
www.apress.com

SOURCE CODE ONLINE9 781484 211953

54999
ISBN 978-1-4842-1195-3

Related Titles

US $49.99

Shelve in:
Mobile Computing

User level:
Intermediate

This book is a detailed tutorial that will teach you how to build apps using Apple’s native APIs
for the Internet of Things, including the Apple Watch, HomeKit, and Apple Pay. Program The
Internet of Things with Swi� for iOS is the second book by Ahmed Bakir (author of Beginning iOS
Media App Development) and his team at devAtelier LLC, who have been involved in developing
over 20 mobile projects.

Written like a code review, this book presents a detailed “how” and “why” for each topic,
explaining Apple-speci� c design patterns as they come up and pulling lessons from other
 popular apps. To help you getting up and running quickly, each chapter is framed within a
working project, allowing you to use the sample code directly in your apps.

The Internet of Things is not limited to Apple devices alone, so this book also explains how to
interface with popular third-party hardware devices, such as the Fitbit and Raspberry Pi, and
generic interfaces, like Restful API’s and HTTPS.

With Program The Internet of Things with Swi� for iOS as your guide, you’ll learn how to:

• use HealthKit to log and retrieve fi tness information in your apps
• use Core Motion to access the iPhone’s built-in motion sensors
• build an interactive watch app
• take advantage of the advanced sensors on the Apple Watch
• communicate with Bluetooth LE devices, with iBeacons, and with a Raspberry Pi
• use Keychain Services to encrypt data within your apps
• use Touch ID to add fi ngerprint-based authentication to your apps
• use Apple Pay to accept payments within your apps

The Internet of Things is waiting — be a part of it!

Program The Internet of Things with Swi� for iOS

B O O K S F O R P R O F E S S I O N A L S B Y P R O F E S S I O N A L S®

Program

The Internet of Things
with Swi� for iOS

Learn how to program apps for the
Internet of Things
—
Ahmed Bakir
Manny de la Torriente
Gheorghe Chesler

Bakir · Torriente · Chesler
Program The Internet of Things w

ith Sw
i� for iOS

www.allitebooks.com

http://www.allitebooks.org

Program
The Internet of Things

with Swift for iOS

Ahmed Bakir
Gheorghe Chesler
Manny de la Torriente

www.allitebooks.com

http://www.allitebooks.org

Program the Internet of Things with Swift for iOS

Copyright © 2016 by Ahmed Bakir, Gheorghe Chesler, and Manny de la Torriente

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1195-3

ISBN-13 (electronic): 978-1-4842-1194-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Michelle Lowman
Technical Reviewer: Charles Cruz
Editorial Board: Steve Anglin, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,

Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Lori Jacobs
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers
at www.apress.com/9781484211953. For detailed information about how to locate your book’s source code, go
to www.apress.com/source-code/. Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484212349
www.apress.com/source-code/
http://www.allitebooks.org

iii

Contents at a Glance

About the Authors���xv

About the Technical Reviewer��xvii

Introduction���xix

■■Chapter 1: Building Your First Internet of Things App�� 1

■■Chapter 2: Getting Started with Swift��� 33

■■Chapter 3: Accessing Health Information Using HealthKit����������������������������������� 59

■■Chapter 4: Using Core Motion to Save Motion Data�� 99

■■�Chapter 5: Integrating Third-Party Fitness Trackers and Data
Using the Fitbit API��� 119

■■Chapter 6: Building Your First watchOS App�� 169

■■Chapter 7: Building an Interactive watchOS App��� 201

■■Chapter 8: Building a Stand-Alone watchOS App��� 225

■■Chapter 9: Connecting to a Bluetooth LE Device�� 247

■■Chapter 10: Building Location Awareness with iBeacons���������������������������������� 295

■■Chapter 11: Home Automation Using HomeKit��� 343

www.allitebooks.com

http://www.allitebooks.org

iv Contents at a Glance

■■Chapter 12: Building an App That Interacts with a Raspberry Pi����������������������� 397

■■Chapter 13: Using Keychain Services to Secure Data�� 427

■■Chapter 14: Using Touch ID for Local Authentication��� 443

■■Chapter 15: Using Apple Pay to Accept Payments�� 457

Index�� 485

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Authors���xv

About the Technical Reviewer��xvii

Introduction���xix

■■Chapter 1: Building Your First Internet of Things App�� 1

Ahmed Bakir�� 1

Setting up the Project�� 2

Building the User Interface�� 7

Creating the Table View Controller��� 8

Creating the Map View Controller�� 18

Requesting Location Permission��� 22

Accessing the User’s Location�� 26

Displaying the User’s Location�� 28

Populating the Table View�� 28

Populating the Map��� 30

Summary��� 32

www.allitebooks.com

http://www.allitebooks.org

vi Contents

■■Chapter 2: Getting Started with Swift��� 33

Ahmed Bakir�� 33

Why Use Swift?��� 34

Basic Swift Syntax�� 35

Calling Methods (Hello World)�� 35

Defining Variables�� 36

Compound Data Types��� 37

Conditional Logic��� 38

Enumerated Types��� 39

Loops��� 40

Object-Oriented Programming in Swift��� 41

Building a Class��� 41

Protocols�� 42

Method Signatures�� 43

Accessing Properties and Methods��� 44

Instantiating Objects�� 45

Strings��� 46

Formatting Strings��� 46

Collections��� 47

Casting��� 50

Swift-Specific Language Features�� 50

Optionals�� 50

Try-Catch Blocks�� 52

Mixing Objective-C and Swift in Projects�� 54

Calling Swift from Objective-C�� 56

Summary��� 57

■■Chapter 3: Accessing Health Information Using HealthKit����������������������������������� 59

Ahmed Bakir�� 59

Introduction��� 59

www.allitebooks.com

http://www.allitebooks.org

viiContents

Getting Started�� 61

Setting Up the User Interface�� 61

Setting Up the Project for HealthKit��� 79

Prompting the User for HealthKit Permission�� 83

Retrieving Data from HealthKit�� 88

Displaying Results in a Table View�� 92

Fetching Background Updates�� 95

Summary��� 97

■■Chapter 4: Using Core Motion to Save Motion Data�� 99

Ahmed Bakir�� 99

Introduction��� 99

Using Core Motion to Access Motion Hardware�� 100

Requesting User Permission for Motion Activity�� 100

Querying for Step Count�� 103

Detecting Live Updates to Step Count��� 106

Detecting Activity Type�� 108

Saving Data to HealthKit��� 110

Summary��� 117

■■�Chapter 5: Integrating Third-Party Fitness Trackers and Data
Using the Fitbit API��� 119

Gheorghe Chesler�� 119

Introduction to the Fitbit API�� 119

The RESTful API��� 120

Fitbit RESTful API Implementation Details��� 122

Setting Up a Local Playground with Apache�� 123

The OAuth1.0a Authentication Model�� 125

The Fitbit OAuth Implementation��� 126

Fitbit API Call Rate Limits�� 127

Making async Calls�� 128

Using callbacks as Parameters��� 128

www.allitebooks.com

http://www.allitebooks.org

viii Contents

Setting up a Fitbit-compatible iOS Project�� 130

The View Controller��� 130

The Logger Library�� 133

Setting up a Basic Set of Crypto Functions��� 133

The API Client Library�� 137

The OAuth Library�� 151

Testing What We Have so Far�� 157

Making requests to the Fitbit API�� 159

Retrieving the User Profile��� 161

Retrieving and Setting Data in the API��� 163

OAuth versions: Working in both worlds�� 167

Summary��� 168

■■Chapter 6: Building Your First watchOS App�� 169

Ahmed Bakir�� 169

Introduction��� 169

watchOS Apps vs. iOS Apps�� 170

Setting Up Your Project�� 172

Debugging your watchOS App��� 176

Adding a Table to your watchOS App��� 176

Defining the Table�� 181

Fetching Data from your iOS App�� 187

Building a Detail Page with a Custom Layout��� 190

Presenting the Detail Interface Controller��� 196

Summary��� 199

■■Chapter 7: Building an Interactive watchOS App��� 201

Ahmed Bakir�� 201

Introduction��� 201

Using Force Touch to Present Menus�� 202

Resetting the Location List�� 206

Presenting a Detail View Controller��� 207

Simulating Force Touch��� 209

www.allitebooks.com

http://www.allitebooks.org

ixContents

Adding Buttons to an Interface Controller��� 210

Passing Information Between Interface Controllers�� 213

Using a Delegate to Pass Information on Dismissal�� 215

How to Add Notes Using Text Input��� 217

Sending Data Back to the Parent iOS App��� 219

Summary��� 223

■■Chapter 8: Building a Stand-Alone watchOS App��� 225

Ahmed Bakir�� 225

Using Core Location to Request Current Location��� 226

Reverse Geocoding an Address��� 229

Using NSTimer to Create Reminders��� 233

Making Network Calls from Your watchOS App��� 238

Handling a JSON Response��� 243

Summary��� 245

■■Chapter 9: Connecting to a Bluetooth LE Device�� 247

Manny de la Torriente�� 247

Introduction to the Apple Bluetooth stack��� 247

Key Terms and Concepts��� 248

Core Bluetooth Objects�� 249

Building Your First Bluetooth LE Application��� 250

Backlog��� 251

Base Application and Home Scene�� 251

Central Role Scene�� 252

Peripheral Role Scene��� 253

Editable Text�� 255

Setting Up the Project��� 256

Building the Interface�� 256

Using a Central Manager��� 264

www.allitebooks.com

http://www.allitebooks.org

x Contents

Connecting to a Bluetooth LE Device in Your App�� 268

Building the Interface�� 268

Keeping Things Clean with Delegation�� 272

Scanning for Peripherals��� 276

Discover and Connect�� 280

Explore Services and Characteristics�� 281

Subscribe and Receive Data�� 281

Peripheral Role�� 284

Building the Interface�� 284

Delegate Setup�� 285

Setting up a Service�� 288

Advertising Services�� 289

Sending Data��� 291

Enabling Your App for Background Communication�� 292

Bluetooth Best Practices��� 293

Central Role Devices�� 293

Peripheral Role Devices��� 293

Summary��� 294

■■Chapter 10: Building Location Awareness with iBeacons���������������������������������� 295

Manny de la Torriente�� 295

Introduction to iBeacons��� 295

iBeacon Advertisement�� 295

iBeacon Accuracy�� 295

Privacy��� 296

Region Monitoring��� 296

Ranging��� 296

Building the iBeaconApp Application�� 297

Creating the Project��� 298

Setting Background Capabilities��� 298

xiContents

Building the Home Scene�� 299

Setting Up UI Elements�� 300

Creating an Outlet Connection��� 301

Setting up Constraints��� 302

Creating a Custom Button�� 303

Detecting Bluetooth State��� 307

Building the Region Monitor Scene��� 310

The RegionMonitor Class��� 315

Using the Delegation Pattern��� 315

Creating the RegionMonitor Class��� 316

Delegate Methods�� 317

RegionMonitor Methods�� 321

Authorization and Requesting Permission��� 322

CLLocationManagerDelegate Methods�� 324

Building the iBeacon Scene�� 333

The BeaconTransmitter Class�� 336

Defining the BeaconTransmitterDelegate Protocol�� 336

Summary��� 341

■■Chapter 11: Home Automation Using HomeKit��� 343

Manny de la Torriente�� 343

Introduction to HomeKit Concepts��� 343

HomeKit Delegation Methods�� 344

Building a HomeKit Application��� 345

Requirements�� 345

HomeKit Accessory Simulator��� 346

Creating the Project��� 346

Enabling HomeKit�� 348

Building the Homes Interface�� 348

Implementing the Home Manager Delegate Methods��� 351

Adding a New Home to the Home Manager�� 357

Removing an Accessory from a Home��� 367

xii Contents

Transitioning to the Services Scene�� 393

Running the Application�� 394

Adding Accessories��� 394

Summary��� 395

■■Chapter 12: Building an App That Interacts with a Raspberry Pi����������������������� 397

Gheorghe Chesler�� 397

About Your Raspberry Pi�� 397

Control Interfaces on your Raspberry Pi��� 399

Setting up your Raspberry Pi�� 400

Choosing the Scripting Language�� 401

Configuring I2C�� 401

Configuring GPIO�� 404

Install PyGlow�� 405

Providing an API to Control your Device�� 406

Install Flask��� 406

Setting up an iOS Project for Our App��� 409

Allowing Outgoing HTTP Calls��� 409

The View Controller��� 410

The Logger Library�� 413

Summary��� 426

■■Chapter 13: Using Keychain Services to Secure Data�� 427

Gheorghe Chesler�� 427

Hardware Security on iOS Devices�� 429

Securing the File Data��� 430

The Apple Keychain��� 431

The Apple Keychain Services�� 432

Components of a Keychain Item�� 432

Implementing Keychain Services for Storing Passwords�� 432

Retrieving Data from Keychain Services��� 434

xiiiContents

Invalidating Keychain Service Records�� 435

Setting Up an Application to Test Keychain Services��� 436

The View Controller��� 436

Summary��� 442

■■Chapter 14: Using Touch ID for Local Authentication��� 443

Manny de la Torriente�� 443

Introduction to Touch ID�� 443

LocalAuthentication Use Cases��� 444

Building a Touch ID Application��� 444

Creating the Project��� 447

Building the Interface�� 447

Implementing the UITableView Methods��� 451

Integrating Touch ID for Fingerprint Authentication�� 452

Evaluating Authentication Policies��� 452

Touch ID Authentication without Keychain�� 452

User-Defined Fallback for Authentication�� 454

Run the Application��� 455

Things to Remember��� 455

Summary��� 455

■■Chapter 15: Using Apple Pay to Accept Payments�� 457

Gheorghe Chesler�� 457

Apple Pay vs. Alternative Payment Systems��� 457

Apple Pay Prerequisites��� 459

Using Apple Pay to accept payments�� 460

Configuring your Environment for Apple Pay��� 466

Implementing Apple Pay payments with Stripe��� 476

The View Controller code��� 482

Summary��� 484

Index�� 485

xv

About the Authors

Ahmed Bakir is the founder and lead developer at devAtelier
LLC (www.devatelier.com), a San Diego-based mobile
development firm. After spending several years writing software
for embedded systems, he started developing apps out of
coffee shops for fun. Once the word got out, he began taking
on clients and quit his day job to work on apps full time.
Since then, he has been involved in the development of over
20 mobile projects, and has seen several enter the top 25
of the App Store, including one that reached number one in
its category (Video Scheduler). His clients have ranged from
scrappy startups to large corporations, such as Citrix. In his
downtime, Ahmed can be found on the road, exploring new
places, speaking about mobile development, and still working
out of coffee shops.

Gheorghe Chesler is a senior software engineer with expertise
in Quality Assurance, System Automation, Performance
Engineering, and e-Publishing. He works at ServiceNow as
a Senior Performance Engineer, and is a principal technical
consultant for Plural Publishing, a medical-field publishing
company. His preferred programming language is Perl (so
much so that he identifies with the Perl mascot, hence the
camel picture), but also worked on many Java and Objective-C
projects.

www.devatelier.com

xvi About the Authors

Manny de la Torriente has over 30 years of software
development experience, having worked on every level from
engineering to management. Manny started out in software
by doing programming for sound engineering and then moved
into game engine development and low-level video playback
systems. Manny is known to switch between iOS and Android
depending on how exciting the project is.

xvii

About the Technical
Reviewer

Charles Cruz is a mobile application developer for the iOS,
Windows Phone, and Android platforms. He graduated from
Stanford University with B.S. and M.S. degrees in engineering.
He lives in Southern California and runs a photography business
with his wife (www.bellalentestudios.com). When not doing
technical things, he plays lead guitar in an original metal
band (www.taintedsociety.com). Charles can be reached at
codingandpicking@gmail.com and @CodingNPicking on Twitter.

www.bellalentestudios.com
www.taintedsociety.com
mailto:codingandpicking@gmail.com
http://@CodingNPicking

xix

Introduction

Ahmed Bakir
What Is the Internet of Things?
The Internet of Things refers to the push to make applications and hardware devices, or
“things,” “smart” by receiving or logging data from the Internet and other things. The goal of
the Internet of Things is to use these additional data sources to make common tasks in your
life richer and easier to perform.

One of the earliest drivers of the Internet of Things was the Quantified Self movement, a
trend that suggested people could lose weight and exercise at more sustainable levels by
constantly logging and monitoring their diet and workout information. Although this started
out with data gleaned from calorie-counting journals and pedometers, the creation of apps
like MyFitnessPal, which would help you find caloric information for your afternoon snack,
and devices like the FitBit, which automatically logged your pedometer data to the Internet,
pushed Quantified Self into the mainstream.

Another example of the Internet of Things in action would be a smart TV. Several years
ago, your TV was a “dumb” screen, only displaying the output from the input devices you
connected to it, such as a cable box, game console, or VCR (do you remember those?). Fast
forwarding to the future, today’s TVs commonly include WiFi cards and “smart” application
platforms that allow you to perform some of your most common tasks, such as streaming
videos from Netflix or browsing photos from Instagram directly from the TV, without having
to connect a computer. While many TVs are not yet at the point where they have “intelligent”
features, such as suggesting cooking shows because you watch a lot of them, the hope
is that having Internet connectivity and an application platform will inspire developers to
program these applications for TVs.

xx Introduction

A significant distinction between today’s Internet of Things and previous attempts to
connect devices to the Internet is that the barrier of entry has dropped significantly. Whereas
previously, the only way to build an Internet-connected device was to have a staff of highly
trained hardware and software engineers building a proprietary platform for years, today you
can go to any electronics store or web site and buy an Arduino or Raspberry Pi, which puts
the motherboard of a computer from a few years ago in the palm of your hand for about
$30. These devices were designed to give hobbyists and students an easy way to enter
electronics (previously, it was a very expensive hobby—the voice of experience), but also
include all the core features you need to build a connected device: a CPU, the ability to run
high-level programming languages (such as Python), a WiFi card, a display port (generally
HDMI), and a series of GPIO (general purpose input/ouptut) pins, which allow you to connect
electronic components, such as timer chips and LED lights.

Consumers and companies have noticed the demand of connected devices, and the ease of
entry into the market, making this the perfect time to learn how to program for the Internet of
Things! Who knows, maybe your app will be the one that drives personalized toast into the
mainstream (the best way of making sure people don’t steal your lunch)!

What Is the Purpose of This Book?
The purpose of this book is to teach you how to build iOS applications, in Swift, that use
Apple’s native application programming interfaces (APIs), which connect to popular Internet
of Things (IoT) devices and services. We have framed our narrative around the following four
classes of devices:

	Fitness and health trackers

	Apple Watch

	Generic hardware accessories

	Authentication and payment systems

These device families represent some of the most popular classes of IoT accessories, while
allowing us to teach you several different ways of connecting to IoT devices, including native
iOS libraries (e.g., HealthKit and WatchKit), generic hardware interfaces (e.g., Bluetooth),
third-party data logging services (e.g., FitBit), and local networking (over WiFi). The beauty
of today’s IoT is that that there are so many ways of connecting your devices, based on
widely adopted open standards, reducing your need to learn proprietary protocols. Our goal
is that by exposing you to different ways of connecting to IoT devices, you will have a handy
toolbox of skills that will cover most of the use cases you will be asked to implement.

This book is presented in a tutorial style, which takes cues from modern software
engineering practices, such as code reviews and Agile programming. Each chapter in
this book is framed around a project you will be learning how to implement, which will be
described via requirements and “stories” indicating why they are important. In a similar
manner, our explanations will go deep into the code, pulling in best practices from Apple’s
specifications and other applications. Whenever necessary, we will pull in brief explanations

xxiIntroduction

of underlying topics, such as delegate programming and OAUTH authentication, so you do
not need to keep flipping back and forth between different books. Our goal for this book is
to give you a deep understanding of the projects you will be implementing, rather than
copy-and-paste snippets. As anyone who has survived a major iOS upgrade (e.g., iOS6
to iOS7) can attest, knowing the core concepts helps you fix your code way faster than
memorizing single-use snippets.

What Do I Need to Know to Use This Book?
This book is intended to serve as a guide to implementing specific topics in iOS. It is
structured in a way that guides beginners and intermediate-level programmers through
the information they need to understand the topic, while also allowing advanced readers
to skip to exactly what they are looking for. That being said, this text is written with a few
assumptions in mind.

	The reader has a solid understanding of core programming concepts
(object-oriented programming, pointers, functions)

	The reader has a working knowledge of the basics of iOS development
(using XCode, Interface Builder, and Cocoa Touch libraries)

	The reader has programmed in Swift or Objective-C before

As Swift and XCode are ever evolving tools, the first two chapters of this book cover IDE and
syntax basics. Our goal with these chapters is to help developers who are still transitioning
to Swift from Objective-C and those who have not yet had a chance to review Apple’s dense
API update documents.

For expanded coverage of the Swift programming language, iOS programming, and XCode,
we recommend the texts listed in Table 1, also available from Apress.

Table 1.  Recommended References

Topic Title and Author

Introductory iOS Development Beginning iPhone Development with Swift by David Mark,
Jack Nutting, Kim Topley, Fredrik Olsson, and Jeff LaMarche
(Apress, 2014)

Using XCode and the Debugger Beginning XCode: Swift Edition by Matthew Knott (Apress, 2014)

Intermediate iOS Development Learn iOS8 App Development by James Bucanek (Apress, 2014)

Swift Syntax Swift for Absolute Beginners by Gary Bennett and Brad Lees
(Apress, 2014)

www.allitebooks.com

http://www.allitebooks.org

xxii Introduction

The most up-to-date reference for iOS programming is Apple’s official iOS Developer Library,
which you can access from the “Documentation and API Reference” option in Xcode’s
“Window” menu (shown in Figure 1) or online at https://developer.apple.com/library/
ios/navigation/).

What Do I Need to Get Started?
This book is designed around the workflow of developing an application on your computer
and testing it on a physical device, which is potentially paired with a hardware accessory.
The projects in this book depend on APIs which are not available in the iOS simulator.
Apple’s requirements for developing and testing iOS applications with a physical device are
the same as those required to submit an application to the App Store:

	An Intel-based Mac running OS X Yosemite (10.10) or later

	XCode 7 or later

Caution  Always use the latest version of the iOS Developer Library as your API reference. Apple
often makes major deprecations and parameter changes, even in minor point version updates.
The best way to stay up-to-date is by staying on the latest XCode version or accessing the iOS
Developer Library web site.

Figure 1.  Accessing the iOS Developer Library from XCode

https://developer.apple.com/library/ios/navigation/
https://developer.apple.com/library/ios/navigation/

xxiiiIntroduction

	An iPhone or iPad capable of running iOS9.1 or greater (iPhone 5 or
greater, iPad2/iPad mini or greater)

	A valid Apple ID to register for free, device-based testing of your apps

Starting in summer 2015, Apple removed the requirement of having a paid iOS Developer
Program membership to test your apps on an iOS device. A paid membership is still required
to submit your apps to the App Store, use TestFlight for beta testing, and debug Apple
server-based APIs, such as Apple Pay. You can sign up for an Apple Developer Program
membership by going to the Apple Developer Programs web site (https://developer.
apple.com/programs/) and selecting the Enroll button, as shown in Figure 2. Upon receipt of
your fees in the Apple Store, the Apple ID you selected will be available for use in the Apple
Developer Program.

Figure 2.  Signing up for a paid Apple Developer Program account

Note  If you are signing up for a corporate developer account, you will need to provide Apple with
additional information to identify your entity, such as a Dunn & Bradstreet number. It will take extra
time to process your account.

https://developer.apple.com/programs/
https://developer.apple.com/programs/

xxiv Introduction

The projects in this book are designed to be “universal,” meaning they can run on iPhone
or iPad. The user interfaces are designed primarily for the iPhone, but they will be scaled up
and work the same way on the iPad, as shown in Figure 3 for this chapter’s example.

Figure 3.  Sample project user interface on iPhone vs iPad

The Health section of this book requires you to have an iPhone 5S or greater, in order to
use the Core Motion framework. iPads and older iPhones do not have the M-series motion
co-processor chip which Core Motion provides access to. This chip includes an advanced
pedometer and gyroscope, which allow motion tracking at less than one-tenth of the power
consumption of the GPS chip (according to Apple.) For the FitBit chapter, you need a free
account on Fitbit.com to generate sample data to test with, but you do not need a FitBit
hardware device. You can manually enter in steps, caloric intake, and weight from the FitBit
web site.

The first two chapters of the Apple Watch section can be implemented using the Apple
Watch simulator; however, the last chapter takes advantage of Core Location features that
are not supported by the simulator. The Apple Watch is still a hardware platform that is being
optimized, so it is a good idea to use an Apple Watch to test your applications for realistic
performance data.

http://Fitbit.com

xxvIntroduction

The Bluetooth section requires you to have at least two iOS devices. The first chapter
teaches you how to set up a direct link between two devices over Bluetooth. To keep the
narrative focused, you will learn how to configure an iOS device for the two core roles of
Bluetooth: central manager and peripheral. Having two devices allows you to test quickly
and reliably. For the iBeacon chapter, you will learn how to configure an iPhone as an
iBeacon, but you can also use a hardware beacon for testing (they are available as USB
dongles at most electronics web sites for about $20-$30).

The “Internet of Secure Things” chapter (authentication and payment systems) requires you
to have an iPhone 5S or later for the Touch ID chapter and an iPhone 6 or later for the Apple
Pay chapter. The Touch ID sensor (identified by a metallic ring around the home button) is
available on every iPhone since the 5S and every iPad since the iPad Mini3 and iPad Air. It
cannot be emulated in software. Similarly, Apple Pay requires an NFC sensor and additional
authentication chip that are only available in the iPhone 6/6 Plus or later, and iPad Mini
3/iPad Air 2 or later.

1

Chapter 1
Building Your First Internet
of Things App

Ahmed Bakir
To help introduce you to the style of this book, your first project will be a very simple
application that demonstrates several of the steps you will take when building an Internet
of Things application: creating a project, including hardware-specific frameworks, retrieving
data, and displaying it. For your first project, you will create an application that logs the
user’s location using his phone’s GPS chip and displays it on a map. This app could be used
to help him find his car if he has the tendency to forget where it is (like a certain author).
Figure 1-1 shows the mock-up, indicating the major user interface (UI) components and the
flow of the application. The application you will create will follow the guideline set by this
mock-up closely.

2 CHAPTER 1: Building Your First Internet of Things App

CarFinder has a tab-driven UI. The first tab displays a list of locations the user has saved, with
timestamps, and a button for adding new locations. The second tab displays these saved
locations on a map. You will work through the CarFinder project taking the following steps:

1.	 Set up the project (and its dependencies).

2.	 Build the UI for the application.

3.	 Request permission to use the GPS hardware on the user’s device.

4.	 Access the user’s location information.

5.	 Consume and visualize the user’s location information.

A working Xcode project for this application, including the complete source code, is
available in the Source Code/Download area of the Apress web site at www.apress.com. All of
the source code for the book is packaged in a single zip file; the CarFinder project is in the
Ch1 folder. Let’s get started.

Setting up the Project
The focus of the CarFinder application is to quickly save and retrieve location information.
A tab bar is a common UI element in iOS that displays a series of buttons at the bottom of
the screen. Clicking any of these buttons allows you to quickly switch between screens. An
example of a tab bar is in the built-in iOS Music application, which allows you to quickly
switch search filters (e.g., Album, Artist, and Title) by clicking buttons in the tab bar, as
shown in Figure 1-2.

Figure 1-1.  Mock-up for the CarFinder application

http://www.apress.com/

3CHAPTER 1: Building Your First Internet of Things App

The tab bar controller is also helpful to developers for two reasons: you do not need to do
any programming to connect the tab bar buttons to a screen (you can set up the layout and
all connections using Interface Builder’s point-and-click tools.)

To implement the CarFinder application, open Xcode and create a new project using the
Tabbed Application template, as shown in Figure 1-3.

Figure 1-2.  Example of a tab bar in the iOS Music application

4 CHAPTER 1: Building Your First Internet of Things App

Next, you will be asked to name your project and select a programming language for the
project, as shown in Figure 1-4. Although you can mix Swift and Objective-C in modern
Xcode projects, the programming language setting pre-populates your project with common
build settings for your language (such as modules for Swift and pre-compiled headers for
Objective-C). All the projects in this book are written in Swift, so use the Swift setting.

Figure 1-3.  Selecting the template for a Tabbed Application

5CHAPTER 1: Building Your First Internet of Things App

You will also find a Devices setting on this screen, which allows you to specify whether you
want your app to run on iPhone only, iPad only, or both (Universal). This project focuses on
accessing GPS hardware which is available on both devices, so you can leave the template
set to Universal.

The CoreLocation and MapKit frameworks in Cocoa Touch enable the core features of this
application—retrieving location information and displaying it on a map. A framework is a
pre-compiled library that allows you to add a group of related functions to your application
without being at risk of breaking the code or its dependencies. Practically, it does not make
sense to include every available framework in a sample project, so you need to manually add
the ones you want. As shown in Figure 1-5, to add frameworks to your project, select your
project file in the Project Navigator (the left-most pane of Xcode) and scroll to the bottom of
the General Project Settings page, where you will find a section entitled Linked Frameworks
and Libraries. Clicking the Plus button will bring up a pop-up window with a scrollable list of
all the frameworks installed on your Mac.

Note  You can change the Devices setting at any time by clicking on your app’s Project file (the
top file in the Project Hierarchy.) The Devices drop-down will be available there too.

Figure 1-4.  Selecting a programming language for your project

6 CHAPTER 1: Building Your First Internet of Things App

Figure 1-5.  Adding frameworks to a project

To complete the operation, select the CoreLocation and MapKit frameworks and press the
Add button. Frameworks will appear in the Linked Frameworks and Libraries section once
you have successfully included them in your project, as shown in Figure 1-6.

www.allitebooks.com

http://www.allitebooks.org

7CHAPTER 1: Building Your First Internet of Things App

Building the User Interface
Now that you know the project is all set to compile correctly, you need to lay out the UI
in Interface Builder and create source code to define its properties and behavior in your
project. The default storyboard for a Tabbed Application is a container view controller
that connects to two blank view controllers, as shown in Figure 1-7. You can access your
storyboard from the Main.storyboard file. For the CarFinder application, you will want
to replace the first view controller with a table view controller and add a map view to the
second view controller (MapKit maps are provided as views intended to be embedded in
view controllers).

Note  Every iOS project includes UIKit and Foundation by default. UIKit powers the core user
interface controls and Foundation implements core high-level programming features like strings
and arrays.

Figure 1-6.  Project with the CoreLocation and MapKit frameworks included

8 CHAPTER 1: Building Your First Internet of Things App

Creating the Table View Controller
To replace the first view controller with a table view controller, click it in Interface
Builder. Your selection will be confirmed by a blue border around the view controller,
as well as highlighting in the view hierarchy pane, as shown in Figure 1-8.

Figure 1-7.  Default storyboard for a Tabbed Application

9CHAPTER 1: Building Your First Internet of Things App

Figure 1-8.  Selecting a view controller

Next, press the Delete key to delete it. Your storyboard should now look like the example
in Figure 1-9.

Figure 1-9.  Storyboard, minus first view

10 CHAPTER 1: Building Your First Internet of Things App

To add the table, drag a table view controller from Interface Builder’s Object Library
(the bottom right pane) and drop it onto your storyboard. Your result should look like the
storyboard in Figure 1-10.

Figure 1-10.  Adding a table view controller to your storyboard

To connect the table view controller to your parent view controller (the container),
perform a control-drag (hold down the mouse while pressing the Control key) from the
parent view controller to the table view controller. As shown in Figure 1-11, a blue arrow
will appear indicating the connection.

11CHAPTER 1: Building Your First Internet of Things App

Releasing your Control-Click will bring up a pop-up menu, shown in Figure 1-12,
allowing you to specify the relationship between the two view controllers. Select the “view
controllers” relationship; this is the relationship type required for a tab bar.

Figure 1-12.  View controller segue pop-up menu

Figure 1-11.  Connecting storyboard elements

12 CHAPTER 1: Building Your First Internet of Things App

At this point, your storyboard should look almost identical to the original (Figure 1-8),
except with a table view controller replacing the original, plain view controller. Unfortunately,
Interface Builder needs a little bit of help to learn that you have replaced the original
view controller—you need to tell it what class “owns” the new view controller. Previously,
the plain view controller was owned by the FirstViewController class, a subclass of
UIViewController. Your table view controller needs to subclass UITableViewController, so
navigate over to FirstViewController.swift in the Project Navigator and modify the class
signature to subclass UITableViewController.

class FirstViewController: UITableViewController {
}

The first view controller will also need to include the CoreLocation framework to retrieve the
user’s location, so make sure to add an import statement before your class definition, as
shown in Listing 1-1.

Listing 1-1.  Adding CoreLocation to the FirstViewController Class (FirstViewcontroller.swift)

import UIKit
import CoreLocation
class FirstViewController: UITableViewController {
 ...
}

Connecting to a Table View Controller
Now that the class is correctly defined, you can connect it to a table view controller in the
storyboard. To make this connection, select the table view controller in your storyboard file
and navigate over to the Identity Inspector (the third tab in Xcode’s right pane). As shown in
Figure 1-13, the Custom Class menu will include the FirstViewController class. Select this
to make the connection.

13CHAPTER 1: Building Your First Internet of Things App

To complete this screen, you need to perform two more steps: create an Add button to the
screen and select a template for each cell in the table view.

Table-driven iOS apps prefer to put an action button (such as Add) in a navigation bar at the
top of the table. This makes for a consistent experience across multiple levels of detail (the
left button is used for navigation while the right is used for actions). By default, a table view
controller, does not come with a navigation bar; to add one, you will need to embed the view
controller in a navigation view controller. Fortunately, Xcode makes this effortless. To embed
any view controller in a navigation view controller, select the target view controller and then
navigate to Xcode’s Editor menu. From there, select Embed In > Navigation Controller, as
shown in Figure 1-14.

Figure 1-13.  Connecting a table view controller to a class in your project

Note  Make sure to also select your project name under the Module menu; Swift uses modules
to group code in projects, similar to a namespace in C++ or C#. Manually selecting this option
prevents the risk of future compilation issues when your project becomes more complex.

14 CHAPTER 1: Building Your First Internet of Things App

Figure 1-14.  Xcode menu for adding a navigation view controller

Your storyboard should now look like the one in Figure 1-15; your tab bar controller connects
to a navigation view controller, which contains your table view controller.

Figure 1-15.  Storyboard with a table view controller embedded in a navigation controller

15CHAPTER 1: Building Your First Internet of Things App

Creating an Add Button
To create an Add button, select a Bar Button Item from the Object Library and drag it onto
your table view controller’s navigation bar, as shown in Figure 1-16. Rename this button Add
Location by double-clicking its title (the default title is “Item”).

Figure 1-16.  Adding a button to your table view controller’s navigation bar

To make the button do something, you need to connect it to a “selector,” or handler method.
Interface Builder will scan your view controller’s owner class for a list of methods that are
marked as “actions”; these are indicated by adding the @IBAction compiler directive to the
front of the method signature.

First, you need to make a stub or placeholder function that you can use to connect the
code to Interface Builder. Modify the definition for the FirstViewController class (in
FirstViewController.swift) to add an Interface Builder-compatible addLocation() function
as shown in Listing 1-2.

Listing 1-2.  Adding a Stub for the addLocation Function

class FirstViewController: UITableViewController {
 
 @IBAction func addLocation() {
 //Replace this comment with your actual implementation
 }
  

16 CHAPTER 1: Building Your First Internet of Things App

 override func viewDidLoad() {
 ...
 }
 
}

Next, switch back to Interface Builder and select the FirstViewController scene again
(the one that represents the table view controller). Click the Connections Inspector button in
the top right, as shown in Figure 1-17.

Figure 1-17.  Selecting the Connection Inspector

To connect the Add button to your selector, make sure Main.storyboard is your current
document and click the Assistant Editor button in the upper right section of Xcode, as
shown in Figure 1-17.

The Connection Inspector is indicated by an arrow in a circle. When you click it, the right
pane of Interface Builder shows a list of connections, representing actions for a UI element
(such as the function that should be called when it is pressed) and its corresponding object
in the code. These connections are what tie your code to Interface Builder. For this example,
you need to connect the function that should be called when you press the Add button.

To connect the Add button to the addLocation() function, click the radio button next to
selector in the Connections Inspector pane. A selector in Swift is a reference to a function.
As shown in Figure 1-18, drag a line from the radio button onto the table view controller. As
happens when you select a segue, a pop-up will appear allowing you to choose the function
you want to connect as the selector action.

17CHAPTER 1: Building Your First Internet of Things App

To verify that the connection was made successfully, check the Connection Inspector after
choosing the addLocation() method. Add Location should now appear in a bubble next to
selector, as shown in Figure 1-19.

Figure 1-18.  Connecting a button to an action in Interface Builder

Figure 1-19.  Verifying a selector connection

18 CHAPTER 1: Building Your First Internet of Things App

Selecting a Template
You do not need to define a custom class for the table view cells; you can use the “Subtitle”
template. To change the cell type, click it in Interface Builder and navigate over to the Attributes
Inspector tab in the right pane (the fourth icon from the left). As shown in Figure 1-20,
select the identifier text view to enable text entry. The reuse identifier for the location cells is
LocationCell. In your initialization code for the table, you will need this identifier to look up
your cells in memory, since they are generated at runtime.

Figure 1-20.  Using an identifier to name a cell

Note  Reuse identifiers are case sensitive. Be careful to use the same capitalization in Interface
Builder and your code.

Creating the Map View Controller
Compared to setting up the table view controller, the map screen is relatively straightforward.
For this screen, you will display a map with pins indicating saved locations. You will generate
the pins at runtime later in this exercise, but for now, to set up the UI, you need to add a
map as the main view of the screen. Apple’s MKMapView class (MapKit view) abstracts the
work of connecting to Apple’s Maps service, handling common gestures (such as pinch-to-
zoom) and displaying user location. As the developer, it is your responsibility to add it to a
view, set its configuration parameter (such as initial position and satellite or classic view),
and provide it with data (pin) points in the form of “annotations,” represented by the classes
that implement the MKAnnotation protocol.

19CHAPTER 1: Building Your First Internet of Things App

To add a map view to the second tab’s view controller, begin by switching back to Interface
Builder. Click each of the existing labels on the second view controller and hit the Delete key
to delete them. Next, find the “MapKit View” object in the Object Library and drag it onto the
second view controller. At this point, the layout for the second view controller should look
like the one in Figure 1-21.

Figure 1-21.  Second view controller with misplaced Map View

The wireframes indicate that the map should fill the entire screen. Unless you have perfect
luck, the map will not be positioned dead center in the view or fit the edges perfectly. To
fix this, use Interface Builder’s Pin tool to set the auto-layout constraints for the map (the
icon at the bottom right of the main screen, to the left of the triangle icon). Auto-layout is
a convenient feature of storyboards that allows you to set rules for how an element should
scale across different screen sizes, reducing your burden of implementing this logic in your
code. As shown in Figure 1-22, in the pop-up that appears after clicking the Pin tool while
the Map View is selected, uncheck the Constrain to margins check box and set all of the
neighbor constraints (the ones around the box) to 0.

20 CHAPTER 1: Building Your First Internet of Things App

The storyboard still needs a little help to fully configure the constraints. To complete the
process, select “Update Frames” from the Resolve Auto Layout Issues menu (the triangle
icon, to the right of the Pin menu), as shown in Figure 1-23.

Figure 1-22.  Pinning constraints for a UI element

Figure 1-23.  Resolving auto-layout conflicts

21CHAPTER 1: Building Your First Internet of Things App

Having added the element to the storyboard, you need to add it to your class. As shown
in Listing 1-3, include the MapKit framework in the Second View Controller class
(SecondViewController.swift) and add the Map View as a property.

Listing 1-3.  Adding a Map View to the SecondViewController Class (SecondViewController.swift)

import UIKit
import MapKit
 
class SecondViewController: UIViewController {
 @IBOutlet var mapView : MKMapView?
}

We will cover the semantics of this declaration more in Chapter 2, but for now, it is important
to note the following:

	The @IBOutlet compiler directive makes the property available to
Interface Builder.

	The property is defined as an inherently strong pointer (var) because you
will need to modify its values later.

	All properties that are tied to a storyboard element need to be defined
as optional. The design pattern for user interface elements in Swift is to
treat them as nonexistent rather than being a “nil” value if they are not
tied to a storyboard element.

Next, you need to revisit Connections Inspector in Interface Builder to make the connection
between the storyboard and the code. Follow the same steps you used for the Add button
to select the button and navigate over to Connections Inspector (the last tab in Interface
Builder’s right pane). To connect a property of a class to a storyboard, you need to set the
Referencing Outlet connection. As shown in Figure 1-24, to complete the connection, drag
a line from the New Referencing Outlet radio button to the Map View (the origin point of the
line). Select the mapView property from the pop-up that appears.

http://dx.doi.org/10.1007/978-1-4842-1194-6_2

22 CHAPTER 1: Building Your First Internet of Things App

As with the Add button, verify that the connection was successful by making sure the bubble
next to Referencing Outlet is filled in with mapView.

If you build and run the app on your device or the simulator, you’ll see that your UI is now
nearly complete with a working map in the second view and an empty list in the first view
(which now says Item).

Requesting Location Permission
Before moving into how to access the user’s location, we need to address a theme that
comes up commonly in developing any hardware-connected iOS app: device permissions.
You may remember, a few years back, that Apple received bad press for secretly logging
users’ locations. Apple’s argument was that this data was intended to help improve the
accuracy of its mapping service; however, the backlash was so great over privacy concerns
and the risks of that data being abused by hackers that Apple responded by disabling the
feature and implementing a system-wide API for requesting permission to access sensitive
user information and hardware (such as health data, location, and the camera).

Apple, and the authors, suggest an “adaptive” strategy for requesting device permissions.
Namely, prompt the user the first time you need to use a sensitive resource (in order to
unlock access to it within your app) and have mechanisms in place to “adapt” to the loss of
that resource. For instance, if a user does not allow your app to access his location, display
a prompt that allows him to manually specify an address or place for the app, or to disable
the location-dependent feature altogether.

Figure 1-24.  Connecting the Map View to the storyboard

23CHAPTER 1: Building Your First Internet of Things App

The first step you need to follow to enable this property is to add the Maps capability to your
application. This is what informs the user that you need to access his location—when he
or she downloads and first installs your application. To enable this capability, select your
project file from the Project Navigator (Xcode’s left pane) and click the Capabilities tab, as
shown in Figure 1-25. To enable maps, click the switch to set it to on.

Figure 1-25.  Setting Maps capability

Next, you need to set the message that will appear when the user is asked for location
permission. To create this string, you need to add a key to your app’s Info.plist file. While
your project is still selected in the Project Navigator, click the Info tab. This will bring up your
app’s settings as a list of key-value pairs, as shown in Figure 1-26.

24 CHAPTER 1: Building Your First Internet of Things App

The section labeled “Custom iOS Target Properties” contains a list of required app properties,
many of them added by default by Xcode. Hover over the last property and you’ll see a plus
and minus sign appear. Click the plus sign to add a new property. As shown in Figure 1-27,
a new field will appear in the list, as well as a drop-down menu to select common keys.

Figure 1-26.  Info.plist file for the CarFinder project

Figure 1-27.  Interface for adding a new key-value pair

25CHAPTER 1: Building Your First Internet of Things App

In the key text field, type in NSLocationWhenInUseUsageDescription for the key name. The
type should be string. In the value text field, type in “This app uses location information.”

Next, you need to make more code changes, so switch back to the FirstViewController.swift
file.

Add CLLocationManagerDelegate to your class declaration so we can enable location updates.
Then add locationManager and current location as class variables, as shown in Listing 1-4.

Listing 1-4.  Adding Location Manager Delegate to the FirstViewController class

class FirstViewController: UITableViewController, CLLocationManagerDelegate {
 var locationManager = CLLocationManager()
 var currentLocation = CLLocation()
}

Conveniently, Apple provides a class called CLLocationManager, which can poll the
operating system for your device’s authorization status, bring up an authorization prompt,
and enable/disable location polling. The CLLocationManager class has a method called
authorizationStatus(), which will return an enum value representing the authorization
status of your application. It is best to check this value when any location-dependent screen
in your application appears. iOS suppresses repeated requests; the prompt will not appear
again until the user uninstalls your app. For the CarFinder application, this is the First View
Controller table view. Trigger the authorization check in the viewDidAppear() method of the
FirstViewController.swift file, which fires every time the view controller is active.

Listing 1-5.  Polling for Location Permission (FirstViewController.swift)

override func viewDidAppear(animated: Bool) {
 super.viewDidAppear(animated)
  
 //locationManager.delegate = self
 locationManager.desiredAccuracy = kCLLocationAccuracyNearestTenMeters
 
 switch (CLLocationManager.authorizationStatus()) {
  
 case .AuthorizedWhenInUse, .AuthorizedAlways:
 locationManager.startUpdatingLocation()
 case .Denied:
 �let alert = UIAlertController(title: "Permissions error", message: "This app needs

location permission to work accurately", preferredStyle: UIAlertControllerStyle.Alert)
 let okAction = UIAlertAction(title: "OK", style: UIAlertActionStyle.Default, handler: nil)
 alert.addAction(okAction)
 presentViewController(alert, animated: true, completion: nil)
  
 case .NotDetermined:
 fallthrough
 default:
 locationManager.requestWhenInUseAuthorization()
 
 }

26 CHAPTER 1: Building Your First Internet of Things App

You always want to check for at least three status levels in your code: Authorized, Not
Determined, and Denied. As shown in Listing 1-5, use the Authorized state to begin polling
for location. For the Denied state, we show an alert view, indicating that the application
needs location permission. Finally, we use the Not Determined state and default case of the
switch statement to prompt the user to authorize the app.

In our example, you will notice that the call to check status, authorizationStatus(),
takes place on the CLLocationManager class, while the call to perform operations such
as startUpdatingLocation() takes place on an instance. authorizationStatus() does
not depend on an object; it simply queries the system, so it is defined as a class (public)
method, whereas operations are defined as private methods since they can only be
performed if an object is instantiated. If the authorization state has been determined to be
denied, show an alert message via the UIAlertController class.

Having set ourselves as the delegate, we also need to add its required methods which
include the locationManager call with didUpdateLocations so our location data is fresh when
we are ready to store it.

Accessing the User’s Location
Having prompted the user for the location permission, you are now ready to begin retrieving
and logging his location data. For the CarFinder application, you will initiate this action
when the user presses the Add button in the first view controller’s toolbar. When you take
this action, you will save the user’s latitude and longitude, as well as a timestamp indicating
when the action happened. The table view in the first view controller should refresh at this
time to indicate that a new record has been added. If the user disabled location permission,
you should provide some dummy data, such as the latitude and longitude of your favorite
coffee shop.

It can take some time to find the precise coordinates of a phone once you start using
location services. That’s why we start location services when the app starts and update a
class variable each time it changes. This variable is used only when we need it (i.e., when we
want to save our location).

Now that you have the location and timestamp data for the user’s location, you need to save
it somewhere that can be shared between the first and second view controllers. It needs to
be a generic object that can be accessed or modified by either. To solve this problem, we
suggest creating a singleton object, which our sample calls DataManager. A singleton is an
instance of a class that is lazy-loaded (initialized the first time it is accessed). Singletons are
commonly used in hardware “manager” classes, where you want to control all operations
through a single object and have abstracted these operations to be independent of any
class that is using them.

Note  We request the “in-use” permission for the CarFinder app because we only need to request
the user’s location while the app is active.

www.allitebooks.com

http://www.allitebooks.org

27CHAPTER 1: Building Your First Internet of Things App

Create a new class by choosing File ➤ New ➤ File from the Xcode menu bar. It’s a Swift file
and we’ll name it DataManager.swift.

Listing 1-6 provides the class definition for the DataManager class. When other classes
access the sharedInstance property, the class will be lazy-loaded. The static keyword
ensures that if it has already been initialized, the existing object will be returned; the
let keyword ensures that the instance will be thread-safe. Remember to include the
CoreLocation framework to ensure symbols resolve properly.

Listing 1-6.  Definition for DataManager Class

import Foundation
import CoreLocation
 
class DataManager {
 static let sharedInstance = DataManager()
 var locations : [CLLocation]
  
 private init() {
 locations = [CLLocation]()
 }
  
}

The DataManager‘s main role is to manage a list of CLLocation objects. To accomplish
this, we use an array of CLLocation objects as a strong property of the class (the default
allocation the using the var keyword is strong). You do not need to define getter or setter
methods, as arrays in Swift are mutable by default.

Having defined the DataManager class, you can now use it in the FirstViewController
class. As shown in Listing 1-7, after retrieving the user’s current location, expand the
addLocation() function to append the value in the locations array that is managed by the
DataManager singleton. If the user did not authorize the app to use GPS permissions, create
a new record using a hard-coded set of coordinates.

Listing 1-7.  Saving Locations

@IBAction func addLocation(sender: UIBarButtonItem) {
  
 var location : CLLocation
  
 if (CLLocationManager.authorizationStatus() != .AuthorizedWhenInUse) {
 location = CLLocation(latitude: 32.830579, longitude: -117.153839)
 } else {
 location = locationManager.location!
 }
  
 DataManager.sharedInstance.locations.insert(location, atIndex: 0)
 
}

28 CHAPTER 1: Building Your First Internet of Things App

Displaying the User’s Location
Having defined a method for retrieving the user’s location and managing saved responses,
you are ready to display the data. It is best to start with the table view in the first view controller.

Populating the Table View
To populate a table view controller, you need to specify a data source and implement the
methods specified the UITableViewDelegate protocol, which is included by default with the
UITableViewController class. For the data source, you will use the locations array from
the DataManager singleton.

The methods you will need to implement for the UITableViewDelegate protocol are as
follows:

	numberOfSectionsInTableView(_:)

	tableView(_:numberOfRowsInSection:)

	tableView(_:cellForRowAtIndexPath:)

All these functions need to be implemented in in the FirstViewController class
(FirstViewController.swift).

The UITableView class uses a two-dimensional grid represented by the indexPath to
represent the positions of elements in the table. For a one-dimensional array, the number
of sections is defined as 1. Implement the numberOfSectionsInTableView(_:) method as
shown in Listing 1-8

Listing 1-8.  Implementing numberOfSectionsInTableView(_:)

override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 return 1
}

Similarly, the number of rows in a one-dimensional array is the number of elements. As
shown in Listing 1-9, return the count property of the entries array.

Listing 1-9.  Implementing tableView(_:numberOfRowsInSection:)

 override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 return DataManager.sharedInstance.locations.count
 }

Note  This example saves locations in memory; they will not persist between multiple sessions.
To persist data, we suggest using Core Data or saving your data to a plaintext file.

29CHAPTER 1: Building Your First Internet of Things App

Now you need to use the data from the entries array to populate your table view cells. In the
tableView(_:cellForRowAtIndexPath:) method, retrieve the location entry that corresponds
with the row that is being operated upon, and then tie it to a cell by looking it up in memory
via its reuse identifier, the label we defined on the storyboard earlier. Listing 1-10 describes
this process. Since we are using the Subtitle cell style, we can directly access the textLabel
and detailLabel properties on the table view cell.

Listing 1-10.  Implementing tableView(_:cellForRowAtIndexPath:)

override func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath:
NSIndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCellWithIdentifier("LocationCell", forIndexPath: indexPath)
 cell.tag = indexPath.row
 // Configure the cell...
 
 let entry : CLLocation = DataManager.sharedInstance.locations[indexPath.row]
 let dateFormatter = NSDateFormatter()
 dateFormatter.dateFormat = "hh:mm:ss, MM-dd-yyyy"
 
 cell.textLabel?.text = "\(entry.coordinate.latitude), \(entry.coordinate.longitude) "
  
 cell.detailTextLabel?.text = dateFormatter.stringFromDate(entry.timestamp)
 
 return cell
}

As a final step to tie up the table view, you should refresh the table once a new item has
been added. To refresh a table view at any time, call the reloadData() method after updating
your data source, as shown in Listing 1-11.

Listing 1-11.  Refreshing the Table

@IBAction func addLocation(sender: UIBarButtonItem) {
  
 var location : CLLocation
  
 if (CLLocationManager.authorizationStatus() != .AuthorizedWhenInUse) {
 location = CLLocation(latitude: 32.830579, longitude: -117.153839)
 } else {
 location = locationManager.location!
 }
  
 DataManager.sharedInstance.locations.insert(location, atIndex: 0)
 
 tableView.reloadData()
 
}

Note  Core Data has a delegate method that reduces your need to manually refresh a database-
based table view. For simple arrays and data structures, it is easiest to refresh the table manually.

30 CHAPTER 1: Building Your First Internet of Things App

Populating the Map
Once again, compared to the table view, the map is relatively straightforward to populate
with data. Following the example of the table view, we need to retrieve saved locations
from the DataManager singleton when the view appears. To plot data on the map, we need
to create pin drops, represented by the MKPointAnnotation class, which implements the
MKAnnotation protocol. In your SecondViewController class (SecondViewController.swift),
implement the viewDidAppear(_:) method as shown in Listing 1-12.

Listing 1-12.  Setting the Data Source for the Map View

 override func viewDidAppear(animated: Bool) {
 super.viewDidAppear(animated)
  
 let locations = DataManager.sharedInstance.locations
 var annotations = [MKPointAnnotation]()
  
 for location in locations {
 let annotation = MKPointAnnotation()
 annotation.coordinate = location.coordinate
 annotations.insert(annotation, atIndex: annotations.count)
 }
  
 let oldAnnotations = mapView!.annotations
 mapView?.removeAnnotations(oldAnnotations)
  
 mapView?.addAnnotations(annotations)
  
}

While map views are extremely customizable and meant to handle a lot of user interactions,
the MKMapView class is designed to be loaded once from an array of annotations. As shown
previously, remember to clear the existing annotation array before loading your new one.
This also helps the user interface, as the viewDidAppear(_:) is called every time the user
switches tabs.

Finally, to make the map fit to the area surrounding the user’s pin drops, you need to call the
regionThatFits(_:) method. As shown in Listing 1-13, modify the viewDidAppear() method
to include this logic. Use the first valid annotation as the basis for your calculation.

Listing 1-13.  Resizing the Map View

override func viewDidAppear(animated: Bool) {
 super.viewDidAppear(animated)
  
 let locations = DataManager.sharedInstance.locations
 var annotations = [MKPointAnnotation]()
  

31CHAPTER 1: Building Your First Internet of Things App

 for location in locations {
 let annotation = MKPointAnnotation()
 annotation.coordinate = location.coordinate
 annotations.insert(annotation, atIndex: annotations.count)
 }
  
 let oldAnnotations = mapView!.annotations
 mapView?.removeAnnotations(oldAnnotations)
  
 mapView?.addAnnotations(annotations)
  
 if (annotations.count > 0) {
 �let region = MKCoordinateRegionMake(annotations[0].coordinate,

MKCoordinateSpanMake(0.1, 0.1))
 mapView?.regionThatFits(region)
 }
 mapView?.showsUserLocation = true
}

Now that you have fully implemented the CarFinder project, the result should look as shown
Figure 1-28, complete with a fully functional location table, Add button, and location map.

Figure 1-28.  Completed CarFinder application

32 CHAPTER 1: Building Your First Internet of Things App

Summary
To help introduce you to the style of the projects in this book, we described a simple app to
access a user’s location based on his phone’s GPS reading and to display it on a table and
map view. This exercise reviewed the basics of setting up a project, creating a user interface,
requesting device permissions, and digesting location data. Several of the projects in this
book will require you to implement “adaptive” strategies around device permissions, due
to their sensitive nature. You will also revisit maps later, when you learn about how to use
iBeacons, which are Bluetooth-based proximity sensors that allow iOS devices to do cool
things like send you notifications when you walk by the Apple Store.

33

Chapter 2
Getting Started with Swift

Ahmed Bakir
As it is one of the newest programming languages on the market, one would be remiss to
start a Swift book without offering the reader a brief introduction to the language. Readers
who already feel comfortable with Swift can skip this chapter entirely or just reference the
sections they are curious about.

Immediately upon its announcement at the 2014 Apple Worldwide Developers Conference
(WWDC), Swift became one of the fastest adopted programming languages in recent history.
To help aid this rapid acceptance, Apple designed the language to be fully compatible with
existing Objective-C code and all of Cocoa/Cocoa Touch (the frameworks you use to build
OS X and iOS apps).

In the past year, however, the sudden appearance of Swift has presented two problems:
it has been hard to find good information on how the language works and it has been a
grueling process to keep up with Apple’s updates to the language. In addition to being one
of the fastest adopted languages, Swift has also been one of the most rapidly changing.
Since June 2014, the Apple developer community has seen four major revisions of the
language, Swift 1.0, 1.1, 1.2, and 2.0. With each of the language updates comes a revision
to Cocoa Touch, meaning you need to modify your code to resolve compilation errors.
Imagine waking up one day and seeing that your once functional program no longer
compiles.

To help you hit the ground running with this book, I will briefly review Swift syntax, how the
language implements core programming concepts like object-oriented programming, and
workflow tasks like integrating Objective-C into your projects. In this chapter, I will pull in
knowledge from Swift projects I have consulted on, focusing on language features that have
proved particularly troublesome for my clients, including optionals and try-catch blocks.

For a more complete description of the language, I highly recommend Beginning iPhone
Development with Swift: Exploring the iOS SDK by Mark,Topley, Nutting, Olsson and
LeMarche (Apress, 2016). The authors intend their book to be a complete guide to

34 CHAPTER 2: Getting Started with Swift

programming Swift via Cocoa Touch tutorials. This book assumes you have mastered those
concepts and are ready to dive headfirst into Internet of Things concepts using Cocoa
Touch. You can also download Apple’s own guide to the language, The Swift Programming
Language from the iBooks Store.

Why Use Swift?
Following “Should I learn to program in iOS or Android?,” the most common question I
receive these days is “Should I program in Objective-C or Swift?” The short answer to both
is to pick the platform or language you are more comfortable with and stick with that.

Created with the goal of being “Objective-C without the C,” Swift was designed to allow a
wider audience of developers, eschewing the message-passing syntax of Objective-C (those
annoying square brackets) and the heavy dependence on understanding advanced concepts
from C, such as pointers. If you are coming from Java and Python, many features of Swift
will seem very familiar to you, such as dot-syntax for calling methods and try-catch blocks.
This was an intentional design decision. I am currently teaching an Objective-C course and
the number one complaint from my students is Objective-C’s square brackets; they are
a derivative of Smalltalk, a ground-breaking language that never received wide adoption
outside advanced programming courses but remains in use today. I tell people it takes a
couple of weeks to “get over them,” but they remain daunting. For many people, the
dot-syntax alone is a compelling reason to use Swift.

Since OS X and iOS are the only modern platforms that use Objective-C, it is often hard
for people to differentiate concepts that come from Objective-C and concepts that come
from Cocoa [Touch]. To help with that, at the 2015 WWDC, Apple announced that it is
open-sourcing Swift, in hopes of encouraging its wider adoption in education and non-Apple
platforms, such as Linux. The extra data points should prove extremely valuable when trying
to understand core programming concepts.

One of the most compelling reasons to develop for an Apple platform is the extremely
prolific developer community, which has produced a wealth of open source libraries and a
massive history of solutions to common bugs. For this reason, Apple was eager to announce
that Swift was fully compatible with all of Cocoa Touch and existing Objective-C code when
Swift first came. As mentioned in the introduction, I can validate that this claim is true, but
you may end up updating your code to keep up with changes in Swift. This may seem
discouraging, but remember, you are programming for a closed platform; this is always the
case for major updates. Before anyone knew about Swift, many of us were shuffling to make
our old apps work in the drastically updated iOS7.

What I have noticed is that for most people, neither Swift nor Objective-C is the major hurdle
to learning iOS development. Nine times out of ten, it is learning Cocoa Touch. Apple’s APIs
(application programming interfaces) have a very “descriptive” nature, where they generally
describe every parameter in the method name. For many beginners, this makes it hard to
guess where/how to get started. The good news is, Apple has backported its documentation

Note  This book is written for and tested against Swift 2.1 on XCode 7.1/OS X 10.11 “El Capitan.”

35CHAPTER 2: Getting Started with Swift

and provides complete API documentation for every method in Cocoa Touch in both Swift
and Objective-C. Most of the problems you will run into will not be about the syntax of a
“for” loop; instead they will be about what set of Cocoa Touch methods you call to perform
the behaviors you need, and how you need to configure them. Swift and Objective-C are just
tools for accomplishing that; pick the one you like using more.

Basic Swift Syntax
In this section, I briefly introduce several basic Swift syntax concepts to help you become
familiar with the language and the following examples. As many of you are coming from
Objective-C, I will prefix each Swift example with the corresponding Objective-C code.
These examples are not meant to be part of any project, so take them as short, working
examples. As mentioned in the introduction, all of these examples are written against the
standard for Swift 2.0.

Calling Methods (Hello World)
In Objective-C, to print “Hello World” on the console, you would use the NSLog() method:
NSLog(@"Hello World");

In Swift, the equivalent is as follows:

print("Hello World")

You should notice a couple of big differences:

No semicolons: Swift uses the newline character to separate lines.

No @ symbol: Swift has its own String class, which is implemented as a simple character
array. In Objective-C, the @ symbol served as a literal, a shortcut for creating NSString
objects without calling its constructor.

print: Swift uses this familiar method name from C and Java to allow you to print a line
directly to the console.

Calling a method with multiple parameters in Objective-C looks as follows:

NSInteger finalSum = [self calculateSumOf:5 andValue:6];

Self represents the receiver (the object that is “receiving” the message”)

CalculateSumOf: represents the method name

5 represents the first parameter that is being passed

andValue represents the second parameter’s label

6 represents the second parameter that is being passed.

In Swift, you call methods with multiple parameters by adding them to a comma-delimited
list within the parentheses (as you would in C or Java):

var finalSum = calculateSum(5, 6)

36 CHAPTER 2: Getting Started with Swift

If the method defines labels for its parameters, add the labels in front of the values:

var finalSum = calculateSum(firstValue: 5, secondValue: 6)

Defining Variables
After “Hello World,” every programming lesson must continue with a discussion of variables.
In Objective-C, you created variables by declaring the type, variable, and value:

NSInteger count = 5;

In Swift, you declare variables by specifying their name and mutability (var or let),
and optionally:

the data type and initialization value:

var count : Int = 5

All variables defined with var in Swift are mutable, meaning you can change their values at
runtime without re-initializing the variable—for example, NSMutableString or NSMutableArray.

The let keyword is similar to const in Objective-C and C; this is a constant value that is not
meant to change.

Swift infers data types, so if you prefer, you can omit the type from your declaration:

var count = 5

Swift also allows you to store float (decimal) and Boolean values in variables directly.

To store a float in Objective-C:

float average = 2.4;

To store a float in Swift:

var average : float = 2.4

You can use Double or Long to specify the size of the variable, just as in Objective-C

To store a Boolean in Objective-C:

BOOL isInitialized = YES; // or NO

To store a Boolean in Swift:

var isInitialized : Bool = true // or false

Note  Unless specifically required by a method, you can omit the first parameter’s label.

37CHAPTER 2: Getting Started with Swift

Custom types follow the same rules in Objective-C and Swift as other types: insert the type’s
name before the variable name:

In Objective-C:

MyType myVariable;
myVariable.name = @"Bob"; //name is a property of the type

In Swift:

var myVariable : MyType
MyVariable.name = "Bob"

Objects require a slightly different process for initialization, which I will cover in the section
“Object-Oriented Programming in Swift.”

Compound Data Types
In most programming languages, like Java and Objective-C, the only data types provided
out of the box are primitives for storing values like integers, Booleans, and decimal values
directly in memory. For more complicated data, you need to define your own types using
structs or classes. While Swift provides this functionality, it does differentiate types that are
provided by the language or the program.

Instead, it separates types into named types, which are named by the language or program,
and compound types, which allow you to return multiple, distinct values under the guise of
“one variable.” These are commonly called tuples in Swift and other languages.

You define a tuple in Swift by replacing the type with a series of types in parentheses:

var myStatistics : (Int, Int, Float)

To set values, embed those in parentheses as well:

var myStatistics : (Int, Int, Float) = (2, 2, 5.2)

Tuples operate similarly to structs in Objective-C, which are custom data types you define
(unlike an object, they do not have methods). For reference, remember that a struct in
Objective-C is defined thus:

typedef struct {
 NSString *name;
 NSString *description;
 NSInteger displayOrder;
} MyType;

In this example, name, description, and displayOrder are the properties of the struct, and
MyType is the name.

38 CHAPTER 2: Getting Started with Swift

To replicate this behavior in Swift, by treating a tuple like a named type, use the _typealias_
keyword:

typealias MyType = (String, String, Int)

You can then instantiate a tuple using your type name as you would any other type:

var myVariable: MyType = ("Bob", "Bob is cool", 1)

Conditional Logic
In Objective-C, you implemented the most basic kind of conditional logic by placing a
comparison in parentheses, as part of an if statement:

if (currentValue < maximumValue) {
}

In Swift, this syntax is largely unchanged, except the requirement for parentheses is gone:

if currentValue < maximumValue

An if-else statement retains this rule as well:

if currentValue < maximumValue {
 //Do something
} else if currentValue == 3 {
 //Do something else
}

In Objective-C, you could use a ternary operator to combine an if-else and an assignment

NSInteger value = (currentValue < maximumValue) ? currentValue : maximumValue ;

In this block of statement, you check if the currentValue is less than the maximumValue. If the
statement is true, set value to currentValue; else set value to maximumValue.

This syntax is still available in Swift, and mostly unchanged:

var value = currentValue < maximumValue ? currentValue : maximumValue

When you wanted to check against multiple values in Objective, you used a switch
statement, with a case block for each value:

switch(currentValue) {
 case 1: NSLog("value 1");
 break;

Note  All the comparison operators you are familiar with from Objective-C are still valid in Swift.

39CHAPTER 2: Getting Started with Swift

 case 2: NSLog("value 2");
 break;
 case 3: NSLog("value 3");
 break;
}

The good news is the switch statement is also available in Swift, with a couple of changes:

1.	 switch statements in Swift allow you to compare objects. The
Objective-C requirement for comparing values has been eliminated in
Swift.

2.	 switch statements in Swift no longer fall through by default. This means
you do not have to add a break; statement at the end of each case.

3.	 switch statements in Swift need to be exhaustive (meaning they
cover all values, or include a default case). This requirement
is a best practice for code security and prevents unexpected
comparisons.

In Swift, the switch statement described previously would look as follows:

switch currentValue {
 case 1: println("value 1")
 case 2: NSLog("value 2")
 case 3: NSLog("value 3")
 default: NSLog("other value)
}

Enumerated Types
In Objective-C, you use an enumerated type to group related values and to reduce errors
from “magic numbers,” values that are hard-coded into your code.

In Objective-C, enumerated types (enums) are defined as such:

typedef enum {
 Failed = -1,
 Loading,
 Success
} PlaybackStates;

Where PlaybackStates is the name of the enum, Failed, Loading, and Success are the three
possible values, and -1 is the initial value of the first item in the enum. In Objective-C, if not
explicitly defined, enums start at 0 and increment by 1. Objective-C enums can only store
discrete, increasing values, such as integers or characters.

40 CHAPTER 2: Getting Started with Swift

In Swift, the syntax for defining an enumerated type is similar, except you indicate the value
type and use the case keyword to indicate each named value:

enum PlaybackStates : Int {
 case Failed = -1,
 case Loading,
 case Success
}

Swift does not try to automatically increment values like in Objective-C, so you can store any
type of value in an enum, including String.

To use a value from an enum in Objective-C, you replace your magic number with the value’s
name. You can store the value in an integer or a variable with the enum’s name as its type:

NSInteger myPlaybackState = Failed;
PlaybackState myPlaybackState = Failed;

For conditional statements:

if (myPlaybackState == Failed)

In Swift, the easiest way to use an enum is by appending the value name to the type:

var myPlaybackState = PlaybackStates.Failed

This applies for conditionals as well:

if myPlaybackState == PlaybackState.Failed

If you are trying to retrieve the value that is stored in an enum member, use the rawValue
property. For instance, if you are trying to translate PlaybackState to an Int value:

let playbackStateValue : Int = PlaybackState.Failed.rawValue

Loops
The syntax for all of the major types of loops (for, for-each, do, do-while) are largely
unchanged in Swift. Two major changes are that you do not need to declare your type and
parentheses are once again optional:

for name in nameArray {
 print ("name = \(name)")
}

Also, there is a major addition in Swift that can improve your loops: ranges. Ranges in Swift
allow you to specify a set of values that you can use to iterate a loop or as part of comparison.

41CHAPTER 2: Getting Started with Swift

There are two major types of ranges in Swift:

	Closed Ranges, expressed as x...y, create a range that starts at x and
includes all values including y

	Half-Open Ranges, expressed as x..y, create a range that starts at x
and includes all values up to y

You could use a range in a for-each loop as follows:

for i in 1..5 {
 print (i)
}

(This would print the numbers 1-4.)

Object-Oriented Programming in Swift
Now that you have a little bit of understanding of the basic syntax of Swift, I will start to
cover Swift syntax as it applies to object-oriented programming.

Building a Class
Unlike Objective-C, Swift does not have a concept of interface files (.h) and implementation
files (.m). In Swift, your entire class is declared within a .swift file.

In Objective-C, a class declaration consisted of:

	Class name

	Parent class

	Property declarations (in interface file)

	Method definitions (in implementation file)

In Objective-C, you declared a class in your header file:

@interface LocationViewController: UIViewController {
 @property NSString *locationName;
 @property Double latitude;
 @property Double longitude;
 -(NSString)generatePrettyLocationString;
}
@end

@Interface specified that you were declaring a class. UIViewController was the name of the
parent class you were subclassing. @property indicated a variable as an instance variable, or
property of the class. Finally, you also included method signatures in this block, so that they
could be accessible by other classes.

42 CHAPTER 2: Getting Started with Swift

In your .m file, you would define (or implement) the methods of your class, in the
@implementation block:

@implementation LocationViewController {
 -(NSString)generatePrettyLocationString {
 //Do something here
 }
}

Swift does not split classes into .h and .m files; instead, all declarations and definitions take
place in your .swift file.

You define classes in Swift with the class keyword:

class LocationViewController: UIViewController {
 
 var locationName : String?
 var latitude: Double = 1.0
 var longitude: Double = -1.0
 
 func generatePrettyLocationString -> String {
 //Do something
 }
}

Properties are included in a class by placing them inside the class block. Swift enforces
property initialization. There are three ways to resolve compilation errors that occur as a
result of not including an initial value for a property:

	Specify a value when you declare the variable

	Specify that the variable is an optional (explained further in this section)

	Create a constructor (init) method that sets initial values for every
property in the class.

Method implementations are also included directly inside the class block. There is no need
to forward-declare signatures as in C or Objective-C.

Protocols
Protocols are a concept from Objective-C that allows you to define a limited interface
between two classes, via a delegate property. For instance, when you use the iPhone’s
camera, the class that presents the camera declares itself as implementing the
UIImagePickerControllerDelegate protocol and defines the two methods that the protocol
specifies for passing back information from the camera (without creating and managing a
camera object in your code).

In Objective-C, to indicate that you will be implementing a protocol, you add the protocol’s
name to your class declaration, after your parent class, in carrots:

@interface LocationViewController: UIViewController
<UIImagePickerControllerDelegate>

43CHAPTER 2: Getting Started with Swift

In Swift, you simply add the protocol’s name after the parent class, separated by a comma:

class LocationViewController : UIViewController, UIImagePickerControllerDelegate {
 ...
}

You can do this for an infinite number of protocols by appending the protocol names,
separated by commas:

class LocationViewController : UIViewController, UIImagePickerControllerDelegate,
UITextFieldDelegate {
 ...
}

Method Signatures
Before defining a method in Swift, let’s investigate a method signature in Objective-C:

-(BOOL)compareValue1:(NSInteger)value1 toValue2:(NSInteger)value2;

In this line of code, you can see that the return type comes before the method name and
that each of the parameters is provided after a colon. You add labels to every parameter
after the first one, to increase readability.

In Swift, you declare a method by placing the func keyword in front of the method name and
then including the input parameters and output parameters in parentheses:

func compareValues(value1: Int, value2: Int) -> (result: Bool)

Swift uses -> to separate the input parameters and return parameters.

As with variables in Swift, you indicate the type of each parameter by appending the type
name with a colon.

If your method does not return anything, you can omit the return parameters and ->:

func isValidName(name: String) {
}

Since tuples are everywhere in Swift, you can also return a tuple from a method:

func compareValues(value1: Int, value2: Int) -> (result: Bool, average: Int) {
}

44 CHAPTER 2: Getting Started with Swift

Accessing Properties and Methods
The concept of accessing a method or property on an object is referred to as message-passing.
In Objective-C, the primary way of passing messages was through Smalltalk syntax:

[receiver message];

where receiver represents the object that is being acted upon, and message represents the
property or method you are trying to access.

In Swift, you can access a property or method of an object by using dot-syntax, as you
would in C or Java. This includes classes that were defined in Objective-C.

receiver.message()

In Objective-C, you always have to use Smalltalk syntax to access a method. To call the
reloadSubviews method on a UIView object in Objective-C, you would make a call like the
following:

[myView reloadSubviews];

In Swift, the same line of code would look like this:

myView.reloadSubviews()

If you were passing multiple parameters to a method in Objective-C, you would append the
labels and values:

[myNumberManager calculateSumOfValueA:-1 andValueB:2];

In Swift, simply include the extra parameters in the parentheses:

myNumberManager.calculateSum(-1, valueB:2)

In Objective-C you had two ways of reading the value of a property. Through Smalltalk syntax:

CGSize viewSize = [myView size];

or through dot-syntax:

CGSize viewSize = myView.size;

In Swift, you always use dot-syntax to access properties.

var viewSize: CGSize = myView.size

To set a value for a property in Objective-C, you could use dot-syntax to set the value of a
property:

myView.size = CGSizeMake(0,0, viewWidth, viewHeight);

45CHAPTER 2: Getting Started with Swift

But, you could also use an autogenerated setter method:

[myView setSize:CGSizeMake(0,0, viewWidth, viewHeight)];

In Swift, you always use dot syntax to set the value of a property:

myView.size = CGSizeMake(0,0, viewWidth, viewHeight)

Instantiating Objects
In Objective-C, you would instantiate an object by allocating it in memory and then calling its
constructor method:

NSMutableArray *fileArray = [[NSMutableArray alloc] init];

Some classes have constructors that allow you to pass in parameters.

NSMutableArray *fileArray = [[NSMutableArray alloc] initWithArray:otherArray];

Some classes also have convenience constructors, which serve as shortcuts for the process
of allocating and initializing an object.

NSMutableArray *fileArray = [NSMutableArray arrayWithArray:otherArray];

Things are a bit easier in Swift. Swift automatically allocates memory, removing the alloc
step. Additionally, the default constructor for a class in Swift is the class name with an empty
set of parentheses appended to the end:

var fileArray = Array()

If the class you are initializing takes parameters in its constructor, call the constructor as you
would any other method:

var myView = UIView(frame: myFrame)

If you are instantiating an object from an Objective-C class, you need to call its constructor
as a method:

var mutableArray = NSMutableArray()

Note  Swift has its own classes to represent Strings, Arrays, Dictionaries, and Sets, but you are
free to use the Objective-C classes to maintain compatibility with older APIs or libraries.

46 CHAPTER 2: Getting Started with Swift

Strings
In Objective-C, to represent a string, you would use the NSString class. To initialize a string,
you could use a constructor method:

NSString *myString = [[NSString alloc] initWithString: @"Hello World"];

You could also use the @ symbol to load the value directly, using Objective-C’s literal syntax:

NSString *myString = @"Hello World";

In Swift, the class for representing strings is String. You load values directly:

Let myString = "Hello"

In Objective-C, NSString objects are immutable, meaning you cannot append or remove
characters at runtime, unless you assigned a new value to the string. To resolve this issue,
you could use the NSMutableString class in Objective-C, which allows you to mutate its
objects at runtime:

NSMutableString *myString = [NSMutableString stringWIthString@"Hello"];
[myString appendString:@" world"]; //result is "Hello world"

In Swift, String objects defined with var are mutable. You can append values using the
append function:

var myString = "Hello"
myString.append(" world") //result is "Hello world"

Formatting Strings
In Objective-C, when you wanted to insert a value from an object into a string, you had to
use a string formatter to build a custom string:

NSString *summaryString = [NSString
 stringWithFormat:@"int value 1: %d, float value 2: %f, string value 3: %@", -1, 2.015,
@"Hello"];

For each value you wanted to insert into the string, you needed to use a combination of
characters, referred to as a format specifier, to substitute the variable you wanted to insert
into the string. Format specifiersgenerally consist of the % character and a letter indicating
the value type (e.g., @ for string, d for integer value, and f for float value).

Note  You can continue to use the NSString and NSMutableString classes in Swift, but it is only
recommended for interfacing with Objective-C classes.

47CHAPTER 2: Getting Started with Swift

Swift makes it easier for you to insert a value into a string by placing the variable’s name in
parentheses, prepended by a forward slash:

let value1 = -1
let value2 = 2.015
let value3 = "Hello"
var summaryString = "int value 1: \(value1), float value 2: \(value2), string value 3: \
(value3)"

In Objective-C, to limit the number of decimal places that appeared in a float value, you
would add a period and the number of spaces in front of the format specifier for the float:

NSString *summaryString = [NSString
 stringWithFormat:@"float value: %0.2f", 2.015];

To replicate this in Swift, use the String constructor method which specifies format as its input.

var summaryString = String(format: "float value: %0.2f", 2.015)

The syntax is the same as that for Objective-C, where you pass in the format string and then
a comma-separated list of values to replace the format specifiers.

Collections
In both Objective-C and Swift, the following are three classes referred to as collections,
which “collect” similar objects together into one object:

Arrays: An ordered collection of objects. These preserve the order you use to load items. You
retrieve items by indicating their position in the collection.

Set: An unordered collection of objects. These are used to test “membership” of objects–for
instance, if an object exists in a set. You retrieve objects by specifying a subset.

Dictionary: An unordered collection of objects, which is identified by “keys.” These are also
called key-value pairs. You retrieve objects by specifying their keys.

In Objective-C, you used the NSArray class to represent arrays. Arrays in Objective-C contain
objects only, and can be initialized with several convenience constructor methods, including
[NSArray arrayWithObjects:].

NSArray *stringArray = [NSArray arrayWithObjects:@"string 1",
 @"string 2", @"string 3"]

In Swift, you can declare an array by providing its values in square brackets when you define
the variable.

var stringArray = ["string 1", "string 2", "string 3"]

48 CHAPTER 2: Getting Started with Swift

Swift does not place the same restriction on the contents of an array, so you can initialize it
with scalar values (such as Ints).

var intArray = [1, 3, 5]

If you do not want to initialize your array with values, declare a variable type for the input by
placing the type name in square brackets:

var intArray : [Int]

You can also use subscript notation to read or change values in a Swift array.

var sampleString = stringArray[3]

In Objective-C, NSArray objects are immutable. To make an array mutable, you defined it
using the NSMutableArray class:

NSMutableArray *stringArray = [NSMutableArray arrayWithObjects:@"string 1",
 @"string 2", @"string 3"]

Remember, by defining your array with the var keyword, you make it a mutable variable,
allowing you to “mutate” existing values or add new ones at runtime. For instance, you can
use the plus (+) operator to append values to the array.

stringArray += "string4"

You can also change a value by specifying a value at an index

stringArray[2] = "This is now the coolest string".

In Objective-C, you create a set by initializing it with a comma-separated list of objects:

NSSet *mySet = [NSSet setWithObjects: @"string 1", @"string 2", @"string 3"];

You could also create a set with an array.

NSSet *mySet = [NSSet setWithArray: stringArray];

To membership, you use the containsObject method:

if ([mySet containsObject:"string 1"]) {
 print("success!")
}

In Swift, you create a set by using the Set class and specifying the type of its members:

var stringSet: Set<String>

49CHAPTER 2: Getting Started with Swift

You can initialize a set with an array:

var stringSet: Set<String> = ["string 1", "string 2", "string 3"]

Similarly, you can mutate the set if it is defined as a mutable variable (with the var keyword).

StringSet += "hello world"

To create a dictionary in Objective-C, you pass in arrays of keys and values. The two are
matched according to the order you pass them in.

NSDictionary *myDict = [NSDictionary dictionaryWithObjects:@"string 1", @"string 2",
@"string 3", nil forKeys:@"key1", @"key2", @"key3"];

You could also use literal shortcut to initialize a dictionary in Objective-C.

NSDictionary *myDict = @{@"key1" : @"string 1", @"key2" : @"string 2", @"key3" : @"string 3" };

To access a value from a dictionary in Objective-C, you specified its key.

NSString *string = [myDict objectForKey:@"key1"];

In Swift, you define a dictionary by specifying the types of its keys and values.

var myDict = [String, String]()

The empty brackets specify that you are creating an empty dictionary.

To initialize a dictionary with key-value pairs, pass them in using literal syntax. For Swift
dictionaries, this is a comma-separated list of key-value pairs (connected with colons).

var myDict : [String, String] = ["key1" : "string 1", "key2": "string 2", "key3" : "string 3"]

To retrieve an object from a dictionary, use the following key:

let myString = myDict["key1"]

If the dictionary is a mutable variable, you can mutate values or append new key-value pairs
at runtime.

myDict["key3"] = "this is the coolest string"

50 CHAPTER 2: Getting Started with Swift

Casting
In Objective-C, to cast an object from one class to another, you would prepend the class
name and optionally an asterisk, identifying your pointer.

UINavigationController *navigatonController = (UINavigationController *)segue.
destinationController;

In Swift, casting is as easy as using the as keyword.

let navigationController = segue.destinationController as UINavigatonController

Simply add the as keyword and the class name to the result, and the compiler will do the rest
for you. You can even insert this keyword inline, wherever you would normally use your object:

for (file as String in fileArray) {}

Swift-Specific Language Features
In this section, I will review that which my clients found particularly difficult when adopting
Swift—particularly, optionals and try-catch blocks. These do not translate directly to
language features in Objective-C and need extra care to use correctly.

Optionals
In Objective-C, the nil keyword is used to represent an object that is null. Null is the “initial”
state of values, before they are initialized or after they have been “reset.” For an object, a
pointer points to an empty area in memory. For scalar variables, it is the value 0. The idea
is, an object that has been initialized correctly will have a non-null value; a non-null value is
considered “valid.” It is also common for methods to return nil values in error conditions.

In Objective-C, a common way to check if an object is valid is by checking for nil. For
instance, to check if a value exists for a key in a dictionary

if (myDict["coolestKey"} != nil) {
 //success
}

If the value for that key does not exist in the dictionary, it will return nil.

In Objective-C, this applies for properties of a class as well. If a property has not been
initialized, attempting to retrieve it will return nil.

if (myLocationManager.locationString != nil) {
 //success
}

51CHAPTER 2: Getting Started with Swift

In Objective-C, if you try to perform an operation on a nil pointer, you will crash your application.

Swift attempts to resolve this issue through the concept of optionals. An optional is a type
that can represent a nil, or an uninitialized value. To define a variable as an optional, append
the ? operator to the type name:

var myString : String?

You will commonly see this syntax in class properties. In Swift, all properties need to be valid
when they are initialized. There are three ways to resolve this issue.

1.	 Specify a value for the property when declaring it.

class LocationManager: NSObject {
 var locationString : String = "Empty string"
}

2.	 Create a constructor which initializes the property.

class LocationManager: NSObject {
 var locationString : String
 
 init(locationString: String) {
 self.locationString = locationString
 }
 
}

3.	 Define the property as an optional.

class LocationManager: NSObject {
 var locationString : String?
}

When trying to access the property, check if it is nil before trying to use it.

if myLocationManager.locationString != nil {
 //success
}

If the property you are trying to access has properties you want to access (for instance, a
UIView object), you need to “unwrap” your class’s property before using it. This operation is
referred to as “optional-chaining.” The general idea is, tell the compiler that your property is
an optional and then try to check if the derived property is non-nil; if it is, create a variable to
contain the property. In the case of checking if a subview exists on a UIViewController:

if let mapViewSize = self.mapView?.size {
 //success
 print("size = \(mapViewSize)")
}

52 CHAPTER 2: Getting Started with Swift

The ? operator lets the compiler know that the property is an optional. If the optional returns
nil, it will not attempt to access the derived property and will not execute the success block.

If you have confirmed that an optional property is non-nil, you can access its derived
properties by force-unwrapping it. Force-unwrapping is indicated by the ! operator.

if (self.mapView != nil) {
 
 let mapViewSize = self.mapView!.size
 print("size = \(mapViewSize)")
}

If you do not check that the property is non-nil before force-unwrapping, your application
will crash.

Try-Catch Blocks
The major difficulty of error passing in Swift is that it does not directly translate over from
Objective-C. In Objective-C, you would catch an error by passing an NSError object by
reference. This object would be mutated by the method you called; an error would be
represented by a non-nil value.

In Swift, methods throw errors using exceptions. You can catch these using a try-catch block.

In Objective-C, to return an error, you define a method that takes a pointer to an NSError object.

-(void)translateString:(NSString *)inputString error:(NSError **)error {
}

To modify the object, “dereference” it using the * operator. This allows you to perform
operations on the object that is represented by the pointer.

-(void)translateString:(NSString *)inputString error:(NSError **)error {
 
 *error = [NSError errorWithDomain:NSCocoaErrorDomain code:400
userInfo:userInfoDict];
}

In this example, we create a new NSError object using a domain (an enum representing the
general “kind” of error), an error code represented by an integer value, and a dictionary
containing any other information we want to pass back about the error.

To call the method from Objective-C, create an error object and pass a “reference” to it
using the & operator.

-(void)myMethod {
 NSError *error;
 [self translateString:@"hello" error:&error];
}

53CHAPTER 2: Getting Started with Swift

To define a method that returns an error in Swift, add the “throws” keyword after the
parameter list, and before the return values list:

func translateString(inputString: String) throws -> Void {
 
}

Swift defines a protocol called ErrorType, which allows you to create exceptions that
translate to NSError properties when called from Objective-C. To define your error, create an
enum that uses this protocol. Specify any codes and domains for your error types.

enum TranslationError : Int, ErrorType {
 case EmptyString = -100
 case UnrecognizedLanguage = 1000
 case InvalidString = 1001
}

To throw an exception, use the throw keyword, specifying the enum and error type.

func translateString(inputString: String) throws -> Void {
 if (inputString == nil) {
 throw TranslationError.EmptyString
 }
}

To catch an error, use a try-catch block. Place the error-prone code in a do block; prepared
the try keyword to the line that is going to throw the exception. Catch the exception in the
catch block.

do {
 let myString : String = nil
 try translateString(myString)
} catch TranslationError.InvalidString {
 print("this is an invalid string")
}

If you want to try to catch multiple exceptions of the same type, add additional catch blocks.

do {
 let myString : String = nil
 try translateString(myString)
} catch TranslationError.InvalidString {
 print("this is an invalid string")
} catch TranslationError.EmptyString {
 print("this is an empty string")
}

Note  You need a try-catch block for each method you try to call that returns an exception.
Methods should only return one type of exception.

54 CHAPTER 2: Getting Started with Swift

Mixing Objective-C and Swift in Projects
Swift lets you import classes written in Objective-C and call Objective-C methods. This
import capability is extremely valuable, because you can import any of the existing Cocoa
Touch APIs or your existing Objective-C code.

If your project is going to be primarily in Swift, make sure that you specify Swift as the
primary language when creating it from Xcode > New > Project, as shown in Figure 2-1.

Figure 2-1.  Creating a Swift project

To add an Objective-C class to your Swift project, follow the same process you would use
for an Objective-C project: drag and drop the files onto the Project Navigator, or select Add
Files to <Project Name> from the File menu, as shown in Figure 2-2.

55CHAPTER 2: Getting Started with Swift

To access an Objective-C class from a Swift file, simply create an object using the type and
constructor specified by the class, and call methods via dot-syntax.

var myObjcString : NSMutableString = NSMutableString(string: "Hello")
myObjcString.appendString(" world")

The compiler takes care of converting constructors and other methods to Swift-style syntax
for you, take advantage of autocompletion to help you, as shown in Figure 2-3.

Figure 2-2.  Importing files into your project

56 CHAPTER 2: Getting Started with Swift

Calling Swift from Objective-C
You can also call Swift classes and methods from Objective-C, as long as you are aware of a
few rules.

	If you are subclassing a Foundation class (e.g., NSString) or a Cocoa
Touch class (e.g., UIViewController), it will be available when importing
your Swift file into an Objective-C class.

	Within a Swift-compatible class, if a method uses a language feature
not available in Objective-C, such as an optional or tuple, it will not be
available to Objective-C. Attempt to resolve these issues by writing
methods that can translate directly to Objective-C.

	Objective-C mutates NSError objects for passing back errors, while
Swift 2.0 uses exceptions. To make a method that is compatible
between the two languages, remember take advantage of the ErrorType
protocol, as described in the section “Try-Catch Block.”

	You can make an enum available to Objective-C by prepending the @objc
keyword. Similarly, make sure the types in your enum are compatible with
Objective-C (increasing, discrete values like integers or characters)

@Objc enum PlaybackStates : Int {
 case Failed = -1,
 case Loading,
 case Success
}

Figure 2-3.  Autocompletion results for NSMutableString

57CHAPTER 2: Getting Started with Swift

Summary
In this chapter, I introduced Swift by comparing how Objective-C and Swift implement basic
syntax and object-oriented programming concepts. You noticed that while Swift brings
significant syntax changes to iOS development, its methods are designed to work like
Objective-C. For the most part, by using Swift method syntax, you can call any Objective-C
Cocoa Touch method from Swift. In instances where this is not possible, there are ways to
use protocols like ErrorType to produce output that is compatible with Objective-C. To make
the chapter particularly useful, I paid special attention to optionals and try-catch blocks, two
language features that are not implemented in Objective-C.

Note  The @objc keyword is used globally throughout Swift as a way of explicitly defining a type,
method, or class as Objective-C compatible.

59

Chapter 3
Accessing Health Information
Using HealthKit

Ahmed Bakir
Introduction
For the last few years, Apple has provided two core frameworks that have sped up the time
to develop iOS health apps considerably: HealthKit and Core Motion. HealthKit provides a
central repository for all apps to sync health data and Core Motion provides access to the
iPhone’s accelerometer and pedometer, allowing you to retrieve limited health information
about a user without external accessories.

HealthKit was a baffling surprise to everyone when it was announced; no one could figure
out why Apple would “compete” with its partners by building a framework to do the same
thing they had all been doing for years, tracking information. As time progressed, HealthKit’s
role became very clear—it eliminated the need for a different app for every health accessory
on the market and every discrete kind of data. Before HealthKit, there was no way for your
heart rate monitor to share data with your running app, unless the two companies had
collaborated. After HealthKit, any accessory maker or developer could opt into the service,
allowing users to have a clearer snapshot of their overall health. Since HealthKit is a public
application programming interface (API); anyone (including you) is able to build apps that
can publish information to it or retrieve information from it. Keeping in line with Apple’s
philosophy that a user’s sensitive data should stay on his or her device, HealthKit is not
synced with any cloud services and requires its own set of permissions to access it.

In a similar manner, Apple started baking a hardware chip into all iPhones and iPod Touches,
starting with the iPhone 5S, called the Motion Co-Processor. This chip builds a pedometer,
accelerator, gyroscope, and other sensors into the devices with advantages in power and
accuracy that were not available via the old methods of calculating a user’s distance traveled

60 CHAPTER 3: Accessing Health Information Using HealthKit

via GPS. Core Motion provides a useful subset of health information that could help you
build a health application without any external logging accessories.

In this chapter, you will start building the RunTracker app, pictured in Figure 3-1, which lists
a user’s previous workouts and allows the user to log new ones. This chapter will focus on
setting up the project’s user interface and HealthKit permissions. In Chapter 4, you will learn
how to use CoreMotion to convert live data to HealthKit objects.

Users enter the app at a table view, which lists running and walking workouts that have been
saved to HealthKit by all apps, including your own. After pressing the Add button, users are
taken to a detail screen, which allows them to log a new workout. The detail screen consists
of a Start button, which toggles tracking, and a set of labels which show live data from Core
Motion, including the user’s distance traveled, workout length, and current activity type.

In building the RunTracker app, you will learn about the following concepts in HealthKit and
Core Motion:

	How HealthKit and Core Motion protect data and hardware with
permissions

	How HealthKit represents data, including units

	How to retrieve information from HealthKit

	How to receive real-time activity updates from HealthKit

As with the other projects in this book, the source code for the RunTracker project is
available in the Source Code/Download tab on the book’s page at www.apress.com.

Figure 3-1.  Wireframe for the RunTracker app

http://dx.doi.org/10.1007/978-1-4842-1194-6_4
http://www.apress.com/

61CHAPTER 3: Accessing Health Information Using HealthKit

Getting Started
Before getting too far into the implementation details of HealthKit, you need to set up the
project. In this section, I will walk you through the process of setting up the user interface
and the extra steps you need to take to allow your application to use HealthKit.

Setting Up the User Interface
The RunTracker application consists of two primary view controllers: the activity table, which
lists all workouts the user has logged on his device, and the create screen, which allows the
user to log a new workout.

As has been the case for the other applications you have built so far, start by navigating to
the File menu and selecting New ➤ Project. In the template picker that appears, select the
Single View Application template, as shown in Figure 3-2.

Note  As HealthKit is only available on iPhones, the user interface for this project is designed for
iPhone layouts.

Figure 3-2.  Creating a single-view application

62 CHAPTER 3: Accessing Health Information Using HealthKit

When asked to select a device target, change the setting from Universal to iPhone, as shown
in Figure 3-3.

The wireframe for RunTracker, from Figure 3-1 indicates that the user will enter the app into
the activity table. As with the CarFinder application from Chapter 1, we need to implement
this by changing the entry point of the application from the original single-page view
controller that came with the project template to a table view controller.

To get started, select the Main storyboard for your project (Main.storyboard) and delete
the original view controller by selecting it and hitting the Delete key. Next, drag a table
view controller from Interface Builder’s object library onto storyboard. Click the blank cell
and then navigate over to the Attributes Inspector (the fourth tab in Interface Builder’s right
panel). The wireframe from Figure 3-1 specifies that you need to display two lines per item,
so select Subtitle for the style and give the cell the identifier “WorkoutCell.” Figure 3-4 shows
the storyboard, with the cell identifier settings highlighted.

Figure 3-3.  Setting device target for project to iPhone

http://dx.doi.org/10.1007/978-1-4842-1194-6_1

63CHAPTER 3: Accessing Health Information Using HealthKit

To change the name of the view controller, double-click the area in the middle of the
navigation bar. As shown in Figure 3-5, an editable text area will appear, in which you can
type in a name for the workout table.

Figure 3-4.  Storyboard with table view

Figure 3-5.  Editing a navigation item’s title

64 CHAPTER 3: Accessing Health Information Using HealthKit

As with Chapter 1, there is no entry point to the new storyboard, which means that the
application will not know which view controller to load first. To fix this issue, select the new
table view controller in the storyboard and click the Attributes Inspector. Click the “Is Initial
View Controller” check box to the right in Figure 3-6. Your table view controller will now have
an arrow in front of it, indicating that it is the storyboard’s new entry point, as in Figure 3-6.

Most tables are used in a master-detail fashion, meaning you start at a master screen
(a table of results) and drill down into detail screens (e.g., details for an item in the table).
To enable this, you need to add a navigation bar to the table view controller. Xcode allows
you to easily add a navigation controller to any view controller from the Editor menu. Select
Editor ➤ Embed In ➤ Navigation Controller, as shown in Figure 3-7.

Figure 3-6.  Storyboard after setting entry point

http://dx.doi.org/10.1007/978-1-4842-1194-6_1

65CHAPTER 3: Accessing Health Information Using HealthKit

After applying the change, you will notice that your table view controller is linked to a
navigation controller, as shown in Figure 3-8. You will also notice that entry point has shifted
to the navigation controller. The “Embed In” feature is particularly convenient because it
preserves your existing hierarchy of segues (connections between storyboard items).

Figure 3-7.  Xcode menu path to embed a selection in a navigation controller

66 CHAPTER 3: Accessing Health Information Using HealthKit

Figure 3-8.  Storyboard after embedding a selection in a navigation controller

To connect the new table view controller to your custom functionality, you need to
create a class for it. In the File menu, select New ➤ File. When prompted for a file type,
choose Cocoa Touch class and create a subclass of UITableViewController named
WorkoutTableViewController, as shown in Figure 3-9.

67CHAPTER 3: Accessing Health Information Using HealthKit

Figure 3-9.  Adding a UITableViewController subclass to the project

Connect the new class to your storyboard by selecting the table view controller and
selecting the Identity Inspector (third tab of the right pane). As shown in Figure 3-10,
change the name to WorkoutTableViewController. You can verify that the operation was
successful by making sure the “Module” field displays “Current - RunTracker,” indicating the
namespace for the RunTracker project.

www.allitebooks.com

http://www.allitebooks.org

68 CHAPTER 3: Accessing Health Information Using HealthKit

To allow users to log new workouts, you need to add the “view screen” to your storyboard.
This view controller allows the user to start or stop his or her workout, view his current
progress, and return to the workout table, either by saving or by canceling his current
workout. Following the same processes you used to add a table view to the storyboard,
drag a view controller onto the storyboard, create a new file that is a subclass of
UIViewController called CreateWorkoutViewController, and link the two together using the
Identity Inspector.

The user interface for the create screen consists of labels to indicate workout type, progress,
and time; a large button at the bottom of the screen to start or pause the workout; and a
navigation bar with Done and Cancel buttons, to allow the user to exit and return to the
workout table. I have included the definition for the CreateWorkoutViewController class in
Listing 3-1, including the properties for the labels and buttons and stubbed functions for the
button event handlers.

Listing 3-1.  Class Definition for CreateWorkoutViewController

import UIKit
import HealthKit
import CoreMotion
 
class CreateWorkoutViewController: UIViewController {
 
 @IBOutlet weak var typeLabel: UILabel!
 @IBOutlet weak var progressLabel: UILabel!
 @IBOutlet weak var timeLabel: UILabel!
  
 @IBOutlet weak var toggleButton: UIButton!
}

Figure 3-10.  Changing a view controller’s parent class and verifying its module

69CHAPTER 3: Accessing Health Information Using HealthKit

To start implementing the user interface, drag several labels onto the view controller, as
shown in Figure 3-11.

Change the text weight of the static text labels (for example, Workout Type) to bold by
selecting a label and navigating over to the Attributes Inspector. Use the Font drop-down, as
shown in Figure 3-12 to change the font family or weight.

Figure 3-11.  Adding labels to View Controller

70 CHAPTER 3: Accessing Health Information Using HealthKit

For the status labels, remember to link them to the CreateWorkoutViewController class by
selecting them, navigating over to the Connections Inspector (the last tab in the right pane),
and dragging a line from the New Referencing Outlet radio box to the view controller. As
shown in Figure 3-13, a pop-up will appear indicating the property name.

Figure 3-12.  Changing label attributes

71CHAPTER 3: Accessing Health Information Using HealthKit

Figure 3-13.  Connecting labels to their referencing outlets

Drag a button onto the view controller to represent the Toggle Workout button. To create the
“big blue button” appearance of the button, resize its edges to touch the sides of the screen
and change the text color to white by selecting the Text Color drop-down in the Attributes
Inspector, as shown in Figure 3-14.

72 CHAPTER 3: Accessing Health Information Using HealthKit

To change the background color of the button, scroll down to the View section of the
Attributes Inspector and select the Background color drop-down, as shown in Figure 3-15.
Pick your favorite shade of blue.

Figure 3-14.  Changing the text color for a button

73CHAPTER 3: Accessing Health Information Using HealthKit

Figure 3-15.  Changing the button’s background color

To preserve the appearance of the button on different screen sizes, set autolayout
constraints using the Pin menu, as shown in Figure 3-16. To force the button to stay at the
bottom of the screen on all devices, select the dotted lines on the left, right, and bottom
edges of the square. To fix the height at 60 pixels on all screens, select the check box next
to height. You can follow the same process to pin the positions and sizes of the labels,
except you will pin them to the top of the screen.

74 CHAPTER 3: Accessing Health Information Using HealthKit

Figure 3-16.  Setting constraints for the button

To make the button functional, use the Connections Inspector to connect the Referencing
Outlet, following the same steps you used to connect the labels. To connect the function
that will be called when the user presses the button, toggleWorkout(), you need to connect
it to a user interface event. As shown in Figure 3-17, click the radio button representing
“Touch Up Inside” and drag a line over to the view controller. Select the method signature for
the toggleWorkout() function. If it does not appear, make sure you define the method with
the @IBAction macro in front of the func keyword.

75CHAPTER 3: Accessing Health Information Using HealthKit

For the final steps of setting up the user interface, you need to connect the Done and
Cancel buttons in the navigation bar and present the create screen from the workout
table. To create the Done and Cancel buttons, start by embedding the create screen in a
navigation controller, using the Embed In option from Editor menu, as you did for workout
table. Drag bar buttons from the Object library onto the navigation bar, as shown in
Figure 3-18. Bar buttons differ from buttons in the Object library, in that they are subclasses
of UIBarButtonItem. They respond to a smaller set of user interface events than a UIButton
and include special identifiers to style them for common navigation events, such as
canceling a view or selecting a done state.

Figure 3-17.  Click Touch Up Inside and drag a line to the view controller

76 CHAPTER 3: Accessing Health Information Using HealthKit

To change the appearance of a bar button item, click it and navigate over to the Attributes
Inspector. As shown in Figure 3-19, you can use a preconfigured display by selecting a
system item type from the System Item drop-down. For the Done and Cancel buttons,
choose Done and Cancel, respectively.

Figure 3-18.  Dragging bar buttons onto the navigation bar

77CHAPTER 3: Accessing Health Information Using HealthKit

To connect a bar button item to an action, navigate over to the Connections Inspector. The
“Sent Actions” section for a bar button item only has one entry, selector, indicating that you
can only connect one handler method to a bar button item. As with connecting a UIButton,
click on the radio box next to “selector” and drag a line over to the view controller, as shown
in Figure 3-20. For the Done button, select the done() method. For the Cancel button, select
cancel().

Figure 3-19.  Selecting a system item type for a UIBarButtonItem

78 CHAPTER 3: Accessing Health Information Using HealthKit

You will use an Add button to present the create screen from the workout table. Add a bar
button to the navigation controller for the workout table and set its style to Add. Rather than
using a method to present the create screen, you will use a segue. Segues are a convenient
feature of Interface Builder which allow you to visually connect two view controllers via a
button or other touchable user interface element and specify properties of the connection,
such as how the new screen should be presented, without having to write any code. By
overriding the prepareForSegue() method, you can implement custom logic to pass data
between view controllers that are connected with a segue.

To make the segue between the Add button and create screen, select the Add button and
navigate over to the Connections Inspector in Interface Builder. Hold down the radio box
next to “action,” under the Triggered Segue section, and drag a line to the destination view
controller. As shown in Figure 3-21, this will be the navigation controller that contains the
create screen.

Figure 3-20.  Selecting a handler method for a UIBarButtonItem

79CHAPTER 3: Accessing Health Information Using HealthKit

Setting Up the Project for HealthKit
Every Xcode project has a feature called “device capabilities.” Device capabilities are a set
of flags you need to set in your project before you can access sensitive APIs that the user
may want to opt out of, such as the Apple Pay wallet or health information from HealthKit. As
with the GPS feature in the CarFinder app, users will be prompted to enable the feature once
they have installed the app. Apple goes a step further with HealthKit and will prevent your
application from compiling if you try to include HealthKit in your project without enabling the
device capabilities.

To enable HealthKit for your application, click your project in the Project Navigator. Select
the Capabilities tab. As shown in Figure 3-22, you will be presented with a list of switches
indicating capabilities you have enabled for your application.

Figure 3-21.  Creating a segue between a cell and a detail view controller

80 CHAPTER 3: Accessing Health Information Using HealthKit

Scroll down to Health and select the ON position for the switch control. Xcode will prompt
you to select a Development Team for your project, as shown in Figure 3-23. To use
HealthKit, not only do you need to specify the capability for your project but you also
need an app ID registered with the Apple Developer Connection. Selecting your Developer
Account and logging in will automatically create this record for you.

Figure 3-22.  Default capabilities

81CHAPTER 3: Accessing Health Information Using HealthKit

After registering your app ID, you will notice a series of check marks under the Health
section, indicating that your application has met all of the requirements for HealthKit, as
shown in Figure 3-24.

Figure 3-23.  App registration

Note  If you are on a free developer account for device testing, you can register an application
name for testing. However, to distribute your app on the App Store, you will need to upgrade to a
paid Apple Developer Program account.

82 CHAPTER 3: Accessing Health Information Using HealthKit

One of the check boxes indicates that the HealthKit framework has been added to
your project. To use the HealthKit API, modify your WorkoutTableViewController and
CreateWorkoutViewController classes to include the framework, as shown in Listings 3-2
and 3-3.

Listing 3-2.  Initial Class Definition for WorkoutTableViewController

import UIKit
import HealthKit
 
class WorkoutTableViewController: UITableViewController {
}

Listing 3-3.  Initial Class Definition for CreateWorkoutViewController

import UIKit
import HealthKit
 
class CreateWorkoutViewController: UIViewController {
}

Figure 3-24.  Capabilities after enabling HealthKit

Note  For the RunTracker project, you will not need to enable any other device capabilities. If you
are looking to add location tracking, you should enable Maps. If you want to add the ability to play
audio while your app is backgrounded, enable Background Modes.

83CHAPTER 3: Accessing Health Information Using HealthKit

Prompting the User for HealthKit Permission
To enable the project to work with HealthKit, you had to set it as a “capability.” Referring to
the CarFinder application from Chapter 1, you will remember that when you access sensitive
hardware or information, you need to perform two steps:

	Verify that the hardware or API is available on a device

	Ask the user for permission to use the resource

Apple enforces this design pattern by providing you with APIs to prompt for permission
and hardware status. To enforce the design pattern, your application will crash at runtime
if you try to access a resource that does not exist or which your application does not have
permission to use.

To query if a device is HealthKit compatible, use the isHealthDataAvailable() public
method on the HKHealthStore() class. As shown in Listing 3-4, you should call this method
at the entry point for the first view controller that needs to use HealthKit. For the RunTracker
application, this is the viewDidLoad() method of the WorkoutTableViewController class.

Listing 3-4.  Querying for HealthKit availability When Starting the App (WorkoutTableViewController.swift)

override func viewDidLoad() {
 super.viewDidLoad()
  
 tableView.dataSource = self
 tableView.delegate = self
  
 // Do any additional setup after loading the view, typically from a nib.
  
 if (HKHealthStore.isHealthDataAvailable()) {
  
 //success!
 
 } else {
 //HealthKit unavailable
 presentErrorMessage("HealthKit not available on this device")
 }
}

If the device does not support HealthKit (e.g., an iPad), you should handle the error. In this
case, I have created a method called presentErrorMessage(), which takes a string as input
and displays a UIAlertController, as shown in Figure 3-25.

http://dx.doi.org/10.1007/978-1-4842-1194-6_1

84 CHAPTER 3: Accessing Health Information Using HealthKit

Listing 3-5 provides the definition for the presentErrorMessage() method.

Listing 3-5.  Method to Generate Error Alerts (WorkoutTableViewController.swift)

func presentErrorMessage(errorString : String) {
 �let alert = UIAlertController(title: "Error", message: errorString, preferredStyle:

UIAlertControllerStyle.Alert)
 let okAction = UIAlertAction(title: "OK", style: UIAlertActionStyle.Default, handler: nil)
 alert.addAction(okAction)
 presentViewController(alert, animated: true, completion: nil)
}

Having established that the device is capable of using HealthKit, you need to prompt the
user to enable your application to read and write to HealthKit. The primary class you will
use for your data operations against HealthKit is HKHealthStore. To get started, add a
HKHealthStore object to the Workout Table View Controller class, and instantiate it once
your application has established that HealthKit is available on a user’s device, as shown in
Listing 3-6.

Figure 3-25.  UIAlertController presenting an error

85CHAPTER 3: Accessing Health Information Using HealthKit

Listing 3-6.  Initializing a HKHealthStore When Opening the App (WorkoutTableViewController.swift)

override func viewDidLoad() {
 super.viewDidLoad()
  

 // Do any additional setup after loading the view, typically from a nib.
  
 if (HKHealthStore.isHealthDataAvailable()) {
  
 healthStore = HKHealthStore()
 
  
 } else {
 //no health kit data available
 presentErrorMessage("HealthKit not available on this device")
 
 }
 }

One of the key advantages of HealthKit is that it provides granular tracking of numerous
health data metrics, including heart rate, step count, a user’s weight, and calories
consumed. You can find the latest, complete set of data types HealthKit in Apple’s HealthKit
Constant Reference (https://developer.apple.com/library/ios/documentation/HealthKit/
Reference/HealthKit_Constants/).

HealthKit also provides grouping types, such as workouts, which let you abstract units
of data into activities, such as a morning jog. When prompting a user for HealthKit
permission, you need to specify the types of data you want to read and write using the
requestAuthorizationToShareTypes() method of the HKHealthStore class. The user will
be presented with a view controller provided by iOS reflecting the permissions you have
requested, as shown in Figure 3-26. You will be notified of the user’s selections via the
completion block that executes when the user closes the permission view.

https://developer.apple.com/library/ios/documentation/HealthKit/Reference/HealthKit_Constants/
https://developer.apple.com/library/ios/documentation/HealthKit/Reference/HealthKit_Constants/

86 CHAPTER 3: Accessing Health Information Using HealthKit

For the RunTracker application, you are going to request a limited set of information related
to a run—specifically the number of steps the user took and the distance the user traveled.
To make the data into something more abstract, you should group it into workouts, rather
than just displaying straight step counts. This also allows you to handle the user stopping to
catch his breath during a workout.

To use the requestAuthorizationToShareTypes() method, you need to specify the data
types that you will read or write and a completion handler for when the permissions view has
dismissed.

HealthKit uses the HKSampleType abstract class to represent “samples” of data, such as
a user’s heart rate at a given time, or the distance the user traveled between two times.
HKSampleType is an abstract class, so in order to use it, you need to specify a type for
the sample, such as a quantity (an amount of data) or a category (for data that is more
qualitative, such as workout type). In Listing 3-7, I have requested permission for step count,
distance traveled, and workouts. I have also implemented a simple completion handler,
which checked whether permission was granted or rejected.

Figure 3-26.  HealthKit permission view

87CHAPTER 3: Accessing Health Information Using HealthKit

Listing 3-7.  Requesting HealthKit Permission When Opening the App (WorkoutTableViewController.swift)

override func viewDidLoad() {
 super.viewDidLoad()
  
 tableView.dataSource = self
 tableView.delegate = self
  
 // Do any additional setup after loading the view, typically from a nib.
  
 if (HKHealthStore.isHealthDataAvailable()) {
  
 healthStore = HKHealthStore()
 
 �let stepType : HKQuantityType? = HKQuantityType.quantityTypeForIdentifier(

HKQuantityTypeIdentifierStepCount)
 �let distanceType : HKQuantityType? = HKQuantityType.

quantityTypeForIdentifier(HKQuantityTypeIdentifierDistanceWalkingRunning)
 let workoutType : HKWorkoutType = HKObjectType.workoutType()
  
 let readTypes : Set = [stepType!, distanceType!, workoutType]
 let writeTypes : Set = [stepType!, distanceType!, workoutType]
  
  
 �healthStore?.requestAuthorizationToShareTypes(writeTypes, readTypes: readTypes,

completion: { (success: Bool, error: NSError?) -> Void in
 //set
  
 if success {
 //success
  
 //get workouts
  

 } else {
 //Denied
 self.presentErrorMessage("HealthKit permissions denied")
  
 }
  
 })
 
  
 } else {
 //no health kit data available
 }
 }

There are a few unique bits of syntax here to point out. You will notice that the
HKQuantityType objects are optional. Apple adds this limitation to handle these types not
existing as a device. You can safely unwrap them using the ! operator here, because you
verified that HealthKit is available on the device. Similarly, you may be wondering why

88 CHAPTER 3: Accessing Health Information Using HealthKit

HKWorkoutType is not an HKQuantityType object; workout type is quantitative, so it is not
represented by a quantity of data, but rather a descriptor (e.g., running workout). Finally, the
requestAuthorizationToShareTypes() method takes Sets as input. Unlike an array, a Set
is not sorted; it is just a group of related values. You initialize a Set exactly as you would an
array, except you need to provide the Set type, so the compiler does not try to infer that you
are creating an array when it sees square brackets.

Retrieving Data from HealthKit
In order to populate the workout table, you need to retrieve workout data from HealthKit.
HealthKit’s primary class for retrieving data is HKQuery, which, as its name implies, performs
a query for a sample type that you specify. Users expect a data table to be up to date, so
for the workout table, you should query HealthKit for new data as soon as the app launches,
and whenever you add a new workout. This is a two-step process in HealthKit: you need
to create a query that fetches a given sample type and you need a query that observes
when there are new results for a given sample type. These are represented by the HKQuery
subclasses, HKSampleQuery and HKObserverQuery.

To begin, start by implementing the query to fetch workouts when the user opens the app.
In Listing 3-8, I perform this step by making a call to a function called getWorkouts() after
verifying that the app has access to HealthKit.

Listing 3-8.  Performing a Workout Query When Opening the App (WorkoutTableViewController.swift)

override func viewDidLoad() {
 super.viewDidLoad()
  
 ...
  
 // Do any additional setup after loading the view, typically from a nib.
  
 if (HKHealthStore.isHealthDataAvailable()) {
  
 healthStore = HKHealthStore()
 
 �let stepType : HKQuantityType? = HKQuantityType.quantityTypeForIdentifier(HKQuan

tityTypeIdentifierStepCount)
 �let distanceType : HKQuantityType? = HKQuantityType.

quantityTypeForIdentifier(HKQuantityTypeIdentifierDistanceWalkingRunning)
 let workoutType : HKWorkoutType = HKObjectType.workoutType()
  
 let readTypes : Set = [stepType!, distanceType!, workoutType]
 let writeTypes : Set = [stepType!, distanceType!, workoutType]
  
  
 �healthStore?.requestAuthorizationToShareTypes(writeTypes, readTypes: readTypes,

completion: { (success: Bool, error: NSError?) -> Void in
 //set
  

89CHAPTER 3: Accessing Health Information Using HealthKit

 if success {
 //success
  
 //get workouts
  
 self.getWorkouts()
  
 } else {
 //Denied
 self.presentErrorMessage("HealthKit permissions denied")
  
 }
  
 })
 
  
 } else {
 //no health kit data available
 }
 }

In the getWorkouts() function, you will want to create a HKSampleQuery, perform a command
to run it, and then save the results into an object the table view can use as a data source.
The constructor you will use to create an HKSampleQuery is init(sampleType: predicate:
limit: sortDescriptors: resultsHandler: HKSampleQuery). The constructor requires you
to provide a sample type, a limit on the number of results, and a block of code to perform
when the query has completed executing. Optionally, you can provide a predicate to further
filter the results and a sort descriptor to sort the results.

Start by tackling the parameters you already know. For the data type, you know you want to
fetch workouts.

let workoutType = HKObjectType.workoutType()

For the sort descriptor, users expect to see workouts in the order “most recent first,” so sort
by start date, in descending order.

let sortDescriptor = NSSortDescriptor(key: HKSampleSortIdentifierStartDate, ascending: false)

To make the app load faster, it is a good idea to set a limit on the number of items. For my
implementation of the application, I want to show only the workouts for the last month, with
a maximum of 30 items. The easiest way to build an HKQuery predicate is by using the
public method, predicateForSamplesWithStartDate(NSDate?, endDate: NSDate?, options:
HKQueryOptions), which specifies a start date, end date, and additional options.

The end date should be “now,” which you can retrieve by creating a new NSDate() object
with the default constructor.

let now = NSDate()

90 CHAPTER 3: Accessing Health Information Using HealthKit

For the start date, you need to perform a little extra logic to calculate the date “a month
ago.” Fortunately, the NSCalendar class provides a method that allows you to calculate an
offset date, dateByAddingUnit(NSCalendarUnit, value: Int, toDate: NSDate, options:
NSCalendarOptions). To calculate the date a month ago, specify Month for the unit and an
offset of -1, based on the current date.

let oneMonthAgo = calendar.dateByAddingUnit(NSCalendarUnit.Month, value: -1, toDate: now,
options: NSCalendarOptions(rawValue: 0))

You can now create your workout predicate with the two date objects.

let workoutPredicate = HKQuery.predicateForSamplesWithStartDate(oneMonthAgo, endDate: now,
options: HKQueryOptions.None)

The final parameter is a block that will execute when the query is complete. When the query
completes, you will want to check that the operation was successful, store the results
somewhere the table view can access them, and tell the table to reload with the new results.

First, you need to create an instance variable for the WorkoutTableViewController class to
store the results from the query. In Listing 3-9, I have modified the class definition to include
this array, called workouts. Since the results are HKWorkout objects, initialize the array as an
empty array containing this type.

Listing 3-9.  Adding workoutArray to the Table View Controller

class WorkoutTableViewController: UITableViewController {
 var healthStore: HKHealthStore?
  
 var workouts = [HKWorkout]()
  
 override func viewDidLoad() {
 ...
 }
}

To save the results, verify that the array contains HKWorkout objects and then save a copy, as
shown in Listing 3-10.

Listing 3-10.  Appending Results to workoutArray

if let workouts = results as? [HKWorkout] {
 self.workouts = workouts
}

Finally, to refresh the table view, call the reloadData() method and modify the previous code
to include this change, as shown in Listing 3-11.

91CHAPTER 3: Accessing Health Information Using HealthKit

Listing 3-11.  Updating the User Interface After Adding a Workout

if let workouts = results as? [HKWorkout] {
 self.workouts = workouts
  
 dispatch_async(dispatch_get_main_queue(), { () -> Void in
 self.tableView.reloadData()
 })
}

You need to perform this operation in a dispatch_aync() block because iOS only performs
user interface updates from the main thread of execution. Completion handlers execute on
background threads.

With all the parameters in place, you can now create your HKSampleQuery object, as shown in
Listing 3-12.

Listing 3-12.  Creating an HKSampleQuery Object to Query for Workouts

�let workoutQuery = HKSampleQuery(sampleType: workoutType, predicate: workoutPredicate,
limit: 30, sortDescriptors: [sortDescriptor]) { (query: HKSampleQuery, results: [HKSample]?,
error: NSError?) -> Void in
 print("results are here")
 if error == nil {
 if let workouts = results as? [HKWorkout] {
 self.workouts = workouts
  
 dispatch_async(dispatch_get_main_queue(), { () -> Void in
 self.tableView.reloadData()
 })
 }
 } else {
 self.presentErrorMessage("Error fetching workouts")
 }
}

Listing 3-13 provides the completed getWorkouts() method. You will notice that after
creating the query, you need to call executeQuery on the healthStore object to execute
it. All HKQueries need to be executed to run; think of them like blueprints to a house. The
blueprint tells you how to build the house, but you need to give the blueprint to a contractor
to actually build the house.

Listing 3-13.  Completed getWorkouts( ) Function (WorkoutTableViewController.swift)

func getWorkouts() {
  
 let workoutType = HKObjectType.workoutType()
  
 �let sortDescriptor = NSSortDescriptor(key: HKSampleSortIdentifierStartDate,

ascending: false)
  
 let now = NSDate()
  

92 CHAPTER 3: Accessing Health Information Using HealthKit

 let calendar = NSCalendar.currentCalendar()
  
 �let oneMonthAgo = calendar.dateByAddingUnit(NSCalendarUnit.Month, value: -1,

toDate: now, options: NSCalendarOptions(rawValue: 0))
  
 �let workoutPredicate = HKQuery.predicateForSamplesWithStartDate(oneMonthAgo,

endDate: now, options: HKQueryOptions.None)
  
 �let workoutQuery = HKSampleQuery(sampleType: workoutType, predicate: workoutPredicate,

limit: 30, sortDescriptors: [sortDescriptor]) { (query: HKSampleQuery,
results: [HKSample]?, error: NSError?) -> Void in

 print("results are here")
 if error == nil {
 if let workouts = results as? [HKWorkout] {
 self.workouts = workouts
  
 dispatch_async(dispatch_get_main_queue(), { () -> Void in
 self.tableView.reloadData()
 })
 }
 } else {
 self.presentErrorMessage("Error fetching workouts")
 }
 }
  
 healthStore?.executeQuery(workoutQuery)
 
}

Displaying Results in a Table View
Now that you have valid data to initialize the workouts table, you need to modify the
WorkoutTableViewController to use the workouts array as its data source. Start by specifying
that your class is the table view delegate and data source, as shown in Listing 3-14.

Listing 3-14.  Setting a View Controller as a Table View Delegate and Data Source

override func viewDidLoad() {
 super.viewDidLoad()
  
 tableView.dataSource = self
 tableView.delegate = self
}

Table views in iOS can display information from a two-dimensional array, consisting
of sections and rows. Your data source for this application is a one-dimensional array,
containing a list of workouts, in order. Specify 1 for the number of sections in the table view,
by overriding the numberOfSectionsInTableView() method, as shown in Listing 3-15.

93CHAPTER 3: Accessing Health Information Using HealthKit

Listing 3-15.  Specifying Number of Sections in a Table View

override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 return 1
}

For the number of rows, return the number of items in the array, as shown in Listing 3-16.

Listing 3-16.  Specifying Number of Rows in a Table View

override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 return workouts.count
}

To display the results, you need to override the func tableView(tableView: UITableView,
cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell method. This
takes an index path as its input (the section and row number for an item) and returns a
UITableViewCell object that has been initialized with values from the corresponding data
source item. To follow the wireframe for the application, you will want to display the workout
type, date, and duration.

Accessing the workout item is straightforward; you simply provide the row. Making the
values human-readable is a bit more complicated. Workout type is stored as an enum
(enumerated type). To convert this to a string, perform a switch() statement, operating
on the enum value that receives. Unfortunately, you need to create the strings yourself, as
shown in Listing 3-17.

Listing 3-17.  Converting Workout Types to Human-Readable Strings

switch(workout.workoutActivityType) {
case HKWorkoutActivityType.Running:
 workoutTypeString = "Running"
case HKWorkoutActivityType.Walking:
 workoutTypeString = "Walking"
case HKWorkoutActivityType.Elliptical:
 workoutTypeString = "Elliptical"
default:
 workoutTypeString = "Other workout"
}

To display the date, you need to create a date formatter. The NSDateFormatter class
manages different formats for date and time, based on common patterns or user-defined
ones. It also provides a convenient method to output a string based on the format you
specify. For my implementation, I chose to display a verbose date string and a short time
string, as shown in Listing 3-18.

94 CHAPTER 3: Accessing Health Information Using HealthKit

Listing 3-18.  Displaying Time as a Human-Readable String

let dateFormatter = NSDateFormatter()
dateFormatter.dateStyle = NSDateFormatterStyle.MediumStyle
dateFormatter.timeStyle = NSDateFormatterStyle.ShortStyle
  
cell.textLabel?.text = "\(workoutTypeString) / \(timeString)"
cell.detailTextLabel!.text = dateFormatter.stringFromDate(workout.startDate)

Similarly, for the workout duration, to display minutes and seconds, you need to convert
the output, an NSTimeInterval value in seconds, to a human-readable string. To perform
this operation, I created an extension method for the NSTimeInterval class called
toString(inputTime: NSTimeInterval). This method takes an NSTimeInterval as an input
and returns a string. For instance, you can call the method as follows:

let timeString = NSTimeInterval().toString(workout.duration)

Extensions allow you to add methods to existing classes without subclassing a parent class.
To define an extension, simply create an extension block, specifying the name of the class you
want to extend and the name of the method you want to create. To organize your project in a
logic fashion, I recommend creating a separate file to contain all of your extensions. For the
RunTracker project, I created a file named Extensions.swift (see Listing 3-19 for its definition).

Listing 3-19.  Using an Extension File to Create Time Strings (Extensions.swift)

import Foundation
 
extension NSTimeInterval {
 
 func toString(input: NSTimeInterval) -> (String) {
 let integerTime = Int(input)
 let hours = integerTime / 3600
 let mins = (integerTime / 60) % 60
 let secs = integerTime % 60
  
 var finalString = ""
  
 if hours > 0 {
 finalString += "\(hours) hrs, "
 }
  
 if mins > 0 {
 finalString += "\(mins) mins,"
 }
  
 if secs > 0 {
 finalString += "\(secs) secs"
 }
 return finalString
 }
  
}

95CHAPTER 3: Accessing Health Information Using HealthKit

With all the data now in a human-readable format, you can create your UITableViewCell.
Listing 3-20 provides the complete implementation of the cellForRowAtIndexPath() method.
Note that you need to use the same cell identifier as the one you specified in the storyboard
(in this case, WorkoutCell).

Listing 3-20.  Initializing Table View Cells (WorkoutTableViewController.swift)

override func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {
 �let cell = tableView.dequeueReusableCellWithIdentifier("WorkoutCell",

forIndexPath: indexPath)
  
 let workout = workouts[indexPath.row]
  
 let workoutTypeString : String
 let timeString = NSTimeInterval().toString(workout.duration)
 
 switch(workout.workoutActivityType) {
 case HKWorkoutActivityType.Running:
 workoutTypeString = "Running"
 case HKWorkoutActivityType.Walking:
 workoutTypeString = "Walking"
 case HKWorkoutActivityType.Elliptical:
 workoutTypeString = "Elliptical"
 default:
 workoutTypeString = "Other workout"
 }
  
 let dateFormatter = NSDateFormatter()
 dateFormatter.dateStyle = NSDateFormatterStyle.MediumStyle
 dateFormatter.timeStyle = NSDateFormatterStyle.ShortStyle
  
 cell.textLabel?.text = "\(workoutTypeString) / \(timeString)"
 cell.detailTextLabel!.text = dateFormatter.stringFromDate(workout.startDate)
  
 return cell
}

Fetching Background Updates
Now that the WorkoutTableViewController class can fetch workout samples on demand,
you should complete the implementation of the user interface by adding a HKObserverQuery
to refresh the table whenever you have saved a new workout. The beauty of HealthKit is that
observer queries apply to HealthKit as a whole, meaning you will get an update regardless of
whether your app posts an update or another app posts the update.

The process for implementing a HKObserverQuery is extremely similar to an HKSampleQuery:
specify the type to query, predicates to filter the query, and a completion handler to execute
when the query completes. The constructor you will use to build a HKObserverQuery is
init(sampleType:predicate:updateHandler:).

96 CHAPTER 3: Accessing Health Information Using HealthKit

You will notice that this constructor does not provide a results array when the query
completes executing. To remedy this, in your completion handler, execute a sample query to
get the latest results. Since you already defined one via the getWorkouts() method, call it in
your completion handler, as shown in Listing 3-21.

Listing 3-21.  Performing a HealthKit Background Query (WorkoutTableViewController.swift)

let backgroundQuery = HKObserverQuery(sampleType: workoutType, predicate: nil,
updateHandler: { (query: HKObserverQuery, handler: HKObserverQueryCompletionHandler,
error: NSError?) -> Void in
  
 if error == nil {
 self.getWorkouts()
 }
  
})

The final question is, “where should I put this query?” You should initialize an observer query
in the class that manages your primary data source. For the RunTracker application, that
is WorkoutTableViewController. Place the observer query and the executeQuery() call in
your viewDidLoad() method, after verifying that the application has HealthKit permission, as
shown in Listing 3-22.

Listing 3-22.  Completed viewDidLoad method, Including Observer Query (WorkoutTableViewController.swift)

override func viewDidLoad() {
 super.viewDidLoad()
  
 tableView.dataSource = self
 tableView.delegate = self
  
 // Do any additional setup after loading the view, typically from a nib.
  
 if (HKHealthStore.isHealthDataAvailable()) {
  
 healthStore = HKHealthStore()
 
 �let stepType : HKQuantityType? = HKQuantityType.quantityTypeForIdentifier(HKQuantity

TypeIdentifierStepCount)
 �let distanceType : HKQuantityType? = HKQuantityType.

quantityTypeForIdentifier(HKQuantityTypeIdentifierDistanceWalkingRunning)
 let workoutType : HKWorkoutType = HKObjectType.workoutType()
  
 let readTypes : Set = [stepType!, distanceType!, workoutType]
 let writeTypes : Set = [stepType!, distanceType!, workoutType]
  
 �healthStore?.requestAuthorizationToShareTypes(writeTypes, readTypes: readTypes,

completion: { (success: Bool, error: NSError?) -> Void in
 //set
  

97CHAPTER 3: Accessing Health Information Using HealthKit

 if success {
 //success
  
 //get workouts
  
 �let backgroundQuery = HKObserverQuery(sampleType: workoutType,

predicate: nil, updateHandler: { (query: HKObserverQuery,
handler: HKObserverQueryCompletionHandler, error: NSError?) -> Void in

  
 if error == nil {
 self.getWorkouts()
 }
  
 })
  
 self.healthStore?.executeQuery(backgroundQuery)
  
 self.getWorkouts()
  
 } else {
 //Denied
 self.presentErrorMessage("HealthKit permissions denied")
  
 }
  
 })
 
  
 } else {
 //no health kit data available
 }
}

You will notice two calls to getWorkout() in Listing 3-22. Both are necessary, as one
executes when the view is loaded from memory and the other executes whenever the
observer query has detected that you have saved a new workout to HealthKit.

Summary
In this chapter, you learned how to use HealthKit to access health information, display a
user’s past workouts in the RunTracker app, and lay the foundation to create new ones.
During this process, you learned about the special steps necessary to set up HealthKit
compatibility in your application, how HealthKit represents data, and how HealthKit uses
queries to access data. In the next chapter, we will complete the application by accessing
step count form the pedometer using Core Motion, converting it to workout and quantity
units that HealthKit can digest, and saving it to HealthKit.

99

Chapter 4
Using Core Motion to Save
Motion Data

Ahmed Bakir
Introduction
In the last chapter, you learned how to set up an application for HealthKit, Apple’s shared
repository for health data, and query for specific health data types. In this chapter, you will
learn how to use Core Motion to access live motion data from a user’s device, and how to
save it back to HealthKit, where it will be accessible to all applications.

In this chapter, you continue to expand the RunTracker app that you started in Chapter 3.
In this chapter, we cover the following concepts:

	How to access hardware using Core Motion

	How to save information collected over time using Core Motion

	How to save information to HealthKit

	How to receive real-time activity updates from Core Motion and HealthKit

As with the other projects in this book, you can find the complete source code for the
RunTracker project in the Ch4 folder of the Source Code bundle available on this book’s web
page at Apress.com/9781484211953.

http://dx.doi.org/10.1007/978-1-4842-1194-6_3

100 CHAPTER 4: Using Core Motion to Save Motion Data

Using Core Motion to Access Motion Hardware
In Chapter 3, we set up the workout table view and HealthKit permissions for RunTracker;
now it is time to move on to collecting data that you can save back to HealthKit. Saving
data to HealthKit works much like retrieving it: you specify a data type, a quantity of data
collected, and a time range. For the RunTracker application, you will use the Core Motion
framework to access the pedometer on the user’s device. From the pedometer, you can
detect the number of steps the user has traveled and even the type of activity the user is
engaged in (walking, running, bicycling). You will take advantage of both of these in creating
the interface for the RunTracker application.

Core Motion has been iOS’s motion-sensing framework since iOS 4. Developers have been
using it for years to access the built-in accelerator and gyroscope (enabling thousands of
racing games ever since). However, until the M-series of motion coprocessors, there was
never an easy way to access step data. You could use the accelerator to detect when the
device experienced a “bump” in movement, but you had to develop your own code to define
a “step.” Similarly, you could use a GPS to determine how far a user moved, but doing so
would drain the battery quickly.

Although iOS 7 added an interface to the M-series motion coprocessor to the Core Motion
framework, iOS 8 fully unlocked it, allowing you to retrieve data directly as steps and activity
types. Core Motion takes care of all the work to define what a step is, what it corresponds
to in terms of distance, and what the user was doing when the step was registered (for
example, running or walking).

Swift streamlines the process of including common frameworks into your project, so you
do not need to add Core Motion manually to our project to begin using it. However, you
will need to include it in the classes that need to access its application programming
interfaces (APIs). For the RunTracker application, the CreateWorkoutViewController class
is responsible for pulling fitness data from Core Motion and displaying statistics during
a workout. Begin by modifying the class definition to include the framework as shown in
Listing 4-1.

Listing 4-1.  Adding Core Motion to the CreateWorkoutViewController Class

import UIKit
import CoreMotion
 
class CreateWorkoutViewController: UIViewController {
..
}

Requesting User Permission for Motion Activity
Although not explicitly defined as a device capability in your project settings, you implement
Core Motion using the same design pattern. In order to use Core Motion, you need to

	Verify that Core Motion is available on a user’s device

	Ask the user for permission to access Core Motion

http://dx.doi.org/10.1007/978-1-4842-1194-6_3

101CHAPTER 4: Using Core Motion to Save Motion Data

	Verify that the desired hardware is available on a user’s device

	Ask the user for permission to access the hardware

The Core Motion class that manages motion events and the motion activity permission is
CMMotionActivityManager. Strictly speaking, a motion activity is defined as an event that
corresponds to the type of movement the user is currently engaged in, whether that is
walking, running, or even driving. You query for motion activity status by calling the public
method isActivityAvailable(). This method returns a bool value, indicating whether the
user has given your app permission to access motion activity.

The first time you ask the user for Core Motion permission, he or she will see an alert view
managed by iOS, as shown in Figure 4-1. Privacy permissions are keyed by application
identifier, meaning subsequent launches (or reinstalls) of your application will not prompt the
user to select the permission level again. (Users can change their permission level at any
time by selecting the Privacy option in the iOS Settings application.)

Figure 4-1.  Core Motion permission alert

102 CHAPTER 4: Using Core Motion to Save Motion Data

As with HealthKit, you need to make sure the user’s device has the hardware you want to
access. Additionally, you should check that the device is capable of producing the data you
want to log. The CMPedometer class provides access to the pedometer on a user’s device. To
check if step data is available, call the isStepCountingAvailable() public method.

In the workout screen, you had to prompt the user for HealthKit permission as soon as
the screen loaded, in order to load the table with valid data. In the create screen, you
should initiate the request for Core Motion permission when the user attempts to start a
workout. This is initiated by pressing the Start Workout button, which calls toggleWorkout().
Depending on whether or not a workout is in progress, the method will call startWorkout()
to begin accessing the pedometer or stopWorkout() to save progress. The flag for
determining whether a workout is in progress is stored as a Boolean instance variable, called
workoutActive. Listing 4-2 describes the toggleWorkout() method for the create workout
view controller (CreateWorkoutViewController.swift) and adds the workoutActive flag as
part of the class definition.

Listing 4-2.  Button Handler for Starting or Stopping a Workout (CreateWorkoutViewController.swift)

import UIKit
import CoreMotion
 
class CreateWorkoutViewController: UIViewController {
 var workoutActive = false
 . . .
 @IBAction func toggleWorkout(sender: UIButton) {
  
 if (workoutActive) {
  
 self.stopWorkout()
  
 } else {
  
 self.startWorkout()
  
 }
 workoutActive = !workoutActive
  
 }
}

In Listing 4-2 I chose to wrap the logic of starting a workout in the startWorkout() method.
This is where you will place your permission handling code. When you have established
that your application has permission to use Core Motion, change the color and state of the
Start Workout button to indicate that you have started the workout. Listing 4-3 provides the
startWorkout() method.

103CHAPTER 4: Using Core Motion to Save Motion Data

Listing 4-3.  Starting a Workout (CreateWorkoutViewController.swift)

func startWorkout() {
 �self.timer = NSTimer.scheduledTimerWithTimeInterval(1.0, target: self, selector:

"updateTime", userInfo: nil, repeats: true)
  
 if initialStartDate == nil {
 initialStartDate = NSDate()
 }
 startDate = NSDate()
  
 //start counting steps
 toggleButton.backgroundColor = UIColor.redColor()
 toggleButton.setTitle("Pause workout", forState: UIControlState.Normal)
  
 �if (CMMotionActivityManager.isActivityAvailable() && CMPedometer.

isStepCountingAvailable()) {
 //success
 
 }
}

Querying for Step Count
By this point, it should be no surprise that HealthKit and Core Motion share many
design similarities. Just as you had to instantiate the HKHealthStore object to
retrieve HealthKit data, you need to instantiate a CMPedometer object to access the
pedometer on a user’s device. As shown in Listing 4-4, add a CMPedometer object to the
CreateWorkoutViewController class and initialize it when you have established that the
device has permission to use Core Motion.

Listing 4-4.  Initialize CMPedometer

func startWorkout() {
  
 //start counting steps
 toggleButton.backgroundColor = UIColor.redColor()
 toggleButton.setTitle("Pause workout", forState: UIControlState.Normal)
  
 �if (CMMotionActivityManager.isActivityAvailable() && CMPedometer.

isStepCountingAvailable()) {
 pedometer = CMPedometer()
 }
}

Core Motion also implements concepts of queries to retrieve a set of data between two
times and an observer query to retrieve updates to a data set. The CMPedometer method
for retrieving steps between two times is queryPedometerDataFromDate(NSDate, toDate:
NSDate, withHandler: CMPedometerHandler). This method takes two NSDate objects
as parameters and executes a block when it has completed executing, which returns a
CMPedometerData object and error. The CMPedometer object contains values including number

104 CHAPTER 4: Using Core Motion to Save Motion Data

of steps and distance traveled, calculated based on hardware events and metrics that iOS
has observed about a user, including his stride length. As with earlier HealthKit queries, you
should use the time the user started his workout as the start time and the time he ended his
workout as the “end time.” This also specifies that you will need to perform the pedometer
query in the stopWorkout() method. First, add an NSDate object to your class indicating the
start time, and initialize it in the startWorkout() method, as shown in Listing 4-5.

Listing 4-5.  Tracking Start Time (CreateWorkoutViewController.swift)

class CreateWorkoutViewController: UIViewController {
 
 ..
 var startDate : NSDate?
 
 ...
 
 func startWorkout() {
 startDate = NSDate()
 ...
 }
 
}

Next, you need to implement your query logic in the stopWorkout() method. In this method,
change the state of the Workout button back to start and attempt to query for step data
after establishing that the pedometer is active (the object should be initialized). You will save
the number of steps to HealthKit, but for now, display it in the progress label. Listing 4-6
provides the implementation for the stopWorkout() function.

Listing 4-6.  Querying for Total Steps When Ending a Workout (CreateWorkoutViewController.swift)

func stopWorkout() {
 //stop the workout
  
 self.timer?.invalidate()
  
 //pause timer
 toggleButton.backgroundColor = UIColor.blueColor()
 toggleButton.setTitle("Continue workout", forState: UIControlState.Normal)
  
 //save steps
 if (pedometer != nil && startDate != nil) {
 let now = NSDate()
  
 pedometer?.stopPedometerUpdates()
  
 } else {
 self.presentErrorMessage("Could not access pedometer")
 }
 })
  

105CHAPTER 4: Using Core Motion to Save Motion Data

 //increase duration
 duration += now.timeIntervalSinceDate(startDate!)
 }
}

To further improve the user experience, you should use an NSTimer to update the time label
every second after the workout has started; this gives users the “clock” functionality that
they expect from other workout devices, such as a watch. In Listing 4-7, I have added an
NSTimer to the CreateWorkoutViewController class and initialized it in the startWorkout()
method. I specify that the timer should repeat every second and call the updateTime()
method when it fires.

Listing 4-7.  Adding an NSTimer to the CreateWorkoutViewController Class

class CreateWorkoutViewController: UIViewController {
 
 ..
 var timer: NSTimer?
 ...
 
 func startWorkout() {
 �self.timer = NSTimer.scheduledTimerWithTimeInterval(1.0, target: self,

selector: "updateTime", userInfo: nil, repeats: true)
 //start counting steps
 toggleButton.backgroundColor = UIColor.redColor()
 toggleButton.setTitle("Pause workout", forState: UIControlState.Normal)
  
 �if (CMMotionActivityManager.isActivityAvailable() && CMPedometer.

isStepCountingAvailable()) {
 pedometer = CMPedometer()
 ...
 }
}

The updateTime() method creates a string based on the number of seconds that have
passed since the timer started and updates the timeLabel property. Listing 4-8 provides the
updateTime() method. Once again, you can use the toString() method created earlier to
make a human-readable string based on a NSTimeInterval value.

Listing 4-8.  Enabling Updates to the Workout Time Label (CreateWorkoutViewController.swift)

func updateTime() {
  
 let now = NSDate()
  
 if (startDate != nil) {
 let totalTime : NSTimeInterval = duration + now.timeIntervalSinceDate(startDate!)
  
 dispatch_async(dispatch_get_main_queue(), { () -> Void in
 self.timeLabel!.text = NSTimeInterval().toString(totalTime)
 })
 }
}

106 CHAPTER 4: Using Core Motion to Save Motion Data

Finally, to stop the timer, call the invalidate() method on the timer instance variable, as
shown in Listing 4-9. One of the design decisions that drives a repeating NSTimer is that in
order to stop it, you must maintain a pointer to the object and explicitly call the invalidate()
method to stop it from firing again. Maintaining pointers is tiresome, but it allows you to
control multiple repeating timers.

Listing 4-9.  Stopping the Workout Timer (CreateWorkoutViewController.swift)

func stopWorkout() {
 //stop the workout
  
 self.timer?.invalidate()
 //pause timer
 toggleButton.backgroundColor = UIColor.blueColor()
 toggleButton.setTitle("Continue workout", forState: UIControlState.Normal)
  
 //save steps
 if (pedometer != nil && startDate != nil) {
 ...
 }
}

Detecting Live Updates to Step Count
The startPedometerUpdatesFromDate(NSDate, withHandler: CMPedometerHandler) method
in the CMPedometer class allows you to query for real-time updates to the pedometer. This is
not ideal for tracking the grand total of steps collected during a workout, as iOS controls the
update frequency and it is not guaranteed to be timely. However, it is useful for the create
workout screen, as you can use it to update the user interface.

Using startPedometerUpdatesFromDate() is much simpler than querying for a set of
pedometer data; you simply need to provide a handler method and start date. Since the
updates will be continuous while a workout is active, it makes sense to start the query when
the user has started the workout. The wireframe for the RunTracker application specifies that
a user can pause and resume a workout before saving it, so add another NSDate object to
the class to specify the initial start time of the workout, as shown in Listing 4-10.

Listing 4-10.  Modified CreateWorkoutViewController Class, Including an Initial Start Date Property

class CreateWorkoutViewController: UIViewController {
 
 ...
 @IBOutlet weak var timeLabel: UILabel!
  
 ...
 
 var startDate : NSDate?
 var initialStartDate : NSDate?
  

107CHAPTER 4: Using Core Motion to Save Motion Data

 var timer: NSTimer?
 
 @IBAction func toggleWorkout(sender: UIButton) {
 ...
 }
}

Having established this second NSDate object, you can now query for sample data using the
initial start time at the end of the workout, as shown in Listing 4-11. Remember to update
the total workout time and to check for any errors while performing your query.

Listing 4-11.  Querying for HealthKit data When Ending a Workout (CreateWorkoutViewController.swift)

func stopWorkout() {
 //stop the workout
  
 self.timer?.invalidate()
  
 //pause timer
 toggleButton.backgroundColor = UIColor.blueColor()
 toggleButton.setTitle("Continue workout", forState: UIControlState.Normal)
  
 //save steps
 if (pedometer != nil && startDate != nil) {
 let now = NSDate()
  
 pedometer?.stopPedometerUpdates()
  
 �pedometer?.queryPedometerDataFromDate(startDate!, toDate: now, withHandler: { (data:

CMPedometerData?, error: NSError?) -> Void in
 if (error == nil) {
  
 �if let activityType = HKQuantityType.quantityTypeForIdentifier(

HKQuantityTypeIdentifierStepCount) {
  
 let numberOfSteps = data?.numberOfSteps.doubleValue
  
 self.progressLabel?.steps = "\(numberOfSteps)"
  
 }
  
 } else {
 self.presentErrorMessage("Could not access pedometer")
 }
 })
  
 //increase duration
 duration += now.timeIntervalSinceDate(startDate!)
 }
}

108 CHAPTER 4: Using Core Motion to Save Motion Data

Finally, you need to do some housekeeping when the workout has stopped. To prevent the
pedometer from firing updates while the workout is paused or after you have exited the
create screen, call the stopPedometerUpdates() method. Listing 4-12 describes the modified
stopWorkout() method, which includes this call.

Listing 4-12.  Stopping Pedometer Updates When Ending a Workout (CreateWorkoutViewController.swift)

func stopWorkout() {
 //stop the workout
  
 self.timer?.invalidate()
  
 ...
  
 //save steps
 if (pedometer != nil && startDate != nil) {
 let now = NSDate()
  
 pedometer?.stopPedometerUpdates()
 ...
 //increase duration
 duration += now.timeIntervalSinceDate(startDate!)
 }
}

Detecting Activity Type
Another advantage of Core Motion is that you can detect the type of activity the user is
engaged in, such as running, walking, or bicycling. This feature will be extremely useful in
the RunTracker application, as you need to tag workouts with a type. The class for accessing
activity status in Core Motion is CMActivityManager. To receive activity updates, call the st
artActivityUpdatesToQueue(NSOperationQueue, withHandler: CMMotionActivityHandler)
method, specifying an operation queue (the main queue) and a completion handler that
should execute when an update is received. In Listing 4-13, I have added an activity
manager to the startWorkout() method.

Listing 4-13.  Beginning Polling for Motion Activities When Starting a Workout (CreateWorkoutViewController.swift)

func startWorkout() {
 �self.timer = NSTimer.scheduledTimerWithTimeInterval(1.0, target: self,

selector: "updateTime", userInfo: nil, repeats: true)
  
 if initialStartDate == nil {
 initialStartDate = NSDate()
 }
 startDate = NSDate()
  
 //start counting steps
 toggleButton.backgroundColor = UIColor.redColor()
 toggleButton.setTitle("Pause workout", forState: UIControlState.Normal)
  

109CHAPTER 4: Using Core Motion to Save Motion Data

 �if (CMMotionActivityManager.isActivityAvailable() && CMPedometer.
isStepCountingAvailable()) {

 pedometer = CMPedometer()
  
 //show total steps
  
 ...
 let activityManager = CMMotionActivityManager()
  
 �activityManager.startActivityUpdatesToQueue(NSOperationQueue.mainQueue(),

withHandler: { (activity: CMMotionActivity?) -> Void in
  
 if activity?.stationary == false {
 self.lastActivity = activity
 }
  
 var activityString = "Other activity type"
  
 if (activity?.stationary == true) {
 activityString = "Stationary"
 }
  
 if (activity?.walking == true) {
 activityString = "Walking"
 }
  
 if (activity?.running == true) {
 activityString = "Running"
 }
  
 if (activity?.cycling == true) {
 activityString = "Cycling"
 }
  
 dispatch_async(dispatch_get_main_queue(), { () -> Void in
 self.typeLabel.text = activityString
 })
  
 })
  
 } else {
 presentErrorMessage("Pedometer not available")
 }
 
}

Core Motion does not reveal activity types as human-readable strings, just like HealthKit.
As a further complication, Core Motion does not provide an enum for storing the activity type.
To check activity type, you must iterate through properties representing common values.

110 CHAPTER 4: Using Core Motion to Save Motion Data

To create a workout in HealthKit, you must specify a workout type. Earlier, I saved the last
known workout type to an instance variable named lastActivity, excluding stationary
activities (users expect to see active workout types like running or walking). In Listing 4-14,
I have modified the class definition once again to include the lastActivity property.

Listing 4-14.  Adding a Property to Save the User’s Last Motion Activity (CreateWorkoutViewController.swift)

class CreateWorkoutViewController: UIViewController {
 
 ...
  
 var timer: NSTimer?
  
 var lastActivity : CMMotionActivity?
  
 var pedometer : CMPedometer?
 ...
 
 @IBAction func toggleWorkout(sender: UIButton) {
 ...
 }
 
}

Saving Data to HealthKit
To complete the round-trip process for the fitness data you collected, you need to save it
back into HealthKit. In the RunTracker application, you will save the steps you collected to
HealthKit and you will compile these segments together as a single workout in HealthKit. To
begin, you need to give the create workout screen access to HealthKit. As with the workout
table, add an HKHealthStore property to the CreateWorkoutViewController class and include
the HealthKit framework, as shown in Listing 4-15.

Listing 4-15.  Adding an HKHealthStore to the CreateWorkoutViewController Class (CreateWorkoutViewController.swift)

import UIKit
import CoreMotion
import HealthKit
 
class CreateWorkoutViewController: UIViewController {
 
 ...
 var healthStore: HKHealthStore?
 var startDate : NSDate?
 var initialStartDate : NSDate?
 ...
  
 @IBAction func toggleWorkout(sender: UIButton) {
 ...
 }
  
}

111CHAPTER 4: Using Core Motion to Save Motion Data

While it would be easy to create another HKHealthStore, it is wiser to share the one you
created for the workout table. You can take advantage of segues to share the health store
from the workout table with the create workout view. In the WorkoutTableViewController
class, implement the prepareForSegue() method to detect when a segue has fired. As
shown in Listing 4-16, after determining that it is a “CreateWorkoutSegue,” extract the
destination view controller of the segue. You can set the healthManager property on this view
controller to the health store from the workout table.

Listing 4-16.  Sharing a Health Store Between Classes (WorkoutTableViewController.swift)

override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {

 if (segue.identifier == "CreateWorkoutSegue") {
  
 if let navVC = segue.destinationViewController as? UINavigationController {
  
 if let createVC = navVC.viewControllers[0] as? CreateWorkoutViewController {
 createVC.healthStore = self.healthStore
 }
  
 }
  
 }
}

Now that you have initialized your healthStore property, you can perform save operations to
save data. Remember that in the stopWorkout() method, after executing the step query, you
displayed it in a label. To make the RunTracker application fully functional, you need to save
it to HealthKit. The method for saving a piece of data in a health store is:

saveObject(HKObject, withCompletion: { (Bool, NSError?) -> Void in }). This method
takes an HKObject as input and executes a completion handler when it has finished
attempting to save the object.

For the input parameter, you need to convert step count to an HKQuantitySample. As shown
in Listing 4-17, follow the same process you used earlier to look up the unit and type object
for steps. Once you have these two parameters, you can create a new HKQuantitySample.
For the quantity value, convert your step count from the pedometer to a double value.

Listing 4-17.  Creating an HKQuantitySample Object When Ending a Workout (CreateWorkoutViewController.swift)

func stopWorkout() {
 //stop the workout
  
 self.timer?.invalidate()
  
 //pause timer
 toggleButton.backgroundColor = UIColor.blueColor()
 toggleButton.setTitle("Continue workout", forState: UIControlState.Normal)
  

112 CHAPTER 4: Using Core Motion to Save Motion Data

 //save steps
 if (pedometer != nil && startDate != nil) {
 let now = NSDate()
  
 pedometer?.stopPedometerUpdates()
  
 �pedometer?.queryPedometerDataFromDate(startDate!, toDate: now,

withHandler: { (data: CMPedometerData?, error: NSError?) -> Void in
 if (error == nil) {
  
 �if let activityType = HKQuantityType.quantityTypeForIdentifier(HKQuantity

TypeIdentifierStepCount) {
  
 let numberOfSteps = data?.numberOfSteps.doubleValue
  
 let countUnit = HKUnit(fromString: "count")

 let stepQuantity = HKQuantity(unit: countUnit, doubleValue: numberOfSteps!)
  
 �let activitySample = HKQuantitySample(type: activityType,

quantity: stepQuantity, startDate: self.startDate!, endDate: now)
  
 //increase duration
 duration += now.timeIntervalSinceDate(startDate!)
 }
}

For the save operation, you need to define a completion handler. Since the RunTracker
application aggregates segments into a single workout, append the newly created
HKQuantitySample into an array as shown in Listing 4-18.

Listing 4-18.  Saving HKQuantitySample Objects When Ending a Workout (CreateWorkoutViewController.swift)

func stopWorkout() {
 //stop the workout
  
 self.timer?.invalidate()
  
 //pause timer
 toggleButton.backgroundColor = UIColor.blueColor()
 toggleButton.setTitle("Continue workout", forState: UIControlState.Normal)
  
 //save steps
 if (pedometer != nil && startDate != nil) {
 let now = NSDate()
  
 pedometer?.stopPedometerUpdates()
  

113CHAPTER 4: Using Core Motion to Save Motion Data

 �pedometer?.queryPedometerDataFromDate(startDate!, toDate: now, withHandler: {
(data: CMPedometerData?, error: NSError?) -> Void in

 if (error == nil) {
  
 �if let activityType = HKQuantityType.quantityTypeForIdentifier(HKQuantity

TypeIdentifierStepCount) {
  
 let numberOfSteps = data?.numberOfSteps.doubleValue
  
 let countUnit = HKUnit(fromString: "count")
  
 let stepQuantity = HKQuantity(unit: countUnit, doubleValue: numberOfSteps!)
  
 �let activitySample = HKQuantitySample(type: activityType, quantity:

stepQuantity, startDate: self.startDate!, endDate: now)
  
 �self.healthStore?.saveObject(activitySample, withCompletion: {

(completed : Bool, error : NSError?) -> Void in
 if (error == nil) {
  
 //add to sample array
 self.sampleArray.append(activitySample)
  
 } else {
 self.presentErrorMessage("Error saving steps")
 }
 })
  
 }
  
 } else {
 self.presentErrorMessage("Could not access pedometer")
 }
 })
  
 //increase duration
 duration += now.timeIntervalSinceDate(startDate!)
 }
}

In Listing 4-19, I have modified the class definition to include the sample array.

Listing 4-19.  Adding an HKSample Sample Array to the CreateWorkoutViewController Class

class CreateWorkoutViewController: UIViewController {
 
 ...
 
 var sampleArray = [HKSample]()
 ...
 
 @IBAction func toggleWorkout(sender: UIButton) {
 ...
 }
   
}

114 CHAPTER 4: Using Core Motion to Save Motion Data

Creating a Workout Object in HealthKitAs mentioned in the design for the RunTracker
application, the user presses the Done button to complete his workout and saves it to
HealthKit. In the handler for the Done button, done(), you should create a new HKWorkout
object and save it to HealthKit, similar to the way you saved HKQuantitySamples every time
the user paused his workout.

To create a new workout, use the constructor HKWorkout(activityType:
HKWorkoutActivityType, startDate: NSDate, endDate: NSDate). For the activity type,
convert the last valid CMMotionActivity, stored in the lastActivity property to an
HKWorkoutType. As shown in Listing 4-20, I have added this logic to the done() method by
specifying an HKWorkoutType based on the activity’s type property.

Listing 4-20.  Converting Activity Type to Workout Type

@IBAction func done(sender: UIBarButtonItem) {
  
 //create new workout object
 let now = NSDate()
  
 if workoutActive {
 self.stopWorkout()
 }
  
 var workoutType = HKWorkoutActivityType.Walking
  
 if lastActivity != nil {
 if (lastActivity?.walking == true) {
 workoutType = HKWorkoutActivityType.Walking
 }
 if (lastActivity?.running == true) {
 workoutType = HKWorkoutActivityType.Running
 }
  
 if (lastActivity?.cycling == true) {
 workoutType = HKWorkoutActivityType.Cycling
 }
 }
  
}

The rest of the logic for saving a workout is relatively straightforward. As shown in
Listing 4-21, you can now create an HKWorkout and save it using the health store’s
saveObject() method. For the start time, use the initial start time when the user started the
first segment of his workout.

Listing 4-21.  Saving HKWorkout

@IBAction func done(sender: UIBarButtonItem) {
  
 //create new workout object
 let now = NSDate()
  

115CHAPTER 4: Using Core Motion to Save Motion Data

 if workoutActive {
 self.stopWorkout()
 }
  
 var workoutType = HKWorkoutActivityType.Walking
  
 ..
  
 if initialStartDate != nil {
  
 �let workout = HKWorkout(activityType: workoutType, startDate: initialStartDate!,

endDate: now)
  
 �self.healthStore?.saveObject(workout, withCompletion: { (completed: Bool,

error: NSError?) -> Void in
 //workout
  
..
 
 }
  
 }

To associate a set of samples to a workout, use the method:

addSamples(_:toWorkout:completion:)

which requires a set of samples, a workout, and a completion handler. As shown in
Listing 4-22, use the sampleArray and newly created workout as your input, and exit the
view controller when the operation has completed successfully.

Listing 4-22.  Associating Samples to a Workout

@IBAction func done(sender: UIBarButtonItem) {
  
 ..
 
 if initialStartDate != nil {
  
 �let workout = HKWorkout(activityType: workoutType, startDate: initialStartDate!,

endDate: now)
  
 �self.healthStore?.saveObject(workout, withCompletion: { (completed: Bool,

error: NSError?) -> Void in
 //workout
  
 if error == nil {
  
 �self.healthStore?.addSamples(self.sampleArray, toWorkout: workout,

completion: { (completed : Bool, error: NSError?) -> Void in

116 CHAPTER 4: Using Core Motion to Save Motion Data

 //
 if error == nil {
 print("steps saved successfully!")
  
 self.dismissViewControllerAnimated(true, completion: nil)
  
 } else {
 self.presentErrorMessage("Error adding steps")
 }
 })
  
 } else {
 self.presentErrorMessage("Error saving workout")
 }
 })
 
 //add samples
  
 //save
 
 }
  
}

Having implemented all of the changes in this chapter, the RunTracker app should now be
complete and look like the screenshot in Figure 4-2.

Figure 4-2.  Completed RunTracker application

117CHAPTER 4: Using Core Motion to Save Motion Data

Summary
In this chapter, you learned how to use HealthKit and Core Motion to track a user’s fitness
activity by building the RunTracker activity, which displayed a user’s past workouts, and
allowed the user to create new ones. Through the process of building RunTracker, you
learned about the similarities between the two frameworks, including how they require user
permission and hardware checks before you can start using them. You also learned about
queries, which allow you to poll for data on demand and receive updates when a data
source has changed. Finally, you converted data from the pedometer into a data type that
HealthKit could use and saved it back to HealthKit.

119

Chapter 5
Integrating Third-Party
Fitness Trackers and Data
Using the Fitbit API

Gheorghe Chesler
One would be remiss to discuss health sensors without mentioning the most popular
connected motion tracker on the market, the Fitbit. Through its web-based API (application
programming interface), Fitbit allows developers to access activity logged from its hardware,
as well as related health information from Fitbit’s ecosystem, including meals and weight.
This chapter will teach developers how to connect to the API from within their apps, as well
as how to retrieve information from it and log new activities.

Introduction to the Fitbit API
The Fitbit devices are health metrics trackers that record detailed minute-by-minute steps,
distance, calorie burn data, and sleep records. The devices are popular because they are
very light and cover the basic needs for health tracking.

The step data, calorie counts, sleep records, and heart rate (if measured by your tracker) will
be stored for 30 days. This data will all upload to your account as soon as you are able to
sync and will then be reflected on your dashboard.

You can sync your tracker through any computer, as long as it has the Fitbit software
installed and a base station (for Ultra tracker) or a wireless sync dongle (for all other trackers)
plugged into the computer. There is, of course, a free iPhone app available that makes it
possible to sync the data when you are on the road. You can only have one tracker paired to
one Fitbit.com account.

120 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

The communication between the Fitbit tracker and the sync device is using a proprietary
protocol that syncs the data with your online Fitbit account. Fitbit provides an API that
allows you to access your stored health data from the app you develop in Swift.

The Fitbit API is a RESTful API that provides access to Fitbit data such as tracker collections,
profile, and statistical data. This API is under continuous development and new features will
be made available on an ongoing basis. The Fitbit API uses OAuth for authentication. The
documentation for the Fitbit API can be found at https://dev.fitbit.com/docs.

The Fitbit API allows you to interact with your account data found on the Fitbit server. It
is important to realize that you will not be able to interact with and get the data from your
device directly. If you do not have an Internet connection, the Fitbit device will store data in
the Fitbit application, but that data will not reach the Fitbit server until you get back online,
so you will only be able to get the latest version of your data when you have a stable Internet
connection.

Recently Fitbit consolidated the API responses from XML to JSON (JavaScript Object
Notation). In this chapter we will use requests that return data in JSON format. The API does
not currently enforce SSL (Secure Sockets Layer); it is, however, recommended to use SSL
for all communications, or at least for the OAuth handshake.

The RESTful API
A RESTful API is built following a REpresentational State Transfer architecture that defines
best-practice rules for building scalable web services. Avoiding the complexity of SOAP
(Simple Object Access Protocol) and WSDL (Web Services Description Language)-based
APIs, a RESTful API usually relies on the HTTP verbs GET, PUT, POST, and DELETE to
retrieve and send data to the remote servers. This data can be in a variety of formats, where
JSON is the most popular.

GET is used to read data from a service, either as a set or as a unique record. Take, for
example, the following request:

GET https://api.genericapi.com/v1/user

This will retrieve the user record with the id=123. It is up to the API to decide in what format
to deliver the data, but in our case the data will be returned as JSON, something like:

{ "id" : "123", "login": "jsmith", "firstName" : "Jim", "lastName" : "Smith"}

Usually the GET request can be followed by a URL (uniform resource locator)-encoded string
of parameters, as key-value pairs, as in the following example:

GET https://api.genericapi.com/v1/item?color=green&size=large

We see this all the time in URLs, so there is nothing unusual about it. Another method is to
encode the params as part of the URL:

GET https://api.genericapi.com/v1/item/color/green/size/large

https://dev.fitbit.com/docs
https://api.genericapi.com/v1/user
https://api.genericapi.com/v1/item?color=green&size=large
https://api.genericapi.com/v1/item/color/green/size/large

121CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

The documentation of the API you implement should give full detail on how to compose a
GET request such as:

GET https://api.genericapi.com/v1/user

PUT is used to update a known record. Per the specification, PUT replaces the known record
data with a set of different values. Depending on who is implementing the API, PUT can be
also used to update just a subset of values instead of changing the entire data record. If
it deviates from the specification, we usually find a clear definition of what PUT does in the
documentation of the API.

When an id is defined in the request, PUT will replace the addressed entity, and if it does not
exist, it will create it. PUT must contain a payload, which is the data record it updates. Look,
for example, at the following requests:

PUT https://api.genericapi.com/v1/user/123
{ "login": "jsmith", "firstName" : "Jane", "lastName" : "Smith"}
 
PUT https://api.genericapi.com/v1/user
{ "id" : "123", "login": "jsmith", "firstName" : "Jane", "lastName" : "Smith"}

The two requests should have the same effect, updating the user with the id=123.
Depending on the implementation, the API will return either the updated record or just a 200
OK response.

The PUT operation is known as idempotent, meaning that no matter how many times you
repeat it given the same data, the result will be the same.

POST is used to create a new record. It is uncommon for the POST action to take an element id,
as the API usually assigns the id. It is common for the POST action to return the inserted record,
populated with the assigned record id. Take, for example, the following request/response:

POST https://api.genericapi.com/v1/user
{ "login": "jdoe", "firstName" : "John", "lastName" : "Doe"}
 
Response(200 OK):
{ "id" : "133", "login": "jdoe", "firstName" : "John", "lastName" : "Doe"}

DELETE is used to delete records, given their record id. It usually returns no response other
than the regular 200 OK responses. There is not much to it other than the URL containing
the id to be deleted.

DELETE https://api.genericapi.com/v1/user/123

The Return Format
Usually the return format for a request is specified in the header of the request, with the
key-value pair.

Accept: application/json

https://api.genericapi.com/v1/user
https://api.genericapi.com/v1/user/123
https://api.genericapi.com/v1/user
https://api.genericapi.com/v1/user
https://api.genericapi.com/v1/user/123

122 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

Some APIs choose instead to use a file extension appended to the URL of the request, to
recognize the desired format for the response. In this case there is no requirement for the
return format specified in the header. This is the case for the Fitbit API, as we will see further
on. Taking examples from above, following is how it would look:

GET https://api.genericapi.com/v1/item/color/green/size/large.json
 
POST https://api.genericapi.com/v1/user.json

A RESTful API takes the REST specification as a guideline, and you will rarely see this
implemented strictly. It is not uncommon to see POST being used instead of PUT, or the other
way around, or even using a POST to delete an item.

Fitbit RESTful API Implementation Details
Taking the general ideas defined in the previous section, here are some things that are
particular to the Fitbit API:

	The patterns used in the service URL

	The format of POST data

The URL for a service is segmented in a service and object/subservice, with some magic
added to it. Normally, when we GET from a service, the preferred order is the API version,
followed by the service name, followed by the id of the entity, then a GET string, URL-encoded,
and separated from the base URL by a question mark. In the case of PUT/POST operations,
the agreed-upon standard is to send the data in the body of the message.

Fitbit composes the service URL a bit differently, making everything a part of the URL, and
avoiding dealing with more complexity and eventually performance impact on its end. Take,
for example, the following calls:

GET /1/user/228TQ4/profile.json
 
GET /1/user/-/profile.json

The user id is 228TQ4 but is followed by the name of the object/subservice being requested,
and the extension shows the preferred response format, so there is no need to set the HTTP
header field Accept. To make matters more interesting, if the user id is the id of the current
user, we need to specify a dash (this is the magic part). If we consider the fact that the id is
the user id, not the profile id, we see here the assumption being made that a user can have
only one profile, and there is no need to expose the profile id.

Here is an example where the GET parameters are encoded in the URL path. Following are
the resource URLs for getting body weight data:

GET /<api-version>/user/-/body/log/weight/date/<date>.<response-format>
 
GET /<api-version>/user/-/body/log/weight/date/<base-date>/<period>.<response-format>
 
GET /<api-version>/user/-/body/log/weight/date/<base-date>/<end-date>.<response-format>

https://api.genericapi.com/v1/item/color/green/size/large.json
https://api.genericapi.com/v1/user.json

123CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

Here are actual calls following the foregoing patterns:

GET /1/user/-/body/log/weight/date/2010-02-21.json
 
GET /1/user/-/body/log/weight/date/2010-03-27/1w.json
 
GET /1/user/-/body/log/weight/date/2010-03-27/2010-04-15.json

Somebody at Fitbit must have thought that this was a good idea, but there is a free-style
assumption made here. Normally, even if you decide to use the URL as a kitchen sink, it
would be a good idea to keep things consistent: instead, we look at “body/log/weight/date”
to represent something like “these are the keys for the values that follow,” but even that
does not hold, since the date can stand for one date (start), begin-end dates, or start date
followed by the period.

Composing a URL for a request should not require a degree in creative writing, but that’s the
Fitbit API and we need to adapt to it, so great care has to be taken when writing services
that make a specific request, given that there is no clear rule of composition for the URLs of
Fitbit’s API requests.

For POST requests, things are again rather different than the standard usage. The Fitbit API
requires us to send the POST data as a URL-encoded string, as part of the POST URL. One of
the advantages of sending POST data in the body of the message is that it would not land in the
HTTP server activity logs, and it would not be exposed in the actual URL, but then it would be
a bit more tedious to sign a request. This is perhaps the reason that Fitbit decided to take this
approach, as much as it is not the most secure. Examples of POST requests follow:

POST /1/user/-/bp.json?date=2015-04-24&weight=73
 
POST /1/user/-/bp.json?date=2015-04-23&diastolic=80&systolic=120

From the current implementation we can see that Fitbit has limited the available verbs to just
GET and POST, not making active use of PUT or DELETE. This can, of course, change with the
ongoing development of the API.

Setting Up a Local Playground with Apache
To be able to test our code way before we are ready to deal with the complexities of the
OAuth implementation, we need to set up a local web server. The safe assumption is that
you are working on a Mac, so Apache is already installed for you.

For OSX versions before Yosemite, you can use Web Sharing to set up a local web server.
OS X 10.10 Yosemite comes with the Apache 2.4 pre-installed, but there is no longer a Web
Sharing preference pane in System Preferences.

You can install one of the online available Web Sharing preference panes or simply use the
provided apachectl command from your terminal.

To start up the web server, simply bring up Terminal (/Applications/Utilities/Terminal) and
type the following:

$ sudo apachectl start

124 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

To stop apache you would type:

$ sudo apachectl stop

If you start Apache now, you can reach your server in a browser by pointing it at the URL:
http://127.0.0.1/ or even http://localhost/, and you should see a simple header
that says:

“It works!”

The document that contains the “It works!” text is called index.html.en and is located in the
/Library/WebServer/Documents folder. Your current user does not own this folder, so you will
not have permissions right away to create files. The easiest way to get permissions there is to
change the flags on that folder. For that, you have to execute a command as root, using sudo:

$ sudo chmod 777 /Library/WebServer/Documents

You will be asked to enter your user password, which is the same password you use to log
in to your Mac. By default, the users on a Mac have administrator privileges, so you should
be able to use sudo to change flags or ownership of files and folders that are not owned by
your user.

Now your user can create new documents in that folder: this is where we will create the two
test documents used to verify the requests made by the first version of the APIClient library.

A more elaborate way would be to edit the Apache config file, and point it to a folder in your
home folder. There is enough information available online on how to do this: for the time
being, all we need is to create two test files in that folder, and start Apache, so we will take
the easy route.

Creating the Test Documents
The easiest way is to use the same Terminal screen and vi to create the files. If you are not
familiar with using vi, you can use any other popular console text editor (nano, cat, or echo):

vi /Library/WebServer/Documents/data.json

Paste the following text into vi, then save the file:

{"Response":{"key":"value"}}

To edit the second file

vi /Library/WebServer/Documents/badData.json

paste the following text into vi, then save the file.

{"Response":{{"key":"value"}}

125CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

The second file is intentionally populated with malformed JSON: this will allow us to test the
handling of bad or incomplete responses that we might get from the API. Remember, just
because you are talking to a public API does not mean it will always work perfectly, or return
valid responses: your code will have to be able to compensate and handle the errors properly.

If you already started Apache, there is no need to restart it: what we added are two
static documents and Apache will properly recognize them when they are present in the
document folder.

The OAuth1.0a Authentication Model
The OAuth1.0a authentication model is a rather complex set of interactions between the
consumer and the service provider, which is in our case the Fitbit API.

In a simplified way, the following steps are required to access your protected resources:

1.	 The consumer requests a request token

2.	 Using the request token, the consumer obtains the user authorization

3.	 The consumer then requests an access token from the service
provider

4.	 Using the access token, the consumer can now make requests to
access the protected resources

To use the Fitbit API we need to sign up for a developer account and register the application.
Once we do so, we get the following bits of information that we will use in crafting the
requests to the Fitbit API:

	Client (consumer) key

	Client (consumer) secret

	Temporary credentials (request token) URL

	Token credentials (access token) URL

	Authorize URL

The authentication information is usually passed in the header of the request, as key-value
pairs. This allows you to build test cases or run tests from the command line, as in the
example in Listing 5-1.

Listing 5-1.

$ curl -X POST -i -H 'Authorization: OAuth oauth_consumer_key="abcd1234", oauth_nonce="123",
oauth_signature="q4567aacc%3D", oauth_signature_method="HMAC-SHA1", oauth_timestamp="1429137772",
oauth_version="1.0"' https://api.fitbit.com/oauth/request_token

One important note here is that the curl example request is in one line. Curl is a command-
line tool that allows us to perform a GET/POST request and retrieve the contents of the
request.

https://api.fitbit.com/oauth/request_token

126 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

The Fitbit OAuth Implementation
The Fitbit API is making a transition from OAuth 1.0a to OAuth 2.0 as authentication protocol.
In this chapter, we will use the OAuth 1.0a, which is the current production version. When Fitbit
will transition to OAuth 2.0, you will have to change your application to use the new version.

The upgrade from one authentication protocol to another is usually staged, so that first the
new protocol is made available to developers, then as a beta to the general public. The
developers migrate their code to the new protocol at their convenience, and that equates to
using a different base URL for each authentication protocol, so both authentication protocols
will be available for a reasonable period of time.

When the API operators observe from the amount of API traffic that the old authentication
protocol is not being used, or has minimal usage, only then will they declare the old protocol
obsolete and announce a date of when the support for it will be discontinued.

As a developer it is good to keep in touch with the latest documentation for the APIs you are
implementing, so that you can give yourself ample time to upgrade your application to the
new authentication protocol.

For the current OAuth 1.0a implementation, Fitbit follows strictly the specification of the
protocol.

Following are the steps to making an OAuth 1.0a request:

1.	 The client acquires a key and secret from Fitbit by registering an
application at dev.fitbit.com.

2.	 The client builds an application that uses content from Fitbit.

3.	 The user requests to view content in the client application.

4.	 The client requests and receives temporary credentials from Fitbit.

5.	 The client redirects the user to Fitbit in order for the user to authorize
the client application.

6.	 The user approves the client application, and Fitbit redirects the user
to the client application site, passing a verifier.

7.	 The client requests and receives token credentials from Fitbit using
the verifier it received.

8.	 Using token credentials, the client makes calls to access Fitbit
resources on behalf of the user.

To help with the implementation of the current authentication protocol, the Fitbit developer
site has an OAuth tutorial page under “Authentication.”

Step 5 involves a bit more work in the UI (user interface), such as displaying the redirect
URL in a browser. On that page you will have a form where you will have to agree that the
app can have read/write access to your account. Upon confirmation of access, you will
get a verifier code, which you will need to use to request the token credentials used in this
chapter.

127CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

The code in this chapter will work with the token credentials obtained in Step 8: we will
not do a complete implementation; we will be focusing instead on creating the basics for
signing OAuth requests and making the API requests once the token credentials are obtained.

You need to complete Steps 3 to 7 on your own. The signing mechanism for the requests
is the same—just the list of elements to be used in the signature is different, but very well
documented on the Fitbit support site, where you can double-check your process by testing
every step by hand and comparing the output with the output of your code.

Once we established the signature process for the common-case scenario (Step 8) it will be
very easy for you to create functions that sign with a different set of parameters, as we will
show later on.

Fitbit API Call Rate Limits
The documentation for API call rate limits can be found on the Fitbit page under “Basics/
Rate Limits”/.

At the time of writing of this book, the Fitbit API set limits to the number of calls that can
be made to the API in a given amount of time. When doing the full implementation in your
application, your code has to be aware and able to handle the case when it hits one of the
rate limits shown in the sections “The client+viewer rate limit” and “The client cate limit.”

The Fitbit API has two separate rate limits on the number of calls you can make. Both are
hourly limits that reset at the start of the hour.

The Client+Viewer Rate Limit
All Read calls (as well as a couple of sensitive Read & Write) are rate limited with the current
quota of 150 calls/hour. You can make 150 API requests per hour for each user who has
authorized your application to access his or her data. This rate limit is applied when you
make an API request using your application’s consumer key and secret with the user’s
access token and token secret.

The Client Rate Limit
Your application can make 150 API requests per hour without a user access token and token
secret. These types of API requests are for retrieving non-user data, such as Fitbit’s general
resources.

Response Headers
Fitbit API responses include headers that provide you with your rate limit status.

	Fitbit-Rate-Limit-Limit: the quota number of calls

	Fitbit-Rate-Limit-Remaining: the number of calls remaining before
hitting the rate limit

	Fitbit-Rate-Limit-Reset: the number of seconds until the rate limit resets

128 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

Hitting the Rate Limit
Your application will receive an HTTP 429 response from the Fitbit API when a request is
not fulfilled due to reaching the rate limit. A “Retry-After” header is sent with the number of
seconds until your rate limit is reset and you can begin making calls again.

Making async Calls
The Fitbit API is an external resource that might or might not be available to your device.
This depends on your Internet connection availability, as well as any factors that prevent
your device from accessing the Fitbit API. Additionally, sometimes API calls take longer
than expected.

For this reason, the calls we make to the API need to be made as async calls. As an
application user, this gives you the ability to do other things in your app, while the
application is taking its time to communicate with the API and make the data transfers to
and from the Fitbit API.

The simplest form of an async call is the following:

Listing 5-2.

var url: NSURL = NSURL(string: "http://127.0.0.1/data.json")!
var request = NSMutableURLRequest(URL: url)
request.HTTPMethod = "GET"
NSURLConnection.sendAsynchronousRequest(request, queue: NSOperationQueue.mainQueue()) {
 (urlResponse : NSURLResponse!, data : NSData!, error: NSError!) -> Void in
 // do something here with the response data
}

The block of code after the list of parameters of sendAsynchronousRequest() is the code
being called when the API sends back a response and the connection is closed. The data
object is the content of the API response, as an NSData object. This is necessary since it is
not a guarantee that the API will always return JSON: the service being called could deliver
an image or other binary file, which we will have to handle as necessary. For the purpose of
this chapter we will assume that our responses are always JSON strings, and our code will
handle the response accordingly.

The other side of async calls is that we do not have direct control over their flow—once
launched, we need to provide a handler for the response async call that was triggered as the
result of a button click. Your code needs to disable that button action to prevent duplicate
calls from happening until a valid response has been received and the data has been
successfully processed.

Using callbacks as Parameters
We aggregate most of the API functionality in the APIClient.swift library. This makes sense,
because we don’t want to duplicate this code for every type of call we make, and every
service.

http://127.0.0.1/data.json

129CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

Listing 5-3.

Our apiRequest function has the following signature:
func apiRequest (
service: APIService,
 method: APIMethod,
 id: String!,
 urlSuffix: NSArray!,
 inputData: [String:String]!,
 callback: (responseJson: NSDictionary!, responseError: NSError!) -> Void) {
 // Api call code here
}

We can see that one of the parameters is the callback parameter, which defines the
signature of the callback function being passed to it. The callback function will be called in
the block of code passed to the async call, after the API response has been received.

The following is the sample code for a generic GET handler using our APIClient:

Listing 5-4.

func getData (service: APIService,
 id: String!=nil, urlSuffix: NSArray!=nil, params: [String:String]!=[:]) {
 var blockSelf = self
 var logger: UILogger = viewController.logger
 self.apiRequest(
 service,
 method: APIMethod.GET,
 id: id,
 urlSuffix: urlSuffix,
 inputData: params,
 callback: { (responseJson: NSDictionary!, responseError: NSError!) -> Void in
 if (responseError != nil) {
 logger.logEvent(responseError!.description)
 // Handle here the error response in some way
 } else {
 �blockSelf.processGETData(service, id: id, urlSuffix: urlSuffix, params: params,

responseJson: responseJson)
 }
 })
}

We see here that we make a copy of self in the blockSelf variable. This is necessary, since
the callback code block is a closure that does not have the context of the caller. If we pass
self directly, this will block it from being garbage collected when it goes out of scope or gets
destroyed. In this case self is the APIClient instance we use to make API calls, and we will
run into memory leaks over time if we create/destroy the APIClient instance.

www.allitebooks.com

http://www.allitebooks.org

130 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

Setting up a Fitbit-compatible iOS Project
To implement OAuth in Swift, we could use an available library that supports both OAuth
1.0a and OAuth 2.0 to simplify the transition when Fitbit will default to OAuth 2.0. For the
purpose of this book, we will implement the OAuth layer ourselves, instead of relying on a
third-party library. We will also show how to make use of some Objective-C libraries where
needed, to avoid re-inventing the wheel in Swift, and keep the scope of the Swift code small.

We begin by creating an empty, single-page project. This chapter aims to show how
to communicate with the Fitbit API, not how to build an UI interface around it, so our
application will be minimalistic, exposing just a few UI elements to trigger actions and track
the communication with the Fitbit API, and making inline changes to some view controller
functions as we go along.

The View Controller
A basic view controller for this chapter will only show a few buttons and a text area that we
will use to display the communication with the API.

To initialize and to be able to use these buttons and fields, they have to be assigned macros
that make them available/visible in the Interface Builder. We also define the variables used
for the API and logger objects. Since these will be initialized at a later time, these variables
need to be defined in the view controller as optional:

Listing 5-5.

class ViewController: UIViewController {
 @IBOutlet var labelButton : UIButton!
 @IBOutlet var textArea : UITextView!
 var api: APIClient!
 var logger: UILogger!

In the viewDidLoad() function we initialize the API object, as well as the log library that
will output text to our textArea field. The content and functionality of these libraries will be
explained as we go.

Listing 5-6.

override func viewDidLoad() {
 super.viewDidLoad()
 api = APIClient(parent: self)
 logger = UILogger(out: textArea)
}

To assign an action to a button, we create a function that performs the action, and is also
annotated with the proper macro to make it available in the Interface Builder. We will add a
log statement to show the beginning of the request, and we can also change the title of the
button, while it is pressed.

131CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

Listing 5-7.

@IBAction func clickButton() {
 logger.logEvent("=== Good Request ===")
 api.getData(APIService.GOOD_JSON)
 labelButton.setTitle("Good Request Sent", forState: UIControlState.Normal)
}
@IBAction func unclickButton() {
 labelButton.setTitle("=== Good Request ===", forState: UIControlState.Normal)
}

Notice that we used the APIService.GOOD_JSON and APIService.BAD_JSON service names.
This is a first-step implementation that uses mock services from a local server and gets
in return a pre-formatted, static content, so that we can test the code. This will be later
replaced by actual services like, for example, APIService.ACCOUNT or APIService.PROFILE.
These are distinct values from enums that we define in the APIClient.swift library.

We can wire these button actions in the storyboard (Figure 5-1).

Figure 5-1.  Wiring actions in the storyboard

132 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

This is the entire ViewController.swift code that we will use to test the internal wiring of the
APIClient library. You might notice that we commented out the goLive() method, that would
set the baseURL for the API to the liveBaseURL in the APIClient library(more on this later).

Listing 5-8.

import UIKit
class ViewController: UIViewController {
 @IBOutlet var clearButton : UIButton!
 @IBOutlet var labelButton : UIButton!
 @IBOutlet var labelButton2 : UIButton!
 @IBOutlet var textArea : UITextView!
 var api: APIClient!
 var logger: UILogger!
  
 required init(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
 }
 override func viewDidLoad() {
 super.viewDidLoad()
 api = APIClient(parent: self)
 logger = UILogger(out: textArea)
 // api.goLive()
 }
 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }
 @IBAction func unclickButton() {
 labelButton.setTitle("Good Request", forState: UIControlState.Normal)
 }
 @IBAction func unclickButton2() {
 labelButton2.setTitle("Bad Request", forState: UIControlState.Normal)
 }
 @IBAction func clickButton() {
 logger.logEvent("=== Good Request ===")
 api.getData(APIService.GOOD_JSON)
 labelButton.setTitle("Good Request Sent", forState: UIControlState.Normal)
 }
 @IBAction func clickButton2() {
 logger.logEvent("=== Bad Request ===")
 api.getData(APIService.BAD_JSON)
 labelButton2.setTitle("Bad Request Sent", forState: UIControlState.Normal)
 }
 @IBAction func clickClearButton() {
 logger.clear()
 }
}

When you implement your application, you will most likely have a series of requests
triggered by either a sync button or a timer, all the time keeping in mind that the API has a
call rate limitation.

133CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

The Logger Library
The logger library was assigned a variable in the view controller that will keep an instance of
the logger around with the proper target assigned—in our case we use a text area field for
the activity logging.

To keep things simple, we implement just a couple of functions that will allow us to track
the API activity. These functions will interact with the textArea field we set up in the view
controller. Just as in the view controller, the textArea field is declared optional, as it will be
initialized in the init() function. The code in Listing 5-9 goes in the UILogger.swift file:

Listing 5-9.

import Foundation
import UIKit
 
class UILogger {
 var textArea : UITextView!
 required init(out: UITextView) {
 dispatch_async(dispatch_get_main_queue()) {
 self.textArea = out
 };
 self.clear()
 }
  
 func clear() {
 dispatch_async(dispatch_get_main_queue()) {
 self.textArea!.text = ""
 }
 }
  
 func logEvent(message: String) {
 dispatch_async(dispatch_get_main_queue()) {
 self.textArea!.text = textArea!.text.stringByAppendingString("=> " + message + "\n")
 }
 }
}

Setting up a Basic Set of Crypto Functions
Since the data to and from the API is of String type, the easiest way to set up the basic
crypto functions is to set up a few extensions on the String object to handle SHA1 and
HMAC hashing (the SHA and HMAC are hashing algorithms). We can set this in a separate
file in our project, called Crypto.swift.

The sha1() function is provided as a convenience method that allows you to create
fingerprints of results when testing against the API. It is not used in the OAuth signing
process, and was implemented just to show how something like this could be done.

The hmac() function is used for creating the OAuth signature. You can verify its functionality
with the Google OAuth request signature test page at http://oauth.googlecode.com/svn/
code/javascript/example/signature.html. This is an easier-to-use test resource than the

http://oauth.googlecode.com/svn/code/javascript/example/signature.html
http://oauth.googlecode.com/svn/code/javascript/example/signature.html

134 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

one provided by the Fitbit developer site, and it allows you to provide any combination of
keys and tokens.

The escapeUrl() function is conveniently placed in the same context, because we will use
it for composing the signature base string. It could have been a library function in its own
right, but since it is conceivable that other parts of the product might use a good escaping
tool, we decided to use it as an overload to the String object. Believe it or not, there is no
NSCharacterSet with this set of characters, which is pretty odd, as this is the most useful set
when composing an URL string.

There are a couple of enums in this library that are used by the hmac() function: we could
have just used the values for SHA1 and saved ourselves the extra work with the enums,
but with the full list configured, you can reuse this code for any other API that uses another
hashing method than SHA1.

The functions are relying on Objective-C code that does the heavy work, so we need to set
up a bridging header file. For that, create a new file in the project, give it a name(Crypto.h)
and a location(Fitbit Integration - Single Page), and associate it with the current folder, as
seen in Figure 5-2.

Figure 5-2.  Saving the new crypto header file

Listing 5-10 shows the content of the Crypto.h file: we added two lines that include the
code resources we will use for calculating SHA1 checksums and HMAC-SHA1 signatures.
The ifndef section needs to stay as it is.

Listing 5-10.

#import <CommonCrypto/CommonCrypto.h>
#import <CommonCrypto/CommonHMAC.h>
 
#ifndef FitBit_Integration___Single_Page_Crypto_h
#define FitBit_Integration___Single_Page_Crypto_h
#endif

135CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

Once the header file has been created, we need to move it up in the project file hierarchy,
by drag-and-dropping it to the top of the file list. Then we need to set up the path for
the bridging header (Fitbit Integration - Single Page/Crypto.h) in our project under Build
Settings / Swift Compiler - Code Generation, as shown in Figure 5-3.

Figure 5-3.  Setting up the path for the bridging header in the project

Crypto.swift

Listing 5-11.

import Foundation
extension String {
 func sha1() -> String {
 let data = self.dataUsingEncoding(NSUTF8StringEncoding)!
 var digest = [UInt8](count:Int(CC_SHA1_DIGEST_LENGTH), repeatedValue: 0)
 CC_SHA1(data.bytes, CC_LONG(data.length), &digest)
 let output = NSMutableString(capacity: Int(CC_SHA1_DIGEST_LENGTH))

136 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

 for byte in digest {
 output.appendFormat("%02x", byte)
 }
 return output
 }
 
 func hmac(algorithm: HMACAlgorithm, key: String) -> String {
 let str = self.cStringUsingEncoding(NSUTF8StringEncoding)
 let strLen = Int(self.lengthOfBytesUsingEncoding(NSUTF8StringEncoding))
 let digestLen = algorithm.digestLength()
 let result = UnsafeMutablePointer<CUnsignedChar>.alloc(digestLen)
 let objcKey = key as NSString
 let keyStr = objcKey.cStringUsingEncoding(NSUTF8StringEncoding)
 let keyLen = Int(objcKey.lengthOfBytesUsingEncoding(NSUTF8StringEncoding))
 CCHmac(algorithm.toCCHmacAlgorithm(), keyStr, keyLen, str!, strLen, result)
 let data = NSData(bytes: result, length: digestLen)
 result.destroy()
 return
data.base64EncodedStringWithOptions(NSDataBase64EncodingOptions.Encoding64CharacterLineLength)
 }
  
 func escapeUrl() -> String {
 var source: NSString = NSString(string: self)
 var chars = "abcdefghijklmnopqrstuvwxyz"
 var okChars = chars + chars.uppercaseString + "0123456789.~_-"
 var customAllowedSet = NSCharacterSet(charactersInString: okChars)
 return source.stringByAddingPercentEncodingWithAllowedCharacters(customAllowedSet)!
 }
}
enum HMACAlgorithm {
 case MD5, SHA1, SHA224, SHA256, SHA384, SHA512
 func toCCHmacAlgorithm() -> CCHmacAlgorithm {
 var result: Int = 0
 switch self {
 case .MD5:
 result = kCCHmacAlgMD5
 case .SHA1:
 result = kCCHmacAlgSHA1
 case .SHA224:
 result = kCCHmacAlgSHA224
 case .SHA256:
 result = kCCHmacAlgSHA256
 case .SHA384:
 result = kCCHmacAlgSHA384
 case .SHA512:
 result = kCCHmacAlgSHA512
 }
 return CCHmacAlgorithm(result)
 }
  

137CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

 func digestLength() -> Int {
 var result: CInt = 0
 switch self {
 case .MD5:
 result = CC_MD5_DIGEST_LENGTH
 case .SHA1:
 result = CC_SHA1_DIGEST_LENGTH
 case .SHA224:
 result = CC_SHA224_DIGEST_LENGTH
 case .SHA256:
 result = CC_SHA256_DIGEST_LENGTH
 case .SHA384:
 result = CC_SHA384_DIGEST_LENGTH
 case .SHA512:
 result = CC_SHA512_DIGEST_LENGTH
 }
 return Int(result)
 }
}

The API Client Library
We created this library for the functions that make async requests to the API. You can find
the complete code at the end of this section; for now we will discuss parts of the API client
library code. The header of the class contains the URLs and other variables needed for the
API functionality.

Listing 5-12.

class APIClient {
 var apiVersion: String!
 var baseURL: String = "http://127.0.0.1"
 var liveBaseURL: String = "https://api.fitbit.com"
 var liveAPIVersion: String = "1"
 var requestTokenURL: String = "https://api.fitbit.com/oauth/request_token"
 var accessTokenURL: String = "https://api.fitbit.com/oauth/access_token"
 var authorizeURL: String = "https://www.fitbit.com/oauth/authorize"
 var viewController: ViewController!
 var oauthParams: NSDictionary!
 var oauthHandler: OAuth1a!
  
 required init (parent: ViewController!) {
 viewController = parent
 oauthParams = [
 "oauth_consumer_key" : "6cf4162a72ac4a4382c098caec132782",
 "oauth_consumer_secret" : "c652d5fb28f344679f3b6b12121465af",
 "oauth_token" : "5a3ca2edf91d7175cad30bc3533e3c8a",
 "oauth_token_secret" : "da5bc974d697470a93ec59e9cfaee06d",
  
]
 oauthHandler = OAuth1a(oauthParams: oauthParams)
 }

http://127.0.0.1/
https://api.fitbit.com/
https://api.fitbit.com/oauth/request_token
https://api.fitbit.com/oauth/access_token
https://www.fitbit.com/oauth/authorize

138 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

We added the oauthParams in the init function for convenience—your code will have to
gather/compose these values when you do a complete implementation of the OAuth/signup
process. The requestTokenURL, accessTokenURL, and authorizeURL were also added to show
where they would best be located, but they are not used in the code of this chapter.

When you write tests, you might want to change between the liveBaseURL and liveAPIVersion
and a local test URL that is the default for the baseURL, as we do in our case to test the good
and bad JSON. A simple function will allow you to switch to live mode, as follows:

func goLive () {
 baseURL = liveBaseURL discussing
 apiVersion = liveAPIVersion
 }

A generic function to perform a GET from a service looks as shown in Listing 5-13.

Listing 5-13.

func getData (service: APIService, id: String!=nil, urlSuffix: NSArray!=nil,
params: [String:String]!=[:]) {
 var blockSelf = self
 var logger: UILogger = viewController.logger
 self.apiRequest(
 service,
 method: APIMethod.GET,
 id: id,
 urlSuffix: urlSuffix,
 inputData: params,
 callback: { (responseJson: NSDictionary!, responseError: NSError!) -> Void in
 if (responseError != nil) {
 logger.logEvent(responseError!.description)
 // Handle here the error response in some way
 }
 else {
 �blockSelf.processGETData(service, id: id, urlSuffix: urlSuffix, params: params,

responseJson: responseJson)
 }
 }
)
}

For the urlSuffix we use the NSArray data type that will hold all elements of the URL
being accessed. We saw in The Fitbit OAuth implementation that there is no clear rule
to composing an API URL; the API service calls have instead service names and values
mashed up in a slash-delimited string. Since some of these could be numbers, the NSArray
type is ideal because by default it contains AnyObject elements. We also pass the urlSuffix
to the processGETData function, so that we can make a decision about what to do with the
response, given the service being called, the optional id of the item, and the urlSuffix. We
also defined default values for urlSuffix and params to allow our functions to make calls
without providing all nil parameters in tow.

139CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

The optional input params is a dictionary with strings for keys and values. This is the
most convenient format, considering that POST is not any different from GET in the way the
parameters are passed to the API.

The block passed to the NSURLConnection.sendAsynchronousRequest is a closure, which is
why we need to assign the blockSelf variable that will be used to make calls in the context
of the APIClient library.

The function would be the actual handler of that response, which takes the generic form.

func processGETData (service: APIService, id: String!, urlSuffix: NSArray!,
params: [String:String]!=[:], responseJson: NSDictionary!) {
 // do something with data here
 }

Just like the GET request, the POST request can have the same structure:

Listing 5-14.

func postData (service: APIService, id: String!=nil, urlSuffix: NSArray!=nil,
params: [String:String]!=[:]) {
 var blockSelf = self
 var logger: UILogger = viewController.logger
 self.apiRequest(
 service,
 method: APIMethod.POST,
 id: id,
 urlSuffix: urlSuffix,
 inputData: params,
 callback: { (responseJson: NSDictionary!, responseError: NSError!) -> Void in
 if (responseError != nil) {
 logger.logEvent(responseError!.description)
 // Handle here the error response in some way
 }
 else {
 �blockSelf.processPOSTData(service, id: id, urlSuffix: urlSuffix,

params: params, responseJson: responseJson)
 }
 })
}
func processPOSTData (service: APIService, id: String!, urlSuffix: NSArray!,
params: [String:String]!=[:], responseJson: NSDictionary!) {
 // do something with data here
}

Of course, we can implement the request process in many different ways, but having a
common handler for an API request type allows us to avoid a callback hell.

We notice that the verb is not a string but an enum value: APIMethod.GET. This is an enum
that we define in this library, to provide easy access to the verbs as strings, rather than using
the strings directly. It also gives us control on which HTTP verbs are supported by the API
client. This code goes at the end of APIClient.swift.

140 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

Listing 5-15.

enum APIMethod {
 case GET, PUT, POST, DELETE
 func toString() -> String {
 var method: String!
 switch self {
 case .GET:
 method = "GET"
 case .PUT:
 method = "PUT"
 case .POST:
 method = "POST"
 case .DELETE:
 method = "DELETE"
 }
 return method
 }
 func hasBody() -> Bool {
 var hasBody: Bool
 switch self {
 case .GET:
 hasBody = false
 case .PUT:
 hasBody = true
 case .POST:
 hasBody = true
 case .DELETE:
 hasBody = false
 }
 return hasBody
 }
}

The hasBody() function is provided here as an example that could be useful in the
apiRequest to properly format the request, so that GET and DELETE use the parameters as
key-value pairs, while the PUT and POST use it as JSON. This is not necessary in our case,
since the Fitbit API does not actually use a POST body but, rather, does a POST to a URL with
the data formatted as URL-encoded parameters.

There is another enum we define in the APIClient library that provides shortcuts to
actual services via the toString() function. We saw this in the view controller used as
APIService.GOOD_JSON. We will extend this later to add other services and also provide a
function to return the suffix we might want to use for some calls, but for now this is the basic
format. As in Listing 5-15, the code in Listing 5-16 goes at the end of APIClient.swift.

141CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

Listing 5-16.

enum APIService {
 case USER, ACTIVITIES, FOODS, GOOD_JSON, BAD_JSON
 func toString() -> String {
 var service: String!
 switch self {
 case .USER:
 service = "user"
 case .ACTIVITIES:
 service = "activities"
 case .FOODS:
 service = "foods"
 case .GOOD_JSON:
 service = "data"
 case .BAD_JSON:
 service = "badData"
 }
 return service
 }
}

We added the extra bits like GOOD_JSON and BAD_JSON to allow us to do internal testing. These
bits point to the test pages we created when we set up the local Apache playground. Since
our apiRequest() function will handle adding the .son suffix to each URL, we only use the
file base name.

Next to be defined is the apiRequest() function. This function will make the actual API
request, and that includes handling the OAuth signing and eventual verification of the
response data. The method signature is showing that the only required params are the
service, the method, and the callback function.

Listing 5-17.

func apiRequest (
 service: APIService,
 method: APIMethod,
 id: String!,
 urlSuffix: NSArray!,
 inputData: [String:String]!,
 callback: (responseJson: NSDictionary!, responseError: NSError!) -> Void) {
 // Code goes here
}

The services currently available are USER, ACTIVITIES, and FOODS— the API overloads
them with a variable list of params, so in essence your calls will need to provide the larger
APIService, and then provide via the urlSuffix the URL path extension to point to the right
resource. This will be explained in more detail later on.

142 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

As for the content of the method, following is what we need to do for an API request:

	Compose the base URL of the service

	Add the URL suffix if it was specified

	Add the extension for the return data type

	Create the OAuth signature and populate the request headers

	Serialize and append to the URL the input params

	Make the API request as an async call

In the code block passed to the async call, we also need to do the following:

	Verify the OAuth signature of the response (if provided)

	De-serialize the JSON response

	Call the callback function

To compose the base URL of the service, we use the following code in Listing 5-18:

Listing 5-18.

var serviceURL = baseURL + "/"
if apiVersion != nil {
 serviceURL += apiVersion + "/"
}
serviceURL += service.toString()
if id != nil && !id.isEmpty {
 serviceURL += "/" + id
}
var request = NSMutableURLRequest()
request.HTTPMethod = method.toString()

If you recall, we saw in the Fitbit API implementation details that when an id is not provided,
it is replaced by a dash in some requests. This kind of magic is not something we want
to handle here: instead we rely on the caller to provide an id if one is needed, or the dash
otherwise.

In the same segment, we create the request object and assign it the request method. The
serviceURL is still being composed, so it would be premature to assign it to the request at
this point.

If this API would support a JSON request body for POST requests, we could use something
like the code in Listing 5-19 to serialize the input data.

143CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

Listing 5-19.

var error: NSError?
request.HTTPBody = NSJSONSerialization.dataWithJSONObject(inputData, options: nil,
error: &error)
if error != nil {
 callback(responseJson: nil, responseError: error)
 return
}
request.addValue("application/json", forHTTPHeaderField: "Content-Type")

Unfortunately the Fitbit API is not that fancy, and it takes instead a simple URL-encoded set
of params appended to the POST URL.

To handle the composition of the URL, we create the asURLString() function. This takes a
dictionary of input params and creates a URL-encoded string, with the parameters sorted
alphabetically. Sorting the parameters is not a requirement in the URL request, but we will
use the same code in the OAuth library.

Listing 5-20.

func asURLString (inputData: [String:String]!=[:]) -> String {
 var params: [String] = []
 for (key, value) in inputData {
 params.append("=".join([key.escapeUrl(), value.escapeUrl()]))
 }
 params = params.sorted{ $0 < $1 }
 return "&".join(params)
}

The URL suffix needs to be made part of the URL—we got in the input an NSArray of strings
or numbers that will be used to compose the suffix—they will be all reduced to a simple
string, appended to the base URL.

// The urlSuffix contains an array of strings that we use to compose the final URL
if urlSuffix?.count > 0 {
 serviceURL += "/" + urlSuffix.componentsJoinedByString("/")
}

Adding the extension for the return data type is a rather simple matter. We also set the HTTP
header for Accept, even if the Fitbit API does not require it. This is good practice, and it is
possible that they will end up using it at some point.

// All URLs need to have have at least the .json suffix, if not already defined
if !serviceURL.hasSuffix(".json") && !serviceURL.hasSuffix(".xml") {
 serviceURL += ".json"
}
request.addValue("application/json", forHTTPHeaderField: "Accept")

To create the OAuth signature and populate the request headers, we will make use of
the crypto library for the hmac encoding. The OAuth1a library instance prepared as
the oauthHandler is used to sign the request, given an optional list of parameters in

144 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

urlParameters. The extra argument signUrl is not used here and is not shown because the
method signature defines a default value (nil) for it, but it could be used when signing with a
partial URL like in the case of getting the temporary token (not shown in this chapter).

Before we create the OAuth signature, we need to assign the following serviceURL to
the request:

request.URL = NSURL(string: serviceURL)
oauthHandler.signRequest(request, urlParameters: urlParameters)

Now we are ready to make the API request as an async call. Note how we created a local
variable logger that points to the logging handler of the view controller—this is necessary
because inside the closure we don’t have visibility to variables and functions from the
current library or from ViewController. The callback block for the async calls contains the
basic code needed to handle the result data and call the callback function that we got when
apiRequest() was invoked. Once again, when interpreting the response, an error can occur
parsing the JSON data, which will be handled by the callback function.

To parse an API response into a JSON object, we use an NSDictionary object that will hold
any combination of key-values. This is necessary since the API responses can contain any
combination of numbers, strings, arrays, dictionaries, and NSDictionary supports by default
AnyObject types. The NSJSONReadingOptions.MutableContainers specifies that arrays and
dictionaries be created as mutable objects.

var jsonResult: NSDictionary?
var rData: String = NSString(data: data, encoding: NSUTF8StringEncoding)! as String
if data != nil {
 �jsonResult = NSJSONSerialization.JSONObjectWithData(data, options: NSJSONReadingOptions.

MutableContainers, error: &error) as? NSDictionary
 }

When encountering an error case that we need to report, we can create our own error
object. To do this in Swift, we use the following approach:

error = NSError(domain: "response", code: -1, userInfo: ["reason":"blank response"])

We added some logging for the response data, with an example on how to pretty-print
JSON to the text area used for logging. We do want to format the response in such a way
that is easy to read, and pretty-printed JSON appears as one key-value per line, nicely
indented.

Listing 5-21.

var blockSelf = self
var logger: UILogger = viewController.logger
NSURLConnection.sendAsynchronousRequest(request, queue: NSOperationQueue.mainQueue()) {
 (urlResponse : NSURLResponse!, data : NSData!, error: NSError!) -> Void in
 //the request returned with a response or possibly an error
 logger.logEvent("URL: " + serviceURL)
 var error: NSError?
 var jsonResult: NSDictionary?

145CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

 if urlResponse != nil {
 blockSelf.extractRateLimits(urlResponse)
 var rData: String = NSString(data: data, encoding: NSUTF8StringEncoding)! as String
 if data != nil {
 �jsonResult = NSJSONSerialization.JSONObjectWithData(data, options:

NSJSONReadingOptions.MutableContainers, error: &error) as? NSDictionary
 }
 var logResponse: String! = blockSelf.prettyJSON(jsonResult)
 logResponse == nil
 ? logger.logEvent("RESPONSE RAW: " + (rData.isEmpty ? "No Data" : rData))
 : logger.logEvent("RESPONSE JSON: \(logResponse)")
 print("RESPONSE RAW: \(rData)\nRESPONSE SHA1: \(rData.sha1())")
 }
 else {
 error = NSError(domain: "response", code: -1, userInfo: ["reason":"blank response"])
 }
 callback(responseJson: jsonResult, responseError: error)
}

Displaying pretty-formatted JSON can be useful in other places too, so we extracted the
following code in the prettyJSON() function:

func prettyJSON (json: NSDictionary!) -> String! {
 var pretty: String!
 if json != nil && NSJSONSerialization.isValidJSONObject(json!) {
 �if let data = NSJSONSerialization.dataWithJSONObject(json!, options:

NSJSONWritingOptions.PrettyPrinted, error: nil) {
 pretty = NSString(data: data, encoding: NSUTF8StringEncoding) as? String
 } } return pretty
 }

To parse the response and extract the API rate limits, we need to extract from the response
header the following key-value pairs:

Fitbit-Rate-Limit-Limit: 150
Fitbit-Rate-Limit-Remaining: 149
Fitbit-Rate-Limit-Reset: 1478

The function extractRateLimits() will take care of that, and it will also throw some
statements in the console log that will help with the debugging. We already defined the
variables in the APIClient header, and we update these with every API call we make. Since
we have the rateLimitTimeStamp value, we can use this to compare with the current
timestamp and see whether the rateLimitTimeStamp + rateLimitReset is smaller than
the current timestamp; then we can make the next API call with confidence and otherwise
handle the issue inside the application, returning an error early, instead of making a call that
we know is going to fail. This can be easily implemented in the apiRequest() so we leave
this as an exercise for the reader.

146 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

Listing 5-22.

func extractRateLimits (response: NSURLResponse) {
 if let urlResponse = response as? NSHTTPURLResponse {
 �if let rl = urlResponse.allHeaderFields["Fitbit-Rate-Limit-Limit"] as? NSString as?

String {
 rateLimit = rl.toInt()
 print("RESPONSE HEADER rateLimit: \(rl)")
 }
 �if let rlr = urlResponse.allHeaderFields["Fitbit-Rate-Limit-Remaining"] as? NSString

as? String {
 rateLimitRemaining = rlr.toInt()
 print("RESPONSE HEADER rateLimitRemaining: \(rlr)")
 }
 �if let rlx = urlResponse.allHeaderFields["Fitbit-Rate-Limit-Reset"] as? NSString as?

String {
 rateLimitReset = rlx.toInt()
 �rateLimitTimeStamp = String(format:"%d",

Int(NSDate().timeIntervalSince1970)).toInt()
 �print("RESPONSE HEADER rateLimitReset: \(rlx), checked at: \(rateLimitTimeStamp)")
 }
 }
}

The Code for APIClient.swift
Listing 5-23 shows the code we have so far for the APIClient library (APIClient.swift):

Listing 5-23.

import Foundation
class APIClient {
 var apiVersion: String!
 var baseURL: String = "http://127.0.0.1"
 var liveBaseURL: String = "https://api.fitbit.com"
 var liveAPIVersion: String = "1"
 var requestTokenURL: String = "https://api.fitbit.com/oauth/request_token"
 var accessTokenURL: String = "https://api.fitbit.com/oauth/access_token"
 var authorizeURL: String = "https://www.fitbit.com/oauth/authorize"
 var viewController: ViewController!
 var oauthParams: NSDictionary!
 var oauthHandler: OAuth1a!
 var rateLimit: Int!
 var rateLimitRemaining: Int!
 var rateLimitReset: Int!
 var rateLimitTimeStamp: Int!
  
 required init (parent: ViewController!) {
 viewController = parent
 oauthParams = [
 "oauth_consumer_key" : "6cf4162a72ac4a4382c098caec132782",
 "oauth_consumer_secret" : "c652d5fb28f344679f3b6b12121465af",

http://127.0.0.1/
https://api.fitbit.com/
https://api.fitbit.com/oauth/request_token
https://api.fitbit.com/oauth/access_token
https://www.fitbit.com/oauth/authorize

147CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

 "oauth_token" : "5a3ca2edf91d7175cad30bc3533e3c8a",
 "oauth_token_secret" : "da5bc974d697470a93ec59e9cfaee06d",
]
 oauthHandler = OAuth1a(oauthParams: oauthParams)
 }
  
 func goLive () {
 baseURL = liveBaseURL
 apiVersion = liveAPIVersion
 }
 �func postData (service: APIService, id: String!=nil, urlSuffix: NSArray!=nil,

params: [String:String]!=[:]) {
 var blockSelf = self
 var logger: UILogger = viewController.logger
 self.apiRequest(
 service,
 method: APIMethod.POST,
 id: id,
 urlSuffix: urlSuffix,
 inputData: params,
 callback: { (responseJson: NSDictionary!, responseError: NSError!) -> Void in
 if (responseError != nil) {
 logger.logEvent(responseError!.description)
 // Handle here the error response in some way
 }
 else {
 �blockSelf.processPOSTData(service, id: id, urlSuffix: urlSuffix,

 params: params, responseJson: responseJson)
 }
 })
 }
 �func processPOSTData (service: APIService, id: String!, urlSuffix: NSArray!,

params: [String:String]!=[:], responseJson: NSDictionary!) {
 // do something with data here
 }
 �func getData (service: APIService, id: String!=nil, urlSuffix: NSArray!=nil,

params: [String:String]!=[:]) {
 var blockSelf = self
 var logger: UILogger = viewController.logger
 self.apiRequest(
 service,
 method: APIMethod.GET,
 id: id,
 urlSuffix: urlSuffix,
 inputData: params,
 callback: { (responseJson: NSDictionary!, responseError: NSError!) -> Void in
 if (responseError != nil) {
 logger.logEvent(responseError!.description)
 // Handle here the error response in some way
 }

148 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

 else {
 �blockSelf.processGETData(service, id: id, urlSuffix: urlSuffix,

params: params, responseJson: responseJson)
 }
 })
 }
  
 �func processGETData (service: APIService, id: String!, urlSuffix: NSArray!,

params: [String:String]!=[:], responseJson: NSDictionary!) {
 // do something with data here
 }
  
 func apiRequest (
 service: APIService,
 method: APIMethod,
 id: String!,
 urlSuffix: NSArray!,
 inputData: [String:String]!,
 callback: (responseJson: NSDictionary!, responseError: NSError!) -> Void) {
 // Compose the base URL
 var serviceURL = baseURL + "/"
 if apiVersion != nil {
 serviceURL += apiVersion + "/"
 }
 serviceURL += service.toString()
  
 if id != nil && !id.isEmpty {
 serviceURL += "/" + id
 }
 var request = NSMutableURLRequest()
 request.HTTPMethod = method.toString()
 // The urlSuffix contains an array of strings that we use to compose the final URL
 if urlSuffix?.count > 0 {
 serviceURL += "/" + urlSuffix.componentsJoinedByString("/")
 }
 // All URLs need to have have at least the .json suffix, if not already defined
 if !serviceURL.hasSuffix(".json") && !serviceURL.hasSuffix(".xml") {
 serviceURL += ".json"
 }
 request.addValue("application/json", forHTTPHeaderField: "Accept")
  
 request.URL = NSURL(string: serviceURL)
 // Sign the OAuth request here
 oauthHandler.signRequest(request, urlParameters: inputData)
 if !inputData.isEmpty {
 serviceURL += "?" + asURLString(inputData: inputData)
 request.URL = NSURL(string: serviceURL)
 }
 //now make the request
 

149CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

var blockSelf = self
var logger: UILogger = viewController.logger
NSURLConnection.sendAsynchronousRequest(request, queue: NSOperationQueue.mainQueue()) {
 (urlResponse : NSURLResponse!, data : NSData!, error: NSError!) -> Void in
 //the request returned with a response or possibly an error
 logger.logEvent("URL: " + serviceURL)
 var error: NSError?
 var jsonResult: NSDictionary?
 if urlResponse != nil {
 blockSelf.extractRateLimits(urlResponse)
 var rData: String = NSString(data: data, encoding: NSUTF8StringEncoding)! as String
 if data != nil {
 �jsonResult = NSJSONSerialization.JSONObjectWithData(data, options:

NSJSONReadingOptions.MutableContainers, error: &error) as? NSDictionary
 }
 var logResponse: String! = blockSelf.prettyJSON(jsonResult)
 logResponse == nil
 ? logger.logEvent("RESPONSE RAW: " + (rData.isEmpty ? "No Data" : rData))
 : logger.logEvent("RESPONSE JSON: \(logResponse)")
 print("RESPONSE RAW: \(rData)\nRESPONSE SHA1: \(rData.sha1())")
 }
 else {
 error = NSError(domain: "response", code: -1, userInfo: ["reason":"blank response"])
 }
 callback(responseJson: jsonResult, responseError: error)
}
 func asURLString (inputData: [String:String]!=[:]) -> String {
 var params: [String] = []
 for (key, value) in inputData {
 params.append("=".join([key.escapeUrl(), value.escapeUrl()]))
 }
 params = params.sorted{ $0 < $1 }
 return "&".join(params)
 }
 func prettyJSON (json: NSDictionary!) -> String! {
 var pretty: String!
 if json != nil && NSJSONSerialization.isValidJSONObject(json!) {
 �if let data = NSJSONSerialization.dataWithJSONObject(json!, options:

NSJSONWritingOptions.PrettyPrinted, error: nil) {
 pretty = NSString(data: data, encoding: NSUTF8StringEncoding) as? String
 }
 }
 return pretty
 }
  
 func extractRateLimits (response: NSURLResponse) {
 // Fitbit-Rate-Limit-Limit: 150
 // Fitbit-Rate-Limit-Remaining: 149
 // Fitbit-Rate-Limit-Reset: 1478

150 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

 if let urlResponse = response as? NSHTTPURLResponse {
 �if let rl = urlResponse.allHeaderFields["Fitbit-Rate-Limit-Limit"] as? NSString

as? String {
 rateLimit = rl.toInt()
 print("RESPONSE HEADER rateLimit: \(rl)")
 }
 �if let rlr = urlResponse.allHeaderFields["Fitbit-Rate-Limit-Remaining"] as?

NSString as? String {
 rateLimitRemaining = rlr.toInt()
 print("RESPONSE HEADER rateLimitRemaining: \(rlr)")
 }
 �if let rlx = urlResponse.allHeaderFields["Fitbit-Rate-Limit-Reset"] as? NSString

as? String {
 rateLimitReset = rlx.toInt()
 �rateLimitTimeStamp = String(format:"%d", Int(NSDate().

timeIntervalSince1970)).toInt()
 �print("RESPONSE HEADER rateLimitReset: \(rlx), checked

at: \(rateLimitTimeStamp)")
 }
 }
 }
}
enum APIService {
 case USER, ACTIVITIES, FOODS, GOOD_JSON, BAD_JSON
 func toString() -> String {
 var service: String!
 switch self {
 case .USER:
 service = "user"
 case .ACTIVITIES:
 service = "activities"
 case .FOODS:
 service = "foods"
 case .GOOD_JSON:
 service = "data"
 case .BAD_JSON:
 service = "badData"
 }
 return service
 }
}
enum APIMethod {
 case GET, PUT, POST, DELETE
 func toString() -> String {
 var method: String!
 switch self {
 case .GET:
 method = "GET"
 case .PUT:
 method = "PUT"
 case .POST:
 method = "POST"

151CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

 case .DELETE:
 method = "DELETE"
 }
 return method
 }
}

The OAuth Library
This library (OAuth1a.swift) handles the signing of the requests, not making the request
themselves. There is more work for you to do to integrate all the steps in the OAuth process,
and the best choice here is to build a good foundation, get the signing process right, and
extend this later as needed.

The header of the library contains the essential variables specific to the signing process like
the signatureMethod, oauthVersion and all the keys and tokens involved in any request. The
init function assigns values for these, if they were provided. Depending on the request we
are signing, we might need just a subset of them.

This code in Listing 5-24 and all other code in this section is saved in the OAuth1a.swift file:

Listing 5-24.

import Foundation
class OAuth1a {
 var signatureMethod: String = "HMAC-SHA1"
 var oauthVersion: String = "1.0"
 var oauthConsumerKey: String!
 var oauthConsumerSecret: String!
 var oauthToken: String!
 var oauthTokenSecret: String!
  
 required init (oauthParams: NSDictionary) {
 oauthConsumerKey = oauthParams.objectForKey("oauth_consumer_key") as! String
 oauthConsumerSecret = oauthParams.objectForKey("oauth_consumer_secret") as! String
 oauthToken = oauthParams.objectForKey("oauth_token") as! String
 oauthTokenSecret = oauthParams.objectForKey("oauth_token_secret") as! String
 }
...
}

We saw that the elements that help randomize the signature are the timestamp and the
nonce. The timestamp is just the epoch time and can be easily read from NSDate. We are
only interested in the Int value of this, which is the epoch time in seconds. This is found in
the signRequest() function listed below:

let timeStamp = String(format:"%d", Int(NSDate().timeIntervalSince1970))

We created a separate function for the nonce, which makes things very easy for the caller. It takes
an alphanumeric string that contains all valid characters then runs a random pointer over the
string and extracts a character at that index until we get a random string in the desired length:

152 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

Listing 5-25.

func randomStringWithLength (len : Int) -> String {
 let letters : NSString = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"
 var randomString : NSMutableString = NSMutableString(capacity: len)
  
 for (var i=0; i < len; i++){
 var length = UInt32(letters.length)
 var rand = arc4random_uniform(length)
 randomString.appendFormat("%C", letters.characterAtIndex(Int(rand)))
 }
 return randomString as String
}

Signing the Request
The main function in this library is signRequest(). It takes the request object, the URL
parameters, as well as an optional alternative URL to be used for signing the request. The
first thing we do is to prepare the timeStamp, nonce, and the URL to be used for signing.
These are the variable parts in our signature. To make debugging easy we added some
console logging statements. There is no need to log these to the text area on the screen,
since it would crowd the space and provide little value once we get the first request right.

Listing 5-26.

func signRequest (request: NSMutableURLRequest, urlParameters: [String:String]!=[:],
signUrl: String!=nil) {
 let timeStamp = String(format:"%d", Int(NSDate().timeIntervalSince1970))
 var nonce = randomStringWithLength(11)
 var baseUrl: String
 if signUrl == nil {
 baseUrl = (request.valueForKey("URL") as! NSURL).absoluteString!
 print("REQUEST URL: " + baseUrl)
 }
 else {
 baseUrl = signUrl
 print("SIGN URL: " + signUrl)
 }
 print("TIMESTAMP: " + timeStamp)
 print("NONCE: " + nonce)

To calculate the signature we follow the guidance from the OAuth 1.0a specs, and we will
find that the Fitbit API is following them indeed to the letter. In fact, we built this initially
using the Google interactive OAuth 1.0a page, and it just worked with Fitbit. The order of the
params has to be preserved exactly as shown. We also log in to the console the elements
that contribute to the signature, to be able to verify the output with the API support page.
It is important to observe that we escape both the baseUrl and the normalizedParameters
strings once more before joining them into the signatureBaseString. We also notice that the
urlParameters are mixed with the OAuth parameters; in fact, the resulting URL string needs
to be sorted alphabetically by keys. The sorting is case-sensitive, so Z comes before a.

153CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

The signing key for hmac() is the concatenated values (each first encoded per Parameter
Encoding) of the Consumer Secret and Token Secret, separated by an ‘&’ character
(ASCII code 38) even if empty.

Listing 5-27.

var signatureParams: [String:String] = [:]
 for (key, value) in urlParameters {
 signatureParams.updateValue(value, forKey: key)
 }
 signatureParams.updateValue(oauthConsumerKey, forKey: "oauth_consumer_key")
 signatureParams.updateValue(nonce, forKey: "oauth_nonce")
 signatureParams.updateValue(signatureMethod, forKey: "oauth_signature_method")
 signatureParams.updateValue(timeStamp, forKey: "oauth_timestamp")
  
 if oauthToken != nil {
 signatureParams.updateValue(oauthToken, forKey: "oauth_token")
 request.setValue(oauthToken, forHTTPHeaderField: "oauth_token")
 }
 signatureParams.updateValue(oauthVersion, forKey: "oauth_version")
  
 var normalizedParameters: String = asURLString(inputData: signatureParams)
  
 var signatureBaseString: String = "&".join([
 request.HTTPMethod,
 baseUrl.escapeUrl(),
 normalizedParameters.escapeUrl()
])
 // the key is the concatenated values (each first encoded per Parameter Encoding)
 �// of the Consumer Secret and Token Secret, separated by an '&' character (ASCII code 38)

even if empty
 var signKey = oauthConsumerSecret.escapeUrl() + "&" + oauthTokenSecret.escapeUrl()
 var signature = signatureBaseString.hmac(HMACAlgorithm.SHA1, key: signKey)
  
 print("SIGNATURE STRING: " + signatureBaseString)
 print("SIGNATURE KEY: " + signKey)
 print("SIGNATURE: " + signature)

Now that we have the signature, we need to populate the request header with the correct
string. Here, too, the alphabetic order of the parameters is important.

Listing 5-28.

// This exact order has to be preserved
 let header: OAuth1aHeader = OAuth1aHeader(name: "OAuth")
 header.add("oauth_consumer_key", value: oauthConsumerKey)
 header.add("oauth_nonce", value: nonce)
 header.add("oauth_signature", value: signature)
 header.add("oauth_signature_method", value: signatureMethod)
 header.add("oauth_timestamp", value: timeStamp)
 header.add("oauth_token", value: oauthToken)

154 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

 header.add("oauth_version", value: oauthVersion)
 let hParams = header.asString()
  
 print("HEADER: Authorization: " + hParams)
 request.setValue(hParams, forHTTPHeaderField: "Authorization")

Creating the OAuth H
The code that puts together correctly the header entry and escapes the values is tucked
away in an inner class, at the end of the OAuth1a.swift file:

Listing 5-29.

class OAuth1aHeader {
 var hName: String!
 var params: Array<String>!
 required init (name: String) {
 params = Array<String>()
 hName = name
 }
 func add (key: String, value: String) {
 params.append(key + "=\"" + value.escapeUrl() + "\"")
 }
 func asString () -> String {
 var hParams: String = ", ".join(params)
 return hName + " " + hParams
 }
}

We did not create a common library for the APIClient and this OAuth1a library, so we need
to duplicate some code that encodes the URL for signing. Sorting of parameters was not
needed in the actual URL but is needed for the correct OAuth signature.

Listing 5-30.

func asURLString (inputData: [String:String]!=[:]) -> String {
 var params: [String] = []
 for (key, value) in inputData {
 params.append("=".join([key.escapeUrl(), value.escapeUrl()]))
 }
 params = params.sort { $0 < $1 }
 return "&".join(params)
}
 
This was all the work needed for the OAuth signature. It wasn’t that bad, right? As a bonus,
we added the signTempAccessToken() function that can be used for the signing of the first
step in registering the access of your app to a user account. Notice that the requestUrl
is stripped of the protocol and the host part, so that instead of the full URL https://api.
fitbit.com/oauth/request_token only the oauth/request_token path is used for signing.

https://api.fitbit.com/oauth/request_token
https://api.fitbit.com/oauth/request_token

155CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

Listing 5-31.

func signTempAccessToken (request: NSMutableURLRequest) {
 // This request does not use the URL for signing, but rather the path oauth/request_token
 var requestUrl = request.valueForKey("URL") as? NSURL
 var urlPath: String = requestUrl!.path!
 urlPath = String(dropFirst(urlPath))
 signRequest(request, signUrl: urlPath)
}

The code for OAuth1a.swift
Here is the complete code in the OAuth1a.swift library.

Listing 5-32.

import Foundation
class OAuth1a {
 var signatureMethod: String = "HMAC-SHA1"
 var oauthVersion: String = "1.0"
 var oauthConsumerKey: String!
 var oauthConsumerSecret: String!
 var oauthToken: String!
 var oauthTokenSecret: String!
  
 required init (oauthParams: NSDictionary) {
 oauthConsumerKey = oauthParams.objectForKey("oauth_consumer_key") as! String
 oauthConsumerSecret = oauthParams.objectForKey("oauth_consumer_secret") as! String
 oauthToken = oauthParams.objectForKey("oauth_token") as! String
 oauthTokenSecret = oauthParams.objectForKey("oauth_token_secret") as! String
 }
  
 func randomStringWithLength (len : Int) -> String {
 let letters : NSString = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"
 var randomString : NSMutableString = NSMutableString(capacity: len)
  
 for (var i=0; i < len; i++){
 var length = UInt32(letters.length)
 var rand = arc4random_uniform(length)
 randomString.appendFormat("%C", letters.characterAtIndex(Int(rand)))
 }
 return randomString as String
 }
 
func signRequest (request: NSMutableURLRequest, urlParameters: [String:String]!=[:],
signUrl: String!=nil) {
 let timeStamp = String(format:"%d", Int(NSDate().timeIntervalSince1970))
 var nonce = randomStringWithLength(11)
 var baseUrl: String

156 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

 if signUrl == nil {
 baseUrl = (request.valueForKey("URL") as! NSURL).absoluteString!
 print("REQUEST URL: " + baseUrl)
 }
 else {
 baseUrl = signUrl
 print("SIGN URL: " + signUrl)
 }
 print("TIMESTAMP: " + timeStamp)
 print("NONCE: " + nonce)
  
 // The signing params need to be sorted alphabetically
 var signatureParams: [String:String] = [:]
 for (key, value) in urlParameters {
 signatureParams.updateValue(value, forKey: key)
 }
 signatureParams.updateValue(oauthConsumerKey, forKey: "oauth_consumer_key")
 signatureParams.updateValue(nonce, forKey: "oauth_nonce")
 signatureParams.updateValue(signatureMethod, forKey: "oauth_signature_method")
 signatureParams.updateValue(timeStamp, forKey: "oauth_timestamp")
  
 if oauthToken != nil {
 signatureParams.updateValue(oauthToken, forKey: "oauth_token")
 request.setValue(oauthToken, forHTTPHeaderField: "oauth_token")
 }
 signatureParams.updateValue(oauthVersion, forKey: "oauth_version")
  
 var normalizedParameters: String = asURLString(inputData: signatureParams)
  
 var signatureBaseString: String = "&".join([
 request.HTTPMethod,
 baseUrl.escapeUrl(),
 normalizedParameters.escapeUrl()
])
 // the key is the concatenated values (each first encoded per Parameter Encoding)
 �// of the Consumer Secret and Token Secret, separated by an '&' character

(ASCII code 38) even if empty
 var signKey = oauthConsumerSecret.escapeUrl() + "&" + oauthTokenSecret.escapeUrl()
 var signature = signatureBaseString.hmac(HMACAlgorithm.SHA1, key: signKey)
  
 print("SIGNATURE STRING: " + signatureBaseString)
 print("SIGNATURE KEY: " + signKey)
 print("SIGNATURE: " + signature)
  
 // This exact order has to be preserved
 let header: OAuth1aHeader = OAuth1aHeader(name: "OAuth")
 header.add("oauth_consumer_key", value: oauthConsumerKey)
 header.add("oauth_nonce", value: nonce)
 header.add("oauth_signature", value: signature)
 header.add("oauth_signature_method", value: signatureMethod)
 header.add("oauth_timestamp", value: timeStamp)

157CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

 header.add("oauth_token", value: oauthToken)
 header.add("oauth_version", value: oauthVersion)
 let hParams = header.asString()
  
 print("HEADER: Authorization: " + hParams)
 request.setValue(hParams, forHTTPHeaderField: "Authorization")
 }
  
 func asURLString (inputData: [String:String]!=[:]) -> String {
 var params: [String] = []
 for (key, value) in inputData {
 params.append("=".join([key.escapeUrl(), value.escapeUrl()]))
 }
 params = params.sorted{ $0 < $1 }
 return "&".join(params)
 }
  
 func signTempAccessToken (request: NSMutableURLRequest) {
 // This request does not use the URL for signing, but rather the path oauth/request_token
 var requestUrl = request.valueForKey("URL") as? NSURL
 var urlPath: String = requestUrl!.path!
 urlPath = String(dropFirst(urlPath))
 signRequest(request, signUrl: urlPath)
 }
  
 class OAuth1aHeader {
 var hName: String!
 var params: Array<String>!
 required init (name: String) {
 params = Array<String>()
 hName = name
 }
 func add (key: String, value: String) {
 params.append(key + "=\"" + value.escapeUrl() + "\"")
 }
 func asString () -> String {
 var hParams: String = ", ".join(params)
 return hName + " " + hParams
 }
 }

Testing What We Have so Far
With the code we have so far, we can make requests to the local host, provided that we
set up the local playground with Apache and we have the two test documents in place. We
clicked the Good Request once the Bad Request once, and in Listing 5-33 we can see the
Xcode console output of the println() statements.

158 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

Listing 5-33.

REQUEST URL: http://127.0.0.1/data.json
TIMESTAMP: 1429481277
NONCE: OPrkKRdgn8I
SIGNATURE STRING: GET&http%3A%2 F%2 F127.0.0.1%2Fdata.json&oauth_consumer_key%3D6cf4162
a72ac4a4382c098caec132782%26oauth_nonce%3DOPrkKRdgn8I%26oauth_signature_method%3DHMAC-
SHA1%26oauth_timestamp%3D1429481277%26oauth_token%3D5a3ca2edf91d7175cad30bc3533e3c8a%26oau
th_version%3D1.0
SIGNATURE KEY: c652d5fb28f344679f3b6b12121465af&da5bc974d697470a93ec59e9cfaee06d
SIGNATURE: 2Efcl/SN9s+xR9qRTObIsNQwkpI=
HEADER: Authorization: OAuth oauth_consumer_key="6cf4162a72ac4a4382c098caec132782", oauth_
nonce="OPrkKRdgn8I", oauth_signature="2Efcl%2FSN9s%2BxR9qRTObIsNQwkpI%3D", oauth_signature_
method="HMAC-SHA1", oauth_timestamp="1429481277", oauth_token="5a3ca2edf91d7175cad30bc3533e3
c8a", oauth_version="1.0"
RESPONSE RAW: {"Response":{"key":"value"}}
 
RESPONSE SHA1: 5ae11e3b34fdcd7fba984695e9001511c9e0aa8d
 
REQUEST URL: http://127.0.0.1/badData.json
TIMESTAMP: 1429481278
NONCE: 0OHgLcjefM6
SIGNATURE STRING:
GET&http%3A%2 F%2 F127.0.0.1%2FbadData.json&oauth_consumer_key%3D6cf4162a72ac4a4382c09
8caec132782%26oauth_nonce%3D0OHgLcjefM6%26oauth_signature_method%3DHMAC-SHA1%26oauth_
timestamp%3D1429481278%26oauth_token%3D5a3ca2edf91d7175cad30bc3533e3c8a%26oauth_
version%3D1.0
SIGNATURE KEY: c652d5fb28f344679f3b6b12121465af&da5bc974d697470a93ec59e9cfaee06d
SIGNATURE: DMB81a3oUO16lJa7YvUJpYguunQ=
HEADER: Authorization: OAuth oauth_consumer_key="6cf4162a72ac4a4382c098caec132782", oauth_
nonce="0OHgLcjefM6", oauth_signature="DMB81a3oUO16lJa7YvUJpYguunQ%3D", oauth_signature_
method="HMAC-SHA1", oauth_timestamp="1429481278", oauth_token="5a3ca2edf91d7175cad30bc3533e3
c8a", oauth_version="1.0"
RESPONSE RAW: {"Response":{{"key":"value"}}
 
RESPONSE SHA1: bd28faef1bc309899ed8540105c86ad23c1f27e7

Our simulator screenshot in Figure 5-4 shows the results of our activity. Now we are ready to
test against the live API, and see if our OAuth work paid off.

http://127.0.0.1/data.json
http://127.0.0.1/badData.json

159CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

Making requests to the Fitbit API
By now we know that there is no magic to the API request process; it is just important to
assemble all the parts of the request in the correct order.

	Get the correct tokens and create the OAuth signature with all elements
in the correct order.

	Keep track of the rate limiting parameters that could cripple your app if
there is too much traffic.

	Build a parser that handles the JSON output.

On the Fitbit developer page, we can use the debug tool to place an API request,
now that we know our access token and access token secret. Keep in mind that the request
is signed not only with the access token and the access token secret but also with the
oauth_consumer_key, which will be used by the API to identify the user account being
accessed. The oauth_consumer_key is present in the Header, while the oauth_consumer_secret
is used together with oauth_token_secret to sign the Base String.

Figure 5-4.  The simulator screenshot

160 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

Listing 5-34 shows the dissected request for the user profile, when we make the request
using curl. Shown are the defaults for a profile that has not been updated since the creation
of the account. The format of the response is well documented on the Fitbit developer site.

Listing 5-34.

Access Token: 5a3ca2edf91d7175cad30bc3533e3c8a
Access Token Secret: da5bc974d697470a93ec59e9cfaee06d
Request URL: https://api.fitbit.com/1/user/-/profile.json
Nonce: random
Timestamp: 1429396457
Type: GET
 
API request values:
Base string: GET&https%3A%2 F%2Fapi.fitbit.com%2 F1%2Fuser%2 F-%2Fprofile.
json&oauth_consumer_key%3D6cf4162a72ac4a4382c098caec132782%26oauth_nonce%3Drandom%26oauth_
signature_method%3DHMAC-SHA1%26oauth_timestamp%3D1429396457%26oauth_token%3D5a3ca2edf91d7175c
ad30bc3533e3c8a%26oauth_version%3D1.0
Signed with: c652d5fb28f344679f3b6b12121465af&da5bc974d697470a93ec59e9cfaee06d
Signature: c2wi9Xk+nOGpjRoyxtotIM5AyA4=

Listing 5-35 shows the request made with curl.

Listing 5-35.

$ curl -X GET -i -H 'Authorization: OAuth oauth_consumer_key="6cf4162a72ac4a4382c098ca
ec132782", oauth_nonce="random", oauth_signature="c2wi9Xk%2BnOGpjRoyxtotIM5AyA4%3D", oauth_
signature_method="HMAC-SHA1", oauth_timestamp="1429396457", oauth_token="5a3ca2edf91d7175cad
30bc3533e3c8a", oauth_version="1.0"' https://api.fitbit.com/1/user/-/profile.json

Listing 5-36 shows the output of the curl request.

Listing 5-36.

HTTP/1.1 200 OK
Server: nginx
X-UA-Compatible: IE=edge,chrome=1
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Cache-control: no-cache, must-revalidate
Pragma: no-cache
Fitbit-Rate-Limit-Limit: 150
Fitbit-Rate-Limit-Remaining: 149
Fitbit-Rate-Limit-Reset: 1478
Set-Cookie: JSESSIONID=5D7EA76F7CB0C45BF1A7A020C9BAC55B.fitbit1; Path=/; HttpOnly
Content-Type: application/json;charset=UTF-8
Content-Language: en
Content-Length: 657
Vary: Accept-Encoding
Date: Sat, 18 Apr 2015 22:35:21 GMT
  

https://api.fitbit.com/1/user/-/profile.json
https://api.fitbit.com/1/user/-/profile.json

161CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

{"user":{"avatar":"http://www.fitbit.com/images/profile/defaultProfile_100_male.gif",
"avatar150":"http://www.fitbit.com/images/profile/defaultProfile_150_male.gif","country":
"US","dateOfBirth":"","displayName":"","distanceUnit":"en_US","encodedId":"3BRQLQ",
"foodsLocale":"en_US","gender":"NA","glucoseUnit":"en_US","height":0,"heightUnit":
"en_US","locale":"en_US","memberSince":"2015-04-02","offsetFromUTCMillis":-25200000,
"startDayOfWeek":"SUNDAY","strideLengthRunning":86.60000000000001,"strideLengthWalking":
67.10000000000001,"timezone":"America/Los_Angeles","topBadges":[],"waterUnit":
"en_US","waterUnitName":"fl oz","weight":62.5,"weightUnit":"en_US"}}

To make live requests, we need to uncomment the api.goLive() in the ViewController
library, and our requests will go directly to the Fitbit API. Of course, you need to make
sure that the oauthParams in the APIClient are set to the values you generated while going
through the registration steps of your application, as shown in section “The Fitbit OAuth
Implementation.”

Retrieving the User Profile
Not to forget, we have two test buttons in the view controller that test against the local
documents. The easiest way to test if the API is working is to repurpose the code and make
a user profile request. In the ViewController.swift file we have the following:

@IBAction func clickButton() {
 logger.logEvent("=== Good Request ===")
 // api.getData(APIService.GOOD_JSON) // TEST CALL
 api.getData(APIService.USER, id: "-", urlSuffix: NSArray(array: ["profile"]))
 labelButton.setTitle("Good Request Sent", forState: UIControlState.Normal)
}

We click the button and here is our first API call made through the application works. In the
Xcode console we see the full detail of the request/response (see Listing 5-7).

Listing 5-37.

REQUEST URL: https://api.fitbit.com/1/user/-/profile.json
TIMESTAMP: 1429482687
NONCE: eTYGnygDYr4
SIGNATURE STRING: GET&https%3A%2 F%2Fapi.fitbit.com%2 F1%2Fuser%2 F-%2Fprofile.json&oauth_
consumer_key%3D6cf4162a72ac4a4382c098caec132782%26oauth_nonce%3DeTYGnygDYr4%26oauth_
signature_method%3DHMAC-SHA1%26oauth_timestamp%3D1429482687%26oauth_token%3D5a3ca2edf91d7175
cad30bc3533e3c8a%26oauth_version%3D1.0
SIGNATURE KEY: c652d5fb28f344679f3b6b12121465af&da5bc974d697470a93ec59e9cfaee06d
SIGNATURE: a+CWGxlsJiiJGc7ezIZVNtw3ASA=
HEADER: Authorization: OAuth oauth_consumer_key="6cf4162a72ac4a4382c098caec132782",
oauth_nonce="eTYGnygDYr4", oauth_signature="a%2BCWGxlsJiiJGc7ezIZVNtw3ASA%3D",
oauth_signature_method="HMAC-SHA1", oauth_timestamp="1429482687", oauth_token=
"5a3ca2edf91d7175cad30bc3533e3c8a", oauth_version="1.0"

https://api.fitbit.com/1/user/-/profile.json
http://www.fitbit.com/images/profile/defaultProfile_150_male.gif
https://api.fitbit.com/1/user/-/profile.json

162 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

Figure 5-5.  Screenshot of the user profile

RESPONSE HEADER rateLimit: 150
RESPONSE HEADER rateLimitRemaining: 149
RESPONSE HEADER rateLimitReset: 1713, checked at: 1429482687
RESPONSE RAW: {"user":{"avatar":"http://www.fitbit.com/images/profile/defaultProfile_100_
male.gif","avatar150":"http://www.fitbit.com/images/profile/defaultProfile_150_male.gif",
"country":"US","dateOfBirth":"","displayName":"","distanceUnit":"en_US","encodedId":
"3BRQLQ","foodsLocale":"en_US","gender":"NA","glucoseUnit":"en_US","height":0,"heightUnit":
"en_US","locale":"en_US","memberSince":"2015-04-02","offsetFromUTCMillis":-25200000,"
startDayOfWeek":"SUNDAY","strideLengthRunning":86.60000000000001,"strideLengthWalking"
:67.10000000000001,"timezone":"America/Los_Angeles","topBadges":[],"waterUnit":
"en_US","waterUnitName":"fl oz","weight":62.5,"weightUnit":"en_US"}}
RESPONSE SHA1: caa14550567548b173a0a904f0b3c7bae6d7452a

Figure 5-5 shows the screenshot of the user profile as it was read.

163CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

Retrieving and Setting Data in the API
Like retrieving the user profile, this is a simple GET with a given API target. The following is a
nonexhaustive list of targets you can currently query that retrieve and set user data:

	Get/Set body measurements

	Get/Set body weight and body fat

	Get/Set blood pressure and heart rate

	Get/Set glucose

With the exception of body weight and body fat, all the foregoing targets are unfortunately
on the list of deprecated API features (as of October 2014). We expect that ultimately all
services will be migrated to OAuth 2.0. Deprecated means that the features are still available
but are not actively developed and will be later replaced by other features. The deprecated
services will still be available for a while, after the new services are in place.

Fitbit announced three new products at the time of writing of this book: Charge, Charge HR,
and Surge. The Fitbit API will provide access to the all-day heart rate and GPS data from
these devices; however, these data types will be accessible exclusively via OAuth 2.0.

As the transition to OAuth 2.0 will be happening in the coming months, there is little point in
detailing here how to use the entire set of deprecated API services. To make things easy we
will show how to get and set a few data points: all other services are similar in nature to the
request response, and well documented on the Fitbit developer page.

Getting the Blood Pressure
We will repurpose our “Good Request” Button in the ViewController.swift file to make
this request:

@IBAction func clickButton() {
 logger.logEvent("=== Good Request ===")
 // api.getData(APIService.GOOD_JSON) // TEST CALL
 // api.getData(APIService.USER, id: "-", urlSuffix: NSArray(array: ["profile"]))
 api.getBloodPressure()
 labelButton.setTitle("Good Request Sent", forState: UIControlState.Normal)
}

The function we wrote in the APIClient is rather simple, and it makes use of the abstraction
we created with getData(). This method is located in the APIClient.swift file.

func getBloodPressure (date: NSDate?=NSDate()) {
 let formatter = NSDateFormatter()
 formatter.dateFormat = "yyyy-MM-dd"
 let currentDate = formatter.stringFromDate(date!)
 print("CURRENT DATE: \(currentDate)");
 getData(APIService.USER, id: "-", urlSuffix: NSArray(array: ["bp/date", currentDate]))
}

164 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

The function makes the following API call:

GET /1/user/-/bp/date/2015-04-23.json

Naturally, since we did not send any blood pressure information to the API yet, the default
response is blank, as shown below. Your response handler needs to be able to deal with an
empty response.

{"bp":[]}

Keep in mind that this response right now goes nowhere. When you implement your
application, you will have decide how to handle it in the processGETData() callback function
in the API, based on the data you set in the urlSuffix param, which we now know can be
composed of the service name and its parameters.

When there are records for the blood pressure in the system, our response will be more like
the following example shown in Listing 5-38:

Listing 5-38.

{
 "average": {
 "condition":"Prehypertension",
 "diastolic":85,
 "systolic":115
 },
 "bp": [
 {
 "diastolic":80,
 "logId":483697,
 "systolic":120
 },
 {
 "diastolic":90,
 "logId":483699,
 "systolic":110,
 "time":"08:00"
 }
]
}

Setting the Blood Pressure
Continuing to abuse the “Good Request” Button, we change things once again, this time
calling the new function. Keep in mind that these are both async methods, and the way we
implement them here is not necessarily the best way, as there is no guarantee which one
reaches the API first, and they both rely on the processGETData() in the APIClient to handle
the response. This function is in ViewController.swift.

165CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

 @IBAction func clickButton() {
 logger.logEvent("=== Good Request ===")
 // api.getData(APIService.GOOD_JSON) // TEST CALL
 api.getData(APIService.USER, id: "-", urlSuffix: NSArray(array: ["profile"]))
 labelButton.setTitle("Good Request Sent", forState: UIControlState.Normal) }
 
We keep the getBloodPressure() function we wrote before, since we will need to read back the
data we are setting so we create the setBloodPressure() function(located in APIClient.swift):

func setBloodPressure (date: NSDate?=NSDate()) {
 let formatter = NSDateFormatter()
 formatter.dateFormat = "yyyy-MM-dd"
 let currentDate = formatter.stringFromDate(date!)
 let request: [String:String] = ["diastolic":"80","systolic":"120","date": currentDate]
 postData(APIService.USER, id: "-", urlSuffix: NSArray(array: ["bp"]), params: request)
}

This function makes the following API call:

POST /1/user/-/bp.json?date=2015-04-23&diastolic=80&systolic=120

The API responds with the data that was just inserted, with a populated logId.

{
 "bpLog": {
 "diastolic":80,
 "logId":1298241959,
 "systolic":120
 }
}

If we now make a call to get the blood pressure data, we get the full detail, including the
friendly health warning. It is important to note that there is no timestamp, because we did
not provide one, the field being optional.

{
 "average": {
 "condition":"Prehypertension",
 "diastolic":80,
 "systolic":120
 },
 "bp": [
 {
 "diastolic":80,
 "logId":1298241959,
 "systolic":120
 }
]
} 

166 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

Logging the Body Weight
Just as we did for blood pressure, the service that lets you set and get body weight data has
a similar implementation. To set the body weight, we call the service with the parameters
listed in the API docs, very much like we did with the other service. Save this function in the
APIClient.swift.

func setBodyWeight (date: NSDate?=NSDate()) {
 let formatter = NSDateFormatter()
 formatter.dateFormat = "yyyy-MM-dd"
 let currentDate = formatter.stringFromDate(date!)
 let
 �postData(APIService.USER, id: "-", urlSuffix: NSArray(array: ["body/log/weight"]),

params: request)
}

This function makes the following API call:

POST /1/user/-/bp.json?date=2015-04-24&weight=73

The GET is no different from the blood pressure call, other than the URL path(APIClient.swift):

func getBodyWeight (date: NSDate?=NSDate()) {
 let formatter = NSDateFormatter()
 formatter.dateFormat = "yyyy-MM-dd"
 let currentDate = formatter.stringFromDate(date!)
 �getData(APIService.USER, id: "-", urlSuffix: NSArray(array: ["body/log/weight/date",

currentDate]))
}

This function makes the following API call:

GET /1/user/-/body/log/weight/date/2015-04-24.json

The response from API is JSON data in the following format:

{
 "weight": [
 {
 "bmi":0,
 "date":"2015-04-24",
 "logId":1429919999000,
 "time":"23:59:59",
 "weight":73
 }
]
}

167CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

OAuth versions: Working in both worlds
The current version of the API used by Fitbit is OAuth 1.0a. This is a stable, very secure, and
reliable protocol but intrinsically complex. Just as is the case with PGP encryption, complex
and secure crypto and protocols are being replaced by others that might not be so good,
but they are convenient to implement.

OAuth 1.0a is signing every request, and that can be a resource drain on either side of
the implementation (client/server). At the same time, there is no clear separation of roles
between the authorization server and the resource server since a lot of data needed for
signing is common to these roles. Granted, OAuth 1.0a has its place for the security it offers;
alone for the sheer advantage of being able to sign and trust every request, it might never
completely go away, but ease of implementation is not its forte. Consider, however, that with
OAuth 1.0a when correctly implemented, the chance of success for a Man-in-the-Middle
type of attack is extremely low, while with token-based protocols like OAuth 2.0, it’s a simple
matter of breaking SSL, which in the last years is developing holes much like Swiss cheese.

A lot of the recent API implementations favor OAuth 2.0.

OAuth 2.0 also accommodates much easier native applications with specifically suited
workflows. It also provides a very clear separation of roles between the authentication server
and the server handling the request.

Viewed on an elementary level, OAuth 2.0 defines the following workflow:

	Authenticate with the authorization server, and get an authorization code

	Request from the authorization server a set of access and refresh tokens

	Using the access token, request restricted resources from the
resource server

	Periodically use the refresh token to get from the authorization server a
new access token

The access token is set to have an expiration date, and the lifetime of one token varies with
the implementation.

Given that OAuth 2.0 also gets a bad rap from security experts for the many loose ends
in the specification and the potential for abuse and misrepresentation of the caller, it is
conceivable that further versions of the standard will come up in the next years. For that
matter alone, it would serve you well to follow the development of the standard and how
service providers like Fitbit follow up with it.

In the case of Fitbit, the company announced support for OAuth 2.0, but there was no clear
detail of implementation available at the time of writing this chapter. If you need to deliver
your application right now, you should write services following the current OAuth 1.0a
standard, but also be ready to provide upgrades to your app that will use the OAuth 2.0
services when they become public and well documented.

168 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

Consider that we went through a rather complex process to implement (in part) the OAuth 1.0a
for the Fitbit API in its current version; looking back at the code, it wasn’t all that bad. Writing
code for OAuth 2.0 is likely to be easier, at least because you won’t need to sign every request,
and you can reuse much of this code: in fact you will have to, because for a good while you
will have to live in both worlds, as Fitbit transitions the API from OAuth 1.0a to OAuth 2.0.

As mentioned at the beginning of this chapter, the transition from old to new is a gradual
process for most APIs. Your application will be alive and well for quite a while, and you will
have the time to study, implement, test, and deliver an upgraded version of your app that
supports OAuth 2.0. What is most likely to happen is that Fitbit will offer specific services
only on OAuth 2.0; so, for that reason alone, you will have to upgrade your app to support it
as soon as it becomes available.

Summary
We learned in this chapter how to build an API to communicate with the Fitbit API and
implement a few calls that get and set health data. Since this API, as most APIs out there, is
under constant development, you might need to implement new or different calls to the API
to do what we did here, as well as add support for OAuth 2.0 for the new API version, but
the basic principles remain the same.

169

Chapter 6
Building Your First
watchOS App

Ahmed Bakir

Introduction
In late 2014, Apple replied to the vocal concerns of many of its critics and consumers
by introducing a completely new “product category” — the Apple Watch. This came as
a surprise to (almost) everyone, why would the most profitable computer company in
history enter the smart watch market, a “fad” that had yet to achieve a killer app? Similarly,
how would they address people’s bias as to how watches should look and work (they’ve
only been around for a few thousand years)? And what would they do to make it an app
platform?

The answer was to apply the lessons they had learned about mobile computing (low energy,
low memory, limited screen size) to a device that was even smaller than the original iPhone.
Much like the iPhone, the Apple Watch runs an operating system based on another in their
family (watchOS, a subset of iOS), it has an open API (Application Programming Interface)
that anyone can develop software for, and it has an App Store that users can access through
iTunes. Due to the limited screen size and input devices on a watch (a touch screen and
digital crown), watchOS apps are not intended to be as fully featured as iOS apps and as
distributed as “extensions” of iPhone applications on the App Store. This has the positive
side effect of allowing you to share data and pass off tasks to the parent application.

As the name implies, watchOS is a complete operating system, allowing watch applications
to run independently when an iPhone is not present, such as when you are at the gym. Many
of the frameworks on watchOS are taken directly from iOS, such as Core Data, Core Motion,
and Core Location, but with a limited featured set. One of the key concepts in developing a

170 CHAPTER 6: Building Your First watchOS App

resource-limited computer system, such as a smart watch, is that you should only include
the functionality you need to make it fit in the resources you have; e.g., a smart watch does
not need the advanced home screen of a phone to launch an app.

In this chapter, you will learn how to get started in Apple Watch development by adding
an Apple Watch extension to the CarFinder application from the first chapter. As shown in
Figure 6-1, the extension exposes a table view that allows users to view a list of their logged
locations and details about each, including a map and the GPS coordinates. This exercise
is intended to help you learn the basics of watchOS app architecture and how to use Xcode
to develop watchOS apps. In the following chapters, you will learn more advanced features
to make the app even more useful, such as logging location from the watch, adding
speech-to-text to the app, and accessing data sources from the Internet directly on the
watch. The completed version of the project is available in the Ch7 folder of this book’s
source code bundle on the Apress website.

Figure 6-1.  Mock-up of CarFinder Watch App

watchOS Apps vs. iOS Apps
Before moving into how you build a watchOS app, it is good to know how watchOS apps
differ architecturally from iOS apps (aside from running on a different operating system.)
To reduce the learning curve for developers coming from iOS and OS X, Apple aimed to
make both platforms functionally similar (even retaining some of the same class names and
API calls), but changes had to be made to fit the operating system on the watch’s limited
resources.

The most significant difference between watchOS and iOS that will help you understand the
delta between the platforms is that you cannot create new user interface objects at runtime
on watchOS. Although both platforms adopt Model-View-Controller (MVC) as their main
design pattern for user interface development, on watchOS, you can only update or present
existing element at runtime. More simply put, this means, if an element or view controller is
defined on the storyboard for your watchOS app, then you can access it at runtime. Since
you cannot instantiate new user interface elements, you will learn new tricks to work around
this limitation, such as setting elements to “invisible” during runtime. For better or worse,
watchOS implements storyboards in the same manner as iOS and OS X (where you define
the layout and tie it to parent classes in Interface Builder.)

171CHAPTER 6: Building Your First watchOS App

The lack of runtime user interface changes in watchOS is also reflected in how watchOS
apps are built and distributed on the App Store. When you compile an iOS or OS X app, the
source code files are compiled into object code and all of the resources (storyboards,
images, and any other files you manually add to your project) are bundled into one .app file.
When you download an iOS or OS X app, the entire .app file is installed on the device. On
the other hand, watchOS apps produce two output files (a “WatchKit app” and a “WatchKit
extension”), which are packaged and inside of your iOS app’s .app file. There is a bit of term
overloading here, which I will explain. A WatchKit app refers to the storyboard file and other
static resources that you include in your project file. A WatchKit extension contains all of the
compiled source code for your watchOS project. When you choose to install a watchOS app
on your Apple Watch, iOS grabs these files from the iOS app’s bundle and copies them over
to your watch. You can take advantage of this bundling to create “shared groups”, which
allow you to share files between your iOS app and watchOS app.

In the introduction, I mentioned that watchOS includes many of the frameworks you are
familiar with from Cocoa Touch. Some of these frameworks, and their intended uses, are
listed in Table 6-1. In watchOS 2.0 and higher, these frameworks are installed on the watch,
allowing your watchOS app to execute commands from these frameworks without being
connected to the phone. It also has the side effect of allowing you to access the Apple
Watch’s hardware, such as the heart rate monitor, accelerometer and GPS directly.

Note  WatchKit refers to the base framework for watchOS app development. watchOS includes
another similarly named framework called ClockKit, which is used to build a complication, or
plug-in, for Apple Watch’s built-in watch faces.

Table 6-1.  Cocoa Touch Frameworks Available on watchOS

Framework Intended Purpose

Contacts Access to the user’s contacts, including all relevant metadata

Core Data Database operations

Core Location Access to the user’s current location

CoreGraphics Lightweight drawing and graphics operations.

EventKit Access to the user’s calendars and reminders

One important omission you will note is UIKit. watchOS only supports a limited subset
of user interface elements, which are managed by the WatchKit. Since you can not
instantiate new elements at runtime or perform more complicated actions on them, such
as rotation, animation, or modifying how they are drawn, many of the functions of UIKit
are extraneous on the Apple Watch. The primary WatchKit class you will use in this book
is WKInterfaceController, which takes the place of UIViewController. The WatchKit user
interface class names all start with WKInterface (ex, WKInterfaceLabel, WKInterfaceButton,
WKInterfaceMap).

172 CHAPTER 6: Building Your First watchOS App

A final note to make about watchOS apps is the nature of its interfaces. Unlike an iOS app,
a watchOS has three distinct user interfaces: the main interface for the app, a “glance”
interface, and a “notification” interface. As the name implies, the main interface is what
shows up on the screen when the app is launched. The glance interface is a single-page
dashboard for your app that users can install in their “glance” menu, which comes up when
the user swipes up from the bottom on their Apple Watch screen. The notification interface is
another single-page interface that is initiated when the user receives a notification from your
watchOS app’s iOS counterpart. As these interfaces are initiated by three separate events,
your storyboard will reflect this with three “entry points” and three “scenes”, or workflows,
as opposed to the single scene you are used to from traditional iOS development.

Setting Up Your Project
To create a new Apple Watch app, you will need to add it as a new build target of an iPhone
application. A build target in Xcode is a set of configuration instructions that tell it how to
build your project, such as which files to compile, what the target OS is, and what constants
to apply. On large applications, it’s common to have “debug” and “release” targets to build
a log-message heavy version of the application that sends data to a test server, and another
performance-optimized version that sends it to the “production” server. For this project, the
Apple Watch app target tells Xcode to bundle the Apple Watch-specific source files together
into an application that can be run on watchOS.

The project for this application extends the CarFinder project from Chapter 1, so duplicate
it and open it up in Xcode. To add a new target, go to the File menu in Xcode and select New
➤ Target, as shown in Figure 6-2.

Figure 6-2.  Xcode menu for creating a new build target

http://dx.doi.org/10.1007/978-1-4842-1194-6_1

173CHAPTER 6: Building Your First watchOS App

You will be presented with the modal dialog shown in Figure 6-3, asking you to select a
platform and application type. Select watchOS as your platform and WatchKit Application as
your target type.

Caution  The Apple Watch target under the iOS hierarchy tree builds an app for watchOS 1.
All of the examples in this book are written for watchOS 2 to take advantage of its expanded feature
set and more performant application architecture.

Figure 6-3.  Creating a new build target

In a similar manner to an iOS application, you will be asked to name your WatchKit
application and select some template options. As shown in Figure 6-4, I have chosen to
give the name the WatchKit app “CarFinder - watchOS.” The WatchKit app takes the iOS
app’s name when it runs on the user’s watch, so the actual name of the target is only used
internally. A unique target name will make it faster for you to navigate between code in your
project.

I have also enabled the checkbox for “Include Notification Scene”. Apple recommends
selecting “Include Notification Scene” even if you are not implementing a notification for a
while, as their template will generate a scheme (an additional run-time configuration that is
applied to a target) and local file you can use to test notifications (as opposed to setting up
and connecting to an Apple Push Notification Service-enabled server).

174 CHAPTER 6: Building Your First watchOS App

The first time you set up a WatchKit target for a project, you may be presented with the
dialog box in Figure 6-5, which asks you to activate the scheme. Select Activate.

Figure 6-4.  Configuring your WatchKit target

Figure 6-5.  Activating the watchOS app build scheme

175CHAPTER 6: Building Your First watchOS App

When working with Xcode projects that target different platforms (like watchOS + iOS),
activate the schemes that you are actively developing on. Disable schemes for targets you
are not using to speed up your compile time.

After activating the scheme, Xcode will take you back to the default view for your project.
As shown in Figure 6-6, you will notice “CarFinder - watchOS” and “CarFinder - watchOS
Extension” folders have been added to the project hierarchy, corresponding to WatchKit’s
definition of the two pieces of an app. The Interface.storyboard file contains the scenes
(or storyboard entry points) for the app’s main interface and its notification interface; you will
make all your storyboard changes in this file. In the same manner as a new iOS application,
it comes pre-configured with parent classes tied to each view controller.

Figure 6-6.  Changes to the CarFinder project

176 CHAPTER 6: Building Your First watchOS App

Just like on iOS, you can run your watchOS app on a physical device or in a simulator. Since
an Apple Watch must be paired to an iPhone to run apps, all of the watch simulators are
paired to an iPhone simulator. Similarly, your iPhone must be plugged into your development
computer and your Apple Watch must be paired, unlocked, and in range to debug on it.
If these requirements are not met, your iPhone will be marked as an “ineligible device
(no paired watch)”.

Once you have initiated a run session on an Apple Watch, you can perform all of the
debugging operations you are used to, including setting breakpoints and viewing live
console output.

Adding a Table to your watchOS App
Now that your watchOS app is part of the CarFinder project, you are ready to start
development. To begin, you will add a table view controller to the main screen for the app
and populate its data with content from the iOS app. This first is intended to introduce you
to working with watchOS storyboards, initializing a table view controller on watchOS, and
transferring data between an iOS device and the Apple Watch. In the next section, you will
learn how to build a detail view for each item in the table view controller, and in the next
chapter, you will learn how to pull in data from the Internet.

Figure 6-7.  Selecting a run target for your watchOS application

Debugging your watchOS App
The process of running a watchOS application is much like that of running an iOS
application: after selecting your build scheme, you pick a target device to run it on. As
shown in Figure 6-7, you select your run target by clicking on the Active Scheme drop-down
menu, next to the run/stop buttons in the top left corner of the Xcode main window.

177CHAPTER 6: Building Your First watchOS App

There are two primary layout types for an Interface Controller (WatchKit’s equivalent of a
View Controller from iOS): tables and pages. A WatchKit table implements the same concept
as a table view controller in iOS: a single-column list of rows (elements) that is populated
by a data source and can scroll up and down. A page implements the same concept as a
page view controller from iOS: a series of single-page screens that you navigate through by
swiping left or right on the touch screen. For this project, you will use a table for the list of
locations and a page to represent the details screen. By default, the main interface controller
for your app will be blank. To add a table to this interface controller, which will act as the
location list, find the Table element from Object library in Interface Builder (the bottom-right
scrolling pane) and drag it onto the interface controller, as shown in Figure 6-8. Remember
to select Interface.storyboard from the Project Navigator to edit the storyboard for your
watchOS app.

Figure 6-8.  Adding a table to your main interface controller

178 CHAPTER 6: Building Your First watchOS App

Your result will look like Figure 6-9, where your blank interface controller is replaced with
a placeholder for a table row. Your view hierarchy will show a table on top of the interface
controller, which contains a table row controller, and a group.

Figure 6-9.  View hierarchy after adding a table

179CHAPTER 6: Building Your First watchOS App

Referring back to iOS programming terminology, your interface controller class acts as the
“table view delegate” and provides the functions that define how many rows and sections
the table will have, as well as how to populate each row with data from the data source. The
table row controller is a separate class that allows you to define a custom layout for each
row. Unlike iOS, there are no styles (templates) for row types (e.g., default, subtitle), so you
must always define a custom table row controller. For the CarFinder WatchKit app, each
row should have two labels: one containing the latitude and longitude of each location and
another representing the time when the location was saved. To implement this, drag two
labels from Interface Builder’s Object Library onto the table row placeholder in your interface
controller. The result should look like Figure 6-10, where the labels are located adjacent to
each other in the row.

Figure 6-10.  Result of adding labels to your row

180 CHAPTER 6: Building Your First watchOS App

To make the row match our mockup in Figure 6-1, you need to change the configuration of
the row’s group layout to vertical. Groups in WatchKit implement a concept similar to tables
in HTML, they are blank slates you use to position user interface elements relative to each
other. To position the labels below each other, select the group in your table’s view hierarchy,
and switch the Layout attribute to “Vertical’” in Interface Builder’s Attributes Inspector (the
second to last tab in the right pane), as shown in Figure 6-11.

Figure 6-11.  Switching group layout to vertical

181CHAPTER 6: Building Your First watchOS App

Defining the Table
Having visually laid out the table, you can begin defining it in code. To start out, begin by
creating a subclass of NSObject named LocationRowController to represent the table row
controller, as shown in Listing 6-1. Save the file as LocationRowController.swift. As of this
writing, WatchKit does not define a parent class for table row controllers, so you need to use
Swift’s generic parent class for objects, NSObject.

To finish polishing the row, increase the height of the row by dragging on its bottom edge.
Use the Attributes Inspector to change the style of the second label to “Subhead”, as shown
in Figure 6-12. Using font styles allows your app’s text to resize relatively, a useful feature for
accessibility, where a user may increase the size of the text on their devices globally, to
adjust for vision issues.

Note  You do not need to worry about adjusting the width of each label, as the default behavior for
a label is to resize it to fill the width of the screen.

Figure 6-12.  Completed table row

182 CHAPTER 6: Building Your First watchOS App

Listing 6-1.  Class definition for LocationRowController table row controller

import WatchKit
 
class LocationRowController: NSObject {
 
}
 
}

The only elements on the row are the labels representing the coordinates and time, add
these to the class, as shown in Listing 6-2. The parent class for a label in WatchKit is
WKInterfaceLabel. Remember to use the @IBOutlet keyword to indicate the properties
connect to Interface Builder elements. For memory management, use the weak keyword to
indicate that the property does not need to be modified after it is initialized, and define it as
an implicitly-wrapped optional, using the ! operator, to indicate that the value is expected to
always remain non-nil.

Listing 6-2.  Complete class definition, including labels.

import WatchKit
 
class LocationRowController: NSObject {
 
 @IBOutlet weak var CoordinatesLabel: WKInterfaceLabel?
 @IBOutlet weak var TimeLabel: WKInterfaceLabel?
  
}

As with any other Interface Builder-backed class, your next step is to connect user interface
elements and parent classes. Although the interface controller is already connected to the
InterfaceController class via Xcode’s default project settings, you will need to manually
connect the table row controller you added. To perform this operation, select the table
row controller in your view hierarchy and then navigate over to the Identity inspector
in Xcode (the third middle tab in the right pane.) As shown in Figure 6-13, select the
LocationRowController class as the parent class.

183CHAPTER 6: Building Your First watchOS App

The delegate methods for populating the table refer to table row controllers as “types”,
which are represented through their storyboard “Identifiers”. As shown in Figure 6-14,
navigate over to the Attributes Inspector, and set “LocationRowController” as the identifier
for the class.

Figure 6-14.  Setting a row type

Figure 6-13.  Assigning the parent class for the table row controller

184 CHAPTER 6: Building Your First watchOS App

Next, you need to tie the user interface elements to the LocationRowController class.
While the location row controller is still selected in the view hierarchy, navigate over to the
Connections Inspector (the last tab in the right pane). As with an iOS storyboard, click down
on the CoordinatesLabel outlet radio box and release it over the label on the storyboard to
connect the two, as shown in Figure 6-15. Repeat the process for the TimeLabel.

Figure 6-15.  Connecting WatchKit user interface elements to a class

Now that the table row controller elements have been assigned, you need to define the
behavior for the table in the InterfaceController class. First, add properties representing
the table and its data source to the InterfaceController class (InterfaceController.
swift), as shown in Listing 6-3. To keep things simple, use a single dimensional array of
CLLocation objects, just like the data provided by the DataManager class. Remember to
import the CoreLocation framework class to resolve these symbols; including a framework
in your iOS project does not automatically include it in your watchOS target.

185CHAPTER 6: Building Your First watchOS App

Listing 6-3.  Adding properties for the table and data source to the InterfaceController class

import WatchKit
import Foundation
import CoreLocation
 
class InterfaceController: WKInterfaceController {
 
 @IBOutlet weak var LocationTable: WKInterfaceTable?
  
 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)
  
 ...
 }
 
 ...
 
}

As with any other Interface Builder object, connect the LocationTable property to the
InterfaceController class via the Connection Inspector, as shown in Figure 6-16.

Figure 6-16.  Connecting the LocationTable property

186 CHAPTER 6: Building Your First watchOS App

Just like with iOS, there are three key behaviors you need to implement to fully define a
WatchKit table: the number of rows in the table, how to configure each row, and what action
to perform when a row has been selected. You will implement the final behavior (selection) in
the next section, for now, the focus is populating the table.

To specify the number of rows in the table, in the InterfaceController class’s entry method,
awakeWithContext(_:), call the method, setNumberOfRows(_:withRowType:), specifying the
length of the locations array as the row count, and “LocationRowController” as the row
type, corresponding to our earlier definition in Figure 6-10. Your awakeWithContext(_:)
method should look like the example in Listing 6-4.

Listing 6-4.  Specifying the number of rows in a table

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)
  
 // Configure interface objects here.
 LocationTable.setNumberOfRows(locations.count, withRowType: "LocationRowController")
 
}

You can access each row via the rowControllerAtIndex(_:) method. To configure the
entire table at once, I have created a convenience method named configureRows in the
InterfaceController class (InterfaceController.swift), shown in Listing 6-5. This method
accesses each row in the table, pulls the corresponding item from the data source, and
configures the labels accordingly. To make the output fit the screen, I shortened the latitude
and longitude to two decimal places using a string formatter, and created a DateFormatter
object to convert the timestamp Date object to a string.

Listing 6-5.  Configuring each row in the table

func configureRows() {
  
 �locationTable?.setNumberOfRows(locations.count, withRowType: "LocationRowController")
  
 for var index = 0; index < locationTable?.numberOfRows; index++ {
  
 �if let row = locationTable?.rowControllerAtIndex(index) as? LocationRowController {
 let location = locations[index]
  
 if let latitude = location["Latitude"] as? Double {
 let longitude = location["Longitude"] as! Double
 �let formattedString = String(format: "%0.3f, %0.3f", latitude, longitude)
 �//row.coordinatesLabel?.setText("\(latitude),

\(location["Longitude"]!)")
 row.coordinatesLabel?.setText(formattedString)
  
 }
 if let timeStamp = location["Timestamp"] as? NSDate {
 let dateFormatter = NSDateFormatter()
 dateFormatter.dateStyle = NSDateFormatterStyle.ShortStyle

187CHAPTER 6: Building Your First watchOS App

 dateFormatter.timeStyle = NSDateFormatterStyle.ShortStyle
 row.timeLabel?.setText(dateFormatter.stringFromDate(timeStamp))
 }
  
 }
 
 }
}

You will need to configure the table when the table view appears on the screen or any
time the data source is updated. To intercept the event when the table view appears,
add the call to configureRows at the bottom of the willActivate(_:) method for the
InterfaceController class, as shown in Listing 6-6. You will handle data source updates in
the next chapter.

Listing 6-6.  Calling the configureRows method

override func willActivate() {
 // This method is called when watch view controller is about to be visible to user
 super.willActivate()
  
 self.configureRows()
}

Fetching Data from your iOS App
Now that the table view is configured to display data, it’s time to populate the locations
array with data from the CarFinder iOS app. The primary method for sharing data between
an iOS app and WatchKit app in watchOS 2 is through the WatchConnectivity framework.
Following Apple’s pattern of “availability”, or performing an operation only when a resource
is available to your application, WatchConnectivity provides a subscription-based service
that negotiates the link between your iPhone and Apple Watch and transmits messages
when the link is stable. Similar to notifications, you need to establish sending and receiving
endpoints in each of your applications, and messages are only received when you declare
yourself as a “receiver.”

To enable both of your applications as WatchConnectivity-compatible, you need to
subscribe to WatchConnectivity’s “default session”, after checking if the feature is available
on your device (this is defined as an Apple Watch being paired to your phone, with your
watchOS app is installed on it.) In the CarFinder iOS app, place this block of code in the
viewDidLoad method of FirstViewController class, as shown in Listing 6-7. The view
controller with the closest access to the main data source should be the one you use to
handle WatchConnectivity messages.

Note  The awakeWithContext(_:) method is called when an interface controller is loaded from
a storyboard for the first time. This is the first event to fire when an interface controller is loaded
and only fires once, whereas willActivate: fires every time the interface controller is presented,
such as when you are coming back from a detail screen or menu.

188 CHAPTER 6: Building Your First watchOS App

Listing 6-7.  Preparing the iOS App for WatchConnectivity

import UIKit
import CoreLocation
import WatchConnectivity
 
class FirstViewController: UITableViewController, WCSessionDelegate {
 
 ...
  
 override func viewDidLoad() {
 super.viewDidLoad()
  
 let locationManager = CLLocationManager()
 
 ...
 
 if (WCSession.isSupported()) {
 let session = WCSession.defaultSession()
 session.delegate = self
 session.activateSession()
 }
 }
 
}

To send and receive WatchConnectivity messages, you need to set your class as a
delegate of the WCSessionDelegate protocol. In Listing 6-7, this is indicated by adding
WCSessionDelegate to the list of protocols in the class definition and by setting the class as a
delegate object in your setup block.

In your WatchKit Extension, you need to follow the same steps. The main difference will be
that you will use the awakeWithContext(_:) method in the InterfaceController class. See
Listing 6-8.

Listing 6-8.  Preparing the WatchKit Extension for WatchConnectivity

import WatchKit
import Foundation
import CoreLocation
import WatchConnectivity
 
class InterfaceController: WKInterfaceController, WCSessionDelegate {
 
 @IBOutlet weak var LocationTable: WKInterfaceTable!
 var locations = [CLLocation]()
  
 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)
  

189CHAPTER 6: Building Your First watchOS App

 // Configure interface objects here.
 LocationTable.setNumberOfRows(locations.count, withRowType: "LocationRowController")
  
 if (WCSession.isSupported()) {
 let session = WCSession.defaultSession()
 session.delegate = self
 session.activateSession()
 }
 
 }
 
 ...
 
}

In this chapter, to provide a positive experience for your users, you will use
WatchConnectivity to fetch the latest list of locations from the CarFinder iOS app as soon
as the CarFinder watchOS app is launched on the watch. To provide the best experience,
the method you select should be fast (users don’t want to wait for data the first time they
load the app) and non-blocking (users don’t want to wait for a frozen app to resolve itself.)
To enable this, you will use WatchConnectivity’s updateApplicationContext(_:) method
to transfer a Dictionary object from the CarFinder iOS app to the CarFinder WatchKit
extension. As shown in Listing 6-9, you should send this event every time the data source
is updated, which is after a new location has been added to the list. In this example,
I converted the array into a dictionary by storing it as the value for the Locations key.

Listing 6-9.  Sending a dictionary to a WatchKit extension from an iOS app

@IBAction func addLocation(sender: UIButton) {
 
 ...
  
 var sharedLocations = DataManager.sharedInstance.locations
 tableView.reloadData()
  
 if (WCSession.isSupported()) {
 do {
 let userDict = ["Locations": sharedLocations]
 try WCSession.defaultSession().updateApplicationContext(userDict)
 } catch {
 print("Error transferring data")
 }
 }
}

Application contexts in WatchConnectivity are instantaneous transfers as soon as the link is
established with the subscribing counterpart application. Additionally, for data sources that
update frequently, only the most recent version of the dictionary is sent; old versions are
discarded.

190 CHAPTER 6: Building Your First watchOS App

To receive the dictionary, you need to implement the session:didReceiveApplicationContext:
delegate method in your WatchKit extension. As shown in Listing 6-10, you implement this in
the InterfaceController class. After receiving the message, override the existing locations
array with the new version from the received dictionary and call the configureRows method
to update the user interface.

Listing 6-10.  Receiving a dictionary from WatchConnectivity

func session(session: WCSession, didReceiveApplicationContext applicationContext:
 [String : AnyObject]) {
 let locationsArray = applicationContext["Locations"] as! [CLLocation]
 locations = locationsArray
  
 configureRows()
}

Building a Detail Page with a Custom Layout
To make the CarFinder WatchKit app even more useful, you will implement the detail screen
for each item in the location list. In addition to teaching you how to implement the selection
action for the WatchKit table element, this section will also focus on building a page-based
interface controller with a custom layout.

The first step in building a detail controller is to place it on your storyboard. To add a new
interface controller to your watchOS app, drag an Interface Controller object from the
Interface Builder’s object library onto your storyboard. Similarly, you need to create a new
subclass of WKInterfaceController to define its behavior; for the CarFinder WatchKit app,
this file is called LocationInterfaceController. As with previous examples, use the Identity
Inspector to set the parent class to LocationInterfaceController.

Note  This example saves locations in memory; they will not persist between multiple sessions.
To persist data, we suggest using Core Data or saving your data to a plaintext file.

191CHAPTER 6: Building Your First watchOS App

Figure 6-17.  Adding multiple groups to your interface controller

Note  You can place as many groups as you want on a page-based interface, but only one for a
table interface.

Referring back to the mockup for the app in Figure 6-1, the detail screen for the CarFinder
WatchKit app displays the timestamp for the location on the first line, next to a GPS icon.
The coordinates for the location are displayed on a line beneath this, and under that is a map
with a pinpoint indicating the recorded location. By default, a Group in WatchKit can only
display items by positioning them adjacently, horizontally or vertically. To implement your
custom interface, you can get around this limitation by placing two groups on your interface.
As shown in Figure 6-17, drag two groups on to your interface controller. Your view hierarchy
will be updated to reflect these new groups.

192 CHAPTER 6: Building Your First watchOS App

Now that the groups are ready, you can start adding user interface elements onto them.
Start out by setting the layout of the group at the top to Horizontal, using the Attributes
Inspector. Next, drag an Image and Label onto the group. Unfortunately, by default, your
Label will be hidden, as shown in Figure 6-18.

Figure 6-18.  Default behavior when adding multiple items to a vertically aligned group

193CHAPTER 6: Building Your First watchOS App

To fix this, grab the right-edge of the image placeholder and drag it to the left, until it
becomes square shaped, matching the general shape of the icon from the mockup. After
adjusting the image’s size, the label reappears in the group, as shown in Figure 6-19.

Figure 6-19.  Group after adjusting image size

194 CHAPTER 6: Building Your First watchOS App

When you have multiple elements in a horizontal group, use this limitation to your advantage
by fixing the size of certain elements and keeping others flexible. Automatic resizing can
be troublesome for images, but users expect to see text sizes and padding decrease with
labels.

A side-effect of adjusting the size of the image is that your label will be aligned to the top
edge of the group. To fix this, select the label and change the vertical position attribute to
Center, as shown in Figure 6-21.

Like an iOS app, watchOS apps can run on multiple screen sizes (the 38mm and 42mm
watches). Unfortunately, watchOS storyboards do not yet support auto-layout. To resolve
this, the default size settings for user interface elements in WatchKit are set to “Size to Fit
Content.” This setting works opposite to the ScaleAspectFill content mode for UIView
objects in iOS. Instead of the content resizing to fill the container, the container resizes to
fill the content! When you manually size an item, this switches the size attribute to “Fixed”
along with the pixel width or height of your adjustment, as shown in the Attributes Inspector
screenshot in Figure 6-20.

Figure 6-21.  Changing the vertical position of an item in a group

Figure 6-20.  Attributes inspector after adjusting image size

195CHAPTER 6: Building Your First watchOS App

Luckily, the group containing the map and time stamp label is a bit easier. Change the layout
to vertical and drag Label and Map objects into the group. Your final user interface should
look like the screenshot in Figure 6-22. You will notice that the size of the interface controller
has increased to reflect that there is more content on the screen than can fit at once. By
default, interface controllers work like UIScrollViews in iOS, where everything inside of the
scroll view scrolls. I have included a graphic in the source code bundle named compass.png
that you can use in your project for the compass icon.

Figure 6-22.  Final user interface for detail interface controller

As you would expect, to make this all work, you need to define these elements in your
class. You can find the definition for the LocationInterfaceController class, including the
properties for the user interface elements in Listing 6-11. As always, after adding these items
to your class, connect them to your storyboard in Interface Builder.

Listing 6-11.  Definition for LocationInterfaceController class

import WatchKit
import Foundation
import CoreLocation
 
class LocationInterfaceController: WKInterfaceController {
 
 @IBOutlet weak var LocationMap: WKInterfaceMap!
 @IBOutlet weak var CoordinatesLabel: WKInterfaceLabel!
 @IBOutlet weak var TimeLabel: WKInterfaceLabel!
  

196 CHAPTER 6: Building Your First watchOS App

 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)
  
 // Configure interface objects here.
 }
 
 ...
 
}

Presenting the Detail Interface Controller
There are three steps required to present the Detail interface controller: connecting the
push segue, implementing the table controller delegate method for the selection event, and
initializing the detail controller with the correct data. You connect the push segue from a
table row in WatchKit the same way you would in iOS: by CTRL+clicking from a table row
to your destination interface controller. As shown in Figure 6-23, when prompted to select
the segue type, select Push. As with all segues, use the Attributes Inspector to specify an
identifier (name). In my example, I call this the “DetailSegue”.

Figure 6-23.  Connecting the push segue

197CHAPTER 6: Building Your First watchOS App

The push segue presents the detail interface controller after catching the selection event
in the main interface controller. There are two primary ways to handle selection events in
WatchKit: the table(_:didSelectRowAtIndex:) method, which allows you to perform an
action based on a table’s selected row, and the contextForSegueWithIdentifier(_:inTable
:rowIndex:) method, which sends a context (object) to your destination interface controller,
based on the selected row of your table. This fits the requirements perfectly. Luckily, the
implementation is quite simple too. As shown in Listing 6-12, in your InterfaceController
class, upon catching a segue named “DetailSegue”, return the location specified by the
selected row in the table. For all other segue identifiers, return nil.

Listing 6-12.  Implementing the table selection segue handler

override func contextForSegueWithIdentifier(segueIdentifier: String, inTable table:
WKInterfaceTable, rowIndex: Int) -> AnyObject? {
  
 if (segueIdentifier == "DetailSegue") {
 return locations[rowIndex]
 }
  
 return nil
}

Now that you have successfully created the logic and handler for the selection event, you
are ready to use this information to initialize your detail interface controller. In Listing 6-12,
the object you passed back from the contextForSegueWithIdentifier(_:inTable:rowI
ndex:) method was called a context. By no coincidence the method that fires when an
interface controller is loaded for the first time is called awakeWithContext:. As shown in
Listing 6-13, to initialize a LocationInterfaceController with from a context, check if the
input object is a CLLocation object like you expect, and then use it to set the values for your
user interface elements.

Listing 6-13.  Catching the table selection event in the detail interface controller (LocationInterfaceController.swift)

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)
  
 // Configure interface objects here.
 if let location = context as? CLLocation {
 //
 let dateFormatter = NSDateFormatter()
 dateFormatter.dateStyle = NSDateFormatterStyle.FullStyle
  
 let prettyLocation = String(format: "(%.2f, %.2f)", location.coordinate.longitude,
 location.coordinate.latitude)
 let prettyTime = dateFormatter.stringFromDate(location.timestamp)
  
 CoordinatesLabel.setText(prettyLocation)
 TimeLabel.setText(prettyTime)
  

198 CHAPTER 6: Building Your First watchOS App

 LocationMap.addAnnotation(location.coordinate, withPinColor: WKInterfaceMapPinColor.Red)
  
 �let mapRegion = MKCoordinateRegionMake(location.coordinate,

MKCoordinateSpanMake(0.1, 0.1))
  
 LocationMap.setRegion(mapRegion)
 
 }
}

Further emphasizing the similarities of watchOS to iOS, you will notice that the process of
initializing a WKInterfaceMap was exactly like that of initializing an MKMapView: first you define
a pin and then you set the region.

At this point, you now have a functional CarFinder app! Your user interface should look like
the example in Figure 6-24 when you run it on an Apple Watch. The user can select an item
in the location list table to view its details, which include a map of the area, coordinates, and
the time saved.

Figure 6-24.  User Interface for CarFinder when running on an Apple Watch

199CHAPTER 6: Building Your First watchOS App

Summary
In this chapter, you learned the ins-and-outs of building an Apple Watch app by creating the
CarFinder WatchKit app, which pulls the list of saved locations from the CarFinder iOS app
on the user’s iPhone. After a quick introduction to the Apple Watch and its basic application
architecture, you began to explore the similarities between watchOS and iOS development
by setting up your watchOS build target. Building the user interface in Interface Builder and
tying its outlets to classes you defined in code strengthened the extent of these similarities.
To round things out, you explored different user interface elements and layout styles, and
learned about key WatchKit event delegate methods, giving you a good foundation for future
chapters, where you will explore more advanced elements and behaviors.

201

Chapter 7
Building an Interactive
watchOS App

Ahmed Bakir
Introduction
In this chapter, you will learn how to make the CarFinder watchOS app even more powerful
by adding interactive features. While an app that can let you view information from your
iPhone is great, there is even more value in an app that allows you to create new data from
your watch. The interactive features you will add to the CarFinder app in this chapter will
demonstrate the following features of watchOS:

	How to add context menus to an interface controller

	How to add buttons to an interface controller

	How to add text to an item using text input

	How to pass data between interface controllers

	How to pass data back to your iOS companion app

The examples in this chapter expand upon the CarFinder app from Chapter 6. The updated
source code for CarFinder is available in the Source Code/Download area on this book’s
web page www.apress.com).

http://dx.doi.org/10.1007/978-1-4842-1194-6_6
http://www.apress.com)

202 CHAPTER 7: Building an Interactive watchOS App

Using Force Touch to Present Menus
Force Touch is the feature built into the Apple Watch’s touchscreen, which allows you to
detect how much pressure the user applied to the screen. Users can perform different
actions depending on whether they press the screen with a light touch (“shallow press” in
Apple’s terminology) or a hard touch (“deep press”). The standard User Experience (UX)
for Apple Watch apps is to use shallow presses to select an item and Force Touch to bring
up a contextual menu, allowing the user to perform related actions. Figure 7-1 provides an
example of a contextual menu.

Figure 7-1.  watchOS contextual menu

In the CarFinder app, you will implement a contextual menu to allow the user to add a new
location and to reset the location list. If the user chooses to add a new location, a modal
screen will allow him to confirm or reject his current location. If the user chooses to reset the
location list, she will be returned to the initial location list interface controller with an empty
data set.

To add a contextual menu to an interface controller, open the storyboard for your watchOS
app (Interface.storyboard) and drag a Menu from the Object Library onto your desired
view controller, as shown in Figure 7-2. For the CarFinder app, the initial interface controller
(the InterfaceController class) will be your destination.

203CHAPTER 7: Building an Interactive watchOS App

Unfortunately, Interface Builder does not give you any feedback on the storyboard to
indicate that an interface controller has a menu attached to it. To verify that you have
successfully added a menu to your interface controller, select its scene on the storyboard
and check to make sure a menu item appears in the view hierarchy, as shown in Figure 7-3.

Figure 7-2.  Adding a menu to the main interface controller

Figure 7-3.  Verifying that a menu is in an interface controller’s view hierarchy

204 CHAPTER 7: Building an Interactive watchOS App

You will notice that by default, one menu item appears in the menu. To change the properties
of the menu item, click it in the view hierarchy and navigate to the Attributes inspector in
Interface Builder (the fourth tab in the right pane). From here, you can assign a new name to
the menu item and change the icon, as shown in Figure 7-4.

Figure 7-4.  Modifying a menu item

Just as with bar button items and tab bar items, Apple provides a wide set of pre-rendered
icons for you to use in your menu items. To use your own custom icon, follow the same rules
you would use for a tab bar or bar button item:

	Create an Image Set entry for your icon in your project’s Assets
Library (Assets.xcasssets)

	Makes sure the icon is a PNG with an alpha layer

	Make sure the icon is monotone

	Make sure the icon is anti-aliased (smoothed to remove bitmap
“jaggedness”)

You do not need to manage an object in your interface controller class to use a context menu;
however, you do need to define handler methods for the menu items, as for UIButtons in iOS.

As shown in Listing 7-1, expand the InterfaceController class by adding IBAction
methods for the menu item actions. The resetLocations() method will be used to clear
the saved location list. The requestLocations() method will be used to add a new location.
CoreLocation on watchOS is not designed to continuously monitor location, as it would
drain the watch’s battery too quickly, so you need to manually request a location based on a
user action.

205CHAPTER 7: Building an Interactive watchOS App

Listing 7-1.  Adding Menu Item Actions to InterfaceController.swift

class InterfaceController: WKInterfaceController, WCSessionDelegate {
 
 @IBAction func requestLocation() {
  
 }
  
 @IBAction func resetLocations() {
 
 }
 
}

As with button actions, in order to tie a menu item to a handler method, you need to use the
Connection Inspector (last tab of right panel in Interface builder). As shown in Figure 7-5,
drag a line from the selector radio box to the CarFinder scene. A pop-up will appear
allowing you to choose the requestLocation() or resetLocations() method.

Figure 7-5.  Connecting a menu item to a selector

You can verify that the operation was successful by checking that the Connection Inspector
has linked the bubbles in the Sent Actions section, as indicated in Figure 7-6.

206 CHAPTER 7: Building an Interactive watchOS App

Follow this same process to connect the reset button to the resetLocations() method.

Resetting the Location List
After selecting an item in a context menu, the menu disappears and takes the user back to
the presenting interface controller. For the reset menu item, you want to take the user back
to the location list, with an empty set of contents. Since the data source for the location list
is an array, you can reset the contents simply by clearing out the array.

However, clearing out the array is not enough to refresh the user interface (UI). You may
remember from Chapter 6 that watchOS tables do not have a reloadData() method like
UITableViews on iOS. To refresh a table in watchOS, you need to reset the number of rows
and rebuild the cells. Luckily, the configureRows() method does both of these operations for
us. As shown in Listing 7-2, using your resetLocations() method, after clearing the location
array, you can rebuild the table using the configureRows() method.

Listing 7-2.  Resetting the Location List

@IBAction func resetLocations() {
 //data source = empty set
 locations = [Dictionary<String, AnyObject>]()
  
 configureRows()
}

Figure 7-6.  Verifying connections have been set

http://dx.doi.org/10.1007/978-1-4842-1194-6_6

207CHAPTER 7: Building an Interactive watchOS App

Presenting a Detail View Controller
Although it would be extremely convenient to present interface controllers from menu items
via a segue in Interface Builder, as of this writing, that has not yet been implemented in
watchOS. To present an interface controller from a menu item, you need to use the method
presentControllerWithName(_:context:), specifying a name (storyboard identifier) for the
interface controller you want to present and information you want to pass along to this
interface controller via a context object.

To begin, you need to add an interface controller to your storyboard that represents the
confirm screen. As shown in Figure 7-7, drag a new Interface Controller object to your
storyboard.

Figure 7-7.  Adding a Details interface controller

To represent this interface controller in code, create a subclass of WKInterfaceController,
named ConfirmInterfaceController. Listing 7-3 provides the definition for the
ConfirmInterfaceController class, including the properties for the UI.

Listing 7-3.  Definition for ConfirmInterfaceController Class

class ConfirmInterfaceController: WKInterfaceController {
  
 @IBOutlet weak var coordinatesLabel: WKInterfaceLabel?
 @IBOutlet weak var noteLabel: WKInterfaceLabel?
}

208 CHAPTER 7: Building an Interactive watchOS App

To connect the code and storyboard, remember that you need to set a parent class and
storyboard identifier. To set the parent class, click the scene for the Interface Controller and
click the Identity Inspector in Interface Builder. As shown in Figure 7-8, set the parent class
to ConfirmInterfaceController.

Figure 7-8.  Setting parent class for an Interface Controller

To set the storyboard as the storyboard identifier and (optionally) the title for
the Interface Builder, click the Attributes Inspector. As shown in Figure 7-9, use
ConfirmInterfaceController identifier.

209CHAPTER 7: Building an Interactive watchOS App

Having established the Details interface controller, you can now rest assured that calling the
presentControllerWithName() method will function correctly, given the storyboard identifier
ConfirmInterfaceController. Listing 7-4 provides the definition for the requestPermission()
method, which at this point presents the confirm interface controller from the main interface
controller. Place this code in your InterfaceController.swift file.

Listing 7-4.  Presenting the ConfirmInterfaceController

func requestLocation() {
 presentControllerWithName("ConfirmInterfaceController", context: nil)
  
}

Simulating Force Touch
While it is possible to debug Force Touch primarily by running it on your watch, it could be
a potentially time-consuming effort, due to the time required to install a watchOS app and
establish a debugging session. By default, all touches in the watchOS simulator are treated
as shallow presses. You can simulate deep press events by changing the Force Touch
Pressure in the simulator. To modify this setting, go to the Hardware Menu in the watchOS
simulator and select Force Touch Pressure, as shown in Figure 7-10.

Figure 7-9.  Setting the storyboard identifier for an Interface Controller

210 CHAPTER 7: Building an Interactive watchOS App

Unfortunately, once you toggle the setting, all touches will retain it. This could have some
negative side effects, as a deep press on a menu dismisses it. During your debugging
session, remember to keep switching the mode between deep press and shallow press to
simulate realistic user interaction.

Adding Buttons to an Interface Controller
Now that you are able to present the interface controller for the confirm screen, you need a
way of exiting it, either by confirming that the location is correct or by dismissing the view.
For the CarFinder application, you will perform these actions using the WKInterfaceButton
class, which is intended to provide similar functionality to a UIButton in iOS. As watchOS is a
subset of iOS, you cannot catch touch events to the same level of granularity as an iOS app,
such as “touch down repeat.” However, you can trigger a method via a selector or perform a
segue when the button is pressed.

Apple suggests that when you plan to use buttons in your watchOS apps, you opt for a
purely vertical layout. You can also place buttons into a horizontal layout, but I suggest
two at most, since the touch area on the Apple Watch is so small. For the interface of the
ConfirmInterfaceController, you will use a purely vertical layout to contain all of the UI
items. Start by adding a Group object to your Interface Controller. As shown in Figure 7-11,
set the layout to Vertical.

Figure 7-10.  Enabling deep press events

211CHAPTER 7: Building an Interactive watchOS App

Drag three buttons and two labels onto the Group, as shown in Figure 7-12. You do not need
to connect the buttons to properties in your class, but make sure you connect the Note and
Coordinates label to the noteLabel and coordinatesLabel properties via the Connection
Inspector.

Figure 7-11.  Setting vertical layout on a group

Figure 7-12.  Final storyboard layout for ConfirmInterfaceController

212 CHAPTER 7: Building an Interactive watchOS App

As with action sheets on iOS, the prevailing design standard for buttons in watchOS is to
differentiate the cancel or dismiss button by changing its background color. As shown in
Figure 7-13, you can change the background color of a button in watchOS by selecting the
button in your scene and navigating over to the Attributes Inspector.

Figure 7-13.  Changing the background color for a button

As with UIButtons in iOS, you need IBAction-enabled handler methods to perform
actions from a WKInterfaceButton in watchOS. Listing 7-5 shows the handler methods
for the buttons. At this time, both buttons dismiss the confirm interface controller via the
dismissController() method of the WKInterfaceController class. To pass data back to
the location table, you will eventually add a call to a delegate method as part of the confirm
action.

Listing 7-5.  Button Handlers for the confirm interface controller

class ConfirmInterfaceController: WKInterfaceController {
 @IBAction func confirm() {
 dismissController()
 }
  
 @IBAction func cancel() {
 dismissController()
 }
}

Finally, connect the handler methods and button objects using Connections Inspector
in Interface Builder. As shown in Figure 7-14, make your connections from the Sent
Action selector.

213CHAPTER 7: Building an Interactive watchOS App

Figure 7-14.  Connecting button actions

Passing Information Between Interface Controllers
Having established a way to present the confirm interface controller, you now need a way
to initialize it with real data. For the CarFinder application, you will want to show users their
current location, so they can save the entry or cancel the prompt. I will cover the specifics
of how to use CoreLocation natively on the watchOS application in the section “How to Add
Notes Using Text Input”; however, for now, you can assume that you will need to pass an
object that contains latitude and longitude data.

Remember that earlier in this chapter, you used the method presentControllerWithName
(_:context:), to present the confirm interface controller with a storyboard identifier. The
other parameter you left blank was context. All subclasses of WKInterfaceController
implement an awakeWithContext() method, which responds to “waking” the view
controller with a context, or a data object that you can safely pass between interface
controllers. By generating a valid context object from the location list and overriding the
awakeWithContext() method in the ConfirmInterfaceController class, you can initialize the
confirm interface controller with location data.

To begin, you need an object that contains the user’s location. I have chosen to implement
this by adding a CLLocation object to the InterfaceController class and initializing it with
a known location. This adds an extra layer of safety if the user denies the app location
permission, or if there is another issue resolving the user’s location. Listing 7-6 provides the
modified definition for the InterfaceController class, adding a CLLocation object to the
InterfaceController class.

214 CHAPTER 7: Building an Interactive watchOS App

Listing 7-6.  Modified Definition for InterfaceController class

class InterfaceController: WKInterfaceController, WCSessionDelegate, ConfirmDelegate {
  
 @IBOutlet weak var locationTable: WKInterfaceTable?
  
 var session : WCSession?
  
 var locations = [Dictionary<String, AnyObject>]()
 
 var currentLocation = CLLocation(latitude: 32.830579, longitude: -117.153839)
}

Although the type for the context parameter specifies AnyObject, in practice, you are limited
in the types you are allowed to use, primarily primitive data types like strings or numbers.
You can send multiple pieces of data over by combining them into an array or dictionary;
however, as of this writing, it is not possible to pass a CLLocation object. To resolve this
issue, you need to create a dictionary containing the user’s latitude and longitude as double
values. You can extract these from the coordinates property of a CLLocation object. Once
you have built the dictionary, you can pass it over using the presentControllerWithName()
method, as shown in Listing 7-7.

Listing 7-7.  Sending a User’s Location While Presenting an Interface Controller

func requestLocation() {
 //new location
  
 �let userDict = ["Latitude" : currentLocation.coordinate.latitude , "Longitude" :

currentLocation.coordinate.longitude, "Delegate" : self]
  
 presentControllerWithName("ConfirmInterfaceController", context: userDict)
  
}

In the ConfirmInterfaceController class, you complete the process by overriding the
awakeFromContext() method. For now, all you need to do when you receive the context data
is initialize the coordinatesLabel by extracting the appropriate values out of the dictionary, as
shown in Listing 7-8.

Listing 7-8.  Overriding awakeWithContext in the Confirm Interface Controller

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)
  
 if let inputDict = context as? Dictionary<String, AnyObject>{
 //
  
 if let inputDelegate = inputDict["Delegate"] as? ConfirmDelegate {
 delegate = inputDelegate
 }

215CHAPTER 7: Building an Interactive watchOS App

 if let latitude = inputDict["Latitude"] as? Double {
 let longitude = inputDict["Longitude"] as! Double
 currentLocation = CLLocation(latitude: latitude, longitude: longitude)
  
 let formattedString = String(format: "%0.3f, %0.3f", latitude, longitude)
 coordinatesLabel?.setText(formattedString)
 }
 }
  
 // Configure interface objects here.
}

Using a Delegate to Pass Information on Dismissal
As you have just learned, it is rather straightforward to pass data to an interface controller
while presenting it. Unfortunately, Apple does not provide a method this convenient for
passing back data when dismissing an interface controller in watchOS. However, by taking
advantage of delegation you can create your bridge between the classes.

The driving concepts behind delegation are that you specify a class to “delegate” a piece
work to and define the messages that will be passed back through a protocol. The class
that requests the work declares itself as implementing the protocol and sets itself as the
delegating object, allowing it to respond to messages from the outsourced class. Delegates
are perfect for establishing a message-passing scheme between two classes, without
specifying all the details of implementation.

For the CarFinder app, the data we are interested in passing back from the confirm interface
controller is whether the user decided to save the location. The location list delegates the
work of making the determination to the confirm interface controller, so you need to define
your protocol there.

Protocols are defined by specifying a protocol block with the protocol name and a list of
methods that its delegate needs to implement. Listing 7-9 provides the protocol definition
for the ConfirmInterfaceController class. Protocol blocks are defined before classes, as
the corresponding class includes a property placed on the protocol.

Listing 7-9.  Protocol Definition for CustomInterfaceController

protocol ConfirmDelegate {
 func saveLocation()
}

To call methods via a protocol, you need to implement a delegate property on your class.
You can then call methods from the protocol on this property, which will be sent to the class
that has declared itself as your delegate. In Listing 7-10, I have added the delegate property
to the ConfirmInterfaceController class; it is an optional variable with the protocol name as
its type.

216 CHAPTER 7: Building an Interactive watchOS App

Listing 7-10.  Adding a Delegate Property to the ConfirmInterfaceController Class

class ConfirmInterfaceController: WKInterfaceController {
  
 @IBOutlet weak var coordinatesLabel: WKInterfaceLabel?
..
 var delegate: ConfirmDelegate?
 
}

For the final major piece of the implementation in the ConfirmInterfaceController, call
the saveLocation() delegate method. As shown in Listing 7-11, make this call part of the
confirm() handler method, before dismissing the interface controller.

Listing 7-11.  Calling a Delegate Method

@IBAction func confirm() {
 delegate?.saveLocation(self.note)
 dismissController()
}

The implementation is much easier in the class that is delegating work,
InterfaceController. In this class, you need to do the following:

	Declare that you are implementing the ConfirmDelegate protocol

	Provide an implementation for the methods that the protocol exposes
(saveLocation())

	Let the ConfirmInterfaceController know that you are the delegate.

To declare that the InterfaceController is implementing the ConfirmDelegate protocol, add
the protocol name to the class signature, with a comma separating it from the parent class
name, as shown in Listing 7-12.

Listing 7-12.  Declaring That a Class Is Implementing a Protocol

class InterfaceController: WKInterfaceController, WCSessionDelegate,
CLLocationManagerDelegate, ConfirmDelegate {
}

The compiler will immediately throw an error stating that the InterfaceController does
not implement all of the methods of the ConfirmDelegate protocol. To resolve this issue,
implement the saveLocation() method. When the user has confirmed that he wants to save
his current location, append the current location to the locations array and refresh the table.
Listing 7-13 provides the implementation for the saveLocation() method.

Listing 7-13.  Saving a Location

func saveLocation(note :String) {
 //add a new record here
 let locationDict = ["Latitude" : currentLocation.coordinate.latitude , "Longitude" :
 currentLocation.coordinate.longitude, "Timestamp" : currentLocation.timestamp]
 locations.insert(locationDict, atIndex: 0)
  
}

217CHAPTER 7: Building an Interactive watchOS App

Finally, to receive messages, you need a way of specifying that the InterfaceController
object associates with the delegate property of the ConfirmInterfaceController class. In
iOS, you would use the instantiateViewController() method on a UIStoryboard object to
make this connection; however, this method is not available on watchOS. But, you can pass
the pointer along by adding it to your context dictionary. In Listing 7-14, I have modified the
requestLocation() method to include a delegate key.

Listing 7-14.  Adding a Delegate Object to the Context Dictionary

func requestLocation() {
 //new location
  
 �let userDict = ["Latitude" : currentLocation.coordinate.latitude , "Longitude" :

currentLocation.coordinate.longitude, "Delegate" : self]
  
 presentControllerWithName("ConfirmInterfaceController", context: userDict)
  
}

To extract this value from the context dictionary, go back to the
ConfirmInterfaceController. In the awakeForContext method, verify that the value exists
and that it has the type ConfirmDelegate. As shown in Listing 7-15, once this check has
passed, you can set the property.

Listing 7-15.  Extract the Delegate from Your Context

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)
  
 if let inputDict = context as? Dictionary<String, AnyObject>{
 //
  
 if let inputDelegate = inputDict["Delegate"] as? ConfirmDelegate {
 delegate = inputDelegate
 }
 }
}

You are now able to pass messages upon dismissing the confirm interface controller!

On a closing note, did you like my pun? Driving concepts? CarFinder? Ha, ha, ha!

How to Add Notes Using Text Input
To illustrate another way of accepting user input in your application, you will learn how
to add text input. This feature brings up a modal, shown in Figure 7-15, which allows the
user to add text in the form of an emoji, a pre-string string, or through Siri text-to-speech
recognition.

218 CHAPTER 7: Building an Interactive watchOS App

For the CarFinder application, you will want to trigger this modal when the user clicks the
“Add Note” button. To help the user, you should pre-populate the picker with strings that
relate to location notes, such as “next to light pole” or “across from house.”

To present the text input modal, use the method, presentTextInputControllerWith
Suggestions(_:allowedInputMode:), which allows you to specify an array of suggestion
strings, limits on the types of input accepted (e.g., no emoji), and a completion handler.
Listing 7-16 provides the implementation for the CarFinder app. As a reminder, this goes in
the ConfirmInterfaceController class.

Listing 7-16.  Presenting the Text Input Modal

@IBAction func addNote() {
 let suggestionArray = ["On curb", "Next to house", "Next to lightpole"]
 �presentTextInputControllerWithSuggestions(suggestionArray, allowedInputMode:

WKTextInputMode.AllowEmoji) { (inputArray: [AnyObject]?) -> Void in
 if let inputStrings = inputArray as? [String] {
 if inputStrings.count > 0 {
 let savedString = inputStrings[0]
  
 dispatch_async(dispatch_get_main_queue()) {
 self.noteLabel?.setText(savedString)
 self.note = savedString
 }
  
 }
 }
 }
  
}

Note  You need to use an Apple Watch to test text input, as the simulator does not support Siri.

Figure 7-15.  Text input modal

219CHAPTER 7: Building an Interactive watchOS App

The String type in Swift allows a wider character set than NSString in Objective-C, so you
do not need to set any limits on the input type. Emoji will display in-line when provided as
input to a string.

As another reminder, remember that you need to set text for the noteLabel on the main
thread, as UI updates only execute on the main thread.

To pass the note back to the InterfaceController, expand the ConfirmDelegate protocol’s
saveLocation() method to include a “Note” parameter. Listing 7-17 provides the modified
protocol declaration. Place this code in ConfirmInterfaceController.swift.

Listing 7-17.  Expanding the ConfirmDelegate Protocol to Allow notes()

protocol ConfirmDelegate {
 func saveLocation(note: String)
}

Listing 7-18 includes the modified confirm() method for the ConfirmInterfaceController
class, which pulls in the note that was saved earlier.

Listing 7-18.  Sending a Note to the Delegate

@IBAction func confirm() {
 delegate?.saveLocation(self.note)
 dismissController()
}

You will implement the saveLocation() delegate method in the InterfaceController class,
which will allow you to extract the note as an input parameter.

Sending Data Back to the Parent iOS App
For the final piece of the interactive version of CarFinder, you will send locations that the
watch app created back to the parent iOS app. Once again, you can rely on your old friend
WatchConnectivity to help communicate between your watchOS app and its parent iOS app.

While the primary method for sending data to the Apple Watch from an iOS app is through
the updateApplicationContext() method on a WKSession, there are a few more options
available for sending information from the Apple Watch to its parent iOS application. Table 7-1
provides an overview of these methods and their intended uses.

220 CHAPTER 7: Building an Interactive watchOS App

For the CarFinder application, you want to post location updates as the user creates them.
The messages will be infrequent, but they need to be queued and delivered in order. For
this reason, you will use the sendMessage() method to post location updates back to the
companion iOS app.

In the flow of the CarFinder app, the save action happens in the saveLocation() method of
the InterfaceController class. At this point, you have a context dictionary containing the
latitude and longitude information for a new location. The sendMessage() method takes a
dictionary as input; it would make sense to pass the input dictionary directly to the iOS app,
which has its own logic for adding a location based on latitude and longitude. Listing 7-19
provides the modified saveLocation() method, which includes the sendMessage() call.

Listing 7-19.  Calling sendMessage() from the InterfaceController Class

func saveLocation(note :String) {
 //add a new record here
 �let locationDict = ["Latitude" : currentLocation.coordinate.latitude , "Longitude" :

currentLocation.coordinate.longitude, "Timestamp" : currentLocation.timestamp,
"Note" : note]

 locations.insert(locationDict, atIndex: 0)
  
 �session?.sendMessage(locationDict, replyHandler: nil, errorHandler: { (error: NSError)

-> Void in
 print(error.description)
 })
  
}

You will notice the completion handlers for the error and reply states are very light in my
example. In general, you should not show an error alert unless the failing action will hinder
the user’s experience with the app. In this example, I did not implement any custom logic for
the reply handler because the watchOS UI does not update based on a successful post to
the iOS app.

Table 7-1.  Methods for Transferring Data from the Apple Watch to an iOS Application

Method Purpose

sendMessage:replyHandler:error
Handler:

Send a context containing data to the parent app immediately.
Queue any old versions of the dictionary that have not yet been
processed.

transferFile:metadata: Transfer a file to the parent app.

transferUserInfo: Transfer a dictionary to the parent app. Queue any old versions of
the dictionary that have not yet been processed.

updateApplicationContext:error: Transfer a dictionary to the parent app. Discard any old versions
of the dictionary that have not yet been processed.

221CHAPTER 7: Building an Interactive watchOS App

To receive a message from a watchOS app in an iOS app, you need to expand your
AppDelegate class, which handles external events and launching your app, to handle
watchKit extension messages. To handle the watchKit extension messages, you need
to implement the delegate method func application(application: UIApplication,
handleWatchKitExtensionRequest userInfo:reply:), which receives a dictionary containing
information from the watchOS app and a reply method signature, which you can use to send
a reply back to the watchOS app. This allows you to send a confirmation back to the app or
update the UI on the watch.

Receiving the message in the iOS parent app is one thing, but in order to do something with
it, you need to send a message to the location list, represented by the FirstViewController
class. Best practices in Apple development suggest against creating a singleton or
maintaining pointers to view controllers in your app delegate. However, you can use a much
more generic message-passing method to get the update to the FirstViewController class:
notifications.

With notifications, you specify a name for your message (the notification name) and post
a message using that name. Generally, the data is transferred in a dictionary, which is
extremely convenient, because your input is also a dictionary. A notification is sent to anyone
who wants to listen. A class will declare itself as an “observer” of a notification and specify a
selector or completion handler that should execute when the notification is received.

Listing 7-20 provides the handleWatchKitExtensionRequest() method for the AppDelegate,
including the call to post a notification. Place this code in AppDelegate.swift.

Listing 7-20.  Receiving Messages from the CarFinder watchOS App

func application(application: UIApplication, handleWatchKitExtensionRequest userInfo:
[NSObject : AnyObject]?, reply: ([NSObject : AnyObject]?) -> Void) {
  
 �NSNotificationCenter.defaultCenter().postNotificationName("LocationUpdateNotification",

object: nil, userInfo: userInfo)
  
}

To observe the notification, in the FirstViewController’s viewDidLoad() method, implement
the addObserver() method. As shown in Listing 7-21, I have chosen to use a completion
handler to process the notification.

Listing 7-21.  Processing the watchOS Notification

NSNotificationCenter.defaultCenter().addObserverForName("LocationUpdateNotification",
object: nil, queue: NSOperationQueue.mainQueue()) { (notif: NSNotification) -> Void in
 //
  
 if let location = notif.userInfo as? [String : AnyObject] {
 
 if let latitude = location["Latitude"] as? Double {
 let longitude = location["Longitude"] as! Double
  
 let location = CLLocation(latitude: latitude, longitude: longitude)
 DataManager.sharedInstance.locations.insert(location, atIndex: 0)
  

222 CHAPTER 7: Building an Interactive watchOS App

 self.tableView.reloadData()
  
 }
 }
  
}

Now that you have added interactive features to CarFinder, your app should look like
Figure 7-16. The new app retains the location list from the original CarFinder app, while
adding an expanded details page and menu options to add and delete locations.

Figure 7-16.  Expanded user interface for interactive CarFinder app

223CHAPTER 7: Building an Interactive watchOS App

Summary
In this chapter, you learned how to make a watchOS app interactive by adding the ability
to create a new location from the watch, add notes using text input, and post the new
item back to the parent app. Along the way, you learned that much of the battle lies in
properly passing data between interface controllers and to the parent app. You saw that you
could use an application context to post data to an interface controller while presenting it,
delegates to post data after dismissing an interface controller, and the WatchConnectivity
class to post information back to your parent iOS app.

225

Chapter 8
Building a Stand-Alone
watchOS App

Ahmed Bakir
In this chapter, you will learn about one of the greatest attributes of watchOS 2: its
capabilities that let you build an app that runs natively, even offline, without maintaining an
active connection to your parent iOS app. So far, you have noticed that watchOS 2 apps
share many design features with iOS apps, including interface controllers (view controllers),
notifications, and delegation. With watchOS 1, you were limited to building “listener” apps,
designed to respond to data manifests from a parent app; they were not intended to provide
anything more than consumption. watchOS 2 bridges a huge gap because it allows you to
build apps that not only are designed like iOS apps but also function like iOS apps.

To go even further, watchOS 2 started bundling stripped-down versions of Cocoa Touch
frameworks into the operating system (OS) itself. These frameworks bake the logic of
accessing hardware, playing back media, and other weighty operations into the watch,
allowing your apps to operate completely independently. These frameworks are extremely
useful because they abstract the “hard work” away from you, allowing you to focus on the
business logic of your applications rather than the technical details (such as how to decode
an MP4 video).

There are too many frameworks in watchOS 2 to cover them all exhaustively, but in this
chapter, I will focus on Core Location, which allows you to perform more advanced location
features like geocoding. I will also cover a very popular Cocoa Touch API (application
programming interface) which has made its way over to watchOS, NSTimer, which allows
you to present timed events to users. Finally, you will learn how to use the networking
features of the Foundation framework (the base for all Apple programming), which now
allows you to make HTTP calls to the Internet directly from your watch.

226 CHAPTER 8: Building a Stand-Alone watchOS App

For this chapter, you will revisit your old friend, CarFinder, taking advantage of these features to
further improve the application. You can find the updated version of CarFinder in the Ch8 folder
for this book in the Source Code/Download area of the Apress web site (www.apress.com).

Using Core Location to Request Current Location
In Chapter 7’s implementation of the CarFinder app, you used hard-coded coordinates
to initialize the CLLocation object passed along to the confirm interface controller. In this
section, you will learn how to use CoreLocation to retrieve the user’s current location.
Additionally, since user location is a permission, you will also need to use CoreLocation to
prompt the user for location permission.

In the new CarFinder application, you will ask the user for location permission the first
time he tries to add a location from the contextual menu. Once the user has approved the
permission, request his current location and take him to the confirm interface controller.

The process of adding a framework to your watchOS app is exactly like the one for an iOS
app: import the desired framework in your classes. Most of your Core Location operations
will take place on the InterfaceController and ConfirmInterfaceController classes,
so add the import statement to both. To perform location operations in CoreLocation,
you will also need an instance of the CLLocationManager class. Listing 8-1 includes the
modified definition for the InterfaceController class, including the import statement and
CLLocationManager object. Follow the same steps for all classes that use CoreLocation.

Listing 8-1.  Adding CoreLocation to a watchOS Class

import WatchKit
import Foundation
import CoreLocation
import WatchConnectivity
 
class InterfaceController: WKInterfaceController, WCSessionDelegate,
CLLocationManagerDelegate, ConfirmDelegate {
  
 @IBOutlet weak var locationTable: WKInterfaceTable?
  
 var session : WCSession?
  
 var locations = [Dictionary<String, AnyObject>]()
 var locationManager: CLLocationManager?
 var currentLocation = CLLocation(latitude: 32.830579, longitude: -117.153839)
  
 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)
 ...
 }
 
 ...
 
}

http://www.apress.com/
http://dx.doi.org/10.1007/978-1-4842-1194-6_7

227CHAPTER 8: Building a Stand-Alone watchOS App

The process of bringing up the location permission screen in watchOS is similar to that
of iOS: query for authorization status and call the correct method to request permission
if the status is not authorized or denied. Fortunately, in Chapter 7, you defined the
requestPermission() method to bring up the confirm interface controller. You can take
advantage of that here by replacing that with the code to make the permission query in
ConfirmInterfaceController.swift, as shown in Listing 8-2.

Listing 8-2.  Modified requestLocation() Method, Including Permission Query

@IBAction func requestLocation() {
  
 //do not initialize until the user tries to request a location
 locationManager = CLLocationManager()
 locationManager?.delegate = self
  
 switch (CLLocationManager.authorizationStatus()) {
  
 case .AuthorizedWhenInUse, .AuthorizedAlways:
 locationManager?.requestLocation()
 case .Denied:
 print("user has not authorized location")
 presentConfirmController()
 case .NotDetermined:
 fallthrough
 default:
 locationManager?.requestWhenInUseAuthorization()
 }
}

To make the code easier to read, I have grouped the old code to present the confirm
interface controller into a method called presentConfirmController (Listing 8-3). This
encapsulates the work of building a context dictionary from the currentLocation property
and presenting the interface controller.

Listing 8-3.  Presenting the Confirm Interface Controller

func presentConfirmController() {
 //new location
  
 �let userDict = ["Latitude" : currentLocation.coordinate.latitude , "Longitude" :

currentLocation.coordinate.longitude, "Delegate" : self]
  
 presentControllerWithName("ConfirmInterfaceController", context: userDict)
  
}

Using the GPS sensor on any connected device is one of the most power-hungry operations
you can perform. While the iPhone and iPad have been optimized to reduce this cost,
the Apple Watch is not yet at that state, so all location requests need to be on demand. In
the example in Listing 8-2, when the status has been determined to already be authorized,
the call to requestLocation() is made, which performs the on-demand location request.

http://dx.doi.org/10.1007/978-1-4842-1194-6_7

228 CHAPTER 8: Building a Stand-Alone watchOS App

Unfortunately, neither the permission request nor the location request makes it obvious what
you are supposed to do when you have permission or a location. To implement these, you
will need to implement the CLLocationManagerDelegate protocol and its methods to handle
permission and location updates. Begin by updating your class definition to include the
CLLocationManagerDelegate protocol, as shown in Listing 8-4.

Listing 8-4.  Updating the Class Definition to Include CLLocationManagerDelegate

class InterfaceController: WKInterfaceController, WCSessionDelegate,
CLLocationManagerDelegate, ConfirmDelegate {
}

Next, you need to make sure the CLLocationManager object is initialized correctly,
including its delegate property. Accomplish that by initializing the object at the top of the
requestLocation() method, as shown in Listing 8-5.

Listing 8-5.  Initializing the Location Manager

@IBAction func requestLocation() {
  
 //do not initialize until the user tries to request a location
 locationManager = CLLocationManager()
 locationManager?.delegate = self
  
 switch (CLLocationManager.authorizationStatus()) {
  
 case .AuthorizedWhenInUse, .AuthorizedAlways:
 locationManager?.requestLocation()
 case .Denied:
 print("user has not authorized location")
 presentConfirmController()
 case .NotDetermined:
 fallthrough
 default:
 locationManager?.requestWhenInUseAuthorization()
 }
}

For permissions requests in CoreLocation, you need to implement the didFailWithError and
didChangeAuthorization delegate methods, both of which trigger compilation errors if they
are not included in your project. Listing 8-6 provides the didFailWithError() method for
the InterfaceController class (InterfaceController.swift). In my implementation, I print
out an error message in this class, since I provided a default current location value when
initializing the currentLocation property.

Listing 8-6.  Handling Permissions Failure

func locationManager(manager: CLLocationManager, didFailWithError error: NSError) {
 //do nothing, we have a default value
 print(error.description)
}

229CHAPTER 8: Building a Stand-Alone watchOS App

When the user has granted your app permission to use a location, you can query
the locationManager for the user’s current location. As shown in Listing 8-7, in the
InterfaceController class (InterfaceController.swift), perform this operation
by checking that the status has changed to “AuthorizedWhenInUse” in the
didChangeAuthorization delegate method.

Listing 8-7.  Handling Permissions Success

�func locationManager(manager: CLLocationManager, didChangeAuthorizationStatus status:
CLAuthorizationStatus) {
 if status == CLAuthorizationStatus.AuthorizedWhenInUse {
 manager.requestLocation()
 } else {
 //do nothing, use default location
 }
}

Finally, you need to handle the event that triggers when the location manager has fetched
the user’s current location. The updateLocations() delegate method handles this event. As
shown in Listing 8-8, when this event is triggered, verify that at least one valid location has
been received, and use that to initialize the currentLocation property of the class. From
there present the confirm interface controller.

Listing 8-8.  Handling Location Updates

func locationManager(manager: CLLocationManager, didUpdateLocations
locations: [CLLocation]) {
 if locations.count > 0 {
 currentLocation = locations[0]
  
 presentConfirmController()
  
 }
}

Reverse Geocoding an Address
One of the challenges in the original CarFinder app was that it only displayed a user’s
location as latitude and longitude. I don’t know about you, but I am a bit rusty on converting
latitude and longitude to street addresses. CoreLocation, however, is not, and by taking
advantage of its CLGeocoder class, we can use Apple’s reverse geocoding servers to retrieve
this information. This API has been available for years on iOS. Conveniently, it is also
available on watchOS 2.

For the CarFinder app, you should use reverse geocoding to replace the coordinates on the
user interface (UI) with a human-readable string containing the user’s street address (street
number and name). Reverse geocoding is a service-based API, meaning that you have to
wait for Apple’s servers to respond with a result. As you can guess, this means the reply time
is indeterminate, and you will need to handle the response on a view where the user can

230 CHAPTER 8: Building a Stand-Alone watchOS App

wait for the result to come in. In the CarFinder app, it makes sense to make this call on the
confirm view. From there, you can pass the street address back to the location list in your
delegate method, along with saved notes.

You can reverse geocode a set of coordinates with the CLGecoder private method
reverseGeocodeLocation(:_, completionHandler:), which takes a CLLocation object
as input and executes a completion handler when it receives a response from Apple’s
geocoding server. In the response is an array of places that match the given coordinates and
an NSError object, which is non-nil if an error occurred during the request.

For the confirm screen, you should start the request as soon as the interface controller is
presented. When you receive the request, you should extract the street name and number
(represented by the thoroughfare and subThoroughfare properties) and save them to a
string, which you will use to update the UI and location list.

Listing 8-9 provides the updated implementation for the awakeFromContext() method for the
ConfirmInterfaceController class. Since you cannot access the text string from a label,
save a copy of the generated string in a property named address.

Listing 8-9.  Updated ConfirmInterfaceController Class

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)
  
 if let inputDict = context as? Dictionary<String, AnyObject>{
 //
  
 if let inputDelegate = inputDict["Delegate"] as? ConfirmDelegate {
 delegate = inputDelegate
 }
 if let latitude = inputDict["Latitude"] as? Double {
 let longitude = inputDict["Longitude"] as! Double
 currentLocation = CLLocation(latitude: latitude, longitude: longitude)
  
 let formattedString = String(format: "%0.3f, %0.3f", latitude, longitude)
 coordinatesLabel?.setText(formattedString)
  
 let geocoder = CLGeocoder()
  
 �geocoder.reverseGeocodeLocation(currentLocation!, completionHandler: {

(placemarks: [CLPlacemark]?, error: NSError?) -> Void in
 //sd
 if error == nil {
 if placemarks?.count > 0 {
 let currentPlace = placemarks![0]
 �let placeString = "\(currentPlace.subThoroughfare!)

\(currentPlace.thoroughfare!)"
  

231CHAPTER 8: Building a Stand-Alone watchOS App

 dispatch_async(dispatch_get_main_queue()) {
 self.coordinatesLabel?.setText(placeString)
 self.address = placeString
 }
 }
 }
 })
 }
 }
  
 // Configure interface objects here.
}

In terms of execution time, reverse geocoding is an expensive operation. It is also certain
that the results will not change for a given address. We can save time in the app by passing
the address to the location list. To enable this, modify the ConfirmDelegate protocol delegate
in ConfirmInterfaceController.swift to add the address as a return parameter, as shown
in Listing 8-10.

Listing 8-10.  Adding Address to the ConfirmDelegate Protocol

protocol ConfirmDelegate {
 func saveLocation(note: String, address: String)
}
  
Listing 8-11 provides the modified confirm() method of the InterfaceController class
(InterfaceController.swift), which includes the address in the call to the delegate.

Listing 8-11.  Sending the Address to the Delegate Object

@IBAction func confirm() {
 let noteString = self.note!
 let addressString = self.address!
  
 delegate?.saveLocation(noteString, address: addressString)
 dismissController()
}

On the receiving side, you need to modify the saveLocation() delegate method to
include the address by adding it as a key-value pair. Listing 8-12 provides the modified
saveLocation() method for the InterfaceController class.

Listing 8-12.  Adding Address to the saveLocation() Delegate Method

func saveLocation(note: String, address: String) {
  
 //add a new record here
 �let locationDict = ["Latitude" : currentLocation.coordinate.latitude , "Longitude" :

currentLocation.coordinate.longitude, "Timestamp" : currentLocation.timestamp,
"Note" : note, "Address": address]

 locations.insert(locationDict, atIndex: 0)
  

232 CHAPTER 8: Building a Stand-Alone watchOS App

 �session?.sendMessage(locationDict, replyHandler: nil, errorHandler: { (error: NSError)
-> Void in

 print(error.description)
 })
  
}

Finally, to display the address, modify the configureRows() method in the location list
(InterfaceController.swift), which builds each table cell to use the human-readable
address, instead of latitude and longitude, as shown in Listing 8-13.

Listing 8-13.  Modifying the Table View to Include Address

func configureRows() {
 
 �self.locationTable?.setNumberOfRows(locations.count, withRowType:

"LocationRowController")
  
 for var index = 0; index < locations.count; index++ {
  
 �if let row = self.locationTable?.rowControllerAtIndex(index) as?

LocationRowController {
 let location = self.locations[index]
  
 if let address = location["Address"] as? String {
 row.coordinatesLabel?.setText(address)
 } else if let latitude = location["Latitude"] as? Double {
 let longitude = location["Longitude"] as! Double
 �let formattedString = String(format: "%0.3f, %0.3f", latitude, longitude)
 �//row.coordinatesLabel?.setText("\(latitude), \(location["Longitude"]!)")
 row.coordinatesLabel?.setText(formattedString)
  
 }

 if let timeStamp = location["Timestamp"] as? NSDate {
 let dateFormatter = NSDateFormatter()
 dateFormatter.dateStyle = NSDateFormatterStyle.ShortStyle
 dateFormatter.timeStyle = NSDateFormatterStyle.ShortStyle
 row.timeLabel?.setText(dateFormatter.stringFromDate(timeStamp))
 }
  
 }
  
 }

 �//self.locationTable?.setNumberOfRows(locations.count, withRowType:

"LocationRowController")
}

Note  You should use an if-else to display the latitude and longitude if the human-readable
address is not available.

233CHAPTER 8: Building a Stand-Alone watchOS App

The final version of the CarFinder table UI should now include human-readable addresses,
like the example in Figure 8-1. Much better, in my humble opinion!

Figure 8-1.  Updated table for CarFinder app

Using NSTimer to Create Reminders
Another convenient feature Apple has ported to watchOS is the NSTimer class, which allows
you to schedule actions to be executed after a period of time has elapsed. In a parking
app, this is useful, as it can remind a user to go back to her car before the meter expires.
In the WatchKit app, you will expose this feature by adding an Add Time button to the
ConfirmInterfaceController class, where the user saves the location. On iOS, EventKit
provides a modal for entering in time. On watchOS, you need to build it yourself. For this
app, every time the user presses the Add Time button, add 15 minutes to the reminder.
When the user saves the location, he will be able to use the total time to create a reminder
alert, which will appear on his watch. Reflect this by adding a label for meter timer to the
confirm interface controller on the storyboard, as well as a button to increment the timer.
Listing 8-14 provides the modified class definition for the ConfirmInterfaceController class
(ConfirmInterfaceController.swift), which includes these new properties.

Listing 8-14.  Modified Class Definition for ConfirmInterfaceController, Including New Timer Properties

class ConfirmInterfaceController: WKInterfaceController {
  
 @IBOutlet weak var coordinatesLabel: WKInterfaceLabel?
 @IBOutlet weak var noteLabel: WKInterfaceLabel?
 @IBOutlet weak var timeLabel: WKInterfaceLabel?
  

234 CHAPTER 8: Building a Stand-Alone watchOS App

 var currentLocation : CLLocation?
 var delegate: ConfirmDelegate?
 var note: String = ""
 var address: String = ""
  
 var totalTime : NSTimeInterval = 0.0
 
 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)
 ...
 }
 
}

Figure 8-2 shows the modified storyboard.

Figure 8-2.  Modified storyboard including add reminder button

When the user interacts with the Add Time button, you should increment the total time
stored in the class, as well as update the label that mirrors the current setting. As with
the other action buttons on the confirm interface controller, you should use the Add Time
button to build a configuration and act upon it when the user hits the Confirm button.
Listing 8-15 provides the incrementTime() method, which performs this logic, for the
ConfirmInterfaceController class. Remember to hook this function up to the button using
Interface Builder’s connection inspector after defining it.

235CHAPTER 8: Building a Stand-Alone watchOS App

Listing 8-15.  Saving Total Time Updates (ConfirmInterfaceController.swift)

@IBAction func incrementTime() {
 dispatch_async(dispatch_get_main_queue()) {
 self.totalTime += 15
  
 let timeString = String(format: "%0.0f", self.totalTime)
  
 self.timeLabel?.setText("\(timeString) mins")
 }
 
}

The NSTimer class allows you to schedule an action to be executed later by specifying the
offset (in seconds) and the selector (method signature). For the CarFinder application, you
will present an alert view and make the watch vibrate via the taptic sensor. When you specify
a selector, you need to provide the signature for the method and a target and the name
of the class where it is defined. For the CarFinder app, the function you want to call is the
one that presents the alert and generates the haptic feedback (vibration). Since alerts are
presented modally (full screen over another interface controller), the logic to present the alert
should be in an interface controller that will remain static.

The confirm interface controller disappears after you press the Confirm button, so it is a bad
choice. The location list, represented by InterfaceController.swift, is the primary screen
on the CarFinder and is also the first screen the user sees when she re-enters the app, so
that would be the best place to initialize the timer. However, you need a way of bridging the
gap between the ConfirmInterfaceController class and InterfaceController. To solve this
problem, you can further expand the ConfirmDelegate protocol to add a third parameter,
specifying the time the user selected. As shown in Listing 8-16, expand the protocol
definition in ConfirmInterfaceController.swift to include an NSTimeInterval parameter
that represents the saved time.

Listing 8-16.  Expanding the ConfirmDelegate Protocol to Include Time

protocol ConfirmDelegate {
 func saveLocation(note: String, address: String, time: NSTimeInterval)
}

Similarly, in the confirm() method, the handler for the Confirm button, send the totalTime
property to the delegate object, as shown in Listing 8-17. The NSTimeInterval type
represents time in seconds, so multiply the saved value by 60 to convert it to minutes.

Listing 8-17.  Sending Time to the ConfirmDelegate Delegate Object (ConfirmInterfaceController.swift)

@IBAction func confirm() {
 let noteString = self.note
 let addressString = self.address
 delegate?.saveLocation(noteString, address: addressString, time: self.totalTime * 60)
 dismissController()
}

236 CHAPTER 8: Building a Stand-Alone watchOS App

Back in the interface controller class (InterfaceController.swift), you can now
initialize the timer when handling the saveLocation(_:address:time) message from the
ConfirmDelegate protocol. There are two primary methods for initializing a timer, scheduled
TimerWithTimeInterval:target:selector:userInfo:repeats: and timerWithTimeInterval
:target:selector:userInfo:repeats:. The main difference between these methods is that
the former starts the countdown right away, while the latter is intended to be started later.
For the CarFinder app, you should start the timer right away. As shown in Listing 8-18, the
time will come from the time parameter, InterfaceController (self) will be the target, and the
selector will be the showAlert(_:) method. In this example, I also build a dictionary to use
for the userInfo parameter, so I can pass extra data to the showAlert(_:) method.

Listing 8-18.  Initializing the Timer (InterfaceController.swift)

func saveLocation(note: String, address: String, time: NSTimeInterval) {
  
 //add a new record here
 �let locationDict = ["Latitude" : currentLocation.coordinate.latitude , "Longitude" :

currentLocation.coordinate.longitude, "Timestamp" : currentLocation.timestamp,
"Note" : note, "Address": address]

 locations.insert(locationDict, atIndex: 0)
  
 �session?.sendMessage(locationDict, replyHandler: nil, errorHandler: { (error: NSError)

-> Void in
 print(error.description)
 })
  
 let userDict = ["address" : address]
  
 �NSTimer.scheduledTimerWithTimeInterval(time, target: self, selector: "showAlert:",

userInfo: userDict, repeats: false)
}

Now, you can begin implementing the alert that should appear when the timer fires.
Conveniently enough, Apple has chosen to port over the main logic of alert view controllers
to watchOS, including its modal presentation style and ability to add multiple actions
(buttons with completion handlers). Figure 8-3 provides a screenshot of the alert you will
create. It displays a reminder message, the address where the user parked his car, and an
OK button for the user to dismiss the alert.

Note  A timer can also be configured to be called once or to repeat at an interval. Refer to
Chapter 4 (Using Core Motion to Save Motion Data) for an example of a repeating timer.

http://dx.doi.org/10.1007/978-1-4842-1194-6_4

237CHAPTER 8: Building a Stand-Alone watchOS App

To build an alert, you need to specify an alert title and a message and provide a set of actions
for the user to act upon. Conveniently, you build your alert and present it on watchOS using
one method: presentAlertControllerWithTitle(_:message:preferredStyle:actions). For the
CarFinder app, the only action you need is OK to dismiss the alert. For the alert message and
title, display a generic warning instructing the user to return to his car. Listing 8-19 provides
the implementation for the showAlert(_:) method that builds the alert. In this example,
I extract the address from the userInfo property of the timer.

Listing 8-19.  Presenting an Alert (InterfaceController.swift)

func showAlert(timer: NSTimer) {
  
 var reminderMessage = "Please return to your car"
  
 if let userInfo = timer.userInfo as? [String: String] {
 reminderMessage+="at \(userInfo["address"])"
 }
  
 print("Meter is out of time.")
 
 �let okAction = WKAlertAction(title: "OK", style: WKAlertActionStyle.Default)

{ () -> Void in
 print("OK button pressed")
 }
  
 �presentAlertControllerWithTitle("Meter expired", message: reminderMessage,

preferredStyle: WKAlertControllerStyle.Alert, actions: [okAction])
  
 timer.invalidate()
}

Figure 8-3.  Screenshot of alert controller on watchOS

238 CHAPTER 8: Building a Stand-Alone watchOS App

To make the watch vibrate, use the playHaptic(_:) method on the Apple-provided
singleton which represents your device (WKInterfaceDevice.captureDevice()), as shown
in Listing 8-20. Apple provides several pre-configured vibration types that you can specify
to indicate different events via the WKHapticType enum. The Notification type is the most
powerful one and appropriate for what the CarFinder app needs to do (remind the user to go
back to his car).

Listing 8-20.  Making the Watch Vibrate

func showAlert(timer: NSTimer) {
  
 var reminderMessage = "Please return to your car"
  
 if let userInfo = timer.userInfo as? [String: String] {
 reminderMessage+="at \(userInfo["address"])"
 }
  
 print("Meter is out of time.")
  
 WKInterfaceDevice.currentDevice().playHaptic(WKHapticType.Notification)
  
 �let okAction = WKAlertAction(title: "OK", style: WKAlertActionStyle.Default)

{ () -> Void in
 print("OK button pressed")
 }
  
 �presentAlertControllerWithTitle("Meter expired", message: reminderMessage,

preferredStyle: WKAlertControllerStyle.Alert, actions: [okAction])
  
 timer.invalidate()
}

Making Network Calls from Your watchOS App
As you learned with Fitbit, there is a huge wealth of information out there for you to access
via third party APIs. The primary means of communication between your app and an API
is through HTTP. Previously, this had been limited to the realm of iOS apps only; however,
watchOS 2 has an expanded subset of Foundation (the core framework that powers all
Apple platforms) which includes networking capabilities. As you will learn in this chapter, this
allows you to perform HTTP requests (including GET and POST) directly on an Apple Watch
using its Wi-Fi radio, even without a tethered iPhone.

In this section, you will use the Weather Underground API to access the weather conditions
for a saved location, based on its zip code. Weather Underground requires you to sign up as
a developer to get an API key to use its services. The examples in this section use Weather
Underground’s free developer account, which you can sign up for at www.wunderground.com/
weather/api.

http://www.wunderground.com/weather/api
http://www.wunderground.com/weather/api

239CHAPTER 8: Building a Stand-Alone watchOS App

The primary class for performing network operations in watchOS is NSURLSession, which
manages requests in the form of “tasks” or queueable units of execution. As shown in
Table 8-1, Apple provides several pre-configured task types. For the CarFinder app, you
want to retrieve data from an external host, asynchronously, via HTTP GET. The Data Task
type is the most appropriate for this situation.

Note  Remember that starting with iOS9, Apple adds a firewall for HTTP operations. All network
operations must be transmitted over HTTPS, unless specific domains are whitelisted in your
Info.plist file.

Table 8-1.  NSNURLSession Task Types

Task Type Purpose

Data task Used to download binary data in the foreground (NSData)

Upload task Used to upload binary data or files in the foreground or background

Download task Used to download files in the foreground or background

Local weather is useful as a statistic when viewing the details of an item, so you will implement
the look-up in the LocationInterfaceController class (LocationInterfaceController.swift),
which manages the display of an item. To begin, add a label for the temperature to the class,
as shown in Listing 8-21.

Listing 8-21.  Adding a Label to the Class

class LocationInterfaceController: WKInterfaceController {
 
 @IBOutlet weak var locationMap: WKInterfaceMap?
 @IBOutlet weak var coordinatesLabel: WKInterfaceLabel?
 @IBOutlet weak var timeLabel: WKInterfaceLabel?
 @IBOutlet weak var weatherLabel: WKInterfaceLabel?
  
 var currentLocation : CLLocation?
  
 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)
 ...
 }
}

As shown in Figure 8-4, add a label in your storyboard scene, after the time label. Be sure to
connect the property via the Connection Inspector in Interface Builder.

240 CHAPTER 8: Building a Stand-Alone watchOS App

To perform the weather look-up, you need to provide Weather Underground with a zip code.
In the awakeWithContext() method of the class, add a geocoder to convert the location to a
place-mark with human-readable attributes (Listing 8-22).

Listing 8-22.  Performing a Weather Look-up (LocationInterfaceController.swift)

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)
  
 // Configure interface objects here.
  
 // Configure interface objects here.
 if let locationDict = context as? Dictionary<String, AnyObject> {
  
 if let latitude = locationDict["Latitude"] as? Double {
  
 if let longitude = locationDict["Longitude"] as? Double {
 let location = CLLocation(latitude: latitude, longitude: longitude)
  
 �let prettyLocation = String(format: "%.2f, %.2f", location.coordinate.

latitude, location.coordinate.longitude)
  
 coordinatesLabel?.setText(prettyLocation)
  
 currentLocation = CLLocation(latitude: latitude, longitude: longitude)
  
 �locationMap?.addAnnotation(location.coordinate, withPinColor:

WKInterfaceMapPinColor.Red)
  

Figure 8-4.  Adding a label to the storyboard

241CHAPTER 8: Building a Stand-Alone watchOS App

 �let mapRegion = MKCoordinateRegionMake(location.coordinate,
MKCoordinateSpanMake(0.1, 0.1))

  
 locationMap?.setRegion(mapRegion)
  
 geocodeLocation()
  
 }
  
 }
  
 if let timestamp = locationDict["Timestamp"] as? NSDate {
 ...
 }
  
 }
}

Listing 8-23 provides the geocodeLocation() method, which performs the geocoding operation.

Listing 8-23.  Geocoding (LocationInterfaceController.swift)

func geocodeLocation() {
  
 if currentLocation != nil {
 let geocoder = CLGeocoder()
 �geocoder.reverseGeocodeLocation(currentLocation!, completionHandler: { (placemarks:

[CLPlacemark]?, error: NSError?) -> Void in
 //sd
 if error == nil {
 if placemarks?.count > 0 {
  
 let currentPlace = placemarks![0]
 �let placeString = "\(currentPlace.subThoroughfare!) \(currentPlace.

thoroughfare!)"
  
 dispatch_async(dispatch_get_main_queue()) {
 self.coordinatesLabel?.setText(placeString)
 }
  
 let zipCode = currentPlace.postalCode!
 self.retrieveWeather(zipCode)
  
 }
 } else {
 print(error?.description)
 }
 })
 }
  
}

242 CHAPTER 8: Building a Stand-Alone watchOS App

Once you have verified that the result contains a valid zip code, call the retrieveWeather()
method to begin the network operation.

In the retrieveWeather() method, you need to create an NSURLSession object and call the
dataTaskWithURL(url!, completionHandler: { (responseData: NSData?, response:
NSURLResponse?,error:NSError?) -> Void) method to process the result. The input is an
NSURL object and the output is a completion handler with response data and an error.

In looking at the Weather Underground API reference, you can determine that the
“conditions” endpoint is the appropriate method to call to get the local weather for a location
(www.wunderground.com/weather/api/d/docs?d=data/conditions). Weather Underground
provides the following as an example for how to call the API:

http://api.wunderground.com/api/748504be0ff02aa3/conditions/q/CA/San_Francisco.json

In this example, the string after the /api/ represents the API key. Weather Underground uses
CA/San_Francisco as the input for the location. However, you can safely change it to a zip
code.

Use a formatted string to build your URL (uniform resource locator) for the data task, as
shown in Listing 8-24:

Listing 8-24.  Building the API URL String

let apiKey = "YOUR_UNDERGROUND_KEY"
 
let urlString = "https://api.wunderground.com/api/\(apiKey)/conditions/q/\(zipCode).json"
 
let url = NSURL(string: urlString)

Listing 8-25 provides the initial implementation for the retrieveWeather() method. In this
example, I used the NSURLSession.sharedSession() singleton for the session, as there is
no need to maintain multiple network sessions at once in the app. As has been the trend for
the other applications in this book, checking to make sure error is nil indicates success. To
execute a data task, you need to explicitly call the resume() method on it (remember, it is
designed to work in a queue).

Listing 8-25.  Initiating a URL Session (LocationInterfaceController.swift)

func retrieveWeather(zipCode: String) {
  
 let apiKey = "YOUR_API_KEY"
  
 �let urlString = "https://api.wunderground.com/api/\(apiKey)/conditions/q/\(zipCode).json"
  
 let url = NSURL(string: urlString)
 let session = NSURLSession.sharedSession()
 �let urlTask = session.dataTaskWithURL(url!, completionHandler: { (responseData: NSData?,

response: NSURLResponse?,error:NSError?) -> Void in

.wunderground.com/weather/api/d/docs?d=data/conditions
http://api.wunderground.com/api/748504be0ff02aa3/conditions/q/CA/San_Francisco.json
https://api.wunderground.com/api//(apiKey)/conditions/q//(zipCode).json
https://api.wunderground.com/api//(apiKey)/conditions/q//(zipCode).json

243CHAPTER 8: Building a Stand-Alone watchOS App

 if error == nil {
 
 } else {
 print(error?.description)
 }
 })
 urlTask.resume()
}

Handling a JSON Response
Having successfully completed the network operation, you need to perform one more step
to handle the output from Weather Underground: you need to convert the JSON (JavaScript
Object Notation) data in the response to a dictionary. Fortunately, Apple has chosen to also
port the NSJSONSerialization class to watchOS, which will allow you to convert NSData
objects to dictionaries. In Listing 8-26, I attempt to decode to a JSON dictionary. The
JSONObjectWithData() method returns errors via exceptions, so remember to implement it in
a try-catch block. This code will eventually go into the ConfirmInterfaceController class.

Listing 8-26.  JSON Serialization

let urlTask = session.dataTaskWithURL(url!, completionHandler: { (responseData: NSData?,
response: NSURLResponse?,error:NSError?) -> Void in
 if error == nil {
 do {
 �let jsonDict = try NSJSONSerialization.JSONObjectWithData(responseData!,

options: NSJSONReadingOptions.AllowFragments)
  
 }
 }
 } catch {
 print("error: invalid json data")
 }
  
 } else {
 print(error?.description)
 }
 })

Referring back to the API documentation for the “conditions” endpoint, the current temperature
for a location is stored as the “temp_f” key-value pair, in the “current_observation” dictionary
(see Listing 8-27).

Listing 8-27.  API Response

{
 "response": {
 "version": "0.1",
 "termsofService": "http://www.wunderground.com/weather/api/d/terms.html",
 "features": {
 "conditions": 1
 }
 },

http://www.wunderground.com/weather/api/d/terms.html

244 CHAPTER 8: Building a Stand-Alone watchOS App

 "current_observation": {
..
 "temp_f" : 86.5
}
}

Listing 8-28 provides the final implementation for the retrieveWeather() method. To extract
a key from a dictionary, in another dictionary, perform a series of consecutive optional
unwrapping operations.

Listing 8-28.  Completed Implementation for retrieveWeather() Method

func retrieveWeather(zipCode: String) {
  
 let apiKey = "YOUR_API_KEY"
  
 �let urlString = "https://api.wunderground.com/api/\(apiKey)/conditions/q/\(zipCode).json"
  
 let url = NSURL(string: urlString)
 let session = NSURLSession.sharedSession()
 �let urlTask = session.dataTaskWithURL(url!, completionHandler: { (responseData: NSData?,

response: NSURLResponse?,error:NSError?) -> Void in
 if error == nil {
 do {
 �let jsonDict = try NSJSONSerialization.JSONObjectWithData(responseData!,

options: NSJSONReadingOptions.AllowFragments)
 
 �if let resultsDict = jsonDict["current_observation"] as? Dictionary<String,

AnyObject> {
 if let tempF = resultsDict["temp_f"] as? Double {
 self.weatherLabel?.setText("\(tempF) F")
 }
 }
 } catch {
 print("error: invalid json data")
 }
  
 } else {
 print(error?.description)
 }
 })
 urlTask.resume()
}

Having completed the steps in this chapter, the CarFinder app should look like the
screenshot in Figure 8-5, where the location list now shows human-readable addresses, the
detail list now shows weather, and an alert will appear when the user’s meter has expired.

https://api.wunderground.com/api//(apiKey)/conditions/q//(zipCode).json

245CHAPTER 8: Building a Stand-Alone watchOS App

Summary
In this chapter, you learned different ways to make a watchOS app independent, by
allowing it to take advantage of the expanded set of frameworks based in watchOS 2. First,
you learned how to create a permissions prompt and get a user’s current location using
CoreLocation. Next, you used this same general process to create a calendar reminder using
EventKit. Finally, you learned how to make network calls to the Weather Underground API
directly from the watch to show the weather at the user’s current location. The Apple Watch
can be an extremely powerful tool in the right hands and now you have some more ways of
making a powerful tool when the user is nowhere next to his or her phone.

Figure 8-5.  Updated user interface for CarFinder app

247

Chapter 9
Connecting to a Bluetooth
LE Device

Manny de la Torriente
Thanks to its open standards, Bluetooth Low-Energy (LE), also known as BLE,has
established itself as a leader for hardware manufacturers looking to create connected
accessories for iOS. This chapter introduces Core Bluetooth, Apple’s framework for
Bluetooth-based communication, to send and receive messages from a Bluetooth LE
device. Additionally, we will discuss Bluetooth best practices for battery life and a positive
user experience.

Introduction to the Apple Bluetooth stack
Apple’s Core Bluetooth is the representation of Bluetooth LE on iOS platforms. It’s the
framework that you will use to talk to accessories and host peripherals.

The framework is an abstraction of the Bluetooth LE protocol stack, and it hides many of the
low-level details of the specification so you can focus on your application.

248 CHAPTER 9: Connecting to a Bluetooth LE Device

The framework is built on the Bluetooth 4.0 Standard and provides all the classes you’ll need
to easily communicate with other Bluetooth LE devices.

Key Terms and Concepts
The framework adopts many key concepts and terminology from the specification.

Central
A device that supports the central role scans and listens for peripheral devices that are
advertising information. A central role device is responsible for initiating and establishing a
connection. We refer to a device operating in the central role as a central.

Peripheral
A device that supports the peripheral role transmits advertising packets, which describe
what services the peripheral has to offer. A peripheral role device is responsible for
accepting the establishment of connection. We refer to a device operating in the peripheral
role as a peripheral.

Service
A service is a collection of data called characteristics that describes particular functions or
features of a peripheral’s services.

Characteristic
A characteristic is a value used in a service along with properties and descriptors that
contain information that describes the value.

Figure 9-1.  Core Bluetooth Technology Framework

249CHAPTER 9: Connecting to a Bluetooth LE Device

Discovery
Bluetooth devices use advertising and scanning either to be discovered or to discover
nearby devices. Advertising peripherals broadcast advertising packets. A scanning central
device will scan and listen and can use filters to prevent discovery of all nearby devices.

Core Bluetooth Objects
The Core Bluetooth framework is mapped to Bluetooth LE communication in a
straightforward way.

Central Role Objects
A device that supports the central role uses the CBCentralManager object to scan for,
discover, connect, and manage discovered peripherals. The peripheral is represented
by a CBPeripheral object to handle services and characteristics. CBService and
CBCharacteristic objects represent a peripheral’s data. Figure 9-2 illustrates the peripheral’s
tree of services and characteristics.

Figure 9-2.  Peripheral’s tree of services and characteristics

250 CHAPTER 9: Connecting to a Bluetooth LE Device

Peripheral Role Objects
A device that supports the peripheral role is represented by the CBPeripheralManager
object to advertise services, manage published services, and respond to read/write
requests from centrals. A CBCentral object represents a central. CBMutableService and
CBMutableCharacteristic objects represent a peripheral’s data when in this role. Figure 9-3
illustrates the peripheral’s tree of services and characteristics.

Building Your First Bluetooth LE Application
In this section you’ll build a simple application using an agile approach that will support both
central and peripheral roles. The application is designed to run on two separate Bluetooth
LE-capable iOS devices, with each device running in the different roles. The central role
device will scan and connect to the peripheral device, which will be advertising a simple
service. Once connected, the peripheral device will transfer data to the central device, which
will then present that data to the user.

The feature requirements are straightforward and we present them in a story form. The main
focus for the first part of this exercise will be on setting up the application to accommodate
each mode using a simple user interface (UI) followed by a deep dive into Core Bluetooth.

When you complete this exercise, you should have a solid understanding of the central and
peripheral roles and how they work using the Core Bluetooth framework, as well as several
reusable modules that you can bring into your own projects.

Figure 9-3.  Peripheral’s mutable tree of services and characteristics

251CHAPTER 9: Connecting to a Bluetooth LE Device

Backlog
There are several features that are represented by stories and are labeled “must have.” They
are the focus in this section. The story labeled “nice to have” is left as an exercise for you
do to later on if you wish. You can find the full implementation for this chapter in the Source
Code/Download area of the Apress web site (www.apress.com).

Base Application and Home Scene
The following are “must have” features.

Story
As an iOS developer, I want an application that runs on a Bluetooth LE-capable device and
provides access to two scenes, so I can run each scene in a different mode.

Acceptance Criteria
	The home scene provides a button labeled Central Role that, when

pressed, transitions to new blank scene titled Central Role.

	The home scene provides a button labeled Peripheral Role that, when
pressed, transitions to a new blank scene titled Peripheral Role.

	The home scene provides a single indicator that shows when Bluetooth
is powered on or off.

	The application prohibits any transition if Bluetooth is not powered on,
or the device doesn’t support Bluetooth LE.

	The application displays an alert to the user if Bluetooth is not powered
on, or the device doesn’t support Bluetooth LE.

	Each scene provides a Back button in the navigation bar that transitions
back to the home scene when pressed (see Figure 9-5).

http://www.apress.com/

252 CHAPTER 9: Connecting to a Bluetooth LE Device

Central Role Scene
Importance: must have.

Story
As an iOS developer, I want a scene that implements the central role, so I can scan for
peripherals that I can connect to and retrieve data.

Acceptance Criteria
	The scene provides a Scan button that toggles device scanning on and off.

	The scene provides a view that will be populated with data transferred
from a discovered peripheral device.

	The scene provides a progress indicator when scanning.

	The application can scan for peripherals.

	The application uses a filter for a specific service when scanning.

Figure 9-4.  The home scene mock-up

253CHAPTER 9: Connecting to a Bluetooth LE Device

	The application can initiate a connection and connect to a discovered
peripheral with the desired service.

	The application can request data.

	The application can receive data.

	The application disconnects from the peripheral when data transfer
completes

	The application can present the data to the user.

Figure 9-5.  The central role scene mock-up

Peripheral Role Scene
The following are must have features”

Story
As an iOS developer, I want a scene that implements the peripheral role and advertises a
service, so a central role device can connect and retrieve data.

254 CHAPTER 9: Connecting to a Bluetooth LE Device

Figure 9-6.  The peripheral role scene mock-up

Acceptance Criteria
	The scene provides a switch labeled “Advertise” that toggles advertising

on and off.

	The scene provides a text view that contains preset text.

	The application sets up a simple transfer service.

	The application will broadcast advertising packets when advertising is
enabled so that the application can be discovered.

	The application can stop broadcasting when disabled.

	The application connects to a central device that initiates a connection.

	The application sends data when it receives a request.

255CHAPTER 9: Connecting to a Bluetooth LE Device

Editable Text
The following are “nice to have” features.

Story
As a Core Bluetooth transfer application user, I want an editable text view in the peripheral
role scene (see Figure 9-7), so I can enter text that can be transferred to a central role device.

Acceptance Criteria
	The existing text view is editable and presents a keyboard when I tap

inside the text view.

	The title bar presents a Done button to dismiss the keyboard when the
user is done typing.

	The text that I type is the same text that is transferred to a connected
central device.

Figure 9-7.  Editable text view

256 CHAPTER 9: Connecting to a Bluetooth LE Device

Setting Up the Project
This application will use a single-view application project template (see Figure 9-8). To create
a new single-view Swift application project, from Xcode select File ➤ New ➤ Project.

Figure 9-8.  Creating a single-view application project

After clicking Next, you’ll be prompted to enter a project name and select the language and
the target device. Make sure you choose Swift for the language and Universal for the device.
Leave the option User Core Data unchecked. Click the Next button, choose a location for
your project, and click the Create button.

Once the project is created, to keep things tidy, you may want to move some of the files/
folders you use less often (e.g., AppDelegate.swift, Images.xcassets, and LaunchScreen.
xib) into the Supporting Files folder. Next you’ll start laying out the UI.

Building the Interface
Now it’s time to lay out the UI, so refer to the mock-ups in section “Backlog.” Look at the
subsection “Base Application and Home Scene Story.” There you will see acceptance
criteria that call for navigation controls to navigate back to the home scene. So, the first
thing you need to add is a Navigation Controller. Open up the Main.storyboard and select
the View Controller from either the storyboard or the Document Outline. Then, from the
menu, select Editor ➤ Embed In ➤ Navigation Controller. Xcode will add a Navigation
Controller to the storyboard and set as the Storyboard Entry Point, and add a relationship
between the Navigation Controller and the existing View Controller. Your storyboard should
look something like Figure 9-9.

257CHAPTER 9: Connecting to a Bluetooth LE Device

Figure 9-9.  Adding a Navigation Controller

At this point, you should be able to build and run your app. If all went well you should see an
empty white scene.

To change the color of the View Controller background to match the mock-up, select View
in the View Controller tree, and show the attribute selector by clicking Attributes Inspector at
the top of the Utilities panel. Then bring up the color picker by clicking Background control
and selecting “Other…” In the color picker, choose Web Safe Colors and then find and
select value 0066CC. Remember these steps because in future sections, you’ll only be given
the color values.

I’ll assume you already know how to add controls to the scene, so I won’t cover that here.
Next you’ll add two buttons, one labeled Central Role and the other labeled Peripheral Role.
Set the button background color to white. Make the corners of each button rounded
using User Defined Runtime Attributes. In the Utilities panel click the Identity inspector tab.
In the User Defined Runtime Attributes section, click the Add button (+) in the lower left
of the table. Double-click the Key Path field of the new attribute and change the value to
layer.cornerRadius. Set the type to Number and the value to 4.

258 CHAPTER 9: Connecting to a Bluetooth LE Device

Later in the chapter you’ll learn how to use IBInspectable and IBDesignable attributes,
which are new features in Xcode 6.

Now you need to add constraints for each button. See Figures 9-11 and 9-12 for constraint
type and values for each button. There are a few ways to add constraints in Interface Builder.
You can let Interface Builder add them for you; you could use the Pin and Align tools located
at the bottom of the storyboard canvas or you can control-drag between views. To create a
Leading Space constraint, control-click the Central Role button and drag to the left edge of
the View Controller. When you release the mouse, a pop-up menu is displayed with a list of
possible constraints. Choose Leading Space to Container Margin. When you drag vertically,
Interface Builder will present options to set vertical spacing between the views and options
to horizontally align the views. Likewise, when you drag horizontally, you’ll be presented with
options to set the horizontal spacing between the views and options to vertically align the
view. Both gestures may include other options such as setting the view size.

Apply the constraints in Figure 9-11 to the Central Role button.

Tip  Use user-defined runtime attributes to set an initial value for objects that do not have an
Interface Builder inspector. The user-defined values are set when the storyboard is loaded.

Figure 9-10.  User-defined runtime attributes for cornerRadius

259CHAPTER 9: Connecting to a Bluetooth LE Device

Figure 9-11.  Constraints for Central Role button

260 CHAPTER 9: Connecting to a Bluetooth LE Device

Now apply constraints shown in Figure 9-12 to the Peripheral Role button.

Figure 9-12.  Constraints for Peripheral Role button

261CHAPTER 9: Connecting to a Bluetooth LE Device

Next you will add two scenes to the storyboard, one for central role and the other for
peripheral role. Drag and drop a View Controller for each scene onto the storyboard and
situate them so they look like Figure 9-13.

Figure 9-13.  Add central and peripheral View Controllers

To add a segue for the central role scene, select the Central Role button from the Document
Outline on the left, then control-drag to the top View Controller on the right and release.
Select show from the Action Segue pop-up. (See Figure 9-14.)

262 CHAPTER 9: Connecting to a Bluetooth LE Device

Figure 9-14.  Adding a segue for central role scene

263CHAPTER 9: Connecting to a Bluetooth LE Device

Repeat the same steps for the Peripheral Role button. Your layout should look similar to the
one in Figure 9-15.

Figure 9-15.  Segues for central and peripheral scenes

Now set the title for each of the new View Controllers. Open up the Utilities panel and
click the Attributes Inspector. Now select the top View Controller and set its title to Central
Role from the View Controller section of the Attribute Inspector. Repeat these steps for the
peripheral role View Controller.

Set the background colors for each of the views. The value for the central role view is
FF6600, and for the peripheral role view, 009999.

Now build and run the app. Press each button and verify that you transition to the appropriate
scene, that it has the proper title, and that you can navigate back to the home scene.

There is one more UI element that you need to add, and then it’s time to jump in and start
writing some code. Add a UILabel to the home scene and set the text to “Bluetooth Off”
(see Figure 9-16) and the text color to FF0000. You can set up constraints so it stays
centered in the view.

264 CHAPTER 9: Connecting to a Bluetooth LE Device

Now you need to connect the label to a property of the ViewController. First, close the
Utilities view on the right if it’s open, and click the Assistant Editor. You should now see a
split window in Xcode with the Main.storyboard on the left and the ViewController.swift
file on the right (you could dismiss the Document Outline for even more room). Next, control-
drag the Label from the storyboard, to the ViewController source and drop it inside your
ViewController class.

In the pop-up, name the outlet bluetoothStateLabel and use the default options, then click
the Connect button. Your ViewController class should now have an outlet defined.

@IBOutlet weak var bluetoothStateLabel: UILabel!

If you review the acceptance criteria, you’ll see that we need to satisfy the requirement “The
home scene provides a single indicator that shows when Bluetooth is either powered on or
off.” That means you now have to utilize the Core Bluetooth framework. In the next section,
you’ll learn how to start up a central manager and use it to determine the Bluetooth state.

Using a Central Manager
In this section, you’ll learn how to start up a central manager and use it to determine if a
device supports Bluetooth LE and is available to use on the central device.

The CBCentralManager object is a Core Bluetooth representation of a central role device. When a
central manager is initialized, it calls the centralManagerDidUpdateState method of its delegate.
This means you must adopt the delegate protocol and implement this required method.

Figure 9-16.  Connect Label to ViewController class

265CHAPTER 9: Connecting to a Bluetooth LE Device

Open the MainViewController.swift file and import the framework and add the
CBCentralManagerDelegate protocol to your class declaration.

import CoreBluetooth
 
class ViewController: UIViewController, CBCentralManagerDelegate {

You’ll see an error indicator, which says the ViewController, does not conform to protocol.
That’s because you need to implement the required delegate method.

func centralManagerDidUpdateState(central: CBCentralManager!) {
  
}

Now add a property for a CBCentralManager and initialize it in the viewDidLoad method.

var centralManager: CBCentralManager!
 
override func viewDidLoad() {
 super.viewDidLoad()
 centralManager = CBCentralManager(delegate: self, queue: nil)
}

The central manager is initialized with self as the delegate so the ViewController will
receive any central role events. By specifying the queue as nil, the central manager
dispatches central role events using the main queue. The central manager starts up after this
call is made and begins dispatching events.

Listing 9-1 shows how to examine the central manager state in the
centralManagerDidUpdateState callback when the state change event fires. Here is where
you can update the text and text color of the bluetoothStateLabel property based on the
central state.

Listing 9-1.  Central State Change

func centralManagerDidUpdateState(central: CBCentralManager!) {
 switch (central.state) {
 case .PoweredOn:
 bluetoothStateLabel.text = "Bluetooth ON"
 bluetoothStateLabel.textColor = UIColor.greenColor()
 break
 case .PoweredOff:
 bluetoothStateLabel.text = "Bluetooth OFF"
 bluetoothStateLabel.textColor = UIColor.redColor()
 break
 default:
 break;
 }
}

266 CHAPTER 9: Connecting to a Bluetooth LE Device

The PoweredOn state indicates that the central device supports Bluetooth LE and the
Bluetooth is on and available for use. The PoweredOff state indicates that Bluetooth is either
turned off, or the device doesn’t support Bluetooth LE.

Build and run the application. If your device has Bluetooth enabled, the indicator label
should read “Bluetooth On” and its color should be green. Use the slide-up settings panel to
turn Bluetooth off. The indicator label should now read “Bluetooth Off” and its color should
be red.

Now that you can determine the Bluetooth state, you can use that information to satisfy
the remaining acceptance criteria. Add the Bool property isBluetoothPoweredOn that will be
used to reflect the Bluetooth state.

var isBluetoothPoweredOn: Bool = false

Set its value in the centralManagerDidUpdateState method accordingly.

You’ll use this value to determine whether or not transition is allowed to the central or
peripheral mode scenes. You set up two segues in the previous section to those scenes. In
order to interact with the storyboard, you need to add identifiers for each segue. Create a
new file named Const.swift and add a global constant for each.

let kCentralRoleSegue: String = "CentralRoleSegue"
let kPeripheralRoleSegue: String = "PeripheralRoleSegue"

Open Main.storyboard and select the segue for the central role scene. Open the Utilities
panel and click the Attributes Inspector. You will see a section named Storyboard Segue
with a field where you can enter an identifier (see Figure 9-17). Enter the string value you
defined for the central role segue. This string is only used for locating the segue inside the
storyboard.

Figure 9-17.  Adding segue identifiers

267CHAPTER 9: Connecting to a Bluetooth LE Device

Repeat the foregoing steps for the peripheral role segue.

The UIViewController provides an override method which allows you to control whether a
particular segue should be performed. Open ViewController.swift and add the method
shouldPerformSegueWithIdentifier to the ViewController class (see Listing 9-2).

Listing 9-2.  Override Method to Control Segue

override func shouldPerformSegueWithIdentifier(identifier: String?, sender: AnyObject?) ->
Bool {
 if identifier == kCentralRoleSegue || identifier == kPeripheralRoleSegue {
 if !isBluetoothPoweredOn {
 return false;
 }
 }
 return true
}

When you initiate a segue, this method will be called with the string value that identifies the
triggered segue, and the object that initiated the segue. The return value for this method
should be true if you want the segue to be executed; otherwise, return false.

In this method you’re only interested in the identifier; the sender object is for informational
purposes only and can be ignored here. Compare the identifier value with the constants you
defined earlier. If you find a match, then check the Bluetooth state. If Bluetooth is powered
on, you can allow the segue to execute by returning a value of true.

In the case where Bluetooth is powered off, you want to display an alert and provide an
option to go to the Settings app where the Bluetooth setting can be changed. Add the
method shown in Listing 9-3 to the ViewController class. Call this method from within the
shouldPerformSegueWithIdentifier method.

if !isBluetoothPoweredOn {
 showAlertForSettings()
 return false;
}

Listing 9-3.  Configure and Present an Alert

func showAlertForSettings() {
 �let alertController = UIAlertController(title: "CBTransferApp", message: "Turn On

Bluetooth to Connect to Peripherals", preferredStyle: .Alert)
  
 let cancelAction = UIAlertAction(title: "Settings", style: .Cancel) { (action) in
 let url = NSURL(string: UIApplicationOpenSettingsURLString)
 UIApplication.sharedApplication().openURL(url!)
 }
 alertController.addAction(cancelAction)
  
 let okAction = UIAlertAction(title: "OK", style: .Default) { (action) in
 // do nothing
 }

268 CHAPTER 9: Connecting to a Bluetooth LE Device

 alertController.addAction(okAction)
  
 presentViewController(alertController, animated: true, completion: nil)
}

This method configures a UIAlertController object to display an alert modally with a title,
a message, and a style. Additionally, actions are associated with the controller. The cancel
action is labeled Settings and is used to open the Settings app. The OK action is used to
simply dismiss the alert.

Build and run the application. Turn Bluetooth off, and then press each button to verify
that the alert is displayed and access to the other scenes is prohibited. Press the Settings
button on the alert to make sure it opens the Settings app. At this point you’ve satisfied all
the requirements for the first backlog item. In the next section, you’ll move on to the next
backlog item and implement the central role.

Connecting to a Bluetooth LE Device in Your App
In this section, you’ll build the central role scene. You’ll learn how to

	Scan for peripherals that advertise a specific service

	Connect to a peripheral and discover services

	Discover and subscribe to characteristics for a specific service

	Retrieve characteristic values

	Customize and animate a button

At this point, you have a running application that can detect whether or not Bluetooth is
powered on and has the ability to transition to two different scenes.

Building the Interface
The UI for this scene has a single custom UIButton object and a read-only UITextView
object. Refer to the mock-up in the section “Central Role Scene.”

Start by adding a new Swift file to your project named CustomButton.swift, and declare
the class CustomButton as a subclass of UIButton using the new IBDesignable attribute.
Then add inspectable properties using IBInspectable for cornerRadius, borderWidth, and
borderColor (see Listing 9-4).

Tip  Use the Interface Builder Live Rendering feature in Xcode 6 to design and inspect a custom
view. The custom view will render in Interface Builder and appear as it will in your application.

269CHAPTER 9: Connecting to a Bluetooth LE Device

Listing 9-4.  The CustomButton class

import UIKit
 
@IBDesignable
class CustomButton: UIButton {
 
 @IBInspectable var cornerRadius: CGFloat = 0 {
 didSet {
 layer.cornerRadius = cornerRadius
 layer.masksToBounds = cornerRadius > 0
 }
 }
 
 @IBInspectable var borderWidth: CGFloat = 0 {
 didSet {
 layer.borderWidth = borderWidth
 }
 }

 @IBInspectable var borderColor: UIColor? {
 didSet {
 layer.borderColor = borderColor?.CGColor
 }
 }
}

When you add the IBDesignable attribute to the class declaration, Interface Builder will
render your custom view. Your custom view will update automatically as you make changes
by using the IBInspectable attribute to declare variables as inspectable properties.

Now open up the storyboard and add a UIButton to the central role scene. In the Utilities panel,
click the Identities Inspector tab and change the class type from UIButton to CustomButton you
just created. Now click the Attributes Inspector tab and set the button title to Scan. Notice that
there’s a section named Custom Button with a field for each of the inspectable properties you
declared. Set the values for Corner Radius to 50, Border Width to 4, and Border Color to White
Color. In the Button section, set the Shows Touch on Highlight to checked so when a user
presses the button, there will be a white glow where the touch event occurred on the button
(see Figure 9-18).

Tip  Set the corner radius to half the width of the view to give it a circular shape.

270 CHAPTER 9: Connecting to a Bluetooth LE Device

Figure 9-19.  Scan button constraints

Figure 9-18.  Setting button attributes

If you haven’t added constraints, you won’t see the constraint graphics. In that case you will
only see layout handles. See Figure 9-19 as a guide to set up your constraints.

271CHAPTER 9: Connecting to a Bluetooth LE Device

Now you need to add a UITextView object to the scene and position it so it looks similar to
the illustration in Figure 9-20. Then in the Attributes Inspector, set the Text View text color to
White Color and the background color to Clear Color. Set the Font to System 18.0.

Figure 9-20.  Setting attributes for UITextView

Set the constraints for the text view to match the illustration in Figure 9-21.

Figure 9-21.  Constraint settings for UITextView

272 CHAPTER 9: Connecting to a Bluetooth LE Device

For the last steps in building the UI, you need to connect the button and text view
to a property of the View Controller. First, add a new Swift file to the project named
CentralViewController.swift and declare the class CentralViewController as a subclass
of UIViewController. Then assign the CentralViewController as the class for the central
role identity by opening the storyboard and selecting the central role scene (see Figure 9-22).
In the Utilities panel on the right, click the Identity Inspector tab. In the Custom Class section,
use the class drop-down to select CentralViewController.

Figure 9-22.  Assign central role identity

Now using the Assistant Editor, control-drag and drop each of the UI controls inside
the CentralViewController class. Name the UIButton connection scanButton and the
UITextView to textView; use the default options. Your class should look like that shown in
Listing 9-5.

Listing 9-5.  The CentralViewController class declaration

import UIKit
 
class CentralViewController: UIViewController {
 
 @IBOutlet weak var scanButton: UIButton!
 @IBOutlet weak var textView: UITextView!
}

At this point build and run the app. When you transition to the central role scene, it should
resemble the mock-up in the section “Central Role Scene.” In the next section, you’ll start
implementing the central role.

Keeping Things Clean with Delegation
The approach taken here is slightly different than that of the home scene where you created
the CBCentralManager object and the ViewController used it directly. You’ll utilize the
Delegation pattern, which is commonly used by Apple frameworks. The delegate is typically a
Custom Controller object. The delegating object maintains a weak reference to its delegate.

You’ll implement the design pattern by defining a protocol for a
TransferServiceScannerDelegate. The CentralViewController will adopt this protocol
and implement the methods that respond to central role actions. You’ll create a new class
TransferServiceScanner that will be the delegating object. It will hold a reference to the

273CHAPTER 9: Connecting to a Bluetooth LE Device

CentralViewController, which will act as the delegate. The TransferServiceScanner object
will act as the delegate for the CBCentralManager and CBPeripheral objects. The sequence
diagram in Figure 9-23 illustrates the interaction between the objects. ,

Figure 9-23.  Sequence diagram for TransferServiceScanner

Create a new Swift file named TransferServiceScanner.swift and define a protocol for the
TransferServiceScannerDelegate. The delegate will respond to scan start and stop actions,
which will be used to start a scanning progress indicator. It will also respond to data transfer
action that will be used to present data to the user (see Listing 9-6).

Listing 9-6.  TransferServiceScannerDelegate Protocol

import CoreBluetooth
 
protocol TransferServiceScannerDelegate: NSObjectProtocol {
 func didStartScan()
 func didStopScan()
 func didTransferData(data: NSData?)
}

274 CHAPTER 9: Connecting to a Bluetooth LE Device

Now update the CentralViewController to adopt the TransferServiceScannerDelegate
protocol and add stubs for the required delegate methods (see Listing 9-7). You’ll complete
the method implementation once we build out the TransferServiceScanner.

Listing 9-7.  TransferServiceScannerDelegate Protocol Methods

class CentralViewController: UIViewController, TransferServiceScannerDelegate {
 
 // MARK: TransferServiceScannerDelegate methods
 
 func didStartScan() {
,
 }
 
 func didStopScan() {
 
 }
 
 func didTransferData(data: NSData?) {
 
 }
}

Next, in the file TransferServiceScanner.swift, declare the class TransferServiceScanner
as a subclass of NSObject, and adopt the protocol for both CBCentralManagerDelegate and
CBPeripheralDelegate. Also you’ll need to import Core Bluetooth. Then add properties for
CBCentralManager, CBPeripheral, NSMutableData, and TransferServiceScannerDelegate.

Listing 9-8.

class TransferServiceScanner: NSObject, CBCentralManagerDelegate, CBPeripheralDelegate {
 
 var centralManager: CBCentralManager!
 var discoveredPeripheral: CBPeripheral?
 var data: NSMutableData = NSMutableData()
 
 weak var delegate: TransferServiceScannerDelegate?
}

You must make sure that you declare the delegate property weak to avoid a strong reference
cycle. A strong reference cycle will prevent TransferServiceScannerDelegate from being
deallocated, which will cause a memory leak in your application. Also, a weak reference is
allowed to have no value, so it must be declared as having an optional type.

Tip  In Swift, the comment // MARK: is the equivalent to the Objective-C pre-processor directive
#pragma mark. Use it to define areas in your source code.

275CHAPTER 9: Connecting to a Bluetooth LE Device

At the top of the class body, implement an initializer method that you will call when you
create a new instance of TransferServiceScanner (see Listing 9-9). The primary role of an
initializer is to ensure that a new instance of a type is set up properly before first use.

Listing 9-9.  TransferServiceScanner Initializer Method

init(delegate: TransferServiceScannerDelegate?) {
 super.init()
 centralManager = CBCentralManager(delegate: self, queue: nil)
 self.delegate = delegate
},

The initializer starts by calling super.init(), which calls the initializer of
TransferServiceScanner class’s superclass, NSObject. Then the centralManager property
is initialized with an instance of CBCentralManager and initialized with self as the delegate.
Finally the delegate property is initialized with the TransferServiceScannerDelegate object
that is passed as a parameter.

Next, you must implement the required protocol method centralManagerDidUpdateState.
Add the code from Listing 9-10 to the TransferServiceScanner class. The implementation
is similar to the one in section “Using a Central Manager,” except in this case the state
information is being output to the log window. Later in this section, you’ll update this method.

Listing 9-10.  The centralManagerDidUpdateState delegate method

func centralManagerDidUpdateState(central: CBCentralManager!) {
 
 switch (central.state) {
 case .PoweredOn:
 print("Central Manager powered on.")
 break
 
 case .PoweredOff:
 print("Central Manager powered off.")
 break;
 
 default:
 print("Central Manager changed state \(central.state)")
 break
 }
}

Build and run the application. You should see the log output “Central Manager powered on”
when you transition to the central role scene.

276 CHAPTER 9: Connecting to a Bluetooth LE Device

Scanning for Peripherals
At this point, you are ready to start interacting with the central manager. Refer back to the
section “Central Role Scene” and look at the requirements. The requirements call for the
ability to toggle scanning on and off. In this section, you will provide support for that.

You will focus on the following requirements:

	The application can scan for peripherals

	The application uses a filter for a specific service when scanning

	The scene provides a Scan button that toggles device scanning on and off

	The scene provides a progress indicator when scanning

First you need to define a constant that will be used to uniquely identify the specific service
that the scanner is interested in. In the file Const.swift add the following line:

let kTransferServiceUUID: String = "3C4F8654-E41B-4696-B5C6-13D06336F22E"

You will use this constant to initialize a CBUUID instance. The CBUUID object represents the
128-bit identifier. The advantages are that the class provides some factory methods for
dealing with long UUIDs (universally unique identifiers), and the object also can be passed
around instead of the string.

Now you’ll implement the method startScan (see Listing 9-11). The CentralViewController
will call this method when the user taps the Scan button when the application is not scanning.

Listing 9-11.  The TransferServiceScanner startScan Method

func startScan() {
 print("Start scan")
 let services = [CBUUID(string: kTransferServiceUUID)]
 �let options = Dictionary(dictionaryLiteral:

(CBCentralManagerScanOptionAllowDuplicatesKey, false))
 centralManager.scanForPeripheralsWithServices(services, options: options)
 delegate?.didStartScan()
}

In this method you create two local variables that will be passed to the centralManager.
The services variable is an array of CBUUID objects that represent the services the
app is scanning for. In this case it’s an array with a single element. The options
local variable is a dictionary specifying options to customize the scan. The key
CBCentralManagerScanOptionAllowDuplicatesKey specifies whether or not the scan should
run without duplicate filtering. The value assigned to that key is false. What this means is

Note  If you want to provide your own UUID, you can open up a terminal window and type the
command uuidgen. It will generate a UUID that you can then copy and paste.

277CHAPTER 9: Connecting to a Bluetooth LE Device

that notification should be sent each time the peripheral is discovered. If the value were set
to true, then notification would only be sent once per discovery.

Next, the method centralManager.scanForPeripheralsWithServices is called which starts
the scan for peripherals that are advertising services. And, finally, the delegate is notified that
the scan did start by calling through didStartScan.

Next, you’ll implement the method stopScan (Listing 9-12). The CentralViewController will
call this method when the user taps the Scan button while the application is scanning. It will
also be called when the central manager state changes to the powered off state.

Listing 9-12.  The TransferServiceScanner stopScan Method

func stopScan() {
 print("Stop scan")
 centralManager.stopScan()
 delegate?.didStopScan()
}

This method tells the central manager to stop scanning and then notifies the delegate that
scanning has stopped. Update the switch block in the centralManagerDidUpdateState
method for the PoweredOff case, adding a call to stopScan.

Listing 9-13.  The switch block in the centralManagerDidUpdateState method

switch (central.state) {
case .PoweredOn:
 print("Central Manager powered on.")
 break
 
case .PoweredOff:
 print("Central Manager powered off.")
 stopScan()
 break;
 
default:
 print("Central Manager changed state \(central.state)")
}

Handling User Input
To keep track of the scanning state, add a Bool property isScanning to the
CentralViewController class and set its initial value to false.

var isScanning: Bool = false

Add an action method to handle the Scan button tap event. Open the storyboard and
control-drag the Scan button into the CentralViewController class and name the method
toggleScanning (see Listing 9-14). You’ll use this method to start and stop the scanning
based on the isScanning property value.

278 CHAPTER 9: Connecting to a Bluetooth LE Device

Listing 9-14.  The toggleScanning method

@IBAction func toggleScanning() {
 if isScanning {
 scanner.stopScan()
 } else {
 scanner.startScan()
 }
}

The CentralViewController is a delegate for the TransferServiceScanner, so when
scanning starts or stop, the View Controller will be notified through the delegate methods.
Update the delegate methods to set up the scan state.

Listing 9-15.  The didStartScan and didStopScan methods

func didStartScan() {
 if !isScanning {
 textView.text = "Scanning…"
 isScanning = true
 }
}
 
func didStopScan() {
 textView.text = ""
 isScanning = false
}

Build and run the application. Transition to the central role scene and then tap the Scan
button. You should see the text “Scanning . . .” displayed in the text view. Tapping the Scan
button a second time should clear the text.

Scan Progress
This simple text that is displayed could serve as an indicator for the scanning state, but
it’s static and it’s boring. It’s hardly a scanning progress indicator. Adding a simple rotation
animation to the Scan button is quick and easy and will serve as an effective progress
indicator for when scanning starts and stops.

You’ll implement an extension to the UIView class that adds functionality to rotate the view
using keyframe animation.

Open the CentralViewController.swift and above the class declaration add the code in
Listing 9-16.

279CHAPTER 9: Connecting to a Bluetooth LE Device

Listing 9-16.  Adding an Extension to UIView to Apply Rotation to Any View

extension UIView {
 
 �func rotate(fromValue: CGFloat, toValue: CGFloat, duration: CFTimeInterval = 1.0,

completionDelegate: AnyObject? = nil) {
 
 let rotateAnimation = CABasicAnimation(keyPath: "transform.rotation")
 rotateAnimation.fromValue = fromValue
 rotateAnimation.toValue = toValue
 rotateAnimation.duration = duration
  
 if let delegate: AnyObject = completionDelegate {
 rotateAnimation.delegate = delegate
 }
 self.layer.addAnimation(rotateAnimation, forKey: nil)
 }
}

The parameters fromValue and toValue represent rotation and are specified in radians.
The duration is specified in seconds.

The CABasicAnimation class provides single-keyframe animation for a layer property. It will
allow you to interpolate between two values over time. It also allows you to set a delegate
so you can receive notification when the animation completes by calling the delegate’s
animationDidStop method.

For this use case, rotating the Scan button 360 degrees would constitute one animation
cycle. Each time an animation cycle completes the delegate is notified.

Override the animationDidStop method of the View Controller (see Listing 9-17). This method
will evaluate the scan state and restart the animation if scanning is still in progress.

Listing 9-17.  The CentralViewController animationDidStop Method

override func animationDidStop(anim: CAAnimation finished flag: Bool) {
 if isScanning == true {
 // if still scanning, restart the animation
 scanButton.rotate(0.0, toValue: CGFloat(M_PI * 2), completionDelegate: self)
 }
}

Now update the didStartScan method so it starts the rotation animation.

scanButton.rotate(0.0, toValue: CGFloat(M_PI * 2), duration: 1.0, completionDelegate: self)

When the scanning stops, the animation will end when the animation cycle completes. This
guarantees that the Scan button will be in the correct orientation.

Build and run the application. Transition to the central role scene and tap the Scan button.
You should see the Scan button spinning. The animation should stop when you tap the Scan
button again.

280 CHAPTER 9: Connecting to a Bluetooth LE Device

Discover and Connect
While scanning, if a central manager discovers a peripheral that is advertising, it will notify its
delegate by calling the didDiscoverPeripheral method (see Listing 9-18).

Listing 9-18.  Initiating a Connection with a Discovered Peripheral in the TransferServiceScanner Class

func centralManager(central: CBCentralManager, didDiscoverPeripheral peripheral:
CBPeripheral, advertisementData: [String : AnyObject], RSSI: NSNumber) {
 print("didDiscoverPeripheral \(peripheral)")
  
 // reject if above reasonable range, or too low
 if (RSSI.integerValue > -15) || (RSSI.integerValue < -35) {
 print("not in range, RSSI is \(RSSI.integerValue)")
 return;
 }
  
 if (discoveredPeripheral != peripheral) {
 discoveredPeripheral = peripheral
  
 print("connecting to peripheral \(peripheral)")
 centralManager.connectPeripheral(peripheral, options: nil)
 }
}

Included in the parameters are the discovered peripheral, advertising data, and the signal
strength. In this method you need to determine if the peripheral is within range. If so, then
you can initiate a connection to it. You must, however, store a local copy of the peripheral;
otherwise, Core Bluetooth will dispose of it.

Once you initiate a connection, the central manager will notify the delegate as to whether
or not the connection was successful. There is a separate method for each case,
didConnectPeripheral or didFailToConnectPeripheral (see Listings 9-19 and 9-20).

Listing 9-19.  Connection to Peripheral Succeeded in the TransferServiceScanner Class

func centralManager(central: CBCentralManager!, didConnectPeripheral peripheral:
CBPeripheral!) {
 println("didConnectPeripheral")
 stopScan()
 data.length = 0
 peripheral.delegate = self
 peripheral.discoverServices([CBUUID(string: kTransferServiceUUID)])
}

Listing 9-20.  Connection to Peripheral Failed in the TransferServiceScanner Class

func centralManager(central: CBCentralManager!, didFailToConnectPeripheral peripheral:
CBPeripheral!, error: NSError!) {
 println("didFailToConnectPeripheral")
}

281CHAPTER 9: Connecting to a Bluetooth LE Device

If the connection is successful, scanning should stop to save power, and any data previously
held should be released. In order to receive discovery notifications, you must assign the
peripheral’s delegate to self. Now you’re ready to explore the specified services. In this
case you are interested in a transfer service.

Explore Services and Characteristics
When a specified service is discovered, the peripheral will notify its delegate by calling the
didDiscoverServices method with a reference to the peripheral that the services belong to,
and an NSError object. You must evaluate the error to determine whether the discovery was
successful.

Listing 9-21.  Service Discovery Notification in the TransferServiceScanner Class

func peripheral(peripheral: CBPeripheral, didDiscoverServices error: NSError?) {
 print("didDiscoverServices")
  
 if (error != nil) {
 print("Encountered error: \(error!.localizedDescription)")
 return
 }
  
 // look for the characteristics we want
 for service in peripheral.services! {
 �peripheral.discoverCharacteristics([CBUUID(string: kTransferCharacteristicUUID)],

forService: service)
 }
}

If the service discovery is successful, you must iterate the services to find the characteristic
of interest. In this case you want the kTransferCharacteristicUUID.

Add a definition for the transfer characteristic to the Const.swift file.

let kTransferCharacteristicUUID: String = "DEB07A07-463E-4A65-BABB-0DA17E4E517A"

Subscribe and Receive Data
When you discover a specified characteristic, the peripheral will notify its delegate by calling
the didDiscoverCharacteristicsForService method with a reference to the peripheral that
is providing the information, the service that the characteristic belongs to, and an NSError
object. You must evaluate the error to determine whether the discovery was successful
(see Listing 9-22).

Listing 9-22.  Subscribe to a Characteristic in the TransferServiceScanner Class

func peripheral(peripheral: CBPeripheral, didDiscoverCharacteristicsForService service:
CBService, error: NSError?) {
 print("didDiscoverCharacteristicsForService")
 

282 CHAPTER 9: Connecting to a Bluetooth LE Device

 if (error != nil) {
 print("Encountered error: \(error!.localizedDescription)")
 return
 }
 
 // loop through and verify the characteristic is the correct one, then subscribe to it
 let cbuuid = CBUUID(string: kTransferCharacteristicUUID)
 for characteristic in service.characteristics! {
 print("characteristic.UUID is \(characteristic.UUID)")
 if characteristic.UUID == cbuuid {
 peripheral.setNotifyValue(true, forCharacteristic: characteristic)
 }
 }
}
 
If the characteristic discovery is successful, you must iterate the service characteristics
to verify that the characteristic is the one you’re interested in. You must subscribe to the
characteristic by calling the peripherals setNotifyValue method. The first parameter is a
Boolean which indicates whether or not you want to receive notifications for the specified
characteristic. In this case you pass true, signaling to the peripheral that you want to receive
the data it contains. Notification is sent each time a characteristics value changes.

The peripheral will now start sending data and notify its delegate by calling its
didUpdateValueForCharacteristic method with a reference to the peripheral that is
providing the information, the characteristic whose value is being retrieved, and an NSError
object (see Listing 9-23).

Listing 9-23.  Retrieve Characteristic Value in the TransferServiceScanner Class

func peripheral(peripheral: CBPeripheral, didUpdateValueForCharacteristic characteristic:
CBCharacteristic, error: NSError?) {
 print("didUpdateValueForCharacteristic")
 
 if (error != nil) {
 print("Encountered error: \(error!.localizedDescription)")
 return
 }
 
 �let stringFromData = NSString(data: characteristic.value!, encoding:

NSUTF8StringEncoding)
 print("received \(stringFromData)")
  
 if stringFromData == "EOM" {
 // data transfer is complete, so notify delegate
 delegate?.didTransferData(data)
 
 // unsubscribe from characteristic
 peripheral.setNotifyValue(false, forCharacteristic: characteristic)
 

283CHAPTER 9: Connecting to a Bluetooth LE Device

 // disconnect from peripheral
 centralManager.cancelPeripheralConnection(peripheral)
 }
  
 data.appendData(characteristic.value!)
}

Not all characteristics have readable values. Typically, you would determine whether the
value is readable by examining its properties. For the purposes of this example, it’s known
that the characteristic value is of type String.

Here, the transfer service peripheral sends text from a text field in small amounts. The data
is accumulated until you receive an end-of-message (EOM) string indicating that the data
transfer is complete. At this point, you notify the TransferServiceScannerDelegate that the
transfer is complete and pass the data. You then unsubscribe from the characteristic and
disconnect.

Subscription Status
When you attempt to subscribe to a characteristic, the peripheral calls its delegate method
didUpdateNotificationStateForCharacteristic with a reference to the peripheral that is
providing the information, the characteristic for which notifications are to be configured,
and an NSError object. You must evaluate the error to determine whether the discovery was
successful. This method is also invoked when you unsubscribe (see Listing 9-24).

Listing 9-24.  Subscription Status Notification in the TransferServiceScanner Class

func peripheral(peripheral: CBPeripheral, didUpdateNotificationStateForCharacteristic
characteristic: CBCharacteristic, error: NSError?) {
 print("didUpdateNotificationStateForCharacteristic")
 
 if (error != nil) {
 print("Encountered error: \(error!.localizedDescription)")
 return
 }
 
 if characteristic.UUID != CBUUID(string: kTransferCharacteristicUUID) {
 return
 }
 
 if characteristic.isNotifying {
 print("notification started for \(characteristic)")
 } else {
 print("notification stopped for \(characteristic), disconnecting…")
 centralManager.cancelPeripheralConnection(peripheral)
 }
}

284 CHAPTER 9: Connecting to a Bluetooth LE Device

Here you are only interested in the transfer characteristic. In the case where you
unsubscribe, notifications will stop and you can disconnect from the peripheral.

Peripheral Role
At this point, you have an application that implements the central role. In the following
sections, you will implement the peripheral role. You’ll learn how to

	Start up a peripheral manager

	Set up a service and characteristic for the peripheral

	Advertise the service

	Handle requests from a connected central device

	Send data to a subscribed central device

Building the Interface
The UI for this scene has a single UISwitch object and an editable UITextView object. Refer
to the mock-up in the section “Peripheral Role Scene.”

Start by adding a new Swift file to your project named PeripheralViewController.swift
and declare the class PeripheralViewController as a subclass of UIViewController. Then
assign the PeripheralViewController as the class for the peripheral role identity by opening
the storyboard and selecting the peripheral role scene. In the Utilities panel on the right, click
the Identity Inspector tab. In the Custom Class section, use the class drop-down to select
PeripheralViewController.

Now open up the storyboard if not already open and add the following controls to peripheral
role scene; then arrange them so they look similar to the illustration in Figure 9-24.

	UILabel titled Advertise

	UISwitch

	UITextView

285CHAPTER 9: Connecting to a Bluetooth LE Device

Now control-drag and drop the UISwitch and the UITextControl inside the
PeripheralViewController class. Leave the default text in the text view. Your
PeripheralViewController class should look like the code in Listing 9-25.

Listing 9-25.  The PeripheralViewController class declaration

import UIKit
 
class PeripheralViewController: UIViewController {
 
 @IBOutlet weak var advertiseSwitch: UISwitch!
 @IBOutlet weak var textView: UITextView!
}

Add an action method to handle the advertise switch event. Open the storyboard and
control-drag the advertise switch into the PeripheralViewController class and name the
method advertiseSwitchDidChange. You’ll use this method to start and stop advertising.

@IBAction func advertiseSwitchDidChange() {
}

At this point build and run the app. When you transition to the peripheral role scene, it
should resemble the mock-up in the section “Peripheral Role Scene.” In the next section,
you’ll start implanting the peripheral role.

Delegate Setup
You’ll use the Delegation pattern again and implement the design pattern by defining a
protocol for a TransferServiceDelegate. The PeripheralViewController will adopt this
protocol and implement the methods that respond to peripheral role actions. You’ll create a
new class TransferService that will be the delegating object. It will hold a reference to the

Figure 9-24.  Peripheral role scene

286 CHAPTER 9: Connecting to a Bluetooth LE Device

PeripheralViewController that will act as the delegate. The TransferService object will act
as the delegate for the CBPeripheralManager object. The sequence diagram in Figure 9-25
illustrates the interaction between the objects. Remember that the delegating object
maintains a weak reference to its delegate.

Figure 9-25.  Sequence diagram for TransferService

Create a new Swift file named TransferService.swift and define a protocol for the
TransferServiceDelegate. The delegate will respond to power on/off events which will
change the advertise switch state. It will also respond to a send data request that will be
used to pass text data to the service.

Listing 9-26.  TransferServiceDelegate Protocol

protocol TransferServiceDelegate: NSObjectProtocol {
 func didPowerOn()
 func didPowerOff()
 func getDataToSend() -> NSData
}

Now update the PeripheralViewController to adopt the TransferServiceDelegate protocol
(Listing 9-27) and add stubs for the required delegate methods. In the didPowerOff method,
set the advertiseSwitch state to off. In the method getDataToSend return the textView
object’s text value.

287CHAPTER 9: Connecting to a Bluetooth LE Device

Listing 9-27.  TransferServiceDelegate Protocol Methods

class PeripheralViewController: UIViewController, TransferServiceDelegate {
 
 @IBOutlet weak var advertiseSwitch: UISwitch!
 @IBOutlet weak var textView: UITextView!
 
 // MARK: TransferServiceDelegate methods
 
 func didPowerOn() {
  
 }
  
 func didPowerOff() {
 advertiseSwitch.setOn(false, animated: true)
 }
  
 func getDataToSend() -> NSData {
 return textView.text.dataUsingEncoding(NSUTF8StringEncoding)!
 }
}

Next, in the file TransferService.swift, declare the class TransferService as a subclass
of NSObject and adopt the protocol for CBPeripheralManagerDelegate (Listing 9-28) Also
you’ll need to import CoreBluetooth. Then add properties for CBPeripheralManager,
CBMutableCharacteristic, NSData, an index counter, and TransferServiceDelegate.

Listing 9-28.  The TransferService class declaration

class TransferService: NSObject, CBPeripheralManagerDelegate {
 
 var peripheralManager: CBPeripheralManager!
 var transferCharacteristic: CBMutableCharacteristic!
 var dataToSend: NSData?
 var sendDataIndex: Int?
 
 weak var delegate: TransferServiceDelegate?
}

Make sure that you declare the delegate property as weak to avoid a strong reference cycle.

Now implement an initializer method (see Listing 9-29) that will be called when you create a
new instance of TransferService.

Listing 9-29.  The TransferService Initializer Method

init(delegate: TransferServiceDelegate?) {
 super.init()
 peripheralManager = CBPeripheralManager(delegate: self, queue: nil)
 self.delegate = delegate
}

288 CHAPTER 9: Connecting to a Bluetooth LE Device

The initializer starts by calling super.init(), which calls the initializer of
TransferServiceScanner class’s superclass, NSObject. Then the peripheralManager property
is initialized with an instance of CBPeripheralManager and initialized with self as the
delegate. Finally the delegate property is initialized with the TransferServiceDelegate object
that is passed as a parameter.

Next, you must implement the required protocol method peripheralManagerDidUpdateState
(see Listing 9-30).

Listing 9-30.  Required Protocol Method peripheralManagerDidUpdateState in the TransferService Class

func peripheralManagerDidUpdateState(peripheral: CBPeripheralManager!) {
  
 switch (peripheral.state) {
 case .PoweredOn:
 print("Peripheral Manager powered on.")
 setupServices()
 delegate?.didPowerOn()
 break
  
 case .PoweredOff:
 print("Peripheral Manager powered off.")
 teardownServices()
 delegate?.didPowerOff()
 break
  
 default:
 print("Peripheral Manager state changed: \(peripheral.state)")
 break
 }
}

In this method, you set up or tear down services and notify the delegate according to
the state. In the next section you will implement both methods: setupServices and
teardownServices.

Setting up a Service
The services and characteristics of a peripheral are identified by UUIDs. The Bluetooth
Special Interest Group (SIG) has published a number of commonly used UUIDs. However,
the transfer service doesn’t use any of those predefined Bluetooth UUIDs. Earlier in this
chapter, you defined UUIDs for the transfer service and characteristic in Const.swift.

Now implement the setupServices method that will be called when the peripheral manager’s
state changes to PoweredOn. Make the method private so that it’s only accessible from within
the TransferService class (see Listing 9-31).

289CHAPTER 9: Connecting to a Bluetooth LE Device

Listing 9-31.  Setting Up Services in the TransferServices Class

private func setupServices() {
  
 var cbuuidCharacteristic = CBUUID(string: kTransferCharacteristicUUID)
  
 �transferCharacteristic = CBMutableCharacteristic(type: cbuuidCharacteristic,

properties: CBCharacteristicProperties.Notify, value: nil, permissions:
CBAttributePermissions.Readable)

  
 var cbuuidService = CBUUID(string: kTransferServiceUUID)
  
 var transferService = CBMutableService(type: cbuuidService, primary: true)
 transferService.characteristics = [transferCharacteristic]
  
 peripheralManager.addService(transferService)
}

In this method you create a mutable characteristic and set its property, value, and
permissions. The property and permissions are set to readable. The value is set the value to
nil because this will ensure that the value will be treated dynamically and is requested by
the peripheral manager when it receives a read/write request. Otherwise the value is cached
and treated as read-only.

Next, you create a mutable service and associate the mutable characteristic with it by
setting the service’s array of characteristics. Finally, publish the service by calling addService
that adds the service to the peripheral’s database. The service cannot be changed once this
step is complete. Once the service is published, the peripheral calls the delegate method
didAddService.

Now implement the teardownServices method that will be called when the peripheral
manager’s state changes to PoweredOff (see Listing 9-32).

Listing 9-32.  Teardown Services in the TransferService Class

private func teardownServices() {
 peripheralManager.removeAllServices()
}

The only step in this method is to remove all published services from the peripheral’s database.

Build and run the application. You should see the log output “Peripheral Manager powered on”
when you transition to the peripheral role scene.

Advertising Services
Once services and characteristics have been published, you can start advertising one or
more of them by calling the peripheral manager’s startAdvertising method. Add the code
in Listing 9-33 to the TransferService class.

290 CHAPTER 9: Connecting to a Bluetooth LE Device

Listing 9-33.  Start Advertising in the TransferService Class

func startAdvertising() {
 print("Start advertising")
  
 var cbuuidService = CBUUID(string: kTransferServiceUUID)
  
 var services = [cbuuidService]
  
 �var advertisingDict = Dictionary(dictionaryLiteral: (CBAdvertisementDataServiceUUIDsKey,

services))
  
 peripheralManager.startAdvertising(advertisingDict)
}

You construct a dictionary with CBAdvertisementDataServiceUUIDsKey as the only key, with a
value of an array of CBUUID objects that you want to advertise, then pass that dictionary as a
parameter to the peripheral manager’s startAdvertising. The peripheral manager will then
call its delegate method peripheralManagerDidStartAdvertising. Once advertising begins,
any remote central role device can discover and initiate a connection. To stop advertising,
you call the peripheral manager’s stopAdvertising method (see Listing 9-34).

Listing 9-34.  Stop Advertising in the TransferService Class

func stopAdvertising() {
 print("Stop advertising")
  
 peripheralManager.stopAdvertising()
}

In the PeripheralViewController class, add a property to hold a TransferService object.

var transferService: TransferService!

Then initialize it in the viewDidLoadMethod as such:

transferService = TransferService(delegate: self)

Now update the method advertiseSwitchDidChange to start and stop advertising
(see Listing 9-35).

Listing 9-35.  Starting and Stopping Advertising in the PeripheralViewController Class

@IBAction func advertiseSwitchDidChange() {
 if advertiseSwitch.on {
 transferService.startAdvertising()
 } else {
 transferService.stopAdvertising()
 }
}

291CHAPTER 9: Connecting to a Bluetooth LE Device

Sending Data
Once connected, a remote device will subscribe to one or more characteristic values.
You are responsible for sending notifications to the subscribers when the value of any
characteristic they are subscribed to changes. The peripheral manager will then call its
delegate method didSubscribeToCharacteristic. From this method, you should start
sending data (see Listing 9-36).

Listing 9-36.  Sending Data in the TransferService Class

func peripheralManager(peripheral: CBPeripheralManager!, central: CBCentral!,
didSubscribeToCharacteristic characteristic: CBCharacteristic!) {
 print("didSubscribeToCharacteristic")
  
 dataToSend = delegate?.getDataToSend()
 sendDataIndex = 0
 sendData()
}

This method calls the TransferServiceDelegate method getDataToSend to retrieve the data
to be sent to the remote device. It then initializes a data index counter and starts sending
data (see Listing 9-37).

Listing 9-37.  Sending Data to a Remote Central Device in the TransferService Class

private func sendData() {
 print("sendData")
  
 let MTU = 20
  
 struct eom { static var pending = false }
  
 func sendEOM() -> Bool {
 eom.pending = true
 let data = ("EOM" as NSString).dataUsingEncoding(NSUTF8StringEncoding)
 print("sending \(data)")
 �if peripheralManager.updateValue(data!, forCharacteristic: transferCharacteristic,

onSubscribedCentrals: nil) {
 eom.pending = false;
 }
 return !eom.pending
 }
 
 if eom.pending {
 if sendEOM() { return }
 }
  
 if sendDataIndex >= dataToSend?.length {
 return
 }

292 CHAPTER 9: Connecting to a Bluetooth LE Device

 var didSend = true
 while didSend {
 var amountToSend = dataToSend!.length - sendDataIndex!
 print("amountToSend is \(amountToSend)")
 if (amountToSend > MTU) {
 amountToSend = MTU
 }
 let chunk = NSData(bytes: dataToSend!.bytes+sendDataIndex!, length: amountToSend)
 �didSend = peripheralManager.updateValue(chunk, forCharacteristic:

transferCharacteristic, onSubscribedCentrals: nil)
 if !didSend {
 return
 }
 print("didSend \(chunk)")
  
 sendDataIndex! += amountToSend
 if sendDataIndex >= dataToSend?.length {
 sendEOM()
 return
 }
 }
}

In this method, you send data in MTU-sized chunks until there is no more data to send,
followed by an EOM indicator. The MTU (Maximum Transmission Unit) is defined at
20 bytes. For each chunk you call the peripheral manager’s updateValue method, which
will then forward the data to the connected central role device. The return value indicates
whether the update was successfully sent or not. If the underlying queue was full, the
method returns false. In that case the peripheral manager will call its delegate method
peripheralManagerIsReadyToUpdateSubscribers when more space becomes available.
You will implement that method to resend the data.

Listing 9-38.  The peripheralManagerIsReadyToUpdateSubscribers method in the TransferService Class

func peripheralManagerIsReadyToUpdateSubscribers(peripheral: CBPeripheralManager) {
 sendData()
}

Enabling Your App for Background Communication
System resources are limited on iOS devices, so by default many of the Core Bluetooth
tasks are disabled while your app is in the background. In order for the application to
support background mode, you can declare your app to support the Core Bluetooth
background execution modes. This will enable your app to wake up from a suspended state
and process Bluetooth-related events.

293CHAPTER 9: Connecting to a Bluetooth LE Device

In the Project navigator right-click the Info.plist file and select Open As ➤ Source Code
and add the UIBackgroundMode key, and set the keys value to an array containing the
following strings:

	bluetooth-central: The app communicates with Bluetooth LE
peripherals using the Core Bluetooth framework.

	bluetooth-peripheral: The app shares data using the Core Bluetooth
framework.

<key>UIBackgroundModes</key>
<array>
 <string>bluetooth-central</string>
 <string>bluetooth-peripheral</string>
</array>

Bluetooth Best Practices
The Core Bluetooth framework gives you control over implementing most aspects of both
the central and peripheral roles. This section provides guidance for using this control in
responsible way.

Central Role Devices
	Only scan for devices when you need to. Once you discover a device

you’re interested in, stop scanning for other devices. This will help limit
radio usage and power consumption.

	When exploring peripheral end-of-sentence services and characteristics,
use a filter to look for and discover only the services and characteristics
you need. Otherwise it can negatively affect your battery life.

	It’s best to subscribe to a characteristic’s value when possible especially
if the value changes often. This will eliminate the need to poll.

	Cancel any subscriptions and disconnect from a device when you have
all the data you need. This will help reduce your app’s radio usage.

Peripheral Role Devices
	Advertise data only when you need to. Advertising peripheral data uses

your device’s radio, which affects your device’s battery. Once a device is
connected, stop advertising.

	Let the user decide when to advertise, since your app is unaware of
nearby devices.

	Allow connected central role devices to subscribe to your characteristics.
When you create a mutable characteristic, configure it to support
subscriptions by setting the characteristics properties with the
CBCharacteristicsPropertyNotify constant.

294 CHAPTER 9: Connecting to a Bluetooth LE Device

Summary
In this chapter, you learned some key terms and concepts related to the Bluetooth
specification, and how Apple adopted these in its Core Bluetooth framework. You also
learned how to use the Core Bluetooth framework to discover and connect to Bluetooth
LE-compatible devices, as well how to send and receive data between devices. Apply this
knowledge along with best practices to build your own high-quality Bluetooth LE application.

295

Chapter 10
Building Location Awareness
with iBeacons

Manny de la Torriente
This chapter introduces iBeacon technology and will show you how to use the Core Location
framework to interact with beacons. You’ll learn how to establish a region around an object,
determine when a region has been entered or exited, and estimate your proximity to a
beacon. You’ll also learn how to configure your iOS device to act as an iBeacon transmitter.

Introduction to iBeacons
Apple standardized the iBeacon technology, which introduces a class of low-cost
transmitters that utilize Bluetooth Low Energy (LE). A device with iBeacon technology is used
to establish a region that allows an iOS device to determine when it has entered or exited
the region and to estimate its proximity to the transmitter. The Apple Store, for example,
uses beacons to bring up its app on your phone when you enter the store.

iBeacon Advertisement
A device that is configured to be an iBeacon transmitter provides information via Bluetooth
LE. The information contains a unique user ID (UUID) that is specific to a deployment use
case and major and minor values, which provide identifying values for the iBeacon.

iBeacon Accuracy
When an iOS device detects an iBeacon’s signal, it uses the RSSI (received signal strength
indicator) to determine its proximity to the beacon. The signal strength increases as the
receiver moves closer to the beacon.

296 CHAPTER 10: Building Location Awareness with iBeacons

The calibrated transmission power of a device is its known measured signal strength in RSSI
at 1 meter. The distance provided by iOS is in meters and is an estimate based on the ratio
of the beacon’s signal strength over the transmission power.

Privacy
User authorization is required in order to use any location services on an iOS device, which
means the user can choose to allow access. Applications that utilize iBeacon functionality
will also appear in the Settings app.

Region Monitoring
An application can be notified when a user enters or exits a region that is defined by a
beacon. A beacon region is an area defined by a device’s proximity to a Bluetooth LE
beacon, not geographical coordinates. In iOS, registered regions persist between launches
of an app, so regions associated with an application are monitored at all times, even when
the app is in a suspended state or not running.

Regions are a shared application resource, and the number of regions available system-wide
is limited. Therefore, a single application is limited to 20 regions that can be monitored
simultaneously.

Ranging
The process of determining the approximate proximity of one or more beacons to a device
is known as ranging. Filters are applied to a distance estimate to determine an estimated
proximity to a beacon. iOS defines four proximity states: unknown, immediate, near, and
far (see Table 10-1).

Table 10-1.  Proximity States

Proximity
State

Description

Unknown Indicates that the proximity of a beacon can’t be determined. Ranging may have
started, or there are insufficient measurements to determine state.

Immediate Indicates that a device is physically very close or directly held up to the beacon.

Near Indicates that a device is approximately within 1 to 3 meters of a beacon. This state
may not be reported if there are any obstructions between the device and the beacon.

Far Indicates that a beacon is detected, but the signal strength is too low to determine a
near or immediate state. When in this state, use the accuracy property to determine
potential proximity to the beacon.

297CHAPTER 10: Building Location Awareness with iBeacons

Core Location will report multiple beacons in an order that’s based on a best guess of their
proximity. This order may not be correct if there are any obstructions that affect signal
strength. Also, some beacon devices may emit stronger signals than others, so a device that
is physically further away than others may be reported first.

Building the iBeaconApp Application
In this section you’ll build a simple dual-purpose application that demonstrates how to
scan for specific nearby iBeacons and configure your Bluetooth LE-capable iOS device as
an iBeacon transmitter. The app consists of three master scenes: a home scene, a Region
Monitor scene, and an iBeacon scene. The home scene provides segues to the other
scenes and an indicator label that reflects the current Bluetooth on/off state of the device.
The Region Monitor scene supports two basic methods for interacting with beacons, region
monitoring and ranging. The iBeacon scene allows you to configure your iOS device as an
iBeacon transmitter. Figure 10-1 illustrates the storyboard view of the iBeaconApp.

Figure 10-1.  Storyboard view of iBeaconApp

298 CHAPTER 10: Building Location Awareness with iBeacons

Creating the Project
This application will use a single-view application project template. To create a new
single-view Swift application project, from Xcode file menu select File ➤ New ➤ Project
and you’ll be presented with the view shown in Figure 10-2.

Figure 10-2.  Creating a single-view application project

After selecting Next, you’ll be prompted to enter a project name, select the language, and
select the target device. You can name it iBeacon App or choose another name. Make sure
you choose Swift for the language and Universal for the device. Leave the option User Core
Data unchecked. Click the Next button, choose a location for your project, and click the
Create button.

Setting Background Capabilities
System resources are limited on iOS devices, so by default many of the Core Bluetooth
tasks are disabled while your app is in the background. In order for the application to
support background mode, you can declare your app to support the core Bluetooth
background execution modes. This will enable your app to wake up from a suspended state
and process Bluetooth-related events.

From the main project in Xcode select the Capabilities tab. In the Background Modes
section, turn the switch to ON, then check Location updates and Acts as a Bluetooth LE
accessory (see Figure 10-3).

299CHAPTER 10: Building Location Awareness with iBeacons

Enabling the Background Modes option adds the UIBackgroundModes key and the
corresponding background mode values to your app’s Info.plist file. Table 10-2 lists the
background modes you must specify so your iOS device can act as an iBeacon transmitter.

Figure 10-3.  Setting background capabilities in Xcode

Table 10-2.  Xcode Background Settings

Xcode Background
Mode

UIBackgroundMode Value Description

Location updates Location The app keeps users informed of their location,
even while it is running in the background.

Acts as a Bluetooth
LE accessory

Bluetooth-peripheral The app supports Bluetooth communication in
peripheral mode through the Core Bluetooth
framework. Note: using this mode requires user
authorization.

Building the Home Scene
In this section you’ll build out the home master scene. It’s assumed that you’re already
familiar with the basics of building an application and using Interface Builder, so this
section will briefly cover creating a project, how to add user interface (UI) elements, adding
constraints, and how to connect interface behaviors to your code.

The scene is very basic. It will contain a label for the app title, a label that will be used as an
indicator for the Bluetooth power status, and two custom buttons used to segue to the other
scenes (see Figure 10-1).

300 CHAPTER 10: Building Location Awareness with iBeacons

The first thing you need to add is a navigation controller. Its primary job is to manage the
presentation of your view controllers as well as providing a back button that makes it
easy to return to the previous level. Open up the Main.storyboard and select the view
controller from either the storyboard or the Document Outline. Then from the menu, select
Editor ➤ Embed In ➤ Navigation Controller. Xcode will add a v controller to the storyboard,
set it as the Storyboard Entry Point, and add a relationship between the navigation controller
and the existing view controller. Your storyboard should look like the one in Figure 10-4.

Figure 10-4.  Adding a Navigation Controller

At this point, you should be able to build and run your app. If all goes well you should see an
empty white scene.

Setting Up UI Elements
On the storyboard, double-click the navigation bar of the view controller and set the title text
of the navigation item to iBeacon Home. Now select the view inside view controller and then,
from Attributes Inspector, change the color of the background to 0066CC.

For the application title, drag a UILabel from the Object library to the center of the
storyboard. With the label selected, open the Utilities panel and use the Attributes Inspector
to set the text to iBeacon App (or to the name you chose for the app). Set the font color to
white, the font size to 26, and the text alignment to centered. With the label still selected,
use the Align control and select Horizontal Center in Container to create an X alignment
constraint. Control-drag upward from the label to the View and select Top Space to Top
Layout Guide to create a Vertical Space constraint.

301CHAPTER 10: Building Location Awareness with iBeacons

For the Bluetooth indicator, add another UILabel just below the title label and set the text
to Bluetooth Off. Set the font color to FF0000, the font size to 17, and the text alignment to
centered. Use the Align control and select Horizontal Center in Container to create an
X alignment constraint. Control-drag upward from the label to the title label directly above
and select Vertical Spacing.

Creating an Outlet Connection
Now connect an outlet from the label to the ViewController implementation. Using the
Document Outline, control-click the Bluetooth Off label and drag a connection from the
New Referencing Outlet well and drop it onto the controller source (see Figure 10-5).

Figure 10-5.  Connecting a new referencing outlet

In the pop-up, name the outlet bluetoothStateLabel and click the Connect button
(see Figure 10-6).

Figure 10-6.  Naming the outlet connection

Your ViewController class should now have an IBOutlet defined.

@IBOutlet weak var bluetoothStateLabel: UILabel!

302 CHAPTER 10: Building Location Awareness with iBeacons

Later in this chapter, you’ll utilize the Core Bluetooth framework and start up a central
manager and use it to determine the Bluetooth state and set the indicator accordingly.

There are two custom buttons on the home screen that you will use to switch between
different modes of operation. The steps that follow will guide you through the process of
adding the first button, and then you can repeat those steps to add the second button.

Add a UIButton to the scene and place it below the Bluetooth indicator label. From the
Attributes Inspector, set the button title to Region Monitor, set the font size to 20.0, and set
the text color to white. In the Button section, set the Shows Touch on Highlight to checked
so when a user presses the button, there will be a white glow where the touch event
occurred on the button. Don’t worry about the button size and borders; you’ll fix that shortly.

Setting up Constraints
Set up the constraints to match those shown in Figure 10-7. These constraints should be
used for both buttons. There are a few ways to add constraints in Interface Builder. You can
let Interface Builder add them for you; you could use the Pin and Align tools located at the
bottom on the storyboard canvas; or you can control-drag between views. To create an Align
Center X constraint, control-click on the Region Monitor button and drag vertically toward
the top of the view controller, and then release the mouse. A pop-up menu is displayed
with a list of possible constraints. Choose Center Horizontally in Container. When you drag
vertically, Interface Builder will present options to set vertical spacing between the views,
and options to horizontally align the views. Likewise, when you drag horizontally, you’ll be
presented with options to set the horizontal spacing between the views and options
to vertically align the view. Both gestures may include other options such as setting the
view size.

303CHAPTER 10: Building Location Awareness with iBeacons

Creating a Custom Button
You don’t see the border around the buttons because there isn’t a way to set all the required
layer properties for the view from Interface Builder alone. This is where the new Xcode Live
Rendering feature comes into play.

Start by adding a new Swift file to your project named CustomButton.swift, and declare the
class CustomButton a subclass of UIButton using the new IBDesignable attribute (Listing 10-1).
Then add inspectable properties using IBInspectable for cornerRadius, borderWidth, and
borderColor.

Tip  Use the Interface Builder Live Rendering feature in Xcode 6 to design and inspect a custom
view. The custom view will render in Interface Builder and appear as it will in your application

Figure 10-7.  Setting up button constraints

304 CHAPTER 10: Building Location Awareness with iBeacons

Listing 10-1.  CustomButton Class

import UIKit
 
@IBDesignable
class CustomButton: UIButton {
 @IBInspectable var cornerRadius: CGFloat = 0 {
 didSet {
 layer.cornerRadius = cornerRadius
 layer.masksToBounds = cornerRadius > 0
 }
 }
 @IBInspectable var borderWidth: CGFloat = 0 {
 didSet {
 layer.borderWidth = borderWidth
 }
 }
 @IBInspectable var borderColor: UIColor? {
 didSet {
 layer.borderColor = borderColor?.CGColor
 }
 }
}

When you add the IBDesignable attribute to the class declaration, Interface Builder will
render your custom view. Your custom view will update automatically as you make changes
by using the IBInspectable attribute to declare variables as inspectable properties.

Now open up the storyboard and in the Utilities panel, click the Identities Inspector tab and
change the class type from UIButton to CustomButton for the buttons you just created. Now
click the Attributes Inspector tab. Notice that there’s a section named Custom Button with a
field for each of the inspectable properties you declared. Set the values for Corner Radius to
6; set the Border Width to 2; set the Border Color to White Color. Your buttons should now
look similar to those in Figure 10-8.

305CHAPTER 10: Building Location Awareness with iBeacons

Build and run the app to make sure the constraints are set properly and your scene looks
similar to the mock-up in Figure 10-1.

Next you’ll be adding two new scenes to the storyboard, one for each button you’ve just
added. Start by renaming the file ViewController.swift to HomeViewController.swift so
it can be easily identified later on. Currently, Xcode doesn’t support the Refactor feature
with Swift, so you’ll have to manually rename the class in the source file as well as in the
storyboard. Select the view controller from the Identity Inspector, manually type it in or
select HomeViewController from the pulldown (see Figure 10-9). You must do this in order to
connect interface elements to your code.

Figure 10-8.  Configuring a CustomButton

Figure 10-9.  Assigning View Controller identity

306 CHAPTER 10: Building Location Awareness with iBeacons

Now drag two view controllers to the right of the iBeacon Home view controller on the
storyboard. Create a segue to each view controller by selecting the appropriate button, then
control-drag and release on top of each view controller you placed on the right. Once you
release, the Action Segue pop-up is displayed where you can select the show option
(see Figure 10-10).

Figure 10-10.  Creating a segue to a new scene

For each segue you’ve just created, select the connector on the storyboard, and then
from the Attributes Inspector set the identifier. Use the names RegionMonitorSegue and
iBeaconSegue

For each scene, drag a navigation item from the Object Library onto the navigation bar area.
Set the names to match those in the buttons, Region Monitor and iBeacon.

When you’re finish creating the segues, your storyboard should look similar to the one
in Figure 10-11.

307CHAPTER 10: Building Location Awareness with iBeacons

Build and run the application, tap the buttons, and verify that the segues and navigation
controls are working as expected.

Detecting Bluetooth State
In this section, you’ll learn how to start up a central manager and use it to determine if a
device supports Bluetooth LE and is available to use on the central device.

The CBCentralManager object is a Core Bluetooth representation of a central role device.
When you initialize a central manager, it calls the centralManagerDidUpdateState method
of its delegate. This means you must adopt the delegate protocol and implement this
required method.

Open the HomeViewController.swift file and import the framework and add the
CBCentralManagerDelegate protocol to your class declaration.

import CoreBluetooth
 
class HomeViewController: UIViewController, CBCentralManagerDelegate {

You’ll see an error indicator, which says that the HomeViewController does not conform to
protocol. That’s because you need to implement the required delegate method.

func centralManagerDidUpdateState(central: CBCentralManager) {
 
}

Figure 10-11.  Home scene with segues

308 CHAPTER 10: Building Location Awareness with iBeacons

Now add a property for a CBCentralManager and initialize it in the viewDidLoad method as
shown in Listing 10-2.

Listing 10-2.  Declare and initialize the centralManager property

var centralManager: CBCentralManager!
 
override func viewDidLoad() {
 super.viewDidLoad()
 centralManager = CBCentralManager(delegate: self, queue: nil)
}

The central manager is initialized with self as the delegate so the view controller will receive
any central role events. By specifying the queue as nil, the central manager dispatches
central role events using the main queue. The central manager starts up after this call is
made and begins dispatching events.

Listing 10-3 shows how to examine the central manager state in the
centralManagerDidUpdateState callback when the state change event fires. Here is where
you can update the text and text color of the bluetoothStateLabel property based on the
central state.

Listing 10-3.  Central State Change

func centralManagerDidUpdateState(central: CBCentralManager) {
 switch (central.state) {
 case .PoweredOn:
 isBluetoothPoweredOn = true
 bluetoothStateLabel.text = "Bluetooth ON"
 bluetoothStateLabel.textColor = UIColor.greenColor()
 case .PoweredOff:
 isBluetoothPoweredOn = false
 bluetoothStateLabel.text = "Bluetooth OFF"
 bluetoothStateLabel.textColor = UIColor.redColor()
 default:
 break
 }
}

As we discussed in Chapter 9, the PoweredOn state indicates that the central device supports
Bluetooth LE and the Bluetooth is on and available for use. The PoweredOff state indicates
that Bluetooth is either turned off or the device doesn’t support Bluetooth LE.

Build and run the application. If your device has Bluetooth enabled, the indicator label
should read “Bluetooth On” and its color should be green. Use the slide-up settings panel to
turn Bluetooth off. The indicator label should now read “Bluetooth Off” and its color should
be red.

http://dx.doi.org/10.1007/978-1-4842-1194-6_9

309CHAPTER 10: Building Location Awareness with iBeacons

Add a Boolean property isBluetoothPoweredOn near the top of the HomeViewController class
that will be used to reflect the Bluetooth state.

var isBluetoothPoweredOn: Bool = false

Set its value in the centralManagerDidUpdateState method accordingly, as shown in
Figure 10-3. You’ll use this value to determine whether or not transition is allowed to any
other scene.

The UIViewController provides an override method which allows you to control whether a
particular segue should be performed. Open HomeViewController.swift and add the method
shouldPerformSegueWithIdentifier to the ViewController class (see Listing 10-4).

Listing 10-4.  Override Method to Control Segue

override func shouldPerformSegueWithIdentifier(identifier: String, sender: AnyObject?) -> Bool {
 �if identifier == "RegionMonitorSegue" || identifier == "iBeaconSegue" || identifier ==

"ConfigureSegue" {
 if !isBluetoothPoweredOn {
 showAlertForSettings()
 return false;
 }
 }
 return true
}

When a segue is initiated, this method will be called with the string value that identifies the
triggered segue and the object that initiated the segue. The return value for this method
should be true if you want the segue to be executed; otherwise, return false.

In this method you’re only interested in the identifier; the sender object is for informational
purposes and can be ignored here. Compare the identifier value with the constants you
defined earlier. If you find a match, then check the Bluetooth state. If Bluetooth is powered
on, you can allow the segue to execute by returning a value of true.

In the case in which Bluetooth is powered off, you want to display an alert and provide
an option to go to the Settings app where the Bluetooth setting can be changed. Add the
method shown in Listing 10-5 to the ViewController class. Call this method from within the
shouldPerformSegueWithIdentifier method as shown in Listing 10-4.

Listing 10-5.  Configure and Present an Alert

private func showAlertForSettings() {
 �let alertController = UIAlertController(title: "iBeacon App", message: "Turn On

Bluetooth!", preferredStyle: .Alert)
  
 let cancelAction = UIAlertAction(title: "Settings", style: .Cancel) { (action) in
 if let url = NSURL(string:UIApplicationOpenSettingsURLString) {
 UIApplication.sharedApplication().openURL(url)
 }
 }

310 CHAPTER 10: Building Location Awareness with iBeacons

 alertController.addAction(cancelAction)
  
 let okAction = UIAlertAction(title: "OK", style: .Default, handler: nil)
 alertController.addAction(okAction)
  
 self.presentViewController(alertController, animated: true, completion: nil)
}

This method configures a UIAlertController object to display an alert modally with a title,
message, and a style. Additionally, actions are associated with the controller. The cancel
action is labeled Settings, and is used to open the Settings app. The OK action is used to
simply dismiss the alert.

Build and run the application. Turn Bluetooth off, then press each button to verify that the
alert is displayed and access to the other scenes is prohibited. Press the Settings button on
the alert to make sure it opens the Settings app.

Building the Region Monitor Scene
In this section, you’ll build the master scene for the Region Monitor as shown in Figure 10-12.
The Region Monitor will support two basic methods for interacting with beacons, region
monitoring and ranging. The UI will utilize four labels to display the status during monitoring,
and three input fields where the user can enter information to scan for a specific beacon
type. There will be a single custom button used to toggle monitoring on and off.

Figure 10-12.  Region Monitor scene mock-up

311CHAPTER 10: Building Location Awareness with iBeacons

Create a new Swift file named RegionMonitorViewController.swift and declare the class
RegionMonitorViewController as a subclass of UIViewController. Then adopt the protocol
for UITextFieldDelegate by adding the UITextFieldDelegate protocol declaration.

import UIKit
import CoreLocation
 
class RegionMonitorViewController: UIViewController, UITextFieldDelegate,
RegionMonitorDelegate {
 
}

Assign the RegionMonitorViewController as the class for the Region Monitor identity by
opening the storyboard and selecting the Region Monitor scene. In the Utilities panel on the
right, click the Identity Inspector tab. In the Custom Class section, use the class drop-down
to select RegionMonitorViewController.

Set the background color to for the Region Monitor view to FF6600. Add a UIButton to the
scene and place it so that it looks similar to Figure 10-12. Set the button title to Monitor,
the text color to white, and the font size to 26.0. In the Utilities panel, click the Identities
Inspector tab and change the class type from UIButton to CustomButton. Click the Size
Inspector tab and set both the width and height to 110. Now click the Attributes Inspector
tab. In the section named Custom Button set the values for Corner Radius to 55, Border
Width to 4, and Border Color to White Color. In the Button section, set the Shows Touch on
Highlight to checked so when a user presses the button, there will be a white glow where the
touch event occurred on the button.

Next, add UILabel and UITextField objects to the scene such that it looks similar to the one
in Figure 10-13. The yellow tags A, B, C, and D are labels that will be used to display status
related to ranged beacons. The blue tags 1, 2, and 3 are text fields that are used as search
criteria when monitoring beacons. The property names correspond to those in Table 10-3.

312 CHAPTER 10: Building Location Awareness with iBeacons

Figure 10-13.  Region Monitor scene after label and text field placement

Table 10-3.  Region Monitoring Properties

Tag Property Name Description

A regionIdLabel This is a CLBeaconRegion identifier: a user-defined unique identifier to
associate with the returned region object. You use this identifier to
differentiate regions within your application. This value must not be nil.

B proximityLabel This value corresponds to the CLProximity constants that represents the
relative distance to the beacon: unknown, immediate, near, far.

C distanceLabel This value is the estimated distance in meters to a beacon. You can use
this value to differentiate between beacons with the same proximity values.
A negative value signifies that the accuracy could not be determined.

D rssiLabel This value represents the average received signal strength indicator. It’s a
measurement of the power present in a received radio signal in decibels.

1 uuidTextField This is a unique identifier of the beacon being targeted; use this to identify
your beacon. You typically generate only one UUID for your beacons.
You can use the uuidgen command-line tool to generate this value.

2 majorTextField The value identifying a group of beacons.

3 minorTextField The value identifying a specific beacon within a group.

313CHAPTER 10: Building Location Awareness with iBeacons

You should already be familiar enough with autolayout and constraints, so we won’t cover
that topic here. For each of the UITextField objects, you can add placeholder text that
will be visible when a field is empty. The placeholder text is a hint to the user as to what
information is expected to be input in each of the fields. From the Attributes Inspector, set
the Capitalization field for the uuidTextField object to All Characters. For the majorTextField
and the minorTextField objects, set the Keyboard Type to Number Pad.

Open the Main.storyboard file and select the Region Monitor scene. For each of the UI
objects that you’ll be interacting with programmatically, connect an outlet to the view
controller by control-dragging and dropping them inside the view controller implementation
and name each accordingly (see Listing 10-6).

Listing 10-6.  The RegionMonitorViewController class declaration

class RegionMonitorViewController: UIViewController, UITextFieldDelegate, RegionMonitorDelegate {
 
 let kUUIDKey = "monitor-proximityUUID"
 let kMajorIdKey = "monitor-transmit-majorId"
 let kMinorIdKey = "monitor-transmit-minorId"
 
 let uuidDefault = "2F234454-CF6D-4A0F-ADF2-F4911BA9FFA6"
 
 @IBOutlet weak var regionIdLabel: UILabel!
 @IBOutlet weak var uuidTextField: UITextField!
 @IBOutlet weak var majorTextField: UITextField!
 @IBOutlet weak var minorTextField: UITextField!
 @IBOutlet weak var proximityLabel: UILabel!
 @IBOutlet weak var distanceLabel: UILabel!
 @IBOutlet weak var rssiLabel: UILabel!
 @IBOutlet weak var monitorButton: UIButton!
}

The UITextField objects will be taking user input, so a keyboard will be presented. You’ll
want to know when the user starts and stops editing to perform certain actions. In order to
handle messages sent as part of the text editing sequence, implement the delegate methods
textFieldDidBeginEditing and textFieldDidEndEditing shown in Listing 10-7. When the
text fields take focus, you want to present a Done button in the navigation bar so the user
can dismiss the keyboard as needed. As a convenience, when the user leaves each field,
the values the user entered are stored in the standard user defaults and used to initialize the
text fields.

Listing 10-7.  Implementing UITextField Delegate Methods

// MARK: UITextFieldDelegate methods
 
func textFieldDidBeginEditing(textField: UITextField) {
 navigationItem.rightBarButtonItem = doneButton
}
 
func textFieldDidEndEditing(textField: UITextField) {
 
 let defaults = NSUserDefaults.standardUserDefaults()
 

314 CHAPTER 10: Building Location Awareness with iBeacons

 if textField == uuidTextField && !textField.text!.isEmpty {
 defaults.setObject(textField.text, forKey: kUUIDKey)
 }
 else if textField == majorTextField && !textField.text!.isEmpty {
 defaults.setObject(textField.text, forKey: kMajorIdKey)
 }
 else if textField == minorTextField && !textField.text!.isEmpty {
 defaults.setObject(textField.text, forKey: kMinorIdKey)
 }
}

Override the viewDidLoad method and set the text field delegates to self, otherwise you
won’t receive any notifications. The doneButton property is initialized only once and is used
to set the navigationItem.rightBarButtonItem each time text field takes focus. Notice that
in the last parameter to UIBarButtonItem initializer, the action is set to “dismissKeyboard”
(see Listing 10-8). This corresponds to a method you define. The action is called
automatically for you when the user taps the Done button.

Listing 10-8.  Property Initialization in the RegionMonitorViewController Class

override func viewDidLoad() {
 super.viewDidLoad()
 uuidTextField.delegate = self
 majorTextField.delegate = self
 minorTextField.delegate = self
 �doneButton = UIBarButtonItem(title: "Done", style: UIBarButtonItemStyle.Done, target: self,

action: "dismissKeyboard")
 initFromDefaultValues()
}
 
func dismissKeyboard() {
 uuidTextField.resignFirstResponder()
 majorTextField.resignFirstResponder()
 minorTextField.resignFirstResponder()
 navigationItem.rightBarButtonItem = nil
}

When initializing the text fields from user defaults, you can use the Optional Binding feature
of Swift.

if let uuid = defaults.stringForKey(kUUIDKey) {
 uuidTextField.text = uuid
}

Tip  Use optional binding to find out whether an optional contains a value or not. It’s a clean way to
check for a value inside an optional and extract it in a single line of code (see Listing 10-9).

315CHAPTER 10: Building Location Awareness with iBeacons

Listing 10-9.  Initialization from User Defaults Using Optional Binding in the RegionMonitorViewController Class

private func initFromDefaultValues() {
 let defaults = NSUserDefaults.standardUserDefaults()
 if let uuid = defaults.stringForKey(kUUIDKey) {
 uuidTextField.text = uuid
 }
 if let major = defaults.stringForKey(kMajorIdKey) {
 majorTextField.text = major
 }
 if let minor = defaults.stringForKey(kMinorIdKey) {
 minorTextField.text = minor
 }
}

To make sure the user defaults are persisted, call the NSUserDefaults.synchronize()
method when the app is about to go in the background or exit. Take note that this method is
called periodically in the background so you shouldn’t need to call it at any other time. Add
the method from Listing 10-10 to the RegionMonitorViewController class.

Listing 10-10.  Persisting Defaults When the Application Is About to Go in the Background

override func viewWillDisappear(animated: Bool) {
 NSUserDefaults.standardUserDefaults().synchronize()
}

The RegionMonitor Class
The RegionMonitor class manages all the interactions with CLLocationManager. At appropriate
times, the Region Monitor will inform its delegate, the view controller, of events that it
handled, or that it is about to handle.

Using the Delegation Pattern
For region monitoring, you’ll utilize the Delegation pattern, which is commonly used by Apple
frameworks. The delegate is typically a Custom Controller object that acts on behalf of
another object.

You’ll implement the pattern by defining a protocol for a RegionMonitorDelegate. The
RegionMonitorViewController will adopt this protocol and implement the methods that
respond to Location Monitoring actions. You’ll create a new class RegionMonitor that will
be the delegating object. It will hold a weak reference to the RegionMonitorViewController
that will act as the delegate. The RegionMonitor object will act as the delegate for the
CLLocationManager object. The example sequence diagram in Figure 10-14 illustrates the
interaction between the objects.

316 CHAPTER 10: Building Location Awareness with iBeacons

Create a new Swift file named RegionMonitor.swift and define a protocol for
RegionMonitorDelegate as shown in Listing 10-11.

Listing 10-11.  Defining the RegionMonitorDelegate protocol

protocol RegionMonitorDelegate: NSObjectProtocol {
 func onBackgroundLocationAccessDisabled()
 func didStartMonitoring()
 func didStopMonitoring()
 func didEnterRegion(region: CLRegion!)
 func didExitRegion(region: CLRegion!)
 func didRangeBeacon(beacon: CLBeacon!, region: CLRegion!)
 func onError(error: NSError)
}

Creating the RegionMonitor Class
Next, in the file RegionMonitor.swift below RegionMonitorDelegate, declare
the class RegionMonitor as a subclass of NSObject, and adopt the protocol for
CLLocationManagerDelegate. Also, you’ll need to import CoreLocation. Then add
properties (Listing 10-12) for CLLocationManager, CLBeaconRegion, CLBeacon, and
RegionMonitorDelegate.

Listing 10-12.  RegionMonitor Class Declaration

class RegionMonitor: NSObject, CLLocationManagerDelegate {
 
 var locationManager: CLLocationManager!
 var beaconRegion: CLBeaconRegion?

Figure 10-14.  Sequence diagram—delegation pattern example

317CHAPTER 10: Building Location Awareness with iBeacons

 var rangedBeacon: CLBeacon! = CLBeacon()
 var pendingMonitorRequest: Bool = false
  
 weak var delegate: RegionMonitorDelegate?
}

You’ll want to store a strong reference to the CLLocationManager, but you must make sure
that you declare the delegate property for RegionMonitorDelegate as weak to avoid a strong
reference cycle. A strong reference cycle will prevent RegionMonitorDelegate from being
deallocated, which will cause a memory leak in your application. Also, a weak reference is
allowed to have “no value,” so it must be declared an optional type. We cover the property
pendingMonitorRequest later in section RegionMonitor Methods.

Now implement an initializer method (Listing 10-13) that will be called when you create a
new instance of RegionMonitor. The primary role of an initializer is to ensure that a new
instance of a type is set up properly before first use.

Listing 10-13.  RegionMonitor Initializer Method

init(delegate: RegionMonitorDelegate) {
 super.init()
 self.delegate = delegate
 self.locationManager = CLLocationManager()
 self.locationManager!.delegate = self
}

The initializer starts by calling super.init(), which calls the initializer of RegionMonitor
class’s super class, NSObject. Then the locationManager property is initialized with an
instance of CLLocationManager and then initializes self as its delegate. Finally, the delegate
property is initialized with the RegionMonitorDelegate object that is passed as a parameter.

Delegate Methods
onBackgroundLocationAccessDisabled
The onBackgroundLocationAccessDisabled delegate method is called after RegionMonitor
invokes CLLocationManager.authorizationStatus and receives a return value of Restricted,
Denied, or AuthorizedWhenInUse. The delegate should respond to this notification by
prompting the user to change his location access settings. Add the code shown in Listing 10-14
to the RegionMonitorViewController class.

Listing 10-14.  Constructing a Location Access Settings Alert in the RegionMonitorViewController Class

func onBackgroundLocationAccessDisabled() {
 let alertController = UIAlertController(
 title: NSLocalizedString("regmon.alert.title.location-access-disabled", comment: "foo"),
 �message: NSLocalizedString("regmon.alert.message.location-access-disabled",

comment: "foo"),
 preferredStyle: .Alert)
 

318 CHAPTER 10: Building Location Awareness with iBeacons

 alertController.addAction(UIAlertAction(title: "Cancel", style: .Cancel, handler: nil))
 
 alertController.addAction(
 UIAlertAction(title: "Settings", style: .Default) { (action) in
 if let url = NSURL(string:UIApplicationOpenSettingsURLString) {
 UIApplication.sharedApplication().openURL(url)
 }
 })
 self.presentViewController(alertController, animated: true, completion: nil)
}

The code from Listing 10-14 will present an alert prompting (Figure 10-15) the user to
change the location access settings.

Note  NSLocalizedString is used to pull string resources from a file. You can add a file to your
project named Localizable.strings and define your strings there. The format is simple, one
string per line: "regmon.alert.title.location-access-disabled" = "Background
Location Access is Disabled";

Figure 10-15.  Prompt for location access settings change

didStartMonitoring
The didStartMonitoring delegate method is called when RegionMonitor receives the
notification didStartMonitoringForRegion from CLLocationManager. The delegate can
respond to this notification by updating its state and displaying a progress indicator. Add the
code shown in Listing 10-15 to the RegionMonitorViewController class.

Listing 10-15.  Delegate Method didStartMonitoring in the RegionMonitorViewController Class

func didStartMonitoring() {
 isMonitoring = true
 monitorButton.rotate(0.0, toValue: CGFloat(M_PI * 2), completionDelegate: self)
}

319CHAPTER 10: Building Location Awareness with iBeacons

didStopMonitoring
The didStopMonitoring delegate method is called when the RegionMonitor.stopMonitoring
method is called. The delegate can respond to this notification by updating its state. Add the
code shown in Listing 10-16 to the RegionMonitorViewController class.

Listing 10-16.  Delegate Method didStopMonitoring in the RegionMonitorViewController Class

func didStopMonitoring() {
 isMonitoring = false
}

didEnterRegion
The didEnterRegion delegate method is called when RegionMonitor receives the notification
didEnterRegion from CLLocationManager. The CLRegion object is passed as a parameter and is
provided to the delegate. The delegate can respond to this notification by providing feedback
to the user. Add the code shown in Listing 10-17 to the RegionMonitorViewController class.

Listing 10-17.  Delegate Method didEnterRegion in the RegionMonitorViewController Class

func didEnterRegion(region: CLRegion!) {
 
}

didExitRegion
The didExitRegion delegate method is called when RegionMonitor receives the notification
didExitRegion from CLLocationManager. The CLRegion object is passed as a parameter and is
provided to the delegate. The delegate can respond to this notification by providing feedback
to the user. Add the code shown in Listing 10-18 to the RegionMonitorViewController class.

Listing 10-18.  Delegate Method didExitRegion in the RegionMonitorViewController Class

func didExitRegion(region: CLRegion!) {
 
}

didRangeBeacon
The didRangeBeacon delegate method is called when RegionMonitor receives the notification
didRangeBeacons from CLLocationManager. The RegionMonitor is passed an array of
CLBeacon objects and determines which one is the closest. That CLBeacon object is provided
to the delegate. The delegate can respond to this0 notification by providing feedback to the
user. Add the code shown in Listing 10-19 to the RegionMonitorViewController class.

320 CHAPTER 10: Building Location Awareness with iBeacons

Listing 10-19.  Delegate Method didRangeBeacon in the RegionMonitorViewController Class

func didRangeBeacon(beacon: CLBeacon!, region: CLRegion!) {
 regionIdLabel.text = region.identifier
 uuidTextField.text = beacon.proximityUUID.UUIDString
 majorTextField.text = "\(beacon.major)"
 minorTextField.text = "\(beacon.minor)"
 
 switch (beacon.proximity) {
 case CLProximity.Far:
 proximityLabel.text = "Far"
 case CLProximity.Near:
 proximityLabel.text = "Near"
 case CLProximity.Immediate:
 proximityLabel.text = "Immediate"
 case CLProximity.Unknown:
 proximityLabel.text = "unknown"
 }
 
 distanceLabel.text = distanceFormatter.stringFromMeters(beacon.accuracy)
  
 rssiLabel.text = "\(beacon.rssi)"
}

Add a property to the RegionMonitorViewController class.

let distanceFormatter = NSLengthFormatter()

Notice the distanceLabel text is set using a specialized formatter object NSLengthFormatter.
The formatter provides property formatted, localized descriptions of linear distances.

onError
The onError delegate method is called when RegionMonitor encounters an error. An NSError
object is provided to the delegate. The delegate can respond to this notification by handling
the error and/or providing feedback to the user. This notification is currently ignored by this
example app. Add the code shown in Listing 10-20 to the RegionMonitorViewController class.

Listing 10-20.  Delegate Method onError in the RegionMonitorViewController Class

func onError(error: NSError) {
  
}

Caution  Formatters are expensive to create. It’s recommended that you create an instance once
and reuse that instance.

321CHAPTER 10: Building Location Awareness with iBeacons

RegionMonitor Methods
There are only two public functions for the RegionMonitor class, startMonitoring and
stopMonitoring. The view controller is responsible for configuring a beacon region and
telling the Region Monitor when to start and stop monitoring.

startMonitoring
Upon entering, the property pendingMonitorRequest is set, signaling that a start monitoring
request has been made. In the event that the request to start monitoring is deferred, this
value will be used in a notification to determine whether startMonitoringForRegion should
be called. Also, a strong reference to the beaconRegion is held so that it can be used by the
delegate methods.

Before monitoring can actually start, authorization status must be taken into consideration.
To get the authorization status for your application, you must call CLLocationManager.
authorizationStatus. Only when the status AlwaysAuthorized is returned can monitoring
for a beacon region start. We will cover the authorization sequence in detail in the section
“Authorization and Requesting Permission.” Add the code shown in Listing 10-21 to the
RegionMonitor class.

Listing 10-21.  RegionMonitor startMonitoring Method

func startMonitoring(beaconRegion: CLBeaconRegion?) {
 print("Start monitoring")
 pendingMonitorRequest = true
 self.beaconRegion = beaconRegion
 
 switch CLLocationManager.authorizationStatus() {
 case .NotDetermined:
 locationManager.requestAlwaysAuthorization()
 case .Restricted, .Denied, .AuthorizedWhenInUse:
 delegate?.onBackgroundLocationAccessDisabled()
 case .AuthorizedAlways:
 locationManager!.startMonitoringForRegion(beaconRegion!)
 pendingMonitorRequest = false
 }
}

stopMonitoring
In this method, location manager is told to stop ranging and monitoring beacons and to stop
updating location. The delegate is also notified that monitoring has now stopped. Add the
code in Listing 10-22 to the RegionMonitor class.

322 CHAPTER 10: Building Location Awareness with iBeacons

Listing 10-22.  RegionMonitor stopMonitoring Method

func stopMonitoring() {
 print("Stop monitoring")
 pendingMonitorRequest = false
 locationManager.stopRangingBeaconsInRegion(beaconRegion!)
 locationManager.stopMonitoringForRegion(beaconRegion!)
 locationManager.stopUpdatingLocation()
 beaconRegion = nil
 delegate?.didStopMonitoring()
}

Authorization and Requesting Permission
In order to use location services, you must request authorization from the user to use
those services.

In the Region Monitor startMonitoring method, when CLLocationManager.
authorizationStatus() is called and returns a value of NotDetermined, you need to call
the requestAlwaysAuthorization() method. The user will then be presented with an alert
requesting permission to use location services where he or she can choose to allow access
as shown in Figure 10-16.

Caution  You should request authorization at the point where you will use location services to
perform a task. Requesting authorization may display an alert to the user. If it’s not clear to the user
that location services are about to be used for a useful purpose, the user may deny the request to
use those services.

Figure 10-16.  Request location services authorization prompt

If the user chooses Don’t Allow from the alert shown in Figure 10-16 the next time he
calls the startMonitoring method, the CLLocationManager.authorizationStatus()
will return Denied, causing the Region Monitor to notify its delegate by calling the
onBackgroundLocationAccessDisabled method (see Listing 10-21). The user will be
presented with an alert to change the settings as shown in Figure 10-17.

323CHAPTER 10: Building Location Awareness with iBeacons

If the user selects Settings, the app will transition to the Settings.app where the user can
change permission settings for location services as shown in Figure 10-18.

Figure 10-17.  Request settings change prompt

Figure 10-18.  Location services settings for iBeaconApp in the Settings.app

324 CHAPTER 10: Building Location Awareness with iBeacons

CLLocationManagerDelegate Methods
The RegionMonitor adopts the CLLocationManagerDelegate so that it can receive
notifications from the location manager. The Region Monitor will need to respond to events
such as a change in authorization state, when beacon region boundaries have been crossed
and when one or more beacons have come into range. In this section you’ll learn how to
interact with the location manager and respond to these events through delegation.

The diagram shown in Figure 10-19 illustrates the interaction between the location manager
and the Region Monitor, which is acting as the delegate. It shows the complete sequence for
the “start monitoring” event which also includes authorization.

Figure 10-19.  Sequence diagram for start monitoring sequence

Note  Right after the location manager has been initialized, it will call its delegate method with a
status value of NotDetermined.

The next sections cover each of the location manager delegate methods you’ll be using in
the iBeaconApp application.

325CHAPTER 10: Building Location Awareness with iBeacons

Regions Are Shared Resources
Following are a few things you’ll want to keep in mind when dealing with regions:

	Recall that regions are a shared resource; therefore, the manager object
that gets passed in to the callback represents the location manager
object reporting the event. This may not be the one you stored in the
locationManager property.

	The region object passed as a parameter to delegate methods may not
be the same object that was registered. When determining equality, use
the region’s identifier string.

	It’s possible that multiple location managers share a delegate object.
When this is the case, that delegate will receive a message multiple
times.

didChangeAuthorizationStatus
The location manager calls this delegate method when the authorization status for the
application has changed. Consider the use case where a user taps a button to start
monitoring but has not yet granted the application permission to access location services.
See the flow diagram in Figure 10-20.

Figure 10-20.  Flow diagram for the “start monitoring” event

326 CHAPTER 10: Building Location Awareness with iBeacons

The implementation in Listing 10-23 checks for the AuthorizeWhenInUse
and AuthorizeAlways status. You can see that it’s also testing the value of
pendingMonitorRequest. If the call to startMonitoringForRegion was deferred, it can be
called here.

Listing 10-23.  CLLocationManager Delegate Method didChangeAuthorizationStatus

func locationManager(manager: CLLocationManager, didChangeAuthorizationStatus
status: CLAuthorizationStatus) {
 print("didChangeAuthorizationStatus \(status)")
 if status == .AuthorizedWhenInUse || status == .AuthorizedAlways {
 if pendingMonitorRequest {
 locationManager!.startMonitoringForRegion(beaconRegion!)
 pendingMonitorRequest = false
 }
 locationManager!.startUpdatingLocation()
 }
}

didStartMonitoringForRegion
The location manager calls this delegate method after startMonitoringForRegion has been
called, and when a new region is being monitored (Listing 10-24). The Region Monitor
notifies its delegate by calling didStartMonitoring so a progress indicator can be presented
to the user at the right time. At this point, the Region Monitor can ask the location manager
about the new region’s state by calling requestStateForRegion with the new region object
passed as a parameter.

Listing 10-24.  CLLocationManager Delegate Method didStartMonitoringForRegion

func locationManager(manager: CLLocationManager, didStartMonitoringForRegion
region: CLRegion) {
 print("didStartMonitoringForRegion \(region.identifier)")
 delegate?.didStartMonitoring()
 locationManager.requestStateForRegion(region)
}

didDetermineState
The location manager calls this delegate method in response to a call to its
requestStateForRegion method. The region along with its state is passed in as a parameter.
The state contains a value of the CLRegionState type. The values reflect the relationship
between the device and the region boundaries. The Region Monitor uses these values to
determine which location manager method to call. If the device is inside the given region,
then startRangingBeaconsInRegion is called; otherwise stopRangingBeaconsInRegion is
called. The property beaconRegion that was set in the call to startMonitoring is passed in as
a parameter. Add the code in Listing 10-25 to the RegionMonitor class.

327CHAPTER 10: Building Location Awareness with iBeacons

Listing 10-25.  CLLocationManager Delegate Method didDetermineState

func locationManager(manager: CLLocationManager, didDetermineState state: CLRegionState,
forRegion region: CLRegion) {
 print("didDetermineState")
 if state == CLRegionState.Inside {
 print(" - entered region \(region.identifier)")
 locationManager.startRangingBeaconsInRegion(beaconRegion!)
 } else {
 print(" - exited region \(region.identifier)")
 locationManager.stopRangingBeaconsInRegion(beaconRegion!)
 }
}

didEnterRegion
The location manager calls this delegate method when the user enters the specified region.
The Region Monitor notifies its delegate by calling didEnterRegion and passes the region
object containing information about the region that was entered. Add the code in
Listing 10-26 to the RegionMonitor class.

Listing 10-26.  CLLocationManager Delegate Method didEnterRegion

func locationManager(manager: CLLocationManager, didEnterRegion region: CLRegion) {
 print("didEnterRegion - \(region.identifier)")
 delegate?.didEnterRegion(region)
}

didExitRegion
The location manager calls this delegate method when the user exits the specified region.
The Region Monitor notifies its delegate by calling didExitRegion and passes the region
object containing information about the region that was exited. Add the code in
Listing 10-27 to the RegionMonitor class.

Listing 10-27.  CLLocationManager Delegate Method didExitRegion

func locationManager(manager: CLLocationManager, didExitRegion region: CLRegion) {
 print("didExitRegion - \(region.identifier)")
 delegate?.didExitRegion(region)
}

didRangeBeacons
The location manager calls this delegate method when one or more beacons become
available in the specified region, or when a beacon goes out of range. This method is
also called when the range of a beacon changes (i.e., getting closer or farther). The
implementation here only notifies the Region Monitor’s delegate with the closest beacon.
Add the code in Listing 10-28 to the RegionMonitor class.

328 CHAPTER 10: Building Location Awareness with iBeacons

Listing 10-28.  CLLocationManager Delegate Method didRangeBeacons

func locationManager(manager: CLLocationManager, didRangeBeacons beacons: [CLBeacon],
inRegion region: CLBeaconRegion) {
 print("didRangeBeacons - \(region.identifier)")
 
 if beacons.count > 0 {
 rangedBeacon = beacons[0]
 delegate?.didRangeBeacon(rangedBeacon, region: region)
 }
}

Error Handling
Several of the location manager delegate error reporting methods are optional, but it is
recommended that you implement them in your applications. The iBeaconApp sample only
dumps a message to the log.

monitoringDidFailForRegion
The location manager calls this delegate method when region monitoring has failed.
It passes in the region for which the error occurred and an NSError describing the error.
Implementation of this method is optional but recommended. Add the code in Listing 10-29
to the RegionMonitor class.

Listing 10-29.  CLLocationManager Delegate Method monitoringDidFailForRegion

func locationManager(manager: CLLocationManager, monitoringDidFailForRegion region:
CLRegion?, withError error: NSError) {
 print("monitoringDidFailForRegion - \(error)")
}

rangingBeaconsDidFailForRegion
The location manager calls this delegate method when registering a beacon region failed. If
you receive this message, check to make sure the region object itself is valid and contains
valid data. Add the code in Listing 10-30 to the RegionMonitor class.

Listing 10-30.  CLLocationManager Delegate Method rangingBeaconsDidFailForRegion

func locationManager(manager: CLLocationManager, rangingBeaconsDidFailForRegion region:
CLBeaconRegion, withError error: NSError) {
 print("rangingBeaconsDidFailForRegion \(error)")
}

329CHAPTER 10: Building Location Awareness with iBeacons

didFailWithError
If the user denies your application’s use of the location service, this method reports a Denied
error. If you receive this error, you should stop the location service. Implementation of this
method is optional but recommended. Add the code in Listing 10-31 to the RegionMonitor class.

Listing 10-31.  CLLocationManager Delegate Method didFailWithError

func locationManager(manager: CLLocationManager, didFailWithError error: NSError) {
 print("didFailWithError \(error)")
 if (error.code == CLError.Denied.rawValue) {
 stopMonitoring()
 }
}

Configuring Region Monitoring
The view controller is responsible for handling user input starting the monitoring process,
so that is where you’ll configure your beacon regions.

The CLBeaconRegion is the key class for managing your beacons. It defines a region that
you’re interested in that is based on the beacon’s proximity to a Bluetooth LE device.
A beacon’s identity is programmed directly into its hardware using tools provided by the
manufacturer. In your application you use those values to identify one or more beacons.
When a device comes into range with matching criteria, the region triggers a notification.

Using the RegionMonitor Class
Open the file RegionMonitorViewConroller.swift file, and in the
RegionMonitorViewController class add a property to hold a RegionMonitor object.

var regionMonitor: RegionMonitor!

Then create an instance in the viewDidLoad method.

regionMonitor = RegionMonitor(delegate: self)

Beacon Identity
You specify a beacon’s identity by using a combination of three properties.

	proximityUUID—this property holds a unique identifier for the beacons
you want to target. This property is required.

	major—this property holds a value used to identify a group of beacons
you want to target. This value is optional, and if not assigned, it will be
ignored during the matching process.

	minor—this property holds a value used to identify a specific beacon
within a group. This value is optional, and if not assigned, it will be
ignored during the matching process.

330 CHAPTER 10: Building Location Awareness with iBeacons

Initializing a Beacon Region
Depending on how specific you want to be when receiving notifications, you can set up a
region in one of three ways.

1.	 Target a beacon with a specific proximity ID. The beacon’s major and
minor values will be ignored.

beaconRegion = CLBeaconRegion(proximityUUID: uuid, identifier: "my.beacon")

2.	 Target a beacon with a specific proximity ID and major value. The
beacon’s minor value will be ignored.

beaconRegion = CLBeaconRegion(proximityUUID: uuid, major:
CLBeaconMajorValue(major), identifier: "my.beacon")

3.	 Target a beacon with a specific proximity ID, major value, and minor
values. This would be used in a more complex environment.

beaconRegion = CLBeaconRegion(proximityUUID: uuid, major: CLBeaconMajorValue(major),
minor: CLBeaconMinorValue(minor), identifier: "my.beacon")

An additional user-defined unique identifier is associated with the beacon during
initialization. You use this identifier to differentiate regions with your application. This value
cannot be nil.

Initializing Beacon Notifications
There are three properties you will use to indicate the types of notifications you want to receive.

	notifyEntryStateOnDisplay—this property indicates whether beacon
notifications should be sent while the device’s display is on. When
this value is true, beacon notifications are sent when the user turns
on the display when the device is already inside a region. If your app
isn’t running, the system will launch your app in the background so the
notification can be handled. The location manager’s delegate method
didDetermineState is called.

	notifyOnEntry—indicates that a notification should be sent upon
entry to the region. The system will launch your app in the background
to handle the notification. The location manager’s delegate method
didEnterRegion is called.

	notifyOnExit—indicates that a notification should be sent upon exit
from the region.

331CHAPTER 10: Building Location Awareness with iBeacons

Start and Stop Region Monitoring
To start and stop the region monitoring process, add the code in Listing 10-32 to the
RegionMonitorViewController class.

Listing 10-32.  Start and Stop Region Monitoring

@IBAction func toggleMonitoring() {
 if isMonitoring {
 regionMonitor.stopMonitoring()
 } else {
 if uuidTextField.text!.isEmpty {
 showAlert("Please provide a valid UUID")
 return
 }
 
 regionIdLabel.text = ""
 proximityLabel.text = ""
 distanceLabel.text = ""
 rssiLabel.text = ""
  
 if let uuid = NSUUID(UUIDString: uuidTextField.text!) {
 let identifier = "my.beacon"
 
 var beaconRegion: CLBeaconRegion?
 
 if let major = Int(majorTextField.text!) {
 if let minor = Int(minorTextField.text!) {
 �beaconRegion = CLBeaconRegion(proximityUUID: uuid, major:

CLBeaconMajorValue(major), minor: CLBeaconMinorValue(minor),
identifier: identifier)

 } else {
 �beaconRegion = CLBeaconRegion(proximityUUID: uuid,

major: CLBeaconMajorValue(major), identifier: identifier)
 }
 } else {
 beaconRegion = CLBeaconRegion(proximityUUID: uuid, identifier: identifier)
 }
 
 // later, these values can be set from the UI
 beaconRegion!.notifyEntryStateOnDisplay = true
 beaconRegion!.notifyOnEntry = true
 beaconRegion!.notifyOnExit = true
 
 regionMonitor.startMonitoring(beaconRegion)
 } else {
 �let alertController = UIAlertController(title:"iBeaconApp", message: "Please

enter a valid UUID", preferredStyle: .Alert)
 �alertController.addAction(UIAlertAction(title: "OK", style: .Default,

handler: nil))
 self.presentViewController(alertController, animated: true, completion: nil)
 }
 }
}

332 CHAPTER 10: Building Location Awareness with iBeacons

Handling a Ranged Beacon
A beacon that was encountered during region monitoring is sent through delegate
notifications using the CLBeacon class. The identity of the beacon corresponds to the
information used when you initialized the beacon region.

The Region Monitor delegate method simply updates the appropriate fields.

Monitoring Progress Indicator
There’s one last detail to cover, and that’s a progress indicator. It’s important that when
a user interacts with the application, you provide some type of feedback for each action.
When the user taps the Monitor button, you want to indicate that monitoring is in progress.
You could use a static text field and toggle the text, but that’s boring. Adding a simple
rotation animation to the Monitor button is quick and easy and will serve as an effective
progress indicator for when monitoring starts and stops.

Animating the Monitor Button
An extension will be used to apply an animation to the Monitor button. You use an extension
to add functionality to an existing class for which you don’t have the original source code.
The extension will add a function to rotate a view object using keyframe animation.

At the top of the RegionMonitorViewController.swift file after the import statements, add
the code from Listing 10-33.

Listing 10-33.  Adding an Extension to the UIView Class

extension UIView {
 
 �func rotate(fromValue: CGFloat, toValue: CGFloat, duration: CFTimeInterval = 1.0,

completionDelegate: AnyObject? = nil) {
 
 let rotateAnimation = CABasicAnimation(keyPath: "transform.rotation")
 rotateAnimation.fromValue = fromValue
 rotateAnimation.toValue = toValue
 rotateAnimation.duration = duration
 
 if let delegate: AnyObject = completionDelegate {
 rotateAnimation.delegate = delegate
 }
 self.layer.addAnimation(rotateAnimation, forKey: nil)
 }
}

Note  You don’t create an instance of a CLBeacon class directly; this is done by the location manager.

333CHAPTER 10: Building Location Awareness with iBeacons

The parameters fromValue and toValue represent rotation and are specified in radians. The
duration is specified in seconds. The CABasicAnimation class provides single-keyframe
animation for a layer property. It will allow you to interpolate between two values over time.
It also allows you to set a delegate so you can receive notification when the animation
completes by calling the delegate’s animationDidStop method.

For this use case, rotating the Scan button 360 degrees would constitute one animation
cycle. Each time an animation cycle completes the delegate is notified.

Override the animationDidStop method of the view controller. This method will evaluate
the scan state and restart the animation if scanning is still in progress. Add the code in
Listing 10-34 to the RegionMonitorViewController class.

Listing 10-34.  Override for the animationDidStop Method in the RegionMonitorViewController Class

override func animationDidStop(anim: CAAnimation, finished flag: Bool) {
 if isMonitoring == true {
 // if still scanning, restart the animation
 monitorButton.rotate(0.0, toValue: CGFloat(M_PI * 2), completionDelegate: self)
 }
}

The animations will be controlled from the delegate methods that you implemented earlier.
The delegate method didStartMonitoring started the animation by calling the rotate method
of the Monitor button.

monitorButton.rotate(0.0, toValue: CGFloat(M_PI * 2), duration: 1.0, completionDelegate: self)

The delegate method didStopMonitoring stopped the animation by simply setting the
value of the property isMonitoring to false. Notice in the override method, the value of
isMonitoring is checked; when set to false, the animation is not applied. The animation will
end when the animation cycle completes. This guarantees that the Scan button will be in the
correct orientation.

Build and run the application. Transition to the Region Monitor scene and tap the Monitor
button. You should see the button spinning. The animation should stop when you tap the
button again.

Building the iBeacon Scene
In this section, you’ll build the master scene for the iBeacon (Figure 10-21). The iBeacon
scene allows you to configure your iOS device as an iBeacon transmitter. The UI is similar
to that of the Region Monitor. It will utilize a switch to turn the transmitter on and off; one
button to autogenerate a UUID; four input fields to where the user can configure the device,
and several labels for informational purposes; and one text view which will display help text
for each input field.

This section will briefly cover the steps on how to build the UI for this scene. Many of the
steps are a repeat of those found in the section “Building the Region Monitor Scene.”

334 CHAPTER 10: Building Location Awareness with iBeacons

Create a new Swift file named BeaconTransmitterViewController.swift and declare the
class BeaconTransmitterViewController a subclass of UIViewController. Then adopt the
protocol for UITextFieldDelegate by adding the UITextFieldDelegate protocol declaration
(Listing 10-35).

Listing 10-35.  BeaconTransmitterViewController Class Declaration with Properties

import UIKit
 
class BeaconTransmitterViewController: UIViewController, UITextFieldDelegate {
  
 let kUUIDKey = "transmit-proximityUUID"
 let kMajorIdKey = "transmit-majorId"
 let kMinorIdKey = "transmit-minorId"
 let kPowerKey = "transmit-measuredPower"
  
 @IBOutlet weak var advertiseSwitch: UISwitch!
 @IBOutlet weak var generateUUIDButton: UIButton!
 @IBOutlet weak var uuidTextField: UITextField!
 @IBOutlet weak var majorTextField: UITextField!
 @IBOutlet weak var minorTextField: UITextField!
 @IBOutlet weak var powerTextField: UITextField!
 @IBOutlet weak var helpTextView: UITextView!
 
 var doneButton: UIBarButtonItem!
 var beaconTransmitter: BeaconTransmitter!
 var isBluetoothPowerOn: Bool = false
  
 let numberFormatter = NSNumberFormatter()
}

Assign the BeaconTransmitterViewController as the class for the Beacon Transmitter
identity by opening the storyboard and selecting the iBeacon scene. In the Utilities panel
on the right, click the Identity Inspector tab. In the Custom Class section, use the class
drop-down to select BeaconTransmitterViewController.

Set the background color to for the iBeacon view to 009999. Add controls to the storyboard
so that it looks like the mock-up shown in Figure 10-21.

	For the Advertise UISwitch add two connections: IBOutlet named
advertiseSwitch and IBAction named toggleAdvertising.

	For the Generate UIButton add two connections: IBOutlet named
generateUUIDButton and IBAction named generateUUID.

	For each UITextField add a single connection: IBOutlet named
uuidTextField, IBOutlet named majorTextField, IBOutlet named
minorTextField, and IBOutlet named powerTextField. Add
placeholder text.

	For the UITextView add a single connection: IBOutlet named
helpTextView.

335CHAPTER 10: Building Location Awareness with iBeacons

Add constraints for each of the controls in the scene.

Implement the UITextFieldDelegate methods. Add the code in Listing 10-36 to the
BeaconTransmitterViewController class.

Listing 10-36.  UITextFieldDelegate Methods textFieldDidBeginEditing and textFieldDidEndEditing in the
BeaconTransmittrViewController Class

// MARK: UITextFieldDelegate methods
 
func textFieldDidBeginEditing(textField: UITextField) {
 navigationItem.rightBarButtonItem = doneButton
 advertiseSwitch.setOn(false, animated: true)
 
 if textField == uuidTextField {
 helpTextView.text = NSLocalizedString("transmit.help.proximityUUID", comment:"foo")
 }
 else if textField == majorTextField {
 helpTextView.text = NSLocalizedString("transmit.help.major", comment:"foo")
 }
 else if textField == minorTextField {
 helpTextView.text = NSLocalizedString("transmit.help.minor", comment:"foo")
 }
 else if textField == powerTextField {
 helpTextView.text = NSLocalizedString("transmit.help.measuredPower", comment:"foo")
 }
}
 

Figure 10-21.  iBeacon scene mock-up

336 CHAPTER 10: Building Location Awareness with iBeacons

func textFieldDidEndEditing(textField: UITextField) {
 helpTextView.text = ""
  
 let defaults = NSUserDefaults.standardUserDefaults()
  
 if textField == uuidTextField && !textField.text!.isEmpty {
 defaults.setObject(textField.text, forKey: kUUIDKey)
 }
 else if textField == majorTextField && !textField.text!.isEmpty {
 defaults.setObject(textField.text, forKey: kMajorIdKey)
 }
 else if textField == minorTextField && !textField.text!.isEmpty {
 defaults.setObject(textField.text, forKey: kMinorIdKey)
 }
 else if textField == powerTextField && !textField.text!.isEmpty {
 // power values are typically negative
 let value = numberFormatter.numberFromString(powerTextField.text!)
 if (value?.intValue > 0) {
 powerTextField.text = numberFormatter.stringFromNumber(0 - value!.intValue)
 }
 defaults.setObject(textField.text, forKey: kPowerKey)
 }
}

The BeaconTransmitter Class
Just like the RegionMonitor class, the BeaconTransmitter class manages all the interactions
with the CBPeripheralManager. The Delegation pattern will be used so the beacon transmitter
can inform its delegate of events that it handled, or is about to handle.

Defining the BeaconTransmitterDelegate Protocol
You’ll start by defining a protocol for a BeaconTransmitterDelegate. The
BeaconTransmitterViewController will adopt this protocol and implement the
methods that respond to CBPeripheralManager actions. You’ll create a new class
BeaconTransmitter that will be the delegating object. It will hold a weak reference to the
BeaconTransmitterViewController that will act as the delegate. The BeaconTransmitter
object will act as the delegate for the CBPeripheralManager object.

Create a new Swift file named BeaconTransmitter.swift and define a protocol for
BeaconTransmitter. Add the code in Listing 10-37 to the BeaconTransmitterViewController class.

Listing 10-37.  Defining the BeaconTransmitterDelegate Protocol

protocol BeaconTransmitterDelegate: NSObjectProtocol {
 func didPowerOn()
 func didPowerOff()
 func onError(error: NSError)
}

337CHAPTER 10: Building Location Awareness with iBeacons

Delegate Methods
The BeaconTransmitter will use the methods in the BeaconTransmitterDelegate protocol to
communicate back to its delegate to notify when a device’s Bluetooth powers on or off, and
to report any errors it may encounter.

didPowerOn
The didPowerOn delegate method is called after the BeaconTransmitter receives notification
from the CBPeripheralManager method peripheralManagerDidUpdateState and peripheral
manager’s state accessor returns PoweredOn. The delegate should update its state to reflect
that. Add the code in Listing 10-38 to the BeaconTransmistterViewController class.

Listing 10-38.  The didPowerOn Method in BeaconTransmitterViewController Class

func didPowerOn() {
 isBluetoothPowerOn = true
}

didPowerOff
The didPowerOn delegate method is called after the BeaconTransmitter receives notification
from the CBPeripheralManager method peripheralManagerDidUpdateState and peripheral
manager’s state accessor returns PoweredOff. The delegate should update its state to reflect
that. Add the code in Listing 10-39 to the BeaconTransmistterViewController class.

Listing 10-39.  The didPowerOn Method in BeaconTransmitterViewController Class

func didPowerOff() {
 isBluetoothPowerOn = false
}

onError
The onError delegate method is called when the BeaconTransmitter encounters an error. An
NSError object is provided to the delegate. The delegate can respond to this notification by
handling the error and/or providing feedback to the user. This method is currently not used by
this example. Add the code in Listing 10-40 to the BeaconTransmitterViewController class.

Listing 10-40.  Delegate Method onError in the BeaconTransmirtterViewController Class

func onError(error: NSError) {
  
}

338 CHAPTER 10: Building Location Awareness with iBeacons

Creating the iBeaconTransmitter Class
Next, in the file BeaconTransmitter.swift below BeaconTransmitterDelegate protocol,
declare the class BeaconTransmitter a subclass of NSObject, and adopt the protocol for
CBPeripheralManager. Also, you’ll need to import CoreLocation and CoreBluetooth. Then
add properties for CBPeripheralManager and BeaconTransmitterDelegate. Add the code in
Listing 10-41 to the BeaconTransmitter class.

Listing 10-41.  BeaconTransmitter Class Declaration

class BeaconTransmitter: NSObject, CBPeripheralManagerDelegate {
 
 var peripheralManager: CBPeripheralManager!
 
 weak var delegate: BeaconTransmitterDelegate?
}

Store a strong reference to the CBPeripheralManager, but you must make sure that you
declare the delegate property for BeaconTransmitterDelegate as weak to avoid a strong
reference cycle.

Now implement an initializer method that will be called when you create a new instance
of BeaconTransmitter. The primary role of an initializer is to ensure that a new instance
of a type is set up properly before first use. Add the code in Listing 10-42 to the
BeaconTransmitter class.

Listing 10-42.  BeaconTransmitter Initializer

init(delegate: BeaconTransmitterDelegate?) {
 super.init()
 peripheralManager = CBPeripheralManager(delegate: self, queue: nil)
 self.delegate = delegate
}

The initializer starts by calling super.init(), which calls the initializer of BeaconTransmitter
class’s super class, NSObject. Then the peripheralManager property is initialized with an
instance of CBPeripheralManager, passing in self as delegate. Finally, the delegate property
is initialized with the RegionMonitorDelegate object that is passed as a parameter.

BeaconTransmitter Methods
There are only two public functions for the BeaconTransmitter class, startAdvertising and
stopAdvertising. The view controller is responsible for configuration and telling the beacon
transmitter when to start and stop advertising.

startAdvertising
In this method, the peripheralManager is told to start advertising given a specific beacon region
and transmit power value. Add the code in Listing 10-43 to the BeaconTransmitter class.

339CHAPTER 10: Building Location Awareness with iBeacons

Listing 10-43.  Start Advertising in the BeaconTransmitter Class

func startAdvertising(beaconRegion: CLBeaconRegion?, power:NSNumber?) {
 let data = NSDictionary(dictionary: (beaconRegion?.peripheralDataWithMeasuredPower
(power))!) as! [String: AnyObject]
 peripheralManager.startAdvertising(data)
}

stopAdvertising
In this method, the peripheralManager is told to stop advertising. Add the code in
Listing 10-44 to the BeaconTransmitter class.

Listing 10-44.  Stop Advertising in the BeaconTransmitter Class

func stopAdvertising() {
 peripheralManager.stopAdvertising()
}

Configure Your iOS Device as an iBeacon
The magic behind setting up your iOS device to act as an iBeacon transmitter is calling the
peripheralDataWithMeasuredPower of the CLBeaconRegion class. The return value will be
a dictionary that is encoded with the device’s identifying information that can be used to
advertise the device with the Core Bluetooth framework.

let data = NSDictionary(dictionary: (beaconRegion?.peripheralDataWithMeasuredPower(power))!)
as! [String: AnyObject]
peripheralManager.startAdvertising(data)

The peripheralDataWithMeasuredPower takes a single parameter representing the measured
power. The measured power of a device is its known measured signal strength in RSSI at
1 meter. The distance provided by iOS is in meters and is an estimate based on the ratio of
the beacon’s signal strength over the transmission power.

The power values typically have a negative value.

Initialize a Beacon Region
As covered previously in the section “Configuring Region Monitoring,” the view controller is
responsible for handing user input and setting up the beacon region.

The first step is to specify the beacon identity. For easy setup of the UUID, there’s a
Generate button just above the UUID field. You created a connection for an IBAction named
generateUUID. You can easily generate the UUID programmatically by creating an instance of
NSUUID and getting its UUIString property. Take that value and assign it to the uuidTextField
text (see Listing 10-45). That’s it.

340 CHAPTER 10: Building Location Awareness with iBeacons

Listing 10-45.  Generating a Unique Identifier Programmatically in BeaconTransmitterViewController

@IBAction func generateUUID() {
 uuidTextField.text = NSUUID().UUIDString
}

For an explanation of the property values for major and minor, look back at the section
“Initializing a Beacon Region.” For a recap on setting up the notification properties, see the
section “Initializing Beacon Notifications.”

Start Advertising
Earlier you created a connection for an IBAction named toggleAdvertising. This, of course,
is where you make the request to start and stop advertising. Listings 10-46 and Listing 10-47
show the complete implementation.

Listing 10-46.  Start and Stop Advertising in the BeaconTransmitterViewController Class

@IBAction func toggleAdvertising() {
 if advertiseSwitch.on {
 dismissKeyboard()
 if !canBeginAdvertise() {
 advertiseSwitch.setOn(false, animated: true)
 return
 }
 let uuid = NSUUID(UUIDString: uuidTextField.text!)
 let identifier = "my.beacon"
 var beaconRegion: CLBeaconRegion?
  
 if let major = Int(majorTextField.text!) {
 if let minor = Int(minorTextField.text!) {
 �beaconRegion = CLBeaconRegion(proximityUUID: uuid!, major:

CLBeaconMajorValue(major), minor: CLBeaconMinorValue(minor),
identifier: identifier)

 } else {
 �beaconRegion = CLBeaconRegion(proximityUUID: uuid!, major:

CLBeaconMajorValue(major), identifier: identifier)
 }
 } else {
 beaconRegion = CLBeaconRegion(proximityUUID: uuid!, identifier: identifier)
 }
  
 beaconRegion!.notifyEntryStateOnDisplay = true
 beaconRegion!.notifyOnEntry = true
 beaconRegion!.notifyOnExit = true
  
 let power = numberFormatter.numberFromString(powerTextField.text!)
  
 beaconTransmitter.startAdvertising(beaconRegion, power: power)
 } else {
 beaconTransmitter.stopAdvertising()
 }
}

341CHAPTER 10: Building Location Awareness with iBeacons

Listing 10-47.  Logic for Determining if Advertising Can Start in the BeaconTransmitterViewController Class

private func canBeginAdvertise() -> Bool {
 if !isBluetoothPowerOn {
 showAlert("You must have Bluetooth powered on to advertise!")
 return false
 }
 if uuidTextField.text!.isEmpty || majorTextField.text!.isEmpty
 || minorTextField.text!.isEmpty || powerTextField.text!.isEmpty {
 showAlert("You must complete all fields")
 return false
 }
 return true
}

Build and run the application and transition to the iBeacon scene. Test each of the fields
to make sure they behave as you expect. Press the Generate button to make sure a UUID
is generated.

Test the Application
At this time you should perform some basic testing of the functionality that was covered in
this chapter.

If you already have an iBeacon device and you know the UUID, you can run the app and go
into region monitoring mode. Enter the UUID and tap the Monitor button. You should see the
fields populate as soon at the beacon is detected. Move closer to the beacon to see that
the fields being reported make sense. Place your iOS device right next to the beacon. The
proximity should be reported as immediate.

If you don’t have an iBeacon but have a second iOS device, install and run the app on that
device. Go into iBeacon mode and configure your device and then start advertising. Now, on
your first device running in Region Monitor mode, enter the same UUID and then perform the
same steps as previously.

Summary
In this chapter you learned how to use the CoreLocation framework to interact with beacon.
You learned about region monitoring and how to scan for specific beacons and receive
notification when entering or exiting an area defined by a beacon’s proximity. You learned
how to use your iPhone to act as an iBeacon transmitter.

343

Chapter 11
Home Automation
Using HomeKit

Manny de la Torriente
Much like Apple sought to unify health data with HealthKit, HomeKit is Apple’s entry
into home automation. Apple created a unified communications protocol—HomeKit
Accessory Protocol— for connected home manufactures. HomeKit is a common set of APIs
(application programming interfaces) for applications that provides integration between iOS
devices and accessories that support the HomeKit Accessory Protocol.

This chapter explains the key concepts behind the HomeKit framework (home, room,
accessory, services) and how to easily build an app that can configure, monitor, and
control home automation accessories, as well as integrate with Siri for voice commands.
Additionally, you’ll learn how to set up and use the HomeKit simulator to help develop and
debug your application.

Introduction to HomeKit Concepts
HomeKit provides integration between iOS devices and accessories that support Apple’s
HomeKit Accessory Protocol. HomeKit allows an application to discover these accessories
and add them to a cross-device home configuration database where the data can then be
accessed and modified to suit the needs of the end user. The database is also available to
Siri, which gives the user the capability of controlling the accessories with voice commands.

A home manager is represented by the HMHomeManager class, which manages a collection of
homes. It is used to access HomeKit objects such as home, room, accessory, service, and
other related objects from the HomeKit database.

344 CHAPTER 11: Home Automation Using HomeKit

A home is considered to be a single-dwelling home and is represented by the HMHome class.
It provides access to a collection of automated accessories with which you can
communicate and configure. Each home may optionally have one or more rooms. HomeKit
will assign accessories to a default room if you have not configured any rooms. A room is
represented by the HMRoom class. A zone is an arbitrary optional grouping of rooms that a
user considers a single area; for example, upstairs or downstairs. Rooms can be added to
one or more zones. A zone is represented by the HMZone class.

An accessory is a physical home automation device that is assigned to a room, such as a
ceiling fan. An accessory is represented by the HMAccessory class, and can provide one or
more services; for example, a ceiling fan has a service to turn the fan on and off, and another
service that can change the speed of the fan. A service can be a user-controllable function
provided by an accessory, like a light, or it can be an activity internal to a device, such as a
firmware update. HomeKit is most concerned with user-controllable services. A service is
represented by the HMService class.

Each service is described by a collection of characteristics; for example, if a light is
on or off, or what the brightness value is set to. A characteristic is represented by the
HMCharacteristic class and is described by an array of properties and metadata.
Characteristics can be queried to discover their state, or they can be modified to affect an
accessory’s behavior.

HomeKit Delegation Methods
Like many other Apple frameworks, HomeKit uses the delegation pattern for the notification
of events or changes in the application. An important note about HomeKit delegation is
that when your application initiates a change, the delegate messages won’t be sent to your
app. Instead, they are sent to other apps that might be running on your iOS device that
also support HomeKit. For example, you might purchase a thermostat that includes an
app to control it. You would want to see any changes you make in your app reflected in the
thermostat app or vice versa. Your app is expected to use completion handlers to reload
data and update views. However, you still need to add code to both the completion handler
and the associated delegate methods. Applications need to be in the foreground to receive
delegate messages, as they are not batched while your app is in the background. When an
app comes back to the foreground it will receive a homeManagerDidUpdateHomes message
which signals your app to reload all its data.

Note  your application should provide the means for users to create their own useful groupings
and labels.

345CHAPTER 11: Home Automation Using HomeKit

Building a HomeKit Application
The application you’ll create in this chapter will use grouped table views to present information.
The app will provide a simple user interface (UI) for creating homes, browsing for and adding
accessories, and controlling the accessories in a home, such as a ceiling fan with services for
turning the fan off and on, as well as for changing the rotation speed and the rotation direction.
When you’re finished, your app should look similar to the one in Figure 11-1.

Figure 11-1.  The HomeKit app

Requirements
HomeKit is a service that is only available to applications that are distributed through the
App Store, so you must have the ability to provision and code-sign your app. To do so, you’ll
need the following:

	Membership in the iOS developer program.

	Permission to create code signing and provisioning assets in the
member center.

Note  To create your team provisioning profile, follow the steps in the online document App
Distribution Quick Start which can be found in the iOS developer library.

346 CHAPTER 11: Home Automation Using HomeKit

Search for Hardware IO Tools and select the download which is compatible with your version
of Xcode. Once downloaded, double-click the .dmg file, and drag HomeKit Accessory
Simulator to the /Applications folder. Later on in this chapter, you’ll use the simulator to build
and test your app.

Creating the Project
We will create an iOS single-view application Xcode project named HomeKitApp. Select
Swift as the Language and use the defaults for Language and Devices (see Figure 11-3). You
can use HomeKit-enabled accessories with your iPhone, iPad, and iPod touch.

HomeKit Accessory Simulator
Apple provides a HomeKit Accessory Simulator to help you develop your HomeKit apps.
The simulator communicates with an iOS device the same way an actual HomeKit accessory
would using the HomeKit Accessory Protocol (HAP) over Bluetooth Low Energy (LE) or
Wi-Fi, so there’s no need buy specific hardware to develop your app. With the simulator, you
can create accessories with services and add characteristics to those services.

The simulator is not provided with Xcode, so you’ll have to download it from the developer’s
web site at https://developer.apple.com/downloads/ (Figure 11-2). Click the download
button in the HomeKit row. Alternatively, from the menu, Xcode ➤ Open Developer Tools ➤
More Developer Tools . . ., which will also open the browser and display the same page.

Figure 11-2.  Downloads for Apple Developers web page

https://developer.apple.com/downloads/

347CHAPTER 11: Home Automation Using HomeKit

Choose the HomeKitApp target from the Targets list and click the General tab to view the
General pane (Figure 11-4). In the lower portion of the Identity section, click the Team
pop-up menu and select your profile.

Figure 11-4.  Selecting the team profile

Figure 11-3.  Creating a new single-view Xcode project

348 CHAPTER 11: Home Automation Using HomeKit

Enabling HomeKit
HomeKit requires an explicit App ID which is created when you enable HomeKit. Click the
Capabilities tab and locate the HomeKit row (see Figure 11-5). Click the switch to the ON
position to enable HomeKit. Notice that a new file named HomeKitApp.entitlements was
added to your project.

Figure 11-5.  Enabling HomeKit in app services

Building the Homes Interface
There is one HomeKit database per home. A collection of homes are managed by an
HMHomeManager object. You’ll use the home manager to add homes, retrieve a list of homes,
track changes to homes, and remove homes. You’ll start out by building an interface that
will support adding one or more homes and the means to assign a primary home. A grouped
table view will work well for this.

The table view controller will use sections to present a list of user-defined homes. The
first section will be used to add and remove homes. The user can also select a home from
that section to configure and control. The second section will display the available homes
and allow the user to assign the primary home. At runtime, the table will look similar to the
illustration shown in Figure 11-6.

349CHAPTER 11: Home Automation Using HomeKit

Open the storyboard, then delete the current view controller and replace it with a table view
controller. Select the table view controller, then from the Attributes Inspector, set it as the
initial view controller for the storyboard by setting the check box Is initial view controller.
Embed the table view controller in a navigation controller by selecting the table view
controller and then from Xcode menu choose Editor ➤ Embed In ➤ Navigation Controller.
From the Documents Outline on the left, select the Table View object and change its style
to Grouped in the Attributes Inspector. Set the title for the navigation item in the table view
controller to Homes. Your storyboard should look similar to the one Figure 11-7.

Figure 11-6.  The HomesViewController scene at runtime

350 CHAPTER 11: Home Automation Using HomeKit

Figure 11-7.  Main.storyboard initial view

Figure 11-8.  Setting custom class HomesViewController

In order to track changes to a collection of one or more homes, you’ll need to implement the
HMHomeManagerDelegate protocol. The home manager will notify its delegate when there are
any changes to the home configuration.

Begin by changing the class declaration for your new custom table view controller
(see Listing 11-1). From the navigator, change the name of the file ViewController.swift to
HomesViewController.swift, then change the name of the class to HomesViewController, the
parent class to UITableViewController, and add the protocol for HMHomeManagerDelegate.

Listing 11-1. The HomesViewController Class Declaration

class HomesViewController: UITableViewController, HMHomeManagerDelegate {
}

Then in the storyboard, set the Custom Class for the table view controller to
HomesViewController in the Identity Inspector (Figure 11-8).

351CHAPTER 11: Home Automation Using HomeKit

Implementing the Home Manager Delegate Methods
The home manager communicates changes when homes are added, when they are
removed, or when significant changes are made to the home configuration. These changes
are communicated through the following delegate methods:

	didAddHome: Tells the delegate that the home manager added a home.

	didRemoveHome: Tells the delegate that the home manager updated its
collection of homes.

	homeManagerDidUpdateHomes: Tells the delegate that the home manager
updated its collection of homes.

Implement these methods in HomesViewController (see Listing 11-2). In the
homeManagerDidUpdateHomes method call tableView.reloadData().

Listing 11-2.  Implementing HomeManagerDelegate Methods

class HomesViewController: UITableViewController, HMHomeManagerDelegate {
 
 // MARK: HMHomeManagerDelegate methods
 
 func homeManagerDidUpdateHomes(manager: HMHomeManager) {
 print("homeManagerDidUpdateHomes")
 tableView.reloadData()
 }
 
 func homeManager(manager: HMHomeManager, didAddHome home: HMHome) {
 print("didAddHome \(home.name)")
 }
 
 func homeManager(manager: HMHomeManager, didRemoveHome home: HMHome) {
 print("didRemoveHome \(home.name)")
 }
}

Instantiating the HMHomeManager
For the purposes of this application, you’ll utilize the singleton pattern to provide a global
point of access to an HMHomeManager object as well as the current selected HMHome object.
Create a new file named HomeStore.swift and add the code from Listing 11-3.

Listing 11-3.  The HomeStore Class Declaration

import HomeKit
 
class HomeStore: NSObject {
 
 static let sharedInstance = HomeStore()
 
 var homeManager: HMHomeManager = HMHomeManager()
 var home: HMHome?
}

352 CHAPTER 11: Home Automation Using HomeKit

Listing 11-4 updates the HomesViewController to define a computed property homeStore and
then assign self as the home manager delegate.

Listing 11-4.  Setting a Computed Property for homeStore

class HomesViewController: UITableViewController, HMHomeManagerDelegate {
 
 var homeStore: HomeStore {
 return HomeStore.sharedInstance
 }
 
 override func viewDidLoad() {
 super.viewDidLoad()
 homeStore.homeManager.delegate = self
 }

The HomesViewController will be responsible for setting the value of the HomeStore.home to
reflect the current home, based on user input.

Setting Up the Table View
Open the storyboard and add four custom prototype cells to the Homes table view as shown
in Figure 11-9.

Figure 11-9.  Custom prototype cells in the storyboard

353CHAPTER 11: Home Automation Using HomeKit

At the top of the HomesViewController class body, add a structure named Identifiers and
define a constant property for each of the prototype cells. The cells are listed in the same
order as shown in Listing 11-5.

Listing 11-5.  Reuse Identifiers for Custom Prototype Table View Cells

struct Identifiers {
 static let addHomeCell = "AddHomeCell"
 static let noHomesCell = "NoHomesCell"
 static let primaryHomeCell = "PrimaryHomeCell"
 static let homeCell = "HomeCell"
}

Now in the storyboard using the Attributes Inspector, assign each of the custom table view
cells to the corresponding reuse identifier from the Identifiers struct. This is the same
reuse identifier you will send to the table view in the dequeueReusableCellWithIdentifier
message. Make sure you assign Checkmark in the Accessory pop-up window for the
PrimaryHomeCell shown in Figure 11-10.

Figure 11-10.  Assign a custom table view cell identifier

Implementing UITableView Methods
At the top of the HomesViewController class body, add an enum named HomeSections with
values for Homes and PrimaryHome. These values correspond to the IndexPath.section index
number which is passed in as a parameter to table view delegate methods and will be used
to identify a specified section of a UITableView object (Listing 11-6).

Listing 11-6.  HomeSections Enum for Table View Sections

enum HomeSections: Int {
 case Homes = 0, PrimaryHome
 static let count = 2
}

To help determine which type of table row is associated with a table view section, use the
helper method shown in Listing 11-7. The isHomesListEmpty method simply returns whether
or not the homes count equals zero, and the isIndexPathAddHome method returns true if the
specified row in the homes section is the last row.

354 CHAPTER 11: Home Automation Using HomeKit

Listing 11-7.  Table View Helper Methods

// MARK: UITableView helpers
 
func isHomesListEmpty() -> Bool {
 return homeStore.homeManager.homes.count == 0
}
 
func isIndexPathAddHome(indexPath: NSIndexPath) -> Bool {
 return indexPath.section == HomeSections.Homes.rawValue
 && indexPath.row == homeStore.homeManager.homes.count
}

The value of the HomeSections count, which is currently defined at 2, determines the number
of sections in the table view (see Listing 11-8).

Listing 11-8.  The Number of Sections in the Table View

// MARK: UITableView methods
 
override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 return HomeSections.count
}

The number of rows in a section will be dependent on which section of the table view is
specified. In the case where the section is PrimaryHome, the number of rows value should
be at least 1. In the case where the section is Homes, the number should always return the
actual count plus 1. This guarantees that there will always be at least one row in each of
the sections to accommodate the AddHome . . . and No Homes cells (see Listing 11-9 and
Figure 11-11).

Listing 11-9.  The Number of Rows in a Given Section of a Table View

override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 
 let count = homeStore.homeManager.homes.count
 
 switch (section) {
 case HomeSections.PrimaryHome.rawValue:
 return max(count, 1)
 case HomeSections.Homes.rawValue:
 return count + 1
 default:
 break
 }
 
 return 0
}

355CHAPTER 11: Home Automation Using HomeKit

Figure 11-11.  Initial empty state of homes view

The delegate method cellForRowAtIndexPath returns a UITableViewCell object that
corresponds to the specified row and section. In the case where the row/section
corresponds to a row which contains a home defined by the user, the reuse identifier is set
based on whether or not the home section is for the primary home. The cell object is then
initialized with the home name and corresponding cell accessory type (see Listing 11-10).

Listing 11-10.  Cell to Insert in a Particular Location of the Table View

override func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath:
NSIndexPath) -> UITableViewCell {
 
 if isIndexPathAddHome(indexPath) {
 �return tableView.dequeueReusableCellWithIdentifier(Identifiers.addHomeCell,

forIndexPath: indexPath)
 } else if isHomesListEmpty() {
 �return tableView.dequeueReusableCellWithIdentifier(Identifiers.noHomesCell,

forIndexPath: indexPath)
 }
 

356 CHAPTER 11: Home Automation Using HomeKit

 var reuseIdentifier: String?
 
 switch (indexPath.section) {
 case HomeSections.PrimaryHome.rawValue:
 reuseIdentifier = Identifiers.primaryHomeCell
 case HomeSections.Homes.rawValue:
 reuseIdentifier = Identifiers.homeCell
 default:
 break
 }
 
 �let cell = tableView.dequeueReusableCellWithIdentifier(reuseIdentifier!,

forIndexPath: indexPath) as UITableViewCell
 
 let home = homeStore.homeManager.homes[indexPath.row] as HMHome
 cell.textLabel?.text = home.name
 
 if indexPath.section == HomeSections.PrimaryHome.rawValue {
 if home == homeStore.homeManager.primaryHome {
 cell.accessoryType = .Checkmark
 } else {
 cell.accessoryType = .None
 }
 }
 
 return cell
}

Listing 11-11 indicates that the section for the primary home has a header and a footer.

Listing 11-11.  Primary Home Section Header and Footer

override func tableView(tableView: UITableView, titleForHeaderInSection section: Int) ->
String? {
 if section == HomeSections.PrimaryHome.rawValue {
 return "Primary Home"
 }
 return nil
}
 
override func tableView(tableView: UITableView, titleForFooterInSection section: Int) ->
String? {
 if section == HomeSections.PrimaryHome.rawValue {
 return "Used by Siri to route commands when a home is not specified"
 }
 return nil
}

357CHAPTER 11: Home Automation Using HomeKit

Adding a New Home to the Home Manager
When the user selects the table row labeled Add Home . . ., the onAddHomeTouched method is
invoked from the didSelectRowAtIndexPath method and the user is presented with a simple
UIAlertController prompting for a name. Once you enter a valid name, the home is added
using the home manager method addHomeWithName (see Listing 11-12).

Listing 11-12.  Adding a New Home to the Home Manager

self.homeStore.homeManager.addHomeWithName(homeName, completionHandler: { home, error in
 if error != nil {
 print("failed to add new home. \(error)")
 } else {
 print("added home \(home!.name)")
 self.tableView.reloadData()
 }
})

On success, the table view is refreshed, and the new home appears in the list. If the home
is the first home, it’s assigned as the primary home. You can find the complete method in
Listing 11-13.

Listing 11-13.  A UIAlertController Used to Add a New Home

private func onAddHomeTouched() {
 
 �let controller = UIAlertController(title: "Add Home", message: "Enter a name for the

home", preferredStyle: .Alert)
 
 controller.addTextFieldWithConfigurationHandler({ textField in
 textField.placeholder = "My House"
 })
 
 controller.addAction(UIAlertAction(title: "Cancel", style: .Cancel, handler: nil))
 
 controller.addAction(UIAlertAction(title: "Add Home", style: .Default) { action in
 let textFields = controller.textFields as [UITextField]!
 if let homeName = textFields[0].text {
 
 if homeName.isEmpty {
 �let alert = UIAlertController(title: "Error", message: "Please enter a

name", preferredStyle: .Alert)
 alert.addAction(UIAlertAction(title: "Dismiss", style: .Default, handler: nil))
 self.presentViewController(alert, animated: true, completion: nil)
 
 } else {
 �self.homeStore.homeManager.addHomeWithName(homeName, completionHandler: {

home, error in

358 CHAPTER 11: Home Automation Using HomeKit

 if error != nil {
 print("failed to add new home. \(error)")
 } else {
 print("added home \(home!.name)")
 self.tableView.reloadData()
 }
 })
 }
 }
 })
 presentViewController(controller, animated: true, completion: nil)
}

Setting the Primary Home
When the user selects a home listed in the Primary Home section, the home manager’s
updatePrimaryHome method is called (Listing 11-14). The completion handler reloads the
table view if the call succeeded.

Listing 11-14.  Setting the Primary Home

homeStore.homeManager.updatePrimaryHome(home, completionHandler: { error in
 if let error = error {
 UIAlertController.showErrorAlert(self, error: error)
 } else {
 let indexSet = NSIndexSet(index: HomeSections.PrimaryHome.rawValue)
 tableView.reloadSections(indexSet, withRowAnimation: .Automatic)
 }
})

Siri Integration
Siri recognizes home, room, zone, accessory, and characteristic names. Siri uses the primary
home when the command does not specify a home name.

Setting the Current Home
When the user selects a home listed in the first section, the current home is set in the
home store.

homeStore.home = homeStore.homeManager.homes[indexPath.row]

The view will then transition to a detailed view for the home where the user can configure or
control its accessories.

359CHAPTER 11: Home Automation Using HomeKit

Listing 11-15.  Informing the Delegate About the New Row Selection

override func tableView(tableView: UITableView, didSelectRowAtIndexPath indexPath:
NSIndexPath) {
 
 if isIndexPathAddHome(indexPath) {
 tableView.deselectRowAtIndexPath(indexPath, animated: true)
 onAddHomeTouched()
 
 } else {
 homeStore.home = homeStore.homeManager.homes[indexPath.row]
 if HomeSections(rawValue: indexPath.section) == .PrimaryHome {
 let home = homeStore.homeManager.homes[indexPath.row]
 if home != homeStore.homeManager.primaryHome {
 homeStore.homeManager.updatePrimaryHome(home, completionHandler: { error in
 if let error = error {
 UIAlertController.showErrorAlert(self, error: error)
 } else {
 let indexSet = NSIndexSet(index: HomeSections.PrimaryHome.rawValue)
 tableView.reloadSections(indexSet, withRowAnimation: .Automatic)
 }
 })
 }
 }
 }
}

Removing an Existing Home
When you swipe a table row, it enters into editing mode. The table view invokes its
canEditRowAtIndexPath method where the application can determine on a row-by-row basis
to allow editing.

Listing 11-16.  Verify That the Given Row Is Editable

override func tableView(tableView: UITableView, canEditRowAtIndexPath indexPath:
NSIndexPath) -> Bool {
 return !isIndexPathAddHome(indexPath)
 && !isHomesListEmpty()
 && indexPath.section == HomeSections.Homes.rawValue
}

If editing is allowed for a row, the row displays a Delete button. If the user taps the Delete
button, the view controller receives a commitEditingStyle message from the table view.
If the editingStyle is Delete, removeHome can be called on the home manager.

let home = homeStore.homeManager.homes[indexPath.row] as HMHome
homeStore.homeManager.removeHome(home, completionHandler: { error in
})

360 CHAPTER 11: Home Automation Using HomeKit

In the completion block, if there is no error, tableView.deleteRowsAtIndexPaths is called.
See Listing 11-17 for the complete method.

Listing 11-17.  Requesting Deletion

override func tableView(tableView: UITableView, commitEditingStyle editingStyle:
UITableViewCellEditingStyle, forRowAtIndexPath indexPath: NSIndexPath) {
 
 if (editingStyle == .Delete) {
 
 let home = homeStore.homeManager.homes[indexPath.row] as HMHome
 homeStore.homeManager.removeHome(home, completionHandler: { error in
 
 if error != nil {
 print("Error \(error)")
 return
 
 } else {
 tableView.beginUpdates()
 �let primaryIndexPath = NSIndexPath(forRow: indexPath.row,

inSection: HomeSections.PrimaryHome.rawValue)
 if self.homeStore.homeManager.homes.count == 0 {
 �tableView.reloadRowsAtIndexPaths([primaryIndexPath],

withRowAnimation: UITableViewRowAnimation.Fade)
 } else {
 �tableView.deleteRowsAtIndexPaths([primaryIndexPath],

withRowAnimation: .Automatic)
 }
 tableView.deleteRowsAtIndexPaths([indexPath], withRowAnimation: .Automatic)
 tableView.endUpdates()
 }
 })
 }
}

Security
When home manager has been called for the first time on a device, it will alert the user and
ask for permission to access the user’s accessory data.

Selecting “Don’t Allow” (Figure 11-12) prevents HomeKit from providing information to your
application, in which case the settings will have to be changed in the Settings.app in the
Privacy/Homekit section.

361CHAPTER 11: Home Automation Using HomeKit

Figure 11-12.  Don’t Allow stops HomeKit from supplying data to your app

If the user is signed into an iCloud account on the device but hasn’t enabled the iCloud
keychain, HomeKit will prompt the user to turn on the iCloud keychain to allow access from
the user’s other devices.

Building the Home Interface
The Home scene will display all the accessories that are associated with the selected home.
It will also provide the means to add discoverable accessories. For this scene, you will need
a table view that uses a standard prototype cell and a navigation bar item to invoke an
accessory browser.

The Home table scene will use a grouped table view to present a list of accessories for
the selected home. The Add (+) navigation bar item will open an accessory browser.
Selecting an accessory from the browser will add the accessory to the current home, then
send a notification and return to the Home scene. The HomeViewController will handle the
notification and refresh the view. When you select an accessory from the table, the scene will
transition to the Services scene where accessories can be controlled.

At runtime, the table will look similar to the illustrations in Figure 11-13. The first view is
empty; the second is populated with three accessories.

362 CHAPTER 11: Home Automation Using HomeKit

Open the storyboard and add a new UITableViewController to the storyboard canvas.

Select the table view and in the Attributes Inspector, change the style to Grouped.

Select the table view cell (Figure 11-14) and in the Attributes Inspector, change its style to
Subtitle; Identifier to AccessoryCell; Accessory type to Detail Disclosure.

Figure 11-13.  The Home scene with empty table, and populated with accessories

Figure 11-14.  Setting up the table view cell

363CHAPTER 11: Home Automation Using HomeKit

Now add a segue from the HomeCell of the HomesViewController to the new table view
controller you’ve just added (see Figure 11-15).

Figure 11-15.  Adding a segue to the home view controller

Notice a navigation bar was automatically added for you. Change the navigation bar title to
Home (see Figure 11-16).

Figure 11-16.  The home view controller interface

364 CHAPTER 11: Home Automation Using HomeKit

Next, add a Bar Button Item to the navigation bar. From the Attributes Inspector in the Bar
Button Item section, change the System Item Add so that a plus (+) symbol is displayed.
This control will be used to invoke an Accessory Browser, which you’ll build in the section
“Building the Accessory Browser” (see Figure 11-26).

Create a new Swift file named HomeViewController.swift. Declare a new class
HomeViewController that subclasses UITableViewController and adopt the protocol
for HMHomeDelegate, and then define computed properties for homeStore and home
(see Listing 11-18).

Listing 11-18.  The HomeViewController Class

class HomeViewController: UITableViewController, HMHomeDelegate {
 
 var homeStore: HomeStore {
 return HomeStore.sharedInstance
 }
 var home: HMHome! {
 return homeStore.home
 }
}

In the storyboard set the custom class for the table view controller to HomeViewController in
the Identity Inspector.

Assign self as the current home delegate, and set the view controller’s title to the name of
the current home in the viewDidLoad method after the line with super.viewDidLoad()
(see Listing 11-4).

home?.delegate = self
title = homeStore.home!.name

Implement the home manager delegate methods didAddAccessory and didRemoveAccessory
such that the table view is updated when changes are made by other HomeKit apps
(see Listing 11-19).

Listing 11-19.  Home Delegate Methods for Accessory Change Notification

// MARK: HMHomeDelegate methods
 
func home(home: HMHome, didAddAccessory accessory: HMAccessory) {
 print("didAddAccessory \(accessory.name)")
 tableView.reloadData()
}
 
func home(home: HMHome, didRemoveAccessory accessory: HMAccessory) {
 print("didRemoveAccessory \(accessory.name)")
 tableView.reloadData()
}

365CHAPTER 11: Home Automation Using HomeKit

Signaling Changes within the Application
Remember, your app is expected to use completion handlers to reload data and update its
views. A convenient method is the use of NSNotificationCenter.

In the HomeStore class, add a constant for AddAccessoryNotification at the top of the class
body as shown in Listing 11-20.

Listing 11-20.  Declaring a Constant as a Notification Identifier to Be Used with NSNotificationCenter

struct Notification {
 static let AddAccessoryNotification = "AddAccessoryNotification"
}

In the viewDidLoad method of the HomeStore class, add the following line shown in 11-21 to
register an observer for the AddAccessoryNotification.

Listing 11-21.  Registering an Observer to Receive Notifications When an Accessory Is Added

NSNotificationCenter.defaultCenter().addObserver(self,
 selector: "updateAccessories",
 name: HomeStore.Notification.AddAccessoryNotification, object: nil)

Add a new method shown in Listing 11-22, which will be used for the notification selector.
This method will reload the data for the table view when the notification is received.

Listing 11-22.  The Selector That’s Invoked When the AddAccessoryNotification Is Posted

func updateAccessories() {
 print("updateAccessories selector called from NSNotificationCenter")
 tableView.reloadData()
}

Implementing More UITableView Methods
There will be two sections in the Home table view. The first section will be used as the
“Accessories” section heading, and the second is for the accessories list (see Listing 11-23).

Listing 11-23.  Determine the Number of Sections in the Table View

override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 
 if homeStore.home?.accessories.count == 0 {
 setBackgroundMessage("No Accessories")
 } else {
 setBackgroundMessage(nil)
 }
 return 2
}

A background message is also set in the numberOfSectionsInTableView method if the table
is empty; otherwise no message is displayed (see Listing 11-24).

366 CHAPTER 11: Home Automation Using HomeKit

Listing 11-24.  Method to Dynamically Set a Simple Background Message

private func setBackgroundMessage(message: String?) {
 if let message = message {
 let label = UILabel()
 label.text = message
 label.font = UIFont.preferredFontForTextStyle(UIFontTextStyleBody)
 label.textColor = UIColor.lightGrayColor()
 label.textAlignment = .Center
 label.sizeToFit()
 tableView.backgroundView = label
 tableView.separatorStyle = .None
 }
 else {
 tableView.backgroundView = nil
 tableView.separatorStyle = .SingleLine
 }
}

The number of rows in the first section of table view is 0, as only the section heading is
displayed. The number of rows in the second section is determined by the number of
accessories associated with the current home (see Listing 11-25).

Listing 11-25.  Determine the Number of Rows for Each Section

override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 if section == 1 {
 return homeStore.home!.accessories.count
 }
 return 0
}

The data source for the table is a list of accessories that are assigned to the current
home. Each row maps to an element in the accessories list. Accessories are added by the
Accessory Browser (see Listing 11-26).

Listing 11-26.  Setting up a Table Cell for an Accessory

override func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath:
NSIndexPath) -> UITableViewCell {
 let accessory = homeStore.home!.accessories[indexPath.row];
 let reuseIdentifier = "AccessoryCell"
 
 �let cell = tableView.dequeueReusableCellWithIdentifier(reuseIdentifier,

forIndexPath: indexPath)
 cell.textLabel?.text = accessory.name
 
 let accessoryName = accessory.name
 let roomName = accessory.room!.name
 let inIdentifier = NSLocalizedString("%@ in %@", comment: "Accessory in Room")
 cell.detailTextLabel?.text = String(format: inIdentifier, accessoryName, roomName)
 return cell
}

367CHAPTER 11: Home Automation Using HomeKit

Listing 11-27.  Returning a Header for a Specified Section

override func tableView(tableView: UITableView, titleForHeaderInSection section: Int) ->
String? {
 if section == 0 {
 return homeStore.home?.accessories.count != 0 ? "Accessories" : ""
 }
 return nil
}

Removing an Accessory from a Home
When an accessory table row is swiped, the table enters into editing mode. The table view
invokes its canEditRowAtIndexPath method where the application can determine on a
row-by-row basis to allow editing. In this case, the accessories list row is always editable
(see Listing 11-28).

Listing 11-28.  Verify That the Given Row Is Editable

override func tableView(tableView: UITableView, canEditRowAtIndexPath indexPath:
NSIndexPath) -> Bool {
 if indexPath.section == 1 {
 return true
 }
 return false
}

If editing is allowed for a row, the row displays a Delete button. If the user taps the
Delete button, the view controller receives a commitEditingStyle message from the table
view (see Listing 11-29). If the editingStyle is Delete, then removeAccessory
can be called on the current home. In the completion block, if there is no error,
tableView.deleteRowsAtIndexPaths is called.

Listing 11-29.  The UITableViewDelegate Method commitEditingStyle

override func tableView(tableView: UITableView, commitEditingStyle editingStyle:
UITableViewCellEditingStyle, forRowAtIndexPath indexPath: NSIndexPath) {
 
 if (editingStyle == .Delete) {
 
 let accessory = homeStore.home?.accessories[indexPath.row]
 homeStore.home?.removeAccessory(accessory!, completionHandler: { error in
 if error != nil {
 print("Error \(error)")
 UIAlertController.showErrorAlert(self, error: error!)
 
 } else {
 tableView.beginUpdates()

368 CHAPTER 11: Home Automation Using HomeKit

 �let rowAnimation = self.homeStore.home?.accessories.count == 0 ?
UITableViewRowAnimation.Fade : UITableViewRowAnimation.Automatic

 tableView.deleteRowsAtIndexPaths([indexPath], withRowAnimation: rowAnimation)
 tableView.endUpdates()
 tableView.reloadData()
 }
 })
 }
}

Using the HomeKit Accessory Simulator
The HomeKit Accessory Simulator is a developer tool that allows you to define accessories
for which you don’t have a physical accessory. You can create accessories and add services
and characteristics to closely represent physical devices. For example, you can define a
ceiling fan and then add services to turn power on and off and change the rotation speed
and rotation direction. From your application, you can scan for and add the accessories
you define in the simulator, and then control the services just as you would with a physical
accessory. The simulator allows you to pair with a device, change values, and receive
changed values. So when you flip a switch in your app you can see the result immediately
in the simulator, and vice versa; if you change values in the simulator, it sends the changed
values to your app.

You can start by creating a lamp accessory. Launch the simulator (/Applications/HomeKit
Accessory Simulator.app) and then, located in the lower left corner of the app, click the Add
button (+) and select New Accessory from the pop-up. When prompted, enter a name and
manufacturer for accessory and leave the default for serial number as shown in Figure 11-17.
Click the Finish button.

Figure 11-17.  Configure new accessory options pop-up

You should see a new accessory item in the left panel under IP Accessories, and the main
view on the right where you can add services and characteristics (see Figure 11-18).

369CHAPTER 11: Home Automation Using HomeKit

Your new lamp accessory needs a service with characteristics that you can control from your
app. Select your accessory from the list on the left side of the window, and then click the
Add Service button located in the upper portion of the main view. From the options pop-up,
click the Service pull-down, select Lightbulb Service, and then click the Finish button (see
Figure 11-19). The new service appears in the detail view.

The simulator automatically creates a common characteristic for each service type, so for
the lamp accessory you just created, an On characteristic was added for you (Figure 11-20).
Some characteristics are mandatory, like the On power switch, but if you wanted to add an
additional characteristic like a dimmer, for example, you would click the Add Characteristic
button and add a Brightness characteristic from the Characteristic pull-down in the options
pop-up.

Figure 11-19.  Configure new service options pop-up

Figure 11-18.  Accessory detail view

370 CHAPTER 11: Home Automation Using HomeKit

Figure 11-20.  Accessory detail view with On characteristic

You now have an accessory that can be discovered and controlled from your app. Later in
this chapter, you’ll add support to browse for available accessories.

Pairing with a New Accessory
In your application when you attempt to add a new accessory, the system will present
an Add HomeKit Accessory dialog that states that the accessory is not certified. This is
allowed when using the HomeKit Accessory Simulator, so click the Add Anyway button (see
Figure 11-21).

371CHAPTER 11: Home Automation Using HomeKit

The system will present a screen that asked you to provide a setup code for the accessory.
Click the Enter code manually button located at the bottom of Figure 11-22.

Figure 11-21.  Add HomeKit accessory dialog

372 CHAPTER 11: Home Automation Using HomeKit

Another screen is presented that allows you to enter an eight-digit code. Enter the setup
code from the simulator’s main view detail area below the accessory name (Figure 11-23).

Figure 11-22.  Add Accessory option screen

373CHAPTER 11: Home Automation Using HomeKit

The system displays a progress indicator while it processes the setup code. If you entered
the wrong code (or selected cancel), you will be presented with a screen that allows you
to enter the code again. If you entered the correct code, the system presents a screen that
states that the accessory was added and is ready to use (Figure 11-24).

Figure 11-23.  Add setup code entry screen

374 CHAPTER 11: Home Automation Using HomeKit

Building the Accessory Browser
The accessory browser is used to scan for HomeKit-enabled accessories. The scene will use
a grouped table view to present a list of HomeKit-enabled accessories that are not already
associated with the selected home.

At runtime, the table will look similar to the illustration in Figure 11-25.

Figure 11-24.  Setup code result screens

375CHAPTER 11: Home Automation Using HomeKit

Open the storyboard and drag a new navigation controller from the Object library onto
the storyboard canvas. A new UITableViewController will automatically be added to the
storyboard canvas.

Change the title of the table view navigation item to Accessory Browser.

Select the table view and in the Attributes Inspector and change the style to Grouped.

Select the table view cell and in the Attributes Inspector, change its style to Subtitle and
Identifier to AccessoryCell.

Drag a View from the Object library and insert it above the table view cell.

Add a Label to the view you just added and set the text to Searching for new accessories.

Add an Activity View Indicator to the right of the label you just added. The Accessory
Browser Scene in the Document outline should look similar to the one in Figure 11-26.

Figure 11-25.  The Accessory Browser scene with available accessories

376 CHAPTER 11: Home Automation Using HomeKit

Add a Bar Button Item to the navigation bar. From the Attributes Inspector in the Bar Button
Item section, change the System Item to Done. This control will be used to dismiss the
Accessory Browser.

Your Accessory Browser scene should look similar to the illustration in Figure 11-27.

Figure 11-26.  Accessory Browser Scene outline

Figure 11-27.  Complete Accessory Browser scene

377CHAPTER 11: Home Automation Using HomeKit

Create a new Swift file named AccessoryBrowser.swift. Declare a new class
AccessoryBrowser that subclasses UITableViewController and adopts the protocol for
HMAccessoryBrowserDelegate (see Listing 11-30). Add the properties accessoryBrowser,
accessories, and selectedAccessory.

Listing 11-30.  The AccessoryBrowser Class

class AccessoryBrowser: UITableViewController, HMAccessoryBrowserDelegate {
 
 let accessoryBrowser = HMAccessoryBrowser()
 var accessories = [HMAccessory]()
 var selectedAccessory: HMAccessory?
}

In the storyboard set the Custom Class for the table view controller to AccessoryBrowser in
the Identity Inspector.

Assign self as the accessory browser delegate in the viewDidLoad method after the line with
super.viewDidLoad().

accessoryBrowser.delegate = self

Implement the accessory browser delegate methods didFindNewAccessory and
didRemoveNewAccessory such that the specified accessory is added or removed from the
table view (see Listing 11-31). When adding a new accessory, check that it doesn’t
already exist.

Listing 11-31.  Accessory Browser Delegate Methods

// MARK: HMAccessoryBrowserDelegate methods
 
func accessoryBrowser(browser: HMAccessoryBrowser, didFindNewAccessory accessory:
HMAccessory) {
 print("didFindNewAccessory \(accessory.name)")
 if !self.accessories.contains(accessory) {
 self.accessories.insert(accessory, atIndex: 0)
 let indexPath = NSIndexPath(forRow: 0, inSection: 0)
 tableView.insertRowsAtIndexPaths([indexPath], withRowAnimation: .Automatic)
 }
}
 
func accessoryBrowser(browser: HMAccessoryBrowser, didRemoveNewAccessory accessory:
HMAccessory) {
 print("didRemoveNewAccessory \(accessory.name)")
 if let index = accessories.indexOf(accessory) {
 let indexPath = NSIndexPath(forRow: index, inSection: 0)
 accessories.removeAtIndex(index)
 tableView.deleteRowsAtIndexPaths([indexPath], withRowAnimation: .Automatic)
 }
}

378 CHAPTER 11: Home Automation Using HomeKit

Scanning for Accessories
To start scanning for available accessories, call the accessory browser’s
startSearchingForNewAccessories method. In this example app, it’s called from the
viewDidLoad method of the view controller.

accessoryBrowser.startSearchingForNewAccessories()

To stop searching, call the accessory browser’s stopSearchingForNewAccessories method.
The example app calls this from the viewWillDisappear method of the view controller.

override func viewWillDisappear(animated: Bool) {
 accessoryBrowser.stopSearchingForNewAccessories()
}

Implementing UITableView Methods
The data source for the table is a list of accessories that are assigned to the current home.
Each row maps to an element in the accessories list.

The number of rows is determined by the number of available accessories (Listing 11-32).

Listing 11-32.  Determine Number of Rows

override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 return accessories.count
}

Listing 11-33.  Setting Up a Table Cell for an Accessory

override func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath:
NSIndexPath) -> UITableViewCell {
 let accessory = accessories[indexPath.row];
 �let cell = tableView.dequeueReusableCellWithIdentifier("AccessoryCell",

forIndexPath: indexPath)
 cell.textLabel?.text = accessory.name
 cell.detailTextLabel?.text = accessory.category.localizedDescription
 return cell
}

Reload the table data from the viewWillAppear method of the view controller of the
AccessoryBrowser class as shown in Listing 11-34.

Listing 11-34.  The viewWIllAppear Method of the AccessoryBrowser Class

override func viewWillAppear(animated: Bool) {
 super.viewWillAppear(animated)
 tableView.reloadData()
}

379CHAPTER 11: Home Automation Using HomeKit

Adding a New Accessory to the Home
When the user selects an accessory from the list, the table view delegate method
didSelectRowAtIndexPath is called. Assign the selectedAccessory to the corresponding
element in the assessor’s list.

selectedAccessory = accessories[indexPath.row]

To add the accessory to the current home, you call the home objects addAccessory method as
shown in Listing 11-35, and pass in the selectedAccessory as the parameter. The completion
block is executed after the request is processed. The value of error will be nil on success.

When the accessory has been successfully added to the home, post a notification so any
registered observers can update their views (see Listing 11-35).

To assign the new accessory to a room, you call the home objects assignAccessory method
and pass in the selectedAccessory along with the room to which the accessory will be
assigned. The accessory must already have been added to the home. The room must already
exist in the home. In this example, the default room for the home is being used. Later, you can
extend the application and provide support to add new rooms (see Listing 11-35).

Listing 11-35.  The didSelectRowAtIndexPath Delegate Method to Add a New Accessory to the Home and Assigning
It to a Room

override func tableView(tableView: UITableView, didSelectRowAtIndexPath indexPath:
NSIndexPath) {
 
 tableView.deselectRowAtIndexPath(indexPath, animated: true)
 
 selectedAccessory = accessories[indexPath.row]
 �HomeStore.sharedInstance.home?.addAccessory(self.selectedAccessory!,

completionHandler: { error in
 
 if (error != nil) {
 print("Error: \(error)")
 UIAlertController.showErrorAlert(self, error: error!)
 
 } else {
 �NSNotificationCenter.defaultCenter().postNotificationName(HomeStore.

Notification.AddAccessoryNotification, object: nil)
 �HomeStore.sharedInstance.home?.assignAccessory(self.selectedAccessory!,

toRoom: (HomeStore.sharedInstance.home?.roomForEntireHome())!,
completionHandler: { error in

 if let error = error {
 print("failed to assign accessory to room: \(error)")
 } else {
 print("added \(self.selectedAccessory!.name) to room")
 }
 })
 }
 
 })
}

380 CHAPTER 11: Home Automation Using HomeKit

Dismissing the Accessory Browser
To dismiss the accessory browser and return to the Home scene, create an action
connection (see Listing 11-36). Control-drag from the Done Button Bar Item control to the
implementation file. In the Connection pop-up, set the name of the action to done and then
click Connect. Add a call to dismissViewControllerAnimated.

Listing 11-36.  Action Connection to Dismiss the Accessory Browser

@IBAction func done(sender: AnyObject) {
 dismissViewControllerAnimated(true, completion: nil)
}

Building the Services Interface
The Services scene will display all the services that are available for a specific accessory.
Each service will be presented in its own section followed by a list of associated
characteristics.

At runtime, the table will look similar to the illustration in Figure 11-28.

Figure 11-28.  The available services

381CHAPTER 11: Home Automation Using HomeKit

Open the storyboard and add a new UITableViewController to the storyboard canvas.

Select the table view and in the Attributes Inspector, change the style to Grouped.

Add two labels to the table view cell and position them on the left in Figure 11-29. From the
Attributes Inspector, change the font for the top label to Footnote and the bottom label to Body.

Select the table view and, from the Attributes Inspector, change the number of prototype
cells to four. You should see four identical cells.

Change the table view cell identifier for the first cell to CharacteristicCell.

Change the table view cell identifier for the second cell to PowerStateCell, and then add a
UISwitch and position it on the right side.

Change the table view cell identifier for the third cell to SliderCell, and then add a UISlider
and position it to the right.

Change the table view cell identifier for the fourth cell to SegmentedCell. Remove the
second label and replace it with a UISegmentedControl, and then position it so that your
result appears as in Figure 11-30.

Figure 11-29.  Setting up a predefined prototype table view cell

382 CHAPTER 11: Home Automation Using HomeKit

Figure 11-30.  The Services scene

Your Services scene should now look similar to the illustration shown in Figure 11-30.

Create a new Swift file named ServicesViewController.swift. Declare a new class
ServicesViewController that subclasses IUTableViewController and adopt the protocol for
HMAccessoryDelegate as shown in Listing 11-37.

Listing 11-37.  The ServicesViewController Class Declaration

class ServicesViewController: UITableViewController, HMAccessoryDelegate {
}

In the storyboard, set the custom class for the table view controller to ServicesViewController
in the Identity Inspector.

Add a stored property called services and initialize it with a new, empty array of
HMService values.

var services = [HMService]()

Add a stored property called accessory to hold a HMAccessory and define a property
observer to set self as delegate (see Listing 11-38).

Listing 11-38.  Stored Property for Accessory

var accessory: HMAccessory? {
 didSet {
 accessory?.delegate = self
 }
}

383CHAPTER 11: Home Automation Using HomeKit

In the viewDidLoad method, set the view controller’s title to the accessory’s name.

title = "\(accessory!.name) Services"

Configuring Services
Recall that each service will be presented in its own section followed by a list of its
characteristics. The first section will show information about the accessory, so you’ll need
to iterate through the services for the accessory, checking its type. Insert the service of type
HMServiceTypeAccessoryInformation at the front of the array. Call the configureServices
method shown in Listing 11-39 from the viewDidLoad method.

Listing 11-39.  The configureServices Method

private func configureServices() {
 
 for service in accessory!.services as [HMService] {
 if service.serviceType == HMServiceTypeAccessoryInformation {
 services.insert(service, atIndex: 0)
 } else {
 services.append(service)
 }
 }
}

Receiving Value Change Notifications for Characteristics
To display the current state of a services characteristic, you’ll want to receive
notifications when the characteristic’s value changes. You do this by calling the
enableNotification method for a characteristic that supports notifications. You
can check this by testing if the characteristics properties contain the constant
HMCharacteristicPropertySupportsEventNotification. You want to selectively turn
notifications on or off, so create a method called enableNotifications that takes a Boolean
as a parameter (see Listing 11-40).

Listing 11-40.  Enable or Disable Notifications for Characteristics in a Service

private func enableNotifications(enable: Bool) {
 for service in services {
 for characteristic in service.characteristics {
 �if characteristic.properties.contains(HMCharacteristicPropertySupportsEvent

Notification) {
 characteristic.enableNotification(enable, completionHandler: { error in
 if let error = error {
 �print("Failed to enable notifications for \(characteristic):

\(error.localizedDescription)")
 }
 })
 }
 }
 }
}

384 CHAPTER 11: Home Automation Using HomeKit

You’ll want to call enableNotifications(true) to enable notifications from the viewDidLoad
method after you’ve set up the services array and call enableNotifications(false) to
disable notifications from the viewWillDisappear method.

Implementing UITableView Methods
The data source for the table view will be the services array, so the number of sections in the
table is determined by the number of services, and the number of rows for each section is
determined by the number of characteristics for each service (Listing 11-41).

Listing 11-41.  Determine the Number of Sections and Rows for the Table View

override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 return services.count
}
 
override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 return services[section].characteristics.count
}

Set the title for the section to the service name.
 
override func tableView(tableView: UITableView, titleForHeaderInSection section: Int) -> String? {
 return services[section].name
}

The cell style presented for each row is determined by the properties and metadata of a
characteristic. Character properties are represented by the following constants:

	HMCharacteristicPropertySupportsEventNotification: The
characteristic supports notifications using the event connections
established by the controller.

	HMCharacteristicPropertyReadable: The characteristic is readable.

	HMCharacteristicPropertyWritable: The characteristic is writable.

Characteristic metadata is information that further describes a characteristic’s value.
Character metadata is represented by the HMCharacteristicMetadata object. You query the
metadata to find out information such as the data format, units, numeric value ranges, and
manufacturer’s descriptions.

In the delegate method cellForRowAtIndexPath, evaluate each characteristic to determine
the cell style (see Listing 11-42).

Listing 11-42.  Determining the Cell Style for a Characteristic

override func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath:
NSIndexPath) -> UITableViewCell {
 
 var reuseIdentifier = Identifiers.CharacteristicCell
 
 let characteristic = services[indexPath.section].characteristics[indexPath.row]
 

385CHAPTER 11: Home Automation Using HomeKit

 if characteristic.isReadOnly || characteristic.isWriteOnly {
 reuseIdentifier = Identifiers.CharacteristicCell
 } else if characteristic.isBoolean {
 reuseIdentifier = Identifiers.PowerStateCell
 } else if characteristic.hasValueDescriptions {
 reuseIdentifier = Identifiers.SegmentedCell
 } else if characteristic.isNumeric {
 reuseIdentifier = Identifiers.SliderCell
 }
 
 �let cell = tableView.dequeueReusableCellWithIdentifier(reuseIdentifier,

forIndexPath: indexPath)
 if let cell = cell as? CharacteristicCell {
 cell.characteristic = characteristic
 }
 
 return cell
}

At the top of the ServicesViewController class, define a structure named Identifiers with
properties for each cell prototype in the table (see Listing 11-43).

Listing 11-43.  A Structure Named Identifiers

struct Identifiers {
 static let CharacteristicCell = "CharacteristicCell"
 static let PowerStateCell = "PowerStateCell"
 static let SliderCell = "SliderCell"
 static let SegmentedCell = "SegmentedCell"
}
...

Create a new file named HMCharacteristicExtension.swift and declare a new extension
for HMCharacteristic. The purpose of this extension is to provide stored properties and
constants that can be used that help determine data formats, units, and such by inspecting
a characters properties and metadata (see Listing 11-44).

Listing 11-44.  HMCharacteristic Extension

import HomeKit
 
extension HMCharacteristic {
 
 private struct Const {
 static let numberFormatter = NSNumberFormatter()
 
 static let numericFormats = [
 HMCharacteristicMetadataFormatInt,
 HMCharacteristicMetadataFormatFloat,
 HMCharacteristicMetadataFormatUInt8,

386 CHAPTER 11: Home Automation Using HomeKit

 HMCharacteristicMetadataFormatUInt16,
 HMCharacteristicMetadataFormatUInt32,
 HMCharacteristicMetadataFormatUInt64
]
 }
  
 var isReadOnly: Bool {
 return !properties.contains(HMCharacteristicPropertyWritable)
 && properties.contains(HMCharacteristicPropertyReadable)
 }
 
 var isWriteOnly: Bool {
 return !properties.contains(HMCharacteristicPropertyReadable)
 && properties.contains(HMCharacteristicPropertyWritable)
 }
 
 var isBoolean: Bool {
 guard let metadata = metadata else { return false }
 return metadata.format == HMCharacteristicMetadataFormatBool
 }
 
 var isNumeric: Bool {
 guard let metadata = metadata else { return false }
 guard let format = metadata.format else { return false }
 return Const.numericFormats.contains(format)
 }
 
 var isFloatingPoint: Bool {
 guard let metadata = metadata else { return false }
 return metadata.format == HMCharacteristicMetadataFormatFloat
 }
 
 var isInteger: Bool {
 return self.isNumeric && !self.isFloatingPoint
 }
 
 var hasValueDescriptions: Bool {
 guard let number = self.value as? Int else { return false }
 return self.descriptionForNumber(number) != nil
 }
 
 var valueDescription: String {
 if let value = self.value {
 return descriptionForValue(value)
 }
 return ""
 }
 
 var unitDecoration: String {
 if let units = self.metadata?.units {
 switch units {
 case HMCharacteristicMetadataUnitsPercentage: return "%"

387CHAPTER 11: Home Automation Using HomeKit

 case HMCharacteristicMetadataUnitsFahrenheit: return "°F"
 case HMCharacteristicMetadataUnitsCelsius: return "°C"
 case HMCharacteristicMetadataUnitsArcDegree: "°"
 default:
 break
 }
 }
 return ""
 }
 
 var valueCount: Int {
 �guard let metadata = metadata, minimumValue = metadata.minimumValue as? Int else {

return 0 }
 guard let maximumValue = metadata.maximumValue as? Int else { return 0 }
 var range = maximumValue - minimumValue
 if let stepValue = metadata.stepValue as? Double {
 range = Int(Double(range) / stepValue)
 }
 return range + 1
 }
 
 var allValues: [AnyObject]? {
 guard self.isInteger else { return nil }
 �guard let metadata = metadata, stepValue = metadata.stepValue as? Double else {

return nil }
 let choices = Array(0..<self.valueCount)
 return choices.map { choice in
 Int(Double(choice) * stepValue)
 }
 }
 
 func descriptionForValue(value: AnyObject) -> String {
 if self.isWriteOnly {
 return "Write-Only"
 
 } else if let metadata = self.metadata {
 if metadata.format == HMCharacteristicMetadataFormatBool {
 if let boolValue = value.boolValue {
 return boolValue ? "On" : "Off"
 }
 }
 }
 
 if let intValue = value as? Int {
 if let desc = self.descriptionForNumber(intValue) {
 return desc
 }
 if let stepValue = self.metadata?.stepValue {
 �Const.numberFormatter.minimumFractionDigits = Int(log10(1.0 / stepValue.

doubleValue))

388 CHAPTER 11: Home Automation Using HomeKit

 if let string = Const.numberFormatter.stringFromNumber(intValue) {
 return string + self.unitDecoration
 }
 }
 }
 
 return "\(value)"
 }
 
 func descriptionForNumber(number: Int) -> String? {
 switch self.characteristicType {
 �case HMCharacteristicTypePowerState, HMCharacteristicTypeInputEvent,

HMCharacteristicTypeOutputState:
 return Bool(number) ? "On" : "Off"
 
 case HMCharacteristicTypeObstructionDetected:
 return Bool(number) ? "Yes" : "No"
 
 case HMCharacteristicTypeTargetDoorState, HMCharacteristicTypeCurrentDoorState:
 if let state = HMCharacteristicValueDoorState(rawValue: number) {
 switch state {
 case .Open: return "Open"
 case .Opening: return "Opening"
 case .Closed: return "Closed"
 case .Closing: return "Closing"
 case .Stopped: return "Stopped"
 }
 }
 
 case HMCharacteristicTypePositionState:
 if let state = HMCharacteristicValuePositionState(rawValue: number) {
 switch state {
 case .Opening: return "Opening"
 case .Closing: return "Closing"
 case .Stopped: return "Stopped"
 }
 }
 
 case HMCharacteristicTypeRotationDirection:
 if let dir = HMCharacteristicValueRotationDirection(rawValue: number) {
 switch dir {
 case .Clockwise: return "Clockwise"
 case .CounterClockwise: return "Counter Clockwise"
 }
 }
 default:
 break
 }
 return nil
 }
}

389CHAPTER 11: Home Automation Using HomeKit

Subclass UITableViewCell for Characteristics
Characteristic Information
Create a new file named CharacteristicCell.swift and declare a new class
CharacteristicCell that subclasses UITableViewCell. This will act at the base class for all
characteristic table view cells (see Listing 11-45).

Listing 11-45.  Base Class for Characteristics

import HomeKit
 
class CharacteristicCell: UITableViewCell {
 
 @IBOutlet weak var typeLabel: UILabel!
 @IBOutlet weak var valueLabel: UILabel!
 
 var characteristic: HMCharacteristic! {
 didSet {
 var desc = characteristic.localizedDescription
 if characteristic.isReadOnly {
 desc = desc + " (Read Only)"
 } else if characteristic.isWriteOnly {
 desc = desc + " (Write Only)"
 }
 typeLabel.text = desc
 valueLabel?.text = "No Value"
 
 setValue(characteristic.value, notify: false)
 
 �selectionStyle = characteristic.characteristicType ==

HMCharacteristicTypeIdentify ? .Default : .None
 
 if characteristic.isWriteOnly {
 return
 }
 
 if reachable {
 characteristic.readValueWithCompletionHandler { error in
 if let error = error {
 print("Error reading value for \(self.characteristic): \(error)")
 } else {
 self.setValue(self.characteristic.value, notify: false)
 }
 }
 }
 }
 }
 
 var value: AnyObject?
 

390 CHAPTER 11: Home Automation Using HomeKit

 var reachable: Bool {
 return (characteristic.service?.accessory?.reachable ?? false)
 }
 
 required init?(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
 }
 
 func setValue(newValue: AnyObject?, notify: Bool) {
 self.value = newValue
 if let value = self.value {
 self.valueLabel?.text = self.characteristic.descriptionForValue(value)
 }
 
 if notify {
 self.characteristic.writeValue(self.value, completionHandler: { error in
 if let error = error {
 �print("Failed to write value for \(self.characteristic):

\(error.localizedDescription)")
 }
 })
 }
 }
}

Power State Control
Create a new file named PowerStateCell.swift and declare a new class PowerStateCell
that subclasses CharacteristicCell. A UISwitch is used to toggle the value that represents
a characteristics power state (see Listing 11-46).

Listing 11-46.  Power State Control Table View Cell

import HomeKit
 
class PowerStateCell: CharacteristicCell {
 
 @IBOutlet weak var powerSwitch: UISwitch!
 
 @IBAction func switchValueChanged(sender: UISwitch) {
 setValue(powerSwitch.on, notify: true)
 }
 
 override var characteristic: HMCharacteristic! {
 didSet {
 powerSwitch.userInteractionEnabled = reachable
 }
 }
 

391CHAPTER 11: Home Automation Using HomeKit

 override func setValue(newValue: AnyObject?, notify: Bool) {
 super.setValue(newValue, notify: notify)
 if let newValue = newValue as? Bool where !notify {
 powerSwitch.setOn(newValue, animated: true)
 }
 }
}

Slider Control
Create a new file named SliderCell.swift and declare a new class SliderCell that
subclasses CharacteristicCell. A UISlider control is used to change a characteristic’s
numeric value (see Listing 11-47).

Listing 11-47.  Slider Control Table View Cell

import HomeKit
 
class SliderCell: CharacteristicCell {
 
 @IBOutlet weak var slider: UISlider!
 
 @IBAction func sliderValueChanged(sender: UISlider) {
 let value = roundedValueForSliderValue(slider.value)
 setValue(value, notify: true)
 }
 
 override var characteristic: HMCharacteristic! {
 didSet {
 slider.userInteractionEnabled = reachable
 }
 
 willSet {
 slider.minimumValue = newValue.metadata?.minimumValue as? Float ?? 0.0
 slider.maximumValue = newValue.metadata?.maximumValue as? Float ?? 100.0
 }
 }
 
 override func setValue(newValue: AnyObject?, notify: Bool) {
 super.setValue(newValue, notify: notify)
 if let newValue = newValue as? NSNumber where !notify {
 slider.value = newValue.floatValue
 }
 }
 

392 CHAPTER 11: Home Automation Using HomeKit

 private func roundedValueForSliderValue(value: Float) -> Float {
 if let metadata = characteristic.metadata,
 stepValue = metadata.stepValue as? Float where stepValue > 0 {
 let newValue = roundf(value / stepValue)
 let stepped = newValue * stepValue
 return stepped
 }
 return value
 }
}

Segmented Control
Create a new file named SegmentedCell.swift and declare a new class SegmentedCell that
subclasses CharacteristicCell. A UISegmentedControl is used to represent a range of
values that represents descriptions.

Listing 11-48.  Segmented Control Table View Cell

import HomeKit
 
class SegmentetCell: CharacteristicCell {
 
 @IBOutlet weak var segmentedControl: UISegmentedControl!
 
 @IBAction func segmentValueChanged(sender: UISegmentedControl) {
 let value = titleValues[segmentedControl.selectedSegmentIndex]
 setValue(value, notify: true)
 }
 
 var titleValues = [Int]() {
 didSet {
 segmentedControl.removeAllSegments()
 for index in 0..<titleValues.count {
 let value: AnyObject = titleValues[index]
 let title = self.characteristic.descriptionForValue(value)
 segmentedControl.insertSegmentWithTitle(title, atIndex: index, animated: false)
 }
 }
 }
 
 override var characteristic: HMCharacteristic! {
 didSet {
 segmentedControl.userInteractionEnabled = reachable
 
 if let values = self.characteristic.allValues as? [Int] {
 titleValues = values
 }
 }
 }
 

393CHAPTER 11: Home Automation Using HomeKit

 override func setValue(newValue: AnyObject?, notify: Bool) {
 super.setValue(newValue, notify: notify)
 if !notify {
 if let intValue = value as? Int, index = titleValues.indexOf(intValue) {
 segmentedControl.selectedSegmentIndex = index
 }
 }
 }
}

Accessory Delegate Methods
When a characteristic value of an accessory changes, the accessory notifies its delegate
through the didUpdateValueForCharacteristic method (see Listing 11-49). The accessory
parameter represents the object for which the characteristic value has changed. The service
parameter represents the service with a changed characteristic value. The characteristic
parameter represents the characteristic whose value changed.

Listing 11-49.  Delegate Method didUpdateValueForCharacteristic in the ServicesViewController Class

// MARK: HMAccessoryDelegate methods
 
func accessory(accessory: HMAccessory, service: HMService, didUpdateValueForCharacteristic
characteristic: HMCharacteristic) {
 if let index = service.characteristics.indexOf(characteristic) {
 let indexPath = NSIndexPath(forRow: index, inSection: 1)
 let cell = tableView.cellForRowAtIndexPath(indexPath) as! CharacteristicCell
 cell.setValue(characteristic.value, notify: false)
 }
}

Transitioning to the Services Scene
Add a segue to transition to the Services scene when the user selects an accessory from
the table. Open the storyboard and control-drag from the Home scene table view cell to the
services view controller. Set the segue identifier to ServicesSegue.

In the HomeViewController class, override the prepareForSegue method and set the
accessory property of the ServicesViewController (see Listing 11-50).

Listing 11-50.  Setting the Accessory for the Destination View Controller

override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 if segue.identifier == "ServicesSegue" {
 let controller = segue.destinationViewController as! ServicesViewController
 let indexPath = tableView.indexPathForSelectedRow;
 controller.accessory = homeStore.home!.accessories[(indexPath?.row)!];
 }
}

394 CHAPTER 11: Home Automation Using HomeKit

Running the Application
Build and run the application. Add a new home; you should see a new entry in the first table
section. You should also see an entry with that home name in the Primary Home section with
a check mark to the right side of the cell. Now add a second home; you should see a second
entry in the first table section as well as in the second section. The first home added should
still be marked as the Primary Home. Select the second home in the Primary Home section;
the check mark should now appear to the right of the table cell indicating that the second
home is now the Primary Home.

Adding Accessories
	Select a home from the first section; the app should transition to a view

with the home name shown in the navigation bar and an empty table
view. The background should show a label with the text No Accessories.

	Tap the (+) Add button in the navigation bar; the view should transition
to the Accessory Browser. If you’ve added any accessories to the
simulator, you should list them here.

	Select an accessory from the list; a pop-up should appear warning that
the accessory is not certified and may not work reliably with HomeKit.
This is normal when using the simulator.

	Select Add Anyway; you should be presented with a scene prompting
you for an eight-digit accessory setup code.

	Tap the Enter code manually text at the bottom of the view; you should
be presented with a scene that has a keypad where you can enter the
eight-digit accessory setup code which can be found in the simulator
app at the top of the main view.

	Enter the code; if you’ve entered the incorrect code, you should see
the message Adding Failed. If you’ve entered the correct code then
the message Accessory Added will appear briefly and the view should
automatically transition back to the Accessory Browser. Notice that the
accessory you selected is no longer listed in the table view.

	Tap the Done button in the navigation bar; you should now see the
accessory listed in the home view.

	Select the accessory in the table view; you should transition to the
Services scene. The accessory name should appear as the title in the
navigation bar. You should see several table sections. The first section
is informative only. It should show the same information as shown in the
simulator. The second table section should be labeled with the service
name. There will be one or more table cells, one for each characteristic,
with a control that can be used to change the value or state of the
characteristic. For example, if you see a Lightbulb service, there should
be a switch available to turn the power on and off.

395CHAPTER 11: Home Automation Using HomeKit

	Change the state of the characteristic; notice that the associated value
in the simulator changes as well.

	Change the value from the simulator; notice the associated value in your
app changes.

Experiment with the simulator by adding more accessories and then add the accessories to the
homes you have in your app. Notice that you can’t add an accessory to more than one home.

Summary
This chapter covered some of the basic concepts of HomeKit and how you can use the
HomeKit framework in an application. It also covered the basics for using The HomeKit
Accessory Simulator to help you develop and test your application.

There’s so much more that can be done. The sample app only scratches the surface of
what can be done using the HomeKit framework. It’s up to you to extend the functionality to
accommodate your needs.

397

Chapter 12
Building an App That Interacts
with a Raspberry Pi

Gheorghe Chesler
In this chapter, we will write an app that communicates with a Raspberry Pi device on the
local Wi-Fi network that allows us to flip the lights on and off on a custom module with
LEDs. This might not seem like a significant accomplishment, but keep in mind that just as
you can flip on and off some LED lights, you can control any other connected devices in a
similar fashion.

About Your Raspberry Pi
Raspberry Pi is a miniaturized ARM computer that can run different operating systems.
By default, this runs a variant of Debian Linux customized for this device, called Raspbian.
On the Raspberry Pi 2 you can also install Ubuntu, RiscOS, and recently even a slimmed-down,
custom version of Windows 10. Of course, we need to keep in mind that the CPU is not
very powerful, and the Raspberry Pi device does not have a lot of memory: the B version
has 512MB RAM, and the latest version (Pi 2) has 1GB of RAM, which happens to be the
maximum memory supported by the ARM7 CPU. This is definitely not enough memory to
do any fancy computing: as of this writing there is no easy way to install a popular browser.
The chromium browser is supported, but Google Chrome is not yet available; even if it were,
it is too big for the available system resources to do anything you are accustomed to on a
regular computer.

What the Raspberry Pi loses in terms of computing power it makes up for with the very low
power usage and the ability to connect smart devices and accessories like LED lights, relays,
motors, cameras, and pressure, acceleration, and humidity sensors, to name just a few.

398 CHAPTER 12: Building an App That Interacts with a Raspberry Pi

Another factor is the price: the regular Pi model B is available for about $30, and you can get
most extension modules at really accessible prices from a lot of online and local retailers.

The Pi 2 Model B is based on a Broadcom BCM2836 SoC, which includes a Quad Core
ARM7 900 MHz processor, 1GB of RAM, and 4 USB ports where you can plug in external
devices. The Pi also has an Ethernet connector, a HDMI connector for the display, and an
audio port. The older Pi model B+ uses a less powerful, single core Broadcom BCM2835
ARM11 700MHz processor and has only 512MB of RAM, while the very first model came
only with 256MB of RAM.

To power the Raspberry Pi, you will need to connect it via a micro-USB to any wall charger
or to a computer that provides enough power for the Pi and the connected devices. In most
cases 1A would be sufficient, which is what the regular USB ports provide. In addition to
power needs of the main board, you have to add the current consumed by your plug-in
boards. The Pi does not include a built-in hard disk or solid-state drive, instead relying on a
microSD card for booting and long-term storage.

The Raspberry Pi does not come with a real-time clock, so an OS must use a network time
server, or ask the user for time information at boot time to get access to time and date info
to enable + file time and date stamping. However, a real-time clock (such as the DS1307)
with battery backup can be easily added via the I2C interface.

The Raspberry Pi also provides two onboard ribbon slots to connect a camera and a display.
Most plastic cases that you would buy to host your Raspberry Pi provide holes for guiding
these cables outside the enclosure.

To accommodate the scope of this chapter, we picked a very simple module that has a
number of LEDs on a miniature board, along with the chip that controls them. The module is
named “PiGlow” and is marketed by the company Pimoroni:

https://shop.pimoroni.com/products/piglow

In Figure 12-1, we can see our Raspberry Pi B+ with a PiGlow board attached.

https://shop.pimoroni.com/products/piglow

399CHAPTER 12: Building an App That Interacts with a Raspberry Pi

If you have an older Raspberry Pi, you will still be able to do everything we do in this
chapter; the only advantages to the new model are a faster processor and more memory.
Some of the commands we will run are specific to the model of Raspberry Pi you own; inline
comments will specify these differences.

Control Interfaces on your Raspberry Pi
Each embedded platform has one or more ways to access connected or native devices on
the local hardware.

A very common one is GPIO (General Purpose Input Output). This allows you to flip on a
light or a relay on or off, and for that purpose it is really great; but there is a limit to how
many devices it can address (more or less limited by the number of pins available on the
custom connector).

The I2C (Inter IC) interface gives you more flexibility in what you can do with individual
devices, and of course it allows you to attach more devices.

The I2C bus was designed by Philips in the early 1980s to allow easy communication
between components that reside on the same circuit board. For a complete reference on the
I2C interface, see the following URL: www.i2c-bus.org/i2c-bus/.

I2C uses 7 bit addressing. The maximum number that can be expressed with 7 bits is 128,
which means you can have more than 120 devices you can access via the same bus. I2C is
also much simpler to implement in hardware—it requires only two connection lines, one for
the clock and the other for the data.

Figure 12-1.  Raspberry Pi B+ with a PiGlow board attached

http://www.i2c-bus.org/i2c-bus/

400 CHAPTER 12: Building an App That Interacts with a Raspberry Pi

Setting up your Raspberry Pi
The easiest way to get started with Raspberry Pi is to install the Raspbian operating system.
The Raspberry Pi official web page has it available for download here: www.raspberrypi.org/
downloads/.

To make things easy, use the NOOBS (New Out-Of-Box Software) zip file.

On the same page there are also installation instructions; after unpacking the downloaded
zip file, you format a reasonably large micro-SD card (4GB or more) with the FAT file system,
and copy the files on the card. Then, insert the card in your Raspberry Pi device and start it.
When the device boots, it will prompt you with the choice of OS and language, and you can
get it installed.

For the installation phase, you can use a HDMI monitor or a VGA monitor via a HDMI to VGA
adapter; this will not be needed later on, because you can SSH (secure shell) into the device
from another computer.

To SSH into the Raspberry Pi device from another computer you can use the following
credentials:

user: pi
password: raspberry

If you did not install the GUI (graphical user interface) by default, you can start the GUI at
any time using the following command:

startx

To configure the device and ports you can use the Raspberry Pi configuration utility:

raspi-config

After you installed the OS, the first step is to bring the system up to date. For that, you can
enter the following in your SSH window:

sudo apt-get update
sudo apt-get upgrade

To force a command to be executed with root privileges we use the sudo command in front
of a regular command. This is necessary because the standard “pi” user does not have
enough rights to modify system files or install applications.

The apt-get utility is the standard Debian package manager, which you might be familiar
with if you are using Ubuntu. The first command fetches the list of the latest available
packages, while the second one installs updates available for the currently installed system
modules/packages.

http://www.raspberrypi.org/downloads/
http://www.raspberrypi.org/downloads/

401CHAPTER 12: Building an App That Interacts with a Raspberry Pi

Choosing the Scripting Language
On the Raspberry Pi, Python has become the de facto standard scripting language, because
there are so many packages made available to control every device imaginable. This being
said, you have to keep in mind that most of them will be Python 2, and some will be Python 3.
The Python language has a split personality: the Python 2 is the older, more established
version, with wider support. Python 3 is the new, “better” version that offers modern
language constructs for object oriented design, but the support for it on platforms such as
Raspberry Pi is limited, and the scripts and packages written for Python 3 will not work for
Python 2.

At the same time, there is considerable support for Perl on embedded platforms; however,
installing some of the Perl packages could be a daunting task that most novices would have
a hard time completing.

Configuring I2C
You can find most of the instructions in this section at the following URL, where you can also
find more tutorials on how to install other accessories and plug-ins for your Raspberry Pi:

https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-i2c

I2C is a very commonly used standard designed to allow one chip to talk to another.

Since the Raspberry Pi can talk to I2C, we can connect it to a variety of I2C-capable chips
and modules.

Following are some of the Adafruit projects that make use of I2C devices and modules:

	http://learn.adafruit.com/mcp230xx-gpio-expander-on-the-raspberry-pi

	http://learn.adafruit.com/adafruit-16x2-character-lcd-plus-
keypad-for-raspberry-pi

	http://learn.adafruit.com/adding-a-real-time-clock-to-raspberry-pi

	http://learn.adafruit.com/matrix-7-segment-led-backpack-with-
the-raspberry-pi

	http://learn.adafruit.com/mcp4725-12-bit-dac-with-raspberry-pi

	http://learn.adafruit.com/adafruit-16-channel-servo-driver-with-
raspberry-pi

	http://learn.adafruit.com/using-the-bmp085-with-raspberry-pi

The I2C bus allows multiple devices to be connected to your Raspberry Pi--each with a
unique address. The device address can often be set by changing jumper settings on the
module. It is very useful to be able to see which devices are connected to your Pi as a way
of making sure everything is working. To do this, it is worth running the following command
in the Terminal to install the i2c-tools utility:

sudo apt-get install i2c-tools

https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-i2c
http://learn.adafruit.com/mcp230xx-gpio-expander-on-the-raspberry-pi
http://learn.adafruit.com/adafruit-16x2-character-lcd-plus-keypad-for-raspberry-pi
http://learn.adafruit.com/adafruit-16x2-character-lcd-plus-keypad-for-raspberry-pi
http://learn.adafruit.com/adding-a-real-time-clock-to-raspberry-pi
http://learn.adafruit.com/matrix-7-segment-led-backpack-with-the-raspberry-pi
http://learn.adafruit.com/matrix-7-segment-led-backpack-with-the-raspberry-pi
http://learn.adafruit.com/mcp4725-12-bit-dac-with-raspberry-pi
http://learn.adafruit.com/adafruit-16-channel-servo-driver-with-raspberry-pi
http://learn.adafruit.com/adafruit-16-channel-servo-driver-with-raspberry-pi
http://learn.adafruit.com/using-the-bmp085-with-raspberry-pi

402 CHAPTER 12: Building an App That Interacts with a Raspberry Pi

To keep things simple, we will use Python for the application we write for the Raspberry Pi.
To use Python with I2C tools, we need to install the python-smbus package:

sudo apt-get install python-smbus

If you plan to use Perl to build tools that control the I2C devices, you will need to install
some extra packages that provide an interface to the I2C tools to Perl packages, as well as a
basic framework that allows writing compact applications:

sudo apt-get install libi2c-dev build-essential libmoose-perl
sudo cpan Device::SMBus

Installing Kernel Support for I2C
Run the raspi-config as root and follow the prompts to install i2c support for the ARM core
and Linux kernel:

sudo raspi-config

Select Advanced Options/I2C and enable the interface, and allow the I2C kernel module
to be loaded by default. After you made the changes, you have to reboot the device; the
modules should be loaded and available after reboot.

Verify that the i2c modules are available, by looking at the content of the following file:

cat /etc/modules

The file will have contents similar to the following example:

/etc/modules: kernel modules to load at boot time.
#
This file contains the names of kernel modules that should be loaded
at boot time, one per line. Lines beginning with "#" are ignored.
 
i2c-bcm2708
i2c-dev

If after reboot, these modules do not exist in the /etc/modules file: you can edit the file
with vi and append the two previously mentioned lines. You have to edit this file with root
privileges:

sudo vi /etc/modules

Another easy way to do this is with the following one-liners:

sudo echo "i2c-bcm2708" >> /etc/modules
sudo echo "i2c-dev" >> /etc/modules

403CHAPTER 12: Building an App That Interacts with a Raspberry Pi

Depending on when you installed your OS and with what version, as well as on any other
experiments you might have run with your Raspberry Pi, some of these modules could have
landed in the modprobe blacklist. This is a file that disables certain modules, preventing
them from loading at the start. To look at the file contents, see:

sudo cat /etc/modprobe.d/raspi-blacklist.conf

You can edit the file with vi, and comment out or delete the lines if they exist in that file as
we did with the /etc/modules. Here too, you have to use root privileges to edit the file:

sudo vi /etc/modprobe.d/raspi-blacklist.conf

There is a fancier way to do just about the same thing with the following one-liner:

MPBL=/etc/modprobe.d/raspi-blacklist.conf; [-f ${MPBL}] && sudo perl -p -i -e
's:^(blacklist (spi|i2c)-bcm2708):#$1:g' ${MPBL}

This line does the following:

	Creates an environment variable named MPBL that contains the path to
the file

	If the file exists, it uses Perl to find the lines that contain the two
module names

	If the lines were found, it comments them out by prefixing them with a hash

While it might seem very fancy to run one-line commands that do stuff for you, it is much
more convenient to do things the regular way, by editing a file in a normal text editor and
seeing right away what you are doing.

After making the changes mentioned previously, you can restart your Raspberry Pi:

sudo reboot

Verify that I2C can be Accessed
After the device reboots, the first step is to check that the module is loaded.

sudo modprobe i2c-dev

If the module could not be loaded, this would return “modprobe: FATAL: Module i2c-dev not
found”, otherwise it will return no message.

If all is well, you should be able to test the I2C connectivity by running the following command:

i2cdetect -y 1

If you have an older Raspberry Pi (before model B), the command would be instead:

i2cdetect -y 0

404 CHAPTER 12: Building an App That Interacts with a Raspberry Pi

The makers of Raspberry Pi changed that 0 to a 1 when the model B was released. An easy
way to remember is that any module with 256MB of RAM uses 0; the others use 1.

In either case, the output of the command would be similar to the following:

 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

If you already have I2C devices connected, they might appear in the table, pointing to the
address of your devices.

One interesting fact: if you have the PiGlow module plugged in, it will not show up in the
i2cdetect output, but it will still work just fine.

If you are running a recent Raspberry Pi (3.18 kernel or higher), you will also need to update
the /boot/config.txt file. Edit the /boot/config.txt file and uncomment or add the
following lines:

dtparam=i2c1=on
dtparam=i2c_arm=on

After you make these changes you need to reboot your device.

Configuring GPIO
The GPIO pins can be used as both digital outputs and digital inputs. As digital outputs, you
can write programs that turn a particular pin HIGH or LOW. Setting it HIGH sets it to 3.3V;
setting it LOW sets it to 0V.

To drive an LED from one of these pins, you need a 1kW resistor in series with the LED as
the GPIO pins can only manage a small amount of power.

If you use a pin as a digital input, then you can connect switches and simple sensors to a pin
and then be able to check whether it is open or closed (i.e., activated or not). The following
are some Adafruit projects that use just GPIO:

http://learn.adafruit.com/raspberry-pi-e-mail-notifier-using-leds
http://learn.adafruit.com/playing-sounds-and-using-buttons-with-raspberry-pi
http://learn.adafruit.com/basic-resistor-sensor-reading-on-raspberry-pi

To program the GPIO ports in Python, we need to install a very useful Python 2 library called
RPi.GPIO (Raspberry Pi General Purpose Input Output). This module gives us a simple to
use Python library that will let us control the GPIO pins. The installation process for this is
the same whether you are using Raspbian or Occidentalis. In actual fact, some versions of

http://learn.adafruit.com/raspberry-pi-e-mail-notifier-using-leds
http://learn.adafruit.com/playing-sounds-and-using-buttons-with-raspberry-pi
http://learn.adafruit.com/basic-resistor-sensor-reading-on-raspberry-pi

405CHAPTER 12: Building an App That Interacts with a Raspberry Pi

Raspbian include this library, but these instructions will also have the effect of updating to
the latest version, which is worth doing.

To install RPi.GPIO, you first need to install the Python Development toolkit that that RPi.
GPIO requires. To do this, enter the following command into LXTerminal:

sudo apt-get install python-dev

Then, to install Rpi.GPIO itself, type:

sudo apt-get install python-rpi.gpio

Install PyGlow
To make the PyGlow module work with Python, we need to install the package that interacts
with the I2C libraries and controls the device.

sudo pip install git+https://github.com/benleb/PyGlow.git

Now, you can create a small Python test script that would flash the lights blue for one
second, red for two seconds, then green for 3 seconds (Listing 12-1).

Listing 12-1.  Flashing the PiGlow LEDs

from PyGlow import PyGlow
 from time import sleep
 pyglow = PyGlow()
 pyglow.all(0)
 pyglow.color("blue", 100)
 sleep(1)
 pyglow.color("blue", 0)
 pyglow.color("red", 100)
 sleep(2)
 pyglow.color("red", 0)
 pyglow.color("green", 100)
 sleep(3)
 pyglow.color("green", 0)

Save the text in the Listing 12-1 in a file called flash.py, then run it in the SSH terminal:

python flash.py

This is all there is to it; simple, right?

Now imagine that the more complex control commands you will write will be nothing but
encapsulated scripts such as the one in Listing 12-1, which takes control of a given interface
and device and effects some changes.

https://github.com/benleb/PyGlow.git

406 CHAPTER 12: Building an App That Interacts with a Raspberry Pi

Providing an API to Control your Device
So far, we have seen that we have the ability to interact with attached devices on our
Raspberry Pi. What we want now is to be able to interact with the devices from an external
source, such as our iOS device.

There are two parts to this: the server on the Raspberry Pi that provides the API to control
the attached devices (PiGlow in our case) and an iOS application that makes requests to
this API.

Since we started writing Python code, it feels only right to do the API server also in
Python. There are many Python frameworks that can be used to build an API: we need to
use one that is lightweight and easy to customize. A good choice here is Flask. You will
find a considerable number of online tutorials to help you get started with Flask, and as
frameworks for API development, you will find out how easy it is to get started.

Install Flask
This is a very simplified step-by-step tutorial to get started with Flask. We implement very
basic features to allow us to control the device. Following this model you can add security,
scale the service to support multiple commands, or do whatever your project requires.

Before anything, we use Pip to install Flask:

sudo pip install flask

This will install the Flask framework and the basic modules used by the framework. The
installation process is deceptively simple; it installs just like any other package.

The Hello World Daemon
This is traditionally the first thing we would do to start experimenting with a new language.

Create a file named hello-flask.py with the contents shown in Listing 12-2. Normally you
would configure a service to use port 80 since it is serving an HTTP response.

We use a higher number port for two reasons: to allow you to run a separate http server on
port 80 if you need to, especially because ports smaller than 1024 can only be used by programs
that run with root privileges. This is an older limitation for security reasons, and it makes sure that
applications running on certain well-known ports should be run only by the system.

Listing 12-2.  The “Hello World!” script n Python using Flask

from flask import Flask
app = Flask(__name__)
 
@app.route("/")
def hello():
 return "Hello World!"
 

407CHAPTER 12: Building an App That Interacts with a Raspberry Pi

if __name__ == "__main__":
 app.run(host='0.0.0.0', port=8080, debug=True)

When you start the daemon from the command line, it will tell us that it is running and show
any incoming calls on the command line. Listing 12-3 is what we get when we start it the
first time. You will notice that the browser is trying to also get the favicon.ico file, a file
that we do not have, because the daemon that we build in this example is not configured
to serve static files directly. The favicon.ico is the image that can customize how your web
site icon shows up to the left of the URL in the browser, and it will only show up once, then
the browser will cache the state and will not try to fetch it again.

Listing 12-3.  Running our Flask program

pi@raspberrypi:~$ python hello-flask.py
 * Running on http://0.0.0.0:8080/ (Press CTRL+C to quit)
 * Restarting with stat
10.0.1.25 - - [12/Oct/2015 05:26:18] "GET / HTTP/1.1" 200 -
10.0.1.25 - - [12/Oct/2015 05:26:18] "GET /favicon.ico HTTP/1.1" 404 -

The last two lines in Listing 12-3 are the result of loading the URL of the device, using the
device IP (Internet Protocol) address:

http://10.0.1.128:8080/

In our example code we will not go to the length of setting up a discovery daemon or any
fancy features, limiting ourselves to demonstrating functionality.

Building a Very Simple Listener Daemon
With our knowledge accumulated from this test program, it is time to integrate a call that
executes the commands we put together in the previous example. What we want to build
is a daemon that informs us of the system time and offers a service to execute a simple
command. Since we already spent some time writing a bit of code in the previous example,
we will integrate that code in our listener. You can see the results in Listing 12-4.

You will notice that we have all the imports at the top, combining the needs of all the code
written in this script.

Listing 12-4.  The Listener Daemon on Raspberry Pi, written in Python and Flask

from flask import Flask
from PyGlow import PyGlow
from time import sleep
import datetime
 
app = Flask(__name__)
 
@app.route("/")
def hello():
 now = datetime.datetime.now()
 return now.strftime("%Y-%m-%d %H:%M")
 

http://0.0.0.0:8080/
http://10.0.1.128:8080/

408 CHAPTER 12: Building an App That Interacts with a Raspberry Pi

@app.route("/blink")
def getData():
 pyglow = PyGlow()
 pyglow.all(0)
 pyglow.color("blue", 100)
 sleep(1)
 pyglow.color("blue", 0)
 pyglow.color("red", 100)
 sleep(2)
 pyglow.color("red", 0)
 pyglow.color("green", 100)
 sleep(3)
 pyglow.color("green", 0)
 return "OK"
 
@app.route("/blink/<color>")
def blinkColor(color):
 pyglow = PyGlow()
 pyglow.all(0)
 pyglow.color(color, 100)
 sleep(1)
 pyglow.color(color, 0)
 return "OK"
 
if __name__ == "__main__":
 app.run(host='0.0.0.0', port=8080, debug=True)

With this, we have our first very simple command handler daemon. Try now to bring up the
base URL, and it will display the current date and time:

http://10.0.1.128:8080/

This Flask daemon is now taking a command to blink the lights on PiGlow, when somebody
calls the /blink end point. When invoking the URL, you will see that our code is being
executed and the LEDs will blink just as in our earlier example; then, when completed, the
page will show “OK”:

http://10.0.1.128:8080/blink

We also have a second service that allows us to blink a single color: for that, call the URLs:

http://10.0.1.128:8080/blink/green
http://10.0.1.128:8080/blink/red

The listener daemon shows the calls on the command line, as they are being made:

10.0.1.25 - - [12/Oct/2015 06:04:44] "GET /blink/green HTTP/1.1" 200 -
10.0.1.25 - - [12/Oct/2015 06:05:03] "GET /blink/red HTTP/1.1" 200 -

I am sure you will derive a lot of enjoyment from trying to add new commands and features.

http://10.0.1.128:8080/
http://10.0.1.128:8080/blink
http://10.0.1.128:8080/blink/green
http://10.0.1.128:8080/blink/red

409CHAPTER 12: Building an App That Interacts with a Raspberry Pi

Setting up an iOS Project for Our App
We begin by creating an empty, single-page project. This chapter aims to show how to
communicate with the Raspberry Pi API through the I2C interface we just created, not how
to build an UI interface around it, so our application will be minimalistic, exposing just a few
UI elements to trigger actions on the Raspberry Pi. We will be using a similar approach to the
code in Chapter 5, so this will be familiar ground if you read that chapter.

Using this demo application, you will be able to trigger commands that switch the lights on
and off on the PiGlow board on your Raspberry Pi.

Allowing Outgoing HTTP Calls
You will run into this quite often: you rig your app to make an HTTP call and you see a stack
trace like the following:

Application Transport Security has blocked a cleartext HTTP (http://) resource load since it is
insecure. Temporary exceptions can be configured via your app’s Info.plist file.

Going to the Apple docs, we read about Application Transport Security:

App Transport Security (ATS) lets an app add a declaration to its Info.plist file
that specifies the domains with which it needs secure communication. ATS
prevents accidental disclosure, provides secure default behavior, and is easy
to adopt. You should adopt ATS as soon as possible, regardless of whether
you’re creating a new app or updating an existing one.

If you’re developing a new app, you should use HTTPS exclusively. If you
have an existing app, you should use HTTPS as much as you can right now,
and create a plan for migrating the rest of your app as soon as possible.

To handle this issue, you need to create an entry for “Allow Arbitrary Loads” set to “true” in
your info.plist, as shown in Figure 12-2. Xcode will autosuggest the name (App Transport
Security Settings) the moment you start typing; it will also suggest the Dictionary type,
and the first key-value pair (Allow Arbitrary Loads). You can see how this appears in the
Figure 12-2.

http://dx.doi.org/10.1007/978-1-4842-1194-6_5

410 CHAPTER 12: Building an App That Interacts with a Raspberry Pi

The View Controller
A basic View Controller for this chapter will only show a few buttons and a text area that we
will use to display the communication with the API.

To initialize and to be able to use these buttons and fields, they have to be assigned macros
that make them available/visible in the Interface Builder. We also define the variables used
for the API and logger objects. Since these will be initialized at a later time, these variables
need to be defined as optional (Listing 12-5).

Listing 12-5.  The Header of the UIViewController Class

class ViewController: UIViewController {
 @IBOutlet var clearButton : UIButton!
 @IBOutlet var labelButton : UIButton!
 @IBOutlet var labelButton2 : UIButton!
 @IBOutlet var textArea : UITextView!
 var api: APIClient!
 var logger: UILogger!

In the viewDidLoad() function (Listing 12-6) we initialize the API object, as well as the log
library that will output text to our textArea field. The content and functionality of these
libraries will be explained as we go.

Figure 12-2.  Setting the Allow Arbitrary Loads for the App Transport Security Settings

411CHAPTER 12: Building an App That Interacts with a Raspberry Pi

Listing 12-6.  The viewDidLoad Override Function

override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.
 api = APIClient(parent: self)
 logger = UILogger(out: textArea)
}

To assign an action to a button, we create a function that performs the action, and is also
annotated with the proper macro to make it available in the Interface Builder. We will add a
log statement to show the beginning of the request, and we can also change the title of the
button, while it is pressed (Listing 12-7):

Listing 12-7.  The clickButton Function

@IBAction func clickButton() {
 logger.logEvent("=== Blink All Lights ===")
 api.blinkAllLights()
 labelButton.setTitle("Request Sent", forState: UIControlState.Normal)
}

We can wire these button actions in the storyboard as shown in Figure 12-3.

Figure 12-3.  The storyboard

412 CHAPTER 12: Building an App That Interacts with a Raspberry Pi

In Listing 12-8 we can see the entire ViewController.swift code that we will use to test the
command sent to the Raspberry Pi API.

Listing 12-8.  The Code for the ViewController.swift

import UIKit
 
class ViewController: UIViewController {
 @IBOutlet var clearButton : UIButton!
 @IBOutlet var labelButton : UIButton!
 @IBOutlet var labelButton2 : UIButton!
 @IBOutlet var textArea : UITextView!
 var api: APIClient!
 var logger: UILogger!
  
 required init?(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
 }
  
 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.
 api = APIClient(parent: self)
 logger = UILogger(out: textArea)
 }
  
 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }
 @IBAction func unclickButton() {
 labelButton.setTitle("Blink All Lights", forState: UIControlState.Normal)
 }
 @IBAction func unclickButton2() {
 labelButton2.setTitle("Blink Red Light", forState: UIControlState.Normal)
 }
 @IBAction func clickButton() {
 logger.logEvent("=== Blink All Lights ===")
 api.blinkAllLights()
 labelButton.setTitle("Request Sent", forState: UIControlState.Normal)
 }
 @IBAction func clickButton2() {
 logger.logEvent("=== Blink Red Light ===")
 api.blinkLight("red")
 labelButton2.setTitle("Request Sent", forState: UIControlState.Normal)
 }
 @IBAction func clickClearButton() {
 logger.set()
 }
}

413CHAPTER 12: Building an App That Interacts with a Raspberry Pi

The Logger Library
The logger library was assigned a variable in the View Controller that will keep an instance of
the logger around with the proper target assigned; in our case we use a text area field for the
activity logging.

When the main thread updates an UI element, there is no need for special treatment.
However, since the calls that write to this log are running in a child thread, we make sure that
updates to an UI element will be dispatched as async (Listing 12-9).

Listing 12-9.  Dispatching an async Event

func set(text: String?="") {
 dispatch_async(dispatch_get_main_queue()) {
 self.textArea!.text = text
 };
}

To keep things simple, we implement just a couple of functions that will allow us to track
the API activity. These functions will interact with the textArea field we set up in the View
Controller. Just as in the View Controller, the textArea field is declared optional, as it will be
initialized in the init() function. You can see the entire code of the UILogger.swift file in
Listing 12-10.

Listing 12-10.  The UILogger Library

import Foundation
import UIKit
 
class UILogger {
 var textArea : UITextView!
  
 required init(out: UITextView) {
 dispatch_async(dispatch_get_main_queue()) {
 self.textArea = out
 };
 self.set()
 }
  
 func set(text: String?="") {
 dispatch_async(dispatch_get_main_queue()) {
 self.textArea!.text = text
 };
 }
  
 func logEvent(message: String) {
 dispatch_async(dispatch_get_main_queue()) {
 �self.textArea!.text = self.textArea!.text.stringByAppendingString("=> " +

message + "\n")
 };
 }
}

414 CHAPTER 12: Building an App That Interacts with a Raspberry Pi

The API Client Library
Now we will create now the APIClient.swift library. This library is for the functions that
make async requests to the API. The header of the class contains the URL and other
variables needed for the API functionality.

Defining the Device URL
You can create a pop-up screen to enter this on the device, or you can write a discovery
service using Bonjour to discover the device. To keep things simple, we hard-coded the IP
address and the port of the device as a variable (Listing 12-11).

Listing 12-11.  The Header of the APICLient Library

import Foundation
class APIClient {
 var apiVersion: String!
 var baseURL: String = "http://10.0.1.128:8080"
 var viewController: ViewController!
  
 required init (parent: ViewController!) {
 viewController = parent
 }
}

Creating a GET Handler
A generic function to perform a GET from a service looks like the code in Listing 12-12. This
code is part of the APIClient class, which we saved as the APIClient.swift file.

Listing 12-12.  Generic Function to Perform a GET

func getData (service: APIService, id: String!=nil, urlSuffix: NSArray!=nil, params:
[String:String]!=[:]) {
 let blockSelf = self
 let logger: UILogger = viewController.logger
 self.apiRequest(
 service,
 method: APIMethod.GET,
 id: id,
 urlSuffix: urlSuffix,
 inputData: params,
 callback: { (responseJson: NSDictionary!, responseError: NSError!) -> Void in
 if (responseError != nil) {
 logger.logEvent(responseError!.description)
 // Handle here the error response in some way
 }

http://10.0.1.128:8080/

415CHAPTER 12: Building an App That Interacts with a Raspberry Pi

 else {
 �blockSelf.processGETData(service, id: id, urlSuffix: urlSuffix, params:

params, responseJson: responseJson)
 }
 })
}

For the urlSuffix we use the NSArray data type that will hold all elements of the URL being
accessed. Since we do not know what data we will send to the API, the NSArray type is
ideal because by default it contains AnyObject elements. We also pass the urlSuffix to
the processGETData function, so that we can make a decision about what to do with the
response, given the service being called, the optional id of the item, and the urlSuffix. We
also defined default values for urlSuffix and params to allow our functions to make calls
without providing all nil parameters in tow.

The optional input params is a dictionary with strings for keys and values. This is the
most convenient format, considering that POST is not any different from GET in the way the
parameters are passed to the API.

The block passed to the NSURLConnection.sendAsynchronousRequest is a closure, which is
why we need to assign the blockSelf variable that will be used to make calls in the context
of the APIClient library.

The function is the actual handler of that response, which takes the generic form shown in
Listing 12-13.

Listing 12-13.  Implementing a GET Request Handler

func processGETData (service: APIService, id: String!, urlSuffix: NSArray!, params:
[String:String]!=[:], responseJson: NSDictionary!) {
 // do something with data here
}

Creating a POST Handler
Just like the GET request, the POST request can have the same structure seen in
Listing 12-14. This, too, is part of the APIClient class (the APIClient.swift file).

Listing 12-14.  Implementing a POST Request Handler

func postData (service: APIService, id: String!=nil, urlSuffix: NSArray!=nil,
params: [String:String]!=[:]) {
 let blockSelf = self
 let logger: UILogger = viewController.logger
 self.apiRequest(
 service,
 method: APIMethod.POST,
 id: id,
 urlSuffix: urlSuffix,
 inputData: params,

416 CHAPTER 12: Building an App That Interacts with a Raspberry Pi

 callback: { (responseJson: NSDictionary!, responseError: NSError!) -> Void in
 if (responseError != nil) {
 logger.logEvent(responseError!.description)
 // Handle here the error response in some way
 }
 else {
 �blockSelf.processPOSTData(service, id: id, urlSuffix: urlSuffix, params:

params, responseJson: responseJson)
 }
 })
}
  
func processPOSTData (service: APIService, id: String!, urlSuffix: NSArray!, params:
[String:String]!=[:], responseJson: NSDictionary!) {
 // do something with data here
}

Of course, we can implement the request process in many different ways, but having a
common handler for an API request type allows us to avoid callback hell.

Defining the verbs and services
We notice that the verb is not a string but an enum value: APIMethod.GET. This is an enum
that we define in this library, to provide easy access to the verbs as strings, rather than using
the strings directly. It also allows us to define which HTTP verbs are supported by the API
client (Listing 12-15). This too, is part of the APIClient class (the APIClient.swift file).

Listing 12-15.  The APIMethod Enum

enum APIMethod {
 case GET, POST
 func toString() -> String {
 var method: String!
 switch self {
 case .GET:
 method = "GET"
 case .POST:
 method = "POST"
 }
 return method
 }
}

We provide the hasBody( ) function as an example that could be useful in the apiRequest to
properly format the request, so that GET and DELETE use the parameters as key-value pairs,
while PUT and POST use it as JSON.

There is another enum we define in the APIClient library, that provides shortcuts to
actual services via the toString() function. We saw this in the View Controller used as
APIService.GOOD_JSON. We will extend this later to add other services and also provide a
function to return the suffix we might want to use for some calls, but for now Listing 12-16
shows the basic format.

417CHAPTER 12: Building an App That Interacts with a Raspberry Pi

Listing 12-16.  The APIService Enum

enum APIService {
 case BLINK
 func toString() -> String {
 var service: String!
 switch self {
 case .BLINK:
 service = "blink"
 }
 return service
 }
}
 

Adding an Extension to the String Type
We add in the same APIClient.swift file an extension to the string type to add a simple
escaping method for the URL params we might want to pass to a call (Listing 12-17).

Listing 12-17.  The Extension to the String Object

extension String {
 func escapeUrl() -> String {
 let source: NSString = NSString(string: self)
 let chars = "abcdefghijklmnopqrstuvwxyz"
 let okChars = chars + chars.uppercaseString + "0123456789.~_-"
 let customAllowedSet = NSCharacterSet(charactersInString: okChars)
 return source.stringByAddingPercentEncodingWithAllowedCharacters(customAllowedSet)!
 }
}

The apiRequest( ) Function
Next to be defined is the apiRequest() function (Listing 12-18). This function will make the
actual API request, and that includes handling the eventual verification of the response data.
The method signature is showing that the only required params are the service, the method,
and the callback function. This is also part of the APIClient class.

Listing 12-18.  The apiRequest Function

func apiRequest (
 service: APIService,
 method: APIMethod,
 id: String!,
 urlSuffix: NSArray!,
 inputData: [String:String]!,
 callback: (responseJson: NSDictionary!, responseError: NSError!) -> Void) {
 // Code goes here
}

418 CHAPTER 12: Building an App That Interacts with a Raspberry Pi

The services currently available are INFO and BLINK: the API overloads them with a variable
list of params, so in essence your calls will need to provide the larger APIService, then
provide via the urlSuffix, the URL path extension to point to the right resource. This will be
explained in more detail later.

As to the content of the method, the following is what we need to do for an API request:

1.	 Compose the base URL of the service

2.	 Add the URL suffix if it was specified

3.	 Serialize and append to the URL the input params

4.	 Make the API request as an async call

In the code block passed to the async call, we also need to do the following:

1.	 De-serialize the JSON response, if JSON was found

2.	 Call the callback function

To compose the base URL of the service we use the code shown in Listing 12-19.

Listing 12-19.  Composing the Base URL

var serviceURL = baseURL + "/"
if apiVersion != nil {
 serviceURL += apiVersion + "/"
}
serviceURL += service.toString()
if id != nil && !id.isEmpty {
 serviceURL += "/" + id
}
var request = NSMutableURLRequest()
request.HTTPMethod = method.toString()

In the same segment, we create the request object and assign it the request method. The
serviceURL is still being composed, so it would be premature to assign it to the request at
this point.

If this API would support a JSON request body for POST requests, we could use something
like the code in Listing 12-20 to serialize the input data.

Listing 12-20.  Serializing JSON Data

var error: NSError?
request.HTTPBody = NSJSONSerialization.dataWithJSONObject(inputData, options: nil, error:
&error)
if error != nil {
 callback(responseJson: nil, responseError: error)
 return
}
request.addValue("application/json", forHTTPHeaderField: "Content-Type")

419CHAPTER 12: Building an App That Interacts with a Raspberry Pi

To handle the composition of the URL, we create the asURLString() function. This function
is located in the APIClient class and takes a dictionary of input params and creates a URL-
encoded string, with the parameters sorted alphabetically (Listing 12-21).

Listing 12-21.  The asURLString Function

func asURLString (inputData: [String:String]!=[:]) -> String {
 var params: [String] = []
 for (key, value) in inputData {
 params.append([key.escapeUrl(), value.escapeUrl()].joinWithSeparator("="))
 }
 params = params.sort{ $0 < $1 }
 return params.joinWithSeparator("&")
}

The URL suffix needs to be made part of the URL— - we have in the input an NSArray of
strings or numbers that will be used to compose the suffix— - they will be all reduced to a
simple string, appended to the base URL. You can find the following example (Listing 12-22)
in the postData() function in the APIClient class:

Listing 12-22.  Composing a URL

// The urlSuffix contains an array of strings that we use to compose the final URL
if urlSuffix?.count > 0 {
 serviceURL += "/" + urlSuffix.componentsJoinedByString("/")
}

Now we are ready to make the API request as an async call. Note how we created
a local variable logger that points to the logging handler of the View Controller; this is
necessary because inside the closure we don’t have visibility to variables and functions from
the current library or from the View Controller. The callback block for the async calls contains
the basic code needed to handle the result data and call the callback function that we got
when we invoked apiRequest(). Once again, when interpreting the response, an error can
occur parsing the JSON data, which will be handled by the callback function.

To parse an API response into a JSON object, we use an NSDictionary object that will hold
any combination of key-values. This is necessary since the API responses can contain
any combination of numbers, strings, arrays, and dictionaries, and NSDictionary supports
by default AnyObject types. The NSJSONReadingOptions.MutableContainers specifies that
arrays and dictionaries be created as mutable objects. We can see this in Listing 12-23. This
code is located in the postData() function in the APIClient class.

Listing 12-23.  Parsing a JSON Response

var jsonResult: NSDictionary?
if urlResponse != nil {
 �let rData: String = NSString(data: data!, encoding: NSUTF8StringEncoding)! as String
 if data != nil {
 do {

420 CHAPTER 12: Building an App That Interacts with a Raspberry Pi

 �try jsonResult = NSJSONSerialization.JSONObjectWithData(data!, options:
NSJSONReadingOptions.MutableContainers) as? NSDictionary

 } catch {
// we expect an "OK" from the API, not JSON, so it's OK if we don't do anything here
 }
 }

When encountering an error case that we need to report, we can create our own error
object. To do this in Swift, we use the following approach:

error = NSError(domain: "response", code: -1, userInfo: ["reason":"blank response"])

We added some logging for the response data, with an example on how to pretty-print
JSON to the textarea used for logging. We do want to format the response in such a way
that is easy to read, and pretty-printed JSON appears as one key-value per line, nicely
indented. We can see the results in Listing 12-24. This code is located in the postData()
function in the APIClient class.

Listing 12-24.  Handling a REST Call

let logger: UILogger = viewController.logger
let session = NSURLSession.sharedSession()
let task = session.dataTaskWithRequest(request) { (data : NSData?, urlResponse :
NSURLResponse?, error: NSError?) -> Void in
 //the request returned with a response or possibly an error
 logger.logEvent("URL: " + serviceURL)
 var error: NSError?
 var jsonResult: NSDictionary?
 if urlResponse != nil {
 let rData: String = NSString(data: data!, encoding: NSUTF8StringEncoding)! as String
 if data != nil {
 do {
 �try jsonResult = NSJSONSerialization.JSONObjectWithData(data!, options:

NSJSONReadingOptions.MutableContainers) as? NSDictionary
 } catch {
 �// we expect an "OK" from the API, not JSON, so it's OK if we don't do

anything here
 // print("json error: \(error)")
 }
 }
 logger.logEvent("RESPONSE RAW: " + (rData.isEmpty ? "No Data" : rData))
 print("RESPONSE RAW: \(rData)")
 }
 else {
 error = NSError(domain: "response", code: -1, userInfo: ["reason":"blank response"])
 }
 callback(responseJson: jsonResult, responseError: error)
}
task.resume()

421CHAPTER 12: Building an App That Interacts with a Raspberry Pi

Displaying pretty-formatted JSON can be useful in other places too, so we extracted the
code in Listing 12-25 in the prettyJSON() function. This code is located in the postData()
function in the APIClient class.

Listing 12-25.  Displaying Pretty-Formatted JSON Responses

func prettyJSON (json: NSDictionary!) -> String! {
 var pretty: String!
 if json != nil && NSJSONSerialization.isValidJSONObject(json!) {
 �if let data = try? NSJSONSerialization.dataWithJSONObject(json!, options:

NSJSONWritingOptions.PrettyPrinted) {
 pretty = NSString(data: data, encoding: NSUTF8StringEncoding) as? String
 }
 }
 return pretty
}

Listing 12-26 shows the entire code we have so far for the APIClient library.

Listing 12-26.  The APIClient.swift Library

import Foundation
class APIClient {
 var apiVersion: String!
 var baseURL: String = "http://10.0.1.128:8080"
 var viewController: ViewController!
  
 required init (parent: ViewController!) {
 viewController = parent
 }
  
 func blinkAllLights () {
 // GET /blink
 getData(APIService.BLINK)
 }
  
 func blinkLight(color: String) {
 // GET /blink/red
 getData(APIService.BLINK, id: color)
 }
  
 �func postData (service: APIService, id: String!=nil, urlSuffix: NSArray!=nil, params:

[String:String]!=[:]) {
 let blockSelf = self
 let logger: UILogger = viewController.logger
 self.apiRequest(
 service,
 method: APIMethod.POST,
 id: id,
 urlSuffix: urlSuffix,
 inputData: params,

http://10.0.1.128:8080/

422 CHAPTER 12: Building an App That Interacts with a Raspberry Pi

 callback: { (responseJson: NSDictionary!, responseError: NSError!) -> Void in
 if (responseError != nil) {
 logger.logEvent(responseError!.description)
 // Handle here the error response in some way
 }
 else {
 �blockSelf.processPOSTData(service, id: id, urlSuffix: urlSuffix, params:

params, responseJson: responseJson)
 }
 })
 }
  
 �func processPOSTData (service: APIService, id: String!, urlSuffix: NSArray!, params:

[String:String]!=[:], responseJson: NSDictionary!) {
 // do something with data here
 }
  
 �func getData (service: APIService, id: String!=nil, urlSuffix: NSArray!=nil, params:

[String:String]!=[:]) {
 let blockSelf = self
 let logger: UILogger = viewController.logger
 self.apiRequest(
 service,
 method: APIMethod.GET,
 id: id,
 urlSuffix: urlSuffix,
 inputData: params,
 callback: { (responseJson: NSDictionary!, responseError: NSError!) -> Void in
 if (responseError != nil) {
 logger.logEvent(responseError!.description)
 // Handle here the error response in some way
 }
 else {
 �blockSelf.processGETData(service, id: id, urlSuffix: urlSuffix, params:

params, responseJson: responseJson)
 }
 })
 }
  
 �func processGETData (service: APIService, id: String!, urlSuffix: NSArray!, params:

[String:String]!=[:], responseJson: NSDictionary!) {
 // do something with data here
 }
  
 func apiRequest (
 service: APIService,
 method: APIMethod,
 id: String!,
 urlSuffix: NSArray!,
 inputData: [String:String]!,
 callback: (responseJson: NSDictionary!, responseError: NSError!) -> Void) {

423CHAPTER 12: Building an App That Interacts with a Raspberry Pi

 // Compose the base URL
 var serviceURL = baseURL + "/"
 if apiVersion != nil {
 serviceURL += apiVersion + "/"
 }
 serviceURL += service.toString()
  
 if id != nil && !id.isEmpty {
 serviceURL += "/" + id
 }
 let request = NSMutableURLRequest()
 request.HTTPMethod = method.toString()
 // The urlSuffix contains an array of strings that we use to compose the final URL
 if urlSuffix?.count > 0 {
 serviceURL += "/" + urlSuffix.componentsJoinedByString("/")
 }
 request.addValue("application/json", forHTTPHeaderField: "Accept")
  
 request.URL = NSURL(string: serviceURL)
  
 if !inputData.isEmpty {
 serviceURL += "?" + asURLString(inputData)
 request.URL = NSURL(string: serviceURL)
 }
 //now make the request
 let logger: UILogger = viewController.logger
 let session = NSURLSession.sharedSession()
 �let task = session.dataTaskWithRequest(request) { (data : NSData?, urlResponse :

NSURLResponse?, error: NSError?) -> Void in
 //the request returned with a response or possibly an error
 logger.logEvent("URL: " + serviceURL)
 var error: NSError?
 var jsonResult: NSDictionary?
 if urlResponse != nil {
 �let rData: String = NSString(data: data!, encoding:

NSUTF8StringEncoding)! as String
 if data != nil {
 do {
 �try jsonResult = NSJSONSerialization.JSONObjectWithData(data!,

options: NSJSONReadingOptions.MutableContainers) as?
NSDictionary

 } catch {
 �// we expect an "OK" from the API, not JSON, so it's OK if we

don’t do anything here
 // print("json error: \(error)")
 }
 }
 logger.logEvent("RESPONSE RAW: " + (rData.isEmpty ? "No Data" : rData))
 print("RESPONSE RAW: \(rData)")
 }

424 CHAPTER 12: Building an App That Interacts with a Raspberry Pi

 else {
 �error = NSError(domain: "response", code: -1, userInfo: ["reason":"blank

response"])
 }
 callback(responseJson: jsonResult, responseError: error)
 }
 task.resume()
 }
  
 func asURLString (inputData: [String:String]!=[:]) -> String {
 var params: [String] = []
 for (key, value) in inputData {
 params.append([key.escapeUrl(), value.escapeUrl()].joinWithSeparator("="))
 }
 params = params.sort{ $0 < $1 }
 return params.joinWithSeparator("&")
 }
  
  
 func prettyJSON (json: NSDictionary!) -> String! {
 var pretty: String!
 if json != nil && NSJSONSerialization.isValidJSONObject(json!) {
 �if let data = try? NSJSONSerialization.dataWithJSONObject(json!, options:

NSJSONWritingOptions.PrettyPrinted) {
 pretty = NSString(data: data, encoding: NSUTF8StringEncoding) as? String
 }
 }
 return pretty
 }
  
}
 
extension String {
 func escapeUrl() -> String {
 let source: NSString = NSString(string: self)
 let chars = "abcdefghijklmnopqrstuvwxyz"
 let okChars = chars + chars.uppercaseString + "0123456789.~_-"
 let customAllowedSet = NSCharacterSet(charactersInString: okChars)
 return source.stringByAddingPercentEncodingWithAllowedCharacters(customAllowedSet)!
 }
}
 
enum APIService {
 case BLINK
 func toString() -> String {
 var service: String!
 switch self {
 case .BLINK:
 service = "blink"
 }
 return service
 }
}
 

425CHAPTER 12: Building an App That Interacts with a Raspberry Pi

enum APIMethod {
 case GET, POST
 func toString() -> String {
 var method: String!
 switch self {
 case .GET:
 method = "GET"
 case .POST:
 method = "POST"
 }
 return method
 }
}

You should now be able to send commands to the device, and you will see the results in the
text area as shown in Figure 12-4.

Figure 12-4.  The request/response view of the application

426 CHAPTER 12: Building an App That Interacts with a Raspberry Pi

Summary
In this chapter, you learned to set up a basic script that interacts with resources on a
Raspberry Pi, the service necessary to run a listener that takes remote commands, and how
to write a very basic iOS application that makes an HTTP request to interact with the device
via the very simple API you created.

427

Chapter 13
Using Keychain Services to
Secure Data

Gheorghe Chesler
Although the iPhone boasts the lowest rate of security issues for a major computing
platform, many developers only take advantage of a handful of these features. In this
chapter, we will introduce Keychain Services, Apple’s security framework for encrypting
notes, passwords, and SSL (Secure Socket Layer) certificates at the system level.

At the core of modern encryption systems is the concept of public-key cryptography. Also
known as “asymmetric” encryption, this mechanism allows the use of distinct keys for
encryption, as opposed to decryption where you can use the public key only to encrypt and
verify signatures, and you can use the private key only to decrypt content encrypted with the
public key. The keys are generated using a very large random number to provide entropy, as
seen in Figure 13-1.

Figure 13-1.  Generating the pair of private/public keys

428 CHAPTER 13: Using Keychain Services to Secure Data

This mechanism is used by the SSL encryption in the browser (the Transport Layer Security),
S/MIME, and well-known encryption platforms like GPG and PGP. The well-known RSA
cryptosystem uses both key distribution and secrecy (Diffie-Hellman key exchange) to
secure data transfer.

If you have ever generated a secure key on a Linux box or even in a Windows program like
GnuPG or TrueCrypt, you probably noticed that generating the random number takes a bit of
time, and that it is using some random data from the environment, like asking you to move
the mouse around for a while. This ensures that the random number does not depend on
any factors that can be replicated at any time by somebody else. One of the common flaws
of some systems is that they rely on weak entropy to base their random number generation,
and therefore the randomness is somewhat predictable and in some cases reproducible.

When two parties want to communicate securely, they each send data that they encrypted
with the public key of the other party. A well-known analogy is the one of Alice and Bob
exchanging messages as shown in Figure 13-2.

Figure 13-2.  Bob and Alice exchanging messages

In the case of the Diffie-Hellman key exchange, each party uses its private key and the
counterpart’s public key to generate a shared secret that can be then used to encrypt data
as a symmetric cypher.

The beauty of the math behind the private/public key properties is that it allows generation
of the same key starting with a combination of a public key from the other user and one’s
own private key, so that no private key changes hands. We can see this depicted in
Figure 13-3.

429CHAPTER 13: Using Keychain Services to Secure Data

Hardware Security on iOS Devices
Since the person who can access the private key is able to access the encrypted data,
Apple does not provide the ability to access that key. On current iOS devices there is a
crypto chip named the “Secure Enclave.” This chip is completely isolated from the device
CPU and its memory and can be used only for the crypto operations. Each crypto chip is
programmed with a unique 256-bit key for each device, and the firmware of the crypto chip
is secured with a signing key known only to Apple.

That way Apple should not be able to decrypt your password, since it does not know the
UID (user identification number). It is not known whether Apple has the ability to extract the
UID from a crypto chip. According to Apple, the “Secure Enclave” crypto chip maintains its
security even if the device is jailbroken.

The crypto chip does not store any of your passwords but instead provides a way to encrypt
and decrypt any content and hide the encryption keys from the outside world.

Figure 13-3.  The Diffie-Hellman key exchange mechanism

430 CHAPTER 13: Using Keychain Services to Secure Data

When you enter a password in the device, the Apple Key Derivation function combines the
password with the UID then applies a slow derivation function (PBKDF2-AES), and the iteration
count is chosen so that it takes about 80ms on the particular device.

If one were to attempt to hack the device password, that attempt would have to run on the
device itself, since only the device knows the UID. The number of combinations required to
crack a large enough password would take a considerable amount of time: Apple advertises
that time to be more than five years for a random six-character password.

A device is considerably better secured if you configure it to erase itself after a number of
invalid password retries. Note that retries with a thumbprint don’t count, but the device
will stop accepting a thumbprint-based log-in after a few bad tries. The use of a complex
password is also recommended.

Securing the File Data
In addition to the hardware encryption features built into iOS devices, Apple uses a technology
called Data Protection to further protect data stored in flash memory on the device.

Data Protection allows the device to respond to common events such as incoming phone
calls, but it also enables a high level of encryption for user data.

Key system apps, such as Messages, Mail, Calendar, Contacts, Photos, and Health data
values, use Data Protection by default, and third-party apps installed on iOS 7 or later
receive this protection automatically.

Data Protection is implemented by constructing and managing a hierarchy of keys, and it
builds on the hardware encryption technologies built into each iOS device. Data Protection is
controlled on a per-file basis by assigning each file to a class; accessibility is determined by
whether the class keys have been unlocked.

Every time a file on the data partition is created, Data Protection creates a new 256-bit key
(the “per-file” key) and gives it to the hardware AES engine, which uses the key to encrypt
the file as it is written to flash memory using AES CBC mode. The initialization vector (IV) is
calculated with the block offset into the file, encrypted with the SHA-1 hash of the per-file key.

The per-file key is wrapped with one of several class keys, depending on the circumstances
under which the file should be accessible. Like all other wrappings, this is performed using
NIST AES key wrapping, per RFC 3394. The wrapped per-file key is stored in the file’s
metadata.

When a file is opened, its metadata is decrypted with the file system key, revealing the
wrapped per-file key and a notation on which class protects it. The per-file key is unwrapped
with the class key, then supplied to the hardware AES engine, which decrypts the file as it is
read from flash memory.

The metadata of all files in the file system is encrypted with a random key, which is created
when iOS is first installed or when a user wipes the device data. The file system key is stored
in Effaceable Storage.

Since it’s stored on the device, this key is not used to maintain the confidentiality of data;
instead, it’s designed to be quickly erased on demand (by the user, with the “Erase all

431CHAPTER 13: Using Keychain Services to Secure Data

content and settings” option, or by a user or administrator issuing a remote wipe command
from a mobile device management (MDM) server, Exchange ActiveSync, or iCloud). Erasing
the key in this manner renders all files cryptographically inaccessible.

The content of a file is encrypted with a per-file key, which is wrapped with a class key and
stored in a file’s metadata, which is in turn encrypted with the file system key. The class
key is protected with the hardware UID and, for some classes, the user’s passcode. This
hierarchy provides both flexibility and performance. For example, changing a file’s class only
requires rewrapping its per-file key, and a change of passcode just rewraps the class key.
Figure 13-4 visualizes this process.

Figure 13-4.  Overview of Apple key derivation and encryption (iOS Security Guide)

The Apple Keychain
The Apple Keychain is Apple’s platform “vault” for your application’s sensitive data. Available
on every device in the Apple landscape, the Apple Keychain allows applications to store
different bits of information in a secure way, which can be retrieved next time the application
starts. This allows for a certain level of security from attempts to access private bits of
information by accessing the application as it is stored on the device.

Naturally, once secured data is accessed by the application, the data is still vulnerable to
device memory snoop attacks, but at least the application and its stored data that you back
up from your device, does not store the very sensitive bits in a vulnerable format. This is not
as much an issue, because accessing the device memory does require direct access to the
device from a trusted computer.

You might have noticed that every time you connect it to another PC or Mac, your iOS
device already sends you an alert asking whether you trust that device—this is considered a
reasonable first line of defense. Furthermore, when backing up a device, sensitive data like
the keychain does not get backed up.

Even when you back up the device in secure mode, you have the ability to save the entry in
your keychain with the ThisDeviceOnly option that ensures that your data is saved only on
the current device, and that way it does not get backed up.

One aspect of the keychain implementation on iOS devices is that whatever you store in
it is locked to that device or its backup. On an OSX device (Macbook, Mac Pro, or iMac),
the keychain is stored under the user’s ~/Library/Keychains/ path, and the files there can
be copied to a different Mac and imported in its keychain, if you know the password to the
keychains.

432 CHAPTER 13: Using Keychain Services to Secure Data

The keychain from an iOS device can only be backed up when you back up the iOS device
in encrypted mode, so it is fairly inaccessible to the normal user.

To save and access data in the keychain, Apple provides the Apple Keychain Services API to
any application.

The Apple Keychain Services
Apple Keychain Services is an API that allows applications to store key-value pairs in
encrypted format on your iOS device. An app can save sensitive bits of data in the keychain,
such as passwords, tokens, and keys. The keychain items can be shared between apps
from the same developer.

The actual storage is a single SQLite database, accessed by a system daemon: this daemon
queries for entries that correspond to the “keychain-access-group” of the app and the
“application-identifier” entitlement.

Components of a Keychain Item
Along with the access group, each keychain item contains administrative metadata (such as
“created” and “last updated” timestamps).

It also contains SHA-1 hashes of the attributes used to query for the item (such as the
account and server name) to allow look-up without decrypting each item. And, finally, it
contains the encryption data, which includes the following:

	Version number

	Access control list (ACL) data

	The value indicating which protection class the item is in

	A per-item key wrapped with the protection class key

	The dictionary of attributes describing the item (as passed to
SecItemAdd), encoded as a binary plist and encrypted with the
per-item key

For more detailed information, the iOS security guide is found at www.apple.com/business/
docs/iOS_Security_Guide.pdf.

Implementing Keychain Services for Storing Passwords
You can store a user name and password, or other credentials that you use to access a
resource, after you successfully authenticate to the resource. That way, when you reload
your application, you can retrieve those credentials from the keychain, instead of from the
less secure local storage. If the application is restored from an unencrypted backup to a
different device, it will not have the entry in the keychain to go back to, so your credentials
are safe.

http://www.apple.com/business/docs/iOS_Security_Guide.pdf
http://www.apple.com/business/docs/iOS_Security_Guide.pdf

433CHAPTER 13: Using Keychain Services to Secure Data

In the following example we will store a string that could be a password or a token. We use
the SecItemAdd() function available in the Security framework to save data for a given key.
Looking at the function signature in the Keychain Services Reference, we see the following:

func SecItemAdd(_ attributes: CFDictionary!, _ result: UnsafeMutablePointer<Unmanaged
<AnyObject>?>) -> OSStatus

The attributes parameter is a dictionary that describes the data to be inserted and the
security class of the item to be inserted, as well as a variety of optional parameters that
describe the return type for the result.

To add multiple items to a keychain at once, use the kSecUseItemList key with an array of
items as its value. This is only supported for non-password items.

Listing 13-1 provides an example of the code needed to insert a password in the keychain.

Listing 13-1.  Inserting a Password in the Keychain

let key = "password"
let value = "my Password"
if let data = value.dataUsingEncoding(NSUTF8StringEncoding) {
 let query = [
 (kSecClass as String) : kSecClassGenericPassword,
 (kSecAttrAccount as String) : key,
 (kSecValueData as String) : value
]
 SecItemAdd(query as CFDictionaryRef, nil)
}

In our example, we assume that the key did not exist before. In a practical implementation,
we would want to delete an existing key before inserting it with a given value. We can
express this a bit more cleanly by using a NSMutableDictionary object that allows us to pass
the keys and values as lists (Listing 13-2).

Listing 13-2.  Inserting Keys and Values as Lists

let key = "password"
let value = "my Password"
if let data = value.dataUsingEncoding(NSUTF8StringEncoding) {
 
 let query = NSMutableDictionary(
 objects: [kSecClassGenericPassword, key, value],
 forKeys: [kSecClass, kSecAttrAccount, kSecValueData]
) as CFDictionaryRef
 SecItemAdd(query, nil)
}

We see in the examples in Listing 13-2 that the value string was converted to a NSData
object, which is necessary since the value could be unicode.

434 CHAPTER 13: Using Keychain Services to Secure Data

Retrieving Data from Keychain Services
To read from the keychain services, we use the function SecItemCopyMatching(), which
returns one or more keychain items that match a search query, or copies attributes of
specific keychain items.

The function signature is as follows:

func SecItemCopyMatching(query: CFDictionary!, _ result:UnsafeMutablePointer<Unmanaged
<AnyObject>?>) -> OSStatus{...}

The OSStatus return value is a result code. See Keychain Services Result Codes in the Security
Framework Reference for more detail on these codes. This is buried in the documentation
and you can get to it selecting the path Security Framework Reference / Keychain Services
Reference / Search Results Constants.

By default, this function returns only the first match found. To obtain more than one
matching item at a time, specify the search key kSecMatchLimit with a value greater than 1.
The result will be an object of type CFArrayRef containing up to that number of matching
items.

To retrieve any data for the given key, we need to pass to the result a reference to an
object that will be populated by the function. Just as for the insert operation, the query is a
dictionary that specifies the attribute name, its type, and a couple of parameters that enable
the data return and the number of items to retrieve.

Obviously, the response is optional, as the key could not exist, and there is a chance that the
operation will fail so we also need to check for the call return code that takes the value noErr
when the operation succeeded (Listing 13-3).

Listing 13-3.  Checking for the Call Return Codes

let key = "password"
var password : String!;
var response: Unmanaged<AnyObject>?
 
let query = NSMutableDictionary(
 objects: [kSecClassGenericPassword, key, kCFBooleanTrue, kSecMatchLimitOne],
 forKeys: [kSecClass, kSecAttrAccount, kSecReturnData, kSecMatchLimit]
) as CFDictionaryRef
 
let status = SecItemCopyMatching(query, &response)
 
if status == noErr && response != nil {
 if let data = response!.takeRetainedValue() as? NSData {
 password = NSString(data: data, encoding: NSUTF8StringEncoding)
 }
}

In this example, we read and assign a simple string to the password variable. As mentioned
before, for data types other than passwords we can store multiple values.

https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_UnsafeMutablePointer_Structure/index.html#//apple_ref/swift/struct/s:VSs20UnsafeMutablePointer
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_Unmanaged_Structure/index.html#//apple_ref/swift/struct/s:VSs9Unmanaged
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Reference/Swift_AnyObject_Protocol/index.html#//apple_ref/swift/intf/s:PSs9AnyObject

435CHAPTER 13: Using Keychain Services to Secure Data

Invalidating Keychain Service Records
To delete individual items, we use the SecItemDelete function. This function has the
following signature:

func SecItemDelete(query: CFDictionary!) -> OSStatus

The query is a dictionary containing an item class specification and optional attributes for
controlling the search. As always, for details on the currently defined search attributes you
should consult the Security Framework Reference, as the API might change with future
versions of Swift or iOS.

Just as for the other calls, the OSStatus return value is a result code.

Let’s see how deleting a password would look (Listing 13-4).

Listing 13-4.  Deleting a Password from the Keychain

let key = "password"
 
let query = NSMutableDictionary(
 objects: [kSecClassGenericPassword, key],
 forKeys: [kSecClass, kSecAttrAccount]
) as CFDictionaryRef
 
let status = SecItemDelete(query)
if status == noErr {
 print("password deleted")
}

If we want to delete all passwords, we can use the same function call, this time with no
value for the kSecAttrAccount. This will have the effect of deleting all items of the class
kSecClassGenericPassword (Listing 13-5).

Listing 13-5.  Deleting All Passwords from the Keychain

let query = NSMutableDictionary(
 objects: [kSecClassGenericPassword],
 forKeys: [kSecClass]
) as CFDictionaryRef
 
let status = SecItemDelete(query)
 
if status == noErr {
 print("all passwords deleted")
}

Of course, this could be compressed as

if SecItemDelete([(kSecClass as String) : kSecClassGenericPassword]) == noErr {
 print("all passwords deleted")
}

436 CHAPTER 13: Using Keychain Services to Secure Data

Setting Up an Application to Test Keychain Services
We will use a one-page application just as we did for the Fitbit application, and we will reuse
some elements, particularly the UILogger.swift. To handle the Keychain API calls, we set up
a class named Keychain, which will be described in detail later.

To be able to use Keychain Services, we need to link the binary with the Security.framework
library, just as in Figure 13-5.

Figure 13-5.  Linking the app with the Security Framework

The View Controller
The view controller code is very simple. We created a text input field where one can enter
the string to be saved to the keychain. In this example we save to the keychain a field
named “token.” To make things more interesting, if no value was provided, we populate it
with the current date/time: this will help with debugging and verifying that the application
reads correctly from the keychain after it was restarted (Listing 13-6).

Listing 13-6.  The ViewController.swift file

import UIKit
 
class ViewController: UIViewController {
 @IBOutlet var clearButton : UIButton!
 @IBOutlet var clearKeychainButton : UIButton!
 @IBOutlet var saveButton : UIButton!
 @IBOutlet var readButton : UIButton!

437CHAPTER 13: Using Keychain Services to Secure Data

 @IBOutlet var textArea : UITextView!
 @IBOutlet var textField : UITextField!
 var logger: UILogger!
 
 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.
 logger = UILogger(out: textArea)
 }
 
 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }
 
 @IBAction func saveToKeychain() {
 var value = textField.text!;
 if value.isEmpty {
 let dateFormatter:NSDateFormatter = NSDateFormatter()
 dateFormatter.dateFormat = "yyyy-MM-dd HH:mm:ss"
 value = dateFormatter.stringFromDate(NSDate())
 }
 
 logger.logEvent("Save to keychain: \(value)")
 Keychain.set("token", value: value)
 }
 
 @IBAction func readFromKeychain() {
 // the response is an Optional<NSData> so it needs to be unwrapped
 if let value = Keychain.get("token") {
 logger.logEvent("Read from keychain: \(value)")
 }
 else {
 logger.logEvent("No value found in the keychain")
 }
 }
 @IBAction func clickClearButton() {
 logger.clear()
 }
 @IBAction func clickClearKeychainButton() {
 Keychain.clear()
 logger.logEvent("The keychain data has been cleared")
 }
}

We can see that we created a textArea for the inline logging of the activity and a textField
that will be used to input the inserted value, as well as a few buttons. Figure 13-6 shows a
detail view of the Main.storyboard that shows how the buttons and fields are wired.

438 CHAPTER 13: Using Keychain Services to Secure Data

The Keychain Class
We create a few private class methods to encapsulate the query constructors. We will save
them as the Keychain.swift file.

For the create/update query, we take a key name and the value to be inserted, as shown in
Listing 13-7. We have to convert the values to String before assigning them to the dictionary—
this used to work without the need of an explicit conversion in earlier versions of Swift.

Listing 13-7.  The updateQuery( ) Function

private class func updateQuery(key: String, value: NSData) -> CFDictionaryRef {
 return NSMutableDictionary(
 objects: [kSecClassGenericPassword, key, value],
 forKeys: [String(kSecClass), String(kSecAttrAccount), String(kSecValueData)]
)
}

Figure 13-6.  The application storyboard

439CHAPTER 13: Using Keychain Services to Secure Data

The deleteQuery looks very similar to the updateQuery, but it takes only a key String
(Listing 13-8).

Listing 13-8.  The deleteQuery( ) Function

private class func deleteQuery(key: String) -> CFDictionaryRef {
 return NSMutableDictionary(
 objects: [kSecClassGenericPassword, key],
 forKeys: [String(kSecClass), String(kSecAttrAccount)]
)
}

The set function uses the two queries previously mentioned to first delete an existing key
and then add the key with the new value (Listing 13-9).

Listing 13-9.  The set( ) Function

public class func set(key: String, value: String) -> Bool {
 if let data = value.dataUsingEncoding(NSUTF8StringEncoding) {
 SecItemDelete(deleteQuery(key))
 return SecItemAdd(updateQuery(key, value: data), nil) == noErr
 }
 return false
}

To read existing entries, we use the functions shown in Listing 13-10. The get() is rather
simple, since it relies on the getData() to do the heavy lifting, and it only returns a NSString
object. For the getData() we need to do a fancy dance to extract the status and the
response.

Listing 13-10.  The get( ) and getData( ) Functions in the Keychain.swift File

public class func get(key: String) -> NSString? {
 let query = searchQuery(key)
 if let data = getData(query) {
 return NSString(data: data, encoding: NSUTF8StringEncoding)
 }
 return nil
}
 
public class func getData(query: CFDictionaryRef) -> NSData? {
 var response: AnyObject?
 let status = withUnsafeMutablePointer(&response) {
 SecItemCopyMatching(query, UnsafeMutablePointer($0))
 }
 return status == noErr && response != nil
 ? response as! NSData?
 : nil
}

440 CHAPTER 13: Using Keychain Services to Secure Data

We observe that the response comes (eventually) as NSData and has to be converted back
to a String. The getData() function can be used on its own to fetch a value given a well-
formatted query (not necessarily password type). It returns an NSData object that can be
converted to any given data type we expect to read back from the keychain.

Listing 13-11 shows the code for the entire Keychain class. We leave as an exercise for
the user to create a setData() function that would handle a variety of item types. Keep in
mind that you have to use the same value for kSecClass when deleting the entries before
inserting them.

Listing 13-11.  The Keychain.swift File

import Foundation
import Security
 
public class Keychain {
 public class func set(key: String, value: String) -> Bool {
 if let data = value.dataUsingEncoding(NSUTF8StringEncoding) {
 SecItemDelete(deleteQuery(key))
 return SecItemAdd(updateQuery(key, value: data), nil) == noErr
 }
 return false
 }
  
 public class func get(key: String) -> NSString? {
 let query = searchQuery(key)
 if let data = getData(query) {
 return NSString(data: data, encoding: NSUTF8StringEncoding)
 }
 return nil
 }
  
 public class func getData(query: CFDictionaryRef) -> NSData? {
 var response: AnyObject?
 let status = withUnsafeMutablePointer(&response) {
 SecItemCopyMatching(query, UnsafeMutablePointer($0))
 }
 return status == noErr && response != nil
 ? response as! NSData?
 : nil
 }
  
 public class func delete(key: String) -> Bool {
 return SecItemDelete(deleteQuery(key)) == noErr
 }
  
 public class func clear() -> Bool {
 if SecItemDelete([(kSecClass as String) : kSecClassGenericPassword]) == noErr {
 print("all passwords deleted")
 }
 return SecItemDelete(clearQuery()) == noErr
 }

441CHAPTER 13: Using Keychain Services to Secure Data

 private class func updateQuery(key: String, value: NSData) -> CFDictionaryRef {
 return NSMutableDictionary(
 objects: [kSecClassGenericPassword, key, value],
 forKeys: [String(kSecClass), String(kSecAttrAccount), String(kSecValueData)]
)
 }
 private class func deleteQuery(key: String) -> CFDictionaryRef {
 return NSMutableDictionary(
 objects: [kSecClassGenericPassword, key],
 forKeys: [String(kSecClass), String(kSecAttrAccount)]
)
 }
 private class func searchQuery(key: String) -> CFDictionaryRef {
 return NSMutableDictionary(
 objects: [kSecClassGenericPassword, key, kCFBooleanTrue, kSecMatchLimitOne],
 �forKeys: [String(kSecClass), String(kSecAttrAccount), String(kSecReturnData),

String(kSecMatchLimit)]
)
 }
 private class func clearQuery() -> CFDictionaryRef {
 return [(kSecClass as String) : kSecClassGenericPassword]
 }
  
}

Running the Demo Application
There is no magic to this application: it simply saves some password-type values and
retrieves them from the keychain, with the output shown in Figure 13-7.

Figure 13-7.  Application output

442 CHAPTER 13: Using Keychain Services to Secure Data

Summary
In this chapter, you learned some of the basics of key encryption, some of the particulars of
Apple’s implementation of Keychain Services, and finally how to enable your app to interact
with the Keychain Services.

443

Chapter 14
Using Touch ID for Local
Authentication

Manny de la Torriente
Ever-increasing rates of phone theft and identity fraud have pushed second-factor
authentication from a desired feature to a necessity. Touch ID allows developers to use the
iPhone’s built-in fingerprint sensor without any of the heavy lifting of pattern recognition or
low-level encryption. In this chapter, readers will learn about the framework and how to add
fingerprint identification to their apps.

Introduction to Touch ID
Touch ID is a fingerprint sensing system that makes secure access to an iOS device fast
and easy. In this chapter you’ll learn how to integrate and use the LocalAuthentication
framework to request authentication from users using Touch ID. The LocalAuthentication
class allows you to invoke Touch ID verification without involving the keychain.

Touch ID is an easy-to-use mechanism and is very secure. All Touch ID operations are handled
inside Secure Enclave. The Secure Enclave is a coprocessor within the Apple A7 or later
A-series processor, and it is responsible for processing fingerprint data from the Touch ID
sensor. An application cannot access data associated with an enrolled fingerprint (or the kernel);
it is only notified once a user has successfully authenticated (see diagram in Figure 14-1).

444 CHAPTER 14: Using Touch ID for Local Authentication

LocalAuthentication security differs from that of keychain. In the keychain case, the trust
is between the operating system and Secure Enclave. In the LocalAuthentication case,
the trust is between the application and the operating system. No secrets will be stored
in the case of LocalAuthentication as there is no direct access to Secure Enclave—only
knowledge of any authentication results.

LocalAuthentication Use Cases
LocalAuthentication can be used as a generic policy evaluation mechanism to do the
following:

	Verify that a user is enrolled so you can unlock certain features of an
application.

	Enables parental control to be sure that the device owner is present.

	Provide first-factor authentication, without passcode backup.

The sample app you’ll write in this chapter requires a device that supports Touch ID. The
iPhone 5s and newer, iPad Air 2, and iPad Mini 3 all support Touch ID.

Building a Touch ID Application
The sample application you’ll build will demonstrate a simple use case, which is to
authenticate a user utilizing Touch ID without keychain. The app will consist of a single scene
with a grouped table view similar to the illustration in Figure 14-2. The table view will have a
single row that will be used to initiate an authentication flow when selected. Below the table
view will be a text view that will serve as a window for log output.

Figure 14-1.  Architecture

445CHAPTER 14: Using Touch ID for Local Authentication

If at some point you decide to support additional use case examples, you can simply add a
new row for each use case.

The Touch ID prompt is a standard iOS user interface (UI), which can include a custom
prompt message that you define. Also provided by the system is an Enter Passcode option
as a fallback, as shown in Figure 14-3. The fallback case is detailed in the section “Creating
the Project.”

Figure 14-2.  The TouchIDApp main scene

446 CHAPTER 14: Using Touch ID for Local Authentication

Figure 14-3.  Standard system UI for Touch ID and passcode input

447CHAPTER 14: Using Touch ID for Local Authentication

Creating the Project
We are going to create an iOS single-view application Xcode project named TouchIDApp,
select Swift as the Language, and use the defaults for Language and Devices.

Building the Interface
Open the storyboard, then delete the current view controller and replace it with a table view
controller. Select Table View Controller, and then from the Attributes Inspector, set it as the
initial view controller for the storyboard by setting the check box for Is Initial View Controller
as shown on the right in Figure 14-5.

Figure 14-4.  Creating a new single-view Xcode project

448 CHAPTER 14: Using Touch ID for Local Authentication

Open the ViewController.swift file and change the class declaration so that the base class
is UITableViewController.

class ViewController: UITableViewController {
}

Open the storyboard and from the Identity inspector in the Custom Class section, set the
class to ViewController as shown in Figure 14-6.

Note  If ViewController is not visible in the drop-down, build the project and it will appear.

Figure 14-6.  Setting the custom class

Figure 14-5.  Main storyboard initial view

449CHAPTER 14: Using Touch ID for Local Authentication

Embed the table view controller in a navigation controller by selecting the table view
controller, and then from the Xcode menu choose Editor ➤ Embed In ➤ Navigation Controller.
From the Documents Outline on the left, select the Table View object and change its style
to Grouped in the Attributes Inspector. Set the title for the Navigation Item in the table view
controller to Touch ID. Your storyboard should look similar to the one in Figure 14-8.

Figure 14-7.  Setting the table view cell style

Figure 14-8.  Embed the table view controller in a navigation controller

Now select the table view cell, and then from the Attributes Inspector, change the table view
cell style to Subtitle. Also set the reuse Identifier to AuthenticateCell as shown in Figure 14-7.

Add a text view below the table view cell and adjust the height so it’s similar to Figure 14-9.
The text view will be used as a window to display log output.

450 CHAPTER 14: Using Touch ID for Local Authentication

Figure 14-9.  Adding a text view for log output

Figure 14-10.  Creating an outlet

Use the Assistant editor such that you have a split view with the storyboard on one side and
the ViewController.swift file in the other, as in Figure 14-10. Control-drag from the text
view on the storyboard to the view controller file to create an outlet. In the pop-up window
type the name textView and click Connect.

In the viewDidLoad method, initialize the text view text to an empty string (see Listing 14-1).

Listing 14-1.  The viewDidLoad Method in the ViewController Class

override func viewDidLoad() {
 super.viewDidLoad()
 textView.text = ""
}

451CHAPTER 14: Using Touch ID for Local Authentication

Implementing the UITableView Methods
Because this sample only has a single section that contains a single row, you won’t need
an actual data source. So the numberOfSectionsInTableView method should always return a
value of 1. The table view method numberOfRowsInSection should also return a value of 1 as
shown in Listing 14-2.

Listing 14-2.  Setting Up the Number of Table View Sections and Rows

override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 return 1
}
 
override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 return 1
}

When the table view object asks for the title of a section, because there is only a single section,
you return a string containing “Actions” to represent the section header as in Listing 14-3.

Listing 14-3.  Setting Up the Section Header

override func tableView(tableView: UITableView, titleForHeaderInSection section: Int) ->
String? {
 return "Actions"
}

When the table view object asks for a cell to insert in a particular row, return a reusable
table view cell object for the cell you set up in the storyboard with the reuse identifier
AuthenticateCell. Set the cell’s text label text to Authenticate and its detailed text label text
to Local Authentication using Touch ID (see Listing 14-4).

Listing 14-4.  Setting Up the Authentication Table View Cell

override func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath:
NSIndexPath) -> UITableViewCell {
 �let cell = tableView.dequeueReusableCellWithIdentifier("AuthenticateCell",

forIndexPath: indexPath)
 cell.textLabel?.text = "Authenticate"
 cell.detailTextLabel?.text = "Local Authentication using Touch ID"
 return cell
}

When you select a table view row, the table view object informs its delegate about the new
row selection. Here is where the authentication workflow is initiated. Call the table view
deselectRowAtIndexPath method, which will ensure that the table view row is deselected
after any operation completes (see Listing 14-5). Then call the authenticate method which
you will implement in an upcoming section.

452 CHAPTER 14: Using Touch ID for Local Authentication

Listing 14-5.  Setting Up the Actions When a Table View Row Is Selected

override func tableView(tableView: UITableView, didSelectRowAtIndexPath indexPath:
NSIndexPath) {
 tableView.deselectRowAtIndexPath(indexPath, animated: true)
 authenticate()
}

Integrating Touch ID for Fingerprint Authentication
In the file ViewController.swift, import the LocalAuthentication framework; place it just
below the UIKit import statement as shown in Listing 14-6.

Listing 14-6.  The authenticate Method in the ViewController Class

import UIKit
import LocalAuthentication

Evaluating Authentication Policies
Authentication contexts are used to evaluate the authentication capabilities of an iOS
device on which the application is run. An iOS device may or may not have a fingerprint
scanner, or Touch ID may have been disabled by actions such as too many failed attempts
to authenticate. Using a context to preflight an authentication policy allows an application
to determine if it’s possible for authentication to succeed; for example, requesting the user
authentication using personal information such as Touch ID. An authentication context is
represented by the LAContext object.

Touch ID Authentication without Keychain
Touch ID without keychain is done in two steps.

The first step is to preflight an authentication policy to see if it’s possible for
Touch ID authentication to succeed on the device. This is accomplished by calling
the canEvaluatePolicy method of a local authentication context object. The
authentication policy being evaluated is DeviceOwnerAuthenticationWithBiometrics,
which is device owner authentication using a biometric method (Touch ID). The
DeviceOwnerAuthenticationWithBiometrics is a property of the LAPolicy class.

If the canEvaluatePolicy conditions aren’t met, then the guard statement shown in Listing 14-7
is used to transfer program control out of scope.

Listing 14-7.  A Guard Statement to Evaluate Whether or Not Authentication Can Proceed

let context = LAContext()
var error: NSError?
 
guard context.canEvaluatePolicy(.DeviceOwnerAuthenticationWithBiometrics, error: &error) else {
 printMessage("canEvaluatePolicy failed: \(error!.localizedDescription)")
 return
}

453CHAPTER 14: Using Touch ID for Local Authentication

If conditions are met and Touch ID is available, the second step is to obtain authorization
from the user. This is accomplished by calling the evaluatePolicy method of a local
authentication context object. The authentication policy being evaluated is
DeviceOwnerAuthentication. The call must include a string with a short concise description
of the reason for requesting authentication. The localizedReason parameter is required, so
an empty string or nil value is not accepted. Notice that the error parameter is passed by
value. See the code in Listing 14-8.

Listing 14-8 shows the complete authenticate method. Place this code at the bottom of the
ViewController class.

Listing 14-8.  The authenticate Method Using Touch ID

func authenticate() {
 printMessage("authenticating…")
 
 let context = LAContext()
 var error: NSError?
 
 �guard context.canEvaluatePolicy(.DeviceOwnerAuthenticationWithBiometrics, error: &error)

else {
 printMessage("canEvaluatePolicy failed: \(error!.localizedDescription)")
 return
 }
 
 // Touch ID is available
 
 let reason = "Authenticate to login"
 �context.evaluatePolicy(.DeviceOwnerAuthentication, localizedReason: reason, reply: {

(success, error) -> Void in
 
 if success {
 self.printMessage("Authentication success!")
 } else {
 if let error = error {
 self.printMessage("Error: \(error.localizedDescription)")
 }
 }
 })
}

The response block from evaluatePolicy is executed when policy evaluation finishes. This
block is evaluated on a private queue internal to the framework in an unspecified threading
context. If you intend to access any of the UI components from within the response, then
be sure to access them in the main thread. The example in Listing 14-9 demonstrates how

Note  The canEvaluatePolicy method must not be called in the response block of
evaluatePolicy because doing so could lead to a deadlock.

454 CHAPTER 14: Using Touch ID for Local Authentication

the printMessage convenience method updates a text view in the main thread. Add the code
from Listing 14-9 to the end of the ViewController class.

Listing 14-9.  Ensure a Text View Is Updated in the Main Thread

func printMessage(message: String) {
 dispatch_async(dispatch_get_main_queue()) { () -> Void in
 self.textView.text = self.textView.text.stringByAppendingString(message + "\n")
 �self.textView.scrollRangeToVisible(NSMakeRange(self.textView.text.characters.

count-1, 0))
 }
}

The dispatch_async method submits a block for asynchronous execution on the main queue
and returns immediately. The dispatch_get_main_queue method returns the serial dispatch
queue associated with the application’s main thread.

User-Defined Fallback for Authentication
In the case where the biometric authentication fails, the Try Again prompt will present an
Enter Password button. Tapping the Enter Password button will cause the response block
to cancel the operation and return an error that indicates that a user defined fallback is
expected. Table 14-1 shows the possible errors.

Table 14-1.  LAContext Error Codes

Error Code Description

AuthenticationFailed Authentication was not successful because the user failed to provide
valid credentials.

UserCancel Authentication was canceled by the user—for example, the user tapped
Cancel in the dialog.

UserFallback Authentication was canceled because the user tapped the fallback button
(Enter Password).

SystemCancel Authentication was canceled by system—for example, if another application
came to foreground while the authentication dialog was up.

PasscodeNotSet Authentication could not start because the passcode is not set on the device.

TouchIDNotAvailable Authentication could not start because Touch ID is not available on the device.

TouchIDNotEnrolled Authentication could not start because Touch ID has no enrolled fingers.

455CHAPTER 14: Using Touch ID for Local Authentication

Run the Application
Build and run the application. You’ll have to use a physical iOS device because the simulator
doesn’t support Touch ID.

	Tap the Authenticate cell. If the device supports Touch ID, and Touch ID
has been enabled and configured by the user, a touch request prompt
will be presented.

	Authenticate with a registered fingerprint. An Authentication Success
message should be output to the text view log window.

	Authenticate with an unregistered fingerprint. You should be prompted
to Try Again, and an Enter Passcode option should be present.

	Enter a valid passcode. An Authentication Success message should be
output to the text view log window.

Things to Remember
	Only foreground applications can use Touch ID.

	Policy evaluation may fail.

	The device may not support it.

	The device supports it, but it could be in a lockout state or some other
configuration setting preventing its use.

	Your application should provide its own fallback password entry
mechanism in the event policy evaluation fails.

Summary
In this chapter you built a sample app that demonstrates how LocalAuthentication can
be used as a generic policy evaluation mechanism. You learned how to integrate and use
LocalAuthentication to start Touch ID authentication and how to avoid a deadlock situation.
You learned about how using different policy evaluation affects the workflow in the case
where biometric authentication fails.

You also reviewed how to call into the main thread in a response block from an unspecified
threading context.

457

Chapter 15
Using Apple Pay to Accept
Payments

Gheorghe Chesler
In the short time since its introduction, Apple Pay has driven Near-Field Communication
(NFC) payments with unprecedented momentum. Apple now takes this a step further
by allowing developers to use Apple Pay to accept payments for physical goods in their
apps, a feature which has been successfully adopted by Uber and Starbucks. This chapter
introduces readers to Apple Pay by demonstrating how to integrate the framework for in-app
payments, as well as discussing traditional challenges in implementing payment systems.

Apple Pay vs. Alternative Payment Systems
In a normal e-commerce transaction that was initiated from a web site, there are multiple
ways to wrap up a payment. The following are some examples:

One-stop-shop: The back-end software on the shopping cart server processes an order
submit form and connects synchronously with the merchant gateway where it submits the
payment. The pass or fail of the transaction is received and delivered back over the same
connection to the browser. This is typical usage for shops using established merchant
gateways like Authorize.Net, Worldpay, Stripe, and many others.

Offline card processing: The shopping cart back-end captures the credit card information,
stores it securely, and then uses that information to process an order asynchronously.
High-volume sites (e.g., Amazon) prefer this method. These sites cannot afford to have
synchronous transactions that take too long, and that block the server resources until the
payment is processed. This method is also used when your order is not ready to ship right
away, and you can only charge the card when the goods have shipped. You might have
noticed that Amazon splits your order in smaller suborders that can be shipped separately,

458 CHAPTER 15: Using Apple Pay to Accept Payments

and you are billed separately as they ship. This is also very convenient when you expect that
parts of the order could be canceled due to delays in availability, and you don’t want to deal
with the fallback of doing partial refunds on tax and shipping costs.

Delegate to the merchant pay interface: Smaller shops with less trust/visibility or those
that don’t want to deal with the hassles of managing a merchant account use a payment
broker like PayPal, which offers a feature called IPN (Instant Payment Notification). Instead
of taking the credit card number, the back end only validates the input and then redirects
the user to PayPal. The customer has the confidence of a large and trusted entity to
perform a transaction that can be disputed if necessary. Once the user decides whether
to complete the transaction, PayPal gives the user the ability to go back to the shop site,
while completing the final part of the transaction by sending a callback to the web site with
a predefined set of parameters. The shop will then know to show the customer the order
invoice for the completed order.

Taking payments through a mobile device app using one of the methods shown previously,
requires you to do the same kind of wiring as is done for a server. You can still choose to
process a payment by collecting the user credit card information (number, expiration date,
pin) and sending it to the merchant gateway along with the user mailing, billing, and shipping
address (for those gateways that require that level of information). This requires you to either
enter the credit card information in a form field or use a card reader to scan that information
and then place an order.

Naturally, the systems that collect this user information have an issue of liability: just as
with back-end applications; we don’t know with certainty that the agent/application/API
that handles the data for this process is secure and does not “call home” to the developer
with the credit card number of the user. At the same time, the credit card information goes
over the wire, increasing the risk of a third party (man-in-the-middle) snooping around your
sensitive data.

In a mobile app that allows you to pay for a good or service, there has to be a way to avoid
handling the credit card information directly. This is where Apple Pay comes in.

Apple introduced the in-app purchase to allow application developers to take in payments
for virtual goods like extended functionality or premium content for an app. This is wrapped
up using your Apple account, which is why you see those charges on your iTunes bill.

For other software or hardware goods, and especially for the case when your shop already
uses a merchant gateway, Apple Pay allows your app to use the information stored in
your Apple Wallet to submit a payment, without actually exposing this information to the
application itself.

You can use Touch ID within your app to authorize payments, releasing tokenized credit and
debit card payment credentials that are securely stored on your iOS device (iPhone, iPad).
Users can also save their billing and shipping information in the Wallet app, and that
information can then be relayed to the merchant gateway to process your payment.

459CHAPTER 15: Using Apple Pay to Accept Payments

Apple Pay Prerequisites
The Apple Pay Programming Guide provides details on how to use the PassKit framework to
integrate Apple Pay. The In-App Purchase Programming Guide (found in the iOS developer
library) provides details on how to use the StoreKit framework to integrate in-app purchases.

You can find the Apple Pay Programming Guide at https://developer.apple.com/library/ios/
ApplePay_Guide/.

In addition to implementing Apple Pay with the PassKit framework, you must

	Set up an account with a payment processor or gateway

	Register a merchant identifier via Certificates, Identifiers & Profiles

	Submit a Certificate Signing Request (CSR) to obtain Public and Private
keys that will be used to encrypt and decrypt Payment Tokens

	Include an Apple Pay entitlement in your app

If you don’t already have an account with a payment processor/gateway, you can find a list
at https://developer.apple.com/apple-pay.

Depending on what your app is offering for sale, you might not be able to use Apple Pay.
Apple Pay is only available to businesses offering physical goods or services for use outside
their iOS app. If the goods or services are used in the app itself, then you must still use
Apple for your in-app payments.

In addition, the payment provider might not support all processors: for example, Authorize.
Net only supports processors that support the Visa token service and the tokenization
solutions developed by MasterCard and American Express. For example, at the time of this
writing, Authorize.Net supported:

	Chase Payment Tech

	Global Payments

	TSYS

	First Data (should be supported late 2015)

For Authorize.Net you can see what processor is assigned to your merchant account on
the payment provider account page (account / merchant profile / payment methods). If your
processor is not supported, you will not be able to configure and use Apple Pay.

An extract from the Authorize.Net documentation shows this in detail:

http://developer.authorize.net/api/reference/features/apple_pay.html

“The Apple Pay solution uses payment network tokenization. You can sign up for this
solution only if your payment processor supports tokenization. If your processor does not
support payment network tokenization or if Authorize.Net does not support your payment
processor’s tokenization interface, you will not be able to sign up for this payment solution.”

https://developer.apple.com/library/ios/ApplePay_Guide/
https://developer.apple.com/library/ios/ApplePay_Guide/
https://developer.apple.com/apple-pay
http://developer.authorize.net/api/reference/features/apple_pay.html

460 CHAPTER 15: Using Apple Pay to Accept Payments

Using Apple Pay to accept payments
Payment Providers
The first thought you might have is to provide your own server-side solution to receive
payments from your app, decrypt payment tokens, and interface with the payment provider.
Handling credit and debit card payments can be complicated, and unless you already have
the expertise and systems in place, it could turn into a complex project that has its own
issues of security and maintenance.

Most payment gateways offer for that purpose a Software Development Kit (SDK) that aims
to be the most reliable way to support Apple Pay in your app. You can find a list of payment
providers that support Apple Pay with their SDKs at https://developer.apple.com/apple-pay/.

Using one of these SDKs is highly recommended. Contact your payment provider for more
information. Most providers that offer Apple Pay support make SDKs available for common
programming languages; this means that you might get just Objective-C support and not
Swift support. This is expected, since Swift is still rather new and merchant gateways don’t
usually provide code for fast-moving targets such as Swift. Fortunately, you can easily
embed Objective-C code in your Swift app, if there is an Objective-C SDK available.

The basic elements required to process an Apple Pay transaction are as follows:

	Present the Apple Pay button

	Present the payment sheet

	Allow the user to authorize the transaction with Touch ID

	Finalize the transaction using the payment token

The Apple Pay button
To allow the user to pay with Apple Pay, the following requirements have to be met:

	The device needs to provide a secure element that is in charge of the
request encryption

	The user has to have registered on the device payment modes that you
as a vendor support

To be able to identify these requirements, we have to use the APIs from PassKit. The same
APIs give you the ability to present the user a “Buy with Apple Pay” button.

Should the device not be set up for Apple Pay, you can present instead a “Set up Apple
Pay” button. Finally, if there is no available payment method that would work with Apple Pay,
you can decide not to show the Apple Pay button at all.

https://developer.apple.com/apple-pay/

461CHAPTER 15: Using Apple Pay to Accept Payments

The Payment Sheet
Once the user has added items to the shopping cart and selects the Apple Pay button; you
have to create a payment request, and use the PassKit API to show to the user a summary
of the order.

Your app provides the information that will be displayed on the payment sheet, where the
user can see the order total and select a shipping address with a valid zip code. You can
calculate the correct shipping charges based on the zip code from the shipping address.

To minimize confusion, only ask for information that is strictly necessary to process the
order. The user is at all times in control and can change the billing and shipping information,
so the tax and shipping charges will be recalculated as necessary. The user can also enter
on the payment sheet a different e-mail address or phone number for the order confirmation.

The proper flow is to show the payment sheet immediately after the user selects Apple Pay
as the payment method, without any pop-ups or intermediary screens.

The data (updated) on the payment sheet is submitted when the user confirms it using
Touch ID.

The Payment Token
When the user authorizes the transaction with Touch ID, PassKit returns a payment token to
your app.

The payment token contains all the information necessary to complete a payment
transaction. This includes the amount charged for the order, the account number specific to
the device, and a cryptogram that can be used only once.

This data is encrypted with the merchant’s public key and can only be decrypted with the
merchant’s private key by either the merchant or the payment processor, on behalf of the
merchant, via the SDK.

Your app must make it clear when it acts as an intermediary party, in particular when the
app decrypts the payment token and passes it to the merchant over the wire to process the
payment with its specific processor.

Figure 15-1 illustrates a typical payment flow. Your app will first check if the device is
compatible with and set up for Apple Pay. If Apple Pay is physically supported (the device
has a secure element), your app will show the “Set up Apple Pay” and offer the user the
ability to set up a payment method that can be used with Apple Pay.

462 CHAPTER 15: Using Apple Pay to Accept Payments

If all conditions are met, your app will display the Apple Pay button. The order is not finalized
yet, as the user still should have the ability to change his billing and shipping information.
This happens in the next step, after the user taps Apple Pay and it displays the payment.

Once the user finalizes the order information, they can use Touch ID to submit the order.
For the payment to be authorized, the order information relevant to finalizing the financial
transaction has to be packaged and sent to the payment processor. For that, the app uses
the PassKit API to get a payment token from the secure element.

With all this gathered information, your app calls the appropriate APIs in the payment
processor SDK, and attempts to finalize the payment. Of course, that means there is still a
chance that things are not going to go as planned, and the payment processor will reject the
payment (card invalid, expired, fraud attempt, etc.).

If the transaction was successful, your app can then display the order confirmation and set
in motion the process of delivery of the order payload, which can be shipping, e-delivery,
plug-in installation, feature activation—whatever is the nature of the product purchased.

Figure 15-1.  Typical payment workflow

463CHAPTER 15: Using Apple Pay to Accept Payments

Taking a closer look at the final part of the transaction, before the payment request is sent to
the merchant system, we can see the role of the payment authorization view controller in this
process. We are at the point where the order amount is known, and that includes all taxes
and shipping costs. The user has used Touch ID to authorize the payment.

Apple Pay sends the payment request to the secure element, a specialized chip on your
device. The secure element adds the payment data to the customer information and
encrypts it in form of a payment token.

The secure element sends the prepared payment token to the Apple’s payment servers,
where the token is encrypted yet again, this time with your merchant identifier certificate.
Other than encrypting the content, the Apple servers do not store or alter the payment
information in any way.

The re-encrypted token is returned to your app for processing. This is convenient, as you
never need to package the merchant identifier in your app, so nobody can snoop in your
memory and extract that information from your app.

To accept payments, Apple provides the PKPaymentAuthorizationViewController class. This
class allows us to create a prompt for the user to authorize a payment request. After the user
authorizes the payment request for the transaction, the delegate is called with a payment
token used to authorize payment for the transaction.

Figure 15-2 shows this interaction.

Figure 15-2.  The payment authorization view controller

Your app can now use the SDK offered by the merchant system to wrap up the last leg of
the process. If you have an existing payment infrastructure, you can send the encrypted
payment token to your servers, where it can be decrypted and the payment can be
processed.

464 CHAPTER 15: Using Apple Pay to Accept Payments

Transaction Types Supported by the Payment Processor
For a payment processor SDK to be able to support Apple Pay, it has to be able to handle a
specific set of e-commerce transactions that give an app the ability to cover all scenarios of
a transaction:

	Authorization

	Capture

	Partial shipment

	Recurring billing

	Order refund

	Transaction chargeback

Authorization: This scenario allows the app to put a hold on a specific amount on the
customer’s account and reserve the funds needed to cover the total amount of the order.
This is usually done when the processing of the order is greatly simplified if the processor
can work with the confidence that the funds could be retrieved when the order is finalized.

Take, for example, the case of e-delivery of content that needs to be processed before
delivery, like watermarking a PDF or preparing personalized content. If the app can verify
that the payment method chosen is valid and the account has the funds needed to cover the
order amount, it can trigger the content processing, while the user is waiting. Some of this
processing could fail for a variety of reasons, and thus the order could not be completed. In
this case no funds have changed hands, and the authorization can be released, along with
showing the proper error message to the user.

Capture: After a successful authorization, or when no authorization of funds is needed,
Capture is actually triggering the funds transfer right away.

Capture can fail in one of many ways: the payment can be invalid, expired, or lacking funds;
the card can be flagged as stolen or the location of the transaction can trigger a stolen card
alert; and so on. These checks are made by the merchant system or by the entities used by
the merchant system to validate the payment method, the signed name on the card, or the
billing or shipping address.

Recurring: This scenario allows the app to handle repeating payments for services, by
setting up a recurring payment plan.

Refund: If an order is returned or a service is disputed, this allows the app to return the
money to the customer’s account.

Chargeback: This is provided to give the app the ability to handle fraudulent or disputed
transactions.

465CHAPTER 15: Using Apple Pay to Accept Payments

Example: using Authorize.Net as the Payment Processor
When using Authorize.Net as your payment processor, there are two ways to process an
Apple Pay transaction.

The API method: The merchant server receives the order request from the app and passes
it along to Authorize.Net. You would use the API method when you need to extract and
centralize the payment data on your server before sending the request to Authorize.Net.
Your server will then format the transaction as an XML or NVP request to the AIM API. The
encrypted transaction data is base64 encoded and contains a format descriptor. Authorize.
Net processes the request and sends the response back to your server. Your server then
replies to your app with the order confirmation data or with the error it received from
Authorize.Net.

The SDK method: The Authorize.Net SDK handles signing the transaction and the
interaction with Authorize.Net. You have to read the Authorize.Net SDK Developer Reference
to see the steps required to wire this in the application:

http://www.authorize.net/content/dam/authorize/documents/ApplePay_sdk.pdf

For the time being, Authorize.Net only offers an Objective-C SDK. This is true for most other
payment processors (Stripe is in the same boat), as Swift is a new language that still shows
changes in syntax and API methods from version to version, and it would be a hassle for
Authorize.Net to maintain code in a moving target.

The SDK only supports the first two types of transactions: Authorization and Capture and
Authorization Only. For all other subsequent transactions (Capture, Refund, Void) your app
will have to use the regular payment APIs. Note that if you use Authorization Only, you still
need to complete the capture to receive the funds from the transaction.

The reason the subsequent transactions are not directly supported by the SDK is that they
are not relevant to the main process of Apple Pay.

Also important to mention is that testing your code using the sandboxed Authorize.Net
environment should be done connected to the Apple developer system and not to the Apple
production systems.

In Figure 15-3 we can see the two methods compared.

http://www.authorize.net/content/dam/authorize/documents/ApplePay_sdk.pdf

466 CHAPTER 15: Using Apple Pay to Accept Payments

Configuring your Environment for Apple Pay
In the section “Apple Pay Prerequisites,” we showed the steps required to configure Apple Pay.

	Set up an account with a payment processor or gateway

	Register a merchant identifier

	Submit a certificate signing request

	Include an Apple Pay entitlement in your app

Let’s take a closer look at what needs to be done, once you know which payment processor
you will use.

To set up the merchant identifier and the certificate signing request go to the Member Center on
your account page in the Apple Developer site and open the “Certificates, Identifiers & Profiles”
as shown in Figure 15-4.

Figure 15-3.  API vs. SDK for Authorize.Net transactions

467CHAPTER 15: Using Apple Pay to Accept Payments

Figure 15-4.  Setting up Certificates, Identifiers & Profiles

Register a Merchant Identifier
Select Identifiers, then Merchant IDs. Use the “+” in the upper right corner to create a new
entry. Enter a descriptive name for your merchant account (e.g., “Credit card payments”),
and a unique identifier in the requested format: the identifier starts with “merchant” then
follows a dot-separated format (e.g., merchant.com.example.authorizenet).

The form will ask you to confirm your configuration and then will allow you to create the
entry. When working with a payment provider, you will need to provide them the merchant
identifier to complete your certificate generation.

Our sample entry shows the following:

Name: Credit card payments using Authorize.Net
Identifier: merchant.com.example.authorizenet

Let’s say we also want to support Stripe in our app, or we create a second app that supports
Stripe, so we try to add another merchant identifier:

Name: Credit card payments using Stripe
Identifier: merchant.com.example.stripe

468 CHAPTER 15: Using Apple Pay to Accept Payments

When we try to add the Stripe entry, the page shows us the following error:

A Merchant ID with Identifier 'merchant.com.example.stripe' is not available. Please enter a
different string.

What the Apple Developer page did not tell us is that this identifier is global. If somebody else
registered it before, it will not be available. The identifier is case-insensitive, so if you alter
capitalization it will not work either. You have to try until you get one to actually work, for example:

Name: Credit card payments using Stripe
Identifier: merchant.com.iot.stripe

Submit a Certificate Signing Request
Clicking again on “Merchant IDs”, we will get the list of registered merchant identifiers where
we can see our new entry. Select the entry and click Edit.

To create a CSR for this entry, click “Create Certificate.”

You now have the choice to obtain and submit a properly formatted CSR from your payment
provider.

For Authorize.Net: the instructions for signing up for Apple Pay already show that you need
the merchant ID from the Identifier field, which is what we just created in the previous step.

You can login to the merchant interface on your Authorize.Net account, click Account in the
main toolbar, and then select Digital Payment Solutions from the left menu. You can now
click the “Sign Up” in the Apple Pay section. You will need the merchant ID you generated
on the Apple member page.

To generate a CSR file, click Apple Pay on the left menu, enter your merchant ID in the Apple
Merchant ID field, and click the “Generate Apple CSR” button.

For Stripe: go to the account Apple Pay section:

https://dashboard.stripe.com/account/apple_pay

This section will not appear by default in your account view, if you never set up Stripe
with Apple Pay before, so following the link will enable that option in the account view.
Click “Create a new certificate”, which should download a CSR file named
stripe.certSigningRequest.

Adding the Merchant CSR to your Apple Account
With the obtained CSR file, you can now go back to the Apple Developer Center,
“Certificates, Identifiers & Profiles” page:

https://developer.apple.com/account/ios/identifiers/merchant/merchantList.action

In the iOS Merchant ID Settings page, click “Create Certificate” and follow the instructions to
submit the CSR that you created on the Merchant page.

https://dashboard.stripe.com/account/apple_pay
https://developer.apple.com/account/ios/identifiers/merchant/merchantList.action

469CHAPTER 15: Using Apple Pay to Accept Payments

If you see a warning in Keychain Access that the certificate was signed by an unknown
authority or that it has an invalid issuer, make sure you have the WWDR intermediate
certificates—G2 and the Apple Root CA—G2 installed in your keychain. You can download
them fromapple.com/certificateauthority.

Once the CSR was uploaded to the Apple page, a new certificate will be generated and
offered for download. You can now download the certificate file (the file is apple_pay.cer).

For Stripe, go back to the Stripe guided menu and upload the certificate. When all is
completed, it will appear as in Figure 15-5.

Figure 15-5.  Apple Pay certificate created on Stripe

https://www.apple.com/certificateauthority/

470 CHAPTER 15: Using Apple Pay to Accept Payments

Figure 15-6.  Enabling Apple Pay support in the app

Include an Apple Pay Entitlement in your app
To enable Apple Pay for your app in Xcode, open the Capabilities pane. Select the switch in
the Apple Pay row, and then select the merchant IDs you want the app to use. Figure 15-6
illustrates this process.

Install Prerequisites for Working with a Payment Processor SDK
As mentioned earlier, you would be hard pressed to find a payment processor that supports
Swift natively. Until that happens, you will have to embed the Objective-C version of the SDK
in your code.

Install the Payment Processor SDK
You can install the SDK manually into your project, which is bit more work; the easiest way
is to install a dependency manager that will allow us to install the SDK on our Mac, such as
Cocoapods or Carthage.

471CHAPTER 15: Using Apple Pay to Accept Payments

The easiest way is to use Cocoapods.

sudo gem install cocoapods
pod init ApplePay.xcodeproj

The first command is run with root privileges to install Cocoapods, then as the regular user,
the second command will create a file called Podfile. Use a text editor or vim to edit the
Podfile file and add Authorize.Net support.

target 'ApplePay' do
pod 'authorizenet-sdk'
end

If you are configuring for Stripe support, the target will look like

target 'ApplePay' do
pod Stripe'
end

Now you can install the SDK in your project by typing “pod install” in your terminal window
(Listing 15-1):

Listing 15-1.  Installing the Payment Processor SDK in Your Project

$ pod install
Creating shallow clone of spec repo `master` from `https://github.com/CocoaPods/Specs.git`
Updating local specs repositories
Analyzing dependencies
Downloading dependencies
Installing authorizenet-sdk (1.9.3)
Generating Pods project
Integrating client project
 
[!] Please close any current Xcode sessions and use `ApplePay.xcworkspace` for this project
from now on.
Sending stats
Pod installation complete! There is 1 dependency from the Podfile and 1 total pod installed.

Follow the suggestion of the installer: close your Xcode project and open instead the
ApplePay.xcworkspace project.

Verify now that support for Objective-C embedding is enabled: in your project settings,
go to the “Build Settings” tab, and make sure -ObjC is present under “Other Linker Flags.”
You can see this in the project in Figure 15-7.

https://github.com/CocoaPods/Specs.git

472 CHAPTER 15: Using Apple Pay to Accept Payments

For Stripe you also need to add the string STRIPE_ENABLE_APPLEPAY to the preprocessor
macros in the build settings of your project, as shown in Figure 15-8. The entry needs to be
added to both debug and release entries in the preprocessor macros.

Figure 15-7.  The project after installing the SDK

Figure 15-8.  Adding a Preprocessor Macro entry for Stripe

473CHAPTER 15: Using Apple Pay to Accept Payments

The Objective-C to Swift Bridging Header
To be able to use the SDK in our Swift code, we need to create a bridging header that allows
us to use Objective-C code from within our Swift code. As mentioned before, most payment
processors offer SDKs in Objective-C, and it will be a while until they will start offering a
Swift version. This will be true of most SDKs you will embed in an app, so writing bridging
headers will be a popular pastime of the Swift warrior.

In the Xcode menu, click File ➤ New ➤ File ➤ iOS ➤ Source ➤ Header File, then click
“Next”; name the file “bridge” and click Create. You can see this in Figure 15-9.

Figure 15-9.  Creating the header file

In the bridge.h type the following import statement at the top of the file (Authorize.Net):

#import <authorizenet-sdk/AuthNet.h>

If you are configuring your app to use Stripe as a payment processor, you will use instead

#import <Stripe/Stripe.h>

Select the Project folder and navigate to Build Settings, search for “Swift Compiler.”Verify
that the “Install Objective-C Compatibility Header” is set to “Yes.” Edit the Objective-C
generated interface header name entries for Debug and Release and set their value to the
bridge.h, the header file.

474 CHAPTER 15: Using Apple Pay to Accept Payments

The Main Storyboard
For a simple storyboard we only define the field where we can specify the order amount,
the Pay button, and a text area that will be used by our logger library to show the ongoing
activity. Figure 15-10 illustrates.

Figure 15-10.  The main storyboard

The logger library
The logger library was assigned a variable in the view controller that will keep an instance
of the logger around with the proper target assigned —in our case we use a text area field
for the activity logging.

We will use the same logger library as in Chapter 12. The logger library has just a couple
of functions that will allow us to track the API activity. These functions will interact with the
textArea field we set up in the view controller. Just as in the view controller, the textArea field
is declared optional, as it will be initialized in the init() function. Listing 15-2 shows the
entire code of the UILogger.swift file.

http://dx.doi.org/10.1007/978-1-4842-1194-6_12

475CHAPTER 15: Using Apple Pay to Accept Payments

Listing 15-2.  The UILogger Library

import Foundation
import UIKit
 
class UILogger {
 var textArea : UITextView!
 
 required init(out: UITextView) {
 dispatch_async(dispatch_get_main_queue()) {
 self.textArea = out
 };
 self.set()
 }
 
 func set(text: String?="") {
 dispatch_async(dispatch_get_main_queue()) {
 self.textArea!.text = text
 };
 }
 
 func logEvent(message: String) {
 dispatch_async(dispatch_get_main_queue()) {
 self.textArea!.text = self.textArea!.text.stringByAppendingString("=> " + message + "\n")
 };
 }
}

We can see the view controller scene with the minimum set of requirements wired in
Figure 15-11. We see the mappings for paymentValueField and textArea, as well as the
payWithApplePay button wiring to the default action.

Figure 15-11.  The view controller scene

476 CHAPTER 15: Using Apple Pay to Accept Payments

Implementing Apple Pay payments with Stripe
To keep things simple, we will continue implementing an example with Stripe—all other
payment processors will have different ways of approaching this, given that some might
have an SDK, and the SDK is usually in Objective-C. Further down the road when the
payment processors warm up to a stable version of Swift, they might even offer a pure Swift
implementation of their SDK.

Your application needs to be able to communicate with your Stripe account and use the
publishable key that was generated when you created your account. You generated two sets
of keys: a test key and a live key. For now, we will set up the test key and initialize the SDK
instance in the AppDelegate.swift file didFinishLaunchingWithOptions() function. This will
make sure this value will be set for the lifecycle of the app. Listing 15-3 shows the relevant
code from AppDelegate.swift.

Listing 15-3.  Setting the Stripe Public Key

import UIKit
import Stripe
 
@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {
 
let StripePublishableKey = "pk_test_i65Y88AqZG908xvGwFIJYkSE"
var window: UIWindow?
 
func application(application: UIApplication, didFinishLaunchingWithOptions launchOptions:
[NSObject: AnyObject]?) ->Bool {
// Override point for customization after application launch.
Stripe.setDefaultPublishableKey(StripePublishableKey)
returntrue
 }
...
}

We know by now that Apple Pay is only available on devices that have the secure element
chip. On devices that do not have this, we can still use the pre-build form component from
the Stripe SDK (STPPaymentCardTextField), or even create our own credit card form. The
recommended method is to use the Apple Pay framework and only fall back to the Stripe
form component should Apple Pay not be available for our device.

If Apple Pay does not fully work in a simulator, you will have to use a device to debug your
app, or use the ApplePayStubs library from the Stripe SDK. See the Stripe instructions on
how to configure ApplePayStubs at https://stripe.com/docs/mobile/ios.

The View Controller
This is a very simple application that uses only one view for everything, so our view
controller will have to be a delegate for both PassKit and the Stripe SDK. When you
implement multiple views, you will have to assign the correct delegate to your views.

https://stripe.com/docs/mobile/ios

477CHAPTER 15: Using Apple Pay to Accept Payments

The class shows the delegate assignments as mentioned earlier. Then we defined the
payment networks that we decide to support in our apps. This is sometimes a requirement
for certain merchants that can only use Visa/MC but do not want to use Amex because of
the higher rates, or whatever other reason.

The pay button is assigned to the payButton variable that needs to be of UIButton type. The
textArea field is used by our logger library. The paymentValueField is a simple text field we
created to allow us to change the amount being charged for the order.

The paymentTextField is of STPPaymentCardTextField type. This field, as well as the
functions prefixed with “payment,” is used by the Stripe SDK.

We can see the header of the view controller in Listing 15-4:

Listing 15-4.  The ViewController.swift Header

import UIKit
import PassKit
import Stripe
 
class ViewController: UIViewController, STPPaymentCardTextFieldDelegate,
PKPaymentAuthorizationViewControllerDelegate {
let SupportedPaymentNetworks = [PKPaymentNetworkVisa, PKPaymentNetworkMasterCard,
PKPaymentNetworkAmex]
let ApplePayMerchantID = "merchant.com.iot.stripe"
@IBOutletvar payButton: UIButton?
@IBOutletvar textArea: UITextView!
@IBOutletvar paymentTextField: STPPaymentCardTextField?
@IBOutletvar paymentValueField: UITextField!
var logger: UILogger!
 ...
}

There is a bit of work we need to do in the viewDidLoad() function, to initialize our logger
and the paymentTextField, as well as enable or disable the pay button depending on the app
having the ability to use the specified payment networks. Listing 15-5 shows the code for
the viewDidLoad() function from the ViewController.swift.

Listing 15-5.  The viewDidLoad() Function

overridefunc viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.
logger = UILogger(out: textArea)
 
paymentTextField = STPPaymentCardTextField()
paymentTextField?.center = view.center
view.addSubview(paymentTextField!)
paymentTextField?.delegate = self
payButton?.enabled = PKPaymentAuthorizationViewController.canMakePaymentsUsingNetworks
(SupportedPaymentNetworks)
 }

478 CHAPTER 15: Using Apple Pay to Accept Payments

The pay button can also be enabled/disabled when the payment user changes the information.
Once the user gets the Apple Pay pop-up, he can switch the card to a different card, select
a different shipping address, and so on. Some of these changes might invalidate our ability
to pay with Apple Pay and our restrictive list of payment networks, which is why we need to
update the pay button. Listing 15-6 shows the code for the paymentCardTextFieldDidChange()
function, which is located in the ViewController.swift file.

Listing 15-6.  The paymentCardTextFieldDidChange() Function

func paymentCardTextFieldDidChange(textField: STPPaymentCardTextField) {
payButton?.enabled = textField.valid
 }

Finally, we need another helper method that would handle how the view controller for the
pop-up is dismissed once the payment cycle is completed. You can see this in Listing 15-7.

Listing 15-7.  The paymentAuthorizationViewControllerDidFinish( ) Function

func paymentAuthorizationViewControllerDidFinish(controller:
PKPaymentAuthorizationViewController) {
 controller.dismissViewControllerAnimated(true, completion: nil)
 }

We saw in the view controller scene that the pay button’s “Touch Up Inside” action was
wired to the function payWithApplePay(). To keep things simple, we only log the error
condition when the amount was not a valid number. If the amount is valid, we call the
applePay() function. Listing 15-8 shows the code for the payWithApplePay() function in the
ViewController.swift file.

Listing 15-8.  The payWithApplePay() Function

@IBActionfunc payWithApplePay(sender: UIButton) {
iflet total = Double(paymentValueField.text!) {
logger.logEvent("Pay with Apple Pay the amount: \(total)")
self.applePay(total);
 }
else {
logger.logEvent("No valid amount specified")
 }
 }
 
The applePay() method prepares a request using the shopping cart item that we conveniently
created here with the label “New Charge”. The request is assigned the ApplePayMerchantID
that we set up previously and the SupportedPaymentNetworks that define which cards we
accept. The request also is set to work for US transactions effected in US dollars.

Once the request is prepared, we test with the canSubmitPaymentRequest() function from the
Stripe SDK. This will fail if Apple Pay is not available, or a default credit card was not set up.
We can choose in case of error to default to Stripe’s PaymentKit Form. We leave this part
of implementation to you, concentrating instead on completing the Apple Pay transaction,
when we can. Listing 15-9 shows the code for the applePay() function.

479CHAPTER 15: Using Apple Pay to Accept Payments

Listing 15-9.  The applePay( ) Function

func applePay(price: Double) {
let item = PKPaymentSummaryItem(label: "New Charge", amount: NSDecimalNumber(double: price))
let request = PKPaymentRequest()
 request.merchantIdentifier = ApplePayMerchantID
 request.supportedNetworks = SupportedPaymentNetworks
 request.merchantCapabilities = .Capability3DS
 request.countryCode = "US"
 request.currencyCode = "USD"
 request.paymentSummaryItems = [item]
ifStripe.canSubmitPaymentRequest(request) {
logger.logEvent("Paying with Apple Pay and Stripe")
// Apple Pay is available and the user created a valid credit card record
let applePayController = PKPaymentAuthorizationViewController(paymentRequest: request)
 applePayController.delegate = self
presentViewController(applePayController, animated: true, completion: nil)
 } else {
logger.logEvent("Cannot submit Apple Pay payments")
//default to Stripe's PaymentKit Form
 }
 }
 
The PKPaymentAuthorizationViewController will call the paymentAuthorizationViewController()
function in our code, which was created to comply with the SDK’s interface. This method creates
a token with the payment information; you can now send this token to your server, to be able to
charge the card. Listing 15-10 shows the code for the paymentAuthorizationViewController()
located in the ViewController.swift file.

Listing 15-10.  The paymentAuthorizationViewController( ) Function

func paymentAuthorizationViewController(
 controller: PKPaymentAuthorizationViewController,
 didAuthorizePayment payment: PKPayment,
 completion: (PKPaymentAuthorizationStatus) ->Void) {
let this = self
Stripe.createTokenWithPayment(payment) { token, error in
iflet token = token {
 this.logger.logEvent("Got a valid token: \(token)")
//handle token to create charge in backend
  
 completion(.Success)
 } else {
 this.logger.logEvent("Did not get a valid token")
 completion(.Failure)
 }
 }
 }

480 CHAPTER 15: Using Apple Pay to Accept Payments

Testing our app
Let’s give our app a first try. Bring up the simulator, and enter a valid amount, then click
the Pay button. You will see an output similar to the one in Figure 15-12. Now the user can
change the card being used. There is no shipping or billing information, because we did not
configure any of that information yet, so the most basic thing is the ability to change the
card. The simulator has three demo cards set up, a VISA, a MasterCard, and an Amex card.
The simulator will naturally not show Touch ID, but will show “Pay with Passcode” instead.

Figure 15-12.  First test of the app

481CHAPTER 15: Using Apple Pay to Accept Payments

If the transaction was successful, once the transaction reached completion (.Success), the
pop-up window will show a confirmation screen for a couple of seconds, then go back to
our app. Figure 15-14 shows the confirmation screen.

To verify that we get a valid token, we can set a breakpoint in the view controller and walk
through, as shown in Figure 15-13.

Figure 15-13.  Debugging a Stripe payment

482 CHAPTER 15: Using Apple Pay to Accept Payments

Processing the charge
To charge the card, you have to build a server-side application that takes the generated
payment token and submits a charge request to Stripe. This is necessary since you will be
using your Stripe secret key to finalize the payment, and it would not be wise to expose that
in your application code. Furthermore, your payment workflow needs to centralize all placed
orders, to allow accounting to manage the orders submitted from mobile devices.

Every payment processor has a decent amount of sample code available along with server-
side SDKs that simplify your development. For Stripe, the tutorials for charging a card are
located at https://stripe.com/docs/tutorials/charges.

The View Controller code
Our application is essentially contained in the ViewController.swift file. Listing 15-11
shows the full code for this file.

Listing 15-11.  The ViewController.swift File

import UIKit
import PassKit
import Stripe
 
class ViewController: UIViewController, STPPaymentCardTextFieldDelegate,
PKPaymentAuthorizationViewControllerDelegate {
let SupportedPaymentNetworks = [PKPaymentNetworkVisa, PKPaymentNetworkMasterCard,
PKPaymentNetworkAmex]

Figure 15-14.  The Apple Pay confirmation screen

https://stripe.com/docs/tutorials/charges

483CHAPTER 15: Using Apple Pay to Accept Payments

let ApplePayMerchantID = "merchant.com.iot.stripe"
@IBOutletvar payButton: UIButton?
@IBOutletvar textArea: UITextView!
@IBOutletvar paymentTextField: STPPaymentCardTextField?
@IBOutletvar paymentValueField: UITextField!
var logger: UILogger!
 
overridefunc viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.
logger = UILogger(out: textArea)
 
paymentTextField = STPPaymentCardTextField()
paymentTextField?.center = view.center
view.addSubview(paymentTextField!)
paymentTextField?.delegate = self
payButton?.enabled = PKPaymentAuthorizationViewController.canMakePaymentsUsingNetworks
(SupportedPaymentNetworks)
 }
 
func paymentCardTextFieldDidChange(textField: STPPaymentCardTextField) {
payButton?.enabled = textField.valid
 }
 
func paymentAuthorizationViewControllerDidFinish(controller:
PKPaymentAuthorizationViewController) {
 controller.dismissViewControllerAnimated(true, completion: nil)
 }
 
overridefunc didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.
 }
 
@IBActionfunc payWithApplePay(sender: UIButton) {
logger.set()
iflet total = Double(paymentValueField.text!) {
logger.logEvent("Pay with Apple Pay the amount: \(total)")
self.applePay(total);
 }
else {
logger.logEvent("No valid amount specified")
 }
 }
func applePay(price: Double) {
let item = PKPaymentSummaryItem(label: "New Charge", amount: NSDecimalNumber(double: price))
let request = PKPaymentRequest()
 request.merchantIdentifier = ApplePayMerchantID
 request.supportedNetworks = SupportedPaymentNetworks
 request.merchantCapabilities = .Capability3DS
 request.countryCode = "US"

484 CHAPTER 15: Using Apple Pay to Accept Payments

 request.currencyCode = "USD"
 request.paymentSummaryItems = [item]
ifStripe.canSubmitPaymentRequest(request) {
logger.logEvent("Paying with Apple Pay and Stripe")
// Apple Pay is available and the user created a valid credit card record
let applePayController = PKPaymentAuthorizationViewController(paymentRequest: request)
 applePayController.delegate = self
presentViewController(applePayController, animated: true, completion: nil)
 } else {
logger.logEvent("Cannot submit Apple Pay payments")
//default to Stripe's PaymentKit Form
 }
 }
 
func paymentAuthorizationViewController(
 controller: PKPaymentAuthorizationViewController,
 didAuthorizePayment payment: PKPayment,
 completion: (PKPaymentAuthorizationStatus) ->Void) {
let this = self
Stripe.createTokenWithPayment(payment) { token, error in
iflet token = token {
 this.logger.logEvent("Got a valid token: \(token)")
//handle token to create charge in backend
 completion(.Success)
 } else {
 this.logger.logEvent("Did not get a valid token")
 completion(.Failure)
 }
 }
 }
}

Summary
In this chapter we looked at the rather complex landscape of Apple Pay. You learned how
to set up your developer account to be able to use Apple Pay, and then how to set up a
certificate to work with a payment processor. After this, you set up a very basic application
that shows how these pieces fit together. You will still need to create your back-end
application that will process the payment, schedule repeat payments, or process refunds.

485

■■A
Advertising Services, 289–290
API client library

APIClient.swift, 139–140, 146–150
API request, 141–142, 145
APIService, 141
error object, 144
extractRateLimits( ), 145
GET, 138
NSDictionary, 144
NSURLConnection.

sendAsynchronousRequest, 139
OAuth signature, 143–144
POST request, 139, 142
prettyJSON( ) function, 145
pretty-printed JSON, 144
URLString( ) function, 143
URL suffix, 138, 143

API method, 465
apiRequest function, 417
AppDelegate.swift, 476
Apple Pay

Apple Pay button, 460
applePay( ) Function, 479
Authorize.Net account, 468
Certificates, Identifiers & Profil, 467
Certificate Signing Request, 468
charge processing, 482
confirmation screen, 482
CSR file, 468
logger library, 474–475
main storyboard, 474
Merchant Identifier, 467–468
payment authorization

view controller, 463
Payment Processor, SDK, 470–472
Payment Providers, 460

Payment Sheet, 461
Payment Token, 461–463
prerequisites, 459
Stripe guided menu, 469
Stripe payment, 481
Swift Bridging Header, 473
transaction types, 464–466
View Controller, 476–477
View Controller code, 482–483
vs. alternative payment

systems, 457–458
Apple Pay Programming Guide, 459
Apple’s Core Bluetooth, 247–248
asURLString function, 419
authorizationStatus( ) method, 25

■■B
BeaconTransmitterDelegate Protocol

application testing, 341
beacon region initializing, 339
BeaconTransmitter methods

startAdvertising, 338
stopAdvertising, 339

BeaconTransmitterView
Controller class, 336

didPowerOff method, 337
didPowerOn method, 337
iBeaconTransmitter Class, 338
iOS device configuration, 339
onError method, 337
Start Advertising, 340

Bluetooth Low-Energy (BLE)
Backlog, 251, 256
central manager, 264–268
central role identity, 248, 272
CentralViewController

class declaration, 272

Index

486 Index

characteristic discovery, 248, 282
constraints

central role button, 259, 261, 263
peripheral role, 260–261

Core Technology Framework, 248
CustomButton class, 269
Delegation pattern, 272–275
Navigation Controller, 257
peripheral role, 248
Scan button constraints, 270
scanning, peripherals, 276
Sending Data,

TransferService Class, 291
service, 248
Service Discovery

Notification, 281
Setting button attributes, 270
Subscription Status, 283–284
system resources, 292
TransferServiceScanner Class, 280–283
single UISwitch object, 284
for UITextView, 271
user-defined runtime attributes, 258
ViewController clas, 264

Bluetooth Special Interest
Group (SIG), 288–289

■■C
CarFinder WatchKit app, 170, 190
CentralViewController

animationDidStop Method, 279
Chase Payment Tech, 459
CLLocationManagerDelegate methods

Beacon region initializing, 330
CLBeacon class, 332
CLBeaconRegion, 329
didChangeAuthorizationStatus, 325
didDetermineState, 326
didEnterRegion, 327
didExitRegion, 327
didRangeBeacons, 327
didStartMonitoringForRegion, 326
error handling

didFailWithError, 329
monitoringDidFailForRegion, 328
rangingBeaconsDidFailForRegion, 328

major property, 329
minor property, 329
Monitor button animation, 332
notifyEntryStateOnDisplay property, 330
notifyOnEntry property, 330
notifyOnExit property, 330
progress indicator, 332
proximityUUID property, 329
RegionMonitor Class, 329
start and stop region monitoring, 331
start monitoring event,

sequence diagram, 324
configureRows( ) method, 206
Constructor method, 45
Core Bluetooth objects

Base Application
and Home Scene, 251–252

Central Role Devices, 293
Central Role Objects, 249
Central Role Scene, 252–253
devices, peripheral role, 293
Editable Text, 255
peripheral role, 250, 253–254
peripheral’s mutable tree of

services and characteristics, 250
Peripheral’s tree of services and

characteristics, 249
single-view application project, 256

CoreLocation, 226
CLLocationManager

Delegate protocol, 228
definition, 226
initialization, 228
NSTimer class

alert controller, 236–237
ConfirmDelegate Protocol, 235
incrementTime( ) method, 234
initialization, 236
modified storyboard, 234
playHaptic(_:), 238
properties, 233
Total Time Updates, 235

permissions requests, 228–229
presentConfirmController, 227
requestLocation( ) method, 227
reverseGeocodeLocation, 231

awakeFromContext( ) method, 230
ConfirmDelegate Protocol, 231

Bluetooth Low-Energy (BLE) (cont.)

487Index

human-readable string, 229
saveLocation( ) Delegate method, 231
Table View, 232

updated table, 233
Weather Underground

adding label, 239–240
API response, 243
Data Task type, 239
geocoding, 241–242
JSON serialization, 243
location list, 244–245
retrieveWeather( ) method, 242, 244
URL Session, 242–243
URL string, 242
weather look-up, 240–241

Core Motion
access motion hardware

CreateWorkoutView
Controller class, 100

iOS’s motion-sensing framework, 100
M-series motion coprocessor, 100
pedometer, 100
request user permission, 100
Swift streamlines, 100

saving data
converting activity type, 114
CreateWorkoutView

Controller class, 110, 113
CreateWorkoutView

Controller.swift, 111–113
HKQuantitySample, 111
sampleArray, 115
saving HKWorkout, 114
WorkoutTableView

Controller class, 111
Step Count

CMPedometer object, 103
CreateWorkoutView

Controller.swift, 104
detecting activity type, 108
detecting live updates, 106
invalidate( ) method, 106
startWorkout( ) method, 104
stopWorkout( ) method, 104
updateTime( ) method, 105

■■D
DataManager class, 26
Delegation pattern, 285
Detail interface controller

auto-layout, 194
automatic resizing, 194
CarFinder, 198
Default behavior, 192
LocationInterface

Controller class, 195–196
multiple groups, interface controller, 191
push segue, 197
table selection segue handler, 197
user interface, 195

Device capabilities, 79
didDiscoverCharacteristics

ForService method, 281
didDiscoverPeripheral method, 280
didDiscoverServices method, 281

■■E
ErrorType protocol, 53

■■F
Fitbit API

account data, 120
communication, 120
defintion, 119
iOS project

API client library
(see API client library)

bridging header, 135
Crypto.swift, 135
escapeUrl( ) function, 134
hmac( ) function, 133
logger library, 133
new crypto header file, 134
OAuth library(see OAuth liarary)
sha1( ) function, 133
testing, 157
view controller, 130

JSON format, 120
PUT operation, 121

488 Index

request process
assemble, 159
body weight logging, 166
curl, 160
getBloodPressure( ) function, 165
nonexhaustive list, 163
OAuth versions, 167
processGETData( )

callback function, 164
retrieve user profile, 161
ViewController.swift, 163

RESTful API
API call rate limits

(see Fitbit API call rate limits)
async calls, 128
callbacks, 128
DELETE option, 121
GET request, 121
implementation, 122
OAuth1.0a

authentication model, 125
OAuth implementation, 126
POST action, 121
PUT, 121
return format, 121
setting up, 123

Fitbit API call rate limits
client rate limit, 127
Client+Viewer rate limit, 127
hitting rate limit, 128
response headers, 127

Flask installation
hello world daemon, 406–407
listener daemon, 407–408

Force Touch
Connection Inspector, 205–206
contextual menu, 202
Detail View Controller, 207–209
interface controller, 202–203
InterfaceController.swift, 205
location list, 206
menu item, 204
requestLocation( )/

resetLocations( ) method, 205
simulation, 209–210
tab bar/bar button item, 204

Format specifier, 46

■■G
General Purpose Input Output (GPIO), 399
Global Payments, 459

■■H
Handling user input, BLE

Extension to UIView
to Apply Rotation, 279

Scan button tap event, 277
toggleScanning method, 278

HealthKit
definition, 59
prompting user

capability, 83
HKHealthStore class, 85
HKQuantityType objects, 87
permission view, 86
requestAuthorizationToShareTypes( )

method, 86
UIAlertController, 84
viewDidLoad( ) method, 83
WorkoutTableView

Controller.swift, 85, 87
retrieving data

getWorkouts( ), 88–89, 91
HKSampleQuery and

HKObserverQuery, 88
HKSampleQuery object, 91
reloadData( ) method, 90
Table View Controller, 90
workoutArray, 90

RunTracker app, 60
setting up

adding labels, 69
app registration, 81
capabilities, 82
cell and a detail view controller, 79
changing button’s

background color, 73
changing label attributes, 70
changing text color, 72
click Touch Up, 75
CreateWorkoutViewController, 68, 82
default capabilities, 80
device capabilities, 79
dragging bar buttons, 76
“Embed In” feature, 65

Fitbit API (cont.)

489Index

handler method, 78
Main storyboard, 62, 64
master-detail fashion, 64
navigation controller, 66
prepareForSegue( ) method, 78
referencing outlets, 71
setting constraints, 74
setting device target, 62
Single View Application template, 61
UIBarButtonItem, 77
UITableViewController subclass, 67
view controller’s parent class, 68

table view
background updates, 95
Extensions.swift, 94
NSDateFormatter class, 93
numberOfSections

InTableView( ) method, 92
switch( ) statement, 93
WorkoutTableViewController, 92
WorkoutTableViewController.swift, 95

hello-flask.py file, 406
HomeKit

accessory simulator, 346
acessory removal

canEditRowAtIndexPath method, 367
Delete button, 367
editable row verification, 367
HomeKit Accessory Simulator, 368
New Accessory pairing, 370
UITableViewDelegate Method

commitEditingStyle, 367
custom class setting, 350
delegation methods, 344
explicit App ID, 348
HMAccessory class, 344
HMCharacteristic class, 344
HMHomeManager class, 343
HMHomeManager

Delegate protocol, 350
HMHomeManager object, 348
HMService class, 344
HMZone class, 344
HomeKit app, 345
HomeKitApp.entitlements file, 348
Home Manager delegate methods

didAddHome, 351
didRemoveHome, 351

homeManagerDidUpdateHomes, 351
implementation, 351
Table View setup, 352
UITableView methods, 353

Home Manager Home
Manager delegate methods, 351

HomesViewController
Class Declaration, 350

HomesViewController scene, 349
initial view controller, 349
Main.storyboard initial view, 350
New Home addition

Accessory Browser, 364
Accessory Change Notification, 364
addHomeWithName method, 357
Add (+) navigation bar item, 361
Bar Button Item, 364
current home delegate, 364
Current Home setup, 358
empty table, 362
Existing Home deletion, 359
HomeViewController, 361, 364
home view controller interface, 363
navigation bar, 363
NSNotificationCenter, 365
onAddHomeTouched method, 357
populated with accessories, 362
Primary Home setup, 358
security, 360
segue addition, 363
Siri Integration, 358
table view cell setup, 362
UIAlertController, 357
UITableViewController, 362
UITableView methods, 365

requirements, 345
single-view Xcode project, 347
table view controller, 348–349
team profile selection, 347

■■I, J
I2C configuration

access verification, 403–404
Adafruit projects, 401
device address, 401
python-smbus package, 402
standard design, 401
support, ARM core and kernel, 402–403

490 Index

iBeacon
accuracy, 295
advertisement, 295
background settings, 299
Bluetooth state, 307
home scene, 297

Action Segue pop-up, 306
button constraints, 303
Custom Button, 304
navigation controller, 300
outlet connection, 301
UI elements, 300
View Controller identity, 305

iBeacon scene, 297
background color, 334
BeaconTransmitter Class, 336
BeaconTransmitterDelegate Protocol

(see BeaconTransmitter
Delegate Protocol)

BeaconTransmitterView
Controller Class Declaration, 334

UIButton, 334
UISwitch, 334
UITextField, 334
UITextFieldDelegate methods, 335
UITextView, 334

privacy, 296
ranging, 296
region monitoring, 296
Region Monitor scene, 297

authorization and requesting
permission, 322

background color, 311
CLLocationManager

Delegate methods (see CLLocation
ManagerDelegate methods)

Delegation pattern, 315
didEnterRegion method, 319
didExitRegion method, 319
didRangeBeacon method, 319
didStartMonitoring method, 318
didStopMonitoring method, 319
font size, 311
label and text field placement, 312
onBackgroundLocation

AccessDisabled method, 317
onError method, 320

Optional Binding feature, 314–315
placeholder text, 313
properties, 312
RegionMonitor class, 315–316
RegionMonitor methods (see

RegionMonitor methods)
RegionMonitorView

Controller class, 314–315
RegionMonitorViewController

class declaration, 313
RegionMonitorView

Controller.swift, 311
text color, 311
UITextField Delegate Methods, 313

single-view application, 298
storyboard view, 297

Interface controller
Attributes Inspector, 212
awakeWithContext( ) method, 213–215
ConfirmInterfaceController, 211
definition, 214
delegation

Context Dictionary, 217
delegate property, 216
implementation, 216
location saving, 216
message-passing scheme, 215
protocols, 215

handler methods, 212–213
layout setting, 210–211
text input modal

confirm( ) method, 219
expanded user interface, 222
message receiving, 221
modified protocol declaration, 219
notification processing, 221–222
presentTextInputController

WithSuggestions, 218
sendMessage( ) method, 220
Siri text-to-speech

recognition, 217–218
updateApplication

Context( ) method, 219
user’s location, 214

Internet of Things
CoreLocation and

MapKit frameworks, 5, 7

491Index

GPS hardware, 5
location permission

accuracy, mapping service, 22
adaptive strategy, 22
class variables, 25
CLLocationManager class, 25
Maps capability, 23
new key-value pair, 24
polling, 25–26
user access, 26

mock-up, CarFinder application, 1–2
programming language, 4–5
tab bar, iOS music application, 2–3
Tabbed Application template, 3–4
user interface (UI)

controller (see View controller)
default storyboard, 7–8
map view controller

(see Map view controller)
user’s location

data source, map view, 30
table view controller, 28
viewDidAppear( ) method, 30

iOS app
WatchConnectivity, 188–189
WatchKit extension, 189

■■K
Keychain Services

Alice and Bob
exchanging messages, 428

application output, 441
components, 432
Data Protection, 430–431
data retrieval, 434
device memory snoop attacks, 431
Diffie-Hellman key

exchange mechanism, 428–429
encryption platforms, 428
hardware security, 429–430
invalidation, 435
keychain-access-group, 432
password storage, 432–433
private/public keys, 427
Security.framework library, 436

view controller code
class methods, 438
deleteQuery( ) function, 439
get( ) and getData( ) function, 439–440
Keychain.swift file, 440–441
set( ) function, 439
updateQuery( ) function, 439
ViewController.swift file, 436–438

■■L
Logger library

APIClientSwift library
APIMethod Enum, 416
apiRequest( ) function, 417–418
APIService Enum, 417
entire code, 425
GET handler, 414–415
hasBody( )function, 416
header, 414
postData( ) function, 421
POST request handler, 415–416
String Object extension, 417

async Event dispatch, 413
UI element, 413
UILogger.swift file, 413

■■M
Map view controller

auto-layout, 19
MapKit framework, 21
MKMapView class, 18
pinning constraints, 20
Resolve Auto Layout

Issues menu, 20
second tab, 19
storyboard connection, 21–22

Merchant pay interface, 458
Message-passing

dot-syntax, 44
multiple parameters, 44
Smalltalk syntax, 44

■■N
NSArray class, 47

492 Index

■■O
OAuth 1.0a, 125, 167
OAuth 2.0, 167
OAuth library

creation, 154
OAuth1a.swift file, 151
OAuth1a.swift, 155
signRequest( ), 152

Objective-C. Swift
Offline card processing, 457

■■P, Q
paymentAuthorizationView

Controller( ) Function, 479
paymentCardTextFieldDid

Change( ) function, 478
PeripheralViewController

class declaration, 285
postData( ) function, 419
Protocol Method peripheralManager

DidUpdateState, 288

■■R
Raspberry Pi

accessible prices, 398
API, device control

(see Flask installation)
chromium browser, 397
control interfaces, 399
Ethernet connector, 398
iOS project setup

HTTP calls, 409
logger library (see Logger library)
View Controller (see View Controller)

low power usage, 397
microSD card, booting and storage, 398
PiGlow board, 398
Raspbian, 397
real-time clock, 398
setup

apt-get utility, 400
configuration utility, 400
downloading website, 400
GPIO configuration, 404
GUI, 400
I2C. I2C configuration

installation phase, 400
PyGlow module, 405
Python language, 401

RegionMonitor methods
startMonitoring, 321
stopMonitoring, 321

reloadData( ) method, 29
Remote Central Device, 291–292
RunTracker app. See Core Motion

■■S
SDK method, 465
Secure Enclave, 443
sharedInstance property, 27
shouldPerformSegue

WithIdentifier method, 267
Simple object access protocol (SOAP), 120
String class, 35
Swift

API documentation, 35
Apple platform, 34
auto-completion results,

NSMutableString, 55–56
classes and methods, 56
Cocoa Touch tutorials, 34
design, 34
dot-syntax alone, 34
file selection, 54–55
object-oriented programming

casting, 50
class declaration, 41
class keyword, 42
collections, 47–49
compilation errors, 42
h and .m files, 42
message-passing (see

Message-passing)
method signature, 43
NSMutableString class, 46
NSString class, 46
object instantiation, 45
protocols, 42–43
strings formatting, 46–47

project creation, 54
specific language feature

nil keyword, 50
optional-chaining operation, 51–52

493Index

optional concept, 51
try-catch blocks, 52–53

syntax
calling methods (Hello World), 35
compound data types, 37
conditional logic, 38
enumerated type, 39–40
loops, 40–41
variables, 36–37

switch statement, 39

■■T, U
tableView(_\:cellForRow

AtIndexPath\:) method, 29
Touch ID

architecture, 444
Assistant editor, 450
custom class setting, 448
definition, 443
Enter Passcode option, 445
fingerprint authentication

authenticate Method, 452
passcode, 455
policies evaluation, 452
registered fingerprint, 455
unregistered fingerprint, 455
user-defined fallback, 454
without keychain, 452

Initial View Controller, 447
LocalAuthentication, 443–444
main scene, 445
Main storyboard initial view, 448
Secure Enclave, 443
single-view Xcode

project creation, 447
Standard system UI, 446
table view cell style, 449
table view controller, 449
text view addition, 450
UITableView methods, 451
viewDidLoad Method, 450

Transaction
API vs. SDK f, 466
authorization, 464
capture, 464
chargeback, 464

recurring, 464
refund, 464

TransferService class declaration, 287
TransferServiceDelegate method, 291
TransferServiceDelegate Protocol, 286
TransferService Initializer Method, 287
TransferServiceScanner

startScan Method, 276
TransferServiceScanner

stopScan Method, 277

■■V
View controller

clickButton function, 411
communication display, API, 410
storyboard, button actions, 411
table

connection, 12
Connections Inspector, 16
FirstViewController class, 12
navigation bar, 15
pop-up menu, 11
radio button, 16
selection, 8–9
selector connection, 17
storyboard, 9–11
Stub, addLocation Function, 15
template selection, 18

UIViewController Class, 410
variables, 410
ViewController.swift code, 412
viewDidLoad Override Function, 411

■■W, X, Y, Z
WatchConnectivity,

application contexts, 189–190
watchOS

application, 176
CarFinder project, 175
Cocoa Touch Frameworks, 171
hierarchy, 178
Interface Builder’s

Attributes Inspector, 180
interface controller, 177–178, 185
Interface.storyboard file, 175

494 Index

iOS programming terminology, 179
LocationRowController table row

controller, 182–184
LocationTable property, 185–187
Switching group layout to vertical, 180
vs. iOS Apps, 170–172

WatchKit application, 173
WatchKit target, 174
WatchKit user

interface elements, 184
Xcode menu, 172

Web services description
language (WSDL), 120

watchOS (cont.)

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	Chapter 1: Building Your First Internet of Things App
	 Ahmed Bakir
	 Setting up the Project
	 Building the User Interface
	 Creating the Table View Controller
	Connecting to a Table View Controller
	Creating an Add Button
	Selecting a Template

	 Creating the Map View Controller

	 Requesting Location Permission
	 Accessing the User’s Location
	 Displaying the User’s Location
	 Populating the Table View
	 Populating the Map

	 Summary

	Chapter 2: Getting Started with Swift
	 Ahmed Bakir
	 Why Use Swift?
	 Basic Swift Syntax
	 Calling Methods (Hello World)
	 Defining Variables
	 Compound Data Types
	 Conditional Logic
	 Enumerated Types
	 Loops

	 Object-Oriented Programming in Swift
	 Building a Class
	 Protocols
	 Method Signatures
	 Accessing Properties and Methods
	 Instantiating Objects
	 Strings
	 Formatting Strings
	 Collections
	 Casting

	 Swift-Specific Language Features
	 Optionals
	 Try-Catch Blocks

	 Mixing Objective-C and Swift in Projects
	 Calling Swift from Objective-C

	 Summary

	Chapter 3: Accessing Health Information Using HealthKit
	 Introduction
	 Getting Started
	 Setting Up the User Interface
	 Setting Up the Project for HealthKit

	 Prompting the User for HealthKit Permission
	 Retrieving Data from HealthKit
	 Displaying Results in a Table View
	 Fetching Background Updates

	 Summary

	Chapter 4: Using Core Motion to Save Motion Data
	 Introduction
	 Using Core Motion to Access Motion Hardware
	 Requesting User Permission for Motion Activity

	 Querying for Step Count
	 Detecting Live Updates to Step Count
	 Detecting Activity Type

	 Saving Data to HealthKit
	 Summary

	Chapter 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API
	 Gheorghe Chesler
	 Introduction to the Fitbit API
	 The RESTful API
	The Return Format

	 Fitbit RESTful API Implementation Details
	 Setting Up a Local Playground with Apache
	Creating the Test Documents

	 The OAuth1.0a Authentication Model
	 The Fitbit OAuth Implementation
	 Fitbit API Call Rate Limits
	The Client+Viewer Rate Limit
	The Client Rate Limit
	 Response Headers
	Hitting the Rate Limit

	 Making async Calls
	 Using callbacks as Parameters

	 Setting up a Fitbit-compatible iOS Project
	 The View Controller
	 The Logger Library
	 Setting up a Basic Set of Crypto Functions
	 Crypto.swift

	 The API Client Library
	The Code for APIClient.swift

	 The OAuth Library
	Signing the Request
	 Creating the OAuth H
	The code for OAuth1a.swift

	 Testing What We Have so Far

	 Making requests to the Fitbit API
	 Retrieving the User Profile
	 Retrieving and Setting Data in the API
	Getting the Blood Pressure
	Setting the Blood Pressure
	Logging the Body Weight

	 OAuth versions: Working in both worlds

	 Summary

	Chapter 6: Building Your First watchOS App
	 Introduction
	 watchOS Apps vs. iOS Apps
	 Setting Up Your Project
	 Debugging your watchOS App

	 Adding a Table to your watchOS App
	 Defining the Table
	 Fetching Data from your iOS App

	 Building a Detail Page with a Custom Layout
	 Presenting the Detail Interface Controller

	 Summary

	Chapter 7: Building an Interactive watchOS App
	 Introduction
	 Using Force Touch to Present Menus
	 Resetting the Location List
	 Presenting a Detail View Controller
	 Simulating Force Touch

	 Adding Buttons to an Interface Controller
	 Passing Information Between Interface Controllers
	 Using a Delegate to Pass Information on Dismissal

	 How to Add Notes Using Text Input
	 Sending Data Back to the Parent iOS App

	 Summary

	Chapter 8: Building a Stand-Alone watchOS App
	 Using Core Location to Request Current Location
	 Reverse Geocoding an Address

	 Using NSTimer to Create Reminders
	 Making Network Calls from Your watchOS App
	 Handling a JSON Response

	 Summary

	Chapter 9: Connecting to a Bluetooth LE Device
	 Manny de la Torriente
	 Introduction to the Apple Bluetooth stack
	 Key Terms and Concepts
	Central
	Peripheral
	Service
	Characteristic
	Discovery

	 Core Bluetooth Objects
	Central Role Objects
	Peripheral Role Objects

	 Building Your First Bluetooth LE Application
	 Backlog
	 Base Application and Home Scene
	Story
	Acceptance Criteria

	 Central Role Scene
	Story
	Acceptance Criteria

	 Peripheral Role Scene
	Story
	Acceptance Criteria

	 Editable Text
	Story
	Acceptance Criteria

	 Setting Up the Project
	 Building the Interface
	 Using a Central Manager
	 Connecting to a Bluetooth LE Device in Your App
	 Building the Interface
	 Keeping Things Clean with Delegation
	 Scanning for Peripherals
	Handling User Input
	Scan Progress

	 Discover and Connect
	 Explore Services and Characteristics
	 Subscribe and Receive Data
	Subscription Status

	 Peripheral Role
	 Building the Interface
	 Delegate Setup
	 Setting up a Service
	 Advertising Services
	 Sending Data

	 Enabling Your App for Background Communication
	 Bluetooth Best Practices
	 Central Role Devices
	 Peripheral Role Devices

	 Summary

	Chapter 10: Building Location Awareness with iBeacons
	 Manny de la Torriente
	 Introduction to iBeacons
	 iBeacon Advertisement
	 iBeacon Accuracy
	 Privacy
	 Region Monitoring

	 Ranging
	 Building the iBeaconApp Application
	 Creating the Project
	 Setting Background Capabilities

	 Building the Home Scene
	 Setting Up UI Elements
	 Creating an Outlet Connection
	 Setting up Constraints
	 Creating a Custom Button

	 Detecting Bluetooth State
	 Building the Region Monitor Scene
	 The RegionMonitor Class
	 Using the Delegation Pattern
	 Creating the RegionMonitor Class
	 Delegate Methods
	 onBackgroundLocationAccessDisabled
	 didStartMonitoring
	 didStopMonitoring
	 didEnterRegion
	 didExitRegion
	 didRangeBeacon
	 onError

	 RegionMonitor Methods
	startMonitoring
	 stopMonitoring

	 Authorization and Requesting Permission
	 CLLocationManagerDelegate Methods
	Regions Are Shared Resources
	 didChangeAuthorizationStatus
	 didStartMonitoringForRegion
	 didDetermineState
	 didEnterRegion
	 didExitRegion
	 didRangeBeacons

	Error Handling
	 monitoringDidFailForRegion
	 rangingBeaconsDidFailForRegion
	 didFailWithError

	Configuring Region Monitoring
	 Using the RegionMonitor Class
	Beacon Identity
	 Initializing a Beacon Region
	Initializing Beacon Notifications
	 Start and Stop Region Monitoring
	Handling a Ranged Beacon
	Monitoring Progress Indicator
	Animating the Monitor Button

	 Building the iBeacon Scene
	 The BeaconTransmitter Class
	 Defining the BeaconTransmitterDelegate Protocol
	Delegate Methods
	 didPowerOn
	 didPowerOff
	 onError

	 Creating the iBeaconTransmitter Class
	BeaconTransmitter Methods
	 startAdvertising
	 stopAdvertising

	 Configure Your iOS Device as an iBeacon
	 Initialize a Beacon Region
	 Start Advertising
	 Test the Application

	 Summary

	Chapter 11: Home Automation Using HomeKit
	 Manny de la Torriente
	 Introduction to HomeKit Concepts
	 HomeKit Delegation Methods
	 Building a HomeKit Application
	 Requirements
	 HomeKit Accessory Simulator

	 Creating the Project
	 Enabling HomeKit
	 Building the Homes Interface
	 Implementing the Home Manager Delegate Methods
	Instantiating the HMHomeManager
	 Setting Up the Table View
	 Implementing UITableView Methods

	 Adding a New Home to the Home Manager
	Setting the Primary Home
	 Siri Integration
	 Setting the Current Home
	 Removing an Existing Home
	 Security
	Building the Home Interface
	Signaling Changes within the Application
	 Implementing More UITableView Methods

	 Removing an Accessory from a Home
	Using the HomeKit Accessory Simulator
	 Pairing with a New Accessory
	Building the Accessory Browser
	Scanning for Accessories
	Implementing UITableView Methods
	Adding a New Accessory to the Home
	Dismissing the Accessory Browser
	Building the Services Interface
	Configuring Services
	Receiving Value Change Notifications for Characteristics
	Implementing UITableView Methods
	Subclass UITableViewCell for Characteristics
	Characteristic Information
	Power State Control
	Slider Control
	Segmented Control

	Accessory Delegate Methods

	 Transitioning to the Services Scene
	 Running the Application
	 Adding Accessories

	 Summary

	Chapter 12: Building an App That Interacts with a Raspberry Pi
	 Gheorghe Chesler
	 About Your Raspberry Pi
	 Control Interfaces on your Raspberry Pi
	 Setting up your Raspberry Pi
	 Choosing the Scripting Language
	 Configuring I2C
	Installing Kernel Support for I2C
	Verify that I2C can be Accessed

	 Configuring GPIO
	 Install PyGlow

	 Providing an API to Control your Device
	 Install Flask
	The Hello World Daemon
	Building a Very Simple Listener Daemon

	 Setting up an iOS Project for Our App
	 Allowing Outgoing HTTP Calls
	 The View Controller
	 The Logger Library
	The API Client Library
	Defining the Device URL
	Creating a GET Handler
	Creating a POST Handler
	Defining the verbs and services
	Adding an Extension to the String Type
	The apiRequest( ) Function

	 Summary

	Chapter 13: Using Keychain Services to Secure Data
	 Hardware Security on iOS Devices
	 Securing the File Data
	 The Apple Keychain
	 The Apple Keychain Services
	 Components of a Keychain Item
	 Implementing Keychain Services for Storing Passwords
	 Retrieving Data from Keychain Services
	 Invalidating Keychain Service Records
	 Setting Up an Application to Test Keychain Services
	 The View Controller
	The Keychain Class
	Running the Demo Application

	 Summary

	Chapter 14: Using Touch ID for Local Authentication
	 Manny de la Torriente
	 Introduction to Touch ID
	 LocalAuthentication Use Cases
	 Building a Touch ID Application

	 Creating the Project
	 Building the Interface
	 Implementing the UITableView Methods
	 Integrating Touch ID for Fingerprint Authentication
	 Evaluating Authentication Policies
	 Touch ID Authentication without Keychain
	 User-Defined Fallback for Authentication
	 Run the Application

	 Things to Remember
	 Summary

	Chapter 15: Using Apple Pay to Accept Payments
	 Gheorghe Chesler
	 Apple Pay vs. Alternative Payment Systems
	 Apple Pay Prerequisites
	 Using Apple Pay to accept payments
	Payment Providers
	The Apple Pay button
	The Payment Sheet
	The Payment Token
	 Transaction Types Supported by the Payment Processor
	Example: using Authorize.Net as the Payment Processor

	 Configuring your Environment for Apple Pay
	Register a Merchant Identifie r
	Submit a Certificate Signing Request
	Adding the Merchant CSR to your Apple Account
	Include an Apple Pay Entitlement in your app
	Install Prerequisites for Working with a Payment Processor SDK
	Install the Payment Processor SDK
	The Objective-C to Swift Bridging Header
	The Main Storyboard
	The logger library

	 Implementing Apple Pay payments with Stripe
	The View Controller
	Testing our app
	Processing the charge

	 The View Controller code

	 Summary

	Index

