Program
The Internet of Things
with SWift for 10S

Learn how to program apps for the
Internet of Things

Ahmed Bakir
Manny de |a Torriente
Gheorghe Chesler

Apress’

w.allitebooks.co


http://www.allitebooks.org

Program
The Internet of Things
with Swift for i0OS

Ahmed Bakir
Gheorghe Chesler
Manny de la Torriente

Apress’

[vww allitebooks.cond



http://www.allitebooks.org

Program the Internet of Things with Swift for iOS
Copyright © 2016 by Ahmed Bakir, Gheorghe Chesler, and Manny de la Torriente

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1195-3
ISBN-13 (electronic): 978-1-4842-1194-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Michelle Lowman

Technical Reviewer: Charles Cruz

Editorial Board: Steve Anglin, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,
Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers

Copy Editor: Lori Jacobs

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www. springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress. com, or visit www. apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers
at www.apress.com/9781484211953. For detailed information about how to locate your book’s source code, go
to www.apress.com/source-code/. Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

[vww allitebooks.cond



mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484212349
www.apress.com/source-code/
http://www.allitebooks.org

Contents at a Glance

About the AUthors.........c s ———————— XV
About the Technical ReVIEWET ........ccusssssmsssssmsmsssssssssssmsssssssssssssssssssssssssnsssnssnsnsnnns xvii
INtroduction ........cccuvemnmmim s ——————————8_—— Xix
Chapter 1: Building Your First Internet of Things App ......ccccmnnnemmmmmnssssnnmnssssssnnnns 1
Chapter 2: Getting Started with Swift..........ccccmmmmiirinnnn i ——————— 33
Chapter 3: Accessing Health Information Using HealthKit ............ccccosceniiiisnnnnnns 59
Chapter 4: Using Core Motion to Save Motion Data............cceirnsnnmmnnmnsssnnnnsssssnnnnns 99

Chapter 5: Integrating Third-Party Fitness Trackers and Data
Using the Fithit APL.........ccccinnmmmmnemmmmssnmmmsssmmsssmmssmmsssnmsssssmssssssssssssssssssnssns 119
Chapter 6: Building Your First watchQS App .......ccccvnnnsmemmsmmmnnnsssssssssssssssessssnns 169
Chapter 7: Building an Interactive watch0S ApP ......ccccuseemrrnssssnnsssssssnnsssssssnnns 201
Chapter 8: Building a Stand-Alone watchOS App......ccccueemmmnssssnnnmmsssssnnmsssssnnns 225
Chapter 9: Connecting to a Bluetooth LE DeViCe ........cossemmmmmnrrsssssssssnsnnnssssssssnns 247
Chapter 10: Building Location Awareness with iBeacons..........cccussseennsssssnnnnas 295
Chapter 11: Home Automation Using HomeKit ..........c.ccusemmmnnssnmnmnssssnnnsnssssnnns 343
i

[vww allitebooks.cond



http://www.allitebooks.org

iv Contents at a Glance

Chapter 12: Building an App That Interacts with a Raspberry Pi.........ccccusueenine 397
Chapter 13: Using Keychain Services to Secure Data ...........cccrnnnmseeennnnnnensssnns 427
Chapter 14: Using Touch ID for Local Authentication .........c.ccussemmrnsssnnnnnnsssnnnnns 443
Chapter 15: Using Apple Pay to Accept Payments........c.ccccnnnnsemmnnnssssnnnnssssannns 457
INAX e eiiriiisnnnnnnnnnrrsssssssssnsnnrr e r s a s s annr e e e e e aaasnRRREEE R R R AR RRRRRRRREEERRRRRRRRRRRRRRRRRRRRRRRSS 485

[vww allitebooks.cond



http://www.allitebooks.org

Contents

About the AUtROIS......ccuuiissmmmmmmsssnssmmsssssnmmsssnssssssnss s ssns s sssnnnnssssnnnnsssssnnnnss XV
About the Technical REVIEWET ......cccuussemmmrsssssnnmmssssssnnssssssssnssssssnssssssssnnsssssssnsnssssnnns Xvii
INtroducCtion ......ccccnimisnnnnmmssssnnnmsssssnsnnsssssnnnnsssssnnnnnssssnnnnnsssnnnnnnsssnnnnnssssnnnnnnssssnnnnnnssn Xix
Chapter 1: Building Your First Internet of Things App ......ccccmnnnemmmmmnssssnnmnssssssnnnns 1
ANMEA BaKIF.......coeereerersesressessessessessessesssssesssssesssssssssssesssssssssssssssssssssssssssssesssssnsssssnssnssnnses 1
Setting up the ProjECT........eo e nn e nn 2
Building the User INTErface.........c.cccvvrrerrrrenrinsessensesses s sns s e s e s sss e s 7
Creating the Table VIEW CONTIOIIEL.........cccoceeerererrereereresereserseres e saesessesessesessesassessesessssessessssessssesssesaes 8
Creating the Map VIEW CONTIOIIE .........coeererirerererererer st serseser e e sseses e saesersesesaesessesassessesesassesasanaens 18
Requesting Location PErmiSSioN.........cccucueersersensessesssssesssssessessessssssssssssssssssssssssssssssnses 22
Accessing the USer’s LOCALioN ..........cccceeeeeeerescse s e sse e sssssssnssnssnssnssnssssssssssnnns 26
Displaying the USer’s LOCAtioN .........c.ccucvverververiensensinser s ses e s e e s e s sessessssens 28
Populating the TaDIE VIBW.........coeereere ettt see e s e e ssesas e sse e sae e saesesaesassesaesesassesasanaens 28
PopUIAting the Map........ccoecereerecire s re s res s ae e ae e s e sesae s e s sae e sae e sae e ssesaesesaesesaenenananaens 30
SUMMEAIY ...t s a e e s s R e e a e e Re e eae e s Re e e e nnennnnens 32

v

[vww allitebooks.cond



http://www.allitebooks.org

vi

Contents

Chapter 2: Getting Started with Swift.........ccccccimnnnnnnn s ——— 33

ANMEA BAKIF ...t 33
WhY USE SWIfL? ...t 34
BasiC SWift SYNTAX .....ccccviiririrrr s 35
Calling Methods (HEHIO WOIIH).........cccorereerereerirerererereressesaesersesessesessessssessesessssessesessesassessesessssssassansens 35
DefiNiNg Vari@hIEs.......cccoeverereeere et r et re s re s s ae e s e s e e s s e s sae e ae e sae e s e ae e s ae e naenenaeanaees 36
COMPOUNT DAL TYPES ...eeereereeereeerrerereraserseserseseraeseraesas e saesessesessesassesassesaesesassesaesessesassessesesssnssaenanaens 37
CONAITIONAL LOGIC ....vveeereererereerereesersesersesasessesessesesaesessessssessssesssssssesessessssessssessssssessssesassessesessssssassanaens 38
ENUMETAEU TYPES ..euverereereeesresreseeessessessessessesssssssessessessesssssssessessessessssssssssessessessssssssssessessessssessessesnens 39
T4 40
Object-Oriented Programming in SWift........cccoccoeeniirinicnnsscrn s 4
50T o [Ty T = 4 T 4
PrOTOCOIS......ciciiiiiii i ————————————— 42
METhOO SIGNATUIES .....eeeeeeerecere et a e e re e e s s e e s sa e e ae e s ae s e sae e e e ae e saenesananaens 43
Accessing Properties and Methods ... 44
LTS3 L LT 0] (=T 45
L1110 46
FOrMAtting StriNGS.....ccveerererrerererererereras s e rse e saesesseras e sae e saeses e sesaesassesae e sae e saesesaesassesaesesassenaeransens 46
01T (0] 47
07 1] 3o 50
Swift-Specific Language FEatUres..........covvrercers s e 50
001103 OO 50
Try=CatCh BIOCKS.......ccoueeieeeirerceseresee ettt 52
Mixing Objective-C and Swift in ProjECTS .......cccvererererrrrr s see e 54
Calling Swift from ODJECLIVE-C .......ceeerereeerercre e rere v s e e ra s sae e ae e saese s e sae e saesesaenesaeanaens 56
SUMMAIY ...ttt a e bR e s a e e ae e eae e s ae e e e nnennnnens 57

Chapter 3: Accessing Health Information Using HealthKit ..............ccoccccnviinennnn 59
ANMEA BaKIF.......coeereererrersessessessessessessessessessessessssssssessssssssessesssssessssssssssssssessessnssnssnssnssnns 59
L 0o [T 1o RS S S SSSSS 59

[vww allitebooks.cond



http://www.allitebooks.org

Contents vii

Getting StArted .......cocc e ——————————— 61
Setting Up the USEr INTEITACE .........cceceeeercercrerecscsi e s 61
Setting Up the Project for HealthKit.............cccououeeeeninneececc s 79

Prompting the User for HealthKit Permission...........ccccoevvrvrvnsnnnsessesses s sessenens 83
Retrieving Data from HEAINKIL............cccoeerererec st se e ae e s e ae e saenanaens 88
Displaying ReSUILS iN @ TADIE VIBW ......cccoveceererereerererereressersesersesessesessessssessesessssessessssesassessesessssesassanaens 92
Fetching Background UPAates.........couverercereerirerererereressessesersesessesessessssessssessssssssssssesassessssessssssassasaens 95

SUMMEAIY ...t ee e s R e s AR e e ae e s Re e e e enenrnnens 97

Chapter 4: Using Core Motion to Save Motion Data...........ccceirnssnennnrnsssnnnsnssssannnns 99

ANMEA BaKIF.......coeereereerersessessessessessessessessessessessessessssssssssssssesssssessesssssssssssessesssssnssansnnsnns 99
L 0o [T o] OSSR 99
Using Core Motion to Access Motion Hardware ..........cccceeeveveerennessessessessessessessessensenns 100
Requesting User Permission for Motion ACHVItY........ccccocveerriererrererere st rerse e sesaesesseseesens 100
Querying for STeP COUNL.........coiecrerr e e s 103
Detecting Live Updates 10 Step COUNL........ccocoecerccecrcsr e 106
Detecting ACHVILY TYPE... .o s p e n s 108
Saving Data to HealthKit...........c.coeeereecrcee s 110
E3 1111 1P 7SS 117

Chapter 5: Integrating Third-Party Fitness Trackers and Data
Using the Fitbit APl.........cccccusmmnmmnnmmsnmssmmssmssssmssssssssssssssssssssssssssssssssssansssnsssss 119

GhEOorghe ChESIEr ... s 119
Introduction to the Fithit APL..........coi 119
THE RESTHUI AP ....oveveeeeesesssessesses s s s s s s ssssssssssssssssssnssnssessssssssssnsnens 120
Fitbit RESTful APl Implementation DetailS .........c.coveeeererrencnirneeserseese e 122
Setting Up a Local Playground With APACRE...........ccvueerirersiercrirsescserse e sessssens 123
The OAuth1.0a Authentication MOEL ..o 125
The Fitbit OAuth IMpleMEentation ..o 126
Fitbit APl Call RAE LIMItS......cvurvureeernesesressessesssssssssessessesssssssssssssessesssssssssssssssssssssssssssssssssessssssssssssseses 127
MaKING @SYNC CalIS......ccccveeererereeeirereeere s e e e s e s s s se s se s e nensannsnnnes 128
Using callbacks @s PArameters ...........ccccovrenererenrnesesisneseseses s se e s sesssssssessssssssesssssssssnns 128

[vww allitebooks.cond



http://www.allitebooks.org

viii Contents

Setting up a Fithit-compatible i0S Project ... 130
THE VIEW CONTIOIIET.......ccecicieriiireereee e 130
THE LOGGEE LIDFAIY ...ttt e 133
Setting up a Basic Set of Crypto FUNCHIONS .........ccooieernnnccrse e 133
THe API CHENT LIDFAIY ......oceceereeeecserissecsesesessesesssssses e s se s s sssssss e e sssssssssssssssssssssssssssssssssssssans 137
THE QAULN LIDFAIY .....cceeecctrieeeseres s e s s e s nnnsns 151
Testing What We Have SO Far ... s s sssssssssssns 157

Making requests 10 the Fithit APl ..........ccocrvrvrirrrrr e 159
Retrieving the USEr PrOfile..........cc e seree s reseres e seesersesesaesassesasessesesassesassasaesassesssnenes 161
Retrieving and Setting Data in the APL...........co s sa e sa e e e s 163
OAuth versions: Working in both WOFIUS .........cceeeererrerrc e rere s sae e se e sassesaesenes 167

SUMMEAIY ...ttt a e e b e s ae e e a e e s e n e s ae e s nennnnns 168

Chapter 6: Building Your First watchOS App ......cccccusmmnmmmssmsssmsssmsssmsssssssssssnnnns 169

ANMEA BAKIF ...t 169

INEFOAUCHION ... s 169

WALChOS APPS VS. I0S APPS .eveerrerrrererrserisersesssessesssessssssssssssssssssssssssssssssssssssssessssssesses 170

Setting Up YOUF PrOJECL........occo ittt sse e 172
Debugging your WatChOS AP ..o e e se s e a e e e a e e 176

Adding a Table to your watChOS APP......ccecererrrererere e 176
Defining the TADIE ..o e 181
Fetching Data from YOUr i0S APP.......oeerererrriercrirrseseseseseese s sesssss s e ssssssssssssssssssanes 187

Building a Detail Page with a Custom Layout...........cccvvvvrvernrnensnses e 190
Presenting the Detail Interface CONtrOlIEr ...........coeeverrerercerrcere e sa e e ns 196

SUMMEAIY ...ttt a e e b e s ae e e a e e s e n e s ae e s nennnnns 199

Chapter 7: Building an Interactive watchOS ApPp .....ccccuseemmrnssssnnnssssssnnsssssssnnns 201

ANMEA BAKIF ...t 201

INEFOAUCHION ... s 201

Using Force Touch to Present MENUS .........coccvevererrresnesses s e e ssssesssssessesssssassssenns 202
Resetting the LOCAtION LiSt.........ccveeerererererrcree et re s res e res e saesesaesesse e ssesassesaesessssessssessesassesassenes 206
Presenting a Detail VIEW CONEIOIIET .......c.ceeveereerereerereerererereree e rsesersesessesessesasessssesssssssssessesassesssnenes 207
SiMUIAtiNG FOICE TOUCK .....coveeeeeerererertecreesere st s res s ae e saesesaesessesessesas e saesessesesaesessesassessenessssssenanaens 209

[vww allitebooks.cond



http://www.allitebooks.org

Contents ix

Adding Buttons to an Interface CONtroller...........cooeeeeevecerece s 210
Passing Information Between Interface Controllers..........ccccovvrvervrsrvrcersessensenseninnns 213
Using a Delegate to Pass Information on DiSMISSal ..........ccceceverrererereerererereresrersesersesessesessesessessesens 215
How to Add Notes Using Text INpUL...........ccoorercrcrc s 217
Sending Data Back to the Parent i0S ADP ......coccccvrriiennnne s sss e s e s sessssssess 219
1111 112 2SS 223
Chapter 8: Building a Stand-Alone watchOS App......ccccuneermnsssnnssmssssssnssssssnnns 225
ANMEA BAKIF......coviiieeersernesnsesesss s s sssss s s ss s sns s ss s sss s snssnssnssesssssssnnssnes 225
Using Core Location to Request Current LOCation..........cccceeevevervevvevsssensesses s s senenns 226
Reverse GEOCOUING N AUUIESS .......c.coceeerererererereseresesesesesesesesesesesesesesessseesssesesssssssssssssssssssssssssssssaeas 229
Using NSTimer to Create Reminders.........cccocvvevenrernsnennnsesssssse s ssesssse s 233
Making Network Calls from Your watChOS App......coceeeeererercrr e seesnnenns 238
Handling @ JSON RESPONSE ......cceceruerererireririerie e sessesessesas e ssesessesessesessestssesassessssessesessssassesassesssnenns 243
1111 112 7SS 245
Chapter 9: Connecting to a Bluetooth LE DeViCe ........uuseememmmnrrsssssssssnsnnnssssssssnns 247
Manny de 12 TOMTENTE........ccvcvvrrrrer e sa e sn e 247
Introduction to the Apple Bluetooth StackK..........cccceeeeerercsesc s 247
Key Terms and CONCEPLS .....ccccvecerecererirers e sn s s s s sn s e sn s s r e 248
Core BIUETOOTN ODJECTS.....cccceeecrrecrrccere e r e e e e s r e r s 249
Building Your First Bluetooth LE Application ............ccceervrvercersensesses s ses s 250
5T T 4 o SRS 251
Base Application and HOME SCENE.........ccceverrereerererererererer e rse e sesse e ssesas e ssesesaesesassasaesassesasnenes 251
CeNtral BOIE SCENE ......c.cceeceeeeecee e e 252
PEripNEral ROIE SCENE .......ccevveereeereerertererereserseserseseraesessesassesas e saesessesessssasaesassessssessssesassansesassesssneres 253
EQIEADIE TEXE «.vvvveveessneeessssssreessssssnesssssssssesssssssssssssssssesssssssessssssssssssssssssssssssssssssssssssssssssssssssssssesssssss 255
Setting Up the ProjECt ..ot sne e 256
Building the INterface...........ccvvrvercrsersrcrsr s nns 256
Using a Central ManAQEr.........ccoceruererereereessessessesssssssassssssssssssssssssssssssssassassssssssssssssnns 264

[vww allitebooks.cond



http://www.allitebooks.org

Contents

Connecting to a Bluetooth LE Device in YOUr APP....ccoceeereerrereeseesesssssssssssssssssessssssnsenns 268
BUIlAING the INTEITACE .......ceeeeererccer e 268
Keeping Things Clean with Delegation .............coveeeeerrnencnesneseseseseese s ssseeens 272
Scanning for PEFPRETalS .........cco e 276
DiSCOVEr ANA CONNECL........cccoeeeeeeceee e 280
Explore Services and CharaCteriStiCS.......c.cuurerrrrrrerererneesesesee s s s sesssssssnens 281
Subscribe and ReCeiVe Data.............cccvriirii 281

e 10T T<T | T 284
50T o [T T T (TN L (=T =T 284
DY F=T 0 =Y T 1 o 285
SELHNG UP @ SBIVICE ...veeeereecrerere s ree e seraeras e s ae e sae e saesesaesasaesas e saenesae e saesesaesassesaenesasnesaeanaens 288
AdVEITISING SBIVICES....ueoereererererrereererserererererassersesesaesessessssersssessesessssassessssessssesssssssssssessssersenessenssaes 289
T4 [T 10 R 291

Enabling Your App for Background Communication.........cc..coeeenieresersennsesesensessnsennes 292

Bluetooth Best PracliCes.........ccourniennnmnennesssssesesss s sss s snsse s 293
Central ROIE DEVICES........cocoeeerereereieeese e 293
Peripheral ROIE DEVICES........cccvuruerererrrreeseresreesesesssee s sss s sesssss s s ssssssssssssssssssssssssasnnns 293

1111 1P 7SS 294

Chapter 10: Building Location Awareness with iBeacons.........cccuussseeeennnssessssnns 295

Manny de 12 TOMTENTE........cvvvvrrrrr e sa e sn e 295

Introduction t0 IBEACONS ........cccceviiinir s ———— 295
iBEacon AdVErtiSEMENT........c.covrririnnininnss s ——————— 295
IBEACON ACCUIACY ....cveeieeirieriscrsee e se e s e se s e s b et r e e s e s ae b s e A e R e e R e e e Re e s Re e e nenr e e ns 295
L 117 o OSSOSO 296
Region MONITOMING ......ccceeerierircrecrre s s r e e p s a e R e e e ne e sn e r e e 296

RANGING ..ttt e s e e s e e e nn e nn e nn e n e e nennennnnan 296

Building the iBeaconApp Application ...........cccceverererens s sesseeeens 297
L0 L TR (N (0 298

Setting Background Capabilities .........ccoeeevererererierrererereseresereresersesersesessesesaesessesassessesessssessesanaens 298



Contents xi

Building the HOME SCENE........cccvcercerirrer it sn e 299
Setting UP UL EIBMENTS ...t ss s 300
Creating an Qutlet CONNECHION...........c.occeeerireeer s 301
Setting UP CONSTFAINTS ......cocoeeecrerrccrer e e e s 302
Creating @ CUSTOM BUHON........ovoe e 303

Detecting Bluetooth State .........cccvvvvrvrirsrcr s 307

Building the Region Monitor SCENE.........cccceevrerrrres e 310
The RegionMONItOr ClaSS.......ccoueeerererueererinnesersssse s ses s s sss s s se s sesasss s sesssss e sesassssssessssnns 315
Using the Delegation Pattern........... e 315
Creating the RegionMONITOr ClASS .........ccccviiiereriirnnsesinnsesesss s sss e sss s se s sesesassssssnens 316
Delegate MEthods.........cccoveerciir e e e p s 317
RegionMonitor METNOUS ........cccoeeiecrererr e e s sn s s r e 321
Authorization and Requesting PErmission...........ccceeeienncnnscnssne s sessessssessssessesesnes 322
CLLocationManagerDelegate Methods...........ccovcvecrenncnnicrs e 324

Building the iBEACON SCENE .......c.cecercererersirirsir st sn e e snssnenne e 333
The BeaconTranSMItter ClASS ...........covverererereririrenirisisisise s 336
Defining the BeaconTransmitterDelegate ProtoCol...........ccccovrecenenereencncsesisesesesse e sessseeens 336

1111 112 7SS 341

Chapter 11: Home Automation Using HomeKit ..........ccccusemmmnnssnmnmnssssnnnsssssnnnns 343

Manny de 12 TOMTENTE........ccvcvvrrrrer e sa e sn e 343

Introduction to HomeKit CONCepts........ccuvveervcrnnrcrnr e 343

HomeKit Delegation Methods..........ccccvvrversrcncscr e 344

Building @ HomeKit Application ..........ccocvvrvriennensersr e se e e sesnens 345
3T 11T =T 11Ty 345
HomeKit ACCESSOrY SIMUIALOT .......c.ccvveererererreree e sere s re s s ree e rae s e e sae e s sas e saesesas e saesasaesassesaeseres 346

Creating the PrOJECT.........cov it 346
ENabling HOMEKIt ...........coureeeeec et n e e s 348
Building the HOMES INTEITACE ........ccceeeeirerr e sr e 348
Implementing the Home Manager Delegate Methods ...........ccccecvevrecriecnsennsc s 351
Adding a New Home t0 the HOme Manager.........c..cccoeereencrnscnesene s ssssessssessesessessssessssessssssnes 357

Removing an Accessory from @ HOMe........c..ocoecerciccncsnccncsre e s sns e e 367



xii

Contents
Transitioning t0 the Services SCeNE.........cccvvvvrvrcrcr s s 393
Running the AppliCation ..........ccoceeererererrrrre s sa e sa e saenens 394
AQUING ACCESSOTIES ...veveuereereruerererseserseserseressesssserseserssssssessssersssessessrssssssessssessssesssssssessssessssersessesesssaes 394
RS0 = P 395
Chapter 12: Building an App That Interacts with a Raspberry Pi........cccccusueenns 397
GREOrgNE CHESIEN .......cceieererer et r s n e e s 397
About YOUr RASPDEITY Pi.......ecueeeeeeececiececeestesse s sse s s s s s s e s s s s s 397
Control Interfaces on your RaSPhErry Pi........cccceveverrrssssesses s ses e sessassessenns 399
Setting up your RASPDEITY Pi.......ccoveeeciiirnreriners e ses e 400
Choosing the Scripting LANQUAGE..........ccceerrrrmiererinineseririss e sesesss s sesss e sessssssssessssssesessssssssennns 401
0] g T [T o N OO O RTSO 401
ConfiguriNg GPIO.........cceieeeee e e e R e e e e s nn e R e e 404
INSTAI PYGIOW ..ottt s se e n e r e s 405
Providing an APl to Control your DEVICE..........ccecveerrersercer s sne e 406
INSTAIL FIASK .....cocvieeeeeeeieecsir e e s s e s s e e nn e e nas 406
Setting up an i0S Project for OUF APP ...occeceverrerrer e 409
Allowing 0utgoing HTTP CallS.......cccecvererererererrereesereesessesesersssessesessssessessssessssessesessssessessssessssesssssaes 409
THE VIEW CONTIOIIET ... e se e e e seesesesesesesenenes 410
THE LOGGEE LIDFANY ....ceecccccccc e sesesesenenenes 413
RS0 P2 S 426
Chapter 13: Using Keychain Services to Secure Data ..........ccoccemnrnsssennnnssssnnnns 427
GREOIgNE ChESIEN .......ce et r s n e s e 427
Hardware Security 0n i0S DEVICES......c.ccecrrerrerrersersersesses s s sessessessessesssssessessnsssssssenns 429
Securing the File Data...........cocvveeveriercrsr e n s 430
The Apple KEYChaIN.........ccccvcercerrirsirserir s sn s 431
The Apple KEYCh@iN SEIVICES.......cccvrererererrressssesesesse e ssssessssessesessssesssssssessssesssssssssssssssssesssnsesssanes 432
Components of @ KeyChain M ..o e 432
Implementing Keychain Services for Storing Passwords...........cccccvnencrnnnnesnnssesesenssesesessesennns 432

Retrieving Data from Keychain SErviCes .........cuvvrriennicnnicsssc e sseens 434



Contents xili

Invalidating Keychain Service RECOIS..........cccvuerereererrrerererseresrersesessesessessssessssessesesssssssssessessssesssnenes 435
Setting Up an Application to Test KEyChain SEIVICES.......c.ceevrerrrrererierenrerseseresesesesessssessesessesessesesaens 436
The VIeW CONIOIIEN ... 436
RS0 1 442
Chapter 14: Using Touch ID for Local Authentication .........c.ccssemrrnsssennnnnsssnnnnns 443
Manny de 12 TOMTENTE........cccvcecrcrer s sn e nnenn 443
INtroduction t0 TOUCKH ID .......coeeiiiecrcerr e 443
LocalAuthentiCation USE CASES .........c.corcrererererererereresesesesesesesesesese e e seseesesesess s s s s sssssssssssssssssssneas 444
Building @ TouCh ID APPIICALION ......ccoveveeeererrreerrersese s ss e nas s s nnes 444
Creating the ProJECL........cvcevererererr et sa e e sa s sa e sa e sa e sa e sa s sa e sn e saenens 447
Building the INterface..........ccccvercercrsrsercr s nns 447
Implementing the UlTableView Methods...........ccceiiernnmnenniennssnessse s 451
Integrating Touch ID for Fingerprint Authentication...........cccecrvercniencrsncr e 452
Evaluating Authentication POlICIES........cccuvirirerirerer e n s 452
Touch ID Authentication without KeYChain ..o 452
User-Defined Fallback for Authentication...........c.couvnnnnnnnnn 454
RUN the APPHCALION. ..o r e e s a e a e e e e e e e e snenne s 455
Things 10 REMEMDEN ... 455
SUMMEAIY ...t r s s e sre e s e re e s e n e e sne e nsnnnnnnnnas 455
Chapter 15: Using Apple Pay to Accept Payments........c.ccccnmmnssnmmnmnssssnnnsssssnnnnns 457
GNREOIgNE CRESIEN .......ccvieeeererr e s n s 457
Apple Pay vs. Alternative Payment Systems........ccccvvvvvevrrnrn s 457
APPIE Pay Prer@QUISITES.....ccveieiereeriertrrer sttt se s et sa s sa s sn st e s sn e a s e se e e e e e sn e e nn 459
Using Apple Pay t0 acCept PAYMENTS .......cccciviririnerere e sn s sr e nn s 460
Configuring your Environment for APPIE PaY........cceeverriereriererrereenersesessssessessssessesessesessssessessssessesenes 466
Implementing Apple Pay payments With SIripe.........ccon 476
The View CONroller COUB........uuunmrimiiissirisisss bbb 482
BT 111 112 SRS 484



About the Authors

Ahmed Bakir is the founder and lead developer at devAtelier
LLC (www.devatelier.com), a San Diego-based mobile
development firm. After spending several years writing software
for embedded systems, he started developing apps out of
coffee shops for fun. Once the word got out, he began taking
on clients and quit his day job to work on apps full time.
Since then, he has been involved in the development of over
20 mobile projects, and has seen several enter the top 25

of the App Store, including one that reached number one in
its category (Video Scheduler). His clients have ranged from
scrappy startups to large corporations, such as Citrix. In his
downtime, Ahmed can be found on the road, exploring new
places, speaking about mobile development, and still working
out of coffee shops.

Gheorghe Chesler is a senior software engineer with expertise
in Quality Assurance, System Automation, Performance
Engineering, and e-Publishing. He works at ServiceNow as

a Senior Performance Engineer, and is a principal technical
consultant for Plural Publishing, a medical-field publishing
company. His preferred programming language is Perl (so
much so that he identifies with the Perl mascot, hence the
camel picture), but also worked on many Java and Objective-C
projects.



www.devatelier.com

xvi

About the Authors

Manny de la Torriente has over 30 years of software
development experience, having worked on every level from
engineering to management. Manny started out in software
by doing programming for sound engineering and then moved
into game engine development and low-level video playback
systems. Manny is known to switch between iOS and Android
depending on how exciting the project is.



About the Technical
Reviewer

Charles Cruz is a mobile application developer for the iOS,
Windows Phone, and Android platforms. He graduated from
Stanford University with B.S. and M.S. degrees in engineering.
He lives in Southern California and runs a photography business
with his wife (www.bellalentestudios.com). When not doing
technical things, he plays lead guitar in an original metal

band (www.taintedsociety.com). Charles can be reached at
codingandpicking@gmail.com and @CodingNPicking on Twitter.

xvii


www.bellalentestudios.com
www.taintedsociety.com
mailto:codingandpicking@gmail.com
http://@CodingNPicking

Introduction

Ahmed Bakir
What Is the Internet of Things?

The Internet of Things refers to the push to make applications and hardware devices, or
“things,” “smart” by receiving or logging data from the Internet and other things. The goal of
the Internet of Things is to use these additional data sources to make common tasks in your
life richer and easier to perform.

One of the earliest drivers of the Internet of Things was the Quantified Self movement, a
trend that suggested people could lose weight and exercise at more sustainable levels by
constantly logging and monitoring their diet and workout information. Although this started
out with data gleaned from calorie-counting journals and pedometers, the creation of apps
like MyFitnessPal, which would help you find caloric information for your afternoon snack,
and devices like the FitBit, which automatically logged your pedometer data to the Internet,
pushed Quantified Self into the mainstream.

Another example of the Internet of Things in action would be a smart TV. Several years

ago, your TV was a “dumb” screen, only displaying the output from the input devices you
connected to it, such as a cable box, game console, or VCR (do you remember those?). Fast
forwarding to the future, today’s TVs commonly include WiFi cards and “smart” application
platforms that allow you to perform some of your most common tasks, such as streaming
videos from Netflix or browsing photos from Instagram directly from the TV, without having
to connect a computer. While many TVs are not yet at the point where they have “intelligent”
features, such as suggesting cooking shows because you watch a lot of them, the hope

is that having Internet connectivity and an application platform will inspire developers to
program these applications for TVs.

Xix



XX Introduction

A significant distinction between today’s Internet of Things and previous attempts to
connect devices to the Internet is that the barrier of entry has dropped significantly. Whereas
previously, the only way to build an Internet-connected device was to have a staff of highly
trained hardware and software engineers building a proprietary platform for years, today you
can go to any electronics store or web site and buy an Arduino or Raspberry Pi, which puts
the motherboard of a computer from a few years ago in the palm of your hand for about
$30. These devices were designed to give hobbyists and students an easy way to enter
electronics (previously, it was a very expensive hobby—the voice of experience), but also
include all the core features you need to build a connected device: a CPU, the ability to run
high-level programming languages (such as Python), a WiFi card, a display port (generally
HDMI), and a series of GPIO (general purpose input/ouptut) pins, which allow you to connect
electronic components, such as timer chips and LED lights.

Consumers and companies have noticed the demand of connected devices, and the ease of
entry into the market, making this the perfect time to learn how to program for the Internet of
Things! Who knows, maybe your app will be the one that drives personalized toast into the
mainstream (the best way of making sure people don’t steal your lunch)!

What Is the Purpose of This Book?

The purpose of this book is to teach you how to build iOS applications, in Swift, that use
Apple’s native application programming interfaces (APIs), which connect to popular Internet
of Things (IoT) devices and services. We have framed our narrative around the following four
classes of devices:

Fitness and health trackers

Apple Watch

Generic hardware accessories
Authentication and payment systems

These device families represent some of the most popular classes of loT accessories, while
allowing us to teach you several different ways of connecting to IoT devices, including native
iOS libraries (e.g., HealthKit and WatchKit), generic hardware interfaces (e.g., Bluetooth),
third-party data logging services (e.g., FitBit), and local networking (over WiFi). The beauty
of today’s loT is that that there are so many ways of connecting your devices, based on
widely adopted open standards, reducing your need to learn proprietary protocols. Our goal
is that by exposing you to different ways of connecting to loT devices, you will have a handy
toolbox of skills that will cover most of the use cases you will be asked to implement.

This book is presented in a tutorial style, which takes cues from modern software
engineering practices, such as code reviews and Agile programming. Each chapter in

this book is framed around a project you will be learning how to implement, which will be
described via requirements and “stories” indicating why they are important. In a similar
manner, our explanations will go deep into the code, pulling in best practices from Apple’s
specifications and other applications. Whenever necessary, we will pull in brief explanations



Introduction XXi

of underlying topics, such as delegate programming and OAUTH authentication, so you do
not need to keep flipping back and forth between different books. Our goal for this book is
to give you a deep understanding of the projects you will be implementing, rather than
copy-and-paste snippets. As anyone who has survived a major iOS upgrade (e.g., i0OS6

10 i0S7) can attest, knowing the core concepts helps you fix your code way faster than
memorizing single-use snippets.

What Do | Need to Know to Use This Book?

This book is intended to serve as a guide to implementing specific topics in iOS. It is
structured in a way that guides beginners and intermediate-level programmers through
the information they need to understand the topic, while also allowing advanced readers
to skip to exactly what they are looking for. That being said, this text is written with a few
assumptions in mind.

The reader has a solid understanding of core programming concepts
(object-oriented programming, pointers, functions)

The reader has a working knowledge of the basics of iOS development
(using XCode, Interface Builder, and Cocoa Touch libraries)

The reader has programmed in Swift or Objective-C before

As Swift and XCode are ever evolving tools, the first two chapters of this book cover IDE and
syntax basics. Our goal with these chapters is to help developers who are still transitioning
to Swift from Objective-C and those who have not yet had a chance to review Apple’s dense
APl update documents.

For expanded coverage of the Swift programming language, iOS programming, and XCode,
we recommend the texts listed in Table 1, also available from Apress.

Table 1. Recommended References

Topic Title and Author

Introductory iOS Development Beginning iPhone Development with Swift by David Mark,
Jack Nutting, Kim Topley, Fredrik Olsson, and Jeff LaMarche
(Apress, 2014)

Using XCode and the Debugger  Beginning XCode: Swift Edition by Matthew Knott (Apress, 2014)
Intermediate iOS Development Learn iOS8 App Development by James Bucanek (Apress, 2014)

Swift Syntax Swift for Absolute Beginners by Gary Bennett and Brad Lees
(Apress, 2014)

[vww allitebooks.cond



http://www.allitebooks.org

xxii Introduction

The most up-to-date reference for iOS programming is Apple’s official iOS Developer Library,
which you can access from the “Documentation and API Reference” option in Xcode’s
“Window” menu (shown in Figure 1) or online at https://developer.apple.com/library/
ios/navigation/).

® Xcode File Edit View Find MNavigate Editor Product Debug Source Control Help
ece » 5 LocationLogger | B Phone & LocationLogger: Ready | Vesteday at 3:51 PM Minimize xM 10 0 0
Zoom
B R a - L L4 = Locatonlogger = D &
Show Next Tab X}
] O Capabilities Info BudE  Show Previous Tab 2%{ identity and Trpe
T — PROISCT Devices  Univen Name LocationLogger
» i CoreLocation. framewark B o9g cation
i3 = il Welcome to Xcode 31 it
v ationLogger "
: TARGETS Main Interface  Man Devices ax2 LecatonLoggerxcodepro]
= AppDelegate swift R Organizer Full Pash /Users/sbaice Dropbos/
+ FirsiViewControBier swilt atanLogges Device Orientation [ Portr ganzel Apeess/ProgrammnglaT/
+ SecondViewContralier swift LecatanloggerTests upsw  Projects Lecatonkogger!
LocationL agger xcodapr ©
Lot b g :'“’ Bring Al to Front
Images xcassets and ey ——
LaunchScreen.xib B cor
- i Status Bar Style Dot & CONGUIdE Project Format  Xcode 3.2-compativie [
pporting Fi ol = LeftMenuViewController.m n
LocationLoggerTests & i Organization devAtelier
v = LocationDetailViewController.m
» 1 Products Class Prafis
¥ App loons and Launch images.
Taxt Sattings
App lcons Source  Applcon B e B
Launch Images Source  Use Asset Catalog Widtne 4: 4
ety Fstont
Launch Screen File LaunchScren - Wrap lines
¥ Embedded Binaries Sowrce Cortrol
] @
View Controller - & conrole ta
BUPQOrts the fundamental view-
management model in 108,
¥ Linked Frameworks and Libraries Navigation Controlier - &
[
thvough a hierarchy of views.
5 Magkit Famawerk Fsquired &
5 Cormbocation framewiic Fuquired 2 Tabls View Controlier - A

controlier that manages & table view.

Figure 1. Accessing the iOS Developer Library from XCode

Caution Always use the latest version of the i0S Developer Library as your API reference. Apple
often makes major deprecations and parameter changes, even in minor point version updates.
The best way to stay up-to-date is by staying on the latest XCode version or accessing the i0S
Developer Library web site.

What Do | Need to Get Started?

This book is designed around the workflow of developing an application on your computer
and testing it on a physical device, which is potentially paired with a hardware accessory.
The projects in this book depend on APIs which are not available in the iOS simulator.
Apple’s requirements for developing and testing iOS applications with a physical device are
the same as those required to submit an application to the App Store:

An Intel-based Mac running OS X Yosemite (10.10) or later
XCode 7 or later


https://developer.apple.com/library/ios/navigation/
https://developer.apple.com/library/ios/navigation/

Introduction xxifi

An iPhone or iPad capable of running i0S9.1 or greater (iPhone 5 or
greater, iPad2/iPad mini or greater)

A valid Apple ID to register for free, device-based testing of your apps

Starting in summer 2015, Apple removed the requirement of having a paid iOS Developer
Program membership to test your apps on an iOS device. A paid membership is still required
to submit your apps to the App Store, use TestFlight for beta testing, and debug Apple
server-based APIs, such as Apple Pay. You can sign up for an Apple Developer Program
membership by going to the Apple Developer Programs web site (https://developer.
apple.com/programs/) and selecting the Enroll button, as shown in Figure 2. Upon receipt of
your fees in the Apple Store, the Apple ID you selected will be available for use in the Apple
Developer Program.

ene < I 8% o @ Apple I : O, | o =
‘ Developer Platforms Resources Program Support Member Center Q
Apple Developer Program What's included  How ttworks | (S

Figure 2. Signing up for a paid Apple Developer Program account

Note If you are signing up for a corporate developer account, you will need to provide Apple with
additional information to identify your entity, such as a Dunn & Bradstreet number. It will take extra
time to process your account.


https://developer.apple.com/programs/
https://developer.apple.com/programs/

Xxiv Introduction

The projects in this book are designed to be “universal,” meaning they can run on iPhone
or iPad. The user interfaces are designed primarily for the iPhone, but they will be scaled up
and work the same way on the iPad, as shown in Figure 3 for this chapter’s example.

iOS Simulator - iPhone 6 - iPh... i0S Simulator - iPad Air - iPad Air / iOS 8.3 (12F69)
Carrier 5 913 PM - Camar ¥ w1 PM o -

aaaaaa

CANADA

UNITED STATES

MEXICO
CUBA
DOMINICAI
REPUBLIC MEXICO
HONDURAS

NICARAGUA

PANAMA
VENEZ |l T GUATIMALA

COLOMBIA

ECUADOR

Figure 3. Sample project user interface on iPhone vs iPad

The Health section of this book requires you to have an iPhone 5S or greater, in order to
use the Core Motion framework. iPads and older iPhones do not have the M-series motion
co-processor chip which Core Motion provides access to. This chip includes an advanced
pedometer and gyroscope, which allow motion tracking at less than one-tenth of the power
consumption of the GPS chip (according to Apple.) For the FitBit chapter, you need a free
account on Fitbit.comto generate sample data to test with, but you do not need a FitBit
hardware device. You can manually enter in steps, caloric intake, and weight from the FitBit
web site.

The first two chapters of the Apple Watch section can be implemented using the Apple
Watch simulator; however, the last chapter takes advantage of Core Location features that
are not supported by the simulator. The Apple Watch is still a hardware platform that is being
optimized, so it is a good idea to use an Apple Watch to test your applications for realistic
performance data.


http://Fitbit.com

Introduction XXV

The Bluetooth section requires you to have at least two iOS devices. The first chapter
teaches you how to set up a direct link between two devices over Bluetooth. To keep the
narrative focused, you will learn how to configure an iOS device for the two core roles of
Bluetooth: central manager and peripheral. Having two devices allows you to test quickly
and reliably. For the iBeacon chapter, you will learn how to configure an iPhone as an
iBeacon, but you can also use a hardware beacon for testing (they are available as USB
dongles at most electronics web sites for about $20-$30).

The “Internet of Secure Things” chapter (authentication and payment systems) requires you
to have an iPhone 58S or later for the Touch ID chapter and an iPhone 6 or later for the Apple
Pay chapter. The Touch ID sensor (identified by a metallic ring around the home button) is
available on every iPhone since the 5S and every iPad since the iPad Mini3 and iPad Air. It
cannot be emulated in software. Similarly, Apple Pay requires an NFC sensor and additional
authentication chip that are only available in the iPhone 6/6 Plus or later, and iPad Mini
3/iPad Air 2 or later.



Chapter

Building Your First Internet
of Things App

Ahmed Bakir

To help introduce you to the style of this book, your first project will be a very simple
application that demonstrates several of the steps you will take when building an Internet

of Things application: creating a project, including hardware-specific frameworks, retrieving
data, and displaying it. For your first project, you will create an application that logs the
user’s location using his phone’s GPS chip and displays it on a map. This app could be used
to help him find his car if he has the tendency to forget where it is (like a certain author).
Figure 1-1 shows the mock-up, indicating the major user interface (Ul) components and the
flow of the application. The application you will create will follow the guideline set by this
mock-up closely.



2 CHAPTER 1: Building Your First Internet of Things App

Locations Add 6&..:&\7'5‘?!‘:- Map

.-I::ru'-:.-.: 1205 . 112 5 e
< 1.1.1 Add Button - Executes code to add a new
location to table.
4 1.1.2 Table View - Scrollable list of cells containing
° coordinates of saved locations and time saved.
1.1.3 Tab Bar - Allows users to switch between two

SI800 KLOOCD T main display modes

S EgD

1.1.4 Map View - Shows user’s current location and
saved locations as pin drops on a map

1.1.5 Pin Drop - Shows a saved location

1.1.6 Current Location Indicator - Shows user's
current location

?
o-EEFED

Location List Map

Figure 1-1. Mock-up for the CarFinder application

CarFinder has a tab-driven Ul. The first tab displays a list of locations the user has saved, with
timestamps, and a button for adding new locations. The second tab displays these saved
locations on a map. You will work through the CarFinder project taking the following steps:

1. Set up the project (and its dependencies).

2. Build the Ul for the application.

3. Request permission to use the GPS hardware on the user’s device.
4. Access the user’s location information.

5. Consume and visualize the user’s location information.

A working Xcode project for this application, including the complete source code, is
available in the Source Code/Download area of the Apress web site at www.apress.com. All of
the source code for the book is packaged in a single zip file; the CarFinder project is in the
Ch1 folder. Let’s get started.

Setting up the Project

The focus of the CarFinder application is to quickly save and retrieve location information.
A tab bar is a common Ul element in iOS that displays a series of buttons at the bottom of
the screen. Clicking any of these buttons allows you to quickly switch between screens. An
example of a tab bar is in the built-in iOS Music application, which allows you to quickly
switch search filters (e.g., Alboum, Artist, and Title) by clicking buttons in the tab bar, as
shown in Figure 1-2.


http://www.apress.com/

CHAPTER 1: Building Your First Internet of Things App

. T-Mobile Wi-Fi ¥ 9:35 AM

L} My Music

e84 Howl's Moving Castle (Original
ﬁ Soundtrack)

= _
5 Human Coating - Single

LeA

ﬁ g Humanizer
Er‘ ’ Hunky Dory

cq_ Hush Boy - Single

£

a2
|4 % HYBRID UNIVERSE

Prindacd]

]
Ff? I love you
.ﬁ“- - 5]

-
av

Figure 1-2. Example of a tab bar in the i0S Music application

The tab bar controller is also helpful to developers for two reasons: you do not need to do
any programming to connect the tab bar buttons to a screen (you can set up the layout and
all connections using Interface Builder’s point-and-click tools.)

To implement the CarFinder application, open Xcode and create a new project using the
Tabbed Application template, as shown in Figure 1-3.

3



4 CHAPTER 1: Building Your First Internet of Things App

[ ] Loading

OoR a S > E {  Choose a tempiate for your new project: D &

105

Application - . 1

Framework & Library

Othvor Master-Detail Page-Based Single View Tabbed

" Application Apphication Application pplication

osX

Application ;\é

Framework & Library

System Plug-in Game

Other

Tabbed Application

This temgiate provides a starting point for an application that uses a tab bax. It provides a
e inbertace configuned with & tal bar Controlien, Bnd view controliers for the tab bar items.

Lecat -

Table View Controlier - A
contensier that macages o table vew.

Figure 1-3. Selecting the template for a Tabbed Application

Next, you will be asked to name your project and select a programming language for the
project, as shown in Figure 1-4. Although you can mix Swift and Objective-C in modern
Xcode projects, the programming language setting pre-populates your project with common
build settings for your language (such as modules for Swift and pre-compiled headers for
Objective-C). All the projects in this book are written in Swift, so use the Swift setting.



CHAPTER 1: Building Your First Internet of Things App 5

B R Qs © & e @ B chooseoptions for your new project: oo

Product Name: | CarFinder
Organization Mame:  Ahmed Bakir
Organization identifier: | com.devatelier
siiler: com dmatslier.CarFinder No Selection
Language:  Swift B

Devices: | Objective-C

Include Unit Tests
Inchade LA Tests

Cancel previous  ([EECTEN

No Matches

Figure 1-4. Selecting a programming language for your project

You will also find a Devices setting on this screen, which allows you to specify whether you
want your app to run on iPhone only, iPad only, or both (Universal). This project focuses on
accessing GPS hardware which is available on both devices, so you can leave the template
set to Universal.

Note You can change the Devices setting at any time by clicking on your app’s Project file (the
top file in the Project Hierarchy.) The Devices drop-down will be available there too.

The Corelocation and MapKit frameworks in Cocoa Touch enable the core features of this
application—retrieving location information and displaying it on a map. A framework is a
pre-compiled library that allows you to add a group of related functions to your application
without being at risk of breaking the code or its dependencies. Practically, it does not make
sense to include every available framework in a sample project, so you need to manually add
the ones you want. As shown in Figure 1-5, to add frameworks to your project, select your
project file in the Project Navigator (the left-most pane of Xcode) and scroll to the bottom of
the General Project Settings page, where you will find a section entitled Linked Frameworks
and Libraries. Clicking the Plus button will bring up a pop-up window with a scrollable list of
all the frameworks installed on your Mac.



6 CHAPTER 1: Building Your First Internet of Things App

B : g 1 Choose options for your new project: O &

Proguct Name: | CarFinder
Organization Name:  Ahmed Bakir

Organization kdentifier:  com.devatelier

Burdie iden fier eyt No Selection
Language:  Swift e
Devices: Objective-C

Inciuce Uinit Tests

Inciude U1 Tests

@
1

Cancel Previous | Neat |

Figure 1-5. Adding frameworks to a project

To complete the operation, select the CorelLocation and MapKit frameworks and press the
Add button. Frameworks will appear in the Linked Frameworks and Libraries section once
you have successfully included them in your project, as shown in Figure 1-6.

vww allitebooks.conl



http://www.allitebooks.org

CHAPTER 1: Building Your First Internet of Things App

% Carfinder | i IPhore 65 Plus Carfinder: Ready | Today at 720 PM

B 2 Carfinger
I 4 CarFinder 3 Capabities Rescurce Tags

Main Interface  Main

Device Orientation [ Portrait

8 Landsc

6 Landscape Right

pe Loft

Status Bar Style  Default

Hide status bar

™ Appicons and Launch images
App lcons Scurce  Appicon
Launch images Scurce  Uise Asset Catalog

Launch Screen File  LaunchScreen

¥ Embedded Binaries

Requines full screen

o

Build Settings.

Build Phases

Bl Rl Mentity and Type
Mame CarFinder
Lecation
Carfinder.xcodecro|
Full Puth [Users abakinDesktopichl]
CarFinder/
Carfinder xcodecro]
Project Document

Foemat Xcode 32-compatibly

ariration  Anmed Bak

Class Prefix

Text Settings

& wrag lines

Seurce Contral

aepostony -

®

¥ Linked Frameworks and Libraries

Required 5

Figure 1-6. Project with the CoreLocation and MapKit frameworks included

Note Every iOS project includes UIKit and Foundation by default. UIKit powers the core user
interface controls and Foundation implements core high-level programming features like strings

and arrays.

Building the User Interface

Now that you know the project is all set to compile correctly, you need to lay out the Ul

in Interface Builder and create source code to define its properties and behavior in your
project. The default storyboard for a Tabbed Application is a container view controller
that connects to two blank view controllers, as shown in Figure 1-7. You can access your
storyboard from the Main.storyboard file. For the CarFinder application, you will want

to replace the first view controller with a table view controller and add a map view to the
second view controller (MapKit maps are provided as views intended to be embedded in

view controllers).

7

=



8 CHAPTER 1: Building Your First Internet of Things App

a8 P % Carfinder ) [ IPhone Bs Plus CarFinder: Ready | Today at 7:28 P D I = i
B [ & Carfinder Casfinder | [l Mainstoryboard | [l} Mainstcryboard (Base) | No Sesection

j CarFindes ¥ [T First Scene

» [[] Second Scene

First View
» [7] Tab Bar Controller Scene i et

Second View

= = 0 Any nAny B o bad

Figure 1-7. Default storyboard for a Tabbed Application

Creating the Table View Controller

To replace the first view controller with a table view controller, click it in Interface
Builder. Your selection will be confirmed by a blue border around the view controller,
as well as highlighting in the view hierarchy pane, as shown in Figure 1-8.



CHAPTER 1: Building Your First Internet of Things App 9

[ ] e p = # CarFinder | B iProne 65 Plus CarFinder. Ready | Today a1 7:27 PM
B Q S > B o | < L CarFinger CaFinder | [ Mairstorybosrd | [l} Main storybossd (Base) | [ First Scene Fiest
v B CarFinder w [ First Scene
¥ 1 CafFinder v | First
+ AppDelegate.awift t
+ FastViewControler swift Bottom Layout Guide -
= SecondViewControbor swirt * L vew
[ Aoryboad w First
T Assets.xcassels @ First Responder
LaunchScreen storyboard B et
Info.plist = [ Second Scene
- 2
oouch » [ Tab Bar Cantroller Scene
—— First View
)
L] =
Second View
) = [} Any Ay d B ke bad

Figure 1-8. Selecting a view controller

Next, press the Delete key to delete it. Your storyboard should now look like the example
in Figure 1-9.

ece » B # Carfinder ) i iPhone s Plus CarFinder: Ready | Today at 7:28 Pu
BRE QA8 o 8 - & Carfinder Carfinder | [} Main.storyboard Mair_stcryboard (Base] | Mo Sesection
v B CarFinder » [ Second Scens
¥ 1 CarFinder

= AppDelegato.swift » [E] Tab Bar Controller Scene

¢ FirstViewCaontroller.swift
+ SecondViewControlier swift
Main sty board
5 Astets atassets
LaunchScreen storyboard
Inf.pliay
» I Products

Second View

= (n] whAny ARy H B o s

Figure 1-9. Storyboard, minus first view



10 CHAPTER 1: Building Your First Internet of Things App

To add the table, drag a table view controller from Interface Builder’s Object Library
(the bottom right pane) and drop it onto your storyboard. Your result should look like the
storyboard in Figure 1-10.

A CarFinder | [ Phona Bs Plus CarFinder: Ready | Today st 7:32 PM D

< L Carfinder | CarFinger | [l Mainstoeyioars | i) Main storyboard (Base) | Mo Selsction DeBE <06
Second Scene

» ] Tab Bar Controller Scene

Table View Controller - A
controller that manages & tasks view.

controler (hat macages § cobectes
atn

Tab Bar Controller - A
hat manages & gt of vie
That reoresent 1ab bar o

= = (n] Any »Any & iof lal =

Figure 1-10. Adding a table view controller to your storyboard

To connect the table view controller to your parent view controller (the container),
perform a control-drag (hold down the mouse while pressing the Control key) from the
parent view controller to the table view controller. As shown in Figure 1-11, a blue arrow
will appear indicating the connection.



CHAPTER 1: Building Your First Internet of Things App 1

ece
B s QA 2 @<

v B CarFinder

% Carfinder | i iPhorw s Plus Carfinder: Ready | Today at 736 Pu

& Carfinder CarFinder | ] Main storyboard

¥ [ ttem Scene
¥ [ CarFinder

v ) rom
- AppDelegato.swift » [ Table View
= FirstViawController. swift * item

+ SecondViewControlier swift
Main steryboard

Assets acatsets

) First Respander
[ e

* [ Second Scane

LaunchSereen storyboard

2 v [ Tab Bar Controller Scene

ifo.plist =

v () Taio Bar Controtier
Tab Bar

» 77 Products

@) First Respander

= Exn
Storyboard Entry Point
Relaticaahio "view contrelens” to °
Relaticeihio "view controlers” to *

Figure 1-11. Connecting storyboard elements

B vair storyboard (Base) | No Sesection < >

No Selection

1 @

Table View Controller - 4
controfier that marages 3 table virw,

Callection View Controller - &
controfier that marages 3 colection
view,

Tab Bar Controlier - A controber
1Rt marages & set of view Conirolers
that rpresant tab bar ems.

58 ol sl =

Releasing your Control-Click will bring up a pop-up menu, shown in Figure 1-12,
allowing you to specify the relationship between the two view controllers. Select the “view
controllers” relationship; this is the relationship type required for a tab bar.

ece
B s QA 2 @<

v B CarFinder

% Carfinder | i iPhorw s Plus Carfinder: Ready | Today at 736 Pu

& Carfinder CarFinder | ] Main storyboard

¥ [ ttem Scene
¥ [ CarFinder

v ) rom
- AppDelegato.swift » [ Table View
= FirstViawController. swift * item

+ SecondViewControlier swift
Main steryboard

Assets acatsets

) First Respander
[ e

* [ Second Scane

LaunchSereen storyboard

2 v [ Tab Bar Controller Scene

ifo.plist =

v () Taio Bar Controtier
Tab Bar

» 77 Products

@) First Respander

= Exn
Storyboard Entry Point
Relaticaahio "view contrelens” to °
Relaticeihio "view controlers” to *

Figure 1-12. View controller segue pop-up menu

B vair storyboard (Base) | No Sesection < >

No Selection

1 @

Table View Controller - 4
controfier that marages 3 table virw,

Collection View Controller - &
Eoniromr et MIrsges 3 colection
ew

Tab Bar Controlier - A controber
1Rt marages & set of view Conirolers
that rpresant tab bar ems.

H B ol ks =



12 CHAPTER 1: Building Your First Internet of Things App

At this point, your storyboard should look almost identical to the original (Figure 1-8),
except with a table view controller replacing the original, plain view controller. Unfortunately,
Interface Builder needs a little bit of help to learn that you have replaced the original

view controller—you need to tell it what class “owns” the new view controller. Previously,
the plain view controller was owned by the FirstViewController class, a subclass of
UIViewController. Your table view controller needs to subclass UITableViewController, so
navigate over to FirstViewController.swift in the Project Navigator and modify the class
signature to subclass UITableViewController.

class FirstViewController: UITableViewController {

}

The first view controller will also need to include the CoreLocation framework to retrieve the
user’s location, so make sure to add an import statement before your class definition, as
shown in Listing 1-1.

Listing 1-1. Adding CoreLocation to the FirstViewController Class (FirstViewcontroller.swift)

import UIKit
import CoreLocation
class FirstViewController: UITableViewController {

}

Connecting to a Table View Controller

Now that the class is correctly defined, you can connect it to a table view controller in the
storyboard. To make this connection, select the table view controller in your storyboard file
and navigate over to the Identity Inspector (the third tab in Xcode’s right pane). As shown in
Figure 1-13, the Custom Class menu will include the FirstViewController class. Select this
to make the connection.



CHAPTER 1: Building Your First Internet of Things App 13

e » 5 CarFinder | [ Prone B3 Phus Carinder: Ready | Today at T:46 Pu 1 D 4 = i

s | 5 L { B Carfincer Carfinger Main soryboard Main.storyboard (Base) hem Soene mem < L i, Y]

v [P iam Scene Custom Class

wss | FirstViewControiier

Table View Modvie

o

Tabie View Cell
* fem 0 ] Ideaty

I First Responder

£ ‘rototype Cells

Resioesiion 10

Second Scene
Use Storybeard 1D

Tab Bar Controlier Sceme
User Cofined Runtime Aftritutes

Table View Controller - &
controlier that maneges  table view

Colection Yiew Controfler - &
controlier that manages # collection
iew

Tab Bar Controller - A controlier
Ehat manags & set of view controliers
Tha represent 1ab bar items

= = O Any - ARy B ol Iaf

Figure 1-13. Connecting a table view controller to a class in your project

Note Make sure to also select your project name under the Module menu; Swift uses modules
to group code in projects, similar to a namespace in C++ or C#. Manually selecting this option
prevents the risk of future compilation issues when your project becomes more complex.

To complete this screen, you need to perform two more steps: create an Add button to the
screen and select a template for each cell in the table view.

Table-driven iOS apps prefer to put an action button (such as Add) in a navigation bar at the
top of the table. This makes for a consistent experience across multiple levels of detail (the
left button is used for navigation while the right is used for actions). By default, a table view
controller, does not come with a navigation bar; to add one, you will need to embed the view
controller in a navigation view controller. Fortunately, Xcode makes this effortless. To embed
any view controller in a navigation view controller, select the target view controller and then
navigate to Xcode’s Editor menu. From there, select Embed In > Navigation Controller, as
shown in Figure 1-14.



14 CHAPTER 1: Building Your First Internet of Things App

& Xcode File Edit View Find MNavigate Product Debug Source Control Window Help
' = @ 2L

@ 0@ P H A CarFinder ) @ Prone 8s Plus | Carwas >
Size Class > !
s QA O o @ M8« B [ Main storyboard (Base) | [ ttem Scene ) () mem <a> D@ <0 e
v B CarFinder v B e :hdt Document Dutline P pil
n s I
¥ 1 CarFinder ¥ (Jinan imienl i Dactrent CEor cum Frstviewcontroter B
+ AppDelegate swift v Tabe  Align > Mocule [~ ]
= FirstyiewControlier.swift ¥ T Arrange L
+ SecondVienController swift Size to Fit Content 8= -
Maln storyboard W Item = - Storybosrd 10
S Assats. xcansets W First Ret ¥ Sr@u to Guides | Ty - 3 =z
g Ex r e 10
LaunchScreen staryboars B et Guides % S =
nfo. piiat » [ Second Sc Use Storyboard
P [ Products » [ TabBar Co nbed . User Defined Runtime Attibutes
Localization Locking > Ky Path  Type Valoe
+ Automatically Refresh Views
Tab Bar Controller
Resolve Auto Layout Issues 3 Em—
Lated
Refactor to Storyboard... =
T Otiect 0 Eyf-BX-dTh
Lock Inharited - (Nothing) B
B P e
0 @ o
Mavigation Contralier - &
< Controter 1hat marages navigation
theough & hisrarchy of views
e < Mavigation Bar - Provces
- mechaiam ‘or dapiaying &
NaviQation Dar jst below the status
Mavigation item - Recresents o
< #1010 OF e FEVGAtEN Dar, IRcluding
» e,
c ME '] ANy ANy £ B iol bl | B @ ravig il

Figure 1-14. Xcode menu for adding a navigation view controller

Your storyboard should now look like the one in Figure 1-15; your tab bar controller connects
to a navigation view controller, which contains your table view controller.

ece » [ ] # Carfinder | i iPhone s Plus Carfinder: Ready | Today a1 7:63 PM 1 @ +* |

B QMAOCE o @ B & CarFinder | 1 Carfinger | [l Main.storyboard | [} Mainstoryboard (Base) ) [ ttem Scene ) (€) mem <ad D@0 @
v [ Carfinder v [£] First View Controlier Scene Custom Class
¥ 3l Carfinclae ¥ () First View Controber Class o8B
= AppDelegate.swift v [ Table View e @
# FirstWiawController swift v Table View Cell
= SecordViewController swift Content View Identity
Main storyboard < Navigation Rem - =
N Astels scassels m Fient Responder
[E Exn Bestonation 0
LaunchScreen. storyboard
- Use Storyboard ID

» [ Second Scene s

info pit
» 1 Procucts o 1 b e Covbe e User Defined Sruntime Attributes
KeyPath  Type Vale
¥ [ item Scone
v < hem
Navigation Bar
* em +
@ First Rosponder . A
[ e Label

Figure 1-15.

Retationship *root view controfer”

(]

«Any Ay

H B ol ks

Storyboard with a table view controller embedded in a navigation controller

*
Otieet IO AC3-Q-1C
Lock  Inharited - (Nothing) B
ey T B e

Controller - &
< conirofer that marages navigation
thevugh 3 hisrarc iy of views

< Mavigation Bar - Provicet &
mechaniam ‘o dapiaying 8
navigation bar st below the status

Mavigation fem - Recresents &
< LI Of 1N RaIGAEiSn Dar, Including
» e,

@ ravig L]



CHAPTER 1: Building Your First Internet of Things App 15

Creating an Add Button

To create an Add button, select a Bar Button Item from the Object Library and drag it onto
your table view controller’s navigation bar, as shown in Figure 1-16. Rename this button Add
Location by double-clicking its title (the default title is “ltem”).

ece » 5, CarFinder | i iProne &5 Plus Carfinder: Ready | Today at 7:64 Pu 1 D mif=im
B € & CarFinger Car_cor ) [ Mai_ard ) [l Maise) e_ene First View Controlier | ¢ Mavigation Rem | ¢ » y @ 8 ¢ 0

First View Controller Scene

3
] <

» [[] Second Scene

» [7] Tab Bar Controller Scene Document

item Scene

®

Bar Button Item - Aecresants an
e on a UiTooibar or
Uthlaviga

Flxed Space Bar Button Mem -
o fied sgace item on &

et

0 Bar Button tem
e 4D

o8 lnem on 8

0 Any Ay 2 ol ki (=) bar butt o

Figure 1-16. Adding a button to your table view controller’s navigation bar

To make the button do something, you need to connect it to a “selector,” or handler method.
Interface Builder will scan your view controller’s owner class for a list of methods that are
marked as “actions”; these are indicated by adding the @IBAction compiler directive to the
front of the method signature.

First, you need to make a stub or placeholder function that you can use to connect the
code to Interface Builder. Modify the definition for the FirstViewController class (in
FirstViewController.swift) to add an Interface Builder-compatible addLocation() function
as shown in Listing 1-2.

Listing 1-2. Adding a Stub for the addLocation Function

class FirstViewController: UITableViewController {

@IBAction func addLocation() {
//Replace this comment with your actual implementation
}



16 CHAPTER 1: Building Your First Internet of Things App

override func viewDidLoad() {

}
}

Next, switch back to Interface Builder and select the FirstViewController scene again
(the one that represents the table view controller). Click the Connections Inspector button in
the top right, as shown in Figure 1-17.

wild CarFinder: Succesded | Today at 808 PM g -

. 'h- 'R - yE- Right B Button ibems Add Location | { 0 3 (s 06

Trifgered 8o Show the Connections inspector

Bar Button Fem - Gepresents a0

Fiand Space Bar Button item -
P Represents s fued space em on 5

Flexible Space Bar Button item -
#rend Fepresents s Bexitle space ibem on 8
UiTeoibar object

| m Any rAmy B o sl (=) bar bust -]

Figure 1-17. Selecting the Connection Inspector

To connect the Add button to your selector, make sure Main.storyboard is your current
document and click the Assistant Editor button in the upper right section of Xcode, as
shown in Figure 1-17.

The Connection Inspector is indicated by an arrow in a circle. When you click it, the right
pane of Interface Builder shows a list of connections, representing actions for a Ul element
(such as the function that should be called when it is pressed) and its corresponding object
in the code. These connections are what tie your code to Interface Builder. For this example,
you need to connect the function that should be called when you press the Add button.

To connect the Add button to the addLocation() function, click the radio button next to
selector in the Connections Inspector pane. A selector in Swift is a reference to a function.
As shown in Figure 1-18, drag a line from the radio button onto the table view controller. As
happens when you select a segue, a pop-up will appear allowing you to choose the function
you want to connect as the selector action.



CHAPTER 1: Building Your First Internet of Things App

ene »
B R

v B CarFinder
¥ (0 Carfinder
+ ApcDelegate.swift
+ FirstViewControlier swift

= SecondVigwConiroler pwift

Mair ytoryboard

Astats scassots
LaurehSereen storyboded
info.plist

» 1 Products

A, CarFinder | i iPhone 83 Plus

8|« & CorFinger
v [ First View Controdler Scens
w () First View Controlier
> [ ] Table view
¥ ¢ Navigation ftem
Left Bar Button items
¥ Right Bar Button items
— | Add Location
@ First Responder

[E Exit

» [ Second Scene
* [ Tab Bar Controller Scens

* [ nem Scene

CasFirder | Build CarFinder: Suceseded

Today a1 8:05 P

) . Right Bar Button items

wAny n Ay

Figure 1-18. Connecting a button to an action in Interface Builder

To verify that the connection was made successfully, check the Connection Inspector after
choosing the addLocation() method. Add Location should now appear in a bubble next to

selector, as shown in Figure 1-19.

CarFinger

Dok gate vmift
« First¥iewControlier swift
= SecondViewCantroller swift
Main. storyboard
Assets veassots
LaurchSereen.storyboard
Info.plist
» [ Products

Sy Carfinder | [ iProne Bs Plus

< B cofingor om0 -

¥ [ First View Controlier Scene
First View Controsier

+ [ Tabie View

¥ (¢ Mavigation ltem
Left Bar Butten items
Hight Bar Bution Rems

Add Location
) First Responder
B e

+ [] Second Scens
* [E] Tab Bar Controller Scene

= [E] nem Scene

Figure 1-19. Verifying a selector connection

Carfinder | Buitd Carfinder: Succesded | Today a1 805 PM

& - Right Bar Button iems

Any Ay

1

Acd Location | {

Add Lecation

£ B ol sl

Add Location | { [ 2

> D@00 Q@

DO @O

Bar Button Mtem - Represents an

10 | ieem on 8 UiTosibar or
WRMaviGaticesem cbiect.

Fized Space Bar Button ltem -
Froonend Ripsreserts o faed scace aem on 8

WiTooioar obwect

Flexible Space Bar Button ltem -
Aok Rereserts & feribie 30sce tem 60 &

W Tooioat obect

(=) bar butt

mj=
De@mo 16

Triggered Segues

17

o

Sant Actions
s earen W P v Gt
Ruterencing Cetiets

Add Location

= B ol ksl

Ruterencing Cutiet Cobections.
Vi Rydprancing Outiet Calection

® o

Bar Button Rem - Reprevents an
Mem | e on & Ulfeclbar or
Umiavigatonten obh

Fimed Space Bar Button item -
Fresed] Represents @ faed space bem on &
(I S——

Flexible Space Bar Dutten fem -
e REDEBONts § Parchig 100Ce RO 00 3

UlMeaibar object.

(=) bar butt

o



18 CHAPTER 1: Building Your First Internet of Things App

Selecting a Template

You do not need to define a custom class for the table view cells; you can use the “Subtitle”
template. To change the cell type, click it in Interface Builder and navigate over to the Attributes
Inspector tab in the right pane (the fourth icon from the left). As shown in Figure 1-20,
select the identifier text view to enable text entry. The reuse identifier for the location cells is
LocationCell. In your initialization code for the table, you will need this identifier to look up
your cells in memory, since they are generated at runtime.

pE

Prototype Cells

 BEot

Title
Subtitle

EE

View Controller - & contrafier that
marages & view

Storyboard Referonce - Provides s
DlateRalder for & vaew CoATOler in an
exiral starybosns

Mavigation Centroller - &
controser 1hat mansges navigation
heugh B sy of views

O Any rAny B o hai

Figure 1-20. Using an identifier to name a cell

Note Reuse identifiers are case sensitive. Be careful to use the same capitalization in Interface
Builder and your code.

Creating the Map View Controller

Compared to setting up the table view controller, the map screen is relatively straightforward.
For this screen, you will display a map with pins indicating saved locations. You will generate
the pins at runtime later in this exercise, but for now, to set up the Ul, you need to add a
map as the main view of the screen. Apple’s MKMapView class (MapKit view) abstracts the
work of connecting to Apple’s Maps service, handling common gestures (such as pinch-to-
zoom) and displaying user location. As the developer, it is your responsibility to add it to a
view, set its configuration parameter (such as initial position and satellite or classic view),
and provide it with data (pin) points in the form of “annotations,” represented by the classes
that implement the MKAnnotation protocol.



CHAPTER 1: Building Your First Internet of Things App 19

To add a map view to the second tab’s view controller, begin by switching back to Interface
Builder. Click each of the existing labels on the second view controller and hit the Delete key
to delete them. Next, find the “MapKit View” object in the Object Library and drag it onto the
second view controller. At this point, the layout for the second view controller should look
like the one in Figure 1-21.

-] [ ] | 2 A Carfinder | ) Phane 63 Pus CarFinder | Budld Carfindes: Succesded | Yesterday st 8:05 PM

B { 5 CarFinder CarFinder | [l Mainstoryboard | [l Main steryboard (Base) | Mo Selection » @ O 0

@

Map Kit View - Disoiays maps sed
Erovdes an embeddable rrpriace 1o
ravigate map content

O Ay rAny 2 o s & map o

Figure 1-21. Second view controller with misplaced Map View

The wireframes indicate that the map should fill the entire screen. Unless you have perfect
luck, the map will not be positioned dead center in the view or fit the edges perfectly. To
fix this, use Interface Builder’s Pin tool to set the auto-layout constraints for the map (the
icon at the bottom right of the main screen, to the left of the triangle icon). Auto-layout is

a convenient feature of storyboards that allows you to set rules for how an element should
scale across different screen sizes, reducing your burden of implementing this logic in your
code. As shown in Figure 1-22, in the pop-up that appears after clicking the Pin tool while
the Map View is selected, uncheck the Constrain to margins check box and set all of the
neighbor constraints (the ones around the box) to 0.



20

ece »

v B CarFinder
¥ [ CarFinder
+ AspDeiegate swift
+ FirstviewControlier switt
+ SecordViewControbor.swift
[ Main storyboard
I Assets.xassels
LaunchScreen. stonyboard
Info.plst
» Procucts

B A CarFinder ) @l Prone B8 Plus

BRQAOCECS® B <

'|

H

QRO

CHAPTER 1: Building Your First Internet of Things App

B Carfinger CarFinder | [l Main_boars | [l Main....Base) | B Seco..Scens Second

a2 B

n Ay

Carfinder | Build CarFinder: Succeeded | Yesterday at 806 PM

View )| Map View b}

om 900
Map View
Tree  Standard B
anows @ Zooming [ Scroling
8 Rotating ) 30 View

Snows  User Location

B Buidings
[ Poirts of interest
Wiew
Mode Scale To Fin B
Semantic Unspecified B
Tag 0l
eracton ! L‘ Irteraction Enabled
F Aded Mew Constraints |t Tooch
o 1
1 = ——1| |
b ] = o S Detout B
] 1 | Gpague Hisgen
| Qoars Graphics Contex:
] Soacing 16 Resfest neighbor 1 Bo sutiews.
Constrain to marging ¥ B PR
1@ o
& wamn 0 - P o
@ roigre . " I fiow - Cisglays maps ard
15§ embacdates intertaze to
E - = Qap contert.
2
3 aspect Ratio
M wicn  Loading Edges
Update Frames  None
Add 4 Constraints
'

&
" BB ot B Omep -]
el T

Figure 1-22. Pinning constraints for a Ul element

The storyboard still needs a little help to fully configure the constraints. To complete the

process, select “Update Frames” from the Resolve Auto Layout Issues menu (the triangle
icon, to the right of the Pin menu), as shown in Figure 1-23.

ene »
BE QA ECoD
v B CarFinder
¥ [ CarFinder
* AopDeiegate swift
+ FirstviewControlier switt
+ SecordViewControlor. swift
[ Main storyboard

[ Assets acassets
LaunchScroen. storyboand
Info.plist

* [ Products

QRO

B A CarFinder ) @l IProne Bs Pius

BE|«

'|

H

B Carfinger CarFinder | [l Mai_card | [l Mal_ase) | [ Sec_ceme

a2 B

Carfinder | Build CarFinder: Succeeded | Yesterday at 806 PM

Second ||| View Map View |{ 4 ¥

an

Update Constraints

Reset to Suggested Constraints

XoX=
Clear Constraints

Update Frames
Update Constraints

Reset to Suggested Constraints
Clear Constraints

Dom 90O
Map View
Tree  Standard B
Asows B Zooming ) Seroting
B Rotating [ 30 View
Snows User Location
B uidings
[ Points of interest

Wiew

Mode Scale To Fi B
Semantic  Unspecified B
Tag 0l
wieraction [ User interaction Enabled
) Multiple Touch
Alpha 13
Bsckgrowns C———————
Tint EEEE Defout B
Drawing (£ Opague Hidden
€ Cloars Graphics Context
0 Cip Sutviews.
DOOn
Map Kit View - Disclays mags snd

prevides an embecdable intertace to
Pavigate mag contert.

wAny b " EE s Ome °
T = —

Figure 1-23. Resolving auto-layout conflicts



CHAPTER 1: Building Your First Internet of Things App 21

Having added the element to the storyboard, you need to add it to your class. As shown
in Listing 1-3, include the MapKit framework in the Second View Controller class
(SecondViewController.swift) and add the Map View as a property.

Listing 1-3. Adding a Map View to the SecondViewController Class (SecondViewController.swift)

import UIKit
import MapKit

class SecondViewController: UIViewController {
@IBOutlet var mapView : MKMapView?
}

We will cover the semantics of this declaration more in Chapter 2, but for now, it is important
to note the following:

The @IBOutlet compiler directive makes the property available to
Interface Builder.

The property is defined as an inherently strong pointer (var) because you
will need to modify its values later.

All properties that are tied to a storyboard element need to be defined
as optional. The design pattern for user interface elements in Swift is to
treat them as nonexistent rather than being a “nil” value if they are not
tied to a storyboard element.

Next, you need to revisit Connections Inspector in Interface Builder to make the connection
between the storyboard and the code. Follow the same steps you used for the Add button
to select the button and navigate over to Connections Inspector (the last tab in Interface
Builder’s right pane). To connect a property of a class to a storyboard, you need to set the
Referencing Outlet connection. As shown in Figure 1-24, to complete the connection, drag
a line from the New Referencing Outlet radio button to the Map View (the origin point of the
line). Select the mapView property from the pop-up that appears.


http://dx.doi.org/10.1007/978-1-4842-1194-6_2

22 CHAPTER 1: Building Your First Internet of Things App

[ ] | ¢ O CarFnger CarFirder Main_beard [l Main_(Base) Seco.Score Second View Map View b o0

Tab Bar Controlier Scene

item Scene

®

Map Kit View - Diapiays mans and
provides an embeddable rintace 1o
O p——

O Any hAny B B ol &) manp o

Figure 1-24. Connecting the Map View to the storyboard

As with the Add button, verify that the connection was successful by making sure the bubble
next to Referencing Outlet is filled in with mapView.

If you build and run the app on your device or the simulator, you’ll see that your Ul is now
nearly complete with a working map in the second view and an empty list in the first view
(which now says Item).

Requesting Location Permission

Before moving into how to access the user’s location, we need to address a theme that
comes up commonly in developing any hardware-connected iOS app: device permissions.
You may remember, a few years back, that Apple received bad press for secretly logging
users’ locations. Apple’s argument was that this data was intended to help improve the
accuracy of its mapping service; however, the backlash was so great over privacy concerns
and the risks of that data being abused by hackers that Apple responded by disabling the
feature and implementing a system-wide API for requesting permission to access sensitive
user information and hardware (such as health data, location, and the camera).

Apple, and the authors, suggest an “adaptive” strategy for requesting device permissions.
Namely, prompt the user the first time you need to use a sensitive resource (in order to
unlock access to it within your app) and have mechanisms in place to “adapt” to the loss of
that resource. For instance, if a user does not allow your app to access his location, display
a prompt that allows him to manually specify an address or place for the app, or to disable
the location-dependent feature altogether.



CHAPTER 1: Building Your First Internet of Things App 23

The first step you need to follow to enable this property is to add the Maps capability to your
application. This is what informs the user that you need to access his location—when he

or she downloads and first installs your application. To enable this capability, select your
project file from the Project Navigator (Xcode’s left pane) and click the Capabilities tab, as
shown in Figure 1-25. To enable maps, click the switch to set it to on.

] 8 b % CarFinder ) il iPhona B3 Pius CarFinder | Budd CarFinded: Faded | Today ot 839 AM AR | i
B 5 H < B CarFinder n e

3 a . P g o Buld Settings Buily Prases Build Rulg 'dentity and Type
[Ty m— Name CarFinger
v CarFinder > F Er
ictoud RS

« AppDelegate swift

« FirsViewController swift " "
¥ ¥ push Notifications | GFF Fun Path [UsersfabakinDesktop/chl)

- CarFinder]
CarFinder.scoduproj

= SecondViewCortrolies. swift

> .
" O Project Decument
Project Farmat  Xcode 3.2-compaticle [
. > Wallet o sion Ahmed Bakir
ey
* Apple Pay
Text Settings
— ndent Using  Soaces B
- In-App Purchase | OF =
— Widths afs 4z
Tab Indert
- B wrap
> Personal VEN 16 Wrap ines
$ource Control
v Maps [ on | Repoaitory -
Troe ==
: DO e o
Routing:  Alrplane Streetcar
Bike ey Ma Kit View - Displays maps aed
Bus Tax Erovides an embeddable ierace o
Car Train Favigate map content
Ferry Cther
Pecestrian
Swps: ¥
» Background Modes.

® map L]

Figure 1-25. Setting Maps capability

Next, you need to set the message that will appear when the user is asked for location
permission. To create this string, you need to add a key to your app’s Info.plist file. While
your project is still selected in the Project Navigator, click the Info tab. This will bring up your
app’s settings as a list of key-value pairs, as shown in Figure 1-26.



24 CHAPTER 1: Building Your First Internet of Things App

[ ] [ ] [ 3 | | #& CarFinder | il iPhore Bs Plus.

BR QA © B g« L Carfincer
v & Carinder ] A cCarFinder 3 General Capabiities Rescurce Tags

* i Maphiin framawerk

¥ [ CarFinder ¥ Custom i0S Target Properties.

+ AppDelegate.swift

s FirstviewControlier. swift

+ SecordViewControler swift
Main s1oryboatd

Bundie versions string, short
Bundle identifier

IrfoDictionary version

Main storyboard file base name
Bundie version

I Assets scassets
LaunchScreen storyboard >
infio plist Launch screen interface fie base name 4

Exscutable file .
Application requires IPhone environm... &
Bundie name

* Supporied interface ofiertations

* Status bar tinting paramatars
Bundie creator O Type cooe
Bundle OF Type code =
Locaiization native development region 2

» Supported interface orlertations (Pag) 2

» Required device capabliities 100 Ay

» 9 Procucts

¥ Document Types (0}

* Exported UTIs (2]
* Imported UTIs (0]

@ D[ ® URLTypes (0)

Figure 1-26. Info.plist file for the CarFinder project

CarFinder | Build CarFinder: Succesded | Today a1 8:61 AM

Buils Settings. Buikd Phates
]
${PRODUCT_BUNDLE_IDENTIFIER)
&0
Main
1
LaunchScreen
S{EXECUTABLE_NAME)
YES

$PRODUCT NAME)
nm

ARPL

"

o ®

Build Rug "Sentity and Type

Mame CarFinder

Lecation A

Full Patn [Users/abaicrDesitop/ch?)
CarFinder
CarFinder.xcocepro] ]

Prsject Document
Project Format  Xcode 32-compativle [
Orgarizaticn Ahmed Bais

Clsss Prefix

Text Settings
indent Using Spaces =]
widths ARz 4z
Tse e
6 wrag lines

Source Contral

Hepository -~
Troe ==

DOO D
Map Kit View - Displays maps and

provides ar embaeddatie intertace to
navigate map contert.

H (@ map o

The section labeled “Custom iOS Target Properties” contains a list of required app properties,
many of them added by default by Xcode. Hover over the last property and you’ll see a plus
and minus sign appear. Click the plus sign to add a new property. As shown in Figure 1-27,

a new field will appear in the list, as well as a drop-down menu to select common keys.

[ ] [ ] [ 3 | | #& CarFinder | il iPhore Bs Plus.

BR QA © B g« L Carfincer
v & Carinder ] A cCarFinder 3 General Capabiities Rescurce Tags

* i Maphiin framawerk
¥ [ CarFinder ¥ Custom i0S Target Propertios

+ AppDelegate.swift

= FirstViewControler.ewift
+ SecordViewControlier swift
Maln s1oryboard
B Assets scassets
LaunchScreen.storyboard
infio plist
» 9 Procucts

Bundlle versions string, short
Bundie identifier
InfoDictionary version
Main storyboard file base rame
Bundle version =
Launch screen interface fie base name 4
Exscutable file .
Application requires IPhone environm... &
Bundie name

* Supporied interface ofiertations

* Status bar tinting paramatars

CarFinder | Build CarFinder: Succesded | Today a1 8:61 AM

Buils Settings. Build Phases.
]
${PRODUCT_BUNDLE_IDENTIFIER)
&0
Main
1
LaunchScreen
S{EXECUTABLE_NAME)
YES

$PRODUCT NAME)

Bundie creator O Type cooe nm
Bundle OF Type code * APPL
Locaiization native development region 2 -
» Supported Interface oriontations (Pad)
» Reguired duvice capsblines 100 v
Application Categary 2 O@ Suing e A |

» Document TyPes 105 suice doas not run i backs

Applcation fants resource path

* Exported UTIs (€ applcation has kocalized display n.

Application is sgent (UIEkmant]

» Imported UTls (€ Appication is background only

Appication s visible in Classic

» URL Types (0)  Appiication pratars Carbon onviron.

Appication praters Classic environ..
Applcaticn prasants content in M.

Figure 1-27. Interface for adding a new key-value pair

D« 090
D@

Build Rug "Sentity and Type

Mame CorFinder

Full Patn Users/abaidnDesidtopich?/
CarFinder]
Carfinder.xcodepro| ]

Prsject Document

Project Format  Xcode 3 2-compatible [
Organizatin, Ahmeq Bakis
Class Prefix

Text Settings
ndent Using  Spaces =]

H @ map o



CHAPTER 1: Building Your First Internet of Things App 25

In the key text field, type in NSLocationWhenInUseUsageDescription for the key name. The
type should be string. In the value text field, type in “This app uses location information.”

Next, you need to make more code changes, so switch back to the FirstViewController.swift
file.

Add CLLocationManagerDelegate to your class declaration so we can enable location updates.
Then add locationManager and current location as class variables, as shown in Listing 1-4.

Listing 1-4. Adding Location Manager Delegate to the FirstViewController class

class FirstViewController: UITableViewController, CLLocationManagerDelegate {
var locationManager = CLLocationManager()
var currentlocation = CLLocation()

}

Conveniently, Apple provides a class called CLLocationManager, which can poll the
operating system for your device’s authorization status, bring up an authorization prompt,
and enable/disable location polling. The CLLocationManager class has a method called
authorizationStatus(), which will return an enum value representing the authorization
status of your application. It is best to check this value when any location-dependent screen
in your application appears. iOS suppresses repeated requests; the prompt will not appear
again until the user uninstalls your app. For the CarFinder application, this is the First View
Controller table view. Trigger the authorization check in the viewDidAppear() method of the
FirstViewController.swift file, which fires every time the view controller is active.

Listing 1-5. Polling for Location Permission (FirstViewController.swift)

override func viewDidAppear(animated: Bool) {
super.viewDidAppear(animated)

//locationManager.delegate = self
locationManager.desiredAccuracy = kCLLocationAccuracyNearestTenMeters

switch (CLLocationManager.authorizationStatus()) {

case .AuthorizediWhenInUse, .AuthorizedAlways:
locationManager.startUpdatingLocation()

case .Denied:
let alert = UIAlertController(title: "Permissions error", message: "This app needs
location permission to work accurately”, preferredStyle: UIAlertControllerStyle.Alert)
let okAction = UIAlertAction(title: "OK", style: UIAlertActionStyle.Default, handler: nil)
alert.addAction(okAction)
presentViewController(alert, animated: true, completion: nil)

case .NotDetermined:
fallthrough

default:
locationManager.requestihenInUseAuthorization()



26 CHAPTER 1: Building Your First Internet of Things App

You always want to check for at least three status levels in your code: Authorized, Not
Determined, and Denied. As shown in Listing 1-5, use the Authorized state to begin polling
for location. For the Denied state, we show an alert view, indicating that the application
needs location permission. Finally, we use the Not Determined state and default case of the
switch statement to prompt the user to authorize the app.

In our example, you will notice that the call to check status, authorizationStatus(),
takes place on the CLLocationManager class, while the call to perform operations such

as startUpdatinglocation() takes place on an instance. authorizationStatus() does
not depend on an object; it simply queries the system, so it is defined as a class (public)
method, whereas operations are defined as private methods since they can only be
performed if an object is instantiated. If the authorization state has been determined to be
denied, show an alert message via the UIAlertController class.

Note We request the “in-use” permission for the CarFinder app because we only need to request
the user’s location while the app is active.

Having set ourselves as the delegate, we also need to add its required methods which
include the locationManager call with didUpdatelocations so our location data is fresh when
we are ready to store it.

Accessing the User’s Location

Having prompted the user for the location permission, you are now ready to begin retrieving
and logging his location data. For the CarFinder application, you will initiate this action
when the user presses the Add button in the first view controller’s toolbar. When you take
this action, you will save the user’s latitude and longitude, as well as a timestamp indicating
when the action happened. The table view in the first view controller should refresh at this
time to indicate that a new record has been added. If the user disabled location permission,
you should provide some dummy data, such as the latitude and longitude of your favorite
coffee shop.

It can take some time to find the precise coordinates of a phone once you start using
location services. That’s why we start location services when the app starts and update a
class variable each time it changes. This variable is used only when we need it (i.e., when we
want to save our location).

Now that you have the location and timestamp data for the user’s location, you need to save
it somewhere that can be shared between the first and second view controllers. It needs to
be a generic object that can be accessed or modified by either. To solve this problem, we
suggest creating a singleton object, which our sample calls DataManager. A singleton is an
instance of a class that is lazy-loaded (initialized the first time it is accessed). Singletons are
commonly used in hardware “manager” classes, where you want to control all operations
through a single object and have abstracted these operations to be independent of any
class that is using them.

[vww allitebooks.cond



http://www.allitebooks.org

CHAPTER 1: Building Your First Internet of Things App 27

Create a new class by choosing File » New » File from the Xcode menu bar. It’s a Swift file
and we’ll name it DataManager. swift.

Listing 1-6 provides the class definition for the DataManager class. When other classes
access the sharedInstance property, the class will be lazy-loaded. The static keyword
ensures that if it has already been initialized, the existing object will be returned; the
_let_ keyword ensures that the instance will be thread-safe. Remember to include the
Corelocation framework to ensure symbols resolve properly.

Listing 1-6. Definition for DataManager Class

import Foundation
import Corelocation

class DataManager {
static let sharedInstance = DataManager()
var locations : [CLLocation]

private init() {
locations = [CLLocation]()
}

}

The DataManager‘s main role is to manage a list of CLLocation objects. To accomplish
this, we use an array of CLLocation objects as a strong property of the class (the default
allocation the using the var keyword is strong). You do not need to define getter or setter
methods, as arrays in Swift are mutable by default.

Having defined the DataManager class, you can now use it in the FirstViewController
class. As shown in Listing 1-7, after retrieving the user’s current location, expand the
addLocation() function to append the value in the locations array that is managed by the
DataManager singleton. If the user did not authorize the app to use GPS permissions, create
a new record using a hard-coded set of coordinates.

Listing 1-7. Saving Locations

@IBAction func addLocation(sender: UIBarButtonItem) {
var location : ClLLocation
if (CLLocationManager.authorizationStatus() != .AuthorizedWhenInUse) {
location = CLLocation(latitude: 32.830579, longitude: -117.153839)

} else {
location = locationManager.location!
}

DataManager.sharedInstance.locations.insert(location, atIndex: 0)



28 CHAPTER 1: Building Your First Internet of Things App

Note This example saves locations in memory; they will not persist between multiple sessions.
To persist data, we suggest using Core Data or saving your data to a plaintext file.

Displaying the User’s Location

Having defined a method for retrieving the user’s location and managing saved responses,
you are ready to display the data. It is best to start with the table view in the first view controller.

Populating the Table View

To populate a table view controller, you need to specify a data source and implement the
methods specified the UITableViewDelegate protocol, which is included by default with the
UITableViewController class. For the data source, you will use the locations array from
the DataManager singleton.

The methods you will need to implement for the UITableViewDelegate protocol are as
follows:

numberOfSectionsInTableView( :)
tableView(_:numberOfRowsInSection:)
tableView( :cellForRowAtIndexPath:)

All these functions need to be implemented in in the FirstViewController class
(FirstViewController.swift).

The UITableView class uses a two-dimensional grid represented by the indexPath to
represent the positions of elements in the table. For a one-dimensional array, the number
of sections is defined as 1. Implement the numberOfSectionsInTableView( :) method as
shown in Listing 1-8

Listing 1-8. Implementing numberOfSectionsinTableView( :)

override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
return 1
}

Similarly, the number of rows in a one-dimensional array is the number of elements. As
shown in Listing 1-9, return the count property of the entries array.

Listing 1-9. Implementing tableView(_:numberOfRowsInSection:)

override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
return DataManager.sharedInstance.locations.count
}



CHAPTER 1: Building Your First Internet of Things App 29

Now you need to use the data from the entries array to populate your table view cells. In the
tableView( :cellForRowAtIndexPath:) method, retrieve the location entry that corresponds
with the row that is being operated upon, and then tie it to a cell by looking it up in memory
via its reuse identifier, the label we defined on the storyboard earlier. Listing 1-10 describes
this process. Since we are using the Subtitle cell style, we can directly access the textLabel
and detaillabel properties on the table view cell.

Listing 1-10. Implementing tableView(_:cellForRowAtindexPath:)

override func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath:
NSIndexPath) -> UITableViewCell {
let cell = tableView.dequeueReusableCellWithIdentifier("LocationCell", forIndexPath: indexPath)
cell.tag = indexPath.row
// Configure the cell...

let entry : ClLLocation = DataManager.sharedInstance.locations[indexPath.row]

let dateFormatter = NSDateFormatter()

dateFormatter.dateFormat = "hh:mm:ss, MM-dd-yyyy"

cell.textlabel?.text = "\(entry.coordinate.latitude), \(entry.coordinate.longitude) "
cell.detailTextLabel?.text = dateFormatter.stringFromDate(entry.timestamp)

return cell

}

As a final step to tie up the table view, you should refresh the table once a new item has
been added. To refresh a table view at any time, call the reloadData() method after updating
your data source, as shown in Listing 1-11.

Listing 1-11. Refreshing the Table
@IBAction func addLocation(sender: UIBarButtonItem) {
var location : ClLLocation
if (CLLocationManager.authorizationStatus() != .AuthorizedWhenInUse) {
location = ClLLocation(latitude: 32.830579, longitude: -117.153839)
} else {
location = locationManager.location!
}

DataManager.sharedInstance.locations.insert(location, atIndex: 0)

tableView.reloadData()

Note Core Data has a delegate method that reduces your need to manually refresh a database-
based table view. For simple arrays and data structures, it is easiest to refresh the table manually.



30 CHAPTER 1: Building Your First Internet of Things App

Populating the Map

Once again, compared to the table view, the map is relatively straightforward to populate
with data. Following the example of the table view, we need to retrieve saved locations
from the DataManager singleton when the view appears. To plot data on the map, we need
to create pin drops, represented by the MKPointAnnotation class, which implements the
MKAnnotation protocol. In your SecondViewController class (SecondViewController.swift),
implement the viewDidAppear( :) method as shown in Listing 1-12.

Listing 1-12. Setting the Data Source for the Map View

override func viewDidAppear(animated: Bool) {
super.viewDidAppear(animated)

let locations = DataManager.sharedInstance.locations
var annotations = [MKPointAnnotation]()

for location in locations {
let annotation = MKPointAnnotation()
annotation.coordinate = location.coordinate
annotations.insert(annotation, atIndex: annotations.count)

}

let oldAnnotations = mapView!.annotations
mapView?.removeAnnotations(oldAnnotations)

mapView? .addAnnotations(annotations)

}

While map views are extremely customizable and meant to handle a lot of user interactions,
the MKMapView class is designed to be loaded once from an array of annotations. As shown
previously, remember to clear the existing annotation array before loading your new one.
This also helps the user interface, as the viewDidAppear( :) is called every time the user
switches tabs.

Finally, to make the map fit to the area surrounding the user’s pin drops, you need to call the
regionThatFits(_:) method. As shown in Listing 1-13, modify the viewDidAppear() method
to include this logic. Use the first valid annotation as the basis for your calculation.

Listing 1-13. Resizing the Map View

override func viewDidAppear(animated: Bool) {
super.viewDidAppear(animated)

let locations = DataManager.sharedInstance.locations
var annotations = [MKPointAnnotation]()



CHAPTER 1: Building Your First Internet of Things App 31

}

for location in locations {
let annotation = MKPointAnnotation()
annotation.coordinate = location.coordinate
annotations.insert(annotation, atIndex: annotations.count)

}

let oldAnnotations = mapView!.annotations
mapView?.removeAnnotations(oldAnnotations)

mapView?.addAnnotations(annotations)

if (annotations.count > 0) {
let region = MKCoordinateRegionMake(annotations[0].coordinate,
MKCoordinateSpanMake(0.1, 0.1))
mapView?.regionThatFits(region)

}

mapView?.showsUserLocation = true

Now that you have fully implemented the CarFinder project, the result should look as shown
Figure 1-28, complete with a fully functional location table, Add button, and location map.

w-FL T TII0AM

Saved Locations

32.8676627436059, -117.222838075941

32 8676627436059, -117.222838075841

Location List Map

Figure 1-28. Completed CarFinder application



32 CHAPTER 1: Building Your First Internet of Things App

Summary

To help introduce you to the style of the projects in this book, we described a simple app to
access a user’s location based on his phone’s GPS reading and to display it on a table and
map view. This exercise reviewed the basics of setting up a project, creating a user interface,
requesting device permissions, and digesting location data. Several of the projects in this
book will require you to implement “adaptive” strategies around device permissions, due

to their sensitive nature. You will also revisit maps later, when you learn about how to use
iBeacons, which are Bluetooth-based proximity sensors that allow iOS devices to do cool
things like send you notifications when you walk by the Apple Store.



Chapter

Getting Started with Swift

Ahmed Bakir

As it is one of the newest programming languages on the market, one would be remiss to
start a Swift book without offering the reader a brief introduction to the language. Readers
who already feel comfortable with Swift can skip this chapter entirely or just reference the
sections they are curious about.

Immediately upon its announcement at the 2014 Apple Worldwide Developers Conference
(WWDC), Swift became one of the fastest adopted programming languages in recent history.
To help aid this rapid acceptance, Apple designed the language to be fully compatible with
existing Objective-C code and all of Cocoa/Cocoa Touch (the frameworks you use to build
OS X and iOS apps).

In the past year, however, the sudden appearance of Swift has presented two problems:

it has been hard to find good information on how the language works and it has been a
grueling process to keep up with Apple’s updates to the language. In addition to being one
of the fastest adopted languages, Swift has also been one of the most rapidly changing.
Since June 2014, the Apple developer community has seen four major revisions of the
language, Swift 1.0, 1.1, 1.2, and 2.0. With each of the language updates comes a revision
to Cocoa Touch, meaning you need to modify your code to resolve compilation errors.
Imagine waking up one day and seeing that your once functional program no longer
compiles.

To help you hit the ground running with this book, | will briefly review Swift syntax, how the
language implements core programming concepts like object-oriented programming, and
workflow tasks like integrating Objective-C into your projects. In this chapter, | will pull in
knowledge from Swift projects | have consulted on, focusing on language features that have
proved particularly troublesome for my clients, including optionals and try-catch blocks.

For a more complete description of the language, | highly recommend Beginning iPhone
Development with Swift: Exploring the iOS SDK by Mark,Topley, Nutting, Olsson and
LeMarche (Apress, 2016). The authors intend their book to be a complete guide to

33



34 CHAPTER 2: Getting Started with Swift

programming Swift via Cocoa Touch tutorials. This book assumes you have mastered those
concepts and are ready to dive headfirst into Internet of Things concepts using Cocoa
Touch. You can also download Apple’s own guide to the language, The Swift Programming
Language from the iBooks Store.

Note This book is written for and tested against Swift 2.1 on XCode 7.1/0S X 10.11 “El Capitan.”

Why Use Swift?

Following “Should | learn to program in iOS or Android?,” the most common question |
receive these days is “Should | program in Objective-C or Swift?” The short answer to both
is to pick the platform or language you are more comfortable with and stick with that.

Created with the goal of being “Objective-C without the C,” Swift was designed to allow a
wider audience of developers, eschewing the message-passing syntax of Objective-C (those
annoying square brackets) and the heavy dependence on understanding advanced concepts
from C, such as pointers. If you are coming from Java and Python, many features of Swift
will seem very familiar to you, such as dot-syntax for calling methods and try-catch blocks.
This was an intentional design decision. | am currently teaching an Objective-C course and
the number one complaint from my students is Objective-C’s square brackets; they are

a derivative of Smalltalk, a ground-breaking language that never received wide adoption
outside advanced programming courses but remains in use today. | tell people it takes a
couple of weeks to “get over them,” but they remain daunting. For many people, the
dot-syntax alone is a compelling reason to use Swift.

Since OS X and iOS are the only modern platforms that use Objective-GC, it is often hard

for people to differentiate concepts that come from Objective-C and concepts that come
from Cocoa [Touch]. To help with that, at the 2015 WWDC, Apple announced that it is
open-sourcing Swift, in hopes of encouraging its wider adoption in education and non-Apple
platforms, such as Linux. The extra data points should prove extremely valuable when trying
to understand core programming concepts.

One of the most compelling reasons to develop for an Apple platform is the extremely
prolific developer community, which has produced a wealth of open source libraries and a
massive history of solutions to common bugs. For this reason, Apple was eager to announce
that Swift was fully compatible with all of Cocoa Touch and existing Objective-C code when
Swift first came. As mentioned in the introduction, | can validate that this claim is true, but
you may end up updating your code to keep up with changes in Swift. This may seem
discouraging, but remember, you are programming for a closed platform; this is always the
case for major updates. Before anyone knew about Swift, many of us were shuffling to make
our old apps work in the drastically updated iOS7.

What | have noticed is that for most people, neither Swift nor Objective-C is the major hurdle
to learning iOS development. Nine times out of ten, it is learning Cocoa Touch. Apple’s APIs
(application programming interfaces) have a very “descriptive” nature, where they generally
describe every parameter in the method name. For many beginners, this makes it hard to
guess where/how to get started. The good news is, Apple has backported its documentation



CHAPTER 2: Getting Started with Swift 35

and provides complete APl documentation for every method in Cocoa Touch in both Swift
and Objective-C. Most of the problems you will run into will not be about the syntax of a
“for” loop; instead they will be about what set of Cocoa Touch methods you call to perform
the behaviors you need, and how you need to configure them. Swift and Objective-C are just
tools for accomplishing that; pick the one you like using more.

Basic Swift Syntax

In this section, | briefly introduce several basic Swift syntax concepts to help you become
familiar with the language and the following examples. As many of you are coming from
Objective-C, | will prefix each Swift example with the corresponding Objective-C code.
These examples are not meant to be part of any project, so take them as short, working
examples. As mentioned in the introduction, all of these examples are written against the
standard for Swift 2.0.

Calling Methods (Hello World)

In Objective-C, to print “Hello World” on the console, you would use the NSLog() method:
NSLog(@"Hello World");

In Swift, the equivalent is as follows:
print("Hello World")

You should notice a couple of big differences:
No semicolons: Swift uses the newline character to separate lines.

No @ symbol: Swift has its own String class, which is implemented as a simple character
array. In Objective-C, the @ symbol served as a literal, a shortcut for creating NSString
objects without calling its constructor.

print: Swift uses this familiar method name from C and Java to allow you to print a line
directly to the console.

Calling a method with multiple parameters in Objective-C looks as follows:
NSInteger finalSum = [self calculateSumOf:5 andValue:6];

Self represents the receiver (the object that is “receiving” the message”)
CalculateSumOf: represents the method name

5 represents the first parameter that is being passed

andValue represents the second parameter’s label

6 represents the second parameter that is being passed.

In Swift, you call methods with multiple parameters by adding them to a comma-delimited
list within the parentheses (as you would in C or Java):

var finalSum = calculateSum(5, 6)



36 CHAPTER 2: Getting Started with Swift

If the method defines labels for its parameters, add the labels in front of the values:

var finalSum = calculateSum(firstValue: 5, secondValue: 6)

Note Unless specifically required by a method, you can omit the first parameter’s label.

Defining Variables

After “Hello World,” every programming lesson must continue with a discussion of variables.
In Objective-C, you created variables by declaring the type, variable, and value:

NSInteger count = 5;

In Swift, you declare variables by specifying their name and mutability (var or let),
and optionally:

the data type and initialization value:
var count : Int =5

All variables defined with var in Swift are mutable, meaning you can change their values at
runtime without re-initializing the variable—for example, NSMutableString or NSMutableArray.

The let keyword is similar to const in Objective-C and C; this is a constant value that is not
meant to change.

Swift infers data types, so if you prefer, you can omit the type from your declaration:
var count =5

Swift also allows you to store float (decimal) and Boolean values in variables directly.

To store a float in Objective-C:
float average = 2.4;

To store a float in Swift:

var average : float = 2.4

You can use Double or Long to specify the size of the variable, just as in Objective-C

To store a Boolean in Objective-C:
BOOL isInitialized = YES; // or NO
To store a Boolean in Swift:

var isInitialized : Bool = true // or false



CHAPTER 2: Getting Started with Swift 37

Custom types follow the same rules in Objective-C and Swift as other types: insert the type’s
name before the variable name:

In Objective-C:

MyType myVariable;
myVariable.name = @"Bob"; //name is a property of the type

In Swift:

var myVariable : MyType
MyVariable.name = "Bob"

Objects require a slightly different process for initialization, which | will cover in the section
“Object-Oriented Programming in Swift.”

Compound Data Types

In most programming languages, like Java and Objective-C, the only data types provided
out of the box are primitives for storing values like integers, Booleans, and decimal values
directly in memory. For more complicated data, you need to define your own types using
structs or classes. While Swift provides this functionality, it does differentiate types that are
provided by the language or the program.

Instead, it separates types into named types, which are named by the language or program,
and compound types, which allow you to return multiple, distinct values under the guise of
“one variable.” These are commonly called tuples in Swift and other languages.

You define a tuple in Swift by replacing the type with a series of types in parentheses:
var myStatistics : (Int, Int, Float)

To set values, embed those in parentheses as well:

var myStatistics : (Int, Int, Float) = (2, 2, 5.2)

Tuples operate similarly to structs in Objective-C, which are custom data types you define
(unlike an object, they do not have methods). For reference, remember that a struct in
Objective-C is defined thus:

typedef struct {
NSString *name;
NSString *description;
NSInteger displayOrder;
} MyType;

In this example, name, description, and displayOrder are the properties of the struct, and
MyType is the name.



38 CHAPTER 2: Getting Started with Swift

To replicate this behavior in Swift, by treating a tuple like a named type, use the _typealias_
keyword:

typealias MyType = (String, String, Int)
You can then instantiate a tuple using your type name as you would any other type:

var myVariable: MyType = ("Bob", "Bob is cool", 1)

Conditional Logic

In Objective-C, you implemented the most basic kind of conditional logic by placing a
comparison in parentheses, as part of an if statement:

if (currentValue < maximumValue) {

}
In Swift, this syntax is largely unchanged, except the requirement for parentheses is gone:
if currentValue < maximumValue
An if-else statement retains this rule as well:
if currentValue < maximumValue {
//Do something

} else if currentValue == 3 {
//Do something else
}

Note All the comparison operators you are familiar with from Objective-C are still valid in Swift.

In Objective-C, you could use a ternary operator to combine an if-else and an assignment
NSInteger value = (currentValue < maximumValue) ? currentValue : maximumValue ;

In this block of statement, you check if the currentValue is less than the maximumValue. If the
statement is true, set value to currentValue; else set value to maximumValue.

This syntax is still available in Swift, and mostly unchanged:
var value = currentValue < maximumValue ? currentValue : maximumValue

When you wanted to check against multiple values in Objective, you used a switch
statement, with a case block for each value:

switch(currentValue) {
case 1: NSLog("value 1");
break;



CHAPTER 2: Getting Started with Swift 39

case 2: NSLog("value 2");
break;

case 3: NSLog("value 3");
break;

}

The good news is the switch statement is also available in Swift, with a couple of changes:

1. switch statements in Swift allow you to compare objects. The
Objective-C requirement for comparing values has been eliminated in
Swift.

2. switch statements in Swift no longer fall through by default. This means
you do not have to add a break; statement at the end of each case.

3. switch statements in Swift need to be exhaustive (meaning they
cover all values, or include a default case). This requirement
is a best practice for code security and prevents unexpected
comparisons.

In Swift, the switch statement described previously would look as follows:

switch currentValue {
case 1: println("value 1")
case 2: NSLog("value 2")
case 3: NSLog("value 3")
default: NSLog("other value)

Enumerated Types

In Objective-C, you use an enumerated type to group related values and to reduce errors
from “magic numbers,” values that are hard-coded into your code.

In Objective-C, enumerated types (enums) are defined as such:

typedef enum {
Failed = -1,
Loading,
Success

} PlaybackStates;

Where PlaybackStates is the name of the enum, Failed, Loading, and Success are the three
possible values, and -1 is the initial value of the first item in the enum. In Objective-C, if not
explicitly defined, enums start at 0 and increment by 1. Objective-C enums can only store
discrete, increasing values, such as integers or characters.



40 CHAPTER 2: Getting Started with Swift

In Swift, the syntax for defining an enumerated type is similar, except you indicate the value
type and use the case keyword to indicate each named value:

enum PlaybackStates : Int {
case Failed = -1,

case Loading,
case Success

}

Swift does not try to automatically increment values like in Objective-C, so you can store any
type of value in an enum, including String.

To use a value from an enum in Objective-C, you replace your magic number with the value’s
name. You can store the value in an integer or a variable with the enum’s name as its type:

NSInteger myPlaybackState = Failed;
PlaybackState myPlaybackState = Failed;

For conditional statements:

if (myPlaybackState == Failed)

In Swift, the easiest way to use an enum is by appending the value name to the type:
var myPlaybackState = PlaybackStates.Failed

This applies for conditionals as well:

if myPlaybackState == PlaybackState.Failed

If you are trying to retrieve the value that is stored in an enum member, use the rawvalue
property. For instance, if you are trying to translate PlaybackState to an Int value:

let playbackStateValue : Int = PlaybackState.Failed.rawValue

Loops

The syntax for all of the major types of loops (for, for-each, do, do-while) are largely
unchanged in Swift. Two major changes are that you do not need to declare your type and
parentheses are once again optional:

for name in nameArray {

print ("name = \(name)")
}

Also, there is a major addition in Swift that can improve your loops: ranges. Ranges in Swift
allow you to specify a set of values that you can use to iterate a loop or as part of comparison.



CHAPTER 2: Getting Started with Swift M

There are two major types of ranges in Swift:

Closed Ranges, expressed as x. . .Yy, create a range that starts at x and
includes all values including y

Half-Open Ranges, expressed as x. .y, create a range that starts at x
and includes all values up to y

You could use a range in a for-each loop as follows:

for i in 1..5 {
print (i)
}

(This would print the numbers 1-4.)

Object-Oriented Programming in Swift

Now that you have a little bit of understanding of the basic syntax of Swift, | will start to
cover Swift syntax as it applies to object-oriented programming.

Building a Class

Unlike Objective-C, Swift does not have a concept of interface files (. h) and implementation
files (.m). In Swift, your entire class is declared within a . swift file.

In Objective-C, a class declaration consisted of:
Class name
Parent class
Property declarations (in interface file)
Method definitions (in implementation file)

In Objective-C, you declared a class in your header file:

@interface LocationViewController: UIViewController {
@property NSString *locationName;
@property Double latitude;
@property Double longitude;
- (NSString)generatePrettylocationString;

}
@end

@Interface specified that you were declaring a class. UIViewController was the name of the
parent class you were subclassing. @property indicated a variable as an instance variable, or
property of the class. Finally, you also included method signatures in this block, so that they
could be accessible by other classes.



42 CHAPTER 2: Getting Started with Swift

In your .m file, you would define (or implement) the methods of your class, in the
@implementation block:

@implementation LocationViewController {
-(NSString)generatePrettylocationString {
//Do something here
}

}

Swift does not split classes into .h and .m files; instead, all declarations and definitions take
place in your .swift file.

You define classes in Swift with the class keyword:
class LocationViewController: UIViewController {

var locationName : String?
var latitude: Double = 1.0
var longitude: Double = -1.0

func generatePrettylocationString -> String {
//Do something
}

}

Properties are included in a class by placing them inside the class block. Swift enforces
property initialization. There are three ways to resolve compilation errors that occur as a
result of not including an initial value for a property:

Specify a value when you declare the variable
Specify that the variable is an optional (explained further in this section)

Create a constructor (init) method that sets initial values for every
property in the class.

Method implementations are also included directly inside the class block. There is no need
to forward-declare signatures as in C or Objective-C.

Protocols

Protocols are a concept from Objective-C that allows you to define a limited interface
between two classes, via a delegate property. For instance, when you use the iPhone’s
camera, the class that presents the camera declares itself as implementing the
UIImagePickerControllerDelegate protocol and defines the two methods that the protocol
specifies for passing back information from the camera (without creating and managing a
camera object in your code).

In Objective-C, to indicate that you will be implementing a protocol, you add the protocol’s
name to your class declaration, after your parent class, in carrots:

@interface LocationViewController: UIViewController
<UIImagePickerControllerDelegate>



CHAPTER 2: Getting Started with Swift 43

In Swift, you simply add the protocol’s name after the parent class, separated by a comma:

class LocationViewController : UIViewController, UIImagePickerControllexDelegate {

}

You can do this for an infinite number of protocols by appending the protocol names,
separated by commas:

class LocationViewController : UIViewController, UIImagePickerControllerDelegate,
UITextFieldDelegate {

}

Method Signatures

Before defining a method in Swift, let’s investigate a method signature in Objective-C:
- (BOOL)compareValuel: (NSInteger)valuel toValue2:(NSInteger)value2;

In this line of code, you can see that the return type comes before the method name and
that each of the parameters is provided after a colon. You add labels to every parameter
after the first one, to increase readability.

In Swift, you declare a method by placing the func keyword in front of the method name and
then including the input parameters and output parameters in parentheses:

func compareValues(valuel: Int, value2: Int) -> (result: Bool)

Swift uses -> to separate the input parameters and return parameters.

As with variables in Swift, you indicate the type of each parameter by appending the type
name with a colon.

If your method does not return anything, you can omit the return parameters and ->:

func isValidName(name: String) {

}
Since tuples are everywhere in Swift, you can also return a tuple from a method:

func compareValues(valuel: Int, value2: Int) -> (result: Bool, average: Int) {

}



44 CHAPTER 2: Getting Started with Swift

Accessing Properties and Methods

The concept of accessing a method or property on an object is referred to as message-passing.
In Objective-C, the primary way of passing messages was through Smalltalk syntax:

[receiver message];

where receiver represents the object that is being acted upon, and message represents the
property or method you are trying to access.

In Swift, you can access a property or method of an object by using dot-syntax, as you
would in C or Java. This includes classes that were defined in Objective-C.

receiver.message()

In Objective-C, you always have to use Smalltalk syntax to access a method. To call the
reloadSubviews method on a UIView object in Objective-C, you would make a call like the
following:

[myView reloadSubviews];

In Swift, the same line of code would look like this:

myView.reloadSubviews()

If you were passing multiple parameters to a method in Objective-C, you would append the
labels and values:

[myNumberManager calculateSumOfValueA:-1 andValueB:2];

In Swift, simply include the extra parameters in the parentheses:
myNumberManager.calculateSum(-1, valueB:2)

In Objective-C you had two ways of reading the value of a property. Through Smalltalk syntax:
CGSize viewSize = [myView size];

or through dot-syntax:

CGSize viewSize = myView.size;

In Swift, you always use dot-syntax to access properties.

var viewSize: CGSize = myView.size

To set a value for a property in Objective-C, you could use dot-syntax to set the value of a
property:

myView.size = CGSizeMake(0,0, viewWidth, viewHeight);



CHAPTER 2: Getting Started with Swift 45

But, you could also use an autogenerated setter method:
[myView setSize:CGSizeMake(0,0, viewWidth, viewHeight)];
In Swift, you always use dot syntax to set the value of a property:

myView.size = CGSizeMake(0,0, viewWidth, viewHeight)

Instantiating Objects

In Objective-C, you would instantiate an object by allocating it in memory and then calling its
constructor method:

NSMutableArray *fileArray = [[NSMutableArray alloc] init];
Some classes have constructors that allow you to pass in parameters.
NSMutableArray *fileArray = [[NSMutableArray alloc] initWithArray:otherArray];

Some classes also have convenience constructors, which serve as shortcuts for the process
of allocating and initializing an object.

NSMutableArray *fileArray = [NSMutableArray arrayWithArray:otherArray];

Things are a bit easier in Swift. Swift automatically allocates memory, removing the alloc
step. Additionally, the default constructor for a class in Swift is the class name with an empty
set of parentheses appended to the end:

var fileArray = Array()

If the class you are initializing takes parameters in its constructor, call the constructor as you
would any other method:

var myView = UIView(frame: myFrame)

If you are instantiating an object from an Objective-C class, you need to call its constructor
as a method:

var mutableArray = NSMutableArray()

Note Swift has its own classes to represent Strings, Arrays, Dictionaries, and Sets, but you are
free to use the Objective-C classes to maintain compatibility with older APIs or libraries.



46 CHAPTER 2: Getting Started with Swift

Strings

In Objective-C, to represent a string, you would use the NSString class. To initialize a string,
you could use a constructor method:

NSString *myString = [[NSString alloc] initWithString: @"Hello World"];

You could also use the @ symbol to load the value directly, using Objective-C’s literal syntax:
NSString *myString = @"Hello World";

In Swift, the class for representing strings is String. You load values directly:

Let myString = "Hello"

In Objective-C, NSString objects are immutable, meaning you cannot append or remove
characters at runtime, unless you assigned a new value to the string. To resolve this issue,
you could use the NSMutableString class in Objective-C, which allows you to mutate its
objects at runtime:

NSMutableString *myString = [NSMutableString stringWIthString@"Hello"];
[myString appendString:@" world"]; //result is "Hello world"

In Swift, String objects defined with var are mutable. You can append values using the
append function:

var myString = "Hello"
myString.append(" world") //result is "Hello world"

Note You can continue to use the NSString and NSMutableString classes in Swift, but it is only
recommended for interfacing with Objective-C classes.

Formatting Strings

In Objective-C, when you wanted to insert a value from an object into a string, you had to
use a string formatter to build a custom string:

NSString *summaryString = [NSString
stringWithFormat:@"int value 1: %d, float value 2: %f, string value 3: %@", -1, 2.015,
@"Hello"];

For each value you wanted to insert into the string, you needed to use a combination of
characters, referred to as a format specifier, to substitute the variable you wanted to insert
into the string. Format specifiersgenerally consist of the % character and a letter indicating
the value type (e.g., @ for string, d for integer value, and f for float value).



CHAPTER 2: Getting Started with Swift 47

Swift makes it easier for you to insert a value into a string by placing the variable’s name in
parentheses, prepended by a forward slash:

let valuel = -1

let value2 = 2.015

let value3 = "Hello"

var summaryString = "int value 1: \(valuel), float value 2: \(value2), string value 3: \
(value3)"

In Objective-C, to limit the number of decimal places that appeared in a float value, you
would add a period and the number of spaces in front of the format specifier for the float:

NSString *summaryString = [NSString
stringWithFormat:@"float value: %0.2f", 2.015];

To replicate this in Swift, use the String constructor method which specifies format as its input.
var summaryString = String(format: "float value: %0.2f", 2.015)

The syntax is the same as that for Objective-C, where you pass in the format string and then
a comma-separated list of values to replace the format specifiers.

Collections

In both Objective-C and Swift, the following are three classes referred to as collections,
which “collect” similar objects together into one object:

Arrays: An ordered collection of objects. These preserve the order you use to load items. You
retrieve items by indicating their position in the collection.

Set: An unordered collection of objects. These are used to test “membership” of objects—for
instance, if an object exists in a set. You retrieve objects by specifying a subset.

Dictionary: An unordered collection of objects, which is identified by “keys.” These are also
called key-value pairs. You retrieve objects by specifying their keys.

In Objective-C, you used the NSArray class to represent arrays. Arrays in Objective-C contain
objects only, and can be initialized with several convenience constructor methods, including
[NSArray arrayWithObjects:].

NSArray *stringArray = [NSArray arrayWithObjects:@"string 1",
@"string 2", @"string 3"]

In Swift, you can declare an array by providing its values in square brackets when you define
the variable.

var stringArray = ["string 1", "string 2", "string 3"]



438 CHAPTER 2: Getting Started with Swift

Swift does not place the same restriction on the contents of an array, so you can initialize it
with scalar values (such as Ints).

var intArray = [1, 3, 5]

If you do not want to initialize your array with values, declare a variable type for the input by
placing the type name in square brackets:

var intArray : [Int]
You can also use subscript notation to read or change values in a Swift array.
var sampleString = stringArray[3]

In Objective-C, NSArray objects are immutable. To make an array mutable, you defined it
using the NSMutableArray class:

NSMutableArray *stringArray = [NSMutableArray arrayWithObjects:@"string 1",
@"string 2", @"string 3"]

Remember, by defining your array with the var keyword, you make it a mutable variable,
allowing you to “mutate” existing values or add new ones at runtime. For instance, you can
use the plus (+) operator to append values to the array.

stringArray += "string4"
You can also change a value by specifying a value at an index
stringArray[2] = "This is now the coolest string".
In Objective-C, you create a set by initializing it with a comma-separated list of objects:
NSSet *mySet = [NSSet setWithObjects: @"string 1", @"string 2", @"string 3"];
You could also create a set with an array.
NSSet *mySet = [NSSet setWithArray: stringArray];
To membership, you use the containsObject method:
if ([mySet containsObject:"string 1"]) {
print("success!")
}
In Swift, you create a set by using the Set class and specifying the type of its members:

var stringSet: Set<String>



CHAPTER 2: Getting Started with Swift 49

You can initialize a set with an array:

var stringSet: Set<String> = ["string 1", "string 2", "string 3"]

Similarly, you can mutate the set if it is defined as a mutable variable (with the var keyword).
StringSet += "hello world"

To create a dictionary in Objective-C, you pass in arrays of keys and values. The two are
matched according to the order you pass them in.

NSDictionary *myDict = [NSDictionary dictionaryWithObjects:@"string 1", @"string 2",
@"string 3", nil forKeys:@"key1", @"key2", @"key3"];

You could also use literal shortcut to initialize a dictionary in Objective-C.

NSDictionary *myDict = @{@"key1" : @"string 1", @"key2" : @"string 2", @"key3" : @"string 3" };
To access a value from a dictionary in Objective-C, you specified its key.

NSString *string = [myDict objectForKey:@"key1"];

In Swift, you define a dictionary by specifying the types of its keys and values.

var myDict = [String, String]()

The empty brackets specify that you are creating an empty dictionary.

To initialize a dictionary with key-value pairs, pass them in using literal syntax. For Swift
dictionaries, this is a comma-separated list of key-value pairs (connected with colons).

var myDict : [String, String] = ["key1" : "string 1", "key2": "string 2", "key3" : "string 3"]
To retrieve an object from a dictionary, use the following key:
let myString = myDict["key1"]

If the dictionary is a mutable variable, you can mutate values or append new key-value pairs
at runtime.

myDict["key3"] = "this is the coolest string"



50 CHAPTER 2: Getting Started with Swift

Casting

In Objective-C, to cast an object from one class to another, you would prepend the class
name and optionally an asterisk, identifying your pointer.

UINavigationController *navigatonController = (UINavigationController *)segue.
destinationController;

In Swift, casting is as easy as using the as keyword.
let navigationController = segue.destinationController as UINavigatonController

Simply add the as keyword and the class name to the result, and the compiler will do the rest
for you. You can even insert this keyword inline, wherever you would normally use your object:

for (file as String in fileArray) {}

Swift-Specific Language Features

In this section, | will review that which my clients found particularly difficult when adopting
Swift—particularly, optionals and try-catch blocks. These do not translate directly to
language features in Objective-C and need extra care to use correctly.

Optionals

In Objective-C, the nil keyword is used to represent an object that is null. Null is the “initial”
state of values, before they are initialized or after they have been “reset.” For an object, a
pointer points to an empty area in memory. For scalar variables, it is the value 0. The idea
is, an object that has been initialized correctly will have a non-null value; a non-null value is
considered “valid.” It is also common for methods to return nil values in error conditions.

In Objective-C, a common way to check if an object is valid is by checking for nil. For
instance, to check if a value exists for a key in a dictionary

if ( myDict["coolestKey"} != nil) {
//success
}

If the value for that key does not exist in the dictionary, it will return nil.

In Objective-C, this applies for properties of a class as well. If a property has not been
initialized, attempting to retrieve it will return nil.

if (myLocationManager.locationString != nil) {
//success
}



CHAPTER 2: Getting Started with Swift 51

In Objective-C, if you try to perform an operation on a nil pointer, you will crash your application.

Swift attempts to resolve this issue through the concept of optionals. An optional is a type
that can represent a nil, or an uninitialized value. To define a variable as an optional, append
the ? operator to the type name:

var myString : String?

You will commonly see this syntax in class properties. In Swift, all properties need to be valid
when they are initialized. There are three ways to resolve this issue.

1. Specify a value for the property when declaring it.
class LocationManager: NSObject {
var locationString : String = "Empty string"
}
2. Create a constructor which initializes the property.

class LocationManager: NSObject {
var locationString : String

init(locationString: String) {
self.locationString = locationString
}

}
3. Define the property as an optional.

class LocationManager: NSObject {
var locationString : String?
}

When trying to access the property, check if it is nil before trying to use it.

if myLocationManager.locationString != nil {
//success
}

If the property you are trying to access has properties you want to access (for instance, a
UIView object), you need to “unwrap” your class’s property before using it. This operation is
referred to as “optional-chaining.” The general idea is, tell the compiler that your property is
an optional and then try to check if the derived property is non-nil; if it is, create a variable to
contain the property. In the case of checking if a subview exists on a UIViewController:

if let mapViewSize = self.mapView?.size {
//success
print("size = \(mapViewSize)")



52 CHAPTER 2: Getting Started with Swift

The ? operator lets the compiler know that the property is an optional. If the optional returns
nil, it will not attempt to access the derived property and will not execute the success block.

If you have confirmed that an optional property is non-nil, you can access its derived
properties by force-unwrapping it. Force-unwrapping is indicated by the ! operator.

if (self.mapView != nil) {

let mapViewSize = self.mapView!.size
print("size = \(mapViewSize)")

}

If you do not check that the property is non-nil before force-unwrapping, your application
will crash.

Try-Catch Blocks

The major difficulty of error passing in Swift is that it does not directly translate over from
Objective-C. In Objective-C, you would catch an error by passing an NSError object by
reference. This object would be mutated by the method you called; an error would be
represented by a non-nil value.

In Swift, methods throw errors using exceptions. You can catch these using a try-catch block.

In Objective-C, to return an error, you define a method that takes a pointer to an NSError object.

-(void)translateString: (NSString *)inputString error:(NSError **)error {

}

To modify the object, “dereference” it using the * operator. This allows you to perform
operations on the object that is represented by the pointer.

-(void)translateString: (NSString *)inputString error:(NSError **)error {

*error = [NSError errorWithDomain:NSCocoaErrorDomain code:400
userInfo:userInfoDict];

}

In this example, we create a new NSError object using a domain (an enum representing the
general “kind” of error), an error code represented by an integer value, and a dictionary
containing any other information we want to pass back about the error.

To call the method from Objective-C, create an error object and pass a “reference” to it
using the & operator.

- (void)myMethod {
NSError *error;
[self translateString:@"hello" error:&error];



CHAPTER 2: Getting Started with Swift 53

To define a method that returns an error in Swift, add the “throws” keyword after the
parameter list, and before the return values list:

func translateString(inputString: String) throws -> Void {

}

Swift defines a protocol called ErrorType, which allows you to create exceptions that
translate to NSError properties when called from Objective-C. To define your error, create an
enum that uses this protocol. Specify any codes and domains for your error types.

enum TranslationError : Int, ErrorType {
case EmptyString = -100
case UnrecognizedlLanguage = 1000
case InvalidString = 1001

}
To throw an exception, use the throw keyword, specifying the enum and error type.

func translateString(inputString: String) throws -> Void {
if (inputString == nil) {
throw TranslationError.EmptyString
}

}

To catch an error, use a try-catch block. Place the error-prone code in a do block; prepared
the try keyword to the line that is going to throw the exception. Catch the exception in the
catch block.

do {
let myString : String = nil
try translateString(myString)

} catch TranslationError.InvalidString {
print("this is an invalid string")

If you want to try to catch multiple exceptions of the same type, add additional catch blocks.

do {
let myString : String = nil
try translateString(myString)
} catch TranslationError.InvalidString {
print("this is an invalid string")
} catch TranslationError.EmptyString {
print("this is an empty string")
}

Note You need a try-catch block for each method you try to call that returns an exception.
Methods should only return one type of exception.



54 CHAPTER 2: Getting Started with Swift

Mixing Objective-C and Swift in Projects

Swift lets you import classes written in Objective-C and call Objective-C methods. This
import capability is extremely valuable, because you can import any of the existing Cocoa
Touch APIs or your existing Objective-C code.

If your project is going to be primarily in Swift, make sure that you specify Swift as the
primary language when creating it from Xcode > New > Project, as shown in Figure 2-1.

B i Choose optians for your new project: 0 <

Product Name:
Organization Name: Anmed Bakie
Organization Identifier: com.devatelier

Bundle Identifier:

ATGRIBGE

Devices:

Cancel Previous

Figure 2-1. Creating a Swift project

To add an Objective-C class to your Swift project, follow the same process you would use
for an Objective-C project: drag and drop the files onto the Project Navigator, or select Add
Files to <Project Name> from the File menu, as shown in Figure 2-2.



CHAPTER 2: Getting Started with Swift 55

e 9 » b, SwittExample | W IPhone 65 Pius  SwaftExample: Ready | Today at 5:52 AM D« [ i
B s 4 € H 5 SwiExmple O ®
¥ [ SwittExample L] AsSeipe & Geoers Capatities  MesouceTags  Ifo  BuldSetings  BubdPhases  Buld Ruk 'Sentity and Troe
] Name SwiftExampie
Show in Finder ¥ identity -
5 " Locaty FRelative to G
Open with External Editor o S e <]
SwifExample -
Open As (3 for com. taliar. SwiltExaemy
S:o File In 1 Bundie identifier  com devatelier SwitErample Full Path [Usersfabakin/Daskiony
T T MNP EN, S SwiMExample/SwittExamole ©
: s Btd 1 Teat Sattings
Add Files to “SwiftExample®.. -
ndert Using  Sgaces B
T— Team MNone =] wismta a2 42
Tat Indent
New Group 8 Wrap ines
* Deployment Info
New Group from Selection e
Sort by Name Depleyment Tanget -]
Sort by Type Devices  Uriversa B
Find in Selected Groups... Main Intertsce  Man -]
Source Control » Device Crientation & Portrait
g . Upsice Down
Project Navigator Hel =
J s ° 8 Landscaps Lot
8 Landscape Right
. @
Status Bar Style  Defaut <]
Hide status bar
Roguines full screen
¥ App lcons and Launch kmages
App lcons Sowrce  Appleon Be
Launch images Scurce  Uise Asset Catalog
Launch Screen File  LaunchScreen -]
+ S ¥ Embedded Binaries =

Figure 2-2. Importing files into your project

To access an Objective-C class from a Swift file, simply create an object using the type and
constructor specified by the class, and call methods via dot-syntax.

var myObjcString : NSMutableString = NSMutableString(string: "Hello")
myObjcString.appendString(" world")

The compiler takes care of converting constructors and other methods to Swift-style syntax
for you, take advantage of autocompletion to help you, as shown in Figure 2-3.



56 CHAPTER 2: Getting Started with Swift

L ] * » A SwittExample [ Phone 65 Plus  SwiftExampie: Ready | Today at 556 AM o 2 <« =

€ 5 SweMExampie SwittExample | [l ViewControtiee switt | [ viewDidLoad() (9 O &

B switexample Idunsity anc Type

¥ [ SwiftExample Name ViewControllor.swift

= AppDelegate.swift 3178718 Tyos Default - Switt Source [
Location  Relative 1o Group %]
npcir HiRiE ViewControder, swift -
Full Path [Users/abaidr/Desktop/
class ViewController: y { SwiltExampie/SwittExamole/
ViewCortroder swift
= reide func viewdidloadl) {
super.vie 1) ‘ On Demand Rescurce Tags
/f Do any sdditional setugafter loading the view, typically from & nib.
var myObjeString @ NsMutadlest = NSMutaolestring(s NSSLF
L MSString (strisg: NSString)
¢ didReceivedesorylarny [ [string: String) Target Membership
h warrgral) M IstringLiteral: StaticString) B A SwitExampe
} Retung an NSS1ing objec! talized by copying 1he characters frem
ancther given string
} Text Settings

t Ercodding  Detault - Unicode (UTF-8) [
Line Endings  Default - 05 X [ Unix (LF) [

mdent Using  Soaces <]

@

Figure 2-3. Autocompletion results for NSMutableString

Calling Swift from Objective-C

You can also call Swift classes and methods from Objective-C, as long as you are aware of a
few rules.

If you are subclassing a Foundation class (e.g., NSString) or a Cocoa
Touch class (e.g., UIViewController), it will be available when importing
your Swift file into an Objective-C class.

Within a Swift-compatible class, if a method uses a language feature
not available in Objective-C, such as an optional or tuple, it will not be
available to Objective-C. Attempt to resolve these issues by writing
methods that can translate directly to Objective-C.

Objective-C mutates NSError objects for passing back errors, while
Swift 2.0 uses exceptions. To make a method that is compatible
between the two languages, remember take advantage of the ExrrorType
protocol, as described in the section “Try-Catch Block.”

You can make an enum available to Objective-C by prepending the @objc
keyword. Similarly, make sure the types in your enum are compatible with
Objective-C (increasing, discrete values like integers or characters)

@bjc enum PlaybackStates : Int {
case Failed = -1,
case Loading,
case Success



CHAPTER 2: Getting Started with Swift 57

Note The @objc keyword is used globally throughout Swift as a way of explicitly defining a type,
method, or class as Objective-C compatible.

Summary

In this chapter, | introduced Swift by comparing how Objective-C and Swift implement basic
syntax and object-oriented programming concepts. You noticed that while Swift brings
significant syntax changes to iOS development, its methods are designed to work like
Objective-C. For the most part, by using Swift method syntax, you can call any Objective-C
Cocoa Touch method from Swift. In instances where this is not possible, there are ways to
use protocols like ErrorType to produce output that is compatible with Objective-C. To make
the chapter particularly useful, | paid special attention to optionals and try-catch blocks, two
language features that are not implemented in Objective-C.



Chapter

Accessing Health Information
Using HealthKit

Ahmed Bakir
Introduction

For the last few years, Apple has provided two core frameworks that have sped up the time
to develop iOS health apps considerably: HealthKit and Core Motion. HealthKit provides a
central repository for all apps to sync health data and Core Motion provides access to the
iPhone’s accelerometer and pedometer, allowing you to retrieve limited health information
about a user without external accessories.

HealthKit was a baffling surprise to everyone when it was announced; no one could figure
out why Apple would “compete” with its partners by building a framework to do the same
thing they had all been doing for years, tracking information. As time progressed, HealthKit’s
role became very clear—it eliminated the need for a different app for every health accessory
on the market and every discrete kind of data. Before HealthKit, there was no way for your
heart rate monitor to share data with your running app, unless the two companies had
collaborated. After HealthKit, any accessory maker or developer could opt into the service,
allowing users to have a clearer snapshot of their overall health. Since HealthKit is a public
application programming interface (API); anyone (including you) is able to build apps that
can publish information to it or retrieve information from it. Keeping in line with Apple’s
philosophy that a user’s sensitive data should stay on his or her device, HealthKit is not
synced with any cloud services and requires its own set of permissions to access it.

In a similar manner, Apple started baking a hardware chip into all iPhones and iPod Touches,
starting with the iPhone 58S, called the Motion Co-Processor. This chip builds a pedometer,
accelerator, gyroscope, and other sensors into the devices with advantages in power and
accuracy that were not available via the old methods of calculating a user’s distance traveled



60 CHAPTER 3: Accessing Health Information Using HealthKit

via GPS. Core Motion provides a useful subset of health information that could help you
build a health application without any external logging accessories.

In this chapter, you will start building the RunTracker app, pictured in Figure 3-1, which lists
a user’s previous workouts and allows the user to log new ones. This chapter will focus on
setting up the project’s user interface and HealthKit permissions. In Chapter 4, you will learn
how to use CoreMotion to convert live data to HealthKit objects.

Workeuts a4 EEEKED EEEl Corcd Miw Werkout (104 ]

1.1.1 Add Button - Executes code to present New

Workout screen.

g 112 1.1.2 Table View - Scrollable list of cells containing
Workout Type past workout data.

Wakirg Erree =115 ] 1.1.3 Cancel Button - Allows users to cancel workout
S0 ma / F/5/206 without saving
Workout Progrese 1.1.4 Done Button - Stops and saves current
workout.
115 1.1.5 Type Label - Shows workout type
i 1.1.6 Progress Label - Shows workout progress (in
< | 39 :

1.1.7 Time Label - Shows workout time (HH:MM:SS)
1.1.8 Toggle Button - Pauses or continues current
workout

Workout List ‘ MNew Workout ‘

Figure 3-1. Wireframe for the RunTracker app

Users enter the app at a table view, which lists running and walking workouts that have been
saved to HealthKit by all apps, including your own. After pressing the Add button, users are
taken to a detail screen, which allows them to log a new workout. The detail screen consists
of a Start button, which toggles tracking, and a set of labels which show live data from Core
Motion, including the user’s distance traveled, workout length, and current activity type.

In building the RunTracker app, you will learn about the following concepts in HealthKit and
Core Motion:

How HealthKit and Core Motion protect data and hardware with
permissions

How HealthKit represents data, including units
How to retrieve information from HealthKit
How to receive real-time activity updates from HealthKit

As with the other projects in this book, the source code for the RunTracker project is
available in the Source Code/Download tab on the book’s page at www.apress.com.


http://dx.doi.org/10.1007/978-1-4842-1194-6_4
http://www.apress.com/

CHAPTER 3: Accessing Health Information Using HealthKit 61

Getting Started

Before getting too far into the implementation details of HealthKit, you need to set up the
project. In this section, | will walk you through the process of setting up the user interface
and the extra steps you need to take to allow your application to use HealthKit.

Note As HealthKit is only available on iPhones, the user interface for this project is designed for
iPhone layouts.

Setting Up the User Interface

The RunTracker application consists of two primary view controllers: the activity table, which
lists all workouts the user has logged on his device, and the create screen, which allows the
user to log a new workout.

As has been the case for the other applications you have built so far, start by navigating to
the File menu and selecting New » Project. In the template picker that appears, select the
Single View Application template, as shown in Figure 3-2.

De

=] ' Choose a template for your new project:

i0s

Application - = 1
Framework & Library
Master-Detail Page-Based Tabbed
walchOS Application Application pplics Application
Application
Framework & Library g

wOs

Application Gama

Framework & Library

Single View Application

This template provides a starting point for an appiication that uses a single view. it provides
3 view CONTroSer 10 Manage the view, and 3 S1oryboaed or nia flle that containg th view.

Figure 3-2. Creating a single-view application



62 CHAPTER 3: Accessing Health Information Using HealthKit

When asked to select a device target, change the setting from Universal to iPhone, as shown
in Figure 3-3.

B R QA 4 Choose options for your new project: =

Product Name: | RunTracked
Organization Name: Ahmed Bakir
Organization Mentifier: com devateler

Bundle kdentifier

Language:  Swift <]
Devices Universal H
¥ Universal
Tad
@
Cancel Previous [ Next )

Figure 3-3. Setting device target for project to iPhone

The wireframe for RunTracker, from Figure 3-1 indicates that the user will enter the app into
the activity table. As with the CarFinder application from Chapter 1, we need to implement
this by changing the entry point of the application from the original single-page view
controller that came with the project template to a table view controller.

To get started, select the Main storyboard for your project (Main.storyboard) and delete

the original view controller by selecting it and hitting the Delete key. Next, drag a table

view controller from Interface Builder’s object library onto storyboard. Click the blank cell
and then navigate over to the Attributes Inspector (the fourth tab in Interface Builder’s right
panel). The wireframe from Figure 3-1 specifies that you need to display two lines per item,
so select Subtitle for the style and give the cell the identifier “WorkoutCell.” Figure 3-4 shows
the storyboard, with the cell identifier settings highlighted.


http://dx.doi.org/10.1007/978-1-4842-1194-6_1

CHAPTER 3: Accessing Health Information Using HealthKit 63

e0® P H Ance)} s @ n Ahemed's iPhcas an = 9 oS
B R QA& 85 o @ B < | & ruiece) R B M) [ Mase) ) B My_ne | ) My_its ) | Tabie view ) [ WorkoutCall [¢ 4 > Dem$0e
v [ RunTracker ¥ [ My Warkouts Scene Tese m
» 8 HealthKit framework v € My Workouts Styls Subtitie B
¥ [0 RunTracker ¥ Table View Image .
Clrmscnrmeres T T R
+ AppDeiegate swifl * | Contert View -
- ViewControter swift b€ My Worouts Swlection Defaunt <]
+ CresteWorkout_wContralier swift ;:";‘“"""“‘“ Accessery None B
 Main storybosrd | > e o B B
[ Assets weassets + [E Hew Workout Scane Focus Style  Defaut B
. LaunchScreen.
EeTTVoms » [ Mavigation Controller Scene Indeneanion 0 0
info.plst Level wadth
= Extensions.swift & Indert Whils Editing
» [ Products Shows Re-order Contrals
Separstor  Defout insets B
| view
Mode Scale To Fil B
Semartic Unspecified B
OD0eo
Collection View - Disclavs datain 8
| eniiection of esis.
S o " h [E5l - =T .
Aty ALY [ Collection View Cell - Ce“res the
= =» e attridutes and behavior of cells in a
collaction virw.
Reusable
Cafiras the JTiributes and behavier of
FH reusabie views in a collection view, .
+ [@ QE|| oz @ A4 utput 00|38 [@rae

Figure 3-4. Storyboard with table view

To change the name of the view controller, double-click the area in the middle of the
navigation bar. As shown in Figure 3-5, an editable text area will appear, in which you can
type in a name for the workout table.

00 F EH Arce ) i Tody at 6:25 AM = o <looO
Bl R Q a © @ o @ B ¢ )| [ rueirscker) 1) Runracker | - Main..board ) - Main...00ase) | [ My W_Scere | () My Workouts | € My Workouts D@ CD0 e
¥ B RunTracker ¥ [ My Workouts Scane Custom Class
» S HealthKit framework v ) My Workouts Class -]
¥ [ RunTracker » [ Tabie view Modue B
[] Runtracker.ertitiements < My Workouts |
+ AppDelegate swit @ First Responder User Defined Runstima Attributes
+ WorkoutTableViewConrober. swit B Koy Path  Type Value
+ CrestaWorkoutl wContraller. swift Prasent Modely segras o “Hevigat...
- Main.storyboard * + [ Mew Workout Scena
Aiets scasaet s |
? s N o ® B ¥
LaunchScresn. storyboard
info. kst » [l Mavigation Controlier Scene -
» Extensions.swift My Workouts
»mP " x . Eesew
Prototype Cells Object ID 4R4-2B-BFT

Title
Sublitle m:

&) Fitter (u] whny nAny BB ol sl

= = Storyboard Reference - Provides &
piacehaider for a view controller in an
axtornal storyboard.

", Mavigation Controller - &
Lo Whrough s hararchy of views.
*e QE|| mwes ) Fine ;MM\IC Ell:lEl:?H & Fater

Figure 3-5. Editing a navigation item’s title



64 CHAPTER 3: Accessing Health Information Using HealthKit

As with Chapter 1, there is no entry point to the new storyboard, which means that the
application will not know which view controller to load first. To fix this issue, select the new
table view controller in the storyboard and click the Attributes Inspector. Click the “Is Initial
View Controller” check box to the right in Figure 3-6. Your table view controller will now have
an arrow in front of it, indicating that it is the storyboard’s new entry point, as in Figure 3-6.

® @ > S Ru.cker | J* Gereric iDS Device @ Running RunTracker on

< & RunTracker RunTrackes

My Workouts Scane
My Workouts

Table View

Storyboard Entry Point
> Mew Workout Scena

Navigation Controlier Scene

Figure 3-6. Storyboard after setting entry point

" Alemad's iPhone

N

Output &

B Mains_ybosrd ! [l Main.s...(Base)

My Warkouts Scene

Any

My Workouts | ¢ »

B ol faf

stus Bar  Inferred

Bottom Bar Inferred

Rafreshing Cisasied

¢ 0

Simulated Metrics

Size Inforred

v Inferred

Top Bar Inferred

[Sfotototo

Tabile View Controlier

Clear on Appearance

E

View Contralier

£ I8 Iritial View Controller
Layeut ) Adjust Scroll View insets
Hide Botiom Bar on Push
) Resize View From NIB
Use Ful Screen (Deprecated)
as M| it T e

(0]

Collection View - Disclays catain g
eniliection of eslls

Collection View Cell - Ce“res the
attributes and behavior of calls in 3
ecilaction view.

Collection Reusable View -
Dafines the aTrDUTES and Bahavier o
FeUSabie views In 3 colection view,

Most tables are used in a master-detail fashion, meaning you start at a master screen

(a table of results) and drill down into detail screens (e.g., details for an item in the table).
To enable this, you need to add a navigation bar to the table view controller. Xcode allows
you to easily add a navigation controller to any view controller from the Editor menu. Select

Editor » Embed In » Navigation Controller, as shown in Figure 3-7.


http://dx.doi.org/10.1007/978-1-4842-1194-6_1

CHAPTER 3: Accessing Health Information Using HealthKit 65

& Xcode File Edit View Find Navigate [JEEI] Product Debug SourceControl Window Help @ £ @ a @ 3 5 m 0oxB# Tue1208PM Q i=

ese » B A RunTracke: ) B Ahmod's Bhom c’_ - P | astorday #110:03 PM E O 0
| Size Class >
BRQA S B o @ BE|IC -] e Dar ke Main.story...oed (Base) | [ My Workouts Scene | () My Workouts Demode
rﬁ:.ﬂudm « [ My Werked  Reveal in Document Outline D o B e
¥ i HealthKit framework v ) iy Work Simulsted Size  Fisnd B
¥ 7 RunTracker » | Table Align p —
[] AunTracker entitements » < myw Amange .. Workout
+ AppDwiegate switt @ First Res o - s T
+ WorkoulTableViewControbr. swit Bt snap to Guides
+ CreataWorkout_ wCcntrolier switt Presenth * cyides >
B Main storybosi » [ Haw worka
= Assats xcassats =
LsurehSereen storyboard " - SR .
o.plat N~ — Localization Locking L3
= Extensions.swift + Automatically Refresh Views Navigation Controdler
» [ Products G Tab Bar Controller
Resolve Auto Layout lssues >

Refactor to Storyboard... E —
T

=  u] whny hAny BB s

+ (@ DE Ao s = Al Outeut ®00 8 @m

Figure 3-7. Xcode menu path to embed a selection in a navigation controller

After applying the change, you will notice that your table view controller is linked to a
navigation controller, as shown in Figure 3-8. You will also notice that entry point has shifted
to the navigation controller. The “Embed In” feature is particularly convenient because it
preserves your existing hierarchy of segues (connections between storyboard items).



66 CHAPTER 3: Accessing Health Information Using HealthKit

ece » S Ru.cker | J* Gereric iDS Device @ Running RunTracker on Ahmed's iPhone 1 SR | | = [
BR Q ' o € & RunTracker Ruker ) [ Ma_ara | [l Ma_se) | B Navigation Controlier Scene | () Navigation Controller | ¢ » T & B ¢ 0 &
v v [ My Workouts Scene Class =] - |
v () My Workouts Module -]
» [ Table view
B4 My Workouts Ientity
@ First Responder Storyboard ID
B exit
— Aestoration IO
* [ Mew Workout Scene
Lise Staryboard 10
» [ Mavigation Controller Scone .
e User Defined Runtime Attributes
¥ [ Mavigation Controlier Scene = Ky Path  Type Value
¥ & Mavigation Controlier
Navigation Bar
. ) First Responder
Dotument
o™ Label
3
Object 1D On-AU-IM7
Loek _inherited - (Nothing) H

) @ I

Collection View - Disclays catain g
eniliection of eslls
——

= o Any rAny [T

Collection View Cel - Deines the

= » atirioutes and behavior of cells In 3
colection v
Collection Reusably View -
Dafines the aTFIDULES And Dahavier of
reusabie views in a collecton view,

= Avto & a Al Cutput & DO =

Figure 3-8. Storyboard after embedding a selection in a navigation controller

To connect the new table view controller to your custom functionality, you need to
create a class for it. In the File menu, select New » File. When prompted for a file type,
choose Cocoa Touch class and create a subclass of UITableViewController named
WorkoutTableViewController, as shown in Figure 3-9.



CHAPTER 3: Accessing Health Information Using HealthKit

@ % RunTracker | | Ahmec's Phono © Running AunTracker on Ahmad's iPhone
B & 4 ¥ Choase options for your new file:
¥ B RunTracker
» i Healthiit framework v
RunTracker

] RunTracker.ectitlements
= AppDeiegate.switt
Main storyboard
Assets xcassets
LaunchScrean storyboard
info.plist
+ Extensions.swift

Products

Cancel

Class:
Subclass of:

Also create X8 file

Language:  Swift

0 < RunTracker

WaorkoufTabloViewController

UiTableViewControlier

67

n®

identity and Type

Name RuTracker

Locasion  Relative to Group

RunTrackes
Full Bath [Users/abakiefDeskiop/
untitied fokder/RunTracker|
RunTracioer ¢
Taxt Settings
[~ ~dent Uning _Spaces 3
Widths afs 42
e naant
& wrap lines
Previous (UL

for <UIViewCostroller: Gxl26aTbeal>.
results are here
results are her

.
2015-11-38 16:19:15.645 RunTracker [1477:330389] <

Received sesary warning.

Al Qutput &

Figure 3-9. Adding a UlTableViewController subclass to the project

View Controller - A controfler that
manages 8 view

Storyboard Reference - Provides s
slacehoider 'or & viem Controlier in a7
externai storyboard.

Navigation Controller - A
controfler that manages ravigation
Ehrgugh s Bisrarchy of views.

Connect the new class to your storyboard by selecting the table view controller and
selecting the Identity Inspector (third tab of the right pane). As shown in Figure 3-10,

change the name to WorkoutTableViewController. You can verify that the operation was
successful by making sure the “Module” field displays “Current - RunTracker,” indicating the
namespace for the RunTracker project.

vww allitebooks.conl



http://www.allitebooks.org

68 CHAPTER 3: Accessing Health Information Using HealthKit

L ] ® » S Ru_cioer + M Generic 105 Devics ) Running RunTracker on

B E ¥ < B RunTracker RurTracker ) [l Mais_yboura’ [l Main.s..(Base) My Workouts Scene

v [ RunTracier v [ My Workouts Scene

€ My Workouts
i First Responder

s Exit

wrawif b [ New Workout Scens

Havigation Controller Scene

¥ [ Havigatien Controller Scene

Reiationship “root view comtrolies

Auto 3

My T

Any b Any

A Cutput &

Figure 3-10. Changing a view controller’s parent class and verifying its module

My Workouts ¢

m o q

orkoutTableviewCan.. © I

s [~ ]
uogue B

ety

L

Rustoration 0

Use Storyboard ID

Unae Dafined Runtime Attsibutes

Otgect D &YP-Xv-fn2
% wnhwrked - (Nomingl B
@
Collection View - Disglays data in s
collgction of cells.

Collection View Cell - Datoas the
STEriEuTEs 8ng Banavier of cels in B

Collection Reusabio View
Defings the steributes and behavicr of
PeuIDe views 0 3 Coteeton view,

To allow users to log new workouts, you need to add the “view screen” to your storyboard.
This view controller allows the user to start or stop his or her workout, view his current
progress, and return to the workout table, either by saving or by canceling his current
workout. Following the same processes you used to add a table view to the storyboard,
drag a view controller onto the storyboard, create a new file that is a subclass of
UIViewController called CreateWorkoutViewController, and link the two together using the

Identity Inspector.

The user interface for the create screen consists of labels to indicate workout type, progress,
and time; a large button at the bottom of the screen to start or pause the workout; and a
navigation bar with Done and Cancel buttons, to allow the user to exit and return to the
workout table. | have included the definition for the CreateWorkoutViewController class in
Listing 3-1, including the properties for the labels and buttons and stubbed functions for the

button event handlers.

Listing 3-1. Class Definition for CreateWorkoutViewController

import UIKit
import HealthKit
import CoreMotion

class CreateWorkoutViewController: UIViewController {

@IBOutlet weak var typelabel: UILabel!
@IBOutlet weak var progressLabel: UILabel!
@IBOutlet weak var timelabel: UILabel!

@IBOutlet weak var toggleButton: UIButton!



CHAPTER 3: Accessing Health Information Using HealthKit 69

To start implementing the user interface, drag several labels onto the view controller, as
shown in Figure 3-11.

ene » By Ru.cker | J* Gereric i05 Device  RurTracker | Build RunTracker: Succesded | Today at 6:25 AM LA =4 | B [
g < & RunTracker Run_scker ' [ Mai_oard | [ Mai_Base) ) [ New_cene | () New_kout Wiew | L Workout type Y & B 1
¥ [ My Workouts Scana 2 B Custem Class
¥ () My Workouts Ciass =1 - |
» Table View Module -]
¥ 4 My Workouts bann Wo
Left Bar Buttcn ltems ity B Wrowkout teentiny
»  Right Bar Buston items I Bmstoration 0
@ First Responder
B ext o o
e 1 User Defined Runtime Attributes
Present Modaly segue to "Navigat o Wcrkoyt type KeyPath  Type Vil
¥ [ Hew Workout Scene Other workout
- New Workout
Top Layout Guide
Bottom Layout Guide Workout progress
v fitruy -
» B Togge Butten 0 steps Label
¥ L | Workout type *
» [ constraints Oitject 10 zrU-gm-Nha
b L Workout progress Workout time ock Innerited - (votning) [
® L Type Label =
» L Progress Label 0 secs Notes W5 3= am mm - [] @
B L Weriout time i e
* L Time Label

» (8 Consraints

b € New Workout DO @I
D Ficst B . b oopects and contsgllers ot drectly
S Reponcs Label avmlatin i intestace Buikder
B et
& 'u] Any nAny B B ol taf b Labe - A verssty sized amount 1
E Label juse e,
E =
Button - intercets touch events and
HHON sands an action message to  target
et when ity tapged
s\ Seomented Contrel - Dol
= Auto & = Al Qutput 3 0O =

Figure 3-11. Adding labels to View Controller

Change the text weight of the static text labels (for example, Workout Type) to bold by
selecting a label and navigating over to the Attributes Inspector. Use the Font drop-down, as
shown in Figure 3-12 to change the font family or weight.



70 CHAPTER 3: Accessing Health Information Using HealthKit

o9 » Ay Ru.cker |/ Gereric i05 Device  RunTracker | Build RunTracker: Succeeded | Today at 6:25 AM

o | < = RunTracker

* [ My Workouts Seana
¥ ) My Workouts

» || Tabie View
¥ 4 My Workouts

@ First Responder

B exit

Assets scassets

LaunchScresn. storyboard ¥ [ Mew Workout Scene
nta.pkst ¥ () New Workout
= Extensions.swift Top Layout Guide
» 7 Products Bottom Layout Guide
v View
* Togghe Butten

¥ L Workout type

» (@) constraints
B L Workout progress
® L Type Label
» L Progress Label
b L Workout time
.

) First Responder

B ext

Figure 3-12. Changing label attributes

Left Bar Button Items
» Right Bar Button items

1.1,

Prosent Modally segus 1o "Navigsl

New Workout

Wcrkoijt type

Other workout

Workout progress

Workout time

wAny ~Any

Al Qutput &

Run_scker ) [l Maicard | [ Mai_Base) ) 5] New_cene) () New_out

]

0 steps

0 secs

Wiew | L Workout type

B B ol s

Do

s = O 0
Label
wxy Plain B
Workiut type
Color EE—
Feat System Medium 18.0 T =

Font  Syntem - System

Sty Modum 2]
Siw %2 ’
Done |
Ausoabeink  Flend Font Sire B
Tighten Letter Spacing
Highighted W Default B8
Studow =) Default [}
Shacew Offiat o =
Horizontal Wertical
View

) @ O

stjects and controlien rot deectly
wenlabie in lnzertace Buikder

Label Label - & variatly sired amount of

stasc w1,

Button - intercests ouch events and
tHON sends an action message 1o a target
e mhen ity Lapged

— ‘Seomented Control - Cacle

For the status labels, remember to link them to the CreatelorkoutViewController class by
selecting them, navigating over to the Connections Inspector (the last tab in the right pane),
and dragging a line from the New Referencing Outlet radio box to the view controller. As
shown in Figure 3-13, a pop-up will appear indicating the property name.



CHAPTER 3: Accessing Health Information Using HealthKit 7

ane » % Ru.cker ) 7 Gereric i05 Devies  RunTracker | Buid RunTracker: Suceesded | Today o 6:25 A i ==
B R a A > @ (B < & RunTracker ) 1 Run_acker ) [ Mal_card | [ Mal_Base) ) [5] New._ene | () Mew ot ) || View | L Other workout Demdde
v B RurTracker vy B™y is Boons —— Outier Cobections
= 2 B a o o
¥ i Hea/thiis framework ¥ () My Workouts = L et =
¥ [ RunTracker » | Table View e b
L] RunTracies sntitiements. ¥ oL My W t S demernn o e
b Run o ] T T, “ance New Workout Referencing Gutlel Collections
Laft Bar Bution items Norm Rararen: it P aut Eotecton
*  Right Bar Button Rems
+ CrasteWorkou!  wControllor. swift '7' First Ruaporder
B et
Main.storybosrd - ‘Workout 2
Prosent Modally segue 16 “Navigat T yp progressLabel
Asvots xcassols timeLabel
Launchécreen storyboard ¥ [ Mew Workout Scene 0 Other \:\rnrknul typeLabel
Info. plist v New Warkout view
. Extensions. swift Top Layout Guide
> B Procucts Bottom Layout Guide Workout progress
v View
¥ 1§ Togghe Button 0 steps
¥ L Woekout type
» ) Constraints
b L Workout progress Workout time
* L Other workout
* L Progress Label D secs
* L Workout tme
* L Time Label
» [ corstraints 506
B € Naw Werkout . 4
M First B der obivets and controliers not directly
. Feaponcs easabia in intarface Buider
O Any ~Any B = ol Lab| Labe! -4 vaissly sizes amours of
7 A0 siutc e,
E =
BULION - I~Eertects touch events and
SULTON senss an action message 1o 8 target
obiect when ir's tapped
— Seamented Control - Daciavs
e a All Outpet 3 @00 S

Figure 3-13. Connecting labels to their referencing outlets

Drag a button onto the view controller to represent the Toggle Workout button. To create the
“big blue button” appearance of the button, resize its edges to touch the sides of the screen

and change the text color to white by selecting the Text Color drop-down in the Attributes
Inspector, as shown in Figure 3-14.



72

CHAPTER 3: Accessing Health Information Using HealthKit

.

Figure 3-14. Changing the text color for a button

FuniTracker

[ RunTracker ertitements

¢ AppDeiegate swift
= WorkoutTableViewControlier, swift
s CresteWorkoul..wContraller veift
Main.steryboard
Assets xcavsets
LaunchScreen storyboard
info.piist
= Extensions. swift
Products

Ay Ru..cker | Gereric i05 Device

< = RunTracker

v [ My Workouts Scene
¥ ) My Workouts
» [ Table View
¥ 4 My Workouts
Left Bar Button tems
> Right Bar Button items
@ First Responder
B exit
Presert Medaly g 1o “Havigat
7 [ Mew Workout Sceme
v () hew Workout
Top Layout Guide
Bottom Layout Guide
v | | view
» | Topgle Bution
¥ L Woriout type
» [ constraints
B L Workout progress
® L Type Label
» L Progress Label
b L Workout time
b L Time Label
» [ cortraints
B 4| New Workout
@ First Responder

B ext

RunTracker | Build RunTracker Succesded | Today at 6:25 AM

Run_scker ) [l Mai_card | [l Mai_Base) ) [ New_ene

New._kout
WOrKoUT progress

0 steps

Workout time

0 secs

(u} whny Ay

A Output &

View

B Toggle Button Dem <0
Bution
Type System
State Confi Defait
Tie Plain
Start workout
Fet System 15.0 il

sy W
FEOOE0C0OEEEON
EENEOD0DEEN

W Dok Taxt Color
Tabila View Background Color

Taxt Color 1 White Calor <]
rY

|

|

|

tared Background Color
) Table Cell Grouped Background Color
N View Fiipside Bsckground Color

— i

Daric G
== Light Gray Coior
[ s}

) Clear Color
Other,

stjects and controllen not directly
avilabie i Intertace Builder

B B ol il Labe] Labe! - wrssy sizes amount o

stasc w1,

Button - intercests ouch events and
BULtON sends an action message to » target
e mhen ity Lapged

=, Seamented Control - Disols

Do s(c

To change the background color of the button, scroll down to the View section of the
Attributes Inspector and select the Background color drop-down, as shown in Figure 3-15.
Pick your favorite shade of blue.



CHAPTER 3: Accessing Health Information Using HealthKit 73

LaunchScreen. storyboard

nfa.pilkst
= Extensions.swift

» 1 Products

B Ru.cker |/ Gereric i05 Device

< o RunTracker

v [ My Werkouts Scans

Left Bar Button Items
» Right Bar Button Hems.

@) First Responder

B ext

Prosert Modaly segue 1o “Havigat

* [ Mew Workout Scene
v New Workout
Top Layout Guide
Bottom Layout Guide
View
» 0 Toggle Button
¥ L Woriout type
» (@ Constraines
b L Workout progress
> L Type Label
® L Progress Label
B L Woriout time
» L Time Label
» (B Corstraints
B < Naw Workeut
0 First Responder

E exit

Runracker | Build RunTracker: Succesded | Todsy at 6:25 AM A ad | Bl = e

Runscker | [ Mai_card | [l MaiBase) ) [ New_.ene Mew. keout View | B Toggle Button 1]
U seCs o0
0:
Rgre
Control
ageart [ MG O B
Horizontal
o El o
Vertical
Contert  Selected [ Enabled

Highighted

View
Mode Scale To Fil B
-]

Semantic  Unspecfied
Teg 03
interaction [ User interaction Enabled
Muitiple Touch
Migha =
Background I
0 Default =)
o
Recenty Used Colors
rEdoE0OEEEON
(n] Any tAny BE! ppEpEEOOEEEN
Ok Text Color
0 Growp Table View Background Color

0 Light Text Color
N Scrofl View Textured Background Color

0 Tabie Cet Growped Bacgrowns Colod
W iew Fiipsice Backgroung Color
— Color

Figure 3-15. Changing the button’s background color

To preserve the appearance of the button on different screen sizes, set autolayout
constraints using the Pin menu, as shown in Figure 3-16. To force the button to stay at the
bottom of the screen on all devices, select the dotted lines on the left, right, and bottom
edges of the square. To fix the height at 60 pixels on all screens, select the check box next
to height. You can follow the same process to pin the positions and sizes of the labels,
except you will pin them to the top of the screen.



74 CHAPTER 3: Accessing Health Information Using HealthKit

[ ] * Sy Ru.cker | J* Gereric iDS Device  RunTracker | Build RunTracker: Succesded | Today at :25
B 4 & RunTracker Run_scker ) [l Mai_card | [l Mai_Base) ) [
TR [ My Workouts Scone
¥ () My Workouts
> || Tabie View

v

€ My Workouts

Left Bar Button ltems
»
@ First Responder

Right Bar Button items.

-

LaunchScreen storyboard

info.plist L
s Extensions.swift

Products

» (@ constraints

L Workout progress
L Type Label

L Progress Label

L Werkout time

S
) First Responder

B exit

Al Critput 3

Figure 3-16. Setting constraints for the button

A mH =]
Hew..ene New.kout )| View | B Toggle Button om0 0 @
WWOrkout progress Foliow Readable Width
Comatraints
0 steps
Workout time
Dsecs  AddNew Constraints -
199
ipaceto tdin
0 10
Ipace ta an
o
Spacing 13 nea o i Equss: 80 e
Constrain to marging
B wem %o fpace ta: Bottom Layo_. Edit
&8 Heignt [
B g Priarity
@ 50

Any ~Any

3 Aspect Ratio 50

Update Frames | Mone

sasion Resistance Priority
" @ O

Add & Constraints

B 8 ol | Labg| Labe! - A veristh sized amount ot

static tet.

Bulton - Intarcests touch svents and
11 sends an action message 1o & target
object when it's tapoed

Seamented Control - Diasle

To make the button functional, use the Connections Inspector to connect the Referencing
Outlet, following the same steps you used to connect the labels. To connect the function
that will be called when the user presses the button, toggleWorkout (), you need to connect
it to a user interface event. As shown in Figure 3-17, click the radio button representing
“Touch Up Inside” and drag a line over to the view controller. Select the method signature for
the toggleWorkout() function. If it does not appear, make sure you define the method with

the @IBAction macro in front of the func keyword.



CHAPTER 3: Accessing Health Information Using HealthKit 75

® * b B Ru.cker | J* Gereric iDS Device  RunTracker | Build RunTracker: Succesded | Today at 6:25 AM e =d | | = [
B R Q 8| < L RurTracker | 1 Run_scker | [ Mai_card ) [ Mai_Base)) [ Hew_ene New.dout ||| View Toggle Bution DémoDd O
¥ |8 RunTracies ¥ [ My Workouts Scene Triggesed Segues

‘orkout progress sction

v Workouts
. Outlet Collections

(21 i pesnreftecogrizens
L] RunTrackee ectitiements vis 0 steps
Sent Events
» AppDeiegate.switt L o Iboms et
F ATabiev ok » ' Right Bar Bulton ltems 5 0
WorkoutTableViewCorntroer. swift i Workout ti S
= CroateWorkout_wControlier swift il First Responder ne o
& exi C
Mair Horybosrd - )
Present Modally segue to “Navigat 0 secs °
Assets xcassets
LaunchScreen.storyboard ¥ [ Mew Workout Scene toggleWorkout:
nfo. plist v 0
= Extensions.swit :
Products Battom Layout Guide 5
v | view ]
» ¢ Topghe Bution @
¥ L Workout type -
> M corbrin Reterencieg Outiets
L Werikout progress ®
L Type Labal o

>
>
>
>

L Progress Label
L | Worikout time
> L Time Label
» [B corstrains

B4 New Workout

‘ezjects and controliens not drectly

1 Fiest Responder
Wl First Responde avpilabie i Interiace Builder,

[ exit
< [n} Any Ay 3 B iof haf Label - A variably sizod amount of
F = Label i e
e
soject when it's tapoed.
— Seamented Control - Disolavs
= Aata = Al Qutput & OO =

Figure 3-17. Click Touch Up Inside and drag a line to the view controller

For the final steps of setting up the user interface, you need to connect the Done and
Cancel buttons in the navigation bar and present the create screen from the workout

table. To create the Done and Cancel buttons, start by embedding the create screen in a
navigation controller, using the Embed In option from Editor menu, as you did for workout
table. Drag bar buttons from the Object library onto the navigation bar, as shown in

Figure 3-18. Bar buttons differ from buttons in the Object library, in that they are subclasses
of UIBarButtonItem. They respond to a smaller set of user interface events than a UIButton
and include special identifiers to style them for common navigation events, such as
canceling a view or selecting a done state.



76 CHAPTER 3: Accessing Health Information Using HealthKit

one p oy Ru..cker ) 2* Ganeric I05 Device Buikd Today at 6:25 AM mj=im
BR aass B o B B < 5 RunTracker Run_acie | [l Mai_card | [ MaiBase) ) [ New..one Now.kout View | B Toggle Butien 1o @m o0 e
¥ B RunTracker v [ My Werkouts Scons L Triggered Segues
i HealthKit framework v B Voo ‘orkout progress it a
¥ 0 RunTracker > Tabie View Outlet Collactions
L] RunTracker entitiements ¥ < My Workouts 0 steps ’::. vscogriann
= AppDelegate.swilt Left Bar Buttcn tems: D‘= ":‘: 2
= WorkoutTableViewControfies. swift ®  Right Bar Buiton ftems Waorkout time Editing Cranged
+ CroateWorkout..wCentrolier swit @ First fwsponder "
Main_storybosrd Eex
s Prosent Modally 5eg 1o “Navigat... 0 secs
LeunchScresn storyboard ¥ [E) Mew Workout Sceme toggleWorkout:
nfo.plst v New Workout
+ Extensions.swift Top Layout Guide
* Products Bottom Layout Guide
v View
¥ [ Toggle Bution
¥ L Workout type
» (@) constraints
L Workout progress ®
L Type Label o

»
>

» L Progress Label
b L Workout time

® L Tim

» [ constraints —

b New Workout D OGO

@) First Responder otjects and controilers rot directly

@ :u :1 esponde: avsilable i ertace Duilder

B ex
3 o whny nARy B B ot Labe] L2be! - A varisty sized amount of
- Bl yacic .
| =

Button - Inbescents bouch svents and
Button sends an action message 1o a target
otject whan it's tapoed.

— ‘Seamented Control - Daolans
e 5T | ) A1 Output £ 00 =8[E

Figure 3-18. Dragging bar buttons onto the navigation bar

To change the appearance of a bar button item, click it and navigate over to the Attributes
Inspector. As shown in Figure 3-19, you can use a preconfigured display by selecting a

system item type from the System Item drop-down. For the Done and Cancel buttons,
choose Done and Cancel, respectively.



CHAPTER 3: Accessing Health Information Using HealthKit 77

S Ru_cker | S Gereric i0S Davice  RunTracker | Build RunTracker: Succesded | Today at 6:25 AM 1 oA | [

14 & Runlracker Ar - JBv Ene Mt ) € Mt Right Bar Button Hems Done £ 3 " O EB 00 G
v [ My Workouts Scane Bar Button em
v () My Workouts B
» || Tabte Vie B
¥ £ My Workouts )
Left Bar Button Items a2 =
»  Right Bar Buton items Bar ltem Add
B First Responder - 5%
™
ost. New Workout Done et Canes ]
Assat st Save
]
LaunchScreen storyboard Undo
nfo.phst Fedo
= Extensions.swift Workout type

B Products

Other workout
¥ L Workout type

» ([ constraints Weorkout progress

B L Workout progress
» L Type Label 0 steps tresi
» L Progress Label o
B L Woriout time
Camera
: Workout time
Play
¥ < New Workout 0Osecs
B Left Bar Button items :‘ s
N Page Cur
=, 0 Any nAny E B ol Page Cu
E = Bar Button ltem - Represents an
116m | ioeen o & UiToolbar er
Usiavigationtiem object
Tab Bar - Provides a mechanism for
npiaying & tabs bae at the bostom of
d e the seroen
= Aato & = A Output & oa Goar o

Figure 3-19. Selecting a system item type for a UlBarButtonltem

To connect a bar button item to an action, navigate over to the Connections Inspector. The
“Sent Actions” section for a bar button item only has one entry, selector, indicating that you
can only connect one handler method to a bar button item. As with connecting a UIButton,
click on the radio box next to “selector” and drag a line over to the view controller, as shown

in Figure 3-20. For the Done button, select the done() method. For the Cancel button, select
cancel().



78 CHAPTER 3: Accessing Health Information Using HealthKit

ene » S Rucker | J* Gereric 105 Davice  RunTrackes | Budd RunTrscker: Succesded | Today # 6:25 AM ' * U =

£ B RunTracker s |- B v N Nt ) € Mt Right Bar Button Hems Done » I O

My Workouts Scene Triggered Segues
My Workouts
Sent Actions

Table View

Reterencing Cutiets

Beferen:

New Workout Done

Fresent Modally seue 10 “Navigat
] Mow Workout Scene

New Workout

Workout type

Other workout
close:

¥ L Workout ype

» [H constraints Workout progress

B L Workout progress

0 steps

33y 2

>
*
.
.

Workout time

L
L
L
L
8 co
T

@

¥ & Mew Workout 0 sacs

Toolbar - Provides a mechanism for
displayieg & tooibar 8t the bottem of
the screen.

Left Bar Button items.
O Any Ay [T
» Bar Button Mem - Regresents an

m | item on  UTenibar or
Uihavigatanizem sopect.

Taibs iar - Provides & mechanism for
displaying & 185 bar 8 the Bottem of
* the screen.

Auto & = All Dutput 5 0o

Figure 3-20. Selecting a handler method for a UIBarButtonitem

You will use an Add button to present the create screen from the workout table. Add a bar
button to the navigation controller for the workout table and set its style to Add. Rather than
using a method to present the create screen, you will use a segue. Segues are a convenient
feature of Interface Builder which allow you to visually connect two view controllers via a
button or other touchable user interface element and specify properties of the connection,
such as how the new screen should be presented, without having to write any code. By
overriding the prepareForSegue() method, you can implement custom logic to pass data
between view controllers that are connected with a segue.

To make the segue between the Add button and create screen, select the Add button and
navigate over to the Connections Inspector in Interface Builder. Hold down the radio box
next to “action,” under the Triggered Segue section, and drag a line to the destination view
controller. As shown in Figure 3-21, this will be the navigation controller that contains the
create screen.



CHAPTER 3: Accessing Health Information Using HealthKit 79

ece b % Ru_cker ) J* Gereric i0S Device  RunTracker | Build RunTracker: Succesded | Todsy at 6:25 AM e = [
4 & RunTracier RunTracker | [ Main.s_yboard | [l Main.s..(Base) | B My workouts Scome My Workouts | ¢ » B 90
ECTPOF WYY Simulated Metrics
Lot Bar Butic items
Right Bar Busten items - =
) Firet Aespencer B
E exn B
. A il
Mew Workout Scene TopBar inferred B
- WorkoutTableviewControbier swift —
. Sottom Bar  Inferred B
ntroller weritt
Tatle View Controlier
Seiection [ Clear on Appearance
Ratreshing Disadied B

View Controlier

» 1 Products » L Workout progress == =
» L TyoeLabel by ececa
i oy ey s Initial View Controller
b L Workout time Layeut 3 Adjust Scroll View Insots
* L Time Label Hade Bottom Bar on Push
» ints 3 Resize View From NIB
< Use Full Screen (Deprecated)

Extend Edges [ Under Top Bars
8 under Bottom Bars
Under Opague Bars

(©]

Mavigation Controlier Scene Toolbar - Frovades 8 mecramem for
daplaying B Lo B the botiom of
he screen

| B Any rAny OB b

=] Bar Button Item - Aepresents an
118m | em on a UiToolbar or
Uiavigationttem object.

Tab Bar - Provides 8 mechansm for
dinoluying o tab Bar #t the bottom of
* the screen

= Aaita & = Al Output & (Bl =

Figure 3-21. Creating a segue between a cell and a detail view controller

Setting Up the Project for HealthKit

Every Xcode project has a feature called “device capabilities.” Device capabilities are a set
of flags you need to set in your project before you can access sensitive APIs that the user
may want to opt out of, such as the Apple Pay wallet or health information from HealthKit. As
with the GPS feature in the CarFinder app, users will be prompted to enable the feature once
they have installed the app. Apple goes a step further with HealthKit and will prevent your
application from compiling if you try to include HealthKit in your project without enabling the
device capabilities.

To enable HealthKit for your application, click your project in the Project Navigator. Select
the Capabilities tab. As shown in Figure 3-22, you will be presented with a list of switches
indicating capabilities you have enabled for your application.



80 CHAPTER 3: Accessing Health Information Using HealthKit

® ® ) By Ru.cker | J* Gereric iDS Device  RunTracker | Build RunTracker: Succeeded | Today at 8:25 AM 1 SRR = 1 | = [
B R G C o< & RunTracker iy e I

- Il A Runcker 2 General . Resource Tags Infg Build Settings Buid Phases Bulld Ryl Mentity and Typs

v

Name RurTracker

Location
Turning on Background Modes will- Full Path fUsers/abakinDropbaox)
« CreateWorkoul_wControlier swift ’ t o d Back 3 M ¥ t Apresa/ProgrammingloT|
B Maic storybosrd Source Code/Cha/
— RunTracis/
Agsats acassels > Inter-App Audio | OFF RunTracierxcodepof

Project Documant
> Keychain Sharing

Project Format  Xcode 3.2-compatible =]

Ovganization Ahmed Bakir

. Assoclated Domains Class Profix

Teat Settings

» (5% App Oroups =
indert Using  Spaces B

—rer Widthy 4 F 1=
* Data Protection el Tat raden
‘Wrap ines
> HomaKit | OFF | Soures Control
— ®
» HaalthKit | OFF |

Toolbar - Provides a mechasiam for
ea— dolaying 8 tocke at the botiom of
> Wireless Accessory Configuration | OFF | the ‘:,:_' s el

E = Bar Buttan Item - Represents an
18 | item on & UiToolbar o
Usavigationttem object

Tab Bar - Provides a mechaniem for
aplaying & tab Bae at the bottom of
d cor the screen.

= Auto & = Al Qutput & 0O bar -]

Figure 3-22. Default capabilities

Scroll down to Health and select the ON position for the switch control. Xcode will prompt
you to select a Development Team for your project, as shown in Figure 3-23. To use
HealthKit, not only do you need to specify the capability for your project but you also
need an app ID registered with the Apple Developer Connection. Selecting your Developer
Account and logging in will automatically create this record for you.



CHAPTER 3: Accessing Health Information Using HealthKit 81

[ ] S Ru_cker | J* Gereric i0S Davice  RunTracker | Build RunTrackes: Succesded | Today at 6:25 AM

<

« CreateWorkout_wContralier switt

[T —1

Assets 1cassets »
surerSereen storyboard
info.plist

+ Extensions.swift

Products

Figure 3-23. App registration

I] A Run cher 2

o RunTracker

To enable HealthKit, select a Development Team to use
General | for provisioning:
Maps
Background Modes
Inter-App Audio
Keychain Sharing
Associated Domains
App Groups.
Data Protection

Homekit

Healthiiy

Tuienbnn nn lasihith wdll

Al Critput 3

Ahmed Bakir (Personal Team) B

View Accounts... Cancel  [SIEEEEN

0o

Build Ryl dentity and Type

Name AunTracker

Full Parh fUsers/sbakdefDropbox/
Apeess/Programminglal|
Source CodejCha/
RunTracies
RunTraces. scodepro]

Project Document

Project Format  Xeode 1.2-comoatitle 2

Ovganization Ahmed Bakic

Class Prufix
Taxt Sattings
tedert Using  Spaces )
Witiha 4 4z
Tat nctent
& wrap Enes
Sourcs Control
] @ O

Toolbar - Provides a mechasiam for
dnplaying 8 tookber at the bottom of
tha sereen

Bar Button ltem - Rupresents an
I8 | e on & UiToolbar or
Usavigationitem object

Tab Bar - Provides 3 mechasism for
aplaying & tab bae at the bottom of
* cor the screen.

Note If you are on a free developer account for device testing, you can register an application
name for testing. However, to distribute your app on the App Store, you will need to upgrade to a

paid Apple Developer

Program account.

After registering your app ID, you will notice a series of check marks under the Health
section, indicating that your application has met all of the requirements for HealthKit, as

shown in Figure 3-24.



82 CHAPTER 3: Accessing Health Information Using HealthKit

® * > By Ru.cker | J* Gereric iDS Device  RunTracker | Build RunTracker: Succeeded | Today at 8:25 AM 1 SR | | = [

"< & RunTracker CA>d D e

- [ ARucker 2  Gonoral Resource Tags infa Build Sattings Buid Phases Build Ryl 'dentity and Typs

Name RurTracker

Loewion
» Inter-App Audio

Full Patty fUsers/abakic/Dropbox]

o sl ) Mgt
st ¥ Sty MO g s Sowrce Code/Cha
RunTracioes)
RunTrackeracodeprs]  ©
| Aasociated Domains
Project Document
= > App Oroups Project Format  Xcode 3.2-comoatble |5
. Extersions.im
> Prod, o
> Data Protection
Text Settings
¥ i went Using  Spaces u
Wt als
- -
v HealthKit m B i e
Stops: Sousce Control
v
v @
v
Toolbe - Frovedes 3 mecranm for
alaying 8 tocia at the bottom of
Wireless Accessary Configuration - “r:- =

E = Bar Button Item - Represents an
148 | item on & UToolbar o
UiNavigationttem object

Tab Bar - Provides a mechasism for
Gplaying 8 135 ba- at the bottom of
& -+ the scroen

= Aato & = A Output & (W]] & bar o

Figure 3-24. Capabilities after enabling HealthKit

Note For the RunTracker project, you will not need to enable any other device capabilities. If you
are looking to add location tracking, you should enable Maps. If you want to add the ability to play
audio while your app is backgrounded, enable Background Modes.

One of the check boxes indicates that the HealthKit framework has been added to

your project. To use the HealthKit API, modify your WorkoutTableViewController and
CreateWorkoutViewController classes to include the framework, as shown in Listings 3-2
and 3-3.

Listing 3-2. Initial Class Definition for WorkoutTableViewController
import UIKit
import HealthKit

class WorkoutTableViewController: UITableViewController {
}

Listing 3-3. Initial Class Definition for CreateWorkoutViewController
import UIKit
import HealthKit

class CreateWorkoutViewController: UIViewController {

}



CHAPTER 3: Accessing Health Information Using HealthKit 83

Prompting the User for HealthKit Permission

To enable the project to work with HealthKit, you had to set it as a “capability.” Referring to
the CarFinder application from Chapter 1, you will remember that when you access sensitive
hardware or information, you need to perform two steps:

Verify that the hardware or API is available on a device
Ask the user for permission to use the resource

Apple enforces this design pattern by providing you with APIs to prompt for permission
and hardware status. To enforce the design pattern, your application will crash at runtime
if you try to access a resource that does not exist or which your application does not have
permission to use.

To query if a device is HealthKit compatible, use the isHealthDataAvailable() public
method on the HKHealthStore() class. As shown in Listing 3-4, you should call this method
at the entry point for the first view controller that needs to use HealthKit. For the RunTracker
application, this is the viewDidLoad() method of the WorkoutTableViewController class.

Listing 3-4. Querying for HealthKit availability When Starting the App (WorkoutTableViewController.swiff)

override func viewDidLoad() {
super.viewDidLoad()

tableView.dataSource = self
tableView.delegate = self

// Do any additional setup after loading the view, typically from a nib.
if (HKHealthStore.isHealthDataAvailable()) {

//success!
} else {

//HealthKit unavailable
presentErrorMessage("HealthKit not available on this device")

}

If the device does not support HealthKit (e.g., an iPad), you should handle the error. In this
case, | have created a method called presentErrorMessage(), which takes a string as input
and displays a UIAlertController, as shown in Figure 3-25.


http://dx.doi.org/10.1007/978-1-4842-1194-6_1

84 CHAPTER 3: Accessing Health Information Using HealthKit

Error
HealthKit not available on this device.

OK

Figure 3-25. UlAlertController presenting an error

Listing 3-5 provides the definition for the presentErrorMessage() method.

Listing 3-5. Method to Generate Error Alerts (WorkoutTableViewController.swift)

func presentErrorMessage(errorString : String) {
let alert = UIAlertController(title: "Error", message: errorString, preferredStyle:
UIAlertControllerStyle.Alert)
let okAction = UIAlertAction(title: "OK", style: UIAlertActionStyle.Default, handler: nil)
alert.addAction(okAction)
presentViewController(alert, animated: true, completion: nil)

}

Having established that the device is capable of using HealthKit, you need to prompt the
user to enable your application to read and write to HealthKit. The primary class you will
use for your data operations against HealthKit is HKHealthStore. To get started, add a
HKHealthStore object to the Workout Table View Controller class, and instantiate it once
your application has established that HealthKit is available on a user’s device, as shown in
Listing 3-6.



CHAPTER 3: Accessing Health Information Using HealthKit 85

Listing 3-6. Initializing a HKHealthStore When Opening the App (WorkoutTableViewController.swift)

override func viewDidLoad() {
super.viewDidLoad()

// Do any additional setup after loading the view, typically from a nib.
if (HKHealthStore.isHealthDataAvailable()) {

healthStore = HKHealthStore()

} else {
//no health kit data available
presentErrorMessage("HealthKit not available on this device")

}

One of the key advantages of HealthKit is that it provides granular tracking of numerous
health data metrics, including heart rate, step count, a user’s weight, and calories
consumed. You can find the latest, complete set of data types HealthKit in Apple’s HealthKit
Constant Reference (https://developer.apple.com/library/ios/documentation/HealthKit/
Reference/HealthKit_Constants/).

HealthKit also provides grouping types, such as workouts, which let you abstract units
of data into activities, such as a morning jog. When prompting a user for HealthKit
permission, you need to specify the types of data you want to read and write using the
requestAuthorizationToShareTypes() method of the HKHealthStore class. The user will
be presented with a view controller provided by iOS reflecting the permissions you have
requested, as shown in Figure 3-26. You will be notified of the user’s selections via the
completion block that executes when the user closes the permission view.


https://developer.apple.com/library/ios/documentation/HealthKit/Reference/HealthKit_Constants/
https://developer.apple.com/library/ios/documentation/HealthKit/Reference/HealthKit_Constants/

86 CHAPTER 3: Accessing Health Information Using HealthKit

wecoo T-Mobile Wi-Fi ¥ 4118 PM  § 78% B+

Don't Allow Health Access

4

Health

Steps
Walking + Running Distance

Workouts

“RUNTRACKER" TO READ DATA
Steps
Walking + Running Distance

Workouts

Figure 3-26. HealthKit permission view

For the RunTracker application, you are going to request a limited set of information related
to a run—specifically the number of steps the user took and the distance the user traveled.
To make the data into something more abstract, you should group it into workouts, rather
than just displaying straight step counts. This also allows you to handle the user stopping to
catch his breath during a workout.

To use the requestAuthorizationToShareTypes() method, you need to specify the data
types that you will read or write and a completion handler for when the permissions view has
dismissed.

HealthKit uses the HKSampleType abstract class to represent “samples” of data, such as

a user’s heart rate at a given time, or the distance the user traveled between two times.
HKSampleType is an abstract class, so in order to use it, you need to specify a type for

the sample, such as a quantity (an amount of data) or a category (for data that is more
qualitative, such as workout type). In Listing 3-7, | have requested permission for step count,
distance traveled, and workouts. | have also implemented a simple completion handler,
which checked whether permission was granted or rejected.



CHAPTER 3: Accessing Health Information Using HealthKit 87

Listing 3-7. Requesting HealthKit Permission When Opening the App (WorkoutTableViewController.swift)

override func viewDidLoad() {
super.viewDidLoad()

tableView.dataSource = self
tableView.delegate = self

// Do any additional setup after loading the view, typically from a nib.
if (HKHealthStore.isHealthDataAvailable()) {
healthStore = HKHealthStore()

let stepType : HKQuantityType? = HKQuantityType.quantityTypeForIdentifier(
HKQuantityTypeIdentifierStepCount)

let distanceType : HKQuantityType? = HKQuantityType.
quantityTypeForIdentifier(HKQuantityTypeIldentifierDistanceWalkingRunning)
let workoutType : HKWorkoutType = HKObjectType.workoutType()

let readTypes : Set = [stepType!, distanceType!, workoutType]
let writeTypes : Set = [stepType!, distanceType!, workoutType]

healthStore?.requestAuthorizationToShareTypes(writeTypes, readTypes: readTypes,
completion: { (success: Bool, error: NSError?) -» Void in
//set

if success {
//success

//get workouts
} else {

//Denied
self.presentErroxMessage("HealthKit permissions denied")

H

} else {
//no health kit data available
}

}

There are a few unique bits of syntax here to point out. You will notice that the
HKQuantityType objects are optional. Apple adds this limitation to handle these types not
existing as a device. You can safely unwrap them using the ! operator here, because you
verified that HealthKit is available on the device. Similarly, you may be wondering why



88 CHAPTER 3: Accessing Health Information Using HealthKit

HKWorkoutType is not an HKQuantityType object; workout type is quantitative, so it is not
represented by a quantity of data, but rather a descriptor (e.g., running workout). Finally, the
requestAuthorizationToShareTypes() method takes Sets as input. Unlike an array, a Set

is not sorted; it is just a group of related values. You initialize a Set exactly as you would an
array, except you need to provide the Set type, so the compiler does not try to infer that you
are creating an array when it sees square brackets.

Retrieving Data from HealthKit

In order to populate the workout table, you need to retrieve workout data from HealthKit.
HealthKit’s primary class for retrieving data is HKQuery, which, as its name implies, performs
a query for a sample type that you specify. Users expect a data table to be up to date, so
for the workout table, you should query HealthKit for new data as soon as the app launches,
and whenever you add a new workout. This is a two-step process in HealthKit: you need

to create a query that fetches a given sample type and you need a query that observes
when there are new results for a given sample type. These are represented by the HKQuery
subclasses, HKSampleQuery and HKObserverQuery.

To begin, start by implementing the query to fetch workouts when the user opens the app.
In Listing 3-8, | perform this step by making a call to a function called getWorkouts() after
verifying that the app has access to HealthKit.

Listing 3-8. Performing a Workout Query When Opening the App (WorkoutTableViewController.swift)

override func viewDidLoad() {
super.viewDidLoad()

// Do any additional setup after loading the view, typically from a nib.
if (HKHealthStore.isHealthDataAvailable()) {
healthStore = HKHealthStore()

let stepType : HKQuantityType? = HKQuantityType.quantityTypeForIdentifier (HKQuan
tityTypeldentifierStepCount)

let distanceType : HKQuantityType? = HKQuantityType.
quantityTypeForIdentifier(HKQuantityTypeIdentifierDistanceWalkingRunning)

let workoutType : HKWorkoutType = HKObjectType.workoutType()

let readTypes : Set = [stepType!, distanceType!, workoutType]
let writeTypes : Set = [stepType!, distanceType!, workoutType]

healthStore?.requestAuthorizationToShareTypes(writeTypes, readTypes: readTypes,
completion: { (success: Bool, error: NSError?) -> Void in
//set



CHAPTER 3: Accessing Health Information Using HealthKit 89

if success {
//success

//get workouts

self.getWorkouts()

} else {
//Denied
self.presentErrorMessage("HealthKit permissions denied")
}
1
} else {

//no health kit data available

}
}

In the getWorkouts() function, you will want to create a HKSampleQuery, perform a command
to run it, and then save the results into an object the table view can use as a data source.
The constructor you will use to create an HKSampleQuery is init(sampleType: predicate:
limit: sortDescriptors: resultsHandler: HKSampleQuery). The constructor requires you
to provide a sample type, a limit on the number of results, and a block of code to perform
when the query has completed executing. Optionally, you can provide a predicate to further
filter the results and a sort descriptor to sort the results.

Start by tackling the parameters you already know. For the data type, you know you want to
fetch workouts.

let workoutType = HKObjectType.workoutType()

For the sort descriptor, users expect to see workouts in the order “most recent first,” so sort
by start date, in descending order.

let sortDescriptor = NSSortDescriptor(key: HKSampleSortIdentifierStartDate, ascending: false)

To make the app load faster, it is a good idea to set a limit on the number of items. For my
implementation of the application, | want to show only the workouts for the last month, with
a maximum of 30 items. The easiest way to build an HKQuery predicate is by using the
public method, predicateForSamplesWithStartDate(NSDate?, endDate: NSDate?, options:
HKQueryOptions), which specifies a start date, end date, and additional options.

The end date should be “now,” which you can retrieve by creating a new NSDate() object
with the default constructor.

let now = NSDate()



90 CHAPTER 3: Accessing Health Information Using HealthKit

For the start date, you need to perform a little extra logic to calculate the date “a month
ago.” Fortunately, the NSCalendar class provides a method that allows you to calculate an
offset date, dateByAddingUnit(NSCalendarUnit, value: Int, toDate: NSDate, options:
NSCalendarOptions). To calculate the date a month ago, specify Month for the unit and an
offset of -1, based on the current date.

let oneMonthAgo = calendar.dateByAddingUnit(NSCalendarUnit.Month, value: -1, toDate: now,
options: NSCalendarOptions(rawValue: 0))

You can now create your workout predicate with the two date objects.

let workoutPredicate = HKQuery.predicateForSamplesWithStartDate(oneMonthAgo, endDate: now,
options: HKQueryOptions.None)

The final parameter is a block that will execute when the query is complete. When the query
completes, you will want to check that the operation was successful, store the results
somewhere the table view can access them, and tell the table to reload with the new results.

First, you need to create an instance variable for the WorkoutTableViewController class to
store the results from the query. In Listing 3-9, | have modified the class definition to include
this array, called workouts. Since the results are HKWorkout objects, initialize the array as an
empty array containing this type.

Listing 3-9. Adding workoutArray to the Table View Controller

class WorkoutTableViewController: UITableViewController {
var healthStore: HKHealthStore?

var workouts = [HKWorkout]()

override func viewDidLoad() {

}
}

To save the results, verify that the array contains HKWorkout objects and then save a copy, as
shown in Listing 3-10.
Listing 3-10. Appending Results to workoutArray

if let workouts = results as? [HKWorkout] {
self.workouts = workouts
}

Finally, to refresh the table view, call the reloadData() method and modify the previous code
to include this change, as shown in Listing 3-11.



CHAPTER 3: Accessing Health Information Using HealthKit 91

Listing 3-11. Updating the User Interface After Adding a Workout

if let workouts = results as? [HKWorkout] {
self.workouts = workouts

dispatch_async(dispatch_get main_queue(), { () -> Void in
self.tableView.reloadData()
1

}

You need to perform this operation in a dispatch_aync() block because iOS only performs
user interface updates from the main thread of execution. Completion handlers execute on
background threads.

With all the parameters in place, you can now create your HKSampleQuery object, as shown in
Listing 3-12.

Listing 3-12. Creating an HKSampleQuery Object to Query for Workouts

let workoutQuery = HKSampleQuery(sampleType: workoutType, predicate: workoutPredicate,
limit: 30, sortDescriptors: [sortDescriptor]) { (query: HKSampleQuery, results: [HKSample]?,
error: NSError? ) -> Void in
print("results are here")
if error == nil {
if let workouts = results as? [HKWorkout] {
self.workouts = workouts

dispatch_async(dispatch_get_main_queue(), { () -> Void in
self.tableView.reloadData()
1))

}
} else {

self.presentErrorMessage("Error fetching workouts")
}

}

Listing 3-13 provides the completed getWorkouts() method. You will notice that after
creating the query, you need to call executeQuery on the healthStore object to execute

it. All HKQueries need to be executed to run; think of them like blueprints to a house. The
blueprint tells you how to build the house, but you need to give the blueprint to a contractor
to actually build the house.

Listing 3-13. Completed getWorkouts() Function (WorkoutTableViewController.swift)
func getWorkouts() {

let workoutType = HKObjectType.workoutType()

let sortDescriptor = NSSortDescriptor(key: HKSampleSortIdentifierStartDate,
ascending: false)

let now = NSDate()



92 CHAPTER 3: Accessing Health Information Using HealthKit

let calendar = NSCalendar.currentCalendar()

let oneMonthAgo = calendar.dateByAddingUnit(NSCalendarUnit.Month, value: -1,
toDate: now, options: NSCalendarOptions(rawValue: 0))

let workoutPredicate = HKQuery.predicateForSamplesWithStartDate(oneMonthAgo,
endDate: now, options: HKQueryOptions.None)

let workoutQuery = HKSampleQuery(sampleType: workoutType, predicate: workoutPredicate,
limit: 30, sortDescriptors: [sortDescriptor]) { (query: HKSampleQuery,
results: [HKSample]?, error: NSError? ) -> Void in
print("results are here")
if error == nil {
if let workouts = results as? [HKWorkout] {
self.workouts = workouts

dispatch_async(dispatch_get main_queue(), { () -> Void in
self.tableView.reloadData()
H
}

} else {
self.presentErrorMessage("Error fetching workouts")
}

}

healthStore?.executeQuery(workoutQuery)

Displaying Results in a Table View

Now that you have valid data to initialize the workouts table, you need to modify the
WorkoutTableViewController to use the workouts array as its data source. Start by specifying
that your class is the table view delegate and data source, as shown in Listing 3-14.

Listing 3-14. Setting a View Controller as a Table View Delegate and Data Source

override func viewDidLoad() {
super.viewDidLoad()

tableView.dataSource = self
tableView.delegate = self

}

Table views in iOS can display information from a two-dimensional array, consisting

of sections and rows. Your data source for this application is a one-dimensional array,
containing a list of workouts, in order. Specify 1 for the number of sections in the table view,
by overriding the numberOfSectionsInTableView() method, as shown in Listing 3-15.



CHAPTER 3: Accessing Health Information Using HealthKit 93

Listing 3-15. Specifying Number of Sections in a Table View

override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
return 1
}

For the number of rows, return the number of items in the array, as shown in Listing 3-16.

Listing 3-16. Specifying Number of Rows in a Table View

override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
return workouts.count
}

To display the results, you need to override the func tableView(tableView: UITableView,
cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell method. This

takes an index path as its input (the section and row number for an item) and returns a
UITableViewCell object that has been initialized with values from the corresponding data
source item. To follow the wireframe for the application, you will want to display the workout
type, date, and duration.

Accessing the workout item is straightforward; you simply provide the row. Making the
values human-readable is a bit more complicated. Workout type is stored as an enum
(enumerated type). To convert this to a string, perform a switch() statement, operating
on the enum value that receives. Unfortunately, you need to create the strings yourself, as
shown in Listing 3-17.

Listing 3-17. Converting Workout Types to Human-Readable Strings

switch(workout.workoutActivityType) {
case HKWorkoutActivityType.Running:
workoutTypeString = "Running"
case HKWorkoutActivityType.Walking:
workoutTypeString = "Walking"
case HKWorkoutActivityType.Elliptical:
workoutTypeString = "Elliptical”
default:
workoutTypeString = "Other workout"
}

To display the date, you need to create a date formatter. The NSDateFormatter class
manages different formats for date and time, based on common patterns or user-defined
ones. It also provides a convenient method to output a string based on the format you
specify. For my implementation, | chose to display a verbose date string and a short time
string, as shown in Listing 3-18.



94 CHAPTER 3: Accessing Health Information Using HealthKit

Listing 3-18. Displaying Time as a Human-Readable String

let dateFormatter = NSDateFormatter()
dateFormatter.dateStyle = NSDateFormatterStyle.MediumStyle
dateFormatter.timeStyle = NSDateFormatterStyle.ShortStyle

cell.textlLabel?.text = "\(workoutTypeString) / \(timeString)"
cell.detailTextlLabel!.text = dateFormatter.stringFromDate(workout.startDate)

Similarly, for the workout duration, to display minutes and seconds, you need to convert
the output, an NSTimeInterval value in seconds, to a human-readable string. To perform
this operation, | created an extension method for the NSTimeInterval class called
toString(inputTime: NSTimeInterval). This method takes an NSTimeInterval as an input
and returns a string. For instance, you can call the method as follows:

let timeString = NSTimeInterval().toString(workout.duration)

Extensions allow you to add methods to existing classes without subclassing a parent class.
To define an extension, simply create an extension block, specifying the name of the class you
want to extend and the name of the method you want to create. To organize your project in a
logic fashion, | recommend creating a separate file to contain all of your extensions. For the
RunTracker project, | created a file named Extensions.swift (see Listing 3-19 for its definition).

Listing 3-19. Using an Extension File to Create Time Strings (Extensions.swift)

import Foundation
extension NSTimeInterval {

func toString(input: NSTimeInterval) -> (String) {
let integerTime = Int(input)
let hours = integerTime / 3600
let mins = (integerTime / 60) % 60
let secs = integerTime % 60

var finalString =
if hours > 0 {

finalString += "\(hours) hrs, "
}

if mins > 0 {
finalString += "\(mins) mins,"
}

if secs » 0 {
finalString += "\(secs) secs"
}

return finalString



CHAPTER 3: Accessing Health Information Using HealthKit 95

With all the data now in a human-readable format, you can create your UITableViewCell.
Listing 3-20 provides the complete implementation of the cel1ForRowAtIndexPath() method.
Note that you need to use the same cell identifier as the one you specified in the storyboard
(in this case, WorkoutCell).

Listing 3-20. Initializing Table View Cells (WorkoutTableViewController.swift)

override func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {
let cell = tableView.dequeueReusableCellWithIdentifier("WorkoutCell",
forIndexPath: indexPath)

let workout = workouts[indexPath.row]

let workoutTypeString : String
let timeString = NSTimeInterval().toString(workout.duration)

switch(workout.workoutActivityType) {
case HKWorkoutActivityType.Running:
workoutTypeString = "Running"
case HKWorkoutActivityType.Walking:
workoutTypeString = "Walking"
case HKWorkoutActivityType.Elliptical:
workoutTypeString = "Elliptical”
default:
workoutTypeString = "Other workout
}

let dateFormatter = NSDateFormatter()
dateFormatter.dateStyle = NSDateFormatterStyle.MediumStyle
dateFormatter.timeStyle = NSDateFormatterStyle.ShortStyle

cell.textlLabel?.text = "\(workoutTypeString) / \(timeString)"
cell.detailTextlLabel!.text = dateFormatter.stringFromDate(workout.startDate)

return cell

Fetching Background Updates

Now that the WorkoutTableViewController class can fetch workout samples on demand,
you should complete the implementation of the user interface by adding a HKObserverQuery
to refresh the table whenever you have saved a new workout. The beauty of HealthKit is that
observer queries apply to HealthKit as a whole, meaning you will get an update regardless of
whether your app posts an update or another app posts the update.

The process for implementing a HKObserverQuery is extremely similar to an HKSampleQuery:
specify the type to query, predicates to filter the query, and a completion handler to execute
when the query completes. The constructor you will use to build a HKObserverQuery is
init(sampleType:predicate:updateHandler:).



96 CHAPTER 3: Accessing Health Information Using HealthKit

You will notice that this constructor does not provide a results array when the query
completes executing. To remedy this, in your completion handler, execute a sample query to
get the latest results. Since you already defined one via the getWorkouts() method, call it in
your completion handler, as shown in Listing 3-21.

Listing 3-21. Performing a HealthKit Background Query (WorkoutTableViewController.swift)

let backgroundQuery = HKObserverQuery(sampleType: workoutType, predicate: nil,
updateHandler: { (query: HKObserverQuery, handler: HKObserverQueryCompletionHandler,
error: NSError? ) -> Void in

if error == nil {
self.getWorkouts()
}

1)

The final question is, “where should | put this query?” You should initialize an observer query
in the class that manages your primary data source. For the RunTracker application, that

is WorkoutTableViewController. Place the observer query and the executeQuery() call in
your viewDidLoad() method, after verifying that the application has HealthKit permission, as
shown in Listing 3-22.

Listing 3-22. Completed viewDidLoad method, Including Observer Query (WorkoutTableViewController.swift)

override func viewDidLoad() {
super.viewDidLoad()

tableView.dataSource = self
tableView.delegate = self

// Do any additional setup after loading the view, typically from a nib.
if (HKHealthStore.isHealthDataAvailable()) {
healthStore = HKHealthStore()

let stepType : HKQuantityType? = HKQuantityType.quantityTypeForIdentifier(HKQuantity
TypeldentifierStepCount)

let distanceType : HKQuantityType? = HKQuantityType.
quantityTypeForIdentifier(HKQuantityTypeIdentifierDistancelWalkingRunning)

let workoutType : HKWorkoutType = HKObjectType.workoutType()

let readTypes : Set = [stepType!, distanceType!, workoutType]
let writeTypes : Set = [stepType!, distanceType!, workoutType]

healthStore?.requestAuthorizationToShareTypes(writeTypes, readTypes: readTypes,
completion: { (success: Bool, error: NSError?) -> Void in
//set



CHAPTER 3: Accessing Health Information Using HealthKit 97

if success {
//success

//get workouts
let backgroundQuery = HKObserverQuery(sampleType: workoutType,
predicate: nil, updateHandler: { (query: HKObserverQuery,
handler: HKObserverQueryCompletionHandler, error: NSError? ) -> Void in
if error == nil {
self.getWorkouts()
}
1

self.healthStore?.executeQuery(backgroundQuery)

self.getWorkouts()

} else {
//Denied
self.presentErrorMessage("HealthKit permissions denied")
}
1
} else {

//no health kit data available
}
}

You will notice two calls to getWorkout() in Listing 3-22. Both are necessary, as one
executes when the view is loaded from memory and the other executes whenever the
observer query has detected that you have saved a new workout to HealthKit.

Summary

In this chapter, you learned how to use HealthKit to access health information, display a
user’s past workouts in the RunTracker app, and lay the foundation to create new ones.
During this process, you learned about the special steps necessary to set up HealthKit
compatibility in your application, how HealthKit represents data, and how HealthKit uses
queries to access data. In the next chapter, we will complete the application by accessing
step count form the pedometer using Core Motion, converting it to workout and quantity
units that HealthKit can digest, and saving it to HealthKit.



Chapter

Using Core Motion to Save
Motion Data

Ahmed Bakir
Introduction

In the last chapter, you learned how to set up an application for HealthKit, Apple’s shared
repository for health data, and query for specific health data types. In this chapter, you will
learn how to use Core Motion to access live motion data from a user’s device, and how to
save it back to HealthKit, where it will be accessible to all applications.

In this chapter, you continue to expand the RunTracker app that you started in Chapter 3.
In this chapter, we cover the following concepts:

How to access hardware using Core Motion

How to save information collected over time using Core Motion

How to save information to HealthKit

How to receive real-time activity updates from Core Motion and HealthKit

As with the other projects in this book, you can find the complete source code for the
RunTracker project in the Ch4 folder of the Source Code bundle available on this book’s web
page at Apress.com/9781484211953.


http://dx.doi.org/10.1007/978-1-4842-1194-6_3

100 CHAPTER 4: Using Core Motion to Save Motion Data

Using Core Motion to Access Motion Hardware

In Chapter 3, we set up the workout table view and HealthKit permissions for RunTracker;
now it is time to move on to collecting data that you can save back to HealthKit. Saving
data to HealthKit works much like retrieving it: you specify a data type, a quantity of data
collected, and a time range. For the RunTracker application, you will use the Core Motion
framework to access the pedometer on the user’s device. From the pedometer, you can
detect the number of steps the user has traveled and even the type of activity the user is
engaged in (walking, running, bicycling). You will take advantage of both of these in creating
the interface for the RunTracker application.

Core Motion has been iOS’s motion-sensing framework since iOS 4. Developers have been
using it for years to access the built-in accelerator and gyroscope (enabling thousands of
racing games ever since). However, until the M-series of motion coprocessors, there was
never an easy way to access step data. You could use the accelerator to detect when the
device experienced a “bump” in movement, but you had to develop your own code to define
a “step.” Similarly, you could use a GPS to determine how far a user moved, but doing so
would drain the battery quickly.

Although iOS 7 added an interface to the M-series motion coprocessor to the Core Motion
framework, iOS 8 fully unlocked it, allowing you to retrieve data directly as steps and activity
types. Core Motion takes care of all the work to define what a step is, what it corresponds
to in terms of distance, and what the user was doing when the step was registered (for
example, running or walking).

Swift streamlines the process of including common frameworks into your project, so you
do not need to add Core Motion manually to our project to begin using it. However, you
will need to include it in the classes that need to access its application programming
interfaces (APIs). For the RunTracker application, the CreateWorkoutViewController class
is responsible for pulling fitness data from Core Motion and displaying statistics during

a workout. Begin by modifying the class definition to include the framework as shown in
Listing 4-1.

Listing 4-1. Adding Core Motion to the CreateWorkoutViewController Class

import UIKit
import CoreMotion

class CreateWorkoutViewController: UIViewController {

}.

Requesting User Permission for Motion Activity

Although not explicitly defined as a device capability in your project settings, you implement
Core Motion using the same design pattern. In order to use Core Motion, you need to

Verify that Core Motion is available on a user’s device

Ask the user for permission to access Core Motion


http://dx.doi.org/10.1007/978-1-4842-1194-6_3

CHAPTER 4: Using Core Motion to Save Motion Data 101

B Verify that the desired hardware is available on a user’s device
B Ask the user for permission to access the hardware

The Core Motion class that manages motion events and the motion activity permission is
(MMotionActivityManager. Strictly speaking, a motion activity is defined as an event that
corresponds to the type of movement the user is currently engaged in, whether that is
walking, running, or even driving. You query for motion activity status by calling the public
method isActivityAvailable(). This method returns a bool value, indicating whether the
user has given your app permission to access motion activity.

The first time you ask the user for Core Motion permission, he or she will see an alert view
managed by iOS, as shown in Figure 4-1. Privacy permissions are keyed by application
identifier, meaning subsequent launches (or reinstalls) of your application will not prompt the
user to select the permission level again. (Users can change their permission level at any
time by selecting the Privacy option in the iOS Settings application.)

"RunTracker” Would Like to
Access Your Motion & Fitness

Activity

Don't Allow

Figure 4-1. Core Motion permission alert



102 CHAPTER 4: Using Core Motion to Save Motion Data

As with HealthKit, you need to make sure the user’s device has the hardware you want to
access. Additionally, you should check that the device is capable of producing the data you
want to log. The CMPedometer class provides access to the pedometer on a user’s device. To
check if step data is available, call the isStepCountingAvailable() public method.

In the workout screen, you had to prompt the user for HealthKit permission as soon as

the screen loaded, in order to load the table with valid data. In the create screen, you

should initiate the request for Core Motion permission when the user attempts to start a
workout. This is initiated by pressing the Start Workout button, which calls toggleWorkout().
Depending on whether or not a workout is in progress, the method will call startWorkout()
to begin accessing the pedometer or stopWorkout() to save progress. The flag for
determining whether a workout is in progress is stored as a Boolean instance variable, called
workoutActive. Listing 4-2 describes the togglehWorkout() method for the create workout
view controller (CreateWorkoutViewController.swift) and adds the workoutActive flag as
part of the class definition.

Listing 4-2. Button Handler for Starting or Stopping a Workout (CreateWorkoutViewController.swift)

import UIKit
import CoreMotion

class CreateWorkoutViewController: UIViewController {
var workoutActive = false

@II.3A<.:tion func toggleWorkout(sender: UIButton) {
if (workoutActive) {
self.stopWorkout()
} else {

self.startWorkout()

}

workoutActive = !workoutActive

}

In Listing 4-2 | chose to wrap the logic of starting a workout in the startWorkout() method.
This is where you will place your permission handling code. When you have established
that your application has permission to use Core Motion, change the color and state of the
Start Workout button to indicate that you have started the workout. Listing 4-3 provides the
startWorkout() method.



CHAPTER 4: Using Core Motion to Save Motion Data 103

Listing 4-3. Starting a Workout (CreateWorkoutViewController.swift)

func startWorkout() {
self.timer = NSTimer.scheduledTimerWithTimeInterval(1.0, target: self, selector:
"updateTime", userInfo: nil, repeats: true)

if initialStartDate == nil {
initialStartDate = NSDate()
}

startDate = NSDate()

//start counting steps
toggleButton.backgroundColor = UIColor.redColox()
toggleButton.setTitle("Pause workout", forState: UIControlState.Normal)

if (CMMotionActivityManager.isActivityAvailable() &% CMPedometer.
isStepCountingAvailable()) {
//success

Querying for Step Count

By this point, it should be no surprise that HealthKit and Core Motion share many
design similarities. Just as you had to instantiate the HKHealthStore object to

retrieve HealthKit data, you need to instantiate a CMPedometer object to access the
pedometer on a user’s device. As shown in Listing 4-4, add a CMPedometer object to the
CreatelWorkoutViewController class and initialize it when you have established that the
device has permission to use Core Motion.

Listing 4-4. Initialize CMPedometer
func startWorkout() {

//start counting steps
toggleButton.backgroundColor = UIColor.redColor()
toggleButton.setTitle("Pause workout", forState: UIControlState.Normal)

if (CMMotionActivityManager.isActivityAvailable() 8& CMPedometer.
isStepCountingAvailable()) {

pedometer = CMPedometer()
}

}

Core Motion also implements concepts of queries to retrieve a set of data between two
times and an observer query to retrieve updates to a data set. The CMPedometer method
for retrieving steps between two times is queryPedometerDataFromDate(NSDate, toDate:
NSDate, withHandler: CMPedometerHandler). This method takes two NSDate objects

as parameters and executes a block when it has completed executing, which returns a
CMPedometerData object and error. The CMPedometer object contains values including number



104 CHAPTER 4: Using Core Motion to Save Motion Data

of steps and distance traveled, calculated based on hardware events and metrics that iOS
has observed about a user, including his stride length. As with earlier HealthKit queries, you
should use the time the user started his workout as the start time and the time he ended his
workout as the “end time.” This also specifies that you will need to perform the pedometer
query in the stopWorkout () method. First, add an NSDate object to your class indicating the
start time, and initialize it in the startWorkout() method, as shown in Listing 4-5.

Listing 4-5. Tracking Start Time (CreateWorkoutViewController.swift)

class CreateWorkoutViewController: UIViewController {

var startDate : NSDate?

func startWorkout() {
startDate = NSDate()

}

Next, you need to implement your query logic in the stopWorkout() method. In this method,
change the state of the Workout button back to start and attempt to query for step data
after establishing that the pedometer is active (the object should be initialized). You will save
the number of steps to HealthKit, but for now, display it in the progress label. Listing 4-6
provides the implementation for the stopWorkout() function.

Listing 4-6. Querying for Total Steps When Ending a Workout (CreateWorkoutViewController.swift)

func stopWorkout() {
//stop the workout

self.timer?.invalidate()
//pause timer
toggleButton.backgroundColor = UIColor.blueColox()
toggleButton.setTitle("Continue workout", forState: UIControlState.Normal)
//save steps
if (pedometer != nil &3 startDate != nil) {

let now = NSDate()

pedometer?.stopPedometerUpdates()

} else {
self.presentErrorMessage("Could not access pedometer")

1)



CHAPTER 4: Using Core Motion to Save Motion Data 105

//increase duration
duration += now.timeIntervalSinceDate(startDate!)

}

To further improve the user experience, you should use an NSTimer to update the time label
every second after the workout has started; this gives users the “clock” functionality that
they expect from other workout devices, such as a watch. In Listing 4-7, | have added an
NSTimer to the CreateWorkoutViewController class and initialized it in the startWorkout()
method. | specify that the timer should repeat every second and call the updateTime()
method when it fires.

Listing 4-7. Adding an NSTimer to the CreateWorkoutViewController Class

class CreateWorkoutViewController: UIViewController {
var timer: NSTimer?

func startWorkout() {
self.timer = NSTimer.scheduledTimerWithTimeInterval(1.0, target: self,
selector: "updateTime", userInfo: nil, repeats: true)
//start counting steps
toggleButton.backgroundColor = UIColor.redColox()
toggleButton.setTitle("Pause workout", forState: UIControlState.Normal)

if (CMMotionActivityManager.isActivityAvailable() 8& CMPedometer.
isStepCountingAvailable()) {
pedometer = CMPedometer()

}
}

The updateTime() method creates a string based on the number of seconds that have
passed since the timer started and updates the timelLabel property. Listing 4-8 provides the
updateTime() method. Once again, you can use the toString() method created earlier to
make a human-readable string based on a NSTimeInterval value.

Listing 4-8. Enabling Updates to the Workout Time Label (CreateWorkoutViewController.swift)

func updateTime() {
let now = NSDate()

if (startDate != nil) {
let totalTime : NSTimeInterval = duration + now.timeIntervalSinceDate(startDate!)

dispatch_async(dispatch_get main_queue(), { () -> Void in
self.timelabel!.text = NSTimeInterval().toString(totalTime)
b



106 CHAPTER 4: Using Core Motion to Save Motion Data

Finally, to stop the timer, call the invalidate() method on the timer instance variable, as
shown in Listing 4-9. One of the design decisions that drives a repeating NSTimer is that in
order to stop it, you must maintain a pointer to the object and explicitly call the invalidate()
method to stop it from firing again. Maintaining pointers is tiresome, but it allows you to
control multiple repeating timers.

Listing 4-9. Stopping the Workout Timer (CreateWorkoutViewController.swif)

func stopWorkout() {
//stop the workout

self.timer?.invalidate()

//pause timer

toggleButton.backgroundColor = UIColor.blueColox()
toggleButton.setTitle("Continue workout", forState: UIControlState.Normal)

//save steps
if (pedometer != nil && startDate != nil) {

}

Detecting Live Updates to Step Count

The startPedometerUpdatesFromDate(NSDate, withHandler: CMPedometerHandler) method
in the CMPedometer class allows you to query for real-time updates to the pedometer. This is
not ideal for tracking the grand total of steps collected during a workout, as iOS controls the
update frequency and it is not guaranteed to be timely. However, it is useful for the create
workout screen, as you can use it to update the user interface.

Using startPedometerUpdatesFromDate() is much simpler than querying for a set of
pedometer data; you simply need to provide a handler method and start date. Since the
updates will be continuous while a workout is active, it makes sense to start the query when
the user has started the workout. The wireframe for the RunTracker application specifies that
a user can pause and resume a workout before saving it, so add another NSDate object to
the class to specify the initial start time of the workout, as shown in Listing 4-10.

Listing 4-10. Modified CreateWorkoutViewController Class, Including an Initial Start Date Property

class CreateWorkoutViewController: UIViewController {

@IBOutlet weak var timelabel: UILabel!

var startDate : NSDate?
var initialStartDate : NSDate?



CHAPTER 4: Using Core Motion to Save Motion Data 107

var timer: NSTimer?

@IBAction func toggleWorkout(sender: UIButton) {

}
}

Having established this second NSDate object, you can now query for sample data using the
initial start time at the end of the workout, as shown in Listing 4-11. Remember to update
the total workout time and to check for any errors while performing your query.

Listing 4-11. Querying for HealthKit data When Ending a Workout (CreateWorkoutViewController.swiff)

func stopWorkout() {
//stop the workout

self.timer?.invalidate()
//pause timer
toggleButton.backgroundColor = UIColor.blueColox()
toggleButton.setTitle("Continue workout", forState: UIControlState.Normal)
//save steps
if (pedometer != nil &8 startDate != nil) {
let now = NSDate()
pedometer?.stopPedometerUpdates()
pedometer?.queryPedometerDataFromDate(startDate!, toDate: now, withHandler: { (data:
CMPedometerData?, error: NSError?) -> Void in

if (error == nil) {

if let activityType = HKQuantityType.quantityTypeForIdentifier(
HKQuantityTypeIdentifierStepCount) {

let numberOfSteps = data?.numberOfSteps.doubleValue
self.progresslLabel?.steps = "\(numberOfSteps)"

}

} else {
self.presentErrorMessage("Could not access pedometer")
}

1)

//increase duration
duration += now.timeIntervalSinceDate(startDate!)



108 CHAPTER 4: Using Core Motion to Save Motion Data

Finally, you need to do some housekeeping when the workout has stopped. To prevent the
pedometer from firing updates while the workout is paused or after you have exited the
create screen, call the stopPedometerUpdates() method. Listing 4-12 describes the modified
stopWorkout () method, which includes this call.

Listing 4-12. Stopping Pedometer Updates When Ending a Workout (CreateWorkoutViewController.swift)

func stopWorkout() {
//stop the workout

self.timer?.invalidate()

//save steps
if (pedometer != nil &8 startDate != nil) {
let now = NSDate()

pedometer?.stopPedometerUpdates()

//increase duration
duration += now.timeIntervalSinceDate(startDate!)

Detecting Activity Type

Another advantage of Core Motion is that you can detect the type of activity the user is
engaged in, such as running, walking, or bicycling. This feature will be extremely useful in
the RunTracker application, as you need to tag workouts with a type. The class for accessing
activity status in Core Motion is CMActivityManager. To receive activity updates, call the st
artActivityUpdatesToQueue(NSOperationQueue, withHandler: CMMotionActivityHandler)
method, specifying an operation queue (the main queue) and a completion handler that
should execute when an update is received. In Listing 4-13, | have added an activity
manager to the startWorkout () method.

Listing 4-13. Beginning Polling for Motion Activities When Starting a Workout (CreateWorkoutViewController.swift)

func startWorkout() {
self.timer = NSTimer.scheduledTimerWithTimeInterval(1.0, target: self,
selector: "updateTime", userInfo: nil, repeats: true)

if initialStartDate == nil {
initialStartDate = NSDate()
}

startDate = NSDate()
//start counting steps

toggleButton.backgroundColor = UIColor.redColox()
toggleButton.setTitle("Pause workout", forState: UIControlState.Normal)



CHAPTER 4: Using Core Motion to Save Motion Data 109

if (CMMotionActivityManager.isActivityAvailable() 8& CMPedometer.
isStepCountingAvailable()) {
pedometer = CMPedometer ()

//show total steps

let activityManager = CMMotionActivityManager()

activityManager.startActivityUpdatesToQueue(NSOperationQueue.mainQueue(),
withHandler: { (activity: CMMotionActivity?) -»> Void in

if activity?.stationary == false {
self.lastActivity = activity

}

var activityString = "Other activity type"

if (activity?.stationary == true) {

activityString = "Stationary"
}

if (activity?.walking == true) {
activityString = "Walking"
}

if (activity?.running == true) {
activityString = "Running”
}

if (activity?.cycling == true) {
activityString = "Cycling"
}

dispatch_async(dispatch_get_main_queue(), { () -» Void in
self.typeLabel.text = activityString
h

h

} else {
presentErrorMessage("Pedometer not available")
}

}

Core Motion does not reveal activity types as human-readable strings, just like HealthKit.
As a further complication, Core Motion does not provide an enum for storing the activity type.
To check activity type, you must iterate through properties representing common values.



110 CHAPTER 4: Using Core Motion to Save Motion Data

To create a workout in HealthKit, you must specify a workout type. Earlier, | saved the last
known workout type to an instance variable named lastActivity, excluding stationary
activities (users expect to see active workout types like running or walking). In Listing 4-14,
I have modified the class definition once again to include the lastActivity property.

Listing 4-14. Adding a Property to Save the User’s Last Motion Activity (CreateWorkoutViewController.swift)

class CreateWorkoutViewController: UIViewController {

var timer: NSTimer?
var lastActivity : CMMotionActivity?

var pedometer : CMPedometer?

@IBAction func toggleWorkout(sender: UIButton) {

}

Saving Data to HealthKit

To complete the round-trip process for the fitness data you collected, you need to save it
back into HealthKit. In the RunTracker application, you will save the steps you collected to
HealthKit and you will compile these segments together as a single workout in HealthKit. To
begin, you need to give the create workout screen access to HealthKit. As with the workout
table, add an HKHealthStore property to the CreatelWorkoutViewController class and include
the HealthKit framework, as shown in Listing 4-15.

Listing 4-15. Adding an HKHealthStore to the CreateWorkoutViewController Class (CreateWorkoutViewController.swift)
import UIKit
import CoreMotion
import HealthKit
class CreateWorkoutViewController: UIViewController {
var healthStore: HKHealthStore?

var startDate : NSDate?
var initialStartDate : NSDate?

@IBAction func toggleWorkout(sender: UIButton) {

}



CHAPTER 4: Using Core Motion to Save Motion Data 111

While it would be easy to create another HKHealthStore, it is wiser to share the one you
created for the workout table. You can take advantage of segues to share the health store
from the workout table with the create workout view. In the WorkoutTableViewController
class, implement the prepareForSegue() method to detect when a segue has fired. As
shown in Listing 4-16, after determining that it is a “CreateWorkoutSegue,” extract the
destination view controller of the segue. You can set the healthManager property on this view
controller to the health store from the workout table.

Listing 4-16. Sharing a Health Store Between Classes (WorkoutTableViewController.swift)

override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
if (segue.identifier == "CreateWorkoutSegue") {
if let navVC = segue.destinationViewController as? UINavigationController {

if let createVC = navVC.viewControllers[0] as? CreateWorkoutViewController {
createVC.healthStore = self.healthStore

}

}

Now that you have initialized your healthStore property, you can perform save operations to
save data. Remember that in the stopWorkout () method, after executing the step query, you
displayed it in a label. To make the RunTracker application fully functional, you need to save
it to HealthKit. The method for saving a piece of data in a health store is:

saveObject(HKObject, withCompletion: { (Bool, NSError?) -> Void in }). This method
takes an HKObject as input and executes a completion handler when it has finished
attempting to save the object.

For the input parameter, you need to convert step count to an HKQuantitySample. As shown
in Listing 4-17, follow the same process you used earlier to look up the unit and type object
for steps. Once you have these two parameters, you can create a new HKQuantitySample.
For the quantity value, convert your step count from the pedometer to a double value.

Listing 4-17. Creating an HKQuantitySample Object When Ending a Workout (CreateWorkoutViewController.swiff)

func stopWorkout() {
//stop the workout

self.timer?.invalidate()
//pause timer

toggleButton.backgroundColor = UIColor.blueColox()
toggleButton.setTitle("Continue workout", forState: UIControlState.Normal)



112

}

CHAPTER 4: Using Core Motion to Save Motion Data

//save steps
if (pedometer != nil &3 startDate != nil) {
let now = NSDate()
pedometer?.stopPedometerUpdates()
pedometer?.queryPedometerDataFromDate(startDate!, toDate: now,
withHandler: { (data: CMPedometerData?, error: NSError?) -> Void in
if (error == nil) {

if let activityType = HKQuantityType.quantityTypeForIdentifier(HKQuantity
TypeIdentifierStepCount) {

let numberOfSteps = data?.numberOfSteps.doubleValue
let countUnit = HKUnit(fromString: "count")
let stepQuantity = HKQuantity(unit: countUnit, doubleValue: numberOfSteps!)

let activitySample = HKQuantitySample(type: activityType,
quantity: stepQuantity, startDate: self.startDate!, endDate: now)

//increase duration
duration += now.timeIntervalSinceDate(startDate!)

For the save operation, you need to define a completion handler. Since the RunTracker
application aggregates segments into a single workout, append the newly created
HKQuantitySample into an array as shown in Listing 4-18.

Listing 4-18. Saving HKQuantitySample Objects When Ending a Workout (CreateWorkoutViewController.swift)

func stopWorkout() {

//stop the workout
self.timer?.invalidate()
//pause timer
toggleButton.backgroundColor = UIColor.blueColox()
toggleButton.setTitle("Continue workout", forState: UIControlState.Normal)
//save steps
if (pedometer != nil &3 startDate != nil) {
let now = NSDate()

pedometer?.stopPedometerUpdates()



CHAPTER 4: Using Core Motion to Save Motion Data 113

pedometer?.queryPedometerDataFromDate(startDate!, toDate: now, withHandler: {
(data: CMPedometerData?, error: NSError?) -> Void in
if (error == nil) {

if let activityType = HKQuantityType.quantityTypeForIdentifier(HKQuantity
TypeIdentifierStepCount) {

let numberOfSteps = data?.numberOfSteps.doubleValue

let countUnit = HKUnit(fromString: "count")
let stepQuantity = HKQuantity(unit: countUnit, doubleValue: numberOfSteps!)

let activitySample = HKQuantitySample(type: activityType, quantity:
stepQuantity, startDate: self.startDate!, endDate: now)

self.healthStore?.saveObject(activitySample, withCompletion: {
(completed : Bool, error : NSError?) -> Void in
if (error == nil) {

//add to sample array
self.sampleArray.append(activitySample)

} else {
self.presentErrorMessage("Error saving steps")
}

1)
}

} else {
self.presentErrorMessage("Could not access pedometer")
}
1

//increase duration
duration += now.timeIntervalSinceDate(startDate!)

}
In Listing 4-19, | have modified the class definition to include the sample array.

Listing 4-19. Adding an HKSample Sample Array to the CreateWorkoutViewController Class

class CreateWorkoutViewController: UIViewController {

var sampleArray = [HKSample]()

@IBAction func toggleWorkout(sender: UIButton) {

}



114 CHAPTER 4: Using Core Motion to Save Motion Data

Creating a Workout Object in HealthKitAs mentioned in the design for the RunTracker
application, the user presses the Done button to complete his workout and saves it to
HealthKit. In the handler for the Done button, done(), you should create a new HKWorkout
object and save it to HealthKit, similar to the way you saved HKQuantitySamples every time
the user paused his workout.

To create a new workout, use the constructor HKWorkout (activityType:
HKWorkoutActivityType, startDate: NSDate, endDate: NSDate). For the activity type,
convert the last valid CMMotionActivity, stored in the lastActivity property to an
HKWorkoutType. As shown in Listing 4-20, | have added this logic to the done() method by
specifying an HKWorkoutType based on the activity’s type property.

Listing 4-20. Converting Activity Type to Workout Type
@IBAction func done(sender: UIBarButtonItem) {

//create new workout object
let now = NSDate()

if workoutActive {
self.stopWorkout()
}

var workoutType = HKWorkoutActivityType.Walking

if lastActivity != nil {
if (lastActivity?.walking == true) {
workoutType = HKWorkoutActivityType.Walking
}

if (lastActivity?.running == true) {
workoutType = HKWorkoutActivityType.Running
}

if (lastActivity?.cycling == true) {
workoutType = HKWorkoutActivityType.Cycling
}

}

The rest of the logic for saving a workout is relatively straightforward. As shown in

Listing 4-21, you can now create an HKWorkout and save it using the health store’s
saveObject() method. For the start time, use the initial start time when the user started the
first segment of his workout.

Listing 4-21. Saving HKWorkout
@IBAction func done(sender: UIBarButtonItem) {

//create new workout object
let now = NSDate()



CHAPTER 4: Using Core Motion to Save Motion Data 115

if workoutActive {
self.stopWorkout()
}

var workoutType = HKWorkoutActivityType.Walking

if initialStartDate != nil {

let workout = HKWorkout(activityType: workoutType, startDate: initialStartDate!,
endDate: now)

self.healthStore?.saveObject(workout, withCompletion: { (completed: Bool,

error: NSError?) -> Void in
//workout

}
To associate a set of samples to a workout, use the method:

addSamples(_:toWorkout:completion:)

which requires a set of samples, a workout, and a completion handler. As shown in
Listing 4-22, use the sampleArray and newly created workout as your input, and exit the
view controller when the operation has completed successfully.

Listing 4-22. Associating Samples to a Workout

@IBAction func done(sender: UIBarButtonItem) {

if initialStartDate != nil {

let workout = HKWorkout(activityType: workoutType, startDate: initialStartDate!,
endDate: now)

self.healthStore?.saveObject(workout, withCompletion: { (completed: Bool,
error: NSError?) -> Void in
//workout

if error == nil {

self.healthStore?.addSamples(self.sampleArray, tolWorkout: workout,
completion: { (completed : Bool, error: NSError?) -> Void in



116 CHAPTER 4: Using Core Motion to Save Motion Data

//
if error == nil {
print("steps saved successfully!")

self.dismissViewControllerAnimated(true, completion: nil)

} else {

self.presentErrorMessage("Error adding steps")

}
1)

} else {

self.presentErrorMessage("Error saving workout")

}
1)

//add samples

//save

Having implemented all of the changes in this chapter, the
complete and look like the screenshot in Figure 4-2.

RunTracker app should now be

1.1.1 Add Button - Execules code to present New
Workout screen.

1.1.2 Table View - Scrollable list of cells containing
past workout data.

1.1.3 Cancel Button - Allows users to cancel workout
without saving

1.1.4 Done Button - Stops and saves current
workout.

1.1.5 Type Label - Shows workout type

1.1.6 Progress Label - Shows workout progress (in
steps)

1.1.7 Time Label - Shows workout time (HH:MM:SS)
1.1.8 Toggle Button - Pauses or continues current
workout

Workout List MNew Workout

Figure 4-2. Completed RunTracker application




CHAPTER 4: Using Core Motion to Save Motion Data 117

Summary

In this chapter, you learned how to use HealthKit and Core Motion to track a user’s fitness
activity by building the RunTracker activity, which displayed a user’s past workouts, and
allowed the user to create new ones. Through the process of building RunTracker, you
learned about the similarities between the two frameworks, including how they require user
permission and hardware checks before you can start using them. You also learned about
queries, which allow you to poll for data on demand and receive updates when a data
source has changed. Finally, you converted data from the pedometer into a data type that
HealthKit could use and saved it back to HealthKit.



Chapter

Integrating Third-Party
Fitness Trackers and Data
Using the Fitbit API

Gheorghe Chesler

One would be remiss to discuss health sensors without mentioning the most popular
connected motion tracker on the market, the Fitbit. Through its web-based API (application
programming interface), Fitbit allows developers to access activity logged from its hardware,
as well as related health information from Fitbit’s ecosystem, including meals and weight.
This chapter will teach developers how to connect to the API from within their apps, as well
as how to retrieve information from it and log new activities.

Introduction to the Fithit API

The Fitbit devices are health metrics trackers that record detailed minute-by-minute steps,
distance, calorie burn data, and sleep records. The devices are popular because they are
very light and cover the basic needs for health tracking.

The step data, calorie counts, sleep records, and heart rate (if measured by your tracker) will
be stored for 30 days. This data will all upload to your account as soon as you are able to
sync and will then be reflected on your dashboard.

You can sync your tracker through any computer, as long as it has the Fitbit software
installed and a base station (for Ultra tracker) or a wireless sync dongle (for all other trackers)
plugged into the computer. There is, of course, a free iPhone app available that makes it
possible to sync the data when you are on the road. You can only have one tracker paired to
one Fitbit.com account.

119



120 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fithit API

The communication between the Fitbit tracker and the sync device is using a proprietary
protocol that syncs the data with your online Fitbit account. Fitbit provides an API that
allows you to access your stored health data from the app you develop in Swift.

The Fitbit APl is a RESTful API that provides access to Fitbit data such as tracker collections,
profile, and statistical data. This APl is under continuous development and new features will
be made available on an ongoing basis. The Fitbit APl uses OAuth for authentication. The
documentation for the Fitbit API can be found at https://dev.fitbit.com/docs.

The Fitbit API allows you to interact with your account data found on the Fitbit server. It

is important to realize that you will not be able to interact with and get the data from your
device directly. If you do not have an Internet connection, the Fitbit device will store data in
the Fitbit application, but that data will not reach the Fitbit server until you get back online,
so you will only be able to get the latest version of your data when you have a stable Internet
connection.

Recently Fitbit consolidated the API responses from XML to JSON (JavaScript Object
Notation). In this chapter we will use requests that return data in JSON format. The API does
not currently enforce SSL (Secure Sockets Layer); it is, however, recommended to use SSL
for all communications, or at least for the OAuth handshake.

The RESTful API

A RESTful API is built following a REpresentational State Transfer architecture that defines
best-practice rules for building scalable web services. Avoiding the complexity of SOAP
(Simple Object Access Protocol) and WSDL (Web Services Description Language)-based
APls, a RESTful API usually relies on the HTTP verbs GET, PUT, POST, and DELETE to
retrieve and send data to the remote servers. This data can be in a variety of formats, where
JSON is the most popular.

GET is used to read data from a service, either as a set or as a unique record. Take, for
example, the following request:

GET https://api.genericapi.com/v1/user

This will retrieve the user record with the id=123. It is up to the API to decide in what format
to deliver the data, but in our case the data will be returned as JSON, something like:

{ "id" : "123", "login": "jsmith", "firstName" : "Jim", "lastName" : "Smith"}

Usually the GET request can be followed by a URL (uniform resource locator)-encoded string
of parameters, as key-value pairs, as in the following example:

GET https://api.genericapi.com/v1/item?color=greendsize=large

We see this all the time in URLs, so there is nothing unusual about it. Another method is to
encode the params as part of the URL:

GET https://api.genericapi.com/v1/item/color/green/size/large


https://dev.fitbit.com/docs
https://api.genericapi.com/v1/user
https://api.genericapi.com/v1/item?color=green&size=large
https://api.genericapi.com/v1/item/color/green/size/large

CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API 121

The documentation of the API you implement should give full detail on how to compose a
GET request such as:

GET https://api.genericapi.com/v1/user

PUT is used to update a known record. Per the specification, PUT replaces the known record
data with a set of different values. Depending on who is implementing the API, PUT can be
also used to update just a subset of values instead of changing the entire data record. If

it deviates from the specification, we usually find a clear definition of what PUT does in the
documentation of the API.

When an id is defined in the request, PUT will replace the addressed entity, and if it does not
exist, it will create it. PUT must contain a payload, which is the data record it updates. Look,
for example, at the following requests:

PUT https://api.genericapi.com/v1/user/123
{ "login": "jsmith", "firstName" : "Jane", "lastName" : "Smith"}

PUT https://api.genericapi.com/v1/user
{ "id" : "123", "login": "jsmith", "firstName" : "Jane", "lastName" : "Smith"}

The two requests should have the same effect, updating the user with the id=123.
Depending on the implementation, the API will return either the updated record or just a 200
OK response.

The PUT operation is known as idempotent, meaning that no matter how many times you
repeat it given the same data, the result will be the same.

POST is used to create a new record. It is uncommon for the POST action to take an element id,
as the API usually assigns the id. It is common for the POST action to return the inserted record,
populated with the assigned record id. Take, for example, the following request/response:

POST https://api.genericapi.com/vi/user
{ "login": "jdoe", "firstName" : "John", "lastName" : "Doe"}

Response(200 OK):
{ "id" : "133", "login": "jdoe", "firstName" : "John", "lastName" : "Doe"}

DELETE is used to delete records, given their record id. It usually returns no response other
than the regular 200 OK responses. There is not much to it other than the URL containing
the id to be deleted.

DELETE https://api.genericapi.com/v1/user/123

The Return Format

Usually the return format for a request is specified in the header of the request, with the
key-value pair.

Accept: application/json


https://api.genericapi.com/v1/user
https://api.genericapi.com/v1/user/123
https://api.genericapi.com/v1/user
https://api.genericapi.com/v1/user
https://api.genericapi.com/v1/user/123

122 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fithit API

Some APIs choose instead to use a file extension appended to the URL of the request, to
recognize the desired format for the response. In this case there is no requirement for the
return format specified in the header. This is the case for the Fitbit API, as we will see further
on. Taking examples from above, following is how it would look:

GET https://api.genericapi.com/vi/item/color/green/size/large.json
POST https://api.genericapi.com/v1/user.json

A RESTful API takes the REST specification as a guideline, and you will rarely see this
implemented strictly. It is not uncommon to see POST being used instead of PUT, or the other
way around, or even using a POST to delete an item.

Fitbit RESTful APl Implementation Details

Taking the general ideas defined in the previous section, here are some things that are
particular to the Fitbit API:

The patterns used in the service URL
The format of POST data

The URL for a service is segmented in a service and object/subservice, with some magic
added to it. Normally, when we GET from a service, the preferred order is the API version,
followed by the service name, followed by the id of the entity, then a GET string, URL-encoded,
and separated from the base URL by a question mark. In the case of PUT/POST operations,
the agreed-upon standard is to send the data in the body of the message.

Fitbit composes the service URL a bit differently, making everything a part of the URL, and
avoiding dealing with more complexity and eventually performance impact on its end. Take,
for example, the following calls:

GET /1/user/228TQ4/profile.json
GET /1/user/-/profile.json

The user id is 228TQ4 but is followed by the name of the object/subservice being requested,
and the extension shows the preferred response format, so there is no need to set the HTTP
header field Accept. To make matters more interesting, if the user id is the id of the current
user, we need to specify a dash (this is the magic part). If we consider the fact that the id is
the user id, not the profile id, we see here the assumption being made that a user can have
only one profile, and there is no need to expose the profile id.

Here is an example where the GET parameters are encoded in the URL path. Following are
the resource URLs for getting body weight data:

GET /<api-version>/user/-/body/log/weight/date/<date>.<response-format>
GET /<api-version>/user/-/body/log/weight/date/<base-date>/<period>.<response-format>

GET /<api-version>/user/-/body/log/weight/date/<base-date>/<end-date>.<response-format>


https://api.genericapi.com/v1/item/color/green/size/large.json
https://api.genericapi.com/v1/user.json

CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API 123

Here are actual calls following the foregoing patterns:

GET /1/user/-/body/log/weight/date/2010-02-21.json
GET /1/user/-/body/log/weight/date/2010-03-27/1w.json

GET /1/user/-/body/log/weight/date/2010-03-27/2010-04-15.json

Somebody at Fitbit must have thought that this was a good idea, but there is a free-style
assumption made here. Normally, even if you decide to use the URL as a kitchen sink, it
would be a good idea to keep things consistent: instead, we look at “body/log/weight/date”
to represent something like “these are the keys for the values that follow,” but even that
does not hold, since the date can stand for one date (start), begin-end dates, or start date
followed by the period.

Composing a URL for a request should not require a degree in creative writing, but that’s the
Fitbit APl and we need to adapt to it, so great care has to be taken when writing services
that make a specific request, given that there is no clear rule of composition for the URLs of
Fitbit’s API requests.

For POST requests, things are again rather different than the standard usage. The Fitbit API
requires us to send the POST data as a URL-encoded string, as part of the POST URL. One of
the advantages of sending POST data in the body of the message is that it would not land in the
HTTP server activity logs, and it would not be exposed in the actual URL, but then it would be
a bit more tedious to sign a request. This is perhaps the reason that Fitbit decided to take this
approach, as much as it is not the most secure. Examples of POST requests follow:

POST /1/usex/-/bp.json?date=2015-04-248weight=73
POST /1/user/-/bp.json?date=2015-04-23&diastolic=80&systolic=120

From the current implementation we can see that Fitbit has limited the available verbs to just
GET and POST, not making active use of PUT or DELETE. This can, of course, change with the
ongoing development of the API.

Setting Up a Local Playground with Apache

To be able to test our code way before we are ready to deal with the complexities of the
OAuth implementation, we need to set up a local web server. The safe assumption is that
you are working on a Mac, so Apache is already installed for you.

For OSX versions before Yosemite, you can use Web Sharing to set up a local web server.
0OS X 10.10 Yosemite comes with the Apache 2.4 pre-installed, but there is no longer a Web
Sharing preference pane in System Preferences.

You can install one of the online available Web Sharing preference panes or simply use the
provided apachectl command from your terminal.

To start up the web server, simply bring up Terminal (/Applications/Utilities/Terminal) and
type the following:

$ sudo apachectl start



124 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fithit API

To stop apache you would type:
$ sudo apachectl stop

If you start Apache now, you can reach your server in a browser by pointing it at the URL:
http://127.0.0.1/ or even http://localhost/, and you should see a simple header
that says:

“It works!”

The document that contains the “It works!” text is called index.html.en and is located in the
/Library/WebServer/Documents folder. Your current user does not own this folder, so you will
not have permissions right away to create files. The easiest way to get permissions there is to
change the flags on that folder. For that, you have to execute a command as root, using sudo:

$ sudo chmod 777 /Library/WebServer/Documents

You will be asked to enter your user password, which is the same password you use to log
in to your Mac. By default, the users on a Mac have administrator privileges, so you should
be able to use sudo to change flags or ownership of files and folders that are not owned by
your user.

Now your user can create new documents in that folder: this is where we will create the two
test documents used to verify the requests made by the first version of the APIClient library.

A more elaborate way would be to edit the Apache config file, and point it to a folder in your
home folder. There is enough information available online on how to do this: for the time
being, all we need is to create two test files in that folder, and start Apache, so we will take
the easy route.

Creating the Test Documents

The easiest way is to use the same Terminal screen and vi to create the files. If you are not
familiar with using vi, you can use any other popular console text editor (nano, cat, or echo):

vi /Library/WebServer/Documents/data.json

Paste the following text into vi, then save the file:
{"Response”:{"key":"value"}}

To edit the second file

vi /Library/WebServer/Documents/badData.json
paste the following text into vi, then save the file.

{"Response”:{{"key":"value"}}



CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API 125

The second file is intentionally populated with malformed JSON: this will allow us to test the
handling of bad or incomplete responses that we might get from the API. Remember, just
because you are talking to a public APl does not mean it will always work perfectly, or return
valid responses: your code will have to be able to compensate and handle the errors properly.

If you already started Apache, there is no need to restart it: what we added are two
static documents and Apache will properly recognize them when they are present in the
document folder.

The OAuth1.0a Authentication Model

The OAuth1.0a authentication model is a rather complex set of interactions between the
consumer and the service provider, which is in our case the Fitbit API.

In a simplified way, the following steps are required to access your protected resources:
1. The consumer requests a request token
2. Using the request token, the consumer obtains the user authorization

3. The consumer then requests an access token from the service
provider

4. Using the access token, the consumer can now make requests to
access the protected resources

To use the Fitbit APl we need to sign up for a developer account and register the application.
Once we do so, we get the following bits of information that we will use in crafting the
requests to the Fitbit API:

Client (consumer) key

Client (consumer) secret

Temporary credentials (request token) URL
Token credentials (access token) URL
Authorize URL

The authentication information is usually passed in the header of the request, as key-value
pairs. This allows you to build test cases or run tests from the command line, as in the
example in Listing 5-1.

Listing 5-1.

$ curl -X POST -i -H 'Authorization: OAuth oauth_consumer key="abcd1234", oauth_nonce="123",
oauth_signature="q4567aacc%3D", oauth_signature method="HMAC-SHA1", oauth timestamp="1429137772",
oauth_version="1.0""' https://api.fitbit.com/oauth/request_token

One important note here is that the curl example request is in one line. Curl is a command-
line tool that allows us to perform a GET/POST request and retrieve the contents of the
request.


https://api.fitbit.com/oauth/request_token

126 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fithit API

The Fitbit OAuth Implementation

The Fitbit APl is making a transition from OAuth 1.0a to OAuth 2.0 as authentication protocol.
In this chapter, we will use the OAuth 1.0a, which is the current production version. When Fitbit
will transition to OAuth 2.0, you will have to change your application to use the new version.

The upgrade from one authentication protocol to another is usually staged, so that first the
new protocol is made available to developers, then as a beta to the general public. The
developers migrate their code to the new protocol at their convenience, and that equates to
using a different base URL for each authentication protocol, so both authentication protocols
will be available for a reasonable period of time.

When the API operators observe from the amount of API traffic that the old authentication
protocol is not being used, or has minimal usage, only then will they declare the old protocol
obsolete and announce a date of when the support for it will be discontinued.

As a developer it is good to keep in touch with the latest documentation for the APIs you are
implementing, so that you can give yourself ample time to upgrade your application to the
new authentication protocol.

For the current OAuth 1.0a implementation, Fitbit follows strictly the specification of the
protocol.

Following are the steps to making an OAuth 1.0a request:

1. The client acquires a key and secret from Fitbit by registering an
application at dev.fitbit.com.

The client builds an application that uses content from Fitbit.
The user requests to view content in the client application.

The client requests and receives temporary credentials from Fitbit.

o~ W Db

The client redirects the user to Fitbit in order for the user to authorize
the client application.

6. The user approves the client application, and Fitbit redirects the user
to the client application site, passing a verifier.

7. The client requests and receives token credentials from Fitbit using
the verifier it received.

8. Using token credentials, the client makes calls to access Fitbit
resources on behalf of the user.

To help with the implementation of the current authentication protocol, the Fitbit developer
site has an OAuth tutorial page under “Authentication.”

Step 5 involves a bit more work in the Ul (user interface), such as displaying the redirect
URL in a browser. On that page you will have a form where you will have to agree that the
app can have read/write access to your account. Upon confirmation of access, you will
get a verifier code, which you will need to use to request the token credentials used in this
chapter.



CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API 127

The code in this chapter will work with the token credentials obtained in Step 8: we will
not do a complete implementation; we will be focusing instead on creating the basics for
signing OAuth requests and making the API requests once the token credentials are obtained.

You need to complete Steps 3 to 7 on your own. The signing mechanism for the requests
is the same—just the list of elements to be used in the signature is different, but very well
documented on the Fitbit support site, where you can double-check your process by testing
every step by hand and comparing the output with the output of your code.

Once we established the signature process for the common-case scenario (Step 8) it will be
very easy for you to create functions that sign with a different set of parameters, as we will
show later on.

Fitbit API Call Rate Limits

The documentation for API call rate limits can be found on the Fitbit page under “Basics/
Rate Limits”/.

At the time of writing of this book, the Fitbit API set limits to the number of calls that can
be made to the API in a given amount of time. When doing the full implementation in your
application, your code has to be aware and able to handle the case when it hits one of the
rate limits shown in the sections “The client+viewer rate limit” and “The client cate limit.”

The Fitbit API has two separate rate limits on the number of calls you can make. Both are
hourly limits that reset at the start of the hour.

The Client+Viewer Rate Limit

All Read calls (as well as a couple of sensitive Read & Write) are rate limited with the current
quota of 150 calls/hour. You can make 150 API requests per hour for each user who has
authorized your application to access his or her data. This rate limit is applied when you
make an API request using your application’s consumer key and secret with the user’s
access token and token secret.

The Client Rate Limit

Your application can make 150 API requests per hour without a user access token and token
secret. These types of API requests are for retrieving non-user data, such as Fitbit’s general
resources.

Response Headers
Fitbit API responses include headers that provide you with your rate limit status.
Fitbit-Rate-Limit-Limit: the quota number of calls

Fitbit-Rate-Limit-Remaining: the number of calls remaining before
hitting the rate limit

Fitbit-Rate-Limit-Reset: the number of seconds until the rate limit resets



128 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fithit API

Hitting the Rate Limit

Your application will receive an HTTP 429 response from the Fitbit APl when a request is
not fulfilled due to reaching the rate limit. A “Retry-After” header is sent with the number of
seconds until your rate limit is reset and you can begin making calls again.

Making async Calls

The Fitbit APl is an external resource that might or might not be available to your device.
This depends on your Internet connection availability, as well as any factors that prevent
your device from accessing the Fitbit APIl. Additionally, sometimes API calls take longer
than expected.

For this reason, the calls we make to the API need to be made as async calls. As an
application user, this gives you the ability to do other things in your app, while the
application is taking its time to communicate with the API and make the data transfers to
and from the Fitbit API.

The simplest form of an async call is the following:

Listing 5-2.

var url: NSURL = NSURL(string: "http://127.0.0.1/data.json")!

var request = NSMutableURLRequest(URL: url)

request.HTTPMethod = "GET"

NSURLConnection.sendAsynchronousRequest(request, queue: NSOperationQueue.mainQueue()) {
(urlResponse : NSURLResponse!, data : NSData!, error: NSError!) -> Void in
// do something here with the response data

}

The block of code after the list of parameters of sendAsynchronousRequest() is the code
being called when the API sends back a response and the connection is closed. The data
object is the content of the API response, as an NSData object. This is necessary since it is
not a guarantee that the API will always return JSON: the service being called could deliver
an image or other binary file, which we will have to handle as necessary. For the purpose of
this chapter we will assume that our responses are always JSON strings, and our code will
handle the response accordingly.

The other side of async calls is that we do not have direct control over their flow—once
launched, we need to provide a handler for the response async call that was triggered as the
result of a button click. Your code needs to disable that button action to prevent duplicate
calls from happening until a valid response has been received and the data has been
successfully processed.

Using callbacks as Parameters

We aggregate most of the API functionality in the APIClient.swift library. This makes sense,
because we don’t want to duplicate this code for every type of call we make, and every
service.


http://127.0.0.1/data.json

CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API 129

Listing 5-3.

Our apiRequest function has the following signature:
func apiRequest (
service: APIService,
method: APIMethod,
id: String!,
urlSuffix: NSArray!,
inputData: [String:String]!,
callback: (responselson: NSDictionary!, responseError: NSError!) -> Void ) {
// Api call code here
}

We can see that one of the parameters is the callback parameter, which defines the
signature of the callback function being passed to it. The callback function will be called in
the block of code passed to the async call, after the API response has been received.

The following is the sample code for a generic GET handler using our APIClient:

Listing 5-4.

func getData (service: APIService,
id: String!=nil, urlSuffix: NSArray!=nil, params: [String:String]!=[:]) {
var blockSelf = self
var logger: UIlLogger = viewController.logger
self.apiRequest(
service,
method: APIMethod.GET,
id: id,
urlSuffix: urlSuffix,
inputData: params,
callback: { (responseJson: NSDictionary!, responseError: NSError!) -> Void in
if (responseError != nil) {
logger.logEvent(responseError!.description)
// Handle here the error response in some way
} else {
blockSelf.processGETData(service, id: id, urlSuffix: urlSuffix, params: params,
responselson: responselson)

1)
}

We see here that we make a copy of self in the blockSelf variable. This is necessary, since
the callback code block is a closure that does not have the context of the caller. If we pass
self directly, this will block it from being garbage collected when it goes out of scope or gets
destroyed. In this case self is the APIClient instance we use to make API calls, and we will
run into memory leaks over time if we create/destroy the APIClient instance.

[vww allitebooks.cond



http://www.allitebooks.org

130 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fithit API

Setting up a Fitbit-compatible i0OS Project

To implement OAuth in Swift, we could use an available library that supports both OAuth
1.0a and OAuth 2.0 to simplify the transition when Fitbit will default to OAuth 2.0. For the
purpose of this book, we will implement the OAuth layer ourselves, instead of relying on a
third-party library. We will also show how to make use of some Objective-C libraries where
needed, to avoid re-inventing the wheel in Swift, and keep the scope of the Swift code small.

We begin by creating an empty, single-page project. This chapter aims to show how

to communicate with the Fitbit API, not how to build an Ul interface around it, so our
application will be minimalistic, exposing just a few Ul elements to trigger actions and track
the communication with the Fitbit API, and making inline changes to some view controller
functions as we go along.

The View Controller

A basic view controller for this chapter will only show a few buttons and a text area that we
will use to display the communication with the API.

To initialize and to be able to use these buttons and fields, they have to be assigned macros
that make them available/visible in the Interface Builder. We also define the variables used
for the APl and logger objects. Since these will be initialized at a later time, these variables
need to be defined in the view controller as optional:

Listing 5-5.

class ViewController: UIViewController {
@IBOutlet var labelButton : UIButton!
@IBOutlet var textArea : UITextView!
var api: APIClient!
var logger: UIlLogger!

In the viewDidLoad() function we initialize the API object, as well as the log library that
will output text to our textArea field. The content and functionality of these libraries will be
explained as we go.

Listing 5-6.

override func viewDidLoad() {
super.viewDidLoad()
api = APIClient(parent: self)
logger = UILogger(out: textArea)

To assign an action to a button, we create a function that performs the action, and is also
annotated with the proper macro to make it available in the Interface Builder. We will add a
log statement to show the beginning of the request, and we can also change the title of the
button, while it is pressed.



CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API 131

Listing 5-7.

@IBAction func clickButton() {
logger.logEvent("=== Good Request ===")
api.getData(APIService.GOOD_JSON)
labelButton.setTitle("Good Request Sent", forState: UIControlState.Normal)
}
@IBAction func unclickButton() {
labelButton.setTitle("=== Good Request ===", forState: UIControlState.Normal)
}

Notice that we used the APIService.GOOD_JSON and APIService.BAD_JSON service names.
This is a first-step implementation that uses mock services from a local server and gets

in return a pre-formatted, static content, so that we can test the code. This will be later
replaced by actual services like, for example, APIService.ACCOUNT or APIService.PROFILE.
These are distinct values from enums that we define in the APIClient.swift library.

We can wire these button actions in the storyboard (Figure 5-1).

@ o » [ | A FitBi..oge | [ Phone & (B.2) Running Frtiht integraton - Single Page on IPhone 6 D | I ==

OS2 QA & B ¢ = { Pt integration - Single Page F Aw Rw. Bv v View | B | Good Request ODbe®e O 0 &

+ f FUBH integration - Single Page

" Triggered Segues
2 rargets, 105 SOK B tien

v [1 Fint integration - Gingle Page Ouset Collections
+ OAuthla swift e ogn e
b ViewCantrotie:h Sort Events
+ UlLogger swift oe -

+ APICHent swift
» Cryptoswift

+ AppDolegate swiht Cleaf|Log
» ViewControdes swift »

B Mainstorytoars

5 Images xcassels

R

LaunchSereen xiby

* | Supporting Fies [} 8 quuosl
& |11 FitBat integration - Single PageTests

» | Products.

TEXT

[&]

= Cocos Touch Class - A Cocoa
Towch class

O Ay s Any B ol sl 9
= = 8 Tost Caso Class A Class
= = D < FitBt Inegration - Single Page MOOTONAG 3 U TRt

Playground - A% (05 Pisyground

= Auto o - Al Outpat & oga

Figure 5-1. Wiring actions in the storyboard



132 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fithit API

This is the entire ViewController.swift code that we will use to test the internal wiring of the
APIClient library. You might notice that we commented out the goLive() method, that would
set the baseURL for the API to the liveBaseURL in the APIClient library(more on this later).

Listing 5-8.

import UIKit

class ViewController: UIViewController {
@IBOutlet var clearButton : UIButton!
@IBOutlet var labelButton : UIButton!
@IBOutlet var labelButton2 : UIButton!
@IBOutlet var textArea : UITextView!
var api: APIClient!
var logger: UILogger!

required init(coder aDecoder: NSCoder) {
super.init(coder: aDecoder)
}

override func viewDidLoad() {
super.viewDidLoad()
api = APIClient(parent: self)
logger = UILogger(out: textArea)
// api.golive()

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.
}
@IBAction func unclickButton() {
labelButton.setTitle("Good Request”, forState: UIControlState.Normal)
}

@IBAction func unclickButton2() {
labelButton2.setTitle("Bad Request", forState: UIControlState.Normal)
}

@IBAction func clickButton() {
logger.logEvent("=== Good Request ===")
api.getData(APIService.GOOD_JSON)
labelButton.setTitle("Good Request Sent", forState: UIControlState.Normal)

}
@IBAction func clickButton2() {

logger.logEvent("=== Bad Request ===")
api.getData(APIService.BAD JSON)
labelButton2.setTitle("Bad Request Sent", forState: UIControlState.Normal)

}
@IBAction func clickClearButton() {

logger.clear()
}
}

When you implement your application, you will most likely have a series of requests
triggered by either a sync button or a timer, all the time keeping in mind that the APl has a
call rate limitation.



CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API 133

The Logger Library

The logger library was assigned a variable in the view controller that will keep an instance of
the logger around with the proper target assigned—in our case we use a text area field for
the activity logging.

To keep things simple, we implement just a couple of functions that will allow us to track
the API activity. These functions will interact with the textArea field we set up in the view
controller. Just as in the view controller, the textArea field is declared optional, as it will be
initialized in the init() function. The code in Listing 5-9 goes in the UILogger.swift file:

Listing 5-9.

import Foundation
import UIKit

class UIlLogger {
var textArea : UITextView!
required init(out: UITextView) {
dispatch_async(dispatch_get main_queue()) {
self.textArea = out
b

self.clear()
}

func clear() {
dispatch_async(dispatch_get main_queue()) {
self.textArea!.text = ""
}

}

func logEvent(message: String) {
dispatch_async(dispatch_get main_queue()) {
self.textArea!.text = textArea!.text.stringByAppendingString("=>
}

+ message + "\n")

}
}

Setting up a Basic Set of Crypto Functions

Since the data to and from the API is of String type, the easiest way to set up the basic
crypto functions is to set up a few extensions on the String object to handle SHA1 and
HMAC hashing (the SHA and HMAC are hashing algorithms). We can set this in a separate
file in our project, called Crypto.swift.

The sha1() function is provided as a convenience method that allows you to create
fingerprints of results when testing against the API. It is not used in the OAuth signing
process, and was implemented just to show how something like this could be done.

The hmac() function is used for creating the OAuth signature. You can verify its functionality
with the Google OAuth request signature test page at http://oauth.googlecode.com/svn/
code/javascript/example/signature.html. This is an easier-to-use test resource than the


http://oauth.googlecode.com/svn/code/javascript/example/signature.html
http://oauth.googlecode.com/svn/code/javascript/example/signature.html

134 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fithit API

one provided by the Fitbit developer site, and it allows you to provide any combination of
keys and tokens.

The escapeUr1() function is conveniently placed in the same context, because we will use

it for composing the signature base string. It could have been a library function in its own
right, but since it is conceivable that other parts of the product might use a good escaping
tool, we decided to use it as an overload to the String object. Believe it or not, there is no
NSCharacterSet with this set of characters, which is pretty odd, as this is the most useful set
when composing an URL string.

There are a couple of enums in this library that are used by the hmac() function: we could
have just used the values for SHA1 and saved ourselves the extra work with the enums,
but with the full list configured, you can reuse this code for any other API that uses another
hashing method than SHA1.

The functions are relying on Objective-C code that does the heavy work, so we need to set
up a bridging header file. For that, create a new file in the project, give it a name(Crypto.h)
and a location(Fitbit Integration - Single Page), and associate it with the current folder, as
seen in Figure 5-2.

Save As: Crypto.h v
Tags:

Where: FitBit Integration - Single Page |5}

Group FitBit Integration - Single Page <

Targets 2 /A FitBit Integration - Single Page
FitBit Integration - Single PageT...

Cancel | QeiCECE

Figure 5-2. Saving the new crypto header file

Listing 5-10 shows the content of the Crypto.h file: we added two lines that include the
code resources we will use for calculating SHA1 checksums and HMAC-SHA1 signatures.
The ifndef section needs to stay as it is.

Listing 5-10.

#import <CommonCrypto/CommonCrypto.h>
#import <CommonCrypto/CommonHMAC.h>

#ifndef FitBit_Integration__ Single Page Crypto_h
#define FitBit Integration__ Single Page Crypto_h
#endif



CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API 135

Once the header file has been created, we need to move it up in the project file hierarchy,
by drag-and-dropping it to the top of the file list. Then we need to set up the path for

the bridging header (Fitbit Integration - Single Page/Crypto.h) in our project under Build
Settings / Swift Compiler - Code Generation, as shown in Figure 5-3.

B R Q A ©@ @& o @ 8| < 5| FitBit Integration - Single Page
FitBit Integration - Single Page

- ] A FitBit Inte...ngle Page & 1] it J Ph. Idh Aul
vig, targets, 105 SDK 6.3 ] CHE ] nte...ngle Pag Genera Capabilities Info Build Build Phases Build Au
w | | FitBit Integration - Single Page m All m Lovels
h Crypto.h A
« OAuthia.swift A
» UlLogger.swift A ¥ Deployment
« APIClient.swift A 7P FitBit Inte
« Crypto.swift A Installation Directory fApplications
= AppDelegate.swift Strip Linked Product Yes &
= ViewController.swift M Targeted Device Family iPhonefiPad &
Main.storyboard M
|55 Images.xcassets ¥ Linking
< LaunchScreen.xib - :A D y
» | 7] Supporting Files . S
» [ FitBit Integration - Single PageTests Runpath Search Paths path/F ks
» [ 7] Products
¥ Packaging
Info.plist File FitBit Integration - Single Page/Info.plist
Product Name FitBit Integration - Single Page
¥ Asset Catalog Compiler - Options
Assot Catalog App Icon Set Name Applcon
¥ Swift Compiler - Code Generation
¥ Otrjective-C Bridging Headar FitBit Integration - Single Page/Crypto.h
Debug FitBit Integration - Single Page/Crypto.h
Any Architecture | Any SDK & FitBit Integration - Single Page/Crypto.h
Rolease FitBit Intagration - Single Page/Crypto.h
Any Architecture | Any SDK & FitBit Integration - Single Page/Crypto.h
¥ Swift Compiler - Search Paths
Import Paths
¥ User-Defined
¥ MTL_ENABLE _DEBUG_INFO
Debug YES
Release NO

Figure 5-3. Setting up the path for the bridging header in the project

Crypto.swift

Listing 5-11.

import Foundation
extension String {
func sha1() -> String {
let data = self.dataUsingEncoding(NSUTF8StringEncoding)!
var digest = [UInt8](count:Int(CC_SHA1 DIGEST LENGTH), repeatedValue: 0)
CC_SHA1(data.bytes, CC_LONG(data.length), &digest)
let output = NSMutableString(capacity: Int(CC_SHA1 DIGEST LENGTH))



136 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fithit API

for

}

byte in digest {
output.appendFormat("%02x", byte)

return output

}

func hmac(algorithm: HMACAlgorithm, key: String) -> String {

let
let
let
let
let
let
let

str = self.cStringUsingEncoding(NSUTF8StringEncoding)

strlen = Int(self.lengthOfBytesUsingEncoding(NSUTF8StringEncoding))
digestlen = algorithm.digestLength()

result = UnsafeMutablePointer<CUnsignedChar>.alloc(digestLen)

objcKey = key as NSString

keyStr = objcKey.cStringUsingEncoding (NSUTF8StringEncoding)

keyLen = Int(objcKey.lengthOfBytesUsingEncoding(NSUTF8StringEncoding))

CCHmac (algorithm.toCCHmacAlgorithm(), keyStr, keylLen, str!, strlLen, result)

let

data = NSData(bytes: result, length: digestLen)

result.destroy()
return
data.base64EncodedStringWithOptions(NSDataBase64EncodingOptions.Encoding64CharacterLinelength)

}

func escapeUrl() -> String {

var
var
var
var

source: NSString = NSString(string: self)

chars = "abcdefghijklmnopgrstuvwxyz"

okChars = chars + chars.uppercaseString + "0123456789.~ -"
customAllowedSet = NSCharacterSet(charactersInString: okChars)

return source.stringByAddingPercentEncodingWithAllowedCharacters(customAllowedSet)!

}
}

enum HMACAlgorithm {
case MD5, SHA1, SHA224, SHA256, SHA384, SHA512
func toCCHmacAlgorithm() -> CCHmacAlgorithm {
var result: Int = 0
switch self {
case .MD5:

result

kCCHmacAlgMD5

case .SHA1:

result = kCCHmacAlgSHA1

case .SHA224:

result = kCCHmacAlgSHA224

case .SHA256:

result = kCCHmacAlgSHA256

case .SHA384:

result = kCCHmacAlgSHA384

case .SHA512:

}

result = kCCHmacAlgSHA512

return CCHmacAlgorithm(result)



CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

func digestLength() -> Int {

var result: CInt = 0
switch self {
case .MD5:

result
case .SHA1:

result = CC_SHA1 DIGEST LENGTH
case .SHA224:

result = CC_SHA224 DIGEST_LENGTH
case .SHA256:

result = CC_SHA256 DIGEST LENGTH
case .SHA384:

result = CC_SHA384 DIGEST LENGTH
case .SHA512:

result = CC_SHA512 DIGEST_LENGTH
}

return Int(result)

CC_MD5_DIGEST_LENGTH

The API Client Library

We created this library for the functions that make async requests to the API. You can find

137

the complete code at the end of this section; for now we will discuss parts of the API client
library code. The header of the class contains the URLs and other variables needed for the
API functionality.

Listing 5-12.

class APIClient {

var
var
var
var
var
var
var
var
var
var

apiVersion: String!

baseURL: String = "http://127.0.0.1"
liveBaseURL: String = "https://api.fitbit.com"
liveAPIVersion: String = "1"

requestTokenURL: String = "https://api.fitbit.com/oauth/request_token"
accessTokenURL: String = "https://api.fitbit.com/oauth/access_token"

authorizeURL: String = "https://www.fitbit.com/oauth/authorize"”
viewController: ViewController!

oauthParams: NSDictionary!

oauthHandler: OAuthia!

required init (parent: ViewController!) {

viewController = parent

oauthParams = [
"oauth_consumer_key" : "6cf4162a72ac4a4382c098caec132782",
"oauth_consumer_secret" : "c652d5fb28344679f3b6b12121465af",
"oauth_token" : "5a3ca2edf91d7175cad30bc3533e3c8a",
"oauth_token_secret" : "da5bc974d697470a93ec59e9cfaeen6d",

oauthHandler = OAuthia(oauthParams: oauthParams)


http://127.0.0.1/
https://api.fitbit.com/
https://api.fitbit.com/oauth/request_token
https://api.fitbit.com/oauth/access_token
https://www.fitbit.com/oauth/authorize

138 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fithit API

We added the oauthParams in the init function for convenience —your code will have to
gather/compose these values when you do a complete implementation of the OAuth/signup
process. The requestTokenURL, accessTokenURL, and authorizeURL were also added to show
where they would best be located, but they are not used in the code of this chapter.

When you write tests, you might want to change between the 1iveBaseURL and liveAPIVersion
and a local test URL that is the default for the baseURL, as we do in our case to test the good
and bad JSON. A simple function will allow you to switch to live mode, as follows:

func golive () {
baseURL = liveBaseURL discussing
apiVersion = liveAPIVersion

}

A generic function to perform a GET from a service looks as shown in Listing 5-13.

Listing 5-13.

func getData (service: APIService, id: String!=nil, urlSuffix: NSArray!=nil,
params: [String:String]!=[:]) {
var blockSelf = self
var logger: UILogger = viewController.logger
self.apiRequest(
service,
method: APIMethod.GET,
id: id,
urlSuffix: urlSuffix,
inputData: params,
callback: { (responseJson: NSDictionary!, responseError: NSError!) -> Void in
if (responseError != nil) {
logger.logEvent(responseError!.description)
// Handle here the error response in some way

}

else {
blockSelf.processGETData(service, id: id, urlSuffix: urlSuffix, params: params,
responselson: responselson)

}

}

For the urlSuffix we use the NSArray data type that will hold all elements of the URL

being accessed. We saw in The Fitbit OAuth implementation that there is no clear rule

to composing an APl URL; the API service calls have instead service names and values
mashed up in a slash-delimited string. Since some of these could be numbers, the NSArray
type is ideal because by default it contains AnyObject elements. We also pass the urlSuffix
to the processGETData function, so that we can make a decision about what to do with the
response, given the service being called, the optional id of the item, and the urlSuffix. We
also defined default values for urlSuffix and params to allow our functions to make calls
without providing all nil parameters in tow.



CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API 139

The optional input params is a dictionary with strings for keys and values. This is the
most convenient format, considering that POST is not any different from GET in the way the
parameters are passed to the API.

The block passed to the NSURLConnection.sendAsynchronousRequest is a closure, which is
why we need to assign the blockSelf variable that will be used to make calls in the context
of the APIClient library.

The function would be the actual handler of that response, which takes the generic form.

func processGETData (service: APIService, id: String!, urlSuffix: NSArray!,
params: [String:String]!=[:], responseJson: NSDictionary!) {
// do something with data here
}

Just like the GET request, the POST request can have the same structure:

Listing 5-14.

func postData (service: APIService, id: String!=nil, urlSuffix: NSArray!=nil,
params: [String:String]!=[:]) {
var blockSelf = self
var logger: UILogger = viewController.logger
self.apiRequest(
service,
method: APIMethod.POST,
id: id,
urlSuffix: urlSuffix,
inputData: params,
callback: { (responseJson: NSDictionary!, responseError: NSError!) -> Void in
if (responseError != nil) {
logger.logEvent(responseError!.description)
// Handle here the error response in some way

}

else {
blockSelf.processPOSTData(service, id: id, urlSuffix: urlSuffix,
params: params, responseJ]son: responselson)

}

1)
}

func processPOSTData (service: APIService, id: String!, urlSuffix: NSArray!,
params: [String:String]!=[:], responseJson: NSDictionary!) {

// do something with data here
}

Of course, we can implement the request process in many different ways, but having a
common handler for an API request type allows us to avoid a callback hell.

We notice that the verb is not a string but an enum value: APIMethod.GET. This is an enum
that we define in this library, to provide easy access to the verbs as strings, rather than using
the strings directly. It also gives us control on which HTTP verbs are supported by the API
client. This code goes at the end of APIClient.swift.



140 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fithit API

Listing 5-15.

enum APIMethod {
case GET, PUT, POST, DELETE
func toString() -> String {
var method: String!
switch self {

case .GET:

method = "GET"
case .PUT:

method = "PUT"
case .POST:

method = "POST"
case .DELETE:

method = "DELETE"
}

return method

}

func hasBody() -> Bool {
var hasBody: Bool
switch self {

case .GET:

hasBody = false
case .PUT:

hasBody = true
case .POST:

hasBody = true
case .DELETE:

hasBody = false
}

return hasBody

}

The hasBody() function is provided here as an example that could be useful in the
apiRequest to properly format the request, so that GET and DELETE use the parameters as
key-value pairs, while the PUT and POST use it as JSON. This is not necessary in our case,
since the Fitbit APl does not actually use a POST body but, rather, does a POST to a URL with
the data formatted as URL-encoded parameters.

There is another enum we define in the APIClient library that provides shortcuts to

actual services via the toString() function. We saw this in the view controller used as
APIService.GOOD_JSON. We will extend this later to add other services and also provide a
function to return the suffix we might want to use for some calls, but for now this is the basic
format. As in Listing 5-15, the code in Listing 5-16 goes at the end of APIClient.swift.



CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API 141

Listing 5-16.

enum APIService {
case USER, ACTIVITIES, FOODS, GOOD_JSON, BAD_JSON
func toString() -> String {
var service: String!
switch self {
case .USER:
service = "user"
case .ACTIVITIES:
service = "activities"
case .FOODS:
service = "foods"
case .GOOD_JSON:
service = "data"
case .BAD_JSON:
service = "badData"
}

return service

}

We added the extra bits like GOOD_JSON and BAD_JSON to allow us to do internal testing. These
bits point to the test pages we created when we set up the local Apache playground. Since
our apiRequest() function will handle adding the .son suffix to each URL, we only use the
file base name.

Next to be defined is the apiRequest() function. This function will make the actual API
request, and that includes handling the OAuth signing and eventual verification of the
response data. The method signature is showing that the only required params are the
service, the method, and the callback function.

Listing 5-17.

func apiRequest (
service: APIService,
method: APIMethod,
id: String!,
urlSuffix: NSArray!,
inputData: [String:String]!,
callback: (responselson: NSDictionary!, responseError: NSError!) -> Void ) {
// Code goes here

}

The services currently available are USER, ACTIVITIES, and FOODS— the API overloads
them with a variable list of params, so in essence your calls will need to provide the larger
APIService, and then provide via the urlSuffix the URL path extension to point to the right
resource. This will be explained in more detail later on.



142 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fithit API

As for the content of the method, following is what we need to do for an API request:
Compose the base URL of the service
Add the URL suffix if it was specified
Add the extension for the return data type
Create the OAuth signature and populate the request headers
Serialize and append to the URL the input params
Make the API request as an async call

In the code block passed to the async call, we also need to do the following:
Verify the OAuth signature of the response (if provided)
De-serialize the JSON response
Call the callback function

To compose the base URL of the service, we use the following code in Listing 5-18:

Listing 5-18.

var serviceURL = baseURL + "/"
if apiVersion != nil {

servicelRL += apiVersion + "/"
}

serviceURL += service.toString()

if id != nil && !id.isEmpty {
servicelRL += "/" + id

}

var request = NSMutableURLRequest()
request.HTTPMethod = method.toString()

If you recall, we saw in the Fitbit APl implementation details that when an id is not provided,
it is replaced by a dash in some requests. This kind of magic is not something we want

to handle here: instead we rely on the caller to provide an id if one is needed, or the dash
otherwise.

In the same segment, we create the request object and assign it the request method. The
serviceURL is still being composed, so it would be premature to assign it to the request at
this point.

If this APl would support a JSON request body for POST requests, we could use something
like the code in Listing 5-19 to serialize the input data.



CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API 143

Listing 5-19.

var error: NSError?
request.HTTPBody = NSJSONSerialization.dataWithJSONObject(inputData, options: nil,
error: &error)
if error != nil {
callback(responseJson: nil, responseError: error)
return

}

request.addValue("application/json", forHTTPHeaderField: "Content-Type")

Unfortunately the Fitbit API is not that fancy, and it takes instead a simple URL-encoded set
of params appended to the POST URL.

To handle the composition of the URL, we create the asURLString() function. This takes a
dictionary of input params and creates a URL-encoded string, with the parameters sorted
alphabetically. Sorting the parameters is not a requirement in the URL request, but we will
use the same code in the OAuth library.

Listing 5-20.

func asURLString (inputData: [String:String]!=[:]) -> String {
var params: [String] = []
for (key, value) in inputData {
params.append( "=".join([ key.escapeUrl(), value.escapeUrl()] ))
}

params = params.sorted{ $0 < $1 }
return "&".join(params)

}

The URL suffix needs to be made part of the URL—we got in the input an NSArray of strings
or numbers that will be used to compose the suffix—they will be all reduced to a simple
string, appended to the base URL.

// The urlSuffix contains an array of strings that we use to compose the final URL
if urlSuffix?.count » 0 {

serviceURL += "/" + urlSuffix.componentsJoinedByString("/")
}

Adding the extension for the return data type is a rather simple matter. We also set the HTTP
header for Accept, even if the Fitbit API does not require it. This is good practice, and it is
possible that they will end up using it at some point.

// A1l URLs need to have have at least the .json suffix, if not already defined
if IserviceURL.hasSuffix(".json") &3 !serviceURL.hasSuffix(".xml") {
serviceURL += ".json"

}
request.addValue("application/json", forHTTPHeaderField: "Accept")

To create the OAuth signature and populate the request headers, we will make use of
the crypto library for the hmac encoding. The OAuth1a library instance prepared as
the oauthHandler is used to sign the request, given an optional list of parameters in



144 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fithit API

urlParameters. The extra argument signUrl is not used here and is not shown because the
method signature defines a default value (nil) for it, but it could be used when signing with a
partial URL like in the case of getting the temporary token (not shown in this chapter).

Before we create the OAuth signature, we need to assign the following serviceURL to
the request:

request.URL = NSURL(string: serviceURL)
oauthHandler.signRequest(request, urlParameters: urlParameters)

Now we are ready to make the API request as an async call. Note how we created a local
variable logger that points to the logging handler of the view controller—this is necessary
because inside the closure we don’t have visibility to variables and functions from the
current library or from ViewController. The callback block for the async calls contains the
basic code needed to handle the result data and call the callback function that we got when
apiRequest() was invoked. Once again, when interpreting the response, an error can occur
parsing the JSON data, which will be handled by the callback function.

To parse an API response into a JSON object, we use an NSDictionary object that will hold
any combination of key-values. This is necessary since the API responses can contain any
combination of numbers, strings, arrays, dictionaries, and NSDictionary supports by default
AnyObiject types. The NSISONReadingOptions.MutableContainers specifies that arrays and
dictionaries be created as mutable objects.

var jsonResult: NSDictionary?

var rData: String = NSString(data: data, encoding: NSUTF8StringEncoding)! as String

if data != nil {
jsonResult = NSJISONSerialization.JSONObjectWithData(data, options: NSJISONReadingOptions.
MutableContainers, error: &error) as? NSDictionary

}

When encountering an error case that we need to report, we can create our own error
object. To do this in Swift, we use the following approach:

error = NSError(domain: "response", code: -1, userInfo: ["reason":"blank response"])

We added some logging for the response data, with an example on how to pretty-print
JSON to the text area used for logging. We do want to format the response in such a way
that is easy to read, and pretty-printed JSON appears as one key-value per line, nicely
indented.

Listing 5-21.

var blockSelf = self
var logger: UILogger = viewController.logger
NSURLConnection.sendAsynchronousRequest(request, queue: NSOperationQueue.mainQueue()) {
(urlResponse : NSURLResponse!, data : NSData!, error: NSError!) -> Void in
//the request returned with a response or possibly an error
logger.logEvent("URL: " + serviceURL)
var error: NSError?
var jsonResult: NSDictionary?



CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API 145

if urlResponse != nil {
blockSelf.extractRateLimits(urlResponse)
var rData: String = NSString(data: data, encoding: NSUTF8StringEncoding)! as String
if data != nil {
jsonResult = NSISONSerialization.JSONObjectWithData(data, options:
NSJSONReadingOptions.MutableContainers, error: 8error) as? NSDictionary
}
var logResponse: String! = blockSelf.prettyJSON(jsonResult)
logResponse == nil
? logger.logEvent("RESPONSE RAW: " + (rData.isEmpty ? "No Data" : rData) )
: logger.logEvent("RESPONSE JSON: \(logResponse)" )
print("RESPONSE RAW: \(rData)\nRESPONSE SHA1: \(rData.sha1())")
}
else {
error = NSError(domain: "response", code: -1, userInfo: ["reason":"blank response"])

callback(responseJson: jsonResult, responseError: error)

}

Displaying pretty-formatted JSON can be useful in other places too, so we extracted the
following code in the prettyJSON() function:

func prettyJSON (json: NSDictionary!) -> String! {
var pretty: String!
if json != nil && NSJISONSerialization.isValidJSONObject(json!) {
if let data = NSJSONSerialization.dataWithJSONObject(json!, options:
NSJISONWritingOptions.PrettyPrinted, error: nil) {
pretty = NSString(data: data, encoding: NSUTF8StringEncoding) as? String
} } return pretty

}

To parse the response and extract the API rate limits, we need to extract from the response
header the following key-value pairs:

Fitbit-Rate-Limit-Limit: 150
Fitbit-Rate-Limit-Remaining: 149
Fitbit-Rate-Limit-Reset: 1478

The function extractRateLimits() will take care of that, and it will also throw some
statements in the console log that will help with the debugging. We already defined the
variables in the APIClient header, and we update these with every API call we make. Since
we have the ratelLimitTimeStamp value, we can use this to compare with the current
timestamp and see whether the rateLimitTimeStamp + ratelimitReset is smaller than

the current timestamp; then we can make the next API call with confidence and otherwise
handle the issue inside the application, returning an error early, instead of making a call that
we know is going to fail. This can be easily implemented in the apiRequest() so we leave
this as an exercise for the reader.



146 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fithit API

Listing 5-22.

func extractRatelLimits (response: NSURLResponse) {
if let urlResponse = response as? NSHTTPURLResponse {

if let rl = urlResponse.allHeaderFields["Fitbit-Rate-Limit-Limit"] as? NSString as?
String {

ratelLimit = rl.toInt()

print("RESPONSE HEADER rateLimit: \(rl)")

if let rlr = urlResponse.allHeaderFields["Fitbit-Rate-Limit-Remaining"] as? NSString
as? String {

rateLimitRemaining = rlr.toInt()

print("RESPONSE HEADER rateLimitRemaining: \(rlr)")

}
if let rlx = urlResponse.allHeaderFields["Fitbit-Rate-Limit-Reset"] as? NSString as?
String {
rateLimitReset = rlx.toInt()
rateLimitTimeStamp = String(format:"%d",
Int(NSDate().timeIntervalSince1970)).toInt()
print("RESPONSE HEADER ratelLimitReset: \(rlx), checked at: \(ratelLimitTimeStamp)")
}

The Code for APIClient.swift
Listing 5-23 shows the code we have so far for the APIClient library (APIClient.swift):

Listing 5-23.

import Foundation
class APIClient {

var
var
var
var
var
var
var
var
var
var
var
var
var
var

apiVersion: String!

baseURL: String = "http://127.0.0.1"
liveBaseURL: String = "https://api.fitbit.com"
liveAPIVersion: String = "1"

requestTokenURL: String = "https://api.fitbit.com/oauth/request_token"
accessTokenURL: String = "https://api.fitbit.com/oauth/access_token"
authorizeURL: String = "https://www.fitbit.com/oauth/authorize"”
viewController: ViewController!

oauthParams: NSDictionary!

oauthHandler: OAuthia!

rateLimit: Int!

rateLimitRemaining: Int!

rateLimitReset: Int!

ratelLimitTimeStamp: Int!

required init (parent: ViewController!) {

viewController = parent

oauthParams = [
"oauth_consumer_key" : "6cf4162a72ac4a4382c098caec132782",
"oauth_consumer_secret" : "c652d5fb281344679f3b6b12121465af",


http://127.0.0.1/
https://api.fitbit.com/
https://api.fitbit.com/oauth/request_token
https://api.fitbit.com/oauth/access_token
https://www.fitbit.com/oauth/authorize

CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API 147

"oauth_token" : "5a3ca2edf91d7175cad30bc3533e3c8a",
"oauth_token_secret" : "da5bc974d697470a93ec59e9cfaee06d”,
]
oauthHandler = OAuthia(oauthParams: oauthParams)

}

func golive () {
baseURL = liveBaseURL
apiVersion = liveAPIVersion
}
func postData (service: APIService, id: String!=nil, urlSuffix: NSArray!=nil,
params: [String:String]!=[:]) {
var blockSelf = self
var logger: UILogger = viewController.logger
self.apiRequest(
service,
method: APIMethod.POST,
id: id,
urlSuffix: urlSuffix,
inputData: params,
callback: { (responseJson: NSDictionary!, responseError: NSError!) -> Void in
if (responseError != nil) {
logger.logEvent(responseError!.description)
// Handle here the error response in some way

}
else {
blockSelf.processPOSTData(service, id: id, urlSuffix: urlSuffix,
params: params, responseJson: responselson)
}

b
}
func processPOSTData (service: APIService, id: String!, urlSuffix: NSArray!,
params: [String:String]!=[:], responseJson: NSDictionary!) {
// do something with data here
}

func getData (service: APIService, id: String!=nil, urlSuffix: NSArray!=nil,
params: [String:String]!=[:]) {
var blockSelf = self
var logger: UIlLogger = viewController.logger
self.apiRequest(
service,
method: APIMethod.GET,
id: id,
urlSuffix: urlSuffix,
inputData: params,
callback: { (responseJson: NSDictionary!, responseError: NSError!) -> Void in
if (responseError != nil) {
logger.logEvent(responseError!.description)
// Handle here the error response in some way
}



148

CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fithit API

else {
blockSelf.processGETData(service, id: id, urlSuffix: urlSuffix,
params: params, responseJson: responseJson)

1
}

func processGETData (service: APIService, id: String!, urlSuffix: NSArray!,
params: [String:String]!=[:], responseJson: NSDictionary!) {

// do something with data here
}

func apiRequest (
service: APIService,
method: APIMethod,
id: String!,
urlSuffix: NSArray!,
inputData: [String:String]!,
callback: (responselson: NSDictionary!, responseError: NSError!) -> Void ) {
// Compose the base URL
var serviceURL = baseURL + "/"
if apiVersion != nil {
serviceURL += apiVersion + "/
}

servicelRL += service.toString()

if id != nil 8& !id.isEmpty {
serviceURL += "/" + id
}

var request = NSMutableURLRequest()
request.HTTPMethod = method.toString()
// The urlSuffix contains an array of strings that we use to compose the final URL
if urlSuffix?.count > 0 {
serviceURL += "/" + urlSuffix.componentsJoinedByString("/")
}

// A1l URLs need to have have at least the .json suffix, if not already defined
if !serviceURL.hasSuffix(".json") & !serviceURL.hasSuffix(".xml") {

serviceURL += ".json"
}

request.addValue("application/json", forHTTPHeaderField: "Accept")

request.URL = NSURL(string: serviceURL)
// Sign the OAuth request here
oauthHandler.signRequest(request, urlParameters: inputData)
if linputData.isEmpty {
servicelRL += "?" + asURLString(inputData: inputData)
request.URL = NSURL(string: serviceURL)
}

//now make the request



CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API 149

var blockSelf = self
var logger: UILogger = viewController.logger
NSURLConnection.sendAsynchronousRequest(request, queue: NSOperationQueue.mainQueue()) {
(urlResponse : NSURLResponse!, data : NSData!, error: NSError!) -> Void in
//the request returned with a response or possibly an error
logger.logEvent("URL: " + serviceURL)
var error: NSError?
var jsonResult: NSDictionary?
if urlResponse != nil {
blockSelf.extractRateLimits(urlResponse)
var rData: String = NSString(data: data, encoding: NSUTF8StringEncoding)! as String
if data != nil {
jsonResult = NSISONSerialization.JSONObjectWithData(data, options:
NSJSONReadingOptions.MutableContainers, error: 8error) as? NSDictionary
}
var logResponse: String! = blockSelf.prettyJSON(jsonResult)
logResponse == nil
? logger.logEvent("RESPONSE RAW: " + (rData.isEmpty ? "No Data" : rData) )
: logger.logEvent ("RESPONSE JSON: \(logResponse)" )
print("RESPONSE RAW: \(rData)\nRESPONSE SHA1: \(rData.sha1())")
}
else {
error = NSError(domain: "response", code: -1, userInfo: ["reason":"blank response"])

callback(responseJson: jsonResult, responseError: error)

func asURLString (inputData: [String:String]!=[:]) -> String {
var params: [String] = []
for (key, value) in inputData {
params.append( "=".join([ key.escapeUrl(), value.escapeUrl()] ))
}

params = params.sorted{ $0 < $1 }
return "&".join(params)
}
func prettyJSON (json: NSDictionary!) -> String! {
var pretty: String!
if json != nil && NSJISONSerialization.isValidJSONObject(json!) {
if let data = NSJSONSerialization.dataWithJSONObject(json!, options:
NSJISONWritingOptions.PrettyPrinted, error: nil) {
pretty = NSString(data: data, encoding: NSUTF8StringEncoding) as? String

}
return pretty

}

func extractRateLimits (response: NSURLResponse) {
// Fitbit-Rate-Limit-Limit: 150
// Fitbit-Rate-Limit-Remaining: 149
// Fitbit-Rate-Limit-Reset: 1478



150 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fithit API

if let urlResponse = response as? NSHTTPURLResponse {
if let rl = urlResponse.allHeaderFields["Fitbit-Rate-Limit-Limit"] as? NSString
as? String {
ratelimit = rl.toInt()
print("RESPONSE HEADER rateLimit: \(rl)")

if let rlr = urlResponse.allHeaderFields["Fitbit-Rate-Limit-Remaining"] as?
NSString as? String {

rateLimitRemaining = rlr.toInt()

print("RESPONSE HEADER rateLimitRemaining: \(rlr)")

if let rlx = urlResponse.allHeaderFields["Fitbit-Rate-Limit-Reset"] as? NSString
as? String {
rateLimitReset = rlx.toInt()
rateLimitTimeStamp = String(format:"%d", Int(NSDate().
timeIntervalSince1970)).toInt()
print("RESPONSE HEADER ratelLimitReset: \(rlx), checked
at: \(rateLimitTimeStamp)")

}
}

enum APIService {
case USER, ACTIVITIES, FOODS, GOOD_JSON, BAD_JSON
func toString() -> String {
var service: String!
switch self {
case .USER:
service = "user"
case .ACTIVITIES:
service = "activities"
case .FOODS:
service = "foods"
case .GOOD_JSON:
service = "data"
case .BAD_JSON:
service = "badData"
}

return service
}
}
enum APIMethod {
case GET, PUT, POST, DELETE
func toString() -> String {

var method: String!
switch self {

case .GET:

method = "GET"
case .PUT:

method = "PUT"
case .POST:

method = "POST"



CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API 151

case .DELETE:
method = "DELETE"
}

return method

The OAuth Library

This library (OAuth1a.swift) handles the signing of the requests, not making the request
themselves. There is more work for you to do to integrate all the steps in the OAuth process,
and the best choice here is to build a good foundation, get the signing process right, and
extend this later as needed.

The header of the library contains the essential variables specific to the signing process like
the signatureMethod, oauthVersion and all the keys and tokens involved in any request. The
init function assigns values for these, if they were provided. Depending on the request we
are signing, we might need just a subset of them.

This code in Listing 5-24 and all other code in this section is saved in the OAuthia.swift file:

Listing 5-24.

import Foundation
class OAuthia {
var signatureMethod: String = "HMAC-SHA1"
var oauthVersion: String = "1.0"
var oauthConsumerKey: String!
var oauthConsumerSecret: String!
var oauthToken: String!
var oauthTokenSecret: String!

required init (oauthParams: NSDictionary) {
oauthConsumerKey = oauthParams.objectForKey("oauth consumer key") as! String
oauthConsumerSecret = oauthParams.objectForKey("oauth_consumer secret") as! String
oauthToken = oauthParams.objectForKey("oauth_token") as! String
oauthTokenSecret = oauthParams.objectForKey("oauth token secret") as! String

We saw that the elements that help randomize the signature are the timestamp and the
nonce. The timestamp is just the epoch time and can be easily read from NSDate. We are
only interested in the Int value of this, which is the epoch time in seconds. This is found in
the signRequest() function listed below:

let timeStamp = String(format:"%d", Int(NSDate().timeIntervalSince1970))

We created a separate function for the nonce, which makes things very easy for the caller. It takes
an alphanumeric string that contains all valid characters then runs a random pointer over the
string and extracts a character at that index until we get a random string in the desired length:



152 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fithit API

Listing 5-25.

func randomStringWithLength (len : Int) -> String {
let letters : NSString = "abcdefghijklmnopqrstuvwxyzABCDEFGHIIKLMNOPQRSTUVIWXYZ0123456789"
var randomString : NSMutableString = NSMutableString(capacity: len)

for (var i=0; i < len; i++){
var length = UInt32(letters.length)
var rand = arc4random_uniform(length)
randomString.appendFormat("%C", letters.characterAtIndex(Int(rand)))

}

return randomString as String
}
Signing the Request

The main function in this library is signRequest(). It takes the request object, the URL
parameters, as well as an optional alternative URL to be used for signing the request. The
first thing we do is to prepare the timeStamp, nonce, and the URL to be used for signing.
These are the variable parts in our signature. To make debugging easy we added some
console logging statements. There is no need to log these to the text area on the screen,
since it would crowd the space and provide little value once we get the first request right.

Listing 5-26.

func signRequest (request: NSMutableURLRequest, urlParameters: [String:String]!=[:],
signUrl: String!=nil) {
let timeStamp = String(format:"%d", Int(NSDate().timeIntervalSince1970))
var nonce = randomStringWithLength(11)
var baseUrl: String
if signUrl == nil {
baseUrl = (request.valueForKey("URL") as! NSURL).absoluteString!
print("REQUEST URL: " + baseUrl)

else {
baseUrl = signUrl
print("SIGN URL: " + signUrl)

print("TIMESTAMP: " + timeStamp)
print("NONCE: " + nonce)

To calculate the signature we follow the guidance from the OAuth 1.0a specs, and we will
find that the Fitbit APl is following them indeed to the letter. In fact, we built this initially
using the Google interactive OAuth 1.0a page, and it just worked with Fitbit. The order of the
params has to be preserved exactly as shown. We also log in to the console the elements
that contribute to the signature, to be able to verify the output with the API support page.

It is important to observe that we escape both the baseUrl and the normalizedParameters
strings once more before joining them into the signatureBaseString. We also notice that the
urlParameters are mixed with the OAuth parameters; in fact, the resulting URL string needs
to be sorted alphabetically by keys. The sorting is case-sensitive, so Z comes before a.



CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API 153

The signing key for hmac() is the concatenated values (each first encoded per Parameter
Encoding) of the Consumer Secret and Token Secret, separated by an ‘&’ character
(ASCII code 38) even if empty.

Listing 5-27.

var signatureParams: [String:String] = [:]
for (key, value) in urlParameters {
signatureParams.updateValue(value, forKey: key)
}

signatureParams.updateValue(oauthConsumerKey, forKey: "oauth_ consumer key")
signatureParams.updateValue(nonce, forKey: "oauth nonce")
signatureParams.updateValue(signatureMethod, forKey: "oauth signature method")
signatureParams.updateValue(timeStamp, forKey: "oauth timestamp")

if oauthToken != nil {
signatureParams.updateValue(oauthToken, forKey: "oauth token")
request.setValue(oauthToken, forHTTPHeaderField: "oauth token")
}

signatureParams.updateValue(oauthVersion, forKey: "oauth_version")
var normalizedParameters: String = asURLString(inputData: signatureParams)

var signatureBaseString: String = "&".join([
request.HTTPMethod,
baseUrl.escapeUrl(),
normalizedParameters.escapeUrl()
1)
// the key is the concatenated values (each first encoded per Parameter Encoding)
// of the Consumer Secret and Token Secret, separated by an '&' character (ASCII code 38)
even if empty
var signKey = oauthConsumerSecret.escapeUrl() + "&" + oauthTokenSecret.escapeUrl()
var signature = signatureBaseString.hmac(HMACAlgorithm.SHA1, key: signKey)

print("SIGNATURE STRING: " + signatureBaseString)
print("SIGNATURE KEY: " + signKey)
print("SIGNATURE: " + signature)

Now that we have the signature, we need to populate the request header with the correct
string. Here, too, the alphabetic order of the parameters is important.

Listing 5-28.

// This exact order has to be preserved
let header: OAuthiaHeader = OAuthiaHeader(name: "OAuth")
header.add("oauth_consumer_key", value: oauthConsumerKey)
header.add("oauth_nonce", value: nonce)
header.add("oauth_signature", value: signature)
header.add("oauth_signature method", value: signatureMethod)
header.add("oauth _timestamp", value: timeStamp)
header.add("oauth_token", value: oauthToken)



154 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fithit API

header.add("oauth_version", value: oauthVersion)
let hParams = header.asString()

print("HEADER: Authorization: " + hParams)
request.setValue(hParams, forHTTPHeaderField: "Authorization")

Creating the OAuth H

The code that puts together correctly the header entry and escapes the values is tucked
away in an inner class, at the end of the OAuthia.swift file:

Listing 5-29.

class OAuthiaHeader {
var hName: String!
var params: Array<String>!
required init (name: String) {
params = Array<String>()
hName = name

}
func add (key: String, value: String) {

params.append(key + "=\"" + value.escapeUrl() + "\"")

func asString () -> String {
var hParams: String = ", ".join(params)
return hName + " " + hParams

}

We did not create a common library for the APIClient and this OAuth1a library, so we need
to duplicate some code that encodes the URL for signing. Sorting of parameters was not
needed in the actual URL but is needed for the correct OAuth signature.

Listing 5-30.

func asURLString (inputData: [String:String]!=[:]) -> String {
var params: [String] = []
for (key, value) in inputData {

params.append( "=".join([ key.escapeUrl(), value.escapeUrl()] ))
params = params.sort { $0 < $1 }

return "&".join(params)

}

This was all the work needed for the OAuth signature. It wasn’t that bad, right? As a bonus,
we added the signTempAccessToken() function that can be used for the signing of the first
step in registering the access of your app to a user account. Notice that the requestUrl

is stripped of the protocol and the host part, so that instead of the full URL https://api.
fitbit.com/oauth/request_token only the oauth/request_token path is used for signing.


https://api.fitbit.com/oauth/request_token
https://api.fitbit.com/oauth/request_token

CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API 155

Listing 5-31.

func signTempAccessToken (request: NSMutableURLRequest) {
// This request does not use the URL for signing, but rather the path oauth/request_token
var requestUrl = request.valueForKey("URL") as? NSURL
var urlPath: String = requestUrl!.path!
urlPath = String( dropFirst(urlPath) )
signRequest(request, signUrl: urlPath)

The code for OAuth1a.swift

Here is the complete code in the OAuth1a.swift library.

Listing 5-32.

import Foundation
class OAuthia {
var signatureMethod: String = "HMAC-SHA1"
var oauthVersion: String = "1.0"
var oauthConsumerKey: String!
var oauthConsumerSecret: String!
var oauthToken: String!
var oauthTokenSecret: String!

required init (oauthParams: NSDictionary) {
oauthConsumerKey = oauthParams.objectForKey("oauth_consumer key") as! String
oauthConsumerSecret = oauthParams.objectForKey("oauth consumer_secret") as! String
oauthToken = oauthParams.objectForKey("oauth token") as! String
oauthTokenSecret = oauthParams.objectForKey("oauth token secret") as! String

}

func randomStringWithLength (len : Int) -> String {
let letters : NSString = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"
var randomString : NSMutableString = NSMutableString(capacity: len)

for (var i=0; i < len; i++){
var length = UInt32(letters.length)
var rand = arc4random_uniform(length)
randomString.appendFormat("%C", letters.characterAtIndex(Int(rand)))
}

return randomString as String

}

func signRequest (request: NSMutableURLRequest, urlParameters: [String:String]!=[:],
signUrl: String!=nil) {
let timeStamp = String(format:"%d", Int(NSDate().timeIntervalSince1970))
var nonce = randomStringWithLength(11)
var baseUrl: String



156 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fithit API

if signUrl == nil {
baseUrl = (request.valueForKey("URL") as! NSURL).absoluteString!
print("REQUEST URL: " + baseUrl)

else {
baseUrl = signUrl
print("SIGN URL: " + signUrl)

print("TIMESTAMP: " + timeStamp)
print("NONCE: " + nonce)

// The signing params need to be sorted alphabetically

var signatureParams: [String:String] = [:]

for (key, value) in urlParameters {
signatureParams.updateValue(value, forKey: key)

}

signatureParams.updateValue(oauthConsumerKey, forKey: "oauth_consumer_key")
signatureParams.updateValue(nonce, forKey: "oauth_nonce")
signatureParams.updateValue(signatureMethod, forKey: "oauth signature method")
signatureParams.updateValue(timeStamp, forKey: "oauth timestamp")

if oauthToken != nil {
signatureParams.updateValue(oauthToken, forKey: "oauth token")
request.setValue(oauthToken, forHTTPHeaderField: "oauth_token")
}

signatureParams.updateValue(oauthVersion, forKey: "oauth version")
var normalizedParameters: String = asURLString(inputData: signatureParams)

var signatureBaseString: String = "&".join([

request.HTTPMethod,

baseUrl.escapeUrl(),

normalizedParameters.escapeUrl()

D
// the key is the concatenated values (each first encoded per Parameter Encoding)
// of the Consumer Secret and Token Secret, separated by an '&' character
(ASCII code 38) even if empty
var signKey = oauthConsumerSecret.escapeUrl() + "8&" + oauthTokenSecret.escapeUrl()
var signature = signatureBaseString.hmac(HMACAlgorithm.SHA1, key: signKey)

print("SIGNATURE STRING: " + signatureBaseString)
print("SIGNATURE KEY: " + signKey)
print("SIGNATURE: " + signature)

// This exact order has to be preserved

let header: OAuthiaHeader = OAuthiaHeader(name: "OAuth")
header.add("oauth_consumer key", value: oauthConsumerKey)
header.add("oauth_nonce", value: nonce)
header.add("oauth_signature", value: signature)
header.add("oauth_signature method", value: signatureMethod)
header.add("oauth_timestamp", value: timeStamp)



CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API 157

header.add("oauth_token", value: oauthToken)
header.add("oauth_version", value: oauthVersion)
let hParams = header.asString()

print("HEADER: Authorization: " + hParams)
request.setValue(hParams, forHTTPHeaderField: "Authorization")

}

func asURLString (inputData: [String:String]!=[:]) -> String {
var params: [String] = []
for (key, value) in inputData {
params.append( "=".join([ key.escapeUrl(), value.escapeUrl()] ))
}

params = params.sorted{ $0 < $1 }
return "&".join(params)

}

func signTempAccessToken (request: NSMutableURLRequest) {
// This request does not use the URL for signing, but rather the path oauth/request_token
var requestUrl = request.valueForKey("URL") as? NSURL
var urlPath: String = requestUrl!.path!
urlPath = String( dropFirst(urlPath) )
signRequest(request, signUrl: urlPath)
}

class OAuthiaHeader {

var hName: String!

var params: Array<String>!

required init (name: String) {
params = Array<String>()
hName = name

}

func add (key: String, value: String) {
params.append(key + "=\"" + value.escapeUrl() + "\"")

}

func asString () -> String {
var hParams: String = ", ".join(params)
return hName + " " + hParams

Testing What We Have so Far

With the code we have so far, we can make requests to the local host, provided that we
set up the local playground with Apache and we have the two test documents in place. We
clicked the Good Request once the Bad Request once, and in Listing 5-33 we can see the
Xcode console output of the println() statements.



158 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fithit API

Listing 5-33.

REQUEST URL: http://127.0.0.1/data.json

TIMESTAMP: 1429481277

NONCE: OPrkKRdgn8I

SIGNATURE STRING: GET&http%3A%2 F%2 F127.0.0.1%2Fdata.json&oauth_consumer key%3D6cf4162
a72ac4a4382c098caec132782%260auth_nonce%3DOPrkKRdgn8I%260auth_signature method%3DHMAC-
SHA1%260auth_timestamp%3D1429481277%260auth_token%3D5a3ca2edf91d7175cad30bc3533e3c8a%260au
th_version%3D1.0

SIGNATURE KEY: c652d5fb28134467913b6b12121465af8da5bc974d697470a93ec59e9cfaee06d

SIGNATURE: 2Efcl/SN9s+xR9qRTObIsNQwkpI=

HEADER: Authorization: OAuth oauth_consumer key="6cf4162a72ac4a4382c098caec132782", oauth_
nonce="0PrkKRdgn8I", oauth_signature="2Efcl%2FSN9s%2BxR9qRTObIsNQwkpI%3D", oauth_signature_
method="HMAC-SHA1", oauth_timestamp="1429481277", oauth_token="5a3ca2edf91d7175cad30bc3533e3
c8a", oauth_version="1.0"

RESPONSE RAW: {"Response":{"key":"value"}}

RESPONSE SHA1: 5aelile3b34fdcd7fba984695€9001511c9e0aa8d

REQUEST URL: http://127.0.0.1/badData.json

TIMESTAMP: 1429481278

NONCE: O0OHgLcjefMé

SIGNATURE STRING:

GET&http%3A%2 F%2 F127.0.0.1%2FbadData.json&oauth_consumer_key%3D6cf4162a72ac4a4382c09
8caec132782%260auth_nonce%3D00HgLcjefM6%260auth_signature_method%3DHMAC-SHA1%260auth_
timestamp%3D1429481278%260auth_token%3D5a3ca2edf91d7175cad30bc3533e3c8a%260auth_
version%3D1.0

SIGNATURE KEY: c652d5tb28f344679f3b6b12121465af8da5bc974d697470a93ec59e9cfaee06d
SIGNATURE: DMB81a30U0161Ja7YvUIpYguunQ=

HEADER: Authorization: OAuth oauth_consumer key="6cf4162a72ac4a4382c098caec132782", oauth_
nonce="00HgLcjefM6", oauth_signature="DMB81a30U0161]a7YvUIpYguunQ%3D", oauth_signature_
method="HMAC-SHA1", oauth_timestamp="1429481278", oauth_token="5a3ca2edf91d7175cad30bc3533e3
c8a", oauth_version="1.0"

RESPONSE RAW: {"Response":{{"key":"value"}}

RESPONSE SHA1: bd28faef1bc309899ed8540105c86ad23c1f27e7

Our simulator screenshot in Figure 5-4 shows the results of our activity. Now we are ready to
test against the live API, and see if our OAuth work paid off.


http://127.0.0.1/data.json
http://127.0.0.1/badData.json

CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API 159

i0S Simulator - iPhone € - iPhone 6/i0S 8.2...
Carrier ¥ 3:09 PM -

Clear Log

Good Request

Bad Request

=> === Good Request ===
=> URL: http://127.0.0.1/data.json
=> RESPONSE JSON: {

“Responsa” : {

"key" : "value®

)
}
=> === Bad Request ===
=> URL: http://127.0.0.1/badData.json
=> RESPONSE RAW: ("Response™:{{*key":"value’}}
=> Ermror Domain=NSCocoaErmorDomain Code=3840 "The
operation couldn't be complated. (Cocoa error
3840.)° (Garbage at end.) Userinfo=0x7{94c3cT62c0
{NSDebugDescription=Garbage at end.}

Figure 5-4. The simulator screenshot

Making requests to the Fithit API

By now we know that there is no magic to the API request process; it is just important to
assemble all the parts of the request in the correct order.

Get the correct tokens and create the OAuth signature with all elements
in the correct order.

Keep track of the rate limiting parameters that could cripple your app if
there is too much traffic.

Build a parser that handles the JSON output.

On the Fitbit developer page, we can use the debug tool to place an API request,

now that we know our access token and access token secret. Keep in mind that the request
is signed not only with the access token and the access token secret but also with the
oauth_consumer_key, which will be used by the API to identify the user account being
accessed. The oauth_consumer_key is present in the Header, while the oauth_consumer secret
is used together with oauth_token secret to sign the Base String.



160 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fithit API

Listing 5-34 shows the dissected request for the user profile, when we make the request
using curl. Shown are the defaults for a profile that has not been updated since the creation
of the account. The format of the response is well documented on the Fitbit developer site.

Listing 5-34.

Access Token: 5a3ca2edf91d7175cad30bc3533e3c8a

Access Token Secret: da5bc974d697470a93ec59e9cfaee06d

Request URL: https://api.fitbit.com/1/user/-/profile.json
Nonce: random

Timestamp: 1429396457

Type: GET

API request values:

Base string: GET&https%3A%2 F%2Fapi.fitbit.com%2 Fi%2Fuser%2 F-%2Fprofile.
json&oauth_consumer_key%3D6cf4162a72ac4a4382c098caec132782%260auth_nonce%3Drandom%26oauth_
signature_method%3DHMAC-SHA1%260auth_timestamp%3D1429396457%260auth_token%3D5a3ca2edf91d7175c
ad30bc3533e3c8a%260auth_version%3D1.0

Signed with: €652d5b28134467913b6b12121465af&das5bc974d697470a93ec59e9cfaee06d
Signature: c2wi9Xk+n0GpjRoyxtotIM5AyA4=

Listing 5-35 shows the request made with curl.

Listing 5-35.

$ curl -X GET -i -H 'Authorization: OAuth oauth_consumer key="6cf4162a72ac4a4382c098ca
ec132782", oauth_nonce="random", oauth_signature="c2wigXk%2BnOGpjRoyxtotIM5AyA4%3D", oauth_
signature_method="HMAC-SHA1", oauth_timestamp="1429396457", oauth_token="5a3ca2edf91d7175cad
30bc3533e3c8a", oauth_version="1.0"' https://api.fitbit.com/1/user/-/profile.json

Listing 5-36 shows the output of the curl request.

Listing 5-36.

HTTP/1.1 200 OK

Server: nginx

X-UA-Compatible: IE=edge,chrome=1

Expires: Thu, 01 Jan 1970 00:00:00 GMT
Cache-control: no-cache, must-revalidate
Pragma: no-cache

Fitbit-Rate-Limit-Limit: 150
Fitbit-Rate-Limit-Remaining: 149
Fitbit-Rate-Limit-Reset: 1478

Set-Cookie: JSESSIONID=5D7EA76F7CBOC45BF1A7A020C9BAC55B. fitbitl; Path=/; HttpOnly
Content-Type: application/json;charset=UTF-8
Content-Language: en

Content-Length: 657

Vary: Accept-Encoding

Date: Sat, 18 Apr 2015 22:35:21 GMT


https://api.fitbit.com/1/user/-/profile.json
https://api.fitbit.com/1/user/-/profile.json

CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API 161

{"user":{"avatar":"http://www.fitbit.com/images/profile/defaultProfile 100 male.gif",
"avatar150":"http://www.fitbit.com/images/profile/defaultProfile_150 male.gif","country":
"US","dateOfBirth":"","displayName":"","distanceUnit":"en_US","encodedId":"3BRQLQ",
"foodsLocale":"en_US","gender":"NA","glucoseUnit":"en_US","height":0,"heightUnit":
"en_US","locale":"en_US","memberSince":"2015-04-02","offsetFromUTCMillis":-25200000,
"startDayOfleek" : "SUNDAY","strideLengthRunning":86.60000000000001, "strideLengthWalking"

67.10000000000001, "timezone" : "America/Los_Angeles","topBadges":[], "waterUnit":
"en_US", "waterUnitName":"fl oz","weight":62.5, "weightUnit":"en US"}}

To make live requests, we need to uncomment the api.golLive() in the ViewController
library, and our requests will go directly to the Fitbit API. Of course, you need to make
sure that the oauthParams in the APIClient are set to the values you generated while going
through the registration steps of your application, as shown in section “The Fitbit OAuth
Implementation.”

Retrieving the User Profile

Not to forget, we have two test buttons in the view controller that test against the local
documents. The easiest way to test if the APl is working is to repurpose the code and make
a user profile request. In the ViewController.swift file we have the following:

@IBAction func clickButton() {
logger.logEvent("=== Good Request ===")
// api.getData(APIService.GOOD_JSON) // TEST CALL
api.getData(APIService.USER, id: "-", urlSuffix: NSArray(array: ["profile"]))
labelButton.setTitle("Good Request Sent", forState: UIControlState.Normal)

}

We click the button and here is our first API call made through the application works. In the
Xcode console we see the full detail of the request/response (see Listing 5-7).

Listing 5-37.

REQUEST URL: https://api.fitbit.com/1/user/-/profile.json

TIMESTAMP: 1429482687

NONCE: eTYGnygDYr4

SIGNATURE STRING: GET&https%3A%2 F%2Fapi.fitbit.com%2 F1%2Fuser%2 F-%2Fprofile.json8oauth_
consumer_key%3D6cf4162a72ac4a4382c098caec132782%260auth_nonce%3DeTYGnygDYr4%260auth_
signature_method%3DHMAC-SHA1%260auth_timestamp%3D1429482687%260auth_token%3D5a3ca2edf91d7175
cad30bc3533e3c8a%260auth_version%3D1.0

SIGNATURE KEY: c652d5tb28f344679f3b6b12121465af8da5bc974d697470a93ec59e9cfaee06d
SIGNATURE: a+CWGx1sJiilGc7ezIZVNtw3ASA=

HEADER: Authorization: OAuth oauth_consumer key="6cf4162a72ac4a4382c098caec132782",
oauth_nonce="eTYGnygDYr4", oauth_signature="a%2BCWGx1sJiilGc7ezIZVNtw3ASA%3D",
oauth_signature_method="HMAC-SHA1", oauth_timestamp="1429482687", oauth_token=
"5a3ca2edf91d7175cad30bc3533e3c8a", oauth version="1.0"


https://api.fitbit.com/1/user/-/profile.json
http://www.fitbit.com/images/profile/defaultProfile_150_male.gif
https://api.fitbit.com/1/user/-/profile.json

162 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

RESPONSE HEADER ratelimit: 150

RESPONSE HEADER ratelimitRemaining: 149

RESPONSE HEADER ratelimitReset: 1713, checked at: 1429482687

RESPONSE RAW: {"user":{"avatar":"http://www.fitbit.com/images/profile/defaultProfile 100
male.gif","avatar150":"http://www.fitbit.com/images/profile/defaultProfile 150 male.gif",
"country":"US","dateOfBirth":"","displayName":"","distanceUnit":"en US","encodedId":
"3BROLQ", "foodsLocale":"en_US","gender":"NA","glucoseUnit":"en_US","height":0, "heightUnit":
"en_US","locale":"en_US","memberSince":"2015-04-02","offsetFromUTCMillis" :-25200000,"
startDayOfWeek" : "SUNDAY", "stridelLengthRunning" :86.60000000000001, "stridelLengthWalking"
:167.10000000000001, "timezone" : "America/Los_Angeles","topBadges":[], "waterUnit":

"en _US","waterUnitName":"fl oz","weight":62.5, "weightUnit":"en US"}}

RESPONSE SHA1: caa14550567548b173a0a904f0b3c7bae6d7452a

Figure 5-5 shows the screenshot of the user profile as it was read.

iOS Simulator - iPhone 6 - iPhone 6 /i0S 8.2...
Carrier ¥ 3:33PM -

Clear Log

Good Request

Bad Request

=> === Good Request ===
=> URL: https://api.fitbit.com/1/user/-/profile.json
=> RESPONSE JSON: {
"user” : |
“encoded|d” : "3BROLQ",
"weight® : 62.5,
“glucoseUnit* : "en_US",
“country” : *US*,
“weightUnit"® : "en_US",
“dateOfBirth" : **,
“displayName" : **,
“strideLengthWalking® : 67.10000000000001,
"heightUnit® : "en_US",
“strideLengthRunning” : 86.60000000000001,
"topBadges” : [

“foodsLocale” : "en_US",

"locale” : "en_US",

"gender” : "NA",

“startDayOfWeek" : "SUNDAY",

"height” : 0,

“"timezone" : "America\/Los_Angeles",

"offsetFromUTCMillis* : -25200000,

“avatar® : "http:\\fwww fitbit. com\/images\/profile\/
defaultProfile_100_male.gif",

“avatar150" : "http:\V'www.fitbit.comVimages\profile\/
defaultProfile_150_male.gif",

“distancal Init* - *an 1187

Figure 5-5. Screenshot of the user profile



CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API 163

Retrieving and Setting Data in the API

Like retrieving the user profile, this is a simple GET with a given API target. The following is a
nonexhaustive list of targets you can currently query that retrieve and set user data:

Get/Set body measurements

Get/Set body weight and body fat
Get/Set blood pressure and heart rate
Get/Set glucose

With the exception of body weight and body fat, all the foregoing targets are unfortunately
on the list of deprecated API features (as of October 2014). We expect that ultimately all
services will be migrated to OAuth 2.0. Deprecated means that the features are still available
but are not actively developed and will be later replaced by other features. The deprecated
services will still be available for a while, after the new services are in place.

Fitbit announced three new products at the time of writing of this book: Charge, Charge HR,
and Surge. The Fitbit API will provide access to the all-day heart rate and GPS data from
these devices; however, these data types will be accessible exclusively via OAuth 2.0.

As the transition to OAuth 2.0 will be happening in the coming months, there is little point in
detailing here how to use the entire set of deprecated API services. To make things easy we
will show how to get and set a few data points: all other services are similar in nature to the
request response, and well documented on the Fitbit developer page.

Getting the Blood Pressure

We will repurpose our “Good Request” Button in the ViewController.swift file to make
this request:

@IBAction func clickButton() {
logger.logEvent("=== Good Request ===")
// api.getData(APIService.GOOD_JSON) // TEST CALL
// api.getData(APIService.USER, id: "-", urlSuffix: NSArray(array: ["profile"]))
api.getBloodPressure()
labelButton.setTitle("Good Request Sent", forState: UIControlState.Normal)

}

The function we wrote in the APIClient is rather simple, and it makes use of the abstraction
we created with getData(). This method is located in the APIClient.swift file.

func getBloodPressure (date: NSDate?=NSDate()) {
let formatter = NSDateFormatter()
formatter.dateFormat = "yyyy-MM-dd"
let currentDate = formatter.stringFromDate(date!)
print("CURRENT DATE: \(currentDate)");
getData(APIService.USER, id: "-", urlSuffix: NSArray(array: ["bp/date", currentDate ]))



164 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fithit API

The function makes the following API call:
GET /1/user/-/bp/date/2015-04-23.json

Naturally, since we did not send any blood pressure information to the API yet, the default
response is blank, as shown below. Your response handler needs to be able to deal with an
empty response.

{"bp":[]}

Keep in mind that this response right now goes nowhere. When you implement your
application, you will have decide how to handle it in the processGETData() callback function
in the API, based on the data you set in the urlSuffix param, which we now know can be
composed of the service name and its parameters.

When there are records for the blood pressure in the system, our response will be more like
the following example shown in Listing 5-38:

Listing 5-38.
{

"average": {
"condition":"Prehypertension",
"diastolic":85,
"systolic":115

15

"bp": [

{
"diastolic":80,
"logId":483697,
"systolic":120

1

{
"diastolic":90,
"logId":483699,
"systolic":110,
"time":"08:00"

}

]
}

Setting the Blood Pressure

Continuing to abuse the “Good Request” Button, we change things once again, this time
calling the new function. Keep in mind that these are both async methods, and the way we
implement them here is not necessarily the best way, as there is no guarantee which one
reaches the API first, and they both rely on the processGETData() in the APIClient to handle
the response. This function is in ViewController.swift.



CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API

@IBAction func clickButton() {
logger.logEvent("=== Good Request ===
// api.getData(APIService.GOOD_JSON) // TEST CALL
api.getData(APIService.USER, id: "-", urlSuffix: NSArray(array: [“profile"]))
labelButton.setTitle("Good Request Sent", forState: UIControlState.Normal) }

165

We keep the getBloodPressure() function we wrote before, since we will need to read back the
data we are setting so we create the setBloodPressure() function(located in APIClient. swift):

func setBloodPressure (date: NSDate?=NSDate()) {
let formatter = NSDateFormatter()
formatter.dateFormat = "yyyy-MM-dd"
let currentDate = formatter.stringFromDate(date!)
let request: [String:String] = ["diastolic":"80","systolic":"120","date": currentDate]
postData(APIService.USER, id: "-", urlSuffix: NSArray(array: ["bp" ]), params: request)

}
This function makes the following API call:
POST /1/usex/-/bp.json?date=2015-04-23&diastolic=80&systolic=120

The API responds with the data that was just inserted, with a populated logld.

{

"bpLog": {
"diastolic":80,
"logId":1298241959,
"systolic":120

}

}

If we now make a call to get the blood pressure data, we get the full detail, including the
friendly health warning. It is important to note that there is no timestamp, because we did
not provide one, the field being optional.

{

"average": {
"condition":"Prehypertension”,
"diastolic":80,

"systolic":120

1
"bp": [
{
"diastolic":80,
"logId":1298241959,
"systolic":120
}



166 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fithit API

Logging the Body Weight

Just as we did for blood pressure, the service that lets you set and get body weight data has
a similar implementation. To set the body weight, we call the service with the parameters
listed in the API docs, very much like we did with the other service. Save this function in the
APIClient.swift.

func setBodyWeight (date: NSDate?=NSDate()) {
let formatter = NSDateFormatter()
formatter.dateFormat = "yyyy-MM-dd"
let currentDate = formatter.stringFromDate(date!)
let
postData(APIService.USER, id: "-", urlSuffix: NSArray(array: ["body/log/weight" ]),
params: request)

}

This function makes the following API call:

POST /1/user/-/bp.json?date=2015-04-248weight=73

The GET is no different from the blood pressure call, other than the URL path(APIClient.swift):

func getBodyWeight (date: NSDate?=NSDate()) {
let formatter = NSDateFormatter()
formatter.dateFormat = "yyyy-MM-dd"
let currentDate = formatter.stringFromDate(date!)
getData(APIService.USER, id: "-", urlSuffix: NSArray(array: ["body/log/weight/date",
currentDate ]))

}
This function makes the following API call:
GET /1/user/-/body/log/weight/date/2015-04-24.json

The response from APl is JSON data in the following format:

{
"weight": [
{
"bmi":o0,
"date":"2015-04-24",
"logId":1429919999000,
"time":"23:59:59",
"weight":73



CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fitbit API 167

OAuth versions: Working in both worlds

The current version of the APl used by Fitbit is OAuth 1.0a. This is a stable, very secure, and
reliable protocol but intrinsically complex. Just as is the case with PGP encryption, complex
and secure crypto and protocols are being replaced by others that might not be so good,
but they are convenient to implement.

OAuth 1.0a is signing every request, and that can be a resource drain on either side of

the implementation (client/server). At the same time, there is no clear separation of roles
between the authorization server and the resource server since a lot of data needed for
signing is common to these roles. Granted, OAuth 1.0a has its place for the security it offers;
alone for the sheer advantage of being able to sign and trust every request, it might never
completely go away, but ease of implementation is not its forte. Consider, however, that with
OAuth 1.0a when correctly implemented, the chance of success for a Man-in-the-Middle
type of attack is extremely low, while with token-based protocols like OAuth 2.0, it’s a simple
matter of breaking SSL, which in the last years is developing holes much like Swiss cheese.

A lot of the recent API implementations favor OAuth 2.0.

OAuth 2.0 also accommodates much easier native applications with specifically suited
workflows. It also provides a very clear separation of roles between the authentication server
and the server handling the request.

Viewed on an elementary level, OAuth 2.0 defines the following workflow:

Authenticate with the authorization server, and get an authorization code
Request from the authorization server a set of access and refresh tokens

Using the access token, request restricted resources from the
resource server

Periodically use the refresh token to get from the authorization server a
new access token

The access token is set to have an expiration date, and the lifetime of one token varies with
the implementation.

Given that OAuth 2.0 also gets a bad rap from security experts for the many loose ends
in the specification and the potential for abuse and misrepresentation of the caller, it is
conceivable that further versions of the standard will come up in the next years. For that
matter alone, it would serve you well to follow the development of the standard and how
service providers like Fitbit follow up with it.

In the case of Fitbit, the company announced support for OAuth 2.0, but there was no clear
detail of implementation available at the time of writing this chapter. If you need to deliver
your application right now, you should write services following the current OAuth 1.0a
standard, but also be ready to provide upgrades to your app that will use the OAuth 2.0
services when they become public and well documented.



168 CHAPTER 5: Integrating Third-Party Fitness Trackers and Data Using the Fithit API

Consider that we went through a rather complex process to implement (in part) the OAuth 1.0a
for the Fitbit APl in its current version; looking back at the code, it wasn’t all that bad. Writing
code for OAuth 2.0 is likely to be easier, at least because you won’t need to sign every request,
and you can reuse much of this code: in fact you will have to, because for a good while you
will have to live in both worlds, as Fitbit transitions the API from OAuth 1.0a to OAuth 2.0.

As mentioned at the beginning of this chapter, the transition from old to new is a gradual
process for most APIs. Your application will be alive and well for quite a while, and you will
have the time to study, implement, test, and deliver an upgraded version of your app that
supports OAuth 2.0. What is most likely to happen is that Fitbit will offer specific services
only on OAuth 2.0; so, for that reason alone, you will have to upgrade your app to support it
as soon as it becomes available.

Summary

We learned in this chapter how to build an API to communicate with the Fitbit APl and
implement a few calls that get and set health data. Since this API, as most APIs out there, is
under constant development, you might need to implement new or different calls to the API
to do what we did here, as well as add support for OAuth 2.0 for the new API version, but
the basic principles remain the same.



Chapter

Building Your First
watchOS App

Ahmed Bakir

Introduction

In late 2014, Apple replied to the vocal concerns of many of its critics and consumers

by introducing a completely new “product category” — the Apple Watch. This came as

a surprise to (almost) everyone, why would the most profitable computer company in
history enter the smart watch market, a “fad” that had yet to achieve a killer app? Similarly,
how would they address people’s bias as to how watches should look and work (they’ve
only been around for a few thousand years)? And what would they do to make it an app
platform?

The answer was to apply the lessons they had learned about mobile computing (low energy,
low memory, limited screen size) to a device that was even smaller than the original iPhone.
Much like the iPhone, the Apple Watch runs an operating system based on another in their
family (watchOS, a subset of iOS), it has an open API (Application Programming Interface)
that anyone can develop software for, and it has an App Store that users can access through
iTunes. Due to the limited screen size and input devices on a watch (a touch screen and
digital crown), watchOS apps are not intended to be as fully featured as iOS apps and as
distributed as “extensions” of iPhone applications on the App Store. This has the positive
side effect of allowing you to share data and pass off tasks to the parent application.

As the name implies, watchOS is a complete operating system, allowing watch applications
to run independently when an iPhone is not present, such as when you are at the gym. Many
of the frameworks on watchOS are taken directly from iOS, such as Core Data, Core Motion,
and Core Location, but with a limited featured set. One of the key concepts in developing a

169



170 CHAPTER 6: Building Your First watch0S App

resource-limited computer system, such as a smart watch, is that you should only include
the functionality you need to make it fit in the resources you have; e.g., a smart watch does
not need the advanced home screen of a phone to launch an app.

In this chapter, you will learn how to get started in Apple Watch development by adding

an Apple Watch extension to the CarFinder application from the first chapter. As shown in
Figure 6-1, the extension exposes a table view that allows users to view a list of their logged
locations and details about each, including a map and the GPS coordinates. This exercise
is intended to help you learn the basics of watchOS app architecture and how to use Xcode
to develop watchOS apps. In the following chapters, you will learn more advanced features
to make the app even more useful, such as logging location from the watch, adding
speech-to-text to the app, and accessing data sources from the Internet directly on the
watch. The completed version of the project is available in the Ch7 folder of this book’s
source code bundle on the Apress website.

7.1.1 Table View - Scrollable list of cells containing
coordinates of saved locations and time saved.

-311100, 103.0002 )
502 PM 7/6/2015 7.1.2 Compass - Custom graphic

7.1.3 Coordinates - Label indicating saved coordinates
7.1.4 Timestamp - Label indicated time saved

7.1.5 Pin Drop - Shows saved location

7.1.6 Map View - Shows saved location as a pin drop

on a map.

‘ Location List ‘ ‘ Location Details ‘

Figure 6-1. Mock-up of CarFinder Watch App

watchOS Apps vs. iOS Apps

Before moving into how you build a watchOS app, it is good to know how watchOS apps
differ architecturally from iOS apps (aside from running on a different operating system.)

To reduce the learning curve for developers coming from iOS and OS X, Apple aimed to
make both platforms functionally similar (even retaining some of the same class hames and
API calls), but changes had to be made to fit the operating system on the watch’s limited
resources.

The most significant difference between watchOS and iOS that will help you understand the
delta between the platforms is that you cannot create new user interface objects at runtime
on watchOS. Although both platforms adopt Model-View-Controller (MVC) as their main
design pattern for user interface development, on watchOS, you can only update or present
existing element at runtime. More simply put, this means, if an element or view controller is
defined on the storyboard for your watchOS app, then you can access it at runtime. Since
you cannot instantiate new user interface elements, you will learn new tricks to work around
this limitation, such as setting elements to “invisible” during runtime. For better or worse,
watchOS implements storyboards in the same manner as iOS and OS X (where you define
the layout and tie it to parent classes in Interface Builder.)



CHAPTER 6: Building Your First watch0S App 17

The lack of runtime user interface changes in watchOS is also reflected in how watchOS
apps are built and distributed on the App Store. When you compile an iOS or OS X app, the
source code files are compiled into object code and all of the resources (storyboards,
images, and any other files you manually add to your project) are bundled into one .app file.
When you download an iOS or OS X app, the entire .app file is installed on the device. On
the other hand, watchOS apps produce two output files (a “WatchKit app” and a “WatchKit
extension”), which are packaged and inside of your iOS app’s .app file. There is a bit of term
overloading here, which | will explain. A WatchKit app refers to the storyboard file and other
static resources that you include in your project file. A WatchKit extension contains all of the
compiled source code for your watchOS project. When you choose to install a watchOS app
on your Apple Watch, iOS grabs these files from the iOS app’s bundle and copies them over
to your watch. You can take advantage of this bundling to create “shared groups”, which
allow you to share files between your iOS app and watchOS app.

Note WatchKit refers to the base framework for watchOS app development. watchOS includes
another similarly named framework called ClockKit, which is used to build a complication, or
plug-in, for Apple Watch’s built-in watch faces.

In the introduction, | mentioned that watchOS includes many of the frameworks you are
familiar with from Cocoa Touch. Some of these frameworks, and their intended uses, are
listed in Table 6-1. In watchOS 2.0 and higher, these frameworks are installed on the watch,
allowing your watchOS app to execute commands from these frameworks without being
connected to the phone. It also has the side effect of allowing you to access the Apple
Watch’s hardware, such as the heart rate monitor, accelerometer and GPS directly.

Table 6-1. Cocoa Touch Frameworks Available on watchOS

Framework Intended Purpose
Contacts Access to the user’s contacts, including all relevant metadata
Core Data Database operations

Core Location Access to the user’s current location
CoreGraphics Lightweight drawing and graphics operations.

EventKit Access to the user’s calendars and reminders

One important omission you will note is UIKit. watchOS only supports a limited subset

of user interface elements, which are managed by the WatchKit. Since you can not
instantiate new elements at runtime or perform more complicated actions on them, such
as rotation, animation, or modifying how they are drawn, many of the functions of UIKit
are extraneous on the Apple Watch. The primary WatchKit class you will use in this book

is WKInterfaceController, which takes the place of UIViewController. The WatchKit user
interface class names all start with WKInterface (ex, WKInterfacelabel, WKInterfaceButton,
WKInterfaceMap).



172 CHAPTER 6: Building Your First watch0S App

A final note to make about watchOS apps is the nature of its interfaces. Unlike an iOS app,

a watchOS has three distinct user interfaces: the main interface for the app, a “glance”
interface, and a “notification” interface. As the name implies, the main interface is what
shows up on the screen when the app is launched. The glance interface is a single-page
dashboard for your app that users can install in their “glance” menu, which comes up when
the user swipes up from the bottom on their Apple Watch screen. The notification interface is
another single-page interface that is initiated when the user receives a notification from your
watchOS app’s iOS counterpart. As these interfaces are initiated by three separate events,
your storyboard will reflect this with three “entry points” and three “scenes”, or workflows,
as opposed to the single scene you are used to from traditional iOS development.

Setting Up Your Project

To create a new Apple Watch app, you will need to add it as a new build target of an iPhone
application. A build target in Xcode is a set of configuration instructions that tell it how to
build your project, such as which files to compile, what the target OS is, and what constants
to apply. On large applications, it’'s common to have “debug” and “release” targets to build
a log-message heavy version of the application that sends data to a test server, and another
performance-optimized version that sends it to the “production” server. For this project, the
Apple Watch app target tells Xcode to bundle the Apple Watch-specific source files together
into an application that can be run on watchOS.

The project for this application extends the CarFinder project from Chapter 1, so duplicate
it and open it up in Xcode. To add a new target, go to the File menu in Xcode and select New
» Target, as shown in Figure 6-2.

& Xcode Edit View Find Mavigate Editor Product Debug Source Control Window Help
ea2e » { Tab BT | Today 21 8:08 Py 1 = @ e O3 O
= W nap
" Add Files to *CarFinder”.. TRA | Window oRT =
B R Q CAD 0O ®
File... BN
.y Open... ®o - 0 ¥ 2 F identity and Type
- Cpen Recent > Playground.. CO®N ®Tes Info Build Settings Build Phases Bl Rule L
N b Wame CarFinder
Cpen Quickly... o380 =
Project. TN kocation AL
Close Window ®W Workspace... ~HN
. S Full Pt fUisers{abakin Deskiogich?)
Close “SecondViewController.swit®  ~%W oup ; CarFinder]
*  Close Project W Group from Selection CaFinderacodepo]
Buid 1
Save #®5 Project Decument
r i | DUPlcals.. %S Toam  Mone B Project Format  Xcode 3.2-compatizie |
Orgacization Ahmed Bakor
Class Prefix
Export...
Show in Finder Deployment Target - | Text Sottings
Open with External Editor Davices  Universal B Indent Using  Spaces <]
widths 45 [l
Save As Workspace... Msin Interface  Main B Tas et
Project Settings.. 9 Wrap fines
Device Origrtaticn ) Portrait
Page Setup... axp Source Contrel
Print... wp L D=
8 Landscape Right Tvne —
Status Bar Style  Dataut B 1 0@
Hide status bar View Controller - & cosrsber that
Resuives ull sereen sunages 4 vinm,
¥ App lcons and Launch Images Storyboard Reference - Provides &
plscehoider for & view controler in an
App lcons Saurce  Applcon Be exterrial storvboard,

Launch Images Source  Use Assat Catalog Mavigation Contraller - &

< coaller that mamages nagaticn
Leunch Sersen File LaunchSersen [~ through a hisrarchy of iews.

¥ Embedded Binaries

Figure 6-2. Xcode menu for creating a new build target


http://dx.doi.org/10.1007/978-1-4842-1194-6_1

CHAPTER 6: Building Your First watch0S App 173

You will be presented with the modal dialog shown in Figure 6-3, asking you to select a
platform and application type. Select watchOS as your platform and WatchKit Application as
your target type.

[ ] % CarFircder | i Phone Bs Pl Indesing | Processing files

1 Choose a template for your new target: 4 0O e

Mantity and Typa
ios

o e W Mame Secondvi
egate. swift Application Yype Defaul P
= FrsViowControllor. switt Framewark & Library
J Matchxi Location  Relative to Group v
+ SecondViewEantroller swift Application Extension | SMSLURITE  WatchKit App .
for watchQs 1 SecondViewControter swif
B mainsterybosrd Test v F
Assets ycassets Ful Pach fUsers/sbakirfDesktop/ch?!
LaurchScroen storyboard WG CufinderCarfiedef
s R SecondViewControler swilt O
» [ Products Framework & Library ©On Domand Resource Tags
wos
Application

. Target Membership
Framework & Library A CarFinder
Application Extension

Test

o8 X Text Settings
Application Watchkit App Teat Encoding Cotault - Unicode (UTF-8)
Framework & Library This temzlate builds & WatchKit app with a0 sscciated app extension. Lire Engings  Default - 05 X j Unbe [LF) &
Application Extension indont Using  Spaces s
ERC I =
Cancel [ Next |

Wiew Controller - & ecetretior that
manages a view

Storyboard Reference - Provides &
placehoider for a view controller in an
external storyboard,

Navigation Controller - &
< conticiler that sanages navigation
through a hierarchy of views.

Figure 6-3. Creating a new build target

Caution The Apple Watch target under the i0S hierarchy tree builds an app for watchOS 1.
All of the examples in this book are written for watchOS 2 to take advantage of its expanded feature
set and more performant application architecture.

In a similar manner to an iOS application, you will be asked to name your WatchKit
application and select some template options. As shown in Figure 6-4, | have chosen to
give the name the WatchKit app “CarFinder - watchOS.” The WatchKit app takes the iOS
app’s name when it runs on the user’s watch, so the actual name of the target is only used
internally. A unique target name will make it faster for you to navigate between code in your
project.

| have also enabled the checkbox for “Include Notification Scene”. Apple recommends
selecting “Include Notification Scene” even if you are not implementing a notification for a
while, as their template will generate a scheme (an additional run-time configuration that is
applied to a target) and local file you can use to test notifications (as opposed to setting up
and connecting to an Apple Push Notification Service-enabled server).



174

® P u
MR QMeEoc @
7 & CarFinder
v CarFindor
2 AppDelegate.swift

+ RirstviowCentrollor. swift
2 SecondViewController sift
B wainstersoand
B Assets ycassets
LeurcnScrean storyboard
nfa.plist
- Progucts

i CarFinder ) i Phone Bs Plus

ng Your First watch0S App

CarFinder | Build CarFinder: Succeeded | Today at 8:05 PM

% Choose options for your new target:
m

Product Name: | CarFinder
Drganization Name: Ahmed Bakir
‘Drganizaticn dentifier:
Bundie identifier:

Language:
inchude Natification Scene
incluce Glance Scene
include Complication
Project: & CarFinder

Embed in Companion Application: & CarFinder

Cancel
g ——
¥ Apo lcons and Launch images.
App lcons Source  Apploan s 0
Launch images Scurce  Use Assa Catalog

Launch Screen File  LaunchScreen iy

¥ Embedded Binaries

Figure 6-4. Configuring your WatchKit target

Provious

I (=l=]=

» D@
ule Mentity and Typa
Name CarFindar

Location Abgalute

Full Pach fUsers/abakie/Deskiop/ch?!
wFinder/
CarFingder scodepm) ]

Project Document
Frojes: Format  Xeode 3.3-compatible k3
Onganization Ahmed Baid

Class Prafic

Tecxt Settings
Indent Using _ Spaces ki

Widths af 4.
Tab ndent

\Wirap lines

Soures Control
Repository ==
Tupe ==
0D0Oeo
Wiew Controller - & ecetretor that
manages a view,

‘Storyboard Reference - Provides a
wlacehaoider for a view controller in an
extornal storyboard,

conticller that manages navgation

< Navigation Cantroller - &
through a hierarchy of views.

The first time you set up a WatchKit target for a project, you may be presented with the
dialog box in Figure 6-5, which asks you to activate the scheme. Select Activate.

® P> u
B =

e
-]
3
v

a h o Eo B
CarFinder
B Mapiit framawork
Carinder
¢ ApcDelegato.swin
 FrstWiewController swilt

+ SecondViewControlier.swit
Main_storghosrd
B 4591520353918
LaurchScreen. storyboard
nfa.pist
> CarFinder - watch0S
[ CarFingar - watchDS5 Extension
» [ Products

o CarFinder ) i Phane Bs Plus

CarFinder | Build CarFinder: Succeeded | Today at 851 AM

B > | B carmincer
= = Activate "CarFinder - watch03" scheme?
[l @ caw.rsions Gene | This scheme has been crested for the “CarFinder =
watchQS” target. Choose Activate 10 use this scheme
¥ idontity for bulkding and debugging. Schemes can be chosen

in tho toolar of Froduct many.

Da not show this message again

Cancel Activate
Team Noow <
¥ CompBcations Configuration
D13 Source Clase hd
Suppocted Families | Modular Small
Modular Large
Utisarian Senall
utisarian Larga
Circular Small
Complications Group  None fa-]

¥ Embedded Binaries

+

¥ Linked Frameworks and Libraries

Figure 6-5. Activating the watchOS app build scheme

Build Phases

Build Ryl Duick Help

No Quick Help

0D0eo

Mo Matches




CHAPTER 6: Building Your First watch0S App 175

When working with Xcode projects that target different platforms (like watchOS + iOS),
activate the schemes that you are actively developing on. Disable schemes for targets you
are not using to speed up your compile time.

After activating the scheme, Xcode will take you back to the default view for your project.
As shown in Figure 6-6, you will notice “CarFinder - watchOS” and “CarFinder - watchOS
Extension” folders have been added to the project hierarchy, corresponding to WatchKit’s
definition of the two pieces of an app. The Interface.storyboard file contains the scenes
(or storyboard entry points) for the app’s main interface and its notification interface; you will
make all your storyboard changes in this file. In the same manner as a new iOS application,
it comes pre-configured with parent classes tied to each view controller.

ooe P ~ ) B Ahmed's iPha._ Apple Watch Indesing | Processing files = @ < 090
FaliiewControer swilt AppDelegate. swift
BEAaascsEoD B 8 < &) CarFinder ) I CaeFinder | = ApaDelegate.awitt ) No Selecticn D e
v [ CarFinder el
58 MapKit framework.
Carsinder — No Quick Help

# FrstViewController swift

+ SecondViewController switt

+ DataManager.swift
Mairgtersbosrd
Assals ycassets
LaurcnSereen.storyboard

nfa,plst

v CarFinder - watch0S

nterfece.storyboard

Assels xcaseety

worirolerawift

s LocationintertacaControlen.swift

&
]
i3

import UIKit

QUIAPLicat ionMadn

class Appbelegate: UIF i el
var window: UT
func application(application: Ulipplicaticn, didFinishLaunchingWithOptions leunchOptions: [MSOojects
A t17) -> B

/ 2 point for customization after application launch.
return true

fune applicationkil1Res ige n) {
f Sen i ive t

ecution, this method is called inm

[z = Mo Matches

Auts & = A1 Output & o0 s e

Figure 6-6. Changes to the CarFinder 'si: project

kmed



176 CHAPTER 6: Building Your First watch0S App

Debugging your watch0S App

The process of running a watchOS application is much like that of running an iOS
application: after selecting your build scheme, you pick a target device to run it on. As
shown in Figure 6-7, you select your run target by clicking on the Active Scheme drop-down
menu, next to the run/stop buttons in the top left corner of the Xcode main window.

ece p ~ ) M Ahmed's iPho.Apple Walch  CarFinder | Buikd CarFinder - walchOS: Succeeded | 10/29/15 at 12:06 AM @ | I ] O

A CarFinder LAl AppDelegate. swift

B 2 q & oo
< = ' Matfication - CarFinder - watchQs > + || Ahmed's IPhone +« Ahmad's Apple Walch =

v [ CarFinder - - CatFinder - walchOS - Quick Help

L /7 Gereric iDS Davice + walchOS Device

Bk iPhone B3 + Aople Watch - 38mm
B IPhone 85 Plus + Apple Watch - 42mm

QUIAPLicat ionMadn Add
class AppDelegate: UIRespo..o., ..

var window: UTWindow?

fune 8|

Licationlapplication: ien, didFinishLaunchingWithOptions launchOptions: [MS0oject:
17) = Beol

#/ Override point for customization after application laumch.
return true

Assels xcassets

func applicationWillResigaact

{application:
%

e background state.
le cown OpenGL ES frome rates,

+ LocaticnRowControler.swift

s LocationintertacaControlenswitt 41 IF your app ion i execution, thi

= Auto & = A Dutput 3 o0 =

Figure 6-7. Selecting a run target for your watch0S application

Just like on iOS, you can run your watchOS app on a physical device or in a simulator. Since
an Apple Watch must be paired to an iPhone to run apps, all of the watch simulators are
paired to an iPhone simulator. Similarly, your iPhone must be plugged into your development
computer and your Apple Watch must be paired, unlocked, and in range to debug on it.

If these requirements are not met, your iPhone will be marked as an “ineligible device

(no paired watch)”.

Once you have initiated a run session on an Apple Watch, you can perform all of the
debugging operations you are used to, including setting breakpoints and viewing live
console output.

Adding a Table to your watchOS App

Now that your watchOS app is part of the CarFinder project, you are ready to start
development. To begin, you will add a table view controller to the main screen for the app
and populate its data with content from the iOS app. This first is intended to introduce you
to working with watchOS storyboards, initializing a table view controller on watchOS, and
transferring data between an iOS device and the Apple Watch. In the next section, you will
learn how to build a detail view for each item in the table view controller, and in the next
chapter, you will learn how to pull in data from the Internet.



CHAPTER 6: Building Your First watch0S App 177

There are two primary layout types for an Interface Controller (WatchKit’s equivalent of a
View Controller from iOS): tables and pages. A WatchKit table implements the same concept
as a table view controller in iOS: a single-column list of rows (elements) that is populated

by a data source and can scroll up and down. A page implements the same concept as a
page view controller from iOS: a series of single-page screens that you navigate through by
swiping left or right on the touch screen. For this project, you will use a table for the list of
locations and a page to represent the details screen. By default, the main interface controller
for your app will be blank. To add a table to this interface controller, which will act as the
location list, find the Table element from Object library in Interface Builder (the bottom-right
scrolling pane) and drag it onto the interface controller, as shown in Figure 6-8. Remember
to select Interface.storyboard from the Project Navigator to edit the storyboard for your
watchOS app.

[ ] * ~ i Phone Bs Plu_sich - 42mm Carfinder | Buid CarFinder: Sucoeeded | Today at 851 &AM

BmR QA o G 8 | < & CarFinder ) [ CarFitchOS ) [l intert_boord | [ intert._Base) | [ interface Controller Scene | () interface Controlier ODo B - 06

¥ B Carfincler v [ interface Controlier Scene Triggered Seques

Interiace Contralier L m'ng“m
" resenti ues
v CarFinder Main Entry Point

Austanchs
: AppDelegate.swint - o
» [ Static Notification Interface Cantr... uy

B MapKit framawork

s FirstiewContraller. swift

. Sec wContreller st » [ Metifieation Controllor Scone

Main_storyboerd Hiw Bafarancing Dutist

Assels ¥Cassets

Launah&croen.storyboard
1 plist
¥ [ CarFindor - watchOS
intarface.storyboard

Agats acaseots

0

nfo.plat

v Carfinder - watchOS Extension

1 @ a

Tabbe - Displays ene cr mare rows of
data,

Static Interface Dynamic Interface

=, =, ] Any Screen Size ©ubig o

Figure 6-8. Adding a table to your main interface controller



178 CHAPTER 6: Building Your First watch0S App

Your result will look like Figure 6-9, where your blank interface controller is replaced with
a placeholder for a table row. Your view hierarchy will show a table on top of the interface
controller, which contains a table row controller, and a group.

2Ce® p ~ i Phone Bs Plu_atch - 42mm CarFinder | Build Carfinder: Sucoeeded | Today at 851 4M
[ = A} v S o 3 A | < & CarFincor Carf.h35 ) [l mter..oard | [ wnter_ase) ) [ intor...cone Interface Controlier Tatle | £
¥ & CarFinder ¥ [ interface Controller Scene

6 Mapit ramowork

v v Table
v Table Row Controler
2 First ift Group
* SecondViewContrallergwit Main Ertry Point
Mainstorybosrd i "

A23918 XCIES01E
= =[] Motification Controiler Scene
LaunchScreen.storyboard

o

¥ [ CarFinder - watch0OS
Intarfaca.sioryboard

Assets xcassets

¥ [ Products D O0@0

Table - Clipliys o of more rows of
data,

Static Interface Dynamic interface

. CARFINDER... . CARFINDER...

Alert Label

= = = | ] Any Screen Size 8 | @ table o

Figure 6-9. View hierarchy after adding a table



CHAPTER 6: Building Your First watch0S App 179

Referring back to iOS programming terminology, your interface controller class acts as the
“table view delegate” and provides the functions that define how many rows and sections
the table will have, as well as how to populate each row with data from the data source. The
table row controller is a separate class that allows you to define a custom layout for each
row. Unlike iOS, there are no styles (templates) for row types (e.g., default, subtitle), so you
must always define a custom table row controller. For the CarFinder WatchKit app, each
row should have two labels: one containing the latitude and longitude of each location and
another representing the time when the location was saved. To implement this, drag two
labels from Interface Builder’s Object Library onto the table row placeholder in your interface
controller. The result should look like Figure 6-10, where the labels are located adjacent to
each other in the row.

208 M ~ i Phone s Plu_atch - 42mm CarFinder | Build Carfinder: Sucoeeded | Today at 851 4M 1 = @& 5 3
4 & CarFinger -5 'l wrd) B e B e In..der Table T..lor Group Lacel (€ A 3 O ® @E ¢ 6
¥ [ interface Contralier Seene
wat
L v ) Intertace Controlier
¥ v [ Table
+ ApeDelegate.swift ¥ () Tasle fow Controlier
s FrstViewController swift e
+ SecondViewCantrolier.swtt Label

Label
Mairfegio Peiat

Mainstorybosrd
AL9018 XCIEINE
LeunchScreen storyboard » [ static Notification Interface Gontr...

it » [ Notfication Contrallor Scene
¥ [ CarFinder - watch0S

intartsca.sioryboard

Assets xcassets
nfo.plst

¥ [ CarFinder - watch0S Extension

ERC I =

Label Lobel - Cisplays a static text string.

Static Interface Dynamic Interface a/9/14 l?lln-clwlm the current date and
9 tie.

seq THmer - Gisplays 3 string that counts
5959 4 or cown 128 specsied ima.

= = | ] Any Screen Size b @

Figure 6-10. Result of adding labels to your row



180 CHAPTER 6: Building Your First watch0S App

To make the row match our mockup in Figure 6-1, you need to change the configuration of
the row’s group layout to vertical. Groups in WatchKit implement a concept similar to tables
in HTML, they are blank slates you use to position user interface elements relative to each
other. To position the labels below each other, select the group in your table’s view hierarchy,
and switch the Layout attribute to “Vertical’” in Interface Builder’s Attributes Inspector (the

second to last tab in the right pane), as shown in Figure 6-11.

6 Mapkat framewerk
¥ 12 CarFinder

Info.pllst

¥ [ CarFinger - watehOS Extersion

s Interfaced:

= ExtensicnDelegate. swift

» [ Supperting Filas
» 9 Products

Figure 6-11. Switching group layout to vertical

4 ) [l iPhoce 85 Plu_atch - 42me

.

.

< & CarFincer

[ Intartace Controlior Scono
Interface Controfier
=
* () Table Row Controiiar
Group
Labal
Labal
Wain Entry Point

(5] static Motification Interface Contr...

[ Matitication Controller Scene

€5l ra ) B3

Carfindes | Build Carfinder: Succeeded | Tocay at 8:57 AM

- .t

Static Interface

CARFINDER..

Tatle

Any Screen Size

Table Row Cortreller

1

Group |

Dynamic Interface

Crom
Laysut | Vertcal B8
rocts Horizontal
Spacing
Mode  Scale To Fil B
Arimate | No B
Color | =1 Defmlt [~ ]
Radis Custam

Ww
Alpha 1

Hidden

Sine

Height | Defaut B
5 0 @ o

Label Label - Displars stz st sting.

y9 4 Date - Displays the current date and
9/9/14 oy,

Timer - Disotays a string that counts
595
5B oo aown 10 3 spacitiod e,

BE () iabel

o



CHAPTER 6: Building Your First watch0S App 181

To finish polishing the row, increase the height of the row by dragging on its bottom edge.
Use the Attributes Inspector to change the style of the second label to “Subhead”, as shown
in Figure 6-12. Using font styles allows your app’s text to resize relatively, a useful feature for
accessibility, where a user may increase the size of the text on their devices globally, to
adjust for vision issues.

e 8 p ~ | i} Phone 63 Plu_aich - 42mm  CarFinder | Build Carfinder: Succesded | Today at 8:51 AM 1 r * U = i
B s Q £ & carfincer c.5 wrd In.e) inere ) O indor) || Tabie Tt || Growp Label (€ 4 3 @ m ¢ e
¥ B CacFinder v [ intertace Controlier Scone T
* B MapKR. framewor ¥ ) intertace Controber Yoot | Labd
v Tabie Text Color =) Default 2]
¥ () Tabie Row Controtier Font Subhead i
v [l Group 5
Label :
ont et S Subhead
Label = ]
Main Entry Point N
eon.storyboard * ] Static Notification interface Contr...

Notification Controller Scene }

CarFindor - watchOS Dane
Intertace storyboard e

Assots xcaEEets Hidden

{0 insealiod

BE

Wit Size To Fit Content

B E

Haight Size To Fit Content

) ®

Label Label - Dislays a static taxt string

Static Interface Dynamic interface G914 Dane - Displays the current cate 00

.luoen_ . CARFINDER...
ceg TIMer - Disgiays 8 string that counts
Alert Label 59:59 oy or down 0.8 specified time

= 3 0] Any Screen Size © el °

Figure 6-12. Completed table row

Note You do not need to worry about adjusting the width of each label, as the default behavior for
a label is to resize it to fill the width of the screen.

Defining the Table

Having visually laid out the table, you can begin defining it in code. To start out, begin by
creating a subclass of NSObject named LocationRowController to represent the table row
controller, as shown in Listing 6-1. Save the file as LocationRowController.swift. As of this
writing, WatchKit does not define a parent class for table row controllers, so you need to use
Swift’s generic parent class for objects, NSObject.



182 CHAPTER 6: Building Your First watch0S App

Listing 6-1. Class definition for LocationRowController table row controller

import WatchKit
class LocationRowController: NSObject {

}
}

The only elements on the row are the labels representing the coordinates and time, add
these to the class, as shown in Listing 6-2. The parent class for a label in WatchKit is
WKInterfacelabel. Remember to use the @IBOutlet keyword to indicate the properties
connect to Interface Builder elements. For memory management, use the weak keyword to
indicate that the property does not need to be modified after it is initialized, and define it as
an implicitly-wrapped optional, using the ! operator, to indicate that the value is expected to
always remain non-nil.

Listing 6-2. Complete class definition, including labels.

import WatchKit
class LocationRowController: NSObject {

@IBOutlet weak var CoordinatesLabel: WKInterfacelLabel?
@IBOutlet weak var TimelLabel: WKIntexfacelLabel?

}

As with any other Interface Builder-backed class, your next step is to connect user interface
elements and parent classes. Although the interface controller is already connected to the
InterfaceController class via Xcode’s default project settings, you will need to manually
connect the table row controller you added. To perform this operation, select the table

row controller in your view hierarchy and then navigate over to the Identity inspector

in Xcode (the third middle tab in the right pane.) As shown in Figure 6-13, select the
LocationRowController class as the parent class.



CHAPTER 6: Building Your First watch0S App

183

ene » ~ ) i Anmed's IPho._Appie Watch  CarFinder | Build CarFindor - watchOS: Succesded | 10/26/15 at 12:06 AM 09 0O
FirstViewControlier. swift Irterface storybourd
B 4 & CarFinder cs Bwnd Beea fce coer Location Table LocationRowControber | { 0 3 B { &
L carFnger Il CarFinder Scams Custem Class
¥ ) MackR framework ¥ () CarFinder Cuss| LocationBowCentroer O )
¥ I CarFindler || Location Table Modus CarFincer_watch0S_. |
« AppDelegate. swift ¥ [} LocationRowControler
« First centrelier switt v |2 Group Document
s SecondViewController. pwift Coordinates Lobel Al
- DataMansger,swift i Lt =
Main Entry Point

Main stceyboard
Astets acassots
LaunchScreen.storyboard
Info.plist

v CarFingier - watchQS
Intortace storyboard
Agsets acassots
Info.plist

¥ (1 CarFinger - watehOS Extension

+ InterfaceContioies switt

« ExtensionDelegate swift

= NotificationControier swify
= GlanceControBer.swit

a Cou
= LocationRowC:

= LocatiorinterfaceControder switt
ASSTS ACATHOLE
Info.plist

* 10 Supporting Files

» [ Products

# [ Detalls Scone

[ Glance Interface Controller Scene
# [F] Static Notification intertace Contr...

* [ Netitication Controller Scene

=) 0 Any Screen Size
FE =
Aata & - Al Gutput

(8]

Object 0 Fr2-8l-phl
Lock Inhorited - (Nothing)

B

e EEEE - R -

@

Intartace Controller - Manages &

sermers mipface bty

Glance Interface Controller -
MBnages 1he Bpphcatian's gance

intartace.

Motification interface Controlier

- Manages an irtertace for &
notitication casegory.

Figure 6-13. Assigning the parent class for the table row controller

The delegate methods for populating the table refer to table row controllers as “types”,
which are represented through their storyboard “Identifiers”. As shown in Figure 6-14,
navigate over to the Attributes Inspector, and set “LocationRowController” as the identifier

for the class.

[ ] [ ] | 3 ~ ;I Ahmed's IPha. Apple Watch Carfinger | Budd Carfinder - watchOS: Suceseded | 10/29/15 at 12:06 AM 1 — 1
FirstviewController gwify Irerface sionyboard
B < & CarFinder Ca_ 08 - Wtrd int._se} ! [ Care Ca_er Location Table LocatiorRowCantiolie [Nl I I
B CaFinder v [™ CarFinder Scane ‘Row Controller

5 Mapkie framewark
¥ [ CarFinder
+ AppDelegate swift
+ FirstViawControler. swift
+ SecondViewController. switt
« DataManager swit
Main storyboard

Ariots xtass

1
LaunchScreen.storyboard
Info. plist

v CarFingier - watchQS
Intortace storyboard
Agsets acassots
Info.plist

¥ (1 CarFinger - watehOS Extension

+ InterfaceContioies switt

= ExtensionDelegate. swift
= NotificationControfer. swift
= GlanceControBer.swit

lor. wwift
= LocationRowControler swift
= LocationinterfaceControler. swift
Assatsacassets
Info.plst
* [ Supparting Files

» [ Products

¥ () CarFinder
¥ || Location Table
¥ | LocationRowControlier

v Group
Coordinates Label
Time Label
Main Entry Point

Puth segue “DetaiSegue” 1o "Det.
* [Z] Detalls Scone
* [7 Glance Interface Controller Scene
» [F] static Notification Intertace Contr...

» [ Netitication Controller Scone

Glance Interface

= 0 Any Sereen Size
FE =
Aata & - Al Gutput

isenifier | LocationAowCont ore?
B3 Selectable

(8]

@

Intartace Controller - Manages &

sermers mipface bty

Glance interface Controdler -
Maiages the appication’s glance

intartace.

Motification interface Controlier

- Manages an irtertace for &
notitication casegory.

Figure 6-14. Setting a row type



184 CHAPTER 6: Building Your First watch0S App

Next, you need to tie the user interface elements to the LocationRowController class.

While the location row controller is still selected in the view hierarchy, navigate over to the
Connections Inspector (the last tab in the right pane). As with an iOS storyboard, click down
on the Coordinateslabel outlet radio box and release it over the label on the storyboard to
connect the two, as shown in Figure 6-15. Repeat the process for the TimelLabel.

® ® » ~ | B Ahmed's Pho_Apple Watch CanFinder Build Carfinder - watchOS: Succeeded | 10/29/15 at 12:06 AM 3 A | - 1
ViewControler swift interface. storyboard
g ¢ & Carfinder ) 19 €a..05) - Intrd | [l tntse)) [ Canmo ) O Caer [ Lol ) () Lowler ) (] Group ) 1o« Label D@ TO

CarFinder Scene

Label

Main Entry Point
Push segue “DetaitSegue” to “Det.

* [ Dotails Scone

timeLabel

* Glance Interface Controller Scene
AchOS

Intorface st * [ Static Netification interface Cantr...

rpmias Motification Controller Scens

] @

Glance interface

Interface Controller - Varages &
Bcreen's inbertace ohiects.

ceControbat swilt 0 Any Screen Size

= Locatio
e — = = Glance interface Controlier -
- Manages the applicatice’s glance

Po.plist Intertace.

Motification Interface Controller
- Manages &= interace ot 8
at fization categury

Autn 3 = A Qutput 5 o0 =

Figure 6-15. Connecting WatchKit user interface elements to a class

Now that the table row controller elements have been assigned, you need to define the
behavior for the table in the InterfaceController class. First, add properties representing
the table and its data source to the InterfaceController class (InterfaceController.
swift), as shown in Listing 6-3. To keep things simple, use a single dimensional array of
CLLocation objects, just like the data provided by the DataManager class. Remember to
import the CorelLocation framework class to resolve these symbols; including a framework
in your iOS project does not automatically include it in your watchOS target.



CHAPTER 6: Building Your First watch0S App 185

Listing 6-3. Adding properties for the table and data source to the InterfaceController class
import WatchKit

import Foundation

import Corelocation

class InterfaceController: WKInterfaceController {

@IBOutlet weak var LocationTable: WKIntexfaceTable?

override func awakeWithContext(context: AnyObject?) {
super.awakeWithContext(context)

}

As with any other Interface Builder object, connect the LocationTable property to the
InterfaceController class via the Connection Inspector, as shown in Figure 6-16.

ene » ~ ) B Ahmed's Pho_Agple Wateh CarFinder | Build CarFincor - watchOS: Succeeded | W/Z0/15 a1 12:06 AM D el E i
FirstviewControtier swift Interface.storyboard
B R AQ C 1K 5 carFincer CarFin_atch0s | [ interta_ryboard ) [} interta_Base) | [ CarFin_r Scene CarFinder Tatle nDoedoe
¥ B CarFindler « [ carFinder Scene Reterencing Dutlsts

ot Ratarpacing Cutiet 5
¥ CarFinder . ®
v [l Takio

LocationRawCorro e

v [ Group Dety

=

Coordinates Label
Tiene Label

Main Entey Point

Push segus “DetsitSegue” to “Det

Assets xcassets
LourenScroen. storyboard + [ Details Scene
LA » [ Glance Intertace Controller Scone
¥ [ CarFinder - watchOS

intertace. sorytoard = [ satic Natification Interface Contr_.

Assots.xcosset ——
o » [ Hotification Contraller Scame

Interface Controfler - Marages o
R E Glance Interface Scrmtars Wiartace sbiects.
nterfaceControtierswift | o Any Screen Size
Assets scassets '-'-] -» Glance interface Controller -
Marages ihe apcbeation's gance
nfo.plst rieriace.

» [ Supporting Files
» 1 Products Notification Interface
- Manages an tertac
netification eategery.

Controller

=) Auto 5 = Al Qutput & oo

Figure 6-16. Connecting the LocationTable property



186 CHAPTER 6: Building Your First watch0S App

Just like with iOS, there are three key behaviors you need to implement to fully define a
WatchKit table: the number of rows in the table, how to configure each row, and what action
to perform when a row has been selected. You will implement the final behavior (selection) in
the next section, for now, the focus is populating the table.

To specify the number of rows in the table, in the InterfaceController class’s entry method,
awakeWithContext(_:), call the method, setNumberOfRows(_:withRowType:), specifying the
length of the locations array as the row count, and “LocationRowController” as the row
type, corresponding to our earlier definition in Figure 6-10. Your awakeWithContext( :)
method should look like the example in Listing 6-4.

Listing 6-4. Specifying the number of rows in a table

override func awakeWithContext(context: AnyObject?) {
super.awakeWithContext(context)

// Configure interface objects here.
LocationTable.setNumberOfRows (locations.count, withRowType: "LocationRowController")

}

You can access each row via the rowControllerAtIndex(_:) method. To configure the
entire table at once, | have created a convenience method named configureRows in the
InterfaceController class (InterfaceController.swift ), shown in Listing 6-5. This method
accesses each row in the table, pulls the corresponding item from the data source, and
configures the labels accordingly. To make the output fit the screen, | shortened the latitude
and longitude to two decimal places using a string formatter, and created a DateFormatter
object to convert the timestamp Date object to a string.

Listing 6-5. Configuring each row in the table

func configureRows() {
locationTable?.setNumberOfRows (locations.count, withRowType: "LocationRowController")
for var index = 0; index < locationTable?.numberOfRows; index++ {

if let row = locationTable?.rowControllerAtIndex(index) as? LocationRowController {
let location = locations[index]

if let latitude = location["Latitude"] as? Double {
let longitude = location["Longitude"] as! Double
let formattedString = String(format: "%0.3f, %0.3f", latitude, longitude)
//row.coordinatesLabel?.setText("\(latitude),
\(location["Longitude"]!)")
row.coordinatesLabel?.setText(formattedString)

}

if let timeStamp = location["Timestamp"] as? NSDate {
let dateFormatter = NSDateFormatter()
dateFormatter.dateStyle = NSDateFormatterStyle.ShortStyle



CHAPTER 6: Building Your First watch0S App 187

dateFormatter.timeStyle = NSDateFormatterStyle.ShortStyle
row.timelabel?.setText(dateFormatter.stringFromDate(timeStamp))

}

You will need to configure the table when the table view appears on the screen or any

time the data source is updated. To intercept the event when the table view appears,

add the call to configureRows at the bottom of the willActivate( :) method for the
InterfaceController class, as shown in Listing 6-6. You will handle data source updates in
the next chapter.

Listing 6-6. Calling the configureRows method

override func willActivate() {
// This method is called when watch view controller is about to be visible to user
super.willActivate()

self.configureRows()

Note The awakeWithContext( :) method is called when an interface controller is loaded from
a storyboard for the first time. This is the first event to fire when an interface controller is loaded
and only fires once, whereas willActivate: fires every time the interface controller is presented,
such as when you are coming back from a detail screen or menu.

Fetching Data from your i0S App

Now that the table view is configured to display data, it’s time to populate the locations
array with data from the CarFinder iOS app. The primary method for sharing data between
an iOS app and WatchKit app in watchOS 2 is through the WatchConnectivity framework.
Following Apple’s pattern of “availability”, or performing an operation only when a resource
is available to your application, WatchConnectivity provides a subscription-based service
that negotiates the link between your iPhone and Apple Watch and transmits messages
when the link is stable. Similar to notifications, you need to establish sending and receiving
endpoints in each of your applications, and messages are only received when you declare
yourself as a “receiver.”

To enable both of your applications as WatchConnectivity-compatible, you need to
subscribe to WatchConnectivity’s “default session”, after checking if the feature is available
on your device (this is defined as an Apple Watch being paired to your phone, with your
watchOS app is installed on it.) In the CarFinder iOS app, place this block of code in the
viewDidLoad method of FirstViewController class, as shown in Listing 6-7. The view
controller with the closest access to the main data source should be the one you use to
handle WatchConnectivity messages.



188 CHAPTER 6: Building Your First watch0S App

Listing 6-7. Preparing the iOS App for WatchConnectivity

import UIKit
import Corelocation
import WatchConnectivity

class FirstViewController: UITableViewController, WCSessionDelegate {

override func viewDidLoad() {
super.viewDidLoad()

let locationManager = CLLocationManager()

if (WCSession.isSupported()) {
let session = WCSession.defaultSession()
session.delegate = self
session.activateSession()

}

To send and receive WatchConnectivity messages, you need to set your class as a

delegate of the WCSessionDelegate protocol. In Listing 6-7, this is indicated by adding
WCSessionDelegate to the list of protocols in the class definition and by setting the class as a
delegate object in your setup block.

In your WatchKit Extension, you need to follow the same steps. The main difference will be
that you will use the awakeWithContext( :) method in the InterfaceController class. See
Listing 6-8.

Listing 6-8. Preparing the WatchKit Extension for WatchConnectivity

import WatchKit

import Foundation

import Corelocation
import WatchConnectivity

class InterfaceController: WKInterfaceController, WCSessionDelegate {

@IBOutlet weak var LocationTable: WKInterfaceTable!
var locations = [CLLocation]()

override func awakeWithContext(context: AnyObject?) {
super.awakeWithContext(context)



CHAPTER 6: Building Your First watch0S App 189

// Configure interface objects here.
LocationTable.setNumberOfRows (locations.count, withRowType: "LocationRowController")

if (WCSession.isSupported()) {
let session = WCSession.defaultSession()
session.delegate = self
session.activateSession()

}

In this chapter, to provide a positive experience for your users, you will use
WatchConnectivity to fetch the latest list of locations from the CarFinder iOS app as soon
as the CarFinder watchOS app is launched on the watch. To provide the best experience,
the method you select should be fast (users don’t want to wait for data the first time they
load the app) and non-blocking (users don’t want to wait for a frozen app to resolve itself.)
To enable this, you will use WatchConnectivity’s updateApplicationContext( :) method
to transfer a Dictionary object from the CarFinder iOS app to the CarFinder WatchKit
extension. As shown in Listing 6-9, you should send this event every time the data source
is updated, which is after a new location has been added to the list. In this example,

| converted the array into a dictionary by storing it as the value for the Locations key.

Listing 6-9. Sending a dictionary to a WatchKit extension from an i0OS app

@IBAction func addLocation(sender: UIButton) {

var sharedLocations = DataManager.sharedInstance.locations
tableView.reloadData()

if (WCSession.isSupported()) {
do {
let userDict = ["Locations": sharedLocations]
try WCSession.defaultSession().updateApplicationContext(usexDict)
} catch {
print("Error transferring data")
}

}
}

Application contexts in WatchConnectivity are instantaneous transfers as soon as the link is
established with the subscribing counterpart application. Additionally, for data sources that
update frequently, only the most recent version of the dictionary is sent; old versions are
discarded.



190 CHAPTER 6: Building Your First watch0S App

To receive the dictionary, you need to implement the session:didReceiveApplicationContext:
delegate method in your WatchKit extension. As shown in Listing 6-10, you implement this in
the InterfaceController class. After receiving the message, override the existing locations
array with the new version from the received dictionary and call the configureRows method
to update the user interface.

Listing 6-10. Receiving a dictionary from WatchConnectivity

func session(session: WCSession, didReceiveApplicationContext applicationContext:
[String : AnyObject]) {
let locationsArray = applicationContext["Locations"] as! [CLLocation]
locations = locationsArray

configureRows ()

Note This example saves locations in memory; they will not persist between multiple sessions.
To persist data, we suggest using Core Data or saving your data to a plaintext file.

Building a Detail Page with a Custom Layout

To make the CarFinder WatchKit app even more useful, you will implement the detail screen
for each item in the location list. In addition to teaching you how to implement the selection
action for the WatchKit table element, this section will also focus on building a page-based

interface controller with a custom layout.

The first step in building a detail controller is to place it on your storyboard. To add a new
interface controller to your watchOS app, drag an Interface Controller object from the
Interface Builder’s object library onto your storyboard. Similarly, you need to create a new
subclass of WKInterfaceController to define its behavior; for the CarFinder WatchKit app,
this file is called LocationInterfaceController. As with previous examples, use the Identity
Inspector to set the parent class to LocationInterfaceController.



CHAPTER 6: Building Your First watch0S App 191

Referring back to the mockup for the app in Figure 6-1, the detail screen for the CarFinder
WatchKit app displays the timestamp for the location on the first line, next to a GPS icon.
The coordinates for the location are displayed on a line beneath this, and under that is a map
with a pinpoint indicating the recorded location. By default, a Group in WatchKit can only
display items by positioning them adjacently, horizontally or vertically. To implement your
custom interface, you can get around this limitation by placing two groups on your interface.
As shown in Figure 6-17, drag two groups on to your interface controller. Your view hierarchy
will be updated to reflect these new groups.

# ) |} Phone 63 Plu_atch - 42mm  CasFinder | Build CarFinder: Succeeded | Today at 8:51 AM 2 + Y Tall= i

®
L ]
v

& CarFinder CarFinder - watchOS | [l Interface.storytoard | [l intortace.storyboand (Base) | Mo Selection | < 0 3 e @ 9

¥ [ interface Controlier Scene

Intertace Contralier

«vp 0

Tabie
¥ () Tatie Row Controtier
v Group
Label
Label

Main Entry Point

Interface Controlier Scone

Controfer

Intert
2 nterface Controller No Selection
Carkin Group

Group

* [ Static Notification Interface Contr...

3 Motification Controller Scene

) ®

Group - A container that manages
the lyout of otrer Hems.
Static Interface Dynamic Interface

Any Screen Size S orovn o

Figure 6-17. Adding multiple groups to your interface controller

Note You can place as many groups as you want on a page-based interface, but only one for a
table interface.



192 CHAPTER 6: Building Your First watch0S App

Now that the groups are ready, you can start adding user interface elements onto them.
Start out by setting the layout of the group at the top to Horizontal, using the Attributes
Inspector. Next, drag an Image and Label onto the group. Unfortunately, by default, your
Label will be hidden, as shown in Figure 6-18.

® » ~ | i Phore 6s Plu_atch - 43mm  CasFinder | Build CarFinder: Succeeded | Today at 8:51 AM

< & CarFinder Carfinger - watehOS ) [l interface.storytoara | [l intortace.storyboard iBase) | Mo Selection (£ A > @ m ¢

¥ [7] intertace Controlier Scene

MRpIRSracnawort: Intertace ControSer

Carfinder Table

= AppCelegate cwift w () Tatie Row Contresier
F & ni ¥ [ Group
Label
Label

Main Entry Point

Interface Controlior Scone

1 Intertace Centroter
Interface Controller ) Se
¥ [ CarFinder - watchOS * [ Group
Interface storpbosrd mage
e sssets Grop

* Static Notification interface Contr

* [7] Notification Controller Scene

@

Label Label - Displays a static taxt string
Static Interface Dynamic Interface

. i G914 Date - Dispiays the current cate ang

seg Timer - Dispiays » string that counts
59:59 g or dowe 10 8 specinied time.

Any Screen Size G ubel o

Figure 6-18. Default behavior when adding multiple items to a vertically aligned group



CHAPTER 6: Building Your First watch0S App 193

To fix this, grab the right-edge of the image placeholder and drag it to the left, until it
becomes square shaped, matching the general shape of the icon from the mockup. After
adjusting the image’s size, the label reappears in the group, as shown in Figure 6-19.

B Phone 65 Plu_atch - 42mm inder | Build CarFinder: Succesded | Today at 8:51 AM
< B CarFincer

CarFinder v

MApKIR ramewort

CarFinger - watchOS | [l Interface.storyboara | [l intertace.storyboard (Base) | No Selection
Interface Controlier Scene
CarFinder

i o m o o
Interface Controbier
v [ Tabio
+ AppCeegate swift v Tabhe Row Controlier
¥ Group
Label
Label
Main Entry Point
Laus Screan storyboand ¥ [ interface Controlier Scene
nfo. plist ¥ ) Incariace Conirclier
i Interface Controller Ne
CarFindor - walchOS v [ Group
Intertace storyboard Fnage
ASEOts XCHEEOLE L
Group
» [2] Static Notification Interface Contr
* [7] Notification Controller Scene
) ®
Label Label - Displays a static text string
Static Interface Dynamic Interface

. CARFINDER...

9/9/14 I?!:o Dispiays the current cate 3¢

o Thmer - Disglays a st
59:59 up or down 10 lrim’-.

Any Screen Size

@ ubel
Figure 6-19. Group after adjusting image size



194 CHAPTER 6: Building Your First watch0S App

Like an iOS app, watchOS apps can run on multiple screen sizes (the 38mm and 42mm
watches). Unfortunately, watchOS storyboards do not yet support auto-layout. To resolve
this, the default size settings for user interface elements in WatchKit are set to “Size to Fit
Content.” This setting works opposite to the ScaleAspectFill content mode for UIView
objects in iOS. Instead of the content resizing to fill the container, the container resizes to
fill the content! When you manually size an item, this switches the size attribute to “Fixed”
along with the pixel width or height of your adjustment, as shown in the Attributes Inspector
screenshot in Figure 6-20.

[0 o] of <

Image
Group

[T Statie Notification interface Contr...

Notification Controlier Scone

Label vabel - oispeays s static s string,

p ¥3 the current dat
9.!9.’1-1?,::' Dispiays the current date and

s TImer - Dispiays a strieq that
59:5
59559 g or cownt0 8 specitied time.

Any Screen Size ©) tabel o
Figure 6-20. Attributes inspector after adjusting image size

When you have multiple elements in a horizontal group, use this limitation to your advantage
by fixing the size of certain elements and keeping others flexible. Automatic resizing can

be troublesome for images, but users expect to see text sizes and padding decrease with
labels.

A side-effect of adjusting the size of the image is that your label will be aligned to the top
edge of the group. To fix this, select the label and change the vertical position attribute to
Center, as shown in Figure 6-21.

Left

Right

Figure 6-21. Changing the vertical position of an item in a group



CHAPTER 6: Building Your First watch0S App 195

Luckily, the group containing the map and time stamp label is a bit easier. Change the layout
to vertical and drag Label and Map objects into the group. Your final user interface should
look like the screenshot in Figure 6-22. You will notice that the size of the interface controller
has increased to reflect that there is more content on the screen than can fit at once. By
default, interface controllers work like UIScrollViews in iOS, where everything inside of the
scroll view scrolls. | have included a graphic in the source code bundle named compass.png
that you can use in your project for the compass icon.

] ® p» ~ i B Ahmed's Pho_Apple Watch CarFinder | Build CarFinder - watch0S: Succeeded | 10/29/15 at 12:06 AM ¥ * E i
FrstviewControber sift nterface. storyboard

B Carfinder CaFinder - wateh0S ) [l Interface.storyboard | [l Intertace.storrboard (Base) ) Mo Selection s O @

CarFinder Scene

CarFinder

Wi Ertey Peint
Push segue “DetaitSegue” to “Det

Details Scene

Glance Interface Controller Scene
Static Notification Interface Contr...
Metifieation Controlier Scene

) ®

Glance Interface

Interface Controller - Marages a
_ Boreen's inbertace ohiects.

= [ m] Any Screen Size

5l Glance interface Controlier -
anages the applicatien's giance
intertace.

Motification Interface Contreller
- Manages # intertace for
ot fication eategary

= Auto & = Al Cutput 5

Figure 6-22. Final user interface for detail interface controller

As you would expect, to make this all work, you need to define these elements in your

class. You can find the definition for the LocationInterfaceController class, including the
properties for the user interface elements in Listing 6-11. As always, after adding these items
to your class, connect them to your storyboard in Interface Builder.

Listing 6-11. Definition for LocationinterfaceController class

import WatchKit
import Foundation
import Corelocation

class LocationInterfaceController: WKInterfaceController {
@IBOutlet weak var LocationMap: WKInterfaceMap!

@IBOutlet weak var CoordinateslLabel: WKInterfacelabel!
@IBOutlet weak var Timelabel: WKInterfacelabel!



196 CHAPTER 6: Building Your First watch0S App

override func awakeWithContext(context: AnyObject?) {
super.awakeWithContext(context)

// Configure interface objects here.

Presenting the Detail Interface Controller

There are three steps required to present the Detail interface controller: connecting the
push segue, implementing the table controller delegate method for the selection event, and
initializing the detail controller with the correct data. You connect the push segue from a
table row in WatchKit the same way you would in iOS: by CTRL+clicking from a table row
to your destination interface controller. As shown in Figure 6-23, when prompted to select
the segue type, select Push. As with all segues, use the Attributes Inspector to specify an
identifier (name). In my example, | call this the “DetailSegue”.

® ® » ~ ) B Ahmed's Pho_Apple Watch CarfFinder | Builld Carfinder - watchOS: Succesded | 10/29N15 at 12:08 AM 1 3 A | - 1
ViewController swift interface. storyboard
g ¢ i Carfinder Carfinder - watchOS Intartace storyboard | [l Intertace. staryboard (Base) | Mo Selection | £ » O e m ¢

CarFinder Scene

CarF

¥ [ Details Scene
v [ Detads
Group
Compass
Coarndinates Labes
Group

3 Glance Interface Controller Scene

[ static Netification Interface Contr...

Motification Controller Scene

] @

Glance Interface

Interface Controller - Varages »
Bcrsen's inbatace cbjects

= [ m] Any Screen Size

FE = Glance interface Controlier -
i) Manages the applcaton s glance
intertace.

Metification Interface Controller
- Manages an intertace for &
Pt fization categery

= Auto & = Al Cutput 5 Lilk

Figure 6-23. Connecting the push segue



CHAPTER 6: Building Your First watch0S App 197

The push segue presents the detail interface controller after catching the selection event

in the main interface controller. There are two primary ways to handle selection events in
WatchKit: the table( :didSelectRowAtIndex:) method, which allows you to perform an
action based on a table’s selected row, and the contextForSegueWithIdentifier( :inTable
:rowIndex:) method, which sends a context (object) to your destination interface controller,
based on the selected row of your table. This fits the requirements perfectly. Luckily, the
implementation is quite simple too. As shown in Listing 6-12, in your InterfaceController
class, upon catching a segue named “DetailSegue”, return the location specified by the
selected row in the table. For all other segue identifiers, return nil.

Listing 6-12. Implementing the table selection segue handler

override func contextForSegueWithIdentifier(segueIldentifier: String, inTable table:
WKInterfaceTable, rowIndex: Int) -> AnyObject? {

if (segueIdentifier == "DetailSegue") {
return locations[rowIndex]
}

return nil

}

Now that you have successfully created the logic and handler for the selection event, you
are ready to use this information to initialize your detail interface controller. In Listing 6-12,
the object you passed back from the contextForSegueWithIdentifier( :inTable:rowI
ndex:) method was called a context. By no coincidence the method that fires when an
interface controller is loaded for the first time is called awakeWithContext:. As shown in
Listing 6-13, to initialize a LocationInterfaceController with from a context, check if the
input object is a CLLocation object like you expect, and then use it to set the values for your
user interface elements.

Listing 6-13. Catching the table selection event in the detail interface controller (LocationinterfaceController.swift)

override func awakeWithContext(context: AnyObject?) {
super.awakeWithContext(context)

// Configure interface objects here.

if let location = context as? CLLocation {
//
let dateFormatter = NSDateFormatter()
dateFormatter.dateStyle = NSDateFormatterStyle.FullStyle

let prettylocation = String(format: "(%.2f, %.2f)", location.coordinate.longitude,
location.coordinate.latitude)
let prettyTime = dateFormatter.stringFromDate(location.timestamp)

Coordinateslabel.setText(prettylLocation)
TimeLabel.setText(prettyTime)



198 CHAPTER 6: Building Your First watch0S App

LocationMap.addAnnotation(location.coordinate, withPinColor: WKInterfaceMapPinColor.Red)

let mapRegion = MKCoordinateRegionMake(location.coordinate,

MKCoordinateSpanMake(0.1, 0.1))

LocationMap.setRegion(mapRegion)

}

Further emphasizing the similarities of watchOS to iOS, you will notice that the process of
initializing a WKInterfaceMap was exactly like that of initializing an MKMapView: first you define

a pin and then you set the region.

At this point, you now have a functional CarFinder app! Your user interface should look like
the example in Figure 6-24 when you run it on an Apple Watch. The user can select an item
in the location list table to view its details, which include a map of the area, coordinates, and

the time saved.

32.868, -117.223
11/11/15, 5:05 PM

Shallow

32.868, -117.223
11/11/15, 5:05 PM

P/

32.83,-117.15

11/11/15, 5:19 PM

Location List

Location Details

Figure 6-24. User Interface for CarFinder when running on an Apple Watch



CHAPTER 6: Building Your First watch0S App 199

Summary

In this chapter, you learned the ins-and-outs of building an Apple Watch app by creating the
CarFinder WatchKit app, which pulls the list of saved locations from the CarFinder iOS app
on the user’s iPhone. After a quick introduction to the Apple Watch and its basic application
architecture, you began to explore the similarities between watchOS and iOS development
by setting up your watchOS build target. Building the user interface in Interface Builder and
tying its outlets to classes you defined in code strengthened the extent of these similarities.
To round things out, you explored different user interface elements and layout styles, and
learned about key WatchKit event delegate methods, giving you a good foundation for future
chapters, where you will explore more advanced elements and behaviors.



Chapter

Building an Interactive
watchO0S App

Ahmed Bakir
Introduction

In this chapter, you will learn how to make the CarFinder watchOS app even more powerful
by adding interactive features. While an app that can let you view information from your
iPhone is great, there is even more value in an app that allows you to create new data from
your watch. The interactive features you will add to the CarFinder app in this chapter will
demonstrate the following features of watchOS:

How to add context menus to an interface controller
How to add buttons to an interface controller

How to add text to an item using text input

How to pass data between interface controllers
How to pass data back to your iOS companion app

The examples in this chapter expand upon the CarFinder app from Chapter 6. The updated
source code for CarFinder is available in the Source Code/Download area on this book’s
web page www.apress . com).

201


http://dx.doi.org/10.1007/978-1-4842-1194-6_6
http://www.apress.com)

202 CHAPTER 7: Building an Interactive watch0S App

Using Force Touch to Present Menus

Force Touch is the feature built into the Apple Watch’s touchscreen, which allows you to
detect how much pressure the user applied to the screen. Users can perform different
actions depending on whether they press the screen with a light touch (“shallow press” in
Apple’s terminology) or a hard touch (“deep press”). The standard User Experience (UX)
for Apple Watch apps is to use shallow presses to select an item and Force Touch to bring
up a contextual menu, allowing the user to perform related actions. Figure 7-1 provides an
example of a contextual menu.

Add Location

Figure 7-1. watchOQS contextual menu

In the CarFinder app, you will implement a contextual menu to allow the user to add a new
location and to reset the location list. If the user chooses to add a new location, a modal
screen will allow him to confirm or reject his current location. If the user chooses to reset the
location list, she will be returned to the initial location list interface controller with an empty
data set.

To add a contextual menu to an interface controller, open the storyboard for your watchOS
app (Interface.storyboard) and drag a Menu from the Object Library onto your desired
view controller, as shown in Figure 7-2. For the CarFinder app, the initial interface controller
(the InterfaceController class) will be your destination.



GHAPTER 7: Building an Interactive watch0S App 203

ene » s ) ) Phone B8 + A_stch - 38mm  CarFinder | Build CarFinder - watehOS: Succaeded | 11/1/15 3t 5:46 AM
intertace. storyboard
B < CarFinder CarFinder - watchOS Intertace. storyboard Intertace storyboued (Base) | No Selection =2 O

CarFinder Scens

CarFinder

Dotads Scene
Glance Interface Controller Scene
Static Notification interface Contr...

Motification Controller Scene

(] Any Screen Size

Menu - Displays & Bs1 of meny items.

Menu Item - Esecutes o et
method of the parent Intertace
cantromer.

Figure 7-2. Adding a menu to the main interface controller

Unfortunately, Interface Builder does not give you any feedback on the storyboard to
indicate that an interface controller has a menu attached to it. To verify that you have
successfully added a menu to your interface controller, select its scene on the storyboard
and check to make sure a menu item appears in the view hierarchy, as shown in Figure 7-3.

[ ] L] » ¥ /‘ Gereric 105 D_.0chOS Device CarFinder | Build CarFinder - watchOS: Succesded | 10/29/15 at 1208 AM
Intorface storyboard
B < N CarFinder caritcnos | [l invert_toara | [ wtert_(Base) CarFl_Scene CarFinder Menw {4 D O

Carfinder Scens S

Details Scene

Glance Interface Cantroller Scene

Static Notification Interface Contr...

Matification Contredler Scene

0 Any Screen Size

Monu - Dispiays & Est of meny iters.

Menu item - Eascutes aa sction
method of the pacent nterface
cortracer

Figure 7-3. Verifying that a menu is in an interface controller’s view hierarchy



204 CHAPTER 7: Building an Interactive watch0S App

You will notice that by default, one menu item appears in the menu. To change the properties
of the menu item, click it in the view hierarchy and navigate to the Attributes inspector in
Interface Builder (the fourth tab in the right pane). From here, you can assign a new name to
the menu item and change the icon, as shown in Figure 7-4.

Mew Location Scene Maybe

Details Scene

Glance Interface Controller Scene

Static Notification interface Contr._.

Motification Controdler Scene

Meru item

Auto &

Figure 7-4. Modifying a menu item

Just as with bar button items and tab bar items, Apple provides a wide set of pre-rendered
icons for you to use in your menu items. To use your own custom icon, follow the same rules
you would use for a tab bar or bar button item:

Create an Image Set entry for your icon in your project’s Assets
Library (Assets.xcasssets)

Makes sure the icon is a PNG with an alpha layer
Make sure the icon is monotone

Make sure the icon is anti-aliased (smoothed to remove bitmap
“jaggedness”)

You do not need to manage an object in your interface controller class to use a context menu;
however, you do need to define handler methods for the menu items, as for UlButtons in iOS.

As shown in Listing 7-1, expand the InterfaceController class by adding IBAction
methods for the menu item actions. The resetlLocations() method will be used to clear

the saved location list. The requestLocations() method will be used to add a new location.
CorelLocation on watchOS is not designed to continuously monitor location, as it would
drain the watch’s battery too quickly, so you need to manually request a location based on a
user action.



GHAPTER 7: Building an Interactive watch0S App 205

Listing 7-1. Adding Menu Item Actions to InterfaceController.swift

class InterfaceController: WKInterfaceController, WCSessionDelegate {

@IBAction func requestlLocation() {

@IBAction func resetlocations() {

}

As with button actions, in order to tie a menu item to a handler method, you need to use the
Connection Inspector (last tab of right panel in Interface builder). As shown in Figure 7-5,
drag a line from the selector radio box to the CarFinder scene. A pop-up will appear
allowing you to choose the requestlLocation() or resetLocations() method.

208 M ~ CarFinder - watchOS ) @ iP_mm  Carfinder | Build CarFinder - walchOS: Succeeded | 111118 at 948 AM = @&« ] D

Interface storyboard Confirmintesface Controlier. swift

1 A QO E D G < L carFinder ) [ CarF.n0S | - Intor..card | [l worasa) ) 5] carF.cone) ) carFinger )| | Manu )| Ade Location "0 E T

[ &y Filo BETRT ¥ [ carFinder Scene Sent Actions
v () Carfinder sakctor )
v | Mony
[
» || Location Table Details
Main Entry Point
Push segue *DetalSogue” to “Det...

Label

# ] Mew Locaticn Scong
+ [] Details Scens
» [ Glance interface Controller Scene

» [ static Motfication Interface Contr..

+ [ Notitication Controller Scene
Mo |ssues
New Location
1 0 @ 0
Postar image for aud et content.
= =) Any Screen Size
Menu - Displays @ kst of menu items.
E - iy
Menu ltem - Executes an action
muthod of the parent interface
controiie:
= Auto & = A1 Dutput 3 o0 =

Figure 7-5. Connecting a menu item to a selector

You can verify that the operation was successful by checking that the Connection Inspector
has linked the bubbles in the Sent Actions section, as indicated in Figure 7-6.



206 CHAPTER 7: Building an Interactive watch0S App

eve » ~ | ) Phone 63 + A_sich - 38mm  CaeFinder | Bulld CarFinder - watchOS:

Itetace. storybosnd

L CarFinger Carf_n0S Inter._oard inter_sae) Carf_conn CarFinder Meny Add Locat

B o e v [7] CarFinder Scene Sent Actians

Mew Location Scene

Details Scone

Glance interface Controller Scene

Static Notification interface Contr.

Notification Controller Scene

Figure 7-6. Verifying connections have been set

Follow this same process to connect the reset button to the resetlLocations() method.

Resetting the Location List

After selecting an item in a context menu, the menu disappears and takes the user back to
the presenting interface controller. For the reset menu item, you want to take the user back
to the location list, with an empty set of contents. Since the data source for the location list
is an array, you can reset the contents simply by clearing out the array.

However, clearing out the array is not enough to refresh the user interface (Ul). You may
remember from Chapter 6 that watchOS tables do not have a reloadData() method like
UITableViews on iOS. To refresh a table in watchOS, you need to reset the number of rows
and rebuild the cells. Luckily, the configureRows () method does both of these operations for
us. As shown in Listing 7-2, using your resetLocations() method, after clearing the location
array, you can rebuild the table using the configureRows () method.

Listing 7-2. Resetting the Location List

@IBAction func resetlocations() {
//data source = empty set
locations = [Dictionary<String, AnyObject>]()

configureRows ()


http://dx.doi.org/10.1007/978-1-4842-1194-6_6

GHAPTER 7: Building an Interactive watch0S App 207

Presenting a Detail View Controller

Although it would be extremely convenient to present interface controllers from menu items
via a segue in Interface Builder, as of this writing, that has not yet been implemented in
watchOS. To present an interface controller from a menu item, you need to use the method
presentControllerWithName( :context:), specifying a name (storyboard identifier) for the
interface controller you want to present and information you want to pass along to this
interface controller via a context object.

To begin, you need to add an interface controller to your storyboard that represents the
confirm screen. As shown in Figure 7-7, drag a new Interface Controller object to your
storyboard.

] * » ~ ) /* Benerc 03 D..tch0S Device @ Indexing | Paused 1 nier R

Infarince. storyboard Corlirminterts

F | < B CarFinder Car.h0s ) B ineecard ) [ into.oee) | 5] intertace Cortroller Scene ) () interface Contratier € L 3 Deomoe

» [ Corfinder Scene Triggered Sequea

e page o
» [ Dotails Seane Prosanting Sagues

e aionshi o
¥ [ interface Controller Scene Pusn C

Interioce Controller Meds 5]

Referancing Outiets

| Glance Intarface Controlior Seono Mo Bararneng Dutie:

| Static Netification Interface Cantr...

! Notifieation Controller Scone
LaunchSernen. poryoeand

Info.plist
CarFincer - watchOS
Interfoce. storyboars M

Avvets acavsets

= ConfirminterfaceControlier swift

Interface Controller - Mansges a
ASEIE ACISSHE screen's interface obiects.

Info, plist Glance interface

(W) Any Screan Size

Supporting Files

Lansges the sopies!
nteitace

» {5 Products

Figure 7-7. Adding a Details interface controller

To represent this interface controller in code, create a subclass of WKInterfaceController,
named ConfirmInterfaceController. Listing 7-3 provides the definition for the
ConfirmInterfaceController class, including the properties for the Ul.

Listing 7-3. Definition for ConfirminterfaceController Class

class ConfirmInterfaceController: WKInterfaceController {

@IBOutlet weak var coordinateslLabel: WKInterfacelabel?
@IBOutlet weak var notelabel: WKInterfacelabel?



208 CHAPTER 7: Building an Interactive watch0S App

To connect the code and storyboard, remember that you need to set a parent class and
storyboard identifier. To set the parent class, click the scene for the Interface Controller and
click the Identity Inspector in Interface Builder. As shown in Figure 7-8, set the parent class
to ConfirmInterfaceController.

® e p ~ ) ) Phone 85 + A_atch - 38mm  CarFinder | Build Carfinder - walchOS: Succaeded | 111715 at 946 AM i =

Intarface.storyboard

& S Carfinder || Carfind_atchOS | Wntertac_ryboard | Wntertac. (Base) New Location Scene | ) New Location ! B ¢
B o e ¥ [ CarFinder Scene Cuttom Class

i e

e B
Seskment
Details
CarFinder
bfect D BJ7-k7-704
New Location Scene -~

Mew Location

Glance Interface Controdler Scene
Static Notification interface Contr...

Notification Controller Scene

Doater image for sudicrvisual content

(n] Any Screen Size
M - Daaciays 8 531 of meny Sems

-
Mana Item - Execuies s sction
meshod of the parent interface
controter

A Outp [

Figure 7-8. Setting parent class for an Interface Controller

To set the storyboard as the storyboard identifier and (optionally) the title for
the Interface Builder, click the Attributes Inspector. As shown in Figure 7-9, use
ConfirmInterfaceController identifier.



GHAPTER 7: Building an Interactive watch0S App 209

2aoe p ~ )l Phone Bis + A_atch - 3Bmm  CarFinder | Build CacFinder - walchDS: Succesded | 1171715 a1 S:48 AM @ = 1
Interface.storybonrd CenfeminterfaceCeontroliarswit
LY e 8 | < & carFinder CarFind...a%ch0S rterfac.. rydoard Interfac.. (Base) New Locsticn Scene Mew Location - [
EE3 o e ¥ [ CarFinder Scene Custom Class
v ) Carfinder ciase | ConfirnintertaceCanzroll O
v [ Menu Mocule | CarFinder__watch0s . i
dd Location
Reset
Location Tazle CarFinder Lebl
Main Entry Paint

®

Push segue *DetailSegue” to "Det..

Object ID B.7-k7-2c4
v {55 Heww Loanion Eeane Lok Inherited - (Ngthing) B
Motes =5 = = - O

¥ [ New Location
* [ Group

¥ [I] Details Scene

> Group

Mo Issues » [ Glance Interface Contraller Scens
+ [2] Static Hotification interface Contr..

» [] Notification Controlier Scene

Confirm

= O Any Screen Size

[ Menu - Disslays o st of meny itema,
F = =

Mienu Itom - Cxecutes sn acticn
method f the perent intestace
controlier,

Auts & = A Dutput & ||

Figure 7-9. Setting the storyboard identifier for an Interface Controller

Having established the Details interface controller, you can now rest assured that calling the
presentControllerhWithName() method will function correctly, given the storyboard identifier
ConfirmInterfaceController. Listing 7-4 provides the definition for the requestPermission()
method, which at this point presents the confirm interface controller from the main interface
controller. Place this code in your InterfaceController.swift file.

Listing 7-4. Presenting the ConfirminterfaceController

func requestlocation() {
presentControllerWithName("ConfirmInterfaceController", context: nil)

Simulating Force Touch

While it is possible to debug Force Touch primarily by running it on your watch, it could be
a potentially time-consuming effort, due to the time required to install a watchOS app and
establish a debugging session. By default, all touches in the watchOS simulator are treated
as shallow presses. You can simulate deep press events by changing the Force Touch
Pressure in the simulator. To modify this setting, go to the Hardware Menu in the watchOS
simulator and select Force Touch Pressure, as shown in Figure 7-10.



210 CHAPTER 7: Building an Interactive watch0S App

& Simulator (Watch) File Ecit [IFTLELH Debug Window Help QU@ a D i T M ook SwiEsPM Q

Device >

]

1:33 PM

By Type Home OXH
Lock 18
Reboot Authorizedhlways:
1§
orized locat
1]
_Force Touch Pressure. [l v Shaliow Press (381

Deep Press %2

Simulate Memory Warning 0XM

i

wil)
¥

func presentConfirsController() {
4ines Locat ion

let wserDict = ["Latitude” : e . te. lat e, "Longitudel

(“Confiralnterfacefontroller”, context: userDict)

uuuuu

Aata & =
! W e = Screen Shot 2 24 PN png

untitied folder

1N EANE BBRO® -] | s00 N 17

.

Figure 7-10. Enabling deep press events

Unfortunately, once you toggle the setting, all touches will retain it. This could have some
negative side effects, as a deep press on a menu dismisses it. During your debugging
session, remember to keep switching the mode between deep press and shallow press to
simulate realistic user interaction.

Adding Buttons to an Interface Controller

Now that you are able to present the interface controller for the confirm screen, you need a
way of exiting it, either by confirming that the location is correct or by dismissing the view.
For the CarFinder application, you will perform these actions using the WKInterfaceButton
class, which is intended to provide similar functionality to a UIButton in iOS. As watchOS is a
subset of iOS, you cannot catch touch events to the same level of granularity as an iOS app,
such as “touch down repeat.” However, you can trigger a method via a selector or perform a
segue when the button is pressed.

Apple suggests that when you plan to use buttons in your watchOS apps, you opt for a
purely vertical layout. You can also place buttons into a horizontal layout, but | suggest
two at most, since the touch area on the Apple Watch is so small. For the interface of the
ConfirmInterfaceController, you will use a purely vertical layout to contain all of the Ul
items. Start by adding a Group object to your Interface Controller. As shown in Figure 7-11,
set the layout to Vertical.



GHAPTER 7: Building an Interactive watch0S App 211

ene » ~ ) J* Generic 105 D._tch0S Device  CarFinder | Build Carfinder - watchOS: Succeeded | 11/11/15 at §:32 PM D 4 ali=Nn
Interface storyboard ConfirmirterfaceControlier swift
B £ § CarFinder CarFind_atch0$ interfac_ryboard Intartac_d (Base) Detals Scene Detalls Grovo = O

CarFinder Scene Greup

[ >

New Location Scene

Details Scene Soating
Det.
i
=
[~
&
Custom
Glance interface Controlier Scene
Static Notification interface Contr_ 1
Natitication Contraller Scene
-]
Mew Location -]
Size
ity Riolative to Container B
Intarface Controlier - Mansges &
scrmerrs inertace biects.
Glance interface Controller
Cancel Vi aons 1he a00icaTEr S Gance
rretace

Motification interface Contraller

O Any Screen Size

Figure 7-11. Setting vertical layout on a group

Drag three buttons and two labels onto the Group, as shown in Figure 7-12. You do not need
to connect the buttons to properties in your class, but make sure you connect the Note and
Coordinates label to the notelLabel and coordinatesLabel properties via the Connection
Inspector.

Interface. sioryboard

B s & CarFinger CaFlicn0s | [ wtert_bowd ) [ intert_{Base) Intert_Scere Confiern Contiem ¢ » = 9

B Carfin CarFinder Scene
i CarFinder T -]
- Meny
Add Location = Defaut B
fwset

ent Syvtem 150
) Erabied

Pus DetaiSogue” to "Det = o
Confirm Scane Color =1 Detault B
=
Hidden
Confirm 0 instatied
Cancel
Detalls Scene B
Glance interface Controller Scene Top =)
Static Natification intertace Contr_
Notification Contraller Scene
Buitton - A taopabie ares whh & title
andjor image
0 Any Screen Size
=
>
A L (B]x] o

Figure 7-12. Final storyboard layout for ConfirminterfaceController



212 CHAPTER 7: Building an Interactive watch0S App

As with action sheets on iOS, the prevailing design standard for buttons in watchOS is to
differentiate the cancel or dismiss button by changing its background color. As shown in
Figure 7-13, you can change the background color of a button in watchOS by selecting the
button in your scene and navigating over to the Attributes Inspector.

Finder | Bulld CarFinder - watchOS: Succeeded | 117115 ot 148 AM

Carfl_ch0S ntert_oard intert_ase) New_Scene | () New_cation) || Growp Cancel 8 ¢ 6

Contert Text B

Coloe [0 Detault B
for: System 150 =

Details Scone

™ Glance Interface Controller Scene

Recently Used Colors
(mRN Wsl Nalmd §of Qsj |
‘Static Notitication interface Contr._. IpeEEoO0O0OOoEEN

Motification Controller Scene

Cancel

n] Any Screen Size

- e - Discirys & B8t of meny e,
T »

Meny Item - [apcutes an setion
metmod of the pacent mterface

]
=

Figure 7-13. Changing the background color for a button

As with UlButtons in iOS, you need IBAction-enabled handler methods to perform

actions from a WKInterfaceButton in watchOS. Listing 7-5 shows the handler methods

for the buttons. At this time, both buttons dismiss the confirm interface controller via the
dismissController() method of the WKInterfaceController class. To pass data back to
the location table, you will eventually add a call to a delegate method as part of the confirm
action.

Listing 7-5. Button Handlers for the confirm interface controller

class ConfirmInterfaceController: WKInterfaceController {
@IBAction func confirm() {

dismissController()

}

@IBAction func cancel() {
dismissController()

}

}

Finally, connect the handler methods and button objects using Connections Inspector
in Interface Builder. As shown in Figure 7-14, make your connections from the Sent
Action selector.



GHAPTER 7: Building an Interactive watch0S App 213

Details Scene

Glance interface Controller Scene

Static Notification Intertace Contr...

Motification Controller Scene

O Any Screen Size

Figure 7-14. Connecting button actions

Passing Information Between Interface Controllers

Having established a way to present the confirm interface controller, you now need a way
to initialize it with real data. For the CarFinder application, you will want to show users their
current location, so they can save the entry or cancel the prompt. | will cover the specifics
of how to use CorelLocation natively on the watchOS application in the section “How to Add
Notes Using Text Input”; however, for now, you can assume that you will need to pass an
object that contains latitude and longitude data.

Remember that earlier in this chapter, you used the method presentControlleriWithName
(_:context:), to present the confirm interface controller with a storyboard identifier. The
other parameter you left blank was context. All subclasses of WKInterfaceController
implement an awakeWithContext() method, which responds to “waking” the view

controller with a context, or a data object that you can safely pass between interface
controllers. By generating a valid context object from the location list and overriding the
awakeWithContext() method in the ConfirmInterfaceController class, you can initialize the
confirm interface controller with location data.

To begin, you need an object that contains the user’s location. | have chosen to implement
this by adding a CLLocation object to the InterfaceController class and initializing it with
a known location. This adds an extra layer of safety if the user denies the app location
permission, or if there is another issue resolving the user’s location. Listing 7-6 provides the
modified definition for the InterfaceController class, adding a CLLocation object to the
InterfaceController class.



214 CHAPTER 7: Building an Interactive watch0S App

Listing 7-6. Modified Definition for InterfaceController class

class InterfaceController: WKInterfaceController, WCSessionDelegate, ConfirmDelegate {
@IBOutlet weak var locationTable: WKInterfaceTable?
var session : WCSession?
var locations = [Dictionary<String, AnyObject>]()

var currentlocation = CLLocation(latitude: 32.830579, longitude: -117.153839)

}

Although the type for the context parameter specifies AnyObject, in practice, you are limited
in the types you are allowed to use, primarily primitive data types like strings or numbers.
You can send multiple pieces of data over by combining them into an array or dictionary;
however, as of this writing, it is not possible to pass a CLLocation object. To resolve this
issue, you need to create a dictionary containing the user’s latitude and longitude as double
values. You can extract these from the coordinates property of a CLLocation object. Once
you have built the dictionary, you can pass it over using the presentControllerWithName()
method, as shown in Listing 7-7.

Listing 7-7. Sending a User’s Location While Presenting an Interface Controller

func requestlocation() {
//new location

let userDict = ["Latitude" : currentlocation.coordinate.latitude , "Longitude" :
currentlocation.coordinate.longitude, "Delegate" : self]

presentControllerWithName("ConfirmInterfaceController", context: userDict)

}

In the ConfirmInterfaceController class, you complete the process by overriding the
awakeFromContext () method. For now, all you need to do when you receive the context data
is initialize the coordinatesLabel by extracting the appropriate values out of the dictionary, as
shown in Listing 7-8.

Listing 7-8. Overriding awakeWithContext in the Confirm Interface Controller

override func awakeWithContext(context: AnyObject?) {
super.awakeWithContext(context)

if let inputDict = context as? Dictionary<String, AnyObject>{
//

if let inputDelegate = inputDict["Delegate"] as? ConfirmDelegate {
delegate = inputDelegate
}



GHAPTER 7: Building an Interactive watch0S App 215

if let latitude = inputDict["Latitude"] as? Double {
let longitude = inputDict["Longitude"] as! Double
currentlocation = CLLocation(latitude: latitude, longitude: longitude)

let formattedString = String(format: "%0.3f, %0.3f", latitude, longitude)
coordinateslabel?.setText(formattedString)

}
}

// Configure interface objects here.

}

Using a Delegate to Pass Information on Dismissal

As you have just learned, it is rather straightforward to pass data to an interface controller
while presenting it. Unfortunately, Apple does not provide a method this convenient for
passing back data when dismissing an interface controller in watchOS. However, by taking
advantage of delegation you can create your bridge between the classes.

The driving concepts behind delegation are that you specify a class to “delegate” a piece
work to and define the messages that will be passed back through a protocol. The class
that requests the work declares itself as implementing the protocol and sets itself as the
delegating object, allowing it to respond to messages from the outsourced class. Delegates
are perfect for establishing a message-passing scheme between two classes, without
specifying all the details of implementation.

For the CarFinder app, the data we are interested in passing back from the confirm interface
controller is whether the user decided to save the location. The location list delegates the
work of making the determination to the confirm interface controller, so you need to define
your protocol there.

Protocols are defined by specifying a protocol block with the protocol name and a list of
methods that its delegate needs to implement. Listing 7-9 provides the protocol definition
for the ConfirmInterfaceController class. Protocol blocks are defined before classes, as
the corresponding class includes a property placed on the protocol.

Listing 7-9. Protocol Definition for CustominterfaceController

protocol ConfirmDelegate {
func savelocation()
}

To call methods via a protocol, you need to implement a delegate property on your class.
You can then call methods from the protocol on this property, which will be sent to the class
that has declared itself as your delegate. In Listing 7-10, | have added the delegate property
to the ConfirmInterfaceController class; it is an optional variable with the protocol name as
its type.



216 CHAPTER 7: Building an Interactive watch0S App

Listing 7-10. Adding a Delegate Property to the ConfirminterfaceController Class

class ConfirmInterfaceController: WKInterfaceController {

@IBOutlet weak var coordinateslabel: WKInterfacelabel?

var delegate: ConfirmDelegate?

}

For the final major piece of the implementation in the ConfirmInterfaceController, call
the savelocation() delegate method. As shown in Listing 7-11, make this call part of the
confirm() handler method, before dismissing the interface controller.

Listing 7-11. Calling a Delegate Method

@IBAction func confirm() {
delegate?.savelocation(self.note)
dismissController()

}

The implementation is much easier in the class that is delegating work,
InterfaceController. In this class, you need to do the following:

Declare that you are implementing the ConfirmDelegate protocol

Provide an implementation for the methods that the protocol exposes
(saveLocation())

Let the ConfirmInterfaceController know that you are the delegate.

To declare that the InterfaceController is implementing the ConfirmDelegate protocol, add
the protocol name to the class signature, with a comma separating it from the parent class
name, as shown in Listing 7-12.

Listing 7-12. Declaring That a Class Is Implementing a Protocol

class InterfaceController: WKInterfaceController, WCSessionDelegate,
CLLocationManagerDelegate, ConfirmDelegate {

}

The compiler will immediately throw an error stating that the InterfaceController does

not implement all of the methods of the ConfirmDelegate protocol. To resolve this issue,
implement the savelLocation() method. When the user has confirmed that he wants to save
his current location, append the current location to the locations array and refresh the table.
Listing 7-13 provides the implementation for the savelLocation() method.

Listing 7-13. Saving a Location

func savelocation(note :String) {
//add a new record here
let locationDict = ["Latitude" : currentLocation.coordinate.latitude , "Longitude" :
currentLocation.coordinate.longitude, "Timestamp" : currentLocation.timestamp]
locations.insert(locationDict, atIndex: 0)



GHAPTER 7: Building an Interactive watch0S App 217

Finally, to receive messages, you need a way of specifying that the InterfaceController
object associates with the delegate property of the ConfirmInterfaceController class. In
iOS, you would use the instantiateViewController() method on a UIStoryboard object to
make this connection; however, this method is not available on watchOS. But, you can pass
the pointer along by adding it to your context dictionary. In Listing 7-14, | have modified the
requestLocation() method to include a delegate key.

Listing 7-14. Adding a Delegate Object to the Context Dictionary

func requestlocation() {
//new location

let userDict = ["Latitude" : currentlocation.coordinate.latitude , "Longitude" :
currentlocation.coordinate.longitude, "Delegate" : self]

presentControllerWithName("ConfirmInterfaceController", context: userDict)

}

To extract this value from the context dictionary, go back to the
ConfirmInterfaceController. In the awakeForContext method, verify that the value exists
and that it has the type ConfirmDelegate. As shown in Listing 7-15, once this check has
passed, you can set the property.

Listing 7-15. Extract the Delegate from Your Context

override func awakeWithContext(context: AnyObject?) {
super.awakeWithContext(context)

if let inputDict = context as? Dictionary<String, AnyObject>{
//

if let inputDelegate = inputDict["Delegate"] as? ConfirmDelegate {
delegate = inputDelegate
}

}

You are now able to pass messages upon dismissing the confirm interface controller!

On a closing note, did you like my pun? Driving concepts? CarFinder? Ha, ha, hal

How to Add Notes Using Text Input

To illustrate another way of accepting user input in your application, you will learn how
to add text input. This feature brings up a modal, shown in Figure 7-15, which allows the
user to add text in the form of an emoji, a pre-string string, or through Siri text-to-speech
recognition.



218 CHAPTER 7: Building an Interactive watch0S App

Cancel

On curb

Next to house

Next to lightpole

® ¢

Figure 7-15. Text input modal

For the CarFinder application, you will want to trigger this modal when the user clicks the
“Add Note” button. To help the user, you should pre-populate the picker with strings that
relate to location notes, such as “next to light pole” or “across from house.”

Note You need to use an Apple Watch to test text input, as the simulator does not support Siri.

To present the text input modal, use the method, presentTextInputControllerWith
Suggestions(_:allowedInputMode:), which allows you to specify an array of suggestion
strings, limits on the types of input accepted (e.g., no emoji), and a completion handler.
Listing 7-16 provides the implementation for the CarFinder app. As a reminder, this goes in
the ConfirmInterfaceController class.

Listing 7-16. Presenting the Text Input Modal

@IBAction func addNote() {
let suggestionArray = ["On curb”, "Next to house", "Next to lightpole"]
presentTextInputControllerWithSuggestions(suggestionArray, allowedInputMode:
WKTextInputMode.AllowEmoji) { (inputArray: [AnyObject]?) -> Void in
if let inputStrings = inputArray as? [String] {
if inputStrings.count > 0 {
let savedString = inputStrings[o]

dispatch_async(dispatch_get main_queue()) {
self.notelabel?.setText(savedString)
self.note = savedString



GHAPTER 7: Building an Interactive watch0S App 219

The String type in Swift allows a wider character set than NSString in Objective-C, so you
do not need to set any limits on the input type. Emoji will display in-line when provided as
input to a string.

As another reminder, remember that you need to set text for the noteLabel on the main
thread, as Ul updates only execute on the main thread.

To pass the note back to the InterfaceController, expand the ConfirmDelegate protocol’s
savelocation() method to include a “Note” parameter. Listing 7-17 provides the modified
protocol declaration. Place this code in ConfirmInterfaceController.swift.

Listing 7-17. Expanding the ConfirmDelegate Protocol to Allow notes()

protocol ConfirmDelegate {
func savelocation(note: String)
}

Listing 7-18 includes the modified confirm() method for the ConfirmInterfaceController
class, which pulls in the note that was saved earlier.

Listing 7-18. Sending a Note to the Delegate

@IBAction func confirm() {
delegate?.savelocation(self.note)
dismissController()

}

You will implement the savelLocation() delegate method in the InterfaceController class,
which will allow you to extract the note as an input parameter.

Sending Data Back to the Parent i0S App

For the final piece of the interactive version of CarFinder, you will send locations that the
watch app created back to the parent iOS app. Once again, you can rely on your old friend
WatchConnectivity to help communicate between your watchOS app and its parent iOS app.

While the primary method for sending data to the Apple Watch from an iOS app is through
the updateApplicationContext() method on a WKSession, there are a few more options
available for sending information from the Apple Watch to its parent iOS application. Table 7-1
provides an overview of these methods and their intended uses.



220 CHAPTER 7: Building an Interactive watch0S App

Table 7-1. Methods for Transferring Data from the Apple Watch to an iOS Application

Method Purpose

sendMessage:replyHandler:error ~ Send a context containing data to the parent app immediately.

Handler: Queue any old versions of the dictionary that have not yet been
processed.

transferFile:metadata: Transfer a file to the parent app.

transferUserInfo: Transfer a dictionary to the parent app. Queue any old versions of

the dictionary that have not yet been processed.

updateApplicationContext:error: Transfer a dictionary to the parent app. Discard any old versions
of the dictionary that have not yet been processed.

For the CarFinder application, you want to post location updates as the user creates them.
The messages will be infrequent, but they need to be queued and delivered in order. For
this reason, you will use the sendMessage () method to post location updates back to the
companion iOS app.

In the flow of the CarFinder app, the save action happens in the saveLocation() method of
the InterfaceController class. At this point, you have a context dictionary containing the
latitude and longitude information for a new location. The sendMessage() method takes a
dictionary as input; it would make sense to pass the input dictionary directly to the iOS app,
which has its own logic for adding a location based on latitude and longitude. Listing 7-19
provides the modified saveLocation() method, which includes the sendMessage() call.

Listing 7-19. Calling sendMessage() from the InterfaceController Class

func savelocation(note :String) {
//add a new record here
let locationDict = ["Latitude" : currentLocation.coordinate.latitude , "Longitude" :
currentlocation.coordinate.longitude, "Timestamp" : currentLocation.timestamp,
"Note" : note]
locations.insert(locationDict, atIndex: 0)

session?.sendMessage(locationDict, replyHandler: nil, errorHandler: { (error: NSError)
-> Void in

print(error.description)
h

}

You will notice the completion handlers for the error and reply states are very light in my
example. In general, you should not show an error alert unless the failing action will hinder
the user’s experience with the app. In this example, | did not implement any custom logic for
the reply handler because the watchOS Ul does not update based on a successful post to
the iOS app.



GHAPTER 7: Building an Interactive watch0S App 221

To receive a message from a watchOS app in an iOS app, you need to expand your
AppDelegate class, which handles external events and launching your app, to handle
watchKit extension messages. To handle the watchKit extension messages, you need

to implement the delegate method func application(application: UIApplication,
handleWatchKitExtensionRequest userInfo:reply:), which receives a dictionary containing
information from the watchOS app and a reply method signature, which you can use to send
a reply back to the watchOS app. This allows you to send a confirmation back to the app or
update the Ul on the watch.

Receiving the message in the iOS parent app is one thing, but in order to do something with
it, you need to send a message to the location list, represented by the FirstViewController
class. Best practices in Apple development suggest against creating a singleton or
maintaining pointers to view controllers in your app delegate. However, you can use a much
more generic message-passing method to get the update to the FirstViewController class:
notifications.

With notifications, you specify a name for your message (the notification name) and post

a message using that name. Generally, the data is transferred in a dictionary, which is
extremely convenient, because your input is also a dictionary. A notification is sent to anyone
who wants to listen. A class will declare itself as an “observer” of a notification and specify a
selector or completion handler that should execute when the notification is received.

Listing 7-20 provides the handleWatchKitExtensionRequest() method for the AppDelegate,
including the call to post a notification. Place this code in AppDelegate.swift.

Listing 7-20. Receiving Messages from the CarFinder watch0S App

func application(application: UIApplication, handleWatchKitExtensionRequest userInfo:
[NSObject : AnyObject]?, reply: ([NSObject : AnyObject]?) -> Void) {

NSNotificationCenter.defaultCenter().postNotificationName("LocationUpdateNotification",
object: nil, userInfo: userInfo)

}

To observe the notification, in the FirstViewController’s viewDidLoad() method, implement
the addObserver() method. As shown in Listing 7-21, | have chosen to use a completion
handler to process the notification.

Listing 7-21. Processing the watchO0S Notification

NSNotificationCenter.defaultCenter().addObserverForName("LocationUpdateNotification”,
object: nil, queue: NSOperationQueue.mainQueue()) { (notif: NSNotification) -> Void in
/7

if let location = notif.userInfo as? [String : AnyObject] {

if let latitude = location["Latitude"] as? Double {
let longitude = location["Longitude"] as! Double

let location = ClLLocation(latitude: latitude, longitude: longitude)
DataManager.sharedInstance.locations.insert(location, atIndex: 0)



222 CHAPTER 7: Building an Interactive watch0S App

self.tableView.reloadData()

}

Now that you have added interactive features to CarFinder, your app should look like
Figure 7-16. The new app retains the location list from the original CarFinder app, while
adding an expanded details page and menu options to add and delete locations.

Shallow

Touch

Location List Location Details

Deep
Touch

Shallow

Confirm

Add Note

Cancel

Contextual Menu Confirm Screen

Figure 7-16. Expanded user interface for interactive CarFinder app



GHAPTER 7: Building an Interactive watch0S App 223

Summary

In this chapter, you learned how to make a watchOS app interactive by adding the ability

to create a new location from the watch, add notes using text input, and post the new

item back to the parent app. Along the way, you learned that much of the battle lies in
properly passing data between interface controllers and to the parent app. You saw that you
could use an application context to post data to an interface controller while presenting it,
delegates to post data after dismissing an interface controller, and the WatchConnectivity
class to post information back to your parent iOS app.



Chapter

Building a Stand-Alone
watchO0S App

Ahmed Bakir

In this chapter, you will learn about one of the greatest attributes of watchOS 2: its
capabilities that let you build an app that runs natively, even offline, without maintaining an
active connection to your parent iOS app. So far, you have noticed that watchOS 2 apps
share many design features with iOS apps, including interface controllers (view controllers),
notifications, and delegation. With watchOS 1, you were limited to building “listener” apps,
designed to respond to data manifests from a parent app; they were not intended to provide
anything more than consumption. watchOS 2 bridges a huge gap because it allows you to
build apps that not only are designed like iOS apps but also function like iOS apps.

To go even further, watchOS 2 started bundling stripped-down versions of Cocoa Touch
frameworks into the operating system (OS) itself. These frameworks bake the logic of
accessing hardware, playing back media, and other weighty operations into the watch,
allowing your apps to operate completely independently. These frameworks are extremely
useful because they abstract the “hard work” away from you, allowing you to focus on the
business logic of your applications rather than the technical details (such as how to decode
an MP4 video).

There are too many frameworks in watchOS 2 to cover them all exhaustively, but in this
chapter, | will focus on Core Location, which allows you to perform more advanced location
features like geocoding. | will also cover a very popular Cocoa Touch API (application
programming interface) which has made its way over to watchOS, NSTimer, which allows
you to present timed events to users. Finally, you will learn how to use the networking
features of the Foundation framework (the base for all Apple programming), which now
allows you to make HTTP calls to the Internet directly from your watch.

225



226 CHAPTER 8: Building a Stand-Alone watch0S App

For this chapter, you will revisit your old friend, CarFinder, taking advantage of these features to
further improve the application. You can find the updated version of CarFinder in the Ch8 folder
for this book in the Source Code/Download area of the Apress web site (www.apress.com).

Using Core Location to Request Current Location

In Chapter 7’s implementation of the CarFinder app, you used hard-coded coordinates

to initialize the CLLocation object passed along to the confirm interface controller. In this
section, you will learn how to use Corelocation to retrieve the user’s current location.
Additionally, since user location is a permission, you will also need to use CorelLocation to
prompt the user for location permission.

In the new CarFinder application, you will ask the user for location permission the first
time he tries to add a location from the contextual menu. Once the user has approved the
permission, request his current location and take him to the confirm interface controller.

The process of adding a framework to your watchOS app is exactly like the one for an iOS
app: import the desired framework in your classes. Most of your Core Location operations
will take place on the InterfaceController and ConfirmInterfaceController classes,

so add the import statement to both. To perform location operations in CoreLocation,

you will also need an instance of the CLLocationManager class. Listing 8-1 includes the
modified definition for the InterfaceController class, including the import statement and
CLLocationManager object. Follow the same steps for all classes that use CorelLocation.

Listing 8-1. Adding CoreLocation to a watchOS Class

import WatchKit

import Foundation

import Corelocation
import WatchConnectivity

class InterfaceController: WKInterfaceController, WCSessionDelegate,
CLLocationManagerDelegate, ConfirmDelegate {

@IBOutlet weak var locationTable: WKInterfaceTable?
var session : WCSession?

var locations = [Dictionary<String, AnyObject>]()
var locationManager: CLLocationManager?

var currentlocation = CLLocation(latitude: 32.830579, longitude: -117.153839)

override func awakeWithContext(context: AnyObject?) {
super.awakeWithContext(context)


http://www.apress.com/
http://dx.doi.org/10.1007/978-1-4842-1194-6_7

CHAPTER 8: Building a Stand-Alone watch0S App 227

The process of bringing up the location permission screen in watchOS is similar to that
of iOS: query for authorization status and call the correct method to request permission
if the status is not authorized or denied. Fortunately, in Chapter 7, you defined the
requestPermission() method to bring up the confirm interface controller. You can take
advantage of that here by replacing that with the code to make the permission query in
ConfirmInterfaceController.swift, as shown in Listing 8-2.

Listing 8-2. Modified requestLocation() Method, Including Permission Query

@IBAction func requestlocation() {

//do not initialize until the user tries to request a location
locationManager = CLLocationManager()
locationManager?.delegate = self

switch (CLLocationManager.authorizationStatus()) {

case .AuthorizedWhenInUse, .AuthorizedAlways:
locationManager?.requestLocation()

case .Denied:
print("user has not authorized location")
presentConfirmController()

case .NotDetermined:
fallthrough

default:
locationManager?.requestWhenInUseAuthorization()

}

}

To make the code easier to read, | have grouped the old code to present the confirm
interface controller into a method called presentConfirmController (Listing 8-3). This
encapsulates the work of building a context dictionary from the currentLocation property
and presenting the interface controller.

Listing 8-3. Presenting the Confirm Interface Controller

func presentConfirmController() {
//new location

let userDict = ["Latitude" : currentlLocation.coordinate.latitude , "Longitude" :
currentLocation.coordinate.longitude, "Delegate" : self]

presentControllerWithName("ConfirmInterfaceController", context: userDict)

}

Using the GPS sensor on any connected device is one of the most power-hungry operations
you can perform. While the iPhone and iPad have been optimized to reduce this cost,

the Apple Watch is not yet at that state, so all location requests need to be on demand. In
the example in Listing 8-2, when the status has been determined to already be authorized,
the call to requestLocation() is made, which performs the on-demand location request.


http://dx.doi.org/10.1007/978-1-4842-1194-6_7

228 CHAPTER 8: Building a Stand-Alone watch0S App

Unfortunately, neither the permission request nor the location request makes it obvious what
you are supposed to do when you have permission or a location. To implement these, you
will need to implement the CLLocationManagerDelegate protocol and its methods to handle
permission and location updates. Begin by updating your class definition to include the
CLLocationManagerDelegate protocol, as shown in Listing 8-4.

Listing 8-4. Updating the Class Definition to Include CLLocationManagerDelegate

class InterfaceController: WKInterfaceController, WCSessionDelegate,
CLLocationManagerDelegate, ConfirmDelegate {

}

Next, you need to make sure the CLLocationManager object is initialized correctly,
including its delegate property. Accomplish that by initializing the object at the top of the
requestLocation() method, as shown in Listing 8-5.

Listing 8-5. Initializing the Location Manager

@IBAction func requestLocation() {

//do not initialize until the user tries to request a location
locationManager = CLLocationManager()
locationManager?.delegate = self

switch (CLLocationManager.authorizationStatus()) {

case .AuthorizedWhenInUse, .AuthorizedAlways:
locationManager?.requestLocation()

case .Denied:
print("user has not authorized location")
presentConfirmController()

case .NotDetermined:
fallthrough

default:
locationManager?.requestWhenInUseAuthorization()

}

}

For permissions requests in CoreLocation, you need to implement the didFailWithError and
didChangeAuthorization delegate methods, both of which trigger compilation errors if they
are not included in your project. Listing 8-6 provides the didFailWithError() method for

the InterfaceController class (InterfaceController.swift). In my implementation, | print
out an error message in this class, since | provided a default current location value when
initializing the currentLocation property.

Listing 8-6. Handling Permissions Failure

func locationManager(manager: CLLocationManager, didFailWithError error: NSError) {
//do nothing, we have a default value
print(error.description)



CHAPTER 8: Building a Stand-Alone watch0S App 229

When the user has granted your app permission to use a location, you can query
the locationManager for the user’s current location. As shown in Listing 8-7, in the
InterfaceController class (InterfaceController.swift), perform this operation
by checking that the status has changed to “AuthorizedWheninUse” in the
didChangeAuthorization delegate method.

Listing 8-7. Handling Permissions Success

func locationManager(manager: CLLocationManager, didChangeAuthorizationStatus status:
CLAuthorizationStatus) {
if status == CLAuthorizationStatus.AuthorizedWhenInUse {
manager .requestLocation()
} else {
//do nothing, use default location
}

}

Finally, you need to handle the event that triggers when the location manager has fetched
the user’s current location. The updateLocations() delegate method handles this event. As
shown in Listing 8-8, when this event is triggered, verify that at least one valid location has
been received, and use that to initialize the currentLocation property of the class. From
there present the confirm interface controller.

Listing 8-8. Handling Location Updates

func locationManager(manager: CLLocationManager, didUpdatelLocations
locations: [CLLocation]) {
if locations.count > 0 {
currentlocation = locations[0]

presentConfirmController()

}

Reverse Geocoding an Address

One of the challenges in the original CarFinder app was that it only displayed a user’s
location as latitude and longitude. | don’t know about you, but I am a bit rusty on converting
latitude and longitude to street addresses. CorelLocation, however, is not, and by taking
advantage of its CLGeocoder class, we can use Apple’s reverse geocoding servers to retrieve
this information. This API has been available for years on iOS. Conveniently, it is also
available on watchOS 2.

For the CarFinder app, you should use reverse geocoding to replace the coordinates on the
user interface (Ul) with a human-readable string containing the user’s street address (street
number and name). Reverse geocoding is a service-based API, meaning that you have to
wait for Apple’s servers to respond with a result. As you can guess, this means the reply time
is indeterminate, and you will need to handle the response on a view where the user can



230 CHAPTER 8: Building a Stand-Alone watch0S App

wait for the result to come in. In the CarFinder app, it makes sense to make this call on the
confirm view. From there, you can pass the street address back to the location list in your
delegate method, along with saved notes.

You can reverse geocode a set of coordinates with the CLGecoder private method
reverseGeocodelocation(: , completionHandler:), which takes a CLLocation object

as input and executes a completion handler when it receives a response from Apple’s
geocoding server. In the response is an array of places that match the given coordinates and
an NSError object, which is non-nil if an error occurred during the request.

For the confirm screen, you should start the request as soon as the interface controller is
presented. When you receive the request, you should extract the street name and number
(represented by the thoroughfare and subThoroughfare properties) and save them to a
string, which you will use to update the Ul and location list.

Listing 8-9 provides the updated implementation for the awakeFromContext() method for the
ConfirmInterfaceController class. Since you cannot access the text string from a label,
save a copy of the generated string in a property named address.

Listing 8-9. Updated ConfirminterfaceController Class

override func awakeWithContext(context: AnyObject?) {
super.awakeWithContext(context)

if let inputDict = context as? Dictionary<String, AnyObject>{
//

if let inputDelegate = inputDict["Delegate"] as? ConfirmDelegate {
delegate = inputDelegate

if let latitude = inputDict["Latitude"] as? Double {
let longitude = inputDict["Longitude"] as! Double
currentlocation = CLLocation(latitude: latitude, longitude: longitude)

let formattedString = String(format: "%0.3f, %0.3f", latitude, longitude)
coordinateslabel?.setText(formattedString)

let geocoder = CLGeocoder()

geocoder.reverseGeocodelocation(currentlocation!, completionHandler: {
(placemarks: [CLPlacemark]?, error: NSError?) -> Void in
//sd
if error == nil {
if placemarks?.count > 0 {
let currentPlace = placemarks![0]
let placeString = "\(currentPlace.subThoroughfare!)
\(currentPlace.thoroughfare!)"



CHAPTER 8: Building a Stand-Alone watch0S App 231

dispatch_async(dispatch_get main_queue()) {
self.coordinatesLabel?.setText(placeString)
self.address = placeString

1)
}

// Configure interface objects here.

}

In terms of execution time, reverse geocoding is an expensive operation. It is also certain
that the results will not change for a given address. We can save time in the app by passing
the address to the location list. To enable this, modify the ConfirmDelegate protocol delegate
in ConfirmInterfaceController.swift to add the address as a return parameter, as shown
in Listing 8-10.

Listing 8-10. Adding Address to the ConfirmDelegate Protocol

protocol ConfirmDelegate {
func savelocation(note: String, address: String)
}

Listing 8-11 provides the modified confirm() method of the InterfaceController class
(InterfaceController.swift), which includes the address in the call to the delegate.

Listing 8-11. Sending the Address to the Delegate Object

@IBAction func confirm() {
let noteString = self.note!
let addressString = self.address!

delegate?.savelocation(noteString, address: addressString)
dismissController()

}

On the receiving side, you need to modify the saveLocation() delegate method to
include the address by adding it as a key-value pair. Listing 8-12 provides the modified
savelocation() method for the InterfaceController class.

Listing 8-12. Adding Address to the saveLocation() Delegate Method

func savelocation(note: String, address: String) {

//add a new record here

let locationDict = ["Latitude" : currentLocation.coordinate.latitude , "Longitude" :
currentlocation.coordinate.longitude, "Timestamp" : currentlLocation.timestamp,
"Note" : note, "Address": address]

locations.insert(locationDict, atIndex: 0)



232 CHAPTER 8: Building a Stand-Alone watch0S App

session?.sendMessage(locationDict, replyHandler: nil, errorHandler: { (error: NSError)
-> Void in

print(error.description)
b

}

Finally, to display the address, modify the configureRows() method in the location list
(InterfaceController.swift), which builds each table cell to use the human-readable
address, instead of latitude and longitude, as shown in Listing 8-13.

Listing 8-13. Modifying the Table View to Include Address

func configureRows() {

self.locationTable?.setNumberOfRows(locations.count, withRowType:
"LocationRowController")

for var index = 0; index < locations.count; index++ {

if let row = self.locationTable?.rowControllerAtIndex(index) as?
LocationRowController {
let location = self.locations[index]

if let address = location["Address"] as? String {
row.coordinateslLabel?.setText(address)

} else if let latitude = location["Latitude"] as? Double {
let longitude = location["Longitude"] as! Double
let formattedString = String(format: "%0.3f, %0.3f", latitude, longitude)
//row.coordinatesLabel?.setText("\(latitude), \(location["Longitude"]!)")
row.coordinatesLabel?.setText(formattedString)

}

if let timeStamp = location["Timestamp"] as? NSDate {
let dateFormatter = NSDateFormatter()
dateFormatter.dateStyle = NSDateFormatterStyle.ShortStyle
dateFormatter.timeStyle = NSDateFormatterStyle.ShortStyle
row.timelabel?.setText(dateFormatter.stringFromDate(timeStamp))

}

//self.locationTable?.setNumberOfRows(locations.count, withRowType:
"LocationRowController")

Note You should use an if-else to display the latitude and longitude if the human-readable
address is not available.



CHAPTER 8: Building a Stand-Alone watch0S App 233

The final version of the CarFinder table Ul should now include human-readable addresses,
like the example in Figure 8-1. Much better, in my humble opinion!

3899 Nobel Dr
11/16/15, 11:37 PM

3899 Nobel Dr

11/16/15, 9:03 PM

Figure 8-1. Updated table for CarFinder app

Using NSTimer to Create Reminders

Another convenient feature Apple has ported to watchOS is the NSTimer class, which allows
you to schedule actions to be executed after a period of time has elapsed. In a parking
app, this is useful, as it can remind a user to go back to her car before the meter expires.

In the WatchKit app, you will expose this feature by adding an Add Time button to the
ConfirmInterfaceController class, where the user saves the location. On iOS, EventKit
provides a modal for entering in time. On watchOS, you need to build it yourself. For this
app, every time the user presses the Add Time button, add 15 minutes to the reminder.
When the user saves the location, he will be able to use the total time to create a reminder
alert, which will appear on his watch. Reflect this by adding a label for meter timer to the
confirm interface controller on the storyboard, as well as a button to increment the timer.
Listing 8-14 provides the modified class definition for the ConfirmInterfaceController class
(ConfirmInterfaceController.swift), which includes these new properties.

Listing 8-14. Modified Class Definition for ConfirminterfaceController, Including New Timer Properties

class ConfirmInterfaceController: WKInterfaceController {

@IBOutlet weak var coordinateslLabel: WKInterfacelabel?
@IBOutlet weak var notelabel: WKInterfacelLabel?
@IBOutlet weak var timelLabel: WKInterfacelLabel?



234 CHAPTER 8: Building a Stand-Alone watch0S App

var currentlocation : ClLLocation?
var delegate: ConfirmDelegate?

var note: String = ""
var address: String = ""

var totalTime : NSTimeInterval = 0.0

override func awakeWithContext(context: AnyObject?) {
super.awakeWithContext(context)

}

Figure 8-2 shows the modified storyboard.

@ e ~ ) B Anmed's Pho_Appie Watch CarFinder | Buitd CarFinder - walch(rs: Succeeded | Today at 7:55 PM
nterface.storyboard ContirminterfaceControliar swit IntertacaCantrolier. swift
H | ¢ 5 CarFincer CaFinder - walchOS Intertace Moy Dosd Ieterface. storyboard (Base) | No Selction ®E 06
CarFinder Scone
* [ Now Location Scene
* Cetails Scene

Glance interface Controller Scene

Static Notification interface Contr__.

Mew Location
» [ notitication Controlier Scene

@

Interface Controller - Manages &
se0r's ineetace clects
) [ m} Any Screen Size
E » Glance Intertace Controlier
Manages the Kopication’s glanoe
intartace

Motification interface Controlier
- Marages an inbertace fer 3
ratification casegory

Figure 8-2. Modified storyboard including add reminder button

When the user interacts with the Add Time button, you should increment the total time
stored in the class, as well as update the label that mirrors the current setting. As with

the other action buttons on the confirm interface controller, you should use the Add Time
button to build a configuration and act upon it when the user hits the Confirm button.
Listing 8-15 provides the incrementTime() method, which performs this logic, for the
ConfirmInterfaceController class. Remember to hook this function up to the button using
Interface Builder’s connection inspector after defining it.



CHAPTER 8: Building a Stand-Alone watch0S App 235

Listing 8-15. Saving Total Time Updates (ConfirminterfaceController.swift)

@IBAction func incrementTime() {
dispatch_async(dispatch_get main_queue()) {
self.totalTime += 15

let timeString = String(format: "%0.0f", self.totalTime)

self.timelabel?.setText("\(timeString) mins")

}

The NSTimer class allows you to schedule an action to be executed later by specifying the
offset (in seconds) and the selector (method signature). For the CarFinder application, you
will present an alert view and make the watch vibrate via the taptic sensor. When you specify
a selector, you need to provide the signature for the method and a target and the name

of the class where it is defined. For the CarFinder app, the function you want to call is the
one that presents the alert and generates the haptic feedback (vibration). Since alerts are
presented modally (full screen over another interface controller), the logic to present the alert
should be in an interface controller that will remain static.

The confirm interface controller disappears after you press the Confirm button, so it is a bad
choice. The location list, represented by InterfaceController.swift, is the primary screen
on the CarFinder and is also the first screen the user sees when she re-enters the app, so
that would be the best place to initialize the timer. However, you need a way of bridging the
gap between the ConfirmInterfaceController class and InterfaceController. To solve this
problem, you can further expand the ConfirmDelegate protocol to add a third parameter,
specifying the time the user selected. As shown in Listing 8-16, expand the protocol
definition in ConfirmInterfaceController.swift to include an NSTimeInterval parameter
that represents the saved time.

Listing 8-16. Expanding the ConfirmDelegate Protocol to Include Time

protocol ConfirmDelegate {
func savelocation(note: String, address: String, time: NSTimeInterval)
}

Similarly, in the confirm() method, the handler for the Confirm button, send the totalTime
property to the delegate object, as shown in Listing 8-17. The NSTimeInterval type
represents time in seconds, so multiply the saved value by 60 to convert it to minutes.

Listing 8-17. Sending Time to the ConfirmDelegate Delegate Object (ConfirminterfaceController.swift)

@IBAction func confirm() {
let noteString = self.note
let addressString = self.address
delegate?.savelocation(noteString, address: addressString, time: self.totalTime * 60)
dismissController()



236 CHAPTER 8: Building a Stand-Alone watch0S App

Back in the interface controller class (InterfaceController.swift), you can now

initialize the timer when handling the savelLocation( :address:time) message from the
ConfirmDelegate protocol. There are two primary methods for initializing a timer, scheduled
TimerWithTimeInterval:target:selector:userInfo:repeats: and timerWithTimeInterval
:target:selector:userInfo:repeats:. The main difference between these methods is that
the former starts the countdown right away, while the latter is intended to be started later.
For the CarFinder app, you should start the timer right away. As shown in Listing 8-18, the
time will come from the time parameter, InterfaceController (self) will be the target, and the
selector will be the showAlert(_:) method. In this example, | also build a dictionary to use
for the userInfo parameter, so | can pass extra data to the showAlert( :) method.

Listing 8-18. Initializing the Timer (InterfaceController.swift)

func savelocation(note: String, address: String, time: NSTimeInterval) {

//add a new record here

let locationDict = ["Latitude" : currentLocation.coordinate.latitude , "Longitude" :
currentlocation.coordinate.longitude, "Timestamp" : currentLocation.timestamp,
"Note" : note, "Address": address]

locations.insert(locationDict, atIndex: 0)

session?.sendMessage(locationDict, replyHandler: nil, errorHandler: { (error: NSError)
-> Void in

print(error.description)
1

let userDict = ["address" : address]

NSTimer.scheduledTimerWithTimeInterval(time, target: self, selector: "showAlert:",
userInfo: userDict, repeats: false )

Note A timer can also be configured to be called once or to repeat at an interval. Refer to
Chapter 4 (Using Core Motion to Save Motion Data) for an example of a repeating timer.

Now, you can begin implementing the alert that should appear when the timer fires.
Conveniently enough, Apple has chosen to port over the main logic of alert view controllers
to watchQS, including its modal presentation style and ability to add multiple actions
(buttons with completion handlers). Figure 8-3 provides a screenshot of the alert you will
create. It displays a reminder message, the address where the user parked his car, and an
OK button for the user to dismiss the alert.


http://dx.doi.org/10.1007/978-1-4842-1194-6_4

CHAPTER 8: Building a Stand-Alone watch0S App 237

Meter expired
Please return to your
car

Figure 8-3. Screenshot of alert controller on watch0S

To build an alert, you need to specify an alert title and a message and provide a set of actions
for the user to act upon. Conveniently, you build your alert and present it on watchOS using
one method: presentAlertControllerWithTitle( :message:preferredStyle:actions). For the
CarFinder app, the only action you need is OK to dismiss the alert. For the alert message and
title, display a generic warning instructing the user to return to his car. Listing 8-19 provides
the implementation for the showAlert( :) method that builds the alert. In this example,

| extract the address from the userInfo property of the timer.

Listing 8-19. Presenting an Alert (InterfaceController.swift)

func showAlert(timer: NSTimer) {
var reminderMessage = "Please return to your car"
if let userInfo = timer.userInfo as? [String: String] {
reminderMessage+="at \(userInfo["address"])"
}
print("Meter is out of time.")
let okAction = WKAlertAction(title: "OK", style: WKAlertActionStyle.Default)

{ () -> Void in
print("OK button pressed")
}

presentAlertControllerWithTitle("Meter expired"”, message: reminderMessage,
preferredStyle: WKAlertControllerStyle.Alert, actions: [okAction])

timer.invalidate()



238 CHAPTER 8: Building a Stand-Alone watch0S App

To make the watch vibrate, use the playHaptic( :) method on the Apple-provided

singleton which represents your device (WKInterfaceDevice.captureDevice()), as shown

in Listing 8-20. Apple provides several pre-configured vibration types that you can specify
to indicate different events via the WKHapticType enum. The Notification type is the most
powerful one and appropriate for what the CarFinder app needs to do (remind the user to go
back to his car).

Listing 8-20. Making the Watch Vibrate
func showAlert(timer: NSTimer) {

var reminderMessage = "Please return to your car"

if let userInfo = timer.userInfo as? [String: String] {
reminderMessage+="at \(userInfo["address"])"
}

print("Meter is out of time.")
WKInterfaceDevice.currentDevice().playHaptic(WKHapticType.Notification)

let okAction = WKAlertAction(title: "OK", style: WKAlertActionStyle.Default)
{ () -> Void in

print("OK button pressed")
}

presentAlertControllerWithTitle("Meter expired", message: reminderMessage,
preferredStyle: WKAlertControllerStyle.Alert, actions: [okAction])

timer.invalidate()

Making Network Calls from Your watchOS App

As you learned with Fitbit, there is a huge wealth of information out there for you to access
via third party APIs. The primary means of communication between your app and an API

is through HTTP. Previously, this had been limited to the realm of iOS apps only; however,
watchOS 2 has an expanded subset of Foundation (the core framework that powers all
Apple platforms) which includes networking capabilities. As you will learn in this chapter, this
allows you to perform HTTP requests (including GET and POST) directly on an Apple Watch
using its Wi-Fi radio, even without a tethered iPhone.

In this section, you will use the Weather Underground API to access the weather conditions
for a saved location, based on its zip code. Weather Underground requires you to sign up as
a developer to get an API key to use its services. The examples in this section use Weather
Underground’s free developer account, which you can sign up for at www.wunderground. com/
weather/api.


http://www.wunderground.com/weather/api
http://www.wunderground.com/weather/api

CHAPTER 8: Building a Stand-Alone watch0S App 239

Note Remember that starting with i0S9, Apple adds a firewall for HTTP operations. All network
operations must be transmitted over HTTPS, unless specific domains are whitelisted in your
Info.plist file.

The primary class for performing network operations in watchOS is NSURLSession, which
manages requests in the form of “tasks” or queueable units of execution. As shown in
Table 8-1, Apple provides several pre-configured task types. For the CarFinder app, you
want to retrieve data from an external host, asynchronously, via HTTP GET. The Data Task
type is the most appropriate for this situation.

Table 8-1. NSNURLSession Task Types

Task Type Purpose
Data task Used to download binary data in the foreground (NSData)
Upload task Used to upload binary data or files in the foreground or background

Download task Used to download files in the foreground or background

Local weather is useful as a statistic when viewing the details of an item, so you will implement
the look-up in the LocationInterfaceController class (LocationInterfaceController.swift),
which manages the display of an item. To begin, add a label for the temperature to the class,
as shown in Listing 8-21.

Listing 8-21. Adding a Label to the Class

class LocationInterfaceController: WKInterfaceController {
@IBOutlet weak var locationMap: WKInterfaceMap?
@IBOutlet weak var coordinateslLabel: WKInterfacelabel?
@IBOutlet weak var timelabel: WKInterfacelabel?
@IBOutlet weak var weatherlLabel: WKInterfacelabel?

var currentlocation : ClLLocation?

override func awakeWithContext(context: AnyObject?) {
super.awakeWithContext(context)

}

As shown in Figure 8-4, add a label in your storyboard scene, after the time label. Be sure to
connect the property via the Connection Inspector in Interface Builder.



240 CHAPTER 8: Building a Stand-Alone watch0S App

L ] * » ~ 1 W Ahmed's IPho_Appie Watch CarFinder | Build CarFinder - watchO'S: Succeeded | Today at 7:55 PM
Interface.storyboard ConfirminterfaceConsrotier. swift intortaceCantrolier swift
M| ¢ B Carfincer CaFinder - watchOS | Interface storybomd | - Interface. storyboard (Base) | No Selection @ E e
CarFinder Scone

¥ [T New Location Scene

* Cetails Scene
= FlrstviewControber swift

< SecondViewControBer,swift ] Glance Interface Contraller Scene

+ DataManager.swift » [ Static Notification Interface Contr_.

Mew Location
» [ notitication Controlier Scene

¥ [ CarFinder - watchOS

AS50tS. XTATSOLS

@

Interface Controller - Manages s
BROr's intertace CACL

) [ m} Any Screen Size

E » Glance Intertace Controlier
Manages the Kopication’s glanoe
» [0 Supparting Files intarface

Motification interface Controlier
- Manages an intertace fer a
ratification casegory

Figure 8-4. Adding a label to the storyboard

To perform the weather look-up, you need to provide Weather Underground with a zip code.
In the awakeWithContext () method of the class, add a geocoder to convert the location to a
place-mark with human-readable attributes (Listing 8-22).

Listing 8-22. Performing a Weather Look-up (LocationinterfaceController.swift)

override func awakeWithContext(context: AnyObject?) {
super.awakeWithContext (context)

// Configure interface objects here.

// Configure interface objects here.
if let locationDict = context as? Dictionary<String, AnyObject> {

if let latitude = locationDict["Latitude"] as? Double {

if let longitude = locationDict["Longitude"] as? Double {
let location = CLLocation(latitude: latitude, longitude: longitude)

let prettylocation = String(format: "%.2f, %.2f", location.coordinate.
latitude, location.coordinate.longitude)

coordinateslLabel?.setText(prettyLocation)
currentLocation = CLLocation(latitude: latitude, longitude: longitude)

locationMap?.addAnnotation(location.coordinate, withPinColor:
WKInterfaceMapPinColor.Red)



CHAPTER 8: Building a Stand-Alone watch0S App 241

let mapRegion = MKCoordinateRegionMake(location.coordinate,
MKCoordinateSpanMake(0.1, 0.1))

locationMap?.setRegion(mapRegion)

geocodelocation()

}

if let timestamp = locationDict["Timestamp"] as? NSDate {

}

}

Listing 8-23 provides the geocodeLocation() method, which performs the geocoding operation.

Listing 8-23. Geocoding (LocationinterfaceController.swift)

func geocodelocation() {

if currentlLocation != nil {
let geocoder = CLGeocoder()
geocoder.reverseGeocodelocation(currentlocation!, completionHandler: { (placemarks:
[CLPlacemark]?, error: NSError?) -> Void in
//sd
if error == nil {
if placemarks?.count > 0 {

let currentPlace = placemarks![0]
let placeString = "\(currentPlace.subThoroughfare!) \(currentPlace.
thoroughfare!)"

dispatch_async(dispatch _get main_queue()) {
self.coordinatesLabel?.setText(placeString)
}

let zipCode = currentPlace.postalCode!
self.retrieveleather(zipCode)

}
} else {

print(error?.description)
}

1)



242 CHAPTER 8: Building a Stand-Alone watch0S App

Once you have verified that the result contains a valid zip code, call the retrievelWeather()
method to begin the network operation.

In the retrieveWeather() method, you need to create an NSURLSession object and call the
dataTaskWithURL(url!, completionHandler: { (responseData: NSData?, response:
NSURLResponse?,error:NSError?) -> Void) method to process the result. The input is an
NSURL object and the output is a completion handler with response data and an error.

In looking at the Weather Underground API reference, you can determine that the
“conditions” endpoint is the appropriate method to call to get the local weather for a location
(www .wunderground.com/weather/api/d/docs?d=data/conditions). Weather Underground
provides the following as an example for how to call the API:

http://api.wunderground.com/api/748504be0ff02aa3/conditions/q/CA/San_Francisco.json

In this example, the string after the /api/ represents the API key. Weather Underground uses
CA/San_Francisco as the input for the location. However, you can safely change it to a zip
code.

Use a formatted string to build your URL (uniform resource locator) for the data task, as
shown in Listing 8-24:

Listing 8-24. Building the APl URL String

let apiKey = "YOUR_UNDERGROUND KEY"

let urlString = "https://api.wunderground.com/api/\(apiKey)/conditions/q/\(zipCode).json"
let url = NSURL(string: urlString)

Listing 8-25 provides the initial implementation for the retrievelWeather() method. In this
example, | used the NSURLSession.sharedSession( ) singleton for the session, as there is
no need to maintain multiple network sessions at once in the app. As has been the trend for
the other applications in this book, checking to make sure error is nil indicates success. To
execute a data task, you need to explicitly call the resume() method on it (remember, it is
designed to work in a queue).

Listing 8-25. Initiating a URL Session (LocationinterfaceController.swift)
func retrieveWeather(zipCode: String) {
let apikey = "YOUR_API_KEY"
let urlString = "https://api.wunderground.com/api/\(apiKey)/conditions/q/\(zipCode).json"
let url = NSURL(string: urlString)
let session = NSURLSession.sharedSession()

let urlTask = session.dataTaskWithURL(url!, completionHandler: { (responseData: NSData?,
response: NSURLResponse?,error:NSError?) -> Void in


.wunderground.com/weather/api/d/docs?d=data/conditions
http://api.wunderground.com/api/748504be0ff02aa3/conditions/q/CA/San_Francisco.json
https://api.wunderground.com/api//(apiKey)/conditions/q//(zipCode).json
https://api.wunderground.com/api//(apiKey)/conditions/q//(zipCode).json

CHAPTER 8: Building a Stand-Alone watch0S App 243

if error == nil {

} else {
print(error?.description)
}

1

urlTask.resume()

}

Handling a JSON Response

Having successfully completed the network operation, you need to perform one more step
to handle the output from Weather Underground: you need to convert the JSON (JavaScript
Object Notation) data in the response to a dictionary. Fortunately, Apple has chosen to also
port the NSJSONSerialization class to watchOS, which will allow you to convert NSData
objects to dictionaries. In Listing 8-26, | attempt to decode to a JSON dictionary. The
JSONObjectWithData() method returns errors via exceptions, so remember to implement it in
a try-catch block. This code will eventually go into the ConfirmInterfaceController class.

Listing 8-26. JSON Serialization

let urlTask = session.dataTaskWithURL(url!, completionHandler: { (responseData: NSData?,
response: NSURLResponse?,error:NSError?) -> Void in
if error == nil {
do {
let jsonDict = try NSISONSerialization.JSONObjectWithData(responseData!,
options: NSJSONReadingOptions.AllowFragments)

}
}
} catch {
print("error: invalid json data")
}

} else {
print(error?.description)
}

H

Referring back to the APl documentation for the “conditions” endpoint, the current temperature
for a location is stored as the “temp_f” key-value pair, in the “current_observation” dictionary
(see Listing 8-27).

Listing 8-27. API Response
{

"response": {
"version": "0.1",
"termsofService": "http://www.wunderground.com/weather/api/d/terms.html",
"features": {
"conditions": 1
}
b


http://www.wunderground.com/weather/api/d/terms.html

244 CHAPTER 8: Building a Stand-Alone watch0S App

"current_observation": {

"temp_f" : 86.5
}
}

Listing 8-28 provides the final implementation for the retrievelWeather() method. To extract
a key from a dictionary, in another dictionary, perform a series of consecutive optional
unwrapping operations.

Listing 8-28. Completed Implementation for retrieveWeather() Method

func retrieveWeather(zipCode: String) {
let apiKey = "YOUR API_KEY"
let urlString = "https://api.wunderground.com/api/\(apiKey)/conditions/q/\(zipCode).json"

let url = NSURL(string: urlString)
let session = NSURLSession.sharedSession()
let urlTask = session.dataTaskWithURL(url!, completionHandler: { (responseData: NSData?,
response: NSURLResponse?,error:NSError?) -> Void in
if error == nil {
do {
let jsonDict = try NSJISONSerialization.JSONObjectWithData(responseDatal,
options: NSJSONReadingOptions.AllowFragments)

if let resultsDict = jsonDict["current observation"] as? Dictionary<String,
AnyObject> {
if let tempF = resultsDict["temp f"] as? Double {
self.weatherLabel?.setText("\(tempF) F")
}
}

} catch {
print("error: invalid json data")
}

} else {
print(error?.description)
}

1)

urlTask.resume()

}

Having completed the steps in this chapter, the CarFinder app should look like the
screenshot in Figure 8-5, where the location list now shows human-readable addresses, the
detail list now shows weather, and an alert will appear when the user’s meter has expired.


https://api.wunderground.com/api//(apiKey)/conditions/q//(zipCode).json

CHAPTER 8: Building a Stand-Alone watch0S App

Shallow

Location List

Deep

Touch

expired
turn to your
car

Location Details

Parking Alert

Add Location

Confirm

Add Note

Add Time

Contextual Menu

Confirm Screen

Figure 8-5. Updated user interface for CarFinder app

Summary

In this chapter, you learned different ways to make a watchOS app independent, by
allowing it to take advantage of the expanded set of frameworks based in watchOS 2. First,

you learned how to create a permissions prompt and get a user’s current location using

245

Corelocation. Next, you used this same general process to create a calendar reminder using
EventKit. Finally, you learned how to make network calls to the Weather Underground API
directly from the watch to show the weather at the user’s current location. The Apple Watch
can be an extremely powerful tool in the right hands and now you have some more ways of
making a powerful tool when the user is nowhere next to his or her phone.



Chapter

Connecting to a Bluetooth
LE Device

Manny de la Torriente

Thanks to its open standards, Bluetooth Low-Energy (LE), also known as BLE,has
established itself as a leader for hardware manufacturers looking to create connected
accessories for iOS. This chapter introduces Core Bluetooth, Apple’s framework for
Bluetooth-based communication, to send and receive messages from a Bluetooth LE
device. Additionally, we will discuss Bluetooth best practices for battery life and a positive
user experience.

Introduction to the Apple Bluetooth stack

Apple’s Core Bluetooth is the representation of Bluetooth LE on iOS platforms. It’s the
framework that you will use to talk to accessories and host peripherals.

The framework is an abstraction of the Bluetooth LE protocol stack, and it hides many of the
low-level details of the specification so you can focus on your application.

247



248 CHAPTER 9: Connecting to a Bluetooth LE Device

[ Your Application ]

Core Bluetooth
Framework

Bluetooth LE
protocol stack

Figure 9-1. Core Bluetooth Technology Framework

The framework is built on the Bluetooth 4.0 Standard and provides all the classes you’ll need
to easily communicate with other Bluetooth LE devices.

Key Terms and Concepts

The framework adopts many key concepts and terminology from the specification.

Central

A device that supports the central role scans and listens for peripheral devices that are
advertising information. A central role device is responsible for initiating and establishing a
connection. We refer to a device operating in the central role as a central.

Peripheral

A device that supports the peripheral role transmits advertising packets, which describe
what services the peripheral has to offer. A peripheral role device is responsible for
accepting the establishment of connection. We refer to a device operating in the peripheral
role as a peripheral.

Service

A service is a collection of data called characteristics that describes particular functions or
features of a peripheral’s services.

Characteristic

A characteristic is a value used in a service along with properties and descriptors that
contain information that describes the value.



CHAPTER 9: Connecting to a Bluetooth LE Device 249

Discovery

Bluetooth devices use advertising and scanning either to be discovered or to discover
nearby devices. Advertising peripherals broadcast advertising packets. A scanning central
device will scan and listen and can use filters to prevent discovery of all nearby devices.

Core Bluetooth Objects

The Core Bluetooth framework is mapped to Bluetooth LE communication in a
straightforward way.

Central Role Objects

A device that supports the central role uses the (BCentralManager object to scan for,
discover, connect, and manage discovered peripherals. The peripheral is represented

by a CBPeripheral object to handle services and characteristics. CBService and
(BCharacteristic objects represent a peripheral’s data. Figure 9-2 illustrates the peripheral’s
tree of services and characteristics.

[ CBPeripheral j

—[ CBService ]
%CBCharaateristic ]

CBCharacteristic ]

—{ CBService j

Figure 9-2. Peripheral’s tree of services and characteristics



250 CHAPTER 9: Connecting to a Bluetooth LE Device

Peripheral Role Objects

A device that supports the peripheral role is represented by the CBPeripheralManager
object to advertise services, manage published services, and respond to read/write
requests from centrals. A CBCentral object represents a central. CBMutableService and
CBMutableCharacteristic objects represent a peripheral’s data when in this role. Figure 9-3
illustrates the peripheral’s tree of services and characteristics.

E CBMutableService J

CBMutableCharacteristic j

CBMutableCharacteristic J

IR

CBMutableCharacteristic J

Figure 9-3. Peripheral’s mutable tree of services and characteristics

Building Your First Bluetooth LE Application

In this section you’ll build a simple application using an agile approach that will support both
central and peripheral roles. The application is designed to run on two separate Bluetooth
LE-capable iOS devices, with each device running in the different roles. The central role
device will scan and connect to the peripheral device, which will be advertising a simple
service. Once connected, the peripheral device will transfer data to the central device, which
will then present that data to the user.

The feature requirements are straightforward and we present them in a story form. The main
focus for the first part of this exercise will be on setting up the application to accommodate
each mode using a simple user interface (Ul) followed by a deep dive into Core Bluetooth.

When you complete this exercise, you should have a solid understanding of the central and
peripheral roles and how they work using the Core Bluetooth framework, as well as several
reusable modules that you can bring into your own projects.



CHAPTER 9: Connecting to a Bluetooth LE Device 251

Backlog

There are several features that are represented by stories and are labeled “must have.” They
are the focus in this section. The story labeled “nice to have” is left as an exercise for you
do to later on if you wish. You can find the full implementation for this chapter in the Source
Code/Download area of the Apress web site (www.apress.com).

Base Application and Home Scene

The following are “must have” features.

Story

As an iOS developer, | want an application that runs on a Bluetooth LE-capable device and
provides access to two scenes, so | can run each scene in a different mode.

Acceptance Criteria

The home scene provides a button labeled Central Role that, when
pressed, transitions to new blank scene titled Central Role.

The home scene provides a button labeled Peripheral Role that, when
pressed, transitions to a new blank scene titled Peripheral Role.

The home scene provides a single indicator that shows when Bluetooth
is powered on or off.

The application prohibits any transition if Bluetooth is not powered on,
or the device doesn’t support Bluetooth LE.

The application displays an alert to the user if Bluetooth is not powered
on, or the device doesn’t support Bluetooth LE.

Each scene provides a Back button in the navigation bar that transitions
back to the home scene when pressed (see Figure 9-5).


http://www.apress.com/

252 CHAPTER 9: Connecting to a Bluetooth LE Device

ssene ATAT M-Cell T 2:52 PM - % 94% N ¢

CoreBluetooth Transfer

SRR

Figure 9-4. The home scene mock-up

Central Role Scene

Importance: must have.

Story

As an iOS developer, | want a scene that implements the central role, so | can scan for
peripherals that | can connect to and retrieve data.

Acceptance Criteria

The scene provides a Scan button that toggles device scanning on and off.

The scene provides a view that will be populated with data transferred
from a discovered peripheral device.

The scene provides a progress indicator when scanning.
The application can scan for peripherals.

The application uses a filter for a specific service when scanning.



CHAPTER 9: Connecting to a Bluetooth LE Device 253

B The application can initiate a connection and connect to a discovered
peripheral with the desired service.

The application can request data.
The application can receive data.

The application disconnects from the peripheral when data transfer
completes

B The application can present the data to the user.

seens ATAT M-Cell ¥ 2:58 PM T % 959% 0D 4

¢ Back Central Role

Figure 9-5. The central role scene mock-up

Peripheral Role Scene

The following are must have features”

Story

As an iOS developer, | want a scene that implements the peripheral role and advertises a
service, so a central role device can connect and retrieve data.



254 CHAPTER 9: Connecting to a Bluetooth LE Device

Acceptance Criteria

B The scene provides a switch labeled “Advertise” that toggles advertising
on and off.

B The scene provides a text view that contains preset text.
B The application sets up a simple transfer service.

B The application will broadcast advertising packets when advertising is
enabled so that the application can be discovered.

The application can stop broadcasting when disabled.
The application connects to a central device that initiates a connection.

B The application sends data when it receives a request.

ssene ATAT M-Cell 7 2:58 PM -+ % 95% ¢

< Back Peripheral Role

Advertise C)

Lorem ipsum dolor sit er elit lamet,
consectetaur cillium adipisicing pecu, sed do
eiusmod tempor incididunt ut labore et dolore
magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut
aliguip ex ea commodo consequat. Duis aute
irure dolor in reprehenderit in voluptate velit
esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deserunt
mollit anim id est laborum. Nam liber te
conscient to factor tum poen legum odiogue
civiuda.

Figure 9-6. The peripheral role scene mock-up



CHAPTER 9: Connecting to a Bluetooth LE Device 255

Editable Text

The following are “nice to have” features.

Story

As a Core Bluetooth transfer application user, | want an editable text view in the peripheral
role scene (see Figure 9-7), so | can enter text that can be transferred to a central role device.

Figure 9-7. Editable text view

Acceptance Criteria

seens ATAT M-Call ¥ 9:08 PM = 3 100%

< Back Peripheral Role Done

Advertise C)

Lorem ipsum dolor sit er elit lamet,
consectetaur cillium adipisicing pecu, sed do
eiusmod tempor incididunt ut labore et dolore
magna aligua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute
irure dolor in reprehenderit in voluptate velit
esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deserunt
mollit anim id est laborum. Nam liber te
conscient to factor tum poen legum odiogue
civiuda.

The existing text view is editable and presents a keyboard when | tap
inside the text view.

The title bar presents a Done button to dismiss the keyboard when the
user is done typing.

The text that | type is the same text that is transferred to a connected

central device.



256 CHAPTER 9: Connecting to a Bluetooth LE Device

Setting Up the Project

This application will use a single-view application project template (see Figure 9-8). To create
a new single-view Swift application project, from Xcode select File » New » Project.

Choose a template for your new project:

i0s
Application - & 1
Framework & Library
Other Master-Detail Page-Based Single View Tabbed
Application Application Application Application
os X
Application ;i.
Framework & Library ==
System Plug-in Game
Other
Single View Application
This template provides a starting point for an application that uses a single view. It provides
a view controller to manage the view, and a storyboard or nib file that contains the view.
Cancel Next

Figure 9-8. Creating a single-view application project

After clicking Next, you’ll be prompted to enter a project name and select the language and
the target device. Make sure you choose Swift for the language and Universal for the device.
Leave the option User Core Data unchecked. Click the Next button, choose a location for
your project, and click the Create button.

Once the project is created, to keep things tidy, you may want to move some of the files/
folders you use less often (e.g., AppDelegate.swift, Images.xcassets, and LaunchScreen.
xib) into the Supporting Files folder. Next you'll start laying out the UL.

Building the Interface

Now it’s time to lay out the Ul, so refer to the mock-ups in section “Backlog.” Look at the
subsection “Base Application and Home Scene Story.” There you will see acceptance
criteria that call for navigation controls to navigate back to the home scene. So, the first
thing you need to add is a Navigation Controller. Open up the Main.storyboard and select
the View Controller from either the storyboard or the Document Outline. Then, from the
menu, select Editor » Embed In » Navigation Controller. Xcode will add a Navigation
Controller to the storyboard and set as the Storyboard Entry Point, and add a relationship
between the Navigation Controller and the existing View Controller. Your storyboard should
look something like Figure 9-9.



CHAPTER 9: Connecting to a Bluetooth LE Device 257

L4 & CBTransferApp CBTr...rApp ’ [ Main....oard ) [} Main....ase) ) [=] View Controller Scene » [} View Controller

¥ [ View Controller Scene

v View Controller
Top Layout Guide
Bottom Layout Guide
View
< MNavigation ltem
First Responder
&) Exit

¥ | Navigation Controller Scene

¥ (£ Mavigation Controller
MNavigation Bar
| First Responder
EJ Exit
Storyboard Entry Point
Relationship "root view controller...

Figure 9-9. Adding a Navigation Controller

At this point, you should be able to build and run your app. If all went well you should see an
empty white scene.

To change the color of the View Controller background to match the mock-up, select View

in the View Controller tree, and show the attribute selector by clicking Attributes Inspector at
the top of the Utilities panel. Then bring up the color picker by clicking Background control
and selecting “Other...” In the color picker, choose Web Safe Colors and then find and
select value 0066CC. Remember these steps because in future sections, you’ll only be given
the color values.

I’ll assume you already know how to add controls to the scene, so | won’t cover that here.
Next you’ll add two buttons, one labeled Central Role and the other labeled Peripheral Role.
Set the button background color to white. Make the corners of each button rounded

using User Defined Runtime Attributes. In the Utilities panel click the Identity inspector tab.
In the User Defined Runtime Attributes section, click the Add button (+) in the lower left

of the table. Double-click the Key Path field of the new attribute and change the value to
layer.cornerRadius. Set the type to Number and the value to 4.



258 CHAPTER 9: Connecting to a Bluetooth LE Device

Class Q n
Module

Identity

Restoration 1D

User Defined Runtime Attributes
Key Path Type Value

L] O . layer.cornerRadius  Number T 4
n Central Role =
L LJ L]

(=) -+

Figure 9-10. User-defined runtime attributes for cornerRadius

Tip Use user-defined runtime attributes to set an initial value for objects that do not have an
Interface Builder inspector. The user-defined values are set when the storyboard is loaded.

Later in the chapter you’ll learn how to use IBInspectable and IBDesignable attributes,
which are new features in Xcode 6.

Now you need to add constraints for each button. See Figures 9-11 and 9-12 for constraint
type and values for each button. There are a few ways to add constraints in Interface Builder.
You can let Interface Builder add them for you; you could use the Pin and Align tools located
at the bottom of the storyboard canvas or you can control-drag between views. To create a
Leading Space constraint, control-click the Central Role button and drag to the left edge of
the View Controller. When you release the mouse, a pop-up menu is displayed with a list of
possible constraints. Choose Leading Space to Container Margin. When you drag vertically,
Interface Builder will present options to set vertical spacing between the views and options
to horizontally align the views. Likewise, when you drag horizontally, you’ll be presented with
options to set the horizontal spacing between the views and options to vertically align the
view. Both gestures may include other options such as setting the view size.

Apply the constraints in Figure 9-11 to the Central Role button.



CHAPTER 9: Connecting to a Bluetooth LE Device 259

Constraints

Ag
A
Al

Leading Space to: © view Edit
Height Equals: 50 Edit
w Trailing Space to: Peripheral Role Edit
_ Equals: 5

E Bottom Space to: Bottom Layout Guide Edit
_ Equals: 20

=] Equal Width to: Peripheral Role Edit
@ Equal Height to: Peripheral Role Edit

Showing 6 of 6

Figure 9-11. Constraints for Central Role button



260 CHAPTER 9: Connecting to a Bluetooth LE Device

Now apply constraints shown in Figure 9-12 to the Peripheral Role button.

Constraints

Trailing Space to: Edit

Leading Space to: Central Role

Edit
Equals: 5

Bottom Space to: Bottom Layout Guide
Equals: 20

@

&y Edit
= Equal Width to: Central Role Edit
@

Equal Height to: Central Role Edit

o
o
(4}

Showing

Figure 9-12. Constraints for Peripheral Role button



CHAPTER 9: Connecting to a Bluetooth LE Device 261

Next you will add two scenes to the storyboard, one for central role and the other for
peripheral role. Drag and drop a View Controller for each scene onto the storyboard and
situate them so they look like Figure 9-13.

v 7] View Controller Scene

v View Controller
Top Layout Guide
Bottom Layout Guide
View
() First Responder
[E Exit

v [7] View Controller Scene

v View Controller
Top Layout Guide
Bottom Layout Guide
View
[ First Responder

[E Exit T =
v 7] View Controller Scene

v View Controller
Top Layout Guide
Bottom Layout Guide
v View
B Central Role
B Peripheral Role
< Navigation Item
() First Responder

[E Exit

v [ Navigation Controller Scene

¥ £ Navigation Controller
Navigation Bar
() First Responder
[ Exit
+ Storyboard Entry Point
Relationship “root view controller...

Figure 9-13. Add central and peripheral View Controllers

To add a segue for the central role scene, select the Central Role button from the Document
Outline on the left, then control-drag to the top View Controller on the right and release.
Select show from the Action Segue pop-up. (See Figure 9-14.)



262 CHAPTER 9: Connecting to a Bluetooth LE Device

¥ [7] View Controller Scene -
¥ L) View Controller
Top Layout Guide
Bottom Layout Guide
View
@ First Responder
[E) Exit

v [ View Controller Scene
¥ ) View Gontroller
Top Layout Guide
Bottom Layout Guide
View
@) First Responder
B ext
v [7] View Controller Scene
v () View Controller
Top Layout Guide
Bottom Layout Guide g
v m - -
B Centry! figie
B Peripheral Role
< Navigation ltem
@ First Responder
[E} Exit
+ [ Navigation Controller Scene
¥ (@ Navigation Controlier
Navigation Bar
) First Responder
[ Exit
+ Storyboard Entry Point
Ralatinnehin “mat view controliae

Figure 9-14. Adding a segue for central role scene



CHAPTER 9: Connecting to a Bluetooth LE Device 263

Repeat the same steps for the Peripheral Role button. Your layout should look similar to the
one in Figure 9-15.

Figure 9-15. Segues for central and peripheral scenes

Now set the title for each of the new View Controllers. Open up the Utilities panel and
click the Attributes Inspector. Now select the top View Controller and set its title to Central
Role from the View Controller section of the Attribute Inspector. Repeat these steps for the
peripheral role View Controller.

Set the background colors for each of the views. The value for the central role view is
FF6600, and for the peripheral role view, 009999.

Now build and run the app. Press each button and verify that you transition to the appropriate
scene, that it has the proper title, and that you can navigate back to the home scene.

There is one more Ul element that you need to add, and then it’s time to jump in and start
writing some code. Add a UILabel to the home scene and set the text to “Bluetooth Off”
(see Figure 9-16) and the text color to FFO000. You can set up constraints so it stays
centered in the view.



264 CHAPTER 9: Connecting to a Bluetooth LE Device

Bl ¢ > | Eacemansterapp im0 B B O ) view ) | L Blustooh on | BE | < @ Automatic - B ViewGontrollerswift - No Selaction +
x4 I

@ 2. // ViewController.swift
3 // CBTransferApp
« M

s ¢t Copyright {c) 2015 mdltorriente. All rights reserved.
8 I

B import UIKit
0 class ViewController: UIViewController {
-

1 N

= T ST I O FLIGECIY Insart Outlet or Outlet Collection

12 super,viewDidLoad() > i

& // Do any additional setup after loading the view, typically
from a nib.

¥

override func didReceiveMemoryWarning() {
18 super.didReceiveMemoryWarning()
L) // Dispose of any resources that can be recreated.

Central Role Peripheral Role

Figure 9-16. Connect Label to ViewController class

Now you need to connect the label to a property of the ViewController. First, close the
Utilities view on the right if it’s open, and click the Assistant Editor. You should now see a
split window in Xcode with the Main.storyboard on the left and the ViewController.swift
file on the right (you could dismiss the Document Outline for even more room). Next, control-
drag the Label from the storyboard, to the ViewController source and drop it inside your
ViewController class.

In the pop-up, name the outlet bluetoothStatelabel and use the default options, then click
the Connect button. Your ViewController class should now have an outlet defined.

@IBOutlet weak var bluetoothStatelLabel: UILabel!

If you review the acceptance criteria, you’ll see that we need to satisfy the requirement “The
home scene provides a single indicator that shows when Bluetooth is either powered on or

off.” That means you now have to utilize the Core Bluetooth framework. In the next section,

you’ll learn how to start up a central manager and use it to determine the Bluetooth state.

Using a Central Manager

In this section, you’ll learn how to start up a central manager and use it to determine if a
device supports Bluetooth LE and is available to use on the central device.

The CBCentralManager object is a Core Bluetooth representation of a central role device. When a
central manager is initialized, it calls the centralManagerDidUpdateState method of its delegate.
This means you must adopt the delegate protocol and implement this required method.



CHAPTER 9: Connecting to a Bluetooth LE Device

Open the MainViewController.swift file and import the framework and add the
(BCentralManagerDelegate protocol to your class declaration.

import CoreBluetooth

class ViewController: UIViewController, CBCentralManagerDelegate {

265

You'll see an error indicator, which says the ViewController, does not conform to protocol.

That’s because you need to implement the required delegate method.

func centralManagerDidUpdateState(central: (BCentralManager!) {

}
Now add a property for a CBCentralManager and initialize it in the viewDidLoad method.
var centralManager: CBCentralManager!

override func viewDidLoad() {
super.viewDidLoad()
centralManager = CBCentralManager(delegate: self, queue: nil)

}

The central manager is initialized with self as the delegate so the ViewController will
receive any central role events. By specifying the queue as nil, the central manager
dispatches central role events using the main queue. The central manager starts up after t
call is made and begins dispatching events.

Listing 9-1 shows how to examine the central manager state in the
centralManagerDidUpdateState callback when the state change event fires. Here is where
you can update the text and text color of the bluetoothStatelabel property based on the
central state.

Listing 9-1. Central State Change

func centralManagerDidUpdateState(central: (BCentralManager!) {

switch (central.state) {

case .PoweredOn:
bluetoothStatelLabel.text = "Bluetooth ON"
bluetoothStatelLabel.textColor = UIColor.greenColor()
break

case .PoweredOff:
bluetoothStatelLabel.text = "Bluetooth OFF"
bluetoothStatelLabel.textColor = UIColor.redColor()
break

default:
break;

}

his



266 CHAPTER 9: Connecting to a Bluetooth LE Device

The PoweredOn state indicates that the central device supports Bluetooth LE and the
Bluetooth is on and available for use. The Powered0Off state indicates that Bluetooth is either
turned off, or the device doesn’t support Bluetooth LE.

Build and run the application. If your device has Bluetooth enabled, the indicator label
should read “Bluetooth On” and its color should be green. Use the slide-up settings panel to
turn Bluetooth off. The indicator label should now read “Bluetooth Off” and its color should
be red.

Now that you can determine the Bluetooth state, you can use that information to satisfy
the remaining acceptance criteria. Add the Bool property isBluetoothPoweredOn that will be
used to reflect the Bluetooth state.

var isBluetoothPoweredOn: Bool = false

Set its value in the centralManagerDidUpdateState method accordingly.

You'll use this value to determine whether or not transition is allowed to the central or
peripheral mode scenes. You set up two segues in the previous section to those scenes. In
order to interact with the storyboard, you need to add identifiers for each segue. Create a
new file named Const.swift and add a global constant for each.

let kCentralRoleSegue: String = "CentralRoleSegue"
let kPeripheralRoleSegue: String = "PeripheralRoleSegue"

Open Main.storyboard and select the segue for the central role scene. Open the Utilities
panel and click the Attributes Inspector. You will see a section named Storyboard Segue
with a field where you can enter an identifier (see Figure 9-17). Enter the string value you
defined for the central role segue. This string is only used for locating the segue inside the
storyboard.

Storyboard Segue
identifier CentralRoleSegue
Segue Show (e.g. Push) B

Figure 9-17. Adding segue identifiers



CHAPTER 9: Connecting to a Bluetooth LE Device 267

Repeat the foregoing steps for the peripheral role segue.

The UIViewController provides an override method which allows you to control whether a
particular segue should be performed. Open ViewController.swift and add the method
shouldPerformSeguelWithIdentifier to the ViewController class (see Listing 9-2).

Listing 9-2. Override Method to Control Segue

override func shouldPerformSegueWithIdentifier(identifier: String?, sender: AnyObject?) ->
Bool {
if identifier == kCentralRoleSegue || identifier == kPeripheralRoleSegue {
if !isBluetoothPoweredOn {
return false;
}

}

return true

}

When you initiate a segue, this method will be called with the string value that identifies the
triggered segue, and the object that initiated the segue. The return value for this method
should be true if you want the segue to be executed; otherwise, return false.

In this method you’re only interested in the identifier; the sender object is for informational
purposes only and can be ignored here. Compare the identifier value with the constants you
defined earlier. If you find a match, then check the Bluetooth state. If Bluetooth is powered
on, you can allow the segue to execute by returning a value of true.

In the case where Bluetooth is powered off, you want to display an alert and provide an
option to go to the Settings app where the Bluetooth setting can be changed. Add the
method shown in Listing 9-3 to the ViewController class. Call this method from within the
shouldPerformSeguelWithIdentifier method.

if lisBluetoothPoweredOn {
showAlertForSettings()
return false;

Listing 9-3. Configure and Present an Alert

func showAlertForSettings() {
let alertController = UIAlertController(title: "CBTransferApp", message: "Turn On
Bluetooth to Connect to Peripherals”, preferredStyle: .Alert)

let cancelAction = UIAlertAction(title: "Settings", style: .Cancel) { (action) in
let url = NSURL(string: UIApplicationOpenSettingsURLString)
UIApplication.sharedApplication().openURL(url!)

}

alertController.addAction(cancelAction)

let okAction = UIAlertAction(title: "OK", style: .Default) { (action) in
// do nothing
}



268 CHAPTER 9: Connecting to a Bluetooth LE Device

alertController.addAction(okAction)

presentViewController(alertController, animated: true, completion: nil)

}

This method configures a UIAlertController object to display an alert modally with a title,
a message, and a style. Additionally, actions are associated with the controller. The cancel
action is labeled Settings and is used to open the Settings app. The OK action is used to
simply dismiss the alert.

Build and run the application. Turn Bluetooth off, and then press each button to verify
that the alert is displayed and access to the other scenes is prohibited. Press the Settings
button on the alert to make sure it opens the Settings app. At this point you’ve satisfied all
the requirements for the first backlog item. In the next section, you’ll move on to the next
backlog item and implement the central role.

Connecting to a Bluetooth LE Device in Your App

In this section, you’ll build the central role scene. You'll learn how to
Scan for peripherals that advertise a specific service
Connect to a peripheral and discover services
Discover and subscribe to characteristics for a specific service
Retrieve characteristic values
Customize and animate a button

At this point, you have a running application that can detect whether or not Bluetooth is
powered on and has the ability to transition to two different scenes.

Building the Interface

The Ul for this scene has a single custom UIButton object and a read-only UITextView
object. Refer to the mock-up in the section “Central Role Scene.”

Tip Use the Interface Builder Live Rendering feature in Xcode 6 to design and inspect a custom
view. The custom view will render in Interface Builder and appear as it will in your application.

Start by adding a new Swift file to your project named CustomButton.swift, and declare
the class CustomButton as a subclass of UIButton using the new IBDesignable attribute.
Then add inspectable properties using IBInspectable for cornerRadius, borderWidth, and
borderColor (see Listing 9-4).



CHAPTER 9: Connecting to a Bluetooth LE Device 269

Listing 9-4. The CustomButton class

import UIKit

@IBDesignable
class CustomButton: UIButton {

@IBInspectable var cornerRadius: CGFloat = 0 {
didSet {
layer.cornerRadius = cornerRadius
layer.masksToBounds = cornerRadius > 0

}
}
@IBInspectable var borderWidth: CGFloat = 0 {
didSet {
layer.borderWidth = borderWidth
}
}
@IBInspectable var borderColor: UIColor? {
didSet {
layer.borderColor = borderColor?.CGColor
}
}

}

When you add the IBDesignable attribute to the class declaration, Interface Builder will
render your custom view. Your custom view will update automatically as you make changes
by using the IBInspectable attribute to declare variables as inspectable properties.

Now open up the storyboard and add a UIButton to the central role scene. In the Utilities panel,
click the Identities Inspector tab and change the class type from UIButton to CustomButton you
just created. Now click the Attributes Inspector tab and set the button title to Scan. Notice that
there’s a section named Custom Button with a field for each of the inspectable properties you
declared. Set the values for Corner Radius to 50, Border Width to 4, and Border Color to White
Color. In the Button section, set the Shows Touch on Highlight to checked so when a user
presses the button, there will be a white glow where the touch event occurred on the button
(see Figure 9-18).

Tip Set the corner radius to half the width of the view to give it a circular shape.



270 CHAPTER 9: Connecting to a Bluetooth LE Device

) BJ Ce...ne ) ) Ce...le )| | View ) B/ Scan 0D ® O B O

Custom Button

(<>

Corner Radius 50

Border Width 4
Border Color [——1 White Color

(2|

(o]

Button

Type System

State Config Default
Title Plain_
Scan
+ Font System Bold 26.0 @D
Text Color 1 | White Color

<3

ok

Figure 9-18. Setting button attributes

If you haven’t added constraints, you won’t see the constraint graphics. In that case you will
only see layout handles. See Figure 9-19 as a guide to set up your constraints.

Constraints

—

All This Size Class

,

Align Center X to:

Superview Edit

Figure 9-19. Scan button constraints

Width Equals: 100 Edit
Height Equals: 100 Edit
g Top Space to: Top Layout Guide Edit
Equals: 55
a Bottom Space to: Text View Edit
Equals: 50
Showing 5 of 6



CHAPTER 9: Connecting to a Bluetooth LE Device 2M

Now you need to add a UITextView object to the scene and position it so it looks similar to
the illustration in Figure 9-20. Then in the Attributes Inspector, set the Text View text color to
White Color and the background color to Clear Color. Set the Font to System 18.0.

» [7] CoreBlustooth Transfer Scene

¥ [7] Central Role Scene
¥ [ Central Role
Top Layout Guide
Bottom Layout Guide
v view
¥ B Scan
» (& Constraints

> |&] Constraints
@ First Responder
[= Exit
» [7] Peripheral Role Scene

» [ Navigation Controller Scene

Figure 9-20. Setting attributes for UlTextView

Set the constraints for the text view to match the illustration in Figure 9-21.

Constraints

All This Size Class

Trailing Space to: Superview Edit

=]

[E]

Leading Space to: Superview Edit

Top Space to: Scan
Equals: 50

Bottom Space to: Bottom Layout Guide
Equals: 20

1

Edit

Showing 4 of 4

Figure 9-21. Constraint settings for UlTextView



272 CHAPTER 9: Connecting to a Bluetooth LE Device

For the last steps in building the Ul, you need to connect the button and text view

to a property of the View Controller. First, add a new Swift file to the project named
CentralViewController.swift and declare the class CentralViewController as a subclass
of UIViewController. Then assign the CentralViewController as the class for the central
role identity by opening the storyboard and selecting the central role scene (see Figure 9-22).
In the Utilities panel on the right, click the Identity Inspector tab. In the Custom Class section,
use the class drop-down to select CentralViewController.

< & CBTransferApp CBTransterApp Main....yboard » [lj Main....(Basa) Central Role Scene Central Role O ® B8 ¢ 0
v [Z] Central Role Scens Custom Class
¥ Central Role Class | CentralViewController < |5

Top Layout Guide Mosse
Bottom Layout Guide = ¢ 7 GLKViewController
View Identity UlCollectionViewControllor

First Responder Storyboard ID UlimagePickerController

Exit UlinputViewController

Restoration 1D

» "] Peripheral Role Scene Use Storyboard ID

Figure 9-22. Assign central role identity

Now using the Assistant Editor, control-drag and drop each of the Ul controls inside

the CentralViewController class. Name the UIButton connection scanButton and the
UITextView to textView; use the default options. Your class should look like that shown in
Listing 9-5.

Listing 9-5. The CentralViewController class declaration

import UIKit
class CentralViewController: UIViewController {

@IBOutlet weak var scanButton: UIButton!
@IBOutlet weak var textView: UITextView!

}

At this point build and run the app. When you transition to the central role scene, it should
resemble the mock-up in the section “Central Role Scene.” In the next section, you'll start
implementing the central role.

Keeping Things Clean with Delegation

The approach taken here is slightly different than that of the home scene where you created
the CBCentralManager object and the ViewController used it directly. You’ll utilize the
Delegation pattern, which is commonly used by Apple frameworks. The delegate is typically a
Custom Controller object. The delegating object maintains a weak reference to its delegate.

You’ll implement the design pattern by defining a protocol for a
TransferServiceScannerDelegate. The CentralViewController will adopt this protocol
and implement the methods that respond to central role actions. You’ll create a new class
TransferServiceScanner that will be the delegating object. It will hold a reference to the



CHAPTER 9: Connecting to a Bluetooth LE Device 273

CentralViewController, which will act as the delegate. The TransferServiceScanner object
will act as the delegate for the CBCentralManager and CBPeripheral objects. The sequence
diagram in Figure 9-23 illustrates the interaction between the objects. ,

centralViewController : TransferServiceScannerDelegate |

viewDidLoad

-
>

init(withDelegate:self) }! TransfrerServiceScanner ‘

wacroater> ‘;! CBCentralManager
|

button press

¥

startScan()

i

scanForPeripheralsWithServices -

_ scanDidStart()

_ start progress indicator

button press

Y

stopScan() -
stopScan .
_ didStopScan()
__ stop progress indicator
centralViewController : TransferServiceScannerDelegate | |Transfrer5ervice5canner l |C8CentraIManager

Figure 9-23. Sequence diagram for TransferServiceScanner

Create a new Swift file named TransferServiceScanner.swift and define a protocol for the
TransferServiceScannerDelegate. The delegate will respond to scan start and stop actions,
which will be used to start a scanning progress indicator. It will also respond to data transfer
action that will be used to present data to the user (see Listing 9-6).

Listing 9-6. TransferServiceScannerDelegate Protocol

import CoreBluetooth

protocol TransferServiceScannerDelegate: NSObjectProtocol {
func didStartScan()
func didStopScan()
func didTransferData(data: NSData?)



274 CHAPTER 9: Connecting to a Bluetooth LE Device

Now update the CentralViewController to adopt the TransferServiceScannerDelegate
protocol and add stubs for the required delegate methods (see Listing 9-7). You’ll complete
the method implementation once we build out the TransferServiceScanner.

Listing 9-7. TransferServiceScannerDelegate Protocol Methods
class CentralViewController: UIViewController, TransferServiceScannerDelegate {
// MARK: TransferServiceScannerDelegate methods

func didStartScan() {

}

func didStopScan() {

}

func didTransferData(data: NSData?) {

}

Tip In Swift, the comment // MARK: is the equivalent to the Objective-C pre-processor directive
#pragma mark. Use it to define areas in your source code.

Next, in the file TransferServiceScanner.swift, declare the class TransferServiceScanner
as a subclass of NSObject, and adopt the protocol for both CBCentralManagerDelegate and
(BPeripheralDelegate. Also you’ll need to import Core Bluetooth. Then add properties for
(BCentralManager, CBPeripheral, NSMutableData, and TransferServiceScannerDelegate.

Listing 9-8.

class TransferServiceScanner: NSObject, CBCentralManagerDelegate, CBPeripheralDelegate {

var centralManager: CBCentralManager!
var discoveredPeripheral: CBPeripheral?
var data: NSMutableData = NSMutableData()

weak var delegate: TransferServiceScannerDelegate?

}

You must make sure that you declare the delegate property weak to avoid a strong reference
cycle. A strong reference cycle will prevent TransferServiceScannerDelegate from being
deallocated, which will cause a memory leak in your application. Also, a weak reference is
allowed to have no value, so it must be declared as having an optional type.



CHAPTER 9: Connecting to a Bluetooth LE Device 275

At the top of the class body, implement an initializer method that you will call when you
create a new instance of TransferServiceScanner (see Listing 9-9). The primary role of an
initializer is to ensure that a new instance of a type is set up properly before first use.

Listing 9-9. TransferServiceScanner Initializer Method

init(delegate: TransferServiceScannerDelegate?) {
super.init()
centralManager = CBCentralManager(delegate: self, queue: nil)
self.delegate = delegate

1

The initializer starts by calling super.init(), which calls the initializer of
TransferServiceScanner class’s superclass, NSObject. Then the centralManager property
is initialized with an instance of CBCentralManager and initialized with self as the delegate.
Finally the delegate property is initialized with the TransferServiceScannerDelegate object
that is passed as a parameter.

Next, you must implement the required protocol method centralManagerDidUpdateState.
Add the code from Listing 9-10 to the TransferServiceScanner class. The implementation

is similar to the one in section “Using a Central Manager,” except in this case the state
information is being output to the log window. Later in this section, you’ll update this method.

Listing 9-10. The centralManagerDidUpdateState delegate method
func centralManagerDidUpdateState(central: CBCentralManager!) {

switch (central.state) {

case .PoweredOn:
print("Central Manager powered on.")
break

case .PoweredOff:
print("Central Manager powered off.")
break;

default:
print("Central Manager changed state \(central.state)")
break

}

Build and run the application. You should see the log output “Central Manager powered on”
when you transition to the central role scene.



276 CHAPTER 9: Connecting to a Bluetooth LE Device

Scanning for Peripherals

At this point, you are ready to start interacting with the central manager. Refer back to the
section “Central Role Scene” and look at the requirements. The requirements call for the
ability to toggle scanning on and off. In this section, you will provide support for that.

You will focus on the following requirements:
The application can scan for peripherals
The application uses a filter for a specific service when scanning
The scene provides a Scan button that toggles device scanning on and off
The scene provides a progress indicator when scanning

First you need to define a constant that will be used to uniquely identify the specific service
that the scanner is interested in. In the file Const.swift add the following line:

let kTransferServiceUUID: String = "3C4F8654-E41B-4696-B5C6-13D06336F22E"

You will use this constant to initialize a CBUUID instance. The CBUUID object represents the
128-bit identifier. The advantages are that the class provides some factory methods for
dealing with long UUIDs (universally unique identifiers), and the object also can be passed
around instead of the string.

Note If you want to provide your own UUID, you can open up a terminal window and type the
command uuidgen. It will generate a UUID that you can then copy and paste.

Now you’ll implement the method startScan (see Listing 9-11). The CentralViewController
will call this method when the user taps the Scan button when the application is not scanning.

Listing 9-11. The TransferServiceScanner startScan Method

func startScan() {
print("Start scan")
let services = [CBUUID(string: kTransferServiceUUID)]
let options = Dictionary(dictionarylLiteral:
(CBCentralManagerScanOptionAllowDuplicatesKey, false))
centralManager.scanForPeripheralsiWithServices(services, options: options)
delegate?.didStartScan()

}

In this method you create two local variables that will be passed to the centralManager.
The services variable is an array of CBUUID objects that represent the services the

app is scanning for. In this case it’s an array with a single element. The options

local variable is a dictionary specifying options to customize the scan. The key
(BCentralManagerScanOptionAllowDuplicatesKey specifies whether or not the scan should
run without duplicate filtering. The value assigned to that key is false. What this means is



CHAPTER 9: Connecting to a Bluetooth LE Device 277

that notification should be sent each time the peripheral is discovered. If the value were set
to true, then notification would only be sent once per discovery.

Next, the method centralManager.scanForPeripheralsWithServices is called which starts
the scan for peripherals that are advertising services. And, finally, the delegate is notified that
the scan did start by calling through didStartScan.

Next, you’ll implement the method stopScan (Listing 9-12). The CentralViewController will
call this method when the user taps the Scan button while the application is scanning. It will
also be called when the central manager state changes to the powered off state.

Listing 9-12. The TransferServiceScanner stopScan Method

func stopScan() {
print("Stop scan")
centralManager.stopScan()
delegate?.didStopScan()

}

This method tells the central manager to stop scanning and then notifies the delegate that
scanning has stopped. Update the switch block in the centralManagerDidUpdateState
method for the PoweredOff case, adding a call to stopScan.

Listing 9-13. The switch block in the centralManagerDidUpdateState method

switch (central.state) {

case .PoweredOn:
print("Central Manager powered on.")
break

case .PoweredOff:
print("Central Manager powered off.")
stopScan()
break;

default:
print("Central Manager changed state \(central.state)")
}

Handling User Input

To keep track of the scanning state, add a Bool property isScanning to the
CentralViewController class and set its initial value to false.

var isScanning: Bool = false

Add an action method to handle the Scan button tap event. Open the storyboard and
control-drag the Scan button into the CentralViewController class and name the method
toggleScanning (see Listing 9-14). You’ll use this method to start and stop the scanning
based on the isScanning property value.



278 CHAPTER 9: Connecting to a Bluetooth LE Device

Listing 9-14. The toggleScanning method

@IBAction func toggleScanning() {
if isScanning {
scanner.stopScan()
} else {
scanner.startScan()
}

}

The CentralViewController is a delegate for the TransferServiceScanner, so when
scanning starts or stop, the View Controller will be notified through the delegate methods.
Update the delegate methods to set up the scan state.

Listing 9-15. The didStartScan and didStopScan methods

func didStartScan() {
if lisScanning {
textView.text = "Scanning.."
isScanning = true

}

func didStopScan() {
textView.text =
isScanning = false

}

Build and run the application. Transition to the central role scene and then tap the Scan
button. You should see the text “Scanning . . .” displayed in the text view. Tapping the Scan
button a second time should clear the text.

Scan Progress

This simple text that is displayed could serve as an indicator for the scanning state, but
it’s static and it’s boring. It’s hardly a scanning progress indicator. Adding a simple rotation
animation to the Scan button is quick and easy and will serve as an effective progress
indicator for when scanning starts and stops.

You’ll implement an extension to the UIView class that adds functionality to rotate the view
using keyframe animation.

Open the CentralViewController.swift and above the class declaration add the code in
Listing 9-16.



CHAPTER 9: Connecting to a Bluetooth LE Device 279

Listing 9-16. Adding an Extension to UlView to Apply Rotation to Any View

extension UIView {

func rotate(fromValue: CGFloat, toValue: CGFloat, duration: CFTimeInterval = 1.0,
completionDelegate: AnyObject? = nil) {

let rotateAnimation = CABasicAnimation(keyPath: "transform.rotation")
rotateAnimation.fromValue = fromValue

rotateAnimation.toValue = toValue

rotateAnimation.duration = duration

if let delegate: AnyObject = completionDelegate {
rotateAnimation.delegate = delegate
}

self.layer.addAnimation(rotateAnimation, forKey: nil)

}

The parameters fromValue and toValue represent rotation and are specified in radians.
The duration is specified in seconds.

The CABasicAnimation class provides single-keyframe animation for a layer property. It will
allow you to interpolate between two values over time. It also allows you to set a delegate
S0 you can receive notification when the animation completes by calling the delegate’s
animationDidStop method.

For this use case, rotating the Scan button 360 degrees would constitute one animation
cycle. Each time an animation cycle completes the delegate is notified.

Override the animationDidStop method of the View Controller (see Listing 9-17). This method
will evaluate the scan state and restart the animation if scanning is still in progress.

Listing 9-17. The CentralViewController animationDidStop Method

override func animationDidStop(anim: CAAnimation finished flag: Bool) {
if isScanning == true {
// if still scanning, restart the animation
scanButton.rotate(0.0, toValue: CGFloat(M PI * 2), completionDelegate: self)

}
Now update the didStartScan method so it starts the rotation animation.
scanButton.rotate(0.0, toValue: CGFloat(M PI * 2), duration: 1.0, completionDelegate: self)

When the scanning stops, the animation will end when the animation cycle completes. This
guarantees that the Scan button will be in the correct orientation.

Build and run the application. Transition to the central role scene and tap the Scan button.
You should see the Scan button spinning. The animation should stop when you tap the Scan
button again.



280 CHAPTER 9: Connecting to a Bluetooth LE Device

Discover and Connect

While scanning, if a central manager discovers a peripheral that is advertising, it will notify its
delegate by calling the didDiscoverPeripheral method (see Listing 9-18).

Listing 9-18. Initiating a Connection with a Discovered Peripheral in the TransferServiceScanner Class

func centralManager(central: (BCentralManager, didDiscoverPeripheral peripheral:
(BPeripheral, advertisementData: [String : AnyObject], RSSI: NSNumber) {
print("didDiscoverPeripheral \(peripheral)")

// reject if above reasonable range, or too low

if (RSSI.integerValue > -15) || (RSSI.integerValue < -35) {
print("not in range, RSSI is \(RSSI.integerValue)")
return;

}

if (discoveredPeripheral != peripheral) {
discoveredPeripheral = peripheral

print("connecting to peripheral \(peripheral)")
centralManager.connectPeripheral(peripheral, options: nil)

}

Included in the parameters are the discovered peripheral, advertising data, and the signal
strength. In this method you need to determine if the peripheral is within range. If so, then
you can initiate a connection to it. You must, however, store a local copy of the peripheral;
otherwise, Core Bluetooth will dispose of it.

Once you initiate a connection, the central manager will notify the delegate as to whether
or not the connection was successful. There is a separate method for each case,
didConnectPeripheral or didFailToConnectPeripheral (see Listings 9-19 and 9-20).

Listing 9-19. Connection to Peripheral Succeeded in the TransferServiceScanner Class

func centralManager(central: (BCentralManager!, didConnectPeripheral peripheral:
CBPeripherall) {

println("didConnectPeripheral™)

stopScan()

data.length = 0

peripheral.delegate = self

peripheral.discoverServices([CBUUID(string: kTransferServiceUUID)])

}
Listing 9-20. Connection to Peripheral Failed in the TransferServiceScanner Class
func centralManager(central: CBCentralManager!, didFailToConnectPeripheral peripheral:

(BPeripheral!, error: NSError!) {
println("didFailToConnectPeripheral™)
}



CHAPTER 9: Connecting to a Bluetooth LE Device 281

If the connection is successful, scanning should stop to save power, and any data previously
held should be released. In order to receive discovery notifications, you must assign the
peripheral’s delegate to self. Now you’re ready to explore the specified services. In this
case you are interested in a transfer service.

Explore Services and Characteristics

When a specified service is discovered, the peripheral will notify its delegate by calling the
didDiscoverServices method with a reference to the peripheral that the services belong to,
and an NSError object. You must evaluate the error to determine whether the discovery was
successful.

Listing 9-21. Service Discovery Notification in the TransferServiceScanner Class

func peripheral(peripheral: (BPeripheral, didDiscoverServices error: NSError?) {
print("didDiscoverServices")

if (error != nil) {
print("Encountered error: \(error!.localizedDescription)")
return

}

// look for the characteristics we want

for service in peripheral.services! {
peripheral.discoverCharacteristics([CBUUID(string: kTransferCharacteristicUUID)],
forService: service)

}

If the service discovery is successful, you must iterate the services to find the characteristic
of interest. In this case you want the kTransferCharacteristicUUID.

Add a definition for the transfer characteristic to the Const.swift file.

let kTransferCharacteristicUUID: String = "DEBO7A07-463E-4A65-BABB-ODA17E4AE517A"

Subscribe and Receive Data

When you discover a specified characteristic, the peripheral will notify its delegate by calling
the didDiscoverCharacteristicsForService method with a reference to the peripheral that
is providing the information, the service that the characteristic belongs to, and an NSExrror
object. You must evaluate the error to determine whether the discovery was successful

(see Listing 9-22).

Listing 9-22. Subscribe to a Characteristic in the TransferServiceScanner Class

func peripheral(peripheral: CBPeripheral, didDiscoverCharacteristicsForService service:
(BService, error: NSError?) {
print("didDiscoverCharacteristicsForService")



282 CHAPTER 9: Connecting to a Bluetooth LE Device

if (error != nil) {
print("Encountered error: \(error!.localizedDescription)")
return

}

// loop through and verify the characteristic is the correct one, then subscribe to it
let cbuuid = CBUUID(string: kTransferCharacteristicUUID)
for characteristic in service.characteristics! {
print("characteristic.UUID is \(characteristic.UuID)")
if characteristic.UUID == cbuuid {
peripheral.setNotifyValue(true, forCharacteristic: characteristic)

}

If the characteristic discovery is successful, you must iterate the service characteristics

to verify that the characteristic is the one you’re interested in. You must subscribe to the
characteristic by calling the peripherals setNotifyValue method. The first parameter is a
Boolean which indicates whether or not you want to receive notifications for the specified
characteristic. In this case you pass true, signaling to the peripheral that you want to receive
the data it contains. Notification is sent each time a characteristics value changes.

The peripheral will now start sending data and notify its delegate by calling its
didUpdateValueForCharacteristic method with a reference to the peripheral that is
providing the information, the characteristic whose value is being retrieved, and an NSError
object (see Listing 9-23).

Listing 9-23. Retrieve Characteristic Value in the TransferServiceScanner Class

func peripheral(peripheral: CBPeripheral, didUpdateValueForCharacteristic characteristic:
(BCharacteristic, error: NSError?) {
print("didUpdateValueForCharacteristic")

if (error != nil) {
print("Encountered error: \(error!.localizedDescription)")
return

}

let stringFromData = NSString(data: characteristic.value!, encoding:
NSUTF8StringEncoding)
print("received \(stringFromData)")

if stringFromData == "EOM" {
// data transfer is complete, so notify delegate
delegate?.didTransferData(data)

// unsubscribe from characteristic
peripheral.setNotifyValue(false, forCharacteristic: characteristic)



CHAPTER 9: Connecting to a Bluetooth LE Device 283

// disconnect from peripheral
centralManager.cancelPeripheralConnection(peripheral)

}

data.appendData(characteristic.value!)

}

Not all characteristics have readable values. Typically, you would determine whether the
value is readable by examining its properties. For the purposes of this example, it’s known
that the characteristic value is of type String.

Here, the transfer service peripheral sends text from a text field in small amounts. The data
is accumulated until you receive an end-of-message (EOM) string indicating that the data
transfer is complete. At this point, you notify the TransferServiceScannerDelegate that the
transfer is complete and pass the data. You then unsubscribe from the characteristic and
disconnect.

Subscription Status

When you attempt to subscribe to a characteristic, the peripheral calls its delegate method
didUpdateNotificationStateForCharacteristic with a reference to the peripheral that is
providing the information, the characteristic for which notifications are to be configured,
and an NSError object. You must evaluate the error to determine whether the discovery was
successful. This method is also invoked when you unsubscribe (see Listing 9-24).

Listing 9-24. Subscription Status Notification in the TransferServiceScanner Class

func peripheral(peripheral: CBPeripheral, didUpdateNotificationStateForCharacteristic
characteristic: CBCharacteristic, error: NSError?) {
print("didUpdateNotificationStateForCharacteristic")

if (error != nil) {
print("Encountered error: \(error!.localizedDescription)")

return

}

if characteristic.UUID != CBUUID(string: kTransferCharacteristicUUID) {
return

}

if characteristic.isNotifying {
print("notification started for \(characteristic)")

} else {
print("notification stopped for \(characteristic), disconnecting..")
centralManager.cancelPeripheralConnection(peripheral)



284 CHAPTER 9: Connecting to a Bluetooth LE Device

Here you are only interested in the transfer characteristic. In the case where you
unsubscribe, notifications will stop and you can disconnect from the peripheral.

Peripheral Role

At this point, you have an application that implements the central role. In the following
sections, you will implement the peripheral role. You’ll learn how to

Start up a peripheral manager

Set up a service and characteristic for the peripheral
Advertise the service

Handle requests from a connected central device

Send data to a subscribed central device

Building the Interface

The Ul for this scene has a single UISwitch object and an editable UITextView object. Refer
to the mock-up in the section “Peripheral Role Scene.”

Start by adding a new Swift file to your project named PeripheralViewController.swift

and declare the class PeripheralViewController as a subclass of UIViewController. Then
assign the PeripheralViewController as the class for the peripheral role identity by opening
the storyboard and selecting the peripheral role scene. In the Utilities panel on the right, click
the Identity Inspector tab. In the Custom Class section, use the class drop-down to select
PeripheralViewController.

Now open up the storyboard if not already open and add the following controls to peripheral
role scene; then arrange them so they look similar to the illustration in Figure 9-24.

UILabel titled Advertise
UISwitch
UITextView



CHAPTER 9: Connecting to a Bluetooth LE Device 285

» 7] CoreBluetooth Transfer Scene

» [ Central Role Scena ﬂ @

* 7] Peripharal Role Scene -
¥ (@ Peripheral Role

Top Layout Guide
Bottom Laycut Guide

. Switch \[
e Advertise @
» L Advertise . _ = S
» (@ constraints Lorem ipsum dolor sit er elit lamet, consectetaur cillium adipisicing
@ First Rosponder pecu, sed do eiusmod tempor incididunt ut labore et dolore magna
[E et aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco
» [ Navigation Controlier Scane laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor

in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa
qui officia deserunt mollit anim id est laborum. Nam liber te conscient
to factor tum poen legum odioque civiuda.

Figure 9-24. Peripheral role scene

Now control-drag and drop the UISwitch and the UITextControl inside the
PeripheralViewController class. Leave the default text in the text view. Your
PeripheralViewController class should look like the code in Listing 9-25.

Listing 9-25. The PeripheralViewController class declaration

import UIKit
class PeripheralViewController: UIViewController {

@IBOutlet weak var advertiseSwitch: UISwitch!
@IBOutlet weak var textView: UITextView!

}

Add an action method to handle the advertise switch event. Open the storyboard and
control-drag the advertise switch into the PeripheralViewController class and name the
method advertiseSwitchDidChange. You'll use this method to start and stop advertising.

@IBAction func advertiseSwitchDidChange() {
}

At this point build and run the app. When you transition to the peripheral role scene, it
should resemble the mock-up in the section “Peripheral Role Scene.” In the next section,
you’ll start implanting the peripheral role.

Delegate Setup

You'll use the Delegation pattern again and implement the design pattern by defining a
protocol for a TransferServiceDelegate. The PeripheralViewController will adopt this
protocol and implement the methods that respond to peripheral role actions. You’ll create a
new class TransferService that will be the delegating object. It will hold a reference to the



286 CHAPTER 9: Connecting to a Bluetooth LE Device

PeripheralViewController that will act as the delegate. The TransferService object will act
as the delegate for the CBPeripheralManager object. The sequence diagram in Figure 9-25
illustrates the interaction between the objects. Remember that the delegating object
maintains a weak reference to its delegate.

peripheralViewController : TransferServiceDelegate |

viewDidLoad >

init(withDelegate:self) ;_! transferService : CBPeripheralManagerDelegate [

<<create>> »| CBPeripheralManager

L PeripheralManagerDidUpdateState(PowerOn)

_ didPowerOn()

le peripheralManagerDidUpdateState(PowerOf)
» didPowerOff(

urn switch off

“‘l

| ¢ didsubscribeToCharacteristic
» getDataToSend():data

:data

| loop / [while data]

updateValue(chunk, transferCharacteristic) _

l peripheralViewController : TransferServiceDelegate ‘ | transferService : CBPeripheralManagerDelegate | | CBPeripheralManager

Figure 9-25. Sequence diagram for TransferService

Create a new Swift file named TransferService.swift and define a protocol for the
TransferServiceDelegate. The delegate will respond to power on/off events which will
change the advertise switch state. It will also respond to a send data request that will be
used to pass text data to the service.

Listing 9-26. TransferServiceDelegate Protocol

protocol TransferServiceDelegate: NSObjectProtocol {
func didPowerOn()
func didPowerOff()
func getDataToSend() -> NSData

}

Now update the PeripheralViewController to adopt the TransferServiceDelegate protocol
(Listing 9-27) and add stubs for the required delegate methods. In the didPower0ff method,
set the advertiseSwitch state to off. In the method getDataToSend return the textView
object’s text value.



CHAPTER 9: Connecting to a Bluetooth LE Device 287

Listing 9-27. TransferServiceDelegate Protocol Methods

class PeripheralViewController: UIViewController, TransferServiceDelegate {

@IBOutlet weak var advertiseSwitch: UISwitch!
@IBOutlet weak var textView: UITextView!

// MARK: TransferServiceDelegate methods

func didPowerOn() {

}

func didPowerOff() {
advertiseSwitch.setOn(false, animated: true)
}

func getDataToSend() -> NSData {
return textView.text.dataUsingEncoding(NSUTF8StringEncoding)!
}

}

Next, in the file TransferService.swift, declare the class TransferService as a subclass
of NSObject and adopt the protocol for CBPeripheralManagerDelegate (Listing 9-28) Also
you’ll need to import CoreBluetooth. Then add properties for CBPeripheralManager,
(BMutableCharacteristic, NSData, an index counter, and TransferServiceDelegate.

Listing 9-28. The TransferService class declaration

class TransferService: NSObject, CBPeripheralManagerDelegate {

var peripheralManager: CBPeripheralManager!
var transferCharacteristic: CBMutableCharacteristic!
var dataToSend: NSData?

var sendDatalndex: Int?

weak var delegate: TransferServiceDelegate?

}

Make sure that you declare the delegate property as weak to avoid a strong reference cycle.

Now implement an initializer method (see Listing 9-29) that will be called when you create a
new instance of TransferService.

Listing 9-29. The TransferService Initializer Method

init(delegate: TransferServiceDelegate?) {
super.init()
peripheralManager = CBPeripheralManager(delegate: self, queue: nil)
self.delegate = delegate



288 CHAPTER 9: Connecting to a Bluetooth LE Device

The initializer starts by calling super.init(), which calls the initializer of
TransferServiceScanner class’s superclass, NSObject. Then the peripheralManager property
is initialized with an instance of CBPeripheralManager and initialized with self as the
delegate. Finally the delegate property is initialized with the TransferServiceDelegate object
that is passed as a parameter.

Next, you must implement the required protocol method peripheralManagerDidUpdateState
(see Listing 9-30).

Listing 9-30. Required Protocol Method peripheralManagerDidUpdateState in the TransferService Class
func peripheralManagerDidUpdateState(peripheral: CBPeripheralManager!) {

switch (peripheral.state) {
case .PoweredOn:
print("Peripheral Manager powered on.")
setupServices()
delegate?.didPowerOn()
break

case .PoweredOff:
print("Peripheral Manager powered off.")
teardownServices()
delegate?.didPowerOff()
break

default:
print("Peripheral Manager state changed: \(peripheral.state)")
break

}

In this method, you set up or tear down services and notify the delegate according to
the state. In the next section you will implement both methods: setupServices and
teardownServices.

Setting up a Service

The services and characteristics of a peripheral are identified by UUIDs. The Bluetooth
Special Interest Group (SIG) has published a number of commonly used UUIDs. However,
the transfer service doesn’t use any of those predefined Bluetooth UUIDs. Earlier in this
chapter, you defined UUIDs for the transfer service and characteristic in Const.swift.

Now implement the setupServices method that will be called when the peripheral manager’s
state changes to PoweredOn. Make the method private so that it’s only accessible from within
the TransferService class (see Listing 9-31).



CHAPTER 9: Connecting to a Bluetooth LE Device 289

Listing 9-31. Setting Up Services in the TransferServices Class

private func setupServices() {
var cbuuidCharacteristic = CBUUID(string: kTransferCharacteristicUUID)

transferCharacteristic = CBMutableCharacteristic(type: cbuuidCharacteristic,
properties: CBCharacteristicProperties.Notify, value: nil, permissions:
(BAttributePermissions.Readable)

var cbuuidService = CBUUID(string: kTransferServiceUUID)

var transferService = CBMutableService(type: cbuuidService, primary: true)
transferService.characteristics = [transferCharacteristic]

peripheralManager.addService(transferService)

}

In this method you create a mutable characteristic and set its property, value, and
permissions. The property and permissions are set to readable. The value is set the value to
nil because this will ensure that the value will be treated dynamically and is requested by
the peripheral manager when it receives a read/write request. Otherwise the value is cached
and treated as read-only.

Next, you create a mutable service and associate the mutable characteristic with it by
setting the service’s array of characteristics. Finally, publish the service by calling addService
that adds the service to the peripheral’s database. The service cannot be changed once this
step is complete. Once the service is published, the peripheral calls the delegate method
didAddService.

Now implement the teardownServices method that will be called when the peripheral
manager’s state changes to PoweredOff (see Listing 9-32).

Listing 9-32. Teardown Services in the TransferService Class

private func teardownServices() {
peripheralManager.removeAllServices()

The only step in this method is to remove all published services from the peripheral’s database.

Build and run the application. You should see the log output “Peripheral Manager powered on”
when you transition to the peripheral role scene.

Advertising Services

Once services and characteristics have been published, you can start advertising one or
more of them by calling the peripheral manager’s startAdvertising method. Add the code
in Listing 9-33 to the TransferService class.



290 CHAPTER 9: Connecting to a Bluetooth LE Device

Listing 9-33. Start Advertising in the TransferService Class

func startAdvertising() {
print("Start advertising")

var cbuuidService = CBUUID(string: kTransferServiceUUID)
var services = [cbuuidService]

var advertisingDict = Dictionary(dictionarylLiteral: (CBAdvertisementDataServiceUUIDsKey,
services))

peripheralManager.startAdvertising(advertisingDict)

}

You construct a dictionary with CBAdvertisementDataServiceUUIDsKey as the only key, with a
value of an array of CBUUID objects that you want to advertise, then pass that dictionary as a
parameter to the peripheral manager’s startAdvertising. The peripheral manager will then
call its delegate method peripheralManagerDidStartAdvertising. Once advertising begins,
any remote central role device can discover and initiate a connection. To stop advertising,
you call the peripheral manager’s stopAdvertising method (see Listing 9-34).

Listing 9-34. Stop Advertising in the TransferService Class

func stopAdvertising() {
print("Stop advertising")

peripheralManager.stopAdvertising()
}

In the PeripheralViewController class, add a property to hold a TransferService object.
var transferService: TransferService!

Then initialize it in the viewDidLoadMethod as such:

transferService = TransferService(delegate: self)

Now update the method advertiseSwitchDidChange to start and stop advertising
(see Listing 9-35).

Listing 9-35. Starting and Stopping Advertising in the PeripheralViewController Class

@IBAction func advertiseSwitchDidChange() {
if advertiseSwitch.on {
transferService.startAdvertising()
} else {
transferService.stopAdvertising()
}



CHAPTER 9: Connecting to a Bluetooth LE Device

Sending Data

Once connected, a remote device will subscribe to one or more characteristic values.
You are responsible for sending notifications to the subscribers when the value of any
characteristic they are subscribed to changes. The peripheral manager will then call its
delegate method didSubscribeToCharacteristic. From this method, you should start
sending data (see Listing 9-36).

Listing 9-36. Sending Data in the TransferService Class

func peripheralManager(peripheral: CBPeripheralManager!, central: (BCentrall,
didSubscribeToCharacteristic characteristic: CBCharacteristic!) {
print("didSubscribeToCharacteristic")

dataToSend = delegate?.getDataToSend()
sendDataIndex = 0
sendData()

}

291

This method calls the TransferServiceDelegate method getDataToSend to retrieve the data

to be sent to the remote device. It then initializes a data index counter and starts sending

data (see Listing 9-37).

Listing 9-37. Sending Data to a Remote Central Device in the TransferService Class

private func sendData() {
print("sendData")

let MTU = 20
struct eom { static var pending = false }
func sendEOM() -> Bool {

eom.pending = true

let data = ("EOM" as NSString).dataUsingEncoding(NSUTF8StringEncoding)
print("sending \(data)")

if peripheralManager.updateValue(data!, forCharacteristic: transferCharacteristic,

onSubscribedCentrals: nil) {
eom.pending = false;
}

return !eom.pending

}

if eom.pending {
if sendeOM() { return }
}

if sendDataIndex >= dataToSend?.length {
return
}



292 CHAPTER 9: Connecting to a Bluetooth LE Device

var didSend = true
while didSend {
var amountToSend = dataToSend!.length - sendDataIndex!
print("amountToSend is \(amountToSend)")
if (amountToSend > MTU) {
amountToSend = MTU
}

let chunk = NSData(bytes: dataToSend!.bytes+sendDatalndex!, length: amountToSend)
didSend = peripheralManager.updateValue(chunk, forCharacteristic:
transferCharacteristic, onSubscribedCentrals: nil)
if !didSend {

return

}
print("didSend \(chunk)")

sendDataIndex! += amountToSend

if sendDataIndex >= dataToSend?.length {
sendEOM()
return

}

In this method, you send data in MTU-sized chunks until there is no more data to send,
followed by an EOM indicator. The MTU (Maximum Transmission Unit) is defined at

20 bytes. For each chunk you call the peripheral manager’s updateValue method, which
will then forward the data to the connected central role device. The return value indicates
whether the update was successfully sent or not. If the underlying queue was full, the
method returns false. In that case the peripheral manager will call its delegate method
peripheralManagerIsReadyToUpdateSubscribers when more space becomes available.
You will implement that method to resend the data.

Listing 9-38. The peripheralManagerlsReadyToUpdateSubscribers method in the TransferService Class

func peripheralManagerIsReadyToUpdateSubscribers(peripheral: CBPeripheralManager) {
sendData()
}

Enabling Your App for Background Communication

System resources are limited on iOS devices, so by default many of the Core Bluetooth
tasks are disabled while your app is in the background. In order for the application to
support background mode, you can declare your app to support the Core Bluetooth
background execution modes. This will enable your app to wake up from a suspended state
and process Bluetooth-related events.



CHAPTER 9: Connecting to a Bluetooth LE Device 293

In the Project navigator right-click the Info.plist file and select Open As » Source Code
and add the UIBackgroundMode key, and set the keys value to an array containing the
following strings:

bluetooth-central: The app communicates with Bluetooth LE
peripherals using the Core Bluetooth framework.

bluetooth-peripheral: The app shares data using the Core Bluetooth
framework.

<key>UIBackgroundModes</key>

<array>
<string>bluetooth-central</string>
<string>bluetooth-peripheral</string>

</array>

Bluetooth Best Practices

The Core Bluetooth framework gives you control over implementing most aspects of both
the central and peripheral roles. This section provides guidance for using this control in
responsible way.

Central Role Devices

Only scan for devices when you need to. Once you discover a device
you’re interested in, stop scanning for other devices. This will help limit
radio usage and power consumption.

When exploring peripheral end-of-sentence services and characteristics,
use a filter to look for and discover only the services and characteristics
you need. Otherwise it can negatively affect your battery life.

It’s best to subscribe to a characteristic’s value when possible especially
if the value changes often. This will eliminate the need to poll.

Cancel any subscriptions and disconnect from a device when you have
all the data you need. This will help reduce your app’s radio usage.

Peripheral Role Devices

Advertise data only when you need to. Advertising peripheral data uses
your device’s radio, which affects your device’s battery. Once a device is
connected, stop advertising.

Let the user decide when to advertise, since your app is unaware of
nearby devices.

Allow connected central role devices to subscribe to your characteristics.
When you create a mutable characteristic, configure it to support
subscriptions by setting the characteristics properties with the
CBCharacteristicsPropertyNotify constant.



294 CHAPTER 9: Connecting to a Bluetooth LE Device

Summary

In this chapter, you learned some key terms and concepts related to the Bluetooth
specification, and how Apple adopted these in its Core Bluetooth framework. You also
learned how to use the Core Bluetooth framework to discover and connect to Bluetooth
LE-compatible devices, as well how to send and receive data between devices. Apply this
knowledge along with best practices to build your own high-quality Bluetooth LE application.



Chapter 1 O

Building Location Awareness
with iBeacons

Manny de la Torriente

This chapter introduces iBeacon technology and will show you how to use the Core Location
framework to interact with beacons. You’ll learn how to establish a region around an object,
determine when a region has been entered or exited, and estimate your proximity to a
beacon. You’ll also learn how to configure your iOS device to act as an iBeacon transmitter.

Introduction to iBeacons

Apple standardized the iBeacon technology, which introduces a class of low-cost
transmitters that utilize Bluetooth Low Energy (LE). A device with iBeacon technology is used
to establish a region that allows an iOS device to determine when it has entered or exited
the region and to estimate its proximity to the transmitter. The Apple Store, for example,
uses beacons to bring up its app on your phone when you enter the store.

iBeacon Advertisement

A device that is configured to be an iBeacon transmitter provides information via Bluetooth
LE. The information contains a unique user ID (UUID) that is specific to a deployment use
case and major and minor values, which provide identifying values for the iBeacon.

iBeacon Accuracy

When an iOS device detects an iBeacon'’s signal, it uses the RSSI (received signal strength
indicator) to determine its proximity to the beacon. The signal strength increases as the
receiver moves closer to the beacon.

295



296 CHAPTER 10: Building Location Awareness with iBeacons

The calibrated transmission power of a device is its known measured signal strength in RSSI
at 1 meter. The distance provided by iOS is in meters and is an estimate based on the ratio
of the beacon’s signal strength over the transmission power.

Privacy

User authorization is required in order to use any location services on an iOS device, which
means the user can choose to allow access. Applications that utilize iBeacon functionality
will also appear in the Settings app.

Region Monitoring

An application can be notified when a user enters or exits a region that is defined by a
beacon. A beacon region is an area defined by a device’s proximity to a Bluetooth LE
beacon, not geographical coordinates. In iOS, registered regions persist between launches
of an app, so regions associated with an application are monitored at all times, even when
the app is in a suspended state or not running.

Regions are a shared application resource, and the number of regions available system-wide
is limited. Therefore, a single application is limited to 20 regions that can be monitored
simultaneously.

The process of determining the approximate proximity of one or more beacons to a device
is known as ranging. Filters are applied to a distance estimate to determine an estimated
proximity to a beacon. iOS defines four proximity states: unknown, immediate, near, and

far (see Table 10-1).

Table 10-1. Proximity States

Proximity Description

State

Unknown Indicates that the proximity of a beacon can’t be determined. Ranging may have
started, or there are insufficient measurements to determine state.

Immediate Indicates that a device is physically very close or directly held up to the beacon.

Near Indicates that a device is approximately within 1 to 3 meters of a beacon. This state

may not be reported if there are any obstructions between the device and the beacon.

Far Indicates that a beacon is detected, but the signal strength is too low to determine a
near or immediate state. When in this state, use the accuracy property to determine
potential proximity to the beacon.




CHAPTER 10: Building Location Awareness with iBeacons 297

Core Location will report multiple beacons in an order that’s based on a best guess of their
proximity. This order may not be correct if there are any obstructions that affect signal
strength. Also, some beacon devices may emit stronger signals than others, so a device that
is physically further away than others may be reported first.

Building the iBeaconApp Application

In this section you’ll build a simple dual-purpose application that demonstrates how to
scan for specific nearby iBeacons and configure your Bluetooth LE-capable iOS device as
an iBeacon transmitter. The app consists of three master scenes: a home scene, a Region
Monitor scene, and an iBeacon scene. The home scene provides segues to the other
scenes and an indicator label that reflects the current Bluetooth on/off state of the device.
The Region Monitor scene supports two basic methods for interacting with beacons, region
monitoring and ranging. The iBeacon scene allows you to configure your iOS device as an
iBeacon transmitter. Figure 10-1 illustrates the storyboard view of the iBeaconApp.

[} e » ] A Be_pp | J* Gereric 05 Device  Beaconipn | Bulld iBesconApo: Succeeded | Toduy a1 748 P 1 @ < OO0

< B meecenage eaconapn | [l Mainstoryboard | [} Malnstoryboard (Base) | [T iDeacon Scane IDeacon

0 Any rhny H B o

Figure 10-1. Storyboard view of iBeaconApp



298 CHAPTER 10: Building Location Awareness with iBeacons

Creating the Project

This application will use a single-view application project template. To create a new
single-view Swift application project, from Xcode file menu select File » New » Project
and you’ll be presented with the view shown in Figure 10-2.

Choose a template for your new project:

i0S

Application - s00 1 s

Framework & Library

Other Master-Detail Page-Based Single View Tabbed

Application Application Application Application

0s X

Application 'é‘

Framework & Library -

System Plug-in Game

Other

Single View Application

This template provides a starting point for an application that uses a single view. It provides
a view controller to manage the view, and a storyboard or nib file that contains the view.

Cancel Next
Figure 10-2. Creating a single-view application project

After selecting Next, you’ll be prompted to enter a project name, select the language, and
select the target device. You can name it iBeacon App or choose another name. Make sure
you choose Swift for the language and Universal for the device. Leave the option User Core
Data unchecked. Click the Next button, choose a location for your project, and click the
Create button.

Setting Background Capabilities

System resources are limited on iOS devices, so by default many of the Core Bluetooth
tasks are disabled while your app is in the background. In order for the application to
support background mode, you can declare your app to support the core Bluetooth
background execution modes. This will enable your app to wake up from a suspended state
and process Bluetooth-related events.

From the main project in Xcode select the Capabilities tab. In the Background Modes
section, turn the switch to ON, then check Location updates and Acts as a Bluetooth LE
accessory (see Figure 10-3).



CHAPTER 10: Building Location Awareness with iBeacons 299

Ir-Ap Purchase

Porsonal VPN
Kaychain Sharing

Bachkground Modes  om |

Figure 10-3. Setting background capabilities in Xcode
Enabling the Background Modes option adds the UIBackgroundModes key and the

corresponding background mode values to your app’s Info.plist file. Table 10-2 lists the
background modes you must specify so your iOS device can act as an iBeacon transmitter.

Table 10-2. Xcode Background Settings

Xcode Background UlBackgroundMode Value Description

Mode

Location updates Location The app keeps users informed of their location,
even while it is running in the background.

Acts as a Bluetooth Bluetooth-peripheral The app supports Bluetooth communication in

LE accessory peripheral mode through the Core Bluetooth
framework. Note: using this mode requires user
authorization.

Building the Home Scene

In this section you’ll build out the home master scene. It’s assumed that you’re already
familiar with the basics of building an application and using Interface Builder, so this
section will briefly cover creating a project, how to add user interface (Ul) elements, adding
constraints, and how to connect interface behaviors to your code.

The scene is very basic. It will contain a label for the app title, a label that will be used as an
indicator for the Bluetooth power status, and two custom buttons used to segue to the other
scenes (see Figure 10-1).



300 CHAPTER 10: Building Location Awareness with iBeacons

The first thing you need to add is a navigation controller. Its primary job is to manage the
presentation of your view controllers as well as providing a back button that makes it

easy to return to the previous level. Open up the Main.storyboard and select the view
controller from either the storyboard or the Document Outline. Then from the menu, select
Editor » Embed In » Navigation Controller. Xcode will add a v controller to the storyboard,
set it as the Storyboard Entry Point, and add a relationship between the navigation controller
and the existing view controller. Your storyboard should look like the one in Figure 10-4.

[ ] 2 p» A Be..nipp s B Manny'siPhone  [Beaconipp: Ready | Today at 2:02 PM @ & [ =2 |

BREaasAéeEo P < & iBoaconapp BoaconApp | [ Main....yboord - [l Man....Basel » [5] vow Controlier Score View Cantralior rea@E ¢ 0 &
. 7 iBeaconApp = View Gantrol
= 3 targats, 05 90K 8.3 .
¥ B eaconien Simudated Size  Flund [ =]
+ AppDelegate mwift A
+ ViewControler swift A
B Main storyboard A
¥ [ SBupparting Files S mc-ars
Images xcassats u - -
LaunchScreen st
Infio plist
¥ [0 iBeaconAppTests
[ Products
3
() Ay HANY B oo kel

Figure 10-4. Adding a Navigation Controller

At this point, you should be able to build and run your app. If all goes well you should see an
empty white scene.

Setting Up Ul Elements

On the storyboard, double-click the navigation bar of the view controller and set the title text
of the navigation item to iBeacon Home. Now select the view inside view controller and then,
from Attributes Inspector, change the color of the background to 0066CC.

For the application title, drag a UILabel from the Object library to the center of the
storyboard. With the label selected, open the Utilities panel and use the Attributes Inspector
to set the text to iBeacon App (or to the name you chose for the app). Set the font color to
white, the font size to 26, and the text alignment to centered. With the label still selected,
use the Align control and select Horizontal Center in Container to create an X alignment
constraint. Control-drag upward from the label to the View and select Top Space to Top
Layout Guide to create a Vertical Space constraint.



CHAPTER 10: Building Location Awareness with iBeacons 301

For the Bluetooth indicator, add another UILabel just below the title label and set the text
to Bluetooth Off. Set the font color to FFO000, the font size to 17, and the text alignment to
centered. Use the Align control and select Horizontal Center in Container to create an

X alignment constraint. Control-drag upward from the label to the title label directly above
and select Vertical Spacing.

Creating an Outlet Connection

Now connect an outlet from the label to the ViewController implementation. Using the
Document Outline, control-click the Bluetooth Off label and drag a connection from the
New Referencing Outlet well and drop it onto the controller source (see Figure 10-5).

1] iBencan Home Scene °
v () iBaacon Homa e B
Top Layout Guide
Bottom Layout Guide
¥ 1L Ve iBeacon Home s import UIKit

class ViewController: UIViewController {

averrice func viewDidLead() {
super.viewlicload(]

¥

averrice func dldReceiveMenorywarningi) {
super,didRecelveNemaryWarning()

¥

iBeacon App

Figure 10-5. Connecting a new referencing outlet

In the pop-up, name the outlet bluetoothStatelabel and click the Connect button
(see Figure 10-6).

Connection | Outlet
Object iBeacon Home
Name bluetoothStatelLabel
Type UlLabel ¥
Storage | Weak

Cancel Connect
Figure 10-6. Naming the outlet connection

Your ViewController class should now have an IBOutlet defined.

@IBOutlet weak var bluetoothStatelLabel: UILabel!



302 CHAPTER 10: Building Location Awareness with iBeacons

Later in this chapter, you’ll utilize the Core Bluetooth framework and start up a central
manager and use it to determine the Bluetooth state and set the indicator accordingly.

There are two custom buttons on the home screen that you will use to switch between
different modes of operation. The steps that follow will guide you through the process of
adding the first button, and then you can repeat those steps to add the second button.

Add a UIButton to the scene and place it below the Bluetooth indicator label. From the
Attributes Inspector, set the button title to Region Monitor, set the font size to 20.0, and set
the text color to white. In the Button section, set the Shows Touch on Highlight to checked
so when a user presses the button, there will be a white glow where the touch event
occurred on the button. Don’t worry about the button size and borders; you’ll fix that shortly.

Setting up Constraints

Set up the constraints to match those shown in Figure 10-7. These constraints should be
used for both buttons. There are a few ways to add constraints in Interface Builder. You can
let Interface Builder add them for you; you could use the Pin and Align tools located at the
bottom on the storyboard canvas; or you can control-drag between views. To create an Align
Center X constraint, control-click on the Region Monitor button and drag vertically toward
the top of the view controller, and then release the mouse. A pop-up menu is displayed
with a list of possible constraints. Choose Center Horizontally in Container. When you drag
vertically, Interface Builder will present options to set vertical spacing between the views,
and options to horizontally align the views. Likewise, when you drag horizontally, you’ll be
presented with options to set the horizontal spacing between the views and options

to vertically align the view. Both gestures may include other options such as setting the
view size.



CHAPTER 10: Building Location Awareness with iBeacons 303

Constraints

P
All
@ Align Center X to: Edit
Width >= 325 Edit
=) Width Equals: 325 Edit
[T]] Height >= 48 Edit
@ Height Equals: 48 Edit
@ Bottom Space to: iBeacon Edit

Equals: 20

Showing 6 of 6

Figure 10-7. Setting up button constraints

Creating a Custom Button

You don’t see the border around the buttons because there isn’t a way to set all the required
layer properties for the view from Interface Builder alone. This is where the new Xcode Live
Rendering feature comes into play.

Tip Use the Interface Builder Live Rendering feature in Xcode 6 to design and inspect a custom
view. The custom view will render in Interface Builder and appear as it will in your application

Start by adding a new Swift file to your project named CustomButton.swift, and declare the
class CustomButton a subclass of UIButton using the new IBDesignable attribute (Listing 10-1).
Then add inspectable properties using IBInspectable for cornerRadius, borderWidth, and
borderColor.



304 CHAPTER 10: Building Location Awareness with iBeacons

Listing 10-1. CustomButton Class
import UIKit

@IBDesignable
class CustomButton: UIButton {
@IBInspectable var cornerRadius: CGFloat = 0 {
didSet {
layer.cornerRadius = cornerRadius
layer.masksToBounds = cornerRadius > 0

}
}
@IBInspectable var borderWidth: CGFloat = 0 {
didSet {
layer.borderWidth = borderWidth
}
}
@IBInspectable var borderColor: UIColor? {
didSet {
layer.borderColor = borderColor?.CGColor
}
}

}

When you add the IBDesignable attribute to the class declaration, Interface Builder will
render your custom view. Your custom view will update automatically as you make changes
by using the IBInspectable attribute to declare variables as inspectable properties.

Now open up the storyboard and in the Utilities panel, click the Identities Inspector tab and
change the class type from UIButton to CustomButton for the buttons you just created. Now
click the Attributes Inspector tab. Notice that there’s a section named Custom Button with a
field for each of the inspectable properties you declared. Set the values for Corner Radius to
6; set the Border Width to 2; set the Border Color to White Color. Your buttons should now
look similar to those in Figure 10-8.



CHAPTER 10: Building Location Awareness with iBeacons

> L A Bo_nipp ) B Manny's iPhone

[ ]
= Q & (_) = o @
iBeaconApp
2 targets, 05 SOK 8.3
¥ [0 iBeaconAop
+ AppDelegate.mwift
+ ViewControler swift
+ CustomButton switt
B Main storyboasd
¥ [ Supporting Files
1 Imnges xcassets
LaunchScreen xiby
I it
[ IBsaconAppTests
» Products.

[ ]
B B | < & Boaconrpp
B

LI

>rrE

© B &

Figure 10-8. Configuring a CustomButton

8.0 ) [l M..org ) [l M.00) ;B B.ne 1B...ma

(Beaconipp | Build iBeacondpp: Succeeded | Today at 318 PM

iBeacon App

By hAny

L3

View ' B Rogion Monftor £

>

B b bl

305

= @ ¢ 0O

: = 1
ODe@@E I e
Gustom Class

cass CustomButton ol

Modue -]

Designabies Uip to date

Igentity

Restoration 1D

User Defingd Austime Attributes

Koy Path Type alug
comerRadius Kumber 3 8
borderWidth Number 2
bordorGolor L —

Document
Lt
X
Gbjoct 0 0OT-mC-yVB
Lok Inherited - {Nathing] i
Notes B = W - O E

OO 6@a

Label - A variably sized amount of
Label gy tan

Button - Intercepts touch events and
Buthon sexds s sction messoge to a target
oBjoct when it's tapoed.

Segmented Control - Daplay
Rl i
functens o & diserste Euticn

B &

Build and run the app to make sure the constraints are set properly and your scene looks

similar to the mock-up in Figure 10-1

Next you’ll be adding two new scenes to the storyboard, one for each button you’ve just
added. Start by renaming the file ViewController.swift to HomeViewController.swift so

it can be easily identified later on. Currently, Xcode doesn’t support the Refactor feature
with Swift, so you’ll have to manually rename the class in the source file as well as in the
storyboard. Select the view controller from the Identity Inspector, manually type it in or
select HomeViewController from the pulldown (see Figure 10-9). You must do this in order to
connect interface elements to your code.

iBeacon Home

Figure 10-9. Assigning View Controller identity

Custom Class

Identity

Class HomeViewController
Module

Ov

w



306 CHAPTER 10: Building Location Awareness with iBeacons

Now drag two view controllers to the right of the iBeacon Home view controller on the
storyboard. Create a segue to each view controller by selecting the appropriate button, then
control-drag and release on top of each view controller you placed on the right. Once you
release, the Action Segue pop-up is displayed where you can select the show option

(see Figure 10-10).

[ ] 2 » [ ¥ Be__nigp: B Manny'siPhone  Beaconipp | Build iBeacondpp: Succesded | Today at 323 PM [} = o SO0 0
MR QA€ =Eoc B Bl & Boacenrpp 8...pp ) B Mo ) B .00 0 B B.ne B0 View | B Ragien Moritor | £ [ > De&@BE OO0 e
+ [ ‘Beaconiop =]l Gustom Class
2 targats, 05 30K 8.3 I ) - Chass CustomB: ol
v iBeaconAnp G‘ E Cass tomButton
+ HomeViewControberawift A oo e B
s CustomButton swift A _— Designables Uip to date
B Main.storyboad A ¥
¥ 1 Supporting Files iBeacon Home Identity
+ AppDelegate swit Rstonaticn 10
[ Images xcassats
LaunchS8creen. xity User Defined Rustime Attributes
Indo plist Koy Path Typa Valg
¥ [ iBeaconAppTests comerRadius Kumber % 6
¥ [ Products o bordeWidth Number &2
borderCalo Color &7
iBeacon App A i
P | Doeument
Labwd
x
Cbject 10 oQT-mC-yVB
Loek  Inherted - (Nathing] B
Notes B = W m - O E
i
O eo
View Contraller - A controlier that
supports the fundamental view-
management medel i 108,
Havigation Controller - A
< controler that manages ravigation
through & hisrareiry of visws,
Table View Controller - A
£ONrTie thas MEnages 3 1A2I Wow,
[m] By ANy B o ks
o E & — TSERT — EE

Figure 10-10. Creating a segue to a new scene

For each segue you’ve just created, select the connector on the storyboard, and then
from the Attributes Inspector set the identifier. Use the names RegionMonitorSegue and
iBeaconSegue

For each scene, drag a navigation item from the Object Library onto the navigation bar area.
Set the names to match those in the buttons, Region Monitor and iBeacon.

When you’re finish creating the segues, your storyboard should look similar to the one
in Figure 10-11.



CHAPTER 10: Building Location Awareness with iBeacons 307

[} ® » S Be_nipp B Manny'siPhone  [Beaconipp | Build iBeaconipp: Succesded | Today at 323 PM 8 = o SO0 0
MR QASEo @ B & BoaconAnp Boaconaop ! [ Main...oard + [l Man..ase) » [ view...cono » O iBsacon ) < Beacon { 4 > DGeG@E P00
. 7 BeaconApp = Nevigation ltam
= 2 targets. I05 50K 8.3
¥ 1 iBeaconAsp i rttinszcsal e e
4 HomeViewControBerawift A Bt
+ CustomButton switt A Baok Button
B Main storyboard A

¥ [ Supporting Fies
=+ AppDelagate.swift A
% Images xcansats ]
LaunchScreen. xity A
Info pist [
¥ [ IBeaconAppTests A
» Products.

|Beacon Aop

O @O

state of the navigetion bar, including
atitie.

< Mavigation ltem - Repnsents a

Bar Button Item - Bspresacts an
tem | item on 8 UToclbar or
UlNavigatianliam chiject.

Tab Bar ftem - Reprasents an item
o0 3 UMsbBar ooject.

(] Any hAny [SL I
8|S == INSERT = B [©tem -

Figure 10-11. Home scene with segues

Build and run the application, tap the buttons, and verify that the segues and navigation
controls are working as expected.

Detecting Bluetooth State

In this section, you’ll learn how to start up a central manager and use it to determine if a
device supports Bluetooth LE and is available to use on the central device.

The (BCentralManager object is a Core Bluetooth representation of a central role device.
When you initialize a central manager, it calls the centralManagerDidUpdateState method
of its delegate. This means you must adopt the delegate protocol and implement this
required method.

Open the HomeViewController.swift file and import the framework and add the
(BCentralManagerDelegate protocol to your class declaration.

import CoreBluetooth

class HomeViewController: UIViewController, CBCentralManagerDelegate {

You'll see an error indicator, which says that the HomeViewController does not conform to
protocol. That’s because you need to implement the required delegate method.

func centralManagerDidUpdateState(central: CBCentralManager) {

}



308 CHAPTER 10: Building Location Awareness with iBeacons

Now add a property for a CBCentralManager and initialize it in the viewDidLoad method as
shown in Listing 10-2.

Listing 10-2. Declare and initialize the centralMlanager property

var centralManager: CBCentralManager!

override func viewDidLoad() {
super.viewDidLoad()
centralManager = (BCentralManager(delegate: self, queue: nil)

}

The central manager is initialized with self as the delegate so the view controller will receive
any central role events. By specifying the queue as nil, the central manager dispatches
central role events using the main queue. The central manager starts up after this call is
made and begins dispatching events.

Listing 10-3 shows how to examine the central manager state in the
centralManagerDidUpdateState callback when the state change event fires. Here is where
you can update the text and text color of the bluetoothStatelabel property based on the
central state.

Listing 10-3. Central State Change

func centralManagerDidUpdateState(central: CBCentralManager) {
switch (central.state) {
case .PoweredOn:
isBluetoothPoweredOn = true
bluetoothStatelLabel.text = "Bluetooth ON"
bluetoothStatelabel.textColor = UIColor.greenColor()
case .PoweredOft:
isBluetoothPoweredOn = false
bluetoothStatelLabel.text = "Bluetooth OFF"
bluetoothStatelabel.textColor = UIColor.redColor()
default:
break
}

}

As we discussed in Chapter 9, the PoweredOn state indicates that the central device supports
Bluetooth LE and the Bluetooth is on and available for use. The PoweredOff state indicates
that Bluetooth is either turned off or the device doesn’t support Bluetooth LE.

Build and run the application. If your device has Bluetooth enabled, the indicator label
should read “Bluetooth On” and its color should be green. Use the slide-up settings panel to
turn Bluetooth off. The indicator label should now read “Bluetooth Off” and its color should
be red.


http://dx.doi.org/10.1007/978-1-4842-1194-6_9

CHAPTER 10: Building Location Awareness with iBeacons 309

Add a Boolean property isBluetoothPoweredOn near the top of the HomeViewController class
that will be used to reflect the Bluetooth state.

var isBluetoothPoweredOn: Bool = false

Set its value in the centralManagerDidUpdateState method accordingly, as shown in
Figure 10-3. You’ll use this value to determine whether or not transition is allowed to any
other scene.

The UIViewController provides an override method which allows you to control whether a
particular segue should be performed. Open HomeViewController.swift and add the method
shouldPerformSegueWithIdentifier to the ViewController class (see Listing 10-4).

Listing 10-4. Override Method to Control Segue

override func shouldPerformSegueWithIdentifier(identifier: String, sender: AnyObject?) -> Bool {
if identifier == "RegionMonitorSegue" || identifier == "iBeaconSegue" || identifier ==
"ConfigureSegue" {
if lisBluetoothPoweredOn {
showAlertForSettings()
return false;

}
}

return true

}

When a segue is initiated, this method will be called with the string value that identifies the
triggered segue and the object that initiated the segue. The return value for this method
should be true if you want the segue to be executed; otherwise, return false.

In this method you’re only interested in the identifier; the sender object is for informational
purposes and can be ignored here. Compare the identifier value with the constants you
defined earlier. If you find a match, then check the Bluetooth state. If Bluetooth is powered
on, you can allow the segue to execute by returning a value of true.

In the case in which Bluetooth is powered off, you want to display an alert and provide

an option to go to the Settings app where the Bluetooth setting can be changed. Add the
method shown in Listing 10-5 to the ViewController class. Call this method from within the
shouldPerformSegueWithIdentifier method as shown in Listing 10-4.

Listing 10-5. Configure and Present an Alert

private func showAlertForSettings() {
let alertController = UIAlertController(title: "iBeacon App", message: "Turn On
Bluetooth!", preferredStyle: .Alert)

let cancelAction = UIAlertAction(title: "Settings", style: .Cancel) { (action) in
if let url = NSURL(string:UIApplicationOpenSettingsURLString) {
UIApplication.sharedApplication().openURL(url)
}



310 CHAPTER 10: Building Location Awareness with iBeacons

alertController.addAction(cancelAction)

let okAction = UIAlertAction(title: "OK", style: .Default, handler: nil)
alertController.addAction(okAction)

self.presentViewController(alertController, animated: true, completion: nil)

}

This method configures a UIAlertController object to display an alert modally with a title,
message, and a style. Additionally, actions are associated with the controller. The cancel
action is labeled Settings, and is used to open the Settings app. The OK action is used to
simply dismiss the alert.

Build and run the application. Turn Bluetooth off, then press each button to verify that the
alert is displayed and access to the other scenes is prohibited. Press the Settings button on
the alert to make sure it opens the Settings app.

Building the Region Monitor Scene

In this section, you’ll build the master scene for the Region Monitor as shown in Figure 10-12.
The Region Monitor will support two basic methods for interacting with beacons, region
monitoring and ranging. The Ul will utilize four labels to display the status during monitoring,
and three input fields where the user can enter information to scan for a specific beacon
type. There will be a single custom button used to toggle monitoring on and off.

Region Monitor

Region Monitor

Region: Label
UuID:

Major:

Proximity: Label
Distance: Label

RSSI: Label

Figure 10-12. Region Monitor scene mock-up



CHAPTER 10: Building Location Awareness with iBeacons 311

Create a new Swift file named RegionMonitorViewController.swift and declare the class
RegionMonitorViewController as a subclass of UIViewController. Then adopt the protocol
for UITextFieldDelegate by adding the UITextFieldDelegate protocol declaration.

import UIKit
import Corelocation

class RegionMonitorViewController: UIViewController, UITextFieldDelegate,
RegionMonitorDelegate {

}

Assign the RegionMonitorViewController as the class for the Region Monitor identity by
opening the storyboard and selecting the Region Monitor scene. In the Utilities panel on the
right, click the Identity Inspector tab. In the Custom Class section, use the class drop-down
to select RegionMonitorViewController.

Set the background color to for the Region Monitor view to FF6600. Add a UIButton to the
scene and place it so that it looks similar to Figure 10-12. Set the button title to Monitor,

the text color to white, and the font size to 26.0. In the Utilities panel, click the Identities
Inspector tab and change the class type from UIButton to CustomButton. Click the Size
Inspector tab and set both the width and height to 110. Now click the Attributes Inspector
tab. In the section named Custom Button set the values for Corner Radius to 55, Border
Width to 4, and Border Color to White Color. In the Button section, set the Shows Touch on
Highlight to checked so when a user presses the button, there will be a white glow where the
touch event occurred on the button.

Next, add UILabel and UITextField objects to the scene such that it looks similar to the one
in Figure 10-13. The yellow tags A, B, C, and D are labels that will be used to display status
related to ranged beacons. The blue tags 1, 2, and 3 are text fields that are used as search
criteria when monitoring beacons. The property names correspond to those in Table 10-3.



312

®
B

», iBeaconApp
¥ B 2 argets. 105 50K 8.3

v

*i
=

i o E®

CHAPTER 10: Building Location Awareness with iBeacons
® P H A Beonipp) B Manny'siPhone  Bunning iBeaconAop on Manny's iShone =E o S0DQ0
2 QQaA¢eEc @ BB » B Man, » B Mo Bass) ) o Selection

w | * [ iBescon Home Scons ® =

B nconecp [ Region Monitor Scens
B i | YO
. 4 i Layeat Giige
4 ReglonMonito., cobrollerswift A b i Region Monitor
= BeaconTrans. . ontollecswitt A - ms'm LA
s oeseinor P 8l
) [ran: £ L % o ; 2
+ CustomBution swit [ L - Region: Label @
B Main storyboard "] T UuID:
Localizable. strings 'y
L |Labat
1 Supportirg Files T
T Imiaggers acansly L rest
e e e I
Infopiist M n 3
! IBsaconAppTests : =
L Major:
L Micr: Proximity: Label Q
F  Enter the ULID for the bes. .
» F Enter minor ident ar '/ Distance: Label @
& F |Enter major identifier | e
» [@ comstraines RSSI: Label o
< Fiegion Monitor
T First Resporder

[ Exit
¥+ [ iBeacon Scene

» [ Navigation Controlior Scene

2 ]
- INSERT —
= = §] = &

o< iBesconApp

B o hai

Figure 10-13. Region Monitor scene after label and text field placement

Table 10-3. Region Monitoring Properties

Tag Property Name  Description

A regionldLabel This is a CLBeaconRegion identifier: a user-defined unique identifier to
associate with the returned region object. You use this identifier to
differentiate regions within your application. This value must not be nil.

B proximityLabel  This value corresponds to the CLProximity constants that represents the
relative distance to the beacon: unknown, immediate, near, far.

C distancelLabel This value is the estimated distance in meters to a beacon. You can use
this value to differentiate between beacons with the same proximity values.
A negative value signifies that the accuracy could not be determined.

D rssiLabel This value represents the average received signal strength indicator. It’s a
measurement of the power present in a received radio signal in decibels.

1 uuidTextField This is a unique identifier of the beacon being targeted; use this to identify
your beacon. You typically generate only one UUID for your beacons.
You can use the uuidgen command-line tool to generate this value.

2 majorTextField  The value identifying a group of beacons.

3 minorTextField  The value identifying a specific beacon within a group.




CHAPTER 10: Building Location Awareness with iBeacons 313

You should already be familiar enough with autolayout and constraints, so we won’t cover
that topic here. For each of the UITextField objects, you can add placeholder text that

will be visible when a field is empty. The placeholder text is a hint to the user as to what
information is expected to be input in each of the fields. From the Attributes Inspector, set
the Capitalization field for the uuidTextField object to All Characters. For the majorTextField
and the minorTextField objects, set the Keyboard Type to Number Pad.

Open the Main.storyboard file and select the Region Monitor scene. For each of the Ul
objects that you’ll be interacting with programmatically, connect an outlet to the view
controller by control-dragging and dropping them inside the view controller implementation
and name each accordingly (see Listing 10-6).

Listing 10-6. The RegionMonitorViewController class declaration

class RegionMonitorViewController: UIViewController, UITextFieldDelegate, RegionMonitorDelegate {
let kUUIDKey = "monitor-proximityUuID"
let kMajorIdKey = "monitor-transmit-majorId"

let kMinorIdKey = "monitor-transmit-minorId"

let uuidDefault

"2F234454-CF6D-4A0F-ADF2-F4911BA9FFA6"

@IBOutlet weak var regionIdLabel: UILabel!
@IBOutlet weak var uuidTextField: UITextField!
@IBOutlet weak var majorTextField: UITextField!
@IBOutlet weak var minorTextField: UITextField!
@IBOutlet weak var proximitylLabel: UILabel!
@IBOutlet weak var distancelabel: UILabel!
@IBOutlet weak var rssilabel: UILabel!
@IBOutlet weak var monitorButton: UIButton!

}

The UITextField objects will be taking user input, so a keyboard will be presented. You'll
want to know when the user starts and stops editing to perform certain actions. In order to
handle messages sent as part of the text editing sequence, implement the delegate methods
textFieldDidBeginEditing and textFieldDidEndEditing shown in Listing 10-7. When the
text fields take focus, you want to present a Done button in the navigation bar so the user
can dismiss the keyboard as needed. As a convenience, when the user leaves each field,
the values the user entered are stored in the standard user defaults and used to initialize the
text fields.

Listing 10-7. Implementing UlTextField Delegate Methods
// MARK: UITextFieldDelegate methods

func textFieldDidBeginEditing(textField: UITextField) {
navigationItem.rightBarButtonItem = doneButton

}

func textFieldDidEndEditing(textField: UITextField) {

let defaults = NSUserDefaults.standardUserDefaults()



314 CHAPTER 10: Building Location Awareness with iBeacons

if textField == uuidTextField && !textField.text!.isEmpty {
defaults.setObject(textField.text, forKey: kUUIDKey)

}
else if textField == majorTextField &3 !textField.text!.isEmpty {

defaults.setObject(textField.text, forKey: kMajorIdKey)

}
else if textField == minorTextField &3 !textField.text!.isEmpty {

defaults.setObject(textField.text, forKey: kMinorIdKey)
}
}

Override the viewDidLoad method and set the text field delegates to self, otherwise you
won'’t receive any notifications. The doneButton property is initialized only once and is used
to set the navigationItem.rightBarButtonItem each time text field takes focus. Notice that
in the last parameter to UIBarButtonItem initializer, the action is set to “dismissKeyboard”
(see Listing 10-8). This corresponds to a method you define. The action is called
automatically for you when the user taps the Done button.

Listing 10-8. Property Initialization in the RegionMonitorViewController Class

override func viewDidLoad() {
super.viewDidLoad()
uuidTextField.delegate = self
majorTextField.delegate = self
minorTextField.delegate = self
doneButton = UIBarButtonItem(title: "Done", style: UIBarButtonItemStyle.Done, target: self,
action: "dismissKeyboard")
initFromDefaultValues()

}

func dismissKeyboard() {
uuidTextField.resignFirstResponder()
majorTextField.resignFirstResponder()
minorTextField.resignFirstResponder()
navigationItem.rightBarButtonItem = nil

}

When initializing the text fields from user defaults, you can use the Optional Binding feature
of Swift.

if let uuid = defaults.stringForKey(kUUIDKey) {
uuidTextField.text = uuid
}

Tip Use optional binding to find out whether an optional contains a value or not. It’s a clean way to
check for a value inside an optional and extract it in a single line of code (see Listing 10-9).



CHAPTER 10: Building Location Awareness with iBeacons 315

Listing 10-9. Initialization from User Defaults Using Optional Binding in the RegionMonitorViewController Class

private func initFromDefaultValues() {
let defaults = NSUserDefaults.standardUserDefaults()
if let uuid = defaults.stringForKey(kUUIDKey) {
uuidTextField.text = uuid
}

if let major = defaults.stringForKey(kMajorIdKey) {
majorTextField.text = major
}

if let minor = defaults.stringForKey(kMinorIdKey) {
minorTextField.text = minor
}

}

To make sure the user defaults are persisted, call the NSUserDefaults.synchronize()
method when the app is about to go in the background or exit. Take note that this method is
called periodically in the background so you shouldn’t need to call it at any other time. Add
the method from Listing 10-10 to the RegionMonitorViewController class.

Listing 10-10. Persisting Defaults When the Application Is About to Go in the Background

override func viewWillDisappear(animated: Bool) {
NSUserDefaults.standardUserDefaults().synchronize()
}

The RegionMonitor Class

The RegionMonitor class manages all the interactions with CLLocationManager. At appropriate
times, the Region Monitor will inform its delegate, the view controller, of events that it
handled, or that it is about to handle.

Using the Delegation Pattern

For region monitoring, you’ll utilize the Delegation pattern, which is commonly used by Apple
frameworks. The delegate is typically a Custom Controller object that acts on behalf of
another object.

You’ll implement the pattern by defining a protocol for a RegionMonitorDelegate. The
RegionMonitorViewController will adopt this protocol and implement the methods that
respond to Location Monitoring actions. You’ll create a new class RegionMonitor that will
be the delegating object. It will hold a weak reference to the RegionMonitorViewController
that will act as the delegate. The RegionMonitor object will act as the delegate for the
CLLocationManager object. The example sequence diagram in Figure 10-14 illustrates the
interaction between the objects.



316 CHAPTER 10: Building Location Awareness with iBeacons

regionMonitorViewController : RegionMonitorDelegate |

_viewDidLoad =

init(withDelegate:self) .;! regionMonitor : CLLocationManagerDelegate l

<<create>> »| ClLocationManager

button press

startMonitoring{beaconRegion)

startMonitoringForRegion(beaconRegion)

startUpdatingLocation()

>

| didStartMonitoringForRegion(region)

_ didStartMonitoring()

- start progress indicator

| regionMonitorViewController : RegionMonitorDelegate ] l regionMonitor : CLLocationManagerDelegate | | ClLocationManager

Figure 10-14. Sequence diagram—delegation pattern example

Create a new Swift file named RegionMonitor.swift and define a protocol for
RegionMonitorDelegate as shown in Listing 10-11.

Listing 10-11. Defining the RegionMonitorDelegate protocol

protocol RegionMonitorDelegate: NSObjectProtocol {
func onBackgroundLocationAccessDisabled()
func didStartMonitoring()
func didStopMonitoring()
func didEnterRegion(region: CLRegion!)
func didExitRegion(region: CLRegion!)
func didRangeBeacon(beacon: CLBeacon!, region: CLRegion!)
func onError(error: NSError)

Creating the RegionMonitor Class

Next, in the file RegionMonitor.swift below RegionMonitorDelegate, declare
the class RegionMonitor as a subclass of NSObject, and adopt the protocol for
CLLocationManagerDelegate. Also, you’ll need to import CoreLocation. Then add
properties (Listing 10-12) for CLLocationManager, CLBeaconRegion, CLBeacon, and
RegionMonitorDelegate.

Listing 10-12. RegionMonitor Class Declaration

class RegionMonitor: NSObject, CLLocationManagerDelegate {

var locationManager: CLLocationManager!
var beaconRegion: CLBeaconRegion?



CHAPTER 10: Building Location Awareness with iBeacons 317

var rangedBeacon: CLBeacon! = CLBeacon()
var pendingMonitorRequest: Bool = false

weak var delegate: RegionMonitorDelegate?

}

You’ll want to store a strong reference to the CLLocationManager, but you must make sure
that you declare the delegate property for RegionMonitorDelegate as weak to avoid a strong
reference cycle. A strong reference cycle will prevent RegionMonitorDelegate from being
deallocated, which will cause a memory leak in your application. Also, a weak reference is
allowed to have “no value,” so it must be declared an optional type. We cover the property
pendingMonitorRequest later in section RegionMonitor Methods.

Now implement an initializer method (Listing 10-13) that will be called when you create a
new instance of RegionMonitor. The primary role of an initializer is to ensure that a new
instance of a type is set up properly before first use.

Listing 10-13. RegionMonitor Initializer Method

init(delegate: RegionMonitorDelegate) {
super.init()
self.delegate = delegate
self.locationManager = CLLocationManager()
self.locationManager!.delegate = self

}

The initializer starts by calling super.init(), which calls the initializer of RegionMonitor
class’s super class, NSObject. Then the locationManager property is initialized with an
instance of CLLocationManager and then initializes self as its delegate. Finally, the delegate
property is initialized with the RegionMonitorDelegate object that is passed as a parameter.

Delegate Methods
onBackgroundLocationAccessDisabled

The onBackgroundLocationAccessDisabled delegate method is called after RegionMonitor
invokes CLLocationManager.authorizationStatus and receives a return value of Restricted,
Denied, or AuthorizedWhenInUse. The delegate should respond to this notification by
prompting the user to change his location access settings. Add the code shown in Listing 10-14
to the RegionMonitorViewController class.

Listing 10-14. Constructing a Location Access Settings Alert in the RegionMonitorViewController Class

func onBackgroundLocationAccessDisabled() {
let alertController = UIAlertController(
title: NSLocalizedString("regmon.alert.title.location-access-disabled", comment: "foo"),
message: NSLocalizedString("regmon.alert.message.location-access-disabled",
comment: "foo"),
preferredStyle: .Alert)



318 CHAPTER 10: Building Location Awareness with iBeacons

alertController.addAction(UIAlertAction(title: "Cancel", style: .Cancel, handler: nil))

alertController.addAction(
UIAlertAction(title: "Settings", style: .Default) { (action) in
if let url = NSURL(string:UIApplicationOpenSettingsURLString) {
UIApplication.sharedApplication().openURL(url)
}

1))

self.presentViewController(alertController, animated: true, completion: nil)

Note NSLocalizedString is used to pull string resources from a file. You can add a file to your
project named Localizable.strings and define your strings there. The format is simple, one
string per line: "regmon.alert.title.location-access-disabled" = "Background
Location Access is Disabled";

The code from Listing 10-14 will present an alert prompting (Figure 10-15) the user to
change the location access settings.

Background Location Access
is Disabled

Please change the location access to
"Always” in app setttings.

Cancel Settings

Figure 10-15. Prompt for location access settings change

didStartMonitoring

The didStartMonitoring delegate method is called when RegionMonitor receives the
notification didStartMonitoringForRegion from CLLocationManager. The delegate can
respond to this notification by updating its state and displaying a progress indicator. Add the
code shown in Listing 10-15 to the RegionMonitorViewController class.

Listing 10-15. Delegate Method didStartMonitoring in the RegionMonitorViewController Class

func didStartMonitoring() {
isMonitoring = true
monitorButton.rotate(0.0, toValue: CGFloat(M PI * 2), completionDelegate: self)



CHAPTER 10: Building Location Awareness with iBeacons 319

didStopMonitoring

The didStopMonitoring delegate method is called when the RegionMonitor.stopMonitoring
method is called. The delegate can respond to this notification by updating its state. Add the
code shown in Listing 10-16 to the RegionMonitorViewController class.

Listing 10-16. Delegate Method didStopMonitoring in the RegionMonitorViewController Class

func didStopMonitoring() {
isMonitoring = false
}

didEnterRegion

The didEnterRegion delegate method is called when RegionMonitor receives the notification
didEnterRegion from CLLocationManager. The CLRegion object is passed as a parameter and is
provided to the delegate. The delegate can respond to this notification by providing feedback
to the user. Add the code shown in Listing 10-17 to the RegionMonitorViewController class.

Listing 10-17. Delegate Method didEnterRegion in the RegionMonitorViewController Class

func didEnterRegion(region: CLRegion!) {

}

didExitRegion

The didExitRegion delegate method is called when RegionMonitor receives the notification
didExitRegion from CLLocationManager. The CLRegion object is passed as a parameter and is
provided to the delegate. The delegate can respond to this notification by providing feedback
to the user. Add the code shown in Listing 10-18 to the RegionMonitorViewController class.

Listing 10-18. Delegate Method didExitRegion in the RegionMonitorViewController Class

func didExitRegion(region: CLRegion!) {

}

didRangeBeacon

The didRangeBeacon delegate method is called when RegionMonitor receives the notification
didRangeBeacons from CLLocationManager. The RegionMonitor is passed an array of
CLBeacon objects and determines which one is the closest. That CLBeacon object is provided
to the delegate. The delegate can respond to thisO notification by providing feedback to the
user. Add the code shown in Listing 10-19 to the RegionMonitorViewController class.



320 CHAPTER 10: Building Location Awareness with iBeacons

Listing 10-19. Delegate Method didRangeBeacon in the RegionMonitorViewController Class

func didRangeBeacon(beacon: CLBeacon!, region: CLRegion!) {
regionldlLabel.text = region.identifier
uuidTextField.text = beacon.proximityUUID.UUIDString
majorTextField.text = "\(beacon.major)"
minorTextField.text = "\(beacon.minor)"

switch (beacon.proximity) {

case CLProximity.Far:
proximitylLabel.text = "Far

case CLProximity.Near:
proximitylLabel.text = "Near"

case CLProximity.Immediate:
proximitylLabel.text = "Immediate"

case CLProximity.Unknown:
proximitylLabel.text = "unknown"

}

distancelabel.text = distanceFormatter.stringFromMeters(beacon.accuracy)

rssilabel.text = "\(beacon.rssi)"

Caution Formatters are expensive to create. It's recommended that you create an instance once
and reuse that instance.

Add a property to the RegionMonitorViewController class.
let distanceFormatter = NSLengthFormatter()

Notice the distancelLabel text is set using a specialized formatter object NSLengthFormatter.
The formatter provides property formatted, localized descriptions of linear distances.

onError

The onError delegate method is called when RegionMonitor encounters an error. An NSError
object is provided to the delegate. The delegate can respond to this notification by handling
the error and/or providing feedback to the user. This notification is currently ignored by this
example app. Add the code shown in Listing 10-20 to the RegionMonitorViewController class.

Listing 10-20. Delegate Method onError in the RegionMonitorViewController Class

func onError(error: NSError) {

}



CHAPTER 10: Building Location Awareness with iBeacons 321

RegionMonitor Methods

There are only two public functions for the RegionMonitor class, startMonitoring and
stopMonitoring. The view controller is responsible for configuring a beacon region and
telling the Region Monitor when to start and stop monitoring.

startMonitoring

Upon entering, the property pendingMonitorRequest is set, signaling that a start monitoring
request has been made. In the event that the request to start monitoring is deferred, this
value will be used in a notification to determine whether startMonitoringForRegion should
be called. Also, a strong reference to the beaconRegion is held so that it can be used by the
delegate methods.

Before monitoring can actually start, authorization status must be taken into consideration.
To get the authorization status for your application, you must call CLLocationManager.
authorizationStatus. Only when the status AlwaysAuthorized is returned can monitoring
for a beacon region start. We will cover the authorization sequence in detail in the section
“Authorization and Requesting Permission.” Add the code shown in Listing 10-21 to the
RegionMonitor class.

Listing 10-21. RegionMonitor startMonitoring Method

func startMonitoring(beaconRegion: CLBeaconRegion?) {
print("Start monitoring")
pendingMonitorRequest = true
self.beaconRegion = beaconRegion

switch CLLocationManager.authorizationStatus() {

case .NotDetermined:
locationManager.requestAlwaysAuthorization()

case .Restricted, .Denied, .AuthorizedWhenInUse:
delegate?.onBackgroundLocationAccessDisabled()

case .AuthorizedAlways:
locationManager!.startMonitoringForRegion(beaconRegion!)
pendingMonitorRequest = false

stopMonitoring

In this method, location manager is told to stop ranging and monitoring beacons and to stop
updating location. The delegate is also notified that monitoring has now stopped. Add the
code in Listing 10-22 to the RegionMonitor class.



322 CHAPTER 10: Building Location Awareness with iBeacons

Listing 10-22. RegionMonitor stopMonitoring Method

func stopMonitoring() {
print("Stop monitoring")
pendingMonitorRequest = false
locationManager.stopRangingBeaconsInRegion(beaconRegion!)
locationManager.stopMonitoringForRegion(beaconRegion!)
locationManager.stopUpdatinglocation()
beaconRegion = nil
delegate?.didStopMonitoring()

Authorization and Requesting Permission

In order to use location services, you must request authorization from the user to use
those services.

Caution You should request authorization at the point where you will use location services to
perform a task. Requesting authorization may display an alert to the user. If it's not clear to the user
that location services are about to be used for a useful purpose, the user may deny the request to
use those services.

In the Region Monitor startMonitoring method, when CLLocationManager.
authorizationStatus() is called and returns a value of NotDetermined, you need to call

the requestAlwaysAuthorization() method. The user will then be presented with an alert
requesting permission to use location services where he or she can choose to allow access
as shown in Figure 10-16.

Allow “iBeaconApp” to
access your location even
when you are not using the

app?

Your location will be used to interact
with beacons

Don't Allow Allow
Figure 10-16. Request location services authorization prompt

If the user chooses Don’t Allow from the alert shown in Figure 10-16 the next time he
calls the startMonitoring method, the CLLocationManager.authorizationStatus()
will return Denied, causing the Region Monitor to notify its delegate by calling the
onBackgroundLocationAccessDisabled method (see Listing 10-21). The user will be
presented with an alert to change the settings as shown in Figure 10-17.



CHAPTER 10: Building Location Awareness with iBeacons 323

Background Location Access
is Disabled

Please change the location access to
"Always"® in app setttings.

Cancel Settings
Figure 10-17. Request settings change prompt

If the user selects Settings, the app will transition to the Settings.app where the user can
change permission settings for location services as shown in Figure 10-18.

seses ATAT M-Coll ¥ 1:49 AM 7 3 00% 1

< Settings iBeaconApp

Location

£} siuetooth sharing

Figure 10-18. Location services settings for iBeaconApp in the Settings.app



324 CHAPTER 10: Building Location Awareness with iBeacons

CLLocationManagerDelegate Methods

The RegionMonitor adopts the CLLocationManagerDelegate so that it can receive
notifications from the location manager. The Region Monitor will need to respond to events
such as a change in authorization state, when beacon region boundaries have been crossed
and when one or more beacons have come into range. In this section you’ll learn how to
interact with the location manager and respond to these events through delegation.

The diagram shown in Figure 10-19 illustrates the interaction between the location manager
and the Region Monitor, which is acting as the delegate. It shows the complete sequence for
the “start monitoring” event which also includes authorization.

| regionMonitorViewController : RegionMonitorDelegate |

viewDidLoad

init{withDelegate:self) ,.l regionMonitor : CLLocationManagerDelegate |

<<create>> »| ClLocationManager

le didChangeAuthorizationStatus(NotDetermined) |

button press

startMonitoring{beaconRegion)

| rrerorerrery |
{[Authorization] |

authorizationStatus(:CLAuthorizationStatus

status
| Istatus)

alt _/ [status == NotDetermijed]

requestAlwaysAuthorization()
T T R TN s
" onBackgrounLocationAccessDisabled()

request settings change

[status == AuthorizedAlways]

startMonitoringForRegion(beaconRegion)

startUpdatingLocation()

Y

le didStartMonitoringForRegion(region)

didStartMonitoring()

start progress indicator

i i
regionMonitor\ﬁewController:RegionMonitorDelegate| |regionMonitor:CLLocationManagerDelegate | ClLocationManager

Figure 10-19. Sequence diagram for start monitoring sequence

Note Right after the location manager has been initialized, it will call its delegate method with a
status value of NotDetermined.

The next sections cover each of the location manager delegate methods you’ll be using in
the iBeaconApp application.



CHAPTER 10: Building Location Awareness with iBeacons 325

Regions Are Shared Resources
Following are a few things you’ll want to keep in mind when dealing with regions:

Recall that regions are a shared resource; therefore, the manager object
that gets passed in to the callback represents the location manager
object reporting the event. This may not be the one you stored in the
locationManager property.

The region object passed as a parameter to delegate methods may not
be the same object that was registered. When determining equality, use
the region’s identifier string.

It’s possible that multiple location managers share a delegate object.
When this is the case, that delegate will receive a message multiple
times.

didChangeAuthorizationStatus

The location manager calls this delegate method when the authorization status for the
application has changed. Consider the use case where a user taps a button to start
monitoring but has not yet granted the application permission to access location services.
See the flow diagram in Figure 10-20.

user laps start
manitoding
button

Fageon monitor calls
authorizationStatus()

region monitor calls
No—| raquastalwaysAuthorization )

location senices?

location manager notification
CiECrangeAuthonizationStalus sends fg—Yes user allows?
AuthorizedAlways

n monitor calls
stariMonitoringForRegion()

Figure 10-20. Flow diagram for the “start monitoring” event



326 CHAPTER 10: Building Location Awareness with iBeacons

The implementation in Listing 10-23 checks for the AuthorizeWhenInUse

and AuthorizeAlways status. You can see that it’s also testing the value of
pendingMonitorRequest. If the call to startMonitoringForRegion was deferred, it can be
called here.

Listing 10-23. CLLocationManager Delegate Method didChangeAuthorizationStatus

func locationManager(manager: CLLocationManager, didChangeAuthorizationStatus
status: CLAuthorizationStatus) {
print("didChangeAuthorizationStatus \(status)")
if status == .AuthorizedwhenInUse || status == .AuthorizedAlways {
if pendingMonitorRequest {
locationManager!.startMonitoringForRegion(beaconRegion!)
pendingMonitorRequest = false

locationManager!.startUpdatingLocation()

didStartMonitoringForRegion

The location manager calls this delegate method after startMonitoringForRegion has been
called, and when a new region is being monitored (Listing 10-24). The Region Monitor
notifies its delegate by calling didStartMonitoring so a progress indicator can be presented
to the user at the right time. At this point, the Region Monitor can ask the location manager
about the new region’s state by calling requestStateForRegion with the new region object
passed as a parameter.

Listing 10-24. CLLocationManager Delegate Method didStartMonitoringForRegion

func locationManager(manager: CLLocationManager, didStartMonitoringForRegion
region: CLRegion) {
print("didStartMonitoringForRegion \(region.identifier)")
delegate?.didStartMonitoring()
locationManager.requestStateForRegion(region)

didDetermineState

The location manager calls this delegate method in response to a call to its
requestStateForRegion method. The region along with its state is passed in as a parameter.
The state contains a value of the CLRegionState type. The values reflect the relationship
between the device and the region boundaries. The Region Monitor uses these values to
determine which location manager method to call. If the device is inside the given region,
then startRangingBeaconsInRegion is called; otherwise stopRangingBeaconsInRegion is
called. The property beaconRegion that was set in the call to startMonitoring is passed in as
a parameter. Add the code in Listing 10-25 to the RegionMonitor class.



CHAPTER 10: Building Location Awareness with iBeacons 327

Listing 10-25. CLLocationManager Delegate Method didDetermineState

func locationManager(manager: CLLocationManager, didDetermineState state: CLRegionState,
forRegion region: CLRegion) {
print("didDetermineState")
if state == CLRegionState.Inside {
print(" - entered region \(region.identifier)")
locationManager.startRangingBeaconsInRegion(beaconRegion!)
} else {
print(" - exited region \(region.identifier)")
locationManager.stopRangingBeaconsInRegion(beaconRegion!)

didEnterRegion

The location manager calls this delegate method when the user enters the specified region.
The Region Monitor notifies its delegate by calling didEnterRegion and passes the region
object containing information about the region that was entered. Add the code in

Listing 10-26 to the RegionMonitor class.

Listing 10-26. CLLocationManager Delegate Method didEnterRegion

func locationManager(manager: CLLocationManager, didEnterRegion region: CLRegion) {
print("didEnterRegion - \(region.identifier)")
delegate?.didEnterRegion(region)

didExitRegion

The location manager calls this delegate method when the user exits the specified region.
The Region Monitor notifies its delegate by calling didExitRegion and passes the region
object containing information about the region that was exited. Add the code in

Listing 10-27 to the RegionMonitor class.

Listing 10-27. CLLocationManager Delegate Method didExitRegion

func locationManager(manager: CLLocationManager, didExitRegion region: CLRegion) {
print("didExitRegion - \(region.identifier)")
delegate?.didExitRegion(region)

didRangeBeacons

The location manager calls this delegate method when one or more beacons become
available in the specified region, or when a beacon goes out of range. This method is
also called when the range of a beacon changes (i.e., getting closer or farther). The
implementation here only notifies the Region Monitor’s delegate with the closest beacon.
Add the code in Listing 10-28 to the RegionMonitor class.



328 CHAPTER 10: Building Location Awareness with iBeacons

Listing 10-28. CLLocationManager Delegate Method didRangeBeacons

func locationManager(manager: CLLocationManager, didRangeBeacons beacons: [CLBeacon],
inRegion region: CLBeaconRegion) {
print("didRangeBeacons - \(region.identifier)")

if beacons.count > 0 {
rangedBeacon = beacons[0]
delegate?.didRangeBeacon(rangedBeacon, region: region)

Error Handling

Several of the location manager delegate error reporting methods are optional, but it is
recommended that you implement them in your applications. The iBeaconApp sample only
dumps a message to the log.

monitoringDidFailForRegion

The location manager calls this delegate method when region monitoring has failed.

It passes in the region for which the error occurred and an NSError describing the error.
Implementation of this method is optional but recommended. Add the code in Listing 10-29
to the RegionMonitor class.

Listing 10-29. CLLocationManager Delegate Method monitoringDidFailForRegion

func locationManager(manager: CLLocationManager, monitoringDidFailForRegion region:
CLRegion?, withError error: NSError) {

print("monitoringDidFailForRegion - \(error)")
}

rangingBeaconsDidFailForRegion

The location manager calls this delegate method when registering a beacon region failed. If
you receive this message, check to make sure the region object itself is valid and contains
valid data. Add the code in Listing 10-30 to the RegionMonitor class.

Listing 10-30. CLLocationManager Delegate Method rangingBeaconsDidFailForRegion

func locationManager(manager: CLLocationManager, rangingBeaconsDidFailForRegion region:
CLBeaconRegion, withError error: NSError) {

print("rangingBeaconsDidFailForRegion \(error)")
}



CHAPTER 10: Building Location Awareness with iBeacons 329

didFailWithError

If the user denies your application’s use of the location service, this method reports a Denied
error. If you receive this error, you should stop the location service. Implementation of this
method is optional but recommended. Add the code in Listing 10-31 to the RegionMonitor class.

Listing 10-31. CLLocationManager Delegate Method didFailWithError

func locationManager(manager: CLLocationManager, didFailWithError error: NSError) {
print("didFailWithError \(error)")
if (error.code == CLError.Denied.rawValue) {
stopMonitoring()
}

Configuring Region Monitoring

The view controller is responsible for handling user input starting the monitoring process,
so that is where you’ll configure your beacon regions.

The CLBeaconRegion is the key class for managing your beacons. It defines a region that

you’re interested in that is based on the beacon’s proximity to a Bluetooth LE device.

A beacon’s identity is programmed directly into its hardware using tools provided by the
manufacturer. In your application you use those values to identify one or more beacons.

When a device comes into range with matching criteria, the region triggers a notification.

Using the RegionMonitor Class

Open the file RegionMonitorViewConroller.swift file, and in the
RegionMonitorViewController class add a property to hold a RegionMonitor object.

var regionMonitor: RegionMonitor!
Then create an instance in the viewDidLoad method.

regionMonitor = RegionMonitor(delegate: self)

Beacon Identity
You specify a beacon’s identity by using a combination of three properties.

proximityUUID—this property holds a unique identifier for the beacons
you want to target. This property is required.

major —this property holds a value used to identify a group of beacons
you want to target. This value is optional, and if not assigned, it will be
ignored during the matching process.

minor —this property holds a value used to identify a specific beacon
within a group. This value is optional, and if not assigned, it will be
ignored during the matching process.



330 CHAPTER 10: Building Location Awareness with iBeacons

Initializing a Beacon Region

Depending on how specific you want to be when receiving notifications, you can set up a
region in one of three ways.

1.

Target a beacon with a specific proximity ID. The beacon’s major and
minor values will be ignored.

beaconRegion = CLBeaconRegion(proximityUUID: uuid, identifier: "my.beacon")

Target a beacon with a specific proximity ID and major value. The
beacon’s minor value will be ignored.

beaconRegion = CLBeaconRegion(proximityUUID: uuid, major:
CLBeaconMajorValue(major), identifier: "my.beacon")

Target a beacon with a specific proximity ID, major value, and minor
values. This would be used in a more complex environment.

beaconRegion = CLBeaconRegion(proximityUUID: uuid, major: CLBeaconMajorValue(major),
minor: CLBeaconMinorValue(minor), identifier: "my.beacon")

An additional user-defined unique identifier is associated with the beacon during
initialization. You use this identifier to differentiate regions with your application. This value
cannot be nil.

Initializing Beacon Notifications

There are three properties you will use to indicate the types of notifications you want to receive.

notifyEntryStateOnDisplay—this property indicates whether beacon
notifications should be sent while the device’s display is on. When

this value is true, beacon notifications are sent when the user turns

on the display when the device is already inside a region. If your app
isn’t running, the system will launch your app in the background so the
notification can be handled. The location manager’s delegate method
didDetermineState is called.

notifyOnEntry—indicates that a notification should be sent upon
entry to the region. The system will launch your app in the background
to handle the notification. The location manager’s delegate method
didEnterRegion is called.

notifyOnExit—indicates that a notification should be sent upon exit
from the region.



CHAPTER 10: Building Location Awareness with iBeacons 331

Start and Stop Region Monitoring

To start and stop the region monitoring process, add the code in Listing 10-32 to the
RegionMonitorViewController class.

Listing 10-32. Start and Stop Region Monitoring

@IBAction func toggleMonitoring() {
if isMonitoring {
regionMonitor.stopMonitoring()
} else {
if uuidTextField.text!.isEmpty {
showAlert("Please provide a valid UUID")
return

}

regionIldlLabel.text =
proximityLabel.text =
distancelabel.text =
rssilabel.text = ""

if let uuid = NSUUID(UUIDString: uuidTextField.text!) {
let identifier = "my.beacon"

var beaconRegion: CLBeaconRegion?

if let major = Int(majorTextField.text!) {
if let minor = Int(minorTextField.text!) {
beaconRegion = CLBeaconRegion(proximityUUID: uuid, major:
CLBeaconMajorValue(major), minor: CLBeaconMinorValue(minor),
identifier: identifier)
} else {
beaconRegion = CLBeaconRegion(proximityUUID: uuid,
major: CLBeaconMajorValue(major), identifier: identifier)
}
} else {
beaconRegion = CLBeaconRegion(proximityUUID: uuid, identifier: identifier)
}

// later, these values can be set from the UI
beaconRegion!.notifyEntryStateOnDisplay = true
beaconRegion!.notifyOnEntry = true
beaconRegion!.notifyOnExit = true

regionMonitor.startMonitoring(beaconRegion)
} else {
let alertController = UIAlertController(title:"iBeaconApp", message: "Please
enter a valid UUID", preferredStyle: .Alert)
alertController.addAction(UIAlertAction(title: "OK", style: .Default,
handler: nil))
self.presentViewController(alertController, animated: true, completion: nil)



332 CHAPTER 10: Building Location Awareness with iBeacons

Handling a Ranged Beacon

A beacon that was encountered during region monitoring is sent through delegate
notifications using the CLBeacon class. The identity of the beacon corresponds to the
information used when you initialized the beacon region.

Note You don’t create an instance of a CLBeacon class directly; this is done by the location manager.

The Region Monitor delegate method simply updates the appropriate fields.

Monitoring Progress Indicator

There’s one last detail to cover, and that’s a progress indicator. It’s important that when

a user interacts with the application, you provide some type of feedback for each action.
When the user taps the Monitor button, you want to indicate that monitoring is in progress.
You could use a static text field and toggle the text, but that’s boring. Adding a simple
rotation animation to the Monitor button is quick and easy and will serve as an effective
progress indicator for when monitoring starts and stops.

Animating the Monitor Button

An extension will be used to apply an animation to the Monitor button. You use an extension
to add functionality to an existing class for which you don’t have the original source code.
The extension will add a function to rotate a view object using keyframe animation.

At the top of the RegionMonitorViewController.swift file after the import statements, add
the code from Listing 10-33.

Listing 10-33. Adding an Extension to the UlView Class

extension UIView {

func rotate(fromvValue: CGFloat, toValue: CGFloat, duration: CFTimeInterval = 1.0,
completionDelegate: AnyObject? = nil) {

let rotateAnimation = CABasicAnimation(keyPath: "transform.rotation")
rotateAnimation.fromValue = fromValue

rotateAnimation.toValue = toValue

rotateAnimation.duration = duration

if let delegate: AnyObject = completionDelegate {
rotateAnimation.delegate = delegate
}

self.layer.addAnimation(rotateAnimation, forKey: nil)



CHAPTER 10: Building Location Awareness with iBeacons 333

The parameters fromValue and toValue represent rotation and are specified in radians. The
duration is specified in seconds. The CABasicAnimation class provides single-keyframe
animation for a layer property. It will allow you to interpolate between two values over time.
It also allows you to set a delegate so you can receive notification when the animation
completes by calling the delegate’s animationDidStop method.

For this use case, rotating the Scan button 360 degrees would constitute one animation
cycle. Each time an animation cycle completes the delegate is notified.

Override the animationDidStop method of the view controller. This method will evaluate
the scan state and restart the animation if scanning is still in progress. Add the code in
Listing 10-34 to the RegionMonitorViewController class.

Listing 10-34. Override for the animationDidStop Method in the RegionMonitorViewController Class

override func animationDidStop(anim: CAAnimation, finished flag: Bool) {
if isMonitoring == true {
// if still scanning, restart the animation
monitorButton.rotate(0.0, toValue: CGFloat(M PI * 2), completionDelegate: self)

}

The animations will be controlled from the delegate methods that you implemented earlier.
The delegate method didStartMonitoring started the animation by calling the rotate method
of the Monitor button.

monitorButton.rotate(0.0, toValue: CGFloat(M PI * 2), duration: 1.0, completionDelegate: self)

The delegate method didStopMonitoring stopped the animation by simply setting the

value of the property isMonitoring to false. Notice in the override method, the value of
isMonitoring is checked; when set to false, the animation is not applied. The animation will
end when the animation cycle completes. This guarantees that the Scan button will be in the
correct orientation.

Build and run the application. Transition to the Region Monitor scene and tap the Monitor
button. You should see the button spinning. The animation should stop when you tap the
button again.

Building the iBeacon Scene

In this section, you’ll build the master scene for the iBeacon (Figure 10-21). The iBeacon
scene allows you to configure your iOS device as an iBeacon transmitter. The Ul is similar
to that of the Region Monitor. It will utilize a switch to turn the transmitter on and off; one
button to autogenerate a UUID; four input fields to where the user can configure the device,
and several labels for informational purposes; and one text view which will display help text
for each input field.

This section will briefly cover the steps on how to build the Ul for this scene. Many of the
steps are a repeat of those found in the section “Building the Region Monitor Scene.”



334 CHAPTER 10: Building Location Awareness with iBeacons

Create a new Swift file named BeaconTransmitterViewController.swift and declare the
class BeaconTransmitterViewController a subclass of UIViewController. Then adopt the
protocol for UITextFieldDelegate by adding the UITextFieldDelegate protocol declaration
(Listing 10-35).

Listing 10-35. BeaconTransmitterViewController Class Declaration with Properties

import UIKit
class BeaconTransmitterViewController: UIViewController, UITextFieldDelegate {

let kUUIDKey = "transmit-proximityUUID"
let kMajorIdKey = "transmit-majorId"
let kMinorIdKey = "transmit-minorId"
let kPowerKey = "transmit-measuredPower"

@IBOutlet weak var advertiseSwitch: UISwitch!
@IBOutlet weak var generateUUIDButton: UIButton!
@IBOutlet weak var uuidTextField: UITextField!
@IBOutlet weak var majorTextField: UITextField!
@IBOutlet weak var minorTextField: UITextField!
@IBOutlet weak var powerTextField: UITextField!
@IBOutlet weak var helpTextView: UITextView!

var doneButton: UIBarButtonItem!
var beaconTransmitter: BeaconTransmitter!
var isBluetoothPowerOn: Bool = false

let numberFormatter = NSNumberFormatter()

}

Assign the BeaconTransmitterViewController as the class for the Beacon Transmitter
identity by opening the storyboard and selecting the iBeacon scene. In the Utilities panel
on the right, click the Identity Inspector tab. In the Custom Class section, use the class
drop-down to select BeaconTransmitterViewController.

Set the background color to for the iBeacon view to 009999. Add controls to the storyboard
so that it looks like the mock-up shown in Figure 10-21.

For the Advertise UISwitch add two connections: IBOutlet named
advertiseSwitch and IBAction named toggleAdvertising.

For the Generate UIButton add two connections: IBOutlet named
generateUUIDButton and IBAction named generateUUID.

For each UlTextField add a single connection: IBOutlet named
uuidTextField, IBOutlet named majorTextField, IBOutlet named
minorTextField, and IBOutlet named powerTextField. Add
placeholder text.

For the UlTextView add a single connection: IBOutlet named
helpTextView.



CHAPTER 10: Building Location Awareness with iBeacons 335

iBeacon

iBeacon
Advertise ‘\ )
A

UUID Gener:

Major

Power

Figure 10-21. iBeacon scene mock-up

Add constraints for each of the controls in the scene.
Implement the UITextFieldDelegate methods. Add the code in Listing 10-36 to the
BeaconTransmitterViewController class.

Listing 10-36. UlTextFieldDelegate Methods textFieldDidBeginEditing and textFieldDidEndEditing in the
BeaconTransmittrViewController Class

// MARK: UITextFieldDelegate methods

func textFieldDidBeginEditing(textField: UITextField) {
navigationItem.rightBarButtonItem = doneButton
advertiseSwitch.setOn(false, animated: true)

if textField == uuidTextField {
helpTextView.text = NSLocalizedString("transmit.help.proximityUUID", comment:"foo")
}

else if textField == majorTextField {
helpTextView.text = NSLocalizedString("transmit.help.major", comment:"foo")
}

else if textField == minorTextField {
helpTextView.text = NSLocalizedString("transmit.help.minor", comment:"foo")
}

else if textField == powerTextField {
helpTextView.text = NSLocalizedString("transmit.help.measuredPower", comment:"foo")
}



336 CHAPTER 10: Building Location Awareness with iBeacons

func textFieldDidEndEditing(textField: UITextField) {
helpTextView.text = ""

let defaults = NSUserDefaults.standardUserDefaults()

if textField == uuidTextField && !textField.text!.isEmpty {
defaults.setObject(textField.text, forKey: kUUIDKey)
}

else if textField == majorTextField &3 !textField.text!.isEmpty {
defaults.setObject(textField.text, forKey: kMajorIdKey)
}

else if textField == minorTextField &3 !textField.text!.isEmpty {
defaults.setObject(textField.text, forKey: kMinorIdKey)
}

else if textField == powerTextField &3 !textField.text!.isEmpty {
// power values are typically negative
let value = numberFormatter.numberFromString(powerTextField.text!)
if (value?.intValue > 0) {
powerTextField.text = numberFormatter.stringFromNumber(0 - value!.intValue)
}

defaults.setObject(textField.text, forKey: kPowerKey)

The BeaconTransmitter Class

Just like the RegionMonitor class, the BeaconTransmitter class manages all the interactions
with the CBPeripheralManager. The Delegation pattern will be used so the beacon transmitter
can inform its delegate of events that it handled, or is about to handle.

Defining the BeaconTransmitterDelegate Protocol

You'll start by defining a protocol for a BeaconTransmitterDelegate. The
BeaconTransmitterViewController will adopt this protocol and implement the

methods that respond to CBPeripheralManager actions. You'll create a new class
BeaconTransmitter that will be the delegating object. It will hold a weak reference to the
BeaconTransmitterViewController that will act as the delegate. The BeaconTransmitter
object will act as the delegate for the CBPeripheralManager object.

Create a new Swift file named BeaconTransmitter.swift and define a protocol for
BeaconTransmitter. Add the code in Listing 10-37 to the BeaconTransmitterViewController class.

Listing 10-37. Defining the BeaconTransmitterDelegate Protocol

protocol BeaconTransmitterDelegate: NSObjectProtocol {
func didPowerOn()
func didPowerOff()
func onError(error: NSError)



CHAPTER 10: Building Location Awareness with iBeacons 337

Delegate Methods

The BeaconTransmitter will use the methods in the BeaconTransmitterDelegate protocol to
communicate back to its delegate to notify when a device’s Bluetooth powers on or off, and
to report any errors it may encounter.

didPowerOn

The didPowerOn delegate method is called after the BeaconTransmitter receives notification
from the CBPeripheralManager method peripheralManagerDidUpdateState and peripheral
manager’s state accessor returns PoweredOn. The delegate should update its state to reflect
that. Add the code in Listing 10-38 to the BeaconTransmistterViewController class.

Listing 10-38. The didPowerOn Method in BeaconTransmitterViewController Class

func didPowerOn() {
isBluetoothPowerOn = true
}

didPowerOff

The didPowerOn delegate method is called after the BeaconTransmitter receives notification
from the CBPeripheralManager method peripheralManagerDidUpdateState and peripheral
manager’s state accessor returns PoweredOff. The delegate should update its state to reflect
that. Add the code in Listing 10-39 to the BeaconTransmistterViewController class.

Listing 10-39. The didPowerOn Method in BeaconTransmitterViewController Class

func didPowerOff() {
isBluetoothPowerOn = false
}

onError

The onError delegate method is called when the BeaconTransmitter encounters an error. An
NSError object is provided to the delegate. The delegate can respond to this notification by
handling the error and/or providing feedback to the user. This method is currently not used by
this example. Add the code in Listing 10-40 to the BeaconTransmitterViewController class.

Listing 10-40. Delegate Method onError in the BeaconTransmirtterViewController Class

func onError(error: NSError) {

}



338 CHAPTER 10: Building Location Awareness with iBeacons

Creating the iBeaconTransmitter Class

Next, in the file BeaconTransmitter.swift below BeaconTransmitterDelegate protocol,
declare the class BeaconTransmitter a subclass of NSObject, and adopt the protocol for
(BPeripheralManager. Also, you’'ll need to import CoreLocation and CoreBluetooth. Then
add properties for CBPeripheralManager and BeaconTransmitterDelegate. Add the code in
Listing 10-41 to the BeaconTransmitter class.

Listing 10-41. BeaconTransmitter Class Declaration

class BeaconTransmitter: NSObject, CBPeripheralManagerDelegate {
var peripheralManager: CBPeripheralManager!

weak var delegate: BeaconTransmitterDelegate?

}

Store a strong reference to the CBPeripheralManager, but you must make sure that you
declare the delegate property for BeaconTransmitterDelegate as weak to avoid a strong
reference cycle.

Now implement an initializer method that will be called when you create a new instance
of BeaconTransmitter. The primary role of an initializer is to ensure that a new instance
of a type is set up properly before first use. Add the code in Listing 10-42 to the
BeaconTransmitter class.

Listing 10-42. BeaconTransmitter Initializer

init(delegate: BeaconTransmitterDelegate?) {
super.init()
peripheralManager = CBPeripheralManager(delegate: self, queue: nil)
self.delegate = delegate

}

The initializer starts by calling super.init(), which calls the initializer of BeaconTransmitter
class’s super class, NSObject. Then the peripheralManager property is initialized with an
instance of CBPeripheralManager, passing in self as delegate. Finally, the delegate property
is initialized with the RegionMonitorDelegate object that is passed as a parameter.

BeaconTransmitter Methods

There are only two public functions for the BeaconTransmitter class, startAdvertising and
stopAdvertising. The view controller is responsible for configuration and telling the beacon
transmitter when to start and stop advertising.

startAdvertising

In this method, the peripheralManager is told to start advertising given a specific beacon region
and transmit power value. Add the code in Listing 10-43 to the BeaconTransmitter class.



CHAPTER 10: Building Location Awareness with iBeacons 339

Listing 10-43. Start Advertising in the BeaconTransmitter Class

func startAdvertising(beaconRegion: CLBeaconRegion?, power:NSNumber?) {

let data = NSDictionary(dictionary: (beaconRegion?.peripheralDataWithMeasuredPower
(power))!) as! [String: AnyObject]

peripheralManager.startAdvertising(data)
}

stopAdvertising

In this method, the peripheralManager is told to stop advertising. Add the code in
Listing 10-44 to the BeaconTransmitter class.

Listing 10-44. Stop Advertising in the BeaconTransmitter Class

func stopAdvertising() {
peripheralManager.stopAdvertising()

Configure Your i0S Device as an iBeacon

The magic behind setting up your iOS device to act as an iBeacon transmitter is calling the
peripheralDataWithMeasuredPower of the CLBeaconRegion class. The return value will be

a dictionary that is encoded with the device’s identifying information that can be used to
advertise the device with the Core Bluetooth framework.

let data = NSDictionary(dictionary: (beaconRegion?.peripheralDataWithMeasuredPower (power))!)
as! [String: AnyObject]
peripheralManager.startAdvertising(data)

The peripheralDatalithMeasuredPower takes a single parameter representing the measured
power. The measured power of a device is its known measured signal strength in RSSI at

1 meter. The distance provided by iOS is in meters and is an estimate based on the ratio of
the beacon’s signal strength over the transmission power.

The power values typically have a negative value.

Initialize a Beacon Region

As covered previously in the section “Configuring Region Monitoring,” the view controller is
responsible for handing user input and setting up the beacon region.

The first step is to specify the beacon identity. For easy setup of the UUID, there’s a
Generate button just above the UUID field. You created a connection for an IBAction named
generateUUID. You can easily generate the UUID programmatically by creating an instance of
NSUUID and getting its UUIString property. Take that value and assign it to the uuidTextField
text (see Listing 10-45). That’s it.



340 CHAPTER 10: Building Location Awareness with iBeacons

Listing 10-45. Generating a Unique Identifier Programmatically in BeaconTransmitterViewController

@IBAction func generateUUID() {
uuidTextField.text = NSUUID().UUIDString
}

For an explanation of the property values for major and minor, look back at the section
“Initializing a Beacon Region.” For a recap on setting up the notification properties, see the
section “Initializing Beacon Notifications.”

Start Advertising

Earlier you created a connection for an IBAction named toggleAdvertising. This, of course,
is where you make the request to start and stop advertising. Listings 10-46 and Listing 10-47
show the complete implementation.

Listing 10-46. Start and Stop Advertising in the BeaconTransmitterViewController Class

@IBAction func toggleAdvertising() {
if advertiseSwitch.on {

dismissKeyboard()

if !canBeginAdvertise() {
advertiseSwitch.setOn(false, animated: true)
return

}

let uuid = NSUUID(UUIDString: uuidTextField.text!)

let identifier = "my.beacon"

var beaconRegion: CLBeaconRegion?

if let major = Int(majorTextField.text!) {
if let minor = Int(minorTextField.text!) {
beaconRegion = CLBeaconRegion(proximityUUID: uuid!, major:
CLBeaconMajorValue(major), minor: CLBeaconMinorValue(minor),
identifier: identifier)
} else {
beaconRegion = CLBeaconRegion(proximityUUID: uuid!, major:
CLBeaconMajorValue(major), identifier: identifier)
}
} else {
beaconRegion = CLBeaconRegion(proximityUUID: uuid!, identifier: identifier)
}

beaconRegion!.notifyEntryStateOnDisplay = true
beaconRegion!.notifyOnEntry = true
beaconRegion!.notifyOnExit = true

let power = numberFormatter.numberFromString(powerTextField.text!)
beaconTransmitter.startAdvertising(beaconRegion, power: power)

} else {
beaconTransmitter.stopAdvertising()
}



CHAPTER 10: Building Location Awareness with iBeacons 341

Listing 10-47. Logic for Determining if Advertising Can Start in the BeaconTransmitterViewController Class

private func canBeginAdvertise() -> Bool {
if lisBluetoothPowerOn {
showAlert("You must have Bluetooth powered on to advertise!")
return false

}
if uuidTextField.text!.isEmpty || majorTextField.text!.isEmpty

|| minorTextField.text!.isEmpty || powerTextField.text!.isEmpty {
showAlert("You must complete all fields")
return false

}

return true

}

Build and run the application and transition to the iBeacon scene. Test each of the fields
to make sure they behave as you expect. Press the Generate button to make sure a UUID
is generated.

Test the Application

At this time you should perform some basic testing of the functionality that was covered in
this chapter.

If you already have an iBeacon device and you know the UUID, you can run the app and go
into region monitoring mode. Enter the UUID and tap the Monitor button. You should see the
fields populate as soon at the beacon is detected. Move closer to the beacon to see that
the fields being reported make sense. Place your iOS device right next to the beacon. The
proximity should be reported as immediate.

If you don’t have an iBeacon but have a second iOS device, install and run the app on that
device. Go into iBeacon mode and configure your device and then start advertising. Now, on
your first device running in Region Monitor mode, enter the same UUID and then perform the
same steps as previously.

Summary

In this chapter you learned how to use the CorelLocation framework to interact with beacon.
You learned about region monitoring and how to scan for specific beacons and receive
notification when entering or exiting an area defined by a beacon’s proximity. You learned
how to use your iPhone to act as an iBeacon transmitter.



Chapter

Home Automation
Using HomeKit

Manny de la Torriente

Much like Apple sought to unify health data with HealthKit, HomeKit is Apple’s entry

into home automation. Apple created a unified communications protocol—HomeKit
Accessory Protocol— for connected home manufactures. HomeKit is a common set of APIs
(application programming interfaces) for applications that provides integration between iOS
devices and accessories that support the HomeKit Accessory Protocol.

This chapter explains the key concepts behind the HomeKit framework (home, room,
accessory, services) and how to easily build an app that can configure, monitor, and
control home automation accessories, as well as integrate with Siri for voice commands.
Additionally, you’ll learn how to set up and use the HomeKit simulator to help develop and
debug your application.

Introduction to HomeKit Concepts

HomekKit provides integration between iOS devices and accessories that support Apple’s
HomeKit Accessory Protocol. HomekKit allows an application to discover these accessories
and add them to a cross-device home configuration database where the data can then be
accessed and modified to suit the needs of the end user. The database is also available to
Siri, which gives the user the capability of controlling the accessories with voice commands.

A home manager is represented by the HMHomeManager class, which manages a collection of
homes. It is used to access HomekKit objects such as home, room, accessory, service, and
other related objects from the HomeKit database.

343



344 CHAPTER 11: Home Automation Using HomeKit

A home is considered to be a single-dwelling home and is represented by the HMHome class.
It provides access to a collection of automated accessories with which you can
communicate and configure. Each home may optionally have one or more rooms. HomeKit
will assign accessories to a default room if you have not configured any rooms. A room is
represented by the HMRoom class. A zone is an arbitrary optional grouping of rooms that a
user considers a single area; for example, upstairs or downstairs. Rooms can be added to
one or more zones. A zone is represented by the HMZone class.

Note your application should provide the means for users to create their own useful groupings
and labels.

An accessory is a physical home automation device that is assigned to a room, such as a
ceiling fan. An accessory is represented by the HMAccessory class, and can provide one or
more services; for example, a ceiling fan has a service to turn the fan on and off, and another
service that can change the speed of the fan. A service can be a user-controllable function
provided by an accessory, like a light, or it can be an activity internal to a device, such as a
firmware update. HomeKit is most concerned with user-controllable services. A service is
represented by the HMService class.

Each service is described by a collection of characteristics; for example, if a light is

on or off, or what the brightness value is set to. A characteristic is represented by the
HMCharacteristic class and is described by an array of properties and metadata.
Characteristics can be queried to discover their state, or they can be modified to affect an
accessory’s behavior.

HomeKit Delegation Methods

Like many other Apple frameworks, HomeKit uses the delegation pattern for the notification
of events or changes in the application. An important note about HomeKit delegation is
that when your application initiates a change, the delegate messages won’t be sent to your
app. Instead, they are sent to other apps that might be running on your iOS device that
also support HomeKit. For example, you might purchase a thermostat that includes an

app to control it. You would want to see any changes you make in your app reflected in the
thermostat app or vice versa. Your app is expected to use completion handlers to reload
data and update views. However, you still need to add code to both the completion handler
and the associated delegate methods. Applications need to be in the foreground to receive
delegate messages, as they are not batched while your app is in the background. When an
app comes back to the foreground it will receive a homeManagerDidUpdateHomes message
which signals your app to reload all its data.



CHAPTER 11: Home Automation Using HomeKit 345

Building a HomeKit Application

The application you’ll create in this chapter will use grouped table views to present information.
The app will provide a simple user interface (Ul) for creating homes, browsing for and adding
accessories, and controlling the accessories in a home, such as a ceiling fan with services for
turning the fan off and on, as well as for changing the rotation speed and the rotation direction.
When you’re finished, your app should look similar to the one in Figure 11-1.

wesns ATAT M-Coll ¥ 5:00 AM + 3 BANE 4 e ATET M Cal 500 AM g sreas ATAT M-Coll ¥ 5:01 AM 7 % 54%

Homes £ Hom My House + { Myt Ceiling Fan Services

My House e
Ef_-.'l'.u.\?l F:‘srl\.‘I — i No Value

age Door i Marsiines
e in My House Acme

Light
Light in My He
My House i Fan

Ceiling Fan

DEH7GJOZBEKR

Fan Service 155806435

On

60%

Figure 11-1. The HomeKit app

Requirements

HomeKit is a service that is only available to applications that are distributed through the
App Store, so you must have the ability to provision and code-sign your app. To do so, you'll
need the following:

Membership in the iOS developer program.

Permission to create code signing and provisioning assets in the
member center.

Note To create your team provisioning profile, follow the steps in the online document App
Distribution Quick Start which can be found in the i0S developer library.



346 CHAPTER 11: Home Automation Using HomeKit

HomeKit Accessory Simulator

Apple provides a HomeKit Accessory Simulator to help you develop your HomeKit apps.
The simulator communicates with an iOS device the same way an actual HomeKit accessory
would using the HomeKit Accessory Protocol (HAP) over Bluetooth Low Energy (LE) or
Wi-Fi, so there’s no need buy specific hardware to develop your app. With the simulator, you
can create accessories with services and add characteristics to those services.

The simulator is not provided with Xcode, so you’ll have to download it from the developer’s
web site at https://developer.apple.com/downloads/ (Figure 11-2). Click the download
button in the HomeKit row. Alternatively, from the menu, Xcode » Open Developer Tools »
More Developer Tools . . ., which will also open the browser and display the same page.

(3 Developer Platform Resources Program Support Member Center Q,

Downloads for Apple Developers

Description Release Date -

\ Hardware 10 Tools Hardware 10 Tools for Xcode 7.1 Oct 20, 2015

)
v i0S o
+ Developer Tools
Hardware 10 Tools for Xcode 7 Sep 15, 2015
+ Hardware 10 Tools for Xcode 6.3 Apr 6, 2015
Hardware 10 Tools for Xcode - Xcode 6.1 Oct 15, 2014
Hardware 10 Tools for Xcode - September 2014 Sep 1, 20014
+ Hardware 10 Tools for Xcode - Late August 2014 Aug 17, 2014
Hardware 10 Tools for Xcode - August 2014
Hardware 10 Tools for Xcode - June 2014 Jun 1,2014
+ Hardware 10 Tools for Xcode - October 2013 Oct 21, 2013

Figure 11-2. Downloads for Apple Developers web page

Search for Hardware 10 Tools and select the download which is compatible with your version
of Xcode. Once downloaded, double-click the .dmg file, and drag HomeKit Accessory
Simulator to the /Applications folder. Later on in this chapter, you’ll use the simulator to build
and test your app.

Creating the Project

We will create an iOS single-view application Xcode project named HomeKitApp. Select
Swift as the Language and use the defaults for Language and Devices (see Figure 11-3). You
can use HomeKit-enabled accessories with your iPhone, iPad, and iPod touch.


https://developer.apple.com/downloads/

CHAPTER 11: Home Automation Using HomeKit

Choose options for your new project:

Product Name:  HomeKitAppl

Organization Name: mditorriente

Oraanization Id

T com labs

Bundle Identifier: com.mditorriente labs. HomeKitApp

Language: Swift

Devices:

Cancel

Universal

Use Core Data

Figure 11-3. Creating a new single-view Xcode project

Previous

347

Choose the HomeKitApp target from the Targets list and click the General tab to view the
General pane (Figure 11-4). In the lower portion of the Identity section, click the Team
pop-up menu and select your profile.

PROJECT

B HomekiApn
TARGETS

A, HomekhApe

HomeKnApcTests

Figure 11-4.

Capatiities Resource Tags

Bundle Identifier
Version

Build

Teaen

¥ Deployment Info

Deploymens Targat
Devices
Msin Inectace

Device Orientation

Status Bar Style

¥ App lcons and Launch Images
App loons Source
Launch Imeges Source

Launch Screen File

¥ Embedded Binaries

Selecting the team profile

Info Bulld Settings

com.mditzrrienielabs HomeKitApp
10
1

MANGLO DELATORRIENTE tmdl_

%3
Universa v
Main b
+ Porirait
Jpsido Down

¥ Langscape Left
7| Langscape Right

Detault z

Hiche s2atus bar

Reguires full screen

Apploon 3N -]
Use Asset Catalog

LaunchSoreen -

Bulid Phases

HMEharacteristicExtension swift

Quick Holp

Mo Quick Help

View Controller - A contioller that
manages a e

Storyboard Reference - Provides a
wlacehoider for & view controller in an
axtornal storyboord,

Mavigation Controdler - &
snatenlies that m inatinn



348 CHAPTER 11: Home Automation Using HomeKit

Enabling HomeKit

HomeKit requires an explicit App ID which is created when you enable HomeKit. Click the
Capabilities tab and locate the HomeKit row (see Figure 11-5). Click the switch to the ON
position to enable HomeKit. Notice that a new file named HomeKitApp.entitlements was
added to your project.

A1 % Q & © o = 3 & HomeKitAop

¥ = HomeKitApp O Gaonora! apabatien Resource Tags Info Build Settings Build Prasos Busid Rules
» il Homelit framework
- ekt framewor PROJECT
HomekitApp * 7T Appile Pay
o 5 HomoKitApp
L] HomeKitApp entitlements
TARGETS

: * - Purch.
I e
? HomakitAppUiTosts, ™ Personal VPN
Maps
.
- Inter-App Audio
>
Background Modes
Keychain Sharing
L Assccinted Domains
App Groups
HomeKit m

Dawriload HomeKit Simulator

L4

Figure 11-5. Enabling HomeKit in app services

Building the Homes Interface

There is one HomeKit database per home. A collection of homes are managed by an
HMHomeManager object. You’ll use the home manager to add homes, retrieve a list of homes,
track changes to homes, and remove homes. You’ll start out by building an interface that
will support adding one or more homes and the means to assign a primary home. A grouped
table view will work well for this.

The table view controller will use sections to present a list of user-defined homes. The
first section will be used to add and remove homes. The user can also select a home from
that section to configure and control. The second section will display the available homes
and allow the user to assign the primary home. At runtime, the table will look similar to the
illustration shown in Figure 11-6.



CHAPTER 11: Home Automation Using HomeKit 349

seeee ATAT M-Coll ¥ 5:00 AM 7 3 54% 1]
Homes
My House
My House v

Figure 11-6. The HomesViewController scene at runtime

Open the storyboard, then delete the current view controller and replace it with a table view
controller. Select the table view controller, then from the Attributes Inspector, set it as the
initial view controller for the storyboard by setting the check box Is initial view controller.
Embed the table view controller in a navigation controller by selecting the table view
controller and then from Xcode menu choose Editor » Embed In » Navigation Controller.
From the Documents Outline on the left, select the Table View object and change its style
to Grouped in the Attributes Inspector. Set the title for the navigation item in the table view
controller to Homes. Your storyboard should look similar to the one Figure 11-7.



350 CHAPTER 11: Home Automation Using HomeKit

k Homes

Prototype Cells

Figure 11-7. Main.storyboard initial view

In order to track changes to a collection of one or more homes, you’ll need to implement the
HMHomeManagerDelegate protocol. The home manager will notify its delegate when there are
any changes to the home configuration.

Begin by changing the class declaration for your new custom table view controller

(see Listing 11-1). From the navigator, change the name of the file ViewController.swift to
HomesViewController.swift, then change the name of the class to HomesViewController, the
parent class to UITableViewController, and add the protocol for HMHomeManagerDelegate.

Listing 11-1. The HomesViewController Class Declaration
class HomesViewController: UITableViewController, HMHomeManagerDelegate {

}

Then in the storyboard, set the Custom Class for the table view controller to
HomesViewController in the ldentity Inspector (Figure 11-8).

* Custom Class
Class HomesViewController
Module

Z.'“
e

Figure 11-8. Setting custom class HomesViewController



CHAPTER 11: Home Automation Using HomeKit 351

Implementing the Home Manager Delegate Methods

The home manager communicates changes when homes are added, when they are
removed, or when significant changes are made to the home configuration. These changes
are communicated through the following delegate methods:

didAddHome: Tells the delegate that the home manager added a home.

didRemoveHome: Tells the delegate that the home manager updated its
collection of homes.

homeManagerDidUpdateHomes: Tells the delegate that the home manager
updated its collection of homes.

Implement these methods in HomesViewController (see Listing 11-2). In the
homeManagerDidUpdateHomes method call tableView.reloadDatal().

Listing 11-2. Implementing HomeManagerDelegate Methods

class HomesViewController: UITableViewController, HMHomeManagerDelegate {
// MARK: HMHomeManagerDelegate methods

func homeManagerDidUpdateHomes(manager: HMHomeManager) {
print("homeManagerDidUpdateHomes™)
tableView.reloadData()

}

func homeManager(manager: HMHomeManager, didAddHome home: HMHome) {
print("didAddHome \(home.name)")

}

func homeManager(manager: HMHomeManager, didRemoveHome home: HMHome) {
print("didRemoveHome \(home.name)")
}

Instantiating the HMHomeManager

For the purposes of this application, you’ll utilize the singleton pattern to provide a global
point of access to an HMHomeManager object as well as the current selected HMHome object.
Create a new file named HomeStore.swift and add the code from Listing 11-3.

Listing 11-3. The HomeStore Class Declaration
import HomeKit
class HomeStore: NSObject {
static let sharedInstance = HomeStore()

var homeManager: HMHomeManager = HMHomeManager ()
var home: HMHome?



352 CHAPTER 11: Home Automation Using HomeKit

Listing 11-4 updates the HomesViewController to define a computed property homeStore and
then assign self as the home manager delegate.

Listing 11-4. Setting a Computed Property for homeStore

class HomesViewController: UITableViewController, HMHomeManagerDelegate {

var homeStore: HomeStore {
return HomeStore.sharedInstance
}

override func viewDidLoad() {
super.viewDidLoad()
homeStore.homeManager.delegate = self

}

The HomesViewController will be responsible for setting the value of the HomeStore.home to
reflect the current home, based on user input.

Setting Up the Table View

Open the storyboard and add four custom prototype cells to the Homes table view as shown
in Figure 11-9.

Homes

Home v

Home

Figure 11-9. Custom prototype cells in the storyboard



CHAPTER 11: Home Automation Using HomeKit 353

At the top of the HomesViewController class body, add a structure named Identifiers and
define a constant property for each of the prototype cells. The cells are listed in the same
order as shown in Listing 11-5.

Listing 11-5. Reuse Identifiers for Custom Prototype Table View Cells

struct Identifiers {
static let addHomeCell = "AddHomeCell"
static let noHomesCell = "NoHomesCell"
static let primaryHomeCell = "PrimaryHomeCell"
static let homeCell = "HomeCell"

}

Now in the storyboard using the Attributes Inspector, assign each of the custom table view
cells to the corresponding reuse identifier from the Identifiers struct. This is the same
reuse identifier you will send to the table view in the dequeueReusableCellWithIdentifier
message. Make sure you assign Checkmark in the Accessory pop-up window for the
PrimaryHomeCell shown in Figure 11-10.

k‘ Homes Scene Table View Cell

v () Homes Style Basic
v Table View Image o
’ prl::::::::rl Home identifier PrimaryHomeCell
> HomeCell Home Selection Default
> NoHomeCell
L AddHomeCell

Accessory Checkmark

fiting Ad M
<| Homes Editing Acc one

) First Responder e ol ol
e Add Home Level Width
HomeSegue + Indent While Editing

Figure 11-10. Assign a custom table view cell identifier

Implementing UlTableView Methods

At the top of the HomesViewController class body, add an enum named HomeSections with
values for Homes and PrimaryHome. These values correspond to the IndexPath.section index
number which is passed in as a parameter to table view delegate methods and will be used
to identify a specified section of a UITableView object (Listing 11-6).

Listing 11-6. HomeSections Enum for Table View Sections

enum HomeSections: Int {
case Homes = 0, PrimaryHome
static let count = 2

}

To help determine which type of table row is associated with a table view section, use the
helper method shown in Listing 11-7. The isHomesListEmpty method simply returns whether
or not the homes count equals zero, and the isIndexPathAddHome method returns true if the
specified row in the homes section is the last row.



354 CHAPTER 11: Home Automation Using HomeKit

Listing 11-7. Table View Helper Methods
// MARK: UITableView helpers

func isHomesListEmpty() -> Bool {
return homeStore.homeManager.homes.count ==
}

func isIndexPathAddHome(indexPath: NSIndexPath) -> Bool {
return indexPath.section == HomeSections.Homes.rawValue
&& indexPath.row == homeStore.homeManager.homes.count

}

The value of the HomeSections count, which is currently defined at 2, determines the number
of sections in the table view (see Listing 11-8).

Listing 11-8. The Number of Sections in the Table View

// MARK: UITableView methods

override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
return HomeSections.count
}

The number of rows in a section will be dependent on which section of the table view is
specified. In the case where the section is PrimaryHome, the number of rows value should
be at least 1. In the case where the section is Homes, the number should always return the
actual count plus 1. This guarantees that there will always be at least one row in each of
the sections to accommodate the AddHome . . . and No Homes cells (see Listing 11-9 and
Figure 11-11).

Listing 11-9. The Number of Rows in a Given Section of a Table View

override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
let count = homeStore.homeManager.homes.count

switch (section) {

case HomeSections.PrimaryHome.rawValue:
return max(count, 1)

case HomeSections.Homes.rawValue:
return count + 1

default:
break

}

return 0



CHAPTER 11: Home Automation Using HomeKit 355

ssees ATAT M-Cell ¥ 6:34 AM 7 £ 100% b #

Homes

Figure 11-11. Initial empty state of homes view

The delegate method cellForRowAtIndexPath returns a UITableViewCell object that
corresponds to the specified row and section. In the case where the row/section
corresponds to a row which contains a home defined by the user, the reuse identifier is set
based on whether or not the home section is for the primary home. The cell object is then
initialized with the home name and corresponding cell accessory type (see Listing 11-10).

Listing 11-10. Cell to Insert in a Particular Location of the Table View

override func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath:
NSIndexPath) -> UITableViewCell {

if isIndexPathAddHome(indexPath) {
return tableView.dequeueReusableCellWithIdentifier(Identifiers.addHomeCell,
forIndexPath: indexPath)

} else if isHomesListEmpty() {
return tableView.dequeueReusableCellWithIdentifier(Identifiers.noHomesCell,
forIndexPath: indexPath)



356 CHAPTER 11: Home Automation Using HomeKit

var reuseldentifier: String?

switch (indexPath.section) {
case HomeSections.PrimaryHome.rawValue:
reuseldentifier = Identifiers.primaryHomeCell
case HomeSections.Homes.rawValue:
reuseldentifier = Identifiers.homeCell
default:
break
}

let cell = tableView.dequeueReusableCellWithIdentifier(reuseIdentifier!,
forIndexPath: indexPath) as UITableViewCell

let home = homeStore.homeManager.homes[indexPath.row] as HMHome
cell.textlLabel?.text = home.name

if indexPath.section == HomeSections.PrimaryHome.rawValue {
if home == homeStore.homeManager.primaryHome {
cell.accessoryType = .Checkmark
} else {
cell.accessoryType = .None
}

}

return cell

}
Listing 11-11 indicates that the section for the primary home has a header and a footer.

Listing 11-11. Primary Home Section Header and Footer

override func tableView(tableView: UITableView, titleForHeaderInSection section: Int) -»>
String? {
if section == HomeSections.PrimaryHome.rawValue {
return "Primary Home"
}

return nil

}

override func tableView(tableView: UITableView, titleForFooterInSection section: Int) -»
String? {
if section == HomeSections.PrimaryHome.rawValue {
return "Used by Siri to route commands when a home is not specified"
}

return nil



CHAPTER 11: Home Automation Using HomeKit 357

Adding a New Home to the Home Manager

When the user selects the table row labeled Add Home.. . ., the onAddHomeTouched method is
invoked from the didSelectRowAtIndexPath method and the user is presented with a simple
UIAlertController prompting for a name. Once you enter a valid name, the home is added
using the home manager method addHomeWithName (see Listing 11-12).

Listing 11-12. Adding a New Home to the Home Manager

self.homeStore.homeManager.addHomeWithName(homeName, completionHandler: { home, error in
if error != nil {
print("failed to add new home. \(error)")
} else {
print("added home \(home!.name)")
self.tableView.reloadData()
}
b

On success, the table view is refreshed, and the new home appears in the list. If the home
is the first home, it’s assigned as the primary home. You can find the complete method in
Listing 11-13.

Listing 11-13. A UlAlertController Used to Add a New Home

private func onAddHomeTouched() {

let controller = UIAlertController(title: "Add Home", message: "Enter a name for the
home", preferredStyle: .Alert)

controller.addTextFieldWithConfigurationHandler({ textField in
textField.placeholder = "My House"
1))

controller.addAction(UIAlertAction(title: "Cancel", style: .Cancel, handler: nil))

controller.addAction(UIAlertAction(title: "Add Home", style: .Default) { action in
let textFields = controller.textFields as [UITextField]!
if let homeName = textFields[0].text {

if homeName.isEmpty {
let alert = UIAlertController(title: "Error", message: "Please enter a
name", preferredStyle: .Alert)
alert.addAction(UIAlertAction(title: "Dismiss", style: .Default, handler: nil))
self.presentViewController(alert, animated: true, completion: nil)

} else {
self.homeStore.homeManager.addHomeWithName(homeName, completionHandler: {
home, error in



358 CHAPTER 11: Home Automation Using HomeKit

if error != nil {
print("failed to add new home. \(error)")
} else {
print("added home \(home!.name)")
self.tableView.reloadData()

1)

}
1)

presentViewController(controller, animated: true, completion: nil)

Setting the Primary Home

When the user selects a home listed in the Primary Home section, the home manager’s
updatePrimaryHome method is called (Listing 11-14). The completion handler reloads the
table view if the call succeeded.

Listing 11-14. Setting the Primary Home

homeStore . homeManager . updatePrimaryHome (home, completionHandler: { error in
if let error = error {
UIAlertController.showErrorAlert(self, error: error)
} else {
let indexSet = NSIndexSet(index: HomeSections.PrimaryHome.rawValue)
tableView.reloadSections(indexSet, withRowAnimation: .Automatic)

}
1

Siri Integration

Siri recognizes home, room, zone, accessory, and characteristic names. Siri uses the primary
home when the command does not specify a home name.

Setting the Current Home

When the user selects a home listed in the first section, the current home is set in the
home store.

homeStore.home = homeStore.homeManager.homes[indexPath.row]

The view will then transition to a detailed view for the home where the user can configure or
control its accessories.



CHAPTER 11: Home Automation Using HomeKit 359

Listing 11-15. Informing the Delegate About the New Row Selection

override func tableView(tableView: UITableView, didSelectRowAtIndexPath indexPath:
NSIndexPath) {

if isIndexPathAddHome(indexPath) {
tableView.deselectRowAtIndexPath(indexPath, animated: true)

onAddHomeTouched ()
} else {
homeStore.home = homeStore.homeManager.homes[indexPath.row]
if HomeSections(rawValue: indexPath.section) == .PrimaryHome {

let home = homeStore.homeManager.homes[indexPath.row]
if home != homeStore.homeManager.primaryHome {
homeStore.homeManager . updatePrimaryHome (home, completionHandler: { error in
if let error = error {
UIAlertController.showErrorAlert(self, error: error)
} else {
let indexSet = NSIndexSet(index: HomeSections.PrimaryHome.rawValue)
tableView.reloadSections(indexSet, withRowAnimation: .Automatic)

1)

Removing an Existing Home

When you swipe a table row, it enters into editing mode. The table view invokes its
canEditRowAtIndexPath method where the application can determine on a row-by-row basis
to allow editing.

Listing 11-16. Verify That the Given Row Is Editable

override func tableView(tableView: UITableView, canEditRowAtIndexPath indexPath:
NSIndexPath) -> Bool {
return !isIndexPathAddHome(indexPath)
88 !isHomesListEmpty()
&& indexPath.section == HomeSections.Homes.rawValue

}

If editing is allowed for a row, the row displays a Delete button. If the user taps the Delete
button, the view controller receives a commitEditingStyle message from the table view.
If the editingStyle is Delete, removeHome can be called on the home manager.

let home = homeStore.homeManager.homes[indexPath.row] as HMHome
homeStore . homeManager . removeHome (home, completionHandler: { error in

1



360 CHAPTER 11: Home Automation Using HomeKit

In the completion block, if there is no error, tableView.deleteRowsAtIndexPaths is called.
See Listing 11-17 for the complete method.

Listing 11-17. Requesting Deletion

override func tableView(tableView: UITableView, commitEditingStyle editingStyle:
UITableViewCellEditingStyle, forRowAtIndexPath indexPath: NSIndexPath) {

if (editingStyle == .Delete) {

let home = homeStore.homeManager.homes[indexPath.row] as HMHome
homeStore.homeManager . removeHome (home, completionHandler: { error in

if error != nil {
print("Error \(error)")
return

} else {
tableView.beginUpdates()

let primaryIndexPath = NSIndexPath(forRow: indexPath.row,

inSection: HomeSections.PrimaryHome.rawValue)

if self.homeStore.homeManager.homes.count == 0 {
tableView.reloadRowsAtIndexPaths([primaryIndexPath],
withRowAnimation: UITableViewRowAnimation.Fade)

} else {
tableView.deleteRowsAtIndexPaths([primaryIndexPath],
withRowAnimation: .Automatic)

}
tableView.deleteRowsAtIndexPaths([indexPath], withRowAnimation: .Automatic)

tableView.endUpdates()

1)

Security

When home manager has been called for the first time on a device, it will alert the user and
ask for permission to access the user’s accessory data.

Selecting “Don’t Allow” (Figure 11-12) prevents HomeKit from providing information to your
application, in which case the settings will have to be changed in the Settings.app in the
Privacy/Homekit section.



CHAPTER 11: Home Automation Using HomeKit 361

“HomeKitApp"” Would Like to
Access Your Accessory Data

Don’t Allow OK

Figure 11-12. Don’t Allow stops HomeKit from supplying data to your app

If the user is signed into an iCloud account on the device but hasn’t enabled the iCloud
keychain, HomeKit will prompt the user to turn on the iCloud keychain to allow access from
the user’s other devices.

Building the Home Interface

The Home scene will display all the accessories that are associated with the selected home.
It will also provide the means to add discoverable accessories. For this scene, you will need
a table view that uses a standard prototype cell and a navigation bar item to invoke an
accessory browser.

The Home table scene will use a grouped table view to present a list of accessories for

the selected home. The Add (+) navigation bar item will open an accessory browser.
Selecting an accessory from the browser will add the accessory to the current home, then
send a notification and return to the Home scene. The HomeViewController will handle the
notification and refresh the view. When you select an accessory from the table, the scene will
transition to the Services scene where accessories can be controlled.

At runtime, the table will look similar to the illustrations in Figure 11-13. The first view is
empty; the second is populated with three accessories.



362 CHAPTER 11: Home Automation Using HomeKit

ssees ATAT M-Cell ¥ 7:53 AM 7 3 100% b # seees ATAT M-Coll ¥ 5:54 AM 7 3 100% b+

€ Homes My House T € Homes My House T

Light i

Light in My House

Ceiling Fan ;

Ceiling Fan in My House

Garage Door i

Garage Door in My House

Figure 11-13. The Home scene with empty table, and populated with accessories

Open the storyboard and add a new UITableViewController to the storyboard canvas.
Select the table view and in the Attributes Inspector, change the style to Grouped.

Select the table view cell (Figure 11-14) and in the Attributes Inspector, change its style to
Subtitle; Identifier to AccessoryCell; Accessory type to Detail Disclosure.

Kable View Cell

Style Subtitle <)
Image “
identifier AccessoryCell
Selection Default [ <]
Accessory Detail Disclosure [T)
Editing Acc. None [T ]

Figure 11-14. Setting up the table view cell



CHAPTER 11: Home Automation Using HomeKit 363

Now add a segue from the HomeCell of the HomesViewController to the new table view
controller you’ve just added (see Figure 11-15).

Homes

Home

Home L

Figure 11-15. Adding a segue to the home view controller

Notice a navigation bar was automatically added for you. Change the navigation bar title to
Home (see Figure 11-16).

Home i b

Title
Subtitle

Figure 11-16. The home view controller interface



364 CHAPTER 11: Home Automation Using HomeKit

Next, add a Bar Button Item to the navigation bar. From the Attributes Inspector in the Bar
Button Item section, change the System ltem Add so that a plus (+) symbol is displayed.
This control will be used to invoke an Accessory Browser, which you’ll build in the section
“Building the Accessory Browser” (see Figure 11-26).

Create a new Swift file named HomeViewController.swift. Declare a new class
HomeViewController that subclasses UITableViewController and adopt the protocol
for HMHomeDelegate, and then define computed properties for homeStore and home
(see Listing 11-18).

Listing 11-18. The HomeViewController Class

class HomeViewController: UITableViewController, HMHomeDelegate {

var homeStore: HomeStore {
return HomeStore.sharedInstance
}

var home: HMHome! {
return homeStore.home
}

}

In the storyboard set the custom class for the table view controller to HomeViewController in
the Identity Inspector.

Assign self as the current home delegate, and set the view controller’s title to the name of
the current home in the viewDidLoad method after the line with super.viewDidLoad()
(see Listing 11-4).

home?.delegate = self
title = homeStore.home!.name

Implement the home manager delegate methods didAddAccessory and didRemoveAccessory
such that the table view is updated when changes are made by other HomeKit apps
(see Listing 11-19).

Listing 11-19. Home Delegate Methods for Accessory Change Notification

// MARK: HMHomeDelegate methods

func home(home: HMHome, didAddAccessory accessory: HMAccessory) {
print("didAddAccessory \(accessory.name)")
tableView.reloadData()

}

func home(home: HMHome, didRemoveAccessory accessory: HMAccessory) {
print("didRemoveAccessory \(accessory.name)")
tableView.reloadData()



CHAPTER 11: Home Automation Using HomeKit 365

Signaling Changes within the Application

Remember, your app is expected to use completion handlers to reload data and update its
views. A convenient method is the use of NSNotificationCenter.

In the HomeStore class, add a constant for AddAccessoryNotification at the top of the class
body as shown in Listing 11-20.
Listing 11-20. Declaring a Constant as a Notification Identifier to Be Used with NSNotificationCenter

struct Notification {
static let AddAccessoryNotification = "AddAccessoryNotification"
}

In the viewDidLoad method of the HomeStore class, add the following line shown in 11-21 to
register an observer for the AddAccessoryNotification.

Listing 11-21. Registering an Observer to Receive Notifications When an Accessory Is Added

NSNotificationCenter.defaultCenter().addObserver(self,
selector: "updateAccessories",
name: HomeStore.Notification.AddAccessoryNotification, object: nil)

Add a new method shown in Listing 11-22, which will be used for the notification selector.
This method will reload the data for the table view when the notification is received.
Listing 11-22. The Selector That’s Invoked When the AddAccessoryNotification Is Posted

func updateAccessories() {
print("updateAccessories selector called from NSNotificationCenter")
tableView.reloadData()

Implementing More UlTableView Methods

There will be two sections in the Home table view. The first section will be used as the
“Accessories” section heading, and the second is for the accessories list (see Listing 11-23).

Listing 11-23. Determine the Number of Sections in the Table View

override func numberOfSectionsInTableView(tableView: UITableView) -> Int {

if homeStore.home?.accessories.count == 0 {
setBackgroundMessage("No Accessories")
} else {
setBackgroundMessage(nil)
}

return 2

}

A background message is also set in the numberOfSectionsInTableView method if the table
is empty; otherwise no message is displayed (see Listing 11-24).



366 CHAPTER 11: Home Automation Using HomeKit

Listing 11-24. Method to Dynamically Set a Simple Background Message

private func setBackgroundMessage(message: String?) {
if let message = message {
let label = UILabel()
label.text = message
label.font = UIFont.preferredFontForTextStyle(UIFontTextStyleBody)
label.textColor = UIColor.lightGrayColor()
label.textAlignment = .Center
label.sizeToFit()

tableView.backgroundView = label
tableView.separatorStyle = .None
}
else {
tableView.backgroundView = nil
tableView.separatorStyle = .Singleline
}

}

The number of rows in the first section of table view is 0, as only the section heading is
displayed. The number of rows in the second section is determined by the number of
accessories associated with the current home (see Listing 11-25).

Listing 11-25. Determine the Number of Rows for Each Section

override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
if section == 1 {
return homeStore.home!.accessories.count
}

return 0

}

The data source for the table is a list of accessories that are assigned to the current
home. Each row maps to an element in the accessories list. Accessories are added by the
Accessory Browser (see Listing 11-26).

Listing 11-26. Setting up a Table Cell for an Accessory

override func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath:
NSIndexPath) -> UITableViewCell {

let accessory = homeStore.home!.accessories[indexPath.row];

let reuseldentifier = "AccessoryCell"

let cell = tableView.dequeueReusableCellWithIdentifier(reuseldentifier,
forIndexPath: indexPath)
cell.textlabel?.text = accessory.name

let accessoryName = accessory.name

let roomName = accessory.room!.name

let inIdentifier = NSLocalizedString("%@ in %@", comment: "Accessory in Room")
cell.detailTextLabel?.text = String(format: inIdentifier, accessoryName, roomName)
return cell



CHAPTER 11: Home Automation Using HomeKit 367

Listing 11-27. Returning a Header for a Specified Section

override func tableView(tableView: UITableView, titleForHeaderInSection section: Int) ->
String? {
if section == 0 {
return homeStore.home?.accessories.count != 0 ? "Accessories” :
}

return nil

Removing an Accessory from a Home

When an accessory table row is swiped, the table enters into editing mode. The table view
invokes its canEditRowAtIndexPath method where the application can determine on a
row-by-row basis to allow editing. In this case, the accessories list row is always editable
(see Listing 11-28).

Listing 11-28. Verify That the Given Row Is Editable

override func tableView(tableView: UITableView, canEditRowAtIndexPath indexPath:
NSIndexPath) -> Bool {
if indexPath.section == 1 {
return true
}

return false

}

If editing is allowed for a row, the row displays a Delete button. If the user taps the
Delete button, the view controller receives a commitEditingStyle message from the table
view (see Listing 11-29). If the editingStyle is Delete, then removeAccessory

can be called on the current home. In the completion block, if there is no error,
tableView.deleteRowsAtIndexPaths is called.

Listing 11-29. The UlTableViewDelegate Method commitEditingStyle

override func tableView(tableView: UITableView, commitEditingStyle editingStyle:
UITableViewCellEditingStyle, forRowAtIndexPath indexPath: NSIndexPath) {

if (editingStyle == .Delete) {

let accessory = homeStore.home?.accessories[indexPath.row]
homeStore.home?.removeAccessory(accessory!, completionHandler: { error in
if error != nil {
print("Error \(error)")
UIAlertController.showErrorAlert(self, error: error!)

} else {
tableView.beginUpdates()



368 CHAPTER 11: Home Automation Using HomeKit

let rowAnimation = self.homeStore.home?.accessories.count == 0 ?
UITableViewRowAnimation.Fade : UITableViewRowAnimation.Automatic
tableView.deleteRowsAtIndexPaths([indexPath], withRowAnimation: rowAnimation)
tableView.endUpdates()
tableView.reloadData()

1)

Using the HomeKit Accessory Simulator

The HomeKit Accessory Simulator is a developer tool that allows you to define accessories
for which you don’t have a physical accessory. You can create accessories and add services
and characteristics to closely represent physical devices. For example, you can define a
ceiling fan and then add services to turn power on and off and change the rotation speed
and rotation direction. From your application, you can scan for and add the accessories

you define in the simulator, and then control the services just as you would with a physical
accessory. The simulator allows you to pair with a device, change values, and receive
changed values. So when you flip a switch in your app you can see the result immediately

in the simulator, and vice versa; if you change values in the simulator, it sends the changed
values to your app.

You can start by creating a lamp accessory. Launch the simulator (/Applications/HomeKit
Accessory Simulator.app) and then, located in the lower left corner of the app, click the Add
button (+) and select New Accessory from the pop-up. When prompted, enter a name and
manufacturer for accessory and leave the default for serial number as shown in Figure 11-17.
Click the Finish button.

Configure your new accessory:

Name: | amp
Manufacturer: | aeme
Model:

Serial Number: DEH7GJ02BEKR

Cancel [ Finish |
Figure 11-17. Configure new accessory options pop-up

You should see a new accessory item in the left panel under IP Accessories, and the main
view on the right where you can add services and characteristics (see Figure 11-18).



CHAPTER 11: Home Automation Using HomeKit 369

Lamp

Lamp

Lamp
Acme

el Lamp
DEH7GJ02B8KR

No

Figure 11-18. Accessory detail view

Your new lamp accessory needs a service with characteristics that you can control from your
app. Select your accessory from the list on the left side of the window, and then click the
Add Service button located in the upper portion of the main view. From the options pop-up,
click the Service pull-down, select Lightbulb Service, and then click the Finish button (see
Figure 11-19). The new service appears in the detail view.

Configure your new Service:

Service:  Lightbulb Service [~

Figure 11-19. Configure new service options pop-up

The simulator automatically creates a common characteristic for each service type, so for
the lamp accessory you just created, an On characteristic was added for you (Figure 11-20).
Some characteristics are mandatory, like the On power switch, but if you wanted to add an
additional characteristic like a dimmer, for example, you would click the Add Characteristic
button and add a Brightness characteristic from the Characteristic pull-down in the options

pop-up.



370

Figure 11-20. Accessory detail view with On characteristic

CHAPTER 11: Home Automation Using HomeKit

Lamp

Lightbult Service 356536585

Lamp

Lamp

Acme

Lamp

DEHTGJIOZBBKR

No

You now have an accessory that can be discovered and controlled from your app. Later in
this chapter, you’ll add support to browse for available accessories.

Pairing with a New Accessory

In your application when you attempt to add a new accessory, the system will present

an Add HomeKit Accessory dialog that states that the accessory is not certified. This is
allowed when using the HomeKit Accessory Simulator, so click the Add Anyway button (see
Figure 11-21).



CHAPTER 11: Home Automation Using HomeKit 3N

Add HomeKit Accessory

This accessory is not certified and may
not work reliably with HomekKit.

Add Anyway Cancel

Figure 11-21. Add HomeKit accessory dialog

The system will present a screen that asked you to provide a setup code for the accessory.
Click the Enter code manually button located at the bottom of Figure 11-22.



372 CHAPTER 11: Home Automation Using HomeKit

eeens ATAT M-Cell ¥ 5:09 AM % 100% W+

Cancel

[ - 3
=2 Garage Door N - |
| m———— -3 .- e

P e

- e

o e g e 4
o iy e aram i

g e

Add Accessory

Position the 8-digit accessory setup code in the
frame. It can be found in the device packaging or
on the device.

Enter code manually

Figure 11-22. Add Accessory option screen

Another screen is presented that allows you to enter an eight-digit code. Enter the setup
code from the simulator’s main view detail area below the accessory name (Figure 11-23).



CHAPTER 11: Home Automation Using HomeKit 373

lllll ATAT M-Cell 7 5:06 AM 7 100% 13

Cancel

FON MK XHK

Add Accessory

Enter the 8-digit accessory setup code found in
the device packaging or on the device.

1 2 3
4 5 6
GHI JKL MNO
7 8 9
0 &)

Figure 11-23. Add setup code entry screen

The system displays a progress indicator while it processes the setup code. If you entered
the wrong code (or selected cancel), you will be presented with a screen that allows you
to enter the code again. If you entered the correct code, the system presents a screen that

states that the accessory was added and is ready to use (Figure 11-24).



374 CHAPTER 11: Home Automation Using HomeKit

----- ATAT M-Cell 7 5:17 AM = 3 100% W+ *onne ATRT M-Cell 7 5:04 AM = 3 100% W+
Cancel Cancel
Adding Failed Accessory Added
Incorrect accessory setup code. Garage Door" is ready to use
Enter Code Again
1 2 3 1 2 3
ABC DEF ABC DEF
4 5 6 4 5 6
GHI JKL MNO GHI JKL MNO
7 8 9 7 8 9
PORS TUV WXYZ PORS TUV WXYZ
0 < 0 <

Figure 11-24. Setup code result screens

Building the Accessory Browser

The accessory browser is used to scan for HomeKit-enabled accessories. The scene will use
a grouped table view to present a list of HomeKit-enabled accessories that are not already

associated with the selected home.
At runtime, the table will look similar to the illustration in Figure 11-25.



CHAPTER 11: Home Automation Using HomeKit

seses ATAT M-Coll ¥ 4:50 AM 7 3 100% IS +
Accessory Browser Done
Garage Door
Other
Ceiling Fan
Other
Light
Other

Figure 11-25. The Accessory Browser scene with available accessories

Open the storyboard and drag a new navigation controller from the Object library onto
the storyboard canvas. A new UITableViewController will automatically be added to the
storyboard canvas.

Change the title of the table view navigation item to Accessory Browser.
Select the table view and in the Attributes Inspector and change the style to Grouped.

Select the table view cell and in the Attributes Inspector, change its style to Subtitle and
Identifier to AccessoryCell.

Drag a View from the Object library and insert it above the table view cell.

Add a Label to the view you just added and set the text to Searching for new accessories.

Add an Activity View Indicator to the right of the label you just added. The Accessory
Browser Scene in the Document outline should look similar to the one in Figure 11-26.

375



376 CHAPTER 11: Home Automation Using HomeKit

v Accessory Browser
v Table View

L Searching for new accessories
Gray Activity Indicator
» (&) constraints
> AccessoryCell
> < Accessory Browser
) First Responder

[E] Exit
Figure 11-26. Accessory Browser Scene outline

Add a Bar Button Item to the navigation bar. From the Attributes Inspector in the Bar Button
Item section, change the System Item to Done. This control will be used to dismiss the

Accessory Browser.
Your Accessory Browser scene should look similar to the illustration in Figure 11-27.

Accessory Browser Done

PROTOTYPE CELLS

Title
Subtitle

Figure 11-27. Complete Accessory Browser scene



CHAPTER 11: Home Automation Using HomeKit 377

Create a new Swift file named AccessoryBrowser.swift. Declare a new class
AccessoryBrowser that subclasses UITableViewController and adopts the protocol for
HMAccessoryBrowserDelegate (see Listing 11-30). Add the properties accessoryBrowser,
accessories, and selectedAccessory.

Listing 11-30. The AccessoryBrowser Class

class AccessoryBrowser: UITableViewController, HMAccessoryBrowserDelegate {

let accessoryBrowser = HMAccessoryBrowser ()
var accessories = [HMAccessory]()
var selectedAccessory: HMAccessory?

}

In the storyboard set the Custormn Class for the table view controller to AccessoryBrowser in
the Identity Inspector.

Assign self as the accessory browser delegate in the viewDidLoad method after the line with
super.viewDidLoad().

accessoryBrowser.delegate = self

Implement the accessory browser delegate methods didFindNewAccessory and
didRemoveNewAccessory such that the specified accessory is added or removed from the
table view (see Listing 11-31). When adding a new accessory, check that it doesn’t
already exist.

Listing 11-31. Accessory Browser Delegate Methods
// MARK: HMAccessoryBrowserDelegate met