue with the statement following the Loop
 clause.

Processing steps for the posttest loop example
1. The variable is created and initialized to 1.
2. The Do clause marks the beginning of the posttest loop.
3. The loop body instructions display the number 1 in the lblNums control and then add 1 to the
 contents of the variable, giving 2.
4. The Loop clause checks whether the value in the variable (2) is greater than 3. It
 isn’t, so processing returns to the Do clause (the beginning of the loop).
5. The loop body instructions display the numbers 1 and 2 (separated by spaces) in the lblNums
 control and then add 1 to the contents of the variable, giving 3.
6. The Loop clause checks whether the value in the variable (3) is greater than 3. It
 isn’t, so processing returns to the Do clause (the beginning of the loop).
7. The loop body instructions display the numbers 1, 2, and 3 (separated by spaces) in the
 lblNums control and then add 1 to the contents of the variable, giving 4.
8. The Loop clause checks whether the value in the variable (4) is greater than 3. It is,
 so the loop ends. Processing will continue with the statement following the Loop clause.

Figure 6-9 Processing steps for the loop examples from Figure 6-8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

325

The Do...Loop Statement L E S S O N A

Posttest loop example

F

T

display variable’s
value

assign 1 to a variable

add 1 to the variable’s value

start

stop

variable’s
value > 3

Pretest loop example

T

F

add 1 to the variable’s value

start

stop

variable’s
value <= 3

assign 1 to a variable

display variable’s
value

Figure 6-10 Flowcharts for the loop examples from Figure 6-8

In the pretest loop’s flowchart in Figure 6-10, a circle or loop is formed by the flowline entering
the diamond combined with the diamond itself and the symbols and flowlines within the true
path. In the posttest loop’s flowchart, the loop (circle) is formed by all of the symbols in the false
path. It is this loop (circle) that distinguishes the repetition structure from the selection structure
in a flowchart.

YOU DO IT 2!

Close the Projected Sales application’s solution, if necessary. Create an application
named YouDoIt 2 and save it in the VB2015\Chap06 folder. Add two buttons to the form.
Both buttons should display the following numbers in message boxes: 1, 3, 5, and 7.
Code the first button’s Click event procedure using a pretest loop. Code the second
button’s Click event procedure using a posttest loop. Save the solution, and then start
and test the application. Close the solution.

Coding the Modified Projected Sales Application
Figure 6-11 shows the modified pseudocode from Version 1 in Figure 6-7. It also shows the
corresponding Visual Basic code. The changes made to the original pseudocode and code,
which were shown earlier in Figure 6-5, are shaded in Figure 6-11. The looping condition in the
Do...Loop statement tells the computer to repeat the loop body as long as (or while) the number
in the dblSales variable is less than 150000. You can also use a loop exit condition in the Do
clause, like this: Do Until dblSales >= 150000. (Recall that >= is the opposite of <.)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

326

Figure 6-11 Problem specification, pseudocode, and code for the modified Projected Sales application

Problem Speci�cation

Create an application that displays the number of years required for a company’s projected sales
amount to reach at least $150,000, using a 3% growth rate per year. The application should also
display the projected sales amount at that time.

Pseudocode for the Calculate Projected Sales button’s Click event procedure
1. store current sales in sales variable
2. repeat while sales < 150,000
 increase = sales * growth rate
 sales = sales + increase
 add 1 to number of years
 end repeat while
3. display sales and number of years

Code for the Calculate button’s Click event procedure

Version 1 from
Figure 6-7

To modify the Projected Sales application:

1. If necessary, open the VB2015\Chap06\Sales Solution\Sales Solution (Sales Solution.sln)
file. Open the Code Editor window and then locate the btnCalc_Click procedure. Make
the modifications shaded in Figure 6-11 to the procedure’s code.

2. Save the solution and then start the application. Type 92000 in the Current sales box
and then click the Calculate Projected Sales button. See Figure 6-12.

START HERE

Figure 6-12 Sample run of the modified Projected Sales application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

327

The Do...Loop Statement L E S S O N A

3. Delete the contents of the Current sales box, and then click the Calculate Projected
Sales button. After a short period of time, a run time error occurs and the error
message box shown in Figure 6-13 appears on the screen. (It may take as long as 30
seconds for the error message box to appear.) Place your mouse pointer on intYears,
as shown in the figure.

Figure 6-13 Screen showing the error message box

place your mouse
pointer here

error message
box

The error message informs you that an arithmetic operation—in this case, adding 1 to the
intYears variable—resulted in an overflow. An overflow error occurs when the value assigned
to a memory location is too large for the location’s data type. (An overflow error is similar to
trying to fill an 8-ounce glass with 10 ounces of water.) In this case, the intYears variable
already contains the highest value that can be stored in an Integer variable (2,147,483,647
according to Figure 3-3 in Chapter 3). Therefore, when the intYears = intYears + 1
statement attempts to increase the variable’s value by 1, an overflow error occurs.

But why does the intYears variable contain 2,147,483,647? In this case, because you didn’t
provide an initial value for the current sales amount, the loop’s condition (dblSales < 150000)
always evaluated to True; it never evaluated to False, which is required for stopping the loop. A
loop that has no way to end is called an infinite loop or an endless loop. You can stop a program
that has an infinite loop by clicking Debug on the menu bar and then clicking Stop Debugging.
Or, you can click the Stop Debugging button (the red square) on the Standard toolbar.

To modify and then test the btnCalc_Click procedure:

1. Click Debug on the menu bar, and then click Stop Debugging.

2. In the btnCalc_Click procedure, change the condition in the Do While clause to a
compound condition, as indicated in Figure 6-14.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

328

3. Save the solution and then start the application. Click the Calculate Projected
Sales button. Notice that no overflow error occurs. Instead, the button’s Click event
procedure displays the “Projected sales 0 years from now: $0” message.

4. Type 92000 in the Current sales box, and then click the Calculate Projected Sales
button. The button’s Click event procedure displays the message shown earlier in
Figure 6-12.

5. On your own, test the application using different sales amounts. When you are finished,
click the Exit button. Close the Code Editor window and then close the solution.

The Click event procedure shown in Figure 6-14 uses a counter (intYears) to keep track of the
number of years. It also uses an accumulator (dblSales) to keep track of the projected sales
amount. Counters and accumulators are covered in the next section.

Counters and Accumulators
Some procedures require you to calculate a subtotal, a total, or an average. You make these
calculations using a loop that includes a counter, an accumulator, or both. A counter is a
numeric variable used for counting something, such as the number of employees paid in a week.
An accumulator is a numeric variable used for accumulating (adding together) something,
such as the total dollar amount of a week’s payroll. The intYears variable in the code shown
earlier in Figure 6-14 is a counter because it keeps track of the number of years required for the
projected sales amount to reach $150,000. The dblSales variable in the code is an accumulator
because it adds together the projected increase amounts.

Two tasks are associated with counters and accumulators: initializing and updating. Initializing
means assigning a beginning value to the counter or accumulator. Typically, counters and
accumulators are initialized to the number 0. However, they can be initialized to any number
depending on the value required by the procedure’s code. The initialization task is performed
before the loop is processed because it needs to be performed only once.

Figure 6-14 Completed btnCalc_Click procedure

make the shaded
modification

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

329

Counters and Accumulators L E S S O N A

Updating refers to the process of either adding a number to (called incrementing) or subtracting
a number from (called decrementing) the value stored in the counter or accumulator. The
number can be either positive or negative, integer or non-integer. A counter is always updated
by a constant amount—typically the number 1. An accumulator, on the other hand, is usually
updated by an amount that varies. Accumulators are usually updated by incrementing rather
than by decrementing. The assignment statement that updates a counter or an accumulator is
placed in the body of a loop. This is because the update task must be performed each time the
loop instructions are processed.

Game programs make extensive use of counters and accumulators. The partial game program
shown in Figure 6-15, for example, uses a counter to keep track of the number of smiley faces
that Eddie (the character in the figure) destroys. After he destroys three smiley faces and then
jumps through the manhole, he advances to the next level in the game, as shown in the figure.

Ch06A-Eddie

Problem Speci�cation

To advance to the next level in the game, Eddie must destroy the three smiley faces by jumping on
each one. He then must jump through the manhole.

Solution
1. initialize destroyed counter to 0
2. repeat while destroyed counter is less than 3
 jump on smiley face to destroy it
 add 1 to destroyed counter
 end repeat while
3. jump into manhole to advance to the next level

counter counter

initialization task

update task

next level

Figure 6-15 Example of a partial game program that uses a counter

Figure 6-16 shows the syntax used for updating counters and accumulators; it also includes
examples of using each syntax. (You can also use arithmetic assignment operators to update
counters and accumulators. You will learn about those operators in the Arithmetic Assignment
Operators section.) In the syntax for counters, notice that counterVariable appears on both
sides of the assignment operator (=). The syntax tells the computer to add the constantValue
to (or subtract the constantValue from) the counterVariable first and then place the result back
in the counterVariable. In the syntax for accumulators, accumulatorVariable appears on both
sides of the assignment operator (=). This syntax tells the computer to add the value to (or
subtract the value from) the accumulatorVariable first and then place the result back in the
accumulatorVariable.

Image by Diane Zak; created with Reallusion CrazyTalk Animator

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

330

The Addition Application
Figure 6-17 shows the problem specification for the Addition application, which uses an
accumulator to add together (accumulate) the numbers entered by the user. In this application,
the accumulator is a class-level variable named intSum. The figure also shows the pseudocode
for the Add and Start Over buttons’ Click event procedures as well as a sample run of the
application.

Updating Counters and Accumulators

Syntax
counterVariable = counterVariable {+ | –} constantValue
accumulatorVariable = accumulatorVariable {+ | –} value

Counter examples

Accumulator examples

Figure 6-16 Syntax and examples of update statements for counters and accumulators

Figure 6-17 Problem specification, pseudocode, and a sample run for the Addition
application (continues)

Problem Speci�cation

Create an application that calculates the sum of the integers entered by the user and also displays a
list of the integers and their sum. The application’s interface should provide a text box for entering
the integers and another text box for displaying the list of integers entered. It also should provide a
label for displaying the sum. In addition to an Exit button, the interface should provide an Add
button and a Start Over button. The Add button should perform the calculation and display tasks,
using an accumulator to total the integers. The accumulator should be a class-level Integer
variable. The Start Over button should reset the accumulator to 0 and also clear the existing data
from the screen. Use the following names for the controls in the interface: txtNumber, txtList,
lblSum, btnAdd, btnStartOver, and btnExit. Use the following names for the variables: intNum
and intSum (accumulator).

Pseudocode for the Add button’s Click event procedure
1. display (in the txtList control) the integer entered by the user
2. add the integer entered by the user to the intSum accumulator
3. display the intSum accumulator’s value in the lblSum control
4. send the focus to the txtNumber control and select its existing text

Pseudocode for the Start Over button’s Click event procedure
1. reset the intSum accumulator to 0
2. clear the contents of the txtNumber, txtList, and lblSum controls
3. send the focus to the txtNumber control

Sample run

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

331

Counters and Accumulators L E S S O N A

The txtList control in the interface has its Multiline and ReadOnly properties set to True and its
ScrollBars property set to Vertical. When a text box’s Multiline property is set to True, the text box can
both accept and display multiple lines of text; otherwise, only one line of text can be entered in the text
box. Changing a text box’s ReadOnly property from its default value (False) to True prevents the user
from changing the contents of the text box during run time. A text box’s ScrollBars property specifies
whether the text box has no scroll bars (the default), a horizontal scroll bar, a vertical scroll bar, or both
horizontal and vertical scroll bars. The txtList control also has its TextAlign property set to Right.

To code and then test the btnAdd_Click procedure:

1. Open the VB2015\Chap06\Addition Solution\Addition Solution (Addition Solution.sln)
file. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. First, you will declare the intSum accumulator variable, which should be a class-
level Integer variable. A class-level variable is appropriate in this case because
the variable will need to be used by two different procedures: btnAdd_Click and
btnStartOver_Click.

3. In the blank line before the ' class-level accumulator comment, type the
following Private statement and then press Enter:

 Private intSum As Integer

4. Next, locate the btnAdd_Click procedure. In the blank line above the End Sub clause,
type the following Dim statement and then press Enter twice:

 Dim intNum As Integer

5. Step 1 in the Add button’s pseudocode is to display (in the txtList control) the integer
entered by the user. Enter the following comment and assignment statement. Press
Enter twice after typing the assignment statement.

 ' display number in the list
txtList.Text = txtList.Text &

txtNumber.Text & ControlChars.NewLine

START HERE

Figure 6-17 Problem specification, pseudocode, and a sample run for the Addition application

Problem Speci�cation

Create an application that calculates the sum of the integers entered by the user and also displays a
list of the integers and their sum. The application’s interface should provide a text box for entering
the integers and another text box for displaying the list of integers entered. It also should provide a
label for displaying the sum. In addition to an Exit button, the interface should provide an Add
button and a Start Over button. The Add button should perform the calculation and display tasks,
using an accumulator to total the integers. The accumulator should be a class-level Integer
variable. The Start Over button should reset the accumulator to 0 and also clear the existing data
from the screen. Use the following names for the controls in the interface: txtNumber, txtList,
lblSum, btnAdd, btnStartOver, and btnExit. Use the following names for the variables: intNum
and intSum (accumulator).

Pseudocode for the Add button’s Click event procedure
1. display (in the txtList control) the integer entered by the user
2. add the integer entered by the user to the intSum accumulator
3. display the intSum accumulator’s value in the lblSum control
4. send the focus to the txtNumber control and select its existing text

Pseudocode for the Start Over button’s Click event procedure
1. reset the intSum accumulator to 0
2. clear the contents of the txtNumber, txtList, and lblSum controls
3. send the focus to the txtNumber control

Sample run

(continued)

txtList

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

332

6. Step 2 adds the integer entered by the user to the intSum accumulator. Before you can
enter the appropriate assignment statement, you need to convert the user’s input to a
number. Enter the following TryParse method and assignment statement:

 Integer.TryParse(txtNumber.Text, intNum)
intSum = intSum + intNum

7. The last two steps in the pseudocode display the accumulator’s value in the appropriate
label control, send the focus to the txtNumber control, and then select its existing text.
Enter the comment and lines of code indicated in Figure 6-18.

enter this
comment and
three lines of
code

Figure 6-18 Completed btnAdd_Click procedure

8. Save the solution and then start the application. Type the following three numbers,
pressing Enter after typing each one: 95, 83, and 134. The three numbers appear in the
txtList control, and 312 appears in the Sum box, as shown earlier in Figure 6-17.

9. Type the following three numbers, pressing Enter after typing each one: 4, 76, and 2.
The number 394 appears in the Sum box, and a scroll box appears on the txtList
control. The scroll box allows you to view the numbers that are not currently displayed
in the control. See Figure 6-19.

Figure 6-19 Scroll box on the txtList control

scroll box

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

333

Arithmetic Assignment Operators L E S S O N A

10. Use the scroll box to scroll through the list of numbers contained in the txtList control,
and then click the Exit button.

Next, you will complete the Addition application by coding its Start Over button’s Click event
procedure. According to its pseudocode (shown earlier in Figure 6-17), the procedure should
reset the accumulator variable to 0. It should also clear the contents of the two text boxes and the
lblSum control, and then send the focus to the txtNumber control.

To code and then test the btnStartOver_Click procedure:

1. Open the code template for the btnStartOver_Click procedure. Enter the comment and
five lines of code indicated in Figure 6-20.

START HERE

enter this
comment and
five lines of
code

Figure 6-20 Completed btnStartOver_Click procedure

2. Save the solution and then start the application. Type any three numbers, pressing
Enter after typing each one, and then click the Start Over button. The button’s Click
event procedure clears the contents of the txtNumber, txtList, and lblSum controls.

3. Recall that the button’s Click event procedure also resets the intSum accumulator
variable to 0. To verify that fact, type the following two numbers, pressing Enter after
typing each one: 2 and 5. The correct sum, 7, appears in the Sum box.

4. Click the Exit button. Close the Code Editor window and then close the solution.

YOU DO IT 3!

Create an application named YouDoIt 3 and save it in the VB2015\Chap06 folder. Add a
label and two buttons to the form. The first button’s Click event procedure should keep
track of the number of times the button is clicked while always displaying the current
count in the label. The second button’s Click event procedure should clear the label’s
contents and also allow the user to start counting from 0 again. Code each button’s
Click event procedure. Save the solution, and then start and test the application. Close
the solution.

Arithmetic Assignment Operators
In addition to the standard arithmetic operators listed in Figure 2-32 in Chapter 2, Visual Basic
provides several arithmetic assignment operators. You can use the arithmetic assignment
operators to abbreviate an assignment statement that contains an arithmetic operator.
However, the assignment statement must have the following format, in which variableName
on both sides of the equal sign is the name of the same variable: variableName = variableName
arithmeticOperator value. For example, you can use the addition assignment operator (+=)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

334

to abbreviate the statement intYears = intYears + 1 as follows: intYears += 1. Both
statements tell the computer to add the number 1 to the contents of the intYears variable and
then store the result in the variable.

Figure 6-21 shows the syntax for using arithmetic assignment operators, and it includes
examples of using them. Notice that each arithmetic assignment operator consists of an
arithmetic operator followed immediately by the assignment operator (=). The arithmetic
assignment operators do not contain a space; including a space in an arithmetic assignment
operator is a common syntax error. To abbreviate an assignment statement, you simply remove
the variable name that appears on the left side of the assignment operator and then put the
assignment operator immediately after the arithmetic operator.

Arithmetic Assignment Operators

Syntax
variableName arithmeticAssignmentOperator value

Operator Purpose
addition assignment
subtraction assignment
multiplication assignment
division assignment

Example 1
Original statement:
Abbreviated statement:
Both statements add 1 to the number stored in the variable and then assign the result
to the variable.

Example 2
Original statement:
Abbreviated statement:
Both statements subtract the number stored in the variable from the number
stored in the variable and then assign the result to the variable.

Example 3
Original statement:
Abbreviated statement:
Both statements multiply the number stored in the variable by 1.05 and then assign the
result to the variable.

Example 4
Original statement:
Abbreviated statement:
Both statements divide the number stored in the variable by 2 and then assign the result to
the variable.

Figure 6-21 Syntax and examples of the arithmetic assignment operators

To use an arithmetic assignment operator in the Addition application:

1. Use Windows to make a copy of the Addition Solution folder. Rename the copy
Modified Addition Solution. Open the Addition Solution (Addition Solution.sln) file
contained in the Modified Addition Solution folder.

2. Open the Code Editor window. In the btnAdd_Click procedure, change the statement
that accumulates the numbers to intSum += intNum.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

335

The For...Next Statement L E S S O N A

3. Save the solution and then start the application. Type the following three numbers,
pressing Enter after typing each one: 95, 83, and 134. The three numbers appear in the
txtList control, and 312 appears in the Sum box, as shown earlier in Figure 6-17.

4. Click the Exit button. Close the Code Editor window and then close the solution.

Note: You have learned a lot so far in this lesson. You may want to take a break at this point
before continuing.

The For...Next Statement
Unlike the Do...Loop statement, which can be used to code both pretest and posttest loops, the
For...Next statement can be used to code only a specific type of pretest loop, called a counter-
controlled loop. A counter-controlled loop is a loop whose processing is controlled by a counter.
You use a counter-controlled loop when you want the computer to process the loop instructions
a precise number of times. Although you can also use the Do...Loop statement to code a
counter-controlled loop, the For...Next statement provides a more compact and convenient way
of writing that type of loop.

Figure 6-22 shows the For...Next statement’s syntax and includes examples of using the statement.
It also shows the tasks performed by the computer when processing the statement. You enter
the loop body, which contains the instructions you want the computer to repeat, between the
statement’s For and Next clauses. The counterVariableName that appears in both clauses is the
name of a numeric variable that the computer will use to keep track of (in other words, count)
the number of times the loop body instructions are processed. Although, technically, you do
not need to specify the name of the counter variable in the Next clause, doing so is highly
recommended because such self-documentation makes your code easier to understand.

For...Next Statement

Syntax
For counterVariableName [As dataType] = startValue To endValue [Step stepValue]
 loop body instructions
Next counterVariableName

Example 1

 displays 10, 11, and 12 in message boxes

Example 2

 displays 5, 4, 3, 2, and 1 on separate lines in the txtNum control

Example 3

displays 5 %, 6 %, 7 %, 8 %, 9 %, and 10 % on separate lines in the lblRates control

Processing tasks
1. If the counter variable is declared in the For clause, the variable is created and then initialized
 to the startValue; otherwise, it is just initialized to the startValue. The initialization task is done
 only once, at the beginning of the loop.
2. The counter’s value is compared with the endValue to determine whether the loop should end.
 If the stepValue is a positive number, the comparison determines whether the counter’s value is
 greater than the endValue. If the stepValue is a negative number, the comparison determines
 whether the counter’s value is less than the endValue. Notice that the computer evaluates the
 loop condition before processing the instructions within the loop.
3. If the comparison from Step 2 evaluates to True, the loop ends and processing continues with
 the statement following the Next clause. Otherwise, the loop body instructions are processed
 and then Task 4 is performed.
4. Task 4 is performed only when the comparison from Task 2 evaluates to False. In this task, the
 stepValue is added to the counter’s value, and then Tasks 2, 3, and 4 are repeated until the loop
 condition evaluates to True.

stepValue
positive number
negative number

Loop body processed when
counter’s value <= endValue
counter’s value >= endValue

Loop ends when
counter’s value > endValue
counter’s value < endValue

Figure 6-22 For...Next statement’s syntax, examples, and processing tasks (continues)

loop body

loop body

You can use
the Exit For
statement to
exit the For...
Next statement

before the loop has
finished processing.
You may need to do
this if the computer
encounters an error
when processing the
loop instructions.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

336

For...Next Statement

Syntax
For counterVariableName [As dataType] = startValue To endValue [Step stepValue]
 loop body instructions
Next counterVariableName

Example 1

 displays 10, 11, and 12 in message boxes

Example 2

 displays 5, 4, 3, 2, and 1 on separate lines in the txtNum control

Example 3

displays 5 %, 6 %, 7 %, 8 %, 9 %, and 10 % on separate lines in the lblRates control

Processing tasks
1. If the counter variable is declared in the For clause, the variable is created and then initialized
 to the startValue; otherwise, it is just initialized to the startValue. The initialization task is done
 only once, at the beginning of the loop.
2. The counter’s value is compared with the endValue to determine whether the loop should end.
 If the stepValue is a positive number, the comparison determines whether the counter’s value is
 greater than the endValue. If the stepValue is a negative number, the comparison determines
 whether the counter’s value is less than the endValue. Notice that the computer evaluates the
 loop condition before processing the instructions within the loop.
3. If the comparison from Step 2 evaluates to True, the loop ends and processing continues with
 the statement following the Next clause. Otherwise, the loop body instructions are processed
 and then Task 4 is performed.
4. Task 4 is performed only when the comparison from Task 2 evaluates to False. In this task, the
 stepValue is added to the counter’s value, and then Tasks 2, 3, and 4 are repeated until the loop
 condition evaluates to True.

stepValue
positive number
negative number

Loop body processed when
counter’s value <= endValue
counter’s value >= endValue

Loop ends when
counter’s value > endValue
counter’s value < endValue

(continued)

You can use the As dataType portion of the For clause to declare the counter variable, as shown
in the first two examples in Figure 6-22. When you declare a variable in the For clause, the
variable has block scope and can be used only within the For...Next loop. Alternatively, you can
declare the counter variable in a Dim statement, as shown in Example 3. As you know, a variable
declared in a Dim statement at the beginning of a procedure has procedure scope and can be
used within the entire procedure. When deciding where to declare the counter variable, keep in
mind that if the variable is needed only by the For...Next loop, then it is a better programming
practice to declare the variable in the For clause. As mentioned in Chapter 3, fewer unintentional
errors occur in applications when the variables are declared using the minimum scope needed.
Block-level variables have the smallest scope, followed by procedure-level variables and then
class-level variables. You should declare the counter variable in a Dim statement only when its
value is required by statements outside the For...Next loop in the procedure.

The startValue, endValue, and stepValue items in the For clause control the number of times the
loop body is processed. The startValue and endValue tell the computer where to begin and end
counting, respectively. The stepValue tells the computer how much to count by—in other words,
how much to add to the counter variable each time the loop body is processed. If you omit the
stepValue, a stepValue of positive 1 is used. In Example 1 in Figure 6-22, the startValue is 10,
the endValue is 12, and the stepValue (which is omitted) is 1. Those values tell the computer to
start counting at 10 and, counting by 1s, stop at 12—in other words, count 10, 11, and 12. The
computer will process the instructions in Example 1’s loop body three times.

loop body

Figure 6-22 For...Next statement’s syntax, examples, and processing tasks

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

337

The For...Next Statement L E S S O N A

The startValue, endValue, and stepValue items must be numeric and can be either positive
or negative, integer or non-integer. As indicated in Figure 6-22, if the stepValue is a
positive number, the startValue must be less than or equal to the endValue for the loop
instructions to be processed. For instance, the For intNum As Integer = 10 To 12 clause
is correct, but the For intNum As Integer = 12 To 10 clause is not correct because you
cannot count from 12 (the startValue) to 10 (the endValue) by adding increments of 1 (the
stepValue). If, on the other hand, the stepValue is a negative number, then the startValue
must be greater than or equal to the endValue for the loop instructions to be processed.
As a result, the For intX As Integer = 5 To 1 Step -1 clause is correct, but the For
intX As Integer = 1 To 5 Step -1 clause is not correct because you cannot count from
1 to 5 by adding increments of negative 1. Adding increments of a negative 1 is the same as
decrementing by 1.

Figure 6-23 describes the tasks the computer performs when processing the loop shown
in Example 1 in Figure 6-22. As Task 2 indicates, the loop’s condition is evaluated before
the loop body is processed. This is because the loop created by the For...Next statement
is a pretest loop. Notice that the intNum variable contains the number 13 when the
For...Next statement ends. The number 13 is the first integer that is greater than the
loop’s endValue of 12.

Ch06A-For Next

Processing Tasks for Example 1

1. The For clause creates the variable and initializes it to 10.
2. The For clause compares the value (10) with the endValue (12) to determine whether
 the loop should end. 10 is not greater than 12, so the MessageBox.Show method displays the
 number 10 in a message box, and then the For clause increments by 1, giving 11.
3. The For clause compares the value (11) with the endValue (12) to determine whether
 the loop should end. 11 is not greater than 12, so the MessageBox.Show method displays the
 number 11 in a message box, and then the For clause increments by 1, giving 12.
4. The For clause compares the value (12) with the endValue (12) to determine whether
 the loop should end. 12 is not greater than 12, so the MessageBox.Show method displays the
 number 12 in a message box, and then the For clause increments by 1, giving 13.
5. The For clause compares the value (13) with the endValue (12) to determine whether
 the loop should end. 13 is greater than 12, so the loop ends. Processing will continue with the
 statement following the Next clause.

Figure 6-23 Processing tasks for Example 1 in Figure 6-22

A Different Version of the Projected Sales Application
Figure 6-24 shows the problem specification for a slightly different version of the Projected Sales
application from earlier in this lesson. In this version, the Calculate Projected Sales button’s Click
event procedure will need to display the projected sales amount for each of four years, beginning
with 2017. The figure also shows the procedure’s pseudocode and flowchart.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

338

Problem Speci�cation

Create an application that displays the amount of a company’s projected sales for each of four
years, using a 3% growth rate per year and beginning with 2017.

Pseudocode for the Calculate Projected Sales button’s Click event procedure
1. store current sales in sales variable
2. display Year and Sales column headings
3. repeat for year from 2017 to 2020 in increments of 1
 increase = sales * growth rate
 sales = sales + increase
 display year and sales
 end repeat for

T

F

display Year and
Sales column

headings

store current sales in sales variable

2017

intYear

> 2020

1

stop

start

increase = sales * growth rate

sales = sales + increase

display year
and sales

Figure 6-24 Problem specification, pseudocode, and flowchart for another version of the Projected
Sales application

Many programmers use a hexagon (a six-sided figure) to represent the For clause in a flowchart,
as shown in Figure 6-24. Within the hexagon, you record the four items contained in a For
clause: counterVariableName, startValue, endValue, and stepValue. The counterVariableName
and stepValue are placed at the top and bottom, respectively, of the hexagon. The startValue and
endValue are placed on the left and right side, respectively. The hexagon in Figure 6-24 indicates
that the counterVariableName is intYear, the startValue is 2017, the endValue is 2020, and the
stepValue is 1. Notice that a greater than sign (>) precedes the endValue in the hexagon. The >
sign indicates that the loop will end when the counter variable’s value is greater than 2020.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

339

The For...Next Statement L E S S O N A

To code and then test this version of the application:

1. Open the Sales Solution (Sales Solution.sln) file contained in the VB2015\Chap06\Sales
Solution-For Next folder. Open the Code Editor window. Replace <your name> and
<current date> in the comments with your name and the current date, respectively.

2. Locate the btnCalc_Click procedure. In the blank line above the End Sub clause, type
the following For clause and then press Enter. (When you press Enter, the Code Editor
will automatically enter a Next clause for you.)

 For intYear As Integer = 2017 To 2020

3. Change the Next clause to Next intYear, and then enter the loop body instructions
indicated in Figure 6-25.

START HERE

Figure 6-25 Completed btnCalc_Click procedure

enter these
statements

4. Save the solution and then start the application. Type 92000 in the Current sales box,
and then click the Calculate Projected Sales button. See Figure 6-26.

Figure 6-26 Interface showing the year and projected sales amounts

5. Click the Exit button. Close the Code Editor window and then close the solution.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

340

Comparing the For...Next and Do...Loop Statements
As mentioned earlier, you can code a counter-controlled loop by using either the For...Next
statement or the Do...Loop statement; however, the For...Next statement is more convenient to
use. Figure 6-27 shows an example of using both loops to display the string “Hi” three times.
Notice that when using the Do...Loop statement to code a counter-controlled loop, you must
include a statement to declare and initialize the counter variable as well as a statement to update
the counter variable. In addition, you must include the appropriate comparison in the Do clause.
In a For...Next statement, the declaration, initialization, update, and comparison tasks are
handled by the For clause.

For...Next Statement Do...Loop Statement
declares, initializes,
compares, and
updates the
counter variable

compares the
counter variable

declares and
initializes the
counter variable

updates the
counter variable
(can also be written
as intX += 1)

Figure 6-27 Comparison of the For...Next and Do...Loop statements

Lesson A Summary
 • To have the computer repeatedly process one or more program instructions while the

looping condition is true or until the loop exit condition has been met:

Use a repetition structure (loop). You can code a repetition structure in Visual Basic by using
one of the following statements: For...Next, Do...Loop, and For Each...Next. (The For Each...
Next statement is covered in Chapter 9.)

 • To use the Do...Loop statement to code a loop:

Refer to Figure 6-8 for the two versions of the statement’s syntax. The statement can be used
to code both pretest and posttest loops. In a pretest loop, the loop condition appears in the
Do clause; it appears in the Loop clause in a posttest loop. The loop condition must evaluate
to a Boolean value.

 • To represent the loop condition in a flowchart:

Use the decision symbol, which is a diamond.

YOU DO IT 4!

Create an application named YouDoIt 4 and save it in the VB2015\Chap06 folder. Add
two labels and a button to the form. The button’s Click event procedure should display
the number of integers from 14 to 23 in one of the labels and the sum of those integers
in the other label. Code the procedure using the For...Next statement. Save the solution,
and then start and test the application. Close the solution.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

341

Lesson A Key Terms L E S S O N A

 • To stop an endless (infinite) loop:

Click Debug on the menu bar, and then click Stop Debugging. Or, click the Stop Debugging
button (the red square) on the Standard toolbar.

 • To use a counter:

Initialize and update the counter. The initialization is done outside of the loop that uses the
counter; the update is done within the loop. You update a counter by either incrementing or
decrementing its value by a constant amount, which can be either positive or negative, integer
or non-integer.

 • To use an accumulator:

Initialize and update the accumulator. The initialization is done outside of the loop that
uses the accumulator; the update is done within the loop. In most cases, you update an
accumulator by incrementing (rather than by decrementing) its value by an amount that
varies. The amount can be either positive or negative, integer or non-integer.

 • To abbreviate an assignment statement:

Use the arithmetic assignment operators listed in Figure 6-21. The assignment statement you
want to abbreviate must follow this format, in which variableName on both sides of the equal
sign is the name of the same variable: variableName = variableName arithmeticOperator value.

 • To use the For...Next statement to code a counter-controlled loop:

Refer to Figure 6-22 for the statement’s syntax. The statement can be used to code pretest
loops only. In the syntax, counterVariableName is the name of a numeric variable that
the computer will use to keep track of the number of times the loop body instructions are
processed. The number of iterations is controlled by the For clause’s startValue, endValue, and
stepValue. The startValue, endValue, and stepValue must be numeric and can be positive or
negative, integer or non-integer. If you omit the stepValue, a stepValue of positive 1 is used.

 • To flowchart a For...Next loop:

Many programmers use a hexagon to represent the For clause. Inside the hexagon, you record
the counter variable’s name and its startValue, stepValue, and endValue.

Lesson A Key Terms
Accumulator—a numeric variable used for accumulating (adding together) something

Arithmetic assignment operators—composed of an arithmetic operator followed by the
assignment operator; used to abbreviate an assignment statement that has the following
format, in which variableName on both sides of the equal sign is the name of the same variable:
variableName = variableName arithmeticOperator value

Counter—a numeric variable used for counting something

Counter-controlled loop—a loop whose processing is controlled by a counter; the loop body will
be processed a precise number of times

Decrementing—decreasing a value

Do...Loop statement—a Visual Basic statement that can be used to code both pretest loops and
posttest loops

Endless loop—a loop whose instructions are processed indefinitely; also called an infinite loop

For...Next statement—a Visual Basic statement that is used to code a specific type of pretest
loop, called a counter-controlled loop

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

342

Incrementing—increasing a value

Infinite loop—another name for an endless loop

Initializing—the process of assigning a beginning value to a memory location, such as a counter
or accumulator variable

Loop—another name for the repetition structure

Loop body—the instructions within a loop

Loop exit condition—the requirement that must be met for the computer to stop processing the
loop body instructions

Looping condition—the requirement that must be met for the computer to continue processing
the loop body instructions

Multiline property—determines whether a text box can accept and display only one line of text
or multiple lines of text

Overflow error—occurs when the value assigned to a memory location is too large for the
location’s data type

Posttest loop—a loop whose condition is evaluated after the instructions in its loop body are
processed

Pretest loop—a loop whose condition is evaluated before the instructions in its loop body are
processed

ReadOnly property—controls whether the user is allowed to change the contents of a text box
during run time

Repetition structure—the control structure used to repeatedly process one or more program
instructions; also called a loop

ScrollBars property—a property of a text box; specifies whether the text box has scroll bars

Updating—the process of either adding a number to or subtracting a number from the value
stored in a counter or accumulator variable

Lesson A Review Questions
1. Which of the following clauses stops the loop when the value in the intPopulation

variable is less than the number 5000?

a. Do While intPopulation >= 5000
b. Do Until intPopulation < 5000
c. Loop While intPopulation >= 5000
d. all of the above

2. Which of the following statements can be used to code a loop whose instructions you
want processed 10 times?

a. Do...Loop
b. For...Next

c. either a or b

3. The instructions in a _____________________ loop might not be processed at all, whereas
the instructions in a _____________________ loop are always processed at least once.

a. posttest, pretest b. pretest, posttest

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

343

Lesson A Review Questions L E S S O N A

4. How many times will the MessageBox.Show method in the following code be processed?

Dim intCount As Integer
Do While intCount > 4
MessageBox.Show("Hello")
intCount += 1

Loop

a. zero
b. one

c. four
d. five

5. How many times will the MessageBox.Show method in the following code be processed?

Dim intCount As Integer
Do
MessageBox.Show("Hello")
intCount += 1

Loop While intCount > 4

a. zero
b. one

c. four
d. five

6. How many times will the MessageBox.Show method in the following code be processed?

For intCount As Integer = 6 To 13 Step 2
MessageBox.Show("Hello")

Next intCount

a. three
b. four

c. five
d. eight

7. The computer will stop processing the loop in Review Question 6 when the intCount
variable contains the number _____________________ .

a. 11
b. 12

c. 13
d. 14

Refer to Figure 6-28 to answer Review Questions 8 through 11.

A

F T

F T

C

F

T

B

F

F

T

T

DFigure 6-28 Flowcharts for Review Questions 8 through 11 (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

344

A

F T

F T

C

F

T

B

F

F

T

T

D

Figure 6-28 Flowcharts for Review Questions 8 through 11

(continued)

8. Which of the following control structures are used in flowchart A in Figure 6-28?
(Select all that apply.)
a. sequence
b. selection

c. repetition

9. Which of the following control structures are used in flowchart B in Figure 6-28?
(Select all that apply.)
a. sequence
b. selection

c. repetition

10. Which of the following control structures are used in flowchart C in Figure 6-28?
(Select all that apply.)

a. sequence
b. selection

c. repetition

11. Which of the following control structures are used in flowchart D in Figure 6-28?
(Select all that apply.)

a. sequence
b. selection

c. repetition

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

345

Lesson A Exercises L E S S O N A

12. Which of the following statements is equivalent to the statement
dblTotal = dblTotal + dblScore?

a. dblTotal += dblScore

b. dblScore += dblTotal

c. dblTotal =+ dblScore

d. dblScore =+ dblTotal

13. Which of the following For clauses indicates that the loop instructions should be
processed as long as the intX variable’s value is less than 100?

a. For intX As Integer = 10 To 100
b. For intX As Integer = 10 To 99
c. For intX As Integer = 10 To 101
d. none of the above

14. The loop controlled by the correct For clause from Review Question 13 will end when
the intX variable contains the number _____________________.

a. 100
b. 111

c. 101
d. 110

Lesson A Exercises
1. Write a Visual Basic Do clause that processes the loop instructions as long as the

value in the intNum variable is less than or equal to the number 100. Use the While
keyword. Then rewrite the Do clause using the Until keyword.

2. Write a Visual Basic Do clause that stops the loop when the value in the intOrdered
variable is greater than the value in the intOnHand variable. Use the Until keyword.
Then rewrite the Do clause using the While keyword.

3. Write a Visual Basic Loop clause that processes the loop instructions as long as the
value in the strContinue variable is either Y or y. Use the While keyword. Then
rewrite the Loop clause using the Until keyword.

4. Write a Visual Basic Do clause that processes the loop instructions as long as the value
in the strName variable is not “Done” (in any case). Use the While keyword. Then
rewrite the Do clause using the Until keyword.

5. What will the following code display in message boxes?

Dim intX As Integer = 1
Do While intX < 5
MessageBox.Show(intX.ToString)
intX += 1

Loop

6. What will the following code display in message boxes?

Dim intX As Integer = 1
Do
MessageBox.Show(intX.ToString)
intX = intX + 1

Loop Until intX > 5

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

346

7. Write a Visual Basic assignment statement that updates the intTotal counter
variable by 3.

8. Write a Visual Basic assignment statement that updates the decTotal accumulator
variable by the value stored in the decSales variable.

9. Figure 6-29 shows a problem specification, two illustrations, and two solutions
containing loops.

a. Will both loops work when Sherri is one or more steps away from the fountain, as
shown in Illustration A? If not, why not?

b. Will both loops work when Sherri is directly in front of the fountain, as shown in
Illustration B? If not, why not?

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

Problem Speci�cation

Sherri is standing an unknown number of steps away from the Burlington Fountain. Write the
instructions that direct Sherri to walk from her current location to the fountain.

Illustration A Illustration B

Solution 1 – pretest loop
repeat while you are not directly in front of the fountain
 walk forward
end repeat while

Solution 2 – posttest loop
repeat
 walk forward
end repeat while you are not directly in front of the fountain

Figure 6-29 Information for Exercise 9

10. Write a Visual Basic assignment statement that updates the intTotal counter variable
by –3.

11. Write a Visual Basic assignment statement that subtracts the contents of the
decReturns variable from the contents of the decSales accumulator variable.

INTERMEDIATE

INTERMEDIATE

Image by Diane Zak; created with Reallusion CrazyTalk Animator

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

347

Lesson A Exercises L E S S O N A

12. Modify Solution 2 shown earlier in Figure 6-4. The solution should now keep track of the
number of times Sahirah’s laser beam missed the spider. After saying “You are safe now.
The spider is dead.”, Sahirah should say one of the following: “I got him immediately.”; “I
missed him one time.”; or “I missed him x times.” (where x is the value in the counter).

13. Write the Visual Basic code for a pretest loop that uses an Integer variable named
intEven to display the even integers from 2 through 20 in the lblEven control. Use the
For...Next statement. Display each number on a separate line in the control. Then create
an application to test your code using the following names for the solution and project,
respectively: Even Solution and Even Project. Save the application in the VB2015\
Chap06 folder. Add a button and a label to the interface. Enter your code in the button’s
Click event procedure, and then test the application appropriately.

14. Rewrite the pretest loop from Exercise 13 using the Do...Loop statement. Add another
button to the interface created in Exercise 13. Enter your code from this exercise in the
button’s Click event procedure, and then test the application appropriately.

15. Rewrite the pretest loop from Exercise 14 as a posttest loop. Add another button to the
interface used in Exercise 14. Enter your code from this exercise in the button’s Click
event procedure. Test the application appropriately.

16. Write the Visual Basic code that corresponds to the flowchart shown in Figure 6-30.
Display the calculated results on separate lines in the lblCount control.

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

17. Write a For...Next statement that displays the numbers from 6 through 60 in increments
of 6 in the lblNums control. Display each number on a separate line in the control.

18. Write a For...Next statement that calculates and displays the squares of odd numbers
from 3 through 15 (e.g., 9, 25, and so on). Display each number on a separate line in the
lblNums control.

19. What will the following code display?

Dim intTotal As Integer
Do While intTotal <= 7
MessageBox.Show(intTotal.ToString)
intTotal += 3

Loop

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Figure 6-30 Flowchart for Exercise 16

F

T

initialize counter
to 5

display counter
multiplied by 2

start

stop

counter < 100 add 20 to
counter

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

348

20. What will the following code display?

Dim intTotal As Integer
Do
MessageBox.Show(intTotal.ToString)
intTotal = intTotal + 2

Loop Until intTotal >= 2

21. In this exercise, you modify one of the Projected Sales applications from this lesson.
Use Windows to make a copy of the Sales Solution folder. Rename the copy Sales
Solution-Intermediate. Open the Sales Solution (Sales Solution.sln) file contained in
the Sales Solution-Intermediate folder. Rather than using $150,000 as the sales goal, the
user should be able to enter any sales goal. Modify the interface and code as needed,
and then test the application appropriately.

22. In this exercise, you modify the Addition application from this lesson. Use Windows
to make a copy of the Addition Solution folder. Rename the copy Addition Solution-
Intermediate. Open the Addition Solution (Addition Solution.sln) file contained in the
Addition Solution-Intermediate folder. The application should now also display (in
label controls) the number of integers entered and the average integer entered. Modify
the interface and code as needed, and then test the application appropriately.

23. In this exercise, you modify one of the Projected Sales applications from this lesson.
Use Windows to make a copy of the Sales Solution-For Next folder. Rename the copy
Sales Solution-Do While. Open the Sales Solution (Sales Solution.sln) file contained in
the Sales Solution-Do While folder. Change the For...Next statement in the btnCalc_
Click procedure to a Do...Loop statement, and then test the application appropriately.

24. Open the VB2015\Chap06\Multiplication Solution (Multiplication Solution.sln) file. Code
the application to display a multiplication table similar to the one shown in Figure 6-31.
Use the For...Next statement in the btnForNext_Click procedure, and use the Do...Loop
statement in the btnDoLoop_Click procedure. Test the application appropriately.

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Figure 6-31 Sample multiplication table for Exercise 24

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

349

Lesson A Exercises L E S S O N A

25. Create an application, using the following names for the solution and project,
respectively: General Solution and General Project. Save the application in the VB2015\
Chap06 folder. The application’s interface is shown in Figure 6-32. The interface allows
the user to enter an item’s price, which should be displayed in the Prices entered text
box. The Prices entered text box should have its Multiline, ReadOnly, ScrollBars, and
TextAlign properties set to True, True, Vertical, and Right, respectively. The Add to
Total button’s Click event procedure should accumulate the prices entered by the
user, always displaying the accumulated value plus a 3% sales tax in the Total due
box. In other words, if the user enters the number 5 as the item’s price, the Total due
box should display $5.15. If the user subsequently enters the number 10, the Total
due box should display $15.45. The Next Order button should allow the user to start
accumulating the values for the next order. Test the application appropriately.

INTERMEDIATE

Figure 6-32 Interface for Exercise 25

26. Open the Debug Solution (Debug Solution.sln) file contained in the VB2015\Chap06\
Debug Solution-A26 folder. The code should display a 10% bonus for each sales amount
that is entered, but it is not working correctly. Correct the code. (Hint: If you need to
stop an endless loop, click the Stop Debugging button on the Standard toolbar.)

27. Open the Debug Solution (Debug Solution.sln) file contained in the VB2015\Chap06\
Debug Solution-A27 folder. The code should display the numbers 1 through 4, but it is
not working correctly. Correct the code. (Hint: If you need to stop an endless loop, click
the Stop Debugging button on the Standard toolbar.)

28. Open the Debug Solution (Debug Solution.sln) file contained in the VB2015\Chap06\
Debug Solution-A28 folder. The code should display the numbers 10 through 1, but it is
not working correctly. Correct the code. (Hint: If you need to stop an endless loop, click
the Stop Debugging button on the Standard toolbar.)

29. Open the Debug Solution (Debug Solution.sln) file contained in the VB2015\Chap06\
Debug Solution-A29 folder. The code should display a 5% commission for each sales
amount that is entered, but it is not working correctly. Correct the code.

SWAT THE BUGS

SWAT THE BUGS

SWAT THE BUGS

SWAT THE BUGS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

350

❚ LESSON B
After studying Lesson B, you should be able to:

 • Include a list box on a form

 • Add items to a list box

 • Clear the items from a list box

 • Sort the items in a list box

 • Select a list box item from code

 • Determine the selected item in a list box

 • Calculate a periodic payment using the Financial.Pmt method

Creating the Monthly Payment Application
Your task in this chapter is to create an application that displays the monthly payments on a
mortgage loan, using terms of 15, 20, 25, and 30 years. The term is the number of years the
borrower has to pay off the loan. The user will enter the loan amount, called the principal, in a
text box. He or she will select the interest rate from a list box that contains rates ranging from
2.0% to 7.0% in increments of 0.5%. Figure 6-33 shows the application’s TOE chart.

Task

End the application

1. Clear the contents of lblPay
2. Calculate the monthly payment
3. Display the monthly payment in lblPay

1. Fill lstRates with values (2% to 7% in
 increments of 0.5%)
2. Select a default value in lstRates

Display the monthly payment (from btnCalc)

Get and display the interest rate

Get and display the principal

Clear the contents of lblPay

Allow text box to accept only numbers and
the Backspace key

Select the contents of the text box

Object

btnExit

btnCalc

frmMain

lblPay

lstRates

txtPrincipal

lstRates
txtPrincipal

txtPrincipal

txtPrincipal

Event

Click

Click

Load

None

None

None

SelectedValueChanged
TextChanged

KeyPress

Enter

Figure 6-33 TOE chart for the Monthly Payment application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

351

Including a List Box in an Interface L E S S O N B

To open the partially completed Monthly Payment application:

1. If necessary, start Visual Studio 2015. Open the VB2015\Chap06\Payment Solution\
Payment Solution (Payment Solution.sln) file. The interface contains four labels, two
buttons, a picture box, and a text box. Missing from the interface is the list box for
selecting the interest rate.

Including a List Box in an Interface
You add a list box to an interface using the ListBox tool in the toolbox. A list box displays a list
of items from which the user can select zero items, one item, or multiple items. The number
of items the user can select is controlled by the list box’s SelectionMode property. The default
value for the property, One, allows the user to select only one item at a time. (You can learn
more about the property in Exercise 12 at the end of this lesson.)

Although you can make a list box any size you want, you should follow the Windows standard,
which is to display a minimum of three items and a maximum of eight items at a time. If you
have more items than can fit into the list box, the control automatically displays a scroll bar for
viewing the complete list of items. You should use a label control to provide keyboard access to
the list box. For the access key to work correctly, you must set the label’s TabIndex property to a
value that is one number less than the list box’s TabIndex value.

To complete the user interface:

1. Click the ListBox tool in the toolbox, and then drag the mouse pointer to the form.
Position the mouse pointer below the Rate label, and then release the mouse button.

2. Position and size the list box to match Figure 6-34.

INTRODUCTORY

INTRODUCTORY

Figure 6-34 Correct location and size of the list box

3. The three-character ID for list box names is lst. Change the list box’s name to lstRates.

4. Lock the controls on the form, and then use the information shown in Figure 6-35 to
set the TabIndex values.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

352

5. Press Esc to remove the TabIndex boxes, and then save the solution.

Adding Items to a List Box
The items in a list box belong to a collection called the Items collection. A collection is a group
of individual objects treated as one unit. The first item in the Items collection appears as the first
item in the list box. The second item in the collection appears as the second item in the list box,
and so on.

A unique number, called an index, identifies each item in the Items collection. The first item in
the collection (which is also the first item in the list box) has an index of 0, the second item has
an index of 1, and so on.

You specify each item to display in a list box using the Items collection’s Add method. Figure 6-36
shows the method’s syntax and includes examples and the results of using the method. In the
syntax, object is the name of the list box control, and the item argument is the text you want
added to the control’s list. In most cases, you enter the Add methods in a form’s Load event
procedure because you typically want the list box to display its values when the form first
appears on the screen.

Figure 6-35 Correct TabIndex values

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

353

Including a List Box in an Interface L E S S O N B

Clearing the Items from a List Box
You can use the Items collection’s Clear method to clear (remove) the items from a list box. The
method’s syntax and an example of using the method are shown in Figure 6-37.

To learn more
about list boxes,
 complete
 Exercises 12,
13, and 14 at

the end of this lesson.
Clear Method (Items Collection)

Syntax
object.Items.Clear()

Example 1

clears (removes) all of the items from the lstAnimal control

Figure 6-37 Syntax and an example of the Items collection’s Clear method

Add Method (Items Collection)

Syntax
object.Items.Add(item)

Example 1

adds Dog, Cat, and Horse to the lstAnimal control

Example 2

adds 100, 101, 102, 103, 104, and 105 to the lstCode control; you also can write the Add method
like this:

Results

Figure 6-36 Syntax, examples, and results of the Items collection’s Add method

scroll box for
viewing the
other codes

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

354

The Sorted Property
The position of an item in a list box depends on the value stored in the list box’s Sorted property.
When the property is set to False (the default value), the item is added at the end of the list. When
it is set to True, the item is sorted along with the existing items and then placed in its proper
position in the list.

Visual Basic sorts the list box items in dictionary order, which means that numbers are sorted
before letters, and a lowercase letter is sorted before its uppercase equivalent. The items in a list
box are sorted based on the leftmost characters in each item. As a result, the items “Personnel”,
“Inventory”, and “Payroll” will appear in the following order when the lstDepartment control’s
Sorted property is set to True: Inventory, Payroll, Personnel. Likewise, the items 1, 2, 3, and 10
will appear in the following order when the lstNumber control’s Sorted property is set to True:
1, 10, 2, 3. Both list boxes are shown in Figure 6-38.

Figure 6-38 Examples of the list box’s Sorted property

The requirements of the application you are creating determine whether you display the list box
items in either sorted order or the order in which they are added to the list box. If several list
items are selected much more frequently than other items, you typically leave the list box’s Sorted
property set to False and then add the frequently used items first to ensure that they appear at the
beginning of the list. However, if the list box items are selected fairly equally, you typically set the list
box’s Sorted property to True because it is easier to locate items when they appear in a sorted order.

GUI DESIGN TIP List Box Standards

 • Use a list box only when you need to offer the user at least three different choices.

 • Don’t overwhelm the user with a lot of choices at the same time; instead, display
from three to eight items and let the user employ the scroll bar to view the
remaining ones.

 • Use a label control to provide keyboard access to the list box. Set the label’s TabIndex
property to a value that is one number less than the list box’s TabIndex value.

 • List box items are either arranged by use, with the most used entries appearing first
in the list, or sorted in ascending order.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

355

Coding the Monthly Payment Application L E S S O N B

3. Save the solution and then start the application. Scroll down the Rate list box to verify
that it contains numbers ranging from 2.0 to 7.0 in increments of 0.5.

4. Scroll to the top of the list box, and then click 2.0 in the list. When you select an
item in a list box, the item appears highlighted in the list, as shown in Figure 6-40. In
addition, the item’s value and index are stored in the list box’s SelectedItem property
and SelectedIndex property, respectively.

Coding the Monthly Payment Application
When the Monthly Payment interface appears on the screen, the lstRates control should display
interest rates ranging from 2.0% to 7.0% in increments of 0.5%.

To specify the rates to display in the list box:

1. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. Locate the form’s Load event procedure, and then enter the For...Next loop shown in
Figure 6-39. Be sure to change the Next clause as shown in the figure.

START HERE

Figure 6-39 For...Next loop entered in the Load event procedure

Figure 6-40 First item selected in the list box

the computer stores “2.0”
and 0 in the SelectedItem
and SelectedIndex
properties, respectively

5. Click the Exit button.

enter these
lines of code

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

356

The SelectedItem and SelectedIndex Properties
You can use either the SelectedItem property or the SelectedIndex property to determine
whether an item is selected in a list box. When no item is selected, the SelectedItem property
contains the empty string and the SelectedIndex property contains the number –1 (negative 1).
Otherwise, the SelectedItem and SelectedIndex properties contain the value of the selected item
and the item’s index, respectively. Figure 6-41 shows examples of using the SelectedItem and
SelectedIndex properties to determine the selected item in a list box.

Determining the Selected Item in a List Box

Example 1 (SelectedItem property)

converts the selected item to String and then assigns the result to the variable

Example 2 (SelectedItem property)

converts the selected item to Double and then compares the result to the Double number 3.5 (You
also can convert the selected item to String and then compare the result with the string “3.5” as
follows: .

Example 3 (SelectedItem property)

converts the selected item to String and then compares the result to the empty string
(You can replace the part of the If clause
with l . However, keep in mind that the ToString method
will result in a run time error if no item is selected in the list box.)

Example 4 (SelectedIndex property)

converts the index of the selected item to String and then displays the result in a message box

Example 5 (SelectedIndex property)

compares the selected item’s index with the number 0

Figure 6-41 Examples of determining the selected item in a list box

If a list box allows the user to make only one selection, it is customary in Windows applications
to have one of the list box items already selected when the interface appears. The selected item,
called the default list box item, should be either the item selected most frequently or the first
item in the list. You can use either the SelectedItem property or the SelectedIndex property
to select the default list box item from code, as shown in the examples in Figure 6-42. In most
cases, you enter the appropriate code in the form’s Load event procedure.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

357

Coding the Monthly Payment Application L E S S O N B

GUI DESIGN TIP Default List Box Item

 • If a list box allows the user to make only one selection, a default item is typically
selected when the interface first appears. The default item should be either the item
selected most frequently or the first item in the list. However, if a list box allows
more than one selection at a time, you do not select a default item.

To select a default item in the lstRates control:

1. The insertion point should be positioned as shown earlier in Figure 6-39. Currently, the
most popular mortgage rate is 3%. Type the following assignment statement and then
press Enter:

 lstRates.SelectedItem = "3.0"

2. Save the solution and then start the application. See Figure 6-43.

START HERE

3. Click the Exit button.

Selecting the Default Item in a List Box

Example 1 (SelectedItem property)

selects the 3.5 item in the lstRates control

Example 2 (SelectedIndex property)

selects the �rst item in the lstRates control

Figure 6-42 Examples of selecting the default item in a list box

Figure 6-43 Default item selected in the list box

default item

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

358

The SelectedValueChanged and SelectedIndexChanged Events
Each time either the user or a statement selects an item in a list box, the list box’s
SelectedValueChanged event and its SelectedIndexChanged event occur. You can use
the procedures associated with these events to perform one or more tasks when the selected
item has changed. In the Monthly Payment application, you will associate the list box’s
SelectedValueChanged procedure with the ClearPayment procedure, which currently clears the
contents of the lblPay control when a change is made to the txtPrincipal control.

To associate the list box’s SelectedValueChanged procedure with the ClearPayment
procedure:

1. Locate the ClearPayment procedure, and then type the following at the end of the
Handles clause (be sure to type the comma): , lstRates.SelectedValueChanged.

2. Save the solution.

Coding the Calculate Button’s Click Event Procedure
Figure 6-44 shows the pseudocode for the btnCalc_Click procedure. It also includes a list of the
variables the procedure will use.

START HERE

btnCalc Click event procedure
1. store the principal and rate in variables
2. divide the rate by 100 to get its decimal equivalent
3. clear the contents of lblPay
4. repeat for term from 15 to 30 in increments of 5
 calculate the monthly payment using the Financial.Pmt method
 display the term and monthly payment in lblPay
 end repeat for

Variables Data type
intPrincipal Integer
dblRate Double
dblPay Double
intTerm Integer (declare in a For clause)

Figure 6-44 Pseudocode and variables for the btnCalc_Click procedure

To begin coding the btnCalc_Click procedure:

1. Locate the btnCalc_Click procedure. Click the blank line above the End Sub clause,
and then enter the following three Dim statements. Press Enter twice after typing the
last Dim statement.

 Dim intPrincipal As Integer
 Dim dblRate As Double
 Dim dblPay As Double

2. The first step in the pseudocode is to store the principal and the rate in variables. The
user enters the principal in the txtPrincipal control and selects the rate in the lstRates
control. Enter the TryParse methods shown in Figure 6-45.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

359

The Financial.Pmt Method L E S S O N B

Method Purpose

Financial.DDB calculate the depreciation of an asset for a speci�c time period using the
 double-declining balance method
Financial.FV calculate the future value of an annuity based on periodic, �xed payments
 and a �xed interest rate
Financial.IPmt calculate the interest payment for a given period of an annuity based on
 periodic, �xed payments and a �xed interest rate
Financial.IRR calculate the internal rate of return for a series of periodic cash �ows
 (payments and receipts)
Financial.Pmt calculate the payment for an annuity based on periodic, �xed payments
 and a �xed interest rate
Financial.PPmt calculate the principal payment for a given period of an annuity based on
 periodic �xed payments and a �xed interest rate
Financial.PV calculate the present value of an annuity based on periodic, �xed
 payments to be paid in the future and a �xed interest rate
Financial.SLN calculate the straight-line depreciation of an asset for a single period
Financial.SYD calculate the sum-of-the-years’ digits depreciation of an asset for a
 speci�ed period

Figure 6-46 Some of the methods defined in the Financial class

Figure 6-45 TryParse methods entered in the btnCalc_Click procedure

3. The second step in the pseudocode divides the rate by 100 to get its decimal equivalent.
Type the following assignment statement (or type the statement dblRate /= 100) and
then press Enter twice:

 dblRate = dblRate / 100

4. The next step in the pseudocode clears the previous monthly payments from the lblPay
control. Type the following assigment statement and then press Enter:

 lblPay.Text = String.Empty

5. The last step in the pseudocode is a loop that repeats its instructions for terms from 15
years to 30 years in increments of 5 years. Enter the following For clause:

 For intTerm As Integer = 15 To 30 Step 5

6. Change the Next clause to Next intTerm, and then save the solution.

The first instruction in the loop calculates the monthly payment using the Financial.Pmt
method.

The Financial.Pmt Method
Visual Basic’s Financial class contains many methods that your applications can use to perform
financial calculations. Figure 6-46 lists some of the more commonly used methods defined in
the class. All of the methods return the result of their calculation as a Double number.

enter these
statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

360

The btnCalc_Click procedure will use the Financial.Pmt method to calculate the monthly
mortgage payment. Figure 6-47 shows the method’s basic syntax and lists the meaning of each
argument. The Rate and NPer (number of periods) arguments must be expressed using the
same units. If Rate is a monthly interest rate, then NPer must specify the number of monthly
payments. Likewise, if Rate is an annual interest rate, then NPer must specify the number of
annual payments. The figure also includes examples of using the method.

Financial.Pmt Method

Syntax
Financial.Pmt(Rate, NPer, PV)

Argument Meaning
Rate interest rate per period
NPer total number of payment periods in the term
PV present value of the loan (the principal)

Example 1
Financial.Pmt(0.05, 3, 9000)
Calculates the annual payment for a loan of $9,000 for 3 years with a 5% interest rate. Rate is
0.05, NPer is 3, and PV is 9000. The annual payment returned by the method (rounded to the
nearest cent) is –3304.88.

Example 2
–Financial.Pmt(0.03 / 12, 15 * 12, 150000)
Calculates the monthly payment for a loan of $150,000 for 15 years with a 3% interest rate. Rate
is 0.03 / 12, NPer is 15 * 12, and PV is 150000. The monthly payment returned by the method
(rounded to the nearest cent and expressed as a positive number) is 1035.87.

Figure 6-47 Syntax and examples of the Financial.Pmt method

Example 1 calculates the annual payment for a loan of $9,000 for 3 years with a 5% interest rate.
As the example indicates, the annual payment returned by the method (rounded to the nearest
cent) is –3304.88. This means that if you borrow $9,000 for 3 years at 5% interest, you will need
to make three annual payments of $3,304.88 to pay off the loan. Notice that the Financial.Pmt
method returns a negative number. You can change the negative number to a positive number by
preceding the method with the negation operator, like this: –Financial.Pmt(.05, 3, 9000).

The Financial.Pmt method shown in Example 2 calculates the monthly payment for a loan of
$150,000 for 15 years with a 3% interest rate. In this example, the Rate and NPer arguments are
expressed in monthly terms rather than in annual terms. You change an annual rate to a monthly
rate by dividing the annual rate by 12. You change the term from years to months by multiplying
the number of years by 12. The monthly payment for the loan in Example 2, rounded to the
nearest cent and expressed as a positive number, is 1035.87.

To complete and then test the btnCalc_Click procedure:

1. Complete the btnCalc_Click procedure by entering the two assignment statements
indicated in Figure 6-48. The assignment statements calculate and display the monthly
payment.

You can use
the PMT func-
tion in Micro-
soft Excel to
verify that the

payments shown in
Figure 6-47 are correct.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

361

The Financial.Pmt Method L E S S O N B

3. Click 2.0 in the Rate list box. The list box’s SelectedValueChanged procedure clears the
contents of the Monthly payment box. Click the Calculate button to display the new
monthly payments.

4. Change the Principal to 75000. The text box’s TextChanged procedure clears the
contents of the Monthly payment box. Click the Calculate button to display the new
monthly payments.

5. Click the Exit button. Close the Code Editor window and then close the solution.
Figure 6-50 shows the Monthly Payment application’s code.

Figure 6-48 Completed btnCalc_Click procedure

2. Save the solution and then start the application. Type 150000 in the Principal box and
then click the Calculate button. See Figure 6-49.

Figure 6-49 Monthly mortgage payments shown in the interface

enter these
two assignment
statements

agrees with Example 2
in Figure 6-47

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

362

Figure 6-50 Monthly Payment application’s code (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

363

Figure 6-50 Monthly Payment application’s code

(continued)

Lesson B Summary
 • To add a list box to a form:

Use the ListBox tool in the toolbox.

 • To specify whether the user can select zero items, one item, or multiple items in a list box:

Set the list box’s SelectionMode property.

 • To add items to a list box:

Use the Items collection’s Add method. The method’s syntax is object.Items.Add(item).
In the syntax, object is the name of the list box control and the item argument is the text you
want added to the control’s list.

 • To clear (remove) the items from a list box:

Use the Items collection’s Clear method. The method’s syntax is object.Items.Clear().

 • To automatically sort the items in a list box:

Set the list box’s Sorted property to True.

 • To determine the item selected in a list box or to select a list box item from code:

Use either the list box’s SelectedItem property or its SelectedIndex property.

 • To perform tasks when a different item is selected in a list box:

Enter the code in either the list box’s SelectedValueChanged procedure or its
SelectedIndexChanged procedure.

 • To calculate a periodic payment on either a loan or an investment:

Use the Financial.Pmt method. The method’s syntax is Financial.Pmt(Rate, NPer, PV).

Lesson B Summary L E S S O N B

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

364

Lesson B Key Terms
Add method—the Items collection’s method used to add items to a list box

Clear method—the Items collection’s method used to clear (remove) items from a list box

Collection—a group of individual objects treated as one unit

Default list box item—the item automatically selected in a list box when the interface appears
on the screen

Financial.Pmt method—used to calculate the periodic payment on either a loan or an
investment

Items collection—the collection composed of the items in a list box

List box—a control used to display a list of items from which the user can select zero items, one
item, or multiple items

SelectedIndex property—stores the index of the item selected in a list box

SelectedIndexChanged event—occurs when an item is selected in a list box

SelectedItem property—stores the value of the item selected in a list box

SelectedValueChanged event—occurs when an item is selected in a list box

SelectionMode property—determines the number of items that can be selected in a list box

Sorted property—specifies whether the list box items should appear in the order they are
entered or in sorted order

Lesson B Review Questions
1. Which of the following methods is used to add items to a list box?

a. Add
b. AddList

c. Item
d. ItemAdd

2. The items in a list box belong to which collection?

a. Items
b. List

c. ListItems
d. Values

3. Which of the following properties stores the index of the item selected in a list box?

a. Index
b. SelectedIndex

c. Selection
d. SelectionIndex

4. Which of the following statements selects the fourth item in the lstNames control?

a. lstNames.SelectIndex = 3
b. lstNames.SelectIndex = 4

c. lstNames.SelectedIndex = 3
d. lstNames.SelectedItem = 4

5. Which event occurs when the user selects a different item in a list box?

a. SelectionChanged
b. SelectedItemChanged

c. SelectedValueChanged
d. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

365

Lesson B Exercises L E S S O N B

Lesson B Exercises
1. In this exercise, you modify the Monthly Payment application from this lesson. Use

Windows to make a copy of the Payment Solution folder. Rename the copy Payment
Solution-DoLoop. Open the Payment Solution (Payment Solution.sln) file contained in
the Payment Solution-DoLoop folder. Change both For...Next statements in the applica-
tion’s code to Do...Loop statements. Test the application appropriately.

2. In this exercise, you create an application that displays the ZIP code (or codes) cor-
responding to the city name selected in a list box. The city names and ZIP codes are
shown in Figure 6-51. Create the application, using the following names for the solu-
tion and project, respectively: Zip Solution and Zip Project. Save the application in the
VB2015\Chap06 folder. The interface should include a list box whose Sorted property
is set to True. The form’s Load event procedure should add the city names to the list
box and then select the first name in the list. The list box’s SelectedValueChanged event
procedure should assign the item selected in the list box to a variable. It then should
use the Select Case statement to display the city’s ZIP code(s) in a label control. Test the
application appropriately.

INTRODUCTORY

INTRODUCTORY

City
Baxley
Newton
Adairsville
Statesboro
Canton

ZIP Code(s)
31513, 31515
39870
30103
30458, 30459, 30460, 30461
30114, 30115

Figure 6-51 Information for Exercise 2

3. In this exercise, you modify the application from Exercise 2. Use Windows to make a copy
of the Zip Solution folder. Rename the copy Modified Zip Solution. Open the Zip Solution
(Zip Solution.sln) file contained in the Modified Zip Solution folder. Modify the list box’s
SelectedValueChanged procedure so that it assigns the index of the item selected in the
list box to a variable. Modify the Select Case statement so that it displays the ZIP code(s)
 corresponding to the index stored in the variable. Test the application appropriately.

4. Create an application, using the following names for the solution and project, respec-
tively: President Solution and President Project. Save the application in the VB2015\
Chap06 folder. Add the names of five U.S. presidents of your choosing to a list box.
When the user clicks a name in the list box, the name of the corresponding vice presi-
dent should appear in a label control. Test the application appropriately.

 5. In this exercise, you create an application for Discount Warehouse. The interface
should allow the user to enter an item’s original price and its discount rate. The
discount rates should range from 10% through 40% in increments of 5%. Use a text
box for entering the original price, and use a list box for entering the discount rates.
The application should display the amount of the discount and also the discounted
price. Create the application, using the following names for the solution and project,
respectively: Discount Solution and Discount Project. Save the application in the
VB2015\Chap06 folder. Test the application appropriately.

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

366

6. In this exercise, you modify the Monthly Payment application from this lesson. Use
Windows to make a copy of the Payment Solution folder. Rename the copy Modified
Payment Solution. Open the Payment Solution (Payment Solution.sln) file contained in
the Modified Payment Solution folder. Modify the interface to allow the user to select
the term from a list box. The Calculate button should now display only the monthly
payment corresponding to the term selected in the list box. Test the application
appropriately.

7. Mills Skating Rink holds a weekly ice-skating competition. Competing skaters must
perform a two-minute program in front of a panel of judges. The number of judges var-
ies from week to week. At the end of a skater’s program, each judge assigns a score of 0
through 10 to the skater. The manager of the ice rink wants you to create an application
that allows him to enter each judge’s score for a specific skater. The application should
calculate and display the skater’s average score. It also should display the skater’s total
score and the number of scores entered. Figure 6-52 shows a sample run of the applica-
tion, assuming the manager entered two scores: 10 and 8. (Hint: You enter a score by
selecting it from the list box and then clicking the Record Score button.) Create the
application, using the following names for the solution and project, respectively: Mills
Solution and Mills Project. Save the application in the VB2015\Chap06 folder. Test the
application appropriately.

INTERMEDIATE

INTERMEDIATE

8. In this exercise, you create an application that allows the user to enter the gender (either
F or M) and GPA for any number of students. The application’s interface is shown in
Figure 6-53. The application should calculate the average GPA for all students, the
average GPA for male students, and the average GPA for female students. The list box
should list GPAs from 1.0 through 4.0 in increments of 0.1 (e.g., 1.0, 1.1, 1.2, 1.3, and
so on). Create the application, using the following names for the solution and project,
respectively: GPA Solution and GPA Project. Save the application in the VB2015\
Chap06 folder. Test the application appropriately.

INTERMEDIATE

Figure 6-52 Interface for Exercise 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

367

Lesson B Exercises L E S S O N B

9. Open the VB2015\Chap06\Random Solution\Random Solution (Random Solution.sln)
file. The application should give the user 10 chances to guess a random number generated
by the computer. The random number should be an integer from 1 through 50, inclusive.
Each time the user makes an incorrect guess, the application should display a message
that tells the user either to guess a higher number or to guess a lower number. When the
user guesses the random number, the application should display a “Congratulations!”
message. If the user is not able to guess the random number after 10 tries, the application
should display the random number in a message. Test the application appropriately.

10. Open the VB2015\Chap06\Fibonacci Solution\Fibonacci Solution (Fibonacci Solution.sln)
file. The application should display the first 10 Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34,
and 55. Notice that beginning with the third number in the series, each Fibonacci number
is the sum of the prior two numbers. In other words, 2 is the sum of 1 plus 1, 3 is the sum
of 1 plus 2, 5 is the sum of 2 plus 3, and so on. Display the numbers in the lblNumbers
control. Test the application appropriately.

11. The accountant at Canton Manufacturing Company wants you to create an application
that calculates an asset’s annual depreciation using the double-declining balance and
sum-of-the-years’ digits methods. The accountant will enter the asset’s cost, useful
life (in years), and salvage value (which is the value of the asset at the end of its useful
life). A sample run of the application is shown in Figure 6-54. The interface provides
text boxes for entering the asset cost and salvage value. It also provides a list box
for selecting the useful life, which ranges from 3 through 20 years. The depreciation
amounts are displayed in list boxes. (Hint: You can use the DDB and SYD functions in
Microsoft Excel to verify that the amounts shown in Figure 6-54 are correct.) Create
the application, using the following names for the solution and project, respectively:
Canton Solution and Canton Project. Save the application in the VB2015\Chap06
folder. You can use Visual Basic’s Financial.DDB method to calculate the double-
declining balance depreciation, and use its Financial.SYD method to calculate
the sum-of-the-years’ digits depreciation. The Financial.DDB method’s syntax is
Financial.DDB(cost, salvage, life, period). The Financial.SYD method’s syntax
is Financial.SYD(cost, salvage, life, period). In both syntaxes, the cost, salvage,
and life arguments are the asset’s cost, salvage value, and useful life, respectively.

ADVANCED

ADVANCED

ADVANCED

Figure 6-53 Interface for Exercise 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

368

The period argument is the period for which you want the depreciation amount
calculated. Both methods return the depreciation amount as a Double number. Test
the application appropriately

Figure 6-54 Sample run of the application for Exercise 11

12. In this exercise, you learn how to create a list box that allows the user to select more
than one item at a time. Open the VB2015\Chap06\Multi Solution\Multi Solution
(Multi Solution.sln) file. The interface contains a list box named lstNames. The list
box’s Sorted and SelectionMode properties are set to True and One, respectively.

a. Open the Code Editor window. The frmMain_Load procedure adds five names to
the lstNames control. Code the btnSingle_Click procedure so that it displays, in the
lblResult control, the item selected in the list box. For example, if the user clicks
Debbie in the list box and then clicks the Single Selection button, the name Debbie
should appear in the lblResult control. (Hint: Use the Convert.ToString method.)

b. Save the solution and then start the application. Click Debbie in the list box, then
click Ahmad, and then click Bill. Notice that when the list box’s SelectionMode
property is set to One, you can select only one item at a time in the list.

c. Click the Single Selection button. The name Bill appears in the lblResult control.
Click the Exit button.

d. Change the list box’s SelectionMode property to MultiSimple. Save the solution and
then start the application. Click Debbie in the list box, then click Ahmad, then click
Bill, and then click Ahmad. Notice that when the list box’s SelectionMode property is
set to MultiSimple, you can select more than one item at a time in the list. Also notice
that you click to both select and deselect an item. (Hint: You also can use Ctrl+click
and Shift+click, as well as press the spacebar, to select and deselect items when the
list box’s SelectionMode property is set to MultiSimple.) Click the Exit button.

DISCOVERY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

369

Lesson B Exercises L E S S O N B

e. Change the list box’s SelectionMode property to MultiExtended. Save the solution
and then start the application. Click Debbie in the list, and then click Jim. Notice
that in this case, clicking Jim deselects Debbie. When a list box’s SelectionMode
property is set to MultiExtended, you use Ctrl+click to select multiple items in the
list. You also use Ctrl+click to deselect items in the list. Click Debbie in the list, then
Ctrl+click Ahmad, and then Ctrl+click Debbie.

f. Next, click Bill in the list, and then Shift+click Jim. This selects all of the names from
Bill through Jim. Click the Exit button.

g. As you know, when a list box’s SelectionMode property is set to One, the item
selected in the list box is stored in the SelectedItem property, and the item’s index
is stored in the SelectedIndex property. However, when a list box’s SelectionMode
property is set to either MultiSimple or MultiExtended, the items selected in the list
box are stored in the SelectedItems property, and the indices of the items are stored
in the SelectedIndices property. Code the btnMulti_Click procedure so that it first
clears the contents of the lblResult control. The procedure should then display the
selected names (which are stored in the SelectedItems property) on separate lines in
the lblResult control.

h. Save the solution and then start the application. Click Ahmad in the list box, and
then Shift+click Jim. Click the Multi-Selection button. The five names should appear
on separate lines in the lblResult control. Click the Exit button.

13. In this exercise, you learn how to use the Items collection’s Insert, Remove, RemoveAt,
and Clear methods. You also learn how to use the Items collection’s Count property.
Open the VB2015\Chap06\Items Solution\Items Solution (Items Solution.sln) file.

a. The Items collection’s Insert method allows you to add an item at a desired
position in a list box during run time. The Insert method’s syntax is
object.Items.Insert(position, item), where position is the index of the item.
Code the btnInsert_Click procedure so it adds your name as the fourth item in
the list box.

b. The Items collection’s Remove method allows you to remove an item from a list box
during run time. The Remove method’s syntax is object.Items.Remove(item),
where item is the item’s value. Code the btnRemove_Click procedure so it removes
your name from the list box.

c. Like the Remove method, the Items collection’s RemoveAt method also allows
you to remove an item from a list box while an application is running. However,
in the RemoveAt method, you specify the item’s index rather than its value. The
RemoveAt method’s syntax is object.Items.RemoveAt(index), where index is
the item’s index. Code the btnRemoveAt_Click procedure so it removes the second
name from the list box.

d. You can use the Items collection’s Clear method to remove all items from a list
box during run time. As you learned in this lesson, the method’s syntax is
object.Items.Clear(). Code the btnClear_Click procedure so it clears the items
from the list box.

e. The Items collection’s Count property stores the number of items contained in a
list box. Code the btnCount_Click procedure so it displays (in a message box) the
number of items listed in the lstNames control.

f. Save the solution, and then start and test the application.

DISCOVERY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

370

14. In this exercise, you learn how to use the String Collection Editor window to fill a list
box with values. Open the VB2015\Chap06\ListBox Solution\ListBox Solution (ListBox
Solution.sln) file. Open the Code Editor window. Remove the Add methods and the
For...Next statement from the form’s Load event procedure, and then close the Code
Editor window. Click the lstAnimal control on the form. Click the Items property in
the Properties list, and then click the ellipsis (...) button in the Settings box. The String
Collection Editor window opens. Type Dog and then press Enter. Type Cat and then
press Enter. Finally, type Horse and then press Enter. Click the OK button to close the
dialog box. Use the String Collection Editor window to enter the following codes in the
lstCode control: 100, 101, 102, 103, 104, and 105. Save the solution and then start the
application.

15. Open the Debug Solution (Debug Solution.sln) file contained in the VB2015\Chap06\
Debug Solution-B15 folder. Open the Code Editor window and review the existing
code. Start and then test the application. Be sure to include non-integers in your test
data. (Hint: If you need to stop an endless loop, click the Stop Debugging button on the
Standard toolbar.) Correct any errors in the code. Save the solution, and then start and
test the application again.

DISCOVERY

SWAT THE BUGS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

371

The Electric Bill Application L E S S O N C

❚ LESSON C
After studying Lesson C, you should be able to:

 • Explain the purpose of the priming and update reads

 • Nest repetition structures

 • Refresh the screen

 • Delay program execution

The Electric Bill Application
Figure 6-55 shows the problem specification for the Electric Bill application, which uses a loop,
a counter, and an accumulator to calculate a customer’s average electric bill. The figure also
shows the pseudocode for the Calculate button’s Click event procedure. In addition, it shows a
sample run of the application. (You can view the procedure’s flowchart in the VB2015\Chap06\
ElectricFlowchart.pdf file.)

Problem Speci�cation

Create an application that displays a customer’s average electric bill, given the amount of his or her
monthly electric bill for any number of months.

Calculate button’s Click event procedure
1. initialize the intMonths counter to 0
2. initialize the dblTotal accumulator to 0
3. clear the lstMonthly and lblAvg controls
4. get a monthly amount from the user
5. repeat while the user entered a monthly amount
 convert the monthly amount to a number
 if the monthly amount can be converted to a number
 display the monthly amount in the lstMonthly control
 add 1 to the intMonths counter
 add the monthly amount to the dblTotal accumulator
 else
 display an appropriate message
 end if
 get a monthly amount from the user
 end repeat while
6. if the value in the intMonths counter is greater than 0
 average bill = dblTotal accumulator / intMonths counter
 display average bill in lblAvg control
 else
 display “N/A” in lblAvg control
 end if

Figure 6-55 Problem specification, pseudocode, and a sample run for the Electric Bill application
(continues)

priming read

update read

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

372

Notice that the Calculate button’s pseudocode contains two “get a monthly amount from the
user” instructions. One of the instructions appears above the loop, and the other appears as the
last instruction in the loop body. The “get a monthly amount from the user” instruction above
the loop is referred to as the priming read because it is used to prime (i.e., prepare or set up) the
loop. The priming read initializes the loop condition by providing its first value—in this case, the
first monthly amount. Because the loop is a pretest loop, this amount determines whether the
instructions in the loop body are processed at all. If the loop body instructions are processed, the
“get a monthly amount from the user” instruction in the loop body gets the remaining monthly
amounts (if any). This instruction is referred to as the update read because it allows the user to
update the value of the input item (in this case, the monthly amount) associated with the loop’s
condition. The update read is often an exact copy of the priming read.

The importance of the update read cannot be stressed enough. If you don’t include the update
read in the loop body, there will be no way to enter a value that will stop the loop after it has been
processed the first time. This is because the priming read is processed only once and gets only the
first amount from the user. Without the update read, the loop will have no way of stopping on its
own. As you learned earlier, a loop that has no way to end is called an infinite (or endless) loop.
Recall that you can stop an infinite loop by clicking Debug on the menu bar and then clicking
Stop Debugging, or you can use the Stop Debugging button on the Standard toolbar.

To open the Electric Bill application:

1. If necessary, start Visual Studio 2015. Open the VB2015\Chap06\Electric Solution\
Electric Solution (Electric Solution.sln) file. Open the Code Editor window. Replace
<your name> and <current date> in the comments with your name and the current
date, respectively.

2. Locate the btnCalc_Click procedure. The procedure declares the two named constants
and six variables shown in Figure 6-56. The named constants and the strMonthBill
variable will be used along with the InputBox function to get a monthly amount from
the user. The dblMonthBill and blnNumeric variables will be used by the TryParse
method when it attempts to convert the monthly amount to the Double data type. The
intMonths variable will be the counter that keeps track of the number of amounts
entered, and the dblTotal variable will accumulate the amounts. The dblAvg variable
will store the average amount after it has been calculated.

START HERE

Sample run

(continued)

Figure 6-55 Problem specification, pseudocode, and a sample run for the Electric Bill application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

373

The Electric Bill Application L E S S O N C

The first two steps in the Calculate button’s pseudocode initialize the counter and accumulator
variables to 0. Because the Dim statement automatically assigns the number 0 to Integer and
Double variables when the variables are created, you do not need to enter any additional code to
initialize the intMonths and dblTotal variables. In cases where you need to initialize a counter
or an accumulator to a value other than 0, you can do so either in the Dim statement that
declares the variable or in an assignment statement. For example, to initialize the intMonths
variable to the number 1, you could use either the declaration statement Dim intMonths As
Integer = 1 or the assignment statement intMonths = 1 in your code. However, to use
the assignment statement, the intMonths variable must be declared before the assignment
statement is processed.

To code and then test the btnCalc_Click procedure:

1. The next step in the pseudocode clears the contents of the lstMonthly and lblAvg
controls. Click the blank line below the ' clear lstMonthly and lblAvg comment,
and then enter the following lines of code:

 lstMonthly.Items.Clear()
 lblAvg.Text = String.Empty

2. Next, you need to get the first monthly amount from the user. Enter the following
assignment statement in the blank line below the ' get first amount comment:

 strMonthBill = InputBox(strPROMPT, strTITLE, "0")

3. The next step in the pseudocode is a pretest loop whose condition determines
whether the user entered an amount. If no amount was entered, the InputBox function
returns the empty string. In this case, you want the loop body instructions processed
only when the function returns a value other than the empty string. Click the blank line
below the ' repeat as long as the user enters an amount comment, and then
enter the following Do While clause:

 Do While strMonthBill <> String.Empty

START HERE

Figure 6-56 Named constants and variables declared in the btnCalc_Click procedure

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

374

4. If the user entered an amount, the first instruction in the loop body will attempt to
convert the amount to Double. Enter the following assignment statement:

 blnNumeric = Double.TryParse(strMonthBill, dblMonthBill)

5. The second instruction in the loop body is a selection structure whose condition
determines whether the TryParse method was successful. Enter the following If clause:

 If blnNumeric Then

6. If the TryParse method was successful, the selection structure’s true path should display
the amount in the lstMonthly control and then update the counter and accumulator;
otherwise, its false path should display an appropriate message. Enter the additional
comments and code shown in Figure 6-57, and then position the insertion point as
shown in the figure.

7. The last instruction before the loop ends is the update read, which is identical to the
priming read. Type the following assignment statement, and then click the blank line
above the End Sub clause:

 strMonthBill = InputBox(strPROMPT, strTITLE, "0")

8. When the user has finished entering monthly amounts, the loop ends and processing
continues with Step 6 in the pseudocode. Step 6 is a selection structure whose condition
verifies that the value stored in the intMonths counter variable is greater than the
number 0. This verification is necessary because the first instruction in the selection
structure’s true path uses the variable as the divisor when calculating the average electric
bill. Before using a variable as the divisor in an expression, you should always verify
that the variable does not contain the number 0 because, as in mathematics, division
by 0 is not possible. Dividing by 0 in a procedure will give you unexpected results, such
as either causing the application to end abruptly with an error or displaying either the
Visual Basic constant NaN (which stands for Not a Number) or the Visual Basic constant
Infinity. In the blank line above the End Sub clause, enter the following If clause:

 If intMonths > 0 Then

Figure 6-57 Loop entered in the btnCalc_Click procedure

enter these comments
and lines of code

position the insertion
point here

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

375

The Electric Bill Application L E S S O N C

9. If the value in the intMonths variable is greater than 0, the selection structure’s true
path should calculate and display the average electric bill; otherwise, it should display
the string “N/A” (which stands for Not Available). Complete the selection structure’s
true and false paths as indicated in Figure 6-58.

Figure 6-58 Completed btnCalc_Click procedure

enter these four
lines of code

You can also
write the Do
While and If
clauses in
 Figure 6-58

as Do While
 strMonthBill <> ""
and If blnNumeric =
True, respectively.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

376

Nested Repetition Structures
Like selection structures, repetition structures can be nested, which means you can place one
loop (called the nested or inner loop) within another loop (called the outer loop). Both loops
can be pretest loops, or both can be posttest loops. Or, one can be a pretest loop and the other a
posttest loop.

A clock uses nested loops to keep track of the time. For simplicity, consider a clock’s minute
and second hands only. The second hand on a clock moves one position, clockwise, for every
second that has elapsed. After the second hand moves 60 positions, the minute hand moves one
position, also clockwise. The second hand then begins its journey around the clock again.

Figure 6-60 shows the logic used by a clock’s minute and second hands. As the figure indicates,
an outer loop controls the minute hand, while the inner (nested) loop controls the second hand.
Notice that the entire nested loop is contained within the outer loop; this must be true for
the loop to be nested and for it to work correctly. The next iteration of the outer loop (which
controls the minute hand) occurs only after the nested loop (which controls the second hand)
has finished processing.

10. Save the solution and then start the application. Click the Calculate button. Use the
Monthly Bill dialog box to enter the following six amounts, one at a time: 132.99,
145.67, 150.23, 110.89, 105.77, and 74.98.

11. Click the Cancel button in the dialog box. See Figure 6-59.

Figure 6-59 Monthly and average bill amounts shown in the interface

YOU DO IT 5!

Create an application named YouDoIt 5 and save it in the VB2015\Chap06 folder. Add
three labels and a button to the form. The button’s Click event procedure should allow the
user to enter one or more prices. It then should display (in the labels) the number of prices
entered, the total of the prices entered, and the average price entered. If the user does
not enter any numbers, the procedure should display the string “None” in the three labels.
Code the button’s Click event procedure using a pretest loop and the InputBox function.
Save the solution, and then start and test the application. Close the solution.

12. Click the Exit button. Close the Code Editor window and then close the solution.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

377

Nested Repetition Structures L E S S O N C

Figure 6-61 Clock application’s interface

Figure 6-60 Logic used by a clock’s minute and second hands

repeat for minutes from 0 to 59
 repeat for seconds from 0 to 59
 move second hand 1 position, clockwise
 end repeat for seconds
 move minute hand 1 position, clockwise
end repeat for minutes

nested loop

To code and then test the Clock application:

1. Open the VB2015\Chap06\Clock Solution\Clock Solution (Clock Solution.sln) file. See
Figure 6-61.

START HERE

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the btnStart_Click procedure. The procedure will use an outer loop to display
the number of minutes and a nested loop to display the number of seconds. For
simplicity in watching the minutes and seconds tick away, you will display minute
values from 0 to 2 and second values from 0 to 5.

4. Click the blank line above the End Sub clause, and then enter the following nested
loops:

For intMinutes As Integer = 0 To 2
 lblMinutes.Text = intMinutes.ToString
 For intSeconds As Integer = 0 To 5
 lblSeconds.Text = intSeconds.ToString
 Next intSeconds
Next intMinutes

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

378

5. Save the solution and then start the application. Click the Start button. The computer
processes the code entered in the button’s Click event procedure so quickly that you don’t
get a chance to see each of the values assigned to the labels. Instead, only the final values
(2 and 5) appear in the interface. You can fix this problem by refreshing the interface and
then delaying program execution each time the value in the lblSeconds control changes.

6. Click the Exit button.

The Refresh and Sleep Methods
You can refresh (or redraw) the interface using the form’s Refresh method. The Refresh method
ensures that the computer processes any previous lines of code that affect the interface’s
appearance. The Refresh method’s syntax is Me.Refresh(), in which Me refers to the current
form. You can delay program execution using the Sleep method in the following syntax:
System.Threading.Thread.Sleep(milliseconds). The milliseconds argument is the number of
milliseconds to suspend the program. A millisecond is 1/1000 of a second; in other words, there
are 1000 milliseconds in a second. In the Clock application, you will delay program execution for
half of a second, which is 500 milliseconds.

To include the Refresh and Sleep methods in the procedure and then test the code:

1. Enter the additional comment and two lines of code indicated in Figure 6-62.
START HERE

Figure 6-62 Refresh and Sleep methods added to the procedure

enter this
comment and
these two lines
of code

2. Save the solution and then start the application. Click the Start button. The number 0
appears in the lblMinutes control, and the numbers 0 to 5 appear (one at a time) in the
lblSeconds control. Notice that the number of minutes is increased by 1 when the number
of seconds changes from 5 to 0. When the procedure ends, the lblMinutes and lblSeconds
controls contain the numbers 2 and 5, respectively. (Hint: If you want to end the procedure
before it has finished processing, click the Stop Debugging button on the Standard toolbar.)

3. Click the Exit button. Close the Code Editor window and then close the solution.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

379

Trixie at the Diner L E S S O N C

Trixie at the Diner
A programmer determines whether a problem’s solution requires a nested loop by studying the
problem specification. The first problem specification you will examine in this chapter involves
a waitress named Trixie. The problem specification and an illustration of the problem are shown
in Figure 6-63, along with an appropriate solution. The solution requires a loop because the
instructions for telling each table about the daily specials must be repeated for every table that
needs to be waited on. However, the solution does not require a nested loop. This is because the
instructions within the loop should be followed only once per table.

Now we’ll add some additional tasks for Trixie to perform. This time, after telling the customers
at the table about the daily specials, Trixie should take each customer’s order and then submit
the order for the entire table to the cook. Figure 6-64 shows the modified problem specification
along with the modified solution, which requires a nested loop. The outer loop begins with
“repeat for each table that needs to be waited on”, and it ends with the last “end repeat for”. The
nested loop begins with “repeat for each customer at the table”, and it ends with the first “end
repeat for”. Here again, notice that the entire nested loop is contained within the outer loop.
Recall that this is a requirement for the loop to be nested and work correctly.

Problem Speci�cation

A waitress named Trixie works at a local diner. The diner just opened for the day, and customers
are already sitting at several of the tables. Write the instructions that direct Trixie to go over to
each table that needs to be waited on and tell the customers about the daily specials. While at
each table, Trixie should take each customer’s order. She then should submit the entire table’s
order to the cook.

Solution
repeat for each table that needs to be waited on
 go to a table that needs to be waited on
 tell the customers at the table about the daily specials
 repeat for each customer at the table
 ask the customer for his or her order
 record the order on the order slip for that table
 end repeat for
 go over to the cook at the counter
 tear the appropriate order slip from the order pad
 give the order slip to the cook
end repeat for

Figure 6-64 Modified problem specification and solution that requires a nested loop (continues)

Problem Speci�cation

A waitress named Trixie works at a local diner. The diner just opened for the day, and customers
are already sitting at several of the tables. Write the instructions that direct Trixie to go over to
each table that needs to be waited on and tell the customers about the daily specials.

Solution
repeat for each table that needs to be waited on
 go to a table that needs to be waited on
 tell the customers at the table about the daily specials
end repeat for

follow these
instructions for
each table

Figure 6-63 Problem specification and solution that requires a loop
Image by Diane Zak; created with Reallusion CrazyTalk Animator

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

380

The Savings Account Application
Figure 6-65 shows the problem specification for the Savings Account application, which displays
the balance in a savings account at the end of each of five years, using rates from 3% to 7%. It
also shows the pseudocode for the Calculate button’s Click event procedure. Notice that the
procedure requires two loops, one nested within the other. The outer loop controls the rates,
which range from 3% to 7% in increments of 1%. The inner loop controls the years, which range
from 1 to 5 in increments of 1. The figure also shows a sample run of the application.

Figure 6-64 Modified problem specification and solution that requires a nested loop

Problem Speci�cation

A waitress named Trixie works at a local diner. The diner just opened for the day, and customers
are already sitting at several of the tables. Write the instructions that direct Trixie to go over to
each table that needs to be waited on and tell the customers about the daily specials. While at
each table, Trixie should take each customer’s order. She then should submit the entire table’s
order to the cook.

Solution
repeat for each table that needs to be waited on
 go to a table that needs to be waited on
 tell the customers at the table about the daily specials
 repeat for each customer at the table
 ask the customer for his or her order
 record the order on the order slip for that table
 end repeat for
 go over to the cook at the counter
 tear the appropriate order slip from the order pad
 give the order slip to the cook
end repeat for

follow these
instructions
for each table

follow these instructions
for each customer at
the current table

Problem Speci�cation

Create an application that displays the balance in a savings account at the end of each of
ve years,
given the amount of money deposited into the savings account at the beginning of the year and
using annual interest rates of 3% to 7% in increments of 1%. The interest is compounded annually,
and no withdrawals or additional deposits are made during any of the years.

Pseudocode for the Calculate button’s Click event procedure
1. store deposit in a variable
2. display Rate, Year, and Balance column headings
3. repeat for rate from 3% to 7% in increments of 1%
 display rate
 repeat for year from 1 to 5 in increments of 1
 balance = deposit * (1 + rate) ^ year
 display year and balance
 end repeat for
 end repeat for

Sample run

(continued)

Figure 6-65 Problem specification, pseudocode, and sample run for the Savings Account application
(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

381

Trixie at the Diner L E S S O N C

Problem Speci�cation

Create an application that displays the balance in a savings account at the end of each of
ve years,
given the amount of money deposited into the savings account at the beginning of the year and
using annual interest rates of 3% to 7% in increments of 1%. The interest is compounded annually,
and no withdrawals or additional deposits are made during any of the years.

Pseudocode for the Calculate button’s Click event procedure
1. store deposit in a variable
2. display Rate, Year, and Balance column headings
3. repeat for rate from 3% to 7% in increments of 1%
 display rate
 repeat for year from 1 to 5 in increments of 1
 balance = deposit * (1 + rate) ^ year
 display year and balance
 end repeat for
 end repeat for

Sample run

Figure 6-65 Problem specification, pseudocode, and sample run for the Savings Account application

use the scroll box to
view the remaining
account balances

To code and then test the btnCalc_Click procedure:

1. Open the VB2015\Chap06\Savings Solution\Savings Solution (Savings Solution.sln)
file. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. Locate the btnCalc_Click procedure. The procedure contains the Dim statements
that declare the dblDeposit and dblBalance variables. It also contains the TryParse
method that converts the user’s input (the deposit) to the Double data type. In addition,
it contains an assignment statement that displays the appropriate column headings
in the txtBalance control. The assignment statement uses the ControlChars.Tab
and ControlsChars.NewLine constants, which represent the Tab and Enter keys,
respectively.

3. First, you will enter the outer loop, which controls the rates. Click the blank line above
the End Sub clause, and then enter the following For clause:

For dblRate As Double = .03 To .07 Step .01

4. Change the Next clause to Next dblRate.

5. According to its pseudocode, the procedure should display the rate next. Click the
blank line below the For clause, and then enter the following lines of code:

txtBalance.Text = txtBalance.Text &
dblRate.ToString("p0") & ControlChars.NewLine

6. Next, you will enter the nested loop, which controls the years. The loop instructions
should calculate the account balance and then display the year number and account
balance in the txtBalance control. Enter the nested loop shown in Figure 6-66.

START HERE

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

382

7. Save the solution and then start the application. Type 5000 in the Deposit box, and
then click the Calculate button. The account balances appear in the txtBalance control,
as shown earlier in Figure 6-65.

8. Use the control’s scroll box to verify that the control contains the account balances for
each of the five rates.

9. Click the Exit button. Close the Code Editor window and then close the solution.

A Caution About Real Numbers
Not all real numbers, which are numbers with a decimal place, can be stored precisely in the
computer’s internal memory. Many can be stored only as an approximation, which may lead
to unexpected results when two real numbers are compared with each other. For example,
sometimes a Double number that is the result of a calculation doesn’t compare precisely with the
same number stored as a literal constant. This is why it is so important to test your application’s
code thoroughly. In the next set of steps, you will observe how the comparison problem would
affect the Savings Account application from the previous section.

To modify the application from the previous section:

1. Use Windows to make a copy of the Savings Solution folder. Rename the copy Modified
Savings Solution, and then open the Savings Solution (Savings Solution.sln) file
contained in the Modified Savings Solution folder.

START HERE

Private Sub btnCalc_Click(sender As Object, e As EventArgs
) Handles btnCalc.Click
 ' calculate account balances for each of five years
 ' using rates from 3% to 7% in increments of 1%

 Dim dblDeposit As Double
 Dim dblBalance As Double

 Double.TryParse(txtDeposit.Text, dblDeposit)

 txtBalance.Text = "Rate" & ControlChars.Tab &
 "Year" & ControlChars.Tab & "Balance" &
 ControlChars.NewLine

 ' calculate and display account balances
 For dblRate As Double = 0.03 To 0.07 Step 0.01
 txtBalance.Text = txtBalance.Text &
 dblRate.ToString("p0") & ControlChars.NewLine
 For intYear As Integer = 1 To 5
 dblBalance = dblDeposit * (1 + dblRate) ^ intYear
 txtBalance.Text = txtBalance.Text &
 ControlChars.Tab & intYear.ToString &
 ControlChars.Tab & dblBalance.ToString("c2") &
 ControlChars.NewLine
 Next intYear
 Next dblRate
End Sub

Figure 6-66 Completed btnCalc_Click procedure

enter this
nested loop

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

383

Trixie at the Diner L E S S O N C

2. Open the Code Editor window. Change 7% in the fourth comment to 6%. Then, locate the
btnCalc_Click procedure. Change 7% in the second comment to 6%. Let’s assume that
the user still wants to display the account balances for each of the five years, but for rates
from 3% to 6% (rather than from 3% to 7%). In the outer For clause, change 0.07 to 0.06.

3. Save the solution and then start the application. Click the Calculate button, and
then scroll to the bottom of the txtBalance control. See Figure 6-67. Notice that the
information associated with the 6% rate is missing from the control.

Figure 6-67 Interface showing the 6% information missing

4. Click the Exit button.

Consider why the loop that controls the rates failed to display the 6% information. Recall that
the For clause in that loop looks like this: For dblRate As Double = 0.03 To 0.06 Step
0.01. The clause tells the computer to stop processing the loop instructions when the value in
the dblRate variable is greater than 0.06. This indicates that when the For clause updates the
dblRate variable to 0.06 and then compares that value with the 0.06 literal constant, the value
in the variable is viewed as greater than the literal constant, so the loop ends prematurely. To
fix this problem, you can either increase the literal constant’s value slightly (e.g., you can use
0.0600001) or use the Decimal data type for the loop that controls the rates. You will try both
methods in the next set of steps.

To fix the comparison problem in the application:

1. First, you’ll increase the literal constant’s value. Change 0.06 in the outer For clause
to 0.0600001. Save the solution and then start the application. Click the Calculate
button, and then scroll to the bottom of the txtBalance control. The control now
includes the information pertaining to the 6% rate. See Figure 6-68.

START HERE

the information
associated with the
6% rate is missing

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

384

3. Save the solution and then start the application. Click the Calculate button, and then
scroll to the bottom of the txtBalance control. The 6% rate information appears in the
control, as shown earlier in Figure 6-68.

4. Click the Exit button. Close the Code Editor window and then close the solution.

2. Click the Exit button. Next, you’ll try the second method of fixing the problem, which is to
use the Decimal data type for the rates. Modify the outer loop as indicated in Figure 6-69.
The modifications are shaded in the figure.

Figure 6-68 Interface showing the 6% information

the text box
now includes
the information
associated with
the 6% rate

Figure 6-69 Modifications made to the nested loop that controls the interest rates

make the
shaded
modifications

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

385

Lesson C Review Questions L E S S O N C

Lesson C Summary
 • To nest a repetition structure (loop):

Place the entire inner loop within the outer loop.

 • To refresh the interface:

Use the Refresh method. The method’s syntax is Me.Refresh().

 • To pause program execution:

Use the Sleep method. The method’s syntax is System.Threading.Thread.Sleep
(milliseconds).

Lesson C Key Terms
Priming read—the input instruction that appears above the loop that it controls; used to get the
first input item from the user

Real numbers—numbers with a decimal place

Refresh method—can be used to refresh (redraw) a form

Sleep method—can be used to delay program execution

Update read—the input instruction that appears within a loop and is associated with the
priming read

Lesson C Review Questions
1. A procedure allows the user to enter one or more values. The first input instruction will

get the first value only and is referred to as the _____________________ read.

a. entering
b. initializer

c. priming
d. starter

2. What will the following code display in the lblAsterisks control?

For intX As Integer = 1 To 2
For intY As Integer = 1 To 3

 lblAsterisks.Text = lblAsterisks.Text & “*”
Next intY
lblAsterisks.Text = lblAsterisks.Text &

 ControlChars.NewLine
Next intX

a. ***

b. ***

c. **
**
**

d. ***

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

386

3. What will the following code display in the lblSum control?

Dim intSum As Integer
Dim intY As Integer
Do While intY < 3
For intX As Integer = 1 To 4

 intSum += intX
 Next intX
 intY += 1
Loop
lblSum.Text = intSum.ToString
a. 5
b. 8

c. 15
d. 30

4. Which of the following statements pauses program execution for one second?

a. System.Threading.Thread.
Pause(1000)

b. System.Threading.Thread.
Pause(1)

c. System.Threading.Thread.
Sleep(1000)

d. System.Threading.Thread.
Sleep(100)

Lesson C Exercises
1. In this exercise, you modify the Clock application from this lesson. Use Windows

to make a copy of the Clock Solution folder. Rename the copy Clock Solution-
Introductory. Open the Clock Solution (Clock Solution.sln) file contained in the
Clock Solution-Introductory folder. Open the Code Editor window. Change the outer
For...Next statement to a Do...Loop statement. Test the application appropriately.

2. In this exercise, you modify the Savings Account application from this lesson. Use
Windows to make a copy of the Savings Solution folder. Rename the copy Savings
Solution-Introductory. Open the Savings Solution (Savings Solution.sln) file contained
in the Savings Solution-Introductory folder. In the btnCalc_Click procedure, change
the For...Next statement that controls the years to a Do...Loop statement. Test the
application appropriately.

3. In this exercise, you modify the Clock application from this lesson. Use Windows
to make a copy of the Clock Solution folder. Rename the copy Clock Solution-
Intermediate. Open the Clock Solution (Clock Solution.sln) file contained in the Clock
Solution-Intermediate folder. In the btnStart_Click procedure, change both For...Next
statements to Do...Loop statements. Test the application appropriately.

4. In this exercise, you modify the Savings Account application from this lesson. Use
Windows to make a copy of the Savings Solution folder. Rename the copy Savings
Solution-Intermediate. Open the Savings Solution (Savings Solution.sln) file contained
in the Savings Solution-Intermediate folder. In the btnCalc_Click procedure, change
both For...Next statements to Do...Loop statements. Test the application appropriately.

5. In this exercise, you modify the Modified Savings Account application from this lesson.
Use Windows to make a copy of the Modified Savings Solution folder. Rename the
copy Modified Savings Solution-Intermediate. Open the Savings Solution (Savings

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

387

Lesson C Exercises L E S S O N C

Solution.sln) file contained in the Modified Savings Solution-Intermediate folder. The
btnCalc_Click procedure should now display the amounts by rate within year (rather
than by year within rate). Figure 6-70 shows a sample run of the application. Make the
appropriate modifications to the code. Test the application appropriately.

Figure 6-70 Sample run of the application for Exercise 5

6. Open the VB2015\Chap06\Grade Solution\Grade Solution (Grade Solution.sln) file.
Professor Mason wants you to create an application that allows her to assign a grade to any
number of students. Each student’s grade is based on four test scores, with each test worth
100 points. The application should total the test scores and then assign the appropriate
grade using the information shown in Figure 6-71. Test the application appropriately.

INTERMEDIATE

7. Create an application, using the following names for the solution and project,
respectively: Table Solution and Table Project. Save the application in the VB2015\
Chap06 folder. The application should display a table consisting of four rows and five
columns. The first column should contain the numbers 1 through 4. The second and
subsequent columns should contain the result of multiplying the number in the first
column by the numbers 2 through 5. Create a suitable interface, and then code the
application. Test the application appropriately.

INTERMEDIATE

Total points earned
at least 372
340–371
280–339
240–279
below 240

Grade
A
B
C
D
F

Figure 6-71 Grade information for Exercise 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6 The Repetition Structure

388

8. Create an application, using the following names for the solution and project,
respectively: Barclay Solution and Barclay Project. Save the application in the VB2015\
Chap06 folder. The application’s interface is shown in Figure 6-72. The Calculate
button’s Click event procedure should use a loop and the InputBox function to get
the prices of the candies purchased by the user. Each price should be displayed in the
lstPrices control. The procedure should also accumulate the prices. When the user
has finished entering the prices for the current order, the procedure should display
the accumulated value plus a 5% sales tax in the Total due box. Test the application
appropriately.

INTERMEDIATE

Figure 6-72 Interface for Exercise 8

9. Create an application, using the following names for the solution and project,
respectively: New Salary Solution and New Salary Project. Save the application in
the VB2015\Chap06 folder. Assume that at the beginning of every year, you receive a
raise on your previous year’s salary. Create a program that displays the amount of your
annual raises and also your new salaries for the next five years, using raise rates of 1.5%,
2%, 2.5%, and 3%. Create a suitable interface, and then code the application and test it
appropriately.

10. Create an application, using the following names for the solution and project,
respectively: Bar Chart Solution and Bar Chart Project. Save the application in the
VB2015\Chap06 folder. The application should allow the user to enter the ratings for
five different movies. Each rating should be a number from 1 through 10 only. The
application should graph the ratings using a horizontal bar chart consisting of five rows,
with one row for each movie. Each row should contain from one to 10 plus signs (+).
The number of plus signs depends on the movie’s rating. Create a suitable interface, and
then code the application and test it appropriately.

11. Open the VB2015\Chap06\Car Solution\Car Solution (Car Solution.sln) file.
(The image is provided courtesy of OpenClipArt.org/Keistutis.) The btnClickMe_Click
procedure should make the “I WANT THIS CAR!” message blink 10 times. In other
words, the message should disappear and then reappear, disappear and then reappear,
and so on, 10 times. Use the For...Next statement. Test the application appropriately.

INTERMEDIATE

ADVANCED

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7
Sub and Function
Procedures

Creating the Cerruti Company Application

In this chapter, you create an application for Lucy Malkin, the payroll manager
at Cerruti Company. Currently, Ms. Malkin manually calculates each employee’s
weekly gross pay, federal withholding tax (FWT), Social Security and Medicare
(FICA) tax, and net pay. The process of performing these calculations manually is
both time-consuming and prone to mathematical errors. Ms. Malkin has asked you
to create an application that she can use to perform the payroll calculations both
efficiently and accurately.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

390

Previewing the Cerruti Company Application
Before you start the first lesson in this chapter, you will preview the completed application
contained in the VB2015\Chap07 folder.

To preview the completed application:

1. Use Windows to locate and then open the VB2015\Chap07 folder. Right-click Cerruti
(Cerruti.exe) and then click the Open button. Type Joe Chang in the Name box and
then click the Married radio button.

2. Scroll down the Hours list box and then click 42.5 in the list. Scroll down the Rate list
box and then click 13.50 in the list.

3. The interface contains a combo box that allows you to either type the number of
withholding allowances or select the number from a list. Click the list arrow in the
Allowances combo box and then click 2 in the list.

4. Click the Calculate button. The gross pay, taxes, and net pay appear in the interface.
See Figure 7-1.

START HERE

Figure 7-1 Interface showing the payroll calculations

combo box

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

391

5. Click the Exit button. The “Do you want to exit?” message appears in a message box.
See Figure 7-2.

Figure 7-2 Message box containing a confirmation message

6. Click the No button. Notice that the form remains on the screen. In Lesson C, you will
learn how to prevent the computer from closing a form.

7. Click the Exit button, and then click the Yes button in the message box. The
application ends.

The Cerruti Company application uses a combo box and a Function procedure. You will learn
about Function procedures, more simply referred to as functions, in Lesson A. Combo boxes
are covered in Lesson B. You will code the Cerruti Company application in Lesson C. Be sure
to complete each lesson in full and do all of the end-of-lesson questions and several exercises
before continuing to the next lesson.

Previewing the Cerruti Company Application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

392

❚ LESSON A
After studying Lesson A, you should be able to:

 • Create and call an independent Sub procedure

 • Explain the difference between a Sub procedure and a Function procedure

 • Create a procedure that receives information passed to it

 • Explain the difference between passing data by value and passing data by reference

 • Create a Function procedure

Sub Procedures
There are two types of Sub procedures in Visual Basic: event procedures and independent Sub
procedures. As you already know, an event procedure is a Sub procedure that is associated with
a specific object and event, such as a button’s Click event or a text box’s TextChanged event.
The computer automatically processes an event procedure’s code when the event occurs. An
independent Sub procedure, on the other hand, is a procedure that is independent of any
object and event. An independent Sub procedure is processed only when called (invoked) from
code. In Visual Basic, you invoke an independent Sub procedure using the Call statement.

Programmers use independent Sub procedures for several reasons, which are listed in
Figure 7-3.

Figure 7-4 shows the syntax of both an independent Sub procedure and the Call statement in
Visual Basic. Like event procedures, independent Sub procedures have a procedure header and a
procedure footer. In most cases, the procedure header begins with the Private keyword, which
indicates that the procedure can be used only within the current Code Editor window. Following
the Private keyword is the Sub keyword, which identifies the procedure as a Sub procedure.
After the Sub keyword comes the procedure name. The rules for naming an independent Sub
procedure are the same as those for naming variables; however, procedure names are usually
entered using Pascal case. The Sub procedure’s name should indicate the task the procedure
performs. It is a common practice to begin the name with a verb. For example, a good name for
a Sub procedure that displays two random integers is DisplayRandomIntegers.

Using Pascal
case, you
capitalize the
first letter in
the procedure

name and the first letter
of each subsequent
word in the name.

Reasons for using independent Sub procedures

1. They allow you to avoid duplicating code when different sections of a program need to perform
 the same task. Rather than entering the code in each of those sections, you can enter the code
 in a procedure and then have each section call the procedure to perform its task when needed.
2. If an event procedure must perform many tasks, you can prevent the procedure’s code from
 getting unwieldy and difficult to understand by assigning some of the tasks to one or more
 independent Sub procedures. Doing this makes the event procedure easier to code because it
 allows you to concentrate on one small piece of the code at a time.
3. Independent Sub procedures are used extensively in large and complex programs, which
 typically are written by a team of programmers. The programming team will break up the
 program into small and manageable tasks, and then assign some of the tasks to different team
 members to be coded as independent Sub procedures. Doing this allows more than one
 programmer to work on the program at the same time, decreasing the time it takes to write the
 program.

Figure 7-3 Reasons programmers use independent Sub procedures

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

393

Sub Procedures L E S S O N A

Following the procedure name in the procedure header is a set of parentheses that contains an
optional parameterList, which lists the data type and name of one or more parameters. As you
learned in Chapter 4, a parameter represents information that is passed to a procedure when the
procedure is invoked. Each parameter in the parameterList has procedure scope and each stores
an item of data, which is passed to the procedure through the Call statement’s argumentList. The
number of arguments should agree with the number of parameters. If the parameterList does
not contain any parameters, as shown in Example 1 in Figure 7-4, then an empty set of
parentheses follows the procedure name in the Call statement. However, if the parameterList
contains one parameter, then the argumentList should have one argument. Similarly, a
procedure that contains three parameters requires three arguments in the Call statement that
invokes it. (Refer to the Tip on this page for an exception to this general rule.)

In addition to having the same number of arguments as parameters, the data type and order
(or position) of each argument should agree with the data type and order (position) of its
corresponding parameter. If the first parameter has a data type of String and the second has a
data type of Double, then the first argument in the Call statement should have the String data
type and the second should have the Double data type. This is because when the procedure is
called, the computer stores the value of the first argument in the procedure’s first parameter, the
value of the second argument in its second parameter, and so on.

An argument can be a literal constant (as shown in the first Call statement in Example 2 in
Figure 7-4), a named constant, a keyword, or a variable (as shown in the second Call statement
in Example 2 in Figure 7-4). However, in most cases, the argument will be a variable.

To learn how
to specify that
an argument
in the Call
statement is

optional, complete
Exercise 17 at the end
of this lesson.

calls (invokes) the
DisplayRandomIntegers
procedure

Independent Sub Procedure and Call Statement

Syntax of an independent Sub procedure
Private Sub procedureName([parameterList])
 statements
End Sub

Syntax of the Call statement
Call procedureName([argumentList])

Example 1
Private Sub DisplayRandomIntegers()
 Dim randGen As New Random
 lblNum1.Text = randGen.Next(1, 11).ToString
 lblNum2.Text = randGen.Next(1, 11).ToString
End Sub

Call DisplayRandomIntegers()

Example 2
Private Sub DisplaySum(ByVal dblScore1 As Double,
 ByVal dblScore2 As Double)
 Dim dblSum As Double
 dblSum = dblScore1 + dblScore2
 lblSum.Text = dblSum.ToString
End Sub

Call DisplaySum(45.9, 73.6)
or
Call DisplaySum(dblMidterm, dblFinal)

Figure 7-4 Syntax and examples of an independent Sub procedure and the Call statement

either of these Call statements
can be used to invoke the
DisplaySum procedure

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

394

Passing Variables
Each variable declared in a program has both a value and a unique address that represents the
location of the variable in the computer’s internal memory. Visual Basic allows you to pass either
a copy of the variable’s value or its address to the receiving procedure. Passing a copy of a
variable’s value is referred to as passing by value, whereas passing its address is referred to as
passing by reference. The method you choose—by value or by reference—depends on whether
you want the receiving procedure to have access to the variable in memory. In other words, it
depends on whether you want to allow the receiving procedure to change the variable’s contents.

Although the idea of passing information by value and by reference may sound confusing at first,
it is a concept with which you are already familiar. We’ll use the illustrations shown in Figure 7-5
to demonstrate this fact. Assume you have a savings account at a local bank. (Think of the
savings account as a variable.) During a conversation with your friend, Joan, you mention the
amount of money you have in the account, as shown in Illustration A. Sharing this information
with Joan is similar to passing a variable by value. Knowing the balance in your savings account
does not give Joan access to the account. It merely provides information that she can use to
compare with the amount of money she has saved.

Now we’ll use the savings account example to demonstrate passing information by reference.
(Here again, think of your savings account as a variable.) To either deposit money in your
account or withdraw money from your account, you must provide the bank teller with your
account number, as shown in Illustration B in Figure 7-5. Doing so is similar to passing a variable
by reference. The account number represents the location of your account at the bank and allows
the teller to change the contents of your bank account, similar to the way a variable’s address
allows the receiving procedure to change the contents of the variable.

The internal
memory of
a computer
is similar to
a large post

office. Like each
post office box, each
 memory cell has a
unique address.

Ch07A-Passing
Variables

Figure 7-5 Illustrations of passing by value and passing by reference

Illustration A Illustration B

Image by Diane Zak; created with Reallusion CrazyTalk Animator

Passing Variables by Value
To pass a variable by value, you include the keyword ByVal before the name of its corresponding
parameter in the receiving procedure’s parameterList. When you pass a variable by value, the
computer passes a copy of the variable’s contents to the receiving procedure. When only a copy
of the contents is passed, the receiving procedure is not given access to the variable in memory.
Therefore, it cannot change the value stored inside the variable. It is appropriate to pass a
variable by value when the receiving procedure needs to know the variable’s contents but does

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

395

Passing Variables L E S S O N A

not need to change the contents. In this section, you will finish coding the Favorites application,
which passes two variables by value to an independent Sub procedure.

To open the Favorites application:

1. If necessary, start Visual Studio 2015. Open the VB2015\Chap07\Favorites Solution\
Favorites Solution (Favorites Solution.sln) file. Open the Code Editor window. Replace
<your name> and <current date> in the comments with your name and the current
date, respectively.

2. Locate the btnGet_Click procedure, which is shown in Figure 7-6. Depending on which
radio button is selected, the event procedure gets the name of the user’s favorite actor,
actress, movie, singer, or song.

START HERE

Private Sub btnGet_Click(sender As Object, e As EventArgs
) Handles btnGet.Click
 ' gets the favorite and then calls
 ' a procedure to display the favorite

 Dim strCategory As String
 Dim strName As String

 Select Case True
 Case radActor.Checked
 strCategory = "actor"
 Case radActress.Checked
 strCategory = "actress"
 Case radMovie.Checked
 strCategory = "movie"
 Case radSinger.Checked
 strCategory = "singer"
 Case Else
 strCategory = "song"
 End Select
 strName = InputBox("Your favorite " &
 strCategory & "?", "Favorite")

End Sub

Figure 7-6 Partially completed btnGet_Click procedure

Before the event procedure ends, it will call an independent Sub procedure named DisplayMsg
to display the message “Your favorite category is name.” In the message, category is one of the
following: actor, actress, movie, singer, or song. Name is the name of the user’s favorite actor,
actress, movie, singer, or song. The Call statement will need to pass the appropriate category and
name to the independent Sub procedure. The category and name are stored in the strCategory
and strName variables, respectively. You should pass both variables by value because the
DisplayMsg procedure does not need to change their values.

To begin coding the Favorites application:

1. Enter the following Call statement in the blank line above the End Sub clause. (Hint:
The jagged line that appears below DisplayMsg will disappear when you create the
procedure in the next set of steps.)

 Call DisplayMsg(strCategory, strName)

Recall that it
is a common
practice
to begin a
 procedure’s

name with a verb and
to enter the name using
Pascal case.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

396

Next, you will create the DisplayMsg procedure. The procedure will store the two String values
it receives from the Call statement in two parameters named strType and strFavorite. Some
programmers enter independent Sub procedures above the first event procedure, while others
enter them below the last event procedure. Still others enter them either immediately above
or immediately below the procedure from which they are invoked. Whichever way is chosen,
however, all independent Sub procedures must appear between the Public Class and End Class
clauses and outside of any other procedure. In this book, the independent Sub procedures will
be entered above the first event procedure in the Code Editor window.

To finish coding the Favorites application and then test it:

1. If necessary, scroll to the top of the Code Editor window. Click the blank line below
the ' independent Sub procedure comment, and then enter the DisplayMsg
procedure shown in Figure 7-7. Notice that when you press Enter after typing the
procedure header, the Code Editor automatically enters the procedure footer (End Sub)
for you.

START HERE

2. Save the solution and then start the application. Click the Get Favorite button. The
InputBox function in the btnGet_Click procedure prompts you to enter the name
of your favorite actor. Type Johnny Depp in the Favorite dialog box and then press
Enter. The Call statement in the event procedure invokes the DisplayMsg procedure,
passing it a copy of the value stored in the strCategory variable (actor) and a copy of
the value stored in the strName variable (Johnny Depp). The DisplayMsg procedure
header stores the values passed to it in its strType and strFavorite parameters. The
assignment statement in the procedure then displays the appropriate message in the
lblFavorite control. See Figure 7-8.

Figure 7-8 Message shown in the interface

Figure 7-7 DisplayMsg procedure

enter the
DisplayMsg
procedure

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

397

Passing Variables L E S S O N A

3. Click the Song radio button and then click the Get Favorite button. Type the name
of your favorite song in the Favorite dialog box and then press Enter. A message
containing the name of your favorite song appears in the lblFavorite control.

4. On your own, verify that the application displays the names of your favorite actress,
movie, and singer.

5. Click the Exit button. Close the Code Editor window and then close the solution.

Figure 7-9 shows the DisplayMsg procedure header and the Call statement that invokes the
procedure. Notice that the number, data type, and order (position) of the arguments in the Call
statement match the number, data type, and order (position) of the corresponding parameters
in the DisplayMsg procedure header. Also notice that the names of the arguments do not need
to be identical to the names of the corresponding parameters. In fact, to avoid confusion, you
should use different names for an argument and its corresponding parameter. Finally, notice that
the Call statement does not indicate whether a variable is being passed by value or by reference.
To make that determination, you need to look at the receiving procedure’s header.

YOU DO IT 1!

Create an application named YouDoIt 1 and save it in the VB2015\Chap07 folder. Add
a text box, a label, and a button to the form. The button’s Click event procedure should
assign the text box value to a Double variable and then pass a copy of the variable’s
value to an independent Sub procedure named ShowDouble. The ShowDouble procedure
should multiply the variable’s value by 2 and then display the result in the label control.
Code the button’s Click event procedure and the ShowDouble procedure. Save the
solution, and then start and test the application. Close the solution.

Passing Variables by Reference
Instead of passing a copy of a variable’s value to a procedure, you can pass its address. In other
words, you can pass the variable’s location in the computer’s internal memory. As you learned
earlier, passing a variable’s address is referred to as passing by reference, and it gives the receiving
procedure access to the variable being passed. You pass a variable by reference when you want
the receiving procedure to change the contents of the variable.

To pass a variable by reference in Visual Basic, you include the keyword ByRef before the name
of the corresponding parameter in the receiving procedure’s header. The ByRef keyword tells
the computer to pass the variable’s address rather than a copy of its contents. In this section, you
will finish coding the Concert Tickets application, which uses an independent Sub procedure

Figure 7-9 DisplayMsg procedure header and Call statement

Private Sub DisplayMsg(ByVal strType As String,
 ByVal strFavorite As String)

Call DisplayMsg(strCategory, strName)

parameterList

argumentList

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

398

named AssignDiscount. The Call statement that invokes the procedure will have three variables
in its argumentList. The first two variables will be passed by value; the third will be passed
by reference.

To open the Concert Tickets application:

1. Open the Concert Solution (Concert Solution.sln) file contained in the VB2015\
Chap07\Concert Solution-Sub folder. See Figure 7-10.

START HERE

Figure 7-10 Interface for the Concert Tickets application

The interface provides a text box for entering the number of tickets purchased. It also provides
radio buttons for specifying whether the tickets are Standard or VIP. The prices for Standard
and VIP tickets are $62.50 and $102.75, respectively. However, the purchaser receives a 10%
discount when the number of tickets purchased is at least 6, and a 2% discount when the
number of tickets purchased is at least 4. The application will use an independent Sub procedure
named AssignDiscount to determine the appropriate discount amount (which could be 0).

To view the partially completed btnCalc_Click procedure:

1. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. Locate the btnCalc_Click procedure. Most of the procedure’s code has already been
entered for you. Missing from the procedure is the statement that calls the independent
AssignDiscount procedure. See Figure 7-11.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

399

Passing Variables L E S S O N A

The independent AssignDiscount procedure will determine the appropriate discount amount,
which could be 10% of the subtotal, 2% of the subtotal, or 0. For the procedure to perform its
task, it needs to know the number of tickets purchased and the subtotal; those values are stored
in the intTickets and dblSubtotal variables, respectively. The procedure will not need to
change the values stored in the variables, so you will pass the variables by value. The procedure
also needs to know where to store the discount amount after it has been determined. To have
the procedure store the amount in the dblDiscount variable, you will need to pass the variable’s
address to the procedure. In other words, you will need to pass the variable by reference.

To add the Call statement to the btnCalc_Click procedure:

1. Click the blank line below the ' call a procedure to assign the discount
comment, and then enter the following Call statement:

 Call AssignDiscount(intTickets, dblSubtotal, dblDiscount)

START HERE

Private Sub btnCalc_Click(sender As Object, e As EventArgs
) Handles btnCalc.Click
 ' display subtotal, discount, and total due

 Const dblSTANDARD As Double = 62.5
 Const dblVIP As Double = 102.75
 Dim intTickets As Integer
 Dim dblSubtotal As Double
 Dim dblDiscount As Double
 Dim dblTotalDue As Double

 Integer.TryParse(txtTickets.Text, intTickets)

 ' calculate subtotal
 If radStandard.Checked Then
 dblSubtotal = intTickets * dblSTANDARD
 Else
 dblSubtotal = intTickets * dblVIP
 End If

 ' call a procedure to assign the discount

 ' calculate total due
 dblTotalDue = dblSubtotal - dblDiscount

 lblSubtotal.Text = dblSubtotal.ToString("n2")
 lblDiscount.Text = dblDiscount.ToString("n2")
 lblTotalDue.Text = dblTotalDue.ToString("n2")
End Sub

Figure 7-11 Partially completed btnCalc_Click procedure

the Call statement
is missing

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

400

2. Next, you will create the AssignDiscount procedure, which will receive a copy of the
values stored in the intTickets and dblSubtotal variables as well as the address of
the dblDiscount variable. The procedure will store the information it receives in its
three parameters: intNum, dblSub, and dblDisc. If necessary, scroll to the top of the
Code Editor window. Click the blank line below the ' independent Sub procedure
comment, and then enter the AssignDiscount procedure shown in Figure 7-12.

Figure 7-13 Calculated amounts shown in the interface

4. Change the number of tickets to 4. Click the VIP radio button and then click the Calculate
button. The subtotal, discount, and total due are 411.00, 8.22, and 402.78, respectively.

5. Change the number of tickets to 2 and then click the Calculate button. The subtotal,
discount, and total due are 205.50, 0.00, and 205.50, respectively.

6. Click the Exit button. Close the Code Editor window and then close the solution.

Figure 7-14 shows the AssignDiscount and btnCalc_Click procedures. Notice that the number,
data type, and order (position) of the arguments in the Call statement match the number, data
type, and order (position) of the corresponding parameters in the AssignDiscount procedure
header. ByVal in the parameterList indicates that the first two variables in the argumentList are
passed by value, whereas ByRef indicates that the third variable is passed by reference. Notice

3. Save the solution and then start the application. Type 6 in the Tickets box and then
click the Calculate button. See Figure 7-13.

Figure 7-12 AssignDiscount Sub procedure

enter the
AssignDiscount
procedure

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

401

Passing Variables L E S S O N A

Desk-checking the procedures shown in Figure 7-14 will help clarify the difference between
passing by value and passing by reference. When the user clicks the Calculate button after typing
6 in the Tickets box, the Dim statements in the btnCalc_Click procedure create and initialize the
two named constants and four variables. Next, the TryParse method stores the number of tickets
in the intTickets variable. The selection structure then calculates the subtotal based on the
selected radio button; in this case, the Standard radio button is selected. Figure 7-15 shows the
contents of the named constants and variables before the Call statement is processed.

Ch07A-Sub Desk-Check

Figure 7-14 AssignDiscount and btnCalc_Click procedures

parameterList
Private Sub AssignDiscount(ByVal intNum As Integer,
 ByVal dblSub As Double,
 ByRef dblDisc As Double)
 Select Case intNum
 Case Is >= 6
 dblDisc = dblSub * 0.1
 Case Is >= 4
 dblDisc = dblSub * 0.02
 Case Else
 dblDisc = 0
 End Select
End Sub

Private Sub btnCalc_Click(sender As Object, e As EventArgs
) Handles btnCalc.Click
 ' display subtotal, discount, and total due

 Const dblSTANDARD As Double = 62.5
 Const dblVIP As Double = 102.75
 Dim intTickets As Integer
 Dim dblSubtotal As Double
 Dim dblDiscount As Double
 Dim dblTotalDue As Double

 Integer.TryParse(txtTickets.Text, intTickets)

 ' calculate subtotal
 If radStandard.Checked Then
 dblSubtotal = intTickets * dblSTANDARD
 Else
 dblSubtotal = intTickets * dblVIP
 End If

 ' call a procedure to assign the discount
 Call AssignDiscount(intTickets, dblSubtotal, dblDiscount)

 ' calculate total due
 dblTotalDue = dblSubtotal - dblDiscount

 lblSubtotal.Text = dblSubtotal.ToString("n2")
 lblDiscount.Text = dblDiscount.ToString("n2")
 lblTotalDue.Text = dblTotalDue.ToString("n2")
End Sub

argument
passed by
reference

arguments
passed by
value

that the Call statement does not indicate the way a variable is being passed; that information is
found only in the receiving procedure’s header. Also notice that the names of the arguments are
not identical to the names of their corresponding parameters.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

402

The Call statement invokes the AssignDiscount procedure, passing it three arguments. At
this point, the computer temporarily leaves the btnCalc_Click procedure to process the code
contained in the AssignDiscount procedure; the procedure header, which contains three
parameters, is processed first. The ByVal keyword indicates that the first two parameters are
receiving values from the Call statement—in this case, copies of the numbers stored in the
intTickets and dblSubtotal variables. As a result, the computer creates the intNum and
dblSub variables listed in the parameterList, and it stores the numbers 6 and 375, respectively,
in the variables.

The ByRef keyword indicates that the third parameter is receiving the address of a variable.
When you pass a variable’s address to a procedure, the computer uses the address to locate the
variable in its internal memory. It then assigns the parameter name to the memory location.
In this case, the computer locates the dblDiscount variable in memory and assigns the name
dblDisc to it. As indicated in the desk-check table shown in Figure 7-16, the memory location
now has two names: one assigned by the btnCalc_Click procedure and the other assigned by
the AssignDiscount procedure. Although both procedures can access the memory location,
each procedure uses a different name to do so. The dblDiscount variable is recognized only
within the btnCalc_Click procedure, and the dblDisc variable is recognized only within the
AssignDiscount procedure.

Next, the Select Case statement in the AssignDiscount procedure determines the appropriate
discount based on the contents of the intNum variable. The variable contains the number 6,
so the first Case clause multiplies the contents of the dblSub variable (375) by 0.1 and then
assigns the result (37.5) to the dblDisc variable, as shown in Figure 7-17. Notice that changing
the value in the dblDisc variable also changes the value in the dblDiscount variable. This is
because both variable names refer to the same location in memory.

Figure 7-15 Desk-check table before the Call statement is processed

intTickets
0
6

dblSTANDARD
62.5

dblVIP
102.75

dblSubtotal
0

375

dblDiscount
 0

dblTotalDue
0

these two named constants and four
variables belong to the btnCalc_Click
procedure

the Dim statements initialize the
variables

agrees with the subtotal shown in Figure 7-13

Note: The names in black indicate memory locations that belong to the btnCalc_Click procedure.
The names in red indicate memory locations that belong to the AssignDiscount procedure.

dblSTANDARD
62.5

intTickets
0
6

dblSubtotal
0

375

dblVIP
102.75

dblDisc
dblDiscount
 0

dblTotalDue
0

intNum
6

dblSub
375

Figure 7-16 Desk-check table after the Call statement and AssignDiscount procedure
header are processed

this memory location
belongs to both procedures

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

403

Passing Variables L E S S O N A

Note: The names in black indicate memory locations that belong to the btnCalc_Click procedure.
The names in red indicate memory locations that belong to the AssignDiscount procedure.

intTickets
0
6

dblSTANDARD
62.5

dblSubtotal
0

375

dblVIP
102.75

dblDisc
dblDiscount
 0
 37.5

dblTotalDue
 0
 337.5

intNum
6

dblSub
375

Figure 7-19 Desk-check table after assigning the total due

The AssignDiscount procedure’s End Sub clause is processed next and ends the procedure.
At this point, the computer removes the intNum and dblSub variables from memory. It
also removes the dblDisc name from the appropriate location in memory, as indicated in
Figure 7-18. Notice that the dblDiscount memory location now has only one name: the name
assigned to it by the btnCalc_Click procedure.

Note: The names in black indicate memory locations that belong to the btnCalc_Click procedure.
The names in red indicate memory locations that belong to the AssignDiscount procedure.

dblSTANDARD
62.5

intTickets
0
6

dblVIP
102.75

dblSubtotal
0

375

dblDisc
dblDiscount

0
37.5

dblTotalDue
0

intNum
6

dblSub
375

Figure 7-18 Desk-check table after the AssignDiscount procedure ends

After the AssignDiscount procedure ends, the computer returns to the btnCalc_Click
procedure to finish processing the event procedure’s code. More specifically, it returns to the
assignment statement located below the Call statement. The assignment statement calculates
the total due by subtracting the discount stored in the dblDiscount variable from the subtotal
stored in the dblSubtotal variable, and then assigns the result to the dblTotalDue variable,
as shown in Figure 7-19.

Note: The names in black indicate memory locations that belong to the btnCalc_Click procedure.
The names in red indicate memory locations that belong to the AssignDiscount procedure.

dblSTANDARD
62.5

intTickets
0
6

dblVIP
102.75

dblSubtotal
0

375

dblDisc
dblDiscount

0
37.5

dblTotalDue
0

intNum
6

dblSub
375

Figure 7-17 Desk-check table after assigning the discount

changing the value in dblDisc also
changes the value in dblDiscount

agrees with the discount
shown in Figure 7-13

agrees with the
total due shown
in Figure 7-13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

404

The last three assignment statements in the btnCalc_Click procedure display the subtotal,
discount, and total due in their corresponding label controls. When the procedure ends, the
computer removes the procedure’s named constants and variables from memory.

YOU DO IT 2!

Create an application named YouDoIt 2 and save it in the VB2015\Chap07 folder. Add a text
box, a label, and a button named btnCalc to the form. The btnCalc_Click procedure should
assign the text box value to an Integer variable and then pass a copy of the variable’s value,
along with the address of a different Integer variable, to an independent Sub procedure named
CalcDouble. The CalcDouble procedure should multiply the first Integer variable’s value by
2 and then store the result in the second Integer variable. The btnCalc_Click procedure
should display the contents of the second Integer variable in the label control. Code both
procedures. Save the solution, and then start and test the application. Close the solution.

Function Procedures
In addition to creating Sub procedures in Visual Basic, you can also create Function procedures.
The difference between both types of procedures is that a Function procedure returns a value
after performing its assigned task, whereas a Sub procedure does not return a value. Function
procedures are referred to more simply as functions. The problem specification and illustration
shown in Figure 7-20 may help clarify the difference between Sub procedures and functions.
Like a Sub procedure, Jacob will perform his task but won’t need to return anything to Sarah
after doing so. However, like a function, Sonja will perform her task and then return a value
(the bottle of perfume) to Sarah for wrapping.

Problem Specification

Sarah and her two siblings are planning a surprise birthday party for their mother. Being the oldest
of the three children, Sarah will handle most of the party plans herself. However, she does need to
delegate some tasks to her brother and sister. She delegates the task of putting up the decorations
(streamers, balloons, and so on) to Jacob, and she delegates the task of buying the birthday
present (a bottle of perfume) to Sonja.

Figure 7-20 Problem specification along with an illustration of a Sub procedure and a function
Image by Diane Zak; created with Reallusion CrazyTalk Animator

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

405

Function Procedures L E S S O N A

Figure 7-21 provides another example of the difference between a Sub procedure and a function.
In Illustration A, Helen is at the ticket counter in her local movie theater, requesting a ticket for
the current movie. Helen gives the ticket agent a $5 bill and expects a ticket in return. The ticket
agent is similar to a function in that he performs his task (fulfilling Helen’s request for a ticket)
and then returns a value (a ticket) to Helen. Compare that with Illustration B, where Helen and
her granddaughter, Penelope, are at the Blast Off Games arcade. Helen wants Penelope to have
fun, so she gives Penelope a $5 bill to play some games. But, unlike with the ticket agent, Helen
expects nothing from Penelope in return. This is similar to the way a Sub procedure works.
Penelope performs her task (having fun by playing games) but doesn’t need to return any value
to her grandmother.

Helen:
1. ask ticket agent for a senior ticket
2. give ticket agent $5
3. receive senior ticket from ticket agent

Ticket agent (function):
1. take $5 from Helen
2. give Helen a senior ticket

Helen:
1. tell Penelope to have fun playing games
2. give Penelope $5

Penelope (Sub procedure):
1. take $5 from Helen
2. buy game tickets with the $5
3. play games and have fun

Illustration A Illustration B

Figure 7-21 Another example of the difference between a Sub procedure and a function
Image by Diane Zak; created with Reallusion CrazyTalk Animator

Figure 7-22 shows the syntax and examples of functions in Visual Basic. Unlike a Sub procedure,
a function’s header and footer contain the Function keyword rather than the Sub keyword.
A function’s header also includes the As dataType section, which specifies the data type of the
value the function will return. The value is returned by the Return statement, which typically
is the last statement within a function. The statement’s syntax is Return expression, where
expression represents the one and only value that will be returned to the statement that invoked
the function. The data type of the expression must agree with the data type specified in the As
dataType section of the header. Like a Sub procedure, a function can receive information either
by value or by reference. The information it receives is listed in its parameterList.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

406

As with Sub procedures, you can enter your functions anywhere in the Code Editor window as
long as you enter them between the Public Class and End Class clauses and outside of any other
procedure. In this book, the functions will be entered above the first event procedure in the
Code Editor window. Like Sub procedure names, function names are entered using Pascal case
and typically begin with a verb. The name should indicate the task the function performs. The
GetNewPay name used in the examples in Figure 7-22 indicates that each function returns a
new pay amount.

You can invoke a function from one or more places in an application’s code. You invoke a
function that you create in exactly the same way as you invoke one of Visual Basic’s built-in
functions, such as the InputBox function. You do this by including the function’s name and
arguments (if any) in a statement. The number, data type, and position of the arguments
should agree with the number, data type, and position of the function’s parameters. In most
cases, the statement that invokes a function assigns the function’s return value to a variable.
However, it also may use the return value in a calculation or simply display the return value.
Figure 7-23 shows examples of invoking the GetNewPay function from Figure 7-22. The
GetNewPay(dblPay) entry in each example invokes the function, passing it the value stored in
the dblPay variable.

Function Procedure

Syntax
Private Function procedureName([parameterList]) As dataType
 statements
 Return expression
End Function

Example 1
Private Function GetNewPay(ByVal dblOld As Double) As Double
 ' increases current pay by 2% and returns new pay

 Dim dblNew As Double
 dblNew = dblOld * 1.02
 Return dblNew
End Function

Example 2
Private Function GetNewPay(ByVal dblOld As Double) As Double
 ' increases current pay by 2% and returns new pay

 Return dblOld * 1.02
End Function

Figure 7-22 Syntax and examples of functions

specifies the data type of the return value

returns the dblNew variable’s value to
the statement that invoked the function

calculates and returns the new pay to
the statement that invoked the function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

407

Function Procedures L E S S O N A

In the next set of steps, you will code the Concert Tickets application from the previous section
using a function named GetDiscount (rather than a Sub procedure named AssignDiscount) to
determine the appropriate discount amount.

To code the Concert Tickets application using a function:

1. Open the Concert Solution (Concert Solution.sln) file contained in the VB2015\
Chap07\Concert Solution-Function folder. Open the Code Editor window. Replace
<your name> and <current date> in the comments with your name and the current
date, respectively.

2. Locate the btnCalc_Click procedure. Most of the procedure’s code has already
been entered for you. Missing from the procedure is the statement that invokes
the GetDiscount function. For the function to perform its task, it needs to know
the number of tickets purchased and the subtotal; those values are stored in the
intTickets and dblSubtotal variables, respectively. The function will not need to
change the values stored in the variables, so you will pass the variables by value. The
btnCalc_Click procedure will assign the function’s return value to the dblDiscount
variable. Click the blank line below the ' use a function to get the discount
comment and then enter the following assignment statement:

 dblDiscount = GetDiscount(intTickets, dblSubtotal)

3. Next, you will create the GetDiscount procedure, which will receive a copy of the values
stored in the intTickets and dblSubtotal variables. The procedure will store the
information it receives in its two parameters: intNum and dblSub. If necessary, scroll
to the top of the Code Editor window. Click the blank line below the ' function
comment, and then enter the GetDiscount procedure shown in Figure 7-24.

START HERE

Invoking a Function

Example 1 – assigns the return value to a variable
dblNewPay = GetNewPay(dblPay)
 or
dblPay = GetNewPay(dblPay)

Example 2 – uses the return value in a calculation
dblNewWeekly = GetNewPay(dblPay) * 40
the assignment statement multiplies the function’s return value by the number 40 and then assigns
the result to the dblNewWeekly variable

Example 3 – displays the return value
lblNewPay.Text = GetNewPay(dblPay).ToString("C2")

Figure 7-23 Examples of invoking the GetNewPay function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

408

Notice that unlike the AssignDiscount Sub procedure, the GetDiscount function doesn’t
need the address of a variable in which to store the discount. This is because the function will
return the discount to the statement that invoked it. In this case, it returns the value to the
dblDiscount = GetDiscount(intTickets, dblSubtotal) assignment statement in the
btnCalc_Click procedure. The assignment statement assigns the function’s return value to the
dblDiscount variable.

To test this version of the Concert Tickets application:

1. Save the solution and then start the application. Type 6 in the Tickets box and then
click the Calculate button. The calculated amounts appear in the interface, as shown
earlier in Figure 7-13.

2. Click the Exit button. Close the Code Editor window and then close the solution.

Figure 7-25 shows the code entered in the GetDiscount function and the btnCalc_Click
procedure. The lines of code that are different from those shown earlier in Figure 7-14 are
shaded in the figure. (Figure 7-14 contains the code for the AssignDiscount and btnCalc_Click
procedures.)

START HERE

Figure 7-24 GetDiscount function

enter the
GetDiscount
function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

409

Function Procedures L E S S O N A

Now we’ll desk-check the code shown in Figure 7-25. When the user clicks the Calculate button
after typing 6 in the Tickets box, the Dim statements in the btnCalc_Click procedure create
and initialize the two named constants and four variables. Next, the TryParse method stores
the number of tickets in the intTickets variable. The selection structure then calculates the
subtotal based on the selected radio button; in this case, the Standard radio button is selected.
Figure 7-26 shows the contents of the named constants and variables before the GetDiscount
function is invoked.

Ch07A-Function
Desk-Check

Figure 7-25 GetDiscount function and btnCalc_Click procedure

Private Function GetDiscount(ByVal intNum As Integer,
 ByVal dblSub As Double) As Double
 Dim dblDisc As Double

 Select Case intNum
 Case Is >= 6
 dblDisc = dblSub * 0.1
 Case Is >= 4
 dblDisc = dblSub * 0.02
 Case Else
 dblDisc = 0
 End Select

 Return dblDisc
End Function

Private Sub btnCalc_Click(sender As Object, e As EventArgs
) Handles btnCalc.Click
 ' display subtotal, discount, and total due

 Const dblSTANDARD As Double = 62.5
 Const dblVIP As Double = 102.75
 Dim intTickets As Integer
 Dim dblSubtotal As Double
 Dim dblDiscount As Double
 Dim dblTotalDue As Double

 Integer.TryParse(txtTickets.Text, intTickets)

 ' calculate subtotal
 If radStandard.Checked Then
 dblSubtotal = intTickets * dblSTANDARD
 Else
 dblSubtotal = intTickets * dblVIP
 End If

 ' use a function to get the discount
 dblDiscount = GetDiscount(intTickets, dblSubtotal)

 ' calculate total due
 dblTotalDue = dblSubtotal - dblDiscount

 lblSubtotal.Text = dblSubtotal.ToString("n2")
 lblDiscount.Text = dblDiscount.ToString("n2")
 lblTotalDue.Text = dblTotalDue.ToString("n2")
End Sub

invokes the function and
assigns the return value
to the dblDiscount
variable

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

410

The dblDiscount = GetDiscount(intTickets, dblSubtotal) statement invokes the
GetDiscount function, passing it two arguments. At this point, the computer temporarily leaves
the btnCalc_Click procedure to process the code contained in the function, beginning with the
function header. The ByVal keyword indicates that the two parameters are receiving values
from the statement that invoked the function—in this case, copies of the numbers stored in
the intTickets and dblSubtotal variables. As a result, the computer creates the intNum and
dblSub variables listed in the parameterList, and it stores the numbers 6 and 375, respectively,
in the variables. The Dim statement in the function creates and initializes a Double variable
named dblDisc. The Select Case statement then determines the appropriate discount based on
the contents of the intNum variable. The variable contains the number 6, so the first Case clause
multiplies the contents of the dblSub variable (375) by 0.1 and then assigns the result (37.5) to
the dblDisc variable. Figure 7-27 shows the desk-check table before the next statement, Return
dblDisc, is processed.

The Return dblDisc statement returns the contents of the dblDisc variable to the statement
that invoked the function: the dblDiscount = GetDiscount(intTickets, dblSubtotal)
assignment statement in the btnCalc_Click procedure. The assignment statement assigns the
function’s return value to the dblDiscount variable. The End Function clause is processed next
and ends the GetDiscount function. At this point, the computer removes the function’s variables
from its internal memory. Figure 7-28 shows the desk-check table after the GetDiscount
function ends. Notice that the dblDiscount variable now contains the discount amount.

Note: The names in black indicate memory locations that belong to the btnCalc_Click procedure.
The names in red indicate memory locations that belong to the GetDiscount function.

dblSTANDARD
62.5

intTickets
0
6

dblVIP
102.75

dblSubtotal
0

375

dblDiscount
 0

dblTotalDue
0

intNum
6

dblSub
375

dblDisc
0

37.5

Figure 7-27 Desk-check table before the Return statement is processed

agrees with the discount shown in Figure 7-13

Figure 7-26 Desk-check table before the GetDiscount function is invoked

intTickets
0
6

dblSTANDARD
62.5

dblSubtotal
0

375

dblVIP
102.75

dblDiscount
 0

dblTotalDue
0

these two named constants and four
variables belong to the btnCalc_Click
procedure

the Dim statements initialize
the variables

agrees with the subtotal shown in Figure 7-13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

411

Function Procedures L E S S O N A

After the GetDiscount function ends, the computer returns to the btnCalc_Click procedure. The
assignment statement that calculates the total due is processed next. That statement subtracts
the discount stored in the dblDiscount variable from the subtotal stored in the dblSubtotal
variable and then assigns the result to the dblTotalDue variable, as shown in Figure 7-29.

Figure 7-28 Desk-check table after the GetDiscount function ends

Note: The names in black indicate memory locations that belong to the btnCalc_Click procedure.
The names in red indicate memory locations that belong to the GetDiscount function.

dblSTANDARD
62.5

intTickets
0
6

dblVIP
102.75

dblSubtotal
0

375

dblDiscount
 0

 37.5

dblTotalDue
0

intNum
6

dblSub
375

dblDisc
0

37.5

The last three assignment statements in the btnCalc_Click procedure display the subtotal,
discount, and total due in their corresponding label controls. When the procedure ends, the
computer removes the procedure’s named constants and variables from memory.

YOU DO IT 3!

Create an application named YouDoIt 3 and save it in the VB2015\Chap07 folder. Add a
text box, a label, and a button named btnCalc to the form. The btnCalc_Click procedure
should assign the text box value to an Integer variable and then pass a copy of the
variable’s value to a function named GetBonus. The GetBonus function should multiply
the integer it receives by 10% and then return the result. The btnCalc_Click procedure
should display the function’s return value in the label control. Code the GetBonus
function and the btnCalc_Click procedure. Save the solution, and then start and test the
application. Close the solution.

contains the discount amount

Figure 7-29 Desk-check table after the total due is calculated

Note: The names in black indicate memory locations that belong to the btnCalc_Click procedure.
The names in red indicate memory locations that belong to the GetDiscount function.

62.5

0
6

102.75

0
375

 0
 37.5

0
337.5

6 375 0
37.5

agrees with the
total due shown
in Figure 7-13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

412

Lesson A Summary
 • To create an independent Sub procedure:

Refer to the syntax shown in Figure 7-4.

 • To call an independent Sub procedure:

Use the Call statement, whose syntax is Call procedureName([argumentList]).

 • To pass information to a Sub or Function procedure:

Include the information in the procedure’s argumentList. In the parameterList in the
procedure header, include the names of variables that will store the information. The number,
data type, and order (position) of the arguments in the argumentList should agree with the
number, data type, and order (position) of the parameters in the parameterList.

 • To pass a variable by value to a procedure:

Include the ByVal keyword before the parameter name in the receiving procedure’s
parameterList. Because only a copy of the variable’s value is passed, the receiving procedure
cannot access the variable.

 • To pass a variable by reference:

Include the ByRef keyword before the parameter name in the receiving procedure’s
parameterList. Because the variable’s address is passed, the receiving procedure can change
the contents of the variable.

 • To create a Function procedure:

Refer to the syntax shown in Figure 7-22.

Lesson A Key Terms
Call statement—the Visual Basic statement used to invoke (call) an independent Sub procedure

Function procedure—a procedure that returns a value after performing its assigned task

Functions—another name for Function procedures

Independent Sub procedure—a procedure that is independent of any object and event; the
procedure is processed only when called (invoked) from code

Passing by reference—refers to the process of passing a variable’s address to a procedure so
that the value in the variable can be changed

Passing by value—refers to the process of passing a copy of a variable’s value to a procedure

Return statement—the Visual Basic statement that returns a function’s value to the statement
that invoked the function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

413

Lesson A Review Questions L E S S O N A

Lesson A Review Questions
1. Which of the following is false?

a. A function can return only one value to the statement that invoked it.
b. A Sub procedure can accept only one item of data passed to it.
c. The parameterList in a procedure header is optional.
d. At times, a variable inside the computer’s internal memory may have more than

one name.

2. The items listed in the Call statement are referred to as _____________________.

a. arguments
b. parameters

c. passers
d. none of the above

3. Each memory location listed in the parameterList in the procedure header is referred to
as _____________________.

a. an address
b. a constraint

c. a parameter
d. a value

4. To determine whether a variable is being passed to a procedure by value or by reference,
you will need to examine _____________________.

a. the Call statement
b. the procedure header
c. the statements entered in the procedure
d. either a or b

5. Which of the following statements invokes the GetArea Sub procedure, passing it two
variables by value?

a. Call GetArea(dblLength, dblWidth)
b. Call GetArea(ByVal dblLength, ByVal dblWidth)
c. Invoke GetArea(dblLength, dblWidth)
d. GetArea(dblLength, dblWidth) As Double

6. Which of the following is a valid header for a procedure that receives a copy of the value
stored in a String variable?

a. Private Sub DisplayName(ByContents strName As String)
b. Private Sub DisplayName(ByValue strName As String)
c. Private Sub DisplayName ByVal(strName As String)
d. none of the above

7. Which of the following is a valid header for a procedure that receives an integer
followed by a number with a decimal place?

a. Private Sub GetFee(intBase As Value, decRate As Value)
b. Private Sub GetFee(ByRef intBase As Integer, ByRef decRate

As Decimal)
c. Private Sub GetFee(ByVal intBase As Integer, ByVal decRate

As Decimal)
d. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

414

8. Which of the following is false?

a. The order of the arguments listed in the Call statement should agree with the order
of the parameters listed in the receiving procedure’s header.

b. The data type of each argument in the Call statement should match the data type of
its corresponding parameter in the procedure header.

c. The name of each argument in the Call statement should be identical to the name of
its corresponding parameter in the procedure header.

d. When you pass information to a procedure by value, the procedure stores the value
of each item it receives in a separate memory location.

9. Which of the following instructs a function to return the contents of the dblBonus
variable?

a. Return dblBonus

b. Return ByVal dblBonus

c. Send dblBonus

d. SendBack dblBonus

10. Which of the following is a valid header for a procedure that receives the address of a
Decimal variable followed by an integer?

a. Private Sub GetFee(ByVal decX As Decimal, ByAdd intY As
Integer)

b. Private Sub GetFee(decX As Decimal, intY As Integer)
c. Private Sub GetFee(ByRef decX As Decimal, ByRef intY As

Integer)
d. none of the above

11. Which of the following is a valid header for a procedure that is passed the number 15?

a. Private Function GetTax(ByVal intRate As Integer) As Decimal
b. Private Function GetTax(ByAdd intRate As Integer) As Decimal
c. Private Sub CalcTax(ByVal intRate As Integer)
d. both a and c

12. If the statement Call CalcNet(decNetPay) passes the variable’s address, the
variable is said to be passed _____________________.

a. by address
b. by content

c. by reference
d. by value

13. Which of the following is false?

a. When you pass a variable by reference, the receiving procedure can change its
contents.

b. To pass a variable by reference in Visual Basic, you include the ByRef keyword
before the variable’s name in the Call statement.

c. When you pass a variable by value, the receiving procedure creates a procedure-level
variable that it uses to store the value passed to it.

d. When you pass a variable by value, the receiving procedure cannot change its
contents.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

415

Lesson A Review Questions L E S S O N A

14. A Sub procedure named GetEndingInventory is passed four Integer variables named
intBegin, intSales, intPurchases, and intEnding. The procedure should
calculate the ending inventory using the beginning inventory, sales, and purchase
amounts passed to the procedure. The result should be stored in the intEnding
variable. Which of the following procedure headers is correct?

a. Private Sub GetEndingInventory(ByVal intB As Integer, ByVal
intS As Integer, ByVal intP As Integer, ByRef intFinal As
Integer)

b. Private Sub GetEndingInventory(ByVal intB As Integer, ByVal
intS As Integer, ByVal intP As Integer, ByVal intFinal As
Integer)

c. Private Sub GetEndingInventory(ByRef intB As Integer, ByRef
intS As Integer, ByRef intP As Integer, ByVal intFinal As
Integer)

d. Private Sub GetEndingInventory(ByRef intB As Integer, ByRef
intS As Integer, ByRef intP As Integer, ByRef intFinal As
Integer)

15. Which of the following statements should you use to call the GetEndingInventory
procedure described in Review Question 14?

a. Call GetEndingInventory(intBegin, intSales, intPurchases,
intEnding)

b. Call GetEndingInventory(ByVal intBegin, ByVal intSales,
ByVal intPurchases, ByRef intEnding)

c. Call GetEndingInventory(ByRef intBegin, ByRef intSales,
ByRef intPurchases, ByRef intEnding)

d. Call GetEndingInventory(ByVal intBegin, ByVal intSales,
ByVal intPurchases, ByVal intEnding)

16. The memory locations listed in the parameterList in a procedure header have
procedure scope and are removed from the computer’s internal memory when the
procedure ends.

a. True
b. False

17. Which of the following statements invokes the GetDiscount function, passing it the
contents of two Decimal variables named decSales and decRate? The statement
should assign the function’s return value to the decDiscount variable.

a. decDiscount = Call GetDiscount(decSales, decRate)
b. Call GetDiscount(decSales, decRate, decDiscount)
c. decDiscount = GetDiscount(decSales, decRate)
d. none of the above

18. Explain the difference between a Sub procedure and a Function procedure.

19. Explain the difference between passing a variable by value and passing it by reference.

20. Explain the difference between invoking a Sub procedure and invoking a function.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

416

Lesson A Exercises
1. Write the code for a Sub procedure that receives a Double number passed to it.

The procedure should multiply the number by 1.5 and then display the result in the
lblAnswer control. Name the procedure IncreaseNum. Then write a statement to
invoke the procedure, passing it the number 75.5.

2. Write the code for a Sub procedure named GetState. The procedure should prompt
the user to enter the name of a U.S. state, storing the user’s response in its strState
parameter. Then write a statement to invoke the procedure, passing it the strName
variable.

3. Write the code for a function named GetState. The function should prompt the user to
enter the name of a U.S. state and then return the user’s response. Then write a statement
to invoke the GetState function. Display the function’s return value in a message box.

4. Write the code for a Sub procedure that receives three Integer variables: the first two by
value and the last one by reference. The procedure should multiply the first variable by
the second variable and then store the result in the third variable. Name the procedure
CalcProduct.

5. Write the code for a function that receives a copy of the value stored in an Integer
variable. The function should divide the value by 2 and then return the result,
which may contain a decimal place. Name the function GetQuotient. Then write an
appropriate statement to invoke the function, passing it the intNumber variable.
Assign the function’s return value to the dblAnswer variable.

6. In this exercise, you experiment with passing variables by value and by reference. Open
the VB2015\Chap07\Passing Solution\Passing Solution (Passing Solution.sln) file.

a. Open the Code Editor window and review the existing code. Notice that the
strMyName variable is passed by value to the GetName procedure. Start the
application. Click the Display Name button. When prompted to enter a name, type
your name and press Enter. Explain why the btnDisplay_Click procedure does not
display your name in the lblName control. Stop the application.

b. Modify the btnDisplay_Click procedure so that it passes the strMyName variable
by reference to the GetName procedure. Save the solution and then start the
application. Click the Display Name button. When prompted to enter a name, type
your name and press Enter. This time, your name appears in the lblName control.
Explain why the btnDisplay_Click procedure now works correctly.

7. In this exercise, you modify the Favorites application from this lesson. Use Windows
to make a copy of the Favorites Solution folder. Rename the copy Modified Favorites
Solution. Open the Favorites Solution (Favorites Solution.sln) file contained in the
Modified Favorites Solution folder. Modify the interface and code to allow the user to
also enter the name of his or her favorite book. Save the solution, and then start and
test the application. Close the Code Editor window and then close the solution.

8. In this exercise, you modify one of the Concert Tickets applications from this lesson. Use
Windows to make a copy of the Concert Solution-Sub folder. Rename the copy Modified
Concert Solution-Sub. Open the Concert Solution (Concert Solution.sln) file contained in
the Modified Concert Solution-Sub folder. Add another Sub procedure to the application’s
code. The Sub procedure should calculate the total due. Test the application appropriately.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

417

Lesson A Exercises L E S S O N A

9. In this exercise, you modify one of the Concert Tickets applications from this lesson.
Use Windows to make a copy of the Concert Solution-Function folder. Rename the
copy Modified Concert Solution-Function. Open the Concert Solution (Concert
Solution.sln) file contained in the Modified Concert Solution-Function folder. Add
another function to the application’s code. The function should calculate and return the
total due. Test the application appropriately.

10. Create an application, using the following names for the solution and project,
respectively: Gross Solution-Sub and Gross Project. The application’s interface is shown
in Figure 7-30. The lstHours control should display the number of hours worked from
1 to 60 in increments of 1. The lstRates control should display pay rates from 10.00 to
30.00 in increments of 0.5. The default selections in the lstHours and lstRates controls
should be 40 and 10.00, respectively. The application should use a Sub procedure to
calculate an employee’s gross pay, which is based on the number of hours worked and
the pay rate selected in the list boxes. However, employees receive double-time for
hours worked over 40. Test the application appropriately.

INTRODUCTORY

INTERMEDIATE

Figure 7-30 Interface for Exercises 10 and 11

11. Create an application, using the following names for the solution and project,
respectively: Gross Solution-Function and Gross Project. The application’s interface is
shown in Figure 7-30. The lstHours control should display the number of hours worked
from 1 to 60 in increments of 1. The lstRates control should display pay rates from
10.00 to 30.00 in increments of 0.5. The default selections in the lstHours and lstRates
controls should be 37 and 10.00, respectively. The application should use a function to
calculate and return an employee’s gross pay, which is based on the number of hours
worked and the pay rate selected in the list boxes. Employees are paid their regular pay
rate for hours worked from 1 through 37. They are paid time and a half for the hours
worked from 38 through 50, and they are paid double-time for hours worked over 50.
Test the application appropriately. (Hint: If an employee earns $10 per hour and works
37 hours, the gross pay is $370.00. If he or she works 38 hours, the gross pay is $385.00.
If he or she works 51 hours, the gross pay is $585.00.)

12. Open the VB2015\Chap07\Average Solution\Average Solution (Average Solution.sln) file.
Open the Code Editor window and review the existing code. The btnAvg_Click procedure
should use a function to calculate and return the average score. Complete the application’s
code, and then test it appropriately.

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

418

13. Create an application, using the following names for the solution and project, respectively:
Savings Solution-Function and Savings Project. The application’s interface is shown in
Figure 7-31. The interface provides a text box for the user to enter a one-time deposit into
a savings account. If no additional deposits or withdrawals are made, how much money
will be in the account at the end of one through five years using annual interest rates of 2%,
3%, and 4%? You can calculate the savings account balances using the following formula:
b = p * (1 + r)n. In the formula, p is the principal (the amount of the initial deposit), r is the
annual interest rate, n is the number of years, and b is the balance in the savings account
at the end of the nth year. Use a function to calculate each balance. Display the account
balances by year for each rate. In other words, display the balances at the end of each of the
five years using the 2% rate, then display the five balances using the 3% rate, and so on. Test
the application appropriately.

INTERMEDIATE

Figure 7-31 Interface for Exercise 13

14. In this exercise, you modify the Savings Account application from Exercise 13. Use
Windows to make a copy of the Savings Solution-Function folder. Rename the copy
Savings Solution-Sub. Also change the solution file’s name to Savings Solution.sln. Open
the Savings Solution (Savings Solution.sln) file contained in the Savings Solution-Sub
folder. Change the function that calculates the account balances to an independent
Sub procedure. Test the application appropriately.

15. Open the Conversion Solution (Conversion Solution.sln) file contained in the
VB2015\Chap07\Conversion Solution-Sub folder. Code the application so that it
uses two independent Sub procedures: one to convert a measurement from inches to
centimeters, and one to convert a measurement from centimeters to inches. Display the
result with two decimal places. Test the application appropriately.

16. Open the Conversion Solution (Conversion Solution.sln) file contained in the VB2015\
Chap07\Conversion Solution-Function folder. Code the application so that it uses
two functions: one to convert a measurement from inches to centimeters, and one to
convert a measurement from centimeters to inches. Display the result with two decimal
places. Test the application appropriately.

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

419

Lesson A Exercises L E S S O N A

17. In this exercise, you learn how to specify that one or more arguments are optional
in a Call statement. Open the VB2015\Chap07\Optional Solution\Optional Solution
(Optional Solution.sln) file.

a. Open the Code Editor window and review the existing code. The btnCalc_Click
procedure contains two Call statements. The first Call statement passes three
variables to the CalcBonus procedure. The second Call statement, however,
passes only two variables to the procedure. (Hint: Do not be concerned about
the jagged line that appears below the second Call statement.) Notice that the
dblRate variable is omitted from the second Call statement. You indicate that
a variable is optional in the Call statement by including the keyword Optional
before the variable’s corresponding parameter in the procedure header. You enter
the Optional keyword before the ByVal keyword. You also assign a default
value that the procedure will use for the missing parameter when the procedure
is called. You assign the default value by entering the assignment operator and the
default value after the parameter. In this case, you will assign the number 0.1 as the
default value for the dblRate variable. (Hint: Optional parameters must be listed
at the end of the procedure header.) Make the appropriate changes to the ByVal
dblBonusRate As Double statement in the procedure header.

b. Save the solution and then start the application. Enter the letter a and the number
1000 in the Code and Sales boxes, respectively. Click the Calculate button, and
then type .05 and press Enter. The Call CalcBonus(dblSales, dblBonus,
dblRate) statement calls the CalcBonus procedure, passing it the number 1000,
the address of the dblBonus variable, and the number .05. The CalcBonus
procedure stores the number 1000 in the dblTotalSales variable. It also assigns
the name dblBonusAmount to the dblBonus variable and stores the number .05
in the dblBonusRate variable. The procedure then multiplies the contents of
the dblTotalSales variable (1000) by the contents of the dblBonusRate
variable (.05), assigning the result (50) to the dblBonusAmount variable. The
lblBonus.Text = dblBonus.ToString("C2") statement then displays
$50.00 in the lblBonus control.

c. Next, enter the letter b and the number 2000 in the Code and Sales boxes,
respectively. Click the Calculate button. The Call CalcBonus(dblSales,
dblBonus) statement calls the CalcBonus procedure, passing it the number
2000 and the address of the dblBonus variable. The CalcBonus procedure
stores the number 2000 in the dblTotalSales variable and assigns the name
dblBonusAmount to the dblBonus variable. Because the Call statement did not
supply a value for the dblBonusRate parameter, the default value (0.1) is assigned
to the variable. The procedure then multiplies the contents of the dblTotalSales
variable (2000) by the contents of the dblBonusRate variable (0.1), assigning
the result (200) to the dblBonusAmount variable. The lblBonus.Text =
dblBonus.ToString("C2") statement then displays $200.00 in the lblBonus
control. Stop the application. Close the Code Editor window and then close the
solution.

18. Open the Debug Solution (Debug Solution.sln) file contained in the VB2015\Chap07\
Debug Solution-Lesson A folder. Open the Code Editor window and review the existing
code. Start the application. Enter 100, 200.55, and .04 in the Store 1 sales, Store 2 sales,
and Commission rate boxes, respectively. Click the Calculate Commission button.
Notice that the application is not working properly. Correct the application’s code, and
then test it appropriately.

DISCOVERY

SWAT THE BUGS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

420

❚ LESSON B
After studying Lesson B, you should be able to:

 • Include a combo box in an interface

 • Add items to a combo box

 • Select a combo box item from code

 • Determine the number of items in the list portion of a combo box

 • Sort the items in the list portion of a combo box

 • Determine the item either selected or entered in a combo box

 • Code a combo box’s TextChanged event procedure

Including a Combo Box in an Interface
In many interfaces, combo boxes are used in place of list boxes. You add a combo box to an
interface using the ComboBox tool in the toolbox. A combo box is similar to a list box in that
it offers the user a list of choices from which to select. However, unlike a list box, the full list of
choices in a combo box can be hidden, allowing you to save space on the form. Also unlike a list
box, a combo box contains a text field, which may or may not be editable by the user.

Three styles of combo boxes are available in Visual Basic. The style is controlled by the combo
box’s DropDownStyle property, which can be set to Simple, DropDown (the default), or
DropDownList. Each style of combo box contains a text portion and a list portion. When the
DropDownStyle property is set to either Simple or DropDown, the text portion of the combo
box is editable. However, in a Simple combo box, the list portion is always displayed, while in
a DropDown combo box, the list portion appears only when the user clicks the combo box’s
list arrow. When the DropDownStyle property is set to the third style, DropDownList, the text
portion of the combo box is not editable and the user must click the combo box’s list arrow to
display the list of choices.

Figure 7-32 shows an example of each combo box style. You should use a label control to
provide keyboard access to the combo box, as shown in the figure. For the access key to work
correctly, you must set the label’s TabIndex property to a value that is one number less than the
combo box’s TabIndex value. Like the items in a list box, the items in the list portion of a combo
box are either arranged by use, with the most used entries listed first, or sorted in ascending
order. To sort the items in the list portion of a combo box, you set the combo box’s Sorted
property to True.

To experiment
with the combo
boxes shown
in Figure 7-32,
open the

 application contained in
the Combo Box Styles
Solution folder.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

421

Including a Combo Box in an Interface L E S S O N B

Figure 7-33 shows the code used to fill the combo boxes in Figure 7-32 with values. As you do
with a list box, you use the Items collection’s Add method to add an item to a combo box. Like
the first item in a list box, the first item in a combo box has an index of 0. You can use any of the
following properties to select a default item, which will appear in the text portion of the combo
box: SelectedIndex, SelectedItem, or Text. If no item is selected, the SelectedItem and Text
properties contain the empty string, and the SelectedIndex property contains –1 (negative one).
If you need to determine the number of items in the list portion of a combo box, you can use the
Items collection’s Count property. The property’s syntax is object.Items.Count, in which object
is the name of the combo box.

Figure 7-32 Examples of the combo box styles

Figure 7-33 Code associated with the combo boxes in Figure 7-32

Private Sub frmMain_Load(sender As Object,
e As EventArgs) Handles Me.Load
 ' fills the combo boxes with values

 cboName.Items.Add("Amy")
 cboName.Items.Add("Beth")
 cboName.Items.Add("Carl")
 cboName.Items.Add("Dan")
 cboName.Items.Add("Jan")
 cboName.SelectedIndex = 0

 cboCity.Items.Add("London")
 cboCity.Items.Add("Madrid")
 cboCity.Items.Add("Paris")
 cboCity.SelectedItem = "Madrid"

 cboState.Items.Add("Alabama")
 cboState.Items.Add("Maine")
 cboState.Items.Add("New York")
 cboState.Items.Add("South Dakota")
 cboState.Text = "New York"
End Sub

you can use any of these
three properties to select the
default item in a combo box

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

422

GUI DESIGN TIP Combo Box Standards

 • Use a label control to provide keyboard access to a combo box. Set the label’s
TabIndex property to a value that is one number less than the combo box’s TabIndex
value.

 • Combo box items are either arranged by use, with the most used entries appearing
first in the list, or sorted in ascending order.

It is easy to confuse a combo box’s SelectedItem property with its Text property. The
SelectedItem property contains the value of the item selected in the list portion of the combo
box, whereas the Text property contains the value that appears in the text portion. A value can
appear in the text portion as a result of the user either selecting an item in the list portion of
the control or typing an entry in the text portion itself. It can also appear in the text portion as
a result of a statement that assigns a value to the control’s SelectedIndex, SelectedItem, or Text
property.

If the combo box is a DropDownList style, where the text portion is not editable, you can use
the SelectedItem and Text properties interchangeably. However, if the combo box is either a
Simple or DropDown style, where the user can type an entry in the text portion, you should use
the Text property because it contains the value either selected or entered by the user. When the
value in the text portion of a combo box changes, the combo box’s TextChanged event occurs.
In the next set of steps, you will replace the list box in Chapter 6’s Monthly Payment application
with a combo box.

To modify the Monthly Payment application:

1. If necessary, start Visual Studio 2015. Open the VB2015\Chap07\Payment Solution\
Payment Solution (Payment Solution.sln) file.

2. Unlock the controls on the form. Click the lstRates control and then press Delete.
Click the ComboBox tool in the toolbox, and then drag the mouse pointer to the form.
Position the mouse pointer below the Rate label, and then release the mouse button.
Size and position the combo box to match Figure 7-34.

START HERE

3. Change the combo box’s DropDownStyle property to DropDownList.

4. The three-character ID for combo box names is cbo. Change the combo box’s name to
cboRates.

5. Lock the controls on the form, and then use the information shown in Figure 7-35 to
set the TabIndex values.

Figure 7-34 Correct location and size of the combo box

combo box

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

423

Including a Combo Box in an Interface L E S S O N B

Figure 7-35 Correct TabIndex values

6. Press Esc to remove the TabIndex boxes from the form.

7. Open the Code Editor window. Replace <your name> and <current date> with your
name and the current date, respectively.

8. Locate the frmMain_Load procedure. Change list in the first comment to combo.
Then change both occurrences of lstRates to cboRates.

9. Locate the btnCalc_Click procedure. Replace lstRates.SelectedItem.ToString in
the second TryParse method with cboRates.Text.

10. Locate the ClearPayment procedure. Type , cboRates.TextChanged at the end of the
Handles clause. (Be sure to type the comma.)

11. Save the solution and then start the application. Type 125000 in the Principal box.
Click the list arrow in the combo box and then click 2.5 in the list. Click the Calculate
button. See Figure 7-36.

Figure 7-36 Monthly payments shown in the interface

12. Click the Exit button. Close the Code Editor window and then close the solution.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

424

Figure 7-37 shows the code entered in the frmMain_Load, btnCalc_Click, and ClearPayment
procedures. The modifications made to the original code from Chapter 6 are shaded in the
figure. (The original code is shown in Chapter 6’s Figure 6-50.)

Figure 7-37 Modified code for the Monthly Payment application

Private Sub frmMain_Load(sender As Object, e As EventArgs
) Handles Me.Load
 ' fill combo box with rates and select first rate

 For dblRates As Double = 2 To 7 Step 0.5
 cboRates.Items.Add(dblRates.ToString("n1"))
 Next dblRates
 cboRates.SelectedItem = "3.0"

End Sub

Private Sub btnCalc_Click(sender As Object, e As EventArgs
) Handles btnCalc.Click
 ' display the monthly mortgage payment

 Dim intPrincipal As Integer
 Dim dblRate As Double
 Dim dblPay As Double

 Integer.TryParse(txtPrincipal.Text, intPrincipal)
 Double.TryParse(cboRates.Text, dblRate)
 dblRate = dblRate / 100

 lblPay.Text = String.Empty
 For intTerm As Integer = 15 To 30 Step 5
 dblPay = -Financial.Pmt(dblRate / 12,
 intTerm * 12, intPrincipal)
 lblPay.Text = lblPay.Text & intTerm.ToString &
 " years: " & dblPay.ToString("c2") &
 ControlChars.NewLine
 Next intTerm
End Sub

Private Sub ClearPayment(sender As Object, e As EventArgs
) Handles txtPrincipal.TextChanged, cboRates.TextChanged
 lblPay.Text = String.Empty
End Sub

Lesson B Summary
 • To add a combo box to a form:

Use the ComboBox tool in the toolbox.

 • To specify the style of a combo box:

Set the combo box’s DropDownStyle property.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

425

Lesson B Review Questions L E S S O N B

 • To add items to a combo box:

Use the Items collection’s Add method. The method’s syntax is object.Items.Add(item). In
the syntax, object is the name of the combo box and item is the text you want added to the
list portion of the control.

 • To automatically sort the items in the list portion of a combo box:

Set the combo box’s Sorted property to True.

 • To determine the number of items in the list portion of a combo box:

Use the Items collection’s Count property. Its syntax is object.Items.Count, in which object
is the name of the combo box.

 • To select a combo box item from code:

Use any of the following properties: SelectedIndex, SelectedItem, or Text.

 • To determine the item either selected in the list portion of a combo box or entered in the
text portion:

Use the combo box’s Text property. However, if the combo box is a DropDownList style, you
can also use the SelectedIndex or SelectedItem property.

 • To process code when the value in a combo box’s Text property changes:

Enter the code in the combo box’s TextChanged event procedure.

Lesson B Key Terms
Combo box—a control that offers the user a list of choices and also has a text field that may or
may not be editable

DropDownStyle property—determines the style of a combo box

Lesson B Review Questions
1. Which property is used to specify a combo box’s style?

a. ComboBoxStyle
b. DropDownStyle

c. DropStyle
d. Style

2. The items in a combo box belong to which collection?

a. Items
b. List

c. ListBox
d. Values

3. Which of the following selects the Cat item, which appears third in the cboAnimal control?

a. cboAnimal.SelectedIndex = 2
b. cboAnimal.SelectedItem = "Cat"
c. cboAnimal.Text = "Cat"
d. all of the above

4. The item that appears in the text portion of a combo box is stored in which property?

a. SelectedText
b. SelectedValue

c. Text
d. TextItem

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

426

5. Which event occurs when the user either types a value in the text portion of a combo
box or selects a different item in the list portion?

a. ChangedItem
b. ChangedValue

c. SelectedItemChanged
d. TextChanged

Lesson B Exercises
1. In this exercise, you create an application that displays the name of the artist

corresponding to the song title selected in a combo box. Create the application, using
the following names for the solution and project, respectively: Song Solution and Song
Project. Save the application in the VB2015\Chap07 folder. Add the names of any five
songs to a combo box whose DropDownStyle property is set to DropDownList. When
the user clicks an entry in the combo box, the name of the artist should appear in a
label control. (For example, if the user clicks the song title “Moves Like Jagger,” the
application should display “Maroon 5” in the label.) Create a suitable interface, and then
code and test the application.

2. In this exercise, you create an application that displays the capital of the state whose
name is selected in a combo box. Create an application, using the following names for
the solution and project, respectively: Capital Solution and Capital Project. Save the
application in the VB2015\Chap07 folder. Add the names of any five states to a combo
box whose DropDownStyle property is set to DropDownList. When the user clicks an
entry in the combo box, the name of the state’s capital should appear in a label control.
Create a suitable interface, and then code and test the application.

3. In this exercise, you modify the Favorites application from Lesson A. Use Windows
to make a copy of the Favorites Solution folder. Rename the copy Favorites Solution-
Intermediate. Open the Favorites Solution (Favorites Solution.sln) file contained in the
Favorites Solution-Intermediate folder. Replace the radio buttons with a combo box,
and then modify the application’s code. Test the application appropriately.

4. Create an application, using the following names for the solution and project,
respectively: Planets Solution and Planets Project. Save the application in the VB2015\
Chap07 folder. Create the interface shown in Figure 7-38. The combo box should have
the DropDownList style and contain the following planet names: Mercury, Venus,
Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto. When the user clicks a planet name,
the application should convert the earth weight to the weight on that planet and then
display the converted weight in the label control. Use the Internet to research the
formula for making the conversions. Test the application appropriately.

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

Figure 7-38 Interface for Exercise 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

427

Lesson B Exercises L E S S O N B

5. In this exercise, you modify the application from Exercise 4. Use Windows to make
a copy of the Planets Solution folder. Rename the copy Planets Solution-Sub. Open
the Planets Solution (Planets Solution.sln) file contained in the Planets Solution-Sub
folder. Modify the code to use an independent Sub procedure to calculate the weight on
another planet. Test the application appropriately.

6. In this exercise, you modify the application from Exercise 4. Use Windows to make
a copy of the Planets Solution folder. Rename the copy Planets Solution-Function.
Open the Planets Solution (Planets Solution.sln) file contained in the Planets Solution-
Function folder. Modify the code to use a function to calculate and return the weight on
another planet. Test the application appropriately.

7. In this exercise, you modify one of the Concert Tickets applications from Lesson A.
Use Windows to make a copy of the Concert Solution-Function folder. Rename the
copy Concert Solution-Intermediate. Open the Concert Solution (Concert Solution.sln)
file contained in the Concert Solution-Intermediate folder. Replace the text box with a
combo box that displays integers from 1 through 25, and then modify the application’s
code. Test the application appropriately.

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

428

❚ LESSON C
After studying Lesson C, you should be able to:

 • Prevent a form from closing

 • Round a number

Creating the Cerruti Company Application
Your task in this chapter is to create an application that calculates an employee’s weekly gross
pay, federal withholding tax (FWT), Social Security and Medicare (FICA) tax, and net pay. The
application’s TOE chart is shown in Figure 7-39.

Figure 7-39 TOE chart for the Cerruti Company application

Task

End the application

1. Calculate gross pay, FWT, FICA, and net pay
2. Display calculated amounts in appropriate labels

Display calculated amounts (from btnCalc)

Clear lblGross, lblFwt, lblFica, and lblNet

Select the existing text

Allow only numbers and the Backspace key

Get and display the name, hours worked, pay rate,
marital status, and withholding allowances

Fill lstHours, lstRates, and cboAllowances with
values, and then select a default item

Verify that the user wants to close the
application, and then take the appropriate action
based on the user’s response

Object

btnExit

btnCalc

lblGross, lblFwt,
lblFica, lblNet

txtName,
cboAllowances

lstHours, lstRates

radMarried,
radSingle

txtName

cboAllowances

txtName,
lstHours, lstRates,
radMarried,
radSingle,
cboAllowances

frmMain

Event

Click

Click

None

TextChanged

SelectedValueChanged

CheckedChanged

Enter

KeyPress

None

Load

FormClosing

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

429

Coding the FormClosing Event Procedure L E S S O N C

To open the Cerruti Company application:

1. If necessary, start Visual Studio 2015. Open the VB2015\Chap07\Cerruti Solution\
Cerruti Solution (Cerruti Solution.sln) file. See Figure 7-40.

START HERE

Figure 7-40 User interface for the Cerruti Company application

cboAllowances

The application’s interface provides a text box for entering the employee’s name, and radio
buttons for entering his or her marital status. It also provides list boxes for specifying the
hours worked and rate of pay. The combo box in the interface allows the user to either select
the number of withholding allowances from the list portion of the control or type a number
in the text portion. To complete the Cerruti Company application, you will need to code the
btnCalc_Click and frmMain_FormClosing procedures.

Coding the FormClosing Event Procedure
A form’s FormClosing event occurs when a form is about to be closed. In most cases, this
happens when the computer processes the Me.Close() statement in the application’s code.
However, it also occurs when the user clicks the Close button on the form’s title bar. According
to the application’s TOE chart, the FormClosing event procedure is responsible for verifying that
the user wants to close the application and then taking the appropriate action based on the user’s
response. Figure 7-41 shows the procedure’s pseudocode.

Figure 7-41 Pseudocode for the FormClosing event procedure

frmMain FormClosing event procedure
1. use a message box to ask the user whether he or she wants to exit the application
2. if the user does not want to exit the application
 prevent the form from closing
 end if

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

430

To begin coding the frmMain_FormClosing procedure:

1. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. Open the code template for the frmMain_FormClosing event procedure. (Be sure to
open the FormClosing template and not the FormClosed template.) Type the following
comment and then press Enter twice:

 ' verify that the user wants to exit the application

3. The procedure will use the MessageBox.Show method to display the appropriate
message in a message box. The method’s return value will be assigned to a variable
named dlgButton. Enter the following Dim statement:

 Dim dlgButton As DialogResult

4. The message box will contain the “Do you want to exit?” message, Yes and No buttons,
and the Exclamation icon. Enter the following statement:

 dlgButton =
 MessageBox.Show("Do you want to exit?",
 "Cerruti Company",
 MessageBoxButtons.YesNo,
 MessageBoxIcon.Exclamation)

If the user selects the No button in the message box, the procedure should stop the computer
from closing the form. You prevent the computer from closing a form by setting the Cancel
property of the FormClosing event procedure’s e parameter to True.

To complete the frmMain_FormClosing procedure and then test it:

1. Enter the following comment and selection structure:

 ' if the No button was selected, don't close the form
 If dlgButton = DialogResult.No Then
 e.Cancel = True
 End If

2. Save the solution and then start the application. Click the Close button on the form’s
title bar. See Figure 7-42.

START HERE

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

431

Coding the btnCalc_Click Procedure L E S S O N C

3. Click the No button in the message box. Notice that the form remains on the screen.

4. Click the Exit button. This time, click the Yes button in the message box. The
application ends.

Coding the btnCalc_Click Procedure
According to the application’s TOE chart, the btnCalc_Click procedure is responsible for
calculating and displaying the gross pay, FWT (federal withholding tax), FICA tax, and net
pay. The procedure’s pseudocode and a listing of its named constants and variables are shown
in Figure 7-43.

Figure 7-42 Message box displayed by the code in the frmMain_FormClosing procedure

Figure 7-43 Pseudocode, named constants, and variables for the btnCalc_Click procedure (continues)

btnCalc Click event procedure
1. store user input (hours, pay rate, and allowances) in variables
2. if the Single radio button is selected
 assign “S” as the marital status
 else
 assign “M” as the marital status
 end if
3. if the number of hours is less than or equal to 40
 calculate the gross pay = hours * pay rate
 else
 calculate the gross pay = 40 * pay rate + (hours – 40) * pay rate * 1.5
 end if
4. use a function named GetFwt to calculate and return the FWT
5. calculate the FICA tax = gross pay * the FICA rate of 7.65%
6. round the gross pay, FWT, and FICA tax to two decimal places
7. calculate the net pay = gross pay – FWT – FICA tax
8. display the gross pay, FWT, FICA tax, and net pay in the appropriate labels

Value
0.0765

Stores
either the letter S (Single radio button is selected) or the letter M
(Married radio button is selected)
the number of hours worked selected in the lstHours control
the pay rate selected in the lstRates control
the number of withholding allowances either selected or entered in the
cboAllowances control
the gross pay
the federal withholding tax calculated and returned by the GetFwt
function
the FICA tax
the net pay

Named constants
dblFICA_RATE

Variable names
strStatus

dblHours
dblPayRate
intAllowances

dblGross
dblFwt

dblFica
dblNet

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

432

To begin coding the btnCalc_Click procedure:

1. Open the code template for the btnCalc_Click procedure. Type the following comment
and then press Enter twice:

 ' displays gross pay, taxes, and net pay

2. Enter the following nine declaration statements. Press Enter twice after typing the last
declaration statement.

 Const dblFICA_RATE As Double = 0.0765
 Dim strStatus As String
 Dim dblHours As Double
 Dim dblPayRate As Double
 Dim intAllowances As Integer
 Dim dblGross As Double
 Dim dblFwt As Double
 Dim dblFica As Double
 Dim dblNet As Double

3. The first step in the procedure’s pseudocode is to store the user input in variables. Enter
the following statements. Press Enter twice after typing the last statement.

 Double.TryParse(lstHours.SelectedItem.ToString, dblHours)
 Double.TryParse(lstRates.SelectedItem.ToString, dblPayRate)
 Integer.TryParse(cboAllowances.Text, intAllowances)

4. The second step in the pseudocode is a selection structure whose condition determines
the employee’s marital status. Type the following selection structure:

 If radSingle.Checked Then
 strStatus = "S"
 Else
 strStatus = "M"
 End If

START HERE

Figure 7-43 Pseudocode, named constants, and variables for the btnCalc_Click procedure

btnCalc Click event procedure
1. store user input (hours, pay rate, and allowances) in variables
2. if the Single radio button is selected
 assign “S” as the marital status
 else
 assign “M” as the marital status
 end if
3. if the number of hours is less than or equal to 40
 calculate the gross pay = hours * pay rate
 else
 calculate the gross pay = 40 * pay rate + (hours – 40) * pay rate * 1.5
 end if
4. use a function named GetFwt to calculate and return the FWT
5. calculate the FICA tax = gross pay * the FICA rate of 7.65%
6. round the gross pay, FWT, and FICA tax to two decimal places
7. calculate the net pay = gross pay – FWT – FICA tax
8. display the gross pay, FWT, FICA tax, and net pay in the appropriate labels

Value
0.0765

Stores
either the letter S (Single radio button is selected) or the letter M
(Married radio button is selected)
the number of hours worked selected in the lstHours control
the pay rate selected in the lstRates control
the number of withholding allowances either selected or entered in the
cboAllowances control
the gross pay
the federal withholding tax calculated and returned by the GetFwt
function
the FICA tax
the net pay

Named constants
dblFICA_RATE

Variable names
strStatus

dblHours
dblPayRate
intAllowances

dblGross
dblFwt

dblFica
dblNet

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

433

Coding the btnCalc_Click Procedure L E S S O N C

5. The third step in the pseudocode is a selection structure whose condition compares the
number of hours worked with the number 40. If the number of hours worked is less
than or equal to 40, the selection structure’s true path should calculate the gross pay by
multiplying the number of hours worked by the pay rate. Insert two blank lines below
the End If clause, and then enter the following comment and lines of code:

 ' calculate gross pay
 If dblHours <= 40 Then
 dblGross = dblHours * dblPayRate

6. If the number of hours worked is greater than 40, the employee is entitled to his or her
regular pay rate for the hours worked up to and including 40, and then the employee is
paid time and a half for the hours worked over 40. Enter the Else clause and assignment
statement shown in Figure 7-44, and then save the solution.

Figure 7-44 Second selection structure entered in the procedure

enter the Else
clause and the
assignment
statement

The fourth step in the procedure’s pseudocode uses a function named GetFwt to calculate and
return the FWT. Before entering the appropriate instruction, you will create the function.

Creating the GetFwt Function
The amount of FWT to deduct from an employee’s weekly gross pay is based on his or her weekly
taxable wages and filing status, which is either single (including head of household) or married.
You calculate the weekly taxable wages by first multiplying the number of withholding allowances
by $76 (the value of a withholding allowance in 2014) and then subtracting the result from the
weekly gross pay. For example, if your weekly gross pay is $400 and you have two withholding
allowances, your weekly taxable wages are $248. The $248 is calculated by multiplying 76 by 2 and
then subtracting the result (152) from 400. You use the weekly taxable wages, along with the filing
status and the appropriate weekly Federal Withholding Tax table, to determine the amount of
FWT to withhold. The weekly tax tables for 2014 are shown in Figure 7-45.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

434

Figure 7-45 Weekly FWT tables for the year 2014

Single person (including head of household)
If the taxable
wages are: The amount of income tax to withhold is:

Married person
If the taxable
wages are: The amount of income tax to withhold is:

Over

$ 43
$ 218
$ 753
$1,762
$3,627
$7,834
$7,865

But not over
$ 43
$ 218
$ 753
$1,762
$3,627
$7,834
$7,865

Base amount
0
0
$ 17.50 plus
$ 97.75 plus
$ 350.00 plus
$ 872.20 plus
$2,260.51 plus
$2,271.36 plus

Percentage

10%
15%
25%
28%
33%
35%
39.6%

Of excess over

$ 43
$ 218
$ 753
$1,762
$3,627
$7,834
$7,865

Over

$ 163
$ 512
$1,582
$3,025
$4,525
$7,953
$8,963

But not over
$ 163
$ 512
$1,582
$3,025
$4,525
$7,953
$8,963

Base amount
0
0
$ 34.90 plus
$ 195.40 plus
$ 556.15 plus
$ 976.15 plus
$2,107.39 plus
$2,460.89 plus

Percentage

10%
15%
25%
28%
33%
35%
39.6%

Of excess over

$ 163
$ 512
$1,582
$3,025
$4,525
$7,953
$8,963

FWT Tables – Weekly Payroll Period

Each table in Figure 7-45 contains five columns of information. The first two columns list
various ranges, also called brackets, of taxable wage amounts. The first column (Over) lists
the amount that a taxable wage in that bracket must be over, and the second column
(But not over) lists the maximum amount included in the bracket. The remaining three
columns (Base amount, Percentage, and Of excess over) tell you how to calculate the tax for
each range. For example, assume that you are single and your weekly taxable wages are $248.
Before you can calculate the amount of your tax, you need to locate your taxable wages in
the first two columns of the Single table. Taxable wages of $248 fall within the $218 through
$753 bracket. After locating the bracket that contains your taxable wages, you then use the
remaining three columns in the table to calculate your tax. In this case, you calculate the
tax by first subtracting 218 (the amount shown in the Of excess over column) from your
taxable wages of 248, giving 30. You then multiply 30 by 15% (the amount shown in the
Percentage column), giving 4.50. You then add that amount to the amount shown in the Base
amount column (in this case, 17.50), giving $22 as your tax. The calculations are shown in
Figure 7-46, along with the calculations for a married taxpayer whose weekly taxable wages
are $1,659.50.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

435

Coding the btnCalc_Click Procedure L E S S O N C

Figure 7-46 Examples of FWT calculations

Single with weekly
taxable wages of $248.00

Taxable wages $ 248.00
Of excess over – 218.00
 30.00
Percentage * 0.15
 4.50
Base amount + 17.50
Tax $ 22.00

Married with weekly
taxable wages of $1,659.50

Taxable wages $ 1,659.50
Of excess over – 1,582.00
 77.50
Percentage * 0.25
 19.38
Base amount + 195.40
Tax $ 214.78

To calculate the federal withholding tax, the GetFwt function needs to know the employee’s
gross pay amount, number of withholding allowances, and marital status. The gross pay
amount and number of withholding allowances are necessary to calculate the taxable wages,
and the marital status indicates the appropriate FWT table to use when calculating the tax. The
function will receive the necessary information from the btnCalc_Click procedure, which will
pass the information when it invokes the function. Recall that the information is stored in the
btnCalc_Click procedure’s dblGross, intAllowances, and strStatus variables. Figure 7-47
shows the function’s pseudocode.

Figure 7-47 Pseudocode for the GetFwt function

GetFwt function
1. calculate the taxable wages = gross pay – number of withholding allowances * 76
2. if the marital status is Single
 calculate the FWT using the Single FWT table
 else
 calculate the FWT using the Married FWT table
 end if
3. return the FWT

To create the GetFwt function:

1. Scroll to the top of the Code Editor window, and then click the blank line below the
'GetFwt function comment.

2. When it invokes the GetFwt function, the btnCalc_Click procedure will pass the values
stored in its dblGross, intAllowances, and strStatus variables. You do not want
the GetFwt function to change the contents of the variables, so you will pass a copy
of each variable’s value (rather than the variable’s address). You will store the values
passed to the function in three parameters named dblWeekPay, intNumAllow, and
strMarital. The GetFwt function will use the information it receives to calculate and
return the FWT as a Double number. Type the function header and comment shown in
Figure 7-48, and then position the insertion point as indicated in the figure. (The Code
Editor automatically enters the End Function clause for you.)

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

436

3. The function will use a named constant for the withholding allowance amount ($76). It
will also use two additional variables: one to store the taxable wages, and one to store
the FWT. Enter the following declaration statements. Press Enter twice after typing the
last declaration statement.

 Const dblONE_ALLOW As Double = 76
 Dim dblTaxWages As Double
 Dim dblTax As Double

4. The first step in the function’s pseudocode calculates the taxable wages. Enter the
following comment and assignment statement. Press Enter twice after typing the
assignment statement.

 ' calculate taxable wages
 dblTaxWages =
 dblWeekPay – intNumAllow * dblONE_ALLOW

5. The second step in the pseudocode is a selection structure whose condition determines
the marital status. Enter the following comment and If clause:

 ' determine marital status and then calculate FWT
 If strMarital = "S" Then

6. If the strMarital variable contains the letter S, the selection structure’s true path
should calculate the federal withholding tax using the information from the Single
tax table. For your convenience, you will find the appropriate code in the Single.txt
file. Click File on the menu bar, point to Open, and then click File. If necessary, open
the Cerruti Project folder. Click Single.txt in the list of filenames and then click the
Open button. The Single.txt file appears in a separate window in the IDE. Click Edit
on the menu bar and then click Select All. Press Ctrl+c to copy the selected text to the
Windows Clipboard, and then close the Single.txt window.

7. The insertion point should be in the blank line below the If clause. Press Ctrl+v to paste
the copied text into the selection structure’s true path.

8. Type Else and then press Tab twice. Type ' strMarital = "M" and then press Enter.

9. If the strMarital variable does not contain the letter S, the selection structure’s
false path should calculate the federal withholding tax using the information from the
Married tax table. You will find the appropriate code in the Married.txt file. Click File,
point to Open, and then click File. Click Married.txt in the list of filenames, and then
click the Open button. Click Edit and then click Select All. Press Ctrl+c to copy the
selected text to the Windows Clipboard, and then close the Married.txt window.

Figure 7-48 GetFwt function header and footer

enter the function
header and the
comment

position the insertion point here

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

437

Completing the btnCalc_Click Procedure L E S S O N C

10. The insertion point should be in the blank line below the Else clause. Press Ctrl+v to
paste the copied text into the selection structure’s false path.

11. The last step in the function’s pseudocode returns the federal withholding tax amount,
which is stored in the dblTax variable, to the statement that invoked the function. Click
after the letter f in the End If clause, and then press Enter twice. Type Return dblTax
and then click the blank line above the Return statement. Save the solution. (You can
look ahead to Figure 7-53 to view the function’s code.)

Completing the btnCalc_Click Procedure
Now that you have created the GetFwt function, you can invoke the function from the
btnCalc_Click procedure. Invoking the GetFwt function is the fourth step listed in the
procedure’s pseudocode (shown earlier in Figure 7-43).

To continue coding the btnCalc_Click procedure:

1. Locate the btnCalc_Click procedure. Click after the letter f in the second End If clause,
and then press Enter twice.

2. Recall that the procedure needs to send the GetFwt function a copy of the values stored
in the dblGross, intAllowances, and strStatus variables. The procedure will assign
the function’s return value to the dblFwt variable. Enter the following comment and
assignment statement:

 ' get the FWT
 dblFwt = GetFwt(dblGross, intAllowances, strStatus)

3. The next step in the procedure’s pseudocode calculates the FICA tax by multiplying
the gross pay amount by the FICA rate. Enter the following comment and assignment
statement:

 ' calculate FICA tax
 dblFica = dblGross * dblFICA_RATE

4. Save the solution.

Rounding Numbers
The sixth step in the procedure’s pseudocode rounds the gross pay, FWT, and FICA tax
amounts to two decimal places. Rounding these amounts before making the net pay calculation
will prevent the “penny off” error from occurring. (You can observe the “penny off” error by
completing Exercise 1 at the end of this lesson.) You can use the Math.Round function to return
a number rounded to a specific number of decimal places. The function’s syntax and examples
are shown in Figure 7-49. In the syntax, value is a numeric expression and digits (which is
optional) is an integer indicating how many places to the right of the decimal point are included
in the rounding. If the digits argument is omitted, the Math.Round function returns an integer.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

438

Figure 7-49 Syntax and examples of the Math.Round function

Math.Round Function

Syntax
Math.Round(value[, digits])

Examples Result
Math.Round(3.235, 2) 3.24
Math.Round(6.517, 1) 6.5
Math.Round(8.99) 9

To complete the btnCalc_Click procedure:

1. Enter the following comment and assignment statements:

 ' round gross pay, FWT, and FICA tax
 dblGross = Math.Round(dblGross, 2)
 dblFwt = Math.Round(dblFwt, 2)
 dblFica = Math.Round(dblFica, 2)

2. Next, the procedure should calculate the net pay by subtracting the two tax amounts
from the gross pay amount. Enter the following comment and assignment statement.
Press Enter twice after typing the assignment statement.

 ' calculate net pay
 dblNet = dblGross – dblFwt – dblFica

3. The last step in the procedure’s pseudocode displays the calculated amounts in the
appropriate label controls. Enter the following comment and assignment statements:

 ' display calculated amounts
 lblGross.Text = dblGross.ToString("n2")
 lblFwt.Text = dblFwt.ToString("n2")
 lblFica.Text = dblFica.ToString("n2")
 lblNet.Text = dblNet.ToString("n2")

4. Save the solution.

You will test the application twice using the data shown in Figure 7-50. The figure also shows the
correct amounts for the gross pay, taxes, and net pay.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

439

Completing the btnCalc_Click Procedure L E S S O N C

Figure 7-50 Data for testing the Cerruti Company’s application

Test Data

First test
Name: Jeffrey Hilton
Marital status: Single
Hours: 37.5
Pay rate: $12.50
Allowances: 1

Gross wages
Allowance deduction
Taxable wages
Of excess over

Percentage

Base amount
FWT tax

FICA tax (468.75 * 0.0765)
Net pay (468.75 – 43.71 – 35.86)

$ 468.75
 – 76.00
 392.75
 – 218.00
 174.75
* 0.15
 26.2125
+ 17.50
$ 43.71 (rounded to two decimal places)

$ 35.86 (rounded to two decimal places)
$ 389.18

Gross wages
Allowance deduction
Taxable wages
Of excess over

Percentage

Base amount
FWT tax

FICA tax (903.75 * 0.0765)
Net pay (903.75 – 70.86 – 69.14)

$ 903.75
 – 152.00
 751.75
 – 512.00
 239.75
* 0.15
 35.9625
+ 34.90
$ 70.86 (rounded to two decimal places)

$ 69.14 (rounded to two decimal places)
$ 763.75

Second test
Name: Karen Lopez
Marital status: Married
Hours: 53.5
Pay rate: $15
Allowances: 2

To test the Cerruti Company application:

1. Start the application. Type Jeffrey Hilton in the Name box. Click 37.5 in the Hours list
box, 12.50 in the Rate list box, and 1 in the Allowances combo box. Click the Calculate
button. See Figure 7-51. The gross pay, taxes, and net pay agree with the manual
calculations from Figure 7-50.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

440

3. Click the Exit button and then click the Yes button. Close the Code Editor window and
then close the solution. Figure 7-53 shows the Cerruti Company application’s code.

Figure 7-51 Payroll calculations using the first set of test data

2. Change the name entered in the Name box to Karen Lopez and then click the
Married radio button. Click 53.5 in the Hours list box and 15.00 in the Rate list box.
Press Tab to move the focus to the Allowances combo box. In addition to selecting
the number of allowances in the list portion of the combo box, the user can also
type the number in the text portion. Type 2 and then click the Calculate button.
See Figure 7-52. The gross pay, taxes, and net pay agree with the manual calculations
from Figure 7-50.

Figure 7-52 Payroll calculations using the second set of test data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

441

Completing the btnCalc_Click Procedure L E S S O N C

 1 ' Name: Cerruti Project
 2 ' Purpose: Displays gross pay, taxes, and net pay
 3 ' Programmer: <your name> on <current date>
 4
 5 Option Explicit On
 6 Option Strict On
 7 Option Infer Off
 8
 9 Public Class frmMain
 10
 11 ' GetFwt function
 12 Private Function GetFwt(ByVal dblWeekPay As Double,
 13 ByVal intNumAllow As Integer,
 14 ByVal strMarital As String) As Double
 15 ' calculates and returns the FWT
 16
 17 Const dblONE_ALLOW As Double = 76
 18 Dim dblTaxWages As Double
 19 Dim dblTax As Double
 20
 21 ' calculate taxable wages
 22 dblTaxWages =
 23 dblWeekPay - intNumAllow * dblONE_ALLOW
 24
 25 ' determine marital status and then calculate FWT
 26 If strMarital = "S" Then
 27 Select Case dblTaxWages
 28 Case Is <= 43
 29 dblTax = 0
 30 Case Is <= 218
 31 dblTax = 0.1 * (dblTaxWages - 43)
 32 Case Is <= 753
 33 dblTax = 17.5 + 0.15 * (dblTaxWages - 218)
 34 Case Is <= 1762
 35 dblTax = 97.75 + 0.25 * (dblTaxWages - 753)
 36 Case Is <= 3627
 37 dblTax = 350 + 0.28 * (dblTaxWages - 1762)
 38 Case Is <= 7834
 39 dblTax = 872.2 + 0.33 * (dblTaxWages - 3627)
 40 Case Is <= 7865
 41 dblTax = 2260.51 + 0.35 * (dblTaxWages - 7834)
 42 Case Else
 43 dblTax = 2271.36 + 0.396 * (dblTaxWages - 7865)
 44 End Select
 45 Else ' strMarital = "M"
 46 Select Case dblTaxWages
 47 Case Is <= 163
 48 dblTax = 0
 49 Case Is <= 512
 50 dblTax = 0.1 * (dblTaxWages - 163)
 51 Case Is <= 1582
 52 dblTax = 34.9 + 0.15 * (dblTaxWages - 512)
 53 Case Is <= 3025
 54 dblTax = 195.4 + 0.25 * (dblTaxWages - 1582)
 55 Case Is <= 4525
 56 dblTax = 556.15 + 0.28 * (dblTaxWages - 3025)

Figure 7-53 Cerruti Company application’s code (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

442

 57 Case Is <= 7953
 58 dblTax = 976.15 + 0.33 * (dblTaxWages - 4525)
 59 Case Is <= 8963
 60 dblTax = 2107.39 + 0.35 * (dblTaxWages - 7953)
 61 Case Else
 62 dblTax = 2460.89 + 0.396 * (dblTaxWages - 8963)
 63 End Select
 64 End If
 65
 66 Return dblTax
 67 End Function
 68
 69 Private Sub btnExit_Click(sender As Object, e As EventArgs
) Handles btnExit.Click
 70 Me.Close()
 71 End Sub
 72
 73 Private Sub txtName_Enter(sender As Object, e As EventArgs
) Handles txtName.Enter
 74 ' select the existing text
 75
 76 txtName.SelectAll()
 77 End Sub
 78
 79 Private Sub cboAllowances_KeyPress(sender As Object,
 e As KeyPressEventArgs) Handles cboAllowances.KeyPress
 80 ' allow only numbers and the Backspace key
 81
 82 If (e.KeyChar < "0" OrElse e.KeyChar > "9") AndAlso
 e.KeyChar <> ControlChars.Back Then
 83 e.Handled = True
 84 End If
 85 End Sub
 86
 87 Private Sub ClearLabels(sender As Object, e As EventArgs
) Handles lstHours.SelectedValueChanged,
 88 lstRates.SelectedValueChanged, radSingle.CheckedChanged,
 radMarried.CheckedChanged,
 89 txtName.TextChanged, cboAllowances.TextChanged
 90
 91 lblGross.Text = String.Empty
 92 lblFwt.Text = String.Empty
 93 lblFica.Text = String.Empty
 94 lblNet.Text = String.Empty
 95 End Sub
 96
 97 Private Sub frmMain_Load(sender As Object, e As EventArgs
) Handles Me.Load
 98 ' fill list boxes and combo box with values
 99 ' then select a default value in each
100
101 For dblHours As Double = 0 To 55 Step 0.5
102 lstHours.Items.Add(dblHours.ToString("N1"))
103 Next dblHours
104

Figure 7-53 Cerruti Company application’s code (continues)

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

443

Completing the btnCalc_Click Procedure L E S S O N C

105 For dblRates As Double = 7.5 To 15.5 Step 0.5
106 lstRates.Items.Add(dblRates.ToString("N2"))
107 Next dblRates
108
109 For intAllow As Integer = 0 To 10
110 cboAllowances.Items.Add(intAllow.ToString)
111 Next intAllow
112
113 lstHours.SelectedItem = "40.0"
114 lstRates.SelectedItem = "9.50"
115 cboAllowances.SelectedIndex = 0
116 End Sub
117
118 Private Sub frmMain_FormClosing(sender As Object,
 e As FormClosingEventArgs) Handles Me.FormClosing
119 ' verify that the user wants to exit the application
120
121 Dim dlgButton As DialogResult
122 dlgButton =
123 MessageBox.Show("Do you want to exit?",
124 "Cerruti Company",
125 MessageBoxButtons.YesNo,
126 MessageBoxIcon.Exclamation)
127 ' if the No button was selected, don't close the form
128 If dlgButton = DialogResult.No Then
129 e.Cancel = True
130 End If
131 End Sub
132
133 Private Sub btnCalc_Click(sender As Object, e As EventArgs
) Handles btnCalc.Click
134 ' displays gross pay, taxes, and net pay
135
136 Const dblFICA_RATE As Double = 0.0765
137 Dim strStatus As String
138 Dim dblHours As Double
139 Dim dblPayRate As Double
140 Dim intAllowances As Integer
141 Dim dblGross As Double
142 Dim dblFwt As Double
143 Dim dblFica As Double
144 Dim dblNet As Double
145
146 Double.TryParse(lstHours.SelectedItem.ToString, dblHours)
147 Double.TryParse(lstRates.SelectedItem.ToString, dblPayRate)
148 Integer.TryParse(cboAllowances.Text, intAllowances)
149
150 If radSingle.Checked Then
151 strStatus = "S"
152 Else
153 strStatus = "M"
154 End If
155

Figure 7-53 Cerruti Company application’s code (continues)

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

444

156 ' calculate gross pay
157 If dblHours <= 40 Then
158 dblGross = dblHours * dblPayRate
159 Else
160 dblGross = 40 * dblPayRate +
161 (dblHours - 40) * dblPayRate * 1.5
162 End If
163
164 ' get the FWT
165 dblFwt = GetFwt(dblGross, intAllowances, strStatus)
166 ' calculate FICA tax
167 dblFica = dblGross * dblFICA_RATE
168 ' round gross pay, FWT, and FICA tax
169 dblGross = Math.Round(dblGross, 2)
170 dblFwt = Math.Round(dblFwt, 2)
171 dblFica = Math.Round(dblFica, 2)
172 ' calculate net pay
173 dblNet = dblGross - dblFwt - dblFica
174
175 ' display calculated amounts
176 lblGross.Text = dblGross.ToString("n2")
177 lblFwt.Text = dblFwt.ToString("n2")
178 lblFica.Text = dblFica.ToString("n2")
179 lblNet.Text = dblNet.ToString("n2")
180
181 End Sub
182 End Class

Figure 7-53 Cerruti Company application’s code

Lesson C Summary
 • To process code when a form is about to be closed:

Enter the code in the form’s FormClosing event procedure. The FormClosing event occurs
when the user clicks the Close button on a form’s title bar or when the computer processes
the Me.Close() statement.

 • To prevent a form from being closed:

Set the Cancel property of the FormClosing event procedure’s e parameter to True, like this:
e.Cancel = True.

 • To round a number to a specific number of decimal places:

Use the Math.Round function. The function’s syntax is Math.Round(value[, digits]), where
value is a numeric expression and digits (which is optional) is an integer indicating how many
places to the right of the decimal point are included in the rounding. If the digits argument is
omitted, the Math.Round function returns an integer.

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

445

Lesson C Exercises L E S S O N C

Lesson C Key Terms
Cancel property—a property of the e parameter in the form’s FormClosing event procedure;
when set to True, it prevents the form from closing

FormClosing event—occurs when a form is about to be closed, which can happen as a result of
the computer processing the Me.Close() statement or the user clicking the Close button on the
form’s title bar

Math.Round function—rounds a number to a specific number of decimal places

Lesson C Review Questions
1. Which of a form’s events is triggered when you click the Close button on its title bar?

a. Close
b. CloseForm

c. FormClose
d. FormClosing

2. Which of the following rounds the contents of the dblNum variable to two decimal
places?

a. Math.Round(dblNum, 2)

b. Math.Round(2, dblNum)

c. Round.Math(dblNum, 2)

d. Round.Math(2, dblNum)

3. Which event is triggered when the computer processes the Me.Close() statement
entered in the btnExit_Click procedure?

a. the form’s Closing event
b. the form’s FormClosing event
c. the btnExit control’s Closing event
d. the btnExit control’s FormClosing event

4. Which of the following statements prevents a form from being closed?

a. e.Cancel = False

b. e.Cancel = True

c. e.Close = False

d. sender.Close = False

Lesson C Exercises
1. In this exercise, you will remove the Math.Round function from the payroll application

created in the lesson; doing this will allow you to observe the “penny off” error. Use
Windows to make a copy of the Cerruti Solution folder. Rename the copy No Rounding
Cerruti Solution. Open the Cerruti Solution (Cerruti Solution.sln) file contained in the
No Rounding Cerruti Solution folder. Open the Code Editor window. The Math.Round
function appears in three statements in the btnCalc_Click procedure. Type an apostrophe
at the beginning of each of the three statements, making them into comments. Save the
solution and then start the application. Test the application by clicking 38.5 in the Hours
list box and 10.50 in the Rate list box. Click the Calculate button. What is wrong with the
net pay amount? Stop the application and close the solution.

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

446

2. In this exercise, you modify the Monthly Payment application from Lesson B. Use
Windows to make a copy of the Payment Solution folder. Rename the copy Payment
Solution-FormClosing. Open the Payment Solution (Payment Solution.sln) file
contained in the Payment Solution-FormClosing folder. The frmMain_FormClosing
procedure should ask the user whether he or she wants to exit the application, and then
take the appropriate action based on the user’s response. Modify the code to implement
these changes. Test the application appropriately.

3. In this exercise, you modify the Cerruti Company application from this lesson. Use
Windows to make a copy of the Cerruti Solution folder. Rename the copy Cerruti
Solution-Sub. Open the Cerruti Solution (Cerruti Solution.sln) file contained in the
Cerruti Solution-Sub folder. Change the GetFwt function to an independent Sub
procedure, and then modify the statement that calls the procedure. Also use an
independent Sub procedure to round the gross pay and taxes. Test the application
appropriately.

4. In this exercise, you modify the Cerruti Company application from this lesson. Use
Windows to make a copy of the Cerruti Solution folder. Rename the copy Modified
Cerruti Solution. Open the Cerruti Solution (Cerruti Solution.sln) file contained in
the Modified Cerruti Solution folder. Modify the code so that the GetFwt function
(rather than btnCalc_Click procedure) determines the selected radio button. Test the
application appropriately.

5. Open the Translator Solution (Translator Solution.sln) file contained in the
VB2015\Chap07\Translator Solution-Sub folder. The application should use three
independent Sub procedures to translate the English words into French, German,
or Spanish. Code the application. (Hint: Depending on the way you code this
application, the Code Editor might indicate that a String variable is being either
passed or used before it has been assigned a value. If this is the case, assign the
String.Empty constant to the variable in the Dim statement.) Test the application
appropriately.

6. Open the Translator Solution (Translator Solution.sln) file contained in the
VB2015\Chap07\Translator Solution-Function folder. The application should use
three functions to translate the English words into French, German, or Spanish.
Code the application. (Hint: Depending on the way you code this application, the
Code Editor might indicate that a String variable is being either passed or used
before it has been assigned a value. If this is the case, assign the String.Empty
constant to the variable in the Dim statement.) Test the application appropriately.

7. The Donut Shoppe sells four varieties of doughnuts: Glazed ($.75), Sugar ($.75),
Chocolate ($.75), and Filled ($.95). It also sells regular coffee ($1.50) and cappuccino
($2.75). The store manager wants you to create an application that displays a
customer’s subtotal, 4.5% sales tax, and total due. Create the application, using the
following names for the solution and project, respectively: Donut Solution and Donut
Project. Save the application in the VB2015\Chap07 folder. Create the interface
shown in Figure 7-54. The image for the picture box is stored in the VB2015\Chap07\
DonutCoffee.png file. When coding the application, use one function to calculate and
return the cost of the doughnut, and use another function to calculate and return the
cost of the coffee. Use a third function to calculate and return the sales tax. Test the
application appropriately.

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

447

Lesson C Exercises L E S S O N C

8. In this exercise, you modify the Donut Shoppe application from Exercise 7. Use
Windows to make a copy of the Donut Solution folder. Rename the copy Modified
Donut Solution. Open the Donut Solution (Donut Solution.sln) file contained in the
Modified Donut Solution folder. Change the three functions to independent Sub
procedures. Test the application appropriately.

9. Create an application, using the following names for the solution and project,
respectively: Mats Solution and Mats Project. Save the application in the VB2015\
Chap07 folder. Mats-R-Us sells three different type of mats: Standard ($99), Deluxe
($129), and Premium ($179). All of the mats are available in blue, red ($10 extra), and
pink ($15 extra). There is also an extra $25 charge if the customer wants the mat to be
foldable. The application’s interface is shown in Figure 7-55. Use a function to calculate
the total additional charge (if any). Test the application appropriately.

INTERMEDIATE

INTERMEDIATE

Figure 7-54 User interface for Exercise 7

Figure 7-55 User interface for Exercise 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 Sub and Function Procedures

448

10. In this exercise, you modify the Mats-R-Us application from Exercise 9. Use Windows to
make a copy of the Mats Solution folder. Rename the copy Modified Mats Solution. Open
the Mats Solution (Mats Solution.sln) file contained in the Modified Mats Solution folder.
Change the function to an independent Sub procedure. Test the application appropriately.

11. Create an application, using the following names for the solution and project,
respectively: Cable Direct Solution and Cable Direct Project. Save the application in
the VB2015\Chap07 folder. Create the interface shown in Figure 7-56. The list boxes
are named lstPremium and lstConnections. Display numbers from 0 through 20 in
the lstPremium control. Display numbers from 0 through 100 in the lstConnections
control. The Calculate Total Due button’s Click event procedure should calculate and
display a customer’s cable bill. The cable rates are included in Figure 7-56. Business
customers must have at least one connection. Use two functions: one to calculate and
return the total due for business customers, and one to calculate and return the total
due for residential customers. The form’s FormClosing event procedure should verify
that the user wants to close the application. Test the application appropriately.

INTERMEDIATE

ADVANCED

Residential customers:
 Processing fee: $4.50
 Basic service fee: $30
 Premium channels: $5 per channel

Business customers:
 Processing fee: $16.50
 Basic service fee: $80 for the first 10 connections; $4 for each additional connection
 Premium channels: $50 per channel for any number of connections

Figure 7-56 User interface and cable rates for Exercise 11

12. The purpose of this exercise is to demonstrate a common error made when using
functions. Open the Debug Solution (Debug Solution.sln) file contained in the VB2015\
Chap07\Debug Solution-Lesson C folder. Start the application. Click 20 in the Length
list box, and then click 30 in the Width list box. Click the Calculate Area button, which
should display the area of a rectangle having a length of 20 feet and a width of 30 feet.
Notice that the application is not working properly. Stop the application. Correct the
application’s code and then test it appropriately.

SWAT THE BUGS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8
String Manipulation

Creating the Pizza Application

In this chapter, you create the Pizza Game application. The game requires two
people to play. Player 1 provides a six-letter word that Player 2 must guess, letter
by letter. If Player 2’s letter is not contained in the word, the application removes
one of the seven pizza slices from the interface. The game is over when Player 2
either guesses all of the letters in the word or makes seven incorrect guesses,
whichever comes first.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8 String Manipulation

450

Previewing the Pizza Game Application
Before you start the first lesson in this chapter, you will preview the completed application
contained in the VB2015\Chap08 folder.

To preview the completed application:

1. Use Windows to locate and then open the VB2015\Chap08 folder. Right-click Pizza
(Pizza.exe) and then click the Open button. The interface contains a File menu, as
shown in Figure 8-1. Menus are covered in Lesson B. Notice that the pizza tray contains
seven slices of pizza.

START HERE

Figure 8-1 Interface for the Pizza Game application

File menu

seven pizza
slices

2. Click File on the menu bar and then click New Game. An input dialog box opens and
prompts you to enter a word that contains six letters.

3. Type summer and then press Enter. Six dashes (hyphens) appear in the Secret word
box. Each dash represents a letter in the word summer.

4. Type r in the Enter a letter text box. The lowercase letter r is changed to its uppercase
equivalent because the text box’s CharacterCasing property is set to Upper. Press Enter
to select the Check button, which is the default button on the form. The last dash in
the Secret word box is replaced with the uppercase letter R, indicating that R is the last
letter in the secret word.

5. Type b in the text box and then press Enter. The word summer does not contain the
letter b, so the application displays B in the Incorrect letters box and also removes a
slice of pizza from the tray.

6. Type a in the text box and then press Enter. The application displays A in the Incorrect
letters box and also removes another slice of pizza from the tray.

7. Type o in the text box and then press Enter. The application displays O in the Incorrect
letters box and also removes another slice of pizza from the tray.

8. Type m in the text box and then press Enter. The application replaces the third and
fourth dashes in the Secret word box with the letter M.

9. Next, type the following three letters, one at a time, pressing Enter after typing each
one: e, s, and u. The application replaces the fifth, first, and second dashes in the Secret
word box with the letters E, S, and U, respectively. It also displays the “Great guessing!”
message in a message box. Drag the Game Over message box to the location shown in
Figure 8-2.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

451

10. Close the message box. Click File and then click New Game. Type fall in the input
dialog box, and then press Enter. The message “6 letters are required” appears in a
message box. Close the message box.

11. Press Ctrl+n to open the input dialog box. Type spring and then press Enter. Type s in
the text box and then press Enter. The application replaces the first dash in the Secret
word box with the letter S.

12. Next, type the following seven letters, one at a time, pressing Enter after typing each
one: e, a, d, x, y, z, and t. The letters you entered do not appear in the word spring,
so the application displays the letters in the Incorrect letters box. It also removes the
pizza slices from the tray, replacing them with the “All gone!” message. In addition, the
application displays the message “Sorry, the word is SPRING.” in a message box. Drag
the Game Over message box to the location shown in Figure 8-3.

Figure 8-2 Interface after guessing the secret word

Figure 8-3 Interface after not guessing the secret word

Previewing the Pizza Game Application

13. Close the message box. Click File and then click Exit to end the application.

Before you can begin coding the Pizza Game application, you need to learn how to both
manipulate strings and create menus. String manipulation is covered in Lesson A; menus are
covered in Lesson B. You will code the application in Lessons B and C. Be sure to complete each
lesson in full and do all of the end-of-lesson questions and several exercises before continuing to
the next lesson.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8 String Manipulation

452

❚ LESSON A
After studying Lesson A, you should be able to:

 • Determine the number of characters in a string

 • Remove characters from a string

 • Insert characters in a string

 • Align the characters in a string

 • Search a string

 • Access characters in a string

 • Compare strings using pattern matching

Working with Strings
In many cases, an application’s code will need to manipulate (process) string data in some way.
For example, it may need to look at the first character in an inventory part number to determine
the part’s location in the warehouse. Or, it may need to search an address to determine the street
name. Or, it may need to verify that the input entered by the user is in the expected format. In
this lesson, you will learn several ways of manipulating strings in Visual Basic. You will begin by
learning how to determine the number of characters in a string.

Determining the Number of Characters in a String
If an application expects the user to enter a seven-digit phone number or a five-digit ZIP code,
you should verify that the user’s input contains the required number of characters. The number
of characters contained in a string is stored as an integer in the string’s Length property. Figure 8-4
shows the property’s syntax and includes examples of using the property. In the syntax, string
can be a String variable, a String named constant, or the Text property of a control.

Determining the Number of Characters in a String

Syntax
string.Length

Example 1
strCountry = "Canada"
intNumChars = strCountry.Length
assigns the number 6 to the intNumChars variable

Example 2
intChars = txtName.Text.Length
assigns the number of characters in the txtName control’s Text property to the intChars
variable

Example 3
Do
 strZip = InputBox("5-digit ZIP code", "ZIP")
Loop Until strZip.Length = 5
continues prompting the user for a ZIP code until the user enters exactly five characters

Figure 8-4 Syntax and examples of the Length property

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

453

Removing Characters from a String L E S S O N A

Removing Characters from a String
Visual Basic provides two methods for removing characters from a string. The Trim method
removes (trims) any space characters from both the beginning and the end of a string. The
Remove method, on the other hand, removes a specified number of characters located
anywhere in a string. Figure 8-5 shows the syntax of both methods and includes examples of
using the methods. In each syntax, string can be a String variable, a String named constant,
or the Text property of a control. When processing either method, the computer first makes
a temporary copy of the string in memory. It then performs the specified removal on the copy
only. In other words, neither method removes any characters from the original string. Both
methods return a string with the appropriate characters removed.

The startIndex argument in the Remove method is the index of the first character you want
removed from the copy of the string. A character’s index is an integer that indicates the
character’s position in the string. The first character in a string has an index of 0; the second
character has an index of 1, and so on. The optional numCharsToRemove argument is the
number of characters you want removed. To remove only the first character from a string,
you use 0 as the startIndex and 1 as the numCharsToRemove. To remove the fourth through
eighth characters, you use 3 as the startIndex and 5 as the numCharsToRemove. If the
numCharsToRemove argument is omitted, the Remove method removes all of the characters
from the startIndex position through the end of the string, as shown in Example 3 in Figure 8-5.

To learn more
about the Trim
method, as
well as its
companion

TrimStart and TrimEnd
methods, complete
Exercises 17 and 18 at
the end of this lesson.

Removing Characters from a String

Syntax
string.Trim
string.Remove(startIndex[, numCharsToRemove])

Example 1
strCountry = txtCountry.Text.Trim
assigns the contents of the txtCountry control’s Text property, excluding any leading and trailing
spaces, to the strCountry variable

Example 2
strCityState = "Nashville, TN"
txtState.Text = strCityState.Remove(0, 11)
assigns the string “TN” to the txtState control’s Text property

Example 3
strCityState = "Nashville, TN"
txtCity.Text = strCityState.Remove(9)
assigns the string “Nashville” to the txtCity control’s Text property; you can also write the
assignment statement as txtCity.Text = strCityState.Remove(9, 4)

Example 4
strFirst = "John"
strFirst = strFirst.Remove(2, 1)
assigns the string “Jon” to the strFirst variable

Figure 8-5 Syntax and examples of the Trim and Remove methods

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8 String Manipulation

454

The Product ID Application
You will use the Length property and the Trim method in the Product ID application, which
displays a listing of the product IDs entered by the user. Each product ID must contain exactly
five characters.

To code and then test the Product ID application:

1. If necessary, start Visual Studio 2015. Open the VB2015\Chap08\Product Solution\
Product Solution (Product Solution.sln) file. Open the Code Editor window. Replace
<your name> and <current date> in the comments with your name and the current
date, respectively.

2. Locate the btnAdd_Click procedure. First, the procedure will remove any leading and
trailing spaces from the ID. It then will determine whether the ID contains exactly five
characters. Make the shaded modifications shown in Figure 8-6.

START HERE

Private Sub btnAdd_Click(sender As Object, e As EventArgs
) Handles btnAdd.Click
 ' adds a product ID to a list

 Dim strId As String

 ' remove any leading and trailing spaces
 strId = txtId.Text.Trim
 ' verify length
 If strId.Length = 5 Then
 lstId.Items.Add(strId.ToUpper)
 Else
 MessageBox.Show("The ID must contain 5 characters.",
 "Product ID", MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End If
 txtId.Focus()
End Sub

Figure 8-6 btnAdd_Click procedure

3. Save the solution and then start the application. First, you will enter an ID that contains
four characters. Type abcd as the product ID, and then click the Add to List button.
A message box opens and displays the message “The ID must contain 5 characters.”
Close the message box.

4. Next, you will include two leading spaces in the ID. Click immediately before the
letter a in the text box. Press the Spacebar twice, and then type the number 2. The
text box now contains two space characters followed by 2abcd. Click the Add to List
button. 2ABCD appears in the listing of product IDs. See Figure 8-7.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

455

Inserting Characters in a String L E S S O N A

5. On your own, test the application using an ID that contains nine characters. Also test
it using an ID that contains both leading and trailing spaces. When you are finished
testing the application, click the Exit button. Close the Code Editor window and then
close the solution.

Figure 8-7 Sample run of the Product ID application

YOU DO IT 1!

Create an application named YouDoIt 1 and save it in the VB2015\Chap08 folder.
Add a text box, a label, and a button to the form. The button’s Click event procedure
should remove any leading or trailing spaces from the text entered in the text box. If the
remaining text contains more than four characters, the button’s Click event procedure
should display only the first four characters in the label; otherwise, it should display the
remaining text in the label. Code the procedure. Save the solution, and then start and
test the application. Close the solution.

Inserting Characters in a String
Visual Basic’s Insert method allows you to insert characters anywhere in a string. The method’s
syntax is shown in Figure 8-8 along with examples of using the method. In the syntax, string can
be a String variable, a String named constant, or the Text property of a control. When processing
the Insert method, the computer first makes a temporary copy of the string in memory. It
then performs the specified insertion on the copy only. The Insert method does not affect the
original string. The startIndex argument in the Insert method is an integer that specifies where
in the string’s copy you want the value inserted. The integer represents the character’s index—
in other words, its position in the string. To insert the value at the beginning of a string, you
use a startIndex of 0, as shown in Example 1 in Figure 8-8. To insert the value beginning with
the eighth character in the string, you use a startIndex of 7, as shown in Example 2. The Insert
method returns a string with the appropriate characters inserted.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8 String Manipulation

456

Aligning the Characters in a String
You can use Visual Basic’s PadLeft and PadRight methods to align the characters in a string. The
methods do this by inserting (padding) the string with zero or more characters until the string is
a specified length; each method then returns the padded string. The PadLeft method pads the
string on the left, which means it inserts the padded characters at the beginning of the string,
thereby right-aligning the characters within the string. The PadRight method, on the other
hand, pads the string on the right, which means it inserts the padded characters at the end of the
string and left-aligns the characters within the string.

Figure 8-9 shows the syntax of both methods and includes examples of using them. In each
syntax, string can be a String variable, a String named constant, or the Text property of a control.
When processing the PadLeft and PadRight methods, the computer first makes a temporary
copy of the string in memory; it then pads the copy only. The totalChars argument in each
syntax is an integer that represents the total number of characters you want the string’s copy
to contain. The optional padCharacter argument is the character that each method uses to pad
the string until the desired number of characters is reached. If the padCharacter argument is
omitted, the default padding character is the space character.

Inserting Characters in a String

Syntax
string.Insert(startIndex, value)

Example 1
strPhone = "111-2222"
txtPhone.Text = strPhone.Insert(0, "(877) ")
assigns the string “(877) 111-2222” to the txtPhone control’s Text property

Example 2
strName = "Lebron Jefferson"
strName = strName.Insert(7, "K. ")
assigns the string “Lebron K. Jefferson” to the strName variable

Figure 8-8 Syntax and examples of the Insert method

Figure 8-9 Syntax and examples of the PadLeft and PadRight methods (continues)

three space
characters

eight space
characters

Aligning the Characters in a String

Syntax
string.PadLeft(totalChars[, padCharacter])
string.PadRight(totalChars[, padCharacter])

Example 1
strNumber = "300.99"
txtNum.Text = strNumber.PadLeft(9)
assigns the string “ 300.99” to the txtNum control’s Text property

Example 2
strFirst = "Charles"
strFirst = strFirst.PadRight(15)
assigns the string “Charles ” to the strFirst variable

Example 3
dblNet = 633.75
strFormattedNet =
 dblNet.ToString("C2").PadLeft(10, "*"c)
assigns the string “***$633.75” to the strFormattedNet variable (Many
companies use this type of formatting on their employee paychecks because
it makes it more difficult for someone to change the amount.)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

457

Inserting Characters in a String L E S S O N A

Notice that the expression in Example 3 contains the ToString and PadLeft methods. When an
expression contains more than one method, the computer processes the methods from left to
right. In this case, the computer will process the ToString method before processing the PadLeft
method. Also notice the letter c that appears at the end of the padCharacter argument in
Example 3. The letter c is one of the literal type characters in Visual Basic. As you learned in
Chapter 3, a literal type character forces a literal constant to assume a data type other than the
one its form indicates. In this case, the letter c forces the "*" string in the padCharacter argument
to assume the Char (character) data type.

The Net Pay Application
The Net Pay application will use the Insert and PadLeft methods to display an employee’s net
pay with a leading dollar sign, asterisks, and two decimal places.

To code and then test the Net Pay application:

1. Open the VB2015\Chap08\Net Pay Solution\Net Pay Solution (Net Pay Solution.sln)
file. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. Locate the btnFormat_Click procedure. First, the procedure will format the net pay to
include two decimal places. It then will pad the net pay with asterisks until it contains
10 characters. Finally, it will insert a dollar sign at the beginning of the formatted net
pay. Make the shaded modifications shown in Figure 8-10.

Recall that
the literal type
character D
forces a
number to

assume the Decimal
data type.

START HERE

Private Sub btnFormat_Click(sender As Object, e As EventArgs
) Handles btnFormat.Click
 ' format the net pay with two decimal places, then
 ' pad with asterisks and insert a dollar sign as the
 ' first character

 Dim decNet As Decimal
 Dim strFormatted As String

 Decimal.TryParse(txtNetPay.Text, decNet)
 ' format the net pay with two decimal places
 strFormatted = decNet.ToString("n2")
 ' pad the net pay with asterisks until its length is 10
 strFormatted = strFormatted.PadLeft(10, "*"c)
 ' insert a dollar sign as the first character
 strFormatted = strFormatted.Insert(0, "$")

 ' display the net pay, then set the focus
 lblFormatted.Text = strFormatted
 txtNetPay.Focus()
End Sub

Aligning the Characters in a String

Syntax
string.PadLeft(totalChars[, padCharacter])
string.PadRight(totalChars[, padCharacter])

Example 1
strNumber = "300.99"
txtNum.Text = strNumber.PadLeft(9)
assigns the string “ 300.99” to the txtNum control’s Text property

Example 2
strFirst = "Charles"
strFirst = strFirst.PadRight(15)
assigns the string “Charles ” to the strFirst variable

Example 3
dblNet = 633.75
strFormattedNet =
 dblNet.ToString("C2").PadLeft(10, "*"c)
assigns the string “***$633.75” to the strFormattedNet variable (Many
companies use this type of formatting on their employee paychecks because
it makes it more difficult for someone to change the amount.)

Figure 8-10 btnFormat_Click procedure (continues)

Figure 8-9 Syntax and examples of the PadLeft and PadRight methods

 (continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8 String Manipulation

458

3. Save the solution and then start the application. Type 1056 as the net pay and then
click the Format button. The button’s Click event procedure displays $**1,056.00 in
the interface, as shown in Figure 8-11. Click the Exit button. Close the Code Editor
window and then close the solution.

Figure 8-10 btnFormat_Click procedure

Figure 8-11 Interface showing the formatted net pay

YOU DO IT 2!

Create an application named YouDoIt 2 and save it in the VB2015\Chap08 folder. Add a
text box, a label, and a button to the form. Set the text box’s MaxLength property to 5.
The button’s Click event procedure should assign the contents of the text box to a String
variable. It then should remove any leading or trailing spaces from the string stored in
the variable. If the variable contains more than three characters, the procedure should
insert a number sign (#) as the second character and then pad the variable’s value
with asterisks until the variable contains 10 characters. Insert the asterisks at the end
of the string stored in the variable. Finally, the procedure should display the variable’s
contents in the label. Code the procedure. Save the solution, and then start and test the
application. Close the solution.

Searching a String
You can use either the Contains method or the IndexOf method to determine whether a string
contains a specific sequence of characters. Figure 8-12 shows the syntax of both methods. In
each syntax, string can be a String variable, a String named constant, or the Text property of a
control. The subString argument in each syntax represents the sequence of characters for which
you are searching. Both methods perform a case-sensitive search, which means the case of the
subString must match the case of the string in order for both to be considered equal.

 (continued)

Private Sub btnFormat_Click(sender As Object, e As EventArgs
) Handles btnFormat.Click
 ' format the net pay with two decimal places, then
 ' pad with asterisks and insert a dollar sign as the
 ' first character

 Dim decNet As Decimal
 Dim strFormatted As String

 Decimal.TryParse(txtNetPay.Text, decNet)
 ' format the net pay with two decimal places
 strFormatted = decNet.ToString("n2")
 ' pad the net pay with asterisks until its length is 10
 strFormatted = strFormatted.PadLeft(10, "*"c)
 ' insert a dollar sign as the first character
 strFormatted = strFormatted.Insert(0, "$")

 ' display the net pay, then set the focus
 lblFormatted.Text = strFormatted
 txtNetPay.Focus()
End Sub

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

459

Searching a String L E S S O N A

Searching a String

Syntax
string.Contains(subString)
string.IndexOf(subString[, startIndex])

Example 1
strLocation = "Dallas, TX"
blnIsContained = strLocation.Contains("TX")
assigns True to the blnIsContained variable because the string “TX” appears in the
strLocation variable

Example 2
strLocation = "Dallas, TX"
blnIsContained = strLocation.Contains("Tx")
assigns False to the blnIsContained variable because the string “Tx” does not appear
in the strLocation variable

Example 3
strAddress = "75 Park Ave."
If strAddress.ToUpper.Contains("PARK AVE.") Then
the condition evaluates to True because the string “PARK AVE.” appears in the strAddress
variable when the variable’s contents are temporarily converted to uppercase

Example 4
strLocation = "Dallas, TX"
intCharIndex = strLocation.IndexOf("TX")
assigns the number 8 to the intCharIndex variable because the string “TX” appears
in the strLocation variable, beginning with the character whose index is 8

Example 5
strLocation = "Dallas, TX"
intCharIndex = strLocation.IndexOf("Tx")
assigns the number –1 to the intCharIndex variable because the string “Tx” does not
appear in the strLocation variable

Example 6
strAddress = "75 Park Ave."
intCharIndex =
 strAddress.ToLower.IndexOf("park ave.", 5)
assigns the number –1 to the intCharIndex variable because the string “park ave.”
does not appear in the strAddress variable when the search starts with the character
whose index is 5 (the letter r)

The Contains method, which appears in Examples 1 through 3 in Figure 8-12, returns the
Boolean value True when the subString is contained anywhere in the string; otherwise, it returns
the Boolean value False. The Contains method always begins the search with the first character
in the string.

The IndexOf method, which appears in Examples 4 through 6, returns an integer: either −1
or a number that is greater than or equal to 0. The −1 indicates that the subString is not
contained in the string. A number other than −1 is the character index of the subString’s
starting position in the string. Unless you specify otherwise, the IndexOf method starts the
search with the first character in the string. To specify a different starting location, you use
the optional startIndex argument.

Figure 8-12 Syntax and examples of the Contains and IndexOf methods

the Contains method
performs a case-sensitive
search

character index 8

the IndexOf method
performs a case-sensitive
search

the ToLower method
will be evaluated before
the IndexOf method

the ToUpper method will
be evaluated before the
Contains method

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8 String Manipulation

460

Notice that the expression in Example 3 in Figure 8-12 contains two methods: ToUpper and
Contains. Two methods also appear in the expression in Example 6: ToLower and IndexOf.
Recall that when an expression contains more than one method, the computer processes the
methods from left to right. In this case, the computer will process the ToUpper method before
the Contains method in Example 3, and it will process the ToLower method before the IndexOf
method in Example 6.

The City and State Application
The City and State application will use the IndexOf method to locate the comma contained in
a string.

To code and then test the City and State application:

1. Open the VB2015\Chap08\City State Solution\City State Solution (City State
Solution.sln) file. Open the Code Editor window. Replace <your name> and
<current date> in the comments with your name and the current date, respectively.

2. Locate the btnLocate_Click procedure. To begin the search with the first character in
the string, you can use either strCityState.IndexOf(",", 0) or strCityState.
IndexOf(","). You will assign the IndexOf method’s return value to the
intCommaIndex variable. Enter the assignment statement shaded in Figure 8-13.

START HERE

Private Sub btnLocate_Click(sender As Object, e As EventArgs
) Handles btnLocate.Click
 ' displays the index of the comma in a string

 Dim strCityState As String
 Dim intCommaIndex As Integer

 strCityState = txtCityState.Text
 ' determine the comma's index
 intCommaIndex = strCityState.IndexOf(",")

 lblCommaIndex.Text = intCommaIndex.ToString
 txtCityState.Focus()
End Sub

Figure 8-13 btnLocate_Click procedure

3. Save the solution and then start the application. Type Dallas, TX in the text box, and
then click the Locate the Comma button. As Figure 8-14 shows, the comma’s index is 6.

Figure 8-14 Interface showing the comma’s index

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

461

Accessing the Characters in a String L E S S O N A

4. Next, type New York in the text box, and then click the Locate the Comma button.
The –1 that appears in the label indicates that the text box does not contain a comma.
Click the Exit button. Close the Code Editor window and then close the solution.

YOU DO IT 3!

Create an application named YouDoIt 3 and save it in the VB2015\Chap08 folder. Add
a text box, a label, and a button to the form. The button’s Click event procedure should
determine whether a 9 appears anywhere in the text box and then display the result
(either True or False) in the label. Code the procedure. Save the solution, and then start
and test the application. Close the solution.

Accessing the Characters in a String
Visual Basic provides the Substring method for accessing any number of characters in a
string. Figure 8-15 shows the method’s syntax and includes examples of using the method. In
the syntax, string can be a String variable, a String named constant, or the Text property of
a control. The startIndex argument in the syntax is the index of the first character you want
to access. As you already know, the first character in a string has an index of 0. The optional
numCharsToAccess argument specifies the number of characters you want to access. The
Substring method returns a string that contains the number of characters specified in the
numCharsToAccess argument, beginning with the character whose index is startIndex. If you
omit the numCharsToAccess argument, the Substring method returns all characters from the
startIndex position through the end of the string.

Figure 8-15 Syntax and examples of the Substring method

Accessing the Characters in a String

Syntax
string.Substring(startIndex[, numCharsToAccess])

Example 1
strFull = "Laquisha Jones"
strFirst = strFull.Substring(0, 8)
strLast = strFull.Substring(9)
assigns the string “Laquisha” to the strFirst variable and the string “Jones” to the
strLast variable; you also can write the last assignment statement as strLast =
strFull.Substring(9, 5)

Example 2
strEmployeeNum = "38F45"
strDepartment = strEmployeeNum.Substring(2, 1)
assigns the string “F” to the strDepartment variable

character index 0

character index 9

character index 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8 String Manipulation

462

The Rearrange Name Application
You will use the Substring method in the Rearrange Name application. The application’s
interface provides a text box for entering a person’s first name followed by a space and the
person’s last name. The application rearranges the name so that the last name comes first,
followed by a comma, a space, and the first name.

To code and then test the Rearrange Name application:

1. Open the VB2015\Chap08\Rearrange Name Solution\Rearrange Name Solution
(Rearrange Name Solution.sln) file. Open the Code Editor window. Replace <your
name> and <current date> in the comments with your name and the current date,
respectively.

2. Locate the btnRearrange_Click procedure. The procedure assigns the name entered by
the user, excluding any leading or trailing spaces, to the strName variable.

3. Before you can rearrange the name stored in the strName variable, you need to separate
the first name from the last name. To do this, you first search for the space character
that appears between the names. Click the blank line below the ' search for the
space in the name comment, and then enter the following assignment statement,
being sure to include a space character between the quotation marks:

 intIndex = strName.IndexOf(" ")

4. If the value in the intIndex variable is not –1, it means that the IndexOf method found
a space character in the strName variable. In that case, the selection structure’s true
path should continue rearranging the name; otherwise, its false path should display
the “Invalid name format” message. Notice that the statement to display the message
is already entered in the selection structure’s false path. Change the If clause in the
procedure to the following:

 If intIndex <> –1 Then

5. Now you can use the value stored in the intIndex variable to separate the first name
from the last name. Click the blank line below the ' separate the first and last
names comment. All of the characters to the left of the space character represent the
first name, and all of the characters to the right of the space character represent the last
name. Enter the following assignment statements:

 strFirstName = strName.Substring(0, intIndex)
 strLastName = strName.Substring(intIndex + 1)

6. Finally, you will display the rearranged name in the interface. Click the blank line
above the Else clause. Enter the additional assignment statement indicated in
Figure 8-16. Be sure to include a space character after the comma.

Ch08A

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

463

Accessing the Characters in a String L E S S O N A

Figure 8-16 btnRearrange_Click procedure

Private Sub btnRearrange_Click(sender As Object, e As
EventArgs
) Handles btnRearrange.Click
 ' rearranges and then displays a name

 Dim strName As String
 Dim strFirstName As String
 Dim strLastName As String
 Dim intIndex As Integer

 strName = txtName.Text.Trim
 ' search for the space in the name
 intIndex = strName.IndexOf(" ")

 ' if the input contains a space
 If intIndex <> -1 Then
 ' separate the first and last names
 strFirstName = strName.Substring(0, intIndex)
 strLastName = strName.Substring(intIndex + 1)

 ' display last name, comma, space, and first name
 lblRearrangedName.Text =
 strLastName & ", " & strFirstName

 Else ' the name does not contain a space
 MessageBox.Show("Invalid name format",
 "Rearrange Name",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)

 End If
End Sub

enter this
assignment
statement

7. Save the solution and then start the application. Type Sophia Waterson as the name
and then click the Rearrange Name button. The rearranged name appears in the
interface, as shown in Figure 8-17.

Figure 8-17 Interface showing the rearranged name

8. Change the name to Cher and then click the Rearrange Name button. The “Invalid
name format” message appears in a message box. Click the OK button.

9. Click the Exit button. Close the Code Editor window and then close the solution.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8 String Manipulation

464

Using Pattern Matching to Compare Strings

Syntax
string Like pattern

Pattern-matching characters
?

*

#

[characterList]

[!characterList]

Matches in string
any single character

zero or more characters

any single digit (0 through 9)

any single character in the characterList (for example, “[A5T]”
matches A, 5, or T, whereas “[a-z]” matches any lowercase letter)

any single character not in the characterList (for example,
“[!A5T]” matches any character other than A, 5, or T, whereas
“[!a-z]” matches any character that is not a lowercase letter)

Example 1
If strFirst.ToUpper Like "B?LL" Then
The condition evaluates to True when the string stored in the strFirst variable (converted to
uppercase) begins with the letter B followed by one character and then the two letters LL; otherwise,
it evaluates to False. Examples of strings that would make the condition evaluate to True include
“Bill”, “Ball”, “bell”, and “bull”. Examples of strings for which the condition would evaluate to False
include “BPL”, “BLL”, and “billy”.

YOU DO IT 4!

Create an application named YouDoIt 4 and save it in the VB2015\Chap08 folder. Add
a label and a button to the form. The button’s Click event procedure should declare a
String variable named strMessage and initialize it to the 26 uppercase letters of the
alphabet. It then should use the Substring method to display only the letters K, L, M, N,
and O in the label. Code the procedure. Save the solution, and then start and test the
application. Close the solution.

Using Pattern Matching to Compare Strings
The Like operator allows you to use pattern-matching characters to determine whether one
string is equal to another string. Figure 8-18 shows the operator’s syntax and examples of using
the operator. In the syntax, string can be a String variable, a String named constant, or the Text
property of a control. Pattern is a String expression containing one or more of the pattern-
matching characters listed in the figure.

Figure 8-18 Syntax and examples of the Like operator (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

465

Using Pattern Matching to Compare Strings L E S S O N A

Example 2
If txtState.Text Like "K*" Then
The condition evaluates to True when the value in the txtState control’s Text property begins with
the letter K followed by zero or more characters; otherwise, it evaluates to False. Examples of
strings that would make the condition evaluate to True include “KANSAS”, “Ky”, and “Kentucky”.
Examples of strings for which the condition would evaluate to False include “kansas” and “ky”.

Example 3
Do While strId Like "###*"
The condition evaluates to True when the string stored in the strId variable begins with three digits
followed by zero or more characters; otherwise, it evaluates to False. Examples of strings that
would make the condition evaluate to True include “178” and “983Ab”. Examples of strings for
which the condition would evaluate to False include “X34” and “34Z5”.

Example 4
If strFirst.ToUpper Like "T[OI]M" Then
The condition evaluates to True when the string stored in the strFirst variable (converted to
uppercase) is either “TOM” or “TIM”. When the variable does not contain “TOM” or “TIM”—for
example, when it contains “Tam” or “Tommy”—the condition evaluates to False.

Example 5
If strLetter Like "[a-z]" Then
The condition evaluates to True when the string stored in the strLetter variable is one lowercase
letter; otherwise, it evaluates to False.

Example 6
For intIndex As Integer = 0 To strInput.Length – 1
 strChar = strInput.Substring(intIndex, 1)
 If strChar Like "[!a-zA-Z]" Then
 intNonLetter += 1
 End If
Next intIndex
Compares each character contained in the strInput variable with the lowercase and uppercase
letters of the alphabet, and counts the number of characters that are not letters.

Example 7
If strInput Like "*.*" Then
The condition evaluates to True when a period appears anywhere in the strInput variable;
otherwise, it evaluates to False.

Example 8
If strInput.ToUpper Like "[A-Z][A-Z]##" Then
The condition evaluates to True when the value in the strInput variable (converted to uppercase)
is two letters followed by two numbers; otherwise, it evaluates to False.

Figure 8-18 Syntax and examples of the Like operator

 (continued)

As Figure 8-18 indicates, the question mark (?) character in a pattern represents one character
only, whereas the asterisk (*) character represents zero or more characters. To represent a
single digit in a pattern, you use the number sign (#) character. The last two pattern-matching
characters listed in the figure contain a characterList, which is simply a listing of characters.
“[A9M]” is a characterList that contains three characters: A, 9, and M. You can also include a
range of values in a characterList. You do this using a hyphen to separate the lowest value in

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8 String Manipulation

466

the range from the highest value in the range. For example, to include all lowercase letters in a
characterList, you use “[a-z]”. To include both lowercase and uppercase letters in a characterList,
you use “[a-zA-Z]”.

The Like operator performs a case-sensitive comparison of the string to the pattern. If the string
matches the pattern, the Like operator returns the Boolean value True; otherwise, it returns the
Boolean value False.

Modifying the Product ID Application
In the following set of steps, you will modify the Product ID application from earlier in this
lesson. The modified application will ensure that the five characters entered by the user consist
of three letters followed by two numbers.

To modify and then test the Product ID application:

1. Open the Product Solution (Product Solution.sln) file contained in the VB2015\
Chap08\Modified Product Solution folder.

2. Open the Code Editor window and locate the btnAdd_Click procedure. First, you
will change the user’s entry to uppercase. Change the strId = txtId.Text.Trim
statement to the following:

 strId = txtId.Text.Trim.ToUpper

3. Now you can use the Like operator to verify that the user’s entry contains three letters
followed by two numbers. Change the If clause to the following:

 If strId Like "[A-Z][A-Z][A-Z]##" Then

4. In the statement below the If clause, change strId.ToUpper to strId. Finally, change
the message in the MessageBox.Show method to "Invalid product ID". Figure 8-19
shows the modified procedure. The modifications you made are shaded in the figure.

START HERE

Private Sub btnAdd_Click(sender As Object, e As EventArgs
) Handles btnAdd.Click
 ' adds a product ID to a list

 Dim strId As String

 ' remove any leading and trailing spaces
 ' and then convert to uppercase
 strId = txtId.Text.Trim.ToUpper
 ' verify that the ID contains 3 letters followed by 2 numbers
 If strId Like "[A-Z][A-Z][A-Z]##" Then
 lstId.Items.Add(strId)
 Else
 MessageBox.Show("Invalid product ID",
 "Product ID", MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End If
 txtId.Focus()
End Sub

Figure 8-19 Modified Click event procedure for the btnAdd control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

467

Modifying the Product ID Application L E S S O N A

5. Save the solution and then start the application. First, test the application using an
invalid ID. Type abc2f as the product ID and then click the Add to List button. The
“Invalid product ID” message appears in a message box. Close the message box.

6. Next, enter a valid ID. Change the product ID to abc23 and then click the Add to List
button. ABC23 appears in the list of product IDs, as shown in Figure 8-20.

Figure 8-20 Product ID added to the list box

7. On your own, test the application using different valid and invalid IDs. When you are
finished testing the application, click the Exit button. Close the Code Editor window
and then close the solution.

YOU DO IT 5!

Create an application named YouDoIt 5 and save it in the VB2015\Chap08 folder. Add
a text box, a label, and a button to the form. The button’s Click event procedure should
display the message “OK” when the text box contains two numbers followed by zero
or more characters; otherwise, it should display the message “Not OK”. Display the
message in the label control. Code the procedure. Save the solution, and then start and
test the application. Close the solution.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8 String Manipulation

468

Lesson A Summary
 • To manipulate strings in Visual Basic:

Use one of the string manipulation techniques listed in Figure 8-21.

Purpose
stores an integer that
represents the number of
characters contained in a
string

removes any spaces from
both the beginning and
the end of a string

removes characters from a
string

inserts characters in a
string

determines whether a
string contains a specific
sequence of characters;
returns a Boolean value

determines whether a
string contains a specific
sequence of characters;
returns either –1 or an
integer that indicates the
starting position of the
characters in the string

accesses one or more
characters in a string

pads the beginning of a
string with a character
until the string has the
specified number of
characters; right-aligns the
string

Technique
Length property

Trim method

Remove method

Insert method

Contains method

IndexOf method

Substring method

PadLeft method

Syntax
string.Length

string.Trim

string.Remove(startIndex
[, numCharsToRemove])

string.Insert(startIndex, value)

string.Contains(subString)

string.IndexOf(subString[, startIndex])

string.Substring(startIndex
[, numCharsToAccess])

string.PadLeft(totalChars[, padCharacter])

Figure 8-21 String manipulation techniques (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

469

Lesson A Review Questions L E S S O N A

Lesson A Key Terms
Contains method—determines whether a string contains a specific sequence of characters;
returns a Boolean value

IndexOf method—determines whether a string contains a specific sequence of characters;
returns either –1 (if the string does not contain the sequence of characters) or an integer that
represents the starting position of the sequence of characters

Insert method—inserts characters anywhere in a string

Length property—stores an integer that represents the number of characters contained in a string

Like operator—uses pattern-matching characters to determine whether one string is equal to
another string

PadLeft method—right-aligns a string by inserting characters at the beginning of the string

PadRight method—left-aligns a string by inserting characters at the end of the string

Remove method—removes a specified number of characters located anywhere in a string

Substring method—used to access any number of characters contained in a string

Trim method—removes spaces from both the beginning and end of a string

Lesson A Review Questions
1. The txtState control contains the word Alaska followed by one space. Which of the

following statements removes the space from the control’s contents?

a. txtState.Text = txtState.Text.Trim
b. txtState.Text = Trim(txtState.Text)
c. txtState.Text = txtState.Trim
d. txtState.Text.Trim

Important note: The following additional techniques are covered in the Discovery Exercises at the
end of this lesson: the StartsWith and EndsWith methods, the Replace method, the full syntax of the
Trim method, the TrimStart and TrimEnd methods, and the Mid statement.

pads the end of a string
with a character until the
string has the specified
number of characters;
left-aligns the string

uses pattern matching to
compare strings

PadRight method

Like operator

string.PadRight(totalChars[, padCharacter])

string Like pattern

Figure 8-21 String manipulation techniques

 (continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8 String Manipulation

470

2. Which of the following statements assigns the first four characters in the strItem
variable to the strWarehouse variable?

a. strWarehouse = strItem.Assign(0, 4)
b. strWarehouse = strItem.Assign(1, 4)
c. strWarehouse = strItem.Substring(0, 4)
d. strWarehouse = strItem.Substring(1, 4)

3. The strName variable contains the string “Carlson”. Which of the following statements
changes the contents of the variable to the string “Carl”?

a. strName = strName.Remove(0, 4)
b. strName = strName.Remove(4, 3)
c. strName = strName.Remove(5, 3)
d. strName = strName.Remove(5)

4. Which of the following statements changes the contents of the strZip variable from
60521 to 60561?

a. strZip = strZip.Insert(3, "6")
strZip = strZip.Remove(4, 1)

b. strZip = strZip.Insert(4, "6")
strZip = strZip.Remove(3, 1)

c. strZip = strZip.Remove(3, 1)
strZip = strZip.Insert(3, "6")

d. all of the above

5. Which of the following methods can be used to determine whether the strAmount
variable contains the dollar sign?

a. blnResult = strAmount.Contains("$")
b. intResult = strAmount.IndexOf("$")
c. intResult = strAmount.IndexOf("$", 0)
d. all of the above

6. Which of the following statements changes the contents of the strWord variable from
“sting” to “string”?

a. strWord = strWord.AddTo(2, "r")
b. strWord = strWord.Insert(2, "r")
c. strWord = strWord.Insert(3, "r")
d. strWord = strWord.Insert(3, "r"c)

7. If the strPresident variable contains the string “Abraham Lincoln”, what value will
the strPresident.IndexOf("Lincoln") method return?

a. –1
b. 8

c. 9
d. True

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

471

Lesson A Review Questions L E S S O N A

8. If the strWord variable contains the string “chimes”, which of the following statements
assigns the letter m to the strLetter variable?

a. strLetter = strWord.Substring(3)
b. strLetter = strWord.Substring(3, 1)
c. strLetter = strWord.Substring(4, 1)
d. none of the above

9. Which of the following expressions evaluates to True when the strItem variable
contains the string “1234Y5”?

a. strItem Like "####[A-Z]#"
b. strItem Like "9999[A-Z]9"
c. strItem Like "######"
d. none of the above

10. The strName variable contains the string “Jones John”. Which of the following changes
the variable’s contents to the string “Jones, John”?

a. strName = strName.Insert(5, ",")
b. strName = strName.Insert(6, ",")
c. strName = strName.Insert(6, 1, ",")
d. none of the above

11. If the strMsg variable contains the string “The party is Saturday.”, which of the
following assigns the number 13 to the intNum variable?

a. intNum = strMsg.Substring(0, "S")
b. intNum = strMsg.Contains("S")
c. intNum = strMsg.IndexOf("S")
d. intNum = strMsg.IndexOf(0, "S")

12. If the strName variable contains the string “Sam Harris”, which of the following
changes the contents of the variable to the string “Sam H. Harris”?

a. strName = strName.Insert(3, " H.")
b. strName = strName.Insert(4, "H.")
c. strName = strName.Insert(5, "H. ")
d. none of the above

13. The strAmount variable contains the string “245.69”. Which of the following
statements changes the contents of the variable to the string “245.69!!”?

a. strAmount = strAmount.PadLeft(8, "!"c)
b. strAmount = strAmount.PadRight(8, "!"c)
c. strAmount = strAmount.PadRight(2, "!"c)
d. none of the above

14. If the strLocation variable contains the string “75 Oak Avenue”, what will the
strAddress.IndexOf("Oak") method return?

a. –1
b. 3

c. 4
d. True

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8 String Manipulation

472

15. If the strAddress variable contains the string “2345 Hawthorne Blvd”, what will the
strAddress.IndexOf("Hawthorne", 5) method return?

a. –1
b. 5

c. 6
d. False

Lesson A Exercises
1. Write a Visual Basic statement that removes the leading and trailing spaces from the

txtAddress control.

2. Write a Visual Basic statement that uses the Insert method to change the contents of
the strState variable from “Il” to “Illinois”.

3. Using the Insert and Remove methods, write the Visual Basic statements to change the
contents of the strWord variable from “late” to “crate”.

4. The strItem variable contains the string “YMBlueX”. Write a Visual Basic statement
that assigns the string “Blue” from the strItem variable to the strColor variable.

5. Write the Visual Basic statements to accomplish the following tasks:

a. In the lblSize control, display the number of characters contained in the strMsg
variable.

b. Remove the leading and trailing spaces from the strState variable.
c. Use the Insert and Remove methods to change the contents of the strWord

variable from “cater” to “critter”.
d. Use the Insert method to change the contents of the strWord variable from “day” to

“Monday”.
e. Change the contents of the strPay variable from “765.44” to “****765.44”.

6. The strAmount variable contains the string “3,123,560”. Write the Visual Basic
statements to change the contents of the variable to “3123560”; use the Remove method.

7. Write the Visual Basic statement that uses the Contains method to determine whether
the strAddress variable contains the string “Jefferson Street” (entered in uppercase,
lowercase, or a combination of uppercase and lowercase). Assign the method’s return
value to a Boolean variable named blnIsContained.

8. The strAmount variable contains the string “3123560”. Write the Visual Basic
statements to change the variable’s contents to “$3,123,560”.

9. Open the VB2015\Chap08\State Solution\State Solution (State Solution.sln) file. The
interface provides an editable combo box for entering the name of a state. Code the
btnAdd_Click procedure so that it removes any leading and/or trailing spaces from the
state name. If the name contains at least one character, add the name to the combo box.
The procedure should also send the focus to the combo box. Test the application by
entering spaces before and after the following names: South Carolina and Alaska. Also
enter only spaces in the text portion of the combo box.

10. Open the VB2015\Chap08\Prices Solution\Prices Solution (Prices Solution.sln) file.
Modify the frmMain_Load procedure so that it right-aligns the prices listed in the

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

473

Lesson A Exercises L E S S O N A

cboRight control and then selects the first price. Save the solution and then start the
application. (The prices listed in the cboLeft control should still be left-aligned.)

11. Open the VB2015\Chap08\Date Solution\Date Solution (Date Solution.sln) file. The
interface provides a text box for entering a date. The btnChange_Click procedure
should verify that the date was entered in the correct format, which is two numbers
followed by a slash, two numbers, a slash, and two numbers. If the date was not entered
correctly, the procedure should display an appropriate message. However, if the date
was entered correctly, the procedure should change the year number from yy to 20yy
before displaying the date in the lblDate control. Test the application appropriately.

12. Open the VB2015\Chap08\Tax Solution\Tax Solution (Tax Solution.sln) file. The
interface provides a text box and a combo box for entering a sales amount and a tax
rate, respectively. The btnCalc_Click procedure should remove the percent sign and the
space that precedes it from the tax rate before using the rate to calculate the sales tax.
Test the application appropriately.

13. Open the VB2015\Chap08\Zip Solution\Zip Solution (Zip Solution.sln) file. The
btnDisplay_Click procedure should display the correct shipping charge based on the
ZIP code entered by the user. To be valid, the ZIP code must contain exactly five digits,
and the first three digits must be either “605” or “606”. The shipping charge for “605”
ZIP codes is $25. The shipping charge for “606” ZIP codes is $30. Display an appropriate
message if the ZIP code is invalid. Test the application using the following ZIP codes:
60677, 60511, 60344, and 7130.

14. Open the Social Security Solution (Social Security Solution.sln) file contained in the
VB2015\Chap08\Social Security Solution-Remove folder. The interface provides a text
box for entering a Social Security number. The btnRemove_Click procedure should
verify that the Social Security number contains three numbers followed by a hyphen,
two numbers, a hyphen, and four numbers. If the Social Security number is in the
correct format, the procedure should remove the dashes from the number before
displaying the number in the lblNumber control; otherwise, it should display an error
message to the user. Test the application appropriately.

15. Visual Basic provides the StartsWith and EndsWith methods for determining whether a
specific sequence of characters occurs at the beginning or end, respectively, of a string.
The StartsWith method’s syntax is string.StartsWith(subString), and the EndsWith
method’s syntax is string.EndsWith(subString). Open the VB2015\Chap08\City
Solution\City Solution (City Solution.sln) file. The interface provides a text box for the
user to enter the name of a city. The btnAdd_Click procedure should add the city name
to the list box, but only if the city name begins with either the letter L or the letters Ch.
The letters can be entered in uppercase, lowercase, or a combination of uppercase and
lowercase. Test the application appropriately.

16. Visual Basic provides the Replace method for replacing a sequence of characters
in a string with another sequence of characters. The method’s syntax is
string.Replace(oldValue, newValue). When processing the Replace method, the
computer makes a temporary copy of the string in memory; it then replaces the
characters in the copy only. The Replace method returns a string with all occurrences
of oldValue replaced with newValue. Open the Social Security Solution (Social Security
Solution.sln) file contained in the VB2015\Chap08\Social Security Solution-Replace

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

DISCOVERY

DISCOVERY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8 String Manipulation

474

folder. The interface provides a text box for the user to enter a Social Security number.
The btnRemove_Click procedure should verify that the Social Security number
is in the correct format. If it is, the procedure should remove the dashes from the
number before displaying the number in the lblNumber control. Test the application
appropriately.

17. In this lesson, you learned how to use the Trim method to remove space characters
from both the beginning and end of a string. You can also use the Trim method to
remove other characters. The syntax for doing this is string.Trim[(trimChars)]. The
optional trimChars argument is a comma-separated list of characters that you want
removed (trimmed). For example, if the txtInput control contains the string “#$456#”,
you can remove the number signs and dollar sign from the control’s Text property using
the statement txtInput.Text = txtInput.Text.Trim("#"c, "$"c). When
processing the Trim method, the computer makes a temporary copy of the string in
memory; it then removes the characters in the copy only. Open the VB2015\Chap08\
Trim Method Solution\Trim Method Solution (Trim Method Solution.sln) file. The
btnTrim_Click procedure should remove any leading or trailing dollar signs, spaces, or
percent signs. Test the application appropriately.

18. Visual Basic provides the TrimStart and TrimEnd methods for removing one or
more characters from the beginning or end, respectively, of a string. The TrimStart
method’s syntax is string.TrimStart[(trimChars)], and the TrimEnd method’s syntax
is string.TrimEnd[(trimChars)]. The optional trimChars argument is a comma-
separated list of characters that you want removed (trimmed). For example, if the
txtSales control contains the string “$56.80”, you can remove the dollar sign from
the control’s Text property using the statement txtSales.Text = txtSales.
Text.TrimStart("$"c). The default value for the trimChars argument is the
space character (" "c). When processing the TrimStart and TrimEnd methods, the
computer makes a temporary copy of the string in memory; it then removes the
characters from the copy only. Open the VB2015\Chap08\Tax Calculator Solution\Tax
Calculator Solution (Tax Calculator Solution.sln) file. The btnCalc_Click procedure
should calculate and display the sales tax using the amount entered in the text box and
the rate selected in the list box. Be sure to remove any leading dollar signs from the
sales amount. Also remove the trailing percent sign from the rate. Test the application
appropriately.

19. Visual Basic provides the Mid statement for replacing a specified number of characters
in a string with another string. The statement’s syntax is Mid(targetString, start
[, count]) = replacementString. In the syntax, the targetString argument is the string in
which you want characters replaced, and replacementString contains the replacement
characters. The start argument is the position of the first character you want replaced
in the targetString. The first character in the targetString is in position 1; the second is in
position 2, and so on. The optional count argument specifies the number of characters to
replace in the targetString. If the count argument is omitted, the Mid statement replaces
the lesser of either the number of characters in the replacementString or the number of
characters in the targetString from position start through the end of the targetString. Open
the VB2015\Chap08\Area Code Solution\Area Code Solution (Area Code Solution.sln)
file. The interface provides a text box for the user to enter a phone number, including the
area code. The btnChange_Click procedure should verify that the phone number is in
the proper format. If the format is valid, the procedure should use the Mid statement to
change the area code to 800 before displaying the phone number in the lblNew control.
Test the application appropriately.

DISCOVERY

DISCOVERY

DISCOVERY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

475

Adding a Menu to a Form L E S S O N B

❚ LESSON B
After studying Lesson B, you should be able to:

 • Include a MenuStrip control on a form

 • Add elements to a menu

 • Assign access keys to menu elements

 • Enable and disable a control

 • Assign shortcut keys to commonly used menu items

 • Code a menu item’s Click event procedure

 • Include the Like operator in a procedure

Adding a Menu to a Form
The Menus and Toolbars section of the toolbox contains a MenuStrip tool for instantiating a
menu strip control. You use a menu strip control to include one or more menus on a Windows
form. Each menu contains a menu title, which appears on the menu bar at the top of the form.
When you click a menu title, its corresponding menu opens and displays a list of options,
called menu items. The menu items can be commands (such as Open or Exit), separator bars,
or submenu titles. As in all Windows applications, clicking a command on a menu executes
the command, and clicking a submenu title opens an additional menu of options. Each of the
options on a submenu is referred to as a submenu item. You can use a separator bar to visually
group together related items on a menu or submenu. Figure 8-22 identifies the location of these
menu elements. Although you can create many levels of submenus, it is best to use only one level
in your application because including too many layers of submenus can confuse the user.

Each menu element is considered an object and has a set of properties associated with it. The
most commonly used properties for a menu element are the Name and Text properties. The
programmer uses the Name property to refer to the menu element in code. The Text property
stores the menu element’s caption, which is the text that the user sees when he or she is working
with the menu. The caption indicates the purpose of the menu element. Examples of familiar
captions for menu elements include Edit, Save As, Copy, and Exit.

Menu title captions should be one word, with only the first letter capitalized. Each menu title
should have a unique access key. The access key allows the user to open the menu by pressing
the Alt key in combination with the access key. Unlike the captions for menu titles, the
captions for menu items typically consist of one to three words and are entered using book title

Figure 8-22 Location of menu elements

separator bar

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8 String Manipulation

476

capitalization. Each menu item should have an access key that is unique within its menu. The
access key allows the user to select the item by pressing the access key when the menu is open.
If a menu item requires additional information from the user, the Windows standard is to place
an ellipsis (...) at the end of the caption. The ellipsis alerts the user that the menu item requires
more information before it can perform its task.

The menus included in your application should follow the standard Windows conventions. For
example, if your application uses a File menu, it should be the first menu on the menu bar. File
menus typically contain commands for opening, saving, and printing files, as well as exiting the
application. If your application requires Cut, Copy, and Paste commands, the commands should
be placed on an Edit menu, which is usually the second menu on the menu bar.

In the next set of steps, you will add a File menu to the Pizza Game application’s interface. The menu
will contain three menu items: a New Game command, a separator bar, and an Exit command.

To complete the Pizza Game application’s interface:

1. If necessary, start Visual Studio 2015. Open the VB2015\Chap08\Pizza Solution\
Pizza Solution (Pizza Solution.sln) file. If necessary, open the designer, Toolbox, and
Properties windows. The interface contains five labels, nine picture boxes, one text box,
and one button.

2. Click the MenuStrip tool, which is located in the Menus & Toolbars section of the
toolbox. Drag the mouse pointer to the form, and then release the mouse button. A
MenuStrip control named MenuStrip1 appears in the component tray, and the words
“Type Here” appear in a box below the form’s title bar. See Figure 8-23.

Ch08B

START HERE

3. Auto-hide the toolbox. Click the Type Here box on the menu bar, and then type &File.
See Figure 8-24. You use the Type Here box that appears below the menu title to add a
menu item to the File menu. You use the Type Here box that appears to the right of the
menu title to add another menu title to the menu bar.

Figure 8-23 MenuStrip control added to the form

type the first menu title here

MenuStrip
tool

a MenuStrip control appears
in the component tray

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

477

Adding a Menu to a Form L E S S O N B

4. Press Enter and then click the File menu title. Scroll the Properties window until you
see the Text property, which contains &File. Next, scroll to the top of the Properties
window and then click (Name). Type mnuFile and then press Enter.

5. Click the Type Here box that appears below the File menu title. Type &New Game
and then press Enter. Click the New Game menu item, and then change its name to
mnuFileNew.

6. Next, you will add a separator bar to the menu. Place your mouse pointer on the
Type Here box that appears below the New Game menu item, but don’t click the box.
Instead, click the list arrow that appears inside the box. See Figure 8-25.

Figure 8-24 Menu title included on the form

7. Click Separator in the list. A horizontal line, called a separator bar, appears below the
New Game menu item.

8. Click the Type Here box that appears below the separator bar. Type E&xit and then
press Enter. Click the Exit menu item, and then change its name to mnuFileExit.

9. Save the solution and then start the application. Click File on the menu bar. The menu
opens and offers two options separated by a separator bar. See Figure 8-26.

Figure 8-25 Drop-down list

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8 String Manipulation

478

10. Click the Close button on the form’s title bar.

As indicated in Figure 8-26, the text box’s MaxLength and CharacterCasing properties are set to
1 and Upper, respectively, and eight of the picture boxes are invisible. Also, the btnCheck control
is disabled, which means it is not currently available to the user. You disable a control by setting
its Enabled property to False either in the Properties window or in code; you enable it by setting
the property to True (the default value). When a control is disabled, it appears dimmed (grayed
out) during run time, as shown in the figure. The btnCheck control will remain disabled until
the user selects the New Game option on the File menu.

Assigning Shortcut Keys to Menu Items
Commonly used menu items should be assigned shortcut keys. The shortcut keys appear to the
right of a menu item and allow the user to select the item without opening the menu. Examples
of familiar shortcut keys include Ctrl+X and Ctrl+V. In Windows applications that have an Edit
menu, Ctrl+X and Ctrl+V are used to select the Cut and Paste commands, respectively, when
the Edit menu is closed. In the Pizza Game application, you will assign shortcut keys to the New
Game option on the File menu.

To assign shortcut keys to the New Game menu item:

1. Click the New Game menu item on the File menu. Click ShortcutKeys in the
Properties window, and then click the list arrow in the Settings box. A box opens and
allows you to specify a modifier and a key. In this case, the modifier and key will be Ctrl
and N, respectively. Click the Ctrl check box to select it, and then click the list arrow
that appears in the Key combo box. An alphabetical list of keys appears. Scroll the list
until you see the letter N, and then click N in the list. See Figure 8-27.

A menu item’s
access key
can be used
only when the
menu is open.

A menu item’s shortcut
keys can be used only
when the menu
is closed.

START HERE

Figure 8-26 File menu opened during run time

eight of
the picture
boxes are
invisible

btnCheck control
is disabled

MaxLength and CharacterCasing
properties are set to 1 and
Upper, respectively

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

479

Adding a Menu to a Form L E S S O N B

2. Press Enter. Ctrl+N appears in the ShortcutKeys property in the Properties list. It also
appears to the right of the New Game menu item.

3. Auto-hide the Properties window. Save the solution and then start the application.
Click File on the menu bar. See Figure 8-28.

Figure 8-27 Shortcut keys specified in the ShortcutKeys box

4. Click the Close button on the form’s title bar.

GUI DESIGN TIP Menu Standards

 • Menu title captions should be one word, with only the first letter capitalized. Each
menu title should have a unique access key.

 • Menu item captions can be from one to three words. Use book title capitalization,
and assign a unique access key to each menu item on the same menu.

 • Assign unique shortcut keys to commonly used menu items.

 • If a menu item requires additional information from the user, place an ellipsis (...) at
the end of the item’s caption, which is entered in the item’s Text property.

 • Follow the Windows standards for the placement of menu titles and items.

 • Use a separator bar to separate groups of related menu items.

Figure 8-28 Location of the shortcut keys on the menu

shortcut keys

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8 String Manipulation

480

Coding the Exit Menu Item
When the user clicks the Exit option on the File menu, the option’s Click event procedure
should end the application.

To code and then test the Exit menu item:

1. Open the Code Editor window, which contains most of the application’s code. Replace
<your name> and <current date> in the comments with your name and the current
date, respectively.

2. Open the code template for the mnuFileExit_Click procedure. Type Me.Close() and
press Enter.

3. Save the solution and then start the application. Click File on the application’s menu
bar and then click Exit to end the application.

Coding the txtLetter Control’s KeyPress Event
As indicated earlier in Figure 8-26, the text box’s MaxLength and CharacterCasing properties
are set to 1 and Upper, respectively. As a result, the text box will accept one character only. If the
character is a letter of the alphabet, it will be converted to uppercase. In the next set of steps,
you will prevent the text box from accepting a character that is not either a letter of the alphabet
or the Backspace key. You can do this by using an If...Then...Else statement with the following
condition: e.KeyChar Like "[!A-Za-z]" AndAlso e.KeyChar <> ControlChars.Back.
The subcondition on the left side of the AndAlso operator will evaluate to True if the user’s
entry is not one of the uppercase or lowercase letters of the alphabet. The subcondition on the
right side of the AndAlso operator will evaluate to True if the user’s entry is not the Backspace
key. If both subconditions evaluate to True, the compound condition will evaluate to True and
the text box should not accept the user’s entry.

To code and then test the KeyPress event procedure:

1. Locate the txtLetter_KeyPress procedure, and then enter the selection structure shown
in Figure 8-29.

START HERE

START HERE

enter this selection
structure

Figure 8-29 txtLetter_KeyPress procedure

2. Save the solution and then start the application. Type a in the text box. Notice that the
letter is changed to its uppercase equivalent, A. Press the Backspace key to delete the
letter A.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

481

Lesson B Review Questions L E S S O N B

3. Next, try to enter a character other than a letter of the alphabet or the Backspace key;
you won’t be able to do so. Also try to enter more than one letter; here, too, you won’t
be able to do so.

4. Click File on the application’s menu bar and then click Exit. Close the Code Editor
window and then close the solution.

Lesson B Summary
 • To add a MenuStrip control to a form:

Use the MenuStrip tool, which is located in the Menus & Toolbars section of the toolbox.

 • To create a menu:

Replace the words “Type Here” with the menu element’s caption. Assign a meaningful name
and a unique access key to each menu element, with the exception of separator bars.

 • To include a separator bar on a menu:

Place your mouse pointer on a Type Here box, and then click the list arrow that appears
inside the box. Click Separator on the list.

 • To enable/disable a control during run time:

Set its Enabled property to True (enable) or False (disable) either in the Properties window or
in code.

 • To assign shortcut keys to a menu item:

Set the menu item’s ShortcutKeys property.

Lesson B Key Terms
Enabled property—used to enable (True) or disable (False) a control during run time

Menu strip control—used to include one or more menus on a form

Shortcut keys—appear to the right of a menu item and allow the user to select the item without
opening the menu

Lesson B Review Questions
1. The horizontal line in a menu is called _____________________ .

a. a menu bar
b. a separator bar

c. an item separator
d. none of the above

2. The underlined letter in a menu element’s caption is called _____________________ .

a. an access key
b. a menu key

c. a shortcut key
d. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8 String Manipulation

482

3. Which of the following allows the user to access a menu item without opening the menu?

a. an access key
b. a menu key

c. shortcut keys
d. none of the above

4. Which of the following is false?

a. Menu titles should be one word only.
b. Each menu title should have a unique access key.
c. You should assign shortcut keys to commonly used menu titles.
d. Menu items should be entered using book title capitalization.

5. Which property determines whether a control is available to the user during run time?

a. Available
b. Enabled

c. Unavailable
d. Disabled

6. Explain the difference between a menu item’s access key and its shortcut keys.

Lesson B Exercises
1. Use Windows to make a copy of the Net Pay Solution folder from Lesson A. Rename

the copy Net Pay Solution-Menu. Open the Net Pay Solution (Net Pay Solution.sln)
file contained in the Net Pay Solution-Menu folder. Remove the Exit button and its
associated code. Add a File menu that contains an Exit menu item. The menu item
should end the application. Save the solution and then start the application. Use the
Exit menu item to end the application.

2. Open the VB2015\Chap08\Commission Solution\Commission Solution (Commission
Solution.sln) file. Add a File menu that contains an Exit menu item. The menu item
should end the application. Save the solution and then start the application. Use the
Exit menu item to end the application.

3. Open the VB2015\Chap08\Bonus Solution\Bonus Solution (Bonus Solution.sln) file.
Add a File menu and a Calculate menu to the form. Include an Exit menu item on the
File menu. Include two menu items on the Calculate menu: 10% Bonus and 15% Bonus.
Assign shortcut keys to the Calculate menu’s items. The Exit menu item should end
the application. The menu items on the Calculate menu should display the appropriate
bonus: either 10% of the sales or 15% of the sales. Use a program-defined function to
calculate and return the bonus. Test the application appropriately.

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

483

Completing the Pizza Game Application L E S S O N C

❚ LESSON C
After studying Lesson C, you should be able to:

 • Include the Length property in a procedure

 • Include the Substring method in a procedure

 • Include the Like operator in a procedure

 • Include the Remove method in a procedure

 • Include the Insert method in a procedure

 • Include the Contains method in a procedure

Completing the Pizza Game Application
Figure 8-30 shows the Pizza Game application’s TOE chart. You coded the mnuFileExit_
Click and txtLetter_KeyPress procedures in Lesson B. In this lesson, you will complete the
application by coding the mnuFileNew_Click and btnCheck_Click procedures.

Figure 8-30 TOE chart for the Pizza Game application (continues)

Task

1. Clear lblWord, lblIncorrect, and txtLetter
2. Set incorrect guesses counter to 0
3. Get a 6-letter word from player 1, trim spaces,
 and convert to uppercase
4. Determine whether the word contains 6 letters
5. If the word contains 6 letters, display the full pizza
 image in picPizzaStatus, display 6 dashes in lblWord,
 enable btnCheck, and send the focus to txtLetter
6. If the word doesn’t contain 6 letters, display
 “6 letters are required” in a message box and disable
 btnCheck

Object

mnuFileNew

Event

Click

1. Search the word for the letter entered by player 2
2. If the letter is contained in the word, replace the
 appropriate dashes in lblWord; if there aren’t any
 other dashes in the word, the game is over
 because player 2 guessed the word, so display
 “Great guessing!” in a message box, and disable btnCheck
3. If the letter is not contained in the word, display the letter
 in lblIncorrect, add 1 to the incorrect guesses counter,
 and assign the appropriate image to picPizzaStatus; if player
 2 made 7 incorrect guesses, the game is over, so display
 “Sorry, the word is word.” in a message box, and disable
 btnCheck
4. Clear txtLetter and send focus to it

btnCheck Click

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8 String Manipulation

484

mnuFileExit

picFullPizza,
pic6Slices, pic5Slices,
pic4Slices, pic3Slices,
pic2Slices, pic1Slice,
picTray, picPizzaStatus

txtLetter

lblWord

lblIncorrect

None

KeyPress

None

None

End the application

Display the pizza images

Allow only letters and the Backspace key

Display dashes and letters (from mnuFileNew and
btnCheck)

Display the incorrect letters (from mnuFileNew and
btnCheck)

Click

 (continued)

To open the Pizza Game application from Lesson B:

1. If necessary, start Visual Studio 2015. Open the Pizza Solution (Pizza Solution.sln) file
from Lesson B.

2. Open the Code Editor window. The form’s Declarations section declares two class-level
variables, as shown in Figure 8-31. The strWord variable will store the word entered
by player 1, and the intIncorrect variable will keep track of the number of incorrect
letters entered by player 2.

START HERE

Coding the File Menu’s New Game Option
The mnuFileNew_Click procedure is invoked when the user either clicks the New Game option
on the File menu or presses Ctrl+N (the option’s shortcut keys). The procedure’s pseudocode is
shown in Figure 8-32.

Figure 8-30 TOE chart for the Pizza Game application

Figure 8-31 Declaration statements for the class-level variables

class-level
variables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

485

Coding the File Menu’s New Game Option L E S S O N C

Figure 8-32 Pseudocode for the mnuFileNew_Click procedure

mnuFileNew Click event procedure
1. clear secret word from lblWord, incorrect letters from lblIncorrect, and letter from txtLetter
2. assign 0 to the counter variable that keeps track of the number of incorrect letters
3. get a 6-letter word from player 1, trim leading and trailing spaces, and convert to uppercase
4. if the word contains 6 letters
 display the full pizza image in picPizzaStatus
 display 6 dashes in lblWord
 enable btnCheck
 send the focus to txtLetter
 else
 display the “6 letters are required” message in a message box
 disable btnCheck
 end if

To begin coding the mnuFileNew_Click procedure:

1. Open the code template for the mnuFileNew_Click procedure. Type the following
comment and then press Enter twice:

' start a new game

2. According to its pseudocode, the procedure should begin by clearing the contents of
the lblWord, lblIncorrect, and txtLetter controls. Enter the following three assignment
statements:

lblWord.Text = String.Empty
lblIncorrect.Text = String.Empty
txtLetter.Text = String.Empty

3. Next, the procedure should reset the variable that keeps track of the number of
incorrect letters—in this case, the class-level intIncorrect variable—to 0. Type the
following assignment statement and then press Enter twice:

intIncorrect = 0

4. The third step in the pseudocode gets a word that contains six letters from player 1. The
procedure should trim any leading and trailing spaces from the word and also convert
the word to uppercase. Enter the following comment and lines of code. Press Enter
twice after typing the last line.

' get a 6-letter word from player 1
' trim and convert to uppercase
strWord = InputBox("Enter a 6-letter word:",

"Pizza Game").Trim.ToUpper

Next, the procedure should verify that player 1’s word contains exactly six letters. Figure 8-33
shows two ways of accomplishing this task. Example 1 uses the Length property and the
Substring method; both are shaded in the figure. Example 2 uses the Like operator, which also is
shaded in the figure. Although the code in both examples produces the same result, Example 2’s
code is much more concise and easier to understand.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8 String Manipulation

486

Example 1
Dim blnValidWord As Boolean

' determine whether the word contains 6 letters
blnValidWord = True ' assume word is valid
If strWord.Length <> 6 Then
 blnValidWord = False
Else
 Dim intIndex As Integer
 Do While intIndex < 6 AndAlso blnValidWord = True
 If strWord.Substring(intIndex, 1) Like "[!A-Z]" Then
 blnValidWord = False
 End If
 intIndex += 1
 Loop
End If

If blnValidWord = True Then
 instructions to be processed when the word is valid
Else
 instructions to be processed when the word is not valid
End If

Example 2
If strWord Like "[A-Z][A-Z][A-Z][A-Z][A-Z][A-Z]" Then
 instructions to be processed when the word is valid
Else
 instructions to be processed when the word is not valid
End If

Figure 8-33 Two ways of determining whether the word contains six letters

To complete and then test the mnuFileNew_Click procedure:

1. Enter the following comment and If clause:

 ' determine whether the word contains 6 letters
If strWord Like "[A-Z][A-Z][A-Z][A-Z][A-Z]][A-Z]" Then

2. If player 1’s word contains six letters, the selection structure’s true path should display
the image of the full pizza in the picPizzaStatus control. Enter the following comment
and assignment statement:

' display the full pizza image
picPizzaStatus.Image = picFullPizza.Image

3. Next, the true path should display six dashes (one for each letter in the word) in the
lblWord control. Enter the following comment and assignment statement:

' display 6 dashes
lblWord.Text = "------"

4. The final two tasks in the selection structure’s true path enable the btnCheck control
and send the focus to the txtLetter control. Enter the following comment and
statements:

' enable button and set focus
btnCheck.Enabled = True
txtLetter.Focus()

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

487

Coding the File Menu’s New Game Option L E S S O N C

5. Next, you need to code the selection structure’s false path. According to the
pseudocode, the false path should display a message and disable the btnCheck control
when player 1’s word does not contain six letters. Enter the additional code indicated in
Figure 8-34.

Figure 8-34 Selection structure’s false path

enter these
four lines of
code

6. Save the solution and then run the application. Click File and then click New Game.
The Pizza Game dialog box opens and prompts you to enter a word that contains six
letters. Type leaves in the dialog box and then press Enter. Six dashes appear in the
Secret word box. In addition, the Check button is enabled for the user. See Figure 8-35.

7. Next, you will enter a word that contains fewer than six letters. Press Ctrl+n, which
are the shortcut keys for the New Game option. Type fall in the dialog box and then
press Enter. The message “6 letters are required” appears in a message box. Close the
message box. Notice that the Check button is now disabled.

8. On your own, test the procedure using a word that has more than six letters. Also test
it using a word that contains five characters followed by a number. In both cases, the
message “6 letters are required” appears in a message box. When you are finished testing
the procedure, use the Exit option on the game’s File menu to end the application.

Completing the Check Button’s Click Event Procedure
Figure 8-36 shows the pseudocode for the btnCheck_Click procedure. It also shows the
pseudocode for two independent Sub procedures used by the btnCheck_Click procedure:
AssignImage and DetermineGameOver.

Figure 8-35 Result of entering a valid word

six dashes

button is enabled

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8 String Manipulation

488

btnCheck Click event procedure
1. repeat for each letter in player 1’s word
 if the current letter is the same as the letter entered by player 2
 replace the corresponding dash in lblWord
 assign True to the blnDashReplaced variable
 end if
 end repeat
2. if the blnDashReplaced variable contains True
 call the DetermineGameOver procedure to determine whether player 2 guessed the
 word; pass the blnDashReplaced variable
 else
 display player 2’s letter in lblIncorrect
 add 1 to the counter variable that keeps track of the number of incorrect letters
 call the AssignImage procedure to display the appropriate image in picPizzaStatus

 call the DetermineGameOver procedure to determine whether player 2 made 7
 incorrect guesses; pass the blnDashReplaced variable
 end if
3. clear txtLetter and send focus to it

AssignImage procedure
use the value in the counter variable that keeps track of the number of incorrect letters to
assign the appropriate image to picPizzaStatus
 if the counter variable contains:
 1 assign pic6Slices image
 2 assign pic5Slices image
 3 assign pic4Slices image
 4 assign pic3Slices image
 5 assign pic2Slices image
 6 assign pic1Slice image
 7 assign picTray image

DetermineGameOver procedure
if a dash was replaced in player 1’s word
 if there aren’t any other dashes in the word
 display “Great guessing!” in a message box
 disable btnCheck
 end if
else
 if the user entered 7 incorrect letters
 display “Sorry, the word is word.” in a message box
 disable btnCheck
 end if
end if

Figure 8-36 Pseudocode for the btnCheck_Click, AssignImage, and DetermineGameOver
procedures

The AssignImage and DetermineGameOver procedures have already been coded for you.
The Code Editor window also contains most of the btnCheck_Click procedure’s code. You will
complete the procedure in the next set of steps.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

489

Coding the File Menu’s New Game Option L E S S O N C

To complete the btnCheck_Click procedure:

1. Locate the btnCheck_Click procedure. The first step in the procedure’s pseudocode is
a loop that performs its instructions for each letter in player 1’s word. The word, which
is stored in the class-level strWord variable, contains six letters whose indexes are 0, 1,
2, 3, 4, and 5. Click the blank line below the ' look at each letter in the word
comment, and then enter the following For clause:

For intIndex As Integer = 0 To 5

2. Change the Next clause to Next intIndex and then click the blank line below the For
clause.

3. According to the pseudocode, the first instruction in the loop is a selection structure
that compares the current letter in the strWord variable with the letter entered by
player 2. Recall from Lesson A that you can use the Substring method to access an
individual character in a string. The method’s startIndex argument is the index of
the first character you want to access, and its optional numCharsToAccess argument
specifies the number of characters you want to access. Enter the following If clause:

If strWord.Substring(intIndex, 1) = strLetter Then

4. If the current letter in the strWord variable matches player 2’s letter, the selection
structure’s true path should replace the corresponding dash in the lblWord control with
player 2’s letter. You can use the Remove and Insert methods to make the replacement.
Enter the following comments and assignment statements:

' if the letter appears in the word, replace
' the corresponding dash with the letter
lblWord.Text =

lblWord.Text.Remove(intIndex, 1)
lblWord.Text =

lblWord.Text.Insert(intIndex, strLetter)

5. Finally, the selection structure’s true path should assign the Boolean value True to
the blnDashReplaced variable to indicate that a replacement was made. Type
blnDashReplaced = True and then click the blank line below the Next clause.

6. Save the solution.

Before testing the btnCheck_Click procedure, review the code contained in the AssignImage
and DetermineGameOver procedures. Notice that the DetermineGameOver procedure uses the
Contains method to determine whether there are any dashes in the lblWord control.

To test the btnCheck_Click procedure:

1. Start the application. Click File and then click New Game. Type summer in the
input dialog box, and then press Enter. The picPizzaStatus control shows seven slices
of pizza.

2. Type m in the Enter a letter text box, and then press Enter. The letter M replaces two of
the dashes in the Secret word box.

3. Type x in the text box and then press Enter. The letter X appears in the Incorrect letters
box, and the picPizzaStatus control now shows only six slices of pizza.

START HERE

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8 String Manipulation

490

4. Type the following letters in the text box, pressing Enter after typing each one: a, e, s, r,
i, and u. Each time you make an incorrect guess, another slice of pizza is removed from
the picPizzaStatus control.

5. When the Game Over message box opens, drag it to the location shown in Figure 8-37.

6. Close the message box and then press Ctrl+n. Type window in the input dialog box
and then press Enter.

7. Next, type the following letters in the text box, pressing Enter after typing each one:
c, w, t, e, a, n, p, x, and z.

8. When the Game Over message box opens, drag it to the location shown in Figure 8-38.

9. Close the message box. Click File on the application’s menu bar, and then click Exit.
Close the Code Editor window and then close the solution. Figure 8-39 shows the
application’s code.

each missing slice
corresponds to an
incorrect letter

Figure 8-37 Result of guessing the secret word

Figure 8-38 Result of not guessing the secret word

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

491

Coding the File Menu’s New Game Option L E S S O N C

 1 ' Name: Pizza Project
 2 ' Purpose: A game that allows the user to guess a
 3 ' word letter-by-letter
 4 ' Programmer: <your name> on <current date>
 5
 6 Option Explicit On
 7 Option Strict On
 8 Option Infer Off
 9
 10 Public Class frmMain
 11
 12 Private strWord As String
 13 Private intIncorrect As Integer
 14
 15 Private Sub AssignImage()
 16 ' assign appropriate image
 17
 18 Select Case intIncorrect
 19 Case 1
 20 picPizzaStatus.Image = pic6Slices.Image
 21 Case 2
 22 picPizzaStatus.Image = pic5Slices.Image
 23 Case 3
 24 picPizzaStatus.Image = pic4Slices.Image
 25 Case 4
 26 picPizzaStatus.Image = pic3Slices.Image
 27 Case 5
 28 picPizzaStatus.Image = pic2Slices.Image
 29 Case 6
 30 picPizzaStatus.Image = pic1Slice.Image
 31 Case Else
 32 picPizzaStatus.Image = picTray.Image
 33 End Select
 34 End Sub
 35
 36 Private Sub DetermineGameOver(ByVal
 blnADashWasReplaced As Boolean)
 37 ' determine whether the game is over and
 38 ' take the appropriate action
 39
 40 If blnADashWasReplaced Then
 41 ' if the word does not contain any dashes, the game
 42 ' is over because player 2 guessed the word
 43 If lblWord.Text.Contains("-") = False Then
 44 MessageBox.Show("Great guessing!", "Game Over",
 45 MessageBoxButtons.OK,
 46 MessageBoxIcon.Information)
 47 btnCheck.Enabled = False
 48 End If
 49 Else
 50 ' if 7 incorrect guesses, the game is over
 51 If intIncorrect = 7 Then
 52 MessageBox.Show("Sorry, the word is " &
 53 strWord & ".", "Game Over",

Figure 8-39 Pizza Game application’s code (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8 String Manipulation

492

 54 MessageBoxButtons.OK,
 55 MessageBoxIcon.Information)
 56 btnCheck.Enabled = False
 57 End If
 58 End If
 59 End Sub
 60
 61 Private Sub btnCheck_Click(sender As Object, e As EventArgs
) Handles btnCheck.Click
 62 ' check if the letter appears in the word
 63
 64 Dim strLetter As String
 65 Dim blnDashReplaced As Boolean
 66
 67 strLetter = txtLetter.Text
 68
 69 ' look at each letter in the word
 70 For intIndex As Integer = 0 To 5
 71 If strWord.Substring(intIndex, 1) = strLetter Then
 72 ' if the letter appears in the word, replace
 73 ' the corresponding dash with the letter
 74 lblWord.Text =
 75 lblWord.Text.Remove(intIndex, 1)
 76 lblWord.Text =
 77 lblWord.Text.Insert(intIndex, strLetter)
 78 blnDashReplaced = True
 79 End If
 80 Next intIndex
 81
 82 If blnDashReplaced Then
 83 Call DetermineGameOver(blnDashReplaced)
 84 Else ' no dash was replaced
 85 lblIncorrect.Text =
 86 lblIncorrect.Text & " " & strLetter
 87 intIncorrect += 1
 88 Call AssignImage()
 89 Call DetermineGameOver(blnDashReplaced)
 90 End If
 91
 92 ' clear text box and set focus
 93 txtLetter.Text = String.Empty
 94 txtLetter.Focus()
 95 End Sub
 96
 97 Private Sub txtLetter_KeyPress(sender As Object,
 e As KeyPressEventArgs) Handles txtLetter.KeyPress
 98 ' allows only letters and the Backspace key
 99
100 If e.KeyChar Like "[!A-Za-z]" AndAlso
101 e.KeyChar <> ControlChars.Back Then
102 e.Handled = True
103 End If
104 End Sub
105

 (continued)

Figure 8-39 Pizza Game application’s code (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

493

Lesson C Summary L E S S O N C

106 Private Sub mnuFileExit_Click(sender As Object, e As EventArgs
) Handles mnuFileExit.Click
107 Me.Close()
108
109 End Sub
110
111 Private Sub mnuFileNew_Click(sender As Object, e As EventArgs
) Handles mnuFileNew.Click
112 ' start a new game
113
114 lblWord.Text = String.Empty
115 lblIncorrect.Text = String.Empty
116 txtLetter.Text = String.Empty
117 intIncorrect = 0
118
119 ' get a 6-letter word from player 1
120 ' trim and convert to uppercase
121 strWord = InputBox("Enter a 6-letter word:",
122 "Pizza Game").Trim.ToUpper
123
124 ' determine whether the word contains 6 letters
125 If strWord Like "[A-Z][A-Z][A-Z][A-Z][A-Z][A-Z]" Then
126 ' display the full pizza image
127 picPizzaStatus.Image = picFullPizza.Image
128 ' display 6 dashes
129 lblWord.Text = "------"
130 ' enable button and set focus
131 btnCheck.Enabled = True
132 txtLetter.Focus()
133 Else
134 MessageBox.Show("6 letters are required", "Pizza Game",
135 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
136 btnCheck.Enabled = False
137 End If
138 End Sub
139 End Class

 (continued)

Figure 8-39 Pizza Game application’s code

Lesson C Summary
 • To determine the length of a string:

Use the string’s Length property.

 • To access one or more characters in a string:

Use the Substring method.

 • To use pattern matching to compare two strings:

Use the Like operator.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8 String Manipulation

494

 • To remove a specified number of characters located anywhere in a string:

Use the Remove method.

 • To insert characters anywhere in a string:

Use the Insert method.

 • To determine whether a specific character is contained in a string:

Use the Contains method.

Lesson C Key Terms
There are no key terms in Lesson C.

Lesson C Review Questions
1. The strItem variable contains 25 characters. Which of the following For clauses will

access each character contained in the variable, character by character?

a. For intIndex As Integer = 0 To 25
b. For intIndex As Integer = 1 To 25
c. For intIndex As Integer = 0 To strItem.Length – 1
d. For intIndex As Integer = 1 To strItem.Length – 1

2. Which of the following changes the contents of the strName variable from Will
to William?

a. strName = strName.Append(5, "iam")
b. strName = strName.Append(4, "iam")
c. strName = strName.Insert(5, "iam")
d. strName = strName.Insert(4, "iam")

3. If the strWord variable contains the string “Irene Turner”, what value will the
strWord.Contains("e") method return?

a. True
b. False

c. 2
d. 3

4. The strItem variable contains uppercase letters only. Which of the following
determines whether the variable contains either the word “SHIRT” or the word
“SKIRT”?

a. If strItem Like "S[H-K]IRT" Then
b. If strItem Like "S[HK]IRT" Then
c. If strItem = "S[HK]IRT" Then
d. If strItem = "SHIRT" AndAlso strItem = "SKIRT" Then

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

495

Lesson C Exercises L E S S O N C

5. Which of the following returns the Boolean value True when the strPetName variable
contains the string “Felix”?

a. strPetName.Contains("x")
b. strPetName Like "F*"
c. strPetName.Substring(1, 2) = "el"
d. all of the above

Lesson C Exercises
1. Open the VB2015\Chap08\Item Solution\Item Solution (Item Solution.sln) file. The

btnVerify_Click procedure should determine whether the item number was entered
in the required format: two digits, a letter, a hyphen, a letter, a hyphen, and a digit.
The procedure should display a message indicating whether the format is correct or
incorrect. Test the application appropriately.

2. Open the VB2015\Chap08\Color Solution\Color Solution (Color Solution.sln) file. The
btnDisplay_Click procedure should display the color of the item whose item number is
entered by the user. All item numbers contain exactly five characters. All items are available
in four colors: blue, green, red, and white. The third character in the item number indicates
the item’s color, as follows: a B or b indicates Blue, a G or g indicates Green, an R or r
indicates Red, and a W or w indicates White. The procedure should display an appropriate
error message if the item number does not contain exactly five characters, or if the third
character is not one of the valid color characters. Test the application appropriately.

3. In this exercise, you modify the Pizza Game application completed in this lesson. Use
Windows to make a copy of the Pizza Solution folder. Rename the copy Modified Pizza
Solution. Open the Pizza Solution (Pizza Solution.sln) file contained in the Modified
Pizza Solution folder. Modify the code to allow Player 1 to enter a word that contains
any number of letters, up to a maximum of 10 letters. Test the application appropriately.

4. Open the VB2015\Chap08\Reverse Solution\Reverse Solution (Reverse Solution.sln)
file. The interface provides a text box for the user to enter one or more words. The
btnReverse_Click procedure should display the letters in reverse order. In other words,
if the user enters the words “Have a great day”, the procedure should display “yad taerg a
evaH”. Test the application appropriately.

5. Open the VB2015\Chap08\Proper Solution\Proper Solution (Proper Solution.sln)
file. The interface provides a text box for entering a person’s first and last names. The
btnProper_Click procedure should display the first and last names in the proper case.
In other words, the first and last names should begin with an uppercase letter and the
remaining letters should be lowercase. If the user enters only one name, display the
name in proper case. Test the application appropriately.

6. Open the VB2015\Chap08\Shipping Solution\Shipping Solution (Shipping Solution.sln)
file. The interface provides a text box for entering a shipping code, which should consist
of two numbers followed by either one or two letters. The letter(s) represent the delivery
method, as follows: MS represents Mail – Standard, MP represents Mail – Priority, FS
represents FedEx – Standard, FO represents FedEx – Overnight, and U represents UPS.
The btnDelivery_Click procedure should use the Like operator to determine the delivery
method to select in the list box. For example, if the shipping code is 73mp, the procedure
should select the Mail – Priority item in the list box. The procedure should display an

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8 String Manipulation

496

error message when the shipping code does not contain two numbers followed by one
or two letters, or when the letters do not represent a valid delivery method. Test the
application using the following data: 73mp, 34fs, 12u, 78h, 9FO, 88FO, and 34ms.

7. Before completing this exercise, you should complete Lesson A’s Discovery Exercise 16.
Open the VB2015\Chap08\Jacobson Solution\Jacobson Solution (Jacobson Solution.sln)
file. The interface provides a text box for entering a password. The password can
contain five, six, or seven characters; however, none of the characters can be a space.
The btnDisplay_Click procedure should create and display a new password using the
following four rules. First, replace all numbers with the letter B. Second, replace the
vowels A, E, and O with the letter X. Third, replace the vowels I and U with the number 6.
Fourth, reverse the characters in the password. Test the application appropriately.

8. Each salesperson at Rembrandt Auto-Mart is assigned an ID number that consists of
five characters. The first three characters are numbers. The fourth character is a letter:
either the letter N if the salesperson sells new cars or the letter U if the salesperson
sells used cars. The fifth character is also a letter: either the letter F if the salesperson is
a full-time employee or the letter P if the salesperson is a part-time employee. Create
an application, using the following names for the solution and project, respectively:
Rembrandt Solution and Rembrandt Project. Save the application in the VB2015\
Chap08 folder. Create the interface shown in Figure 8-40. Make the Calculate button
the default button. The application should allow the sales manager to enter the ID
and the number of cars sold for as many salespeople as needed. The btnCalc_Click
procedure should display the total number of cars sold by each of the following four
categories of employees: full-time employees, part-time employees, employees selling
new cars, and employees selling used cars. Test the application appropriately.

INTERMEDIATE

ADVANCED

9. Credit card companies typically assign a special digit, called a check digit, to the end
of each customer’s credit card number. The check digit allows companies to verify
that the credit card number was entered accurately. Many methods for creating the
check digit have been developed, including the one you will use in this exercise. Create
an application, using the following names for the solution and project, respectively:
Merryweather Solution and Merryweather Project. Save the application in the
VB2015\Chap08 folder. Create the interface shown in Figure 8-41. Make the Verify button

ADVANCED

Figure 8-40 Sample interface for Exercise 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

497

Lesson C Exercises L E S S O N C

the default button. The interface provides a text box for entering a five-digit credit card
number, with the fifth digit being the check digit. The btnVerify_Click procedure should
use the method shown and illustrated in Figure 8-42 to verify the credit card number. It
should then display a message indicating whether the credit card number is valid or invalid.
For example, if the user enters 18531 as the credit card number, the application should
indicate that the credit card number is valid. However, if the user enters 1853 followed by
either the number 0 or any number from 2 through 9, the application should indicate that
the credit card number is not valid. Test the application appropriately.

Figure 8-41 Sample interface for Exercise 9

Figure 8-42 Check digit algorithm and illustration

Check Digit Algorithm
1. Multiply the second and fourth digits in the credit card number by 2.
2. If multiplying a digit by 2 results in a two-digit number, add both digits together.
3. Add the results of Steps 1 and 2 to the first and third digits in the credit card number.
4. Divide the result of Step 3 by 10. If the remainder is 0, then the check digit is 0. If the
 remainder is not 0, then subtract the remainder from 10. The resulting number will be the
 check digit.
5. Append the check digit to the first four digits in the credit card, resulting in the final
 credit card number.

Illustration
First four digits in credit card number:

Step 1: Multiply the second and fourth digits by 2:

 Result

Step 2: If necessary, add both digits together

Step 3: Add all digits together:

Step 4 Divide by 10; use remainder to get check digit:
 Remainder is not 0, so subtract remainder from 10:

Step 5: Append check digit to first four digits:

1 8 5 3

*2 *2

1 16 5 6

7

1 + 7 + 5 + 6 = 19

19 Mod 10 = 9
10 – 9 = 1

18531

check digit

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8 String Manipulation

498

10. Open the VB2015\Chap08\Count Solution\Count Solution (Count Solution.sln) file.
The interface provides a text box for the user to enter a string. The btnSearch_Click
procedure should prompt the user to enter the sequence of characters for which he
or she wants to search. The procedure should determine the number of times the
sequence of characters appears in the string. Use the IndexOf method to search the
string for the sequence of characters. Save the solution and then start the application.
Enter the string “The weather is beautiful!” (without the quotes), and then click the
Search button. Search for the two characters “ea” (without the quotes). The two
characters appear twice in the string. On your own, test the application using other data.

11. Open the Debug Solution (Debug Solution.sln) file contained in the VB2015\Chap08\
Debug Solution 1 folder. Open the Code Editor window and review the existing code.
Start and then test the application. Notice that the application is not working correctly.
Correct the application’s code, and then test it appropriately.

12. Open the Debug Solution (Debug Solution.sln) file contained in the VB2015\Chap08\
Debug Solution 2 folder. Open the Code Editor window and review the existing code.
Start and then test the application. Notice that the application is not working correctly.
Correct the application’s code, and then test it appropriately.

13. Open the Debug Solution (Debug Solution.sln) file contained in the VB2015\Chap08\
Debug Solution 3 folder. Open the Code Editor window and review the existing code.
Start and then test the application. Notice that the application is not working correctly.
Correct the application’s code, and then test it appropriately.

ADVANCED

SWAT THE BUGS

SWAT THE BUGS

SWAT THE BUGS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 9
Arrays

Coding the Die Tracker Application

In this chapter, you will code an application that simulates the rolling of a die. The
application will display the number of times each of the six die faces appears.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 9 Arrays

500

Previewing the Die Tracker Application
Before you start the first lesson in this chapter, you will preview the completed application
contained in the VB2015\Chap09 folder.

To preview the completed application:

1. Use Windows to locate and then open the VB2015\Chap09 folder. Right-click Die Tracker
(Die Tracker.exe) and then click the Open button. Click the Roll button. A die face
appears in the picRandDie control, and its associated counter label contains the number
1. See Figure 9-1. Because the Roll button’s Click event procedure uses random numbers,
your die face and counter label might be different from those shown in the figure.

START HERE

2. Click the Roll button several more times. Each time you click the button, a die face
appears in the picRandDie control and its associated counter label is updated by 1.

3. Next, click the Start Over button. The contents of the counter labels and the
picRandDie control are cleared. Click the Roll button. A die face appears in the
picRandDie control, and its associated counter label contains the number 1.

4. Click the Exit button.

Before you can begin coding the Die Tracker application, you need to learn about arrays.
One-dimensional arrays are covered in Lessons A and B. Lesson C covers two-dimensional
arrays. You will code the Die Tracker application in Lesson B. Be sure to complete each
lesson in full and do all of the end-of-lesson questions and several exercises before
continuing to the next lesson.

picRandDie (your die face
might be different)

Figure 9-1 Result of clicking the Roll button the first time

counter label (your
counter label might
be different)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

501

Arrays L E S S O N A

❚ LESSON A
After studying Lesson A, you should be able to:

 • Declare and initialize a one-dimensional array

 • Store data in a one-dimensional array

 • Determine the number of array elements and the highest subscript

 • Traverse a one-dimensional array

 • Code a loop using the For Each...Next statement

 • Compute the total and average of a one-dimensional array’s contents

 • Find the highest value in a one-dimensional array

 • Sort a one-dimensional array

Arrays
All of the variables you have used so far have been simple variables. A simple variable, also
called a scalar variable, is one that is unrelated to any other variable in memory. At times,
however, you will encounter situations in which some of the variables are related to each other.
In those cases, it is easier and more efficient to treat the related variables as a group.

You already are familiar with the concept of grouping. The clothes in your closet are probably
separated into groups, such as coats, sweaters, shirts, and so on. Grouping your clothes in this
manner allows you to easily locate your favorite sweater because you only need to look through
the sweater group rather than through the entire closet. You may also have the songs on your
MP3 player grouped by either music type or artist. If the songs are grouped by artist, it will take
only a few seconds to find all of your Katy Perry songs and, depending on the number of Katy
Perry songs you own, only a short time after that to locate a particular song.

When you group together related variables, the group is referred to as an array of variables or, more
simply, an array. You might use an array of 50 variables to store the population of each U.S. state.
Or, you might use an array of eight variables to store the sales made in each of your company’s
eight sales regions. Storing data in an array increases the efficiency of a program because data can
be both stored in and retrieved from the computer’s internal memory much faster than it can be
written to and read from a file on a disk. In addition, after the data is entered into an array, which
typically is done at the beginning of a program, the program can use the data as many times as
necessary without having to enter the data again. Your company’s sales program, for example, can
use the sales amounts stored in an array to calculate the total company sales and the percentage
that each region contributed to the total sales. It can also use the sales amounts in the array either
to calculate the average sales amount or to simply display the sales made in a specific region. As
you will learn in this lesson, the variables in an array can be used just like any other variables. You
can assign values to them, use them in calculations, display their contents, and so on.

The most commonly used arrays in business applications are one-dimensional and two-dimensional.
You will learn about one-dimensional arrays in this lesson and in Lesson B. Two-dimensional arrays
are covered in Lesson C. Arrays having more than two dimensions are beyond the scope of this book.

At this point, it is important to point out that arrays are one of the more challenging topics for
beginning programmers. Therefore, it is important for you to read and study each section in
each lesson thoroughly before moving on to the next section. If you still feel overwhelmed at
the end of a lesson, try reading the lesson again, paying particular attention to the examples and
procedures shown in the figures.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 9 Arrays

502

One-Dimensional Arrays
The variables in an array are stored in consecutive locations in the computer’s internal memory.
Each variable in an array has the same name and data type. You distinguish one variable in a
one-dimensional array from another variable in the same array using a unique number. The
unique number, which is always an integer, is called a subscript. The subscript indicates the
variable’s position in the array and is assigned by the computer when the array is created in
internal memory. The first variable in a one-dimensional array is assigned a subscript of 0, the
second a subscript of 1, and so on.

You refer to each variable in an array by the array’s name and the variable’s subscript, which is
specified in a set of parentheses immediately following the array name. Figure 9-2 illustrates
a one-dimensional array named strScientists that contains three variables. You use
strScientists(0)—read “strScientists sub zero”—to refer to the first variable in the
array. You use strScientists(1) to refer to the second variable in the array, and you use
strScientists(2) to refer to the third (and last) variable in the array. The last subscript in an
array is always one number less than the total number of variables in the array; this is because
array subscripts in Visual Basic (and in many other programming languages) start at 0.

A subscript is
also called an
index.

Figure 9-2 Illustration of the one-dimensional strScientists array

Declaring a One-Dimensional Array
Before you can use an array in a program, you must declare (create) it using one of the two syntax
versions shown in Figure 9-3. The {Dim | Private | Static} portion in each version indicates that
you can select only one of the keywords appearing within the braces. The appropriate keyword
depends on whether you are creating a procedure-level array or a class-level array. ArrayName is
the name of the array, and dataType is the type of data the array variables, referred to as elements,
will store. In syntax Version 1, highestSubscript is an integer that specifies the highest subscript in
the array. Because the first element in a one-dimensional array has a subscript of 0, the array will
contain one element more than the number specified in the highestSubscript argument. In other
words, an array whose highest subscript is 2 will contain three elements. In syntax Version 2,
initialValues is a comma-separated list of values you want assigned to the array elements. Also
included in Figure 9-3 are examples of using both versions of the syntax.

Image by Diane Zak; created with Reallusion CrazyTalk Animator

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

503

One-Dimensional Arrays L E S S O N A

When you use syntax Version 1, the computer automatically initializes each array element when
the array is created. If the array’s data type is String, each element is initialized using the keyword
Nothing. As you learned in Chapter 3, variables initialized to Nothing do not actually contain
the word Nothing; rather, they contain no data at all. Elements in a numeric array are initialized
to the number 0, and elements in a Boolean array are initialized using the Boolean keyword
False. Date array elements are initialized to 12:00 AM January 1, 0001.

Rather than having the computer use a default value to initialize each array element, you can
use syntax Version 2 to specify each element’s initial value when the array is declared. Assigning
initial values to an array is often referred to as populating the array. You list the initial values in
the initialValues section of the syntax, using commas to separate the values, and you enclose the
list of values in braces ({}).

Notice that syntax Version 2 does not include the highestSubscript argument; instead, an
empty set of parentheses follows the array name. The computer automatically calculates the
highest subscript based on the number of values listed in the initialValues section. Because the
first subscript in a one-dimensional array is the number 0, the highest subscript is always one
number less than the number of values listed in the initialValues section. The Dim statement in
Example 3 in Figure 9-3, for instance, creates a four-element array with subscripts of 0, 1, 2, and
3. Similarly, the Private statement in Example 4 creates a five-element array with subscripts of 0,
1, 2, 3, and 4. The arrays are initialized as shown in Figure 9-4.

Like class-level
variables,
class-level
arrays are
declared in the

form’s Declarations
section.

Declaring a One-Dimensional Array

Syntax – Version 1
{Dim | Private | Static} arrayName(highestSubscript) As dataType

Syntax – Version 2
{Dim | Private | Static} arrayName() As dataType = {initialValues}

Example 1
Dim strWarehouse(2) As String
declares a three-element procedure-level array named strWarehouse; each element is
automatically initialized using the keyword Nothing

Example 2
Static intNumbers(4) As Integer
declares a static, five-element procedure-level array named intNumbers; each element is
automatically initialized to 0

Example 3
Dim strBond() As String = {"Goldfinger", "Moonraker",
 "Skyfall", "For Your Eyes Only"}
declares and initializes a four-element procedure-level array named strBond

Example 4
Private dblRates() As Double = {2.5, 3.25, 4.5, 9.75, 5.5}
declares and initializes a five-element class-level array named dblRates

Figure 9-3 Syntax versions and examples of declaring a one-dimensional array

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 9 Arrays

504

Storing Data in a One-Dimensional Array
After an array is declared, you can use another statement to store a different value in an array
element. Examples of such statements include assignment statements and statements that
contain the TryParse method. Figure 9-5 shows examples of both types of statements.

strBond(0) Goldfinger

Moonraker

Skyfall

For Your Eyes Only

strBond(1)

strBond(2)

strBond(3)

dblRates(0)

dblRates(1)

dblRates(2)

dblRates(3)

dblRates(4)

2.5

3.25

4.5

9.75

5.5

Figure 9-4 Illustration of the strBond and dblRates arrays

Storing Data in a One-Dimensional Array

Example 1
strWarehouse(0) = "Nashville"
assigns the string “Nashville” to the first element in the strWarehouse array

Example 2
For intX As Integer = 1 To 5
 intNumbers(intX - 1) = intX ^ 2
Next intX
assigns the squares of the numbers from 1 through 5 to the intNumbers array

Example 3
Dim intSub As Integer
Do While intSub < 5
 intNumbers(intSub) = 100
 intSub += 1
Loop
assigns the number 100 to each element in the intNumbers array

Example 4
dblRates(1) = dblRates(1) * 1.25
multiplies the contents of the second element in the dblRates array by 1.25 and then
assigns the result to the element; you also can write this statement as dblRates(1) *= 1.25

Example 5
Double.TryParse(txtRate.Text, dblRates(2))
assigns either the value entered in the txtRate control (converted to Double) or the number 0
to the third element in the dblRates array

Figure 9-5 Examples of statements used to store data in a one-dimensional array

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

505

One-Dimensional Arrays L E S S O N A

Determining the Number of Elements in a One-Dimensional Array
The number of elements in a one-dimensional array is stored as an integer in the array’s
Length property. Figure 9-6 shows the property’s syntax and includes an example of using the
property. The Length function is highlighted in the example.

Using a One-Dimensional Array’s Length Property

Syntax
arrayName.Length

Example
Dim strNames(3) As String
Dim intNumElements As Integer
intNumElements = strNames.Length
assigns the number 4 to the intNumElements variable

Using a One-Dimensional Array’s GetUpperBound Method

Syntax
arrayName.GetUpperBound(0)

Example
Dim strNames(3) As String
Dim intHighestSub As Integer
intHighestSub = strNames.GetUpperBound(0)
assigns the number 3 to the intHighestSub variable

Figure 9-6 Syntax and an example of a one-dimensional array’s Length property

Figure 9-7 Syntax and an example of a one-dimensional array’s GetUpperBound method

Determining the Highest Subscript in a One-Dimensional Array
As you learned earlier, the highest subscript in a one-dimensional array is always one number
less than the number of array elements. Therefore, one way to determine the highest subscript
is by subtracting the number 1 from the array’s Length property. However, you also can use
the array’s GetUpperBound method, as shown in Figure 9-7. The GetUpperBound method
returns an integer that represents the highest subscript in the specified dimension in the array.
When used with a one-dimensional array, the specified dimension, which appears between the
parentheses after the method’s name, is always 0. (The GetUpperBound method is highlighted in
the example.)

the specified dimension
for a one-dimensional
array is always 0

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 9 Arrays

506

Traversing a One-Dimensional Array
At times, you may need to traverse an array, which means to look at each array element, one by
one, beginning with the first element and ending with the last element. You traverse an array
using a loop. Figure 9-8 shows two examples of loops that traverse the strBond array, displaying
each element’s value in the lstBondMovies control.

YOU DO IT 1!

Create an application named YouDoIt 1 and save it in the VB2015\Chap09 folder. Add
two labels and a button to the form. The button’s Click event procedure should declare
and initialize an Integer array named intNums. Use the following numbers to initialize
the array: 2, 4, 6, 8, 10, and 12. The procedure should display the number of array
elements in the label controls. Use the Length property for one of the labels, and use the
GetUpperBound method for the other label. Code the procedure. Save the solution, and
then start and test the application. Close the solution.

Traversing a One-Dimensional Array

Example 1—For…Next
Dim intHighSub As Integer = strBond.GetUpperBound(0)
For intSub As Integer = 0 To intHighSub
 lstBondMovies.Items.Add(strBond(intSub))
Next intSub

Example 2—Do…Loop
Dim intHighSub As Integer = strBond.Length - 1
Dim intSub As Integer
Do While intSub <= intHighSub
 lstBondMovies.Items.Add(strBond(intSub))
 intSub += 1
Loop

Figure 9-8 Examples of loops used to traverse a one-dimensional array

To code and then test the Bond Movies application:

1. If necessary, start Visual Studio 2015. Open the VB2015\Chap09\Bond Solution\Bond
Solution (Bond Solution.sln) file. Open the Code Editor window. Replace <your name>
and <current date> in the comments with your name and the current date, respectively.

2. Locate the code template for the frmMain_Load procedure. Click the blank line above
the End Sub clause. Type the following array declaration statement and then press
Enter twice:

 Dim strBond() As String = {"Goldfinger", "Moonraker",
 "Skyfall", "For Your Eyes Only"}

3. The procedure will use the array to fill the list box with values. Enter the lines of code
shown in either Example 1 or Example 2 in Figure 9-8.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

507

The For Each...Next Statement L E S S O N A

4. Finally, the procedure will select the first item in the list box. Insert a blank line above
the End Sub clause, and then enter the following assignment statement:

 lstBondMovies.SelectedIndex = 0

5. Save the solution and then start the application. The frmMain_Load procedure creates
and initializes the strBond array. The first time the procedure’s loop is processed, the
intSub variable contains the number 0. Therefore, the Add method in the loop adds the
contents of the strBond(0) element (Goldfinger) to the list box. The loop then increases
the intSub variable’s value by 1, giving 1. When the loop is processed the second time,
the Add method in the loop adds the contents of the strBond(1) element (Moonraker)
to the list box, and so on. The loop instructions will be repeated for each element in the
strBond array. The loop stops when the intSub variable contains the number 4, which
is one number more than the highest subscript in the array. The statement you entered in
Step 4 invokes the list box’s SelectedValueChanged event procedure, which displays the
selected item in the You selected box, as shown in Figure 9-9.

Figure 9-9 Sample run of the Bond Movies application

6. Click Skyfall in the list box. Skyfall appears in the You selected box.

7. Click the Exit button. Close the Code Editor window and then close the solution.

The For Each...Next Statement
In addition to coding loops using the Do...Loop and For...Next statements, which you learned
about in Chapter 6, you also can use the For Each...Next statement. The For Each...Next
statement provides a convenient way of coding a loop whose instructions you want processed
for each element in a group, such as for each variable in an array. An advantage of using the
For Each...Next statement to process an array is that your code does not need to keep track
of the array subscripts or even know the number of array elements. However, unlike the
loop instructions in a Do...Loop or For...Next statement, the instructions in a For Each...Next
statement can only read the array values; they cannot permanently modify the values.

Figure 9-10 shows the For Each...Next statement’s syntax. The elementVariableName that
appears in the For Each and Next clauses is the name of a variable that the computer can use to
keep track of each element in the group. The variable’s data type is specified in the As dataType
portion of the For Each clause and must be the same as the group’s data type. A variable declared
in the For Each clause has block scope (which you learned about in Chapter 4) and is recognized
only by the instructions within the For Each...Next loop. The example in Figure 9-10 shows how
to write the loops from Figure 9-8 using the For Each...Next statement.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 9 Arrays

508

To use the For Each...Next statement in the Bond Movies application:

1. Open the Bond Solution (Bond Solution.sln) file contained in the VB2015\Chap09\Bond
Solution-ForEachNext folder. Open the Code Editor window. Replace <your name> and
<current date> in the comments with your name and the current date, respectively.

2. Locate the frmMain_Load procedure. Click the blank line above the assignment
statement, and then enter the lines of code shown in the example in Figure 9-10.

3. Save the solution and then start the application. The four array values appear in the list
box, as shown earlier in Figure 9-9. Click each movie title, one at a time, to verify that
the application works correctly.

4. Click the Exit button. Close the Code Editor window and then close the solution.

Calculating the Average Stock Price
Figure 9-11 shows the problem specification for the Waterson Company application, which
displays the average price of the company’s stock.

START HERE

Although you
do not need to
specify the
elementVari-
ableName in

the Next clause, doing
so is highly recom-
mended because it
makes your code
clearer and easier to
understand.

YOU DO IT 2!

Create an application named YouDoIt 2 and save it in the VB2015\Chap09 folder. Add a
button and three list boxes to the form. The button’s Click event procedure should declare
and initialize a one-dimensional String array. Use any four names to initialize the array. The
procedure should display the contents of the array three times: first using the For Each...Next
statement, then using the Do...Loop statement, and then using the For...Next statement.
Display the array contents in the list boxes. Code the procedure. Save the solution, and then
start and test the application. Close the solution.

For Each…Next Statement

Syntax
For Each elementVariableName As dataType In group
 loop body instructions
Next elementVariableName

Example
For Each strElement As String In strBond
 lstBondMovies.Items.Add(strElement)
Next strElement

Figure 9-10 Syntax and an example of the For Each…Next statement

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

509

Calculating the Average Stock Price L E S S O N A

To begin coding the Waterson Company application:

1. Open the Stock Solution (Stock Solution.sln) file contained in the VB2015\Chap09\
Stock Solution-Avg folder. Open the Code Editor window. Replace <your name> and
<current date> in the comments with your name and the current date, respectively.

2. The application will store the daily stock prices in a class-level array named dblPrices.
A class-level array is appropriate in this case because more than one procedure (namely,
the frmMain_Load and btnCalc_Click procedures) will need access to the array.
Click the blank line below the ' class-level array comment, and then enter the
following Private statement:

 Private dblPrices() As Double = {91.8, 91.6, 92,
 90, 90.5, 90.05, 90.12, 90.7, 90.8, 90.83}

3. Locate the frmMain_Load procedure. The procedure will use the For Each...Next
statement to fill the list box with the prices stored in the array. Enter the loop shown in
Figure 9-12.

START HERE

Problem Specification

Create an application that displays the average price of the Waterson Company stock. The stock
prices for the last 10 days were $91.80, $91.60, $92.00, $90.00, $90.50, $90.05, $90.12,
$90.70, $90.80, and $90.83. The application should store the daily stock prices in a one-
dimensional array and also display the prices in a list box. The average stock price is calculated
by first accumulating the prices stored in the array and then dividing the sum by the number of array
elements.

Figure 9-11 Problem specification for the Waterson Company application

Figure 9-12 frmMain_Load procedure

enter this loop

4. Locate the btnCalc_Click procedure. The procedure declares two variables named
dblTotal and dblAvg. The dblTotal variable will be used to accumulate the prices
stored in the array. The dblAvg variable will store the average price.

Figure 9-13 shows three examples of code you could use to accumulate the values stored in
the array. In each example, a loop is used to add each array element’s value to the dblTotal
variable. Notice that you need to specify the highest array subscript in the Do...Loop and
For...Next statements, but not in the For Each...Next statement. The Do...Loop and For...Next
statements must also keep track of the array subscripts; this task is not necessary in the For
Each...Next statement. When each loop has finished processing, the dblTotal variable contains
the sum of the daily prices stored in the array.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 9 Arrays

510

To finish coding the Waterson Company application:

1. In the btnCalc_Click procedure, enter the comment and code shown in any of the three
examples from Figure 9-13.

2. Next, the procedure will calculate the average price by dividing the value stored in the
dblTotal variable by the number of array elements. It then will display the average
price. Click the blank line above the End Sub clause, and then enter the following
comment and assignment statements:

 ' calculate and display average
 dblAvg = dblTotal / dblPrices.Length
 lblAvg.Text = dblAvg.ToString("c2")

3. Save the solution and then start the application. Click the Calculate button. See Figure 9-14.

START HERE

Figure 9-13 Examples of accumulating the array values

Figure 9-14 Average stock price shown in the interface

Example 1—Do…Loop statement
Dim intHighSub As Integer = dblPrices.GetUpperBound(0)
Dim intSub As Integer

' accumulate stock prices
Do While intSub <= intHighSub
 dblTotal += dblPrices(intSub)
 intSub += 1
Loop

Example 2—For…Next statement
Dim intHighSub As Integer = dblPrices.GetUpperBound(0)

' accumulate stock prices
For intSub As Integer = 0 To intHighSub
 dblTotal += dblPrices(intSub)
Next intSub

Example 3—For Each…Next statement
' accumulate stock prices
For Each dblDay As Double In dblPrices
 dblTotal += dblDay
Next dblDay

Ch09A

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

511

Finding the Highest Value L E S S O N A

4. Click the Exit button. Close the Code Editor window and then close the solution.

Finding the Highest Value
Figure 9-15 shows the problem specification for a different Waterson Company application.
Rather than displaying the average stock price, this application displays the highest stock price
and the number of days the stock closed at that price.

YOU DO IT 3!

Create an application named YouDoIt 3 and save it in the VB2015\Chap09 folder. Add
three labels and a button to the form. The button’s Click event procedure should declare
and initialize a one-dimensional Integer array. Use any five integers to initialize the array.
The procedure should total the five integers and then display the result in the labels.
Use the Do...Loop statement to calculate the total to display in the first label. Use the
For Each...Next statement to calculate the total to display in the second label. Use the
For...Next statement to calculate the total to display in the third label. Code the procedure.
Save the solution, and then start and test the application. Close the solution.

Problem Specification

Create an application that displays the highest price for the Waterson Company stock and the
number of days the stock closed at that price. The application should store the daily stock prices in
a one-dimensional array and also display the prices in a list box. The application will need to examine
each element in the array, looking for the highest price. A counter variable will be used to keep track
of the number of array elements containing that price.

Figure 9-15 Problem specification for a different Waterson Company application

Figure 9-16 Pseudocode and flowchart for the btnCalc_Click procedure (continues)

To open this version of the Waterson Company application:

1. Open the Stock Solution (Stock Solution.sln) file contained in the VB2015\Chap09\
Stock Solution-Highest folder. Open the Code Editor window. Replace <your name>
and <current date> in the comments with your name and the current date, respectively.

2. Notice that the Code Editor window already contains the declaration statement for the
class-level dblPrices array. It also contains the completed frmMain_Load procedure.

3. Locate the btnCalc_Click procedure. The procedure declares the intLastSub variable
and initializes it to the highest subscript in the dblPrices array. The procedure also
contains the statements to display the two output items.

Figure 9-16 shows the pseudocode and flowchart for the btnCalc_Click procedure, which
is responsible for determining the highest price stored in the array and the number of elements
containing that price. You will use the For...Next statement to code the procedure’s loop;
however, you could also use either the For Each...Next statement or the Do...Loop statement.

START HERE

1. assign the first array element’s price as the highest price
2. set the number of days counter to 1
3. repeat for each element in the array
 if the price stored in the current element is equal to the highest price
 add 1 to the number of days counter
 else
 if the price stored in the current element is greater than the highest price
 assign the current element’s price as the highest price
 set the number of days counter to 1
 end if
 end if
 end repeat
4. display the highest price and the number of days the stock closed at that price

current array
price =

highest price

TF

display
highest
price

stop

set number of days counter to 1

intSub

1 > highest
subscript

1

F

current
array price
> highest

price

T

assign current array price
as highest price

set number of days
counter to 1

F

T

display
number of

days

add 1 to number of
days counter

assign first array element’s price as highest price

start

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 9 Arrays

512

Figure 9-16 Pseudocode and flowchart for the btnCalc_Click procedure

1. assign the first array element’s price as the highest price
2. set the number of days counter to 1
3. repeat for each element in the array
 if the price stored in the current element is equal to the highest price
 add 1 to the number of days counter
 else
 if the price stored in the current element is greater than the highest price
 assign the current element’s price as the highest price
 set the number of days counter to 1
 end if
 end if
 end repeat
4. display the highest price and the number of days the stock closed at that price

current array
price =

highest price

TF

display
highest
price

stop

set number of days counter to 1

intSub

1 > highest
subscript

1

F

current
array price
> highest

price

T

assign current array price
as highest price

set number of days
counter to 1

F

T

display
number of

days

add 1 to number of
days counter

assign first array element’s price as highest price

start

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

513

Finding the Highest Value L E S S O N A

To code and then test the btnCalc_Click procedure:

1. The procedure will use a variable named dblHighest to keep track of the highest price
in the array. When searching an array for the highest (or lowest) value, it’s a common
programming practice to initialize the variable to the value stored in the first array
element. Click the blank line below the existing Dim statement, and then enter the
following Dim statement:

 Dim dblHighest As Double = dblPrices(0)

2. Next, the procedure will declare and initialize a counter variable to keep track of
the number of elements (days) whose stock price matches the value stored in the
dblHighest variable. The procedure will initialize the variable to 1 because, at this
point, only one element (the first one) contains the price currently stored in the
dblHighest variable. Type the following Dim statement and then press Enter twice:

 Dim intDays As Integer = 1

3. Next, the procedure will use the For...Next statement to traverse the second through
the last elements in the array. Each element’s value will be compared, one at a time, to
the value stored in the dblHighest variable. You don’t need to look at the first element
because its value is already contained in the dblHighest variable. Enter the following
For clause:

 For intSub As Integer = 1 To intLastSub

4. Change the Next clause to Next intSub, and then click the blank line below the For
clause.

5. The first instruction in the loop will determine whether the price stored in the current
array element is equal to the price stored in the dblHighest variable. Enter the
following If clause:

 If dblPrices(intSub) = dblHighest Then

6. If both prices are equal, the selection structure’s true path will add 1 to the intDays
counter variable. Enter the following assignment statement:

 intDays += 1

7. If both prices are not equal, the selection structure’s false path will determine whether
the price stored in the current array element is greater than the price stored in the
dblHighest variable. Enter the following Else and If clauses:

 Else
 If dblPrices(intSub) > dblHighest Then

8. If the price in the current array element is greater than the price in the dblHighest
variable, the nested selection structure’s true path should assign the higher value to the
dblHighest variable. It also should reset the number of days counter to 1 because, at
this point, only one element (the current one) contains that price. Enter the additional
two assignment statements shaded in Figure 9-17.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 9 Arrays

514

9. Save the solution and then start the application. Click the Calculate button. See Figure 9-18.

Private Sub btnCalc_Click(sender As Object, e As EventArgs
) Handles btnCalc.Click
 ' displays the highest stock price and number of
 ' days the stock closed at that price

 Dim intLastSub As Integer = dblPrices.GetUpperBound(0)
 Dim dblHighest As Double = dblPrices(0)
 Dim intDays As Integer = 1

 For intSub As Integer = 1 To intLastSub
 If dblPrices(intSub) = dblHighest Then
 intDays += 1
 Else
 If dblPrices(intSub) > dblHighest Then
 dblHighest = dblPrices(intSub)
 intDays = 1
 End If
 End If
 Next intSub

 lblHighest.Text = dblHighest.ToString("c2")
 lblDays.Text = intDays.ToString
End Sub

Figure 9-17 btnCalc_Click procedure

Figure 9-18 Highest price and number of days shown in the interface

searches the
second through
the last array
elements

assigns the
first element’s
value and the
number 1 to
the appropriate
variables

10. Click the Exit button. Close the Code Editor window and then close the solution.

YOU DO IT 4!

Create an application named YouDoIt 4 and save it in the VB2015\Chap09 folder. Add a label
and a button to the form. The button’s Click event procedure should declare and initialize
a one-dimensional Double array. Use any six numbers to initialize the array. The procedure
should display (in the label) the lowest value stored in the array. Code the procedure using
the For...Next statement. Save the solution, and then start and test the application. Close
the solution.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

515

Sorting a One-Dimensional Array L E S S O N A

Sorting a One-Dimensional Array
In some applications, you might need to arrange the contents of an array in either ascending or
descending order. Arranging data in a specific order is called sorting. When an array is sorted
in ascending order, the first element in the array contains the smallest value and the last element
contains the largest value. When an array is sorted in descending order, on the other hand, the
first element contains the largest value and the last element contains the smallest value.

You can use the Array.Sort method to sort the values in a one-dimensional array in ascending
order. To sort the values in descending order, you first use the Array.Sort method to sort the
values in ascending order, and then you use the Array.Reverse method to reverse the values.
Figure 9-19 shows the syntax of both methods. In each syntax, arrayName is the name of a
one-dimensional array.

Array.Sort and Array.Reverse Methods

Syntax
Array.Sort(arrayName)
Array.Reverse(arrayName)

Example 1
Dim intScores() As Integer = {78, 90, 75, 83}
Array.Sort(intScores)
sorts the contents of the array in ascending order, as follows: 75, 78, 83, and 90

Example 2
Dim intScores() As Integer = {78, 90, 75, 83}
Array.Reverse(intScores)
reverses the contents of the array, placing the values in the following order: 83, 75, 90, and 78

Example 3
Dim intScores() As Integer = {78, 90, 75, 83}
Array.Sort(intScores)
Array.Reverse(intScores)
sorts the contents of the array in ascending order and then reverses the contents, placing the
values in descending order as follows: 90, 83, 78, and 75

Figure 9-19 Syntax and examples of the Array.Sort and Array.Reverse methods

You will use the Array.Sort and Array.Reverse methods in the Continent application, which you
finish coding in the next set of steps. The application stores the names of the seven continents in
a one-dimensional array named strContinents. It then allows the user to display the names in
a list box, in either ascending or descending order.

To complete and then test the Continent application:

1. Open the VB2015\Chap09\Continent Solution\Continent Solution (Continent
Solution.sln) file. Open the Code Editor window. Replace <your name> and <current
date> in the comments with your name and the current date, respectively.

2. Notice that the Code Editor already contains the declaration statement for the class-
level strContinents array. It also contains the declaration statement for the class-level
intLastSub variable, which is initialized to the highest subscript in the array. The array
and variable were declared as class-level memory locations because both need to be
accessed by more than one procedure.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 9 Arrays

516

3. Locate the btnAscending_Click and btnDescending_Click procedures. Both procedures
contain the lstContinents.Items.Clear() statement, which clears the contents of
the list box. Both procedures also contain a loop to display the array contents in the list
box. Enter the three statements shaded in Figure 9-20.

' class-level array and variable
Private strContinents() As String = {"North America", "Africa",
 "South America", "Antarctica", "Australia", "Asia", "Europe"}
Private intLastSub As Integer = strContinents.GetUpperBound(0)

Private Sub btnAscending_Click(sender As Object, e As EventArgs
) Handles btnAscending.Click
 ' sorts the array values in ascending order

 lstContinents.Items.Clear()
 Array.Sort(strContinents)
 For intSub As Integer = 0 To intLastSub
 lstContinents.Items.Add(strContinents(intSub))
 Next intSub
End Sub

Private Sub btnDescending_Click(sender As Object, e As EventArgs
) Handles btnDescending.Click
 ' sorts the array values in descending order

 lstContinents.Items.Clear()
 Array.Sort(strContinents)
 Array.Reverse(strContinents)
 For intSub As Integer = 0 To intLastSub
 lstContinents.Items.Add(strContinents(intSub))
 Next intSub
End Sub

Figure 9-20 Most of the Continent application’s code

declared in the form’s
Declarations section

4. Save the solution and then start the application. Click the Ascending Order button to
display the names in ascending order. See Figure 9-21.

Figure 9-21 Continent names displayed in ascending order

5. Click the Descending Order button to display the names in descending order.

6. Click the Exit button. Close the Code Editor window and then close the solution.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

517

Lesson A Key Terms L E S S O N A

Lesson A Summary
 • To refer to an element in a one-dimensional array:

Use the array’s name followed by the element’s subscript. The subscript is specified in a set of
parentheses immediately following the array name.

 • To declare a one-dimensional array:

Use either of the syntax versions shown below. The highestSubscript argument in Version 1
is an integer that specifies the highest subscript in the array. Using Version 1’s syntax, the
computer automatically initializes the array elements. The initialValues section in Version 2 is
a list of values separated by commas and enclosed in braces. The values are used to initialize
each element in the array.

Version 1: {Dim | Private | Static} arrayName(highestSubscript) As dataType

Version 2: {Dim | Private | Static} arrayName() As dataType = {initialValues}

 • To determine the number of elements in a one-dimensional array:

Use the array’s Length property as follows: arrayName.Length. Alternatively, you can add the
number 1 to the value returned by the array’s GetUpperBound method.

 • To determine the highest subscript in a one-dimensional array:

Use the array’s GetUpperBound method as follows: arrayName.GetUpperBound(0).
Alternatively, you can subtract the number 1 from the value stored in the array’s Length
property.

 • To traverse (or look at) each element in a one-dimensional array:

Use a loop coded with one of the following statements: Do...Loop, For...Next, or
For Each...Next.

 • To process instructions for each element in a group:

Use the For Each...Next statement. The statement’s syntax is shown in Figure 9-10.

 • To sort the values stored in a one-dimensional array in ascending order:

Use the Array.Sort method. The method’s syntax is Array.Sort(arrayName).

 • To reverse the order of the values stored in a one-dimensional array:

Use the Array.Reverse method. The method’s syntax is Array.Reverse(arrayName).

Lesson A Key Terms
Array—a group of related variables that have the same name and data type and are stored in
consecutive locations in the computer’s internal memory

Array.Reverse method—reverses the order of the values stored in a one-dimensional array

Array.Sort method—sorts the values stored in a one-dimensional array in ascending order

Elements—the variables in an array

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

518

C H A P T E R 9 Arrays

For Each...Next statement—used to code a loop whose instructions should be processed for
each element in a group

GetUpperBound method—returns an integer that represents the highest subscript in a specified
dimension of an array; when used with a one-dimensional array, the dimension is 0

Length property—one of the properties of an array; stores an integer that represents the
number of array elements

One-dimensional array—an array whose elements are identified by a unique subscript

Populating the array—refers to the process of initializing the elements in an array

Scalar variable—another name for a simple variable

Simple variable—a variable that is unrelated to any other variable in the computer’s internal
memory; also called a scalar variable

Sorting—the process of arranging data in a specific order

Subscript—a unique integer that identifies the position of an element in an array

Lesson A Review Questions
1. Which of the following declares a five-element one-dimensional array?

a. Dim intSold(4) As Integer
b. Dim intSold(5) As Integer = {4, 78, 65, 23, 2}
c. Dim intSold() As Integer = {4, 78, 65, 23, 2}
d. both a and c

2. The strItems array is declared as follows: Dim strItems(20) As String. The
intSub variable keeps track of the array subscripts and is initialized to 0. Which of the
following Do clauses will process the loop instructions for each element in the array?

a. Do While intSub > 20
b. Do While intSub < 20
c. Do While intSub >= 20
d. Do While intSub <= 20

3. The intSales array is declared as follows: Dim intSales() As Integer =
{10000, 12000, 900, 500, 20000}. The statement intSales(2) += 10 will
_____________________.

a. replace the 900 amount with 10
b. replace the 900 amount with 910
c. replace the 12000 amount with 10
d. replace the 12000 amount with 12010

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

519

Lesson A Review Questions L E S S O N A

4. The intSales array is declared as follows: Dim intSales() As Integer =
{10000, 12000, 900, 500, 20000}. Which of the following loops will correctly
multiply each element by 2? The intSub variable contains the number 0 before the
loop is processed.

a. Do While intSub <= 4
 intSub *= 2
Loop

b. Do While intSub <= 4
 intSales *= 2
Loop

c. Do While intSub < 5
 intSales(intSub) *= 2
Loop

d. none of the above

5. The intNums array is declared as follows: Dim intNums() As Integer =
{10, 5, 7, 2}. Which of the following blocks of code correctly calculates the
average value stored in the array? The intTotal, intSub, and dblAvg variables
contain the number 0 before the loop is processed.

a. Do While intSub < 4
 intNums(intSub) = intTotal + intTotal
 intSub += 1
Loop
dblAvg = intTotal / intSub

b. Do While intSub < 4
 intTotal += intNums(intSub)
 intSub = intSub + 1
Loop
dblAvg = intTotal / intSub

c. Do While intSub < 4
 intTotal += intNums(intSub)
 intSub += 1
Loop
dblAvg = intTotal / intSub – 1

d. Do While intSub < 4
 intTotal = intTotal + intNums(intSub)
 intSub = intSub + 1
Loop
dblAvg = intTotal / (intSub – 1)

6. What will the code in Review Question 5’s answer a assign to the dblAvg variable?

a. 0
b. 5

c. 6
d. 8

7. What will the code in Review Question 5’s answer b assign to the dblAvg variable?

a. 0
b. 5

c. 6
d. 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

520

C H A P T E R 9 Arrays

8. What will the code in Review Question 5’s answer c assign to the dblAvg variable?

a. 0
b. 5

c. 6
d. 8

9. What will the code in Review Question 5’s answer d assign to the dblAvg variable?

a. 0
b. 5

c. 6
d. 8

10. Which of the following statements sorts the intQuantities array in ascending
order?

a. Array.Sort(intQuantities)
b. intQuantities.Sort
c. Sort(intQuantities)
d. SortArray(intQuantities)

11. If the intNums array contains six elements, which of the following statements assigns
the number 6 to the intElements variable?

a. intElements = Len(intNums)
b. intElements = Length(intNums)
c. intElements = intNums.Len
d. intElements = intNums.Length

12. Which of the following assigns the string “Rover” to the fifth element in a one-
dimensional array named strPetNames?

a. strPetNames(4) = "Rover"
b. strPetNames[4] = "Rover"
c. strPetNames(5) = "Rover"
d. strPetNames.Items.Add(5) = "Rover"

13. The intCounters array contains five elements. Which of the following assigns the
number 1 to each element?

a. For intSub As Integer = 0 To 4
 intCounters(intSub) = 1
Next intSub

b. Dim intSub As Integer
Do While intSub < 5
 intCounters(intSub) = 1
 intSub += 1
Loop

c. For intSub As Integer = 1 To 5
 intCounters(intSub - 1) = 1
Next intSub

d. all of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

521

Lesson A Exercises L E S S O N A

14. The intNums array is declared as follows: Dim intNums() As Integer =
{10, 5, 7, 2}. Which of the following blocks of code correctly calculates the
average value stored in the array? The intTotal, intSub, and dblAvg variables
contain the number 0 before the loop is processed.

a. For Each intX As Integer In intNums
 intTotal += intX
Next intX
dblAvg = intTotal / intNums.Length

b. For Each intX As Integer In intNums
 intTotal += intNums(intX)
Next intX
dblAvg = intTotal / intX

c. For Each intX As Integer In intNums
 intTotal += intNums(intX)
 intX += 1
Next intX
dblAvg = intTotal / intX

d. none of the above

15. The strNames array contains 100 elements. Which of the following statements assigns
the number 99 to the intLastSub variable?

a. intLastSub = strNames.Length
b. intLastSub = strNames.GetUpperBound(0) + 1
c. intLastSub = strNames.GetUpperBound(0)
d. both a and b

Lesson A Exercises
1. Write the statement to declare a procedure-level one-dimensional array named

intOrders. The array should be able to store 20 integers. Then write the statement to
store the number 25 in the third element.

2. Write the statement to declare a class-level one-dimensional array named strStates.
The array should be able to store 50 strings. Then write the statement to store the string
“North Dakota” in the first element.

3. Write the statement to declare and initialize a procedure-level one-dimensional array
named dblTaxRates. Use the following numbers to initialize the array: 5.5, 7.25,
and 3.4.

4. The intNumbers array is a one-dimensional array. Write the statement to multiply
the number stored in the first array element by 3, storing the result in the intResult
variable.

5. The intNumbers array is a one-dimensional array. Write the statement to add
together the numbers stored in the first and second array elements, displaying the sum
in the lblSum control.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

522

C H A P T E R 9 Arrays

6. In this exercise, you modify one of the Waterson Company applications from this
lesson. Use Windows to make a copy of the Stock Solution-Highest folder. Rename
the copy Stock Solution-Highest-DoLoop. Open the Stock Solution (Stock Solution.sln)
file contained in the Stock Solution-Highest-DoLoop folder. Change the For...Next
statement in the btnCalc_Click procedure to the Do...Loop statement. Test the
application appropriately.

7. In this exercise, you modify one of the Waterson Company applications from this
lesson. Use Windows to make a copy of the Stock Solution-Highest folder. Rename
the copy Stock Solution-Highest-ForEachNext. Open the Stock Solution (Stock
Solution.sln) file contained in the Stock Solution-Highest-ForEachNext folder. Change
the For...Next statement in the btnCalc_Click procedure to the For Each...Next
statement. Test the application appropriately.

8. Open the VB2015\Chap09\Tea Solution\Tea Solution (Tea Solution.sln) file. Open the
Code Editor window. Enter the statement to declare and initialize a class-level one-
dimensional array named dblPounds. Use the following numbers to initialize the
array: 35.6, 15, 67.9, 78.8, 12.5, and 27.5. The btnForNext_Click procedure should use
the For...Next statement to display the contents of the dblPounds array, in ascending
order, in the lstPounds control. The btnForEachNext_Click procedure should use
the For Each...Next statement to display the contents of the dblPounds array, in
descending order, in the lstPounds control. Test the application appropriately.

9. Open the VB2015\Chap09\Sold Solution\Sold Solution (Sold Solution.sln) file. The
For...Next, For Each...Next, and Do...Loop buttons should display the average number
sold. Open the Code Editor window. Enter the statement to declare and initialize a
class-level one-dimensional array named intSold. Use the following numbers to
initialize the array: 250, 225, 193, and 260. Use the For...Next statement to complete
the btnForNext_Click procedure. Use the For Each...Next statement to complete
the btnForEachNext_Click procedure. Use the Do...Loop statement to complete the
btnDoLoop_Click procedure. Test the application appropriately.

10. In this exercise, you modify one of the Waterson Company applications from this
lesson. Use Windows to make a copy of the Stock Solution-Highest folder. Rename the
copy Stock Solution-Highest-Lowest. Open the Stock Solution (Stock Solution.sln) file
contained in the Stock Solution-Highest-Lowest folder. In addition to displaying the
highest price and the number of days the stock closed at that price, the btnCalc_Click
procedure should display the lowest price and the number of days the stock closed at
that price. Make the appropriate modifications to the interface and code, and then test
the application appropriately.

11. Open the VB2015\Chap09\Projected Solution\Projected Solution (Projected Solution.sln)
file. The btnIncrease_Click procedure should increase each element in the intSales
array by 10%, displaying the results in the lstProjected control. Test the application
appropriately.

12. Open the VB2015\Chap09\Inventory Solution\Inventory Solution (Inventory Solution.sln)
file. The interface provides a text box for entering an amount that represents the preferred
quantity on hand. The application should display the number of array elements containing
at least that amount. Finish coding the application, and then test it appropriately.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

523

Lesson A Exercises L E S S O N A

13. Open the VB2015\Chap09\Retail Solution\Retail Solution (Retail Solution.sln) file.
Open the Code Editor window. Notice that the code declares and initializes a class-level
array named dblWholesale. The btnRetail_Click procedure should ask the user for a
percentage amount and then use that amount to increase each price stored in the array.
The increased prices should be displayed (right-aligned with two decimal places) in the
lstRetail control. Test the application appropriately.

14. In this exercise, you modify the application from Exercise 13. The modified application
allows the user to update a specific price. Use Windows to make a copy of the Retail
Solution folder. Rename the folder Modified Retail Solution. Open the Retail Solution
(Retail Solution.sln) file contained in the Modified Retail Solution folder. Modify the
btnRetail_Click procedure so it also asks the user to enter a number from 1 through 10.
If the user enters the number 1, the procedure should update the first price in the array.
If the user enters the number 2, the procedure should update the second price in the
array, and so on. Save the solution and then start the application. Increase the second
price by 10%. Then, increase the tenth price by 5%. (Hint: The second price in the list
box should still reflect the 10% increase.)

15. Open the VB2015\Chap09\Commission Solution\Commission Solution (Commission
Solution.sln) file. The btnDisplay_Click procedure should declare a 20-element, one-
dimensional Integer array named intCommission. Assign the following 20 numbers
to the array: 300, 500, 200, 150, 600, 750, 900, 150, 100, 200, 250, 650, 300, 750, 800,
350, 250, 150, 100, 300. The procedure should prompt the user to enter a commission
amount from 0 through 1000. It then should display (in a message box) the number of
salespeople who earned that commission. Use the application to answer the following
questions:

 How many salespeople earned a commission of 100?

 How many salespeople earned a commission of 300?

 How many salespeople earned a commission of 50?

 How many salespeople earned a commission of 900?

16. In this exercise, you modify the application from Exercise 15. The modified application
allows the user to display the number of salespeople earning a commission within
a specific range. Use Windows to make a copy of the Commission Solution folder.
Rename the folder Modified Commission Solution. Open the Commission Solution
(Commission Solution.sln) file contained in the Modified Commission Solution folder.
Modify the btnDisplay_Click procedure to prompt the user to enter both a minimum
commission amount and a maximum commission amount. The procedure then should
display (in a message box) the number of salespeople who earned a commission within
that range. Use the application to answer the following questions:

 How many salespeople earned a commission from 100 through 300?

 How many salespeople earned a commission from 700 through 800?

 How many salespeople earned a commission from 0 through 200?

INTERMEDIATE

INTERMEDIATE

ADVANCED

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

524

C H A P T E R 9 Arrays

17. In this exercise, you code an application that generates and displays six unique random
numbers for a lottery game. Each lottery number can range from 1 through 54 only.
Open the VB2015\Chap09\Lottery Solution\Lottery Solution (Lottery Solution.sln)
file. (The image in the picture box is provided courtesy of OpenClipArt.org/ivak.)
The btnDisplay_Click procedure should display six unique random numbers in the
interface. (Hint: Store the numbers in a one-dimensional array.) Code the application,
and then test it appropriately.

18. Research the Visual Basic ReDim statement. What is the purpose of the statement?
What is the purpose of the Preserve keyword?

a. Open the VB2015\Chap09\ReDim Solution\ReDim Solution (ReDim Solution.sln)
file. Open the Code Editor window and locate the btnDisplay_Click procedure. Study
the existing code, and then modify the procedure so that it stores any number of
sales amounts in the intSales array. (Hint: Declare the array using empty sets of
parentheses and braces. Use the ReDim statement to add an element to the array.)

b. Save the solution and then start the application. Click the Display Sales button
and then enter the following sales amounts, one at a time: 700, 550, and 800.
Click the Cancel button in the input box. The three sales amounts should appear
in the list box.

c. Click the Display Sales button again and then enter the following sales amounts, one
at a time: 5, 9, 45, 67, 8, and 0. Click the Cancel button in the input box. This time,
six sales amounts should appear in the list box. Close the Code Editor window and
then close the solution.

ADVANCED

DISCOVERY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

525

Arrays and Collections L E S S O N B

❚ LESSON B
After studying Lesson B, you should be able to:

 • Associate a list box with a one-dimensional array

 • Use a one-dimensional array as an accumulator or a counter

 • Explain the relationship between the elements in parallel one-dimensional arrays

 • Create parallel one-dimensional arrays

 • Locate information in two parallel one-dimensional arrays

Arrays and Collections
It is not uncommon for programmers to associate the items in a list box with the values stored
in an array. This is because the items in a list box belong to a collection (namely, the Items
collection), and collections and arrays have several things in common. First, each is a group of
individual objects treated as one unit. Second, each individual object in the group is identified by
a unique number, which is called an index when referring to a collection, but a subscript when
referring to an array. Third, both the first index in a collection and the first subscript in an array
are 0. These commonalities allow you to associate the list box items and array elements by their
positions within their respective groups. In other words, you can associate the first item in a list
box with the first element in an array, the second item with the second element, and so on.

To associate a list box with an array, you first add the appropriate items to the list box. You then
store each item’s related value in its corresponding position in the array. Figure 9-22 shows
the problem specification for the Presidents - Vice Presidents application, which uses a list
box named lstPresidents and a one-dimensional array named strVicePres. The figure also
illustrates the relationship between the list box items and the array elements.

Problem Specification

Create an application that displays the names of five U.S. presidents in a list box. The application
should store the names of the corresponding vice presidents in a one-dimensional array, and then
use the index of the selected list box item to access the appropriate vice president’s name from
the array. Display the vice president’s name in a label control.

Presidents (lstPresidents items)
George Washington
Dwight Eisenhower
John F. Kennedy
Ronald Reagan
Barack Obama

Vice Presidents (strVicePres array elements)
John Adams
Richard Nixon
Lyndon Johnson
George H.W. Bush
Joe Biden

the indexes are
0, 1, 2, 3, and 4

the subscripts are
0, 1, 2, 3, and 4

Figure 9-22 Problem specification and illustration of list box and array relationship

To finish coding the Presidents - Vice Presidents application:

1. If necessary, start Visual Studio 2015. Open the VB2015\Chap09\Presidents Solution\
Presidents Solution (Presidents Solution.sln) file. Open the Code Editor window.
Replace <your name> and <current date> in the comments with your name and the
current date, respectively. The code to declare and initialize the strVicePres array is
already entered for you. The code to fill the list box with the names of the presidents
and then select the first name in the list is entered as well. See Figure 9-23. The array

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 9 Arrays

526

declaration statement initializes the first element to John Adams, which is the name of
the vice president associated with the first item in the list box (George Washington).
The remaining array elements are initialized to the names of the vice presidents
corresponding to their list box items.

Figure 9-23 Array declaration and frmMain_Load procedure

vice president’s name stored
in the first array element

president’s name listed
first in the list box

2. When the user clicks the name of a president in the list box, the list box’s
SelectedIndexChanged procedure should display the appropriate vice president’s name
in the Vice President box. Locate the lstPresidents_SelectedIndexChanged procedure.
The procedure will use the index of the selected list box item to access the appropriate
name from the strVicePres array. Click the blank line above the End Sub clause, and
then enter the following Dim statement:

 Dim intSub As Integer = lstPresidents.SelectedIndex

3. If the first item is selected in the list box, the Dim statement you entered in Step 2
will initialize the intSub variable to 0. If the second item is selected, it will initialize
the variable to 1, and so on. As a result, you can use the intSub variable to access the
appropriate name from the array. Enter the following assignment statement:

 lblVicePres.Text = strVicePres(intSub)

4. Save the solution and then start the application. The first item in the list box (George
Washington) is already selected, and the name of his vice president (John Adams)
appears in the Vice President box. See Figure 9-24.

Figure 9-24 Name of the associated vice president displayed in the interface

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

527

Arrays and Collections L E S S O N B

5. On your own, verify that the application displays the appropriate vice president’s name
for the remaining list box items.

6. Click the Exit button.

If a new item is added to the lstPresidents control, the programmer will need to enter the
corresponding vice president’s name in the strVicePres array. If the programmer neglects to
do so, a run time error will occur when the user selects the new item in the list. This is because
the lstPresidents_SelectedIndexChanged procedure will try to access a memory location that is
outside the bounds of the array. Before closing the Presidents - Vice Presidents application, you
will observe this run time error.

To modify and then test the application’s code:

1. Locate the frmMain_Load procedure. Insert a blank line above the assignment
statement, and then enter the following statement:

 lstPresidents.Items.Add("Abraham Lincoln")

2. Save the solution and then start the application. Click Abraham Lincoln in the list
box. A run time error occurs because this list box item does not have a corresponding
entry in the strVicePres array. An arrow points to the statement where the error
was encountered, and the statement is highlighted. In addition, the Error Correction
window opens and provides information pertaining to the error. In this case, the
information indicates that the statement is trying to access an element that is outside
the bounds of the array.

3. Place your mouse pointer on intSub in the highlighted statement, as shown in
Figure 9-25. The variable contains the number 5, which is not a valid subscript for the
array; the valid subscripts are 0, 1, 2, 3, and 4.

START HERE

Figure 9-25 Result of the run time error caused by an invalid subscript

the valid array
subscripts are
0 through 4 error information

4. Click Debug on the menu bar and then click Stop Debugging.

Before accessing an individual array element, you should verify that the subscript you are using
is within the acceptable range for the array. The acceptable range would be a number that is
greater than or equal to 0 but less than or equal to the highest subscript in the array.

the intSub variable
contains 5, which is
an invalid subscript

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 9 Arrays

528

To continue modifying and testing the application’s code:

1. Add the selection structure shown in Figure 9-26 to the lstPresidents_
SelectedIndexChanged procedure. Be sure to move the assignment statement into
the selection structure’s true path.

START HERE

Figure 9-26 Modified lstPresidents_SelectedIndexChanged procedure

enter this selection
structure

2. Save the solution and then start the application. Click Abraham Lincoln in the list
box. This time, N/A appears in the Vice President box. Click the Exit button.

3. Delete the lstPresidents.Items.Add("Abraham Lincoln") statement from the
form’s Load event procedure.

4. Save the solution, and then start and test the application to verify that it is still working
correctly.

5. Click the Exit button. Close the Code Editor window and then close the solution.

Accumulator and Counter Arrays
One-dimensional arrays are often used to either accumulate or count related values; such arrays
are commonly referred to as accumulator arrays and counter arrays, respectively. The Warren
School application, which you finish coding next, uses an accumulator array. The application’s
problem specification is shown in Figure 9-27.

Problem Specification

Warren School is having its annual Chocolate Fund Raiser event. Students sell the following five
types of candy: Choco Bar, Choco Bar-Peanuts, Kit Kat, Peanut Butter Cups, and Take 5 Bar.
Create an application that allows the user to enter the amount of each candy type sold by each
student. The application’s interface should provide a list box for entering the candy type and a text
box for entering the amount sold. Use a five-element one-dimensional array to accumulate the
amounts sold. Display the total number sold for each candy type in label controls in the interface.

Figure 9-27 Problem specification for the Warren School application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

529

Accumulator and Counter Arrays L E S S O N B

To open the Warren School application:

1. Open the VB2015\Chap09\Warren Solution\Warren Solution (Warren Solution.sln)
file. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively. The frmMain_Load
procedure fills the list box with the five candy types and then selects the first item in the
list. See Figure 9-28.

START HERE

Figure 9-28 frmMain_Load procedure

In the next set of steps, you will finish coding the btnAdd_Click procedure, which should
accumulate the amounts sold by candy type. The procedure will accomplish its task using a one-
dimensional accumulator array named intCandies. The array will have five elements, with each
corresponding to an item listed in the list box. The first array element will correspond to the
Choco Bar item, the second array element to the Choco Bar-Peanuts item, and so on. Each array
element will be used to accumulate the sales of its corresponding list box item.

To complete the btnAdd_Click procedure:

1. Locate the btnAdd_Click procedure. Click the blank line below the ' declare array
and variables comment.

2. The intCandies array will need to retain its values until the application ends. You can
accomplish this by declaring the array in either the form’s Declarations section (using
the Private keyword to make it a class-level array) or the btnAdd_Click procedure
(using the Static keyword to make it a static procedure-level array); you will use the
latter approach. Like static variables, which you learned about in Chapter 3, static arrays
remain in memory and retain their values until the application ends. Enter the following
declaration statement:

 Static intCandies(4) As Integer

3. In addition to the array, the procedure will use two Integer variables: one to store the
amount sold and one to store the index of the item selected in the list box. Enter the
following Dim statements. Press Enter twice after typing the last Dim statement.

 Dim intSold As Integer
 Dim intSub As Integer

4. The procedure will convert the contents of the txtSold control to Integer, storing the
result in the intSold variable. Enter the following TryParse method:

 Integer.TryParse(txtSold.Text, intSold)

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 9 Arrays

530

5. Next, the procedure will assign the index of the selected list box item to the intSub
variable. Enter the following assignment statement:

 intSub = lstCandy.SelectedIndex

6. The procedure will use the number stored in the intSub variable to update the
appropriate array element, but only if the number is within the acceptable range for
the array. The acceptable range is from 0 through the highest array subscript. Click the
blank line below the ' update array value comment, and then enter the following
If clause and assignment statement:

 If intSub >= 0 AndAlso intSub <= intCandies.GetUpperBound(0) Then
 intCandies(intSub) += intSold

7. If the intSub variable’s value is not within the acceptable range, the procedure will
display an appropriate message. Enter the following lines of code:

 Else
 MessageBox.Show("Can't update this candy's sales.",
 "Warren School", MessageBoxButtons.OK,
 MessageBoxIcon.Information)

8. If necessary, delete the blank line above the End If clause.

9. Finally, the procedure will display the array values in the interface. Click the blank line
below the ' display array values comment, and then enter the five assignment
statements indicated in Figure 9-29.

Private Sub btnAdd_Click(sender As Object, e As EventArgs
) Handles btnAdd.Click
 ' add amount sold to the appropriate total

 ' declare array and variables
 Static intCandies(4) As Integer
 Dim intSold As Integer
 Dim intSub As Integer

 Integer.TryParse(txtSold.Text, intSold)
 intSub = lstCandy.SelectedIndex

 ' update array value
 If intSub >= 0 AndAlso intSub <= intCandies.GetUpperBound(0) Then
 intCandies(intSub) += intSold
 Else
 MessageBox.Show("Can't update this candy's sales.",
 "Warren School", MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End If

 ' display array values
 lblChocoBar.Text = intCandies(0).ToString
 lblChocoBarPeanuts.Text = intCandies(1).ToString
 lblKitKat.Text = intCandies(2).ToString
 lblPeanutButCups.Text = intCandies(3).ToString
 lblTake5Bar.Text = intCandies(4).ToString

 txtSold.Focus()
End Sub

Figure 9-29 btnAdd_Click procedure

static procedure-level
array

uses the selected item’s
index as the array
subscript

enter these assignment
statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

531

Accumulator and Counter Arrays L E S S O N B

To test the application:

1. Save the solution and then start the application. Type 100 in the Sold box and then
click the Add to Total button. The number 100 appears in the Choco Bar box.

2. Click Kit Kat in the Candy list box. Change the 100 in the Sold box to 45 and then click
the Add to Total button.

3. Next, change the 45 in the Sold box to –6 (a negative number 6) and then click the
Add to Total button.

4. Next, change the –6 in the Sold box to 36 and then click the Add to Total button.

5. Click Peanut Butter Cups and then press Enter to select the Add to Total button.

6. On your own, record the following two candy sales: 10 of the Take 5 Bar and 2 of the
Choco Bar-Peanuts. See Figure 9-30.

START HERE

Figure 9-30 Accumulator array values displayed in the interface

7. On your own, test the application using different candy types and sales amounts.

8. Click the Exit button. Close the Code Editor window and then close the solution.

YOU DO IT 5!

Create an application named YouDoIt 5 and save it in the VB2015\Chap09 folder. Add two
list boxes and a button to the form. The button’s Click event procedure should declare
and initialize a one-dimensional Integer array. Use any 10 numbers to initialize the array.
The procedure should use the For Each...Next statement to display the contents of the
array in the first list box. The procedure should then use the For...Next statement to
increase each array element’s value by 2. Finally, it should use the Do...Loop statement
to display the updated results in the second list box. Code the procedure. Save the
solution, and then start and test the application. Close the solution.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 9 Arrays

532

Parallel One-Dimensional Arrays
Figure 9-31 shows the problem specification for the Paper Warehouse, which displays the price
of an item corresponding to an ID entered by the user.

Problem Specification

Create an application that displays the price of an item corresponding to an ID entered by the user.
The IDs and corresponding prices are shown here. However, employees are entitled to a 10%
discount. The application should store the price list in an array.

Item ID
A45G
J63Y
M93K
C20P
F77T

Price
 8.99
12.99
 5.99
13.50

 7.25

Figure 9-31 Problem specification for the Paper Warehouse

As you learned in Lesson A, all of the variables in an array have the same data type. So how can
you store a price list composed of a string (the ID) and a number (the price) in an array? One
solution is to use two one-dimensional arrays: a String array to store the IDs and a Double array
to store the prices. Both arrays are illustrated in Figure 9-32.

Figure 9-32 Illustration of two parallel one-dimensional arrays

The arrays in Figure 9-32 are referred to as parallel arrays, which are two or more arrays whose
elements are related by their positions in the arrays; in other words, they are related by their
subscripts. The arrays are parallel because each element in the strIds array corresponds to
the element located in the same position in the dblPrices array. For example, the price of item
A45G [strIds(0)] is $8.99 [dblPrices(0)]. Likewise, the price of item J63Y [strIds(1)]
is $12.99 [dblPrices(1)]. The same relationship is true for the remaining elements in both
arrays. To determine an item’s price, you locate the item’s ID in the strIds array and then view
its corresponding element in the dblPrices array.

To open the Paper Warehouse application:

1. Open the Paper Solution (Paper Solution.sln) file contained in the VB2015\Chap09\
Paper Solution-Parallel folder. See Figure 9-33.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

533

Parallel One-Dimensional Arrays L E S S O N B

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Notice that the code to declare the parallel arrays is already entered in the form’s
Declarations section. See Figure 9-34.

Figure 9-33 User interface for the Paper Warehouse application

the CharacterCasing and
MaxLength properties are set
to Upper and 4, respectively

Figure 9-34 Array declaration statements

Figure 9-35 shows the pseudocode and flowchart for the btnGet_Click procedure.

1. assign search ID to a variable
2. repeat until either the end of the strIds array is reached or the search ID is located in the array
 add 1 to the array subscript to search the next element in the array
 end repeat
3. if the search ID was located in the strIds array
 assign the price contained in the same location in the dblPrices array to a variable
 if the Employee discount check box is selected
 price = price * .9
 end if
 display price in lblPrice
 else
 display “Invalid ID” message in a message box
 end if

Figure 9-35 Pseudocode and flowchart for the btnGet_Click procedure (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 9 Arrays

534

To finish coding the application and then test it:

1. Locate the btnGet_Click procedure. The procedure declares three variables named
strSearchId, intSub, and dblItemPrice. It then assigns the contents of the txtId
control to the strSearchId variable.

2. The procedure will use a loop to search each element in the strIds array, stopping
either when the end of the array is reached or when the ID is located in the array. Click
the blank line above the End Sub clause, and then enter the following code:

 Do Until intSub = strIds.Length OrElse
 strIds(intSub) = strSearchId
 intSub += 1

 Loop

3. Next, the procedure will use a selection structure to determine why the loop ended.
You can make this determination by looking at the value in the intSub variable. If the
loop ended because it reached the end of the strIds array without locating the ID, the

START HERE

 (continued)

end of strIds
array reached or

 search ID located

TF

assign search ID to a variable

start

add 1 to array subscript

price = price *.9

assign price contained in same
location in dblPrices array to a

variable

search ID
located in

strIds array

display price
in IblPrice

TF

TF

display “Invalid
ID” message in a
message box

stop

employee
discount

Figure 9-35 Pseudocode and flowchart for the btnGet_Click procedure

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

535

Parallel One-Dimensional Arrays L E S S O N B

intSub variable’s value will be equal to the array’s length. On the other hand, if the loop
ended because it located the ID in the strIds array, the intSub variable’s value will
be less than the array’s length. Insert two blank lines above the End Sub clause. In the
blank line immediately above the End Sub clause, enter the following If clause:

 If intSub < strIds.Length Then

4. If the selection structure’s condition evaluates to True, it means that the ID was located
in the strIds array. In that case, the structure’s true path should assign the price
located in the same position in the dblPrices array to a variable. Enter the following
assignment statement:

 dblItemPrice = dblPrices(intSub)

5. The selection structure’s true path then needs to determine whether the Employee
discount check box is selected. If it is, the price should be reduced by 10%. Enter the
following nested selection structure:

 If chkDisc.Checked Then
 dblItemPrice *= 0.9

 End If

6. Finally, the selection structure’s true path should display the item’s price in the lblPrice
control. Insert a blank line below the nested End If clause, and then enter the following
assignment statement:

 lblPrice.Text = dblItemPrice.ToString("c2")

7. If the outer selection structure’s condition evaluates to False, on the other hand, it
means that the ID was not located in the strIds array. In that case, the structure’s false
path should display the “Invalid ID” message in a message box. Enter the additional
lines of code shaded in Figure 9-36.

' declare parallel arrays
Private strIds() As String =
 {"A45G", "J63Y", "M93K", "C20P", "F77T"}
Private dblPrices() As Double = {8.99, 12.99, 5.99, 13.5, 7.25}

Private Sub btnGet_Click(sender As Object, e As EventArgs
) Handles btnGet.Click
 ' display an item's price

 Dim strSearchId As String
 Dim intSub As Integer
 Dim dblItemPrice As Double

 strSearchId = txtId.Text

 ' search the strIds array until the
 ' end of the array or the ID is found
 Do Until intSub = strIds.Length OrElse
 strIds(intSub) = strSearchId
 intSub += 1
 Loop

 If intSub < strIds.Length Then
 dblItemPrice = dblPrices(intSub)
 If chkDisc.Checked Then
 dblItemPrice *= 0.9
 End If
 lblPrice.Text = dblItemPrice.ToString("c2")
 Else
 MessageBox.Show("Invalid ID", "Paper Warehouse",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End If
End Sub

Figure 9-36 Most of the code for the Paper Warehouse application using parallel
arrays (continues)

parallel one-
dimensional arrays
declared in the
form’s Declarations
section

searches for
the ID in the
strIds array

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 9 Arrays

536

8. Save the solution and then start the application. Type m93k in the ID box and then
click the Get Price button. $5.99 appears in the Price box. See Figure 9-37.

' declare parallel arrays
Private strIds() As String =
 {"A45G", "J63Y", "M93K", "C20P", "F77T"}
Private dblPrices() As Double = {8.99, 12.99, 5.99, 13.5, 7.25}

Private Sub btnGet_Click(sender As Object, e As EventArgs
) Handles btnGet.Click
 ' display an item's price

 Dim strSearchId As String
 Dim intSub As Integer
 Dim dblItemPrice As Double

 strSearchId = txtId.Text

 ' search the strIds array until the
 ' end of the array or the ID is found
 Do Until intSub = strIds.Length OrElse
 strIds(intSub) = strSearchId
 intSub += 1
 Loop

 If intSub < strIds.Length Then
 dblItemPrice = dblPrices(intSub)
 If chkDisc.Checked Then
 dblItemPrice *= 0.9
 End If
 lblPrice.Text = dblItemPrice.ToString("c2")
 Else
 MessageBox.Show("Invalid ID", "Paper Warehouse",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End If
End Sub

 (continued)

Figure 9-36 Most of the code for the Paper Warehouse application using parallel arrays

assigns the corresponding
price from the dblPrices
array to a variable

Figure 9-37 Interface showing the price for item M93K

9. Click the Employee discount check box and then click the Get Price button. $5.39
appears in the Price box.

10. Type a45h in the ID box and then click the Get Price button. The “Invalid ID” message
appears in a message box. Close the message box.

11. On your own, test the application using other valid and invalid IDs. When you are
finished testing the application, click the Exit button. Close the Code Editor window
and then close the solution.

The Die Tracker Application
Your task in this chapter is to create the Die Tracker application. The application simulates the
roll of a die and keeps track of the number of times each die face appears.

To open the Die Tracker application:

1. Open the VB2015\Chap09\Die Solution\Die Solution (Die Solution.sln) file.
See Figure 9-38.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

537

The Die Tracker Application L E S S O N B

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

The Die Tracker application will use three parallel arrays: a PictureBox array named picDice,
a Label array named lblCounters, and an Integer array named intCounters. The arrays are
illustrated in Figure 9-39.

Figure 9-38 User interface for the Die Tracker application

these six picture boxes
are named picDie1
through picDie6

these six labels are
named lbl1 through lbl6

picPlaceHolder

lblPlaceHolder

picRandDie

Subscripts lblCounters array intCounters arraypicDice array

picPlaceHolder
picDie1
picDie2
picDie3
picDie4
picDie5
picDie6

0
1
2
3
4
5
6

lblPlaceHolder
lbl1
lbl2
lbl3
lbl4
lbl5
lbl6

0
0
0
0
0
0
0

Figure 9-39 Illustration of the three parallel arrays

Notice that even though there are only six faces on a die, the arrays contain seven elements
rather than six elements. This is because the application’s code will be much easier to understand
if the number of dots on each die corresponds to the location of the die’s information in the
arrays. In other words, the information pertaining to the one-dot die will be contained in the
array elements whose subscript is 1, the two-dot die’s information will be contained in the array
elements whose subscript is 2, and so on. When coding the application, the first element in each
array will be ignored. (Recall that the first element in an array has a subscript of 0.)

To code the Die Tracker application:

1. First, declare the three parallel arrays. Click the blank line below the ' declare
arrays comment in the form’s Declarations section, and then enter the following
declaration statements:

 Private picDice(6) As PictureBox
 Private lblCounters(6) as Label
 Private intCounters(6) As Integer

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 9 Arrays

538

2. Locate the frmMain_Load procedure, which will fill the picture box and label arrays
with the appropriate controls. Click the blank line above the procedure’s End Sub
clause, and then enter the following assignment statements:

 picDice = {picPlaceHolder, picDie1, picDie2,
 picDie3, picDie4, picDie5, picDie6}

 lblCounters = {lblPlaceHolder, lbl1, lbl2,
 lbl3, lbl4, lbl5, lbl6}

3. Locate the btnRoll_Click procedure. The procedure will use a random number to select
one of the six picture boxes from the picDice array. Click the blank line above the
procedure’s End Sub clause, and then enter the following declaration statements. Press
Enter twice after typing the second statement.

 Dim randGen As New Random
 Dim intRand As Integer

4. The procedure should generate a random number from 1 through 6. Enter the
following comment and assignment statement:

 ' generate a random number from 1 - 6
 intRand = randGen.Next(1, 7)

5. The procedure will use the random number to display the appropriate die face in the
picRandDie control. Enter the following comment and assignment statement:

 ' display current roll of the die
 picRandDie.Image = picDice(intRand).Image

6. The random number will also be used to update the associated counter in the
intCounters array. Enter the following comment and assignment statement:

 ' update associated counter
 intCounters(intRand) += 1

7. Finally, the procedure will use the random number to display the updated counter’s
value in its associated label control in the lblCounters array. Enter the following
comment and assignment statement:

 ' display updated counter
 lblCounters(intRand).Text = intCounters(intRand).ToString

8. Locate the btnStartOver_Click procedure. The procedure will use a loop to reset the
counters in the intCounters array to 0 and also clear the contents of the label controls
contained in the lblCounters array. The loop will access the second through the
seventh element in each array. It’s not necessary to access the first element because that
element’s value will never change from its initial value in either array. Click the blank
line above the procedure’s End Sub clause, and then enter the following loop:

 For intSub As Integer = 1 To 6
 intCounters(intSub) = 0
 lblCounters(intSub).Text = String.Empty

 Next intSub

9. Finally, the procedure will clear the contents of the picRandDie control. Insert a blank
line below the Next intSub clause, and then enter the following assignment statement:

 picRandDie.Image = Nothing

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

539

The Die Tracker Application L E S S O N B

' declare arrays
Private picDice(6) As PictureBox
Private lblCounters(6) As Label
Private intCounters(6) As Integer

Private Sub frmMain_Load(sender As Object, e As EventArgs
) Handles Me.Load
 ' fill picture box and label arrays

 picDice = {picPlaceHolder, picDie1, picDie2,
 picDie3, picDie4, picDie5, picDie6}
 lblCounters = {lblPlaceHolder, lbl1, lbl2,
 lbl3, lbl4, lbl5, lbl6}

End Sub

Private Sub btnRoll_Click(sender As Object, e As EventArgs
) Handles btnRoll.Click
 ' calculates and displays the number
 ' of times each die face appears

 Dim randGen As New Random
 Dim intRand As Integer

 ' generate a random number from 1 – 6
 intRand = randGen.Next(1, 7)
 ' display current roll of the die
 picRandDie.Image = picDice(intRand).Image
 ' update associated counter
 intCounters(intRand) += 1
 ' display updated counter
 lblCounters(intRand).Text = intCounters(intRand).ToString

End Sub

Private Sub btnStartOver_Click(sender As Object, e As EventArgs
) Handles btnStartOver.Click
 ' reset the counters and clear the counter labels

 For intSub As Integer = 1 To 6
 intCounters(intSub) = 0
 lblCounters(intSub).Text = String.Empty
 Next intSub
 picRandDie.Image = Nothing

End Sub

Figure 9-40 Most of the code for the Die Tracker application

To test the Die Tracker application:

1. Save the solution and then start the application. Click the Roll button. A die face
appears in the picRandDie control, and its associated counter label contains the number 1.
See Figure 9-41. Because the btnRoll_Click procedure uses random numbers, your die
face and counter label might be different from those shown in the figure.

START HERE

Figure 9-40 shows most of the application’s code.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

540

C H A P T E R 9 Arrays

2. Click the Roll button several more times. Each time you click the button, a die face
appears in the picRandDie control and its associated counter label is updated by 1.

3. Click the Start Over button. The btnStartOver_Click procedure resets the counters in
the intCounters array to 0. It also clears the contents of the labels in the lblCounters
array as well as the contents of the picRandDie control.

4. Click the Roll button. A die face appears in the picRandDie control, and its associated
counter label contains the number 1.

5. Click the Exit button. Close the Code Editor window and then close the solution.

Lesson B Summary
 • To associate the items in a list box with the elements in an array:

Use each list box item’s index and each array element’s subscript.

 • To create parallel one-dimensional arrays:

Create two or more one-dimensional arrays. When assigning values to the arrays, be sure
that the value stored in each element in the first array corresponds to the values stored in the
same elements in the other arrays.

Lesson B Key Terms
Accumulator arrays—arrays whose elements are used to accumulate (add together) values

Counter arrays—arrays whose elements are used for counting something

Parallel arrays—two or more arrays whose elements are related by their subscripts (positions)
in the arrays

Figure 9-41 Sample run of the Die Tracker application

your die face might
be different

your counter label might be different

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

541

Lesson B Exercises L E S S O N B

Lesson B Review Questions
1. The intSales array is declared as follows: Dim intSales() As Integer =

{10000, 12000, 900, 500, 20000}. Which of the following If clauses deter-
mines whether the intSub variable contains a valid subscript for the array?

a. If intSub >= 0 AndAlso intSub <= 4 Then

b. If intSub >= 0 AndAlso intSub < 4 Then

c. If intSub >= 0 AndAlso intSub <= 5 Then

d. If intSub > 0 AndAlso intSub < 5 Then

2. If the elements in two arrays are related by their subscripts, the arrays are called
_____________________ arrays.

a. associated
b. coupled

c. matching
d. parallel

3. The strStates and strCapitals arrays are parallel arrays. If Illinois is stored in the
second element in the strStates array, where is its capital (Springfield) stored?

a. strCapitals(1)

b. strCapitals(2)

4. The dblNums array is a six-element Double array. Which of the following If clauses
determines whether the entire array has been searched?

a. If intSub = dblNums.Length Then

b. If intSub <= dblNums.Length Then

c. If intSub > dblNums.GetUpperBound(0) Then

d. both a and c

Lesson B Exercises
1. Open the VB2015\Chap09\Days Solution\Days Solution (Days Solution.sln) file. The

frmMain_Load procedure should declare a one-dimensional String array, using the
names of the seven days of the week to initialize the array. The procedure should use
the For Each...Next statement to display the contents of the array in the list box. The
lstDays_SelectedValueChanged procedure should display the name of the selected day
in the label control. Test the application appropriately.

2. Open the VB2015\Chap09\Pay Solution\Pay Solution (Pay Solution.sln) file. The
application should allow the user to select a pay code from the list box. The btnCalc_
Click procedure should display the gross pay, using the number of hours worked and
the pay rate corresponding to the selected code. The pay codes and rates are listed in
Figure 9-42. Code the application, using a class-level array to store the pay rates. Test
the application appropriately.

INTRODUCTORY

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

542

C H A P T E R 9 Arrays

3. Open the VB2015\Chap09\City Solution\City Solution (City Solution.sln) file. Open
the Code Editor window. The form’s Declarations section declares and initializes two
parallel one-dimensional arrays named strCities and strStates. Locate the
btnDisplay_Click procedure. The procedure should display the contents of the arrays
in the list box, using the following format: the city name followed by a comma, a space,
and the state name. Test the application appropriately.

4. In this exercise, you modify the Die Tracker application completed in this lesson.
Use Windows to make a copy of the Die Solution folder. Rename the copy Modified
Die Solution. Open the Die Solution (Die Solution.sln) file contained in the Modified
Die Solution folder. Code the application without using the picPlaceHolder and
lblPlaceHolder controls. Remove both controls from the interface. Be sure to change
the highestSubscript argument in the three array declaration statements to 5. Test the
application appropriately.

5. Open the VB2015\Chap09\Computer Solution\Computer Solution (Computer
Solution.sln) file. The interface allows the user to enter the number of either new or
refurbished computers sold. The Add to Total button should use an array to accumulate
the numbers sold by type. It also should display (in the labels) the total number sold for
each type. Test the application appropriately.

6. In this exercise, you code an application that displays a grade based on the number
of points entered by the user. The grading scale is shown in Figure 9-43. Open the
VB2015\Chap09\Chang Solution\Chang Solution (Chang Solution.sln) file. Store the
minimum points and grades in two parallel one-dimensional arrays named intMins
and strGrades. The btnDisplay_Click procedure should search the intMins array
for the number of points entered by the user. It then should display the corresponding
grade from the strGrades array. Test the application appropriately.

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Pay code
A07
A10
B03
B24
C23

Pay rate
 8.50
 8.75
 9.25
 9.90
10.50

Figure 9-42 Pay codes and rates for Exercise 2

Minimum points
0
300
350
415
465

Maximum points
299
349
414
464
500

Grade
F
D
C
B
A

Figure 9-43 Grading scale for Exercise 6

7. In this exercise, you code an application that displays a grade based on the number of
points entered by the user. The grading scale is shown in Figure 9-44. Open the VB2015\
Chap09\Perez Solution\Perez Solution (Perez Solution.sln) file. The user will enter the total
possible points in the Possible points box. The btnCreate_Click procedure should store
the minimum number of points and the grades in two parallel one-dimensional arrays.
The btnDisplay_Click procedure should display the grade corresponding to the number of

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

543

Lesson B Exercises L E S S O N B

points entered in the Earned points box. Save the solution and then start the application.
Enter 300 in the Possible points box, and then click the Create Grading Scale button. Enter
185 in the Earned points box, and then click the Display Grade button. The letter D should
appear in the Grade box. Next, enter 275 in the Earned points box, and then click the
Display Grade button. The letter B should appear in the Grade box. Enter 500 in the Possible
points box, and then click the Create Grading Scale button. Enter 400 in the Earned points
box, and then click the Display Grade button. The letter C should appear in the Grade box.
Test the application using different values for the possible and earned points.

Minimum points
92% of the total possible points
82% of the total possible points
75% of the total possible points
60% of the total possible points
0

Grade
A
B
C
D
F

Figure 9-44 Grading scale for Exercise 7

8. Open the Shipping Solution (Shipping Solution.sln) file contained in the VB2015\
Chap09\Shipping Solution-Parallel folder. The btnDisplay_Click procedure should
display a shipping charge that is based on the number of items a customer orders.
The order amounts and shipping charges are listed in Figure 9-45. Store the minimum
order amounts and shipping charges in parallel arrays. Display the appropriate shipping
charge with a dollar sign and two decimal places. Test the application appropriately.

INTERMEDIATE

Figure 9-45 Order amounts and shipping charges for Exercise 8

Minimum order
1
6
11
21

Maximum order
5
10
20
No maximum

Shipping charge
10.99
7.99
3.99
0

9. In this exercise, you code a modified version of the Die Tracker application completed
in this lesson. Open the Dice Solution (Dice Solution.sln) file contained in the VB2015\
Chap09\Dice Solution-Advanced folder. The application should simulate the roll of two
dice (rather than one die). It also should display the total amount rolled. For example,
if one die shows two dots and the other shows four dots, the number 6 should appear
in the Total box. The application should keep track of the number of times each total
(from 2 through 12) is rolled. Test the application appropriately.

10. Create an application, using the following names for the solution and project,
 respectively: Stock Market Solution and Stock Market Project. Save the application in
the VB2015\Chap09 folder. The application should declare a Double array that contains
30 elements. Each element will store the price of a stock. Initialize the first 10 elements
using the following values: 2.25, 2.4, 1.97, 1.97, 1.99, 1.97, 2.25, 2.87, 2.5, and 2.4. Use
your own values to initialize the remaining 20 elements. The application should display
the following items: the average price of the stock, the number of days the stock price
increased from the previous day, the number of days the stock price decreased from the
previous day, and the number of days the stock price stayed the same as the previous
day. Create a suitable interface and then code the application. Display the average price
with a dollar sign and two decimal places. Test the application appropriately.

ADVANCED

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 9 Arrays

544

❚ LESSON C
After studying Lesson C, you should be able to:

 • Declare and initialize a two-dimensional array

 • Store data in a two-dimensional array

 • Sum the values in a two-dimensional array

 • Search a two-dimensional array

Two-Dimensional Arrays
As you learned in Lesson A, the most commonly used arrays in business applications are one-
dimensional and two-dimensional. You can visualize a one-dimensional array as a column of
variables in memory. A two-dimensional array, on the other hand, resembles a table in that the
variables (elements) are in rows and columns. You can determine the number of elements in a
two-dimensional array by multiplying the number of its rows by the number of its columns. An
array that has four rows and three columns, for example, contains 12 elements.

Each element in a two-dimensional array is identified by a unique combination of two
subscripts that the computer assigns to the element when the array is created. The subscripts
specify the element’s row and column positions in the array. Elements located in the first row
in a two-dimensional array are assigned a row subscript of 0, elements in the second row are
assigned a row subscript of 1, and so on. Similarly, elements located in the first column in a
two-dimensional array are assigned a column subscript of 0, elements in the second column are
assigned a column subscript of 1, and so on.

You refer to each element in a two-dimensional array by the array’s name and the element’s
row and column subscripts, with the row subscript listed first and the column subscript
listed second. The subscripts are separated by a comma and specified in a set of parentheses
immediately following the array name. For example, to refer to the element located in the first
row, first column in a two-dimensional array named strSongs, you use strSongs(0, 0)—
read “strSongs sub zero comma zero.” Similarly, to refer to the element located in the second
row, fourth column, you use strSongs(1, 3). Notice that the subscripts are one number
less than the row and column in which the element is located. This is because the row and
column subscripts start at 0 rather than at 1. You will find that the last row subscript in a two-
dimensional array is always one number less than the number of rows in the array. Likewise,
the last column subscript is always one number less than the number of columns in the array.
Figure 9-46 illustrates the elements contained in the two-dimensional strSongs array.

Figure 9-46 Names of some of the elements in the strSongs array

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

545

Two-Dimensional Arrays L E S S O N C

Figure 9-47 shows two versions of the syntax for declaring a two-dimensional array in Visual
Basic. The figure also includes examples of using both syntax versions. In each version, dataType
is the type of data the array variables will store.

Declaring a Two-Dimensional Array

Syntax – Version 1
{Dim | Private | Static} arrayName(highestRowSubscript, highestColumnSubscript) As dataType

Syntax – Version 2
{Dim | Private | Static} arrayName(,) As dataType = {{initialValues},…{initialValues}}

Example 1
Dim strStateCapitals(49, 1) As String
declares a 50-row, two-column procedure-level array named strStateCapitals; each
element is automatically initialized using the keyword Nothing

Example 2
Static intNumSold(5, 4) As Integer
declares a static, six-row, �ve-column procedure-level array named intNumSold; each element
is automatically initialized to 0

Example 3
Private strSongs(,) As String =
 {{"All About That Bass", "Meghan Trainor", "3.07", "2014"},
 {"Shake It Off", "Taylor Swift", "3.39", "2014"},
 {"Break Free", "Ariana Grande", "3.34", "2014"}}

declares and initializes a three-row, four-column class-level array named strSongs (the array is
illustrated in Figure 9-46)

Example 4
Private dblSales(,) As Double = {{75.33, 9.65},
 {23.55, 6.89},
 {4.5, 89.3},
 {100.67, 38.92}}
declares and initializes a four-row, two-column class-level array named dblPrices

Figure 9-47 Syntax versions and examples of declaring a two-dimensional array

In Version 1’s syntax, highestRowSubscript and highestColumnSubscript are integers that specify
the highest row and column subscripts, respectively, in the array. When the array is created, it
will contain one row more than the number specified in the highestRowSubscript argument and
one column more than the number specified in the highestColumnSubscript argument. This is
because the first row and column subscripts in a two-dimensional array are 0. When you declare
a two-dimensional array using Version 1’s syntax, the computer automatically initializes each
element in the array when the array is created.

You would use Version 2’s syntax when you want to specify each variable’s initial value. You do
this by including a separate initialValues section, enclosed in braces, for each row in the array. If
the array has two rows, then the statement that declares and initializes the array should have two
initialValues sections. If the array has five rows, then the declaration statement should have five

Lesson C

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 9 Arrays

546

initialValues sections. Within the individual initialValues sections, you enter one or more values
separated by commas. The number of values to enter corresponds to the number of columns
in the array. If the array contains 10 columns, then each individual initialValues section should
contain 10 values. In addition to the set of braces enclosing each individual initialValues section,
Version 2’s syntax also requires all of the initialValues sections to be enclosed in a set of braces.

When using Version 2’s syntax, be sure to include a comma within the parentheses that follow the
array’s name. The comma indicates that the array is a two-dimensional array. (Recall that a comma
is used to separate the row subscript from the column subscript in a two-dimensional array.)

After an array is declared, you can use another statement to store a different value in an array
element. Examples of such statements include assignment statements and statements that
contain the TryParse method. Figure 9-48 shows examples of both types of statements, using
three of the arrays declared in Figure 9-47.

Storing Data in a Two-Dimensional Array

Example 1
strStateCapitals(0, 0) = "AL"
strStateCapitals(0, 1) = "Montgomery"
assigns the strings “AL” and “Montgomery” to the elements located in the �rst row in the
strStateCapitals array; “AL” is assigned to the �rst column, and “Montgomery” is
assigned to the second column

Example 2
For intRow As Integer = 0 To 5
 For intColumn As Integer = 0 To 4
 intNumSold(intRow, intColumn) += 1
 Next intColumn
Next intRow
adds the number 1 to the contents of each element in the intNumSold array

Example 3
Dim intRow As Integer
Dim intCol As Integer
Do While intRow <= 3
 intCol = 0
 Do While intCol <= 1
 dblSales(intRow, intCol) *= 1.1
 intCol += 1
 Loop
 intRow += 1
Loop
multiplies each element in the dblSales array by 1.1

Example 4
dblSales(2, 1) *= 0.07
multiplies the value contained in the third row, second column in the dblSales array by 0.07
and then assigns the result to the element; you can also write this statement as dblSales(2,
1) = dblSales(2, 1) * 0.07

Example 5
Double.TryParse(txtSales.Text, dblSales(0, 0))
assigns either the value entered in the txtSales control (converted to Double) or the number 0 to
the element located in the �rst row, �rst column in the dblSales array

Figure 9-48 Examples of statements used to store data in a two-dimensional array

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

547

Two-Dimensional Arrays L E S S O N C

In Lesson A, you learned how to use the GetUpperBound method to determine the highest
subscript in a one-dimensional array. You can also use the GetUpperBound method to
determine the highest row and column subscripts in a two-dimensional array, as shown in
Figure 9-49.

the row
dimension is
always 0

Using a Two-Dimensional Array’s GetUpperBound Method

Syntax to determine the highest row subscript
arrayName.GetUpperBound(0)

Syntax to determine the highest column subscript
arrayName.GetUpperBound(1)

Example
Dim strOrders(10, 3) As String
Dim intHighestRowSub As Integer
Dim intHighestColumnSub As Integer
intHighestRowSub = strOrders.GetUpperBound(0)
intHighestColumnSub = strOrders.GetUpperBound(1)
assigns the numbers 10 and 3 to the intHighestRowSub and intHighestColumnSub
variables, respectively

Figure 9-49 Syntax and an example of a two-dimensional array’s GetUpperBound method

the column
dimension is
always 1

Traversing a Two-Dimensional Array
Recall that you use a loop to traverse a one-dimensional array. To traverse a two-dimensional
array, you typically use two loops: an outer loop and a nested loop. One of the loops keeps
track of the row subscript, and the other keeps track of the column subscript. You can code the
loops using either the For...Next statement or the Do...Loop statement. Rather than using two
loops to traverse a two-dimensional array, you can also use one For Each...Next loop. However,
recall that the instructions in a For Each...Next loop can only read the array values; they cannot
permanently modify the values.

Figure 9-50 shows examples of loops that traverse the strMonths array, displaying each
element’s value in the lstMonths control. Both loops in Example 1 are coded using the For...
Next statement. However, either one of the loops could be coded using the Do...Loop statement
instead. Or, both loops could be coded using the Do...Loop statement, as shown in Example 2.
The loop in Example 3 is coded using the For Each...Next statement.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 9 Arrays

548

Traversing a Two-Dimensional Array

Private strMonths(,) As String = {{"Jan", "31"},
 {"Feb", "28"},
 {"Mar", "31"},
 {"Apr", "30"}}

Example 1
Dim intHighRow As Integer = strMonths.GetUpperBound(0)
Dim intHighCol As Integer = strMonths.GetUpperBound(1)
For intR As Integer = 0 To intHighRow
 For intC As Integer = 0 To intHighCol
 lstMonths.Items.Add(strMonths(intR, intC))
 Next intC
Next intR
displays the contents of the strMonths array in the lstMonths control; the array values are
displayed row by row, as follows: Jan, 31, Feb, 28, Mar, 31, Apr, and 30

Example 2
Dim intHighRow As Integer = strMonths.GetUpperBound(0)
Dim intHighCol As Integer = strMonths.GetUpperBound(1)
Dim intR As Integer
Dim intC As Integer
Do While intC <= intHighCol
 intR = 0
 Do While intR <= intHighRow
 lstMonths.Items.Add(strMonths(intR, intC))
 intR += 1
 Loop
 intC += 1
Loop
displays the contents of the strMonths array in the lstMonths control; the array values are
displayed column by column, as follows: Jan, Feb, Mar, Apr, 31, 28, 31, and 30

Example 3
For Each strElement As String In strMonths
 lstMonths.Items.Add(strElement)
Next strElement
displays the contents of the strMonths array in the lstMonths control; the array values are
displayed as follows: Jan, 31, Feb, 28, Mar, 31, Apr, and 30

Figure 9-50 Examples of loops used to traverse a two-dimensional array

Totaling the Values Stored in a Two-Dimensional Array
Figure 9-51 shows the problem specification for the Jenko Booksellers application, which
displays the total of the sales stored in a two-dimensional array.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

549

Totaling the Values Stored in a Two-Dimensional Array L E S S O N C

To code and then test the Jenko Booksellers application:

1. If necessary, start Visual Studio 2015. Open the VB2015\Chap09\Jenko Solution\Jenko
Solution (Jenko Solution.sln) file. Open the Code Editor window. Replace <your name>
and <current date> in the comments with your name and the current date, respectively.

2. Locate the btnCalc_Click procedure. First, the procedure will declare and initialize a
two-dimensional array to store the sales amounts. The array will contain three rows
(one for each store) and two columns. The first column will contain the paperback book
sales, and the second column will contain the hardcover book sales. Click the blank
line above the End Sub clause, and then enter the following array declaration statement:

Dim intSales(,) As Integer = {{1500, 2535},
{2300, 3678},
{1850, 2473}}

3. The procedure will also declare a variable that it can use to accumulate the sales
amounts stored in the array. Type the following declaration statement, and then press
Enter twice:

Dim intTotal As Integer

4. The procedure will use a loop to total the values stored in the array. Enter the following
lines of code:

For Each intElement As Integer In intSales
 intTotal += intElement
Next intElement

5. Finally, the procedure will display the total sales. Insert a blank line below the Next
intElement clause, and then enter the additional assignment statement indicated in
Figure 9-52.

START HERE

Paperback sales ($)
1500
2300
1850

Store 1
Store 2
Store 3

Hardcover sales ($)
2535
3678
2473

Problem Speci�cation

Jenko Booksellers sells paperback and hardcover books in each of its three stores. The sales
amounts for the month of July (rounded to the nearest dollar) are shown here. Create an application
that displays the total monthly sales. Store the sales amounts in a two-dimensional array that has
three rows and two columns. Each row should contain the data pertaining to one of the three stores.
Store the sales amounts for paperback books in the �rst column, and store the sales amounts for
hardcover books in the second column.

Figure 9-51 Problem specification for the Jenko Booksellers application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 9 Arrays

550

6. Save the solution and then start the application. Click the Calculate button. The Total
sales box indicates that the total monthly sales amount is $14,336. See Figure 9-53.

Figure 9-53 Total sales displayed in the interface

7. Click the Exit button. Close the Code Editor window and then close the solution.

Searching a Two-Dimensional Array
In Lesson B, you used two parallel one-dimensional arrays to code the Paper Warehouse
application: a String array for the item IDs and a Double array for the corresponding prices.
Instead of storing the price list in two parallel one-dimensional arrays, you can store it in a two-
dimensional array. To do this, you store the IDs in the first column of the array, and you store
the corresponding prices in the second column. However, you will need to treat the prices as
strings because all of the data in a two-dimensional array must have the same data type.

To use a two-dimensional array to code the Paper Warehouse application:

1. Open the Paper Solution (Paper Solution.sln) file contained in the VB2015\Chap09\
Paper Solution-Two-Dimensional folder. The text box’s CharacterCasing and
MaxLength properties are set to Upper and 4, respectively.

START HERE

Figure 9-52 btnCalc_Click procedure

enter this additional
assignment statement

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

551

Searching a Two-Dimensional Array L E S S O N C

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Notice that the code to declare the two-dimensional array is already entered in the
form’s Declarations section. See Figure 9-54.

Figure 9-54 Array declaration statement

4. Locate the btnGet_Click procedure. The procedure declares three variables named
strSearchId, intRow, and dblItemPrice. It then assigns the contents of the txtId
control to the strSearchId variable.

5. The procedure will use a loop to search each element in the first column in the
strItems array, stopping either when the end of the first column is reached or when
the ID is located in the first column. Click the blank line above the End Sub clause, and
then enter the following code:

Do Until intRow > strItems.GetUpperBound(0) OrElse
strItems(intRow, 0) = strSearchId
intRow += 1

Loop

6. Next, the procedure will use a selection structure to determine why the loop ended.
You can make this determination by looking at the value in the intRow variable. If the
loop ended because it reached the end of the array’s first column without locating the
ID, the intRow variable’s value will be greater than the highest row subscript. On the
other hand, if the loop ended because it located the ID in the first column, the intRow
variable’s value will be less than or equal to the highest row subscript. Insert two blank
lines above the End Sub clause. In the blank line immediately above the End Sub clause,
enter the following If clause:

If intRow <= strItems.GetUpperBound(0) Then

7. If the selection structure’s condition evaluates to True, it means that the ID was located
in the first column of the array. In that case, the structure’s true path should assign
the price contained in the same row as the ID, but in the second column in the array.
Because the price is stored as a string, the procedure will need to convert it to a number
before storing it in the dblItemPrice variable. Enter the following TryParse method:

Double.TryParse(strItems(intRow, 1), dblItemPrice)

8. The selection structure’s true path then needs to determine whether the Employee
discount check box is selected. If it is, the price should be reduced by 10%. Enter the
following nested selection structure:

If chkDisc.Checked Then
 dblItemPrice *= 0.9
End If

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 9 Arrays

552

9. Finally, the selection structure’s true path should display the item’s price in the lblPrice
control. Insert a blank line below the nested End If clause, and then enter the following
assignment statement:

lblPrice.Text = dblItemPrice.ToString("c2")

10. If the outer selection structure’s condition evaluates to False, on the other hand, it
means that the ID was not located in the first column of the array. In that case, the
structure’s false path should display the “Invalid ID” message in a message box. Enter
the additional lines of code shaded in Figure 9-55.

To test the Paper Warehouse application:

1. Save the solution and then start the application. Type m93k in the ID box. Click the
Employee discount check box to select it, and then click the Get Price button. $5.39
appears in the Price box. See Figure 9-56.

START HERE

' declare two-dimensional array
Private strItems(,) As String = {{"A45G", "8.99"},
 {"J63Y", "12.99"},
 {"M93K", "5.99"},
 {"C20P", "13.5"},
 {"F77T", "7.25"}}

Private Sub btnGet_Click(sender As Object, e As EventArgs
) Handles btnGet.Click
 ' display an item's price

 Dim strSearchId As String
 Dim intRow As Integer
 Dim dblItemPrice As Double

 strSearchId = txtId.Text

 ' search the first column for the ID
 ' continue searching until the end of the
 ' first column or the ID is found
 Do Until intRow > strItems.GetUpperBound(0) OrElse
 strItems(intRow, 0) = strSearchId
 intRow += 1
 Loop

 If intRow <= strItems.GetUpperBound(0) Then
 Double.TryParse(strItems(intRow, 1), dblItemPrice)
 If chkDisc.Checked Then
 dblItemPrice *= 0.9
 End If
 lblPrice.Text = dblItemPrice.ToString("c2")
 Else
 MessageBox.Show("Invalid ID", "Paper Warehouse",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End If
End Sub

Figure 9-55 Most of the code for the Paper Warehouse application using a
two-dimensional array

two-dimensional array
declared in the form’s
Declarations section

searches for the ID in
the array’s first column

stores the
corresponding price
from the array’s second
column in a variable

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

553

Lesson C Summary L E S S O N C

2. Click the Employee discount check box to deselect it, and then click the Get Price
button. $5.99 appears in the Price box.

3. Type a45h in the ID box, and then click the Get Price button. The “Invalid ID” message
appears in a message box. Close the message box.

4. On your own, test the application using other valid and invalid IDs. When you are
finished testing the application, click the Exit button. Close the Code Editor window
and then close the solution.

Lesson C Summary
 • To declare a two-dimensional array:

Use either of the syntax versions shown below. In Version 1, the highestRowSubscript and
highestColumnSubscript arguments are integers that specify the highest row and column
subscripts, respectively, in the array. Using Version 1’s syntax, the computer automatically
initializes the array elements. In Version 2, the initialValues section is a list of values
separated by commas and enclosed in braces. You include a separate initialValues section for
each row in the array. Each initialValues section should contain the same number of values as
there are columns in the array.

Version 1: {Dim | Private | Static} arrayName(highestRowSubscript,
highestColumnSubscript) As dataType

Version 2: {Dim | Private | Static} arrayName(,) As dataType =
{{initialValues},...{initialValues}}

 • To refer to an element in a two-dimensional array:

Use the syntax arrayName(rowSubscript, columnSubscript).

 • To determine the highest row subscript in a two-dimensional array:

Use the GetUpperBound method as follows: arrayName.GetUpperBound(0).

 • To determine the highest column subscript in a two-dimensional array:

Use the GetUpperBound method as follows: arrayName.GetUpperBound(1).

Figure 9-56 Interface showing the employee price for item M93K

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

554

C H A P T E R 9 Arrays

Lesson C Key Term
Two-dimensional array—an array made up of rows and columns; each element has the same
name and data type and is identified by a unique combination of two subscripts: a row subscript
and a column subscript

Lesson C Review Questions
1. Which of the following declares a two-dimensional array that has four rows and three

columns?

a. Dim decNums(2, 3) As Decimal
b. Dim decNums(3, 4) As Decimal
c. Dim decNums(3, 2) As Decimal
d. Dim decNums(4, 3) As Decimal

2. The intNum array is declared as follows: Dim intNum(,) As Integer =
{{6, 12, 9, 5, 2}, {35, 60, 17, 8, 10}}. The intNum(1, 4) =
intNum(1, 2) - 5 statement will _____________________.

a. replace the 10 amount with 12
b. replace the 5 amount with 7

c. replace the 2 amount with 4
d. none of the above

3. The intNum array is declared as follows: Dim intNum(,) As Integer =
{{6, 12, 9, 5, 2}, {35, 60, 17, 8, 10}}. Which of the following If
clauses determines whether the intRow and intCol variables contain valid row and
column subscripts, respectively, for the array?

a. If intNum(intRow, intCol) >= 0 AndAlso
 intNum(intRow, intCol) < 5 Then

b. If intNum(intRow, intCol) >= 0 AndAlso
 intNum(intRow, intCol) <= 5 Then

c. If intRow >= 0 AndAlso intRow < 3 AndAlso
 intCol >= 0 AndAlso intCol < 6 Then

d. If intRow >= 0 AndAlso intRow < 2 AndAlso
 intCol >= 0 AndAlso intCol < 5 Then

4. Which of the following statements assigns the string “California” to the element located
in the fourth column, sixth row in the two-dimensional strStates array?

a. strStates(3, 5) = "California"
b. strStates(5, 3) = "California"
c. strStates(6, 3) = "California"
d. strStates(3, 6) = "California"

5. Which of the following assigns the number 0 to each element in a two-row, four-
column Integer array named intSums?

a. For intRow As Integer = 0 To 1
 For intCol As Integer = 0 To 3
 intSums(intRow, intCol) = 0
 Next intCol
Next intRow

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

555

Lesson C Exercises L E S S O N C

b. Dim intRow As Integer
Dim intCol As Integer
Do While intRow < 2
 intCol = 0
 Do While intCol < 4
 intSums(intRow, intCol) = 0
 intCol += 1
 Loop
 intRow += 1
Loop

c. For intX As Integer = 1 To 2
 For intY As Integer = 1 To 4
 intSums(intX - 1, intY - 1) = 0
 Next intY
Next intX

d. all of the above

6. Which of the following returns the highest column subscript in a two-dimensional
array named decPays?

a. decPays.GetUpperBound(1)
b. decPays.GetUpperBound(0)
c. decPays.GetUpperSubscript(0)
d. decPays.GetHighestColumn(0)

Lesson C Exercises
1. Write the statement to declare a procedure-level array named intBalances. The

array should have seven rows and three columns. Then write the statement to store the
number 100 in the element located in the third row, second column.

2. Write a loop to store the number 0 in each element in the intBalances array from
Exercise 1. Use the For...Next statement.

3. Rewrite the code from Exercise 2 using a Do...Loop statement.

4. Write the statement to assign the Boolean value True to the variable located in the
second row, third column of a two-dimensional Boolean array named blnAnswers.

5. Write the Private statement to declare an Integer array named intOrders that has
three rows and two columns. Use the following values to initialize the array: 1, 2, 10, 20,
100, 200.

6. Write the statements that determine the highest row and highest column subscripts in
the strTypes array. The statements should assign the subscripts to the intHighRow
and intHighCol variables, respectively.

7. Write the statement that determines the number of elements in a two-dimensional
array named strTypes. The statement should assign the number to the
intNumTypes variable.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

556

C H A P T E R 9 Arrays

8. Open the VB2015\Chap09\Westin Solution\Westin Solution (Westin Solution.sln) file.
The btnForEach_Click procedure should use the For Each...Next statement to display
the contents of the strParts array in the lstForEachParts control. The btnFor_Click
procedure should use the For...Next statement to display the contents of the strParts
array in the lstForParts control, column by column. Test the application appropriately.

9. Open the VB2015\Chp09\Bonus Solution\Bonus Solution (Bonus Solution.sln) file. The
btnCalc_Click procedure should display the sum of the numbers stored in the following
three array elements: the second row, second column; the first row, fourth column; and
the third row, first column. Test the application appropriately.

10. Open the VB2015\Chap09\Sales Solution\Sales Solution (Sales Solution.sln) file. The
btnCalc_Click procedure should increase the value stored in each array element by
25% and then display the results in the list box. Use two For...Next statements. Test the
application appropriately.

11. Open the Shipping Solution (Shipping Solution.sln) file contained in the VB2015\
Chap09\Shipping Solution-Two-Dimensional folder. The btnDisplay_Click procedure
should display a shipping charge that is based on the number of items a customer
orders. The order amounts and shipping charges are listed in Figure 9-57. Store the
minimum order amounts and shipping charges in a two-dimensional array. Display
the appropriate shipping charge with a dollar sign and two decimal places. Test the
application appropriately.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

Minimum order Maximum order Shipping charge
1 5 10.99
6 10 7.99
11 20 3.99
21 No maximum 0

Figure 9-57 Order amounts and shipping charges for Exercise 11

12. In this exercise, you code an application that displays a grade based on the number of
points entered by the user. Open the VB2015\Chap09\Kranton Solution\Kranton Solution
(Kranton Solution.sln) file. The grading scale is shown in Figure 9-58. Store the minimum
points and grades in a two-dimensional array. Test the application appropriately.

INTERMEDIATE

Minimum points Maximum points Grade
0 299 F
300 349 D
350 414 C
415 464 B
465 500 A

Figure 9-58 Grading scale for Exercise 12

13. Open the VB2015\Chap09\Gross Solution\Gross Solution (Gross Solution.sln) file.
The application should store the pay codes and rates listed in Figure 9-59 in a two-
dimensional array. It should also display the pay codes from the array in a list box. The
btnCalc_Click procedure should display the gross pay, using the number of hours worked
and the pay rate corresponding to the selected code. Test the application appropriately.

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

557

Lesson C Exercises L E S S O N C

14. The sales manager at Lorenzo Markets wants you to create an application that displays
the total sales made in each of three regions: the U.S., Canada, and Mexico. The
application should also display the total company sales as well as the percentage that
each region contributed to the total sales. The sales amounts for six months are shown
in Figure 9-60. Create an application, using the following names for the solution and
project, respectively: Lorenzo Solution and Lorenzo Project. Save the application in the
VB2015\Chap09 folder. Create a suitable interface and then code the application. Store
the sales amounts in a two-dimensional array. Test the application appropriately.

ADVANCED

Pay code Pay rate
A07 8.50
A10 8.75
B03 9.25
B24 9.90
C23 10.50

Figure 9-59 Pay codes and rates for Exercise 13

Month U.S. sales ($) Canada sales ($) Mexico sales ($)
1 120,000 90,000 65,000
2 190,000 85,000 64,000
3 175,000 80,000 71,000
4 188,000 83,000 67,000
5 125,000 87,000 65,000
6 163,000 80,000 64,000

Figure 9-60 Sales amounts for Exercise 14

15. Open the VB2015\Chap09\Harrison Solution\Harrison Solution (Harrison Solution.sln)
file. The btnDisplay_Click procedure should display the largest number stored in the first
column of the array. Code the procedure using the For...Next statement. Test the application
appropriately.

16. Open the VB2015\Chap09\Count Solution\Count Solution (Count Solution.sln)
file. The btnDisplay_Click procedure should display the number of times each of the
numbers from 1 through 9 appears in the intNumbers array. (Hint: Store the counts
in a one-dimensional array.) Test the application appropriately.

17. Create an application, using the following names for the solution and project,
respectively: Bindy Solution and Bindy Project. Save the application in the VB2015\
Chap09 folder. Bindy Enterprises sells the 10 items listed in Figure 9-61. Code the
application in a way that allows the user to perform the tasks listed in the figure.
(For Tasks 1 and 2, you can use either a text box or a list box to get the ID and/or
color information from the user.) Test the application appropriately.

ADVANCED

ADVANCED

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

558

C H A P T E R 9 Arrays

 ID Color Price
101 Blue 4.99
102 Red 4.99
103 Blue 10.49
104 Red 10.49
105 White 6.79
106 Red 6.79
107 Blue 6.79
108 Black 21.99
109 White 21.99
110 Blue 21.99

Tasks
1) When the user either enters the ID in a text box or selects the ID from a list box, the
 application should display the ID’s color and price.

2) When the user either enters the color in a text box or selects the color from a list box,
 the application should display the IDs and prices of all items available in that color.

3) When the user enters a price in a text box, the application should display the IDs,
 colors, and prices of items selling at or below that price.

Figure 9-61 Information for Exercise 17

18. Open the VB2015\Chap09\Debug Solution\Debug Solution (Debug Solution.sln) file.
Open the Code Editor window and review the existing code. The first column in the
strNames array contains first names, and the second column contains last names.
The btnDisplay_Click procedure should display the first and last names in the lstFirst
and lstLast controls, respectively. Correct the code to remove the jagged lines. Save
the solution and then start the application. Click the Display button. Notice that the
application is not working correctly. Correct the errors in the application’s code, and
then test the application appropriately.

SWAT THE BUGS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating the eBook Collection Application

In this chapter, you will create an application that keeps track of a person’s
collection of eBooks. The application will save, in a sequential access file named
Ebooks.txt, three items of information for each eBook: the title, the author’s name,
and the price. When the application is started, it will display the contents of the file
in a list box. The user can then add information to the list box and file, as well as
remove information from the list box and file.

C H A P T E R 10
Structures and
Sequential Access Files

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 0 Structures and Sequential Access Files

560

Previewing the eBook Collection Application
Before you start the first lesson in this chapter, you will preview the completed application
contained in the VB2015\Chap10 folder.

To preview the completed application:

1. Use Windows to locate and then open the VB2015\Chap10 folder. Right-click Ebook
(Ebook.exe) in the list of filenames and then click Open. The application’s user
interface appears on the screen, with the contents of the Ebooks.txt file displayed in
three columns in the list box. You will learn how to align columns of information in
Lesson C.

2. First, you will add John Grisham’s Gray Mountain eBook to the list box. The eBook
is priced at $9.99. Click the Add an eBook button. Type Gray Mountain and press
Enter. Type John Grisham and press Enter. Type 9.99 and press Enter. The list box’s
Sorted property is set to True, so the information you entered appears as the fourth
item in the list box. See Figure 10-1.

START HERE

the eBook information
you entered

Figure 10-1 eBook information added to the list box

3. Click the Exit button. The Me.Close() instruction in the btnExit_Click procedure
invokes the form’s FormClosing event, which you learned about in Chapter 7. The
frmMain_FormClosing procedure saves the contents of the list box in the Ebooks.txt
sequential access file. You will learn about sequential access files in Lesson B.

4. Use Windows to open the VB2015\Chap10 folder. Right-click Ebooks.txt in the list
of filenames. Point to Open with and then click Notepad to view the contents of the
Ebooks.txt file. See Figure 10-2.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

561

Previewing the eBook Collection Application

5. Close Notepad. Start the application again. The list box displays the current contents of
the Ebooks.txt file, which includes the eBook information added in Step 2.

6. Now you will remove the Gray Mountain eBook from the list box. Click Gray
Mountain in the list box, and then click the Remove an eBook button.

7. Click the Exit button. Open the Ebooks.txt file in Notepad. Notice that the Gray
Mountain eBook, which you removed in the previous step, no longer appears in the file.
Close Notepad.

In Lesson A, you will learn how to create a structure in Visual Basic. Lesson B covers sequential
access files. You will code the eBook Collection application in Lesson C. Be sure to complete
each lesson in full and do all of the end-of-lesson questions and several exercises before
continuing to the next lesson.

Figure 10-2 Contents of the Ebooks.txt file

the eBook information
you entered

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 0 Structures and Sequential Access Files

562

❚ LESSON A
After studying Lesson A, you should be able to:

 • Create a structure

 • Declare and use a structure variable

 • Pass a structure variable to a procedure

 • Create an array of structure variables

Structures
The data types used in previous chapters, such as Integer and Double, are built into the Visual
Basic language. You can also create your own data types using the Structure statement, whose
syntax is shown in Figure 10-3. Data types created by the Structure statement are referred to as
user-defined data types or structures.

Structure Statement

Syntax
Structure structureName
 Public memberVariableName1 As dataType
 [Public memberVariableNameN As dataType]
End Structure

Example
Structure Employee
 Public strId As String
 Public strFirst As String
 Public strLast As String
 Public dblPay As Double
End Structure

Figure 10-3 Syntax and an example of the Structure statement

The structures you create are composed of members, which are defined between the Structure
and End Structure clauses. The members can be variables, constants, or procedures. However,
in most cases, the members will be variables; such variables are referred to as member
variables. The dataType in the member variable definition identifies the type of data the
member variable will store, and it can be any of the standard data types available in Visual Basic;
it can also be another structure (user-defined data type). The Structure statement is typically
entered in the form’s Declarations section, which begins with the Public Class clause and ends
with the End Class clause. The structure’s name is usually entered using Pascal case, whereas the
member variable names are entered using camel case.

The Structure statement allows the programmer to group related items into one unit: a
structure. However, keep in mind that the Structure statement merely defines the structure
members. It does not reserve any memory locations inside the computer. You reserve memory
locations by declaring a structure variable.

Most program-
mers use the
Class state-
ment (rather
than the

Structure statement) to
create data types that
contain procedures.
You will learn about
the Class statement in
Chapter 11.

You can also
include an
array in a struc-
ture. This topic
is explored in

Exercise 12 at the end
of this lesson.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

563

Declaring and Using a Structure Variable L E S S O N A

Declaring and Using a Structure Variable
After entering the Structure statement in the Code Editor window, you then can use the
structure to declare a variable. Variables declared using a structure are often referred to as
structure variables. The syntax for creating a structure variable is shown in Figure 10-4. The
figure also includes examples of declaring structure variables using the Employee structure
from Figure 10-3.

Figure 10-4 Syntax and examples of declaring a structure variable

Declaring a Structure Variable

Syntax
{Dim | Private} structureVariableName As structureName

Example 1
Dim hourly As Employee
declares a procedure-level Employee structure variable named hourly

Example 2
Private salaried As Employee
declares a class-level Employee structure variable named salaried

Similar to the way the Dim intAge As Integer instruction declares an Integer variable
named intAge, the Dim hourly As Employee instruction in Example 1 declares an Employee
variable named hourly. However, unlike the intAge variable, the hourly variable contains
four member variables. In code, you refer to the entire structure variable by its name—in
this case, hourly. You refer to a member variable by preceding its name with the name of the
structure variable in which it is defined. You use the dot member access operator (a period)
to separate the structure variable’s name from the member variable’s name, like this:
hourly.strId, hourly.strFirst, hourly.strLast, and hourly.dblPay. The dot member
access operator indicates that strId, strFirst, strLast, and dblPay are members of the
hourly structure variable.

The Private salaried As Employee instruction in Example 2 in Figure 10-4 declares a
class-level Employee variable named salaried. The names of the member variables within
the salaried variable are salaried.strId, salaried.strFirst, salaried.strLast, and
salaried.dblPay.

The member variables in a structure variable can be used just like any other variables. You can
assign values to them, use them in calculations, display their contents, and so on. Figure 10-5
shows various ways of using the member variables created by the statements shown in Figure 10-4.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 0 Structures and Sequential Access Files

564

Programmers use structure variables when they need to pass a group of related items to a
procedure for further processing. This is because it’s easier to pass one structure variable rather
than many individual variables. Programmers also use structure variables to store related items
in an array, even when the members have different data types. In the next two sections, you will
learn how to pass a structure variable to a procedure and also how to store a structure variable
in an array.

Passing a Structure Variable to a Procedure
The sales manager at Norbert Pool & Spa Depot wants you to create an application that
determines the amount of water required to fill a rectangular pool. To perform this task, the
application will need to calculate the volume of the pool. You calculate the volume by first
multiplying the pool’s length by its width and then multiplying the result by the pool’s depth.
Assuming the length, width, and depth are measured in feet, this gives you the volume in cubic
feet. To determine the number of gallons of water, you multiply the number of cubic feet by 7.48
because there are 7.48 gallons in one cubic foot.

To open and then test the Norbert application:

1. If necessary, start Visual Studio 2015. Open the VB2015\Chap10\Norbert Solution\
Norbert Solution (Norbert Solution.sln) file. Start the application. Type 100 in the Length
box, type 30 in the Width box, and type 4 in the Depth box. Click the Calculate button.
The required number of gallons appears in the interface. See Figure 10-6.

START HERE

Using a Member Variable

Example 1
hourly.strFirst = "Caroline"
assigns the string “Caroline” to the hourly.strFirst member variable

Example 2
hourly.dblPay *= 1.05
multiplies the contents of the hourly.dblPay member variable by 1.05 and then assigns
the result to the member variable; you can also write the statement as hourly.dblPay =
hourly.dblPay * 1.05

Example 3
lblSalary.Text = salaried.dblPay.ToString("C2")
formats the value contained in the salaried.dblPay member variable and then displays
the result in the lblSalary control

Figure 10-5 Examples of using a member variable

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

565

Passing a Structure Variable to a Procedure L E S S O N A

Figure 10-6 Interface showing the required number of gallons

2. Click the Exit button to end the application, and then open the Code Editor window.

Figure 10-7 shows the GetGallons function and the btnCalc_Click procedure. The procedure
calls the function, passing it three variables by value. The function uses the values to calculate
the number of gallons required to fill the pool. The function returns the number of gallons as a
Double number to the procedure, which assigns the value to the dblGallons variable.

Figure 10-7 Code for the Norbert Pool & Spa Depot application (without a structure)

Private Function GetGallons(ByVal dblLen As Double,
 ByVal dblWid As Double,
 ByVal dblDep As Double) As Double
 ' calculates and returns the number of gallons

 Const dblGAL_PER_CUBIC_FOOT As Double = 7.48

 Return dblLen * dblWid * dblDep * dblGAL_PER_CUBIC_FOOT
End Function

Private Sub btnCalc_Click(sender As Object, e As EventArgs
) Handles btnCalc.Click
 ' displays the number of gallons

 Dim dblPoolLength As Double
 Dim dblPoolWidth As Double
 Dim dblPoolDepth As Double
 Dim dblGallons As Double

 Double.TryParse(txtLength.Text, dblPoolLength)
 Double.TryParse(txtWidth.Text, dblPoolWidth)
 Double.TryParse(txtDepth.Text, dblPoolDepth)

 dblGallons =
 GetGallons(dblPoolLength, dblPoolWidth, dblPoolDepth)
 lblGallons.Text = dblGallons.ToString("N0")

 txtLength.Focus()
End Sub

receives three
variables by value

returns the number
of gallons

declares three
variables to store
the input data

passes three
variables to the
GetGallons function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 0 Structures and Sequential Access Files

566

A more convenient way of coding the application is to use a structure to group together the
input items: length, width, and depth. It’s logical to group the three items because they are
related; each represents one of the three dimensions of a rectangular pool. A descriptive name
for the structure would be Dimensions.

To use a structure in the application:

1. Replace <your name> and <current date> in the comments with your name and the
current date, respectively.

2. First, you will declare the structure in the form’s Declarations section. Click the blank
line immediately below the Public Class clause, and then press Enter to insert another
blank line. Enter the following Structure statement:

Structure Dimensions
Public dblLength As Double
Public dblWidth As Double
Public dblDepth As Double

End Structure

3. Locate the btnCalc_Click procedure. The procedure will use a structure variable (rather
than three separate variables) to store the input items. Replace the first three Dim
statements with the following Dim statement:

Dim poolSize As Dimensions

4. Next, you will store each input item in its corresponding member in the structure
variable. In the three TryParse methods, change dblPoolLength, dblPoolWidth, and
dblPoolDepth to poolSize.dblLength, poolSize.dblWidth, and poolSize.dblDepth,
respectively.

5. Instead of sending three separate variables to the GetGallons function, the procedure
now needs to send only one variable: the structure variable. When you pass a structure
variable to a procedure, all of its members are passed automatically. Although passing
one structure variable rather than three separate variables may not seem like a huge
advantage, consider the convenience of passing one structure variable rather than
10 separate variables! Change the statement that invokes the GetGallons function to
dblGallons = GetGallons(poolSize). Don’t be concerned about the squiggle (jagged
line) that appears below GetGallons(poolSize) in the statement. It will disappear
when you modify the GetGallons function in the next step.

6. Locate the GetGallons function. The function will now receive a Dimensions structure
variable rather than three Double variables. Like the Double variables, the structure
variable will be passed by value because the function does not need to change any
member’s value. Change the function’s header to the following:

Private Function GetGallons(ByVal pool As Dimensions) As Double

7. The function will now use the members of the structure variable to calculate the
number of gallons. Change the Return statement as follows:

Return pool.dblLength * pool.dblWidth *
pool.dblDepth * dblGAL_PER_CUBIC_FOOT

Figure 10-8 shows the Structure statement, the GetGallons function, and the btnCalc_Click
procedure. The procedure calls the function, passing it a structure variable by value. The
function uses the values contained in the structure variable to calculate the number of gallons
required to fill the pool. The function returns the number of gallons as a Double number to the
procedure, which assigns the value to the dblGallons variable.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

567

Passing a Structure Variable to a Procedure L E S S O N A

To test the modified code:

1. Save the solution and then start the application. Type 100, 30, and 4 in the Length,
Width, and Depth boxes, respectively. Press Enter to select the Calculate button. The
required number of gallons (89,760) appears in the interface, as shown earlier in
Figure 10-6.

2. Click the Exit button. Close the Code Editor window and then close the solution.

START HERE

Structure Dimensions
 Public dblLength As Double
 Public dblWidth As Double
 Public dblDepth As Double
End Structure

Private Function GetGallons(ByVal pool As Dimensions
) As Double
 ' calculates and returns the number of gallons

 Const dblGAL_PER_CUBIC_FOOT As Double = 7.48

 Return pool.dblLength * pool.dblWidth *
 pool.dblDepth * dblGAL_PER_CUBIC_FOOT
End Function

Private Sub btnCalc_Click(sender As Object, e As EventArgs
) Handles btnCalc.Click
 ' displays the number of gallons

 Dim poolSize As Dimensions
 Dim dblGallons As Double

 Double.TryParse(txtLength.Text, poolSize.dblLength)
 Double.TryParse(txtWidth.Text, poolSize.dblWidth)
 Double.TryParse(txtDepth.Text, poolSize.dblDepth)

 dblGallons = GetGallons(poolSize)
 lblGallons.Text = dblGallons.ToString("N0")

 txtLength.Focus()
End Sub

Figure 10-8 Code for the Norbert Pool & Spa Depot application (with a structure)

entered in the form’s
Declarations section

receives a
structure
variable by
value

declares a structure
variable to store the
input data

assigns the input
data to the structure
variable

passes the structure
variable to the
GetGallons function

YOU DO IT 1!

Create an application named YouDoIt 1 and save it in the VB2015\Chap10 folder. Add
two text boxes, a label, and a button to the form. Open the Code Editor window. Create
a structure named Rectangle. The structure should have two members: one for the
rectangle’s length and one for its width. The button’s Click event procedure should
declare a Rectangle variable named myRectangle. It then should assign the text box
values to the variable’s members. Next, the procedure should pass the myRectangle
variable to a function that calculates and returns the area of the rectangle. Finally, the
procedure should display the function’s return value in the label. Code the procedure.
Save the solution, and then start and test the application. Close the solution.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 0 Structures and Sequential Access Files

568

Creating an Array of Structure Variables
As mentioned earlier, another advantage of using a structure is that a structure variable can
be stored in an array, even when its members have different data types. The Paper Warehouse
application from Chapter 9 can be used to illustrate this concept. The problem specification is
shown in Figure 10-9.

Problem Specification

Create an application that displays the price of an item corresponding to an ID entered by the user.
The IDs and corresponding prices are shown here. However, employees are entitled to a 10%
discount. The application should store the price list in an array.

 Item ID Price
 A45G 8.99
 J63Y 12.99
 M93K 5.99
 C20P 13.50
 F77T 7.25

Figure 10-9 Problem specification for the Paper Warehouse application

In Chapter 9’s Lesson B, you coded the application using two parallel one-dimensional arrays:
one having the String data type and the other having the Double data type. Then, in Lesson C,
you coded it using a two-dimensional String array. In this lesson, you will code the application
using a one-dimensional array of structure variables. (Notice that there are many different ways
of solving the same problem.) Each structure variable will contain two member variables: a
String variable for the ID and a Double variable for the price.

To open the Paper Warehouse application:

1. Open the Paper Solution (Paper Solution.sln) file contained in the VB2015\Chap10\
Paper Solution-Structure folder. See Figure 10-10.

START HERE

Figure 10-10 Interface for the Paper Warehouse application

the CharacterCasing
and MaxLength
properties are set
to Upper and 4,
respectively

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

569

Creating an Array of Structure Variables L E S S O N A

Figure 10-11 shows the code entered in both the form’s Declarations section and the
btnGet_Click procedure. The code, which comes from Chapter 9’s Lesson B, uses two
parallel one-dimensional arrays. In the remainder of this lesson, you will modify the code
to use a structure.

' declare parallel arrays
Private strIds() As String =
 {"A45G", "J63Y", "M93K", "C20P", "F77T"}
Private dblPrices() As Double = {8.99, 12.99, 5.99, 13.5, 7.25}

Private Sub btnGet_Click(sender As Object, e As EventArgs
) Handles btnGet.Click
 ' display an item's price

 Dim strSearchId As String
 Dim intSub As Integer
 Dim dblItemPrice As Double

 strSearchId = txtId.Text

 ' search the strIds array until the
 ' end of the array or the ID is found
 Do Until intSub = strIds.Length OrElse
 strIds(intSub) = strSearchId
 intSub += 1
 Loop

 If intSub < strIds.Length Then
 dblItemPrice = dblPrices(intSub)
 If chkDisc.Checked Then
 dblItemPrice *= 0.9
 End If
 lblPrice.Text = dblItemPrice.ToString("c2")
 Else
 MessageBox.Show("Invalid ID", "Paper Warehouse",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End If
End Sub

Figure 10-11 Code for the Paper Warehouse application (without a structure)

form’s
Declarations
section

btnGet_Click
procedure

To begin modifying the code to use a structure:

1. First, you will declare the ProductInfo structure, which will contain two members: one
for the item ID and one for the price. Click the blank line immediately below the Public
Class clause, and then press Enter to insert another blank line. Enter the following
Structure statement:

Structure ProductInfo
 Public strId As String
 Public dblPrice As Double
End Structure

2. If necessary, insert a blank line below the End Structure clause.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 0 Structures and Sequential Access Files

570

3. Rather than using two parallel one-dimensional arrays to store the price list, the
procedure will use a one-dimensional array of ProductInfo structure variables. Change
the ' declare parallel arrays comment to ' declare array of structure variables.

4. Replace the two array declaration statements with the following statement:

Private priceList(4) As ProductInfo

The frmMain_Load procedure will be responsible for storing the five IDs and prices in the
priceList array. Keep in mind that each element in the array is a structure variable, and
each structure variable contains two member variables: strId and dblPrice. You refer to a
member variable in an array element using the syntax shown in Figure 10-12. The figure also
indicates how you would refer to some of the member variables contained in the priceList
array. For example, to refer to the strId member contained in the first array element, you use
priceList(0).strId. Similarly, you use priceList(4).dblPrice to refer to the dblPrice
member contained in the last array element.

Figure 10-12 Syntax and examples of referring to member variables in an array

Referring to a Member Variable in an Array Element

Syntax
arrayName(subscript).memberVariableName

Examples using the priceList array

A45G
8.99
J63Y
12.99
M93K
5.99
C20P
13.5
F77T
7.25

priceList(0).strId

priceList(1).dblPrice

priceList(3).strId

priceList(4).dblPrice

To continue modifying the code:

1. Open the form’s Load event procedure. Type the following comment and then press
Enter twice:

' fill array with IDs and prices
2. Enter the following assignment statements:

priceList(0).strId = "A45G"
priceList(0).dblPrice = 8.99
priceList(1).strId = "J63Y"
priceList(1).dblPrice = 12.99
priceList(2).strId = "M93K"
priceList(2).dblPrice = 5.99
priceList(3).strId = "C20P"
priceList(3).dblPrice = 13.5
priceList(4).strId = "F77T"
priceList(4).dblPrice = 7.25

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

571

Creating an Array of Structure Variables L E S S O N A

3. Locate the btnGet_Click procedure. The loop now needs to search the priceList
array (rather than the strIds array). Change strIds in the ' search the strIds
array until the comment to priceList.

4. The loop should search each element in the array, comparing the value contained in the
current element’s strId member with the value stored in the strSearchId variable.
The loop should stop searching either when the end of the array is reached or when the
ID is found. Change the Do clause to the following:

Do Until intSub = priceList.Length OrElse
 priceList(intSub).strId = strSearchId

5. The selection structure in the procedure determines why the loop ended and then
takes the appropriate action. Currently, the statement’s condition compares the value
contained in the intSub variable with the value stored in the strIds array’s Length
property. Recall that a one-dimensional array’s Length property stores an integer that
represents the number of elements in the array. You will need to modify the condition
so that it compares the intSub variable’s value with the value stored in the priceList
array’s Length property. Change strIds.Length in the If clause to priceList.Length.

6. If the value contained in the intSub variable is less than the number of array elements,
the loop ended because the ID was located in the array. In that case, the selection
structure’s true path should assign the corresponding price to the dblItemPrice
variable. In the assignment statement below the If clause, change dblPrices(intSub)
to priceList(intSub).dblPrice.

Figure 10-13 shows the form’s Declarations section, the btnGet_Click procedure, and the
frmMain_Load procedure. The code pertaining to the structure is shaded in the figure.

You can also
write the first
expression in
the Do loop’s
condition as

intSub > priceList.

GetUpperBound(0).

Figure 10-13 Code for the Paper Warehouse application (with a structure) (continues)

Structure ProductInfo
 Public strId As String
 Public dblPrice As Double
End Structure

' declare array of structure variables
Private priceList(4) As ProductInfo

Private Sub btnGet_Click(sender As Object, e As EventArgs
) Handles btnGet.Click
 ' display an item's price

 Dim strSearchId As String
 Dim intSub As Integer
 Dim dblItemPrice As Double

 strSearchId = txtId.Text

 ' search the priceList array until the
 ' end of the array or the ID is found
 Do Until intSub = priceList.Length OrElse
 priceList(intSub).strId = strSearchId
 intSub += 1
 Loop

 If intSub < priceList.Length Then
 dblItemPrice = priceList(intSub).dblPrice

form’s Declarations
section

btnGet_Click
procedure

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 0 Structures and Sequential Access Files

572

To test the application’s code:

1. Save the solution and then start the application. Type f77t in the ID box, and then click
the Get Price button. $7.25 appears in the Price box. See Figure 10-14.

START HERE

(continued)

Figure 10-14 Interface showing the price for product ID F77T

 If chkDisc.Checked Then
 dblItemPrice *= 0.9
 End If
 lblPrice.Text = dblItemPrice.ToString("c2")
 Else
 MessageBox.Show("Invalid ID", "Paper Warehouse",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End If
End Sub

Private Sub frmMain_Load(sender As Object, e As EventArgs
) Handles Me.Load
 ' fill array with IDs and prices

 priceList(0).strId = "A45G"
 priceList(0).dblPrice = 8.99
 priceList(1).strId = "J63Y"
 priceList(1).dblPrice = 12.99
 priceList(2).strId = "M93K"
 priceList(2).dblPrice = 5.99
 priceList(3).strId = "C20P"
 priceList(3).dblPrice = 13.5
 priceList(4).strId = "F77T"
 priceList(4).dblPrice = 7.25

End Sub

Figure 10-13 Code for the Paper Warehouse application (with a structure)

frmMain_Load
procedure

2. Click the Employee discount check box, and then click the Get Price button. $6.53
appears in the Price box.

3. Type a45h in the ID box, and then click the Get Price button. The “Invalid ID”
message appears in a message box. Close the message box.

4. Click the Exit button. Close the Code Editor window and then close the solution.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

573

Lesson A Review Questions L E S S O N A

Lesson A Summary
 • To create a structure (user-defined data type):

Use the Structure statement, whose syntax is shown in Figure 10-3. In most applications, the
Structure statement is entered in the form’s Declarations section.

 • To declare a structure variable:

Use the following syntax: {Dim | Private} structureVariableName As structureName.

 • To refer to a member within a structure variable:

Use the syntax structureVariableName.memberVariableName.

 • To create an array of structure variables:

Declare the array using the structure as the data type.

 • To refer to a member within a structure variable stored in an array:

Use the syntax arrayName(subscript).memberVariableName.

Lesson A Key Terms
Member variables—the variables contained in a structure

Structure statement—used to create user-defined data types, called structures

Structure variables—variables declared using a structure as the data type

Structures—data types created by the Structure statement; allow the programmer to group
related items into one unit; also called user-defined data types

User-defined data types—data types created by the Structure statement; also called structures

Lesson A Review Questions
1. Which statement is used to create a user-defined data type?

a. Declare
b. Define
c. Structure
d. UserType

2. The course structure variable contains a member variable named strGrade. Which
of the following statements assigns the string “B” to the member variable?

a. course.strGrade(0) = "B"
b. course.strGrade = "B"
c. strGrade.course = "B"
d. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 0 Structures and Sequential Access Files

574

3. An array is declared using the statement Dim cities(10) As CityInfo. Which
of the following statements assigns the number 4500 to the intPopulation member
variable contained in the last array element?

a. cities.intPopulation(10) = 4500
b. CityInfo.cities.intPopulation = 4500
c. cities(9).intPopulation = 4500
d. cities(10).intPopulation = 4500

4. An application uses a structure named Employee. Which of the following statements
declares a five-element array of Employee structure variables?

a. Dim workers(4) As Employee
b. Dim workers(5) As Employee
c. Dim workers As Employee(4)
d. Dim workers As Employee(5)

5. Where is the Structure statement typically entered?

a. the form’s Declarations section
b. the Definition section in the Code Editor window
c. the form’s Load event procedure
d. the User-defined section in the Code Editor window

Lesson A Exercises
1. Write a Structure statement that defines a structure named Book. The structure

contains three member variables named strTitle, strAuthor, and decPrice.
Then write a Dim statement that declares a Book variable named fiction.

2. Write a Structure statement that defines a structure named SongInfo. The
structure contains three member variables named strName, strArtist, and
strSongLength. Then write a Private statement that declares a SongInfo variable
named mySongs.

3. An application contains the Structure statement shown here. Write a Dim statement
that declares a Computer variable named homeUse. Then write an assignment
statement that assigns the string “KRZ45” to the strModel member. Finally, write an
assignment statement that assigns the number 149.99 to the dblCost member.

Structure Computer
Public strModel As String
Public dblCost As Double

End Structure

4. An application contains the Structure statement shown here. Write a Dim statement that
declares a MyFriend variable named school. Then write assignment statements that
assign the value in the txtFirst control to the strFirst member and assign the value in
the txtLast control to the strLast member. Finally, write assignment statements that
assign the value in the strLast member to the lblLast control and assign the value in
the strFirst member to the lblFirst control.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

575

Lesson A Exercises L E S S O N A

Structure MyFriend
Public strLast As String
Public strFirst As String

End Structure

5. An application contains the Structure statement shown here. Write a Private statement
that declares a 10-element one-dimensional array of Computer variables. Name
the array business. Then write an assignment statement that assigns the string
“AR456” to the strModel member contained in the first array element. Finally, write
an assignment statement that assigns the number 699.99 to the decCost member
contained in the first array element.

Structure Computer
Public strModel As String
Public decCost As Decimal

End Structure

6. An application contains the Structure statement shown here. Write a Dim statement
that declares a five-element one-dimensional array of MyFriend variables. Name
the array home. Then write an assignment statement that assigns the value in the
txtName control to the strName member contained in the last array element. Finally,
write an assignment statement that assigns the value in the txtBirthday control to the
strBirthday member contained in the last array element.

Structure MyFriend
Public strName As String
Public strBirthday As String

End Structure

7. Open the VB2015\Chap10\City Solution\City Solution (City Solution.sln) file. Open
the Code Editor window and review the existing code. Locate the btnDisplay_Click
procedure. The procedure should display the contents of the array of structure variables
in the list box, using the following format: the city name followed by a comma, a space,
and the state name. Test the application appropriately.

8. In this exercise, you modify the Paper Warehouse application completed in this lesson.
Use Windows to make a copy of the Paper Solution-Structure folder. Rename the folder
Modified Paper Solution-Structure. Open the Paper Solution (Paper Solution.sln) file
contained in the Modified Paper Solution-Structure folder. The modified application should
display both the name and the price corresponding to the ID entered by the user. The names
of the items are shown in Figure 10-15. Make the appropriate modifications to the interface
and the code (including the Structure statement). Test the application appropriately.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

ID Name
A45G Stripes
J63Y Dotted Swiss
M93K Checkered
C20P Chevron
F77T Circles

Figure 10-15 Product information for Exercise 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 0 Structures and Sequential Access Files

576

10. Create an application, using the following names for the solution and project,
respectively: Car Solution and Car Project. Save the application in the VB2015\Chap10
folder. Create the interface shown in Figure 10-17. Fill the list boxes in the frmMain_Load
procedure. Create a structure that groups together a salesperson’s name, the number of
new cars he or she sold, and the number of used cars he or she sold. Use an array of four
structure variables to keep track of the information for the four salespeople. The Add to
Total button should add the number sold to the appropriate array element. For example,
if the user selects Sam Jeeter in the Salesperson list box, selects New in the Car type list
box, and then types 5 in the Sold box, the button should add the number 5 to the number
of new cars Sam sold. The Display button should display the number of new cars sold,
the number of used cars sold, and the total number of cars sold by the salesperson whose
name is selected in the Salesperson list box. Test the application appropriately.

ADVANCED

9. In this exercise, you code an application that displays a grade based on the number
of points entered by the user. The grading scale is shown in Figure 10-16. Open the
VB2015\Chap10\Chang Solution\Chang Solution (Chang Solution.sln) file. Create a
structure that contains two members: an Integer variable for the minimum points and a
String variable for the grades. Use the structure to declare a class-level one-dimensional
array that has five elements. In the form’s Load event procedure, store the minimum
points and grades in the array. The application should search the array for the number
of points entered by the user and then display the appropriate grade from the array.
Test the application appropriately.

INTERMEDIATE

Minimum points Maximum points Grade
 0 299 F
 300 349 D
 350 414 C
 415 464 B
 465 500 A

Figure 10-16 Grading scale for Exercise 9

Figure 10-17 Interface for Exercise 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

577

Lesson A Exercises L E S S O N A

11. In this exercise, you modify the Die Tracker application from Chapter 9. Copy the Die
Solution folder from the VB2015\Chap09 folder to the VB2015\Chap10 folder, and then
open the Die Solution (Die Solution.sln) file. Rather than using three parallel arrays, the
application should use an array of structure variables. Each structure variable should
contain three members. Modify the application’s code and then test it appropriately.

12. Open the VB2015\Chap10\Average Solution\Average Solution (Average Solution.sln)
file. The application should display a student’s name and the average of five test scores
entered by the user.

a. Create a structure named StudentInfo. The structure should contain two members: a
String variable for the student’s name and a Double array for the test scores. An array
contained in a structure cannot be assigned an initial size, so you will need to include
an empty set of parentheses after the array name, like this: Public dblScores()
As Double.

b. Open the code template for the btnCalc_Click procedure. First, use the StudentInfo
structure to declare a structure variable. Next, research the Visual Basic ReDim
statement. Use the ReDim statement to declare the array’s size. The array should
have five elements.

c. The btnCalc_Click procedure should use the InputBox function to get the student’s
name. It should also use a repetition structure and the InputBox function to get the
five test scores from the user, storing each in the array. The procedure should display
the student’s name and his or her average test score in the lblAverage control. Test
the appliation appropriately.

13. In this exercise, you modify the application from Exercise 12. Use Windows to make
a copy of the Average Solution folder. Rename the folder Modified Average Solution.
Open the Average Solution (Average Solution.sln) file contained in the Modified
Average Solution folder. Change the font used in the lblAverage control to Courier
New. Change the control’s TextAlign property to TopLeft, and then resize the control
to display four lines of text. Open the Code Editor window. Modify the application
to calculate the average of five test scores for each of four students. (Hint: Use an
array of structure variables.) Display each student’s name and average test score in the
lblAverage control. Test the application appropriately.

ADVANCED

DISCOVERY

DISCOVERY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 0 Structures and Sequential Access Files

578

❚ LESSON B
After studying Lesson B, you should be able to:

 • Open and close a sequential access file

 • Write data to a sequential access file

 • Read data from a sequential access file

 • Determine whether a sequential access file exists

 • Test for the end of a sequential access file

Sequential Access Files
In addition to getting data from the keyboard and sending data to the computer screen, an
application can also read data from and write data to a file on a disk. Files to which data is
written are called output files because the files store the output produced by an application.
Files that are read by the computer are called input files because an application uses the data in
these files as input.

Most input and output files are composed of lines of text that are both read and written in
consecutive order, one line at a time, beginning with the first line in the file and ending with the
last line in the file. Such files are referred to as sequential access files because of the manner in
which the lines of text are accessed. They are also called text files because they are composed of
lines of text. Examples of text stored in sequential access files include an employee list, a memo,
and a sales report.

Writing Data to a Sequential Access File
An item of data—such as the string “Robert”—is viewed differently by a human being and by a
computer. To a human being, the string represents a person’s name; to a computer, it is merely a
sequence of characters. Programmers refer to a sequence of characters as a stream of characters.

In Visual Basic, you use a StreamWriter object to write a stream of characters to a sequential
access file. Before you create the object, you first declare a variable to store the object in the
computer’s internal memory. Figure 10-18 shows the syntax and an example of declaring a
StreamWriter variable. The IO in the syntax stands for Input/Output.

Ch10B

Declaring a StreamWriter Variable

Syntax
{Dim | Private} streamWriterVariableName As IO.StreamWriter

Example
Dim outFile As IO.StreamWriter
declares a StreamWriter variable named outFile

Figure 10-18 Syntax and an example of declaring a StreamWriter variable

You will use a StreamWriter variable in the Game Show Contestants application. The application
writes the names of contestants to a sequential access file and then reads the names and displays
them in a list box.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

579

Writing Data to a Sequential Access File L E S S O N B

To begin coding the application:

1. If necessary, start Visual Studio 2015. Open the Game Show Solution (Game Show
Solution.sln) file contained in the VB2015\Chap10\Game Show Solution folder. See
Figure 10-19.

START HERE

Figure 10-19 Interface for the Game Show Contestants application

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. Locate the btnWrite_Click procedure. Click the blank line below the ' declare
a StreamWriter variable comment, and then enter the following declaration
statement:

Dim outFile As IO.StreamWriter

After declaring a StreamWriter variable, you can use the syntax shown in Figure 10-20 to
create a StreamWriter object. As the figure indicates, creating a StreamWriter object involves
opening a sequential access file using either the CreateText method or the AppendText method.
You use the CreateText method to open a sequential access file for output. When you open a
file for output, the computer creates a new, empty file to which data can be written. If the file
already exists, the computer erases the contents of the file before writing any data to it. You
use the AppendText method to open a sequential access file for append. When a file is opened
for append, new data is written after any existing data in the file. If the file does not exist, the
computer creates the file for you. In addition to opening the file, both methods automatically
create a StreamWriter object to represent the file in the application. You assign the StreamWriter
object to a StreamWriter variable, which you use to refer to the file in code.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 0 Structures and Sequential Access Files

580

When processing the statement in Example 1, the computer searches for the employee.txt
file in the default folder, which is the current project’s bin\Debug folder. If the file exists, its
contents are erased and the file is opened for output; otherwise, a new, empty file is created
and opened for output. The statement then creates a StreamWriter object and assigns it to the
outFile variable.

Unlike the fileName argument in Example 1, the fileName argument in Example 2 contains
a folder path. When processing the statement in Example 2, the computer searches for the
report.txt file in the Chap10 folder on the F drive. If the computer locates the file, it opens the
file for append. If it does not find the file, it creates a new, empty file and then opens the file for
append. Like the statement in Example 1, the statement in Example 2 creates a StreamWriter
object and assigns it to the outFile variable. When deciding whether to include the folder
path in the fileName argument, keep in mind that a USB drive may have a different letter
designation on another computer. Therefore, you should specify the folder path only when you
are sure that it will not change.

When the user clicks the Write to File button in the Game Show Contestants interface, the
name entered in the Name box should be added to the end of the existing names in the file.
Therefore, you will need to open the sequential access file for append. A descriptive name for
a file that stores the names of contestants is contestants.txt. Although it is not a requirement,
the “txt” (short for “text”) filename extension is commonly used when naming sequential access
files; this is because the files contain text.

To continue coding the btnWrite_Click procedure:

1. Click the blank line below the ' open the file for append comment, and then
enter the following statement:

outFile = IO.File.AppendText("contestants.txt")

After opening a file for either output or append, you can begin writing data to it using either
the Write method or the WriteLine method. The difference between these methods is that the
WriteLine method writes a newline character after the data. Figure 10-21 shows the syntax and
an example of both methods. As the figure indicates, when using the Write method, the next
character written to the file will appear immediately after the letter o in the string “Hello”. When

START HERE

CreateText and AppendText Methods

Syntax
IO.File.method(fileName)

method Description
CreateText opens a sequential access file for output
AppendText opens a sequential access file for append

Example 1
outFile = IO.File.CreateText("employee.txt")
opens the employee.txt file for output; creates a StreamWriter object and assigns
it to the outFile variable

Example 2
outFile = IO.File.AppendText("F:\Chap10\report.txt")
opens the report.txt file for append; creates a StreamWriter object and assigns
it to the outFile variable

Figure 10-20 Syntax and examples of the CreateText and AppendText methods

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

581

Closing an Output Sequential Access File L E S S O N B

using the WriteLine method, however, the next character written to the file will appear on the
line immediately below the string. You do not need to include the file’s name in either method’s
syntax because the data will be written to the file associated with the StreamWriter variable.

Write and WriteLine Methods

Syntax
streamWriterVariableName.Write(data)
streamWriterVariableName.WriteLine(data)

Example 1 Result
outFile.Write("Hello") Hello|

Example 2 Result
outFile.WriteLine("Hello") Hello
 |

Figure 10-21 Syntax and examples of the Write and WriteLine methods

the next character will
appear immediately
after the o

the next character will
appear on the next line

Each contestant’s name should appear on a separate line in the file, so you will use the WriteLine
method to write each name to the file.

To continue coding the btnWrite_Click procedure:

1. Click the blank line below the ' write the name on a separate line in the
file comment, and then enter the following statement:

outFile.WriteLine(txtName.Text)

Closing an Output Sequential Access File
You should use the Close method to close an output sequential access file as soon as you are
finished using it. This ensures that the data is saved, and it makes the file available for use
elsewhere in the application. The syntax to close an output sequential access file is shown in
Figure 10-22 along with an example of using the method. Here, again, notice that you use the
StreamWriter variable to refer to the file you want to close.

START HERE

A run time
error will occur
if a program
statement
attempts

to open a file that is
already open.

Close Method (Output Sequential Access File)

Syntax
streamWriterVariableName.Close()

Example
outFile.Close()
closes the file associated with the outFile variable

Figure 10-22 Syntax and an example of closing an output sequential access file

To finish coding and then test the btnWrite_Click procedure:

1. Click the blank line below the ' close the file comment, and then enter the
following statement:

outFile.Close()

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 0 Structures and Sequential Access Files

582

2. Save the solution and then start the application. Type Sunita Patel in the Name box
and then click the Write to File button. Use the application to write the following four
names to the file:

 Thomas Widder
 Sonja Shepperd
 Phillip Perez
 Chris Chang

3. Click the Exit button.

4. Next, you will open the contestants.txt file to verify its contents. Click File on the
menu bar, point to Open, and then click File. Open the project’s bin\Debug folder.
Click contestants.txt in the list of filenames and then click the Open button. The
contestants.txt window opens and shows the five names contained in the file. See
Figure 10-23.

Close button

each name
appears on a
separate line
in the file

Figure 10-23 Names contained in the contestants.txt file

5. Close the contestants.txt window by clicking its Close button.

Reading Data from a Sequential Access File
In Visual Basic, you use a StreamReader object to read data from a sequential access file.
Before creating the object, you first declare a variable to store the object in the computer’s
internal memory. Figure 10-24 shows the syntax and an example of declaring a StreamReader
variable. As mentioned earlier, the IO in the syntax stands for Input/Output.

Figure 10-24 Syntax and an example of declaring a StreamReader variable

Declaring a StreamReader Variable

Syntax
{Dim | Private} streamReaderVariableName As IO.StreamReader

Example
Dim inFile As IO.StreamReader
declares a StreamReader variable named inFile

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

583

Reading Data from a Sequential Access File L E S S O N B

To begin coding the btnRead_Click procedure:

1. Locate the btnRead_Click procedure. Click the blank line below the ' declare
variables comment, and then enter the following declaration statement:

 Dim inFile As IO.StreamReader

After declaring a StreamReader variable, you can use the OpenText method to open a sequential
access file for input, which will automatically create a StreamReader object. When a file is
opened for input, the computer can read the lines of text stored in the file. Figure 10-25 shows
the OpenText method’s syntax along with an example of using the method. The fileName
argument in the example does not include a folder path, so the computer will search for the
employee.txt file in the default folder, which is the current project’s bin\Debug folder. If the
computer finds the file, it opens the file for input. If the computer does not find the file, a run
time error occurs. You assign the StreamReader object created by the OpenText method to a
StreamReader variable, which you use to refer to the file in code.

START HERE

OpenText Method

Syntax
IO.File.OpenText(fileName)

Example
inFile = IO.File.OpenText("employee.txt")
opens the employee.txt file for input; creates a StreamReader object and assigns
it to the inFile variable

Figure 10-25 Syntax and an example of the OpenText method

The run time error that occurs when the computer cannot locate the file you want opened for
input will cause the application to end abruptly. You can use the Exists method to avoid this
run time error. Figure 10-26 shows the method’s syntax and includes an example of using the
method. If the fileName argument does not include a folder path, the computer searches for the
file in the current project’s bin\Debug folder. The Exists method returns the Boolean value True
if the file exists; otherwise, it returns the Boolean value False.

Exists Method

Syntax
IO.File.Exists(fileName)

Example
If IO.File.Exists("employee.txt") Then
determines whether the employee.txt file exists in the current project’s bin\Debug
folder; you can also write the If clause as If IO.File.Exists("employee.txt")
= True Then

Figure 10-26 Syntax and an example of the Exists method

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 0 Structures and Sequential Access Files

584

To continue coding the btnRead_Click procedure:

1. Click the blank line below the ' determine whether the file exists comment,
and then enter the following If clause:

 If IO.File.Exists("contestants.txt") Then

2. If the file exists, the selection structure’s true path will use the OpenText method to
open the file. Enter the following comment and assignment statement. Press Enter
twice after typing the assignment statement.

 ' open the file for input
 inFile = IO.File.OpenText("contestants.txt")

3. If the file does not exist, the selection structure’s false path will display an appropriate
message. Enter the additional lines of code shown in Figure 10-27.

START HERE

Figure 10-27 False path entered in the procedure

enter these five
lines of code

After opening a file for input, you can use the ReadLine method to read the file’s contents, one
line at a time. A line is defined as a sequence (stream) of characters followed by the newline
character. The ReadLine method returns a string that contains only the sequence of characters
in the current line. The returned string does not include the newline character at the end of the
line. In most cases, you assign the string returned by the ReadLine method to a String variable.
Figure 10-28 shows the ReadLine method’s syntax and includes an example of using the method.
The ReadLine method does not require you to provide the file’s name because it uses the file
associated with the StreamReader variable.

ReadLine Method

Syntax
streamReaderVariableName.ReadLine

Example
Dim strMessage As String
strMessage = inFile.ReadLine
reads a line of text from the sequential access file associated with the inFile variable
and assigns the line, excluding the newline character, to the strMessage variable

Figure 10-28 Syntax and an example of the ReadLine method

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

585

Reading Data from a Sequential Access File L E S S O N B

In most cases, an application will need to read each line of text contained in a sequential access
file, one line at a time. You can do this using a loop along with the Peek method, which “peeks”
into the file to determine whether the file contains another character to read. If the file contains
another character, the Peek method returns the character; otherwise, it returns the number –1
(a negative 1). The Peek method’s syntax is shown in Figure 10-29 along with an example
of using the method. The Do clause in the example tells the computer to process the loop
instructions until the Peek method returns the number –1, which indicates that there are no
more characters to read. In other words, the Do clause tells the computer to process the loop
instructions until the end of the file is reached.

Peek Method

Syntax
streamReaderVariableName.Peek

Example
Dim strLineOfText As String
Do Until inFile.Peek = –1
 strLineOfText = inFile.ReadLine
 MessageBox.Show(strLineOfText)
Loop
reads each line of text from the sequential access file associated with the inFile variable,
line by line; each line (excluding the newline character) is assigned to the strLineOfText
variable and is then displayed in a message box

Figure 10-29 Syntax and an example of the Peek method

To continue coding the btnRead_Click procedure:

1. The procedure needs a variable in which it can store the string returned by the
ReadLine method. Each line in the contestants.txt file represents a name, so you will
call the variable strName. Click the blank line below the Dim statement, and then
enter the following declaration statement:

 Dim strName As String

2. The Do clause is next. Click the blank line below the statement that opens the
contestants.txt file. Enter the following comment and Do clause, being sure to type the
minus sign before the number 1:

 ' process loop instructions until end of file
 Do Until inFile.Peek = –1

3. The first instruction in the loop should read a line of text and assign it (excluding
the newline character) to the strName variable. Enter the following comment and
assignment statement:

 ' read a name
 strName = inFile.ReadLine

4. Next, the procedure will add the name to the Contestants list box. Enter the following
comment and statement:

 ' add name to list box
 lstContestants.Items.Add(strName)

5. If necessary, delete the blank line above the Loop clause.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 0 Structures and Sequential Access Files

586

Closing an Input Sequential Access File
Just as you do with an output sequential access file, you should use the Close method to close an
input sequential access file as soon as you are finished using it. Doing this makes the file
available for use elsewhere in the application. The syntax to close an input sequential access file
is shown in Figure 10-30 along with an example of using the method. Notice that you use the
StreamReader variable to refer to the file you want to close.

A run time
error will occur
if a program
statement
attempts

to open a file that is
already open.

Close Method (Input Sequential Access File)

Syntax
streamReaderVariableName.Close()

Example
inFile.Close()
closes the file associated with the inFile variable

Figure 10-30 Syntax and an example of closing an input sequential access file

To finish coding the btnRead_Click procedure:

1. Insert a blank line below the Loop clause, and then enter the following comment and
statement:

 ' close the file
 inFile.Close()

Figure 10-31 shows the code entered in the btnWrite_Click and btnRead_Click procedures.

START HERE

Private Sub btnWrite_Click(sender As Object, e As EventArgs
) Handles btnWrite.Click
 ' writes a name to a sequential access file

 ' declare a StreamWriter variable
 Dim outFile As IO.StreamWriter

 ' open the file for append
 outFile = IO.File.AppendText("contestants.txt")

 ' write the name on a separate line in the file
 outFile.WriteLine(txtName.Text)

 ' close the file
 outFile.Close()

 ' clear the list box and then set the focus
 lstContestants.Items.Clear()
 txtName.Focus()
End Sub

Private Sub btnRead_Click(sender As Object, e As EventArgs
) Handles btnRead.Click
 ' reads names from a sequential access file
 ' and displays them in the interface

 ' declare variables

Figure 10-31 btnWrite_Click and btnRead_Click procedures (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

587

Closing an Input Sequential Access File L E S S O N B

To test the application’s code:

1. Save the solution and then start the application. Click the Read from File button. The
five names contained in the contestants.txt file appear in the Contestants box, as shown
in Figure 10-32.

START HERE

(continued)

 Dim inFile As IO.StreamReader
 Dim strName As String

 ' clear previous names from the list box
 lstContestants.Items.Clear()

 ' determine whether the file exists
 If IO.File.Exists("contestants.txt") Then
 ' open the file for input
 inFile = IO.File.OpenText("contestants.txt")
 ' process loop instructions until end of file
 Do Until inFile.Peek = -1
 ' read a name
 strName = inFile.ReadLine
 ' add name to list box
 lstContestants.Items.Add(strName)
 Loop
 ' close the file
 inFile.Close()

 Else
 MessageBox.Show("Can't find the file",
 "Game Show Contestants",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End If
End Sub

Figure 10-31 btnWrite_Click and btnRead_Click procedures

Figure 10-32 Five contestant names listed in the Contestants box

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 0 Structures and Sequential Access Files

588

4. Click the Exit button.

Next, you will modify the If clause in the btnRead_Click procedure. More specifically, you will
change the filename in the If clause from contestants.txt to contestant.txt. Doing this will allow
you to test the code entered in the selection structure’s false path.

To test the selection structure’s false path:

1. In the If clause, change contestants.txt to contestant.txt.

2. Save the solution and then start the application. Click the Read from File button.
Because the contestant.txt file does not exist, the Exists method in the If clause returns
the Boolean value False. As a result, the instruction in the selection structure’s false
path displays the “Can’t find the file” message in a message box. Close the message box
and then click the Exit button.

3. In the If clause, change contestant.txt to contestants.txt. Save the solution and then
start the application. Click the Read from File button, which displays the nine names
in the list box.

4. Click the Exit button. Close the Code Editor window and then close the solution.

START HERE

2. Add the following four names to the file:

 Carla Cartwright
 William Smith
 Inez Hampton
 Dustin Malewski

3. Click the Read from File button to display the nine names in the list box. See
Figure 10-33.

Figure 10-33 Nine contestant names listed in the list box

you can use the scroll
bar to view the other
two names

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

589

Lesson B Key Terms L E S S O N BLesson B Key Terms L E S S O N B

YOU DO IT 2!

Create an application named YouDoIt 2 and save it in the VB2015\Chap10 folder. Add
a label and two buttons to the form. The first button’s Click event procedure should use
the InputBox function to get one or more numbers from the user. Each number should
be saved on a separate line in a sequential access file. The second button’s Click event
procedure should total the numbers contained in the sequential access file and then
display the total in the label control. Code the procedures. Save the solution, and then
start and test the application. Close the solution.

Lesson B Summary
 • To write data to a sequential access file:

Declare a StreamWriter variable, and then use either the CreateText method or the
AppendText method to open a sequential access file. Assign the method’s return value to the
StreamWriter variable. Use either the Write method or the WriteLine method to write the
data to the file. Close the file using the Close method.

 • To read data from a sequential access file:

Declare a StreamReader variable. Use the Exists method to determine whether the sequential
access file exists. If the file exists, use the OpenText method to open the file. Assign the
method’s return value to the StreamReader variable. Use the ReadLine and Peek methods to
read the data from the file. Close the file using the Close method.

 • To determine whether a sequential access file exists:

Use the Exists method. The method’s syntax is IO.File.Exists(fileName). The method
returns the Boolean value True if the file exists; otherwise, it returns the Boolean value False.

 • To determine whether the end of a sequential access file has been reached:

Use the Peek method. The method’s syntax is streamReaderVariableName.Peek. The
method returns the number –1 when the end of the file has been reached; otherwise, it
returns the next character in the file.

Lesson B Key Terms
AppendText method—used with a StreamWriter variable to open a sequential access file for
append

Close method—used with either a StreamWriter variable or a StreamReader variable to close a
sequential access file

CreateText method—used with a StreamWriter variable to open a sequential access file for
output

Exists method—used to determine whether a file exists

Input files—files from which an application reads data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 0 Structures and Sequential Access Files

590

Line—a sequence (stream) of characters followed by the newline character

OpenText method—used with a StreamReader variable to open a sequential access file for input

Output files—files to which an application writes data

Peek method—used with a StreamReader variable to determine whether a file contains another
character to read

ReadLine method—used with a StreamReader variable to read a line of text from a sequential
access file

Sequential access files—files composed of lines of text that are both read and written
sequentially; also called text files

Stream of characters—a sequence of characters

StreamReader object—used to read a sequence (stream) of characters from a sequential access file

StreamWriter object—used to write a sequence (stream) of characters to a sequential access file

Text files—another name for sequential access files

Write method—used with a StreamWriter variable to write data to a sequential access file;
differs from the WriteLine method in that it does not write a newline character after the data

WriteLine method—used with a StreamWriter variable to write data to a sequential access file;
differs from the Write method in that it writes a newline character after the data

Lesson B Review Questions
1. Which of the following opens the employ.txt file and allows the computer to write new

data to the end of the file’s existing data?

a. outFile = IO.File.AddText("employ.txt")

b. outFile = IO.File.AppendText("employ.txt")

c. outFile = IO.File.InsertText("employ.txt")

d. outFile = IO.File.WriteText("employ.txt")

2. If the file to be opened exists, the ___________________ method erases the file’s
contents.

a. AppendText
b. CreateText

c. InsertText
d. OpenText

3. Which of the following reads a line of text from a sequential access file and assigns the
line (excluding the newline character) to the strText variable?

a. inFile.Read(strText)

b. inFile.ReadLine(strText)

c. strText = inFile.ReadLine

d. strText = inFile.Read(line)

4. What does the Peek method return when the end of the file is reached?

a. –1
b. 0

c. the last character in the file
d. the newline character

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

591

Lesson B Exercises L E S S O N B

5. Which of the following can be used to determine whether the employ.txt file exists?

a. If IO.File.Exists("employ.txt") Then

b. If IO.File("employ.txt").Exists Then

c. If IO.Exists("employ.txt") = True Then

d. If IO.Exists.File("employ.txt") = True Then

6. What type of object is created by the OpenText method?

a. File
b. SequenceReader

c. StreamWriter
d. none of the above

7. What type of object is created by the AppendText method?

a. File
b. SequenceReader

c. StreamWriter
d. none of the above

Lesson B Exercises
1. Write the code to declare a variable named outFile that can be used to write data to

a sequential access file. Then write the statement to open a sequential access file named
inventory.txt for output.

2. Write the code to declare a variable named inFile that can be used to read data from
a sequential access file. Then write the statement to open a sequential access file named
inventory.txt for input.

3. Write the code to close the sequential access file associated with a StreamWriter
variable named outFile.

4. Write an If clause that determines whether the inventory.txt sequential access file exists.

5. Write a Do clause that determines whether the end of a sequential access file has been
reached. The file is associated with a StreamReader variable named inFile.

6. Open the VB2015\Chap10\Bonus Solution\Bonus Solution (Bonus Solution.sln) file.
The Save button should write the bonus amounts entered by the user to a sequential
access file named bonus.txt. Save the file in the project’s bin\Debug folder. The Display
button should read the bonus amounts from the bonus.txt file and display each (right-
aligned and formatted with a dollar sign and two decimal places) in the list box. Test the
application using the following 10 bonus amounts: 465.50, 1050, 567.75, 325.89, 2000,
567, 321.50, 540, 1600, and 345.75.

7. Open the VB2015\Chap10\States Solution\States Solution (States Solution.sln) file.
Open the Code Editor window, and then open the states.txt file contained in the
project’s bin\Debug folder. The sequential access file contains the names of five U.S.
states. Close the states.txt window. The btnDisplay_Click procedure should read
the five names contained in the states.txt file, storing each in a five-element one-
dimensional array. The procedure should sort the array in descending order and then
display the contents of the array in the list box. Test the application appropriately. (Hint:
If you need to recreate the states.txt file, open the file in a window in the IDE. Delete
the contents of the file, and then type the following five names, pressing Enter after
typing each name: Florida, California, Illinois, Delaware, and Alaska.)

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 0 Structures and Sequential Access Files

592

 8. Open the VB2015\Chap10\Pay Solution\Pay Solution (Pay Solution.sln) file. Open the
Code Editor window. The application stores six hourly pay rates in a one-dimensional
array named dblRates. Each rate corresponds to a pay code from 1 through 6. Code
1’s rate is stored in the dblRates(0) element in the array, code 2’s rate is stored in the
dblRates(1) element, and so on. The btnDisplay_Click procedure prompts the user
to enter a pay code. It then displays the amount associated with the code. Currently,
the Private statement assigns the six hourly pay rates to the array. Modify the code
so that the form’s Load event procedure reads the rates from the payrates.txt file and
stores each in the array. The file is contained in the project’s bin\Debug folder. Test the
application appropriately.

 9. Open the Test Scores Solution (Test Scores Solution.sln) file contained in the VB2015\
Chap10\Test Scores Solution folder. The btnSave_Click procedure should allow the
user to enter an unknown number of test scores, saving each score in a sequential
access file. The btnDisplay_Click procedure should display the number of scores stored
in the file and the average score. Test the application appropriately.

 10. Open the VB2015\Chap10\Sales Solution\Sales Solution (Sales Solution.sln) file. The
frmMain_Load procedure should read the five sales amounts contained in the sales.txt
file, storing the amounts in a one-dimensional array and also displaying the amounts in
the lstOriginal control. The sales.txt file is contained in the project’s bin\Debug folder.
The btnProjected_Click procedure should calculate the projected sales amounts by
increasing each value in the array by 25%. The procedure should display each projected
sales amount in the lstProjected control and also save the projected amounts in an
empty sales.txt file. Test the application appropriately. Be sure to verify that the sales.txt
file contains the projected amounts listed in the lstProjected control. (Hint: If you need
to recreate the sales.txt file, open the file in a window in the IDE. Delete the contents
of the file, and then type the following sales amounts: 1000, 3000, 2500, 989.95, and
1243.89.)

11. Create an application, using the following names for the solution and project,
respectively: PAO Solution and PAO Project. Save the application in the VB2015\
Chap10 folder. Create the interface shown in Figure 10-34. The Party list box should
contain three items: Democratic, Republican, and Independent. The Age text box
should accept only numbers and the Backspace key. The minimum age for a respondent
is 18. The Write to File button should save each respondent’s information (political
party and age) to a sequential access file. Using the information stored in the file, the
Display Totals button should display the number of Democrats, Republicans, and
Independents by age group and in total. Test the application appropriately.

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

593

Lesson B Exercises L E S S O N B

12. In this exercise, you modify the application from Exercise 11. Use Windows to make a
copy of the PAO Solution folder. Rename the folder Modified PAO Solution. Open the
PAO Solution (PAO Solution.sln) file contained in the Modified PAO Solution folder.
Modify the code to use a structure in the Display Totals button’s Click event procedure.
Test the application appropriately.

13. Open the VB2015\Chap10\Debug Solution\Debug Solution (Debug Solution.sln) file.
Open the Code Editor window and study the existing code. Start the application. Test
the application by entering Sue and 1000, and then by entering Pete and 5000. A run
time error occurs. Read the error message. Click Debug on the menu bar and then click
Stop Debugging. Open the bonus.txt file contained in the project’s bin\Debug folder.
Notice that the file is empty. Close the bonus.txt window. Locate and correct the error
in the code. Save the solution, and then start and test the application again. Verify that
the bonus.txt file contains the two names and bonus amounts.

ADVANCED

SWAT THE BUGS

Figure 10-34 Interface for Exercise 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 0 Structures and Sequential Access Files

594

❚ LESSON C
After studying Lesson C, you should be able to:

 • Add an item to a list box while an application is running

 • Align columns of information

 • Remove an item from a list box while an application is running

 • Save list box items in a sequential access file

Coding the eBook Collection Application
Your task in this chapter is to create an application that uses a sequential access file to keep track
of a person’s collection of eBooks. The application’s TOE chart and user interface are shown in
Figure 10-35.

Task Object Event

Read the Ebooks.txt file and assign its contents to lstEbooks frmMain Load
Save the contents of lstEbooks in the Ebooks.txt file FormClosing

End the application btnExit Click

1. Get title, author, and price btnAdd Click
2. Add title, author, and price to lstEbooks

Remove the selected line from lstEbooks btnRemove Click

Display the title, author, and price lstEbooks None

Figure 10-35 TOE chart and interface for the eBooks application

To open the application and then view the Ebooks.txt file:

1. If necessary, start Visual Studio 2015. Open the VB2015\Chap10\Ebook Solution\
Ebook Solution (Ebook Solution.sln) file.

START HERE

the list box uses
the Courier
New font

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

595

Coding the frmMain_Load Procedure L E S S O N C

2. Click File on the menu bar, point to Open, and then click File. Open the project’s bin\
Debug folder. Click Ebooks.txt in the list of filenames and then click the Open button.
See Figure 10-36. The eBook titles are listed in the first column, the author names in the
second column, and the prices in the third column.

Figure 10-36 Ebooks.txt window

Close button

3. Close the Ebooks.txt window by clicking its Close button.

Coding the frmMain_Load Procedure
According to the application’s TOE chart, the frmMain_Load procedure is responsible for
displaying the contents of the Ebooks.txt file in the list box. The procedure’s pseudocode is
shown in Figure 10-37.

frmMain Load event procedure
if the Ebooks.txt sequential access file exists
 open the file for input
 repeat until the end of the file
 read a line from the file
 add the line to the lstEbooks control
 end repeat
 close the file
 select the first line in the lstEbooks control
else
 display the “Can’t find the Ebooks.txt file” message
end if

Figure 10-37 Pseudocode for the frmMain_Load procedure

To code and then test the frmMain_Load procedure:

1. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 0 Structures and Sequential Access Files

596

2. Locate the frmMain_Load procedure. As you learned in Lesson B, you use a
StreamReader object to read data from a sequential access file. Before creating the
StreamReader object, you first declare a StreamReader variable to store the object in
the computer’s internal memory. Click the blank line above the End Sub clause, and
then enter the following declaration statement:

 Dim inFile As IO.StreamReader

3. The procedure will also need a variable to store the string returned by the ReadLine
method when reading the Ebooks.txt file. Type the following declaration statement and
then press Enter twice:

 Dim strInfo As String

4. According to its pseudocode, the procedure should display an appropriate message if
the Ebooks.txt file does not exist. Enter the comment and selection structure shown in
Figure 10-38, and then position the insertion point as shown in the figure.

Figure 10-38 Additional comment and code entered in the frmMain_Load procedure

position the insertion
point here

5. If the file exists, the procedure should open the file for input. Enter the following
comment and assignment statement:

 ' open the file for input
 inFile = IO.File.OpenText("Ebooks.txt")

6. Next, the procedure should use a loop to read each line from the file, adding each to the
list box. Enter the following comment and lines of code:

 ' process loop instructions until end of file
 Do Until inFile.Peek = –1
 strInfo = inFile.ReadLine
 lstEbooks.Items.Add(strInfo)
 Loop

7. After the loop ends, the procedure should close the file. Insert a blank line below the
loop clause. Type inFile.Close() and then press Enter.

enter this
comment
and selection
structure

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

597

Coding the btnAdd_Click Procedure L E S S O N C

8. The last task in the selection structure’s true path selects the first line in the list box.
Enter the following comment and line of code:

' select the first line in the list box
lstEbooks.SelectedIndex = 0

9. Save the solution and then start the application. The information contained in
the Ebooks.txt file appears in the list box, as shown in Figure 10-39. The list box’s
Sorted property is set to True, so the information appears in alphabetical order by
the eBook title.

Figure 10-39 Contents of the Ebooks.txt file shown in the list box

Figure 10-40 Pseudocode for the btnAdd_Click procedure

10. Click the Exit button.

Coding the btnAdd_Click Procedure
According to the application’s TOE chart, the btnAdd_Click procedure should get an
eBook’s title, author, and price from the user, and then display that information in the list
box. Figure 10-40 shows the procedure’s pseudocode.

btnAdd Click event procedure
1. use the InputBox function to get the eBook’s title, author, and price
2. concatenate the title, author, and price, and then add the concatenated
 string to the lstEbooks control

To begin coding the btnAdd_Click procedure:

1. Locate the btnAdd_Click procedure, and then click the blank line below the
' declare variables comment. The procedure will use four String variables:
three to store the input items and one to store the concatenated string. It will also
use a Double variable to store the numeric equivalent of the eBook’s price. Enter the
following five declaration statements:

Dim strTitle As String
Dim strAuthor As String
Dim strPrice As String
Dim strConcatenatedInfo As String
Dim dblPrice As Double

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 0 Structures and Sequential Access Files

598

2. The procedure will use the InputBox function to get the eBook information from the
user. Click the blank line below the ' get the eBook information comment, and
then enter the following assignment statements:

strTitle = InputBox("Title:", "eBooks")
strAuthor = InputBox("Author:", "eBooks")
strPrice = InputBox("Price:", "eBooks")

Step 2 in the procedure’s pseudocode concatenates the three input items and then adds the
concatenated string to the list box. Notice that each input item appears in a separate column in
the list box shown earlier in Figure 10-39. The titles and author names in the first two columns
are left-aligned within their respective column. The prices in the third column, however, are
right-aligned within the column.

Aligning Columns of Information
In Chapter 8, you learned how to use the PadLeft and PadRight methods to pad a string with a
character until the string is a specified length. Each method’s syntax is shown in Figure 10-41.
Recall that when processing the methods, the computer first makes a temporary copy of the
string in memory; it then pads the copy only. The totalChars argument in each syntax is an
integer that represents the total number of characters you want the string’s copy to contain. The
optional padCharacter argument is the character that each method uses to pad the string until it
reaches the desired number of characters. If the padCharacter argument is omitted, the default
padding character is the space character. You can use the PadLeft and PadRight methods to align
columns of information, as shown in the examples in Figure 10-41.

Aligning Columns of Information

Syntax
string.PadLeft(totalChars[, padCharacter])
string.PadRight(totalChars[, padCharacter])

Example 1
Dim strPrice As String
For dblPrice As Double = 9 To 11 Step 0.5
 strPrice = dblPrice.ToString("N2").PadLeft(5)
 lstPrices.Items.Add(strPrice)
Next dblPrice

Result
 9.00
 9.50
10.00
10.50
11.00

Example 2
Dim outFile As IO.StreamWriter
Dim strHeading As String =
 "Name" & Strings.Space(11) & "City"
Dim strName As String
Dim strCity As String

Figure 10-41 Examples of aligning columns of information (continues)

contains the
Strings.Space
method

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

599

Aligning Columns of Information L E S S O N C

Example 1’s code aligns a column of numbers, which are displayed in the lstPrices control, by the
decimal point. Notice that you first format each number in the column to ensure that each has
the same number of digits to the right of the decimal point. You then use the PadLeft method to
insert spaces at the beginning of the number (if necessary); this right-aligns the number within
the column. Because each number has the same number of digits to the right of the decimal
point, aligning each number on the right will align each by its decimal point. You also need to set
the lstPrices control’s Font property to a fixed-spaced font, such as Courier New. A fixed-space
font uses the same amount of space to display each character.

Example 2’s code shows how you can align the second column of information when the first
column contains strings with varying lengths. First, you use either the PadRight or PadLeft method
to ensure that each string in the first column contains the same number of characters. You then
concatenate the padded string to the information in the second column. Example 2’s code, for
instance, uses the PadRight method to ensure that each name in the first column contains exactly
15 characters. It then concatenates the 15 characters with the string stored in the strCity
variable before writing the concatenated string to a sequential access file. Because each name
has 15 characters, each city entry will automatically appear beginning in character position 16 in
the file. Example 2 also shows how you can use the Strings.Space method to include a specific
number of space characters in a string. The method’s syntax is Strings.Space(number), in
which number is an integer representing the number of spaces to include.

To complete and then test the btnAdd_Click procedure:

1. Click the blank line below the ' characters for the price comment. First, the
procedure will format the price to ensure that it contains two decimal places. Enter the
following lines of code:

Double.TryParse(strPrice, dblPrice)
strPrice = dblPrice.ToString("n2")

2. Next, the procedure will concatenate the three input items, reserving 40 characters
for the title, 35 characters for the author’s name, and 5 characters for the price. The
procedure will left-align the first two columns but right-align the last column. Enter the
following assignment statement:

strConcatenatedInfo = strTitle.PadRight(40) &
 strAuthor.PadRight(35) & strPrice.PadLeft(5)

START HERE

outFile = IO.File.CreateText("Example2.txt")
outFile.WriteLine(strHeading)

strName = InputBox("Enter name:", "Name")
Do While strName <> String.Empty
 strCity = InputBox("Enter city:", "City")
 outFile.WriteLine(strName.PadRight(15) & strCity)
 strName = InputBox("Enter name:", "Name")
Loop
outFile.Close()

Result (when the user enters the following: Janice, Paris, Sue, Rome)
Name City
Janice Paris
Sue Rome

Figure 10-41 Examples of aligning columns of information

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 0 Structures and Sequential Access Files

600

3. Next, the procedure will add the concatenated string to the list box. Click the blank
line above the End Sub clause, and then enter the following line of code:

lstEbooks.Items.Add(strConcatenatedInfo)

4. Save the solution and then start the application. Click the Add an eBook button. Type
Gray Mountain as the title, and then press Enter. Type John Grisham as the author,
and then press Enter. Type 9.99 as the price, and then press Enter. The btnAdd_Click
procedure adds the eBook information to the list box. The list box’s Sorted property is
set to True, so the information you entered appears in the fourth line of the list box. See
Figure 10-42.

Figure 10-42 eBook information added to the list box

the information
you entered

5. Click the Exit button.

Coding the btnRemove_Click Procedure
According to the application’s TOE chart, the btnRemove_Click procedure should remove the
selected line from the lstEbooks control. The procedure’s pseudocode is shown in Figure 10-43.

btnRemove Click event procedure
if a line is selected in the lstEbooks control
 remove the line from the control
end if

Figure 10-43 Pseudocode for the btnRemove_Click procedure

You remove an item from a list box by using either the Items collection’s Remove method or
its RemoveAt method. Figure 10-44 shows each method’s syntax and includes an example of
using each method. In each syntax, object is the name of the list box control. The Remove
method removes the item whose value is specified in its item argument. The RemoveAt method
removes the item whose index is specified in its index argument.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

601

Coding the frmMain_FormClosing Procedure L E S S O N C

To code and then test the btnRemove_Click procedure:

1. Locate the btnRemove_Click procedure. If a line is selected in the list box, the list
box’s SelectedIndex property will contain the line’s index; otherwise, it will contain –1.
Therefore, if the SelectedIndex property does not contain the number –1, the procedure
should remove the selected line from the list box. Click the blank line above the End
Sub clause, and then enter the following selection structure:

If lstEbooks.SelectedIndex <> –1 Then
 lstEbooks.Items.RemoveAt(lstEbooks.SelectedIndex)
End If

2. Save the solution and then start the application. Click Gone Girl in the list box, and
then click the Remove an eBook button. The btnRemove_Click procedure removes the
Gone Girl eBook from the list box.

3. Click the Exit button.

Coding the frmMain_FormClosing Procedure
According to the application’s TOE chart, the frmMain_FormClosing procedure is responsible
for saving the contents of the lstEbooks control in the Ebooks.txt file. Figure 10-45 shows the
procedure’s pseudocode.

START HERE

Figure 10-44 Syntax and examples of the Items collection’s Remove and RemoveAt methods

Figure 10-45 Pseudocode for the frmMain_FormClosing procedure

Remove and RemoveAt Methods (Items Collection)

Syntax
object.Items.Remove(item)
object.Items.RemoveAt(index)

Example 1 – Remove
lstAnimal.Items.Remove("Cat")
removes the Cat item from the lstAnimal control

Example 2 – RemoveAt
lstAnimal.Items.RemoveAt(0)
removes the first item from the lstAnimal control

frmMain FormClosing event procedure
1. open the Ebooks.txt file for output
2. repeat for each line in the list box
 write the line to the file
 end repeat
3. close the file

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 0 Structures and Sequential Access Files

602

To code and then test the frmMain_FormClosing procedure:

1. Locate the frmMain_FormClosing procedure. As you learned in Lesson B, you use
a StreamWriter object to write data to a sequential access file. Before creating the
StreamWriter object, you first declare a variable to store the object in the computer’s
internal memory. Click the blank line below the ' declare a StreamWriter
variable comment, and then enter the following declaration statement:

Dim outFile As IO.StreamWriter

2. Step 1 in the pseudocode opens the Ebooks.txt file for output. Click the blank line
below the ' open the file for output comment, and then enter the following line
of code:

outFile = IO.File.CreateText("Ebooks.txt")

3. The next step in the pseudocode is a loop that will write each line from the list box
to the file. Click the blank line below the ' write each line in the list box
comment, and then enter the following loop:

For intIndex As Integer = 0 To lstEbooks.Items.Count – 1
 outFile.WriteLine(lstEbooks.Items(intIndex))
Next intIndex

4. The last step in the pseudocode closes the file. Click the blank line below the ' close
the file comment. Type outFile.Close() and then press Enter.

5. Save the solution and then start the application. Click the Add an eBook button. Use
the input boxes to enter the following title, author, and price: Gray Mountain, John
Grisham, and 9.99. The btnAdd_Click procedure adds the eBook information to the
list box.

6. Click the Exit button. The computer processes the Me.Close() statement in the
btnExit_Click procedure; doing this invokes the form’s FormClosing event. The
FormClosing event procedure saves the contents of the list box to the Ebooks.txt file.

7. Next, you will verify that the eBook information you entered was saved to the Ebooks.txt
file. Click File on the menu bar, point to Open, and then click File. Open the Ebooks.txt
file contained in the project’s bin\Debug folder. The eBook information you entered appears
in the fourth line in the file, as shown in Figure 10-46.

START HERE

Figure 10-46 eBook information saved in the Ebooks.txt file

the information
you entered

8. Close the Ebooks.txt window, and then start the application again. Click Gray
Mountain in the list box, and then click the Remove an eBook button. The
btnRemove_Click procedure removes that eBook’s information from the list box.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

603

Coding the frmMain_FormClosing Procedure L E S S O N C

9. Click the Exit button, and then open the Ebooks.txt file. See Figure 10-47. Notice that
the Gray Mountain information does not appear in the file.

Figure 10-47 Current contents of the Ebooks.txt file

the Gray Mountain
information
doesn’t appear in
the file

10. Close the Ebooks.txt and Code Editor windows, and then close the solution. Figure 10-48
shows the application’s code.

Figure 10-48 Code for the eBooks application (continues)

 1 ' Name: Ebook Project
 2 ' Purpose: Adds and deletes list box entries
 3 ' Reads information from a sequential access file
 4 ' Writes information to a sequential access file
 5 ' Programmer: <your name> on <current date>
 6
 7 Option Explicit On
 8 Option Strict On
 9 Option Infer Off
 10
 11 Public Class frmMain
 12
 13 Private Sub frmMain_Load(sender As Object, e As EventArgs
) Handles Me.Load
 14 ' fills the list box with data from
 15 ' a sequential access file
 16
 17 Dim inFile As IO.StreamReader
 18 Dim strInfo As String
 19
 20 ' verify that the file exists
 21 If IO.File.Exists("Ebooks.txt") Then
 22 ' open the file for input
 23 inFile = IO.File.OpenText("Ebooks.txt")
 24 ' process loop instructions until end of file
 25 Do Until inFile.Peek = -1
 26 strInfo = inFile.ReadLine
 27 lstEbooks.Items.Add(strInfo)
 28 Loop
 29 inFile.Close()
 30 'select the first line in the list box
 31 lstEbooks.SelectedIndex = 0
 32
 33 Else
 34 MessageBox.Show("Can't find the Ebooks.txt file",
 35 "eBooks", MessageBoxButtons.OK,
 36 MessageBoxIcon.Information)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 0 Structures and Sequential Access Files

604

(continued)

Figure 10-48 Code for the eBooks application (continues)

 37 End If
 38 End Sub
 39
 40 Private Sub btnAdd_Click(sender As Object, e As EventArgs
) Handles btnAdd.Click
 41 ' adds eBook information to the list box
 42
 43 ' declare variables
 44 Dim strTitle As String
 45 Dim strAuthor As String
 46 Dim strPrice As String
 47 Dim strConcatenatedInfo As String
 48 Dim dblPrice As Double
 49
 50 ' get the eBook information
 51 strTitle = InputBox("Title:", "eBooks")
 52 strAuthor = InputBox("Author:", "eBooks")
 53 strPrice = InputBox("Price:", "eBooks")
 54
 55 ' format the price, then concatenate the input
 56 ' items, using 40 characters for the title,
 57 ' 35 characters for the author, and 5
 58 ' characters for the price
 59 Double.TryParse(strPrice, dblPrice)
 60 strPrice = dblPrice.ToString("n2")
 61 strConcatenatedInfo = strTitle.PadRight(40) &
 62 strAuthor.PadRight(35) & strPrice.PadLeft(5)
 63
 64 ' add the information to the list box
 65 lstEbooks.Items.Add(strConcatenatedInfo)
 66
 67 End Sub
 68
 69 Private Sub btnRemove_Click(sender As Object, e As EventArgs
) Handles btnRemove.Click
 70 ' removes the selected line from the list box
 71
 72 ' if a line is selected, remove the line
 73 If lstEbooks.SelectedIndex <> -1 Then
 74 lstEbooks.Items.RemoveAt(lstEbooks.SelectedIndex)
 75 End If
 76 End Sub
 77
 78 Private Sub frmMain_FormClosing(sender As Object,
 e As FormClosingEventArgs) Handles Me.FormClosing
 79 ' save the list box information
 80
 81 ' declare a StreamWriter variable
 82 Dim outFile As IO.StreamWriter
 83
 84 ' open the file for output
 85 outFile = IO.File.CreateText("Ebooks.txt")
 86
 87 ' write each line in the list box
 88 For intIndex As Integer = 0 To lstEbooks.Items.Count - 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

605

Lesson C Key Terms L E S S O N C

(continued)

Figure 10-48 Code for the eBooks application

Lesson C Summary
 • To align columns of information:

Use the PadLeft and PadRight methods.

 • To align a column of numbers by the decimal point:

Format each number in the column to ensure that each has the same number of digits to the
right of the decimal point, and then use the PadLeft method to right-align the numbers.

 • To include a specific number of spaces in a string:

Use the Strings.Space method. The method’s syntax is Strings.Space(number), in which
number is an integer that represents the number of spaces to include.

 • To remove an item from a list box:

Use either the Items collection’s Remove method or its RemoveAt method. The Remove
method’s syntax is object.Items.Remove(item), where item is the value of the item you
want to remove. The RemoveAt method’s syntax is object.Items.RemoveAt(index),
where index is the index of the item you want removed.

Lesson C Key Terms
Remove method—used to specify the value of the item to remove from a list box

RemoveAt method—used to specify the index of the item to remove from a list box

Strings.Space method—used to include a specific number of spaces in a string

 89 outFile.WriteLine(lstEbooks.Items(intIndex))
 90 Next intIndex
 91
 92 ' close the file
 93 outFile.Close()
 94
 95 End Sub
 96
 97 Private Sub btnExit_Click(sender As Object, e As EventArgs
) Handles btnExit.Click
 98 Me.Close()
 99 End Sub
100 End Class

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 0 Structures and Sequential Access Files

606

Lesson C Review Questions
1. Which of the following opens a sequential access file named MyFriends.txt for input?

a. inFile = IO.File.Input("MyFriends.txt")
b. inFile = IO.InputFile("MyFriends.txt")
c. inFile = IO.File.InputText("MyFriends.txt")
d. inFile = IO.File.OpenText("MyFriends.txt")

2. Which of the following right-aligns the contents of the strNumbers variable?

a. strNumbers = strNumbers.PadLeft(10)
b. strNumbers = strNumbers.PadRight(10)
c. strNumbers = strNumbers.AlignLeft(10)
d. strNumbers = strNumbers.RightAlign(10)

3. Which of the following removes the fourth item from the lstFriends control?

a. lstFriends.Items.Remove(4)
b. lstFriends.Items.RemoveAt(4)
c. lstFriends.Items.RemoveIndex(3)
d. none of the above

4. Which of the following determines whether an item is selected in the lstFriends
control?

a. If lstFriends.SelectedIndex >= 0 Then
b. If lstFriends.SelectedItem <> –1 Then
c. If lstFriends.IndexSelected = –1 Then
d. none of the above

5. The lstFriends control contains five items. Which of the following writes the last item
to the file associated with the outFile variable?

a. outFile.WriteLine(lstFriends.Items(5))
b. outFile.WriteLine(lstFriends.Items(4))
c. outFile.WriteLine(lstFriends.Index(4))
d. none of the above

Lesson C Exercises
1. In this exercise, you modify the eBook Collection application from this lesson. Use

Windows to make a copy of the Ebook Solution folder. Rename the copy Ebook
Solution-Verify Save. Open the Ebook Solution (Ebook Solution.sln) file contained in
the Ebook Solution-Verify Save folder. The frmMain_FormClosing procedure should
verify that the user wants to save the changes made to the list box. It then should take
the necessary action based on the user’s response. Test the application appropriately.

2. In this exercise, you modify the eBook Collection application from this lesson. Use
Windows to make a copy of the Ebook Solution folder. Rename the copy Ebook
Solution-Verify Remove. Open the Ebook Solution (Ebook Solution.sln) file contained
in the Ebook Solution-Verify Remove folder. The btnRemove_Click procedure should
verify that the user wants to remove the selected eBook from the list box. Use the

INTRODUCTORY

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

607

Lesson C Exercises L E S S O N C

message “Do you want to remove the x eBook?”, where x is the eBook’s title. The
procedure should take the appropriate action based on the user’s response. Test the
application by entering appropriate information.

3. Open the VB2015\Chap10\Movies Solution\Movies Solution (Movies Solution.sln)
file. The btnAdd_Click procedure should add the movie title entered in the text
portion of the combo box to the list portion, but only if the title is not already in
the list. The btnRemove_Click procedure should remove (from the list portion of
the combo box) the title either entered in the text portion or selected in the list
portion. The frmMain_FormClosing procedure should save the combo box items in
a sequential access file named Movies.txt. The frmMain_Load procedure should read
the names from the Movies.txt file and add each to the combo box. Test the application
appropriately.

4. In this exercise, you modify the eBook Collection application from this lesson. Use
Windows to make a copy of the Ebook Solution folder. Rename the copy Ebook
Solution-No Duplicate. Open the Ebook Solution (Ebook Solution.sln) file contained in the
Ebook Solution-No Duplicate folder. Before getting the author’s name and the price, the
btnAdd_Click procedure should determine whether the eBook’s title is already included
in the list box. If the list box contains the title, the procedure should display an appropriate
message, and it should not add the eBook to the list. Save the solution, and then start and
test the application. Close the Code Editor window and then close the solution.

5. In this exercise, you modify the eBook Collection application from this lesson. Use
Windows to make a copy of the Ebook Solution folder. Rename the copy Ebook
Solution-Undo. Open the Ebook Solution (Ebook Solution.sln) file contained in the
Ebook Solution-Undo folder. Add an Undo Remove button to the form. The button’s
Click event procedure should restore the last line removed by the Remove an eBook
button. Test the application appropriately.

6. In this exercise, you modify the eBook Collection application from this lesson. Use
Windows to make a copy of the Ebook Solution folder. Rename the copy Ebook
Solution-Structure. Open the Ebook Solution (Ebook Solution.sln) file contained in the
Ebook Solution-Structure folder. Create a structure for the input information, and then
use the structure in the btnAdd_Click procedure. Test the application appropriately.

7. Zander Inc. stores employee IDs and salaries in a sequential access file named
Employees.txt. Open the VB2015\Chap10\Zander Solution\Zander Solution (Zander
Solution.sln) file. Open the Employees.txt file, which is contained in the project’s
bin\Debug folder. The ID and salary information appear on separate lines in the file.
Close the Employees.txt window.

a. Define a structure named Employee. The structure should contain two member
variables: a String variable to store the ID and a Double variable to store the salary.

b. Declare a class-level array that contains five Employee structure variables.
c. The frmMain_Load procedure should read the IDs and salaries from the

Employees.txt file and store them in the class-level array. It should also add the IDs
to the list box.

d. When the user selects an employee ID in the list box, the employee’s salary should
appear in the lblSalary control.

e. Test the application appropriately.

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 0 Structures and Sequential Access Files

608

8. Create an application, using the following names for the solution and project,
respectively: Commercial Solution and Commercial Project. Save the application in the
VB2015\Chap10 folder. Each year, KJPR-Radio polls its audience to determine the best
Super Bowl commercial. Create the interface shown in Figure 10-49. The list box should
display the following choices: Cheerios, Doritos, T-Mobile, and RadioShack. The Save
Vote button should save each caller’s choice in a sequential access file. The Display Votes
button should display the number of votes for each commercial as well as the percentage
of the total contributed by each choice. Test the application appropriately.

ADVANCED

Figure 10-49 Interface for Exercise 8

9. Preston Enterprises stores employee IDs and salaries in a sequential access file named
Employees.txt. Open the VB2015\Chap10\Preston Solution\Preston Solution (Preston
Solution.sln) file. Open the Employees.txt file, which is contained in the project’s bin\
Debug folder. Each line contains an employee’s ID followed by a comma and a salary
amount. Close the Employees.txt window.

a. Define a structure named Employee. The structure should contain two member
variables: a String variable to store the ID and a Double variable to store the salary.

b. Declare a class-level array that contains five Employee structure variables.
c. The frmMain_Load procedure should read the IDs and salaries from the Employees.

txt file and store them in the class-level array. It should also add the IDs to the list
box.

d. When the user selects an employee ID in the list box, the employee’s salary should
appear in the lblSalary control.

e. Test the application appropriately.

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 11
Classes and Objects

Creating the Woods Manufacturing Application

In this chapter, you will create an application that calculates and displays the gross
pay for salaried and hourly employees. Salaried employees are paid twice per
month. Therefore, each salaried employee’s gross pay is calculated by dividing his
or her annual salary by 24. Hourly employees are paid weekly. The gross pay for
an hourly employee is calculated by multiplying the number of hours the employee
worked during the week by his or her hourly pay rate. The application will also
display a report showing each employee’s number, name, and gross pay.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

610

Previewing the Woods Manufacturing Application
Before you start the first lesson in this chapter, you will preview the completed application
contained in the VB2015\Chap11 folder.

To preview the completed application:

1. Use Windows to locate and then open the VB2015\Chap11 folder. Right-click Woods
(Woods.exe) in the list of filenames and then click Open.

2. First, you will calculate the gross pay for Cameron Ramos, whose employee number is
4536. Cameron worked 38.5 hours and earns $9.50 per hour. Type 4536 and Cameron
Ramos in the Number and Name boxes, respectively. Click 38.5 and 9.50 in the Hours
and Rate list boxes, respectively. Click the Calculate button. $365.75 appears in the
Gross pay box, and Cameron’s information appears in the Report box. See Figure 11-1.

START HERE

Figure 11-1 Interface showing Cameron’s gross pay and information

3. Next, you will calculate the gross pay for a salaried employee earning $34,000 per year.
Type 9999 and Sydney James in the Number and Name boxes, respectively. Click
the Salaried employee radio button. Scroll the Annual salary list box and then click
34000 in the list. Click the Calculate button. $1,416.67 appears in the Gross pay box,
and Sydney’s information appears below Cameron’s information in the Report box. See
Figure 11-2.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

611

Previewing the Woods Manufacturing Application

4. Click the Exit button to end the application.

In Lesson A, you will learn about object-oriented programming (OOP). More specifically, you
will learn how to define a class and how to use the class to instantiate an object that can be used
in an application. Lesson B will teach you how to include ReadOnly and auto-implemented
properties in a class. You will also learn how to overload a class method. You will code the
Woods Manufacturing application in Lesson B. Lesson C covers an advanced OOP topic:
inheritance. Be sure to complete each lesson in full and do all of the end-of-lesson questions and
several exercises before continuing to the next lesson.

Figure 11-2 Interface showing Sydney’s gross pay and information

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

612

❚ LESSON A
After studying Lesson A, you should be able to:

 • Explain the terminology used in object-oriented programming

 • Create a class

 • Instantiate an object

 • Add Property procedures to a class

 • Include data validation in a class

 • Create a default constructor

 • Create a parameterized constructor

 • Include methods other than constructors in a class

Object-Oriented Programming Terminology
As you learned in the Overview, Visual Basic 2015 is an object-oriented programming
language, which is a language that allows the programmer to use objects to accomplish a
program’s goal. An object is anything that can be seen, touched, or used. In other words, an
object is nearly any thing. The objects used in an object-oriented program can take on many
different forms. The text boxes, list boxes, and buttons included in most Windows applications
are objects, and so are the application’s named constants and variables. An object can also
represent something found in real life, such as a wristwatch or a car.

Every object in an object-oriented program is created from a class, which is a pattern that the
computer uses to create the object. The class contains the instructions that tell the computer
how the object should look and behave. Using object-oriented programming (OOP) terminology,
objects are instantiated (created) from a class, and each object is referred to as an instance of the
class. A button control, for example, is an instance of the Button class. The button is instantiated
when you drag the Button tool from the toolbox to the form. A String variable, on the other
hand, is an instance of the String class and is instantiated the first time you refer to the variable in
code. Keep in mind that the class itself is not an object. Only an instance of a class is an object.

Every object has attributes, which are the characteristics that describe the object. Attributes
are also called properties. Included in the attributes of buttons and text boxes are the Name and
Text properties. List boxes have a Name property as well as a Sorted property.

In addition to attributes, every object also has behaviors. An object’s behaviors include methods
and events. Methods are the operations (actions) that the object is capable of performing. For
example, a button can use its Focus method to send the focus to itself. Similarly, a String variable
can use its ToUpper method to temporarily convert its contents to uppercase. Events, on the
other hand, are the actions to which an object can respond. A button’s Click event, for instance,
allows the button to respond to a mouse click.

A class contains—or, in OOP terms, it encapsulates—all of the attributes and behaviors of the
object it instantiates. The term encapsulate means to enclose in a capsule. In the context of
OOP, the “capsule” is a class.

Ch11A

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

613

Creating a Class L E S S O N A

Creating a Class
In previous chapters, you instantiated objects using classes that are built into Visual Basic,
such as the TextBox and Label classes. You used the instantiated objects in a variety of ways in
many different applications. In some applications, you used a text box to enter a name; in other
applications, you used it to enter a sales tax rate. Similarly, you used label controls to identify
text boxes and also to display the result of calculations. The ability to use an object for more
than one purpose saves programming time and money—an advantage that contributes to the
popularity of object-oriented programming.

You can also define your own classes in Visual Basic and then create instances (objects) from those
classes. You define a class using the Class statement, which you enter in a class file. Figure 11-3
shows the statement’s syntax and lists the steps for adding a class file to an open project.

Class Statement

Syntax
Public Class className
 attributes section
 behaviors section
End Class

Adding a class file to an open project
1. Click Project on the menu bar, and then click Add Class. The Add New Item dialog box opens
 with Class selected in the middle column of the dialog box.
2. Type the name of the class followed by a period and the letters vb in the Name box, and then
 click the Add button.

Figure 11-3 Syntax of the Class statement

Although it is not a requirement, the convention is to use Pascal case for the class name. The names
of Visual Basic classes (for example, Integer and TextBox) also follow this naming convention. Within
the Class statement, you define the attributes and behaviors of the objects the class will create. In
most cases, the attributes are represented by Private variables and Public properties. The behaviors
are represented by methods, which are usually Sub or Function procedures. (You can also include
Event procedures in a Class statement. However, that topic is beyond the scope of this book.)

Figure 11-4 shows an example of the Class statement entered in a class file. The three Option
statements included in the figure have the same meaning in a class file as they have in a form file.

The creation of
a good class,
which is one
whose objects
can be used

in a variety of ways by
many different applica-
tions, requires a lot of
planning.

Figure 11-4 Class statement entered in the TimeCard.vb class file

you begin entering the
attributes and behaviors
sections here

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

614

After you define a class, you can use either of the syntax versions in Figure 11-5 to instantiate
one or more objects. In both versions, variableName is the name of a variable that will represent
the object. The difference between the versions relates to when the object is actually created.
The computer creates the object only when it processes the statement containing the New
keyword, which you will learn more about later in this lesson. Also included in Figure 11-5 is an
example of using each version of the syntax.

Instantiating an Object from a Class

Syntax – Version 1
{Dim | Private} variableName As className
variableName = New className

Syntax – Version 2
{Dim | Private} variableName As New className

Example 1 (using Syntax Version 1)
Private hoursInfo As TimeCard
hoursInfo = New TimeCard
The Private instruction creates a TimeCard variable named hoursInfo; the assignment statement
instantiates a TimeCard object and assigns it to the hoursInfo variable.

Example 2 (using Syntax Version 2)
Dim hoursInfo As New TimeCard
The Dim instruction creates a TimeCard variable named hoursInfo and also instantiates a
TimeCard object, which it assigns to the hoursInfo variable.

Figure 11-5 Syntax and examples of instantiating an object

In Example 1, the Private hoursInfo As TimeCard instruction creates a class-level variable
that can represent a TimeCard object; however, it does not create the object. The object isn’t
created until the computer processes the hoursInfo = New TimeCard statement, which uses
the TimeCard class to instantiate a TimeCard object. The statement assigns the object to the
hoursInfo variable. In Example 2, the Dim hoursInfo As New TimeCard instruction creates
a procedure-level variable named hoursInfo. It also instantiates a TimeCard object and assigns
it to the variable.

In the remainder of this lesson, you will view examples of class definitions and also examples
of code in which objects are instantiated and used. The first example is a class that contains
attributes only, with each attribute represented by a Public variable.

Example 1—A Class That Contains Public Variables Only
In its simplest form, the Class statement can be used in place of the Structure statement, which
you learned about in Chapter 10. Like the Structure statement, the Class statement groups related
items into one unit. However, the unit is called a class rather than a structure. In the following
set of steps, you will modify the Norbert Pool & Spa Depot application from Chapter 10 using
a class instead of a structure. The application’s code from Chapter 10 is shown in Figure 11-6.
The Structure statement groups together the three dimensions of a rectangular pool: length,
width, and depth. The btnCalc_Click procedure declares a structure variable and then fills the
variable’s members with values. It then passes the structure variable to the GetGallons function,
which calculates and returns the number of gallons required to fill the pool. The btnCalc_Click
procedure then displays the returned value in the lblGallons control.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

615

Example 1—A Class That Contains Public Variables Only L E S S O N A

To begin modifying the application:

1. If necessary, start Visual Studio 2015. Open the VB2015\Chap11\Norbert Solution\
Norbert Solution (Norbert Solution.sln) file. Open the Code Editor window.

2. First, you will add a class file to the project. Click Project on the menu bar and then
click Add Class. The Add New Item dialog box opens with Class selected in the middle
column of the dialog box. Type RectangularPool.vb in the Name box. As you learned
in Chapter 1, the .vb in a filename indicates that the file contains Visual Basic code.

3. Click the Add button. The computer adds the RectangularPool.vb file to the project.
It also opens the file, which contains the Class statement, in a separate window.
Temporarily display the Solution Explorer window, if necessary, to verify that the class
file’s name appears in the window.

4. Insert a blank line above the Class statement, and then enter the comments and
Option statements shown in Figure 11-7. Replace <your name> and <current date> in
the comments with your name and the current date, respectively. Also, position the
insertion point as shown in the figure.

START HERE

Structure Dimensions
 Public dblLength As Double
 Public dblWidth As Double
 Public dblDepth As Double
End Structure

Private Function GetGallons(ByVal pool As Dimensions
) As Double
 ' calculates and returns the number of gallons

 Const dblGAL_PER_CUBIC_FOOT As Double = 7.48

 Return pool.dblLength * pool.dblWidth *
 pool.dblDepth * dblGAL_PER_CUBIC_FOOT
End Function

Private Sub btnCalc_Click(sender As Object, e As EventArgs
) Handles btnCalc.Click
 ' displays the number of gallons

 Dim poolSize As Dimensions
 Dim dblGallons As Double

 Double.TryParse(txtLength.Text, poolSize.dblLength)
 Double.TryParse(txtWidth.Text, poolSize.dblWidth)
 Double.TryParse(txtDepth.Text, poolSize.dblDepth)

 dblGallons = GetGallons(poolSize)
 lblGallons.Text = dblGallons.ToString("N0")

 txtLength.Focus()
End Sub

Figure 11-6 Norbert Pool & Spa Depot application’s code using a structure

entered in the form’s
Declarations section

receives a structure
variable by value

assigns the input data to
the structure variable

declares a structure variable
to store the input data

passes the structure
variable to the GetGallons
function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

616

A RectangularPool object has three attributes: length, width, and depth. In the Class statement,
each attribute will be represented by a Public variable. When a variable in a class is declared
using the Public keyword, it can be accessed by any application that contains an instance of
the class. The convention is to use Pascal case for the names of the Public variables in a class
and to omit the three-character ID that indicates the variable’s data type. This is because Public
variables represent properties that will be seen by anyone using an object created from the class.
The properties of Visual Basic objects, such as the Text and StartPosition properties, also follow
this naming convention.

To enter the Public variables in the class definition:

1. Enter the following three Public statements:

 Public Length As Double
 Public Width As Double
 Public Depth As Double

2. Delete the blank line above the End Class clause, if necessary, and then save the
solution.

Next, you will modify the application’s code to use the RectangularPool class rather than the
Dimensions structure.

To modify the code to use the RectangularPool class:

1. Click the Main Form.vb tab to return to the form’s Code Editor window. Replace
<your name> and <current date> in the comments with your name and the current
date, respectively.

2. First, delete the Structure statement from the form’s Declarations section.

3. Next, locate the btnCalc_Click procedure. Instead of declaring a Dimensions structure
variable, the procedure will instantiate a RectangularPool object. Replace the Dim
poolSize As Dimensions instruction with the following instruction:

 Dim customerPool As New RectangularPool

4. Rather than using the three members of the poolSize structure variable, the TryParse
methods will now use the RectangularPool object’s three Public variables. Highlight (select)
poolSize.dblLength in the first TryParse method. Type customerPool. (be sure to type
the period). The Public variables appear in the IntelliSense list, as shown in Figure 11-8.

START HERE

START HERE

Figure 11-7 Comments and Option statements entered in the class file

enter these comments
and Option statements

position the insertion
point here

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

617

Example 1—A Class That Contains Public Variables Only L E S S O N A

5. Click Length and then press Tab. Change poolSize.dblWidth and poolSize.
dblDepth in the remaining TryParse methods to customerPool.Width and
customerPool.Depth, respectively.

6. Instead of passing the poolSize structure variable to the GetGallons function,
the procedure needs to pass the RectangularPool object. Change poolSize in the
dblGallons = GetGallons(poolSize) statement to customerPool.

7. Locate the GetGallons function. The function will need to receive a RectangularPool
object rather than a Dimensions structure variable. Change Dimensions in the function
header to RectangularPool.

8. Finally, change dblLength, dblWidth, and dblDepth in the Return statement to
Length, Width, and Depth, respectively. Recall that Length, Width, and Depth are the
names of the RectangularPool object’s properties.

Figure 11-9 shows the Class statement, the GetGallons function, and the btnCalc_Click
procedure. The changes made to the original function and procedure (both of which were
shown earlier in Figure 11-6) are shaded in the figure.

Figure 11-8 Public variables included in the IntelliSense list

IntelliSense list

Class statement entered in the RectangularPool.vb file
Public Class RectangularPool
 Public Length As Double
 Public Width As Double
 Public Depth As Double
End Class

GetGallons function and btnCalc_Click procedure entered in the Main Form.vb file
Private Function GetGallons(ByVal pool As RectangularPool) As Double
 ' calculates and returns the number of gallons

 Const dblGAL_PER_CUBIC_FOOT As Double = 7.48

 Return pool.Length * pool.Width *
 pool.Depth * dblGAL_PER_CUBIC_FOOT
End Function

Private Sub btnCalc_Click(sender As Object, e As EventArgs
) Handles btnCalc.Click
 ' displays the number of gallons

 Dim customerPool As New RectangularPool
 Dim dblGallons As Double

 Double.TryParse(txtLength.Text, customerPool.Length)
 Double.TryParse(txtWidth.Text, customerPool.Width)
 Double.TryParse(txtDepth.Text, customerPool.Depth)

 dblGallons = GetGallons(customerPool)
 lblGallons.Text = dblGallons.ToString("N0")

 txtLength.Focus()
End Sub

Figure 11-9 Class definition, GetGallons function, and btnCalc_Click procedure (continues)

receives a
RectangularPool
object by value

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

618

To test the modified code:

1. Save the solution and then start the application. Use the application to display the
number of gallons of water required to fill a pool that is 100 feet long, 30 feet wide, and
4 feet deep. See Figure 11-10.

START HERE

 (continued)

Class statement entered in the RectangularPool.vb file
Public Class RectangularPool
 Public Length As Double
 Public Width As Double
 Public Depth As Double
End Class

GetGallons function and btnCalc_Click procedure entered in the Main Form.vb file
Private Function GetGallons(ByVal pool As RectangularPool) As Double
 ' calculates and returns the number of gallons

 Const dblGAL_PER_CUBIC_FOOT As Double = 7.48

 Return pool.Length * pool.Width *
 pool.Depth * dblGAL_PER_CUBIC_FOOT
End Function

Private Sub btnCalc_Click(sender As Object, e As EventArgs
) Handles btnCalc.Click
 ' displays the number of gallons

 Dim customerPool As New RectangularPool
 Dim dblGallons As Double

 Double.TryParse(txtLength.Text, customerPool.Length)
 Double.TryParse(txtWidth.Text, customerPool.Width)
 Double.TryParse(txtDepth.Text, customerPool.Depth)

 dblGallons = GetGallons(customerPool)
 lblGallons.Text = dblGallons.ToString("N0")

 txtLength.Focus()
End Sub

Figure 11-9 Class definition, GetGallons function, and btnCalc_Click procedure

passes the
RectangularPool
object to the
GetGallons function

instantiates a RectangularPool
object and assigns it to the
customerPool variable

assigns values to the
object’s properties

Figure 11-10 Interface showing the required number of gallons

2. Click the Exit button. Close the Main Form.vb and RectangularPool.vb windows, and
then close the solution.

Example 2—A Class That Contains Private Variables,
Public Properties, and Methods
Although you can define a class that contains only attributes represented by Public
variables—like the RectangularPool class shown in Figure 11-9—that is rarely done. The
disadvantage of using Public variables in a class is that a class cannot control the values
assigned to its Public variables. As a result, the class cannot validate the values to ensure they
are appropriate for the variables. Furthermore, most classes contain not only attributes, but

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

619

Example 2—A Class That Contains Private Variables, Public Properties, and Methods L E S S O N A

behaviors as well. This is because the purpose of a class in OOP is to encapsulate the properties
that describe an object, the methods that allow the object to perform tasks, and the events that
allow the object to respond to actions.

In this section, you will create a class that contains data validation code and methods. (Including
events in a class is beyond the scope of this book.) The class will be used in the Sunnyside
Decks application, which displays the number of square feet of building material required for a
rectangular deck. It also displays the cost of the deck.

To add a class file to the application:

1. Open the VB2015\Chap11\Sunnyside Solution\Sunnyside Solution (Sunnyside
Solution.sln) file. The interface provides list boxes for the user to enter the length and
width of the deck as well as the price of a square foot of material. See Figure 11-11.

START HERE

Figure 11-11 Interface for the Sunnyside Decks application

2. Use the Project menu to add a new class file to the project. Name the class file
Rectangle.vb.

3. Insert a blank line above the Class statement, and then enter the comments and
Option statements shown in Figure 11-12. Replace <your name> and <current date>
in the comments with your name and the current date, respectively. Also, position the
insertion point as shown in the figure.

Figure 11-12 Comments and Option statements entered in the class file

position the insertion
point here

enter these comments
and Option statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

620

A rectangular deck has two attributes: length and width. Rather than using Public variables
to represent both attributes, the Rectangle class will use Private variables and Public Property
procedures.

Private Variables and Public Property Procedures
Unlike a class’s Public variables, its Private variables are not visible to applications that contain
an instance of the class. Because of this, the names of the Private variables will not appear in the
IntelliSense list as you are coding, nor will they be recognized within the application’s code. A
class’s Private variables can be used only by instructions within the class itself. When naming
a class’s Private variables, many programmers use the underscore as the first character in the
name and then camel case for the remainder of the name, like this: _intLength and _intWidth.

To include Private variables in the Rectangle class:

1. Enter the following two Private statements. Press Enter twice after typing the last
statement.

 Private _intLength As Integer
 Private _intWidth As Integer

2. Save the solution.

When an application instantiates an object, only the Public members of the object’s class are
visible to the application. Using OOP terminology, the Public members are “exposed” to the
application, whereas the Private members are “hidden” from the application. For an application
to assign data to or retrieve data from a Private variable, it must use a Public property. In other
words, an application cannot directly refer to a Private variable in a class. Rather, it must refer to
the variable indirectly, through the use of a Public property.

You create a Public property using a Property procedure, whose syntax is shown in Figure 11-13.
A Public Property procedure creates a property that is visible to any application that contains an
instance of the class. In most cases, a Property procedure header begins with the keywords Public
Property. However, as the syntax indicates, the header can also include one of the following
keywords: ReadOnly or WriteOnly. The ReadOnly keyword indicates that the property’s value
can be retrieved (read) by an application, but the application cannot set (write to) the property.
The property would get its value from the class itself rather than from the application. The
WriteOnly keyword indicates that an application can set the property’s value, but it cannot retrieve
the value. In this case, the value would be set by the application for use within the class.

As Figure 11-13 shows, the name of the property follows the Property keyword in the header.
You should use nouns and adjectives to name a property and enter the name using Pascal case,
as in Side, Bonus, and AnnualSales. Following the property name is an optional parameterList
enclosed in parentheses, the keyword As, and the property’s dataType. The dataType must
match the data type of the Private variable associated with the Property procedure.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

621

Example 2—A Class That Contains Private Variables, Public Properties, and Methods L E S S O N A

Between a Property procedure’s header and footer, you include a Get block of code, a Set block
of code, or both Get and Set blocks of code. The appropriate block or blocks of code to include
depends on the keywords contained in the procedure header. If the header contains the
ReadOnly keyword, you include only a Get block of code in the Property procedure. The code
contained in the Get block allows an application to retrieve the contents of the Private variable
associated with the property. In the Property procedure shown in Example 2 in Figure 11-13, the

The Length
property of
a one-dimen-
sional array is
an example of

a ReadOnly property.

Property Procedure

Syntax
Public [ReadOnly | WriteOnly] Property propertyName[(parameterList)] As dataType
 Get
 [instructions]
 Return privateVariable
 End Get
 Set(value As dataType)
 [instructions]
 privateVariable = {value | defaultValue}
 End Set
End Property

Example 1 – an application can both retrieve and set the Side property’s value
Private _intSide As Integer

Public Property Side As Integer
 Get
 Return _intSide
 End Get
 Set(value As Integer)
 If value > 0 Then
 _intSide = value
 Else
 _intSide = 0
 End If
 End Set
End Property

Example 2 – an application can retrieve, but not set, the Bonus property’s value
Private _dblBonus As Double

Public ReadOnly Property Bonus As Double
 Get
 Return _dblBonus
 End Get
End Property

Example 3 – an application can set, but not retrieve, the AnnualSales property’s value
Private _decAnnualSales As Decimal

Public WriteOnly Property AnnualSales As Decimal
 Set(value As Decimal)
 _decAnnualSales = value
 End Set
End Property

Figure 11-13 Syntax and examples of a Property procedure

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

622

ReadOnly keyword indicates that an application can retrieve the contents of the Bonus property,
but it cannot set the property’s value. The value can be set only by a procedure within the class.

If the header contains the WriteOnly keyword, on the other hand, you include only a Set
block of code in the procedure. The code in the Set block allows an application to assign a
value to the Private variable associated with the property. In the Property procedure shown in
Example 3 in Figure 11-13, the WriteOnly keyword indicates that an application can assign
a value to the AnnualSales property, but it cannot retrieve the property’s contents. Only a
procedure within the class can retrieve the value.

If the Property procedure header does not contain the ReadOnly or WriteOnly keywords, you
include both a Get block of code and a Set block of code in the procedure, as shown in Example
1 in Figure 11-13. In this case, an application can both retrieve and set the Side property’s value.

The Get block in a Property procedure contains the Get statement, which begins with the
Get clause and ends with the End Get clause. Most times, you will enter only the Return
privateVariable instruction within the Get statement. The instruction returns the contents
of the Private variable associated with the property. In Example 1 in Figure 11-13, the
Return _intSide statement returns the contents of the _intSide variable, which is the
Private variable associated with the Side property. Similarly, the Return _dblBonus statement
in Example 2 returns the contents of the _dblBonus variable, which is the Private variable
associated with the Bonus property. Example 3 does not contain a Get statement because the
AnnualSales property is designated as a WriteOnly property.

The Set block contains the Set statement, which begins with the Set clause and ends with the
End Set clause. The Set clause’s value parameter temporarily stores the value that is passed
to the property by the application. The value parameter’s dataType must match the data type
of the Private variable associated with the Property procedure. You can enter one or more
instructions between the Set and End Set clauses. One of the instructions should assign the
contents of the value parameter to the Private variable associated with the property. In Example 3
in Figure 11-13, the _decAnnualSales = value statement assigns the contents of the
property’s value parameter to the Private _decAnnualSales variable.

In the Set statement, you often will include instructions to validate the value received from
the application before assigning it to the Private variable. The Set statement in Example 1 in
Figure 11-13 includes a selection structure that determines whether the side measurement
received from the application is greater than 0. If it is, the _intSide = value instruction
assigns the integer stored in the value parameter to the Private _intSide variable. Otherwise,
the _intSide = 0 instruction assigns a default value (in this case, 0) to the variable. The
Property procedure in Example 2 in Figure 11-13 does not contain a Set statement because the
Bonus property is designated as a ReadOnly property.

To enter a Property procedure for each Private variable in the Rectangle class:

1. The insertion point should be positioned in the blank line above the End Class clause.
Enter the following Property procedure header and Get clause. When you press Enter
after typing the Get clause, the Code Editor automatically enters the End Get clause,
the Set statement, and the End Property clause.

 Public Property Length As Integer
 Get

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

623

Example 2—A Class That Contains Private Variables, Public Properties, and Methods L E S S O N A

2. Recall that in most cases, the Get statement simply returns the contents of the Private
variable associated with the Property procedure. Type the following statement, but
don’t press Enter:

 Return _intLength

3. The Set statement should assign either the contents of its value parameter or a default
value to the Private variable associated with the Property procedure. In this case, you will
assign the integer stored in the value parameter only when it is greater than 0; otherwise,
you will assign the number 0. Enter the additional code shaded in Figure 11-14.

Figure 11-14 Length Property procedure entered in the class

Private variable

Public property associated with
the _intLength Private variable

4. Insert two blank lines below the End Property clause. On your own, enter a similar
Property procedure for the _intWidth variable. Use Width as the property’s name.
(If you need help, you can look ahead to Figure 11-20.)

5. Save the solution.

You have finished entering the class’s Private variables and Public Property procedures. The
class’s methods are next. The first method you will learn about is a constructor.

Constructors
Most classes contain at least one constructor. A constructor is a class method, always named
New, whose sole purpose is to initialize the class’s Private variables. Constructors never return a
value, so they are always Sub procedures rather than Function procedures. The syntax for creating
a constructor is shown in Figure 11-15. Notice that a constructor’s parameterList is optional.
A constructor that has no parameters, like the constructor in Example 1, is called the default
constructor. A class can have only one default constructor. A constructor that contains one or
more parameters, like the constructor in Example 2, is called a parameterized constructor. A
class can have as many parameterized constructors as needed. However, the parameterList in
each parameterized constructor must be unique within the class. The method name (in this case,
New) combined with its optional parameterList is called the method’s signature.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

624

When an object is instantiated, the computer uses one of the class’s constructors to initialize the
class’s Private variables. If a class contains more than one constructor, the computer determines
the appropriate constructor by matching the number, data type, and position of the arguments
in the statement that instantiates the object with the number, data type, and position of the
parameters listed in each constructor’s parameterList. The statements in Examples 1 and 2 in
Figure 11-16 will invoke the default constructor because neither statement contains any
arguments. The statements in Examples 3 and 4 will invoke the parameterized constructor
because both statements contain two arguments whose data type is Integer.

The Dim
randGen As

New Random
statement
from Chapter 5

instantiates a Random
object and invokes
the class’s default
constructor.

Example 1 – invokes the default constructor
Dim deck As New Rectangle

Example 2 – invokes the default constructor
deck = New Rectangle

Example 3 – invokes the parameterized constructor
Dim deck As New Rectangle(16, 14)

Example 4 – invokes the parameterized constructor
deck = New Rectangle(intDeckLen, intDeckWid)

Figure 11-16 Statements that invoke the constructors shown in Figure 11-15

A default constructor is allowed to initialize the class’s Private variables directly, as indicated
earlier in Example 1 in Figure 11-15. Parameterized constructors, on the other hand, should use
the class’s Public properties to access the Private variables indirectly. This is because the values
passed to a parameterized constructor come from the application rather than from the class
itself. Using a Public property to access a Private variable ensures that the Property procedure’s
Set block, which typically contains validation code, is processed. The parameterized constructor
shown earlier in Example 2 in Figure 11-15 uses the class’s Public properties to initialize its
Private variables, thereby invoking each property’s validation code.

Constructor

Syntax
Public Sub New([parameterList])
 instructions to initialize the class’s Private variables
End Sub

Example 1 (default constructor)
Public Sub New()
 _intLength = 0
 _intWidth = 0
End Sub

Example 2 (parameterized constructor)
Public Sub New(ByVal intL As Integer,
 ByVal intW As Integer)
 Length = intL
 Width = intW
End Sub

Figure 11-15 Syntax and examples of a constructor

initializes the Private
variables directly

uses the Public properties
to initialize the Private
variables indirectly

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

625

Example 2—A Class That Contains Private Variables, Public Properties, and Methods L E S S O N A

To include a default constructor in the Rectangle class:

1. Insert two blank lines below the Width property’s End Property clause, and then enter
the following default constructor:

 Public Sub New()
 _intLength = 0
 _intWidth = 0
 End Sub

Methods Other than Constructors
Except for constructors, which must be Sub procedures, the other methods in a class can
be either Sub procedures or Function procedures. Recall from Chapter 7 that the difference
between these two types of procedures is that a Function procedure returns a value after
performing its assigned task, whereas a Sub procedure does not return a value.

Figure 11-17 shows the syntax for a method that is not a constructor. Like property names,
method names should be entered using Pascal case. However, unlike property names, the first
word in a method name should be a verb, and any subsequent words should be nouns and
adjectives. (Visual Basic’s SelectAll and TryParse methods follow this naming convention.)
Figure 11-17 also includes two examples of a method that allows a Rectangle object to calculate
its area. Notice that you can write the method as either a Function procedure or a Sub
procedure. You will use the GetArea method in the Sunnyside Decks application to calculate the
area of the deck the customer wants to build. Calculating the area will give you the number of
square feet of material required for the deck.

START HERE

Method That Is Not a Constructor

Syntax
Public {Sub | Function} methodName([parameterList]) [As dataType]
 instructions
End {Sub | Function}

Example 1 – Function procedure
Public Function GetArea() As Integer
 Return _intLength * _intWidth
End Function

Example 2 – Sub procedure
Public Sub GetArea(ByRef intA As Integer)
 intA = _intLength * _intWidth
End Sub

Figure 11-17 Syntax and examples of a method that is not a constructor

To enter the GetArea method from Example 1:

1. Insert two blank lines below the default constructor’s End Sub clause.

2. Enter the GetArea method shown in Example 1 in Figure 11-17, and then save
the solution.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

626

Coding the Sunnyside Decks Application
The Calculate button’s Click event procedure is the only procedure you need to code in the
Sunnyside Decks application. Figure 11-18 shows the procedure’s pseudocode.

btnCalc Click event procedure
1. instantiate a Rectangle object to represent the deck
2. declare variables to store the price per square foot of material, the required number of
 square feet of material, and the cost of the deck
3. assign the input data to the appropriate properties and variable
4. calculate the required number of square feet of material by finding the deck’s area; use the
 object’s GetArea method
5. calculate the cost of the deck by multiplying the required number of square feet of material
 by the price per square foot of material
6. display the required number of square feet of material and the cost of the deck

Figure 11-18 Pseudocode for the btnCalc_Click procedure

To code the btnCalc_Click procedure:

1. Click the designer window’s tab, and then open the form’s Code Editor window.
Replace <your name> and <current date> in the comments with your name and the
current date, respectively.

2. Locate the btnCalc_Click procedure. The first step in the pseudocode is to instantiate a
Rectangle object to represent the deck. Enter the following Dim statement in the blank
line below the ' instantiate a Rectangle object comment:

 Dim deck As New Rectangle

3. Next, the procedure will declare variables to store the price of a square foot of material,
the number of square feet needed, and the cost of the deck. Click the blank line
below the ' declare variables comment, and then enter the following three Dim
statements:

 Dim dblPriceSqFt As Double
 Dim intSqFt As Integer
 Dim dblCost As Double

4. Now the procedure will assign the length and width entries to the Rectangle object’s
Length and Width properties, respectively. It will also assign the price entry to the
dblPriceSqFt variable. Click the blank line below the ' assign values to the
object's Public properties comment, and then enter the three TryParse methods
shown in Figure 11-19. Notice that when you press the period after typing deck in the
first two TryParse methods, the deck object’s Length and Width properties appear in
the IntelliSense list.

START HERE

Figure 11-19 TryParse methods entered in the procedure

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

627

Example 2—A Class That Contains Private Variables, Public Properties, and Methods L E S S O N A

5. The fourth step in the pseudocode calculates the required number of square feet of
material; it does this using the object’s GetArea method. Click the blank line below the
' calculate the square feet comment, and then enter the following assignment
statement. Here, again, notice that when you press the period after typing deck, the
deck object’s GetArea method appears in the IntelliSense list.

 intSqFt = deck.GetArea

6. The next step in the pseudocode calculates the cost of the deck by multiplying the
number of square feet by the price per square foot. Enter the following assignment
statement in the blank line below the ' calculate the deck cost comment:

 dblCost = intSqFt * dblPriceSqFt

7. The last step in the pseudocode displays the required number of square feet and the
cost of the deck. Click the blank line below the ' display output comment, and
then enter the following assignment statements:

 lblSquareFeet.Text = intSqFt.ToString
 lblCost.Text = dblCost.ToString("c2")

Figure 11-20 shows the Rectangle class definition contained in the Rectangle.vb file. It also
shows the btnCalc_Click procedure contained in the Main Form.vb file.

Class statement entered in the Rectangle.vb file
Public Class Rectangle
 Private _intLength As Integer
 Private _intWidth As Integer

 Public Property Length As Integer
 Get
 Return _intLength
 End Get
 Set (value As Integer)
 If value > 0 Then
 _intLength = value
 Else
 _intLength = 0
 End If
 End Set
 End Property

 Public Property Width As Integer
 Get
 Return _intWidth
 End Get
 Set (value As Integer)
 If value > 0 Then
 _intWidth = value
 Else
 _intWidth = 0
 End If
 End Set
 End Property

Figure 11-20 Rectangle class definition and btnCalc_Click procedure (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

628

To test the application:

1. Save the solution and then start the application. Click 16 and 14 in the Length and
Width list boxes, respectively. Click 9.50 in the Price list box and then click the
Calculate button. The Dim deck As New Rectangle instruction in the btnCalc_Click
procedure instantiates a Rectangle object, using the class’s default constructor to
initialize the object’s Private variables to the number 0. The next three Dim statements
in the procedure create and initialize two Double variables and one Integer variable.
The first two TryParse methods use the Rectangle object’s Public properties to assign
the appropriate values to the object’s Private variables. The third TryParse method
assigns the selected price per square foot to the dblPriceSqFt variable. Next, the
procedure uses the Rectangle object’s GetArea method to calculate and return the

START HERE

 (continued)

 Public Sub New()
 _intLength = 0
 _intWidth = 0
 End Sub

 Public Function GetArea() As Integer
 Return _intLength * _intWidth
 End Function
End Class

btnCalc_Click procedure entered in the Main Form.vb file
Private Sub btnCalc_Click(sender As Object, e As EventArgs) Handles
btnCalc.Click
 ' displays square feet and deck cost

 ' instantiate a Rectangle object
 Dim deck As New Rectangle

 ' declare variables
 Dim dblPriceSqFt As Double
 Dim intSqFt As Integer
 Dim dblCost As Double

 ' assign values to the object's Public properties
 Integer.TryParse(lstLength.SelectedItem.ToString, deck.Length)
 Integer.TryParse(lstWidth.SelectedItem.ToString, deck.Width)
 Double.TryParse(lstPrice.SelectedItem.ToString, dblPriceSqFt)

 ' calculate the square feet
 intSqFt = deck.GetArea

 ' calculate the deck cost
 dblCost = intSqFt * dblPriceSqFt

 ' display output
 lblSquareFeet.Text = intSqFt.ToString
 lblCost.Text = dblCost.ToString("c2")

End Sub

Figure 11-20 Rectangle class definition and btnCalc_Click procedure

instantiates a
Rectangle object

assigns
values to the
object’s Public
properties

invokes the object’s
GetArea method

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

629

Example 3—A Class That Contains a Parameterized Constructor L E S S O N A

deck’s area, which represents the required number of square feet of building material.
Finally, the procedure calculates the cost of the deck, and then it displays both the
required number of square feet and the cost. See Figure 11-21.

Figure 11-21 Square feet and cost displayed in the interface

2. On your own, test the application using different lengths, widths, and prices. When you
are finished, click the Exit button. Close the Main Form.vb and Rectangle.vb windows,
and then close the solution.

YOU DO IT 1!

Create an application named YouDoIt 1 and save it in the VB2015\Chap11 folder. Add
a text box, a label, and a button to the form. Add a class file named Circle.vb to the
project. Define a class named Circle that contains one attribute: the circle’s radius. It
should also contain a default constructor and a method that calculates and returns
the circle’s area. Use the following formula to calculate the area: 3.141592 * radius2.
Open the form’s Code Editor window. Code the button’s Click event procedure so that
it displays the circle’s area, using the radius entered by the user. Test the application
appropriately, and then close the solution.

Example 3—A Class That Contains a Parameterized
Constructor
In this example, you will add a parameterized constructor to the Rectangle class created in
Example 2 and then use the parameterized constructor in the Sunnyside Decks application.
Recall that a parameterized constructor is simply a constructor that has parameters.

To add a parameterized constructor to the Rectangle.vb file:

1. Use Windows to make a copy of the Sunnyside Solution folder from Example 2.
Rename the copy Modified Sunnyside Solution. Open the Sunnyside Solution
(Sunnyside Solution.sln) file contained in the Modified Sunnyside Solution folder.

2. Right-click Rectangle.vb in the Solution Explorer window, and then click View Code.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

630

3. Locate the default constructor. Click the blank line below the default constructor’s End
Sub clause, and then press Enter twice to insert two blank lines. Press the up arrow
key on your keyboard, and then enter the following parameterized constructor:

 Public Sub New(ByVal intL As Integer, ByVal intW As Integer)
 Length = intL
 Width = intW
 End Sub

4. Save the solution and then close the Rectangle.vb window.

Figure 11-22 shows the Rectangle class’s default and parameterized constructors. Unlike the
default constructor, which automatically initializes the Private variables to 0 when a Rectangle
object is created, a parameterized constructor allows an application to specify the object’s initial
values. In this case, the initial values must have the Integer data type because the constructor’s
parameterList contains two Integer variables. You include the initial values, enclosed in a set of
parentheses, in the statement that instantiates the object. In other words, you include them in the
statement that contains the New keyword, such as the Dim deck As New Rectangle(16, 14)
statement or the deck = New Rectangle(intDeckLen, intDeckWid) statement.

Default constructor
Public Sub New()
 _intLength = 0
 _intWidth = 0
End Sub

Parameterized constructor
Public Sub New(ByVal intL As Integer, ByVal intW As Integer)
 Length = intL
 Width = intW
End Sub

Figure 11-22 Default and parameterized constructors

accesses the Private
variables directly

uses the Public properties to
access the Private variables

To use the parameterized constructor in the btnCalc_Click procedure:

1. Open the form’s Code Editor window. Locate the btnCalc_Click procedure. Change the
second comment in the procedure to ' declare a variable for a Rectangle object.

2. Delete the New keyword from the first Dim statement. The statement should now say
Dim deck As Rectangle.

3. Click the blank line below the last Dim statement, and then enter the following two
declaration statements:

 Dim intDeckLen As Integer
 Dim intDeckWid As Integer

4. In the first TryParse method, replace deck.Length with intDeckLen. Then, in the
second TryParse method, replace deck.Width with intDeckWid.

5. Click the blank line below the last TryParse method and then press Enter. Enter the
following comment and assignment statement:

 ' instantiate and initialize a Rectangle object
 deck = New Rectangle(intDeckLen, intDeckWid)

The modifications made to the original code, shown earlier in Figure 11-20, are shaded
in Figure 11-23.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

631

Example 3—A Class That Contains a Parameterized Constructor L E S S O N A

Modified Class statement entered in the Rectangle.vb file
Public Class Rectangle
 Private _intLength As Integer
 Private _intWidth As Integer

 Public Property Length As Integer
 Get
 Return _intLength
 End Get
 Set(value As Integer)
 If value > 0 Then
 _intLength = value
 Else
 _intLength = 0
 End If
 End Set
 End Property

 Public Property Width As Integer
 Get
 Return _intWidth
 End Get
 Set(value As Integer)
 If value > 0 Then
 _intWidth = value
 Else
 _intWidth = 0
 End If
 End Set
 End Property

 Public Sub New()
 _intLength = 0
 _intWidth = 0
 End Sub

 Public Sub New(ByVal intL As Integer, ByVal intW As Integer)
 Length = intL
 Width = intW
 End Sub

 Public Function GetArea() As Integer
 Return _intLength * _intWidth
 End Function
End Class

Modified btnCalc_Click procedure entered in the Main Form.vb file
Private Sub btnCalc_Click(sender As Object, e As EventArgs
) Handles btnCalc.Click
 ' displays square feet and deck cost

Figure 11-23 Modified Rectangle class definition and btnCalc_Click procedure (continues)

parameterized constructor

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

632

When the user clicks the Calculate button, the Dim deck As Rectangle instruction in the
btnCalc_Click procedure creates a variable that can store a Rectangle object; but it does not
create the object. The remaining Dim statements create and initialize five variables. The
TryParse methods assign the input values to the intDeckLen, intDeckWid, and dblPriceSqFt
variables.

The next statement in the procedure, deck = New Rectangle(intDeckLen, intDeckWid),
instantiates a Rectangle object. The two Integer arguments in the statement tell the computer
to use the parameterized constructor to initialize the Rectangle object’s Private variables. The
computer passes the two arguments (by value) to the constructor, which stores them in its intL
and intW parameters. The assignment statements in the constructor then assign the parameter
values to the Rectangle object’s Public Length and Width properties.

When you assign a value to a property, the computer passes the value to the property’s Set
statement, where it is stored in the Set statement’s value parameter. In this case, the selection
structure in the Length property’s Set statement compares the value stored in the value
parameter with the number 0. If the value is greater than 0, the selection structure’s true path
assigns the value to the Private _intLength variable; otherwise, its false path assigns the
number 0 to the variable. The selection structure in the Width property’s Set statement works
the same way, except it assigns the appropriate number to the Private _intWidth variable.

Notice that a parameterized constructor uses the class’s Public properties to access the Private
variables indirectly. This is because the values passed to a parameterized constructor come

 ' declare a variable for a Rectangle object
 Dim deck As Rectangle

 ' declare variables
 Dim dblPriceSqFt As Double
 Dim intSqFt As Integer
 Dim dblCost As Double
 Dim intDeckLen As Integer
 Dim intDeckWid As Integer

 ' assign values to the object's Public properties
 Integer.TryParse(lstLength.SelectedItem.ToString, intDeckLen)
 Integer.TryParse(lstWidth.SelectedItem.ToString, intDeckWid)
 Double.TryParse(lstPrice.SelectedItem.ToString, dblPriceSqFt)

 ' instantiate and initialize a Rectangle object
 deck = New Rectangle(intDeckLen, intDeckWid)

 ' calculate the square feet
 intSqFt = deck.GetArea

 ' calculate the deck cost
 dblCost = intSqFt * dblPriceSqFt

 ' display output
 lblSquareFeet.Text = intSqFt.ToString
 lblCost.Text = dblCost.ToString("c2")

End Sub

declares a variable
that can store a
Rectangle object

uses the parameterized
constructor to
instantiate and initialize
a Rectangle object

 (continued)

Figure 11-23 Modified Rectangle class definition and btnCalc_Click procedure

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

633

Example 4—Reusing a Class L E S S O N A

from the application rather than from the class itself. As mentioned earlier, values that originate
outside of the class should always be assigned to the Private variables indirectly through the
Public properties. Doing this ensures that the Property procedure’s Set block, which typically
contains validation code, is processed.

After the Rectangle object is instantiated and its Private variables are initialized, the
btnCalc_Click procedure uses the object’s GetArea method to calculate and return the area
of the deck. The area represents the required number of square feet of building material.
Finally, the procedure calculates the cost of the deck and then displays both the required
number of square feet and the cost.

To test the modified application:

1. Save the solution and then start the application. Click the Calculate button.
See Figure 11-24.

START HERE

Figure 11-24 Interface showing the square feet and cost

2. On your own, test the application using different lengths, widths, and prices. When
you are finished, click the Exit button. Close the Main Form.vb window and then
close the solution.

Example 4—Reusing a Class
In Examples 2 and 3, you used the Rectangle class to create an object that represented a deck. In
this example, you will use the Rectangle class to create an object that represents a square pizza.
A square is simply a rectangle that has four equal sides. As mentioned earlier, the ability to use
an object—in this case, a Rectangle object—for more than one purpose saves programming time
and money, which contributes to the popularity of object-oriented programming.

To add the Rectangle.vb file to the Pete’s Pizzeria application:

1. Open the VB2015\Chap11\Pizzeria Solution\Pizzeria Solution (Pizzeria Solution.sln)
file. The interface provides text boxes for entering the side measurements of both the
entire pizza and a pizza slice. The application will use both measurements to calculate
the number of pizza slices that can be cut from the entire pizza.

2. Use Windows to copy the Rectangle.vb file from the VB2015\Chap11\Modified
Sunnyside Solution\Sunnyside Project folder to the Pizzeria Solution\Pizzeria Project
folder. (If you did not complete the modified Sunnyside Decks application, you can copy
the Rectangle.vb file contained in the VB2015\Chap11 folder.)

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

634

3. Click Project on the menu bar and then click Add Existing Item. Open the Pizzeria
Project folder (if necessary), and then click Rectangle.vb in the list of filenames. Click
the Add button. Temporarily display the Solution Explorer window (if necessary) to
verify that the Rectangle.vb file was added to the project.

Figure 11-25 shows the pseudocode for the Calculate button’s Click event procedure.

btnCalc Click event procedure
1. instantiate a Rectangle object to represent the entire square pizza
2. instantiate a Rectangle object to represent a square pizza slice
3. declare variables to store the area of the entire pizza, the area of a pizza slice, and the number
 of slices
4. assign the input data to the properties of the appropriate Rectangle object
5. calculate the area of the entire pizza
6. calculate the area of a pizza slice
7. if the area of a pizza slice is greater than 0
 calculate the number of pizza slices by dividing the area of the entire pizza by
 the area of a pizza slice
 else
 assign 0 as the number of pizza slices
 end if
8. display the number of pizza slices

Figure 11-25 Pseudocode for the btnCalc_Click procedure

To code the btnCalc_Click procedure:

1. Open the form’s Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. Locate the btnCalc_Click procedure. The first two steps in the pseudocode are to
instantiate two Rectangle objects to represent the entire pizza and a pizza slice. Click
the blank line above the End Sub clause, and then enter the following Dim statements:

 Dim entirePizza As New Rectangle
 Dim pizzaSlice As New Rectangle
3. The third step in the pseudocode is to declare variables to store the area of the entire

pizza, the area of a pizza slice, and the number of slices. You won’t need variables to
store the side measurements entered by the user because the procedure will assign those
values to each Rectangle object’s Length and Width properties. Enter the following
three Dim statements, pressing Enter twice after typing the last Dim statement:

 Dim intEntireArea As Integer
 Dim intSliceArea As Integer
 Dim dblSlices As Double
4. The fourth step in the pseudocode assigns the side measurements to the properties of the

appropriate Rectangle object. Enter the following four lines of code. Notice that when you
press the period after typing either entirePizza or pizzaSlice, the object’s Length and
Width properties appear in the IntelliSense list. Press Enter twice after typing the last line.

 Integer.TryParse(txtEntirePizza.Text, entirePizza.Length)
 Integer.TryParse(txtEntirePizza.Text, entirePizza.Width)
 Integer.TryParse(txtPizzaSlice.Text, pizzaSlice.Length)
 Integer.TryParse(txtPizzaSlice.Text, pizzaSlice.Width)
5. The fifth and sixth steps in the pseudocode calculate the areas of both the entire pizza

and a pizza slice, respectively. You can accomplish both tasks using the Rectangle

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

635

Example 4—Reusing a Class L E S S O N A

object’s GetArea method. Because the class already contains the code needed to
calculate the area of a rectangle, you do not need to waste time planning and then
reentering and retesting it. Enter the following comment and assignment statements:

 ' calculate areas
 intEntireArea = entirePizza.GetArea
 intSliceArea = pizzaSlice.GetArea

6. The seventh step in the pseudocode is a selection structure that determines whether the
area of the pizza slice is greater than 0. You need to make this determination because
the area is used as the divisor when calculating the number of pizza slices. If the area is
greater than 0, the selection structure’s true path should calculate the number of pizza
slices; otherwise, its false path should assign 0 as the number of pizza slices. Enter the
following comment and selection structure:

 ' calculate number of slices
 If intSliceArea > 0 Then
 dblSlices = intEntireArea / intSliceArea
 Else
 dblSlices = 0
 End If

7. The last step in the pseudocode displays the number of pizza slices. Insert a blank line
below the End If clause, and then enter the following comment and assignment statement:

 ' display number of slices
 lblSlices.Text = dblSlices.ToString("n1")

The btnCalc_Click procedure is shown in Figure 11-26.

Private Sub btnCalc_Click(sender As Object, e As EventArgs
) Handles btnCalc.Click
 ' displays the number of square pizza slices

 Dim entirePizza As New Rectangle
 Dim pizzaSlice As New Rectangle
 Dim intEntireArea As Integer
 Dim intSliceArea As Integer
 Dim dblSlices As Double

 Integer.TryParse(txtEntirePizza.Text, entirePizza.Length)
 Integer.TryParse(txtEntirePizza.Text, entirePizza.Width)
 Integer.TryParse(txtPizzaSlice.Text, pizzaSlice.Length)
 Integer.TryParse(txtPizzaSlice.Text, pizzaSlice.Width)

 ' calculate areas
 intEntireArea = entirePizza.GetArea
 intSliceArea = pizzaSlice.GetArea
 ' calculate number of slices
 If intSliceArea > 0 Then
 dblSlices = intEntireArea / intSliceArea
 Else
 dblSlices = 0
 End If
 ' display number of slices
 lblSlices.Text = dblSlices.ToString("n1")
End Sub

Figure 11-26 btnCalc_Click procedure

instantiates two
Rectangle objects

assigns values to each
object’s Public properties

invokes each object’s
GetArea method

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

636

To test the application’s code:

1. Save the solution and then start the application. First, determine the number of 4-inch
slices that can be cut from a 12-inch pizza. Type 12 in the Entire square pizza box, and
then type 4 in the Square pizza slice box. Click the Calculate button. As Figure 11-27
indicates, the pizza can be cut into nine slices.

START HERE

Figure 11-27 Number of pizza slices shown in the interface

2. On your own, test the application using different side measurements. When you are
finished, click the Exit button. Close the Code Editor window and then close the
solution.

Lesson A Summary
 • To define a class:

Use the Class statement. The statement’s syntax is shown in Figure 11-3.

 • To add a class file to a project:

Click Project on the menu bar and then click Add Class. In the Name box, type the name of
the class followed by a period and the letters vb, and then click the Add button.

 • To instantiate (create) an object from a class:

Use either of the syntax versions shown in Figure 11-5.

 • To create a Property procedure:

Use the syntax shown in Figure 11-13. The Get block allows an application to retrieve
the contents of the Private variable associated with the Property procedure. The Set
block allows an application to assign a value to the Private variable associated with the
Property procedure.

 • To create a constructor:

Use the syntax shown in Figure 11-15. A constructor that has no parameters is called the
default constructor. A class can have only one default constructor. A constructor that has
one or more parameters is called a parameterized constructor. A class can have as many

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

637

Lesson A Key Terms L E S S O N A

parameterized constructors as needed. All constructors are Sub procedures that are named
New. Each constructor must have a unique parameterList (if any) within the class.

 • To create a method other than a constructor:

Use the syntax shown in Figure 11-17.

Lesson A Key Terms
Attributes—the characteristics that describe an object

Behaviors—an object’s methods and events

Class—a pattern that the computer follows when instantiating (creating) an object

Class statement—the statement used to define a class in Visual Basic

Constructor—a method whose instructions are automatically processed each time the class
is used to instantiate an object; used to initialize the class’s Private variables; always a Sub
procedure named New

Default constructor—a constructor that has no parameters; a class can have only one default
constructor

Encapsulates—an OOP term that means “contains”

Events—the actions to which an object can respond

Get block—the section of a Property procedure that contains the Get statement

Get statement—appears in a Get block in a Property procedure; contains the code that allows
an application to retrieve the contents of the Private variable associated with the property

Instance—an object created from a class

Instantiated—the process of creating an object from a class

Methods—the actions that an object is capable of performing

Object—anything that can be seen, touched, or used

Object-oriented programming language—a programming language that allows the use of
objects to accomplish a program’s goal

OOP—the acronym for object-oriented programming

Parameterized constructor—a constructor that contains one or more parameters

Property procedure—creates a Public property that an application can use to access a Private
variable in a class

ReadOnly keyword—used when defining a Property procedure; indicates that the property’s
value can only be retrieved (read) by an application

Set block—the section of a Property procedure that contains the Set statement

Set statement—appears in a Set block in a Property procedure; contains the code that allows
an application to assign a value to the Private variable associated with the property; may also
contain validation code

Signature—a method’s name combined with its optional parameterList

WriteOnly keyword—used when defining a Property procedure; indicates that an application
can only set the property’s value

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

638

Lesson A Review Questions
1. The name of a class file ends with ___________________.

a. .cla
b. .cls

c. .vb
d. none of the above

2. A constructor is ___________________.

a. a Function procedure
b. a Property procedure

c. a Sub procedure
d. either a Function procedure or a

Sub procedure

3. The Inventory class contains a Private variable named _strId. The variable is
associated with the Public ItemId property. An application instantiates an Inventory
object and assigns it to a variable named onHand. Which of the following can be used
by the application to assign the string “XG45” to the _strId variable?

a. onHand.ItemId = "XG45"

b. ItemId._strId = "XG45"

c. onHand._strId = "XG45"

d. ItemId.strId = "XG45"

4. The Item class contains a Public method named GetDiscount. The method is a
Function procedure. An application instantiates an Item object and assigns it to a
variable named cellPhone. Which of the following can be used by the application to
invoke the GetDiscount method?

a. dblDiscount = Call cellPhone.GetDiscount
b. dblDiscount = cellPhone.GetDiscount
c. dblDiscount = GetDiscount.cellPhone
d. Call cellPhone.GetDiscount

5. Which of the following statements is false?

a. A class can contain only one constructor.
b. An example of a behavior is the SetTime method in a Time class.
c. An object created from a class is referred to as an instance of the class.
d. An instance of a class is considered an object.

6. A Private variable in a class can be accessed directly by a Public method in the same
class.

a. True b. False

7. An application can access the Private variables in a class ___________________.

a. directly
b. using properties created by Public Property procedures
c. through Private procedures contained in the class
d. none of the above

8. To hide a variable or method contained in a class, you declare the variable or method
using the ___________________ keyword.

a. Hide

b. Invisible

c. Private

d. ReadOnly

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

639

Lesson A Exercises L E S S O N A

9. Which of the following is the name of the Inventory class’s default constructor?

a. Inventory
b. InventoryConstructor

c. Default
d. New

10. Which of the following instantiates an Inventory object and assigns it to the chair
variable?

a. Dim chair As Inventory

b. Dim chair As New
Inventory

c. Dim chair = New Inventory

d. Dim New chair As
Inventory

11. If you need to validate a value before assigning it to a Private variable, you enter the
validation code in the ___________________ block in a Property procedure.

a. Assign
b. Get

c. Set
d. Validate

12. The Return statement is entered in the ___________________ statement in a Property
procedure.

a. Get
b. Set

13. A class contains a Private variable named _strState. The variable is associated
with a Public property named State. Which of the following is the best way for a
parameterized constructor to assign the value stored in its strName parameter to
the variable?

a. _strState = strName

b. State = _strName

c. _strState = State.strName

d. State = strName

Lesson A Exercises
1. Explain how the computer determines the appropriate constructor to use when

instantiating an object using a class that contains more than one constructor.

2. Write a Class statement that defines a class named Book. The class contains three
Public variables: Title, Author, and Price. The Title and Author variables are String
variables. The Price variable is a Decimal variable. Then use the syntax shown in
Version 1 in Figure 11-5 to declare a variable that can store a Book object; name the
variable fiction. Also write a statement that instantiates the Book object and assigns
it to the fiction variable.

3. Rewrite the Class statement from Exercise 2 so that it uses Private variables rather than
Public variables. Be sure to include the Property procedures and default constructor.

4. Write a Class statement that defines a class named SongInfo. The class contains three
Private String variables named _strName, _strArtist, and _strSongLength.
Name the corresponding properties SongName, Artist, and SongLength. Then, use
the syntax shown in Version 2 in Figure 11-5 to create a Song object, assigning it to a
variable named hipHop.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

640

5. The Car class definition is shown in Figure 11-28. Write a Dim statement that uses the
default constructor to instantiate a Car object in an application. The Dim statement
should assign the object to a variable named nissan. Next, write assignment
statements that the application can use to assign the string “370Z” and the number
30614.75 to the Model and Price properties, respectively. Finally, write an assignment
statement that the application can use to invoke the GetNewPrice function. Assign the
function’s return value to a variable named dblNewPrice.

INTRODUCTORY

Public Class Car
 Private _strModel As String
 Private _dblPrice As Double

 Public Property Model As String
 Get
 Return _strModel
 End Get
 Set(value As String)
 _strModel = value
 End Set
 End Property

 Public Property Price As Double
 Get
 Return _dblPrice
 End Get
 Set(value As Double)
 _dblPrice = value
 End Set
 End Property

 Public Sub New()
 _strModel = String.Empty
 _dblPrice = 0
 End Sub

 Public Sub New(ByVal strM As String, ByVal dblP As Double)
 Model = strM
 Price = dblP
 End Sub

 Public Function GetNewPrice() As Double
 Return _dblPrice * 1.15
 End Function
End Class

Figure 11-28 Car class definition

6. Using the Car class from Figure 11-28, write a Dim statement that uses the
parameterized constructor to instantiate a Car object. Pass the string “Fusion” and the
number 22560.99 to the parameterized constructor. The Dim statement should assign
the object to a variable named rentalCar.

7. An application contains the statement Dim myCar As Car. Using the Car class
from Figure 11-28, write an assignment statement that instantiates a Car object and
initializes it using the strType and dblPrice variables. The statement should assign
the object to the myCar variable.

INTRODUCTORY

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

641

Lesson A Exercises L E S S O N A

8. In this exercise, you modify the Pete’s Pizzeria application from this lesson. Use
Windows to make a copy of the Pizzeria Solution folder. Rename the copy Pizzeria
Solution-Parameterized. Open the Pizzeria Solution (Pizzeria Solution.sln) file
contained in the Pizzeria Solution-Parameterized folder. Modify the btnCalc_Click
procedure to use the Rectangle class’s parameterized constructor. Test the application
appropriately.

9. In this exercise, you modify the Norbert Pool & Spa Depot application from this lesson.
Use Windows to make a copy of the Norbert Solution folder. Rename the copy Norbert
Solution-Introductory. Open the Norbert Solution (Norbert Solution.sln) file contained
in the Norbert Solution-Introductory folder. Modify the RectangularPool class so that
it uses Private variables and Public Property procedures rather than Public variables.
Include both a default constructor and a parameterized constructor in the class. Test
the application appropriately.

10. Open the VB2015\Chap11\Palace Solution\Palace Solution (Palace Solution.sln) file.
Create a Rectangle class similar to the one shown earlier in Figure 11-23; however, use
Double variables rather than Integer variables. The application should calculate and
display the number of square yards of carpeting needed to carpet a rectangular floor.
Code and then test the application appropriately.

11. In this exercise, you modify the Norbert Pool & Spa Depot application from Exercise 9.
Use Windows to make a copy of the Norbert Solution-Introductory folder. Rename the
copy Norbert Solution-Intermediate. Open the Norbert Solution (Norbert Solution.sln)
file contained in the Norbert Solution-Intermediate folder.

a. Add two labels to the form. Position one of the labels below the Gallons: label, and
then change its Text property to Cost:. Position the other label below the lblGallons
control, and then change its Name, TextAlign, AutoSize, and BorderStyle properties
to lblCost, MiddleCenter, False, and FixedSingle, respectively. Remove the contents
of its Text property, and then size the control appropriately. Also, change the
control’s Font and BackColor properties to match the lblGallons control.

b. Add a method named GetVolume to the RectangularPool class. The method should
calculate and return the volume of a RectangularPool object. The formula for
calculating the volume is length * width * depth.

c. Add a method named GetGallons to the RectangularPool class. The method should
receive a Double number that represents a RectangularPool object’s volume. It
should use the information it receives to calculate and return the number of gallons
of water.

d. Remove the GetGallons function from the form’s Code Editor window, and then
modify the btnCalc_Click procedure to use the customerPool object’s GetVolume
and GetGallons methods. The procedure should also calculate and display the cost
of filling the pool with water. The charge for water is $1.75 per 1,000 gallons (or
$0.00175 per gallon). Test the application appropriately.

12. In this exercise, you create an application that can be used to estimate the cost of laying
sod on a rectangular piece of property. Create the application, using the following names
for the solution and project, respectively: Harston Solution and Harston Project. Save the
application in the VB2015\Chap11 folder. Use Windows to copy the Rectangle.vb file from
the VB2015\Chap11 folder to the VB2015\Chap11\Harston Solution\Harston Project

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

642

folder. Use the Project menu to add the Rectangle.vb class file to the project. Create
the interface shown in Figure 11-29. The image for the picture box is stored in
the VB2015\Chap11\Landscape.png file. Code the application, and then test it
appropriately. (The length and width should be integers.)

Figure 11-29 Interface for Exercise 12

13. In this exercise, you create an application that can be used to calculate the cost
of installing a fence around a rectangular area. Create the application, using the
following names for the solution and project, respectively: Fence Solution and Fence
Project. Save the application in the VB2015\Chap11 folder. Use Windows to copy the
Rectangle.vb file from the VB2015\Chap11 folder to the Fence Solution\Fence Project
folder. Use the Project menu to add the Rectangle.vb class file to the project. Modify
the class to use Double (rather than Integer) variables and properties. Add a method
named GetPerimeter to the Rectangle class. The method should calculate and return
the perimeter of a rectangle. To calculate the perimeter, the method will need to add
together the length and width measurements, and then multiply the sum by 2. Create
the interface shown in Figure 11-30. The image for the picture box is stored in the
VB2015\Chap11\Fence.png file. Code the application and then test it appropriately.
(Hint: Using 120 feet as the length, 75 feet as the width, and 10 as the cost per linear
foot of fencing, the installation cost is $3,900.00.)

INTERMEDIATE

Figure 11-30 Interface for Exercise 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

643

Lesson A Exercises L E S S O N A

14. Create an application, using the following names for the solution and project,
respectively: Playground Solution and Playground Project. Save the application in
the VB2015\Chap11 folder. The application should display the area of a triangular
playground in square feet. It should also display the cost of covering the playground
with artificial grass.

a. Create a suitable interface. Provide list boxes for the user to enter the playground’s
base and height dimensions in yards. Both list boxes should display numbers from
20 to 50 in increments of 0.5. Also, provide a list box for entering the price per
square foot. This list box should display numbers from 1 to 6 in increments of 0.5.

b. Create a class named Triangle. The Triangle class should verify that the base and
height dimensions are greater than 0 before assigning the values to the Private
variables. (Although the dimensions come from list boxes in this application, the
Triangle class might subsequently be used in an application whose dimensions
come from text boxes.) The class should also include a default constructor, a
parameterized constructor, and a method to calculate the area of a triangle.

c. Code the application and then test it appropriately.

15. Create an application, using the following names for the solution and project,
respectively: Fire Solution and Fire Project. Save the application in the VB2015\Chap11
folder. The application should display the capacity (volume) of a water tank on a
fire engine in both cubic feet and gallons, given the tank’s length, width and height
measurements. Create a suitable interface. Code the application by using a class to
instantiate a water tank object, and then test it appropriately. (Hint: There are 7.48
gallons in one cubic foot.)

16. Create an application, using the following names for the solution and project,
respectively: Parking Solution and Parking Project. Save the application in the VB2015\
Chap11 folder. The application should display the total cost of paving the parking lot
shown in Figure 11-31. Create a suitable interface. Code the application by using a class
to instantiate a parking lot object, and then test it appropriately.

ADVANCED

ADVANCED

ADVANCED

Figure 11-31 Parking lot for Exercise 16

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

644

❚ LESSON B
After studying Lesson B, you should be able to:

 • Include a ReadOnly property in a class

 • Create an auto-implemented property

 • Overload a method in a class

Example 5—A Class That Contains a ReadOnly Property
In Lesson A, you learned that the ReadOnly keyword in a Property procedure’s header indicates
that the property’s value can only be retrieved (read) by an application; the application cannot
set (write to) the property. A ReadOnly property gets its value from the class itself rather than
from the application. In the next set of steps, you will add a ReadOnly property to a class named
CourseGrade. You will also add the default constructor and a method that will assign the
appropriate grade to the Private variable associated with the ReadOnly property.

To modify the CourseGrade class:

1. If necessary, start Visual Studio 2015. Open the VB2015\Chap11\Grade Solution\Grade
Solution (Grade Solution.sln) file. The interface provides list boxes for entering two test
scores that can range from 0 to 100 points each. See Figure 11-32.

START HERE

Figure 11-32 Interface for the Grade Calculator application

2. Right-click CourseGrade.vb in the Solution Explorer window, and then click View Code.
Replace <your name> and <current date> in the comments with your name and the
current date, respectively.

3. The CourseGrade class should contain three attributes: two test scores and a letter
grade. The Private variable for the letter grade is missing from the code. Click the
blank line below the Private _intScore2 As Integer statement, and then enter
the following Private statement:

 Private _strGrade As String

4. Next, you will create a Public property for the Private _strGrade variable. You will
make the property ReadOnly so that the class (rather than the Grade Calculator
application) determines the appropriate grade. By making the property ReadOnly,

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

645

Example 5—A Class That Contains a ReadOnly Property L E S S O N B

the application will only be able to retrieve the grade; it will not be able to change the
grade. Click the blank line immediately above the End Class clause, and then enter the
following Property procedure header and Get clause. When you press Enter after typing
the Get clause, the Code Editor automatically includes the End Get and End Property
clauses in the procedure. It does not enter the Set block of code because the header
contains the ReadOnly keyword.

 Public ReadOnly Property Grade As String
 Get

5. Type the following Return statement in the blank line below the Get clause, but don’t
press Enter:

 Return _strGrade

6. Next, you will enter the default constructor in the class. The default constructor will
initialize the Private variables when a CourseGrade object is instantiated. Insert two
blank lines above the End Class clause, and then enter the following default constructor:

 Public Sub New()
 _intScore1 = 0
 _intScore2 = 0
 _strGrade = String.Empty
 End Sub

7. Finally, you will enter the DetermineGrade method, which will assign the appropriate
letter grade to the _strGrade variable. The method will be a Sub procedure because
it will not need to return a value to the application that calls it. Insert two blank lines
above the End Class clause, and then enter the code shown in Figure 11-33.

Figure 11-33 DetermineGrade method

8. Save the solution.

Now that you have finished defining the class, you can use the class to instantiate a CourseGrade
object in the Grade Calculator application, which displays a grade based on two test scores
entered by the user.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

646

To complete the Grade Calculator application:

1. Click the designer window’s tab, and then open the form’s Code Editor window.
Replace <your name> and <current date> in the comments with your name and the
current date, respectively.

2. Locate the btnDisplay_Click procedure. First, the procedure will instantiate a
CourseGrade object. Click the blank line above the second comment, and then enter
the following Dim statement:

 Dim studentGrade As New CourseGrade

3. Now the procedure will assign the test scores selected in the list boxes to the object’s
properties. Click the blank line below the second comment, and then enter the
following TryParse methods:

 Integer.TryParse(lstTest1.SelectedItem.ToString, studentGrade.Score1)
 Integer.TryParse(lstTest2.SelectedItem.ToString, studentGrade.Score2)

4. Next, the procedure will use the object’s DetermineGrade method to determine the
appropriate grade. Click the blank line below the ' object's DetermineGrade
method comment, and then enter the following Call statement:

 Call studentGrade.DetermineGrade()

5. Finally, the procedure will display the grade stored in the object’s ReadOnly Grade
property. Click the blank line above the End Sub clause. Type the following code
(including the second period), but don’t press Enter:

 lblGrade.Text = studentGrade.

6. Click Grade in the IntelliSense list. See Figure 11-34. The message that appears next to
the IntelliSense list indicates that the Grade property is ReadOnly.

START HERE

Figure 11-34 ReadOnly property message

the message indicates
that the Grade property
is ReadOnly

7. Press Tab to include the Grade property in the assignment statement. Figure 11-35
shows the CourseGrade class definition and the btnDisplay_Click procedure.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

647

Example 5—A Class That Contains a ReadOnly Property L E S S O N B

Figure 11-35 CourseGrade class definition and btnDisplay_Click procedure (continues)

Class statement entered in the CourseGrade.vb file
Public Class CourseGrade
 Private _intScore1 As Integer
 Private _intScore2 As Integer
 Private _strGrade As String

 Public Property Score1 As Integer
 Get
 Return _intScore1
 End Get
 Set(value As Integer)
 _intScore1 = value
 End Set
 End Property

 Public Property Score2 As Integer
 Get
 Return _intScore2
 End Get
 Set(value As Integer)
 _intScore2 = value
 End Set
 End Property

 Public ReadOnly Property Grade As String
 Get
 Return _strGrade
 End Get
 End Property

 Public Sub New()
 _intScore1 = 0
 _intScore2 = 0
 _strGrade = String.Empty
 End Sub

 Public Sub DetermineGrade()
 Select Case _intScore1 + _intScore2
 Case Is >= 180
 _strGrade = "A"
 Case Is >= 160
 _strGrade = "B"
 Case Is >= 140
 _strGrade = "C"
 Case Is >= 120
 _strGrade = "D"
 Case Else
 _strGrade = "F"
 End Select
 End Sub
End Class

btnDisplay_Click procedure entered in the Main Form.vb file
Private Sub btnDisplay_Click(sender As Object, e As EventArgs
) Handles btnDisplay.Click
 ' calculates and displays a letter grade

 Dim studentGrade As New CourseGrade

 ' assign test scores to object's properties
 Integer.TryParse(lstTest1.SelectedItem.ToString, studentGrade.Score1)
 Integer.TryParse(lstTest2.SelectedItem.ToString, studentGrade.Score2)

 ' calculate the grade using the
 ' object's DetermineGrade method
 Call studentGrade.DetermineGrade()

 ' display the grade stored in the
 ' object's ReadOnly property
 lblGrade.Text = studentGrade.Grade
End Sub

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

648

 (continued)

Class statement entered in the CourseGrade.vb file
Public Class CourseGrade
 Private _intScore1 As Integer
 Private _intScore2 As Integer
 Private _strGrade As String

 Public Property Score1 As Integer
 Get
 Return _intScore1
 End Get
 Set(value As Integer)
 _intScore1 = value
 End Set
 End Property

 Public Property Score2 As Integer
 Get
 Return _intScore2
 End Get
 Set(value As Integer)
 _intScore2 = value
 End Set
 End Property

 Public ReadOnly Property Grade As String
 Get
 Return _strGrade
 End Get
 End Property

 Public Sub New()
 _intScore1 = 0
 _intScore2 = 0
 _strGrade = String.Empty
 End Sub

 Public Sub DetermineGrade()
 Select Case _intScore1 + _intScore2
 Case Is >= 180
 _strGrade = "A"
 Case Is >= 160
 _strGrade = "B"
 Case Is >= 140
 _strGrade = "C"
 Case Is >= 120
 _strGrade = "D"
 Case Else
 _strGrade = "F"
 End Select
 End Sub
End Class

btnDisplay_Click procedure entered in the Main Form.vb file
Private Sub btnDisplay_Click(sender As Object, e As EventArgs
) Handles btnDisplay.Click
 ' calculates and displays a letter grade

 Dim studentGrade As New CourseGrade

 ' assign test scores to object's properties
 Integer.TryParse(lstTest1.SelectedItem.ToString, studentGrade.Score1)
 Integer.TryParse(lstTest2.SelectedItem.ToString, studentGrade.Score2)

 ' calculate the grade using the
 ' object's DetermineGrade method
 Call studentGrade.DetermineGrade()

 ' display the grade stored in the
 ' object's ReadOnly property
 lblGrade.Text = studentGrade.Grade
End Sub

Figure 11-35 CourseGrade class definition and btnDisplay_Click procedure

calls the object’s
DetermineGrade
method

refers to the object’s
ReadOnly Grade property

To test the Grade Calculator application:

1. Save the solution and then start the application. Click 72 and 88 in the Test 1 and Test
2 list boxes, respectively, and then click the Display button. The letter B appears in the
Grade box, as shown in Figure 11-36.

START HERE

Figure 11-36 Grade shown in the interface

2. On your own, test the application using different test scores. When you are finished,
click the Exit button. Close the Main Form.vb and CourseGrade.vb windows, and then
close the solution.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

649

Example 6—A Class That Contains Auto-Implemented Properties L E S S O N B

Example 6—A Class That Contains Auto-Implemented
Properties
The auto-implemented properties feature in Visual Basic enables you to specify the property
of a class in one line of code, as shown in Figure 11-37. When you enter the line of code in
the Code Editor window, Visual Basic automatically creates a hidden Private variable that
it associates with the property. It also automatically creates hidden Get and Set blocks. The
Private variable’s name will be the same as the property’s name, but it will be preceded by an
underscore. For example, if you create an auto-implemented property named City, Visual Basic
will create a hidden Private variable named _City. Although the auto-implemented properties
feature provides a shorter syntax for you to use when creating a class, keep in mind that you
will need to use the standard syntax if you want to add validation code to the Set block, or if
you want the property to be either ReadOnly or WriteOnly.

Auto-Implemented Property

Syntax
Public Property propertyName As dataType

Example 1
Public Property City As Integer
creates a Public property named City, a hidden Private variable named _City, and hidden
Get and Set blocks

Example 2
Public Property Sales As Integer
creates a Public property named Sales, a hidden Private variable named _Sales, and hidden
Get and Set blocks

Figure 11-37 Syntax and examples of creating an auto-implemented property

You can use the auto-implemented properties feature to create the Score1 and Score2
properties in the CourseGrade class from Example 5. This is because neither of those
properties is either ReadOnly or WriteOnly, and neither contains any validation code in its
Set block. You cannot use the auto-implemented properties feature for the class’s Grade
property because that property is ReadOnly.

To use the auto-implemented properties feature in the CourseGrade class:

1. Use Windows to make a copy of the Grade Solution folder from Example 5. Rename
the copy Modified Grade Solution. Open the Grade Solution (Grade Solution.sln) file
contained in the Modified Grade Solution folder.

2. Open the CourseGrade.vb file’s Code Editor window. First, replace the two Private
declaration statements with the following statements:

 Public Property Score1 As Integer
 Public Property Score2 As Integer

3. Next, delete the Score1 and Score2 Property procedures, but don’t delete the Grade
property procedure.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

650

4. Recall that the name of the Private variable associated with an auto-implemented
property is the property’s name preceded by an underscore. In both the default
constructor and the DetermineGrade method, change _intScore1 and _intScore2 to
_Score1 and _Score2, respectively.

Figure 11-38 shows the modified class definition. The code pertaining to the two auto-
implemented properties (Score1 and Score2) is shaded in the figure.

To test the modified Grade Calculator application:

1. Save the solution and then start the application. Click 95 and 88 in the Test 1 and Test
2 list boxes, respectively, and then click the Display button. The letter A appears in the
Grade box.

2. On your own, test the application using different test scores. When you are finished,
click the Exit button. Close the CourseGrade.vb window and then close the solution.

START HERE

Public Class CourseGrade
 Public Property Score1 As Integer
 Public Property Score2 As Integer
 Private _strGrade As String

 Public ReadOnly Property Grade As String
 Get
 Return _strGrade
 End Get
 End Property

 Public Sub New()
 _Score1 = 0
 _Score2 = 0
 _strGrade = String.Empty
 End Sub

 Public Sub DetermineGrade()
 Select Case _Score1 + _Score2
 Case Is >= 180
 _strGrade = "A"
 Case Is >= 160
 _strGrade = "B"
 Case Is >= 140
 _strGrade = "C"
 Case Is >= 120
 _strGrade = "D"
 Case Else
 _strGrade = "F"
 End Select
 End Sub
End Class

Figure 11-38 Modified CourseGrade class definition

auto-implemented
properties

a ReadOnly property cannot
be an auto-implemented
property

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

651

Example 7—A Class That Contains Overloaded Methods L E S S O N B

Example 7—A Class That Contains Overloaded Methods
In this example, you will use a class named Employee to instantiate an object. Employee objects
have the attributes and behaviors listed in Figure 11-39.

YOU DO IT 2!

Create an application named YouDoIt 2 and save it in the VB2015\Chap11 folder. Add
a text box, a label, and a button to the form. Add a class file named Square.vb to the
project. Define a class named Square. The class should contain an auto-implemented
property that will store the side measurement of a square. It should also contain a
default constructor and a method that calculates and returns the square’s perimeter.
Use the following formula to calculate the perimeter: 4 * side. Open the form’s Code
Editor window. Code the button’s Click event procedure so that it displays the square’s
perimeter, using the side measurement entered by the user. Test the application
appropriately, and then close the solution.

Attributes of an Employee object
employee number
employee name

Behaviors of an Employee object
1. An employee object can initialize its attributes using values provided by the class.
2. An employee object can initialize its attributes using values provided by the application in which
 it is instantiated.
3. An employee object can calculate and return the gross pay for salaried employees, who are paid
 twice per month. The gross pay is calculated by dividing the salaried employee’s annual salary
 by 24.
4. An employee object can calculate and return the gross pay for hourly employees, who are paid
 weekly. The gross pay is calculated by multiplying the number of hours the employee worked
 during the week by his or her pay rate.

Figure 11-39 Attributes and behaviors of an Employee object

Figure 11-40 shows the Employee class defined in the Employee.vb file. The class contains two
auto-implemented properties and four methods. The two New methods are the class’s default
and parameterized constructors. Notice that the default constructor initializes the class’s Private
variables directly, while the parameterized constructor uses the class’s Public properties to
initialize the Private variables indirectly. As you learned in Lesson A, using a Public property
in this manner ensures that the computer processes any validation code associated with the
property. Even though the Number and EmpName properties in Figure 11-40 do not have
any validation code, you should use the properties in the parameterized constructor in case
validation code is added to the class in the future.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

652

When two or more methods have the same name but different parameters, the methods are
referred to as overloaded methods. The two constructors in Figure 11-40 are considered
overloaded methods because each is named New and each has a different parameterList. You
can overload any of the methods contained in a class, not just constructors. The two GetGross
methods in the figure are also overloaded methods because they have the same name but a
different parameterList.

In previous chapters, you used several of the overloaded methods built into Visual Basic, such
as the ToString, TryParse, Convert.ToDecimal, and MessageBox.Show methods. When you
enter an overloaded method in the Code Editor window, the Code Editor’s IntelliSense feature
displays a box that allows you to view a method’s signatures, one signature at a time. Recall that
a method’s signature includes its name and an optional parameterList. The box shown in Figure
11-41 displays the first of the MessageBox.Show method’s 21 signatures. You use the up and
down arrows in the box to display the other signatures. If a class you create contains overloaded
methods, the signatures of those methods will also be displayed in the IntelliSense box.

Figure 11-41 First of the MessageBox.Show method’s signatures

Public Class Employee
 Public Property Number As String
 Public Property EmpName As String

 Public Sub New()
 _Number = String.Empty
 _EmpName = String.Empty
 End Sub

 Public Sub New(ByVal strNum As String, ByVal strName As String)
 Number = strNum
 EmpName = strName
 End Sub

 Public Function GetGross(ByVal dblSalary As Double) As Double
 ' calculates the gross pay for salaried
 ' employees, who are paid twice per month

 Return dblSalary / 24
 End Function

 Public Function GetGross(ByVal dblHours As Double,
 ByVal dblRate As Double) As Double
 ' calculates the weekly gross pay for hourly employees

 Return dblHours * dblRate
 End Function
End Class

Figure 11-40 Employee class definition

auto-implemented
properties

overloaded
constructors

overloaded
GetGross
methods

initializes the Private
variables directly

uses the Public properties to
initialize the Private variables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

653

Example 7—A Class That Contains Overloaded Methods L E S S O N B

Overloading is useful when two or more methods require different parameters to perform
essentially the same task. Both overloaded constructors in the Employee class, for example,
initialize the class’s Private variables. However, the default constructor does not need to be
passed any information to perform the task, whereas the parameterized constructor requires
two items of information (the employee number and name). Similarly, both GetGross methods
in the Employee class calculate and return a gross pay amount. However, the first GetGross
method performs its task for salaried employees and requires an application to pass it one
item of information: the employee’s annual salary. The second GetGross method performs
its task for hourly employees and requires two items of information: the number of hours
the employee worked and his or her rate of pay. Rather than using two overloaded GetGross
methods, you could have used two methods having different names, such as GetSalariedGross
and GetHourlyGross. An advantage of overloading the GetGross method is that you need to
remember the name of only one method.

You will use the Employee class when coding the Woods Manufacturing application, which
displays the gross pay for salaried and hourly employees. Salaried employees are paid twice
per month. Therefore, each salaried employee’s gross pay is calculated by dividing his or her
annual salary by 24. Hourly employees are paid weekly. The gross pay for an hourly employee
is calculated by multiplying the number of hours the employee worked during the week by his
or her hourly pay rate. The application also displays a report showing each employee’s number,
name, and gross pay.

To view the class file contained in the Woods Manufacturing application:

1. Open the VB2015\Chap11\Woods Solution\Woods Solution (Woods Solution.sln) file.
See Figure 11-42.

START HERE

Figure 11-42 Interface for the Woods Manufacturing application

2. Open the Employee.vb file in the Code Editor window. The class definition from
Figure 11-40 appears in the window.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

654

3. Replace <your name> and <current date> in the comments with your name and the
current date, respectively. Save the solution and then close the Employee.vb window.

You need to code only the Calculate button’s Click event procedure. The procedure’s
pseudocode is shown in Figure 11-43.

btnCalc Click event procedure
1. declare variables to store an Employee object, the annual salary, hours worked, hourly pay rate,
 and gross pay
2. instantiate an Employee object to represent an employee; initialize the object’s variables using
 the number and name entered in the text boxes
3. if the Hourly employee radio button is selected
 assign the hours worked and the hourly pay rate to the appropriate variables
 use the Employee object’s GetGross method to calculate the gross pay for an hourly
 employee
 else
 assign the annual salary to the appropriate variable
 use the Employee object’s GetGross method to calculate the gross pay for a salaried
 employee
 end if
4. display the gross pay and the report
5. send the focus to the txtNum control

Figure 11-43 Pseudocode for the btnCalc_Click procedure

To code the btnCalc_Click procedure:

1. Open the form’s Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. Locate the btnCalc_Click procedure. First, the procedure will declare the necessary
variables. Click the blank line below the ' declare variables comment, and then
enter the following five Dim statements:

 Dim ourEmployee As Employee
 Dim dblAnnualSalary As Double
 Dim dblHours As Double
 Dim dblHourRate As Double
 Dim dblGross As Double

3. Next, the procedure will instantiate an Employee object, using the text box values
to initialize the object’s variables. Click the blank line below the ' instantiate
and initialize an Employee object comment, and then enter the following
assignment statement:

 ourEmployee = New Employee(txtNum.Text, txtName.Text)

4. The third step in the pseudocode determines the selected radio button and then takes
the appropriate action. Click the blank line below the ' determine the selected
radio button comment, and then enter the following If clause:

 If radHourly.Checked Then

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

655

Example 7—A Class That Contains Overloaded Methods L E S S O N B

5. If the Hourly employee radio button is selected, the selection structure’s true path
should use the Employee object’s GetGross method to calculate the gross pay for an
hourly employee. Otherwise, its false path should use the method to calculate the gross
pay for a salaried employee. Enter the comments and code indicated in Figure 11-44.

Figure 11-44 Selection structure’s true and false paths entered in the procedure

enter these comments
and lines of code

6. Next, the procedure needs to display the gross pay and the report. Click the blank line
below the last comment in the procedure, and then enter the following lines of code:

 lblGross.Text = dblGross.ToString("c2")
 txtReport.Text = txtReport.Text &

 ourEmployee.Number.PadRight(6) &
 ourEmployee.EmpName.PadRight(25) &
 dblGross.ToString("n2").PadLeft(9) & ControlChars.NewLine

7. The last step in the pseudocode is to set the focus. The code for this step has already
been entered in the Code Editor window.

Figure 11-45 shows the btnCalc_Click procedure.

Private Sub btnCalc_Click(sender As Object, e As EventArgs
) Handles btnCalc.Click
 ' displays the gross pay and a report

 ' declare variables
 Dim ourEmployee As Employee
 Dim dblAnnualSalary As Double
 Dim dblHours As Double
 Dim dblHourRate As Double
 Dim dblGross As Double

 ' instantiate and initialize an Employee object
 ourEmployee = New Employee(txtNum.Text, txtName.Text)

 ' determine the selected radio button
 If radHourly.Checked Then
 ' calculate the gross pay for an hourly employee
 Double.TryParse(lstHours.SelectedItem.ToString, dblHours)
 Double.TryParse(lstRate.SelectedItem.ToString, dblHourRate)
 dblGross = ourEmployee.GetGross(dblHours, dblHourRate)
 Else
 ' calculate the gross pay for a salaried employee
 Double.TryParse(lstSalary.SelectedItem.ToString,
 dblAnnualSalary)
 dblGross = ourEmployee.GetGross(dblAnnualSalary)
 End If

 ' display the gross pay and report
 lblGross.Text = dblGross.ToString("c2")
 txtReport.Text = txtReport.Text &
 ourEmployee.Number.PadRight(6) &
 ourEmployee.EmpName.PadRight(25) &
 dblGross.ToString("n2").PadLeft(9) & ControlChars.NewLine

 txtNum.Focus()
End Sub

Figure 11-45 btnCalc_Click procedure (continues)

declares a variable to store
an Employee object

instantiates and
initializes an
Employee object

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

656

 (continued)

Private Sub btnCalc_Click(sender As Object, e As EventArgs
) Handles btnCalc.Click
 ' displays the gross pay and a report

 ' declare variables
 Dim ourEmployee As Employee
 Dim dblAnnualSalary As Double
 Dim dblHours As Double
 Dim dblHourRate As Double
 Dim dblGross As Double

 ' instantiate and initialize an Employee object
 ourEmployee = New Employee(txtNum.Text, txtName.Text)

 ' determine the selected radio button
 If radHourly.Checked Then
 ' calculate the gross pay for an hourly employee
 Double.TryParse(lstHours.SelectedItem.ToString, dblHours)
 Double.TryParse(lstRate.SelectedItem.ToString, dblHourRate)
 dblGross = ourEmployee.GetGross(dblHours, dblHourRate)
 Else
 ' calculate the gross pay for a salaried employee
 Double.TryParse(lstSalary.SelectedItem.ToString,
 dblAnnualSalary)
 dblGross = ourEmployee.GetGross(dblAnnualSalary)
 End If

 ' display the gross pay and report
 lblGross.Text = dblGross.ToString("c2")
 txtReport.Text = txtReport.Text &
 ourEmployee.Number.PadRight(6) &
 ourEmployee.EmpName.PadRight(25) &
 dblGross.ToString("n2").PadLeft(9) & ControlChars.NewLine

 txtNum.Focus()
End Sub

Figure 11-45 btnCalc_Click procedure

calculates the
gross pay for
an hourly
employee

calculates the
gross pay
for a salaried
employee

To test the application:

1. Save the solution and then start the application. Type 1156 and Sharon Pawliki in the
Number and Name boxes, respectively. Click 10.50 in the Rate list box and then click
the Calculate button. $420.00 appears in the Gross pay box, and Sharon’s information
appears in the Report box. See Figure 11-46.

START HERE

Figure 11-46 Sharon’s gross pay and information shown in the interface

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

657

Lesson B Summary L E S S O N B

2. Type 1160 and Carl Kraton in the Number and Name boxes, respectively. Click the
Salaried employee radio button. Scroll the Annual salary list box and then click 29000
in the list. Click the Calculate button. $1,208.33 appears in the Gross pay box, and
Carl’s information appears in the Report box. See Figure 11-47.

Figure 11-47 Carl’s gross pay and information shown in the interface

3. Click the Exit button. Close the Code Editor window and then close the solution.

Lesson B Summary
 • To create a property whose value an application can only retrieve:

Include the ReadOnly keyword in the Property procedure’s header.

 • To specify the property of a class in one line:

Create an auto-implemented property using the following syntax: Public Property
propertyName As dataType.

 • To include a parameterized method in a class:

Enter the parameters between the parentheses that follow the method’s name.

 • To create two or more methods that perform the same task but require different parameters:

Overload the methods by giving them the same name but different parameterLists.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

658

Lesson B Key Terms
Auto-implemented properties—the feature that enables you to specify the property of a
class in one line

Overloaded methods—two or more class methods that have the same name but different
parameterLists

Lesson B Review Questions
1. Two or more methods that have the same name but different parameterLists are

referred to as ___________________ methods.

a. loaded
b. overloaded

c. parallel
d. signature

2. The method name combined with the method’s optional parameterList is called the
method’s ___________________.

a. autograph
b. inscription

c. signature
d. statement

3. A class contains an auto-implemented property named Title. Which of the following
is the correct way for the default constructor to assign the string “Unknown” to the
variable associated with the property?

a. _Title = "Unknown"
b. _Title.strTitle = "Unknown"
c. Title = "Unknown"
d. none of the above

4. A WriteOnly property can be an auto-implemented property.

a. True
b. False

5. The Purchase class contains a ReadOnly property named Tax. The property is
associated with the Private _dblTax variable. A button’s Click event procedure
instantiates a Purchase object and assigns it to the currentSale variable. Which of
the following is valid in the Click event procedure?

a. lblTax.Text = currentSale.Tax.ToString("C2")
b. currentSale.Tax = 15
c. currentSale.Tax = dblPrice * 0.05
d. all of the above

Lesson B Exercises
1. What are overloaded methods and why are they used?

2. Write the Property procedure for a ReadOnly property named Sales, which is
associated with the _dblSales variable.

3. Write the code for an auto-implemented property named Commission. The property’s
data type is Decimal.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

659

Lesson B Exercises L E S S O N B

4. Write the class definition for a class named Worker. The class should include Private
variables and Property procedures for a Worker object’s name and salary. The salary
may contain a decimal place. The class also should contain two constructors: the default
constructor and a parameterized constructor.

5. Rewrite the code from Exercise 4 using auto-implemented properties.

6. Add a method named GetNewSalary to the Worker class from Exercise 5. The method
should calculate a Worker object’s new salary, which is based on a raise percentage
provided by the application using the object. Before calculating the new salary, the
method should verify that the raise percentage is greater than or equal to 0. If the raise
percentage is less than 0, the method should assign 0 as the new salary.

7. In this exercise, you modify the Norbert Pool & Spa Depot application from Lesson A.
Use Windows to make a copy of the Norbert Solution folder. Rename the copy Norbert
Solution-Auto. Open the Norbert Solution (Norbert Solution.sln) file contained in the
Norbert Solution-Auto folder. Modify the RectangularPool class so that it uses Public
auto-implemented properties rather than Public variables. Include a default constructor
in the class. Test the application appropriately.

8. Open the Hire Date Solution (Hire Date Solution.sln) file contained in the VB2015\
Chap11\Hire Date Solution folder. First, add a default constructor and a parameterized
constructor to the FormattedDate class. Also, add a method that returns the month
and day numbers separated by a slash (/). Next, code the btnDefault_Click and
btnParameterized_Click procedures. Both procedures should display the hire date in
the following format: month/day. For example, if the numbers 3 and 2 are selected
in the Month and Day list boxes, respectively, the Click event procedures should
display 3/2 in the Hire date box. Code the btnDefault_Click procedure using the
FormattedDate class’s default constructor. Code the btnParameterized_Click procedure
using the class’s parameterized constructor. Test the application appropriately.

9. Open the VB2015\Chap11\Salary Solution\Salary Solution (Salary Solution.sln) file.
Open the Worker.vb class file, and then enter the Worker class definition from Exercises
5 and 6. Save the solution and then close the Worker.vb window. Open the form’s Code
Editor window. Use the comments in the btnCalc_Click procedure to enter the missing
instructions. Save the solution and then start the application. Test the application by
entering your name, a current salary amount of 54000, and a raise percentage of 10 (for
10%). The new salary should be $59,400.00. Close the Code Editor window and then
close the solution.

10. In this exercise, you modify the Grade Calculator application from this lesson. Use
Windows to make a copy of the Grade Solution folder. Rename the copy Grade
Solution-Intermediate. Open the Grade Solution (Grade Solution.sln) file contained in
the Grade Solution-Intermediate folder.

a. Open the CourseGrade.vb file. Modify the DetermineGrade method so that it
accepts the maximum number of points that can be earned on both tests. (Hint:
Currently, the maximum number of points is 200: 100 points per test.) For an A
grade, the student must earn at least 90% of the total number of points. For a B, C,
and D grade, the student must earn at least 80%, 70%, and 60%, respectively. If the
student earns less than 60% of the total points, the grade is F. Make the appropriate
modifications to the class, and then save the solution.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

660

b. Add a label control and a text box to the form. Change the label control’s Text
property to “&Maximum points” (without the quotation marks). Change the text
box’s name to txtMax.

c. Open the form’s Code Editor window. The text box should accept only numbers
and the Backspace key. The maximum number allowed in the text box should be
400. Each list box should display numbers from 0 through 200. Make the necessary
modifications to the code, and then test the application appropriately.

11. Create an application, using the following names for the solution and project,
respectively: Glasgow Solution and Glasgow Project. Save the application in the
VB2015\Chap11 folder. Create the interface shown in Figure 11-48. Each member of
Glasgow Health Club must pay monthly dues that consist of a basic fee and one or
more optional charges. The basic monthly fee for a single membership is $50; for a
family membership, it is $90. If the member has a single membership, the additional
monthly charges are $30 for tennis, $25 for golf, and $20 for racquetball. If the member
has a family membership, the additional monthly charges are $50 for tennis, $35 for
golf, and $30 for racquetball. The application should display the member’s basic fee,
additional charges, and monthly dues. Code the application by using a class, and then
test the application appropriately.

ADVANCED

Figure 11-48 Interface for Exercise 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

661

Lesson B Exercises L E S S O N B

12. Create an application, using the following names for the solution and project,
respectively: Serenity Solution and Serenity Project. Save the application in the VB2015\
Chap11 folder. Create the interface shown in Figure 11-49. The image for the picture
box is stored in the VB2015\Chap11\Flower.png file. Karen Miller, the manager of the
Accounts Payable department at Serenity Photos, wants you to create an application
that keeps track of the checks written by her department. More specifically, she wants
to record (in a sequential access file) the check number, date, payee, and amount of each
check. Code the application by using a class, and then test the application appropriately.

ADVANCED

Figure 11-49 Interface for Exercise 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

662

❚ LESSON C
After studying Lesson C, you should be able to:

 • Create a derived class

 • Refer to the base class using the MyBase keyword

 • Override a method in the base class

Example 8—Using a Base Class and a Derived Class
You can create one class from another class; in OOP, this is referred to as inheritance. The new
class is called the derived class and it inherits the attributes and behaviors of the original class,
called the base class. You indicate that a class is a derived class by including the Inherits clause
in the derived class’s Class statement. The Inherits clause is simply the keyword Inherits
followed by the name of the class whose attributes and behaviors you want the derived class to
inherit. You enter the Inherits clause in the line immediately below the Public Class clause in the
derived class.

You will use a base class named Square and a derived class named Cube to code the Area
Calculator application, which calculates and displays either the area of a square or the surface
area of a cube.

To open the Area Calculator application and then view the class file:

1. If necessary, start Visual Studio 2015. Open the VB2015\Chap11\Area Solution\Area
Solution (Area Solution.sln) file. The interface provides a text box for entering the side
measurement. See Figure 11-50.

START HERE

Figure 11-50 Interface for the Area Calculator application

2. Right-click Shapes.vb in the Solution Explorer window and then click View Code.
Replace <your name> and <current date> in the comments with your name and the
current date, respectively. The Shapes.vb file contains the Square class definition shown
in Figure 11-51.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

663

Example 8—Using a Base Class and a Derived Class L E S S O N C

The Square class contains a Public property named Side, two constructors, and a method named
GetArea. The Side property represents an attribute of a Square object: its side measurement.
Each time a Square object is instantiated, the computer will use one of the two constructors to
initialize the object. The class’s GetArea method can be used by an application to calculate and
return the area of a Square object.

In this section, you will create a derived class from the Square class. The derived class will inherit
only the base class’s Side attribute and GetArea method. It will not inherit the two constructors
because constructors are never inherited. You will name the derived class Cube.

To create a derived class named Cube:

1. Click the blank line below the ' derived class comment, and then enter the
following two lines of code. Press Enter twice after typing the Inherits clause.

 Public Class Cube
 Inherits Square

2. As already mentioned, the Cube class will not inherit the Square class’s constructors.
Therefore, it will need its own constructors. Enter the following procedure header for
the default constructor:

 Public Sub New()

3. Insert two blank lines above the Cube class’s End Class clause. In the blank line
immediately above the End Class clause, enter the following procedure header for the
parameterized constructor:

 Public Sub New(ByVal dblS As Double)

START HERE

' Name: Shapes.vb
' Programmer: <your name> on <current date>

Option Explicit On
Option Strict On
Option Infer Off

' base class
Public Class Square
 Public Property Side As Double

 Public Sub New()
 _Side = 0
 End Sub

 Public Sub New(ByVal dblS As Double)
 Side = dblS
 End Sub

 Public Function GetArea() As Double
 ' returns the area of a square
 Return _Side ^ 2
 End Function
End Class

' derived class

Figure 11-51 Contents of the Shapes.vb file

Square class definition

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

664

Recall that when a Square object is instantiated, the computer uses one of the Square class’s
constructors to initialize the object. When a Cube object is instantiated, its constructors will call
upon the base class’s constructors to initialize the object. You refer to the base class using the
MyBase keyword. For example, the MyBase.New() statement tells the computer to process the
code contained in the base class’s default constructor. Similarly, the MyBase.New(dblS) statement
tells the computer to process the code contained in the base class’s parameterized constructor.

To finish coding the Cube class’s constructors:

1. Click the blank line below the default constructor’s procedure header and then type
the following statement, but don’t press Enter:

 MyBase.New()

2. Click the blank line below the parameterized constructor’s procedure header and then
type the following statement, but don’t press Enter:

 MyBase.New(dblS)

3. Save the solution.

Recall that the Square (base) class contains a method named GetArea that calculates and returns
the area of a Square object. You will also include a GetArea method in the Cube (derived) class.
However, the Cube class’s GetArea method will calculate and return the surface area of a Cube
object. The formula for calculating the surface area is sideMeasurement2 * 6. The GetArea
method in the Cube class will use the Square class’s GetArea method to calculate and return the
first part of the formula: sideMeasurement2. It then will simply multiply the return value by 6 to
get the surface area of a Cube object.

In order to use the same method name—in this case, GetArea—in both a base class and
a derived class, the method’s procedure header in the base class will need to contain the
Overridable keyword, and the method’s procedure header in the derived class will need to
contain the Overrides keyword. The Overridable keyword in the base class indicates that
the method can be overridden by any class that is derived from the base class. In other words,
classes derived from the Square (base) class will provide their own GetArea method. The
Overrides keyword in the derived class indicates that the method overrides (replaces) the same
method contained in the base class. In this case, for example, the GetArea method in the Cube
class replaces the GetArea method in the Square class.

To finish coding the Cube class:

1. Locate the GetArea method in the Square class. Change the procedure header
to the following:

 Public Overridable Function GetArea() As Double

2. Insert two blank lines above the Cube class’s End Class clause. (Be sure to insert the
lines in the Cube class rather than in the Square class.) Beginning in the blank line
above the End Class clause, type Public Overrides Function and press the Spacebar.
Click GetArea() in the list, and then press Tab. The Code Editor automatically enters
As Double at the end of the procedure header. It also automatically enters the Return
MyBase.GetArea() statement in the procedure.

3. Position the insertion point at the end of the Return statement (if necessary).
Press the Spacebar and then type * 6.

4. Save the solution.

Figure 11-52 shows the Square and Cube class definitions contained in the Shapes.vb file.

START HERE

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

665

Example 8—Using a Base Class and a Derived Class L E S S O N C

To complete the application, you need to code the btnSquare_Click and btnCube_Click
procedures.

To code and then test the btnSquare_Click procedure:

1. Open the form’s Code Editor window and locate the btnSquare_Click procedure. First,
the procedure will instantiate a Square object. Click the blank line immediately above
the End Sub clause, and then enter the following Dim statement:

 Dim mySquare As New Square

2. Next, the procedure will declare a variable to store the mySquare object’s area. Type the
following Dim statement and then press Enter twice:

 Dim dblArea As Double

3. Now, assign the side measurement to the mySquare object’s Side property. Type the
following TryParse method and then press Enter twice:

 Double.TryParse(txtSide.Text, mySquare.Side)

START HERE

' base class
Public Class Square
 Public Property Side As Double

 Public Sub New()
 _Side = 0
 End Sub

 Public Sub New(ByVal dblS As Double)
 Side = dblS
 End Sub

 Public Overridable Function GetArea() As Double
 ' returns the area of a square
 Return _Side ^ 2
 End Function
End Class

' derived class
Public Class Cube
 Inherits Square

 Public Sub New()
 MyBase.New()
 End Sub

 Public Sub New(ByVal dblS As Double)
 MyBase.New(dblS)
 End Sub

 Public Overrides Function GetArea() As Double
 Return MyBase.GetArea() * 6
 End Function
End Class

Figure 11-52 Modified Square and Cube class definitions

indicates that the method can be
overridden in the derived class

invokes the base class’s
default constructor

the derived class inherits
from the base class

invokes the base class’s
parameterized constructor

indicates that the method
overrides the one in the
base class

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

666

4. Next, the procedure will use the mySquare object’s GetArea method to calculate
the area. It will assign the method’s return value to the dblArea variable. Enter the
following comment and assignment statement:

 ' calculate the area
 dblArea = mySquare.GetArea

5. Finally, the procedure will display the area in the lblArea control. Enter the following
comment and assignment statement:

 ' display the area
 lblArea.Text = "Square: " & dblArea.ToString("n1")

6. If necessary, delete the blank line above the End Sub clause.

7. Save the solution and then start the application. Type 10 in the Side measurement box
and then click the Square Area button. The message “Square: 100.0” appears in the
Area box, as shown in Figure 11-53.

Figure 11-53 Interface showing the square’s area

8. Click the Exit button.

Finally, you will code the btnCube_Click procedure.

To code and then test the btnCube_Click procedure:

1. Locate the btnCube_Click procedure. First, the procedure will instantiate a Cube
object. Click the blank line immediately above the End Sub clause, and then enter the
following Dim statement:

 Dim myCube As New Cube

2. Next, the procedure will declare a variable to store the myCube object’s area. Type the
following Dim statement and then press Enter twice:

 Dim dblArea As Double

3. Now, assign the side measurement to the myCube object’s Side property. Type the
following TryParse method and then press Enter twice:

 Double.TryParse(txtSide.Text, myCube.Side)

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

667

Example 8—Using a Base Class and a Derived Class L E S S O N C

4. Next, the procedure will use the myCube object’s GetArea method to calculate the area.
It will assign the method’s return value to the dblArea variable. Enter the following
comment and assignment statement:

 ' calculate the area
 dblArea = myCube.GetArea

5. Finally, the procedure will display the area in the lblArea control. Enter the following
comment and assignment statement:

 ' display the area
 lblArea.Text = "Cube: " & dblArea.ToString("n1")

6. If necessary, delete the blank line above the End Sub clause.

7. Save the solution and then start the application. Type 10 in the Side measurement box,
and then click the Cube Surface Area button. The message “Cube: 600.0” appears in
the Area box.

8. Click the Exit button. Close the form’s Code Editor window and the Shapes.vb window,
and then close the solution.

Figure 11-54 shows the btnSquare_Click and btnCube_Click procedures.

Private Sub btnSquare_Click(sender As Object, e As EventArgs
) Handles btnSquare.Click
 ' displays the area of a square

 Dim mySquare As New Square
 Dim dblArea As Double

 Double.TryParse(txtSide.Text, mySquare.Side)

 ' calculate the area
 dblArea = mySquare.GetArea
 ' display the area
 lblArea.Text = "Square: " & dblArea.ToString("n1")
End Sub

Private Sub btnCube_Click(sender As Object, e As EventArgs
) Handles btnCube.Click
 ' displays the surface area of a cube

 Dim myCube As New Cube
 Dim dblArea As Double

 Double.TryParse(txtSide.Text, myCube.Side)

 ' calculate the area
 dblArea = myCube.GetArea
 ' display the area
 lblArea.Text = "Cube: " & dblArea.ToString("n1")
End Sub

Figure 11-54 btnSquare_Click and btnCube_Click procedures

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 1 Classes and Objects

668

Lesson C Summary
 • To allow a derived class to inherit the attributes and behaviors of a base class:

Enter the Inherits clause in the line immediately below the Public Class clause in the derived
class. The Inherits clause is the keyword Inherits followed by the name of the base class.

 • To refer to the base class:

Use the MyBase keyword.

 • To indicate that a method in the base class can be overridden (replaced) in the derived class:

Use the Overridable keyword in the method’s header in the base class.

 • To indicate that a method in the derived class overrides (replaces) a method in the base class:

Use the Overrides keyword in the method’s header in the derived class.

Lesson C Key Terms
Base class—the original class from which another class is derived

Derived class—a class that inherits the attributes and behaviors of a base class

Inheritance—the ability to create one class from another class

Inherits clause—entered in the line immediately below the Public Class clause in a derived
class; specifies the name of the base class associated with the derived class

MyBase—the keyword used in a derived class to refer to the base class

Overridable—a keyword that can appear in a method’s header in a base class; indicates that the
method can be overridden by any class that is derived from the base class

Overrides—a keyword that can appear in a method’s header in a derived class; indicates that the
method overrides the method with the same name in the base class

Lesson C Review Questions
1. Which of the following clauses allows a derived class named Cat to have the same

attributes and behaviors as its base class, which is named Animal?

a. Inherited Animal
b. Inherits Animal

c. Inherited Cat
d. Inherits Cat

2. A base class contains a method named GetTax. Which of the following procedure
headers can be used in the base class to indicate that a derived class can provide its own
code for the method?

a. Public Inherits Sub GetTax()
b. Public Overridable Sub GetTax()
c. Public Overrides Sub GetTax()
d. Public Overriding Sub GetTax()

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

669

Lesson C Exercises L E S S O N CLesson C Exercises L E S S O N C

3. A base class contains a method named GetTax. Which of the following procedure
headers can be used in the derived class to indicate that it is providing its own code for
the method?

a. Public Inherits Sub GetTax()
b. Public Overridable Sub GetTax()
c. Public Overrides Sub GetTax()
d. Public Overriding Sub GetTax()

4. The Salaried class is derived from a base class named Employee. Which of the following
statements can be used by the Salaried class to invoke the Employee class’s default
constructor?

a. MyBase.New()
b. MyEmployee.New()

c. Call Employee.New
d. none of the above

Lesson C Exercises
1. Open the VB2015\Chap11\Formula Solution\Formula Solution (Formula Solution.sln)

file. Open the Areas.vb file, which contains the Parallelogram class definition. The class
contains two Public properties and two constructors. It also contains a GetArea method
that calculates the area of a parallelogram.

a. Create a derived class named Triangle. The derived class should inherit the
properties and GetArea method from the Parallelogram class. However, the Triangle
class’s GetArea method should calculate the area of a triangle. The formula for
calculating the area of a triangle is base * height / 2. Be sure to include a default
constructor and a parameterized constructor in the derived class.

b. The btnCalc_Click procedure should display either the area of a parallelogram or
the area of a triangle. The appropriate area to display depends on the radio button
selected in the interface. Code the button’s Click event procedure, and then test the
application appropriately.

2. Open the Kerry Sales Solution (Kerry Sales Solution.sln) file contained in the VB2015\
Chap11\Kerry Sales Solution folder.

a. Open the Payroll.vb file. Create a base class named Bonus. The class should contain
two Public properties: a String property named SalesId and a Double property
named Sales. Include a default constructor and a parameterized constructor in the
class. Also include a GetBonus method (function) that calculates a salesperson’s
bonus using the following formula: sales * 0.05.

b. Create a derived class named PremiumBonus. The derived class’s GetBonus method
should calculate the bonus as follows: sales * 0.05 + (sales – 2500) * 0.01. Be sure to
include a default constructor and a parameterized constructor in the derived class.

c. Complete the btnCalc_Click procedure, using the comments as a guide, and then
test the application appropriately.

3. Open the VB2015\Chap11\Debug Solution\Debug Solution (Debug Solution.sln)
file. Open the Code Editor windows for the form and the class file. Review the existing
code. Correct the code to remove the jagged lines in the Shape and Circle class
definitions. Save the solution, and then start and test the application. Notice that the
application is not working correctly. Locate and correct the errors in the code, and then
test the application appropriately.

INTRODUCTORY

INTERMEDIATE

SWAT THE BUGS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 12
Web Applications

Creating the Satellite Radio Web Application

In this chapter, you will create a Web application for the Satellite Radio company.
The company offers its customers a choice of three different satellite radio
packages: Select, Gold, and Platinum. Each package includes a different number
of radio stations, with the Select package having the least and the Platinum
package having the most. Subscriptions to each package are available for either
a 6-month term or a 12-month term only. The company also offers 6-month and
12-month subscriptions to its Internet listening service, which allows a customer
to listen to the radio stations on his or her computer. New customers receive
a 10% discount on the package subscription price only. The application will
display the total cost of a 6-month subscription and the total cost of a 12-month
subscription. (The company’s offerings and pricing information are shown in
Figure 12-48 in Lesson C.)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Web Applications

672

Previewing the Satellite Radio Web Application
Before you start the first lesson in this chapter, you will preview the completed application
contained in the VB2015\Chap12 folder.

To preview the completed application:

1. If necessary, start Visual Studio 2015. Click File on the menu bar and then click Open
Web Site. The Open Web Site dialog box appears. If necessary, click the File System
button. Click the Radio-Preview folder contained in the VB2015\Chap12 folder, and
then click the Open button.

2. If the Default.aspx Web page does not appear in the Document window, right-click
Default.aspx in the Solution Explorer window and then click View Designer.

3. Press Ctrl+F5 to start the application. The Web page appears in a browser window.

4. Click the Gold radio button and the Internet listening check box. Click the Calculate
button. As Figure 12-1 indicates, the cost for a 6-month subscription to the Gold
package with Internet listening is $120.49, and the cost for a 12-month subscription is
$212.49. (Your Web page will look slightly different if you are using a different browser,
such as Google Chrome or Mozilla Firefox.)

START HERE

Figure 12-1 Subscription costs displayed on the Web page in Internet Explorer

5. Click the 10% discount check box. Notice that the costs for both subscriptions are
removed from the Web page. Click the Calculate button. The costs for the 6-month
and 12-month subscriptions are now $110.89 and $195.79, respectively.

6. Close the browser window. Click File on the menu bar and then click Close Solution.
If you are asked whether you want to save the changes to the Radio-Preview.sln file,
click the No button.

In Lesson A, you will learn how to create static Web pages. Dynamic Web pages are covered in
Lessons B and C. You will code the Satellite Radio application in Lesson C. Be sure to complete
each lesson in full and do all of the end-of-lesson questions and several exercises before
continuing to the next lesson.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

673

Web Applications L E S S O N A

❚ LESSON A
After studying Lesson A, you should be able to:

 • Define basic Web terminology

 • Create a Web Site application

 • Add Web pages to an application

 • Customize a Web page

 • Add static text to a Web page

 • Format a Web page’s static text

 • Add a hyperlink and an image to a Web page

 • Start a Web application

 • Close and open a Web application

 • Reposition a control on a Web page

Web Applications
The Internet is the world’s largest computer network, connecting millions of computers located
all around the world. One of the most popular features of the Internet is the World Wide Web,
often referred to simply as the Web. The Web consists of documents called Web pages that are
stored on Web servers. A Web server is a computer that contains special software that “serves
up” Web pages in response to requests from client computers. A client computer is a computer
that requests information from a Web server. The information is requested and subsequently
viewed through the use of a program called a Web browser or, more simply, a browser.
Currently, the most popular browsers are Google Chrome, Mozilla Firefox, and Microsoft
Internet Explorer.

Many Web pages are static. A static Web page is a document whose purpose is merely to
display information to the viewer. Static Web pages are not interactive. The only interaction that
can occur between static Web pages and the user is through links that allow the user to “jump”
from one Web page to another.

Figures 12-2 and 12-3 show examples of static Web pages created for The Fishbowl Emporium.
The Web page in Figure 12-2 shows the store’s name, address, and telephone number, and also
provides a link to the Web page shown in Figure 12-3. That page shows the store’s business
hours and provides a link for returning to the first Web page. You will create both Web pages in
this lesson.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Web Applications

674

Although static Web pages provide a means for a store to list its location and hours, a company
wanting to do business on the Web must be able to do more than just list information: It must
be able to interact with customers through its Web site. The Web site should allow customers
to submit inquiries, select items for purchase, and submit payment information. It also should
allow the company to track customer inquiries and process customer orders. Tasks such as these
can be accomplished using dynamic Web pages.

Unlike a static Web page, a dynamic Web page is interactive in that it can accept information
from the user and also retrieve information for the user. Examples of dynamic Web pages include
forms for purchasing merchandise online and for submitting online résumés. Figure 12-4 shows
an example of a dynamic Web page that calculates the number of gallons of water a rectangular
aquarium holds. To use the Web page, you enter the length, width, and height of the aquarium
and then click the Submit button. The button’s Click event procedure displays the corresponding
number of gallons on the Web page.

Figure 12-2 Example of a static Web page displayed using Google Chrome

Figure 12-3 Another example of a static Web page displayed using Google Chrome

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

675

Web Applications L E S S O N A

Figure 12-4 Example of a dynamic Web page displayed using Mozilla Firefox

The Web applications created in this chapter use a technology called ASP.NET 5. ASP stands
for “active server page” and refers to the type of Web page created by the ASP technology. All
ASP pages contain HTML (Hypertext Markup Language) tags that tell the client’s browser how
to render the page on the computer screen. For example, the instruction <h1>Hello</h1> uses
the opening <h1> tag and its closing </h1> tag to display the word “Hello” as a heading on the
Web page. Many ASP pages also contain ASP tags that specify the controls to include on the
Web page. In addition to the HTML and ASP tags, dynamic ASP pages contain code that tells
the objects on the Web page how to respond to the user’s actions. In this chapter, you will write
the appropriate code using the Visual Basic programming language.

When a client computer’s browser sends a request for an ASP page, the Web server locates the
page and then sends the appropriate HTML instructions to the client. The client’s browser uses
the instructions to render the Web page on the computer screen. If the Web page is a dynamic
one, like the Web page shown in Figure 12-4, the user can interact with the page by entering
data. In most cases, the user then clicks a button on the Web page to submit the page and data
to the server for processing. Using Web terminology, the information is “posted back” to the
server for processing; this event is referred to as a postback. When the server receives the
information, it executes the Visual Basic code associated with the Web page. It then sends back
the appropriate HTML, which now includes the result of processing the code and data, to the
client for rendering in the browser window. Notice that the Web page’s HTML is interpreted
and executed by the client computer, whereas the program code is executed by the Web server.
Figure 12-5 illustrates the relationship between the client computer and the Web server.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Web Applications

676

This lesson covers static Web pages. Dynamic Web pages are covered in Lessons B and C.

To begin creating the static Fishbowl Emporium Web Site application:

1. If necessary, start Visual Studio 2015. Open the Solution Explorer and Properties
windows, and auto-hide the Toolbox window.

2. Click File on the menu bar, and then click New Web Site to open the New Web Site
dialog box. If necessary, click Visual Basic in the Installed Templates list. Click
ASP.NET Empty Web Site in the middle column of the dialog box.

3. If necessary, change the entry in the Web location box to File System. The File
System selection allows you to store your Web application in any folder on either your
computer or a network drive.

4. In this chapter, you will be instructed to store your Web applications in the VB2015\Chap12
folder on the E drive; however, you should use the letter for the drive where your data is
stored, which might not be the E drive. In the box that appears next to the Web location
box, replace the existing text with E:\VB2015\Chap12\Fishbowl. See Figure 12-6.

START HERE

2. Web server returns HTML

1. client computer requests ASP page

3. client computer submits page and data

4. Web server executes code and returns HTML

Figure 12-5 Illustration of the relationship between a client computer and a Web server

Figure 12-6 New Web Site dialog box

select this Visual
Basic template

your drive letter
might be different

5. Click the OK button to close the dialog box. The computer creates an empty Web
application named Fishbowl.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

677

Adding the Default.aspx Web Page to the Application L E S S O N A

Adding the Default.aspx Web Page to the Application
After creating an empty Web application, you need to add a Web page to it. The first Web page
added to an application is usually named Default.aspx.

To add the Default.aspx Web page to the application:

1. Click Website on the menu bar, and then click Add New Item to open the Add
New Item dialog box. (If Website does not appear on the menu bar, click the Web
application’s name—in this case, Fishbowl—in the Solution Explorer window.)

2. If necessary, click Visual Basic in the Installed list and then click Web Form in the
middle column of the dialog box. Verify that the Place code in separate file check box
is selected and that the Select master page check box is not selected. As indicated in
Figure 12-7, the Web page will be named Default.aspx.

START HERE

Figure 12-7 Add New Item dialog box

default name for the Web page

3. Click the Add button to display the Default.aspx page in the Document window. If
necessary, click the Design tab that appears at the bottom of the IDE. When the Design
tab is selected, the Web page appears in Design view in the Document window, as
shown in Figure 12-8. You can use Design view to add text and controls to the Web
page. If the div tag does not appear in the Document window, click the <div> button at
the bottom of the IDE.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Web Applications

678

4. The Formatting toolbar may appear next to the Standard toolbar, as shown in
Figure 12-8, or it may appear below the Standard toolbar. However, if you do not see
the Formatting toolbar on your screen, click View on the menu bar, point to Toolbars,
and then click Formatting.

5. If the Formatting toolbar appears next to (rather than below) the Standard toolbar,
position your mouse pointer on the beginning of the Formatting toolbar until it turns
into a move pointer, as shown in Figure 12-9.

Figure 12-8 Default.aspx Web page shown in Design view

Formatting toolbar

tabs <div> button

Figure 12-9 Move pointer on beginning of Formatting toolbar

position your mouse
pointer hereStandard

toolbar

Figure 12-10 Formatting toolbar positioned below Standard toolbar

StandardFormatting

6. Hold down the left mouse button as you drag the Formatting toolbar below the
Standard toolbar, and then release the mouse button. See Figure 12-10.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

679

Adding the Default.aspx Web Page to the Application L E S S O N A

7. Click the Source tab to display the Web page in Source view. This view shows the
HTML and ASP tags that tell a browser how to render the Web page. The tags are
automatically generated for you as you are creating the Web page in Design view.
Currently, the Web page contains only HTML tags.

8. Click the Split tab to split the Document window into two parts. The upper half
displays the Web page in Source view, and the lower half displays it in Design view.

9. Click the Design tab to return to Design view, and then auto-hide the Solution Explorer
window.

Including a Title on a Web Page
You can use the Properties window to include a title on a Web page. The properties appear in
the Properties window when you select DOCUMENT in the window’s Object box.

To include a title on the Web page:

1. Click the down arrow button in the Properties window’s Object box, and then click
DOCUMENT in the list. (If DOCUMENT does not appear in the Object box, click the
Design tab.) The DOCUMENT object represents the Web page.

2. If necessary, click the Alphabetical button in the Properties window to display the
properties in alphabetical order. Click Title in the Properties list. Type The Fishbowl
Emporium in the Settings box, and then press Enter.

3. Auto-hide the Properties window. Save the application either by clicking the Save All
button on the Standard toolbar or by clicking the Save All option on the File menu.

Adding Static Text to a Web Page
All Web pages contain some text that the user is not allowed to edit, such as a company name
or the caption that identifies a text box. Text that cannot be changed by the user is referred to as
static text. You can add static text to a Web page by simply typing the text on the page itself, or
you can use a label control that you dragged to the Web page from the Toolbox window. In this
lesson, you will type the static text on the Web page.

To add static text to the Web page:

1. If necessary, click inside the rectangle that appears below the div tag at the top of the
Document window. The div tag defines a division in a Web page. (If the div tag does not
appear in the Document window, click the <div> button at the bottom of the IDE.)

2. Enter the following four lines of text. Press Enter twice after typing the last line.

The Fishbowl Emporium
75 West Martin Avenue
Chico, CA 95926
(111) 555-5555

3. Save the application.

You can use either the Format menu or the Formatting toolbar to format the static text on a
Web page. Figure 12-11 indicates some of the tools available on the Formatting toolbar.

START HERE

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Web Applications

680

To use the Formatting toolbar to format the static text:

1. Select (highlight) the first line of text on the Web page. Click the down arrow in the
Block Format box on the Formatting toolbar. See Figure 12-12.

START HERE

Figure 12-11 Formatting toolbar

Block Format box Font Size box Foreground Color button

Background Color button

Alignment button

Figure 12-12 Result of clicking the arrow in the Block Format box

Block Format box

first line of text
selected on the
Web page

Figure 12-13 Result of clicking the Alignment button

Alignment button

2. Click Heading 1 <h1>.

3. Select the address and phone number text on the Web page. Click the down arrow in
the Block Format box and then click Heading 2 <h2>.

4. Next, you will use the Formatting toolbar’s Alignment button to center the static text.
Select all of the static text on the Web page, and then click the down arrow on the
Alignment button. See Figure 12-13.

5. Click Justify Center. The selected text appears centered horizontally on the Web page.
Click anywhere below the phone number to deselect the text, and then save the
application.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

681

Adding a Hyperlink Control to a Web Page L E S S O N A

Adding Another Web Page to the Application
In the next set of steps, you will add a second Web page to the application. The Web page will
display the store’s hours of operation.

To add another Web page to the application:

1. Click Website on the menu bar and then click Add New Item. (If Website does not
appear on the menu bar, click Fishbowl in the Solution Explorer window.)

2. If necessary, click Visual Basic in the Installed list, and then click Web Form in the
middle column of the dialog box. Change the filename in the Name box to Hours and
then click the Add button. The computer appends the .aspx extension to the filename
and then displays the Hours.aspx Web page in the Document window.

3. Temporarily display the Solution Explorer window. Notice that the window now
contains the Hours.aspx filename.

4. Click the Hours.aspx tab, and then temporarily display the Properties window. Click the
down arrow button in the Properties window’s Object box, and then click DOCUMENT
in the list. Change the Web page’s Title property to The Fishbowl Emporium.

5. Click the Hours.aspx tab. The blinking insertion point should be inside the rectangle
that appears below the div tag. (If the div tag does not appear in the Document window,
click the <div> button at the bottom of the IDE.) Type Please stop in and see us
during these hours: and press Enter twice.

6. Enter the following three lines of text. Press Enter twice after typing the last line.

Monday – Friday 8am – 8pm
Saturday 9am – 5pm
Closed Sunday

7. Select the first line of text on the Web page. Click the down arrow in the Font Size box
on the Formatting toolbar, and then click x-large (24 pt). Also click the I (Italic) button
on the toolbar.

8. Select the three lines of text that contain the store hours. Click the down arrow in the
Font Size box and then click large (18 pt). Also click the B (Bold) button.

9. Next, you will change the color of the selected text. Click the Foreground Color button
on the Formatting toolbar to open the More Colors dialog box. Click any red hexagon,
and then click the OK button.

10. Select all of the static text on the Web page. Click the down arrow on the Alignment
button and then click Justify Center.

11. Click the second blank line below the store hours to deselect the text, and then save
the application.

Adding a Hyperlink Control to a Web Page
The Toolbox window provides tools for adding controls to a Web page. In the next set of steps,
you will add a hyperlink control to both Web pages. The hyperlink control on the Default.aspx
page will display the Hours.aspx page. The hyperlink control on the Hours.aspx page will return
the user to the Default.aspx Web page.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Web Applications

682

To add a hyperlink control to both Web pages:

1. First, you will add a hyperlink control to the Hours.aspx page. Permanently display
the Toolbox window. Expand the Standard node, if necessary, and then click the
HyperLink tool. Drag your mouse pointer to the location shown in Figure 12-14, and
then release the mouse button.

START HERE

Figure 12-15 Select URL dialog box

Figure 12-14 Hyperlink control added to the Hours.aspx Web page

HyperLink tool

drag your mouse
pointer here

2. Temporarily display the Properties window. Change the control’s Text property to
Home Page. Click NavigateUrl in the Properties list, and then click the ... (ellipsis)
button to open the Select URL dialog box. Click Default.aspx in the Contents of folder
list. See Figure 12-15.

3. Click the OK button to close the dialog box, and then click the Hours.aspx tab.

4. Next, you will add a hyperlink control to the Default.aspx page. Click the
Default.aspx tab. Click the HyperLink tool. Drag your mouse pointer to the location
shown in Figure 12-16, and then release the mouse button.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

683

Starting a Web Application L E S S O N A

5. Temporarily display the Properties window. Change the control’s Text property to
Store Hours and then change its NavigateUrl property to Hours.aspx.

6. Click the OK button to close the Select URL dialog box, and then click the
Default.aspx tab. Save the application.

Starting a Web Application
Typically, you start a Web application either by pressing Ctrl+F5 or by clicking the Start Without
Debugging option on the Debug menu. The method you use—the shortcut keys or the menu
option—is a matter of personal preference. If you prefer to use a menu option, you might need
to add the Start Without Debugging option to the Debug menu because the option is not
automatically included on the menu. You can add the option to the menu by performing the
next set of steps. If you prefer to use the Ctrl+F5 shortcut keys, you can skip the next set of steps.

To add the Start Without Debugging option to the Debug menu:

1. First, you will determine whether your Debug menu already contains the Start Without
Debugging option. Click Debug on the menu bar. If the menu contains the Start
Without Debugging option, close the menu by clicking Debug again, and then skip the
remaining steps in this set of steps.

2. If the Debug menu does not contain the Start Without Debugging option, close the
menu by clicking Debug again. Click Tools on the menu bar, and then click Customize
to open the Customize dialog box.

3. Click the Commands tab. The Menu bar radio button should be selected. Click the
down arrow in the Menu bar list box. Scroll down the list until you see Debug, and
then click Debug.

4. Click the Add Command button to open the Add Command dialog box, and then
click Debug in the Categories list. Scroll down the Commands list until you see Start
Without Debugging, and then click Start Without Debugging. Click the OK button to
close the Add Command dialog box.

START HERE

Figure 12-16 Hyperlink control added to the Default.aspx Web page

drag your mouse
pointer here

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Web Applications

684

6. Click the Close button to close the Customize dialog box.

When you start a Web application, the computer creates a temporary Web server (on your local
machine) that allows you to view your Web page in a browser. Keep in mind, however, that your
Web page will need to be placed on an actual Web server for others to view it.

To start the Web application:

1. Start the Web application either by pressing Ctrl+F5 or by clicking the Start Without
Debugging option on the Debug menu. (If the message “Intranet settings are turned
off by default.” appears, click the Don’t show this message again button.) Your browser
requests the Default.aspx page from the Web server. The server locates the page and
then sends the appropriate HTML instructions to your default browser for rendering
on the screen. Notice that the value in the page’s Title property appears on the page’s
tab in the browser window. See Figure 12-18.

START HERE

Ch12A-Changing
Browsers

Figure 12-17 Customize dialog box

Start Without
Debugging option

5. Click the Move Down button until the Start Without Debugging option appears below
the Start / Continue option. See Figure 12-17.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

685

Adding an Image to a Web Page L E S S O N A

2. Click the Store Hours hyperlink to display the Hours.aspx page. See Figure 12-19.

Figure 12-19 Hours.aspx Web page displayed in a Google Chrome browser window

Figure 12-18 Default.aspx Web page displayed in a Google Chrome browser window

Title property’s value

3. Click the Home Page hyperlink to display the Default.aspx page, and then close the
browser window.

Adding an Image to a Web Page
In the next set of steps, you will add an image to the Default.aspx page. The image is stored in
the VB2015\Chap12\FishInBowl.png file.

To add an image to the Web page:

1. First, you need to add the image file to the application. Click Website on the menu bar
and then click Add Existing Item. Open the VB2015\Chap12 folder. Click the down
arrow in the box that controls the file types, and then click All Files (*.*) in the list.
Click FishInBowl.png in the list of filenames, and then click the Add button.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Web Applications

686

3. Temporarily display the Properties window. Click ImageUrl in the Properties list,
if necessary, and then click the ... (ellipsis) button to open the Select Image dialog
box. Click FishInBowl.png in the Contents of folder section, and then click the
OK button.

4. Place your mouse pointer on the lower-right corner of the image control, and then drag
the control to make it smaller. See Figure 12-21. (The width and height measurements
of the image in the figure are approximately 255px and 175px, respectively.)

Figure 12-21 Resized image control

5. Next, you will put a border around the image control and also change the border’s
width to 10 pixels. Change the image control’s BorderStyle property to Dotted,
and then change its BorderWidth property to 10. Press Enter after typing the
number 10.

Figure 12-20 Image control added to the Default.aspx Web page

drag your mouse pointer here

2. Click the blank line below the Store Hours hyperlink control. (If necessary, insert a
blank line below the control.) Press Enter to insert another blank line. Click the Image
tool in the toolbox. Drag your mouse pointer to the location shown in Figure 12-20,
and then release the mouse button.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

687

Closing and Opening an Existing Web Application L E S S O N A

8. Verify that the browser window is not maximized. Place your mouse pointer on
the window’s right border, and then drag the border to the left to make the window
narrower. Notice that the text and image remain centered in the visible portion of the
window. Now, drag the right border to the right to make the window wider. Here, again,
the text and image remain centered in the visible portion of the window.

9. Close the browser window.

Closing and Opening an Existing Web Application
You can use the File menu to close and also to open an existing Web application.

To close and then open the Web application:

1. Click File on the menu bar, and then click Close Solution to close the application.

2. Next, you will open the application. Click File on the menu bar, and then click Open
Web Site to open the Open Web Site dialog box. If necessary, click the File System
button. Locate the VB2015\Chap12\Fishbowl folder. Click the folder and then click the
Open button.

3. Temporarily display the Solution Explorer window to verify that the application is
open. If the Default.aspx Web page is not open in the Document window, right-click
Default.aspx in the Solution Explorer window and then click View Designer.

START HERE

Figure 12-22 Default.aspx Web page displayed using Google Chrome

6. Now, you will change the color of the image’s border to green. Click BorderColor in
the Properties list and then click the ... (ellipsis) button. When the More Colors dialog
box opens, click any green hexagon. Click the OK button to close the dialog box, and
then click the Default.aspx tab.

7. Auto-hide the toolbox. Save and then start the application. See Figure 12-22.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Web Applications

688

Repositioning a Control on a Web Page
At times, you may want to reposition a control on a Web page. In this section, you will move
the image and hyperlink controls to different locations on the Default.aspx Web page. First,
however, you will create a copy of the Fishbowl application.

To create a copy of the Fishbowl application:

1. Close the Fishbowl Emporium application. If you are prompted to save the .sln file,
click the No button.

2. Use Windows to make a copy of the VB2015\Chap12\Fishbowl folder. Rename the
folder Modified Fishbowl.

Now, you will open the Modified Fishbowl application and move the two controls to different
locations on the Default.aspx Web page.

To move the controls in the Modified Fishbowl application:

1. Open the Modified Fishbowl Web site. Right-click Default.aspx in the Solution
Explorer window and then click View Designer.

2. First, you will move the image control from the bottom of the Web page to the top of
the Web page. If necessary, click immediately before the letter T in the store’s name.
Press Enter to insert a blank line above the name.

3. Click the image control on the Web page. Drag the image control to the blank line
immediately above the store name, and then release the mouse button.

4. Next, you will move the hyperlink control to the empty area below the store’s name.
Click the hyperlink control. Drag the control to the empty area below the store’s
name, and then release the mouse button.

5. Click File on the menu bar and then click Save Default.aspx.

6. Start the application. See Figure 12-23.

START HERE

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

689

Figure 12-23 Modified Default.aspx Web page

7. Close the browser window and then close the application.

YOU DO IT 1!

Create an empty Web Site application named YouDoIt 1 and save it in the VB2015\
Chap12 folder. Add two Web pages to the application: one named Default.aspx and one
named Address.aspx. The Default.aspx page should contain your name and a hyperlink
control. Change the hyperlink control’s Text property to Address. The control should
display the Address.aspx page. The Address.aspx page should contain your address
and a hyperlink control. Change this hyperlink control’s Text property to Name. The
control should display the Default.aspx page. Save the application and then start and
test it. Close the browser window and then close the application.

Lesson A Summary
 • To create an empty Web Site application:

Click File on the menu bar, and then click New Web Site to open the New Web Site dialog box.
If necessary, click Visual Basic in the Installed Templates list. Click ASP.NET Empty Web Site
in the middle column of the dialog box. If necessary, change the entry in the Web location box
to File System. In the box that appears next to the Web location box, enter the location where
you want the Web application saved. Also enter the application’s name. Click the OK button to
close the New Web Site dialog box.

Lesson A Summary L E S S O N A

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Web Applications

690

 • To add a Web page to a Web application:

Open the Web application. Click Website on the menu bar, and then click Add New Item to
open the Add New Item dialog box. (If Website does not appear on the menu bar, click the
Web application’s name in the Solution Explorer window.) If necessary, click Visual Basic in
the Installed list, and then click Web Form in the middle column of the dialog box. Verify
that the Place code in separate file check box is selected and that the Select master page
check box is not selected. Enter an appropriate name in the Name box. Click the Add button
to display the Web page in the Document window. If necessary, click the Design tab that
appears at the bottom of the IDE.

 • To add a title to a Web page:

Set the DOCUMENT’s Title property.

 • To add static text to a Web page:

Either type the text on the Web page or use a label control that you dragged to the Web page
from the Toolbox window.

 • To format the static text on a Web page:

Use either the Format menu or the Formatting toolbar.

 • To add a hyperlink control to a Web page:

Use the HyperLink tool in the toolbox to drag a hyperlink control to the Web page, and then
set the control’s Text and NavigateUrl properties.

 • To display a Web page in a browser window:

Start the Web application either by pressing Ctrl+F5 or by clicking the Start Without
Debugging option on the Debug menu.

 • To add an image file to an application:

Click Website on the menu bar and then click Add Existing Item. Open the appropriate folder
and then click the image filename. Click the Add button.

 • To add an image control to a Web page:

Use the Image tool in the toolbox to drag an image control to the Web page, and then set the
image control’s ImageUrl property.

 • To close a Web application:

Click File on the menu bar and then click Close Solution.

 • To open an existing Web application:

Click File on the menu bar and then click Open Web Site. If necessary, click the File System
button in the Open Web Site dialog box. Click the name of the Web site and then click the
Open button. If necessary, right-click the Web page’s name in the Solution Explorer window,
and then click View Designer.

 • To reposition a control on a Web page:

Drag the control to the new location.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

691

Lesson A Review Questions L E S S O N A

Lesson A Key Terms
ASP—stands for “active server page”

Browser—a program that allows a client computer to request and view Web pages

Client computer—a computer that requests information from a Web server

Dynamic Web page—an interactive document that can accept information from the user and
also retrieve information for the user

Hyperlink control—allows the user to “jump” from one Web page to another

Postback—occurs when the information on a dynamic Web page is sent (posted) back to a
server for processing

Static text—text that the user is not allowed to edit

Static Web page—a non-interactive document whose purpose is merely to display information
to the viewer

Web pages—the documents stored on Web servers

Web server—a computer that contains special software that “serves up” Web pages in response
to requests from client computers

Lesson A Review Questions
1. A computer that requests an ASP page from a Web server is called a

_____________________ computer.

a. browser
b. client

c. requesting
d. none of the above

2. A _____________________ is a program that uses HTML to render a Web page on the
computer screen.

a. browser
b. client

c. server
d. none of the above

3. An online form used to purchase a product is an example of a _____________________
Web page.

a. dynamic
b. static

4. The first Web page in an empty Web application is automatically assigned the name
_____________________.

a. Default.aps
b. Default1.vb

c. Default.aspx
d. WebFormDefault.aspx

5. The HTML instructions in a Web page are processed by the _____________________.

a. client computer
b. Web server

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Web Applications

692

6. The text that appears on the application’s tab in the browser window is determined by
the _____________________ property.

a. Application object’s Name
b. Application object’s Title

c. DOCUMENT object’s Tab Name
d. DOCUMENT object’s Title

7. A _____________________ occurs when a user clicks a Submit button on a Web page.

a. clientpost
b. postback

c. sendback
d. serverpost

Lesson A Exercises
1. Create an empty Web Site application named Spa and save it in the VB2015\Chap12

folder. Add a new Web page named Default.aspx to the application. Change the
DOCUMENT object’s Title property to Spa Monique. Create a Web page similar to
the one shown in Figure 12-24. The Spa Monique image is contained in the VB2015\
Chap12\Spa.png file. Save and then start the application. Close the browser window
and then close the application.

INTRODUCTORY

Figure 12-24 Default.aspx Web page for Spa Monique

Heading 1 <h1>

Heading 2 <h2>,
blue foreground

Heading 2 <h2>,
bold, italics, underline

large (18 pt)

2. Create an empty Web Site application named Carnival and save it in the VB2015\
Chap12 folder. Add a new Web page named Default.aspx to the application. Change
the DOCUMENT object’s Title property to Brookfield. Create a Web page similar to
the one shown in Figure 12-25. The image on the Web page is stored in the VB2015\
Chap12\Carnival.png file. (Hint: To position the image as shown in the figure, click
the image, click Format on the menu bar, click Position, and then click the Left button
in the Wrapping style section of the Position dialog box.) Save and then start the
application. Close the browser window and then close the application.

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

693

Lesson A Exercises L E S S O N A

Figure 12-25 Default.aspx Web page for the Brookfield Carnival

3. Create an empty Web Site application named Market and save it in the VB2015\Chap12
folder. Add three new Web pages named Default.aspx, Apples.aspx, and Oranges.aspx
to the application. Change each DOCUMENT object’s Title property to Corner Market.
Create Web pages similar to the ones shown in Figures 12-26 through 12-28. The images are
stored in the Apple.png and Orange.png files contained in the VB2015\Chap12 folder. Save
and then start the application. Close the browser window and then close the application.

INTERMEDIATE

Figure 12-26 Default.aspx Web page for The Corner Market

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Web Applications

694

Figure 12-27 Apples.aspx Web page for The Corner Market

Figure 12-28 Oranges.aspx Web page for The Corner Market

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

695

Dynamic Web Pages L E S S O N B

❚ LESSON B
After studying Lesson B, you should be able to:

 • Add a table to a Web page

 • Add a text box, a label, and a button to a Web page

 • Code a control on a Web page

 • Use a RequiredFieldValidator control

Dynamic Web Pages
A dynamic Web page contains controls with which the user can interact. It also contains code
that tells the controls how to respond to the user’s actions. In this lesson, you will create a
dynamic Web page that displays the number of gallons of water a rectangular aquarium holds.
The user will need to enter the aquarium’s length, width, and height measurements in inches.

Before you add any text or controls to a Web page, you should plan the page’s layout. Figure 12-29
shows a sketch of the Default.aspx Web page for the Aquarium application. The Web page will
contain static text, a table, and the following controls: an image, three text boxes, a label, and
a button.

Figure 12-29 Sketch of the Aquarium application’s Default.aspx Web page

How many gallons of water does my aquarium hold?

SubmitLength (inches): Width (inches):

Water (gallons):

Height (inches):

aquarium image

To open the partially completed Web page:

1. If necessary, start Visual Studio 2015. Open the Solution Explorer, Properties, and
Toolbox windows.

2. Click File on the menu bar, and then click Open Web Site. If necessary, click the
File System button in the Open Web Site dialog box. Click the Aquarium folder
contained in the VB2015\Chap12 folder, and then click the Open button.

3. If the Default.aspx Web page is not open in the Document window, right-click
Default.aspx in the Solution Explorer window, and then click View Designer.

In the next set of steps, you will complete the Web page’s interface by adding a table, static text,
and six controls to it.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Web Applications

696

To complete the Web page’s interface:

1. Position the blinking insertion point as shown in Figure 12-30.

START HERE

Figure 12-30 Default.aspx Web page

position the insertion
point here

2. Click Table on the menu bar, and then click Insert Table to open the Insert Table
dialog box. In the Size section of the dialog box, change the number of columns to 5. In
the Layout section, click the In pixels radio button, and then change the width to 850.
See Figure 12-31.

select this
radio button

Figure 12-31 Insert Table dialog box

3. Click the OK button to close the dialog box. Select the two cells contained in the first
column of the table. See Figure 12-32.

4. Click Table on the menu bar, point to Modify, and then click Merge Cells. The first
column of the table now contains one large cell.

Figure 12-32 Two cells selected in the first column of the table

select these
two cells

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

697

Dynamic Web Pages L E S S O N B

5. Click Image in the toolbox. Drag an image control into the first column of the table,
and then set its ImageUrl property to Aquarium.png. Also set its Height and Width
properties to 335px and 340px, respectively.

6. Position the insertion point in the top cell in the second column, as shown in
Figure 12-33.

Figure 12-33 Insertion point positioned in the top cell in the second column

position the
insertion point here

7. Type Length (inches): and press Enter. Click TextBox in the toolbox. Drag a text
box control to the top cell in the second column, positioning it immediately below
the Length (inches): text. Set the text box’s Width property to 35px. Unlike Windows
controls, Web controls have an ID property rather than a Name property. Set the text
box’s ID property (which appears at the top of the Properties window) to txtLength.

8. Position the insertion point in the top cell in the third column. Type Width (inches):
and press Enter. Drag a text box control immediately below the Width (inches): text,
and then set its ID and Width properties to txtWidth and 35px, respectively.

9. Position the insertion point in the top cell in the fourth column. Type Height (inches):
and press Enter. Drag a text box control immediately below the Height (inches): text,
and then set its ID and Width properties to txtHeight and 35px, respectively.

10. Next, you will add a Button control to the table. Position the insertion point in the top
cell in the fifth (last) column. Click Button in the toolbox, and then drag your mouse
pointer into the cell. Release the mouse button. Set the button’s ID and Text properties
to btnSubmit and Submit, respectively. Expand the Font node in the Properties
window, click the Size arrow, and then click Large.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Web Applications

698

12. Click Table on the menu bar, point to Modify, and then click Merge Cells. The three
selected cells become one large cell. Click the large cell, type Water (gallons):, and
then press Enter.

13. Select the Water (gallons): text. Use the Font Size box on the Formatting toolbar
to change the text’s size to x-large (24 pt). Then use the Alignment button on the
Formatting toolbar to center the text.

14. Click Label in the toolbox. Drag a label control immediately below the Water
(gallons): text. Set the control’s ID, Font/Size, Height, and Width properties to lblGals,
XX-Large, 35px, 105px, respectively.

15. Remove the contents of the label’s Text property. When you clear the Text property,
the control’s ID appears in brackets. Auto-hide the Toolbox, Solution Explorer, and
Properties windows. Click File on the menu bar and then click Save Default.aspx. The
completed interface is shown in Figure 12-35.

Figure 12-34 Three cells selected in the table

select these three cells

Figure 12-35 Completed interface

11. Select the bottom cells in the second through fourth columns. See Figure 12-34.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

699

Coding the Submit Button’s Click Event Procedure L E S S O N B

Coding the Submit Button’s Click Event Procedure
When the user clicks a button on a Web page, a postback automatically occurs and the button’s
Click event procedure is automatically sent to the server for processing. In the following set
of steps, you will code the Submit button’s Click event procedure to calculate and display the
number of gallons of water. The procedure’s pseudocode is shown in Figure 12-36 along with a
list of the variables the procedure will use.

btnSubmit Click event procedure
1. store user input (length, width, and height) in variables
2. calculate the volume in cubic inches by multiplying the length by the width and then
 multiplying the result by the height
3. calculate the number of gallons by dividing the volume in cubic inches by 231 (There are
 231 cubic inches in a gallon.)
4. display the number of gallons in lblGals

Variable names Stores
dblLength the aquarium’s length in inches
dblWidth the aquarium’s width in inches
dblHeight the aquarium’s height in inches
dblVolume the volume in cubic inches
dblGals the number of gallons of water

Figure 12-36 Pseudocode and variables for the btnSubmit_Click procedure

To code and then test the btnSubmit_Click procedure:

1. Right-click the Web page and then click View Code on the context menu. The
Default.aspx.vb window opens. Recall that the .vb extension on a filename indicates
that the file contains Visual Basic code. In this case, the file is referred to as the
code-behind file because it contains code that supports the Web page. Temporarily
display the Solution Explorer window. See Figure 12-37.

START HERE

Figure 12-37 Code Editor and Solution Explorer windows

Code Editor window

code-behind file

2. Click the first blank line in the Code Editor window. Enter the following comments,
replacing <your name> and <current date> with your name and the current date,
respectively. Press Enter twice after typing the last comment.

 ' Name: Aquarium
 ' Purpose: Display number of gallons of water
 ' Programmer: <your name> on <current date>

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Web Applications

700

3. Enter the following Option statements:

 Option Explicit On
 Option Strict On
 Option Infer Off

4. Open the btnSubmit_Click procedure. Type the following comment and then press
Enter twice.

 ' displays number of gallons of water

5. Enter the following Dim statements. Press Enter twice after typing the last Dim statement.

 Dim dblLength As Double
 Dim dblWidth As Double
 Dim dblHeight As Double
 Dim dblVolume As Double
 Dim dblGals As Double

6. The first step in the procedure’s pseudocode is to store the input items in variables.
Enter the following three TryParse methods. Press Enter twice after typing the last
TryParse method.

 Double.TryParse(txtLength.Text, dblLength)
 Double.TryParse(txtWidth.Text, dblWidth)
 Double.TryParse(txtHeight.Text, dblHeight)

7. The second step in the pseudocode calculates the volume of the rectangular aquarium
in cubic inches. Enter the following assignment statement:

 dblVolume = dblLength * dblWidth * dblHeight

8. The third step in the pseudocode calculates the number of gallons of water in the
rectangular aquarium. Enter the following assignment statement:

 dblGals = dblVolume / 231

9. The last step in the pseudocode displays the number of gallons of water. Enter the
additional assignment statement indicated in Figure 12-38.

Private Sub btnSubmit_Click(sender As Object, e As EventArgs
) Handles btnSubmit.Click
 ' displays number of gallons of water

 Dim dblLength As Double
 Dim dblWidth As Double
 Dim dblHeight As Double
 Dim dblVolume As Double
 Dim dblGals As Double

 Double.TryParse(txtLength.Text, dblLength)
 Double.TryParse(txtWidth.Text, dblWidth)
 Double.TryParse(txtHeight.Text, dblHeight)

 dblVolume = dblLength * dblWidth * dblHeight
 dblGals = dblVolume / 231
 lblGals.Text = dblGals.ToString("n1")
End Sub

Figure 12-38 btnSubmit_Click procedure

enter this statement

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

701

Validating User Input L E S S O N B

10. Click File on the menu bar and then click Save Default.aspx.vb. Start the application
by pressing Ctrl+F5. Your browser requests the Default.aspx page from the server. The
server locates the page and then sends the appropriate HTML instructions to your
browser for rendering on the screen.

11. Type 20.5, 10.5, and 12.5 in the Length, Width, and Height boxes, respectively. Click
the Submit button, which submits your entry to the server along with a request for
additional services. At this point, a postback has occurred. The server processes the
code contained in the button’s Click event procedure and then sends the appropriate
HTML to the browser for rendering on the screen. As Figure 12-39 indicates, the
aquarium holds 11.6 gallons of water.

Figure 12-39 Web page displayed in Mozilla Firefox

12. Close the browser window and then close the Code Editor window.

Validating User Input
The Validation section of the toolbox provides several validator tools for validating user input.
The name, purpose, and important properties of each validator tool are listed in Figure 12-40.
In the Aquarium application, you will use RequiredFieldValidator controls to verify that the user
entered the three input items.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Web Applications

702

To verify that the user entered the three input items:

1. Click to the immediate right of the txtLength control and then press Enter.

2. Permanently display the Toolbox window. If necessary, expand the Validation section.
Click the RequiredFieldValidator tool and then drag your mouse pointer to the
Web page, positioning it immediately below the txtLength control. Release the mouse
button. The RequiredFieldValidator1 control appears on the Web page.

3. Temporarily display the Properties window. Set the RequiredFieldValidator1 control’s
ControlToValidate and ErrorMessage properties to txtLength and Required,
respectively. Click ForeColor in the Properties window, click the ... (ellipsis) button,
click a red hexagon, and then click the OK button to close the More Colors dialog box.

4. Click to the immediate right of the txtWidth control and then press Enter.
Drag a required field validator control below the txtWidth control. Set the
RequiredFieldValidator2 control’s ControlToValidate and ErrorMessage properties to
txtWidth and Required, respectively. Also set its ForeColor property using the same
red hexagon used in Step 3. Click the OK button to close the More Colors dialog box.

START HERE

Name Purpose Properties
CompareValidator compare an entry with a ControlToCompare
 constant value or the property ControlToValidate
 stored in a control ErrorMessage
 Operator
 Type
 ValueToCompare

CustomValidator verify that an entry passes the ClientValidationFunction
 specified validation logic ControlToValidate
 ErrorMessage

RangeValidator verify that an entry is within ControlToValidate
 the specified minimum and ErrorMessage
 maximum values MaximumValue
 MinimumValue
 Type

RegularExpressionValidator verify that an entry matches ControlToValidate
 a specific pattern ErrorMessage
 ValidationExpression

RequiredFieldValidator verify that a control contains data ControlToValidate
 ErrorMessage

ValidationSummary display all of the validation error DisplayMode
 messages in a single location on a HeaderText
 Web page

Figure 12-40 Validator tools

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

703

Validating User Input L E S S O N B

5. Click to the immediate right of the txtHeight control and then press Enter.
Drag a required field validator control below the txtHeight control. Set the
RequiredFieldValidator3 control’s ControlToValidate and ErrorMessage properties to
txtHeight and Required, respectively. Also set its ForeColor property using the same
red hexagon used in Step 3. Click the OK button to close the More Colors dialog box.

6. Click the Default.aspx tab, and then auto-hide the Toolbox window. Click File on the
menu bar and then click Save Default.aspx.

7. Start the application by pressing Ctrl+F5. If the error message shown in Figure 12-41
appears, close the browser window; otherwise, skip to Step 10.

Figure 12-41 Error message that might appear

8. If you received the error message shown in Figure 12-41, right-click Web.config in
the Solution Explorer window and then click Open. Now use one of the two solutions
shown in Figure 12-42.

Figure 12-42 Solutions to the error message shown in Figure 12-41

Solution A
Change the string in both targetFramework entries to "4.0".

Solution B
Insert a blank line below the <configuration> tag, and then enter the following three lines:

 <appSettings>
 <add key="ValidationSettings:UnobtrusiveValidationMode" value="None" />
 </appSettings>

9. Click File on the menu bar and then click Save Web.config. Close the Web.config
window and then press Ctrl+F5.

10. Click the Submit button without entering any values. Each RequiredFieldValidator
control displays the “Required” message, as shown in Figure 12-43. (The Web page in
the figure is displayed in Mozilla Firefox.)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Web Applications

704

11. Type 16 in the Length box, and then press Tab to move the insertion point into the
Width box. Notice that the “Required” message below the Length box disappears.

12. Type 8 and 10 in the Width and Height boxes, respectively. Click the Submit button.
The Web page indicates that the aquarium holds 5.5 gallons of water.

13. Close the browser window and then close the application. If you are asked whether you
want to save the .sln file, click the No button.

Figure 12-43 Result of clicking the Submit button when the text boxes are empty

YOU DO IT 2!

Create an empty Web Site application named YouDoIt 2 and save it in the VB2015\Chap12
folder. Add a Web page named Default.aspx to the application. The Web page should
contain a text box, a label, and a button. When the user clicks the button, the application
should multiply the number entered in the text box by 2 and then display the result in the
label. Include a RequiredFieldValidator control on the Web page. Save the application, and
then start and test it. Close the application.

Lesson B Summary
 • To code a control on a Web page:

Enter the code in the Code Editor window.

 • To validate user input on a Web page:

Use one or more of the validator tools contained in the Validation section of the toolbox.
The controls are summarized in Figure 12-40.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

705

Lesson B Exercises L E S S O N B

Lesson B Key Term
Validator tools—the tools contained in the Validation section of the toolbox; used to validate
user input on a Web page

Lesson B Review Questions
1. In code, you refer to a control on a Web page using the control’s ___________________

property.

a. Caption
b. ID

c. Name
d. Text

2. The Visual Basic code in a Web page is processed by the ___________________.

a. client computer
b. Web server

3. You can use a ___________________ control to verify that a control on a Web page
contains data.

a. RequiredFieldValidator
b. RequiredField

c. RequiredValidator
d. none of the above

4. You can use a ___________________ control to verify that an entry on a Web page is
within minimum and maximum values.

a. MinMaxValidation
b. MaxMinValidation

c. EntryValidator
d. RangeValidator

Lesson B Exercises
1. Create an empty Web Site application named Circle and save it in the VB2015\Chap12

folder. Add a new Web page named Default.aspx to the application. Change the
DOCUMENT object’s Title property to Circle Area.

a. Use Figure 12-44 as a guide when designing the Web page. The circle image is
contained in the VB2015\Chap12\Circle.png file. Set the RequiredFieldValidator
control’s ControlToValidate property to txtRadius. Also sets its ErrorMessage and
ForeColor properties as appropriate.

b. Open the Code Editor window. Use comments to document the application’s name
and purpose as well as your name and the current date. Also enter the appropriate
Option statements. Code the Calculate Area button’s Click event procedure. Use
3.14 as the value for Pi. Display the area with one decimal place.

c. Save and then start the application. If you receive the error message shown earlier in
Figure 12-41, right-click Web.config in the Solution Explorer window and then click
Open. Then use one of the two solutions shown earlier in Figure 12-42. Click File
on the menu bar and then click Save Web.config. Close the Web.config window and
start the application again.

d. Test the application appropriately and then close the browser window. Close the
Code Editor window and the application.

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Web Applications

706

2. Create an empty Web Site application named Tips and save it in the VB2015\
Chap12 folder. Add a new Web page named Default.aspx to the application. Change
the DOCUMENT object’s Title property to Tip Calculator. Use Figure 12-45 as a
guide when designing the Web page. In the Code Editor window, enter comments to
document the application’s name and purpose as well as your name and the current
date. Also enter the appropriate Option statements. Code the Calculate Tip button’s
Click event procedure. Display the tips with a dollar sign and two decimal places. Save
the application, and then start and test it. Close the browser window. Close the Code
Editor window and then close the application.

INTRODUCTORY

Figure 12-44 Web page for Exercise 1

table with one row
and two columns

table with three rows
and one column

RequiredFieldValidator control

3. Create an empty Web Site application named Bakery and save it in the VB2015\
Chap12 folder. Add a new Web page named Default.aspx to the application. Change
the DOCUMENT object’s Title property to Meyer’s. Use Figure 12-46 as a guide when
designing the Web page. The image is contained in the VB2015\Chap12\Chef.png file.
In the Code Editor window, enter comments to document the application’s name
and purpose as well as your name and the current date. Also enter the appropriate

INTRODUCTORY

Figure 12-45 Web page for Exercise 2

table with two cells in
the first row and three
cells in the second row

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

707

Lesson B Exercises L E S S O N B

4. The annual property tax in Richardson County is $1.50 for each $100 of a property’s
assessed value. The county clerk wants you to create a Web application that displays
the property tax after he enters the property’s assessed value. Create an empty
Web Site application named Tax and save it in the VB2015\Chap12 folder. Add a
new Web page named Default.aspx to the application. Change the DOCUMENT
object’s Title property to Richardson County. Design and create the Web page. Use a
RequiredFieldValidator control to verify that the user entered the assessed value. Save
the application, and then start and test it.

5. Cranston Berries sells three types of berries: strawberries, blueberries, and raspberries.
Sales have been booming this year and are expected to increase next year. The sales
manager wants you to create an application that allows her to enter the projected
increase (expressed as a decimal number) in berry sales for the following year. She
will also enter the current year’s sales for each type of berry. The application should
display the projected sales for each berry type. As an example, if the projected increase
in berry sales is 0.05 (the decimal equivalent of 5%) and the current sales amount for
strawberries is $25,000, the projected sales total of strawberries for the following year
is $26,250. Create an empty Web Site application named Berries and save it in the
VB2015\Chap12 folder. Add a new Web page named Default.aspx to the application.
Change the DOCUMENT object’s Title property to Cranston Berries. Save the
application, and then start and test it. Close the browser window. Close the Code Editor
window and then close the application.

INTERMEDIATE

INTERMEDIATE

Figure 12-46 Web page for Exercise 3

Option statements. Code the Calculate button’s Click event procedure to display the
total number of items ordered and the total sales amount, including a 5% sales tax. A
doughnut costs $0.50; a muffin costs $0.75. Save the application, and then start and
test it. Close the browser window. Close the Code Editor window and then close the
application.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Web Applications

708

6. In this exercise, you create a Web application that displays how much a person would
weigh on the following planets, given his or her weight on Earth: Venus, Mars, and
Jupiter. Create an empty Web Site application named Weight and save it in the VB2015\
Chap12 folder. Add a new Web page named Default.aspx to the application. Change the
DOCUMENT object’s Title property to Weights. Design and create the Web page. Save
the application, and then start and test it. Close the browser window. Close the Code
Editor window and then close the application.

7. Create an empty Web Site application named ZipCode and save it in the VB2015\
Chap12 folder. Add a new Web page named Default.aspx to the application. Change
the DOCUMENT object’s Title property to Zip Code Verifier. Use Figure 12-47
as a guide when designing the Web page. Use a RequiredFieldValidator control to
verify that the text box is not empty when the user presses the Enter key. Use a
RegularExpressionValidator control to verify that the ZIP code is in the appropriate
format. Save the application, and then start and test it. Close the browser window.
Close the Code Editor window and then close the application.

INTERMEDIATE

ADVANCED

Figure 12-47 Web page for Exercise 7

RequiredFieldValidator control

RegularExpressionValidator control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

709

Creating the Satellite Radio Application L E S S O N C

❚ LESSON C
After studying Lesson C, you should be able to:

 • Utilize a radio button list control on a Web page

 • Add a check box to a Web page

 • Code a radio button list control’s SelectedIndexChanged event procedure

 • Code a check box’s CheckedChanged event procedure

 • Utilize a control’s AutoPostBack property

Creating the Satellite Radio Application
Your task in this chapter is to create a Web Site application for the Satellite Radio company. The
company’s offerings and pricing information are shown in Figure 12-48. The application should
display the cost of a 6-month subscription and the cost of a 12-month subscription.

Satellite Radio Pricing Sheet
Packages:
 Select
 6-month subscription $77.99
 12-month subscription $150.99
 Gold
 6-month subscription $95.99
 12-month subscription $166.99
 Platinum
 6-month subscription $119.99
 12-month subscription $200.99
Internet listening:
 6-month subscription $24.50
 12-month subscription $45.50
Discount for new customers:
 10% off the package subscription price only; does not apply to Internet listening
 subscription

Figure 12-48 Satellite Radio company’s offerings and pricing information

To open the partially completed Satellite Radio application:

1. If necessary, start Visual Studio 2015. Click File on the menu bar, and then click Open
Web Site. If necessary, click the File System button in the Open Web Site dialog box.
Click the Radio folder contained in the VB2015\Chap12 folder, and then click the
Open button.

2. If the Default.aspx Web page is not open in the Document window, right-click
Default.aspx in the Solution Explorer window and then click View Designer.
See Figure 12-49. Notice that the Web page contains a two-row table. The first row
has three cells; the second row has one cell.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Web Applications

710

Using the RadioButtonList Tool
Unlike the toolbox for a Windows form, the toolbox for a Web form does not have a GroupBox
tool that you can use to group together related radio buttons. Instead, the Web form toolbox
provides the RadioButtonList tool for this purpose. The tool creates a radio button list control
that contains related radio buttons.

To add a radio button list control to the Web page:

1. Permanently display the Toolbox and Properties windows, and auto-hide the Solution
Explorer window.

2. Click RadioButtonList in the Standard section of the toolbox, and then drag a radio
button list control into the first cell in the first column of the table. See Figure 12-50.

START HERE

Figure 12-49 Partially completed Satellite Radio application

Figure 12-50 Radio button list control added to the Web page

first cell in
the first row
of the table

second cell in
the first row of
the table

RadioButtonList tool
radio button
list control in
the first cell

3. Change the radio button list control’s ID property to rblPkgs.

4. Click the control’s task box (>) to open its task list. Click Edit Items to open the
ListItem Collection Editor dialog box, and then click the Add button. Change the first
list item’s Selected and Text properties to True and Select, respectively.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

711

Creating the Satellite Radio Application L E S S O N C

5. Click the Add button again. Change the second list item’s Text property to Gold.

6. Click the Add button once again. Type Platinum in the third list item’s Text property,
and then press Enter. See Figure 12-51.

Figure 12-51 Completed ListItem Collection Editor dialog box

Figure 12-52 List items displayed in the radio button list control

7. Click the OK button to close the dialog box.

8. Click an empty area of the Web page. If the word “Platinum” appears below its
corresponding radio button, position your mouse pointer on the first cell’s right border until
the mouse pointer becomes a horizontal line with arrowheads on each end. Drag the border
to the right until the word “Platinum” appears on the same line as its corresponding radio
button, and then click an empty area of the Web page. See Figure 12-52.

first cell’s
right border

Using the CheckBox Tool
The Web page’s interface will provide check boxes for the Internet listening and 10% discount
options. You instantiate a check box on a Web page using the CheckBox tool in the toolbox.
A Web page can have one or more check boxes, and any number of check boxes can be selected
at the same time.

To add two check boxes to the Web page:

1. Click the CheckBox tool in the Standard section of the toolbox. Drag a check box
control to the second cell in the first row of the table. Change the check box’s ID and
Text properties to chkInternet and Internet listening, respectively.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Web Applications

712

2. Click immediately after the chkInternet control and then press Enter. Drag another
check box control to the cell, positioning it immediately below the chkInternet control.
Change this check box’s ID and Text properties to chkDiscount and 10% discount,
respectively. Click an empty area of the Web page. See Figure 12-53.

3. Auto-hide the toolbox and Properties windows. Click File on the menu bar and then
click Save Default.aspx.

Coding the Calculate Button’s Click Event Procedure
Figure 12-54 shows the pseudocode for the btnCalc_Click procedure.

Figure 12-53 Check boxes added to the table

btnCalc Click event procedure
1. use the radio button list control’s SelectedIndex property to determine the appropriate
 package subscription cost
 if the property contains:
 0 assign the 6-month Select package rate as the 6-month subscription cost
 assign the 12-month Select package rate as the 12-month subscription cost
 1 assign the 6-month Gold package rate as the 6-month subscription cost
 assign the 12-month Gold package rate as the 12-month subscription cost
 2 assign the 6-month Premium package rate as the 6-month subscription cost
 assign the 12-month Premium package rate as the 12-month subscription cost
2. if the 10% discount check box is selected
 subtract the discount rate from the number 1 and then multiply the difference
 by the 6-month subscription cost
 subtract the discount rate from the number 1 and then multiply the difference
 by the 12-month subscription cost
 end if
3. if the Internet listening check box is selected
 add 24.50 to the 6-month subscription cost
 add 45.50 to the 12-month subscription cost
 end if
4. display the 6-month and 12-month subscription costs

Figure 12-54 Pseudocode for the btnCalc_Click procedure

To code and then test the btnCalc_Click procedure:

1. Right-click the Web page and then click View Code. Replace <your name> and
<current date> in the comments with your name and the current date, respectively.

2. Locate the btnCalc_Click procedure, which contains the declaration statements for
nine named constants and two variables.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

713

Coding the Calculate Button’s Click Event Procedure L E S S O N C

4. The second step in the pseudocode determines whether the 10% discount check box
is selected. If it is selected, the customer is entitled to a 10% discount on the package
price. In other words, the package price should be 90% of its original price. Enter the
following selection structure:

 If chkDiscount.Checked Then
 dblCost6Mths *= (1 – dblDISCOUNT)
 dblCost12Mths *= (1 – dblDISCOUNT)

 End If

5. Insert two blank lines below the End If clause.

6. The third step in the pseudocode determines whether the Internet listening check
box is selected. If it is selected, appropriate amounts are added to the 6-month and
12-month costs. Beginning in the blank line above the End Sub clause, enter the
following selection structure:

 If chkInternet.Checked Then
 dblCost6Mths += dblINTERNET6
 dblCost12Mths += dblINTERNET12

 End If

7. Insert two blank lines below the second End If clause.

8. The last step in the pseudocode displays the 6-month and 12-month subscription costs.
Enter the additional assignment statements indicated in Figure 12-56.

Figure 12-55 Select Case statement entered in the btnCalc_Click procedure

position the insertion
point here

enter the Select
Case statement

3. The first step in the procedure’s pseudocode uses the radio button list control’s
SelectedIndex property to determine the appropriate package subscription cost. Click
the blank line above the End Sub clause. Enter the Select Case statement shown in
Figure 12-55, and then position the insertion point as shown in the figure.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Web Applications

714

Figure 12-56 Completed btnCalc_Click procedure

Private Sub btnCalc_Click(sender As Object, e As EventArgs
) Handles btnCalc.Click
 ' display 6-month and 12-month subscription costs

 Const dblSELECT6 As Double = 77.99
 Const dblSELECT12 As Double = 150.99
 Const dblGOLD6 As Double = 95.99
 Const dblGOLD12 As Double = 166.99
 Const dblPLATINUM6 As Double = 119.99
 Const dblPLATINUM12 As Double = 200.99
 Const dblINTERNET6 As Double = 24.5
 Const dblINTERNET12 As Double = 45.5
 Const dblDISCOUNT As Double = 0.1
 Dim dblCost6Mths As Double
 Dim dblCost12Mths As Double

 Select Case rblPkgs.SelectedIndex
 Case 0
 dblCost6Mths = dblSELECT6
 dblCost12Mths = dblSELECT12
 Case 1
 dblCost6Mths = dblGOLD6
 dblCost12Mths = dblGOLD12
 Case 2
 dblCost6Mths = dblPLATINUM6
 dblCost12Mths = dblPLATINUM12
 End Select

 If chkDiscount.Checked Then
 dblCost6Mths *= (1 - dblDISCOUNT)
 dblCost12Mths *= (1 - dblDISCOUNT)
 End If

 If chkInternet.Checked Then
 dblCost6Mths += dblINTERNET6
 dblCost12Mths += dblINTERNET12
 End If

 lbl6Month.Text = dblCost6Mths.ToString("c2")
 lbl12Month.Text = dblCost12Mths.ToString("c2")
End Sub

9. Click File on the menu bar, and then click Save Default.aspx.vb. Press Ctrl+F5
to start the application. Click the Calculate button. The 6-month and 12-month
subscriptions will cost $77.99 and $150.99, respectively. See Figure 12-57.

enter these
assignment
statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

715

Clearing the Previous Subscription Costs L E S S O N C

10. Click the Gold radio button. Notice that the previous subscription costs still appear
on the screen, even though a different package was selected. The amounts could
be misleading to a customer, who may not realize that he or she needs to click the
Calculate button to recalculate the costs. You will fix this problem in the next section.
Click the Calculate button, which changes the subscription costs to $95.99 and
$166.99.

11. Click the Platinum radio button and then click the Calculate button. The subscription
costs are now $119.99 and $200.99.

12. Click both check boxes to select them. Here, too, notice that the previous subscription
costs still appear on the screen, which could be misleading to a customer. Click the
Calculate button, which changes the subscription costs to $132.49 and $226.39.

13. Close the browser window.

Clearing the Previous Subscription Costs
Each time the customer selects a different radio button, the application should clear the contents
of the labels that display the subscription costs. The contents of the labels should also be
cleared when the customer either selects or deselects a check box. You will accomplish these
tasks by creating a procedure named ClearCosts. The procedure will be associated with the
following three events: rblPkgs_SelectedIndexChanged, chkDiscount_CheckedChanged, and
chkInternet_CheckedChanged.

To create the ClearCosts procedure:

1. Open the code template for the rblPkgs_SelectedIndexChanged event procedure.
Change rblPkgs_SelectedIndexChanged in the procedure header to ClearCosts.

2. Click immediately before the) in the procedure header, and then press Enter. Make the
modifications shaded in Figure 12-58.

START HERE

Figure 12-57 Web page displayed in Internet Explorer

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Web Applications

716

Figure 12-58 ClearCosts procedure

3. Click File on the menu bar and then click Save Default.aspx.vb. Press Ctrl+F5 to
start the application, and then click the Calculate button. Click the Gold radio button.
Notice that the ClearCosts procedure did not clear the subscription costs from the
labels. Close the browser window.

A button on a Web page—like the Calculate button used in this lesson or the Submit button used
in Lesson B—automatically triggers a postback when it is clicked, sending the page’s information
and the button’s Click event procedure to the server for processing. Radio button list controls
and check boxes, however, do not trigger an automatic postback. As a result, the code contained
in a radio button list control’s SelectedIndexChanged procedure, as well as the code contained in
a check box’s CheckedChanged procedure, is not automatically processed by the server. To have
these controls trigger an automatic postback, you simply need to change their AutoPostBack
property from its default value of False to True.

To change the AutoPostBack property for three of the controls:

1. Close the Code Editor window. Click the rblPkgs control, and then Ctrl+click the
chkInternet and chkDiscount controls; the three controls are now selected. Use the
Properties window to set the controls’ AutoPostBack property to True.

2. Click an empty area of the Web page to deselect the controls. Click File on the menu
bar and then click Save Default.aspx.vb. Press Ctrl+F5 to start the application. Click
the Calculate button. A postback occurs, and the code in the btnCalc_Click procedure
is sent to the server for processing. The server returns $77.99 and $150.99 as the costs
for a 6-month and 12-month subscription, respectively.

3. Click the Gold radio button. A postback occurs, and the code in the ClearCosts
procedure, which is associated with the rblPkgs_SelectedIndexChanged event, is sent
to the server for processing. The code clears the contents of the labels that display the
subscription costs. See Figure 12-59.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

717

4. Click the Calculate button. A postback occurs, and the server returns $95.99 and
$166.99 as the costs of a 6-month and 12-month subscription, respectively.

5. Click the Internet listening check box. A postback occurs, and the code in the
ClearCosts procedure, which is associated with the chkInternet_CheckedChanged
event, is sent to the server for processing. The code clears the contents of the labels that
display the subscription costs.

6. Click the Calculate button. A postback occurs, and the server returns $120.49 and
$212.49 as the costs of a 6-month and 12-month subscription, respectively.

7. On your own, verify that the Platinum radio button and the 10% discount check box
work correctly. When you are finished testing the Web page, close the browser window
and then close the application.

Lesson C Summary
 • To group together related radio buttons on a Web page:

Use the RadioButtonList tool in the Standard section of the toolbox to instantiate a radio
button list control. Use the Edit Items option on the task list to add radio button items to the
control. Set each item’s Text property. Set the Selected property of one of the items to True.

 • To include a check box on a Web page:

Use the CheckBox tool in the Standard section of the toolbox to instantiate a check box
control. Set the check box’s ID and Text properties.

 • To determine which radio button is selected in a radio button list control:

Use the control’s SelectedIndex property. The index of the first radio button is 0.

 • To determine whether a check box is selected or unselected:

Use the check box’s Checked property, which will contain either the Boolean value True
(selected) or the Boolean value False (unselected).

Figure 12-59 Result of clicking a different radio button

the calculated
costs were
removed from
the two labels

Lesson C Summary L E S S O N C

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Web Applications

718

 • To perform one or more tasks when a different radio button is selected in a radio button list
control:

Enter the appropriate code in the control’s SelectedIndexChanged event procedure.

 • To perform one or more tasks when the value in a check box’s Checked property changes:

Enter the appropriate code in the check box’s CheckedChanged event procedure.

 • To have a radio button list control automatically trigger a postback when the selected radio
button changes:

Change the control’s AutoPostBack property to True.

 • To have a check box automatically trigger a postback when the value in its Checked property
changes:

Change the check box’s AutoPostBack property to True.

Lesson C Key Terms
AutoPostBack property—determines whether a control triggers an automatic postback

Check box—provides an option that can be selected or unselected

CheckBox tool—used to instantiate (create) a check box

RadioButtonList tool—used to instantiate (create) a radio button list control on a Web page

Radio button list control—groups together related radio buttons on a Web page

Lesson C Review Questions
1. Which of the following tools is used to group related radio buttons on a Web page?

a. ButtonRadioList
b. ListRadioButton

c. RadioButtonList
d. RadioButtons

2. Which of the following If clauses determines whether the chkTaxable control is selected?

a. If chkTaxable = True Then

b. If chkTaxable.Checked Then

c. If chkTaxable.Selected Then

d. If chkTaxable.Selection = True Then

3. Which of the following determines whether the first radio button in the rblAges control
is selected?

a. If rblAges.Selected = 0 Then

b. If rblAges(0).Selected Then

c. If rblAges.SelectedIndex = 0 Then

d. none of the above

4. Which event procedure contains the code to process when a different radio button is
selected in a radio button list control?

a. CheckedChanged
b. SelectedIndexChanged

c. SelectedIndex
d. SelectionChanged

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

719

Lesson C Exercises L E S S O N C

Figure 12-60 Satellite Radio company’s current offerings and prices

Satellite Radio Pricing Sheet
Packages:
 Select
 3-month subscription $44.99
 6-month subscription $77.99
 12-month subscription $150.99
 Gold
 3-month subscription $55.99
 6-month subscription $95.99
 12-month subscription $166.99
 Platinum
 3-month subscription $69.99
 6-month subscription $119.99
 12-month subscription $200.99
 Music only
 3-month subscription N/A
 6-month subscription N/A
 12-month subscription $130.99
Internet listening:
 3-month subscription $14.99
 6-month subscription $24.50
 12-month subscription $45.50
Discount for new customers:
 10% off the package subscription price only; does not apply to Internet listening
 subscription

5. Which event procedure contains the code to process when a check box is selected by
the user?

a. Checked
b. CheckBoxChanged

c. CheckedChanged
d. SelectedCheckBox

6. When a check box’s AutoPostBack property is set to _____________________, the code
in its _____________________ event procedure will be automatically processed by the
server when the value in its _____________________ property changes.

a. Auto, CheckedChanged, Checked
b. Post, Checked, CheckChanged

c. True, Checked, CheckChanged
d. True, CheckedChanged, Checked

Lesson C Exercises
1. In this exercise, you modify the Satellite Radio application from this lesson. Use

Windows to make a copy of the Radio folder. Rename the copy Modified Radio. Open
the Modified Radio Web site. Right-click Default.aspx in the Solution Explorer window
and then click View Designer. Figure 12-60 shows the company’s current offerings and
pricing information. Make the appropriate modifications to the interface and the code.
(If the customer purchases the Music only package, he or she can purchase only the
12-month Internet listening subscription.)

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Web Applications

720

2. Create an empty Web Site application named Tea and save it in the VB2015\
Chap12 folder. Add a new Web page named Default.aspx to the application. Change
the DOCUMENT object’s Title property to Brazilian Tea. Brazilian Tea is a store that
sells both hot and iced tea in three different cup sizes: Small ($2.55), Medium ($3.75),
and Large ($4.50). The store must also charge a 4% sales tax. Use Figure 12-61 as a
guide when designing the Web page. The Calculate button should calculate the total
price of a cup of tea. It then should display (in the lblMessage control) a message that
indicates the cup size, total price, and whether the tea is hot or iced. In the Code Editor
window, enter comments to document the application’s name and purpose as well as
your name and the current date. Also enter the appropriate Option statements. Code
the Calculate button’s Click event procedure. Display the total price with a dollar sign
and two decimal places. Save the application, and then start and test it. Close the
browser window. Close the Code Editor window and then close the application.

INTRODUCTORY

Figure 12-61 Interface for Exercise 2

3. Create an empty Web Site application named Willow and save it in the VB2015\
Chap12 folder. Add a new Web page named Default.aspx to the application. Change the
DOCUMENT object’s Title property to Willow Hill. Willow Hill Athletic Club offers
personal training sessions to its members. The sessions are either 30 or 60 minutes
in length, and members can sign up to meet either two or three times per week. Each
30-minute session costs $17.50; each 60-minute session costs $30. However, members
signing up for three 60-minute sessions per week receive a 10% discount. Additionally,
members who are at least 60 years old receive a senior discount, which is an additional
5% off the total cost. The application should display the total cost for four weeks of
personal training. Use Figure 12-62 as a guide when designing the Web page. The
image is contained in the VB2015\Chap12\Training.png file. (Hint: The monthly cost
for a member who signs up for three 60-minute sessions per week is $324.00. If the
member is entitled to the senior discount, the cost is $307.80.)

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

721

Lesson C Exercises L E S S O N C

4. Create an empty Web Site application named Dice. Save the application in the VB2015\
Chap12 folder. Add a new Web page named Default.aspx to the application. Change the
DOCUMENT object’s Title property to Dice Game. In Chapter 5’s Lesson C, you created
the Roll ‘Em Game application. Review the application’s interface, pseudocode, and code,
which are shown in Figures 5-64, 5-65, and 5-69, respectively. Create a similar application for
the Web. The die images are contained in the VB2015\Chap12 folder. (Hint: Image controls
on a Web page have a Visible property.) Save the application, and then start and test it.

5. Create an empty Web Site application named MacroTech. Save the application in the
VB2015\Chap12 folder. Add a new Web page named Default.aspx to the application.
Change the DOCUMENT object’s Title property to MacroTech. MacroTech sells a
software package that is available in three editions. The application should display the
price of the edition a customer wants to purchase. The retail prices for the Ultimate,
Professional, and Student editions are $775.99, $499.99, and $149.99, respectively. Some
customers may have a coupon worth 10% off the price of the Ultimate edition, while others
may have a coupon worth 20% off the price of the Student edition. Create an appropriate
interface and then code the application. Save the application, and then start and test it.

6. Create an empty Web Site application named Guessing Game. Save the application in
the VB2015\Chap12 folder. Add a new Web page named Default.aspx to the application.
Change the DOCUMENT object’s Title property to Guessing Game. The application
should generate a random integer from 1 through 30, inclusive. It then should give
the user as many chances as necessary to guess the integer. Each time the user
makes a guess, the application should display one of three messages: “Guess higher”,
“Guess lower”, or “Correct. The random integer is x.”, where x is the random integer.
The application should also display the number of chances it took to guess the number.
Create a suitable interface and then code the application. Save the application, and then
start and test it. (Hint: You can store the random integer and counter in hidden labels,
or you can use two HiddenField controls.)

INTERMEDIATE

INTERMEDIATE

ADVANCED

Figure 12-62 Interface for Exercise 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 13
Working with Access
Databases and LINQ

Creating the Games Galore Application

In this chapter, you will create an application for the Games Galore store, which
sells new and used video games. The video game information is contained in
a Microsoft Access database named Games. The Games database is stored in
the Games.accdb file and contains one table named tblGames. The application
will display the records in a DataGridView control, which you will learn about
in Lesson A. It will also allow the store manager to display only the games for
a specific platform (Xbox, PlayStation, or Wii) as well as the total value of the
games in the store.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Working with Access Databases and LINQ

724

Previewing the Games Galore Application
Before you start the first lesson in this chapter, you will preview the completed application
contained in the VB2015\Chap13 folder.

To preview the completed application:

1. Use Windows to locate and then open the VB2015\Chap13 folder on your computer’s
hard disk or on the device designated by your instructor. Right-click Games
(Games.exe) in the list of filenames and then click Open.

2. First, you will display only the games for the PlayStation platform. Click the Platform
text box, type p, and then click the Go button. Thirteen records appear in the
DataGridView control, as shown in Figure 13-1.

START HERE

3. Next, you will display all of the records again. Delete the contents of the Platform
text box, and then click the Go button to display the 35 records in the DataGridView
control.

4. Finally, click the Total Value button to display the total value of the games in the store.
See Figure 13-2.

Figure 13-1 PlayStation games

DataGridView
control

Platform text box

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

725

 Previewing the Games Galore Application

5. Click the OK button to close the message box, and then click the Close button on the
form’s title bar to stop the application.

In Lesson A, you will learn how to connect an application to a Microsoft Access database and
then display the information in one or more controls in the interface. Lesson B will show you
how to query a database using LINQ, which stands for Language-Integrated Query. You will
complete the Games Galore application in Lesson C. Be sure to complete each lesson in full and
do all of the end-of-lesson questions and several exercises before continuing to the next lesson.

Figure 13-2 Total value of the games

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Working with Access Databases and LINQ

726

❚ LESSON A
After studying Lesson A, you should be able to:

 • Define basic database terminology

 • Connect an application to a Microsoft Access database

 • Bind table and field objects to controls

 • Explain the purpose of the DataSet, BindingSource, TableAdapter, TableAdapterManager, and
BindingNavigator objects

 • Customize a DataGridView control

 • Handle errors using the Try…Catch statement

 • Format the data displayed in a bound label control

 • Position the record pointer in a dataset

Database Terminology
In order to maintain accurate records, most businesses store information about their employees,
customers, and inventory in computer databases. A computer database is an electronic file
that contains an organized collection of related information. Many products exist for creating
computer databases; such products are called database management systems (or DBMSs). Some
of the most popular database management systems are Microsoft Access, Microsoft SQL Server,
and Oracle. You can use Visual Basic to access the data stored in databases created by these
database management systems. As a result, companies can use Visual Basic to create a standard
interface that allows employees to access information stored in a variety of database formats.
Instead of learning each DBMS’s user interface, the employee needs to know only one interface.
The actual format of the database is unimportant and will be transparent to the user.

In this chapter, you will learn how to access the data stored in Microsoft Access databases.
Databases created using Microsoft Access are relational databases. A relational database
stores information in tables composed of columns and rows, similar to the format used in a
spreadsheet. The databases are called relational because the information in the tables can be
related in different ways.

Each column in a relational database’s table represents a field, and each row represents a record.
A field is a single item of information about a person, place, or thing—such as a name, a salary
amount, a Social Security number, or a price. A record is a group of related fields that contain all
of the necessary data about a specific person, place, or thing. The college you are attending keeps
a student record on you. Examples of fields contained in your student record include your Social
Security number, name, address, phone number, credits earned, and grades earned.

A group of related records is called a table. Each record in a table pertains to the same topic
and contains the same type of information. In other words, each record in a table contains
the same fields.

A relational database can contain one or more tables. A one-table database would be a good
choice for storing information about the college courses you have taken. An example of such
a table is shown in Figure 13-3. Each record in the table contains four fields: an ID field that
indicates the department name and course number, a course title field, a field listing the number
of credit hours, and a grade field.

Many people
use databases
to keep track
of their medical
records, movie

collections, and even
golf scores.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

727

Database Terminology L E S S O N A

Most tables have a primary key, which is a field that uniquely identifies each record. In the
table shown in Figure 13-3, you could use either the ID field or the Title field as the primary key
because the data in those fields will be unique for each record.

You might use a two-table database to store information about a CD (compact disc) collection.
You would store the general information about each CD, such as the CD’s name and the artist’s
name, in the first table. The information about the songs on each CD, such as their title and
track number, would be stored in the second table. You would need to use a common field—for
example, a CD number—to relate the records contained in both tables.

Figure 13-4 shows an example of a two-table database that stores CD information. The first table
is referred to as the parent table, and the second table is referred to as the child table.
The CdNum field is the primary key in the parent table because it uniquely identifies each
record in the table. The CdNum field in the child table is used solely to link the song title and
track information to the appropriate CD in the parent table. In the child table, the CdNum field
is called the foreign key.

Parent and
child tables are
also referred to
as master and
detail tables,

respectively.

Figure 13-3 Example of a one-table relational database

Storing data in a relational database offers many advantages. The computer can retrieve data
stored in a relational format both quickly and easily, and the data can be displayed in any order.
The information in the CD database, for example, can be arranged by artist name, song title,
and so on. You also can control the amount of information you want to view from a relational
database. You can view all of the information in the CD database, only the information
pertaining to a certain artist, or only the names of the songs contained on a specific CD.

Figure 13-4 Example of a two-table relational database

CdNum

CdNum SongTitle Track

Name Artist
01

01

For You

The Heart Wants What It Wants 1

01 Love You Like a Love Song 3
02 Welcome To New York 1
02 Blank Space 2
02 Style 3

01 Come & Get It 2

Selena Gomez
02 1989 Taylor Swift

the two tables are
related by the
CdNum field

ID
ACC110 Accounting Procedures 3 A
ENG101 English Composition I 3 B
CIS110 Introduction to Programming 3 A
BIO111 Environmental Biology 3 C

Title Hours Grade

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Working with Access Databases and LINQ

728

Connecting an Application to a Microsoft Access Database
In this lesson, you will use a Microsoft Access database named Stores. The database contains
one table, which is named tblStores. The table data is shown in Figure 13-5. The table contains
five fields and 20 records. The StoreNum field is the primary key because it uniquely identifies
each record in the table. The Ownership field indicates whether the store is company-owned
(C) or a franchisee (F).

Ch13A

Before an application can access the data stored in a database, it needs to be connected to the
database. You can make the connection using the Data Source Configuration Wizard. The
wizard allows you to specify the data you want to access. The computer makes a copy of the
specified data and stores the copy in its internal memory. The copy of the data you want to
access is called a dataset. In the following set of steps, you will connect the Adalene Fashions
application to the Stores database.

To connect the Adalene Fashions application to the Stores database:

1. If necessary, start Visual Studio 2015. Open the Adalene Solution (Adalene Solution.sln)
file contained in the VB2015\Chap13\Adalene Solution-DataGridView folder.
Auto-hide the Properties and Toolbox windows, and permanently display the Solution
Explorer window.

2. If the Data Sources window is not open, click View on the menu bar, point to Other
Windows, and then click Data Sources. If necessary, click the Auto Hide button to
permanently display the window.

START HERE

Figure 13-5 Data contained in the tblStores table

field names

records

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

729

Connecting an Application to a Microsoft Access Database L E S S O N A

4. Click the Next button to display the Choose a Database Model screen. If necessary,
click Dataset.

5. Click the Next button to display the Choose Your Data Connection screen. Click the
New Connection button. At this point, either the Choose Data Source window or the
Add Connection dialog box will open. If the Choose Data Source window opens, click
Microsoft Access Database File in the Data source box, and then click the Continue
button to open the Add Connection dialog box.

6. In the Add Connection dialog box, verify that Microsoft Access Database File (OLE DB)
appears in the Data source box. If it doesn’t, click the Change button to open the
Change Data Source dialog box, click Microsoft Access Database File, and then click
the OK button.

7. Click the Browse button in the Add Connection dialog box to open the Select
Microsoft Access Database File dialog box. Open the VB2015\Chap13\Access
Databases folder, and then click Stores.accdb in the list of filenames. Click the
Open button. Figure 13-7 shows the completed Add Connection dialog box.

Figure 13-6 Choose a Data Source Type screen

3. Click Add New Data Source in the Data Sources window to start the Data Source
Configuration Wizard. If necessary, click Database on the Choose a Data Source
Type screen. See Figure 13-6. (If you want to display the Wizard’s access keys,
press the Alt key.)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Working with Access Databases and LINQ

730

8. Click the Test Connection button. The “Test connection succeeded.” message appears
in a message box. Close the message box.

9. Click the OK button to close the Add Connection dialog box. Stores.accdb appears
in the Choose Your Data Connection screen. Click the Next button. The message
box shown in Figure 13-8 opens. The message asks whether you want to include the
database file in the current project. By including the file in the current project, you can
more easily copy the application and its database to another computer.

Figure 13-8 Message regarding copying the database file

Figure 13-7 Completed Add Connection dialog box

your drive letter
might be different

10. Click the Yes button to add the Stores.accdb file to the application’s project folder. (You
can verify that the file was added to the project folder by viewing the Solution Explorer
window.) The Save the Connection String to the Application Configuration File screen
appears next and displays the name of the connection string, StoresConnectionString.
If necessary, select the Yes, save the connection as check box.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

731

Connecting an Application to a Microsoft Access Database L E S S O N A

11. Click the Next button to display the Choose Your Database Objects screen. You use
this screen to select the table and/or field objects to include in the dataset, which is
automatically named StoresDataSet.

12. Expand the Tables node, and then expand the tblStores node. In this application, you
need the dataset to include all of the fields in the table. Click the empty box next to
tblStores. Doing this selects the table and field check boxes, as shown in Figure 13-9.

Figure 13-9 Objects selected in the Choose Your Database Objects screen

Figure 13-10 Result of running the Data Source Configuration Wizard

expand the nodes
by clicking the
small triangles

database name

table and field
objects in the
dataset

13. Click the Finish button. The computer adds the StoresDataSet to the Data Sources and
Solution Explorer windows. Expand the tblStores node in the Data Sources window.
The dataset contains one table object and five field objects, as shown in Figure 13-10.

Previewing the Contents of a Dataset
You can view the fields and records contained in a dataset by right-clicking the dataset’s name in the Data
Sources window and then clicking Preview Data.

name of
the dataset

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Working with Access Databases and LINQ

732

To view the contents of the StoresDataSet:

1. Right-click StoresDataSet in the Data Sources window, click Preview Data, and
then click the Preview button. As Figure 13-11 shows, the StoresDataSet contains
20 records (rows), each having five fields (columns). Notice the information that
appears in the Select an object to preview box. StoresDataSet is the name of the dataset
in the application, and tblStores is the name of the table included in the dataset. Fill and
GetData are methods. The Fill method populates an existing table with data, while the
GetData method creates a new table and populates it with data.

START HERE

Figure 13-11 Data displayed in the Preview Data dialog box

2. Click the Close button to close the Preview Data dialog box, and then auto-hide the
Solution Explorer window.

Binding the Objects in a Dataset
For the user to view the contents of a dataset while an application is running, you need to
connect one or more objects in the dataset to one or more controls in the interface. Connecting
an object to a control is called binding, and the connected controls are called bound controls.
As indicated in Figure 13-12, you can bind the object either to a control that the computer
creates for you or to an existing control in the interface. First, you will learn how to have the
computer create a bound control.

Bound controls
are also referred
to as data-aware
controls.

Select an object
to preview box

indicates the number
of columns (fields)
and rows (records)
in the dataset

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

733

Binding the Objects in a Dataset L E S S O N A

Having the Computer Create a Bound Control
When you drag an object from a dataset to an empty area on the form, the computer creates
a control and automatically binds the object to it. The icon that appears before the object’s
name in the Data Sources window indicates the type of control the computer will create. The
icon next to tblStores in Figure 13-13 indicates that a DataGridView control will be created
when you drag the tblStores table object to the form. A DataGridView control displays the
table data in a row and column format, similar to a spreadsheet. You will learn more about
the DataGridView control in the next section. The icon next to each of the five field objects,
on the other hand, indicates that the computer creates a text box when a field object is
dragged to the form.

Figure 13-12 Ways to bind an object in a dataset

When an object is selected in the Data Sources window, you can use the list arrow that appears
next to the object’s name to change the type of control the computer creates. For example,
to display the table data in separate text boxes rather than in a DataGridView control, you
click tblStores in the Data Sources window and then click the tblStores list arrow, as shown in
Figure 13-14. Clicking Details in the list tells the computer to create a separate control for each
field in the table.

Binding an Object in a Dataset
To have the computer create a control and then bind an object to it:
In the Data Sources window, click the object you want to bind. If necessary, use the object’s list
arrow to change the control type. Drag the object to an empty area on the form, and then release
the mouse button.

To bind an object to an existing control:
In the Data Sources window, click the object you want to bind. Drag the object to the control on
the form, and then release the mouse button. Alternatively, you can click the control on the form
and then use the Properties window to set the appropriate property or properties. (Refer to the
Binding to an Existing Control section later in this lesson.)

Figure 13-13 Icons in the Data Sources window

indicates a
TextBox control

indicates a
DataGridView control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Working with Access Databases and LINQ

734

Similarly, to display the City field’s data in a label control rather than in a text box, you first click
City in the Data Sources window. You then click the field’s list arrow, as shown in Figure 13-15,
and then click Label in the list.

In the following set of steps, you will drag the tblStores object from the Data Sources window to
the form, using the default control type for a table.

To bind the tblStores object to a DataGridView control:

1. If necessary, click tblStores in the Data Sources window to select the tblStores object.
Drag the object from the Data Sources window to the form, and then release the mouse
button. The computer adds a DataGridView control to the form, and it binds the
tblStores object to the control. See Figure 13-16.

START HERE

Figure 13-14 Result of clicking the tblStores object’s list arrow

Figure 13-15 Result of clicking the City object’s list arrow

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

735

Binding the Objects in a Dataset L E S S O N A

Besides adding a DataGridView control to the form, the computer also adds a BindingNavigator
control. When an application is running, you can use the BindingNavigator control to move
from one record to the next in the dataset, as well as to add or delete a record and save any
changes made to the dataset. The computer also places five objects in the component tray: a
DataSet, BindingSource, TableAdapter, TableAdapterManager, and BindingNavigator. As you
learned in Chapter 1, the component tray stores objects that do not appear in the user interface
while an application is running. An exception to this is the BindingNavigator object, which
appears as the BindingNavigator control during both design time and run time.

The TableAdapter object connects the database to the DataSet object, which stores the
information you want to access from the database. The TableAdapter is responsible for
retrieving the appropriate information from the database and storing it in the DataSet. It also
can be used to save to the database any changes made to the data contained in the DataSet.
However, in most cases, you will use the TableAdapterManager object to save the changes
because it can handle saving data to multiple tables in the DataSet.

The BindingSource object provides the connection between the DataSet and the bound
controls on the form. The TblStoresBindingSource in Figure 13-16, for example, connects the
StoresDataSet to two bound controls: a DataGridView control and a BindingNavigator control.
The TblStoresBindingSource allows the DataGridView control to display the data contained in
the StoresDataSet. It also allows the BindingNavigator control to access the records stored in the
StoresDataSet. Figure 13-17 illustrates the relationships among the database, the objects in the
component tray, and the bound controls on the form.

Figure 13-16 Result of dragging the table object to the form

BindingNavigator
control

DataGridView
control

component
tray

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Working with Access Databases and LINQ

736

If a table object’s control type is changed from DataGridView to Details, the computer
automatically provides the appropriate controls (such as text boxes, labels, and so on) when you
drag the table object to the form. It also adds the BindingNavigator control to the form and the
five objects to the component tray. The appropriate controls and objects are also automatically
included when you drag a field object to an empty area on the form.

The DataGridView Control
The DataGridView control is one of the most popular controls for displaying table data because
it allows you to view a great deal of information at the same time. The control displays the data
in a row and column format, similar to a spreadsheet. Each row represents a record, and each
column represents a field. The intersection of a row and a column in a DataGridView control is
called a cell.

The control’s AutoSizeColumnsMode property, which has seven different settings, determines
the way the column widths are sized in the control. The Fill setting automatically adjusts
the column widths so that all of the columns exactly fill the display area of the control. The
ColumnHeader setting, on the other hand, adjusts the column widths based on the header text.

Like the PictureBox control, the DataGridView control has a task list. The task list is shown in
Figure 13-18 along with a description of each task.

Figure 13-17 Illustration of the relationships among the database, the objects in the component tray,
and the bound controls

DataSet

Database bound controls
on the form

BindingSourceTabl
eA

dapt
er

Tabl
eA

dapt
erM

an
ag

er

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

737

Binding the Objects in a Dataset L E S S O N A

Task Purpose
Choose Data Source select a data source
Edit Columns open the Edit Columns dialog box
Add Column add a new column
Enable Adding allow/disallow the user to add data
Enable Editing allow/disallow the user to edit data
Enable Deleting allow/disallow the user to delete data
Enable Column Reordering allow/disallow the user to reorder the columns
Dock in Parent Container bind the borders of the control to its container
Add Query filter data from a dataset
Preview Data view the data bound to the control

Figure 13-18 DataGridView control’s task list

task box

Figure 13-19 shows the Edit Columns dialog box, which opens when you click Edit Columns
on the DataGridView control’s task list. You can use the Edit Columns dialog box during
design time to add columns to the control, remove columns from the control, and reorder the
columns. You also can use it to set the properties of the bound columns. For example, you
can use a column’s DefaultCellStyle property to format the column’s data as well as to change
the column’s width and alignment. You can use a column’s HeaderText property to change a
column’s heading.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Working with Access Databases and LINQ

738

Figure 13-19 Edit Columns dialog box

To improve the appearance of the DataGridView control:

1. Temporarily display the Properties window. Click AutoSizeColumnsMode in the
Properties list, and then set the property to Fill.

2. Click the TblStoresDataGridView control to close the Properties window. Click
the control’s task box, and then click Dock in Parent Container. The DataGridView
control expands to the size of the form. This is because the Dock in Parent Container
option anchors the control’s borders to the borders of its container, which (in this case)
is the form.

3. Next, you will change the header text on one of the columns. Click Edit Columns in
the task list. Click the Alphabetical button (shown earlier in Figure 13-19) to display
the property names in alphabetical order. StoreNum is currently selected in the
Selected Columns list. Change the column’s HeaderText property to Store.

4. Now you will format the sales amounts to include a dollar sign and (if appropriate) a
thousands separator. Click Sales, click DefaultCellStyle, and then click the ... (ellipsis)
button to open the CellStyle Builder dialog box. Click Format, and then click the ... (ellipsis)
button to open the Format String Dialog box. Click Currency in the Format type list, and
then change the number of decimal places to 0. See Figure 13-20.

START HERE

Alphabetical
button

use the scroll box to
view the remaining
properties for the
selected column

use these buttons
to reorder the
columns

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

739

Visual Basic Code L E S S O N A

Figure 13-20 Completed Format String Dialog box

Figure 13-21 Code automatically entered in the Code Editor window

5. Click the OK button to close the Format String Dialog box. You are returned to the
CellStyle Builder dialog box.

6. Finally, you will right-align the sales amounts. Change the Sales column’s Alignment
property to MiddleRight. Click the OK button to close the CellStyle Builder dialog
box, and then click the OK button to close the Edit Columns dialog box.

7. Click the DataGridView control to close its task list. Auto-hide the Data Sources
window and then save the solution.

Visual Basic Code
In addition to adding the appropriate controls and objects to the application when a table or field
object is dragged to the form, Visual Basic also enters some code in the Code Editor window.

To view the code automatically entered in the Code Editor window:

1. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. The two procedures shown in Figure 13-21 were automatically entered when the
tblStores object was dragged to the form. (In your Code Editor window, the first
procedure header and the comments in the second procedure will appear on one line.)

START HERE

As you learned
in Chapter 1,
the keyword Me
refers to the
current form.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Working with Access Databases and LINQ

740

The form’s Load event procedure uses the TableAdapter object’s Fill method to retrieve the
data from the database and store it in the DataSet object. In most applications, the code to fill a
dataset belongs in this procedure. However, as the comments in the procedure indicate, you can
either move or delete the code.

The TblStoresBindingNavigatorSaveItem_Click procedure is processed when you click the Save
Data button (the disk) on the BindingNavigator control. The procedure’s code validates the
changes made to the data before saving the data to the database. Two methods are involved in
the save operation: the BindingSource object’s EndEdit method and the TableAdapterManager’s
UpdateAll method. The EndEdit method applies any pending changes (such as new records,
deleted records, and changed records) to the dataset, and the UpdateAll method commits
the changes to the database. Because it is possible for an error to occur when saving data to a
database, you should add error-handling code to the Save Data button’s Click event procedure.

Handling Errors in the Code
An error that occurs while an application is running is called an exception. If your code does not
contain specific instructions for handling the exceptions that may occur, Visual Basic handles them
for you. Typically, it does this by displaying an error message and then abruptly terminating the
application. You can prevent your application from behaving in such an unfriendly manner by taking
control of the exception handling in your code; you can do this by using the Try...Catch statement.

Figure 13-22 shows the basic syntax of the Try...Catch statement and includes examples of
using the syntax. The basic syntax contains only a Try block and a Catch block. Within the
Try block, you place the code that could possibly generate an exception. When an exception
occurs in the Try block’s code, the computer processes the code contained in the Catch block
and then skips to the code following the End Try clause. A description of the exception that
occurred is stored in the Message property of the Catch block’s ex parameter. You can access
the description using the code ex.Message, as shown in Example 1 in the figure; or you can
display your own message, as shown in Example 2.

When an error
occurs in a
procedure’s
code during
run time, pro-

grammers say that the
procedure “threw an
exception.”

Figure 13-22 Basic syntax and examples of the Try...Catch statement (continues)

The Try...Catch
statement can
also include a
Finally block,
whose code

is processed whether
or not an exception is
thrown within the Try
block.

Try...Catch Statement
Basic syntax
Try
 one or more statements that might generate an exception
Catch ex As Exception
 one or more statements to execute when an exception occurs
End Try

Example 1
Private Sub TblStoresBindingNavigatorSaveItem_Click(
sender As Object, e As EventArgs
) Handles TblStoresBindingNavigatorSaveItem.Click
 Try
 Me.Validate()
 Me.TblStoresBindingSource.EndEdit()
 Me.TableAdapterManager.UpdateAll(Me.StoresDataSet)
 Catch ex As Exception
 MessageBox.Show(ex.Message, "Adalene Fashions",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End Try
End Sub

Example 2
Private Sub btnDisplay_Click(sender As Object, e As EventArgs
) Handles btnDisplay.Click
 Dim inFile As IO.StreamReader
 Dim strLine As String

 Try
 inFile = IO.File.OpenText("names.txt")
 Do Until inFile.Peek = -1
 strLine = inFile.ReadLine
 lstNames.Items.Add(strLine)
 Loop
 inFile.Close()
 Catch ex As Exception
 MessageBox.Show("Sequential file error", "JK's",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End Try
End Sub

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

741

Visual Basic Code L E S S O N A

To include a Try...Catch statement in the Save Data button’s Click event procedure:

1. Insert a blank line above the Me.Validate() statement in the
TblStoresBindingNavigatorSaveItem_Click procedure. Type Try and press Enter.
The Code Editor automatically enters the Catch ex As Exception and End Try
clauses for you.

2. Move the three statements that appear below the End Try clause, as well as the blank
line below the statements, into the Try block.

3. If the three statements in the Try block do not produce (throw) an exception, the Try
block should display the “Changes saved” message; otherwise, the Catch block should
display a description of the exception. Enter the two MessageBox.Show methods
indicated in Figure 13-23.

START HERE

Try...Catch Statement
Basic syntax
Try
 one or more statements that might generate an exception
Catch ex As Exception
 one or more statements to execute when an exception occurs
End Try

Example 1
Private Sub TblStoresBindingNavigatorSaveItem_Click(
sender As Object, e As EventArgs
) Handles TblStoresBindingNavigatorSaveItem.Click
 Try
 Me.Validate()
 Me.TblStoresBindingSource.EndEdit()
 Me.TableAdapterManager.UpdateAll(Me.StoresDataSet)
 Catch ex As Exception
 MessageBox.Show(ex.Message, "Adalene Fashions",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End Try
End Sub

Example 2
Private Sub btnDisplay_Click(sender As Object, e As EventArgs
) Handles btnDisplay.Click
 Dim inFile As IO.StreamReader
 Dim strLine As String

 Try
 inFile = IO.File.OpenText("names.txt")
 Do Until inFile.Peek = -1
 strLine = inFile.ReadLine
 lstNames.Items.Add(strLine)
 Loop
 inFile.Close()
 Catch ex As Exception
 MessageBox.Show("Sequential file error", "JK's",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End Try
End Sub

Figure 13-22 Basic syntax and examples of the Try...Catch statement

 (continued)

Figure 13-23 Completed Click event procedure for the Save Data button

enter this
MessageBox.Show
method

enter this
MessageBox.Show
method

4. Save the solution and then start the application. The statement in the frmMain_Load
procedure (shown earlier in Figure 13-21) retrieves the appropriate data from the Stores
database and loads the data into the StoresDataSet. The data is displayed in the DataGridView
control, which is bound to the tblStores table contained in the dataset. See Figure 13-24.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Working with Access Databases and LINQ

742

5. You can use the arrow keys on your keyboard to move the highlight to a different cell in
the DataGridView control. When a cell is highlighted, you can modify its contents by
simply typing the new data. Press the key to move the highlight to the next record,
and then press the key to move the highlight to the next field.

6. The BindingNavigator control provides buttons for accessing the first, last, previous,
and next records in the dataset. When you rest your mouse pointer on one of these
buttons, a tooltip appears and indicates the button’s purpose. Rest your mouse pointer
on the Move last button, as shown in Figure 13-25.

Figure 13-24 Data displayed in the DataGridView control

TblStoresBindingNavigator
control

TblStoresDataGridView
control

7. Click the Move last button to move the highlight to the last record, and then click the
Move first button to move the highlight to the first record.

8. You can also use the BindingNavigator control to access a record by its record number.
The records are numbered 1, 2, 3, and so on. Click the Current position box, which
contains the number 1. Replace the 1 with a 6 and then press Enter. The highlight
moves to Store 105’s record, which is the sixth record.

9. Click the Close button on the form’s title bar to stop the application.

Figure 13-25 Tooltip for the Move last button

Move first Move previous Move next

Move last

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

743

The Copy to Output Directory Property L E S S O N A

The BindingNavigator control also provides buttons for adding a new record to the dataset,
deleting a record from the dataset, and saving the changes made to the dataset. You can add
additional items (such as buttons and text boxes) to a BindingNavigator control and also
delete items from the control. You will learn how to add items to and delete items from a
BindingNavigator control in the Customizing a BindingNavigator Control section in Lesson B.

The Copy to Output Directory Property
When the Data Source Configuration Wizard connected the Adalene Fashions application to the
Stores database, it added the database file (Stores.accdb) to the application’s project folder. (You
can verify that the file was added to the project folder by viewing the Solution Explorer window.)
A database file contained in a project is referred to as a local database file. The way Visual Basic
saves changes to a local database file is determined by the file’s Copy to Output Directory
property. Figure 13-26 lists the values that can be assigned to the property.

When a file’s Copy to Output Directory property is set to its default setting, Copy always, the
file is copied from the project folder to the project folder’s bin\Debug folder each time you start
the application. In this case, the Stores.accdb file is copied from the Adalene Project folder to the
Adalene Project\bin\Debug folder. As a result, the file will appear in two different folders in the
solution. When you click the Save Data button on the BindingNavigator control, any changes
made in the DataGridView control are recorded only in the file stored in the bin\Debug folder;
the file stored in the project folder is not changed. The next time you start the application, the
file in the project folder is copied to the bin\Debug folder, overwriting the file that contains the
changes. You can change this behavior by setting the database file’s Copy to Output Directory
property to Copy if newer. The Copy if newer setting tells the computer to compare the dates
on both files to determine which file has the newer (i.e., more current) date. If the database file
in the project folder has a newer date, the computer should copy it to the bin\Debug folder;
otherwise, it shouldn’t copy it.

To change the Stores.accdb file’s Copy to Output Directory property:

1. Temporarily display the Solution Explorer window. Right-click Stores.accdb and then
click Properties. Change the file’s Copy to Output Directory property to Copy if
newer.

2. Save the solution and then start the application.

START HERE

Copy to Output Directory Property
Property setting Meaning
Do not copy The file in the project folder is not copied to the bin\Debug folder when the
 application is started.

Copy always The file in the project folder is copied to the bin\Debug folder each time the
 application is started.

Copy if newer When an application is started, the computer compares the date on the file
 in the project folder with the date on the file in the bin\Debug folder. The
 file from the project folder is copied to the bin\Debug folder only when its
 date is newer.

Figure 13-26 Settings for the Copy to Output Directory property

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Working with Access Databases and LINQ

744

3. Click the Add new button (the plus sign) to add a new record to the end of the
DataGridView control. Type 120 as the store number, press Tab, and then type Miami
as the city. Now, enter FL, 84600, and F in the State, Sales, and Ownership fields,
respectively. Press Enter after typing the letter F.

4. Click the Move first button to move the highlight to the Ownership field in the first
record. When a cell is highlighted, you can modify its existing data by simply typing the
new data. Type F and press Enter to change the entry in Store 100’s Ownership field.

5. Click the Save Data button (the disk). The “Changes saved” message appears in a
message box. Close the message box and then stop the application.

6. Start the application again. The DataGridView control contains the change you made to
Store 100’s Ownership field. Scroll down the control to verify that it also contains the
record you added.

7. Click 120 in the Store field, and then click the Delete button (the X) to delete the
record. Now, click the Move first button to move the highlight to the first record, and
then change Store 100’s Ownership field from F to C.

8. Click the Save Data button. The “Changes saved” message appears in a message box.
Close the message box and then stop the application.

9. Start the application again to verify that your changes were saved, and then stop the
application. Close the Code Editor window and then close the solution.

Binding to an Existing Control
As indicated earlier in Figure 13-12, you can bind an object in a dataset to an existing control
on a form. The easiest way to do this is by dragging the object from the Data Sources window to
the control. However, you also can click the control and then set one or more properties in the
Properties window. The appropriate property (or properties) to set depends on the control you
are binding. To bind a DataGridView control, you use the DataSource property. However, you
use the DataSource and DisplayMember properties to bind a ListBox control. To bind label and
text box controls, you use the DataBindings/Text property.

When you drag an object from the Data Sources window to an existing control, the computer
does not create a new control; instead, it binds the object to the existing control. Because a new
control does not need to be created, the computer ignores the control type specified for the
object in the Data Sources window. Therefore, it is not necessary to change the control type in
the Data Sources window to match the existing control’s type. In other words, you can drag an
object that is associated with a text box in the Data Sources window to a label control on the
form. The computer will bind the object to the label, but it will not change the label to a text box.

YOU DO IT 1!

Create an application named YouDoIt 1 and save it in the VB2015\Chap13 folder.
Connect the application to the CD database, which is stored in the VB2015\Chap13\
Access Databases\CD.accdb file. The database contains one table named tblCds. The
table contains 13 records. Each record contains three fields: CdName, Artist, and Price.
Display the records in a DataGridView control. Include the Try...Catch statement in the
Save Data button’s Click event procedure. Also, change the database file’s Copy to
Output Directory property as appropriate. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

745

Binding to an Existing Control L E S S O N A

In the next set of steps, you will connect a different version of the Adalene Fashions application
to the Stores database. You will then begin binding objects from the dataset to existing label
controls in the interface. In this version of the application, you will not need to change the
database file’s Copy to Output Directory property to Copy if newer because the user will not be
adding, deleting, or editing the records in the dataset.

To connect an application to a database and then bind an object to an existing control:

1. Open the Adalene Solution (Adalene Solution.sln) file contained in the VB2015\
Chap13\Adalene Solution-Labels folder. See Figure 13-27.

START HERE

2. Permanently display the Data Sources window, and then click Add New Data Source
to start the Data Source Configuration Wizard. If necessary, click Database on the
Choose a Data Source Type screen.

3. Click the Next button to display the Choose a Database Model screen. If necessary,
click Dataset.

4. Click the Next button to display the Choose Your Data Connection screen. Click the
New Connection button to open the Add Connection dialog box. If Microsoft Access
Database File (OLE DB) does not appear in the Data source box, click the Change
button to open the Change Data Source dialog box, click Microsoft Access Database
File, and then click the OK button.

5. Click the Browse button in the Add Connection dialog box. Open the VB2015\Chap13\
Access Databases folder, and then click Stores.accdb in the list of filenames. Click the
Open button. Click the Test Connection button in the Add Connection dialog box. The
“Test connection succeeded.” message appears in a message box. Close the message box.

6. Click the OK button to close the Add Connection dialog box. Click the Next button
on the Choose Your Data Connection screen, and then click the Yes button to add the
Stores.accdb file to the application’s project folder.

7. If necessary, select the Yes, save the connection as check box on the Save the
Connection String to the Application Configuration File screen. Click the Next button
to display the Choose Your Database Objects screen.

8. Expand the Tables node and then expand the tblStores node. In this application, you
will include only three fields in the dataset. Click the empty box that appears next to
each of the following field names: StoreNum, Sales, and Ownership. Click the Finish
button. The computer adds the StoresDataSet to the Data Sources window. Expand the
tblStores node in the Data Sources window. The dataset contains one table object and
three field objects.

Figure 13-27 A different version of the Adalene Fashions application

lblStore lblSales lblOwner

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Working with Access Databases and LINQ

746

9. Click StoreNum in the Data Sources window, and then drag the field object to the
lblStore control. Release the mouse button. The computer binds the control and adds
the DataSet, BindingSource, TableAdapter, and TableAdapterManager objects to the
component tray. See Figure 13-28.

Notice that when you drag an object from the Data Sources window to an existing control,
the computer does not add a BindingNavigator object to the component tray, nor does it
add a BindingNavigator control to the form. You can use the BindingNavigator tool, which
is located in the Data section of the toolbox, to add a BindingNavigator control and object
to the application. You then would set the control’s DataSource property to the name of the
BindingSource object (in this case, TblStoresBindingSource).

Besides adding the objects shown in Figure 13-28 to the component tray, the computer also
enters (in the Code Editor window) the Load event procedure shown earlier in Figure 13-21.
Recall that the procedure uses the TableAdapter object’s Fill method to retrieve the data from
the database and store it in the DataSet object.

To bind the remaining objects in the dataset to existing controls:

1. On your own, drag the Sales and Ownership field objects to the lblSales and lblOwner
controls, respectively.

2. Auto-hide the Data Sources window and then save the solution. Start the application.
Only the first record in the dataset appears in the interface. See Figure 13-29.

START HERE

Figure 13-28 Result of binding a field to an existing control

dataset in this
version of the
application

label bound to the
StoreNum field

Figure 13-29 First record displayed in the interface

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

747

Coding the Next Record and Previous Record Buttons L E S S O N A

3. Because the interface does not contain a BindingNavigator control, which would allow
you to move from one record to the next, you will need to code the Next Record and
Previous Record buttons to view the remaining records. Click the Exit button to stop
the application.

Coding the Next Record and Previous Record Buttons
The BindingSource object uses an invisible record pointer to keep track of the current record in
the dataset. It stores the position of the record pointer in its Position property. The first record
is in position 0, the second is in position 1, and so on. Figure 13-30 shows the Position property’s
syntax and includes examples of using the property.

Rather than using the Position property to position the record pointer in a dataset, you can use
the BindingSource object’s Move methods to move the record pointer to the first, last, next,
or previous record in the dataset. Figure 13-31 shows each Move method’s syntax and includes
examples of using two of the methods.

BindingSource Object’s Position Property
Syntax
bindingSourceName.Position

Example 1
intRecordNum = TblStoresBindingSource.Position
assigns the current record’s position to the intRecordNum variable

Example 2
TblStoresBindingSource.Position = 4
moves the record pointer to the fifth record in the dataset

Example 3
TblStoresBindingSource.Position += 1
moves the record pointer to the next record in the dataset

Figure 13-30 Syntax and examples of the BindingSource object’s Position property

BindingSource Object’s Move Methods
Syntax
bindingSourceName.MoveFirst()
bindingSourceName.MoveLast()
bindingSourceName.MoveNext()
bindingSourceName.MovePrevious()

Example 1
TblStoresBindingSource.MoveFirst()
moves the record pointer to the first record in the dataset

Example 2
TblStoresBindingSource.MoveNext()
moves the record pointer to the next record in the dataset

Figure 13-31 Syntax and examples of the BindingSource object’s Move methods

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Working with Access Databases and LINQ

748

To code and then test the Next Record and Previous Record buttons:

1. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. Open the code template for the btnNext_Click procedure, and then enter the following
statement:

TblStoresBindingSource.MoveNext()

3. Open the code template for the btnPrevious_Click procedure, and then enter the
following statement:

TblStoresBindingSource.MovePrevious()

4. Save the solution and then start the application. Click the Next Record button to
display the second record. Continue clicking the Next Record button until the last
record appears in the interface.

5. Click the Previous Record button until the first record appears in the interface.

6. Click the Exit button and then close the Code Editor window.

Formatting the Data Displayed in a Bound Label Control
The sales amounts displayed in the lblSales control would be easier to read if they included a
thousands separator.

To display the sales amounts with a thousands separator:

1. Click the lblSales control. Temporarily display the Properties window. Click
(DataBindings), which appears at the top of the properties list. Click the plus box that
appears next to the property, and then click (Advanced). Click the ... (ellipsis) button
to open the Formatting and Advanced Binding dialog box. Click Numeric in the
Format type box, and then change the number of decimal places to 0. See Figure 13-32.

START HERE

START HERE

Figure 13-32 Formatting and Advanced Binding dialog box

field name

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

749

2. Click the OK button to close the dialog box. Save the solution and then start the
application. The sales amount now appears with a thousands separator.

3. Click the Exit button and then close the solution.

YOU DO IT 2!

Create an application named YouDoIt 2 and save it in the VB2015\Chap13 folder. Add
three labels and two buttons to the form. Connect the application to the CD database,
which is stored in the VB2015\Chap13\Access Databases\CD.accdb file. The database
contains one table named tblCds. The table contains 13 records. Each record contains
three fields: CdName, Artist, and Price. Display the records, one at a time, in the labels.
(One of the CD names contains an ampersand. To display the &, you will need to set the
UseMnemonic property of the label that displays the names to False.) Display the Price
field with a dollar sign and two decimal places. Use the buttons to display the next and
previous records. Save the solution, and then start and test the application. Close the
Code Editor window and then close the solution.

Lesson A Summary
 • To connect an application to a database:

Use the Data Source Configuration Wizard. To start the wizard, open the Data Sources
window by clicking View on the menu bar, pointing to Other Windows, and then clicking
Data Sources. Then click Add New Data Source in the Data Sources window.

 • To preview the data contained in a dataset:

Right-click the dataset’s name in the Data Sources window, click Preview Data, and then click
the Preview button in the Preview Data dialog box.

 • To have the computer create a control and then bind an object to it:

In the Data Sources window, click the object you want to bind. If necessary, use the object’s
list arrow to change the control type. Drag the object to an empty area on the form, and then
release the mouse button.

 • To bind an object to an existing control:

In the Data Sources window, click the object you want to bind. Drag the object to the control
on the form, and then release the mouse button. Alternatively, you can click the control on the
form and then use the Properties window to set the appropriate property or properties. (Refer
to the Binding to an Existing Control section in this lesson.)

 • To have the columns exactly fill the display area in a DataGridView control:

Set the DataGridView control’s AutoSizeColumnsMode property to Fill.

 • To anchor the DataGridView control to the borders of its container:

Click the Dock in Parent Container option in the DataGridView control’s task list. You can
also set the DataGridView control’s Dock property in the Properties window.

Lesson A Summary L E S S O N A

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

750

C H A P T E R 1 3 Working with Access Databases and LINQ

 • To handle exceptions (errors) that occur during run time:

Use the Try...Catch statement.

 • To move the record pointer in a dataset during run time:

You can use a BindingNavigator control. You also can use either the BindingSource object’s
Position property or one of its Move methods.

 • To format the data displayed in a bound label control:

Click the label control, click the plus box next to the (DataBindings) property in the
properties list, click (Advanced), and then click the ... (ellipsis) button to open the
Formatting and Advanced Binding dialog box.

Lesson A Key Terms
AutoSizeColumnsMode property—determines the way the column widths are sized in a
DataGridView control

Binding—the process of connecting an object in a dataset to a control on a form

BindingNavigator control—can be used to add, delete, and save records and also to move the
record pointer from one record to another in a dataset

BindingSource object—connects a DataSet object to the bound controls on a form

Bound controls—the controls connected to an object in a dataset

Cell—the intersection of a row and a column in a DataGridView control

Child table—a table linked to a parent table

Computer database—an electronic file that contains an organized collection of related
information

Copy to Output Directory property—a property of a database file; determines both when and if
the file is copied from the project folder to the project folder’s bin\Debug folder

DataGridView control—displays data in a row and column format

Dataset—a copy of the data (database fields and records) that can be accessed by an application

DataSet object—stores the information you want to access from a database

Exception—an error that occurs while an application is running

Field—a single item of information about a person, place, or thing

Foreign key—the field used to link a child table to a parent table

Move methods—methods of a BindingSource object; used to move the record pointer to the
first, last, next, or previous record in a dataset

Parent table—a table linked to a child table

Position property—a property of a BindingSource object; stores the position of the record pointer

Primary key—a field that uniquely identifies each record in a table

Record—a group of related fields that contain all of the necessary data about a specific person,
place, or thing

Relational database—a database that stores information in tables composed of columns (fields)
and rows (records)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

751

Lesson A Review Questions L E S S O N A

Table—a group of related records

TableAdapter object—connects a database to a DataSet object

TableAdapterManager object—handles saving data to multiple tables in a dataset

Try...Catch statement—used for exception handling in a procedure

Lesson A Review Questions
1. Which of the following objects connects a database to a DataSet object?

a. BindingSource
b. DataBase

c. DataGridView
d. TableAdapter

2. The _____________________ property stores an integer that represents the location of
the record pointer in a dataset.

a. BindingNavigator object’s Position
b. BindingSource object’s Position

c. TableAdapter object’s Position
d. none of the above

3. If the record pointer is positioned on record number 7 in a dataset, which of the
following will move the record pointer to record number 8?

a. TblBooksBindingSource.GoNext()

b. TblBooksBindingSource.Move(8)

c. TblBooksBindingSource.MoveNext()

d. TblBooksBindingSource.PositionNext

4. A _____________________ is an organized collection of related information stored in a
computer file.

a. database
b. dataset

c. field
d. record

5. The information in a _____________________ database is stored in tables.

a. columnar
b. relational

c. sorted
d. tabular

6. Which of the following objects provides the connection between a DataSet object and a
control on a form?

a. Bound
b. Binding

c. BindingSource
d. Connecting

7. Which of the following statements retrieves data from the Friends database and stores
it in the FriendsDataSet?

a. Me.FriendsDataSet.Fill(Friends.accdb)

b. Me.TblNamesBindingSource.Fill(Me.FriendsDataSet)

c. Me.TblNamesBindingNavigator.Fill(Me.FriendsDataSet.tblNames)

d. Me.TblNamesTableAdapter.Fill(Me.FriendsDataSet.tblNames)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

752

C H A P T E R 1 3 Working with Access Databases and LINQ

8. If an application contains the Catch ex As Exception clause, which of the
following can be used to access the exception’s description?

a. ex.Description

b. ex.Exception

c. ex.Message

d. Exception.Description

9. If the current record is the ninth record in a dataset that contains 10 records, which of
the following statements will position the record pointer on the tenth record?

a. TblEmployBindingSource.Position = 9

b. TblEmployBindingSource.Position += 1

c. TblEmployBindingSource.MoveLast()

d. all of the above

10. The field that links a child table to a parent table is called the _____________________ .

a. foreign key in the child table
b. foreign key in the parent table

c. link key in the parent table
d. primary key in the child table

11. The process of connecting a control to an object in a dataset is called ______________ .

a. assigning
b. binding

c. joining
d. none of the above

12. Which of the following is true?

a. Data stored in a relational database can be retrieved both quickly and easily by
the computer.

b. Data stored in a relational database can be displayed in any order.
c. A relational database stores data in a column and row format.
d. all of the above

Lesson A Exercises
1. In this exercise, you modify one of the Adalene Fashions applications from this lesson.

Use Windows to make a copy of the Adalene Solution-Labels folder. Rename the copy
Modified Adalene Solution-Labels. Open the Adalene Solution (Adalene Solution.sln)
file contained in the Modified Adalene Solution-Labels folder. Modify the btnNext_
Click and btnPrevious_Click procedures to use the Position property rather than the
MoveNext and MovePrevious methods. Test the application appropriately

2. Diamond Spa records the ID, name, and price of each of its services in a database
named Services. The Services database, which is stored in the VB2015\Chap13\Access
Databases\Services.accdb file, contains a table named tblServices. Open the Diamond
Solution (Diamond Solution.sln) file contained in the VB2015\Chap13\Diamond
Solution-DataGridView folder. Connect the application to the Services database.
Change the database file’s Copy to Output Directory property to Copy if newer. Bind
the table to a DataGridView control, and then make the necessary modifications to
the control. Enter the Try... Catch statement in the Save Data button’s Click event
procedure; include appropriate messages. Test the application appropriately.

INTRODUCTORY

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

753

Lesson A Exercises L E S S O N A

3. Diamond Spa records the ID, name, and price of each of its services in a database
named Services. The Services database, which is stored in the VB2015\Chap13\
Access Databases\Services.accdb file, contains a table named tblServices. Open the
Diamond Solution (Diamond Solution.sln) file contained in the VB2015\Chap13\
Diamond Solution-Labels folder. Connect the application to the Services database.
Bind the appropriate objects to the existing label controls. Code the btnNext_Click and
btnPrevious_Click procedures. Test the application appropriately.

4. Open the MusicBox Solution (MusicBox Solution.sln) file contained in the VB2015\
Chap13\MusicBox Solution-DataGridView folder. Connect the application to the
MusicBox database. The database, which is stored in the VB2015\Chap13\Access
Databases\MusicBox.accdb file, contains a table named tblBox. Change the database
file’s Copy to Output Directory property to Copy if newer. Bind the table to a
DataGridView control, and then make the necessary modifications to the control. Enter
the Try...Catch statement in the Save Data button’s Click event procedure; include
appropriate messages. Test the application appropriately.

5. Open the MusicBox Solution (MusicBox Solution.sln) file contained in the VB2015\
Chap13\MusicBox Solution-Labels folder. Connect the application to the MusicBox
database. The database, which is stored in the VB2015\Chap13\Access Databases\
MusicBox.accdb file, contains a table named tblBox. Bind the appropriate objects to the
existing label controls. Code the btnNext_Click and btnPrevious_Click procedures. Test
the application appropriately.

6. Open the MusicBox Solution (MusicBox Solution.sln) file contained in the VB2015\
Chap13\MusicBox Solution-ListBox folder. Connect the application to the MusicBox
database. The database, which is stored in the VB2015\Chap13\Access Databases\
MusicBox.accdb file, contains a table named tblBox. Bind the Shape, Source, and Song
field objects to the existing label controls. Then set the lstId control’s DataSource and
DisplayMember properties to TblBoxBindingSource and ID, respectively. Test the
application by clicking each entry in the list box.

7. In this exercise, you modify one of the Adalene Fashions applications from this lesson.

a. Use Windows to make a copy of the Adalene Solution-Labels folder. Rename the
copy Adalene Solution-ListBox. Open the Adalene Solution (Adalene Solution.sln)
file contained in the Adalene Solution-ListBox folder.

b. Unlock the controls, and then delete the lblStore control from the form. Also delete
the Previous Record and Next Record buttons and their Click event procedures.

c. Add a list box to the form. Change the list box’s name to lstStore. Assign an access
key to the list box. Make any needed modifications to the interface. Lock the
controls, and then set the tab order as appropriate.

d. Set the lstStore control’s DataSource and DisplayMember properties as appropriate.
Test the application appropriately.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Working with Access Databases and LINQ

754

❚ LESSON B
After studying Lesson B, you should be able to:

 • Query a dataset using LINQ

 • Customize a BindingNavigator control

 • Use the LINQ aggregate operators

Creating a Query
The records in the StoresDataSet from Lesson A can be arranged in any order, such as by store
number, city name, and so on. You can also control the number of records you want to view at
any one time. You can view all of the records in the StoresDataSet, or you can choose to view
only the records for the company-owned stores. You use a query to specify both the records to
select and the order in which to arrange the records. You can create a query in Visual Basic 2015
using a language feature called Language-Integrated Query or, more simply, LINQ.

Figure 13-33 shows the basic syntax of LINQ when used to select and arrange records in
a dataset. In the syntax, variableName and elementName can be any names you choose as
long as the name follows the naming rules for variables. In other words, there is nothing
special about the records and store names used in the examples. The Where and Order By
clauses are optional parts of the syntax. You use the Where clause, which contains a condition,
to limit the records you want to view. Similar to the condition in the If...Then...Else and
Do...Loop statements, the condition in a Where clause specifies a requirement that must be
met for a record to be selected. The Order By clause is used to arrange (sort) the records in
either ascending (the default) or descending order by one or more fields.

Using LINQ to Select and Arrange Records in a Dataset
Basic syntax
Dim variableName = From elementName In dataset.table
 [Where condition]
 [Order By elementName.fieldName1 [Ascending | Descending]
 [, elementName.fieldNameN [Ascending | Descending]]]
 Select elementName

Example 1
Dim records = From store In StoresDataSet.tblStores
 Select store
selects all of the records from the dataset

Example 2
Dim records = From store In StoresDataSet.tblStores
 Order By store.Sales
 Select store
selects all of the records from the dataset and arranges them in ascending order
by the Sales field

Example 3
Dim records = From store In StoresDataSet.tblStores
 Where store.Ownership.ToUpper = "F"
 Select store
selects only the franchisees’ records from the dataset

Example 4
Dim records = From store In StoresDataSet.tblStores
 Where store.Sales > 100000
 Select store
selects from the dataset only the records for stores having sales of more than $100,000

Example 5
Dim records = From store In StoresDataSet.tblStores
 Where store.State.ToUpper Like "C*"
 Order By store.City Descending
 Select store
selects from the dataset only the records whose State field begins with the letter C and
arranges them in descending order by the City field

Figure 13-33 Basic LINQ syntax and examples for selecting and arranging records in a
dataset (continues)

Ch13B-LINQ

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

755

Creating a Query L E S S O N B

Notice that the syntax shown in Figure 13-33 does not require you to specify the data type of
the variable in the Dim statement. Instead, the syntax allows the computer to infer the data type
from the value being assigned to the variable. However, for this inference to take place, you must
set Option Infer to On (rather than to Off, as you have been doing) in the General Declarations
section of the Code Editor window.

Figure 13-33 also includes examples of using the LINQ syntax. The statement in Example 1
selects all of the records from the dataset and assigns them to the records variable. The
statement in Example 2 performs the same task; however, the records are assigned in ascending
order by the Sales field. If you are sorting records in ascending order, you do not need to include
the keyword Ascending in the Order By clause because Ascending is the default sort order.
The statement in Example 3 assigns only the franchisees’ records to the records variable. The
statement in Example 4 assigns only the records for stores having sales of more than $100,000.
The statement in Example 5 uses the Like operator and the asterisk pattern-matching character
to select only records whose State field begins with the letter C. (You learned about the Like
operator and pattern-matching characters in Chapter 8.) The records are then arranged in
descending order by the City field.

The syntax and examples in Figure 13-33 merely assign the selected and/or arranged records
to a variable. To actually view the records, you need to assign the variable’s contents to
the DataSource property of a BindingSource object. The syntax for doing this is shown in
Figure 13-34 along with an example of using the syntax. Any control that is bound to the
BindingSource object will display the appropriate field(s) when the application is started.

 (continued)

Using LINQ to Select and Arrange Records in a Dataset
Basic syntax
Dim variableName = From elementName In dataset.table
 [Where condition]
 [Order By elementName.fieldName1 [Ascending | Descending]
 [, elementName.fieldNameN [Ascending | Descending]]]
 Select elementName

Example 1
Dim records = From store In StoresDataSet.tblStores
 Select store
selects all of the records from the dataset

Example 2
Dim records = From store In StoresDataSet.tblStores
 Order By store.Sales
 Select store
selects all of the records from the dataset and arranges them in ascending order
by the Sales field

Example 3
Dim records = From store In StoresDataSet.tblStores
 Where store.Ownership.ToUpper = "F"
 Select store
selects only the franchisees’ records from the dataset

Example 4
Dim records = From store In StoresDataSet.tblStores
 Where store.Sales > 100000
 Select store
selects from the dataset only the records for stores having sales of more than $100,000

Example 5
Dim records = From store In StoresDataSet.tblStores
 Where store.State.ToUpper Like "C*"
 Order By store.City Descending
 Select store
selects from the dataset only the records whose State field begins with the letter C and
arranges them in descending order by the City field

Figure 13-33 Basic LINQ syntax and examples for selecting and arranging records in a dataset

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Working with Access Databases and LINQ

756

Figure 13-34 Syntax and an example of assigning a LINQ variable’s contents to a
BindingSource object

Assigning a LINQ Variable’s Contents to a BindingSource Object
Basic syntax
bindingSource.DataSource = variableName.AsDataView

Example
TblStoresBindingSource.DataSource = records.AsDataView
assigns the contents of the records variable (from Figure 13-33) to the TblStoresBindingSource
object

To use LINQ to select specific records in the Adalene Fashions application:

1. If necessary, start Visual Studio 2015. Open the Adalene Solution (Adalene Solution.sln)
file contained in the VB2015\Chap13\Adalene Solution-LINQ folder. The Find State button
in the interface will display records whose State field begins with one or more characters
entered by the user.

2. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

3. The btnFind_Click procedure will use LINQ to select the appropriate records.
Therefore, you will change the Option Infer setting from Off to On. Locate the Option
Infer Off statement, and then change Off to On. Press the Tab key twice, and then
type ' using LINQ.

4. Locate the btnFind_Click procedure. The InputBox function prompts the user either
to enter the first letter(s) in the state ID or to leave the input area empty. The user’s
response is converted to uppercase and assigned to the strState variable. Click the
blank line above the procedure’s End Sub clause.

5. First, you will enter the LINQ statement to select the appropriate records. The
condition in the statement’s Where clause will use the Like operator and the asterisk
pattern-matching character to compare the contents of each record’s State field with
the user’s entry followed by zero or more characters. Enter the following lines of code:

 Dim records = From store In StoresDataSet.tblStores
 Where store.State.ToUpper Like strState & "*"
 Select store

6. Next, you will display the contents of the records variable in the DataGridView
control. You do this by assigning the variable to the TblStoresBindingSource object’s
DataSource property. Enter the following assignment statement:

TblStoresBindingSource.DataSource = records.AsDataView

Figure 13-35 shows the code entered in the General Declarations section and the btnFind_Click
procedure.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

757

Creating a Query L E S S O N B

To test the btnFind_Click procedure:

1. Save the solution and then start the application. The 20 records in the dataset appear in
the DataGridView control.

2. Click the Find State button. First, you will find all of the records whose State
field begins with the letter I. Type i and press Enter. Three records appear in the
DataGridView control: two for Illinois (IL) and one for Indiana (IN). See Figure 13-36.

START HERE

General Declarations section
Option Explicit On
Option Strict On
Option Infer On ' using LINQ

btnFind_Click procedure
Private Sub btnFind_Click(sender As Object, e As EventArgs
) Handles btnFind.Click
 ' displays records whose State field
 ' begins with the user's entry

 Const strPROMPT As String = "First letter(s) in the " &
 "state ID (leave empty to retrieve all records):"
 Dim strState As String

 ' get letters
 strState = InputBox(strPROMPT, "Find State").ToUpper
 ' select and display records
 Dim records = From store In StoresDataSet.tblStores
 Where store.State.ToUpper Like strState & "*"
 Select store
 TblStoresBindingSource.DataSource = records.AsDataView

End Sub

Figure 13-35 Code entered in the General Declarations section and btnFind_Click procedure

set Option
Infer to On

assigns the LINQ variable
to the BindingSource object

LINQ code to
select the records

Figure 13-36 Records whose State field begins with the letter I

3. Next, you will display only the Indiana record. Click the Find State button, type in and
then press Enter. The Indiana (IN) record appears in the DataGridView control.

4. Finally, you will display all of the records. Click the Find State button and then
press Enter.

5. You can click a column header to sort the records in order by the associated field. Click
State to display the records in ascending order by the State field. Now click State again
to display the records in descending order by the State field.

6. Click the Exit button. Close the Code Editor window and then close the solution.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Working with Access Databases and LINQ

758

Customizing a BindingNavigator Control
The BindingNavigator control contains buttons that allow you to move to a different record
in the dataset, add or delete a record, and save any changes made to the dataset. At times, you
may want to include additional items on the control, such as another button, a text box, or a
drop-down button. The steps for adding and deleting items are shown in Figure 13-37.

In the following set of steps, you will add a DropDownButton to the BindingNavigator control in
the Adalene Fashions application. The DropDownButton will display a menu that contains three
options: All Stores, Company-Owned, and Franchisee. The All Stores option will display the
total sales for all stores. The Company-Owned and Franchisee options will display the total sales
for company-owned stores and franchisees, respectively.

To add a DropDownButton to the BindingNavigator control:

1. Open the Adalene Solution (Adalene Solution.sln) file contained in the VB2015\
Chap13\Adalene Solution-Aggregate folder.

2. Click an empty area on the TblStoresBindingNavigator control, and then click the
control’s task box.

3. Click Edit Items in the task list to open the Items Collection Editor dialog box.
Click the down arrow in the “Select item and add to list below” box, and then click
DropDownButton in the list. Click the Add button. See Figure 13-38.

START HERE

Customizing a BindingNavigator Control
To add an item to a BindingNavigator control:
1. Click the BindingNavigator control’s task box, and then click Edit Items to open the Items
 Collection Editor window.
2. If necessary, click the “Select item and add to list below” arrow.
3. Click the item you want to add to the BindingNavigator control, and then click the Add button.
4. If necessary, you can use the up and down arrows to reposition the item.

To delete an item from a BindingNavigator control:
1. Click the BindingNavigator control’s task box, and then click Edit Items to open the Items
 Collection Editor window.
2. In the Members list, click the item you want to remove and then click the X button.

Figure 13-37 Instructions for customizing a BindingNavigator control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

759

Customizing a BindingNavigator Control L E S S O N B

4. Click the Alphabetical button to display the property names in alphabetical order.
Click (Name) in the properties list, and then type ddbSales and press Enter. Change
the DisplayStyle and Text properties to Text and &Total Sales, respectively.

5. Click DropDownItems in the Properties list, and then click the ... (ellipsis) button.
Click the Add button to add a menu item to the DropDownButton’s menu. Click the
Alphabetical button to display the property names in alphabetical order. Change
the menu item’s Name, DisplayStyle, and Text properties to mnuAll, Text, and
&All Stores, respectively. See Figure 13-39.

Figure 13-38 Items Collection Editor dialog box

DropDownButton
added to the list

Figure 13-39 First drop-down menu item added to the menu

6. Click the Add button to add another menu item to the menu. Change the menu item’s
Name, DisplayStyle, and Text properties to mnuCompany, Text, and &Company-Owned,
respectively.

7. Click the Add button once again. Change the menu item’s Name, DisplayStyle, and Text
properties to mnuFranchisee, Text, and &Franchisee, respectively.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Working with Access Databases and LINQ

760

LINQ aggregate operators
Syntax
[Dim] variableName [As dataType] =
 Aggregate elementName In dataset.table
 [Where condition]
 Select elementName.fieldName
 Into aggregateOperator

Example 1
Dim intTotal As Integer =
 Aggregate store In StoresDataSet.tblStores
 Select store.Sales Into Sum
calculates the total of the sales amount contained in the dataset and assigns the result to the
intTotal variable

Example 2
Dim intHighestCoOwned As Integer
intHighestCoOwned =
 Aggregate store In StoresDataSet.tblStores
 Where store.Ownership.ToUpper = "C"
 Select store.Sales Into Max
finds the highest sales amount for a company-owned store and assigns the result to the
intHighestCoOwned variable

Example 3
Dim dblAvg As Double =
 Aggregate store In StoresDataSet.tblStores
 Where store.State.ToUpper = "GA"
 Select store.Sales Into Average
calculates the average of the sales amounts for stores in Georgia and assigns the result to the
dblAvg variable

Example 4
Dim intCounter As Integer =
 Aggregate store In StoresDataSet.tblStores
 Where store.City.ToUpper = "CHICAGO"
 Into Count
counts the number of stores in the city of Chicago and assigns the result to the intCounter
variable (The Count operator is the only operator that does not need the Select clause.)

8. Click the OK button to close the Items Collection Editor (ddbSales.DropDownItems)
dialog box, and then click the OK button to close the Items Collection Editor dialog box.

9. Save the solution. Click the down arrow on the Total Sales button. See Figure 13-40.

Figure 13-40 DropDownButton’s menu

10. Click the form’s title bar to close the Total Sales menu.

Using the LINQ Aggregate Operators
LINQ provides several aggregate operators—such as Average, Count, Max, Min, and Sum—
that you can use when querying a dataset. An aggregate operator returns a single value from
a group of values. The Sum operator, for example, returns the sum of the values in the group,
whereas the Min operator returns the smallest value in the group. You include an aggregate
operator in a LINQ statement using the syntax shown in Figure 13-41. The figure also includes
examples of using the syntax.

Figure 13-41 Syntax and examples of the LINQ aggregate operators (continues)

Ch13B-Aggregate

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

761

Using the LINQ Aggregate Operators L E S S O N B

Figure 13-42 Completed Click event procedures for the three menu items (continues)

Figure 13-41 Syntax and examples of the LINQ aggregate operators

 (continued)

LINQ aggregate operators
Syntax
[Dim] variableName [As dataType] =
 Aggregate elementName In dataset.table
 [Where condition]
 Select elementName.fieldName
 Into aggregateOperator

Example 1
Dim intTotal As Integer =
 Aggregate store In StoresDataSet.tblStores
 Select store.Sales Into Sum
calculates the total of the sales amount contained in the dataset and assigns the result to the
intTotal variable

Example 2
Dim intHighestCoOwned As Integer
intHighestCoOwned =
 Aggregate store In StoresDataSet.tblStores
 Where store.Ownership.ToUpper = "C"
 Select store.Sales Into Max
finds the highest sales amount for a company-owned store and assigns the result to the
intHighestCoOwned variable

Example 3
Dim dblAvg As Double =
 Aggregate store In StoresDataSet.tblStores
 Where store.State.ToUpper = "GA"
 Select store.Sales Into Average
calculates the average of the sales amounts for stores in Georgia and assigns the result to the
dblAvg variable

Example 4
Dim intCounter As Integer =
 Aggregate store In StoresDataSet.tblStores
 Where store.City.ToUpper = "CHICAGO"
 Into Count
counts the number of stores in the city of Chicago and assigns the result to the intCounter
variable (The Count operator is the only operator that does not need the Select clause.)

To use the Sum aggregate operator to code the DropDownButton’s menu items:

1. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. Open the code templates for the mnuAll_Click, mnuCompany_Click, and
mnuFranchisee_Click procedures. Type the three comments, three Dim statements,
and three MessageBox.Show methods shown in Figure 13-42.

START HERE

Private Sub mnuAll_Click(sender As Object, e As EventArgs
) Handles mnuAll.Click
 ' displays the total sales for all stores

 Dim intTotal As Integer =
 Aggregate store In StoresDataSet.tblStores
 Select store.Sales Into Sum

 MessageBox.Show("Total sales for all stores: " &
 intTotal.ToString("C0"),
 "Adalene Fashions",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
End Sub

Private Sub mnuCompany_Click(sender As Object, e As EventArgs
) Handles mnuCompany.Click
 ' displays the total sales for company-owned stores

 Dim intTotal As Integer =
 Aggregate store In StoresDataSet.tblStores
 Where store.Ownership.ToUpper = "C"
 Select store.Sales Into Sum

 MessageBox.Show("Total sales for company-owned stores: " &
 intTotal.ToString("C0"),
 "Adalene Fashions",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
End Sub

Private Sub mnuFranchisee_Click(sender As Object, e As EventArgs
) Handles mnuFranchisee.Click
 ' displays the total sales for franchisees

 Dim intTotal As Integer =
 Aggregate store In StoresDataSet.tblStores
 Where store.Ownership.ToUpper = "F"
 Select store.Sales Into Sum

 MessageBox.Show("Total sales for franchisees: " &
 intTotal.ToString("C0"),
 "Adalene Fashions",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
End Sub

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Working with Access Databases and LINQ

762

 (continued)

Figure 13-42 Completed Click event procedures for the three menu items

Private Sub mnuAll_Click(sender As Object, e As EventArgs
) Handles mnuAll.Click
 ' displays the total sales for all stores

 Dim intTotal As Integer =
 Aggregate store In StoresDataSet.tblStores
 Select store.Sales Into Sum

 MessageBox.Show("Total sales for all stores: " &
 intTotal.ToString("C0"),
 "Adalene Fashions",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
End Sub

Private Sub mnuCompany_Click(sender As Object, e As EventArgs
) Handles mnuCompany.Click
 ' displays the total sales for company-owned stores

 Dim intTotal As Integer =
 Aggregate store In StoresDataSet.tblStores
 Where store.Ownership.ToUpper = "C"
 Select store.Sales Into Sum

 MessageBox.Show("Total sales for company-owned stores: " &
 intTotal.ToString("C0"),
 "Adalene Fashions",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
End Sub

Private Sub mnuFranchisee_Click(sender As Object, e As EventArgs
) Handles mnuFranchisee.Click
 ' displays the total sales for franchisees

 Dim intTotal As Integer =
 Aggregate store In StoresDataSet.tblStores
 Where store.Ownership.ToUpper = "F"
 Select store.Sales Into Sum

 MessageBox.Show("Total sales for franchisees: " &
 intTotal.ToString("C0"),
 "Adalene Fashions",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
End Sub

Note: Instead of using the Dim statement to both declare and assign a LINQ value to a
variable, you can declare the variable in the Dim statement and then use an assignment
statement to assign the LINQ value to it. For example, you can replace the Dim statement in
the mnuAll_Click procedure in Figure 13-42 with the following two statements:

Dim intTotal As Integer
intTotal =
 Aggregate store In StoresDataSet.tblStores
 Select store.Sales Into Sum

To test the code in each menu item’s Click event procedure:

1. Save the solution and then start the application. Click the down arrow on the Total
Sales button and then click All Stores (or you can press Alt+t and then type the
letter a). The total sales for all stores appears in a message box. See Figure 13-43.

START HERE

Figure 13-43 Message box showing the total sales for all stores

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

763

Lesson B Key Terms L E S S O N B

2. Close the message box. On your own, display the total sales for company-owned
stores and for franchisees; the total sales amounts should be $2,036,500 and $861,740,
respectively.

3. Close the message box and then stop the application. Close the Code Editor window
and then close the solution.

Lesson B Summary
 • To use LINQ (with Option Infer set to On) to select and arrange records in a dataset:

Use the following syntax:

 Dim variableName = From elementName In dataset.table
 [Where condition]
 [Order By elementName.fieldName1 [Ascending | Descending]
 [, elementName.fieldNameN [Ascending | Descending]]]
 Select elementName

 • To assign a LINQ variable’s contents to a BindingSource object:

Use the following syntax: bindingSource.DataSource = variableName.AsDataView

 • To either add items to or delete items from a BindingNavigator control:

Follow the instructions shown in Figure 13-37 in this chapter.

 • To use the LINQ aggregate operators:

Use the following syntax:

 [Dim] variableName [As dataType] =
 Aggregate elementName In dataset.table
 [Where condition]
 Select elementName.fieldName
 Into aggregateOperator

Lesson B Key Terms
Aggregate operator—an operator that returns a single value from a group of values; LINQ
provides the Average, Count, Max, Min, and Sum aggregate operators

Language-Integrated Query—LINQ; the query language built into Visual Basic 2015

LINQ—an acronym for Language-Integrated Query

Order By clause—used in LINQ to arrange the records in a dataset

Query—specifies the records to select in a dataset and the order in which to arrange the records

Where clause—used in LINQ to limit the records you want to view in a dataset

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

764

C H A P T E R 1 3 Working with Access Databases and LINQ

Lesson B Review Questions
1. Which of the following will select only records whose City field begins with the letter L?

a. Dim records = From StoresDataSet.tblStores
 Select City.ToUpper Like "L*"

b. Dim records = From tblStores
 Where tblStores.City.ToUpper Like "L*"
 Select city

c. Dim records =
 From store In StoresDataSet.tblStores
 Where store.City.ToUpper Like "L*"
 Select store

d. Dim records =
 From store In StoresDataSet.tblStores
 Where tblStores.City.ToUpper Like "L*"
 Select store

2. Which of the following calculates the average of the values stored in a numeric field
named Population?

a. Dim dblAvg As Double =
 Aggregate city In CitiesDataSet.tblCities
 Select city.Population
 Into Average

b. Dim dblAvg As Double =
 From city In CitiesDataSet.tblCities
 Select city.Population
 Into Average

c. Dim dblAvg As Double =
 From city In CitiesDataSet.tblCities
 Aggregate city.Population
 Into Average

d. Dim dblAvg As Double =
 From city In CitiesDataSet.tblCities
 Average city.Population

3. Which of the following statements selects all of the records in the tblCities table?

a. Dim records =
 From city In CitiesDataSet.tblCities
 Select All city

b. Dim records =
 From city In CitiesDataSet.tblCities
 Select city

c. Dim records =
 Select city From CitiesDataSet.tblCities

d. Dim records = From CitiesDataSet.tblCities
 Select tblCities.city

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

765

Lesson B Exercises L E S S O N B

4. The tblInventory table contains a numeric field named InStock. Which of the following
statements selects all records having at least 500 of the item in stock?

a. Dim records =
 From item In InventoryDataSet.tblInventory
 Where item >= 500
 Select item.InStock

b. Dim records =
 From item In InventoryDataSet.tblInventory
 Select item.InStock >= 500

c. Dim records =
 From item In InventoryDataSet.tblInventory
 Where item.InStock >= 500
 Select item

d. Dim records =
 Select item.InStock >= 500
 From tblInventory

5. The tblInventory table contains a numeric field named InStock. Which of the following
statements calculates the total of the items in inventory?

a. Dim intTotal As Integer =
 Aggregate item In InventoryDataSet.tblInventory
 Select item.InStock
 Into Sum

b. Dim intTotal As Integer =
 Sum item In InventoryDataSet.tblInventory
 Select item.InStock
 Into Total

c. Dim intTotal As Integer =
 Aggregate InventoryDataSet.tblInventory.item
 Select item.InStock
 Into Sum

d. Dim intTotal As Integer =
 Sum item In InventoryDataSet.tblInventory.InStock

6. In a LINQ statement, which clause limits the records that will be selected?

a. Limit
b. Order By

c. Select
d. Where

Lesson B Exercises
1. The tblBooks table contains five fields. The BookNum, Price, and QuantityInStock

fields are numeric; the Title and Author fields contain text. The dataset’s name is
BooksDataSet.

a. Write a LINQ statement that arranges the records in ascending order by the Author field.
b. Write a LINQ statement that selects records having a price of at least $12.75.
c. Write a LINQ statement that selects records having more than 100 books in inventory.
d. Write a LINQ statement that selects the books written by George Marten and

arranges the books in descending order by the book’s price.

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

766

C H A P T E R 1 3 Working with Access Databases and LINQ

2. In this exercise, you modify one of the Adalene Fashions applications from this lesson.
Use Windows to make a copy of the Adalene Solution-Aggregate folder. Rename the
copy Modified Adalene Solution-Aggregate. Open the Adalene Solution (Adalene
Solution.sln) file contained in the Modified Adalene Solution-Aggregate folder.
Add a DropDownButton to the TblStoresBindingNavigator control. Change the
DropDownButton’s name to ddbOwned. Change its DisplayStyle and Text properties
to Text and &Owned, respectively. Use the DropDownItems property to add two
menu items to the DropDownButton’s menu: Company-Owned and Franchisee. Be
sure to change each menu item’s name as well as its DisplayStyle and Text properties.
The Company-Owned menu item should display (in a message box) the number of
company-owned stores; the Franchisee menu item should display (in a message box)
the number of franchisees. Code each menu item’s Click event procedure. Test the
application appropriately.

3. Open the Magazine Solution (Magazine Solution.sln) file contained in the VB2015\
Chap13\Magazine Solution-Introductory folder. The application is connected to the
Magazines database, which is stored in the Magazines.accdb file. The database contains
a table named tblMagazine. The table’s Cost field is numeric; its Code and MagName
fields contain text. Start the application to view the records contained in the dataset,
and then stop the application. Open the Code Editor window. The btnCode_Click
procedure should display the record whose Code field exactly matches the user’s entry.
The btnName_Click procedure should display the records whose MagName field begins
with the one or more characters entered by the user. The btnAll_Click procedure should
display all of the records. Code the procedures and then test the application appropriately.

4. The tblCds table contains three fields. The CdNum and Price fields are numeric; the
Title field contains text. The dataset’s name is CdsDataSet. Write a LINQ statement
that selects records having titles that begin with the word “The” (in either uppercase or
lowercase). Then write a LINQ statement that calculates the average price of a CD.

5. Open the Magazine Solution (Magazine Solution.sln) file contained in the VB2015\
Chap13\Magazine Solution-Intermediate folder. The application is connected to the
Magazines database, which is stored in the Magazines.accdb file. The database contains
a table named tblMagazine. The table’s Cost field is numeric; its Code and MagName
fields contain text. Start the application to view the records contained in the dataset,
and then stop the application. Open the Code Editor window. Code the btnAll_Click
procedure so that it displays all of the records. Code the btnCost_Click procedure so
that it displays records having a cost equal to or greater than the amount entered by the
user. Code the btnAverage_Click procedure so that it displays (in a message box) the
average cost of a magazine. Test the application appropriately.

6. Open the MusicBox Solution (MusicBox Solution.sln) file contained in the VB2015\
Chap13\MusicBox Solution-LINQ folder. The application is connected to the MusicBox
database, which is stored in the MusicBox.accdb file. The tblBox table in the database
contains four text fields. Start the application to view the records contained in the dataset,
and then stop the application. Open the Code Editor window. Code the btnAll_Click
procedure so that it displays all of the records. Code the btnShape_Click procedure so
that it displays the records for music boxes having the shape selected by the user. Code
the btnSource_Click procedure so that it displays the records for music boxes either
received as gifts or purchased by the user. Code the btnCount_Click procedure to display
the number of music boxes in the dataset. Test the application appropriately.

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

767

Completing the Games Galore Application L E S S O N C

❚ LESSON C
After studying Lesson C, you should be able to:

 • Prevent the user from adding and deleting records

 • Remove buttons from a BindingNavigator control

 • Add a label, a text box, and a button to a BindingNavigator control

Completing the Games Galore Application
Your task in this chapter is to create an application for the Games Galore store, which sells new
and used video games. The video game information is contained in a Microsoft Access database
named Games. The Games database is stored in the Games.accdb file and contains one table
named tblGames. The table has seven fields and 35 records. Figure 13-44 shows only the first 10
records. The ID, Price, and Quantity fields are numeric; the remaining fields contain text.

Figure 13-44 First 10 records in the tblGames table

The Games Galore application will display the records in a DataGridView control. It will also
allow the store manager to display only the games for a specific platform (Xbox, PlayStation, or
Wii) as well as the total value of the games in the store.

To begin modifying the Games Galore application:

1. If necessary, start Visual Studio 2015. Open the VB2015\Chap13\Games Solution
(Games Solution.sln) file.

2. In this application, the user will not be allowed to add, edit, or delete records. If
necessary, click the TblGamesDataGridView control to select it. Click the control’s
task box to open its task list. Deselect the Enable Adding, Enable Editing, and
Enable Deleting check boxes. Click the form’s title bar to close the task list.

3. Click the TblGamesBindingNavigator control, and then click its task box. Click Edit
Items on the task list. Click BindingNavigatorAddNewItem in the Members list, and
then click the X button to remove the item from the list. This also removes the Add
new button (the plus sign) from the TblGamesBindingNavigator control.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Working with Access Databases and LINQ

768

4. The BindingNavigatorDeleteItem member should be selected in the Members list. Click
the X button to remove the item from the list. This also removes the Delete button (the
letter X) from the TblGamesBindingNavigator control.

5. Click the X button again to remove the TblGamesBindingNavigatorSaveItem member.
This also removes the Save Data button (the disk) from the TblGamesBindingNavigator
control.

6. Next, you will add a label and a text box for entering the platform designation. Click
the down arrow in the “Select item and add to list below” box, and then click Label in
the list. Click the Add button. Click the Alphabetical button to display the property
names in alphabetical order. Click Text in the properties list (if necessary), and then
type &Platform: and press Enter.

7. Click the down arrow in the “Select item and add to list below” box, and then click
TextBox in the list. Click the Add button. Change the text box’s name to txtPlatform.

8. Next, you will add a button that, when clicked, will display the games whose platform
designation is entered in the text box. Click the down arrow in the “Select item and
add to list below” box, and then click Button in the list. Click the Add button. Change
the button’s name to btnGo. Also change its DisplayStyle and Text properties to Text
and &Go, respectively.

9. Finally, you will add a button for displaying the total value of the games. Click the
Add button again to add another button to the BindingNavigator control. Change the
button’s name to btnTotal. Also change its DisplayStyle and Text properties to Text
and &Total Value, respectively. See Figure 13-45.

Figure 13-45 Completed Items Collection Editor dialog box

label, text box, and
buttons added to
the BindingNavigator
control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

769

Coding the Games Galore Application L E S S O N C

Coding the Games Galore Application
The btnGo_Click procedure should display only records whose Platform field begins with the
one or more characters entered in the txtPlatform control. If the text box is empty, the procedure
should display all of the records.

To code and then test the btnGo_Click procedure:

1. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. Delete the TblGamesBindingNavigatorSaveItem_Click procedure.

3. Open the code template for the btnGo_Click procedure. Type the comment and code
shown in Figure 13-47.

START HERE

Figure 13-46 Completed TblGamesBindingNavigator control

10. Click the OK button to close the dialog box, and then click the form’s title bar. See
Figure 13-46.

Figure 13-47 btnGo_Click procedure

4. Save the solution and then start the application. The 35 records appear in the
DataGridView control.

5. Click the Platform text box (or press Alt+p), and then type the letter w. Click the Go
button (or press Alt+g). The DataGridView control shows only the seven games for the
Wii. See Figure 13-48.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Working with Access Databases and LINQ

770

Figure 13-48 Games for the Wii

6. Delete the letter w from the Platform text box, and then click the Go button. The 35
records appear in the DataGridView control.

7. Click the Close button on the form’s title bar to stop the application.

The btnTotal_Click procedure should display the total value of the games in the store. The total
value is calculated by multiplying the value in each game’s Quantity field by the value in its Price
field, using the Sum aggregate operator to accumulate the results.

To code and then test the btnTotal_Click procedure:

1. Open the code template for the btnTotal_Click procedure. Type the comment and code
shown in Figure 13-49.

START HERE

Figure 13-49 btnTotal_Click procedure

2. Save the solution and then start the application. Click the Total Value button (or press
Alt+t). The total value of the games appears in a message box. See Figure 13-50.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

771

Lesson C Review Questions L E S S O N C

3. Close the message box and then stop the application. Close the Code Editor window
and then close the solution.

Lesson C Summary
 • To prevent the user from adding, editing, or deleting records in a DataGridView control:

Click the DataGridView control’s task box, and then deselect the Enable Adding, Enable
Editing, and Enable Deleting check boxes.

 • To delete items from a BindingNavigator control:

Click the BindingNavigator control’s task box, and then click Edit Items. In the Members list,
click the item you want to remove. Click the X button.

 • To add controls to a BindingNavigator control:

Click the BindingNavigator control’s task box, and then click Edit Items. Use the “Select item
and add to list below” box and the Add button to add the appropriate control.

Lesson C Key Terms
There are no key terms in Lesson C.

Lesson C Review Questions
1. The Enable Deleting check box in a _____________________ control’s task list

determines whether a record can be deleted from the control.

a. BindingNavigator
b. BindingSource

c. DataBindingNavigator
d. DataGridView

2. The tblBooks table in the Books database contains a numeric field named BookNumber.
Which of the following will select book number 401 from the BooksDataSet?

a. Dim records = From book In BooksDataSet.tblBooks
 Where book.BookNumber = "401" Select book

b. Dim records = From book In BooksDataSet.tblBooks
 Select book.BookNumber = 401

Figure 13-50 Message box showing the total value of the games

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

772

C H A P T E R 1 3 Working with Access Databases and LINQ

c. Dim records = From book In BooksDataSet.tblBooks
 Where book.BookNumber = 401
 Select book

d. Dim records = From book In BooksDataSet.tblBooks
 Select BookNumber = 401

3. Which of the following determines the number of records in the BooksDataSet?

a. Dim intNum As Integer =
 Aggregate book In BooksDataSet.tblBooks
 In Counter

b. Dim intNum As Integer =
 Aggregate book In BooksDataSet.tblBooks
 Into Count

c. Dim intNum As Integer =
 Aggregate book In BooksDataSet.tblBooks
 Into Sum

d. Dim intNum As Integer =
 Aggregate book In BooksDataSet.tblBooks
 Into Total

4. The tblBooks table in the Books database contains a numeric field named Quantity.
Which of the following determines the total number of books in the BooksDataSet?

a. Dim intNumBooks As Integer =
 Aggregate book In BooksDataSet.tblBooks
 Into Count

b. Dim intNumBooks As Integer =
 Aggregate book In BooksDataSet.tblBooks
 Select book.Quantity
 Into Sum

c. Dim intNumBooks As Integer =
 Aggregate book In BooksDataSet.tblBooks
 Into Sum

d. Dim intNumBooks As Integer =
 Aggregate book In BooksDataSet.tblBooks
 Into Total

5. The tblBooks table in the Books database contains a numeric field named Price. Which
of the following determines the number of books whose price is at least $20? The
dataset’s name is BooksDataSet.

a. Dim intNum As Integer =
 Aggregate book In BooksDataSet.tblBooks
 Where book.Price > 20
 Into Count

b. Dim intNum As Integer =
 Aggregate book In BooksDataSet.tblBooks
 Where book.Price >= 20
 Into Sum

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

773

Lesson C Exercises L E S S O N C

c. Dim intNum As Integer =
 Aggregate book In BooksDataSet.tblBooks
 Where book.Price >= 20
 Select book

d. Dim intNum As Integer =
 Aggregate book In BooksDataSet.tblBooks
 Where book.Price >= 20
 Into Count

Lesson C Exercises
1. In this exercise, you modify the Games Galore application from this lesson. Use

Windows to make a copy of the Games Solution folder. Rename the copy Games
Solution-Rating. Open the Games Solution (Games Solution.sln) file contained in
the VB2015\Chap13\Games Solution-Rating folder. Add a DropDownButton to the
TblGamesBindingNavigator. The DropDownButton should allow the user to display
only the games for a specific rating: M, E10+, T, or E. The ratings are stored in the
Rating field. (The M, E10+, T, and E stand for Mature, Everyone 10 and over, Teen, and
Everyone, respectively.) Test the application appropriately.

2. In this exercise, you modify the Games Galore application from this lesson. Use
Windows to make a copy of the Games Solution folder. Rename the copy Games
Solution-NewUsed. Open the Games Solution (Games Solution.sln) file contained
in the VB2015\Chap13\Games Solution-NewUsed folder. Add a DropDownButton
to the TblGamesBindingNavigator. The DropDownButton should allow the user to
display either new games or used games. The game’s status (new or used) is stored in its
NewUsed field. Test the application appropriately.

3. In this exercise, you modify the Games Galore application from this lesson. Use
Windows to make a copy of the Games Solution folder. Rename the copy Games
Solution-TotalGames. Open the Games Solution (Games Solution.sln) file contained
in the VB2015\Chap13\Games Solution-TotalGames folder. Add a button to the
TblGamesBindingNavigator. The button should display three values in a message box:
the number of new games available for sale, the number of used games available for sale,
and the total number of games available for sale. The quantity of each game is stored in
its Quantity field. Test the application appropriately.

4. Open the Playhouse Solution (Playhouse Solution.sln) file contained in the VB2015\
Chap13\Playhouse Solution folder. Connect the application to a Microsoft Access
database named Play. The database is stored in the VB2015\Chap13\Access Databases\
Play.accdb file. The database contains one table named tblReservations. Each record has
three fields: a numeric field named Seat and two text fields named Patron and Phone.
The application should display the contents of the Play database in a DataGridView
control. It should also allow the user to add, delete, modify, and save records. Enter
the Try...Catch statement in the Save Data button’s Click event procedure. Test the
application appropriately.

5. Open the Sports Action Solution (Sports Action Solution.sln) file contained in the
VB2015\Chap13\Sports Action Solution folder. Connect the application to a Microsoft
Access database named Sports. The database is stored in the VB2015\Chap13\Access
Databases\Sports.accdb file. The database contains one table named tblScores. Each

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

774

C H A P T E R 1 3 Working with Access Databases and LINQ

record has five fields that store the following information: a unique number that
identifies the game, the date the game was played, the name of the opposing team, the
home team’s score, and the opposing team’s score. The application should display each
record contained in the Sports database, one at a time, in label controls. (Hint: First,
change each field object’s control type to Label in the Data Sources window. Then,
change the table object’s control type to Details before dragging it to the form.) The
user should not be allowed to add, delete, edit, or save records. Include a button on a
BindingNavigator control to allow the user to display the average of the home team’s
scores. Code the application and then test it appropriately.

6. In this exercise, you use a Microsoft Access database named Courses. The database
is stored in the VB2015\Chap13\Access Databases\Courses.accdb file. The database
contains one table named tblCourses. Each record has the following four fields: ID,
Title, CreditHours, and Grade. The CreditHours field is numeric; the other fields
contain text.

a. Open the Courses Solution (Courses Solution.sln) file contained in the VB2015\
Chap13\Courses Solution folder. Connect the application to the Courses database.
Drag the table into the group box control, and then dock the DataGridView control
in its parent container. (In this case, the parent container is the group box control.)
Use the task list to disable Adding, Editing, and Deleting. Change the DataGridView
control’s AutoSizeColumnsMode property to Fill. Change its RowHeadersVisible
and Enabled properties to False. Also change its SelectionMode property to
FullRowSelect.

b. Remove the BindingNavigator control from the form by deleting the
BindingNavigator object from the component tray.

c. Open the Code Editor window. Delete the Save Data button’s Click event procedure.
Code the btnNext_Click and btnPrevious_Click procedures. Code the btnDisplay_Click
procedure to display either all the records or only the records matching a specific grade.
Test the application appropriately.

 7. In this exercise, you use a Microsoft Access database named Trips. The database,
which is stored in the VB2015\Chap13\Access Databases\Trips.accdb file, keeps track
of a person’s business and pleasure trips. The database contains one table named
tblTrips. Each record has the following four text fields: TripDate, Origin, Destination,
BusinessPleasure. The user should be able to display the number of trips from a specific
origin to a specific destination, such as from Chicago to Atlanta. He or she should also be
able to display the total number of business trips and the total number of pleasure trips.

a. Create an application, using the following names for the solution and project,
respectively: Trips Solution and Trips Project. Save the application in the VB2015\
Chap13 folder.

b. Connect the application to the Trips database, and then drag the tblTrips object to
the form. Make the appropriate modifications to the DataGridView control. The
user should not be able to add, edit, delete, or save records.

c. Code the application. (Hint: You can use a logical operator in the Where clause.)
Use the application to answer the following questions:

 How many trips were made from Chicago to Nashville?
 How many trips were made from Atlanta to Los Angeles?
 How many business trips were taken?
 How many pleasure trips were taken?

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

775

Lesson C Exercises L E S S O N C

8. In this exercise, you use a Microsoft Access database named Calories. The database,
which is stored in the VB2015\Chap13\Access Databases\Calories.accdb file, keeps
track of the calories consumed during the day. The database contains one table named
tblCalories. Each record has the following six fields: Day, Breakfast, Lunch, Dinner,
Dessert, and Snack. The Day field is a text field; the other fields are numeric. The user
should be able to display the total number of calories consumed in the entire dataset.
He or she should also be able to display the total calories consumed for a specific meal,
such as the total calories consumed for breakfasts, lunches, dinners, desserts, or snacks.
In addition, the user should be able to display the total calories consumed on a specific
day, the number of days in which more than 1,200 calories were consumed, and the
average number of calories consumed per day.

a. Create an application, using the following names for the solution and project,
respectively: Calorie Counter Solution and Calorie Counter Project. Save the
application in the VB2015\Chap13 folder.

b. Connect the application to the Calories database, and then drag the tblCalories
object to the form. Make the appropriate modifications to the DataGridView control.
The user should not be able to add, edit, delete, or save records.

c. Code the application. Use the application to answer the following questions:
 How many calories were consumed in the entire dataset?
 How many calories were consumed for desserts?
 How many calories were consumed on 12/21/2017?
 On how many days were more than 1,200 calories consumed?
 What is the average number of calories consumed per day?

9. In this exercise, you modify the College Courses application from Exercise 6. Use
Windows to make a copy of the Courses Solution folder. Rename the copy Modified
Courses Solution. Open the Courses Solution (Courses Solution.sln) file contained in
the Modified Courses Solution folder. Add a Calculate GPA button to the form. Code
the button’s Click event procedure so that it displays the student’s GPA. (An A grade
is worth 4 points, a B is worth 3 points, and so on.) Display the GPA in a message box.
Test the application appropriately.

10. Open the VB2015\Chap13\Debug Solution\Debug Solution (Debug Solution.sln) file.
The application is connected to the Friends database stored in the Friends.accdb file.
The database contains one table named tblFriends. The table contains nine records.
Open the Code Editor window and review the existing code. Correct the code to
remove the jagged line that appears below one of the lines of code. Save the solution
and then start the application. Click the Fill button, and then click the Next and
Previous buttons. Notice that the application is not working correctly. Correct the
application’s code, and then test it appropriately.

ADVANCED

ADVANCED

SWAT THE BUGS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 14
Access Databases
and SQL

Creating the Oscar Winners Application

In this chapter, you will create the Oscar Winners application, which uses a
Microsoft Access database named Oscars. The database keeps track of the
annual Oscar winners in the following four categories: Actor in a Leading Role,
Actress in a Leading Role, Best Picture, and Animated Feature Film. The application
will display the records in a DataGridView control, which you learned about in
Chapter 13. It will also allow the user to both add records to and delete records
from the database.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

778

C H A P T E R 1 4 Access Databases and SQL

Previewing the Oscar Winners Application
Before you start the first lesson in this chapter, you will preview the completed application
contained in the VB2015\Chap14 folder.

To preview the completed application:

1. Use Windows to locate and then open the VB2015\Chap14 folder on your computer’s hard
disk or on the device designated by your instructor. Right-click Oscars (Oscars.exe) in the
list of filenames and then click Open. Eight records appear in a DataGridView control. As
Figure 14-1 indicates, the record for the year 2010 is missing.

START HERE

Figure 14-1 Oscar Winners application

the record for
year 2010 is
missing

2. Click the Year box in the Add new record section of the interface. Type 2010 and press
Tab. Type Jeff Bridges, Sandra Bullock, The Hurt Locker, and Up in the Actor,
Actress, Picture, and Animated boxes, respectively. Click the Add button. The record
you added appears in numerical order by the year. See Figure 14-2.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

779

Previewing the Oscar Winners Application

3. Next, you’ll verify that the record was saved to the database. Click the Exit button to
end the application, and then run the Oscars (Oscars.exe) file again. The record for the
year 2010 appears in the DataGridView control.

4. Now, you’ll delete the record. Click 2010 in the first column of the DataGridView
control; doing this highlights (selects) the entire record. It also selects the 2010 value
in the Delete record section’s list box. Click the Delete button. The “Delete record
for year 2010?” message appears in a message box. Click the Yes button to delete the
record. The computer removes the record from the DataGridView control, the dataset,
and the database.

5. Click 2009 in the first column of the DataGridView control, and then click the Delete
button. This time, click the No button in the Confirm Delete message box. The record
remains in the DataGridView control, the dataset, and the database.

6. Click the Exit button to end the application, and then run the Oscars (Oscars.exe) file
again. Notice that the 2010 record, which you deleted in Step 4, does not appear in the
DataGridView control.

7. Click the Exit button.

In Lesson A, you will learn how to add records to a dataset, delete records from a dataset, and
sort the records in a dataset. You will also learn how to save (to a database) the changes made to
a dataset. Lessons B and C cover SQL, which stands for Structured Query Language. You will
create the Oscar Winners application in Lesson C. Be sure to complete each lesson in full and do
all of the end-of-lesson questions and several exercises before continuing to the next lesson.

Figure 14-2 Result of adding the missing record

the record
you added

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

780

C H A P T E R 1 4 Access Databases and SQL

❚ LESSON A
After studying Lesson A, you should be able to:

 • Add records to a dataset

 • Delete records from a dataset

 • Sort the records in a dataset

Adding Records to a Dataset
In Chapter 13, you learned how to use a BindingNavigator control to add records to a dataset
and also delete records from a dataset. In this lesson, you will learn how to perform both tasks
without using a BindingNavigator control. The records will be added to and deleted from a
Microsoft Access database named Oscars. The database contains one table named tblOscars.
The table, which is shown in Figure 14-3, keeps track of the annual Oscar winners in the
following four categories: Actor in a Leading Role, Actress in a Leading Role, Best Picture,
and Animated Feature Film. The YearWon field is the primary key and contains numbers; the
remaining fields contain text.

Figure 14-3 Data contained in the tblOscars table

To open the Oscar Winners application:

1. If necessary, start Visual Studio 2015. Open the VB2015\Chap14\Oscars Solution\
Oscars Solution (Oscars Solution.sln) file. The Oscar Winners application is already
connected to the Oscars database, and the Oscars.accdb file’s Copy to Output Directory
property is set to Copy if newer.

2. Start the application. The lstDeleteYear control is bound to the YearWon field in the
dataset. This is accomplished by setting the control’s DataSource and DisplayMember
properties to TblOscarsBindingSource and YearWon, respectively. The text boxes in the
interface are named txtAddYear, txtActor, txtActress, txtPicture, and txtAnimated.
See Figure 14-4.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

781

Adding Records to a Dataset L E S S O N A

3. Press the down arrow key on your keyboard, slowly, several times. Each time the
highlight moves to a different row in the DataGridView control, the value in the current
row’s YearWon field is highlighted in the lstDeleteYear control.

4. Click the Exit button to end the application.

The btnAdd_Click procedure should add the record entered in the five text boxes to the
OscarsDataSet. Visual Basic provides several ways of adding records to a dataset. In this
lesson, you will use the syntax shown in Figure 14-5. The figure also includes examples of
using the syntax.

Figure 14-4 Records displayed in the TblOscarsDataGridView control

lstDeleteYear

Adding a Record to a Dataset
Syntax
dataSetName.tableName.AddtableNameRow(valueField1[,
 valueField2..., valueFieldN])

Examples

Figure 14-5 Syntax and examples of adding a record to a dataset

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

782

C H A P T E R 1 4 Access Databases and SQL

To begin coding the btnAdd_Click procedure:

1. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. Locate the btnAdd_Click procedure, and then click the blank line above the End Sub
clause.

3. The YearWon field in the dataset is numeric. Therefore, the procedure will need to
convert the value entered in the txtAddYear control to a number before storing it in the
YearWon field. Enter the following two statements. Press Enter twice after typing the
second statement.

 Dim intYear As Integer
 Integer.TryParse(txtAddYear.Text, intYear)

4. Next, the procedure will add the record to the OscarsDataSet. Enter the following
statement:

 OscarsDataSet.tblOscars.AddtblOscarsRow(intYear,
 txtActor.Text,
 txtActress.Text,
 txtPicture.Text,
 txtAnimated.Text)

5. Save the solution and then start the application. In the Add new record section of the
interface, type 2015 in the Year box, Eddie Redmayne in the Actor box, Julianne
Moore in the Actress box, Birdman in the Picture box, and Big Hero 6 in the
Animated box. Click the Add button. The new record appears as the last record in the
DataGridView control. See Figure 14-6.

START HERE

Figure 14-6 New record added to the DataGridView control

new record

6. Click the Exit button, and then start the application again. Notice that the new record
is missing from the DataGridView control. This is because the btnAdd_Click procedure
contains only the code for adding a record to a dataset. It does not yet contain the code
for actually saving the record to the Oscars database. You will add that code in the next
set of steps. Click the Exit button.

For the changes made to a dataset to be permanent, you need to save the changes to the
database associated with the dataset. You can accomplish this task using the Validate, EndEdit,
and Update methods, as shown in Figure 14-7. Because it is possible for an error to occur when
saving data to a database, you should place the methods within the Try block of a Try...Catch
statement, as shown in the figure. (The code in Figure 14-7 is similar to the code entered in the
Save Data button in Chapter 13’s Figure 13-23.)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

783

Adding Records to a Dataset L E S S O N A

To complete the btnAdd_Click procedure and then test it:

1. Enter the entire Try...Catch statement shown in Figure 14-8.

START HERE

Saving Dataset Changes to a Database
Syntax
Try
 Validate()
 bindingSourceName.EndEdit()
 tableAdapterName.Update(dataSetName.tableName)
 [optional message]
Catch ex As Exception
 [optional message]
End Try

Example

Figure 14-7 Syntax and an example of saving dataset changes to a database

Figure 14-8 Try...Catch statement entered in the btnAdd_Click procedure

2. Save the solution and then start the application. In the Add new record section of the
interface, type 2015, Eddie Redmayne, Julianne Moore, Birdman, and Big Hero 6
in the appropriate boxes. Click the Add button. The new record is added to the end of
the records in the DataGridView control, and the “Record saved” message appears in a
message box.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

784

C H A P T E R 1 4 Access Databases and SQL

3. Close the message box. Now observe what happens when you try to add a duplicate
record to the dataset. In this case, a duplicate record is a record whose YearWon field
value is already in the dataset. (Recall that the YearWon field is the primary key in
the tblOscars table.) Click the Add button again. A run time error occurs when the
computer attempts to process the AddtblOscarsRow function. The run time error
occurs because the 2015 value is already present in the dataset. See Figure 14-9.

Figure 14-9 Result of trying to add a duplicate record

the AddtblOscarsRow
function causes the error

description
of the error

4. Click Debug on the menu bar and then click Stop Debugging. You can fix this
problem by placing the AddtblOscarsRow function in a Try...Catch statement. Click the
blank line above the statement containing the AddtblOscarsRow function, and then
press Enter. Type Try and press Enter.

5. Move the statement containing the AddtblOscarsRow function, as well as the existing
Try...Catch statement, into the Try section of the new Try...Catch statement.

6. Enter the additional MessageBox.Show method in the second Catch section.
See Figure 14-10.

Figure 14-10 Additional code entered in the btnAdd_Click procedure

enter this
MessageBox.Show
method

7. Save the solution and then start the application. In the Add new record section of the
interface, type 2015 in the Year box and then click the Add button. The “Duplicate
record” message appears in a message box. Close the message box.

8. Next, enter the following new record: 2005, Jamie Foxx, Hilary Swank, Million
Dollar Baby, The Incredibles. Click the Add button and then close the message box.
The 2005 record appears as the last record in the DataGridView control.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

785

Sorting the Records in a Dataset L E S S O N A

9. Click the Year header in the DataGridView control. The records now appear in
numerical order by the YearWon field. As a result, the 2005 record appears first in the
DataGridView control.

10. Click the Exit button and then start the application again. Notice that the record
for the year 2005 is, once again, at the bottom of the list. This is because the records
are displayed in the order they appear in the tblOscars table. The record for the year
2005 was the last record entered into the table, so it appears as the last record in the
DataGridView control. You will fix this problem in the next section.

11. Click the Exit button.

Sorting the Records in a Dataset
As you observed in the previous set of steps, you can sort the records in a DataGridView control by
clicking the appropriate header while the application is running. You also can use the BindingSource
object’s Sort method in code. The method’s syntax is shown in Figure 14-11 along with an example
of using the syntax. If you want the records in a dataset to appear in a particular order when the
application is started, you enter the Sort method in the form’s Load event procedure.

Sorting the Records in a Dataset
Syntax
bindingSourceName.Sort = fieldName

Example – sorts records by the Author field
"Author"

Figure 14-11 Syntax and an example of sorting the records in a dataset

To sort the records by the YearWon field:

1. Locate the frmMain_Load procedure. Click the blank line above the End Sub clause,
and then enter the following line of code:

 TblOscarsBindingSource.Sort = "YearWon"

2. Save the solution and then start the application. The records appear in numerical order
by the YearWon field. Click the Exit button.

START HERE

YOU DO IT 1!

Close the Oscar Winners solution. Open the YouDoIt 1 (YouDoIt 1.sln) file contained in the
VB2015\Chap14\YouDoIt 1 folder. The application is connected to the Names database,
which contains one table named tblNames. The table contains five records, each having
three fields: ID (the primary key), FirstName, and LastName. When the application starts,
the records should be displayed in order by the LastName field. Add three text boxes
and a button to the form. The button’s Click event procedure should add the information
entered in the text boxes to the dataset and then save the record in the database.
The procedure should not add a record unless all of the text boxes contain data, and
it shouldn’t allow duplicate records to be entered. Save the solution and then start the
application. Add your name to the database, and then try to add a duplicate record.
Close the Code Editor window and then close the solution.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

786

C H A P T E R 1 4 Access Databases and SQL

Deleting Records from a Dataset
The btnDelete_Click procedure should search the dataset for the record whose YearWon
field contains the value selected in the lstDeleteYear control. Before deleting the record, the
procedure will ask the user to confirm the deletion.

To begin coding the btnDelete_Click procedure:

1. If necessary, open the Oscar Winners solution. Locate the btnDelete_Click procedure,
and then click the blank line above the End Sub clause. Enter the Dim statement and
MessageBox.Show method shown in Figure 14-12, and then position the insertion
point as indicated in the figure.

START HERE

Figure 14-12 Code entered in the btnDelete_Click procedure

enter these six
lines of code

position the
insertion point here

2. The procedure will delete the record only when the user selects the Yes button in the
message box. Enter the following If clause:

 If dlgButton = DialogResult.Yes Then

3. Save the solution.

Before the btnDelete_Click procedure can delete the record from the dataset, it first must locate
the record. Visual Basic provides several ways of locating records in a dataset. In this lesson, you
will use the syntax shown in Figure 14-13. The figure also includes examples of using the syntax.

Locating a Record in a Dataset
Syntax
dataRowVariable = dataSetName.tableName.FindByfieldName(value)

Example 1

The assignment statement searches the dataset for the record whose Id field contains 123 and
then assigns the record to the variable.

Example 2

"Cher"
The assignment statement searches the dataset for the record whose Artist field contains “Cher”
and then assigns the record to the variable.

Figure 14-13 Syntax and examples of locating a record in a dataset

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

787

Deleting Records from a Dataset L E S S O N A

To continue coding the btnDelete_Click procedure:

1. Enter the following declaration statement below the If clause:

 Dim row As DataRow

2. Recall that the YearWon field in the dataset is numeric. Therefore, the procedure will
need to convert the year selected in the lstDeleteYear control to a number before
searching for the record in the dataset. You can determine the selected item in the list
box using either its SelectedItem property (which you learned about in Chapter 6) or its
Text property. Enter the following statements:

 Dim intYear As Integer
 Integer.TryParse(lstDeleteYear.Text, intYear)

3. Next, the procedure will locate the appropriate record. Enter the following statement:

 row = OscarsDataSet.tblOscars.FindByYearWon(intYear)

4. Save the solution.

After locating the appropriate record and assigning it to a DataRow variable, you can use the
variable’s Delete method to delete the record. Figure 14-14 shows the method’s syntax and
includes an example of using the method.

START HERE

Deleting a Record from a Dataset
Syntax
dataRowVariable.Delete()

Example – deletes the record associated with the variable

"Money"

Figure 14-14 Syntax and an example of deleting a record from a dataset

To finish coding the btnDelete_Click procedure:

1. Type row.Delete() and press Enter.

2. As you learned earlier, the changes made to a dataset are not permanent until they
are saved to the database associated with the dataset. Enter the Try...Catch statement
shown in Figure 14-15.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

788

C H A P T E R 1 4 Access Databases and SQL

3. Save the solution and then start the application. The first record is highlighted in the
DataGridView control, and the value of the record’s YearWon field (2005) is highlighted
in the list box.

4. Click the Delete button. The “Delete record for year 2005?” message appears in a
message box. Click the Yes button. The computer deletes the record from the dataset,
the DataGridView control, and the database. It also deletes the 2005 entry from the
list box. The “Record deleted” message now appears in a message box. Click the
OK button.

5. Next, click 2014 in the Year Won column. The record for the year 2014 is highlighted
in the DataGridView control, and the value of the record’s YearWon field (2014) is
highlighted in the list box. Click the Delete button, and then click the No button in the
message box. The record remains in the dataset, the DataGridView control, and the
database. The 2014 entry also remains in the list box.

6. Finally, click 2015 in the list. Click the Delete button and then click the Yes button.
The computer deletes the record from the dataset, the DataGridView control, and the
database. It also deletes the 2015 entry from the list box. Click the OK button.

7. Click the Exit button and then start the application again. Notice that the 2014 record
remains in the dataset, but the 2005 and 2015 records were deleted.

8. Click the Exit button to end the application. Close the Code Editor window and then
close the solution.

Figure 14-20 shows the frmMain_Load, btnAdd_Click, and btnDelete_Click procedures. Notice
that you can nest the Try...Catch statement.

Figure 14-15 Try...Catch statement entered in the btnDelete_Click procedure

enter this Try...Catch
statement

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

789

Deleting Records from a Dataset L E S S O N A

Figure 14-16 frmMain_Load, btnAdd_Click, and btnDelete_Click procedures (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

790

C H A P T E R 1 4 Access Databases and SQL

Lesson A Summary
 • To add a record to a dataset:

Use the following syntax:

dataSetName.tableName.AddtableNameRow(valueField1[,
 valueField2..., valueFieldN])

 • To save dataset changes to a database:

Use the code shown in Figure 14-7 in this lesson.

 • To sort the records in a dataset:

Use the BindingSource object’s Sort method. The method’s syntax is:

bindingSourceName.Sort = fieldName

 • To locate a record in a dataset:

Use the following syntax:

dataRowVariable = dataSetName.tableName.FindByfieldName(value)

 • To delete a record from a dataset:

Use the following syntax:

dataRowVariable.Delete()

 (continued)

"Record deleted" "Oscar Winners"

"Oscar Winners"

Figure 14-16 frmMain_Load, btnAdd_Click, and btnDelete_Click procedures

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

791

Lesson A Review Questions L E S S O N A

Lesson A Key Terms
Delete method—a method of a DataRow variable; used to delete a record from a dataset

Sort method—a method of the BindingSource object; used to sort a dataset in order by
a specific field

Lesson A Review Questions
1. The StatesDataSet contains a table named tblStates. The table contains two text fields

named State and Capital. Which of the following will add a new record to the dataset?

a. StatesDataSet.tblStates.AddStatesRow(strS, strC)

b. StatesDataSet.tblStates.AddRowToStates(strS, strC)

c. StatesDataSet.tblStates.AddtblStatesRow(strS, strC)

d. StatesDataSet.AddtblStatesRow(strS, strC)

2. Two records were added to the StatesDataSet from Review Question 1. Which of the
following will save the records in the States database?

a. TblStatesBindingSource.Save(StatesDataSet.tblStates)

b. TblStatesBindingSource.Update(StatesDataSet.tblStates)

c. TblStatesTableAdapter.Save(StatesDataSet.tblStates)

d. TblStatesTableAdapter.Update(StatesDataSet.tblStates)

3. The StatesDataSet from Review Question 1 is associated with the
TblStatesBindingSource and TblStatesTableAdapter objects. Which of the following
will sort the records by the Capital field?

a. TblStatesBindingSource.Sort = "Capital"

b. TblStatesBindingSource.Sort("Capital")

c. TblStatesTableAdapter.Sort = "Capital"

d. TblStatesTableAdapter.Sort("Capital")

4. Using the StatesDataSet from Review Question 1, which of the following will assign the
Atlanta record to the row variable?

a. row =
 StatesDataSet.tblStates.FindCapital("Atlanta")

b. row =
 StatesDataSet.tblStates.FindByCapital("Atlanta")

c. row =
 StatesDataSet.tblStates.FindByState("Georgia")

d. both b and c

5. Which of the following will delete the record associated with a DataRow variable
named findRow?

a. findRow.Delete()

b. findRow.Remove()

c. delete(findRow)

d. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

792

C H A P T E R 1 4 Access Databases and SQL

Lesson A Exercises
1. In this exercise, you modify the Oscar Winners application from this lesson. Use

Windows to make a copy of the Oscars Solution folder. Rename the copy Modified
Oscars Solution. Open the Oscars Solution (Oscars Solution.sln) file contained in the
Modified Oscars Solution folder. Modify the btnAdd_Click procedure so that it adds
a record only when the five text boxes contain data. In addition, save the entries in
the txtActor, txtActress, txtPicture, and txtAnimated controls without any leading or
trailing spaces. Test the application appropriately.

2. Open the VB2015\Chap14\Jacoby Solution\Jacoby Solution (Jacoby Solution.sln)
file. The application is connected to the Sales database, which contains a table named
tblSales. Each record in the table has four numeric fields named RecordNum
(the primary key), YearNum, MonthNum, and Sales. The btnAdd_Click procedure
should allow the user to add records to the database, but only when the four text boxes
contain data. The record numbers in the database must be unique. The records should
appear in numerical order by the record number. Code the application and then test
it appropriately.

3. Open the VB2015\Chap14\Fashions Solution\Fashions Solution (Fashions Solution.sln)
file. The application is connected to the Stores database, which contains a table named
tblStores. Each record in the table contains five fields. The StoreNum (primary key)
and Sales fields contain numbers; the remaining fields contain text. The btnAdd_Click
procedure should allow the user to add records to the database, but only when the
five text boxes contain data. All of the records in the database must be unique. The
btnDelete_Click procedure should allow the user to delete records from the database.
The records should appear in order by the store number when the application is
started. Code the application and then test it appropriately.

4. Open the VB2015\Chap14\Valentia Solution\Valentia Solution (Valentia Solution.sln)
file. The application is connected to the Employees database, which contains a table
named tblEmploy. Each record in the table contains seven fields. The EmpNum field
is the primary key. The Status field contains the employment status, which is either
the letter F (for full time) or the letter P (for part time). The Code field identifies the
employee’s department: 1 for Accounting, 2 for Advertising, 3 for Personnel, and 4 for
Inventory. The btnAdd_Click procedure should allow the user to add records to the
database, but only when the user provides all of the employee information. All of the
records in the database must be unique. The btnDelete_Click procedure should allow
the user to delete records from the database. The records should appear in order by
the employee number when the application is started. Code the application. Be sure to
code each text box’s Enter event procedure. Also code the KeyPress event procedures
for the Number, Rate, Status, and Code text boxes. Test the application appropriately.

5. In this exercise, you modify the application from Exercise 2. Use Windows to make a
copy of the Jacoby Solution folder. Rename the copy Jacoby Solution-LINQ. Open the
Jacoby Solution (Jacoby Solution.sln) file contained in the Jacoby Solution-LINQ folder.
Add a button named btnTotal to the form. Change the button’s Text property to &Total
Sales. The button’s Click event procedure should display the total sales amount in a
message box. (Hint: Use one of the LINQ aggregate operators, which you learned about
in Chapter 13.) Test the application appropriately.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

793

Lesson A Exercises L E S S O N A

6. In this exercise, you modify the Oscar Winners application from this lesson. Use
Windows to make a copy of the Oscars Solution folder. Rename the copy Oscars
Solution-Advanced. Open the Oscars Solution (Oscars Solution.sln) file contained in
the Oscars Solution-Advanced folder. Use the Delete button, followed by the Yes and
OK buttons, to delete all of the records from the dataset, and then click the Delete
button again. The “Delete record for year ?” message appears. Notice that the message
does not specify a year. Click the Yes button. A run time error occurs because the
procedure is attempting to delete a record that does not exist. Click Debug on the menu
bar and then click Stop Debugging. The btnDelete_Click procedure should ask the user
to confirm the deletion of only existing records. In addition, it should not attempt to
delete a record that does not exist. Modify the procedure, and then test it appropriately.

7. Open the Adalene Solution (Adalene Solution.sln) file contained in the VB2015\
Chap14\Adalene Solution-Sort folder. The btnSort_Click procedure should sort the
records in alphabetical order by city name within state name. Code the procedure and
then test the application appropriately.

ADVANCED

DISCOVERY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

794

C H A P T E R 1 4 Access Databases and SQL

❚ LESSON B
After studying Lesson B, you should be able to:

 • Query a database using the SQL SELECT statement

 • Create queries using the Query Builder dialog box

Structured Query Language
As you learned in Chapter 13, you use a query to specify both the records to select from a
database and the order in which to arrange the records. In Chapter 13, you created the queries
using LINQ (Language-Integrated Query). In this chapter, you will use a different query
language called SQL. You can pronounce SQL either as ess-cue-el or as sequel.

SQL, which stands for Structured Query Language, is a set of statements that allows you to
access and manipulate the data stored in many database management systems on computers of
all sizes, from large mainframes to small microcomputers. You can use SQL statements—such
as SELECT, INSERT, and DELETE—to perform common database tasks. Examples of these
tasks include storing, retrieving, updating, deleting, and sorting data.

In this lesson, you will use the SQL SELECT statement to query the Oscars database from
Lesson A. The tblOscars table in the database contains the nine records shown in Figure 14-17.
The YearWon field is numeric; the remaining fields contain text.

Figure 14-17 Contents of the tblOscars table

The SELECT Statement
The SELECT statement is the most commonly used statement in SQL. You can use it to specify
the fields and records you want to view as well as to control the order in which the fields and
records appear when they are displayed. The statement’s basic syntax is shown in Figure 14-18.
In the syntax, fieldList is one or more field names separated by commas, and tableName is
the name of the table containing the fields. The WHERE and ORDER BY clauses are optional
parts of the syntax. You use the WHERE clause, which contains a condition, to limit the records
you want to view. Similar to the condition in the If...Then...Else and Do...Loop statements,
the condition in a WHERE clause specifies a requirement that must be met for a record to be
selected. The ORDER BY clause is used to arrange the records in either ascending (the default)
or descending order by one or more fields. Although you do not have to capitalize the boldfaced
keywords in a SELECT statement, many programmers do so for clarity.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

795

The SELECT Statement L E S S O N B

The SELECT statement in Example 1 selects all of the fields and records from the tblOscars
table. The SELECT statement in Example 2 uses the WHERE clause to limit the selected
records to only those for the year 2011 and later. The SELECT statement in Example 3 selects
the YearWon field for only the Argo record. Notice that the word Argo in Example 3 appears in
single quotes, but the number 2011 in Example 2 does not. The single quotes around the value
in the WHERE clause’s condition are necessary only when you are comparing a text field with a
literal constant. Recall that the Picture field contains text, whereas the YearWon field contains
numbers. Text comparisons in SQL are not case sensitive. Therefore, you can also write the
WHERE clause in Example 3 as WHERE Picture = 'argo'.

The SELECT statement in Example 4 selects each record’s Actor, Actress, and Picture fields and
then arranges the records in ascending order by the Picture field. The SELECT statement in
Example 5 shows how you can use the LIKE operator along with the % (percent sign) wildcard
character in the WHERE clause. The statement tells the computer to select the YearWon and
Picture fields for records whose Picture field begins with the word “The” followed by a space
and zero or more characters. The ORDER BY clause in the statement will arrange the selected
records in descending order by the Picture field.

SELECT Statement
Basic syntax
SELECT fieldList FROM tableName
 [WHERE condition]
 [ORDER BY fieldName [DESC]]

Example 1

selects all of the fields and records in the table

Example 2

selects all of the fields from records for the year 2011 and later

Example 3

selects the YearWon field for the Argo record

Example 4

selects the Actor, Actress, and Picture fields for all of the records in the table, arranging the records
in ascending order by the Picture field

Example 5

selects the YearWon and Picture fields for all records whose Picture field begins with the word “The”
followed by a space and zero or more characters, and then arranges the records in descending
order by the Picture field

Figure 14-18 Syntax and examples of the SELECT statement

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

796

C H A P T E R 1 4 Access Databases and SQL

Creating a Query
In this section, you will use the Oscar Winners application to test the SELECT statements from
Figure 14-18.

To test the SELECT statements:

1. If necessary, start Visual Studio 2015. Open the Oscars Solution (Oscars Solution.sln)
file contained in the VB2015\Chap14\Oscars Solution-SQL folder. The application is
already connected to the Oscars database.

2. Right-click OscarsDataSet.xsd in the Solution Explorer window. The .xsd file, called
the dataset’s schema file, contains information about the tables, fields, records, and
properties included in the OscarsDataSet. Click Open to open the DataSet Designer
window. See Figure 14-19.

START HERE

3. Right-click tblOscarsTableAdapter in the DataSet Designer window. Point to
Add on the shortcut menu and then click Query. (If Add does not appear on the
shortcut menu, click Add Query instead.) Doing this starts the TableAdapter Query
Configuration Wizard. The “Use SQL statements” radio button should be selected on
the Choose a Command Type screen, as shown in Figure 14-20.

Figure 14-19 DataSet Designer window

Figure 14-20 Choose a Command Type screen

DataSet Designer
window

4. Click the Next button to display the Choose a Query Type screen. Verify that the
“SELECT which returns rows” radio button is selected.

5. Click the Next button to display the Specify a SQL SELECT statement screen.
The screen already contains a SELECT statement, as shown in Figure 14-21.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

797

Creating a Query L E S S O N B

6. You can type a different SELECT statement in the “What data should the table load?”
box, or you can use the Query Builder dialog box to construct the statement for you.
Click the Query Builder button to open the Query Builder dialog box. See Figure 14-22.
The table’s primary key appears boldfaced in the Diagram pane.

7. The SQL pane contains the same SELECT statement shown in Example 1 in Figure 14-18.
The statement selects all of the fields and records from the tblOscars table. Click the
Execute Query button to run the query. The query results appear in the Results pane, as
shown in Figure 14-23. You can use the scroll bar to view the remaining records.

Figure 14-21 Specify a SQL SELECT statement screen

Query Builder button

selects all of the
fields and records
from the table

Figure 14-22 Query Builder dialog box

Diagram pane

Results pane

Grid pane

SQL pane

Execute Query button

primary key
is boldfaced

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

798

C H A P T E R 1 4 Access Databases and SQL

Figure 14-23 Records listed in the Results pane

nine records
were selected

scroll bar in the
Results pane

8. Next, you will create a query that selects all of the fields, but only for records for the
year 2011 and later. In the Grid pane, click the blank cell in the YearWon field’s Filter
column. Type >= 2011 and press Enter. The Filter column entry tells the Query
Builder to include the WHERE (YearWon >= 2011) clause in the SELECT statement.
The funnel symbol that appears in the Diagram pane indicates that the YearWon field
is used to filter the records. Notice the Query Changed message and icon that appear
in the Results pane. The message and icon alert you that the information displayed in
the Results pane is not from the current query. See Figure 14-24. (For clarity, the Query
Builder places the WHERE clause’s condition in parentheses; however, the parentheses
are not a requirement of the SELECT statement.)

Figure 14-24 SELECT statement containing a WHERE clause

indicates that the field is
used to filter the records

used by
the WHERE
clause

Query
Changed
message

WHERE clause

Query Changed icon

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

799

Creating a Query L E S S O N B

9. Click the Execute Query button to run the current query. If necessary, scroll the
Results pane to verify that it contains only the records for the years 2011 through 2014.

10. The next query will select only the YearWon field for the Argo record. Delete the >= 2011
entry from the YearWon field’s Filter column. Click the blank cell in the Picture field’s
Filter column. Type Argo and press Enter. The Query Builder changes the entry in the
Filter column to = 'Argo'. It also enters the WHERE (Picture = 'Argo') clause in the
SELECT statement.

11. In the Diagram pane, deselect the Actor, Actress, Picture, and Animated check
boxes. The Query Builder changes the first line in the SELECT statement to SELECT
YearWon. Click the Execute Query button. See Figure 14-25.

12. Next, you will create a query that selects each record’s Actor, Actress, and Picture fields
and then sorts the records in ascending order by the Picture field. In the Diagram pane,
select the Actor, Actress, and Picture check boxes, and then deselect the YearWon
check box. The Query Builder changes the first line in the SELECT statement to
SELECT Actor, Actress, Picture.

13. In the Grid pane, delete the = 'Argo' entry and then press Enter. The Query Builder
removes the WHERE clause from the SELECT statement.

14. Click the blank cell in the Picture field’s Sort Type column, and then click the list
arrow in the cell. Click Ascending and press Enter. The word “Ascending” appears as
the Picture field’s Sort Type, and the number 1 appears as its Sort Order. The number
1 indicates that the Picture field is the primary field in the sort. Notice that the Query
Builder adds the ORDER BY Picture clause to the SELECT statement. Click the
Execute Query button. See Figure 14-26.

indicates that the field is
used to filter the records

Figure 14-25 Result of executing the current query

WHERE clause

used by the
WHERE clause

indicates that the
field is used to
filter the records

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

800

C H A P T E R 1 4 Access Databases and SQL

15. On your own, create the query for Figure 14-18’s Example 5. The query should select
the YearWon and Picture fields for all records whose Picture field begins with the word
“The” followed by a space and zero or more characters. The query should sort the
records in descending order by the Picture field. Figure 14-27 shows the query along
with the result of executing it.

Figure 14-26 Records displayed in ascending order by the Picture field

ascending (A to Z) sort

used by the
ORDER BY clause

Figure 14-27 Records displayed by the current query

the four records appear
in descending order by
the Picture field

ORDER BY clause

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

801

Lesson B Key Terms L E S S O N B

16. Click the Cancel button in the Query Builder dialog box, and then click the Cancel
button in the TableAdapter Query Configuration Wizard dialog box.

17. Save the solution. Close the OscarsDataSet.xsd window and then close the solution.

Lesson B Summary
 • To query a database using SQL:

Use the SELECT statement. The statement’s basic syntax is:

 SELECT fieldList FROM tableName
 [WHERE condition]
 [ORDER BY fieldName [DESC]]

 • To limit the records you want to view:

Use the SELECT statement’s WHERE clause.

 • To sort the selected records:

Use the SELECT statement’s ORDER BY clause.

 • To open the DataSet Designer window:

Right-click the name of the dataset’s schema file in the Solution Explorer window and then
click Open. The schema filename ends with .xsd.

 • To start the TableAdapter Query Configuration Wizard:

Open the DataSet Designer window and then right-click the table adapter’s name. Point to
Add on the shortcut menu and then click Query. (If Add does not appear on the shortcut
menu, click Add Query instead.)

 • To open the Query Builder dialog box:

Start the TableAdapter Query Configuration Wizard. Click the Next button, and then click
the Next button again to display the Specify a SQL SELECT statement screen. Click the
Query Builder button.

 • To represent zero or more characters in the WHERE clause’s condition:

Use the % wildcard.

Lesson B Key Terms
%—a wildcard character used in the condition in a SELECT statement’s WHERE clause;
represents zero or more characters

LIKE operator—used with a wildcard character in the condition in a SELECT statement’s
WHERE clause

ORDER BY clause—used in a SELECT statement to sort the selected records

SELECT statement—the SQL statement that allows you to specify the fields and records to
select as well as the order in which the fields and records appear when displayed

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

802

C H A P T E R 1 4 Access Databases and SQL

SQL—an acronym for Structured Query Language

Structured Query Language—SQL; a set of statements that allows you to access and
manipulate the data stored in a database

WHERE clause—used in a SELECT statement to limit the records to be selected

Lesson B Review Questions
1. SQL stands for ___________________.

a. Select Query Language
b. Semi-Quick Language
c. Structured Quick Language
d. Structured Query Language

2. Which of the following will select the State and Sales fields from the tblStores table?

a. SELECT State AND Sales FROM tblStores

b. SELECT State OR Sales FROM tblStores

c. SELECT State, Sales FROM tblStores

d. SELECT ONLY State, Sales FROM tblStores

3. Which of the following will select the SSN field from the tblPayInfo table and then sort
the records in descending order by the SSN field?

a. SELECT SSN FROM tblPayInfo DESC

b. SELECT SSN FROM tblPayInfo ORDER BY SSN DESC

c. SELECT SSN FROM tblPayInfo WHERE SSN DESC

d. SELECT SSN FROM tblPayInfo SORT SSN DESC

4. Which of the following will select the Id and Status fields for records whose Status field
contains only the letter F?

a. SELECT Id, Status FROM tblEmp WHERE Status = 'F'

b. SELECT Id, Status FROM tblEmp ORDER BY Status = 'F'

c. SELECT Id, Status FROM tblEmp FOR Status = 'F'

d. SELECT Id, Status FROM tblEmp SELECT Status = 'F'

5. Which of the following will select the State and Capital fields for the Kansas and
Kentucky records?

a. SELECT State, Capital FROM tblState WHERE State LIKE 'K'

b. SELECT State, Capital FROM tblState WHERE State LIKE 'K*'

c. SELECT State, Capital FROM tblState WHERE State LIKE 'K%'

d. SELECT State, Capital FROM tblState WHERE State LIKE 'K#'

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

803

Lesson B Exercises L E S S O N B

6. Which of the following will select the State and Capital fields for states with populations
that exceed 5,000,000? (The Population field is numeric.)

a. SELECT State, Capital FROM tblState WHERE Population >
5000000

b. SELECT State, Capital FROM tblState WHERE Population >
'5000000'

c. SELECT State, Capital FROM tblState WHERE Population >
"5000000"

d. SELECT State, Capital FROM tblState SELECT Population >
5000000

7. In a SELECT statement, which clause is used to limit the records that will be selected?

a. LIMIT
b. ORDER BY

c. ONLY
d. WHERE

8. If a funnel symbol appears next to a field’s name in the Query Builder dialog box, it
indicates that the field is ___________________.

a. used in an ORDER BY clause in a SELECT statement
b. used in a WHERE clause in a SELECT statement
c. the primary key
d. the foreign key

9. The SQL SELECT statement performs case-sensitive comparisons.

a. True
b. False

Lesson B Exercises
1. The tblMagazine table contains three fields. The Cost field is numeric. The Code and

MagName fields contain text.

a. Write a SQL SELECT statement that arranges the records in descending order by
the Cost field.

b. Write a SQL SELECT statement that selects only the MagName and Cost fields from
records having a code of PG10.

c. Write a SQL SELECT statement that selects only the MagName and Cost fields from
records having a cost of $3 or more.

d. Write a SQL SELECT statement that selects the Visual Basic record.
e. Write a SQL SELECT statement that selects only the MagName field from records

whose magazine name begins with the letter C.
f. Open the VB2015\Chap14\Magazine Solution\Magazine Solution (Magazine

Solution.sln) file. The application is connected to the Magazines database. Start
the application to view the records contained in the dataset, and then stop the
application. Open the DataSet Designer window and then start the TableAdapter
Query Configuration Wizard. Open the Query Builder dialog box. Use the dialog
box to test your SELECT statements from Steps a through e.

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

804

C H A P T E R 1 4 Access Databases and SQL

2. The tblEmploy table contains seven fields. The EmpNum, Rate, and Code fields are
numeric. The LastName, FirstName, Hired, and Status fields contain text. The Status
field contains either the letter F (for full time) or the letter P (for part time). The Code
field identifies the employee’s department: 1 for Accounting, 2 for Advertising, 3 for
Personnel, and 4 for Inventory.

a. Write a SQL SELECT statement that selects all of the fields and records in the table
and then sorts the records in ascending order by the Code field.

b. Write a SQL SELECT statement that selects only the EmpNum, LastName, and
FirstName fields from all of the records.

c. Write a SQL SELECT statement that selects only the records for full-time
employees.

d. Write a SQL SELECT statement that selects the EmpNum and Rate fields for
employees in the Personnel department.

e. Write a SQL SELECT statement that selects the EmpNum and LastName fields for
employees having the last name Smith.

f. Write a SQL SELECT statement that selects the EmpNum and LastName fields for
employees having a last name that begins with the letter S.

g. Write a SQL SELECT statement that selects only the first and last names for
part-time employees and then sorts the records in descending order by the
LastName field.

h. Open the Morgan Industries Solution (Morgan Industries Solution.sln) file
contained in the VB2015\Chap14\Morgan Industries Solution-SQL folder. The
application is connected to the Employees database. Start the application to view the
records contained in the dataset, and then stop the application. Open the DataSet
Designer window and then start the TableAdapter Query Configuration Wizard.
Open the Query Builder dialog box. Which field in the table is the primary key?
How can you tell that it is the primary key?

i. Use the Query Builder dialog box to test your SELECT statements from Steps a
through g.

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

805

Parameter Queries L E S S O N C

❚ LESSON C
After studying Lesson C, you should be able to:

 • Create a parameter query

 • Save a query

 • Invoke a query from code

 • Add records to a dataset using the SQL INSERT statement

 • Delete records from a dataset using the SQL DELETE statement

Parameter Queries
In Lesson B, you learned how to create queries that search for records meeting specific criteria,
such as Picture = 'Argo'. Most times, however, you will not know ahead of time the value to
include in the criteria. For example, the next time the user runs the query, he or she may want
to view the Slumdog Millionaire record rather than the Argo record. When you don’t know the
specific value to include in the criteria, you use a parameter query.

A parameter query is a query that uses the parameter marker in place of the criteria’s value.
The parameter marker is a question mark (?). Figure 14-28 shows examples of parameter
queries using the tblOscars table from Lessons A and B.

Parameter Queries
Example 1

selects all of the fields for the record whose Picture field value is represented by the parameter
marker

Example 2

selects the YearWon and Picture fields for records whose YearWon field contains a value that is
greater than or equal to the value represented by the parameter marker

In this section, you will use the Oscar Winners application to test the SELECT statements from
Figure 14-28.

To test the SELECT statements from Figure 14-28:

1. If necessary, start Visual Studio 2015. Open the Oscars Solution (Oscars Solution.sln)
file contained in the VB2015\Chap14\Oscars Solution-Parameter Queries folder. The
application is already connected to the Oscars database.

2. Right-click OscarsDataSet.xsd in the Solution Explorer window, and then click Open
to open the DataSet Designer window.

3. Right-click TblOscarsTableAdapter in the DataSet Designer window. Point to Add on
the shortcut menu, and then click Query to start the TableAdapter Query Configuration
Wizard. (If Add does not appear on the shortcut menu, click Add Query instead.)

START HERE

Figure 14-28 Examples of parameter queries

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

806

C H A P T E R 1 4 Access Databases and SQL

4. Verify that the Use SQL statements radio button is selected on the Choose a Command
Type screen. Click the Next button to display the Choose a Query Type screen. Verify
that the “SELECT which returns rows” radio button is selected. Click the Next button
to display the Specify a SQL SELECT statement screen. Click the Query Builder
button to open the Query Builder dialog box.

5. First, you will create a parameter query that selects a record by the value in the Picture
field. In the Grid pane, click the blank cell in the Picture field’s Filter column. Type ?
and press Enter. The Query Builder changes the entry in the Filter column to = ?. It
also adds the WHERE (Picture = ?) clause to the SELECT statement.

6. Click the Execute Query button to run the query. The Query Parameters dialog box
opens. Type Argo in the Value column. See Figure 14-29.

7. Click the OK button to close the Query Parameters dialog box. The Argo record
appears in the Results pane.

8. Next, you will use the query to select the Slumdog Millionaire record. Click the
Execute Query button, type Slumdog Millionaire in the Value column, and then click
the OK button. The Slumdog Millionaire record appears in the Results pane.

9. Next, you will create a query for Example 2 from Figure 14-28. Delete the = ? from the
Picture field’s Filter column. Type >= ? in the YearWon field’s Filter column, and then
press Enter. Click the Execute Query button to run the query. Type 2011 in the Value
column of the Query Parameters dialog box, and then click the OK button. The records
for years 2011 through 2014 appear in the Results pane. See Figure 14-30.

Figure 14-29 Query Parameters dialog box

Figure 14-30 Records with a YearWon field value of at least 2011

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

807

Saving a Query L E S S O N C

10. Now you will use the query to select records for the year 2013 and later. Click the
Execute Query button, type 2013 in the Value column, and then click the OK button.
This time, only the records for the years 2013 and 2014 appear in the Results pane.

11. Click the Cancel button in the Query Builder dialog box, and then click the Cancel
button in the TableAdapter Query Configuration Wizard dialog box. Save the solution.
Close the OscarsDataSet.xsd window and then close the solution.

Saving a Query
For an application to use a query during run time, you will need to save the query and then
invoke it from code. You save a query that contains the SELECT statement by associating the
query with one or more methods. The TableAdapter Query Configuration Wizard provides an
easy way to perform this task.

To save a query:

1. Open the Oscars Solution (Oscars Solution.sln) file contained in the VB2015\Chap14\
Oscars Solution-Save Query folder. The application, which is already connected to the
Oscars database, allows the user to display either all of the records or only the record
for the year entered in the txtYear control.

2. Right-click OscarsDataSet.xsd in the Solution Explorer window, and then click Open
to open the DataSet Designer window.

3. Right-click tblOscarsTableAdapter in the DataSet Designer window. Point to
Add on the shortcut menu, and then click Query to start the TableAdapter Query
Configuration Wizard. (If Add does not appear on the shortcut menu, click Add Query
instead.)

4. Verify that the Use SQL statements radio button is selected. Click the Next button to
display the Choose a Query Type screen. Verify that the “SELECT which returns rows”
radio button is selected. Click the Next button to display the Specify a SQL SELECT
statement screen. The “What data should the table load?” box contains the default
query, which selects all of the fields and records in the table. The default query shown in
Figure 14-31 is automatically invoked when you use the TblOscarsTableAdapter object’s
Fill method.

START HERE

Figure 14-31 Default query in the Specify a SQL SELECT statement screen

default query

5. Click the Query Builder button to open the Query Builder dialog box. You will
create a parameter query that displays the Oscar winners for the year entered in the
txtYear control. In the Grid pane, type ? in the YearWon field’s Filter column, and
then press Enter. The Query Builder adds the WHERE (YearWon = ?) clause to the
SELECT statement.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

808

C H A P T E R 1 4 Access Databases and SQL

6. Click the Execute Query button to run the query. The Query Parameters dialog box
opens. Type 2010 in the Value column, and then click the OK button to close the
dialog box. The 2010 record appears in the Results pane.

7. Click the OK button to close the Query Builder dialog box. The parameter query
appears in the “What data should the table load?” box. See Figure 14-32.

8. Click the Next button to display the Choose Methods to Generate screen. If necessary,
select the Fill a DataTable and Return a DataTable check boxes. Change the Fill a
DataTable method’s name from FillBy to FillByYear. Change the Return a DataTable
method’s name from GetDataBy to GetDataByYear. See Figure 14-33. The FillByYear
and GetDataByYear methods are associated with the parameter query you created.
Therefore, you can use the methods to invoke the query during run time.

9. Click the Next button to display the Wizard Results screen. See Figure 14-34.

Figure 14-32 Parameter query in the Specify a SQL SELECT statement screen

parameter query

Figure 14-33 Completed Choose Methods to Generate screen

Figure 14-34 Wizard Results screen

these methods are
associated with the
parameter query
from Figure 14-32

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

809

Invoking a Query from Code L E S S O N C

10. Click the Finish button. The FillByYear and GetDataByYear methods appear in the
DataSet Designer window, as shown in Figure 14-35.

Figure 14-35 Method names included in the DataSet Designer window

retrieves all of
the records

retrieves only the record for
the year entered by the user

11. Save the solution and then close the OscarsDataSet.xsd window.

Invoking a Query from Code
You can invoke a query during run time by entering its associated methods in a procedure.

To have the btnDisplay_Click procedure invoke the appropriate query:

1. Open the Code Editor window. Replace <your name> and <current date> in the
comments with your name and the current date, respectively.

2. Locate the btnDisplay_Click procedure, and then click the blank line above the End
Sub clause.

3. If the All radio button is selected in the interface, the procedure will use the
TblOscarsTableAdapter object’s Fill method to select all of the records. (Recall that the
frmMain_Load procedure also uses the Fill method.) Enter the lines of code shown in
Figure 14-36.

START HERE

Figure 14-36 Code entered in the procedure

enter these
lines of code

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

810

C H A P T E R 1 4 Access Databases and SQL

4. If the Year radio button is selected, the procedure will use the TblOscarsTableAdapter
object’s FillByYear method to select the record whose YearWon field matches the year
number entered in the txtYear control. First, the procedure will determine whether the
control contains a value. If it does not contain a value, the procedure will display an
appropriate message. Enter the additional lines of code indicated in Figure 14-37.

5. The YearWon field is numeric, so the procedure will need to convert the text box entry
to a number. Enter the following lines of code:

 Dim intYear As Integer
 Integer.TryParse(txtYear.Text, intYear)

6. Next, the procedure will invoke the TblOscarsTableAdapter object’s FillByYear method.
The method is associated with a parameter query, so it will need to include the
parameter information. Enter the additional lines of code indicated in Figure 14-38.

7. Save the solution and then start the application. Click the Year radio button, and then
click the Display button. The “Please enter the year.” message appears in a message box.
Close the message box.

8. Click the text box located below the Year radio button. Type 2013 and then click
the Display button. Only the 2013 record appears in the DataGridView control.
See Figure 14-39.

Figure 14-37 Additional code entered in the procedure

enter these
lines of code

Figure 14-38 FillByYear method entered in the procedure

enter these
lines of code

year number for the
parameter query

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

811

The INSERT and DELETE Statements L E S S O N C

9. Click the All radio button, and then click the Display button to display all of the
records in the DataGridView control.

10. Click the Exit button. Close the Code Editor window and then close the solution.

The INSERT and DELETE Statements
SQL provides the INSERT statement for inserting records into a database and the DELETE
statement for deleting records from a database. The syntax and examples of both statements
are shown in Figures 14-40 and 14-41, respectively.

Figure 14-39 2013 record shown in the interface

INSERT Statement
Syntax
INSERT INTO tableName(fieldName1, fieldName2, ...fieldNameN)
 VALUES (field1Value, field2Value, ...fieldNValue)

Example 1

Example 2 – parameter query

Figure 14-40 Syntax and examples of the SQL INSERT statement

DELETE Statement
Syntax
DELETE FROM tableName WHERE condition

Example 1

Example 2

Example 3 – parameter query

Figure 14-41 Syntax and examples of the SQL DELETE statement

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

812

C H A P T E R 1 4 Access Databases and SQL

In the next two sets of steps, you will create Insert and Delete queries for the Oscar Winners
application. An Insert query uses the INSERT statement to add a record to a database.
A Delete query uses the DELETE statement to delete a record from a database.

To create an Insert query:

1. Open the Oscars Solution (Oscars Solution.sln) file contained in the VB2015\Chap14\
Oscars Solution-InsertDelete folder. The application is already connected to the
Oscars database.

2. Right-click OscarsDataSet.xsd in the Solution Explorer window, and then click Open
to open the DataSet Designer window.

3. Right-click tblOscarsTableAdapter in the DataSet Designer window. Point to
Add on the shortcut menu, and then click Query to start the TableAdapter Query
Configuration Wizard. (If Add does not appear on the shortcut menu, click Add Query
instead.)

4. Verify that the Use SQL statements radio button is selected, and then click the Next
button to display the Choose a Query Type screen. Click the INSERT radio button. See
Figure 14-42.

START HERE

5. Click the Next button to display the Specify a SQL INSERT statement screen, which
contains the default INSERT statement for the tblOscars table. See Figure 14-43.

Figure 14-42 Choose a Query Type screen

select this radio
button to create
an Insert query

Figure 14-43 Default INSERT statement for the tblOscars table

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

813

The INSERT and DELETE Statements L E S S O N C

6. Click the Next button to display the Choose Function Name screen. Change the
function’s name to InsertRecordQuery, and then click the Next button to display the
Wizard Results screen. See Figure 14-44.

Figure 14-44 Wizard Results screen

7. Click the Finish button. The InsertRecordQuery function appears in the DataSet
Designer window, as shown in Figure 14-45.

Figure 14-45 InsertRecordQuery function

InsertRecordQuery
function

Next, you will create a Delete query.

To create a Delete query:

1. Right-click tblOscarsTableAdapter in the DataSet Designer window. Click Add
Query on the shortcut menu to start the TableAdapter Query Configuration
Wizard. (If Add Query does not appear on the shortcut menu, point to Add and then
click Query.)

2. Verify that the Use SQL statements radio button is selected. Click the Next button to
display the Choose a Query Type screen.

3. Click the DELETE radio button, and then click the Next button to display the Specify a
SQL DELETE statement screen, which contains the default DELETE statement for the
tblOscars table.

4. Click the Query Builder button. Change the WHERE clause in the SQL pane of the
Query Builder dialog box as shown in Figure 14-46. (Don’t be concerned about the
values in the Grid pane.)

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

814

C H A P T E R 1 4 Access Databases and SQL

5. Click the OK button. The DELETE statement shown in Figure 14-47 appears in the
Specify a SQL DELETE statement screen.

Figure 14-46 SQL pane in the Query Builder dialog box

change the WHERE
clause as shown here

Figure 14-47 SQL DELETE statement

6. Click the Next button to display the Choose Function Name screen. Change the
function’s name to DeleteRecordQuery, and then click the Next button to display the
Wizard Results screen.

7. Click the Finish button to add the DeleteRecordQuery function to the DataSet
Designer window. See Figure 14-48.

Figure 14-48 DeleteRecordQuery function

DeleteRecordQuery
function

8. Save the solution and then close the OscarsDataSet.xsd window.

In the next set of steps, you will code the btnAdd_Click and btnDelete_Click procedures. The
btnAdd_Click procedure will use the InsertRecordQuery function to add a record to the Oscars
database. The btnDelete_Click procedure will use the DeleteRecordQuery function to delete a
record from the database.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

815

The INSERT and DELETE Statements L E S S O N C

To code and then test the btnAdd_Click and btnDelete_Click procedures:

1. Open the Code Editor window. Locate the btnAdd_Click procedure and then click the
blank line above the End Sub clause. First, the procedure will determine whether the
five text boxes contain data. If at least one of the text boxes is empty, the procedure will
display an appropriate message. Enter the selection structure shown in Figure 14-49.

START HERE

Figure 14-49 Selection structure entered in the btnAdd_Click procedure

enter this selection
structure

2. If all of the text boxes contain data, the procedure can add the data to the database.
First, however, it will need to convert the value in the txtAddYear control to a number
because the YearWon field in the table is numeric. Enter the following lines of code:

 Dim intYear As Integer
 Integer.TryParse(txtAddYear.Text, intYear)

3. Now the procedure can use the InsertRecordQuery function to add the data to the
database and then use the Fill method to retrieve the appropriate data from the database.
However, as you learned in Lesson A, a run time error occurs when a procedure attempts
to add a duplicate record to the Oscars database. A duplicate record is one whose
YearWon field value is already in the dataset. You can prevent the application from
ending abruptly by placing both the InsertRecordQuery function and the Fill method in a
Try...Catch statement. Enter the additional lines of code shown in Figure 14-50.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

816

C H A P T E R 1 4 Access Databases and SQL

Figure 14-50 Additional lines of code entered in the btnAdd_Click procedure

enter these
lines of code

4. Next, locate the btnDelete_Click procedure, and then click the blank line above the
End Sub clause. Before the procedure deletes a record, it will ask the user to confirm
the deletion. Enter the code indicated in Figure 14-51.

5. If the user confirms the deletion, the procedure will need to convert the value in the
lstDeleteYear control to a number because the YearWon field in the table is numeric.
Enter the following lines of code:

 If dlgButton = DialogResult.Yes Then
 Dim intYear As Integer
 Integer.TryParse(lstDeleteYear.Text, intYear)

6. Now the procedure can use the DeleteRecordQuery function to delete the record from
the database and then use the Fill method to retrieve the appropriate data from the
database. Enter the following lines of code:

 TblOscarsTableAdapter.DeleteRecordQuery(intYear)
 TblOscarsTableAdapter.Fill(OscarsDataSet.tblOscars)

Figure 14-51 Code entered in the btnDelete_Click procedure

enter these six
lines of code

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

817

The INSERT and DELETE Statements L E S S O N C

7. Save the solution and then start the application. Click the Add button. The “Please enter
all of the information.” message appears in a message box. Close the message box.

8. Next, try to add a duplicate record. In the Add new record section, type 2010 in
the Year box, type Jamie Foxx in the Actor box, type Hilary Swank in the Actress
box, type Million Dollar Baby in the Picture box, and type The Incredibles in the
Animated box. Click the Add button. The “Duplicate record” message appears in a
message box. Close the message box.

9. In the Year box, change 2010 to 2005, and then click the Add button. The new record
appears at the top of the list in the DataGridView control. (The frmMain_Load
procedure contains the TblOscarsBindingSource.Sort = "YearWon" statement,
which you learned about in Lesson A.)

10. Click the Exit button to end the application, and then start the application again to
verify that the new record appears in the DataGridView control.

11. Next, you will delete the record for the year 2005. The record is already selected in the
DataGridView control, and its YearWon value is selected in the lstDeleteYear control.
(The list box is bound to the YearWon field in the dataset.) Click the Delete button.
The “Delete record for year 2005?” message appears in the Confirm Delete message box.
Click the Yes button to delete the record.

12. Click 2010 in the lstDeleteYear control, and then click the Delete button. When the
Confirm Delete message box opens, click the No button. The record remains in the
DataGridView control.

13. Click the Exit button to end the application, and then start the application again to
verify that only the record for the year 2005 was deleted.

14. Click the Exit button to end the application. Close the Code Editor window and then
close the solution.

Figure 14-52 shows the code entered in the frmMain_Load, btnAdd_Click, and btnDelete_Click
procedures.

Figure 14-52 Most of the application’s code (continues)

'TODO: This line of code loads data into the
 'OscarsDataSet.tblOscars' table. You can move, or remove it,
 as needed.

"YearWon"

' add a record to the dataset

"Please enter all of the information."
"Oscar Winners"

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

818

C H A P T E R 1 4 Access Databases and SQL

 (continued)

"Duplicate record" "Oscar Winners"

' delete a record from the dataset

"Delete record for year "
"?" "Confirm Delete"

Figure 14-52 Most of the application’s code

Lesson C Summary
 • To create a parameter query:

Use a question mark in place of the criteria’s value in the WHERE clause.

 • To save a query that contains the SELECT statement:

Use the TableAdapter Query Configuration Wizard to associate the query with one or
more methods.

 • To save a query that contains either the INSERT statement or the DELETE statement:

Use the TableAdapter Query Configuration Wizard to associate the query with a function.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

819

Lesson C Review Questions L E S S O N C

 • To invoke a query from code:

Enter the query’s method or function in a procedure.

 • To use SQL to insert records into a database:

Use the INSERT statement.

 • To use SQL to delete records from a database:

Use the DELETE statement.

Lesson C Key Terms
?—the parameter marker in a parameter query

Delete query—a query that uses the DELETE statement to delete a record from a database

DELETE statement—the SQL statement used to delete a record from a database

Insert query—a query that uses the INSERT statement to add a record to a database

INSERT statement—the SQL statement used to insert a record into a database

Parameter marker—a question mark (?)

Parameter query—a query that uses the parameter marker (?) in place of the criteria’s value

Lesson C Review Questions
1. When used in a parameter query, which of the following WHERE clauses will allow you

to select the records for employees working more than 40 hours?

a. WHERE Hours >= 40

b. WHERE Hours > ?

c. WHERE Hours > #

d. WHERE Hours < ?

2. The FillByCity method is associated with a parameter query. Which of the following
invokes the method, passing it the contents of the txtCity control’s Text property?

a. TblCityTableAdapter.FillByCity(CityDataSet.tblCity,
txtCity.Text)

b. TblCityTableAdapter.FillByCity(txtCity.Text)

c. TblCityBindingSource.FillByCity(CityDataSet.tblCity,
txtCity.Text)

d. CityDataSet.FillByCity(txtCity.Text)

3. You can use the SQL ___________________ statement to add a record to a database.

a. ADD
b. ADD INTO

c. APPEND
d. INSERT

4. You can use the SQL ___________________ statement to remove a record from
a database.

a. DELETE
b. DETACH

c. ERASE
d. REMOVE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

820

C H A P T E R 1 4 Access Databases and SQL

Lesson C Exercises
1. Open the JM Sales Solution (JM Sales Solution.sln) file contained in the VB2015\Chap14\

JM Sales Solution folder. The application is connected to the AnnualSales database, which
contains a table named tblSales. Each record in the table has two numeric fields: YearNum
(the primary key) and Sales. The btnAdd_Click procedure should allow the user to add
records to the database. The btnDelete_Click procedure should allow the user to delete
records (by year number) from the database. Use SQL to code the procedures. Test the
application appropriately. Be sure to try adding a record whose year number matches an
existing year number.

2. Open the Addison Playhouse Solution (Addison Playhouse Solution.sln) file contained
in the VB2015\Chap14\Addison Playhouse Solution folder. The application is
connected to the Play database, which contains a table named tblReservations. Each
record in the table has three fields: a numeric field named Seat (the primary key) and
two text fields named Patron and Phone. The application should allow the user to add
records to the database and also delete records (by seat number) from the database. It
should also allow the user to enter a seat number and then view the associated record.
In addition, it should allow the user to view the records whose Patron field begins with
the one or more characters the user enters. (Hint: Use LIKE ? & '%' as the filter.)
The records should always appear in order by the seat number. Code the application
and then test it appropriately.

3. Open the VB2015\Chap14\Polter Solution\Polter Solution (Polter Solution.sln) file.
The application is connected to the Products database, which contains a table named
tblProducts. Each record in the table has three fields. The ItemNum (primary key) and
ItemName fields contain text; the Price field contains numbers. The application should
allow the user to view the record associated with a specific item number. It should
also allow the user to enter a price and then view the records whose price is equal to
or greater than that amount. The records should appear in order by the item number
when the application is started. Code the application and then test it appropriately.

4. Open the Morgan Industries Solution (Morgan Industries Solution.sln) file contained
in the VB2015\Chap14\Morgan Industries Solution folder. The application is
connected to the Employees database, which contains a table named tblEmploy. Each
record in the table contains seven fields. The EmpNum field is the primary key. The
Status field contains the employment status, which is either the letter F (for full time)
or the letter P (for part time). The Code field identifies the employee’s department: 1
for Accounting, 2 for Advertising, 3 for Personnel, and 4 for Inventory. The records
should appear in order by the employee number when the application is started.
The application should allow the user to display all of the records, only the part-time
records, only the full-time records, and only the records for a specific department. Use
the InputBox function to get the department code. Code the application and then test
it appropriately.

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Finding and Fixing
Program Errors

After studying Appendix A, you should be able to:

�� Locate syntax errors using the Error List window

�� Locate a logic error by stepping through the code

�� Locate logic errors by using breakpoints

�� Fix syntax and logic errors

�� Identify a run time error

A P P E N D I X A

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

822

A P P E N D I X A Finding and Fixing Program Errors

Finding and Fixing Syntax Errors
As you learned in Chapter 2, a syntax error occurs when you break one of a programming
language’s rules. Most syntax errors are a result of typing errors that occur when entering
instructions, such as typing Intger instead of Integer. The Code Editor detects syntax errors
as you enter the instructions. However, if you are not paying close attention to your computer
screen, you may not notice the errors. In the next set of steps, you will observe what happens
when you start an application that contains a syntax error.

To start debugging the Total Sales Calculator application:

1. If necessary, start Visual Studio 2015. Open the Total Sales Solution (Total Sales
Solution.sln) file contained in the VB2015\AppA\Total Sales Solution folder. The
application calculates and displays the total of the sales amounts entered by the user.
See Figure A-1.

START HERE

2. Open the Code Editor window. Replace <your name> and <current date> with your
name and the current date, respectively. Figure A-2 shows the code entered in the
btnCalc_Click procedure. The red jagged lines, called squiggles, alert you that three
lines of code contain a syntax error. The green squiggle warns you of a potential
problem in your code.

Figure A-1 Total Sales Calculator application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

823

Finding and Fixing Syntax Errors

3. Press F5 to start the application. If the dialog box shown in Figure A-3 appears, click
the No button.

Figure A-3 Dialog box

4. The Error List window opens at the bottom of the IDE. See Figure A-4. The Error List
window indicates that the code contains three errors and one warning, and it provides
both a description and the location of each in the code. When debugging your code,
always correct the syntax errors first because doing so will often remove the warning.

Figure A-2 btnCalc_Click procedure in the Total Sales Calculator application

syntax error

syntax error

syntax error

warning

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

824

A P P E N D I X A Finding and Fixing Program Errors

 Note: You can change the size of the Error List window by positioning your mouse
pointer on the window’s top border until the mouse pointer becomes a vertical line
with an arrow at the top and bottom. Then press and hold down the left mouse button
while you drag the border either up or down.

5. Double-click the first error’s description in the Error List window. A LightBulb
indicator appears in the margin. Hover your mouse pointer over the light bulb until a
list arrow appears, and then click the list arrow. A list of suggestions for fixing the error
appears. See Figure A-5.

Figure A-4 Error List window

Figure A-5 Result of clicking the LightBulb indicator’s list arrow

6. The first error is simply a typing error; the programmer meant to type Integer. You can
either type the missing letter e yourself or click the appropriate suggestion in the list.
Click Change ‘Intger’ to ‘Integer’ . in the list. The Code Editor makes the change in
the Dim statement and also removes the error, as well as the warning, from the Error
List window.

7. The Error List window now indicates that there is a missing parenthesis in the
statement on Line 26. Double-click the first error’s description in the Error List
window. The Code Editor places the insertion point at the end of the first TryParse
method. Hover your mouse pointer over the jagged red line. See Figure A-6.

LightBulb
indicator

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

825

Finding and Fixing Logic Errors

8. Type). The Code Editor removes the error from the Error List window.

9. The description of the remaining error indicates that the Code Editor does not
recognize the name inTotal. Double-click the error’s description, hover your
mouse pointer over the light bulb, and then click the list arrow. This error is another
typing error; the variable’s name is intTotal, not inTotal. Click Change ‘inTotal’ to
‘intTotal’ . in the list. The Code Editor removes the error from the Error List window.

10. Close the Error List window. Save the solution and then start the application. Test the
application using 125600 as Jack’s sales, 98700 as Mary’s sales, 165000 as Khalid’s
sales, and 250400 as Sharon’s sales. Click the Calculate button. The sales total is
$639,700.

11. Click the Exit button. Close the Code Editor window and then close the solution.

Finding and Fixing Logic Errors
Unlike syntax errors, logic errors are much more difficult to find because they do not trigger
an error message from the Code Editor. A logic error can occur for a variety of reasons, such
as forgetting to enter an instruction or entering the instructions in the wrong order. Some logic
errors occur as a result of calculation statements that are correct syntactically but incorrect
mathematically. For example, consider the statement dblSum = dblNum1 * dblNum2, which
is supposed to calculate the sum of two numbers. The statement’s syntax is correct, but it is
incorrect mathematically because it uses the multiplication operator rather than the addition
operator. In the next two sections, you will debug two applications that contain logic errors.

To debug the Discount Calculator application:

1. Open the VB2015\AppA\Discount Solution\Discount Solution (Discount Solution.sln)
file. See Figure A-7. The application calculates and displays three discount amounts,
which are based on the price entered by the user.

START HERE

Figure A-6 Result of double-clicking the error description for Line 26

error

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

826

A P P E N D I X A Finding and Fixing Program Errors

2. Open the Code Editor window. Figure A-8 shows the btnCalc_Click procedure.

Figure A-7 Discount Calculator application

Figure A-8 btnCalc_Click procedure in the Discount Calculator application

3. Start the application. Type 100 in the Price box and then click the Calculate button.
The interface shows that each discount is 0.00, which is incorrect. Click the Exit button.

4. You will use the Debug menu to run the Visual Basic debugger, which is a tool that
helps you locate the logic errors in your code. Click Debug on the menu bar. The
menu’s Step Into option will start your application and allow you to step through your
code. It does this by executing the code one statement at a time, pausing immediately
before each statement is executed. Click Step Into. Type 100 in the Price box and then

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

827

Finding and Fixing Logic Errors

click the Calculate button. The debugger highlights the first instruction to be executed,
which is the btnCalc_Click procedure header. In addition, an arrow points to the
instruction, as shown in Figure A-9, and the code’s execution is paused.

Figure A-9 Procedure header highlighted

5. You can use either the Debug menu’s Step Into option or the F8 key on your keyboard
to tell the computer to execute the highlighted instruction. Press the F8 key. After the
computer processes the procedure header, the debugger highlights the next statement
to be processed, which is the decDiscount10 = decPrice * 0.1D statement. It then
pauses execution of the code. (The Dim statements are skipped over because they are
not considered executable by the debugger.)

6. While the execution of a procedure’s code is paused, you can view the contents
of controls and variables that appear in the highlighted statement and also in the
statements above it in the procedure. Before you view the contents of a control
or variable, however, you should consider the value you expect to find. Before the
highlighted statement is processed, the decDiscount10 variable should contain its
initial value, 0. (Recall that the Dim statement initializes numeric variables to 0.) Place
your mouse pointer on decDiscount10 in the highlighted statement. The variable’s
name and current value appear in a small box, as shown in Figure A-10. At this point,
the decDiscount10 variable’s value is correct.

7. Now consider the value you expect to find in the decPrice variable. Before the
highlighted statement is processed, the variable should contain the number 100, which
is the value you entered in the Price box. Place your mouse pointer on decPrice in
the highlighted statement. The variable contains 0, which is its initial value. The value
is incorrect because no statement above the highlighted statement assigns the Price
box’s value to the decPrice variable. In other words, a statement is missing from the
procedure.

Figure A-10 Value stored in the variable before the highlighted statement is executed

variable’s name
and value

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

828

A P P E N D I X A Finding and Fixing Program Errors

8. Click Debug on the menu bar, and then click Stop Debugging to stop the debugger.
Click the blank line below the last Dim statement, and then press Enter to insert
another blank line. Enter the following comment and TryParse method:

 ' assign price to a variable
 Decimal.TryParse(txtPrice.Text, decPrice)

9. Save the solution. Click Debug on the menu bar and then click Step Into. Type 100 in
the Price box and then click the Calculate button. Press F8 to process the procedure
header. The debugger highlights the TryParse method and then pauses execution of
the code.

10. Before the TryParse method is processed, the txtPrice control’s Text property should
contain 100, which is the value you entered in the Price box. Place your mouse pointer
on txtPrice.Text in the TryParse method. The box shows that the Text property
contains the expected value. The 100 is enclosed in quotation marks because it is
considered a string.

11. The decPrice variable should contain its initial value, 0. Place your mouse pointer
on decPrice in the TryParse method. The box shows that the variable contains the
expected value.

12. Press F8 to process the TryParse method. The debugger highlights the
decDiscount10 = decPrice * 0.1D statement before pausing execution of the
code. Place your mouse pointer on decPrice in the TryParse method, as shown in
Figure A-11. Notice that after the method is processed by the computer, the decPrice
variable contains the number 100, which is correct.

13. Before the highlighted statement is processed, the decDiscount10 variable should
contain its initial value, and the decPrice variable should contain the value assigned
to it by the TryParse method. Place your mouse pointer on decDiscount10 in the
highlighted statement. The box shows that the variable contains 0, which is correct.
Place your mouse pointer on decPrice in the highlighted statement. The box shows
that the variable contains 100, which also is correct.

14. After the highlighted statement is processed, the decPrice variable should still contain
100. However, the decDiscount10 variable should contain 10, which is 10% of 100.
Press F8 to execute the highlighted statement, and then place your mouse pointer on
decDiscount10 in the statement. The box shows that the variable contains 10.0, which
is correct. On your own, verify that the decPrice variable in the statement contains
the appropriate value (100).

15. To continue program execution without using the debugger, click Debug on the menu
bar and then click Continue. This time, the correct discount amounts appear in the
interface. See Figure A-12.

Figure A-11 Value stored in the variable after the TryParse method is executed

variable’s name
and value

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

829

Setting Breakpoints

Figure A-12 Sample run of the Discount Calculator application

16. Click the Exit button. Close the Code Editor window and then close the solution.

Setting Breakpoints
Stepping through code one line at a time is not the only way to search for logic errors. You can
also use a breakpoint to pause execution at a specific line in the code. You will learn how to set a
breakpoint in the next set of steps.

To begin debugging the Hours Worked application:

1. Open the Hours Worked Solution (Hours Worked Solution.sln) file contained in
the VB2015\AppA\Hours Worked Solution folder. See Figure A-13. The application
calculates and displays the total number of hours worked in four weeks.

START HERE

Figure A-13 Hours Worked application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

830

A P P E N D I X A Finding and Fixing Program Errors

2. Open the Code Editor window. Figure A-14 shows the btnCalc_Click procedure.

Figure A-14 btnCalc_Click procedure in the Hours Worked application

3. Start the application. Type 10.5, 25, 33, and 40 in the Week 1, Week 2, Week 3, and
Week 4 boxes, respectively, and then click the Calculate button. The interface shows
that the total number of hours is 83.5, which is incorrect; it should be 108.5. Click the
Exit button.

The statement that calculates the total number of hours worked is not giving the correct result.
Rather than having the computer pause before processing each line of code in the procedure,
you will have it pause only before processing the calculation statement. You do this by setting a
breakpoint on the statement.

To finish debugging the application:

1. Right-click the calculation statement, point to Breakpoint, and then click Insert
Breakpoint. (You can also set a breakpoint by clicking the statement and then using
the Toggle Breakpoint option on the Debug menu, or you can simply click in the gray
margin next to the statement.) The debugger highlights the statement and places a
circle next to it, as shown in Figure A-15.

START HERE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

831

Setting Breakpoints

2. Start the application. Type 10.5, 25, 33, and 40 in the Week 1, Week 2, Week 3, and
Week 4 boxes, respectively, and then click the Calculate button. The computer begins
processing the code contained in the btnCalc_Click procedure. It stops processing
when it reaches the breakpoint statement, which it highlights. The highlighting
indicates that the statement is the next one to be processed. Notice that a yellow arrow
now appears in the red dot next to the breakpoint. See Figure A-16.

Figure A-15 Breakpoint set in the procedure

Figure A-16 Result of the computer reaching the breakpoint

3. Before viewing the values contained in each variable in the highlighted statement,
consider the values you expect to find. Before the calculation statement is processed,
the dblTotal variable should contain its initial value (0). Place your mouse pointer
on dblTotal in the highlighted statement. The box shows that the variable’s value is
0, which is correct. (You can verify the variable’s initial value by placing your mouse
pointer on dblTotal in its declaration statement.)

4. The other four variables should contain the numbers 10.5, 25, 33, and 40, which
are the values you entered in the text boxes. On your own, view the values contained
in the dblWeek1, dblWeek2, dblWeek3, and dblWeek4 variables. Notice that two of
the variables (dblWeek1 and dblWeek4) contain the correct values (10.5 and 40). The
dblWeek2 variable, however, contains 33 rather than 25, and the dblWeek3 variable
contains its initial value (0) rather than the number 33.

5. Two of the TryParse methods are responsible for assigning the text box values to the
dblWeek2 and dblWeek3 variables. Looking closely at the four TryParse methods in the
procedure, you will notice that the third one is incorrect. After converting the contents
of the txtWeek3 control to a number, the method should assign the number to the
dblWeek3 variable rather than to the dblWeek2 variable. Click Debug on the menu bar
and then click Stop Debugging.

6. Change dblWeek2 in the third TryParse method to dblWeek3.

7. Click the breakpoint circle to remove the breakpoint.

8. Save the solution and then start the application. Type 10.5, 25, 33, and 40 in the
Week 1, Week 2, Week 3, and Week 4 boxes, respectively, and then click the Calculate
button. The interface shows that the total number of hours is 108.5, which is correct.
See Figure A-17.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

832

A P P E N D I X A Finding and Fixing Program Errors

9. On your own, test the application using other values for the hours worked in each
week. When you are finished testing, click the Exit button. Close the Code Editor
window and then close the solution.

Run Time Errors
In addition to syntax and logic errors, programs can also have run time errors. A run time error
is an error that occurs while an application is running. As you will observe in the following set
of steps, an expression that attempts to divide a value by the number 0 will result in a run time
error if the expression’s numerator and/or denominator has the Decimal data type.

To use the Quotient Calculator application to observe a run time error:

1. Open the VB2015\AppA\Quotient Solution\Quotient Solution (Quotient Solution.sln)
file. See Figure A-18. The interface provides two text boxes for the user to enter two
numbers. The Calculate button’s Click event procedure divides the number in the
txtNumerator control by the number in the txtDenominator control and then displays
the result, called the quotient, in the lblQuotient control.

START HERE

Figure A-17 Sample run of the Hours Worked application

Figure A-18 Quotient Calculator application

txtNumerator txtDenominator lblQuotient

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

833

Run Time Errors

2. Open the Code Editor window. Figure A-19 shows the btnCalc_Click procedure.

Figure A-19 btnCalc_Click procedure in the Quotient Calculator application

3. Start the application. Type 100 and 5 in the txtNumerator and txtDenominator
controls, respectively, and then click the Calculate button. The interface shows that the
quotient is 20.00, which is correct.

4. Delete the 5 from the txtDenominator control, and then click the Calculate button.
A run time error occurs. The Error Correction window indicates that the highlighted
statement, which also has an arrow pointing to it, is attempting to divide by 0. The
troubleshooting tips section of the window advises you to “Make sure the value of the
denominator is not zero before performing a division operation.” See Figure A-20.

Figure A-20 Run time error caused by attempting to divide by 0

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

834

A P P E N D I X A Finding and Fixing Program Errors

When the txtDenominator control is empty, or when it contains a character that cannot be
converted to a number, the second TryParse method in the procedure stores the number 0
in the decDenominator variable. When that variable contains the number 0, the statement
that calculates the quotient will produce a run time error because the variable is used as the
denominator in the calculation. To prevent this error from occurring, you will need to tell the
computer to calculate and display the quotient only when the decDenominator variable does
not contain the number 0; otherwise, it should display the “N/A” message. You do this using a
selection structure, which is covered in Chapter 4 in this book.

To add a selection structure to the btnCalc_Click procedure:

1. Click Debug on the menu bar and then click Stop Debugging.

2. Enter the selection structure shown in Figure A-21. Be sure to move the statements that
calculate and display the quotient into the selection structure’s true path as shown in
the figure.

START HERE

3. Start the application. Type 100 and 5 in the txtNumerator and txtDenominator
controls, respectively, and then click the Calculate button. The interface shows that the
quotient is 20.00, which is correct.

4. Next, delete the 5 from the txtDenominator control, and then click the Calculate
button. Instead of a run time error, N/A appears in the interface. See Figure A-22.

Figure A-21 Selection structure entered in the procedure

enter this
selection
structure

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

835

Appendix A Summary

5. Click the Exit button. Close the Code Editor window and then close the solution.

Appendix A Summary
 • To find the syntax errors in a program:

Look for squiggles (jagged lines) in the Code Editor window, or start the application and then
look in the Error List window.

 • To find the logic errors in a program:

Either step through the code in the Code Editor window or set a breakpoint.

 • To step through your code:

Use either the Step Into option on the Debug menu or the F8 key on your keyboard.

 • To set a breakpoint:

Right-click the line of code on which you want to set the breakpoint. Point to Breakpoint
and then click Insert Breakpoint. You can also click the line of code and then use the Toggle
Breakpoint option on the Debug menu. In addition, you can click in the gray margin next to
the line of code.

 • To remove a breakpoint:

Right-click the line of code containing the breakpoint, point to Breakpoint, and then click
Delete Breakpoint. You can also simply click the breakpoint circle in the margin.

 • To determine whether a variable contains the number 0:

Use a selection structure.

Figure A-22 Result of including the selection structure in the btnCalc_Click procedure

message displayed when
the denominator is 0

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

836

A P P E N D I X A Finding and Fixing Program Errors

Review Questions
1. The process of locating and fixing any errors in a program is called

_____________________.

a. bug-proofing
b. bug-eliminating

c. debugging
d. error removal

2. While stepping through code, the debugger highlights the statement that
_____________________.

a. was just executed
b. will be executed next

c. contains the error
d. none of the above

3. Logic errors are listed in the Error List window.

a. True
b. False

4. Which key is used to step through code?

a. F5
b. F6

c. F7
d. F8

5. While stepping through the code in the Code Editor window, you can view the contents
of controls and variables that appear in the highlighted statement only.

a. True
b. False

6. You use _____________________ to pause program execution at a specific line in
the code.

a. a breakpoint
b. the Error List window
c. the Step Into option on the DEBUG menu
d. the Stop Debugging option on the DEBUG menu

7. The statement Constant dblRATE As Double is an example of a
_____________________.

a. correct statement
b. logic error

c. syntax error
d. run time error

8. When entered in a procedure, which of the following statements will result in a
syntax error?

a. Me.Clse()

b. Integer.TryPars(txtHours.Text, intHours)

c. Dim decRate as Decimel

d. all of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

837

Exercises

Exercises
1. Open the Commission Calculator Solution (Commission Calculator Solution.sln) file

contained in the VB2015\AppA\Commission Calculator Solution folder. Use what you
learned in the appendix to debug the application.

2. Open the New Pay Solution (New Pay Solution.sln) file contained in the VB2015\
AppA\New Pay Solution folder. Use what you learned in the appendix to debug the
application.

3. Open the Hawkins Solution (Hawkins Solution.sln) file contained in the VB2015\AppA\
Hawkins Solution folder. Use what you learned in the appendix to debug the application.

4. Open the Allenton Solution (Allenton Solution.sln) file contained in the VB2015\AppA\
Allenton Solution folder. Use what you learned in the appendix to debug the application.

5. Open the Martins Solution (Martins Solution.sln) file contained in the VB2015\AppA\
Martins Solution folder. Use what you learned in the appendix to debug the application.

6. Open the Average Score Solution (Average Score Solution.sln) file contained in the
VB2015\AppA\Average Score Solution folder. Use what you learned in the appendix to
debug the application.

7. Open the Beachwood Solution (Beachwood Solution.sln) file contained in the VB2015\
AppA\Beachwood Solution folder. Use what you learned in the appendix to debug the
application.

8. Open the Framington Solution (Framington Solution.sln) file contained in the VB2015\
AppA\Framington Solution folder. Use what you learned in the appendix to debug the
application.

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

ADVANCED

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1—Lesson C

FormBorderStyle, ControlBox, MaximizeBox, MinimizeBox, and
StartPosition Properties
 • A splash screen should not have Minimize, Maximize, or Close buttons, and its borders

should not be sizable. In most cases, a splash screen’s FormBorderStyle property is set to
either None or FixedSingle. Its StartPosition property is set to CenterScreen.

 • A form that is not a splash screen should always have a Minimize button and a Close button,
but you can choose to disable the Maximize button. Typically, the FormBorderStyle property
is set to Sizable; however, it can also be set to FixedSingle. The form’s StartPosition property
is usually set to CenterScreen.

Chapter 2—Lesson A

Layout and Organization of the User Interface
 • Organize the user interface so that the information flows either vertically or horizontally,

with the most important information always located in the upper-left corner of the interface.

 • Group related controls together using either white (empty) space or one of the tools from the
Containers section of the toolbox.

 • Use a label to identify each text box in the user interface. Also use a label to identify other
label controls that display program output. The label text should be meaningful, consist
of one to three words only, and appear on one line. Left-align the text within the label and
position the label either above or to the left of the control it identifies. Enter the label text
using sentence capitalization, and insert a colon (:) following the label text.

 • Display a meaningful caption on the face of each button. The caption should indicate the
action the button will perform when clicked. Enter the caption using book title capitalization.
Place the caption on one line and use from one to three words only.

 • When a group of buttons are stacked vertically, all buttons in the group should be the same
height and width. When a group of buttons are positioned horizontally, all buttons in the

GUI Design Guidelines

A P P E N D I X B

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

840

A P P E N D I X B GUI Design Guidelines

group should be the same height. In a group of buttons, the most commonly used button is
typically placed first in the group.

 • Align the borders of the controls wherever possible to minimize the number of different
margins appearing in the interface.

Chapter 2—Lesson B

Adding Graphics
 • Use graphics sparingly. If the graphic is used solely for aesthetics, use a small graphic and

place it in a location that will not distract the user.

Selecting Font Types, Styles, and Sizes
 • Use only one font type (typically Segoe UI) for all of the text in the interface.

 • Use no more than two different font sizes in the interface.

 • Avoid using italics and underlining because both font styles make text difficult to read.

 • Limit the use of bold text to titles, headings, and key items that you want to emphasize.

Selecting Colors
 • Build the interface using black, white, and gray. Only add color if you have a good reason to

do so.

 • Use white, off-white, or light gray for the background. Use black for the text.

 • Never use a dark color for the background or a light color for the text. A dark background is
hard on the eyes, and light-colored text can appear blurry.

 • Limit the number of colors in an interface to three, not including white, black, and gray. The
colors you choose should complement each other.

 • Never use color as the only means of identification for an element in the interface.

Setting the BorderStyle Property of a Text Box or Label
 • Keep the BorderStyle property of text boxes at the default setting: Fixed3D.

 • Keep the BorderStyle property of identifying labels at the default setting: None.

 • Use FixedSingle for the BorderStyle property of labels that display program output, such as
the result of a calculation.

 • Avoid setting a label control’s BorderStyle property to Fixed3D because in Windows applications,
a control with a three-dimensional appearance implies that it can accept user input.

Setting the AutoSize and TextAlign Properties of a Label
 • Keep the AutoSize property of identifying labels at the default setting: True.

 • In most cases, use False for the AutoSize property of label controls that display program output.

 • Use the TextAlign property to specify the alignment of the text within the label.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

841

Chapter 4—Lesson B

Assigning Access Keys
 • Assign a unique access key to each control that can accept user input.

 • When assigning an access key to a control, use the first letter of the control’s caption or
identifying label, unless another letter provides a more meaningful association. If you can’t
use the first letter and no other letter provides a more meaningful association, then use a
distinctive consonant. As a last resort, use a vowel or a number.

Using the TabIndex Property to Control the Focus
 • Assign a TabIndex value (starting with 0) to each control in the interface, except for controls

that do not have a TabIndex property. The TabIndex values should reflect the order in which
the user will want to access the controls.

 • To allow users to access a text box using the keyboard, assign an access key to the text box’s
identifying label. Set the identifying label’s TabIndex property to a value that is one number
less than the value stored in the text box’s TabIndex property.

Chapter 3—Lesson B

InputBox Function’s Prompt and Title Capitalization
 • Use sentence capitalization for the prompt but book title capitalization for the title.

Assigning a Default Button
 • The default button should be the button that is most often selected by the user, except in

cases where the tasks performed by the button are both destructive and irreversible. If a form
contains a default button, it typically is the first button.

Chapter 4—Lesson B

Labeling a Group Box
 • Use sentence capitalization for the optional identifying label, which is entered in the group

box’s Text property.

MessageBox.Show Method
 • Use sentence capitalization for the text argument, but use book title capitalization for the

caption argument.

 • Display the Exclamation icon to alert the user that he or she must make a decision before
the application can continue. You can phrase the message as a question. Message boxes that
contain the Exclamation icon typically contain more than one button.

 • Display the Information icon along with an OK button in a message box that displays an
informational message.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

842

A P P E N D I X B GUI Design Guidelines

 • Display the Stop icon to alert the user of a serious problem that must be corrected before the
application can continue.

 • The default button in the message box should represent the user’s most likely action as long
as that action is not destructive.

Chapter 5—Lesson B

Radio Button Standards
 • Use radio buttons to limit the user to one choice in a group of related but mutually exclusive

choices.

 • The minimum number of radio buttons in a group is two, and the recommended maximum
number is seven.

 • The label in the radio button’s Text property should be entered using sentence capitalization.

 • Assign a unique access key to each radio button in an interface.

 • Use a container (such as a group box) to create separate groups of radio buttons. Only one
button in each group can be selected at any one time.

 • Designate a default radio button in each group of radio buttons.

Check Box Standards
 • Use check boxes to allow the user to select any number of choices from a group of one or

more independent and nonexclusive choices.

 • The label in the check box’s Text property should be entered using sentence capitalization.

 • Assign a unique access key to each check box in an interface.

Chapter 6—Lesson C

List Box Standards
 • Use a list box only when you need to offer the user at least three different choices.

 • Don’t overwhelm the user with a lot of choices at the same time; instead, display from three
to eight items and let the user employ the scroll bar to view the remaining ones.

 • Use a label control to provide keyboard access to the list box. Set the label’s TabIndex
property to a value that is one number less than the list box’s TabIndex value.

 • List box items are either arranged by use, with the most used entries appearing first in the list,
or sorted in ascending order.

Default List Box Item
 • If a list box allows the user to make only one selection, a default item is typically selected

when the interface first appears. The default item should be either the item selected most
frequently or the first item in the list. However, if a list box allows more than one selection at
a time, you do not select a default item.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

843

Chapter 8—Lesson B

Chapter 7—Lesson B

Combo Box Standards
 • Use a label control to provide keyboard access to a combo box. Set the label’s TabIndex

property to a value that is one number less than the combo box’s TabIndex value.

 • Combo box items are either arranged by use, with the most used entries appearing first in the
list, or sorted in ascending order.

Chapter 8—Lesson B

Menu Standards
 • Menu title captions should be one word, with only the first letter capitalized. Each menu title

should have a unique access key.

 • Menu item captions can be from one to three words. Use book title capitalization, and assign
a unique access key to each menu item on the same menu.

 • Assign unique shortcut keys to commonly used menu items.

 • If a menu item requires additional information from the user, place an ellipsis (...) at the end of
the item’s caption, which is entered in the item’s Text property.

 • Follow the Windows standards for the placement of menu titles and items.

 • Use a separator bar to separate groups of related menu items.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A P P E N D I X C
Visual Basic
Conversion Functions
Syntax Return data type Range for expression

CBool(expression) Boolean Any valid String or numeric expression

CByte(expression) Byte 0 through 255 (unsigned)

CChar(expression) Char Any valid String expression; value can be 0 through 65535 (unsigned);
only the first character is converted

CDate(expression) Date Any valid representation of a date and time

CDbl(expression) Double –1.79769313486231570E+308 through
–4.94065645841246544E-324 for negative values;
4.94065645841246544E-324 through 1.79769313486231570E
+308 for positive values

CDec(expression) Decimal –79,228,162,514,264,337,593,543,950,335 for
zero-scaled numbers, that is, numbers with no decimal places;
for numbers with 28 decimal places, the range is +/–
7.9228162514264337593543950335; the smallest possible
non-zero number is 0.0000000000000000000000000001 (+/–1E-28)

CInt(expression) Integer –2,147,483,648 through 2,147,483,647; fractional parts are rounded

CLng(expression) Long –9,223,372,036,854,775,808 through 9,223,372,036,854,775,807;
fractional parts are rounded

CObj(expression) Object Any valid expression

CSByte(expression) SByte (signed Byte) –128 through 127; fractional parts are rounded

CShort(expression) Short –32,768 through 32,767; fractional parts are rounded

CSng(expression) Single –3.402823E+38 through –1.401298E-45 for negative values;
1.401298E-45 through 3.402823E+38 for positive values

CStr(expression) String Depends on the expression

CUInt(expression) UInt 0 through 4,294,967,295 (unsigned)

CULng(expression) ULng 0 through 18,446,744,073,709,551,615 (unsigned)

CUShort(expression) UShort 0 through 65,535 (unsigned)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Statements

Assignment
object.property = expression
variableName = expression

Updating a counter
counterVariable = counterVariable {+ | –} constantValue
counterVariable {+= | –= } constantValue

Updating an accumulator
accumulatorVariable = accumulatorVariable {+ | –} value
accumulatorVariable {+= | –= } value

Option Explicit
when set to On, prevents the computer from creating an undeclared variable:
Option Explicit [On | Off]

Option Strict
when set to On, prevents the computer from making implicit type conversions that
may result in a loss of data: Option Strict [On | Off]

Option Infer
when set to Off, prevents the computer from inferring a variable’s data type:
Option Infer [On | Off]

A P P E N D I X D
Visual Basic 2015
Cheat Sheet

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

848

A P P E N D I X D Visual Basic 2015 Cheat Sheet

Do...Loop
Pretest loop

Do {While | Until} condition
 loop body instructions to be processed either while the condition is true or until the condition

becomes true
Loop
Posttest loop
Do
 loop body instructions to be processed either while the condition is true or until the condition

becomes true
Loop {While | Until} condition

For Each...Next
For Each elementVariableName As dataType In group
 loop body instructions
Next elementVariableName

For...Next
For counterVariableName [As dataType] = startValue To endValue [Step stepValue]

loop body instructions
Next counterVariableName
stepValue Loop body processed when Loop ends when
positive number counter’s value <= endValue counter’s value > endValue
negative number counter’s value >= endValue counter’s value < endValue

If…Then…Else
If condition Then
 statement block to be processed when the condition is true
[ElseIf condition2
 statement block to be processed when the first condition is false and condition2 is true]
[Else
 statement block to be processed when all previous conditions are false]
End If

Logic errors in selection structures

1. using a compound condition rather than a nested selection structure
2. reversing the decisions in the outer and nested selection structures
3. using an unnecessary nested selection structure
4. including an unnecessary comparison in a condition

Select Case
Select Case selectorExpression

Case expressionList1
instructions for the first Case

[Case expressionList2
instructions for the second Case]

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

849

Type Conversion Rules

[Case expressionListN
instructions for the Nth Case]

[Case Else
instructions for when the selectorExpression does not match any of the expressionLists]

End Select
Case smallest value in the range To largest value in the range
Case Is comparisonOperator value

Try...Catch
Try

one or more statements that might generate an exception
Catch ex As Exception

one or more statements to execute when an exception occurs
End Try

Variable and Named Constant Declaration
{Dim | Private | Static} variableName As dataType [= initialValue]

[Private] Const constantName As dataType = expression

Data Types
Boolean a logical value (True, False)
Char one Unicode character
Date date and time information
Decimal a number with a decimal place
Double a number with a decimal place
Integer integer
Long integer
Object data of any type
Short integer
Single a number with a decimal place
String text

Rules for Naming Variables
1. The name must begin with a letter or an underscore.
2. The name can contain only letters, numbers, and the underscore character.
 No punctuation characters, special characters, or spaces are allowed in the name.
3. Although the name can contain thousands of characters, 32 characters is the

recommended maximum number of characters to use.
4. The name cannot be a reserved word, such as Sub or Double.

Type Conversion Rules
1. Strings will not be implicitly converted to numbers.
2. Numbers will not be implicitly converted to strings.
3. Wider data types will not be implicitly demoted to narrower data types.
4. Narrower data types will be implicitly promoted to wider data types.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

850

A P P E N D I X D Visual Basic 2015 Cheat Sheet

Operators and Precedence
^ exponentiation 1
– negation 2
*, / multiplication and division 3
\ integer division 4
Mod modulus (remainder) arithmetic 5
+, – addition and subtraction 6
& concatenation 7
=, <> equal to, not equal to 8
>, >= greater than, greater than or equal to 8
<, <= less than, less than or equal to 8
Not reverses the truth-value of the condition; True 9
 becomes False, and False becomes True
And all subconditions must be true for the compound 10
 condition to evaluate to True
AndAlso same as the And operator, except performs short-circuit 10
 evaluation
Or only one of the subconditions needs to be true for 11
 the compound condition to evaluate to True
OrElse same as the Or operator, except performs short-circuit 11
 evaluation
Xor only one of the sub-conditions can be true for the compound 12
 condition to evaluate to True

Arithmetic Assignment
variableName arithmeticAssignmentOperator value
Operator Purpose
+= addition assignment
–= subtraction assignment
*= multiplication assignment
/= division assignment

Printing

Print the interface during design time
Make the designer window the active window. Use the Windows Snipping tool to take a picture
of the interface, and then save the picture as a PNG file. Close the Snipping tool. Use Windows
to locate the PNG file, right-click the file’s name, click Print, select the appropriate printer, and
then click the Print button.

You can also tap the Print Screen key while the designer window is open. You then would need
to start an application that can display a picture. Open a new document (if necessary), and then
press Ctrl+v.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

851

Methods

Print the interface during run time
Add a PrintForm control (object) to the component tray. Use the following statements to print:
object.PrintAction = Printing.PrintAction.destination
object.Print()

destination Purpose
PrintToPreview sends the printout to the Print Preview window
PrintToPrinter sends the printout to the printer

Print the code during design time
Make the Code Editor window the active window. Collapse any code you do not want to print.
Click the Print option on the File menu. Select/deselect the Hide collapsed regions and/or
Include line numbers check boxes. Click the OK button.

Generate Random Numbers

Integers
Dim randomObjectName As New Random
randomObjectName.Next(minValue, maxValue)

Double numbers
Dim randomObjectName As New Random
(maxValue – minValue + 1) * randomObjectName.NextDouble + minValue

Methods

Convert
converts a number from one data type to another: Convert.method(value)

Focus
sends the focus to an object: object.Focus()

MessageBox.Show
displays a message box
MessageBox.Show(text, caption, buttons, icon[, defaultButton])
dialogResultVariable = MessageBox.Show(text, caption, buttons, icon[, defaultButton])

SelectAll
selects the contents of a text box: textbox.SelectAll()

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

852

A P P E N D I X D Visual Basic 2015 Cheat Sheet

Strings.Space
includes a specific number of spaces in a string: Strings.Space(number)

ToString
formats a number: numericVariableName.ToString(formatString)

TryParse
converts a string to a number
dataType.TryParse(string, numericVariableName)
booleanVariable = dataType.TryParse(string, numericVariableName)

Functions

Format
formats a number: Format(expression, style)

InputBox
gets data from the user: InputBox(prompt[, title][, defaultResponse])

Val
converts a string to a Double number: Val(string)

Independent Sub Procedure
Private Sub procedureName([parameterList])
 statements
End Sub
Call procedureName([argumentList])

Function Procedure
Private Function procedureName([parameterList]) As dataType
 statements
 Return expression
End Function

Internally Document the Code
Start the comment with an apostrophe followed by an optional space.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

853

Working with Strings

Control the Characters Accepted by a Text Box
Example

Private Sub txtAge_KeyPress(sender As Object,
e As KeyPressEventArgs) Handles txtAge.KeyPress
 ' allows the text box to accept only
 ' numbers and the Backspace key
 If (e.KeyChar < "0" OrElse e.KeyChar > "9") AndAlso
 e.KeyChar <> ControlChars.Back Then
 e.Handled = True
 End If
End Sub

Prevent a Form from Closing (FormClosing Event
Procedure)
e.Cancel = True

Working with Strings

Accessing characters
string.Substring(startIndex[, numCharsToAccess])

Aligning the characters
string.PadLeft(totalChars[, padCharacter])
string.PadRight(totalChars[, padCharacter])

Comparing using pattern matching
string Like pattern

Pattern-matching characters Matches in string
? any single character
* zero or more characters
any single digit (0 through 9)
[characterList] any single character in the characterList
 (for example, “[A5T]” matches A, 5,
 or T, whereas “[a–z]” matches any lowercase letter)
[!characterList] any single character not in the characterList
 (for example, “[!A5T]” matches any character
 other than A, 5, or T, whereas “[!a–z]” matches
 any character that is not a lowercase letter)

Concatenation
string & string […& string]

Converting to uppercase or lowercase
string.ToUpper
string.ToLower

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

854

A P P E N D I X D Visual Basic 2015 Cheat Sheet

Determining the number of characters
string.Length

Inserting characters
string.Insert(startIndex, value)

Removing characters
string.Trim
string.Remove(startIndex[, numCharsToRemove])

Searching
string.Contains(subString)
string.IndexOf(subString[, startIndex])

List/Combo Boxes

Add items
object.Items.Add(item)

Clear items
object.Items.Clear()

Determine the selected item
object.SelectedItem
object.SelectedIndex

Perform a task when the selected item changes
Code the SelectedValueChanged or SelectedIndexChanged events.

Remove items
object.Items.Remove(item)
object.Items.RemoveAt(index)

Select an item
object.SelectedItem = item
object.SelectedIndex = itemIndex

One-Dimensional Arrays

Array declaration
{Dim | Private | Static} arrayName(highestSubscript) As dataType
{Dim | Private | Static} arrayName() As dataType = {initialValues}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

855

Two-Dimensional Arrays

Highest subscript
arrayName.GetUpperBound(0)
arrayName.Length – 1

Number of elements
arrayName.Length
arrayName.GetUpperBound(0) + 1

Reversing
Array.Reverse(arrayName)

Sorting (ascending order)
Array.Sort(arrayName)

Traversing
Dim strCities() As String = {"Boston", "Chicago",
 "Louisville", "Tampa"}

Example 1 – For…Next

Dim intHigh As Integer = strCities.GetUpperBound(0)
For intSub As Integer = 0 To intHigh
 MessageBox.Show(strCities(intSub))
Next intSub

Example 2 – Do…Loop

Dim intHigh As Integer = strCities.Length - 1
Dim intSub As Integer
Do While intSub <= intHigh
 lstCities.Items.Add(strCities(intSub))
 intSub += 1
Loop

Example 3 – For Each…Next

For Each strCity As String In strCities
 MessageBox.Show(strCity)
Next strCity

Two-Dimensional Arrays

Array declaration
{Dim | Private | Static} arrayName(highestRowSubscript, highestColumnSubscript) As dataType
{Dim | Private | Static} arrayName(,) As dataType = {{initialValues}, …{initialValues}}

Highest column subscript
arrayName.GetUpperBound(1)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

856

A P P E N D I X D Visual Basic 2015 Cheat Sheet

Highest row subscript
arrayName.GetUpperBound(0)

Traversing
Dim strMonths(,) As String = {{"Jan", "31"},
 {"Feb", "28"},
 {"Mar", "31"},
 {"Apr", "30"}}

Example 1 – For...Next (displays contents row by row)

Dim intHighRow As Integer = strMonths.GetUpperBound(0)
Dim intHighCol As Integer = strMonths.GetUpperBound(1)
For intR As Integer = 0 To intHighRow
 For intC As Integer = 0 To intHighCol
 lstMonths.Items.Add(strMonths(intR, intC))
 Next intC
Next intR

Example 2 – Do...Loop (displays contents column by column)

Dim intHighRow As Integer = strMonths.GetUpperBound(0)
Dim intHighCol As Integer = strMonths.GetUpperBound(1)
Dim intR As Integer
Dim intC As Integer
Do While intC <= intHighCol
 intR = 0
 Do While intR <= intHighRow
 lstMonths.Items.Add(strMonths(intR, intC))
 intR += 1
 Loop
 intC += 1
Loop

Example 3 – For Each...Next (displays contents row by row)

For Each strElement As String In strMonths
 lstMonths.Items.Add(strElement)
Next strElement

Sequential Access Files

Close a file
streamWriterVariableName.Close()
streamReaderVariableName.Close()

Create a StreamReader object
IO.File.OpenText(fileName)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

857

Structures

Create a StreamWriter object
IO.File.method(fileName)
method Description
CreateText opens a sequential access file for output
AppendText opens a sequential access file for append

Declare StreamWriter and StreamReader variables
{Dim | Private} streamWriterVariableName As IO.StreamWriter
{Dim | Private} streamReaderVariableName As IO.StreamReader

Determine whether a file exists
IO.File.Exists(fileName)

Read data from a file
streamReaderVariableName.ReadLine

Determine whether a file contains another character to read
streamReaderVariableName.Peek

Write data to a file
streamWriterVariableName.Write(data)
streamWriterVariableName.WriteLine(data)

Structures

Declare a structure variable
{Dim | Private} structureVariableName As structureName

Declare an array of structure variables
Use the structureName as the array’s dataType.

Definition
Structure structureName
 Public memberVariableName1 As dataType
 [Public memberVariableNameN As dataType]
End Structure

Member variable within a structure variable
structureVariableName.memberVariableName

Member variable within an array of structure variables
arrayName(subscript).memberVariableName

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

858

A P P E N D I X D Visual Basic 2015 Cheat Sheet

Databases

Connect an application to an Access database
1. Open the application’s solution file.
2. If necessary, open the Data Sources window by clicking View on the menu bar, pointing

to Other Windows, and then clicking Data Sources.
3. Click Add New Data Source in the Data Sources window to start the Data Source

Configuration Wizard, which displays the Choose a Data Source Type screen. If
necessary, click Database.

4. Click the Next button, and then continue using the wizard to specify the data source
and the name of the database file. The data source for an Access database is Microsoft
Access Database File (OLE DB).

Preview the contents of a dataset
1. Right-click the dataset’s name in the Data Sources window and then click Preview Data.
2. Click the Preview button.
3. When you are finished previewing the data, close the dialog box.

Bind an object in a dataset
To have the computer create a control and then bind an object to it:

In the Data Sources window, click the object you want to bind. If necessary, use the object’s list
arrow to change the control type. Drag the object to an empty area on the form and then release
the mouse button.

To bind an object to an existing control:

In the Data Sources window, click the object you want to bind. Drag the object to the control on
the form and then release the mouse button. Alternatively, you can click the control on the form
and then use the Properties window to set the appropriate property or properties.

Customizing a BindingNavigator control
To add an item to a BindingNavigator control:

1. Click the BindingNavigator control’s task box, and then click Edit Items to open the
Items Collection Editor window.

2. If necessary, click the “Select item and add to list below” arrow.
3. Click the item you want to add to the BindingNavigator control, and then click the Add

button.
4. If necessary, you can use the up and down arrows to reposition the item.

To delete an item from a BindingNavigator control:

1. Click the BindingNavigator control’s task box, and then click Edit Items to open the
Items Collection Editor window.

2. In the Members list, click the item you want to remove and then click the X button.

Determine the location of the record pointer
bindingSourceName.Position

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

859

LINQ

Move the record pointer
bindingSourceName.MoveFirst()
bindingSourceName.MoveLast()
bindingSourceName.MoveNext()
bindingSourceName.MovePrevious()

Add a record to a dataset
dataSetName.tableName.AddtableNameRow(valueField1[,
 valueField2…, valueFieldN])

Save dataset changes to a database
tableAdapterName.Update(dataSetName.tableName)

Sort the records in a dataset
bindingSourceName.Sort = fieldName

Locate a record in a dataset
dataRowVariable =
 dataSetName.tableName.FindByfieldName(value)

Delete a record from a dataset
dataRowVariable.Delete()

LINQ

Select and arrange records
Dim variableName = From elementName In dataset.table
 [Where condition]
 [Order By elementName.fieldName1 [Ascending | Descending]
 [, elementName.fieldNameN [Ascending | Descending]]]
 Select elementName

Assign a LINQ variable’s contents to a BindingSource control
bindingSource.DataSource = variableName.AsDataView

LINQ aggregate operators
The aggregate operators are Average, Count, Max, Min, and Sum. The Count operator does not
need the Select clause.

Dim variableName [As dataType] =
 Aggregate elementName In dataset.table
 [Where condition]
 Select elementName.fieldName
 Into aggregateOperator()

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

860

A P P E N D I X D Visual Basic 2015 Cheat Sheet

SQL

Selecting fields and records
SELECT fieldList FROM tableName
 [WHERE condition]
 [ORDER BY fieldName [DESC]]

Add a record to a dataset
INSERT INTO tableName(fieldName1, fieldName2,…fieldNameN)
 VALUES (field1Value, field2Value,…fieldNValue)

Delete a record from a dataset
DELETE FROM tableName WHERE condition

Classes

Define a class
Public Class className
 attributes section
 behaviors section
End Class

Instantiate an object
Syntax – Version 1

{Dim | Private} variableName As className
variableName = New className

Syntax – Version 2

{Dim | Private} variableName As New className

Create a Property procedure
Public [ReadOnly | WriteOnly] Property propertyName[(parameterList)] As dataType

Get
 [instructions]
 Return privateVariable

End Get
Set(value As dataType)

 [instructions]
 privateVariable = {value | defaultValue}

End Set
End Property

Create a constructor
Public Sub New([parameterList])
 instructions to initialize the class’s Private variables
End Sub

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

861

Most Commonly Used Properties

Create a method that is not a constructor
Public {Sub | Function} methodName([parameterList]) [As dataType]
 instructions
End {Sub | Function}

Create an auto-implemented property
Public Property propertyName As dataType

Most Commonly Used Properties
Windows Form
AcceptButton specify a default button that will be selected when the user presses

the Enter key
CancelButton specify a cancel button that will be selected when the user presses

the Esc key
ControlBox indicate whether the form contains the Control box and Minimize,

Maximize, and Close buttons
Font specify the font to use for text
FormBorderStyle specify the appearance and behavior of the form’s border
MaximizeBox specify the state of the Maximize button
MinimizeBox specify the state of the Minimize button
Name give the form a meaningful name (use frm as the ID)
StartPosition indicate the starting position of the form
Text specify the text that appears in the form’s title bar and on

the taskbar

Button
Enabled indicate whether the button can respond to the user’s actions
Font specify the font to use for text
Image specify the image to display on the button’s face
ImageAlign indicate the alignment of the image on the button’s face
Name give the button a meaningful name (use btn as the ID)
TabIndex indicate the position of the button in the Tab order
Text specify the text that appears on the button

CheckBox
Checked indicate whether the check box is selected or unselected
Font specify the font to use for text
Name give the check box a meaningful name (use chk as the ID)
TabIndex indicate the position of the check box in the Tab order
Text specify the text that appears inside the check box

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

862

A P P E N D I X D Visual Basic 2015 Cheat Sheet

ComboBox
DropDownStyle indicate the style of the combo box
Font specify the font to use for text
Name give the combo box a meaningful name (use cbo as the ID)
SelectedIndex get or set the index of the selected item
SelectedItem get or set the value of the selected item
Sorted specify whether the items in the list portion are sorted
TabIndex indicate the position of the combo box in the Tab order
Text get or set the value that appears in the text portion

DataGridView
AutoSizeColumnsMode control the way the column widths are sized
DataSource indicate the source of the data to display in the control
Dock define which borders of the control are bound to its container
Name give the data grid view control a meaningful name (use dgv as the ID)

GroupBox
Name give the group box a meaningful name (use grp as the ID)
Padding specify the internal space between the edges of the group box

and the edges of the controls contained within the group box
Text specify the text that appears in the upper-left corner of the group box

Label
AutoSize enable/disable automatic sizing
BorderStyle specify the appearance of the label’s border
Font specify the font to use for text
Name give the label a meaningful name (use lbl as the ID)
TabIndex specify the position of the label in the Tab order
Text specify the text that appears inside the label
TextAlign specify the position of the text inside the label

ListBox
Font specify the font to use for text
Name give the list box a meaningful name (use lst as the ID)
SelectedIndex get or set the index of the selected item
SelectedItem get or set the value of the selected item
SelectionMode indicate whether the user can select zero choices, one choice, or

more than one choice
Sorted specify whether the items in the list are sorted

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

863

Most Commonly Used Properties

PictureBox
Image specify the image to display
Name give the picture box a meaningful name (use pic as the ID)
SizeMode specify how the image should be displayed
Visible hide/display the picture box

RadioButton
Checked indicate whether the radio button is selected or unselected
Font specify the font to use for text
Name give the radio button a meaningful name (use rad as the ID)
Text specify the text that appears inside the radio button

TextBox
BackColor indicate the background color of the text box
CharacterCasing specify whether the text should remain as is or be converted to

either uppercase or lowercase
Font specify the font to use for text
ForeColor indicate the color of the text inside the text box
Name give the text box a meaningful name (use txt as the ID)
MaxLength specify the maximum number of characters the text box will

accept
Multiline control whether the text can span more than one line
PasswordChar specify the character to display when entering a password
ReadOnly specify whether the text can be edited
ScrollBars indicate whether scroll bars appear on a text box (used with a

multiline text box)
TabIndex specify the position of the text box in the Tab order
TabStop indicate whether the user can use the Tab key to give focus to the

text box
Text get or set the text that appears inside the text box

Timer
Name give the timer a meaningful name (use tmr as the ID)
Enabled stop/start the timer
Interval indicate the number of milliseconds between each Tick event

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A P P E N D I X E
Case Projects

Your Special Day Catering (Chapters 1–3)
Create an application for Your Special Day Catering. The interface should allow the user
to enter the customer ID, the bride’s name, the groom’s name, and the date of the wedding
reception. It should also allow the user to enter the number of beef dinners, the number of
chicken dinners, and the number of vegetarian dinners ordered for the reception. The interface
should display the total number of dinners ordered, the total price of the order without sales
tax, the sales tax, and the total price of the order with sales tax. Each dinner costs $26.75, and
the sales tax rate is 5%. Include an appropriate image in the interface. (Hint: You can find many
different images on the Open Clip Art Library Web site at http://openclipart.org.)

Crispies Bagels and Bites (Chapters 1–3)
Create an application for Crispies Bagels and Bites. The interface should allow the salesclerk to
enter the number of bagels, donuts, and cups of coffee a customer orders. Bagels are 99¢, donuts
are 75¢, and coffee is $1.20 per cup. The application should calculate and display the total price
of the order without sales tax, the sales tax, and the total price of the order with sales tax. The
sales tax rate is 6%. Include an appropriate image in the interface. (Hint: You can find many
different images on the Open Clip Art Library Web site at http://openclipart.org.)

High Roll Game (Chapters 1–5)
The High Roll game requires two players. When the application is started, it should get each
player’s name and then display the names in the interface. Each player will roll two dice. The
application should calculate the total roll for each player and then compare both totals. The
application should display one of the following messages: “Tie”, “player 1’s name wins”, or “player
2’s name wins”. The application should keep track of the number of times player 1 wins, the
number of times player 2 wins, and the number of ties. You can use either your own die images
or the ones contained in the VB2015\AppE folder. (The die images were downloaded from the
Open Clip Art Library at http://openclipart.org.)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A P P E N D I X E Case Projects

866

Math Practice (Chapters 1–5)
Create an application that can be used to practice adding, subtracting, multiplying, and dividing
numbers. The application should display a math problem on the screen and then allow the
student to enter the answer and also verify that the answer is correct. The application should
give the student as many chances as necessary to answer the problem correctly. The math
problems should use random integers from 1 through 20 only. The subtraction problems should
never ask the student to subtract a larger number from a smaller one. The division problems
should never ask the student to divide a smaller number by a larger number. Also, the division
problems should always result in a whole number. The application should keep track of the
number of correct and incorrect responses made by the student.

Mortgage Calculator (Chapters 1–6)
Create an application that calculates and displays three monthly mortgage payments. The
application should use the loan amount and annual interest rate provided by the user with terms
of 15 years, 25 years, and 30 years. The application should also display the total amount paid at
the end of 15 years, 25 years, and 30 years.

Loan Payment Calculator (Chapters 1–7)
Create an application that calculates and displays the monthly payments on a loan. The
application should use the loan amount provided by the user, rates of 3% to 7%, and terms of 3,
4, and 5 years. Use either a Sub procedure or a function.

Savings Calculator (Chapters 1–7)
Research Visual Basic’s Financial.FV (Future Value) method. Create an application that allows
the user to enter the amount a customer plans to deposit in a savings account each month,
and whether the money will be deposited at either the beginning or the end of the month. The
application should calculate and display the value of the account at the end of 5 years, 10 years,
15 years, 20 years, and 25 years. The interest rate is 3% and is compounded monthly.

Tax-Deductible Calculator (Chapters 1–8)
Create an interface that provides text boxes for entering the following business expenses:
lodging, travel, meals, and entertainment. Lodging and travel are 100% tax deductible; meals
and entertainment are only 50% tax deductible. The application should calculate and display
the total expenses, the amount that is tax deductible, and the percentage that is tax deductible.
The text boxes should accept only numbers, the period, and the Backspace key. The application
should display an error message if a text box contains more than one period.

State Finder (Chapters 1–8)
Create an interface that provides a text box for the user to enter one or more characters. The
interface should also include a list box containing the names of the 50 U.S. states. When the user
clicks a button in the interface, the button’s Click event procedure should select the first list box
item that begins with the character(s) entered by the user. For example, if the user enters the
letter K, the procedure should select Kansas in the list box. However, if the user enters the letters
Ke, the procedure should select Kentucky.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

867

Jefferson Realty (Chapters 1–13)

Shopping Cart (Chapters 1–10)
The shopping cart application should list the names of 10 different DVDs in a list box and store
the associated prices in a one-dimensional array. To purchase a DVD, the user needs to click its
name in the list box and then click an Add to Cart button. The button’s Click event procedure
should display the DVD’s name and price in another list box, which will represent the shopping
cart. The interface should also provide a Remove from Cart button. The application should
display the cost of the items in the shopping cart, the sales tax, the shipping charge, and the total
cost. The sales tax rate is 4%. The shipping charge is $1 per DVD, up to a maximum shipping
charge of $5.

Airplane Seats (Chapters 1–10)
Create an interface that contains 18 controls arranged in six rows and three columns. You can
use label controls, picture boxes, or buttons. The seats in the first row are designated 1A, 1B, and
1C. The seats in the second row are designated 2A, 2B, and 2C, and so on. When the user clicks
one of the 18 controls, the application should display the passenger’s name, seat designation, and
ticket price. The application should use a sequential access file for the passenger information, a
structure, and an array.

Theater Seats (Chapters 1–11)
Create an interface that contains 10 controls arranged in five rows and two columns. You can use
label controls, picture boxes, or buttons. The seats in the first row are designated A1 and B1. The
seats in the second row are designated A2 and B2, and so on. When the user clicks one of the 10
controls, the application should display the patron’s name, seat designation, and ticket price. The
application should use a sequential access file for the patron information, a class, and an array.

Roll ‘Em Again (Chapters 1–11)
Code the Roll ‘Em Game from Chapter 5’s Lesson C using a class for the pair of dice.

Rosette Catering (Chapters 1–12)
Create a Web Site application for Rosette Catering. The interface should allow the user to enter
the customer ID, the bride’s name, the groom’s name, and the date of the wedding reception. It
should also allow the user to enter the number of chicken dinners, the number of pasta dinners,
and the number of vegetarian dinners ordered for the reception. The interface should display
the total number of dinners ordered, the total price of the order without sales tax, the sales tax,
and the total price of the order with sales tax. Each dinner costs $21, and the sales tax rate is 3%.
Include an appropriate image in the interface. (Hint: You can find many different images on the
Open Clip Art Library Web site at http://openclipart.org.)

Jefferson Realty (Chapters 1–13)
Create a Microsoft Access database that contains one table named tblHomes. The table should
contain 10 records, each having five fields. The ID and ZIP code fields should contain text. Be
sure to use several different ZIP codes. The number of bedrooms, number of bathrooms, and
price fields should be numeric. Create an application that displays the contents of the database

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A P P E N D I X E Case Projects

868

in a DataGridView control. The user should not be allowed to add or delete records. The
application should allow the user to display the records for a specific number of bedrooms, a
specific number of bathrooms, or a specific ZIP code. It also should allow the user to display the
average home price for the entire database and also for a specific ZIP code.

Foxmore Realty (Chapters 1–14)
Create a Microsoft Access database that contains one table named tblHomes. The table should
contain 10 records, each having six fields. The ID, city, and state fields should contain text. The
number of bedrooms, number of bathrooms, and price fields should be numeric. Create an
application that displays the contents of the database in a DataGridView control. If necessary,
remove the BindingNavigator control from the application. The application should allow the
user to insert and delete records. It should also allow the user to display the records for a specific
number of bedrooms, a specific number of bathrooms, a specific ZIP code, and a specific
combination of bedrooms and bathrooms.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

aligning
characters in strings, 853
columns of information, 598–600
controls, 35–36

ampersand (&), concatenation operator, 153,
153–155, 209, 850

And operator, 197, 198, 200, 209, 850
AndAlso operator, 197, 198, 200, 209, 850
apostrophe ('), comments, 92
AppendText method, 579, 579–580
applications. See also specific application names

connecting to Access databases, 728–732
creating, 13–14
ending, 36, 38
OO. See object-oriented (OO) applications
starting, 36–38
testing and debugging, 101–103
Web. See Web applications

Aquarium application, 695–704
Area Calculator application, 131–133, 662–667
arithmetic assignment operators, 333,

333–335, 850
arithmetic expressions, 95–96
arithmetic operators, 95–96, 191, 209
array(s), 499–558, 501

accumulator, 528, 528–531
class-level, 503
collections compared, 525
counter, 528
one-dimensional. See one-dimensional arrays
populating, 503
structure variables, creating, 568–572
two-dimensional. See two-dimensional arrays

Array.Reverse method, 515, 515–516
Array.Sort method, 515, 515–516
Ascending keyword, 755

Note: Page numbers in boldface type indicate where key terms are defined.

Index

Special Characters
\ (backslash), 95–96, 209, 850
< (left angle bracket), 187, 189, 190, 209, 850
> (right angle bracket), 187, 189, 190, 209, 850
(number sign), 465
% (percent sign), 795
& (ampersand), 153, 153–155, 209, 850
' (apostrophe), 92
* (asterisk), 20, 22, 95, 209, 334, 465, 850
+ (plus sign), 95, 153, 209, 334, 850
- (minus sign), 95, 209, 334, 850
/ (forward slash), 95, 209, 334, 850
= (equal sign), 189, 190, 209, 334, 850
? (question mark), 465, 805
^ (caret), 95, 209, 850
_ (underscore), 154

ABC Corporation application, 271
Access databases, connecting applications,

728–732
access keys, 77, 77–78, 841
accumulator(s), 328, 328–333

updating, 847
accumulator arrays, 528, 528–531
active server page (ASP), 675
Adalene Fashions application, 728–731, 745–747,

756–757, 761–763
Add Connection dialog box, 730
Add method, 352, 352–353
Add New Item dialog box, 677
Addition application, 330–333

btnAdd_Click procedure, 331–333
addition assignment operator (+=), 334, 850
addition operator (+), 95, 209, 850
aggregate operators, 760, 760–763, 859
algorithms, 258

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

I n d e x

870

ASP (active server page), 675
assignment operators, 90
assignment statements, 90, 847
asterisk (*)

change indicator, 20, 22
multiplication assignment operator (*=),

334, 850
multiplication operator, 95, 209, 850
pattern-matching character, 465

attributes, 612
auto-implemented properties, 649, 861

classes containing, 649–650
AutoPostBack property, 716, 716–717
AutoSize property, 75, 75–76, 840
AutoSizeColumnsMode property, 736

backslash (\), integer division operator, 95–96,
209, 850

base class, 662, 662–667
behaviors, 612
binding, 732

to existing controls, 744–747
objects in datasets, 732–739, 858

BindingNavigator control, 735
customizing, 758–760, 858

BindingSource object, 735
block scope, 193
block-level variables, 193
Bond Movies application, 506–507
book title capitalization, 68, 841
Boole, George, 48
Boolean data type, 115, 116, 849
Boolean operators. See logical operators
Boolean values, comparing, 288–290
BorderStyle property, 75, 840
bound controls, 732, 733–736

formatting data displayed in, 748–749
breakpoints, setting, 829–832
browsers, 673
btnAdd_Click procedure, 331–333, 597–598
btnCalc_Click procedure, 97–101, 513–514. See

also specific applications
btnCheck_Click procedure, 487–493
btnClear_Click procedure, 89–93
btnPrint_Click procedure, 93–95

bugs, 101
button(s). See also specific button names

commonly used properties, 861
default, 159, 159–161, 841

button controls, 36
Button tool, 36
ByRef keyword, 397, 402
ByVal keyword, 402, 410

Calculate button Click procedure, 712–715
Call statement, 392, 392–393
camel case, 20
Cancel property, 430
capitalization. See also case

book title, 68, 841
sentence, 67, 841

caret (^), exponentiation operator, 95, 209, 850
case. See also capitalization

camel, 20
converting strings to uppercase or lowercase,

205–208, 850
Pascal, 171

cells, 736
Cerruti Company application

btnCalc_Click procedure, 431–444
FormClosing event procedure, 429–431
opening, 429
preview, 390–391
TOE chart, 428

change indicator (*), 20, 22
Char data type, 115, 849
character(s)

literal-type, 119
stream, 578
strings. See string(s)

CharacterCasing property, 205
check boxes, 283, 283–285, 711, 711–712

commonly used properties, 861
selecting and deselecting, 284–285
standards, 842

CheckBox tool, 711, 711–712
Checked property, 282
CheckedChanged event, 291
child table, 727
City and State application, 460–461

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

871

 I n d e x

collapsing regions, Code Editor window, 39
collections, 352

arrays compared, 525
color, GUIs, 74, 840
columns, aligning, 598–600
combo boxes, 420, 420–424, 843, 854

commonly used properties, 862
comments, apostrophe (') to indicate, 92
Commission Calculator application, 123–126
CompareValidator tool, 702
comparison(s)

arrays and collections, 525
Boolean values, 288–290
strings, using pattern matching, 464–466, 853
strings containing one or more letters, 203–205
Sub procedures and Function procedures,

404–405
comparison operators, 187, 189, 189–197, 209

displaying net income or loss, 194–197
swapping numeric values, 191–194

component tray, 48
computer databases, 726. See also database(s)
concatenating strings, 153, 853
concatenation operator (&), 153, 153–155,

209, 850
concatenation operators, 209
Concert Tickets application, 397–404, 407–411

btnCalc_Click procedure, 399–404
conditions, 183

compound, using rather than a nested selection
structure, 260–261

including an unnecessary comparison in,
263–264

configuring Visual Studio Ultimate 2015, 12–13
Const keyword, 131
Const statement, 130, 130–131
constants

literal, 118
named, 130, 130–133

constructors, 623, 623–625
creating, 860
default, 623
parameterized, 623, 629–633

Contains method, 459, 459–460
Continent application, 515–516

class(es), 612
base, 662, 662–667
constructors, 623, 623–625, 860
containing a ReadOnly property, 644–648
containing auto-implemented properties,

649–650
containing overloaded methods, 651–657
containing parameterized constructors, 629–633
containing private variables, public properties,

and methods, 618–629
containing public variables only, 614–618
creating, 613–614
defining, 860
derived, 662, 662–667
instantiating objects from, 614, 860
reusing, 633–636

class definitions, 19
class scope, 126
Class statement, 613, 613
class-level arrays, 503
class-level variables, 126, 126–128
Clear method, 353
ClearCosts procedure, creating, 715–716
ClearLabels procedure, 291–294
Click event procedure

coding, 89–101
modifying, 167–170

client computers, 673
Clock application, 377–378
Close method, 581, 581–582, 586–587
closing

input sequential access files, 586–589
output sequential access files, 581–582
solutions, 22
Web applications, 687
windows in IDE, 14

code, 16
documenting internally, 92–93, 852
error handling, 740–743
modifying, 145–151
printing, 51–52, 851

Code Editor window, 38–42
collapsing and expanding regions, 39
Me.Close() instruction, 40–42
opening, 38–39

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

I n d e x

872

saving dataset changes, 859
terminology, 726–727
Visual Basic code, 739–743

database management systems (DBMSs), 726
DataGridView control, 736, 736–739, 862
dataset(s), 728

adding records, 780–785, 859
binding objects, 732–739, 858
deleting records, 786–790, 859, 860
locating records, 859
previewing contents, 731–732, 858
saving changes to a database, 859
sorting and arranging records using LINQ,

754–757, 859
sorting records, 785, 859

DataSet object, 735
Date data type, 115, 116, 849
DBMSs (database management systems), 726
debugging, 101, 101–103

breakpoints, 829–832
logic errors, 825–829
syntax errors, 822–825

Decimal data type, 115
Decimal directory, 849
decision symbol, 185
declaring

named constants, 849
one-dimensional arrays, 502–504, 854
StreamWriter and StreamReader variables, 857
structure variables, 563–564, 857
two-dimensional arrays, 545, 855
variables, 117, 849

decrementing, 329
default button, 159, 159–161, 841
default constructor, 623
default list item, 356, 357, 842
default radio button, 282
Default.aspx Web page, adding to application,

677–680
Delete method, 787
Delete queries, 812, 813–814
DELETE statement, 811, 813–818
deleting

records from datasets, 786–790, 860
timer controls, 49–50

demoted values, 134

control(s), 28. See also specific controls
access keys, 77–78, 841
aligning, 35–36
bound. See bound controls
existing, binding objects to, 744–747
hyperlink, 681, 681–683
locking, 77
multiple, changing properties, 31–33
repositioning on Web pages, 688–689
showing and hiding, 94–95
sizing, 35–36

ControlBox property, 51, 839
ControlChars.Back constant, 234
ControlChars.NewLine constant, 158,

158–159
conversion functions, 845
Convert class, 121
Convert method, 851
converting case of strings, 205–208, 850
Copy to Output Directory property, 743,

743–744
counter(s), 328, 328–333

updating, 847
counter arrays, 528
counter-controlled loops, 335
CreateText method, 579, 579–580
CustomValidator tool, 702

data types, 114, 849
type conversion rules, 849
user-defined, 562
variables, selecting, 114–116

data validation, 200
TryParse method, 300–302

database(s), 726–753, 858–859
Access, connecting applications, 728–732
binding objects, 732–739, 858
binding to existing controls, 744–747
coding Next Record and Previous Record

buttons, 747–748
Copy to Output Directory property, 743,

743–744
formatting data displayed in bound label

controls, 748–749
queries. See queries
relational, 726

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

873

 I n d e x

equal sign (=)
arithmetic assignment operators, 334, 850
comparison operators, 189, 190, 209, 850

equal to operator (=), 189, 190, 209, 850
errors

code, handling, 740–743
debugging. See debugging
logic. See logic errors
overflow, 327
run time. See run time errors
syntax. See syntax errors

event(s), 38, 612. See also specific event names
OO applications, identifying, 65–66
selecting, 40

event procedures, 38. See also specific event
procedure names

associating with different objects and events,
170–173

coding, 89–101
exceptions, 740

handling, 740–743
executable files, 37
Exists method, 583
Exit Do statement, 323
Exit For statement, 335
Exit For statement, 335
exiting Visual Studio 2015, 23
expanding regions, Code Editor window, 39
exponentiation operator (^), 95, 209, 850
extended selection structures, 264, 264–267

false path, 185
Favorites application, 395–397
fields, 726

selecting, 869
files, executable, 37
Financial.Pmt method, 359–363, 360
Fishbowl Emporium Web Site application,

676–689
adding Web pages, 677–681
dynamic Web pages, 695–698
hyperlink controls, 681–683
images, 685–687
opening, 695
repositioning controls, 688–689
sketch, 695

derived class, 662, 662–667
desk-checking, 258, 258–259
Die Tracker application

coding, 537–539
opening, 536–537
preview, 500
testing, 539–540

Dim keyword, 117, 126
Discount Calculator application, 825–829
displaying. See also viewing

controls, 94–95
Toolbox window, 28–29
windows in IDE, 14–15

division operator (/), 95, 209, 850
documentation

assembling, 103–104
internal, 92–93, 852

Do...Loop statement, 323, 323–328, 848
For...Next statement compared, 340

dot member access operators, 19
Double data type, 115, 849
double numbers, random, generating, 851
DropDownStyle property, 420
dual-alternative selection structures, 185, 186,

201–203
dynamic Web pages, 674, 695–698

eBook Collection application
btnAdd_Click procedure, 597–598
btnRemove_Click procedure, 600–601
coding, 594–595
frmMain_FormClosing procedure, 601–605
frmMain_Load procedure, 595–597
preview, 560–561
TOE chart, 594

Edit Columns dialog box, 737–738
Electric Bill application, 371–376
elements, arrays, 502

determining number in one-dimensional
array, 505

empty strings, 89
Enabled property, 478
encapsulating, 612
ending applications, 36, 38
endless loops, 327
Enter event, 235, 235–239

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

I n d e x

874

For...Next statement, 335, 335–340, 848
Do...Loop statement compared, 340

forward slash (/)
division assignment operator (/=), 334, 850
division operator, 95, 209, 850

frmMain_FormClosing procedure, 601–605
frmMain_Load procedure, 595–597
function(s), 98, 98–101, 404, 852. See also specific

function names
Function procedures, 404, 404–411, 852

Game Show Contestants application, 578–582,
586–589

Games Galore application
coding, 769–771
modifying, 767–769
preview, 724–725

General Declarations section, 92
Get blocks, 621, 621–622
Get statement, 622
GetFwt function, 433–437
GetUpperBound method, 505
Grade Calculator application, 644–650
graphical user interfaces (GUIs), 15, 72–76

access keys, 77–78, 841
AutoSize property, 75–76, 840
BorderStyle property, 75, 840
check boxes, 283–285, 842
color, 74, 840
combo boxes, 420–424, 843, 854
design guidelines, 839–843
fonts, 73–74, 840
graphics, 73, 840
group boxes, 216–218, 841
layout and organization, 68, 839–840
list boxes. See list boxes
locking controls, 77
number format, 100–101
OO applications, sketching, 66–68
printing, 850–851
radio buttons, 282–283, 842
tab order, 78–81
text boxes. See text boxes
TextAlign property, 75–76, 840

graphics. See images
greater than operator (>), 189, 190, 209

Fishbowl Emporium Web Site application
(continued)

starting, 683–685
Submit button Click event procedure, 699–701
validating user input, 701–704

flowcharts, 88
flowcharting nested selection structures, 252–254
flowcharting selection structures, 185–186
planning procedures using, 88–89

flowlines, 88
focus, 78

controlling using TabIndex property, 78–81, 841
Focus method, 91, 851
fonts, GUIs, 73–74, 840
For Each...Next statement, 507, 507–508, 848
foreign key, 727
form(s), 15

border style, 50, 839
button controls, 36
commonly used properties, 861
label controls, 29–31
Location property, 31
menus. See menu(s)
Minimize and Maximize buttons, 50–51, 839
Name property, 20
picture box controls, 33–36
preventing from closing, 853
properties, 19–21
Size property, 21
StartPosition property, 20–21, 839
startup, 36, 36–37
Text property, 20, 31

form files, 17
changing name, 18

Format function, 100, 100–101, 852
Format menu

aligning and sizing using, 35–36
Order option, 32–33

formatting, 152, 152–153
data displayed in bound label control, 748–749

Formatting and Advanced Binding dialog box,
748–749

FormBorderStyle property, 50, 839
FormClosing event, 429, 429–431
FormClosing Event procedure, 853
form’s Declarations section, 123

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

875

 I n d e x

invalid data, 101
Is keyword, 269–270
Items collection, 352

Jenko Booksellers application, 548–550

KeyChar property, 233
KeyPress event, 233, 233–235
keywords, 40

label(s), commonly used properties, 862
label controls, 29, 29–31

adding to forms, 30
instantiating, 29–30
naming, 30

Label tool, 29–31
Language-Integrated Query (LINQ), 754,

754–757
aggregate operators, 760–763, 859
assigning variable contents to a BindingSource

control, 859
sorting and arranging records in datasets,

754–757, 859
layout, GUIs, 68, 839–840
left angle bracket (<)

less than operator, 189, 190, 209
less than or equal to operator, 187, 189, 190,

209, 850
not equal to operator, 189, 190, 209, 850

Length property, 452
less than operator (<), 189, 190, 209
less than or equal to operator (<=), 187, 189, 190,

209, 850
lifetime, 123
LIKE operator, 795
Like operator, 464, 464–466
line(s), 584
line continuation character (_), 154
LINQ. See Language-Integrated Query (LINQ)
list boxes, 351, 351–354

adding items, 352–353, 854
clearing items, 353, 854
commonly used properties, 862
default list item, 356, 357, 842
removing items, 854
selecting items, 854

greater than or equal to operator (>=), 189, 190,
209, 850

Gross Pay Calculator application, 188–189
group boxes, 216, 216–218, 841

commonly used properties, 862
GUIs. See graphical user interfaces (GUIs)

Handled property, 233
hand-tracing, 258
hiding

controls, 94–95
windows in IDE, 14

Hours Worked application, 829–832
hyperlink controls, 681, 681–683

IDE (integrated development environment),
managing windows, 14–15

If...Then...Else statements, 187, 187–188, 848
images

GUIs, 73, 840
Web pages, 685–687

implicit type conversion, 133
incrementing, 329
independent Sub procedures, 392, 392–393, 852
IndexOf method, 459, 460–461
infinite loops, 327
inheritance, 662
Inherits clause, 662
initializing, 328
input files, 578

closing, 586–589
InputBox function, 155, 155–158, 840, 852
input/output symbols, 88
Insert method, 455, 455–456
Insert queries, 812, 812–813
INSERT statement, 811, 811–813
Insert Table dialog box, 696
instances, 612
instantiating, 612

label controls, 29–30
objects from classes, 614, 860

integer(s), random, generating, 851
Integer data type, 115, 849
integer division operator (\), 95, 95–96, 209, 850
integrated development environment (IDE),

managing windows, 14–15

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

I n d e x

876

other than constructors, 625, 861
overloaded, 651–657, 652

Meyer’s Purple Bakery application
assigning access keys, 77–78
btnCalc_Click procedure, 97–101
btnClear_Click procedure, 89–93
btnPrint_Click procedure, 93–95
building user interface, 72–76
coding, 86–89
documentation, 103–104
GUI, 72–76
identifying events, 65–66
identifying objects, 64–65
identifying tasks, 63–64
locking controls, 77
modifying, 144–151
planning, 87–88
preview, 60–61
sketching user interface, 66–68
tab order, 78–81
testing and debugging, 101–103

Meyer’s Purple Bakery application, modified
associating procedures with different objects

and events, 170–174
Calculate button code modification, 145–151
concatenating strings, 153–155
ControlChars.NewLine constant, 158–159
default button, 159–161
formatting numbers using ToString method,

152–153
InputBox function, 155–158
Load and Click event procedures, 167–170
opening, 145
preview, 112–113
storing information in variables, 114–117
TextChanged event procedure, 170
TOE chart, 144, 167

Microsoft Access databases, connecting
applications, 728–732

MinimizeBox property, 50–51, 839
minus sign (-)

negation operator, 95, 209, 850
subtraction assignment operator (-=), 334, 850
subtraction operator, 95, 209, 850

mnuFileNew_Click procedure, 484–493

list boxes (continued)
Sorted property, 354
standards, 354, 842

literal constants, 118
literal-type characters, 119
Load event, 144
Load event procedure, modifying, 167–170
Location property, 31
locking controls, 77
logic errors, 101

finding and fixing, 825–829
selection structures, 257–264
using a compound condition rather than a

nested selection structure, 260–261
logical operators, 197, 197–203, 209

truth tables, 198–203
Long data type, 115, 849
loop(s). See also repetition structures

counter-controlled, 335
infinite (endless), 327
posttest, 322
pretest, 322

loop body, 319
loop exit condition, 317
looping condition, 317
Lowest and Highest application, 192–194

Math.Round function, 437, 437–444
MaximizeBox property, 50–51, 839
Me keyword, 739
Me.Close() instruction, 40–42
member variables, 562, 857
menu(s)

adding to forms, 475–481
Exit option, 480
shortcut keys, 478–479
standards, 479, 843

menu strip controls, 475
MessageBox.Show method, 222, 222–226,

841–842, 851
methods, 40, 612, 851–852. See also specific

method names
class containing private variables, public

properties, and methods, 618–629
constructors, 623, 623–625, 860–861

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

877

 I n d e x

not equal to operator (<>), 189, 190, 209, 850
Not operator, 197, 198, 200, 209, 850
number(s)

formatting, 152, 152–153
real, 382, 382–384
rounding, 437–444

number sign (#), pattern-matching character, 465

object(s), 612
associating event procedures with different

objects and events, 170–173
binding in datasets, 732–739, 858
binding to existing controls, 744–747
instantiating from a class, 614, 860
OO applications, identifying, 64–65

Object box, 17
Object data type, 115, 116, 849
object-oriented (OO) applications, 62–71

identifying events, 65–66
identifying objects, 64–65
identifying tasks, 63–64
user interface sketch, 66–68

object-oriented programming (OOP), 39, 612
classes. See class(es)

object-oriented programming languages, 612
one-dimensional arrays, 502, 502–507

data storage, 504
declaring, 502–504, 854
determining highest subscript, 505, 855
determining number of elements, 505, 855
parallel, 532, 532–536
reversing, 855
sorting, 515–516, 855
traversing, 506–507, 855

OO. See object-oriented (OO) applications
OOP. See object-oriented programming (OOP)
opening

Code Editor window, 38–39
existing solutions, 23
Web applications, 687
windows in IDE, 14

OpenText method, 583
operators

aggregate, 760, 760–763, 859
arithmetic, 95–96, 191, 209, 850

modulus operator, 96, 209, 850
Monthly Payment application

btnCalc_Click procedure, 358–359
coding, 355–359
combo boxes, 422–424
Financial.Pmt method, 359–363
list boxes, 351–354
opening, 351
preview, 316
TOE chart, 350

Mount Rushmore application, 206–208
Move methods, 747
Multiline property, 331
multiple-alternative selection structures, 264,

264–267
multiplication assignment operator (*=), 334, 850
multiplication operator (*), 95, 209, 850
MyBase keyword, 664

name(s)
forms files, changing, 18
label controls, assigning, 30

Name property, 20
named constants, 130, 130–133

declaring, 849
namespaces, 19
naming variables, 116, 849
negation operator (-), 95, 209, 850
nested repetition structures, 376–378
nested selection structures, 250, 250–257

coding, 255–257
flowcharting, 252–254
including an unnecessary comparison in a

condition, 263–264
reversing decisions made by outer structures

and, 261–262
unnecessary, 262–263
using a compound condition rather than, 260–261

Net Income or Loss application, 195–196
Net Pay application, 457–458
New Project dialog box, 13–14
New Web Site dialog box, 676
Next Record button, 747–748
Norbert Pool & Spa Depot application, 564–566,

614–618

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

I n d e x

878

parallel arrays, 532, 532–536
parameter(s), 233
parameter marker (?), 804
parameter queries, 804, 805–807
parameterized constructors, 623

classes containing, 629–633
parent table, 727
Pascal case, 171
passing variables, 394–404

by reference, 394, 397–404
by value, 394, 394–397

paths
false, 185
true, 185

pattern-matching characters, 465
Peek method, 585
percent sign (%), wildcard, 795
Pete’s Pizzeria application, 633–636
picture box controls, 33, 33–36

commonly used properties, 863
PictureBox tool, 33–36
Pizza Game application

adding menu to interface, 476–480
coding File menu New Game option, 484–493
opening, 484
preview, 450–451
shortcut keys, 478–479
TOE chart, 483–484

plus sign (+)
addition assignment operator (+=), 334, 850
addition operator, 95, 209, 850
concatenating strings, 153

points, 21
populating the array, 503
Position property, 747
postback, 675
posttest loops, 322
precedence of operations, 197, 208–209, 850
Presidents - Vice Presidents application,

525–528
pretest loops, 322
Preview Data dialog box, 732
previewing

completed splash screens, 10
contents of datasets, 731–732, 858

Previous Record button, 747–748

operators (continued)
assignment, 90
assignment, arithmetic, 333, 333–335, 850
comparison, 189, 189–197, 209, 850
concatenation, 153, 153–155, 209, 850
logical (Boolean), 197, 197–203, 209, 850
order of precedence, 197, 208–209, 850
summary, 208–209

Option Explicit On statement, 133, 135
Option Explicit statement, 133, 847
Option Infer Off statement, 133
Option Infer statement, 133, 847
Option statements, 125, 133–136
Option Strict On statement, 134
Option Strict statement, 133, 847
Options dialog box, 12–13
Or operator, 200, 209, 850
ORDER BY clause, 794
Order By clause, 754
order of precedence of operators, 197, 208–209, 850
Order option, Format menu, 32–33
OrElse operator, 197, 198, 200, 209, 850
organization, GUIs, 68, 839–840
Oscar Winners application

adding records to dataset, 780–785
deleting records from dataset, 786–790
INSERT and DELETE statements, 811–818
invoking queries from code, 809–811
opening, 780–781
parameter queries, 805–807
preview, 778–779
saving queries, 807–809
SELECT statements, 796–801, 805–807
sorting records in dataset, 785

output files, 578
closing, 581–582

overflow errors, 327
overloaded methods, 652

classes containing, 651–657
Overridable keyword, 664
Overrides keyword, 664

PadLeft method, 456, 456–457
PadRight method, 456, 456–457
Paper Warehouse application, 532–536, 550–553,

568–572

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

879

 I n d e x

Public Property keyword, 620
Public property procedures, private variables,

620–623
public variables, class containing public variables

only, 614–618

queries, 754, 754–757
invoking from code, 809–811
LINQ. See Language-Integrated Query (LINQ)
parameter, 804, 805–807
saving, 807–809
SQL, creating, 796–801

Query Parameters dialog box, 806
question mark (?)

parameter marker, 805
pattern-matching character, 465

Quotient Calculator application, 832–835

radio button(s), 282, 282–283
commonly used properties, 863
default, 282
selecting and deselecting, 284–285
standards, 842

radio button list control, 710, 710–711
RadioButtonList tool, 710, 710–711
random numbers, generating, 851
Random object, 302, 302–306
Random.Next method, 302
RangeValidator tool, 702
reading data from sequential access files,

582–585, 856
ReadLine method, 584
ReadOnly keyword, 620
ReadOnly property, 331

classes containing, 644–648
real numbers, 382, 382–384
Rearrange Name application, 462–464
record(s), 726

datasets. See dataset(s)
selecting, 869

record pointer, datasets, 858–859
reference, passing variables by, 394, 397–404
reference control, 35
Refresh method, 378
RegularExpressionValidator tool, 702
relational databases, 726

primary key, 727
priming read, 372
PrintFrom tool, 93
printing

code, 851
interface, 850–851
splash screen interface and code, 51–52

Private keyword, 40, 126, 131
private variables

class containing private variables, public
properties, and methods, 618–629

public property procedures, 620–623
procedure(s). See also Sub procedures; specific

procedure names
passing structure variables to, 564–567
planning using flowcharts, 88–89
planning using pseudocode, 87–88

procedure footers, 40
procedure headers, 40
procedure scope, 123
procedure-level variables, 123, 123–126
process symbols, 88
Product ID application, 454–455, 466–467
programming, object-oriented, 39, 612

classes. See class(es)
programming languages, object-oriented, 612
Projected Sales application, 320–322, 326–327,

337–339
promoted values, 134
properties, 17. See also specific property names

assigning values during run time, 90–91
auto-implemented, 649, 649–650, 861
changing for multiple controls, 31–33
forms, 19–21
setting and restoring value, 21–22

Properties list, 17
Properties window, 17, 17–18, 19

changing form file name, 18
Property procedures, 620, 860
pseudocode, 87

planning procedures using, 87–88
pseudo-random number generator, 302,

302–306
public properties, class containing private

variables, public properties, and methods,
618–629

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

I n d e x

880

SELECT statement, 794, 794–795, 796–801
SelectAll method, 235, 235–236, 851
SelectedIndex property, 356, 356–357
SelectedIndexChanged event, 358
SelectedItem property, 356, 356–357
SelectedValueChanged event, 358
selecting

events, 40
fields and records, 869
items in list/combo boxes, 854

selection structures, 179–246, 182
coding, 187–189
comparing strings containing one or more

letters, 203–205
comparison operators, 189–197
conditions, 183
converting strings to uppercase or lowercase,

205–208
dual-alternative, 185, 186, 201–203
flowcharting, 185–186
logic errors, 257–264
logical operators, 197–203
multiple-alternative (extended), 264, 264–267
nested. See nested selection structures
single-alternative, 183, 183–185, 186
summary of operators, 208–209

SelectionMode property, 351
sentence capitalization, 67, 841
sequential access files, 578, 578–589

input, closing, 586–589
output, closing, 581–582, 856
reading data, 582–585, 857
writing data to, 578–581, 857

Set block, 622
Set statement, 622
Settings box, 17
Short data type, 115, 849
short-circuit evaluation, 200
shortcut keys, 478

assigning to menu items, 478–479
signatures, 623
simple variables, 501
Single data type, 115, 849
single-alternative selection structures, 183,

183–185, 186
Size property, 21

relational operators. See comparison operators
remainder operator, 96, 209, 850
Remove method, 453, 600, 600–601
RemoveAt method, 600, 600–601
repetition structures, 315–388, 317

arithmetic assignment operators, 333–335
counters and accumulators, 328–333
Do...Loop statement, 323–328
For...Next statement, 335–340
nested, 376–378

RequiredField Validator tool, 702
Return statement, 405
reversing one-dimensional arrays, 855
right angle bracket (>)

greater than operator, 187, 189, 190, 209
greater than or equal to operator, 189, 190,

209, 850
not equal to operator, 189, 190, 209, 850

Roll ‘Em Game application, 303–308
rounding numbers, 437–444
run time, 48
run time errors, 102, 581

finding and fixing, 832–835

Sam’s Car rental application, 258–263
Satellite Radio Web application

Calculate button Click event procedure,
712–715

CheckBox tool, 711–712
clearing contents of labels, 715–717
opening, 709–710
preview, 672
RadioButton List tool, 710–711

saving
queries, 807–809
solutions, 22

Savings Account application, 380–384
btnCalc_Click procedure, 381–382

scalar variables, 501
scope, 123
ScrollBars property, 331
searching

strings, 458–461, 854
two-dimensional arrays, 550–553

Select Case statement, 167, 267–271, 848–849
specifying a range of values, 269–271

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

881

 I n d e x

determining number of characters, 452, 854
inserting characters, 455–458, 854
removing characters, 453–455, 854
searching, 458–461, 854
zero-length (empty), 89

String data type, 115, 849
String.Empty value, 89
Strings.Space method, 599, 852
structure(s), 562, 857
Structure statement, 562
structure variables, 563, 563–573

creating array, 568–572
declaring and using, 563–564, 857
passing to procedures, 564–567

Structured Query Language (SQL), 794, 794–804
adding records to datasets, 860
creating queries, 796–801
deleting records from datasets, 860
SELECT statement, 794–795, 796–801
selecting fields and records, 860

Sub keyword, 40
Sub procedures, 40, 392–393

Function procedures compared, 404–405
independent, 392, 392–393, 852

Submit button Click event procedure, 699–701
subscripts, 502

determining highest in one-dimensional
array, 505

Substring method, 461, 461–464
subtraction assignment operator (-=), 334, 850
subtraction operator (-), 95, 209, 850
Sunnyside Decks application, 619–620, 626–633
syntax, 40
syntax errors, 101, 102–103

finding and fixing, 822–825

tab order, 78, 78–81
TabIndex property, 78, 78–81, 841
table(s), 726
TableAdapter object, 735
TableAdapter Query Configuration Wizard,

807–809
TableAdapterManager object, 735
task(s), OO applications, identifying, 63–64
Task, Object, Event charts. See TOE charts
testing applications, 101–103

sizing controls, 35–36
Sleep method, 378
Snowboard Shop application, 264–267, 269
Solution Explorer window, 16, 16–17
solutions

closing, 22
existing, opening, 23
saving, 22

Sort method, 785
Sorted property, 354
sorting, 515

one-dimensional arrays, 515–516, 855
records in datasets, 785

source file, 16
splash screens, 10–18

completed, previewing, 10
creating, 11–18
printing interface and code, 51–52
removing title bar, 51
timer controls, 49

SQL. See Structured Query Language (SQL)
starting

applications, 36–38
Visual Studio Ultimate 2015, 11–12
Web applications, 683–685

StartPosition property, 20–21, 839
start/stop symbols, 88
startup forms, 36, 36–37
statement(s), 847–849. See also specific statement

names
statement blocks, 187
static text, 679, 679–680
static variables, 128, 128–130
static Web pages, 673, 673–674
stream of characters, 578
StreamReader objects, 582, 582–583, 856–857
StreamWriter object, 578, 578–582, 857
string(s), 89, 449–498

accessing characters, 461–464, 853
aligning characters, 853
comparing using pattern matching, 464–466, 853
concatenating, 153, 853
containing one or more letters, comparing,

203–205
converting to uppercase or lowercase,

205–208, 853

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

I n d e x

882

ClearLabels procedure, 291–294
opening, 281
preview, 248–249
radio buttons, 282–283
TOE chart, 280–281

Trim method, 453, 453–455
Trixie at the Diner problem, 379–380
true path, 185
truth tables, 198, 198–203
Try...Catch statement, 740, 740–743, 849
TryParse method, 119, 119–121, 300–302, 852
two-dimensional arrays, 544, 544–548

declaring, 545, 855
determining highest column subscript, 855
determining highest row subscript, 856
searching, 550–553
totaling values, 548–550
traversing, 547–548, 856

txtLetter_KeyPress procedure, 480–481
type conversion, implicit, 133

underscore (_), line continuation character, 154
Unicode, 115
update read, 372
updating, 329

accumulators, 847
counters, 847

user input, validating, 701–704
user interfaces. See graphical user interfaces

(GUIs)
user-defined data types, 562. See also structure(s);

structure variables

Val function, 98, 98–99, 852
valid data, 101
ValidationSummary tool, 702
validator tools, 701, 701–704
value(s)

assigning to properties during run time,
90–91

demoted, 134
passing variables by, 394, 394–397
promoted, 134
properties, setting and restoring, 21–22
totaling in two-dimensional arrays, 548–550

text, static, 679, 679–680
text boxes, 64

commonly used properties, 863
controlling characters accepted by, 853
GUIs, 76

text files, 578. See also sequential access files
Text property, 20, 31
TextAlign property, 75, 75–76, 840
TextChanged event, 170
timer controls, 48, 48–50

adding to splash screen, 49
commonly used properties, 863
deleting, 49–50

Timer tool, 48–50
title(s), Web pages, 679
title bar, removing from splash screen, 51
To keyword, 269–270
TOE charts, 62, 63–66, 72, 86–87

Cerruti Company application, 428
eBook Collection application, 594
modified Meyer’s Purple Bakery application,

144, 167
modified Treeline Resort application, 280–281
Monthly Payment application, 350
Pizza Game application, 483–484

ToLower method, 205, 205–208
toolbox, 28
Toolbox window, 28, 28–29
ToString method, 152, 152–153, 852
Total Sales calculator application, 822–825
Total Scores application, 126–130
ToUpper method, 205, 205–208
Treeline Resort application

adding group boxes, 216–218
btnCalc_Click procedure, 219–222, 226–229,

285–290
coding, 218–222
Enter event procedures, 235–239
KeyPress event procedures, 233–235
MessageBox.Show method, 222–226
opening, 216
preview, 180–181

Treeline Resort application, modified
btnCalc_Click procedure, 285–290
check boxes, 283–285

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

883

 I n d e x

Web pages, 673. See also Web applications
adding images, 685–687
adding to application, 677–681
dynamic, 674, 695–698
hyperlink controls, 681–683
repositioning controls, 688–689
static, 673, 673–674
static text, 679–680
titles, 679

Web servers, 673
WHERE clause, 794
Where clause, 754
wildcard, percent sign (%), 795
windows, managing in the IDE, 14–15
Windows Form Designer window, 15,

15–16
Windows Form objects. See form(s)
Woods Manufacturing application

btnCalc_Click procedure, 654–656
class file contained in, 653–654
preview, 610–611

Write method, 579, 579–580
WriteLine method, 579, 579–580
WriteOnly keyword, 620
writing to sequential access files, 578–581, 857

Xor operator, 197, 198, 209, 850

zero-length strings, 89

variables, 114, 114–130
assigning values, 118–122
block-level, 193
class-level, 126, 126–128
data type selection, 114–116
declaring, 117, 849
member, 562, 857
naming, 116, 849
passing. See passing variables
procedure-level, 123, 123–126
scalar, 501
simple, 501
static, 128–130
structure. See structure variables

viewing. See also displaying
form properties, 19–20

Visible property, 94
Visual Studio Ultimate 2015

configuring, 12–13
exiting, 23
starting, 11–12

Voter Eligibility application, 252–257

Warren School application, 528–531
Waterson Company application, 508–514
Web applications, 671–721

closing, 687
opening, 687
starting, 683–685

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	Brief Contents�
	Contents
	Preface
	Read This before You Begin
	Overview: An Introduction to Programming
	Programming a Computer
	Visual Basic 2015
	Using the Chapters Effectively
	Summary
	Key Terms

	Ch 1: An Introduction to Visual Basic 2015
	The Splash Screen Application
	Properties of a Windows Form
	Setting and Restoring a Property's Value
	Saving a Solution
	Closing the Current Solution
	Opening an Existing Solution
	Exiting Visual Studio 2015
	The Toolbox Window
	The Label Tool
	Changing a Property for Multiple Controls
	The PictureBox Tool
	The Button Tool
	Starting and Ending an Application
	The Code Editor Window
	Using the Timer Tool
	Setting the FormBorderStyle Property
	The MinimizeBox, MaximizeBox, and ControlBox Properties
	Printing the Application's Code and Interface

	Ch 2: Designing Applications
	Creating an Object-Oriented Application
	Planning an Object-Oriented Application
	Building the User Interface
	Locking the Controls on a Form
	Assigning Access Keys
	Controlling the Tab Order
	Coding the Application
	Coding the btnClear_Click Procedure
	Coding the btnPrint_Click Procedure
	Writing Arithmetic Expressions
	Coding the btnCalc_Click Procedure
	Testing and Debugging the Application
	Assembling the Documentation

	Ch 3: Using Variables and Constants
	Using Variables to Store Information
	Assigning Data to an Existing Variable
	The Scope and Lifetime of a Variable
	Static Variables
	Named Constants
	Option Statements
	Modifying the Meyer's Purple Bakery Application
	Modifying the Calculate Button's Code
	Using the ToString Method to Format Numbers
	Concatenating Strings
	The InputBox Function
	The ControlChars.NewLine Constant
	Designating a Default Button
	Modifying the Load and Click Event Procedures
	Coding the TextChanged Event Procedure
	Associating a Procedure with Different Objects and Events

	Ch 4: The Selection Structure
	Making Decisions in a Program
	Flowcharting a Selection Structure
	Coding Selection Structures in Visual Basic
	Comparison Operators
	Logical Operators
	Comparing Strings Containing One or More Letters
	Converting a String to Uppercase or Lowercase
	Summary of Operators
	Creating the Treeline Resort Application
	Coding the Treeline Resort Application
	The MessageBox.Show Method
	Completing the btnCalc_Click Procedure
	Coding the KeyPress Event Procedures
	Coding the Enter Event Procedures

	Ch 5: More on the Selection Structure
	Nested Selection Structures
	Flowcharting a Nested Selection Structure
	Coding a Nested Selection Structure
	Logic Errors in Selection Structures
	Multiple-Alternative Selection Structures
	The Select Case Statement
	Modifying the Treeline Resort Application
	Modifying the Calculate Button's Code
	Modifying the ClearLabels Procedure
	Using the TryParse Method for Data Validation
	Generating Random Integers
	Completing the Roll 'Em Game Application

	Ch 6: The Repetition Structure
	Repeating Program Instructions
	The Projected Sales Application
	The Do...Loop Statement
	Counters and Accumulators
	Arithmetic Assignment Operators
	The For...Next Statement
	Creating the Monthly Payment Application
	Including a List Box in an Interface
	Coding the Monthly Payment Application
	The Financial.Pmt Method
	The Electric Bill Application
	Nested Repetition Structures
	The Refresh and Sleep Methods
	Trixie at the Diner

	Ch 7: Sub and Function Procedures
	Sub Procedures
	Passing Variables
	Function Procedures
	Including a Combo Box in an Interface
	Creating the Cerruti Company Application
	Coding the FormClosing Event Procedure
	Coding the btnCalc_Click Procedure
	Completing the btnCalc_Click Procedure

	Ch 8: String Manipulation
	Working with Strings
	Determining the Number of Characters in a String
	Removing Characters from a String
	Inserting Characters in a String
	Searching a String
	Accessing the Characters in a String
	Using Pattern Matching to Compare Strings
	Modifying the Product ID Application
	Adding a Menu to a Form
	Completing the Pizza Game Application
	Coding the File Menu's New Game Option

	Ch 9: Arrays
	Arrays
	One-Dimensional Arrays
	The For Each...Next Statement
	Calculating the Average Stock Price
	Finding the Highest Value
	Sorting a One-Dimensional Array
	Arrays and Collections
	Accumulator and Counter Arrays
	Parallel One-Dimensional Arrays
	The Die Tracker Application
	Two-Dimensional Arrays
	Totaling the Values Stored in a Two-Dimensional Array
	Searching a Two-Dimensional Array

	Ch 10: Structures and Sequential Access Files
	Structures
	Declaring and Using a Structure Variable
	Passing a Structure Variable to a Procedure
	Creating an Array of Structure Variables
	Sequential Access Files
	Writing Data to a Sequential Access File
	Closing an Output Sequential Access File
	Reading Data from a Sequential Access File
	Closing an Input Sequential Access File
	Coding the eBook Collection Application
	Coding the frmMain_Load Procedure
	Coding the btnAdd_Click Procedure
	Aligning Columns of Information
	Coding the btnRemove_Click Procedure
	Coding the frmMain_FormClosing Procedure

	Ch 11: Classes and Objects
	Object-Oriented Programming Terminology
	Creating a Class
	Example 1-A Class That Contains Public Variables Only
	Example 2-A Class That Contains Private Variables, Public Properties, and Methods
	Example 3-A Class That Contains a Parameterized Constructor
	Example 4-Reusing a Class
	Example 5-A Class That Contains a ReadOnly Property
	Example 6-A Class That Contains Auto-Implemented Properties
	Example 7-A Class That Contains Overloaded Methods
	Example 8-Using a Base Class and a Derived Class

	Ch 12: Web Applications
	Web Applications
	Adding the Default.aspx Web Page to the Application
	Adding Another Web Page to the Application
	Adding a Hyperlink Control to a Web Page
	Starting a Web Application
	Adding an Image to a Web Page
	Closing and Opening an Existing Web Application
	Repositioning a Control on a Web Page
	Dynamic Web Pages
	Coding the Submit Button's Click Event Procedure
	Validating User Input
	Creating the Satellite Radio Application
	Coding the Calculate Button's Click Event Procedure
	Clearing the Previous Subscription Costs

	Ch 13: Working with Access Databases and LINQ
	Database Terminology
	Connecting an Application to a Microsoft Access Database
	Binding the Objects in a Dataset
	Visual Basic Code
	The Copy to Output Directory Property
	Binding to an Existing Control
	Coding the Next Record and Previous Record Buttons
	Formatting the Data Displayed in a Bound Label Control
	Creating a Query
	Customizing a BindingNavigator Control
	Using the LINQ Aggregate Operators
	Completing the Games Galore Application
	Coding the Games Galore Application

	Ch 14: Access Databases and SQL
	Adding Records to a Dataset
	Sorting the Records in a Dataset
	Deleting Records from a Dataset
	Structured Query Language
	The SELECT Statement
	Creating a Query
	Parameter Queries
	Saving a Query
	Invoking a Query from Code
	The INSERT and DELETE Statements

	Appendix A: Finding and Fixing Program Errors
	Appendix B: GUI Design Guidelines
	Appendix C: Visual Basic Conversion Functions
	Appendix D: Visual Basic 2012 Cheat Sheet
	Appendix E: Case Projects
	Index

		2015-07-01T20:36:30+0000
	Preflight Ticket Signature

