
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Professional
iPhone Programming with
monotouch and .net/c#

foreword . xxi

introduction . xxiii

chaPter 1 Introduction to iPhone Development with MonoTouch for

C# Developers . 1

chaPter 2 Introduction to MonoTouch . 11

chaPter 3 Planning Your App’s UI: Exploring the Screen Controls 35

chaPter 4 Data Controls . 49

chaPter 5 Working with Data on the iPhone . 87

chaPter 6 Displaying Data Using Tables . 107

chaPter 7 Mapping . 141

chaPter 8 Application Settings . 173

chaPter 9 Programming with Device Hardware . 191

chaPter 10 Programming with Multimedia . 203

chaPter 11 Talking to Other Applications . 233

chaPter 12 Localizing for an International Audience . 259

chaPter 13 Programming the iPad . 277

chaPter 14 Just Enough Objective-C . 303

chaPter 15 The App Store: Submitting and Marketing Your App 321

indeX . 339

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Professional

iPhone® Programming with
monotouch and .net/c#

Wallace B. McClure
Martin Bowling

Craig Dunn
Chris Hardy
Rory Blyth

www.allitebooks.com

http://www.allitebooks.org

Professional iPhone® Programming with MonoTouch and .neT/C#

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wallace B. McClure, Martin Bowling, Craig Dunn, Chris Hardy, and Rory Blyth

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-63782-1
ISBN: 978-0-470-90808-2 (ebk)
ISBN: 978-0-470-90859-4 (ebk)
ISBN: 978-0-470-90860-0 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2010926847

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other coun-
tries, and may not be used without written permission. iPhone is a registered trademark of Apple, Inc. All other trade-
marks are the property of their respective owners. Wiley Publishing, Inc. is not associated with any product or vendor
mentioned in this book.

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.allitebooks.org

about the authors

wallace b. (wally) mcclure graduated from the Georgia Institute of Technology
(Georgia Tech) in 1990 with a Bachelor of Science degree in electrical engineering. He
continued his education there, receiving a master’s degree in the same field in 1991.
Since that time, he has done consulting and development for such companies as The
United States Department of Education, Coca-Cola, Bechtel National, Magnatron,

and Lucent Technologies, among others. Products and services have included work with ASP, ADO,
XML, and SQL Server, as well as numerous applications in the Microsoft .NET Framework. Wally
has authored books on architecture, ADO.NET and SQL Server, AJAX, and iPhone Programming
with Mono/MonoTouch. Wally specializes in building applications that have large numbers of users
and large amounts of data. He is a Microsoft MVP and an ASPInsider, and a partner in Scalable
Development, Inc. You can read Wally’s blog at www.morewally.com. Wally is married and has two
children. When not writing software, he plays golf, exercises, and hangs out with his family.

martin bowling is the Founder/President of 27 Creative, a Charleston, West Virginia,
based Internet marketing and mobile development consulting firm. Martin has been rec-
ognized for his Internet Marketing talents, providing consulting for many Fortune 500
companies and some of the top educational institutions in America. Martin is in demand
as a speaker, seminar leader, and consultant in various topics ranging from social media

marketing to application development. He is currently focusing on several projects that bring his many
passions together, working with a leading social media marketing and SEO firm Search & Social to
build a platform to provide scalable SEO and social media marketing to small and medium-sized busi-
nesses. His project Tweetcaching.com takes mobile development, social media, and the outdoors and
combines it into one great project to allow Geocachers to easily share their finds with their friends
and family while they are on the go. Martin continues to find new ways to mash up social media with
mobile development to provide a rich experience to users and maximum ROI for the companies he
works with. He lives with his wife in Charleston, West Virginia. His black lab, Brewski, keeps
him company while he codes. Martin loves a great meal and craft brewing. He can be reached at
www.martinbowling.com where he occasionally blogs. For a more up close and personal look
at Martin follow him on Twitter at http://twitter.com/MartinBowling.

craig dunn has been developing with the .NET Framework since 2001 in both
Australia and Canada, on projects ranging from Internet banking to warehouse automa-
tion systems (and including a stint building multilingual web sites). He has been involved
with MonoTouch since the early betas in August 2009, blogging tutorials at http://
conceptdev.blogspot.com and producing the MIX10 iPhone conference schedule

application (in conjunction with Chris Hardy) for Microsoft’s 2010 MIX conference in Las Vegas.
Craig was also 15th in line for an iPad.

www.allitebooks.com

http://www.morewally.com
http://www.martinbowling.com
http://twitter.com/MartinBowling
http://conceptdev.blogspot.com
http://conceptdev.blogspot.com
http://www.allitebooks.org

chris hardy, a Microsoft ASPInsider, works for a digital agency called Great
Fridays in Manchester, United Kingdom, developing ASP.NET solutions for clients
such as Peter Gabriel and Emma Watson. Ever since MonoTouch was in beta, Chris
has been developing and evangelizing MonoTouch and was one of the first users to get
a MonoTouch application on to the App Store. Speaking at conferences around the

world on the subject, Chris has been a key part of the community and is extending this by contrib-
uting to the MonoTouch book.

rory blyth has worked in the software development industry for nearly a decade.
He began as an independent contractor, then went on to co-host the popular .Net
Rocks podcast, work as a public speaker for Microsoft, join Microsoft’s Channel9,
and deliver many talks for other companies/conferences on diverse subjects includ-
ing iPhone development using both Objective-C and MonoTouch. He learned iPhone

development during a year working at Spotlight Mobile — a development firm where popular
iPhone apps such as Style.com and the Barnes and Noble Bookstore were produced.

about the technical editors

aleX york is a graduate of the University of Manchester in England, where he studied computing
science. He has been developing software solutions ever since — almost exclusively with C# and the
.NET Framework. After graduating, Alex worked in Manchester for a mobile gaming company,
using ASP.NET and WCF on a daily basis. He moved to Norway in 2008 and started working for
Bennett, building customer solutions using C# and ASP.NET for recognizable Norwegian brands. In
his spare time he was an early adopter of iPhone development with MonoTouch and an active mem-
ber of the community. He currently works as a technology consultant for Capgemini, in Trondheim.

John mandia grew up in London and has been developing since 1999 when he switched from
working in marketing to development. During that time he’s worked for a value-added reseller
(VAR), a .com company, a portal, a design agency, a consultancy and he is currently working for
a leading global investment bank. He’s been working with .NET since it was in beta, and for a
number of years he was a major contributor to an open source project known as Rainbow Portal
(2002–2005) which has had over 130,000 downloads. One of his current interests is mobile devel-
opment, and he’s been following MonoTouch since it was in beta when he set up the MonoTouch
community site http://monotouch.info and twitter account @monotouchinfo to help others who
have decided to take their .NET skills and apply it to iPhone/iPad development.

Jim Zimmerman is an ASP.NET MVP and CTO of Thuzi and TeamZoneSports in Tampa, Florida.
He decided to learn Objective-C last year in order to learn how to create iPhone apps for his four
kids and for his companies. He has since been convinced that MonoTouch is the way to go allow-
ing him to bring his C# skills with him, giving him a much more rapid development experience. He
looks forward to the day when he can have at least 90 percent of the same code running on all rel-
evant mobile devices.

www.allitebooks.com

http://monotouch.info
http://www.allitebooks.org

credits

eXecutive editor
Bob Elliott

senior ProJect editor
Kevin Kent

develoPment editor
Jeff Riley

technical editors
Alex York
John Mandia
Jim Zimmerman

senior Production editor
Debra Banninger

coPy editor
Kim Cofer

editorial director
Robyn B . Siesky

editorial manager
Mary Beth Wakefield

marketing manager
Ashley Zurcher

Production manager
Tim Tate

vice President and eXecutive grouP
Publisher
Richard Swadley

vice President and eXecutive Publisher
Barry Pruett

associate Publisher
Jim Minatel

ProJect coordinator, cover
Lynsey Stanford

comPositor
Jeffrey Lytle, Happenstance Type-O-Rama

Proofreader
Nancy Carrasco

indeXer
Robert Swanson

cover designer
Michael E . Trent

cover image
©Marilyn Nieves/istockphoto

acknowledgments

i’ve always been interested in mobile development. It wasn’t until the summer of 2009 that
Wrox and I were able to agree on creating a mobile development/iPhone project. That project, part
of the Wrox Blox series, was the first version of this book; it published in November 2009. Two
weeks after the release of that project, Associate Publisher Jim Minatel was happy with the sales
of the ebook and was wondering about a bigger print book on MonoTouch. Due to my schedule,
I needed to get several other authors. I initially thought of Craig Dunn, Chris Hardy, and Martin
Bowling. I had spoken with each during the writing of my first book, so it made sense to talk with
them about co-authoring the print book. I spoke with Joseph Hill at Novell one afternoon, and he
suggested them as well. With some level setting in my initial choices, I talked with each one and they
all accepted. I was ecstatic. Rory Blyth joined us a short way into our book. Thanks to Jim Minatel
for allowing me to start writing on MonoTouch. Thanks to Bob Elliott for keeping us on target, and
a big thanks to Kevin Kent for doing the dirty work of keeping us on task.

Given that my co-authors were on separate continents and hemispheres, I want to thank them for
their great work. Craig and Chris did a great job, were very attentive to detail, and were always on
top of what was going on.

I want to thank my family. They did a great job allowing me to work on the book and to work for
customers as well. I owe them a huge “Thank You.”

Finally, I want to thank you for purchasing this book. We hope you enjoy this book as much as we
have enjoyed writing it.

—Wallace B. Mcclure

sPecial thanks to my wonderful wife Mandi Rae. Without her I don’t know where I would be.
Thanks to my mom, CK, Sarah, and all those who have supported me over the years. And thanks to
Brewski Firkin for keeping me company while I code.

—Martin BoWling

thanks to Karl, Mike, and Chris for inspiration, and to Mum for everything. To Jack, Lilliana,
Will, Sam, and Marcus — always do your best.

—craig Dunn

thanks to my wife, Cara, for putting up with the long nights and to my parents, Hazel and Bob.

—chris harDy

contents

FOREWORD xxi

IntRODuctIOn xxiii

introduction to iPhone develoPment with chaPter 1:
monotouch for c# develoPers 1

Product Comparison 2
 .NET Framework 2
Mono 2
MonoTouch 3
MonoDevelop 5
iPhone 5

Mobile Development 7
apple iPhone sDK Tools 8

Tools 8
Licensing 9

summary 9

introduction to monotouch 1chaPter 2: 1

Before You Begin Developing 11
The Components of MonoTouch 12

What Is Mono? 12
Namespaces and Classes of MonoTouch 13

Working with MonoDevelop 16
Using interface Builder 19

Working with Library Controls 20
Setting Up Outlets 22
Setting Up Actions 24

Hello World with interface Builder 25
Hello World in Code 28
Debugging 30

On the Simulator 30
On the Device 30

Understanding the linker 31
Deploying Your application 32
summary 33

xiv

ConTenTs

Planning your aPP’s ui: eXPloring chaPter 3:
the screen controls 35

Creating iPhone(y) Ui and application interaction Patterns 35
Command Interfaces 36
Radio Interfaces 37
Navigation Interfaces 37
Modal Interfaces 38
Combination Interfaces 38

Uilabel 39
UiButton 40
UiTextfield 42
Uiswitch 43
Uislider 44
UiactivityindicatorView 44
UisegmentedControl 45
UiPageControl 46
summary 46

data controls 4chaPter 4: 9

Windows and Views 50
UIWindow 51
UIView 52

Data View Controls 52
UIWebView 52
UIScrollView 58
UITextView 61
UIPickerView 65
UIDatePicker 69

Controllers and Bars 71
UIViewController 72
UIToolbar 73
UITabBarController 76
UINavigationController 82

summary 85

working with data on the iPhone 8chaPter 5: 7

Working with sQlite 87
Using Mono .Data .Sqlite 88
Setting Up a Database 88
Setting Up Tables 89

xv

ConTenTs

Using SQL Statements 90
Upgrading Strategies 92

Working with remote Data 93
Using SOAP 94
Using REST-Based Web Services 98
Retrieving Data 99
Posting Data with POST 104
Using Web Services Responsibly 106

summary 106

disPlaying data using tables 10chaPter 6: 7

Displaying Data in a Table 109
Selecting a Cell 111
Changing the Cell Layout 113
Presenting Grouped Data 114
Adding an Index 118
Grouped Table Style 119
Customizing the Cell Layout 120

navigating with Tables 123
Using UINavigationController 123
Implementing a Second Level of Navigation 126
Creating Static Row Content 127

editing Table rows 130
Adding Swipe to Delete 130
Enabling Edit “Mode” 131
Re-Ordering Cells 132
Creating an Insert Icon 133
Adding New Rows 134

adding a search Bar to a Table 136
Enabling the Search Bar 137
Customizing Search Appearance 140

summary 140

maPPing 14chaPter 7: 1

Map Basics 142
Introducing MapKit 142
Introducing CoreLocation 142

Using Corelocation 145
Determining Device Location 145
Tracking Device Movement 150

xvi

ConTenTs

Using MapKit 154
Showing a Map 156
Annotating the Map 158
Using the Geocoding Feature 167

summary 172

aPPlication settings 17chaPter 8: 3

exploring the info.plist 173
UIStatusBarHidden 174
UIInterfaceOrientation 175
UIRequiresPersistentWiFi 175
UIPrerenderedIcon 175

Peeking in the settings Bundle 175
The Settings Application 176
Adding Your App to the Settings Application 176
Reading Your Settings 188
Updating Your Settings 189

summary 189

Programming with device hardware 19chaPter 9: 1

responding to acceleration 192
Accelerometer 192
Using the XYZ Coordinate System 192
Coding with the Accelerometer 193
Using Acceleration for UI Input 194

Determining Device orientation 196
Beginning Notification 196
Determining Static Device Orientation 196
Determining Event-Based Orientation 197

reading the Proximity sensor 198
networking 199
Taking Battery life into account 200

Determining the Static Battery State 200
Using Battery Change Events 201

accessing system information 201
Mobile Development 202
summary 202

xvii

ConTenTs

Programming with multimedia 20chaPter 10: 3

images 203
Displaying Images 203
Picking an Image 206
Handling a Picked Image 208
Creating an Image from the Camera 209
Editing an Image 210
Customizing the Camera 211
Saving an Image to the Photo Album 212

Video 213
Playing a Video 213
Customizing the Video Player 215
Picking a Video 218
Recording Video 219
Editing a Video 221
Saving a Video to the Saved Photo Album 222

audio 223
Playing Audio 223
Recording Audio 225

animation 227
Creating Basic Animation 227
Using UIView Animations 229

summary 231

talking to other aPPlications 23chaPter 11: 3

integrating apple applications 233
Opening Up Safari 233
Opening Up E-Mail 234
Making a Telephone Call 234
Sending a Text/SMS Message 235
Opening a Location in the Maps Application 235
Opening a YouTube Video 235
Opening Up the iTunes Store and the App Store 236

Third-Party application integration 236
Simple Integration with Google Earth 236
Further Integration with Skype 237

accepting Calls from other applications 237
Configuring Your Info .plist File 238
Implementing an OpenURL Schema 240

xviii

ConTenTs

integrating with the address Book 240
ABPersonViewController 242
ABPeoplePickerNavigationController 243
ABNewPersonViewController 244
ABUnknownPersonViewController 245
Handling the Selection of Properties 247

integrating with iPod Music Collections 248
interfacing with objective-C 252

MonoTouch .Foundation 252
MonoTouch .ObjCRuntime 253
Automatic Binding to Objective-C with btouch 253

summary 257

localiZing for an international audience 25chaPter 12: 9

internationalizing an application 261
Changing language and region settings 261
Displaying Multiple languages 263

Showing Translated Text 265
Displaying Images 269
Localizing App Icon and Name 271
Displaying “Double Byte” Characters 271
Formatting Dates, Times, Numbers and Currency 272

Managing localized.strings in real-World applications 274
genstrings 274
ngenstrings 274

summary 276

Programming the iPad 27chaPter 13: 7

The iPad Device 277
What Makes an iPad application? 279

Device Orientation Support 280
Startup Images 282

new iPad features 284
Using UISplitViewController 284
Creating a Custom UIPopover 288
Displaying Modal Views 291
Recognizing Gestures 292

Building a Universal app 296
summary 302

www.allitebooks.com

http://www.allitebooks.org

xix

ConTenTs

Just enough obJective-c 30chaPter 14: 3

How to Use This Chapter 304
a Brief look at objective-C and Cocoa 305
academic Versus Pragmatic approaches 307
Basic syntax and Concepts 308

Initialization 309
Messages and Methods 311
Memory Management 313

Cheat sheets 314
Terminology 314
Compiler Directives 316
Data Types 319

summary 320

the aPP store: submitting and chaPter 15:
marketing your aPP 321

Using an ad-Hoc Build for Presubmission Testing 321
Getting a UDID from Your Testers 322
Making Ad-Hoc Provisioning Profiles 324
Building an Ad-Hoc Version of Your App 325
Packaging Your Ad-Hoc Build 326

Prepping for submission 329
Building a Distribution Version of Your App 329
Adding a New Configuration for Distribution 329
Changing the Signing Options for the Configuration 330
Reviewing Bundle Settings 330
Building the Project 330
Presubmission Checklist 330
Submitting via iTunes Connect 331

Promoting Your app 333
Supporting Your App Promotion 333
Key App Promotion Techniques 334

summary 337

InDEX 339

foreword

MonoTouch is a blend of two fascinating and incredibly enjoyable worlds: the C# language and the
iPhone. We designed MonoTouch to blend those two universes together, and we did this by tapping
into years of experience designing and implementing languages, APIs, and bindings.

Our passion for the iPhone is very simple to explain: Like everyone else we were smitten by the
beautiful user interfaces, the well thought out design and a powerful development platform. This
combination was hard to resist.

Our love for C# goes back to the year 2000 when Microsoft unveiled their new language to the
world. And just like C# rocked the Windows world, it rocked our world. By the year 2000 we had
been working on the GNOME Desktop and the Evolution mail client for Linux for a few years, and
we had learned our share of lessons in developing desktop applications.

We were developing software in a competitive space, and we needed to produce software faster, with
fewer developers. One option was to work harder and work more hours. Instead we had chosen to
raise the programming level: We kept performance sensitive code written in C and produced bind-
ings for high-level languages that developers could exploit.

When Microsoft announced C# and the .NET Framework, the language was an immediate improve-
ment that raised the programming level. The .NET language on the other hand ensured that our
hands would not be tied to a single language, but also ensured that we could continue to reuse any
existing code that we had written in C or C++. C# made us and the world more productive.

Mono over the years grew in every possible direction. It left the desktop comfort zone where it
originated and was used on everything from embedded controllers, to mp3 players, to servers, video
games, and industrial control.

Mono on the iPhone was created out of our user’s demand. Our mono@novell.com e-mail address
was bombarded during 2008 and 2009 with requests to bring Mono to the iPhone, and by the sum-
mer of 2009 we had a full stack offering that we released in September.

The authors of this book are among the early beta testers of MonoTouch: They were there on the
first days of MonoTouch launching, they were there to explore with us the original API design, they
were there to help us shape the final product, and they continue to help us prioritize what matters
most to developers targeting the iPhone.

You might know some of the authors already. Wally put out the first e-book for MonoTouch in
record time, and it helped hundreds of programmers get up and running with MonoTouch within
months of the product release.

Chris and Rory are both well known in the Windows/ASP.NET world and are very active members
of the MonoTouch community: On our IRC chat room, on Stackoverflow, and on our forums they
have answered questions from new developers and helped developers make better applications.

mailto:mono@novell.com

xxii

foreword

Chris jumped into MonoTouch with the passion that only a rocker from Manchester can exhibit and
started the open source Scott Hanselman “Hanselminutes” MonoTouch iPhone application.

Rory has a unique view of the world; he has worked extensively with both .NET and with Objective-C.
He is a celebrity in the .NET world, but he is also behind the Barnes and Noble iPhone application, and
it is this battle-tested knowledge that he has brought into the MonoTouch community. You could not
ask for a better spiritual mentor in this trip.

And you probably know Craig from his excellent series of blogs that have not only served newcom-
ers to get started with MonoTouch, but have also become a reference that I turn to when I need to
solve a problem in my own iPhone app. Craig came up with one of the most useful ideas for iPhone
applications: the conference application. He used his blog for a while to explore ideas on what
would make a useful conference application and produced two open source conference applications:
the MonoSpace app and the PDC app.

By the time of the Mix 2010 conference, Craig and Chris produced the MIX2010 application that
was available to the MIX attendees. You knew it was a great idea when you would see people using
the application on their phones before each session.

Martin has been an early adopter of MonoTouch since its launch. He launched the first iPhone
application for social web site DailyBooth and is a contributor to various open-source MonoTouch
projects.

Building applications with C# and the iPhone is the best of both worlds. You get to use a strongly
typed, type safe, garbage collected language with the hottest APIs for mobile applications, and you
get to use both the best libraries created for the iPhone in Objective-C and the best libraries created
for C# in .NET.

I leave you in the good hands of Wally, Martin, Craig, Chris, and Rory.

—Miguel De icaza
VP Developer Platform

Novell

introduction

the iPhone is the most eXciting smartPhone currently in the mobile device marketplace. In the
space of 3 years, it has gone from an installed base of zero to an installed base of 80 million devices.
Accompanying that growth is a growth in the interest in writing applications that run natively on the
device. When Apple originally shipped the iPhone, it had no capabilities to allow custom written appli-
cations on the device. Apple listened to the developer marketplace and added the ability to run native
applications on the device. Initially, these applications were written in Objective-C. Over time, addi-
tional frameworks have been created to allow developers not fluent in Objective-C to target the iPhone.

Since the release of the .NET Framework in January 2002, its growth has been impressive.
Currently, the .NET Framework is the most popular development framework in use today. Due to
the popularity of the .NET Framework, Ximian, later purchased by Novell, announced the Mono
Project. The Mono Project has built an implementation of the .NET Framework that runs on sev-
eral non-Windows platforms. In the summer of 2009, Novell announced MonoTouch. MonoTouch
allows .NET developers, primarily those writing C# applications, to create applications that run
natively on the iPhone.

To .NET developers, the ability to write applications that natively run on the iPhone is an amazing
and exciting thing as it opens the iPhone to them and their skills. .NET developers are not required
to invest the time and effort in learning Objective-C. We’re excited by the ability to write native
applications for the iPhone with .NET/C#. It opens a whole new world for many developers.

who this book is for

This book is for .NET developers that are interested in creating native iPhone applications written in
.NET/C#. These developers want to use their existing knowledge. While .NET developers are always
interested in learning, they also recognize that learning Objective-C and the specifics of the iPhone
can be overwhelming. Those developers interested in MonoTouch will recognize that the cost of
MonoTouch is easily made up by the ability to quickly target the iPhone using a language that they
are already familiar with.

This book is designed for .NET developers that want to target the iPhone. It is designed to help you
get up to speed with the iPhone, not to really teach you about the .NET Framework or C# lan-
guage, which we assume you already know.

This book is designed with introductory material in Chapters 1 thru 4. You should read Chapters 1
thru 4 sequentially. These chapters introduce the MonoTouch product, the basics of developing with
MonoTouch and MonoDevelop, and finally, the basics of presenting data to a user with screen and
data controls and how to develop a user interface for the iPhone. Once you are comfortable with
these concepts, you can typically move from one chapter to another and not necessarily have to read
the chapters sequentially.

xxiv

introduction

what this book covers

This book covers .NET/C# development with MonoTouch. MonoTouch targets the iPhone, the
iPod touch, and the iPad. The iPhone and iPod touch coverage is the same except where specifi cally
noted. The iPad is covered specifi cally in Chapter 13.

how this book is structured

As we previously indicated, this book is essentially divided into two parts. The fi rst part of the book
comprises Chapters 1 thru 4. This part is an introduction to the development experience on the
iPhone and the MonoDevelop IDE. This part makes sense to read from beginning to end. Once you
feel comfortable with the fi rst part, you can move on to the second part of the book, containing dis-
crete chapters that you can pick and choose from.

what you need to use this book

Readers of this book need several things to effectively use this book. These are:

An iPhone, iPod, or iPad. ➤➤

Apple Macintosh:➤➤ You need an Apple Macintosh to build and deploy an application on your
iPhone device.

Apple iPhone SDK:➤➤ You need to download and install the Apple iPhone SDK. The iPhone
SDK only runs on the Apple Macintosh.

Mono Framework:➤➤ You need to download and install the Mono Framework for the
Apple Macintosh. The Mono Framework can be downloaded from the Mono web site
at www.mono-project.com/.

MonoTouch:➤➤ MonoTouch can be downloaded from the MonoTouch web site at http://
monotouch.net/. The free version of MonoTouch allows for a developer to create an
application, build the application, and run the application in the simulator. To deploy to
the device, the developer must purchase a copy of the Professional or Enterprise version of
MonoTouch.

MonoDevelop:➤➤ The MonoDevelop IDE can be downloaded from the MonoDevelop web site
at http://monodevelop.com/.

Note that this book uses MonoTouch to develop applications under the terms
of the iPhone SDK 3.X license for deploying to the App Store and in the enter-
prise. iPhone SDK 4 apps developed with MonoTouch can be deployed in the
enterprise. Deploying MonoTouch applications under SDK 4 to the App Store
may be restricted by Apple’s Developer Program License Agreement.

http://www.mono-project.com/
http://monotouch.net/
http://monotouch.net/
http://monodevelop.com/

xxv

introduction

conventions

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Boxes with a warning icon like this one hold important, not-to-be-forgotten
information that is directly relevant to the surrounding text.

The pencil icon indicates notes, tips, hints, tricks, and asides to the current
discussion.

As for styles in the text:

We ➤➤ highlight new terms and important words when we introduce them.

We show keyboard strokes like this: Ctrl+A.➤➤

We show fi lenames, URLs, and code within the text like so: ➤➤ persistence.properties.

We present code in two different ways:➤➤

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that is particularly important in the present context
or to show changes from a previous code snippet.

source code

As you work through the examples in this book, you may choose either to type in all the code man-
ually, or to use the source code fi les that accompany the book. All the source code used in this book
is available for download at www.wrox.com. When at the site, simply locate the book’s title (use the
Search box or one of the title lists) and click the Download Code link on the book’s detail page to
obtain all the source code for the book. Code that is included on the web site is highlighted by the
following icon:

Listings often include the fi lename in the title. If the fi lename isn’t in the listing title or the code is
just a code snippet, you’ll fi nd the fi lename in a code note such as this:

Code snippet fi lename

http://www.wrox.com

xxvi

introduction

Because many books have similar titles, you may fi nd it easiest to search by
ISBN; this book’s ISBN is 978-0-470-63782-1.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list,
including links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fi x the problem in subsequent editions
of the book.

P2P.wroX.com

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will fi nd a number of different forums that will help you, not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact/techsupport.shtml
http://p2p.wrox.com
p2p.wrox.com
p2p.wrox.com

xxvii

introduction

 3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post
your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

www.allitebooks.com

http://www.allitebooks.org

1
introduction to iPhone
Development with MonoTouch
for C# Developers

what’s in this chaPter?

The history of the iPhone and its mindshare➤➤

A short history of Mono and its relationship to the .NET Framework➤➤

How MonoTouch opens the iPhone to .NET Developers➤➤

Why MonoTouch is so attractive to developers➤➤

The past several years have seen an amazing growth in the use of smartphones, and USA Today
recently reported how smartphones have become an indispensable part of people’s lives.

Although Windows-based computers running 32-bit x86 or 64-bit x64 processors dominate
the desktop computer marketplace, and the .NET Framework is the dominant development
environment for the Windows platform, no single vendor or platform dominates the mobile
device marketplace; devices based on Symbian, Research in Motion (Blackberry), Windows
Mobile, Android, and other platforms are available. In addition, devices may run the same
operating system and be presented to the user in separate form factors. This fracture in the
marketplace is problematic for developers — how can they take a development framework, or
tool, that they already know and use that knowledge in a device that has a large and growing
market share?

This chapter looks at how the largest segment of developers can target the smartphone with
the highest mindshare, and that the smartphone is growing faster in marketshare than any
other device.

2 ❘ chaPter 1 IntroductIon to IPhone develoPment wIth monotouch for c# develoPers

Product comParison

This section takes a quick look at .NET Framework, Mono and MonoTouch — three products that
have allowed the largest segment of developers to target the iPhone, the most exciting mobile plat-
form currently in the marketplace.

.net framework
In the late 1990s, Microsoft began work on the .NET Framework. The first version of the
framework shipped in 2002. Microsoft proceeded to introduce subsequent versions of the .NET
Framework and has recently introduced the .NET Framework 4. The .NET Framework comes in
various versions, including 32-bit versions, 64-bit versions, a version for the XBOX gaming plat-
form, and a version for Microsoft’s mobile devices referred to as the Compact Framework (CF). A
few facts about .NET Framework:

Microsoft released a development tool, ➤➤ Visual Studio .NET, with the Framework. This tool is
the Integrated Development Environment for .NET.

It’s based on a virtual machine that executes software written for the framework. This vir-➤➤

tual machine environment is referred to as the Common Language Runtime (CLR), and it is
responsible for security, memory management, program execution, and exception handling.

Applications written in the .NET Framework are initially compiled from source code, such ➤➤

as Visual Basic or C#, to an intermediate language, called MSIL. The initial compilation is
performed by calling the language specific command line compiler, Visual Studio, or some
other build tool. A second compilation set is typically done when an application is executed.
This second compilation takes the intermediate language and compiles it into executable
code that can be run on the operating system. This second compilation is referred to as
just-in-time compilation.

It’s language independent, and numerous languages are available for the Framework. In the ➤➤

Visual Studio, Microsoft has shipped various languages including Visual Basic, F#, C++, and C#.

It has a series of libraries that provide consistent functionality across the various languages. ➤➤

These libraries are referred to as the Base Class Libraries.

Microsoft has submitted various parts of the .NET Framework to various standard organiza-➤➤

tions. Some of these are the C# language, the Common Language Infrastructure, Common Type
System (CTS), Common Language Specification (CLS), and Virtual Execution System (VES).

It has the largest number of developers for any development framework out there. As a ➤➤

result, more developers are familiar with the .NET Framework than any other development
framework.

A disadvantage of the .NET Framework is that it is not available for non-Microsoft platforms.➤➤

mono
Mono is an open source project that provides a C# compiler and Common Language Runtime on
non-Windows operating systems. Mono is currently licensed under GPL version 2, LGPL version 2,
the MIT, and dual licenses. Mono runs on Mac, Linux, BSD, and other operating systems.

Product Comparison ❘ 3

Mono was officially announced in 2001 and is the brainchild of Miguel de Icaza. Mono version
1.0 shipped in 2004, and currently Mono is at Version 2.6. Mono continues to be led by Miguel de
Icaza and is under the general leadership and support of Novell.

As much as there is the desire to match the .NET Framework’s features, this is not possible due to
the fact that Microsoft has more resources and a head start in the development of those features. At
the same time, the Mono project has parity with a large number of .NET Framework features.

Along with Mono, there is an open source IDE called MonoDevelop, which started as a port of the
SharpDevelop IDE. MonoDevelop began as a project to allow for Mono development on Linux,
but with the release of MonoDevelop 2.2, the ability to develop with Mono expanded to the Mac,
Windows, and several other non-Linux UNIX platforms.

Though the .NET Framework is very popular, two issues make it unsuitable for running on the iPhone:

At some level Apple and Microsoft are competitors and are likely not too excited to work ➤➤

together.

The .NET Framework fundamentally is dynamically compiled at runtime. This is the just-➤➤

in-time compilation of the .NET Framework. This is a violation of the Apple license and the
operating principles of the iPhone OS.

Given that code running on the Microsoft .NET Framework is compiled to machine code at run-
time using the just-in-time compilation, one would expect that applications written for Mono
would have the same behavior and thus not be suitable for running on the iPhone. However,
Mono has a technology that allows for appli-
cations to be compiled ahead of time, referred
to as AOT technology.

A disadvantage of .NET/Mono and the iPhone
is that .NET/Mono developers cannot take
their .NET/Mono/C# knowledge and apply
it to the iPhone platform. As illustrated in
Figure 1-1, you see that the reason .NET/
Mono developers can’t target the iPhone is
because they’re two separate entities.

monotouch
In 2009, Novell announced and shipped MonoTouch, which
allows .NET developers to create native iPhone applications
in C#. With MonoTouch, applications are compiled into
executable code that runs on the iPhone. The significance of
this should not be understated: .NET/Mono developers can
target the iPhone through MonoTouch. This is illustrated in
Figure 1-2.

How does MonoTouch accomplish this? Does it somehow
allow Windows Forms applications to be translated or recom-
piled and deployed on the iPhone? MonoTouch provides a

.NET iPhone

figure 1-1

.NET iPhoneMonoTouch

figure 1-2

4 ❘ chaPter 1 IntroductIon to IPhone develoPment wIth monotouch for c# develoPers

.NET layer over the native iPhone programming layer present on the iPhone OS, referred to as Cocoa
Touch. Cocoa Touch is based on the Cocoa layer in the Mac OS X and is available on the iPhone, iPod
Touch, and the iPad. MonoTouch does not provide a mechanism to cross-compile Windows Forms
applications, but allows developers to build applications that run natively on the iPhone.

Overall, the application programming interface (API) exposed by the MonoTouch SDK is a com-
bination of the .NET 2.0 Framework’s core features, the Silverlight 2.0 API, and the APIs on
the iPhone. MonoTouch provides a bridge (interop) between the iPhone’s native APIs based on
Objective-C and C-based APIs to the .NET world that C# developers are accustomed to.

MonoTouch Components
MonoTouch is made up of the following four components:

The ➤➤ Monotouch.dll is a C# assembly that provides a binding API into the iPhone’s native APIs.

A command-line tool that compiles C# and Common Intermediate Language (CIL) code. ➤➤

This compiled code can then be run in the simulator or an actual iPhone.

An add-in to MonoDevelop that allows for iPhone development and for Interface Builder to ➤➤

create graphical applications.

A commercial license of the Mono runtime, which allows for the static linking of the Mono ➤➤

runtime with the code developed.

namespaces and Classes
MonoTouch provides a rich set of namespaces and classes to support building applications for the
iPhone. Some of the most popular namespaces and classes are:

MonoTouch.ObjCRuntime:➤➤ This namespace provides the interop/bridge between the
.NET/C# world and the Objective-C world of the iPhone.

MonoTouch.Foundation:➤➤ This namespace provides support for the data types necessary to
communicate with the Objective-C world of the iPhone. Most types are directly mapped. For
example, the NSObject Objective-C base class is mapped to the MonoTouch.Foundation
.NSObject class in C#. Some classes are not directly mapped and are instead mapped to their
native .NET types. For example, NSString maps to the basic string type and NSArray maps
to a strongly typed array.

MonoTouch.UIKit:➤➤ This namespace provides a direct mapping between the UI components
within Cocoa Touch. The mapping is done by providing .NET classes for each UI compo-
nent, and this is the namespace that developers will likely spend most of their time working
with. For .NET developers, Cocoa Touch is an abstraction layer or API for building pro-
grams that run in the iPhone. Cocoa Touch is based on the Cocoa API used in building pro-
grams that run on the Mac OS X operating system. Cocoa Touch can be thought of as Cocoa
tuned for the touch-based iPhone operating system.

Product Comparison ❘ 5

OpenTK:➤➤ This namespace is a modified version of the OpenTK API. OpenTK is an object-
oriented binding for OpenGL, which stands for the Open Graphics Library. OpenGL is an
API for using three-dimensional graphics. OpenTK is a library for performing OpenGL,
OpenAL, and OpenCL. It is written in C# and runs on Windows, Mac OS X, and Linux. The
OpenTK implementation on the iPhone has been updated to use CoreGraphics and to only
expose the functionality available on the iPhone.

In addition, MonoTouch provides a set of additional namespaces that may be important to you.
These are:

MonoTouch.AddressBook➤➤

MonoTouch.CoreGraphics➤➤

MonoTouch.AddressBookUI➤➤

MonoTouch.AudioToolbox➤➤

MonoTouch.MapKit➤➤

MonoTouch.MediaPlayer➤➤

MonoTouch.AVFoundation➤➤

MonoTouch.MediaPlayer➤➤

MonoTouch.CoreAnimation➤➤

MonoTouch.SystemConfiguration➤➤

These namespaces are fairly self-explanatory in their functionalities and are specific to the iPhone.

monodevelop
MonoDevelop is a free IDE used for developing with Mono and is an early branch of the
SharpDevelop IDE. Originally, MonoDevelop ran only on Linux, but with version 2.2,
MonoDevelop began running on the Mac. MonoDevelop on the Mac allows for the creation and
management of iPhone projects as well as debugging and deployment to the simulator and devices
for testing.

iPhone
There’s no doubt that Apple has changed the mobile device marketplace since the introduction of the
original iPod in 2001. Although the iPod was not the first device to play mp3 files, it was the first
product that played mp3 files, made it easy to use, and provided an easy-to-use marketplace to pur-
chase audio files. The iPod really caused the mp3 device marketplace to explode.

In January 2007, Apple turned the smartphone upside down when it officially announced the
first-generation iPhone. The iPhone was designed to be a smartphone that provided web browsing,

6 ❘ chaPter 1 IntroductIon to IPhone develoPment wIth monotouch for c# develoPers

e-mail, and multimedia capabilities. The fi rst-generation iPhone connected to a wireless network
and applications were delivered to the user over the mobile version of Safari.

Writing a web-based application for the iPhone is fairly simple. The Safari web browser is a great
tool — it does an excellent job of scaling web-based applications to run an iPhone-sized screen. It
also does well running applications that are highly dependent on JavaScript. Upgrading an iPhone
web-based application is also a simple matter of deploying a new version of the application to a web
server. Many applications have taken this approach.

Unfortunately, web applications are not suitable for all applications — applica-
tions that require some background processing, access to local resources, must
work when a network connection is unavailable, and some other application
types don’t work well in this model.

So, the question becomes how does one write an application that fi ts into the iPhone?

The fi rst-generation iPhone did not have support for users to load applications on the device. For a
few users, this was not acceptable, and they began jailbreaking their iPhones, which is the process
where users run software on their devices that Apple has not approved.

Jailbreaking has several problems:

Technical Issues:➤➤ Jailbreaking requires the iPhone’s owner to perform the operation, and
many iPhone users are not technically profi cient enough to do this.

Legality:➤➤ The legality of jailbreaking is unclear at the time of this writing. It is not clear
where jailbreaking falls within the Digital Millennium Copyright Act. The Electronic Frontier
Foundation has asked the United States Copyright Offi ce to recognize an exception to the
DMCA that allows iPhone owners to jailbreak their devices. Apple has argued in response
that jailbreaking an iPhone is a copyright violation.

Unknowns:➤➤ It comes with a series of unknowns. How well can a jailbroken iPhone be
upgraded to new versions of the iPhone operating system (OS)? Will jailbreaking an iPhone
open it up to security issues?

In 2008, Apple introduced the second generation of the iPhone, referred to as the iPhone 3G. With this
generation and the new version of the iPhone OS, Apple released a number of enhancements, including
the ability to run applications natively on the device. In addition to this, Apple has put together an eco-
system whereby users can fi nd and install applications on their iPhone device called the App Store.

These native applications are a great improvement over web-based applications, which are limited in
what they can do on a device. Fundamentally, they have to be loaded over the Web and are not able
to access all device features. Native applications tend to have more support for device features like
the accelerometer, fi le system, camera, cross-domain web services, and other features that are out-
side of features available in HTML and JavaScript. In addition, native applications do not depend
on the wireless network to be loaded, whereas a web application is dependent on the wireless net-
work for loading.

Mobile Development ❘ 7

In 2009, Apple introduced the iPhone 3GS and version 3 of the iPhone operating system. The iPhone
3GS, a refinement of the iPhone 3G, supports higher data rates than the iPhone 3G, an improved
camera, an updated CPU, and voice control.

In 2010, Apple announced and shipped the iPad. The iPad is a tablet device, and it has a larger
screen than the iPhone. Also significant is that it shipped with the iPhone operating system that is
fundamentally different than the iPhone.

Along with the release of each new iPhone, Apple has introduced a new iPod touch. The iPod touch
can be thought of as an iPhone without the phone, camera, and support for the 3G data services;
however, the iPod touch does have support for wireless networking using WiFi.

Since its availability three years ago, Apple has shipped more than 60 million units of the iPhone.
The iPad is estimated to ship several million units of the iPad in its first year of availability, and this
will likely result in the iPad being the most popular tablet in 2010.

Unfortunately, for developers, three issues must be considered when running on the device:

The iPhone operating system does not allow for software code that is interpreted or dynami-➤➤

cally compiled in any way.

Apple’s licensing for the SDK and developing with the iPhone does not allow for applications ➤➤

to have interpreted or dynamically compiled code.

Apple has an extensive validation process for iPhone applications. Some of the automated ➤➤

tests for an application will check for dynamically compiled and interpreted code.

These issues and licensing are something that developers need to be knowledgeable of, and some-
what limit the choices that a developer has for writing applications that run on the iPhone.

mobile develoPment

There are a few things developers need to know when building applications on the iPhone with
MonoTouch:

The iPhone has a startup timer. If an application takes longer than 20 seconds to start up, the ➤➤

iPhone OS kills it.

The iPhone OS will kill any application that is unresponsive for longer than 20 seconds while ➤➤

the application is running. To work around this, you need to perform some type of asynchro-
nous operation.

The time spent processing the ➤➤ FinishedLaunching() event counts against the startup
timer. As a result, you do not want any long-term synchronous processing in the
FinishedLaunching() event.

The iPhone simulator is good for initial testing; however, it is not necessarily accurate for all ➤➤

testing. Just because something works in the simulator doesn’t mean it will run in the iPhone
in the same way. Final testing should be completed in the iPhone.

8 ❘ chaPter 1 IntroductIon to IPhone develoPment wIth monotouch for c# develoPers

With .NET, executables are fairly small. Every application shares the .NET Framework, so ➤➤

the applications don’t have their own copy of the framework. MonoTouch is not built into
the iPhone and its applications must have their own copy of the framework; MonoTouch is
compiled into your application. The result is that MonoTouch applications are larger on disk
than a comparable Objective-C application.

Although MonoTouch is a commercially licensed product, it is still a product that is under continual
development, and MonoTouch may not have support for a specific namespace or assembly. You have
two options for this situation:

Wait on the implementation of that assembly from the MonoTouch product.➤➤

Pull the necessary code or assembly into to your project. This is fairly common if the applica-➤➤

tion needs to use code within the System.Web.* namespaces.

In addition to the technical issues of building an application for the iPhone, some design issues that
developers should be aware of include:

Don’t design an application for a desktop environment and think that it can be scaled down ➤➤

to an iPhone, or any mobile device. An iPhone does not have the display, hardware, or stor-
age of a desktop computer. iPhone and mobile device applications are really good for simple,
limited-purpose functions, but they should not do everything that a desktop application does.

The iPhone simulator is a fine tool, but don’t limit testing to the iPhone simulator. A simulator ➤➤

is just a simulator. There is a keyboard and a mouse associated with the iPhone simulator. To
really test a complicated design, the application must be tested from a physical iPhone.

aPPle iPhone sdk tools

When the iPhone originally shipped, you could not run third-party native applications directly on
the device — until March 6, 2008, when Apple released the first beta of the SDK. The iPhone SDK
allows third parties to write applications and run them natively on the device. Since that date, there
have been a steady stream of updated beta and released versions of the iPhone SDK. Originally, the
iPhone SDK supported both the iPhone and the iPod Touch. With the beta release of the iPhone
SDK Version 3.2, Apple added support for the iPad tablet device.

tools
The Apple SDK contains a number of tools that are important to the MonoTouch developer. These
tools are:

Xcode:➤➤ A suite of tools for development in an Apple environment, the main tool being the
IDE. Although MonoTouch does not directly use the Xcode IDE, it can help you create a
simple app to deploy to a device. You can also use it to verify that the certificates and provi-
sioning information on the associated devices are working properly.

Interface Builder:➤➤ Interface Builder (IB) allows for the graphical creation of a user interface.
The MonoDevelop IDE integrates with IB and converts the interface created within IB into a
user interface callable by MonoTouch.

summary ❘ 9

Simulator:➤➤ Allows for emulating the iPhone, iPod Touch, and the iPad. Note that the simula-
tor does not run ARM code. It runs x86 code.

Libraries necessary to target the device:➤➤ This includes libraries for Cocoa Touch, audio,
video, networking, SQLite, threads, power management, and the general OS X Kernel.

licensing
The SDK is a free download. Unfortunately, to release software for the iPhone, a developer must
join the iPhone Development Program. At the time of this writing, the cost to join is $99 (U.S. dol-
lars) a year. The cost of joining varies from country to country. The ability to distribute applica-
tions to devices is dependent on having the necessary development certificates. These are available
through the Apple Developer site once a developer joins the iPhone Developer Program.

summary

This chapter looked at the following items in the marketplace:

The iPhone, its licensing, and its operating system➤➤

The .NET Framework and Mono➤➤

MonoTouch, which allows .NET developers to target the iPhone➤➤

MonoDevelop, which allows developers to have a good IDE to write code with MonoTouch➤➤

You should now be familiar with which tools are needed to build a native application with .NET/C#
for the iPhone. The next chapter explores the specifics of building a MonoTouch application with
MonoDevelop. Chapters 3 and 4 describe how to work with the user controls for user input and for
presenting data to a user in a standard form factor. Other chapters in the book will explore specific
parts of the iPhone, such as maps, acceleration, and the iPad.

2
introduction to MonoTouch

what’s in this chaPter?

Getting started with MonoTouch➤➤

Using MonoDevelop with MonoTouch➤➤

MonoTouch and Interface Builder➤➤

Debugging and deploying➤➤

What is MonoTouch? If you’ve bought this book, you probably at least have some basic idea,
but this chapter is all about giving you the essential answers to this question so that you have
a fi rm foundation from which to try your hand at and apply your development skills to iPhone
application development.

Simply put, MonoTouch is a set of tools that allows developers to build iPhone and iPod Touch
applications on a Mac using existing knowledge of the .NET Framework. The MonoTouch
application programming interface (API) provides a combination of the core .NET 3.5
Framework features and the core APIs that are provided by the iPhone SDK. To allow this
to happen, the .NET Framework is compiled down into ARM code so that it will run on
the iPhone device, whereas the iPhone native APIs, those written in Objective-C and C, are
exposed via an interop between C# and the native APIs themselves. This allows developers to
code against these foreign APIs in a familiar fashion and in a way that they are comfortable
with from their knowledge of C#.

before you begin develoPing

I’m going to make an assumption right from the get go and that assumption is that you have
an Intel Mac. The reason behind this is that the Apple iPhone SDK only supports these types
of machines for development. Because MonoTouch uses the iPhone SDK, you’ll also need to

12 ❘ chaPter 2 IntroductIon to monotouch

adhere to the development restrictions Apple imposes. To get your fi rst MonoTouch application up
and running, you need to do a few things:

 1. Make sure you have your Intel Mac running at least version 10.5.7.

 2. Download and install the Mono framework: www.go-mono.com/mono-downloads/
download.html.

 3. Download and install MonoTouch: http://monotouch.net/.

 4. Download and install MonoDevelop: http://monodevelop.com/Download.

 5. Download and install the iPhone SDK: www.apple.com/downloads/macosx/development_
tools/iphonesdk.html.

Order of installation is important since MonoTouch and MonoDevelop depend
on the Mono framework. Make sure you install these items in the order stated in
the preceding numbered list.

Now that you have all of the components installed, you’re ready to delve into MonoTouch. First, we
want you to take a look at what MonoTouch contains.

the comPonents of monotouch

The four components of MonoTouch are as follows:

monotouch.dll➤➤ , which is a C# assembly that provides a binding API into the iPhone’s native
APIs. (A full list of the APIs that are bound can be found later in the chapter in Table 2-2.)

mtouch➤➤ , which is a command-line SDK that will compile into C# and Common
Intermediate Language (CIL) code. This compiled code can then be run in the simulator
or in an actual iPhone.

An add-in to MonoDevelop that allows for iPhone development, which allows MonoDevelop ➤➤

to use the command-line tool mtouch and allows for integration with Interface Builder and
the iPhone simulator. It also enables deploying to the device and building for distribution to
the App Store and ad-hoc releases.

A commercial license of the Mono runtime, which allows for the static linking of the Mono ➤➤

runtime with the code developed to be sold in the App Store.

what is mono?
At the core of MonoTouch is Mono. Mono (which is Spanish for monkey) is an open-source imple-
mentation of the .NET Framework. It has been created by Novell to enable a cross-platform version
of the .NET Framework. This means that the framework can be run on many different platforms
such as Apple OS X, Linux, Nintendo’s Wii, Sony PlayStation 3, and many others, including

http://www.go-mono.com/mono-downloads/
http://monotouch.net/
http://monodevelop.com/Download
http://www.apple.com/downloads/macosx/development_tools/iphonesdk.html

The Components of MonoTouch ❘ 13

Windows. Because Mono is open source, this enables anyone to use and modify the framework
to their own needs, which is useful if you want to target restrictive platforms. With this in mind,
MonoTouch uses a modified version of the Mono framework to develop against and then runs a
linker on the application code (and the framework) to cut down the size of the overall code in your
application. The linker concept is explained further in the “Understanding the Linker” section later
in this chapter.

namespaces and classes of monotouch
The section discusses further the core namespaces and classes that are included within MonoTouch.
MonoTouch uses a superset of the Silverlight .NET assemblies, meaning that additional functional-
ity has been added to the Silverlight .NET assemblies within MonoTouch. Table 2-1 shows a list of
the .NET assemblies that are available.

table 2-1: Available .NET Assemblies in MonoTouch

assembly aPi comPatibility

Mono .CompilerServices .SymbolWriter .dll For compiler writers

Mono .Data .Sqlite .dll ADO .NET provider for SQLite; some limitations due to
the iPhone OS SQLite version

Mono .Data .Tds .dll TDS Protocol support; used for System .Data .SqlClient
support within System .Data

Mono .Security .dll Cryptographic APIs

mscorlib .dll Silverlight

System .dll Silverlight, plus types from the following namespaces:

System .Collections .Specialized
System .ComponentModel
System .ComponentModel .Design
System .Diagnostics
System .IO .Compression
System .Net
System .Net .Cache
System .Net .NET .Mail
System .Net .Mime
System .Net .NetworkInformation
System .Net .Security
System .Net .Sockets
System .Security .Authentication
System .Security .Cryptography
System .Timers

System .Core .dll Silverlight

continues

14 ❘ chaPter 2 IntroductIon to monotouch

assembly aPi comPatibility

System .Data .dll .NET 3 .5 with functionality such as System .CodeDom,
XML confi g support, OleDb, Odbc removed

System .Json .dll Silverlight

System .ServiceModel .dll WCF stack as present in Silverlight .

System .Transactions .dll .NET 3 .5; part of System .Data support

System .Web .Services .dll Basic web services from the .NET 3 .5 profi le, with the
server features removed

System .Xml .dll .NET 3 .5

System .Xml .Linq .dll .NET 3 .5

System .Linq .NET 3 .5

Taken from www.MonoTouch.Net/Documentation/Assemblies

The MonoTouch product is growing with every release, so chances are that extra functionality will
be included since the time of this writing. It will be worth checking the source of the table for any
additional changes and updates.

In addition to the .NET assemblies, MonoTouch provides the monotouch.dll assembly, which con-
tains APIs that are bound against the Objective-C and C-based APIs. The key namespaces in this
assembly are as follows:

MonoTouch.ObjCRuntime➤➤ : This namespace provides the interop/bridge between the .NET/C#
world and the Objective-C world of the iPhone. This is discussed further in Chapter 11.

MonoTouch.Foundation➤➤ : This namespace provides support for the data types necessary to
communicate with the Objective-C world of the iPhone. Most types are directly mapped. For
example, the NSObject Objective-C base class is mapped to the MonoTouch.Foundation
.NSObject class in C#. Some classes aren’t directly mapped to their Objective-C class name
like NSArray. Instead, an NSArray maps to a strongly typed array like UIViewController[]
if the array has a collection of UIViewControllers.

MonoTouch.UIKit➤➤ : This namespace provides a direct binding between the UIKit components
within Cocoa Touch. This binding is done by providing .NET classes for each of the UIKit com-
ponents available. This is the namespace that developers spend most of their time working with.

For .NET developers, Cocoa Touch is an abstraction layer or API for building
programs that run on the iPhone. Cocoa is the API used for building programs
that run on the Mac OS X operating system. Cocoa Touch can be thought of as
Cocoa tuned for the touch-based iPhone operating system. Read more about
Cocoa in Chapter 14.

table 2-1 (continued)

http://www.MonoTouch.Net/Documentation/Assemblies

The Components of MonoTouch ❘ 15

OpenTK➤➤ : This namespace is a modified version of the OpenTK API. OpenTK is an object-ori-
ented binding for OpenGL, which stands for the Open Graphics Library. OpenGL is an API
for using three-dimensional graphics. OpenTK is a library for performing OpenGL, OpenAL,
and OpenCL. It is written in C# and runs on Windows, Mac OS X, and Linux. The OpenTK
implementation on the iPhone has been updated to use Core Graphics and to expose only the
functionality available on the iPhone.

The other namespaces that are bound from Objective-C in the monotouch.dll are listed in
Table 2-2. You will notice the exclusion of MonoTouch.CoreData, which should be bound from the
Objective-C CoreData class. This is left out due to the tight coupling it has with the Objective-C
way of doing things and tools that go with it for working with persistent storage. Instead, Mono
.Data.Sqlite should be used as an alternative.

table 2-2: .NET Assemblies Bound from Objective-C

namesPace descriPtion

MonoTouch .AddressBook Provides access to the iPhone’s Address Book

MonoTouch .AddressBookUI User interface components for accessing the iPhone’s Address
Book

MonoTouch .AudioToolbox Contains low-level audio functionality for custom playback and
recording

MonoTouch .AVFoundation General-purpose audio playback and recording

MonoTouch .CoreAnimation Provides the ability to make animations

MonoTouch .CoreFoundation Bindings for low-level C API in Cocoa Touch

MonoTouch .CoreGraphics Binding to the Quartz 2D Graphics API

MonoTouch .CoreLocation Provides location facilities

MonoTouch .GameKit Allows providing game functionality such as P2P communication

MonoTouch .MapKit APIs to provide rich mapping functionality

MonoTouch .MediaPlayer Provides audio and video capabilities and linking to the iPod
library

MonoTouch .MessageUI User interface components for sending mail messages in-app

MonoTouch .OpenGLES Provides the ability to embed Open GL into your application

MonoTouch .StoreKit Contains APIs to handle in application payments

MonoTouch .
SystemConfiguration

Provides network reachability functionality

16 ❘ chaPter 2 IntroductIon to monotouch

working with monodeveloP

MonoDevelop is an open source Integrated Development Environment (IDE) and throughout the
book you will be using this tool to write and develop your sample applications. MonoDevelop is a
cross-platform IDE, which means it can run on Linux, Mac, and Windows platforms. The IDE has a
lot of similarities with Visual Studio, which is available only to Windows users. This being the case,
MonoDevelop allows for the development of desktop applications, web applications (in ASP.NET), and
Moonlight (the Mono implementation of Silverlight) among many others on Windows, Mac OS X, and
Linux machines. With this in mind, it’s worth learning about MonoDevelop before you jump into code
and worth understanding how a MonoDevelop MonoTouch project is structured.

When you first start up MonoDevelop, you are greeted with a screen that looks very similar to the
one that comes up when you open up Visual Studio. See Figure 2-1 for a screenshot of the home
screen. The screen is useful because it lists all your recent projects, which is very handy for jumping
between projects.

figure 2-1

To create a new MonoTouch project, you can either click File➤➪➤New➤➪➤Solution from the menu bar
at the top of the screen or you can simply click the Start a New Solution button on the home screen
under Common Actions. This takes you to a New Solution file dialog as shown in Figure 2-2.

Working with MonoDevelop ❘ 17

figure 2-2

Table 2-3 lists the different project types you can create.

table 2-3: MonoTouch Project Type Templates

ProJect tyPe descriPtion

iPhone Window-based Project Creates a window for you to start loading your views and other
boilerplate code onto .

iPhone OpenGL Project Creates Open GL boilerplate code for a spinning square .

iPhone Navigation-based
Project

Creates a project that is set up with a navigation view by default .

iPhone Utility Project The utility project is a simple two-view–based project where you
can flip the view to reveal “about” information .

MonoTouch Library Project A project to encapsulate library code for use in MonoTouch .

Empty MonoTouch Project A completely empty MonoTouch project .

For this example, you simply choose the iPhone Window-based project because this is the most com-
mon layout for a MonoTouch project. Give the project a name and click Forward.

The next screen you see is a Project Features screen, shown in Figure 2-3. You won’t need to use any
of these features because they are more for other types of Mono projects such as desktop applica-
tions, so you can skip the screen and just click OK.

18 ❘ chaPter 2 IntroductIon to monotouch

figure 2-3

Taking a deeper look at the MonoTouch project layout you
notice a few different things. Figure 2-4 shows the project
structure from the default Windows-based project. Your
solution file contains one project — a MonoTouch proj-
ect. Any additional library projects used also need to be
MonoTouch projects.

The References folder will be a familiar sight; how-➤➤

ever notice that the monotouch.dll is automatically
included as a reference.

The ➤➤ .cs file named Main.cs is the default startup
template used by MonoTouch, and it has the Main
method within it. The Main method is the starting
point for an iPhone application, which also starts
the application’s event loop for handling interaction
between the iPhone and the application.

An XIB file (an XML-based Interface Builder file) called ➤➤ MainWindow.xib is the file that con-
tains the user interface for the application. This file is typically modified by using Interface
Builder. Interface Builder has some interesting concepts that are explored in the following
section.

The ➤➤ MainWindow.xib.designer.cs file contains definitions of the views, controls, outlets,
and actions that exist within the user interface. (Views, outlets, and actions will be explained
later in this chapter.) This file is updated each time that the user interface is updated through
Interface Builder. It should not be updated manually.

figure 2-4

Using interface Builder ❘ 19

Now that you’ve come to grips with the basics of MonoDevelop and MonoTouch projects, you can
dive into using Interface Builder and start to create a “Hello World” application.

using interface builder

The Interface Builder tool is provided in the iPhone SDK. The tool is commonly used in Mac OS X
development and in iPhone application development. Interface Builder provides a drag-and-drop sur-
face for a developer to lay out controls on a screen. Using Interface Builder is very much a love/hate
thing, especially for those coming from a Visual Studio background; it has lots of similarities to the
designer within Visual Studio, but the way it works and allows controls to be set up is very different.

Using Interface Builder is completely optional and all controls can be used
straight from code, but it is a useful tool for creating layouts.

Interface Builder is integrated straight into MonoDevelop, and double-clicking any .xib fi le auto-
matically opens up Interface Builder for you with the selected .xib fi le.

When you open up Interface Builder, you are presented with a few different windows as shown in
Figure 2-5.

figure 2-5

20 ❘ chaPter 2 IntroductIon to monotouch

Library: ➤➤ This window contains the Objects, Classes, and Media tabs. These contain the con-
trols that you can click and drag onto the view.

View: ➤➤ This window is the view that you can click and drag different controls on to. This
enables you to layout your user interface in a WYSIWYG way.

Connections: ➤➤ This tab is where you set up connections between your controls and enable
them to be modified programmatically. As you can see, this is one of three other tabs. The
other three tabs are Attributes, Size, and Identity, which all modify the controls details.
Collectively, this window is known as the Inspector.

The fourth window, Untitled in Figure 2-5, is the Main Menu of Interface Builder. This pro-➤➤

vides a hierarchical view of all the controls on a view.

The next few sections discuss what sort of controls that you have at your disposal with both
Interface Builder and just using controls in code.

working with library controls
The Library window contains a bunch of controls that are usable within Interface Builder. These
controls are also available in code; the brackets represent the class for the control.

Controllers (➤➤ UIViewController): The Controllers are a family of controllers that control
some type of activity.

Data Views:➤➤ The Data Views typically present some type of information to the user. The con-
trols presented are:

Table View (➤➤ UITableView): A Table View presents data to a user in a table list for-
mat. Users are able to scroll through the data. Typically, a single cell in a Table View
is an entire row (known as a Table View Cell).

Table View Cell (➤➤ UITableViewCell): The Table View Cell allows for custom look
and feel, attributes, and behaviors of cells to be defined and applied within a Table
View.

Image View (➤➤ UIImageView): The Image View displays an image or animation to a
user. In the case of an animation, this is defined as an array of UIImages.

Web View (➤➤ UIWebView): The Web View displays web content to a user within an
application.

Map View (➤➤ MKMapView): The Map View displays map content to a user within an
application.

Text View (➤➤ UITextView): The Text View displays multiple lines of editable text.

Scroll View (➤➤ UIScrollView): The Scroll View provides a way for content to be dis-
played that does not entirely fit within a single window view.

www.allitebooks.com

http://www.allitebooks.org

Using interface Builder ❘ 21

Picker View (➤➤ UIPickerView): The Picker View displays a slot-machine–style spinning
wheel. For .NET developers new to MonoTouch, this control is similar in concept to
a drop-down list box.

Date Picker (➤➤ UIDatePicker): The Date Picker is a set of rotating wheels that allows
for dates and times to be selected.

Inputs & Values:➤➤ The Inputs & Values provide a set of UI controls that are designed for user
input. These controls are:

Segmented Control (➤➤ UISegmentedControl): The Segmented Control can be thought
of as a button where different segments/parts of the button function as individual
controls.

Label (➤➤ UILabel): The Label is a control to display text.

Round Rect Button (➤➤ UIButton): The Round Rect Button control implements touch
events. A touch event is like a “click” event in .NET. This is equivalent to a button in
.NET.

Text Field (➤➤ UITextField): The Text Field control allows for users to add text or
data through the virtual keyboard.

Switch (➤➤ UISwitch): The Switch control allows users to toggle values in a user inter-
face. Conceptually, this control is similar to a checkbox.

Slider (➤➤ UISlider): The Slider control allows users to input a single value from a
range of values.

Progress View (➤➤ UIProgressView): The Progress View control allows for the display
of the progress of a running task. Typically, the Progress View is used for long-run-
ning tasks to provide feedback to the user.

Activity Indicator View (➤➤ UIActivityIndicatorView): The Activity Indicator View
control provides feedback that a task is currently running. There is no indication of
the state of the task, merely one that the task is running.

Page Control (➤➤ UIPageControl): The Page Control provides the user with informa-
tion that there are additional pages in the application.

Windows, Views, & Bars:➤➤ These are the windows, views, and bars available in Interface
Builder and code.

Window (➤➤ UIWindow): A window contains multiple views and is the first to be dis-
played on screen. Since all views will be in a window, you can only ever have one
instance of a window.

View (➤➤ UIView): The View control is a rectangular region for placing controls and
handling events.

22 ❘ chaPter 2 IntroductIon to monotouch

Search Bar (➤➤ UISearchBar): The Search Bar control is a text fi eld with round edges
and a search icon. Its UI look is designed to show the user that the fi eld will be used
for searching.

Search Bar and Search Display Controller (➤➤ UISearchDisplayController): The
Search Bar and Search Display Controllers are the Search Bar control, Bookmark
button, Cancel button, and a Table View that displays the results of a search.

Navigation Bar (➤➤ UINavigationBar): The Navigation Bar is a UI control that sup-
ports navigation of content in a hierarchical way.

Navigation Item (➤➤ UINavigationItem): The Navigation Item control contains infor-
mation about a navigation item contained within a Navigation Bar.

Toolbar (➤➤ UIToolbar): The Toolbar control displays a toolbar at the bottom of the
screen. It supports toolbar items within the toolbar.

Bar Button Item (➤➤ UIBarButtonItem): The Bar Button Item control represents an
item within a Toolbar control or Navigation Bar.

Flexible Space Bar Button (➤➤ UIBarButtonItem): The Flexible Space Bar Button con-
trol represents the amount of space within a toolbar.

Tab Bar (➤➤ UITabBar): The Tab Bar control allows for a tab bar to be displayed at the
bottom of the screen. The Tab Bar control allows for the selection of tab bar items.

Tab Bar Item (➤➤ UITabBarItem): The Tab Bar Item control is an item within a Tab Bar
control.

setting up outlets
To enable the use of the controls you have dropped onto Interface Builder view, you need to create
an outlet for each control. In MonoTouch, outlets are instance variables on the class you assign a
control to that you defi ne within Interface Builder. The instance variable gives you programmatic
access to the control. To demonstrate this, you are going to use an iPhone Window-based project
and open the MainWindow.xib fi le in Interface Builder.

Most of the time you will not want to use controls directly on a window, but
rather you use a view added as a sub-view to the window to hook up your con-
trols. This is because in a real application you will be just using the window to
add views to and not to display controls.

 1. To start off, drag a Rounded Rect Button from the Library Objects tab onto your window.
You can set the text of the button by double-clicking the middle of the button and typing in
the text. You should have something that looks like Figure 2-6.

 2. Even though the button control is on your window, you can’t use this control in code with-
out creating an outlet for it. In the library, select the Classes tab and then select AppDelegate
(this is the class that you want to have access to your newly created button).

Using interface Builder ❘ 23

figure 2-6

 3. At the bottom of the Library window now is a list of
four tabs: Inheritance, Definitions, Outlets, and Actions.
For now, you want to select the Outlets tab and click
the + button to add in a new outlet. Call the outlet
myButton and click Enter to save. You can optionally
enter in a type, but you can just leave this type as “id”.
You should have something that looks like Figure 2-7.

 4. You may have noticed that you have not told your
outlet which button it needs to be associated with. To
do this, you use the Inspector (the far right window in
Figure 2-8) to create a connection from the AppDelegate
class outlet to the actual button on your window. First
select the AppDelegate from the main Interface Builder
window (third window in from the left). Then, select the
Connections tab in the Inspector (the tab with the blue
icon with a white arrow). Your outlet is shown here; you
then need to click and drag (to create a connection) from
the Inspector outlet to the actual button on your window.
Figure 2-8 shows this in action.

Now that you have created this connection, the outlet is set
up and is available to be used in code. See the “Hello World
with Interface Builder” section later in this chapter to see
how this works.

figure 2-7

24 ❘ chaPter 2 IntroductIon to monotouch

figure 2-8

setting up actions
An action is a message that is fired off when a certain event occurs. This is a very similar concept to
events within .NET. What MonoTouch does is expose these actions as strongly typed partial meth-
ods from the control that fires off the event. You can read more on this in the next section.

Actions are set up in a similar way to how outlets are set up by using the library classes section to
create a new action and then connecting this action up to a method on a button.

 1. Just like you did to create an outlet, you create a new action and give it a name.

 2. Again, doing this the same way as an outlet, you select the Actions tab and click the + but-
ton to add in a new action. You should call this action buttonPressed to follow with the
example images. Interface Builder automatically adds a colon to the end of the method. This
is used to denote that it is a method in Objective-C but it does no harm in leaving it in when
using MonoTouch.

 3. You should notice in the AppDelegate Inspector Connections tab a new section called
Received Actions, which contains the new action. Click and drag this new action over to the

Hello World with interface Builder ❘ 25

button. This time, when you let go you should notice a list of available actions pop up for the
button. See Figure 2-9 for an example.

The action you probably want to associate with a button is the TouchUpInside method.
This means that a user has touched a button and has just let go of it.

figure 2-9

That’s all you need to do associate an action in Interface Builder. See the next section on how you
can work with this.

hello world with interface builder

Now that you have a good understanding of what outlets and actions are all about, this section shows
how you can now use these outlets and actions in MonoTouch to do something simple, such as chang-
ing the button text when someone clicks the button. If you haven’t followed through the outlets and
actions sections, I suggest you do so because this section explains how to use them in MonoTouch.

Once you have saved the MainWindow.xib file you created earlier, open up the MainWindow
.xib.designer.cs file and see what is automatically created. Your designer file should look
like Listing 2-1.

26 ❘ chaPter 2 IntroductIon to monotouch

listing 2-1: MonoTouch generated appDelegate designer fi le

[MonoTouch.Foundation.Register(“AppDelegate”)]
public partial class AppDelegate {

 private MonoTouch.UIKit.UIWindow __mt_window;
 private MonoTouch.UIKit.UIButton __mt_myButton;

 #pragma warning disable 0169
 [MonoTouch.Foundation.Export(“buttonPressed:”)]
 partial void buttonPressed (MonoTouch.UIKit.UIButton sender);

 [MonoTouch.Foundation.Connect(“window”)]
 private MonoTouch.UIKit.UIWindow window {
 get {
 this.__mt_window =
 ((MonoTouch.UIKit.UIWindow)(this.GetNativeField(“window”)));
 return this.__mt_window;
 }
 set {
 this.__mt_window = value;
 this.SetNativeField(“window”, value);
 }
 }

 [MonoTouch.Foundation.Connect(“myButton”)]
 private MonoTouch.UIKit.UIButton myButton {
 get {
 this.__mt_myButton =
 ((MonoTouch.UIKit.UIButton)(this.GetNativeField(“myButton”)));
 return this.__mt_myButton;
 }
 set {
 this.__mt_myButton = value;
 this.SetNativeField(“myButton”, value);
 }
 }
}

What you can see from this designer fi le is that it has created a partial class to go with your
AppDelegate class in the Main.cs fi le. You can also see that there is a partial method called
buttonPressed, which represents the action that you created. You also have an instance variable
myButton, which represents the outlet that you created for the button.

You should not edit the designer fi le because this fi le is automatically generated
every time the .xib is edited in Interface Builder.

Hello World with interface Builder ❘ 27

If you go over to the Main.cs file where the other partial AppDelegate class is you can start cod-
ing against the myButton variable. You get full IntelliSense since you know it is of type UIButton.
Because you added the button through Interface Builder, you don’t need to add any extra code to
initialize the button — this is done automatically.

To pick up the fact that a button has been pressed, you want to create a partial buttonPressed
method and handle the action by running some of your own code. For this example just change the
button’s text to say Clicked by using the SetTitle method, where you pass in the title of the button
and the control state it should be shown for — just use Normal for this example. You should end up
with your Main.cs looking like Listing 2-2.

listing 2-2: Using interface Builder controls

// The name AppDelegate is referenced in the MainWindow.xib file.
public partial class AppDelegate : UIApplicationDelegate
{
 public override bool FinishedLaunching (UIApplication app,
 NSDictionary options)
 {
 // If you have defined a view, add it here:
 // window.AddSubview (navigationController.View);

 window.MakeKeyAndVisible ();

 return true;
 }

 partial void buttonPressed (UIButton sender)
 {
 myButton.SetTitle(“Clicked”, UIControlState.Normal);
 }

 // This method is required in iPhoneOS 3.0
 public override void OnActivated (UIApplication application)
 {
 }
}

To run the code, you can simply click the cogs icon in MonoDevelop (as shown in
Figure 2-10). Keyboard shortcut fans can use Alt+Cmd+Enter to do the same action.
This will compile your application, automatically open up the iPhone simulator,
install your application on the simulator, and start your application.

If all has gone successfully, you should see a screen that looks like Figure 2-11. When you click the
button, the text should change to Clicked and the application will end up looking like Figure 2-12.

figure 2-10

28 ❘ chaPter 2 IntroductIon to monotouch

figure 2-11 figure 2-12

hello world in code

Because developing with Interface Builder is completely optional, this section shows how to use code
to build the same application as in the preceding section.

To start off, you again create a new iPhone Window-based project. This automatically creates the
MainWindow.xib and designer fi le, but you won’t be using them this time around. Instead, you’ll be
coding everything in your FinishedLaunching method.

If the FinishedLaunching method is not returned in 10 seconds, the iPhone OS
kills your application. The best way to manage this is to create a new view as
a sub-view of the main window and add in any tasks to be carried out in this
view rather than directly on the FinishedLaunching method. Because this is a
simple example, this will not matter.

Hello World in Code ❘ 29

First, create a new button to go on the screen. To do this you simply create a new instance of
a button by calling the static method FromType on the UIButton class. Use the button type of
RoundedRect from the UIButtonType enumeration so that it matches the button you used on the
previous example.

Because the button is created programmatically, its position within the UIWindow must also be
set programmatically. To do this you need to set the Frame of the button. You can create a new
System.Drawing.RectangleF rectangle and pass that to the button’s frame property. To make the
examples match a little more, you also want to use the SetTitle method to set the initial text of the
button to My Button.

If you decided to run the code straight away, you wouldn’t actually see the button displayed at all.
This is because you need to add it to the window. You can do this simply by calling the AddSubview
on your window and passing in the button you just created. The code to programmatically add a
button should look like Listing 2-3 and should be in the FinishedLaunching method.

listing 2-3: adding a button programmatically

var button = UIButton.FromType(UIButtonType.RoundedRect);
var frame = new System.Drawing.RectangleF(35f, 30f, 250f, 40f);
button.Frame = frame;
button.SetTitle(“My Button”, UIControlState.Normal);
window.AddSubview(button);

When you run the app now, the button appears, but when someone clicks the button, nothing
happens. This is where you want to handle the TouchUpInside event. Luckily you don’t have to
dive into any actions to get this to work; you can simply handle the event as you would in .NET.
The button instance exposes all the events available to the button that you saw earlier while using
Interface Builder. When you add the event for TouchUpInside, your code should look similar to
Listing 2-4. Obviously this depends on how you have implemented the event, but you should get the
same results whichever way you do. This example uses a lambda to create the anonymous delegate.

listing 2-4: adding a touch event to a button programmatically

var button = UIButton.FromType(UIButtonType.RoundedRect);
var frame = new System.Drawing.RectangleF(35f, 30f, 250f, 40f);
button.Frame = frame;
button.SetTitle(“My Button”, UIControlState.Normal);

button.TouchUpInside += (sender, e) => {
 button.SetTitle(“Clicked”, UIControlState.Normal);
};

window.AddSubview(button);

Notice how little code you need to write using Interface Builder comparatively. However, you can
see it’s much more explicit using code to create the new objects than it is letting .xib files do this for
you.

30 ❘ chaPter 2 IntroductIon to monotouch

debugging

MonoTouch supports both debugging in the iPhone simulator and debugging on the device. As you
might expect, the debugging story is very similar to debugging through Visual Studio and supports
debugging with breakpoints, catchpoints, inspection, watches, an immediate/expression evaluator, a
call stack and stepping through code.

on the simulator
You may have noticed a similar icon right next to the “Run” cog in MonoDevelop;
however, this one contains a green bug icon over the top (see Figure 2-13). This is the
icon you use to run your application in debug mode. If you want to use the keyboard
to do this, you can hit Cmd+Enter.

You set breakpoints through MonoDevelop the same way you would in Visual Studio — by clicking
to the left of the line you want to debug. When your application is running, it hits the breakpoint
and highlights the line in yellow. You can then hover over the variables, as you would expect to be
able to do in debugging, to inspect individual properties. You can see this in Figure 2-14.

figure 2-14

on the device
Debugging on the device is similar to debugging on the simulator. When you select the
Debug|iPhone profile within MonoDevelop (shown in Figure 2-15), you will be left with only the
debug icon that is clickable. When you click this, the application compiles in debug mode and
uploads to the device that is plugged in. It pops open a debugging window (shown in Figure 2-16) to
say what IP address and port the device should be pointing at. This is because you will be debugging
the device over Wi-Fi, so you want to make sure the device is on the same network as your machine.

figure 2-13

Understanding the linker ❘ 31

Applications that are debugging-enabled have extra settings
enabled in the confi guration. You can view these settings by tap-
ping on Settings and then the name of your application. You
should see a screen that looks like Figure 2-17. You want to make
sure that the IP address that popped up in the debugging window
on your computer and the IP address shown in the device’s debug
settings match up.

The device may vibrate when the application is in debug
mode. This is a way for MonoTouch to tell you that there is a
problem, and the problem depends on how many vibrations
you get:

One vibration:➤➤ The application could not connect to the
machine waiting for the device to connect.

Two vibrations:➤➤ The application could not parse the
host address that was confi gured.

Three vibrations:➤➤ Standard streams (stdout and stderr)
could not be set up.

To enable debugging on a device, you need to have the full version of
MonoTouch and the correct certifi cates installed. See “Deploying Your
Application” later in this chapter for more information.

understanding the linker

Because you can’t re-use libraries on the iPhone, every time you put a version of a MonoTouch appli-
cation on to a device or the App Store, you’re also installing the Mono framework. You are probably
thinking that having the same Mono framework on the device for every application is a waste, and
it would be if this were the case. MonoTouch actually uses a linker tool to go through the Mono
framework assemblies and remove the code that isn’t being used in your application. This means
that each application uses its own unique and stripped-down version of the Mono framework, so
when a new version of MonoTouch comes out, you don’t have to upgrade every application using

figure 2-15 figure 2-16

figure 2-17

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

32 ❘ chaPter 2 IntroductIon to monotouch

MonoTouch to support the latest version or test for any regressions that might have cropped up.
Each application will continue running its own version of the framework.

The linker also helps to get the size of your application down, which is important, especially on a
mobile device. If your application is under 20 megabytes, Apple allows you to download this over
Edge/3G; if the application is over this limit you need to be connected to a WiFi connection to
download the application. Because you’re not including the whole base class library and core com-
ponents of the Mono framework if you are not using it in your application, you are not using up
space in your application with unused code.

The linker is integrated into MonoTouch and MonoDevelop, so there is no extra work to enable it.
By default MonoDevelop will set up the iPhone simulator profiles (Debug|iPhone Simulator and
Release|iPhone Simulator) to not user the linker, and on device profiles (Debug|iPhone and
Release|iPhone), it chooses the “Link SDK assemblies only” configuration. This means that linker
goes through the SDK and removes code that isn’t being used, but it does not link the assembly you
create. The other configuration is “Link all assemblies”, which goes through both the SDK and the
assemblies you create. This can commonly cause problems with code involving things such as web
services, reflection, or serialization if they are not being statically called in your code. You
will want to use the [Preserve] attribute on members that may be removed by the linker or
[Preserve (AllMembers=true)] on types defining these members.

dePloying your aPPlication

You’ve got your Hello World application completed, and now it’s time to show the world how amaz-
ing the application is (or just how awesome MonoTouch is) by deploying the application to your
iPhone. Follow these steps to allow you to upload your application to a device:

 1. You will need to become a member of the Apple iPhone Developer Program. The cost of this
program at time of writing is $99 per year. The location to sign up can be found in the bul-
leted list at the end of this section.

 2. Request and install the Developer Certificate that is obtained from Apple through the iPhone
Developer Program membership. This certificate should be visible within the develop-
ment Mac’s Keychain Access utility, which can be found in /Applications/Utilities/
Keychain Access.app.

 3. Request and install the Deployment Certificate that is obtained from Apple through the
iPhone Developer Program membership. This certificate should be visible within the develop-
ment Mac’s Keychain security utility.

 4. The iPhone must be properly provisioned. This means that the iPhone is enabled to run debug or
test applications that are not downloaded from the App Store. Luckily, Apple supplies a wizard
utility through its developer web site that helps in the setup and provisioning of the iPhone.

 5. Once the development system is set up, the MonoDevelop project must be set up to deploy
the application to the iPhone when the developer selects the option to deploy to the device.
This is accomplished by setting the project’s options. To get to this screen you right-click on
the iPhone project and select options. When the project window opens up, you select iPhone
Bundle Signing. By default it uses the first developer certificate that it finds. See Figure 2-18.

summary ❘ 33

figure 2-18

Apple has several great resources for setting up the keys and for deployment setup for Mac develop-
ers. To access these resources, you need to be a member of the Apple iPhone Developer Program
(and to view the last two resources, you need to be logged in):

The iPhone Developer Program web site:➤➤ http://developer.apple.com/iphone/program

The iPhone Developer Program’s provisioning web site:➤➤ http://developer.apple.com/
iphone/manage/overview/index.action

An Apple PDF document that describes the certificate process in minute detail:➤➤ http://
developer.apple.com/iphone/download.action?path=/iphone/iphone_developer_

program_user_guide/iphone_developer_program_user_guide__standard_program_

v2.5__final.pdf

summary

This chapter showed you how to get set up with MonoTouch and MonoDevelop and showed that
using MonoTouch is pretty straightforward and can get you writing iPhone applications rather
quickly. MonoDevelop integrates nicely with existing Apple tools and is a familiar look and feel to
using Visual Studio, allowing you to pick up the development tools quickly.

http://developer.apple.com/iphone/program
http://developer.apple.com/
http://developer.apple.com/iphone/download.action?path=/iphone/iphone_developer_
http://developer.apple.com/iphone/download.action?path=/iphone/iphone_developer_program_user_guide/iphone_developer_program_user_guide__standard_program_v2.5__final.pdf

3
Planning Your app’s Ui:
exploring the screen Controls

what’s in this chaPter?

Creating iPhone(y) UI➤➤

Exploring the Input & Value objects in Interface Builder➤➤

In this chapter you learn about creating your application’s UI and specifi cally how the UI on
the iPhone can differ from UIs that you might have created before. You also explore the Input
& Value objects from the Interface Builder Objects Library.

Figure 3-1 shows the Input & Value objects in
Interface Builder. We discuss those objects later in
this chapter. First, however, you need to become
familiar with how an iPhone UI generally looks and
what patterns for interaction it usually follows.

creating iPhone(y)
ui and aPPlication
interaction Patterns

One of the most important aspects of application
development for an iPhone app is the user interface.
This is because to most users, the interface is the
application. Designers and developers spend a lot
of time deciding how common interface elements
should look and how interaction should occur. The
great thing is that the MonoTouch team has ported figure 3-1

36 ❘ chaPter 3 PlannIng Your aPP’s uI: exPlorIng the screen controls

all of the CocoaTouch classes for making your apps look and feel just like CocoaTouch apps. In
addition to exploring these classes, the author urges you to take a look at Apple’s Human Interface
Guidelines; it provides developers with descriptions of interaction patterns for common problems.

Apple provides the View Controller Programming Guide for iPhone OS in the iPhone SDK docu-
mentation. This document explores several high-level design patterns for user interaction. Apple has
created semantics for describing the overall style of interaction for a given screen or set of screens in
an application — almost all applications implement designs that can be described according to this
vocabulary. With an understanding of these common patterns, you can plan your user interfaces
according to your user needs.

command interfaces
A command interface is one in which you present your users with a toolbar containing one or more
buttons that represent actions for them to take. Command interfaces typically don’t use view con-
trollers, but instead wire actions for buttons to other objects directly. You add a UIToolbar to your
application to implement a command interface.

A command interface might be right for your application if:

You have a very small, limited section of actions that your user can perform.➤➤

You are presenting the user with an editable view, maybe something like a drawing surface, ➤➤

and you want to provide a set of tools or actions.

You have one main screen from which the user performs all the actions of your application.➤➤

Figure 3-2 shows examples of command interfaces.

figure 3-2

Creating iPhone(y) Ui and application interaction Patterns ❘ 37

radio interfaces
Radio interfaces present a set of buttons that switch between views when a user taps them. These
buttons are displayed on a tab bar at the bottom of the window, and each tap swaps to a different
view without animating between the views. This type of interface works well for displaying non-
hierarchical data. You can use a UITabBar to create a radio interface.

A radio interface might be right for your application if:

You have a set of related but disparate screens. If your screens aren’t related in nature, ➤➤

you should consider building multiple applications to adhere to the concept of cooperative
single-tasking.

Your views are siblings. That is, they don’t represent different levels of a hierarchy of data, ➤➤

but rather various views into data that may or may not overlap.

You have a small set of closely related subsets of functionality that can be accessed in any ➤➤

order. Essentially, each view requires a separate main view controller, so the partitioning
functionality should consider the architecture.

Figure 3-3 shows examples of radio interfaces.

figure 3-3

navigation interfaces
Navigation interfaces display a hierarchy of objects. Users tap controls to move toward greater
specificity. The UINavigationController class is typically used to navigate a hierarchy of
UIViewController instances. Changing between views animates the more specific view in from
the right, whereas the less specific view moves out toward the left. Moving back up the hierarchy
animates the views in the other direction.

38 ❘ chaPter 3 PlannIng Your aPP’s uI: exPlorIng the screen controls

A navigation interface might be right for your application if you
have a set of hierarchical data or functionality that you’d like to
allow users to traverse. If your data fits any tree-like data struc-
ture, a navigation interface is likely appropriate, and follows stan-
dards established by Apple as part of the Cocoa Touch platform.

Figure 3-4 shows examples of navigation interfaces.

modal interfaces
A modal interface presents a supplemental view on top of a
view. This is most useful when presenting secondary screens,
such as an editing screen. Modal interfaces are similar to
navigation interfaces in that they animate transitions between
views. Navigation interfaces transition through a stack of
UIViewControllers by animating them horizontally. Modal
interfaces differ by transitioning new views onto the top of
the stack by animating them vertically. A great example of a
modal interface that is mixed in with lots of different types of
interfaces is the UIAlertView.

A model interface might be right for your application if you need to provide:

A workflow for working with data in multiple steps.➤➤

An editable interface for an onscreen view.➤➤

A secondary set of functionality that users can optionally engage while remaining in the con-➤➤

text of the current view. For example, you can use a modal interface if you want to trigger
the camera to take a photograph or choose a contact from your Address Book, and then pro-
vide the resulting data to the current view.

Figure 3-5 shows examples of modal interfaces.

combination interfaces
You should always keep in mind that radio, navigation, and modal interfaces don’t have to be mutu-
ally exclusive. In fact, the various types of interfaces are often combined to provide users with an
interface that presents multiple sets of hierarchical data for navigation. If you are familiar with any
of the popular apps, you will see that the use of combination interfaces is very common. Navigation
and modal interfaces are easily combined to create an application that can navigate through one of
several hierarchical data sets. You can recognize the modal-navigation interface by a tab bar on the
bottom of the screen that switches between table views at the top of the screen.

A combination interface might be right for your application if:

You have complex data or functionality that would benefit from the use of different user ➤➤

interfaces.

Your users will interact with your application using different modes for the same data set.➤➤

figure 3-4

Uilabel ❘ 39

figure 3-5

Figure 3-6 shows examples of combination interfaces.

figure 3-6

uilabel

Now that you have an idea of the interaction patterns that iPhone applications commonly use, you
are ready to get familiar with the controls available to you as Input & Value objects in Interface
Builder. This chapter starts out with the most basic control in the library: the UILabel. The

40 ❘ chaPter 3 PlannIng Your aPP’s uI: exPlorIng the screen controls

UILabel represents a read-only text view. UILabels can contain varying amounts of text and may
shrink, wrap, or truncate the text, depending on the size of the bounding rectangle and properties
you set. Through its properties you can control the font, text color, alignment, highlighting, and
shadowing of the text in the label. To do so, follow these steps:

 1. Open Interface Builder.

 2. Navigate to the Input & Value objects, and select a
UILabel. Drag it onto your window/view and place it.

 3. Create an outlet for this UILabel so that you can access this
object from your code.

The members that you will most frequently work with in the
UILabel are:

Text➤➤ : The actual text to be displayed by the label.

TextAlignment➤➤ : Use the UITextAlignment enum to choose
Left, Center, or Right.

TextColor➤➤ : Assign a named color (such as UIColor.Blue)
or a System color (such as UIColor.DarkTextColor), or a
From method to use any other color.

Font➤➤ : Set the font typeface and size for the text.

Lines➤➤ : The maximum number of lines used to render the text.

Figure 3-7 shows the UILabel options in Interface Builder.

Not only can you set these from inside Interface Builder but you
can also set these from inside your code. The UILabel is used
to display read-only information and doesn’t have any events to
respond to clicks or any touch events. This will be a very static con-
trol and will mostly likely be used as a sub-view in other controls to
display your data. Here is an example of using these basic proper-
ties in code:

// UILabel outlet is named Label
Label.Font = UIFont.FromName(“Times New Roman”, 17f);
Label.TextAlignment = UITextAlignment.Left;
Label.TextColor = UIColor.Red;
Label.Lines = 3;
Label.Text = “It’s a UILabel from inside code with MonoTouch”;

uibutton

The UIButton is the control that you use to gather touch input from users. The use cases for the
UIButton are much like buttons on web pages or in Windows Forms applications where you want
the user to perform an action. The UIButton class can be customized through display attributes or

figure 3-7

UiButton ❘ 41

with specialized drawing code. Before these are discussed, you should know some of the basic prop-
erties in Interface Builder:

Title➤➤ : The actual text displayed on the button.

Image➤➤ : An image displayed on the button.

Background➤➤ : An image used as the button’s background.

TextColor➤➤ : Assign a named color (such as UIColor.Blue) or a System color (such as
UIColor.DarkTextColor), or a From method to use any other color.

Shadow➤➤ : Assign a named color (such as UIColor.Blue) or a System color (such as UIColor
.DarkTextColor), or a From method to use any other color.

Figure 3-8 shows the UIButton options in Interface Builder.

Each of the properties can be set for each of the different states
of the UIButton; these are defined in the UIControlState enum
to choose Normal, Selected, Highlighted, or Disabled. Within
Interface Builder you can select these states and set properties
accordingly; in code you will use the SetXxx method for the
accompanying property.

You can create several types of buttons:

UIButtonTypeCustom➤➤ : No button style. Instead, a custom
drawRect: method should be defined.

UIButtonTypeRoundedRect➤➤ : A rectangular button with
rounded corners and a centered title. Used for all general-
purpose buttons.

UIButtonTypeDetailDisclosure➤➤ : A circular button with
a centered chevron (>). Used to display details of an associ-
ated object or record.

UIButtonTypeInfoLight➤➤ : A light-colored, circular button
with an italicized lowercase “i” character. Used to flip a
view over to display settings or additional information.

UIButtonTypeInfoDark➤➤ : A dark-colored, circular button
with an italicized lowercase “i” character. Used to flip a
view over to display settings or additional information.

UIButtonTypeContactAdd➤➤ : A rectangular button with
rounded corners and a centered title. Used to display either
a list of contacts or a form for adding a new contact.

The following is an example of setting some of the UIButton properties and responding to a click
event, which for the UIButton is the TouchUpInside event:

// UIButton outlet is named button
UIImage bgImage = UIImage.FromFile(“buttonBackground.png”);

figure 3-8

42 ❘ chaPter 3 PlannIng Your aPP’s uI: exPlorIng the screen controls

button.SetBackgroundImage(bgImage, UIControlState.Normal);
button.SetTitle(“Click Me”,UIControlState.Normal);
button.SetTitleColor(UIColor.White, UIControlState.Normal);
button.TouchUpInside += delegate(object sender, EventArgs e) {
 Label.Text = “Button Was Clicked!”;
 Label.TextColor = UIColor.Brown;
};

uiteXtfield

The UITextField class provides you with single-line editing capabilities and has built-in support for
editing secure data such as passwords or other sensitive items. When a user taps a text field, a key-
board appears; when a user taps Return in the keyboard, the keyboard disappears and the text field
can handle the input in an application-specific way. UITextField supports overlay views to display
additional information, such as a bookmarks icon. UITextField also provides a clear text control
that a user taps to erase the contents of the text field. Via the properties of the UITextField you can
control the font, style, color, and alignment of the text.

Here are some of the properties of the UITextField class:

Text➤➤ : The actual text displayed by the textbox.

Placeholder➤➤ : The text displayed when the user has not input actual text. You can use this as
a visual cue to your user about what data you are expecting.

TextAlignment➤➤ : Use the UITextAlignment enum to choose Left, Center, or Right.

TextColor➤➤ : Assigns a named color (such as UIColor.Blue) or a System color (such as
UIColor.DarkTextColor), or a From method to use any other color.

SecureTextEntry➤➤ : Determines if a mask is used to hide the displayed text.

AutocapitalizationType➤➤ : Determines when the Shift key is automatically used (for exam-
ple, at the start of typing and new sentences). The default is None.

AutocorrectionType➤➤ : Shows whether auto-correction is enabled during typing. The default
is correction enabled.

ReturnKeyType➤➤ : Note that UITextView does not support the same Done editing behavior as
UITextField.

KeyboardType➤➤ : Allows the control to show a keyboard appropriate for the type of data you
are expecting, for example, plain text, an e-mail address, or numeric data.

The code using these properties is shown here:

// UITextField outlet is named TextField
TextField.Font = UIFont.FromName(“Times New Roman”, 17f);
TextField.TextAlignment = UITextAlignment.Left;
TextField.TextColor = UIColor.Black;
TextField.SecureTextEntry = false;

Uiswitch ❘ 43

Figure 3-9 shows the UITextField options in Interface Builder.

As noted earlier in this chapter, the UITextField responds when a user taps a text field, and a key-
board appears; when a user taps Return in the keyboard, the keyboard disappears. However, it
should be noted that if the UITextField appears below where the modal keyboard view appears, the
UITextField itself will be hidden unless you scroll the view to move the UITextField into the view-
able area. That being said, it’s generally the accepted practice that UITextFields are not to be used
outside of UITableViews. When you use UITextField inside of a UITableView, the UITableView
does all of the heavy lifting to ensure that the UITextField is in view for the user to see.

uiswitch

The UISwitch is a rather simple control that displays an element and shows the user the Boolean
state of a given value. Tapping the control toggles the state. Without subclassing and creating your
own control based on the UISwitch, you can only display On or Off on the control. The UISwitch
has very little in the way of properties as well; the one that you will most likely use is the State
property, which tells you whether it represents On or Off.

Figure 3-10 shows the UISwitch options in Interface Builder.

button.SetBackgroundImage(bgImage, UIControlState.Normal);
button.SetTitle(“Click Me”,UIControlState.Normal);
button.SetTitleColor(UIColor.White, UIControlState.Normal);
button.TouchUpInside += delegate(object sender, EventArgs e) {
 Label.Text = “Button Was Clicked!”;
 Label.TextColor = UIColor.Brown;
};

uiteXtfield

The UITextField class provides you with single-line editing capabilities and has built-in support for
editing secure data such as passwords or other sensitive items. When a user taps a text field, a key-
board appears; when a user taps Return in the keyboard, the keyboard disappears and the text field
can handle the input in an application-specific way. UITextField supports overlay views to display
additional information, such as a bookmarks icon. UITextField also provides a clear text control
that a user taps to erase the contents of the text field. Via the properties of the UITextField you can
control the font, style, color, and alignment of the text.

Here are some of the properties of the UITextField class:

Text➤➤ : The actual text displayed by the textbox.

Placeholder➤➤ : The text displayed when the user has not input actual text. You can use this as
a visual cue to your user about what data you are expecting.

TextAlignment➤➤ : Use the UITextAlignment enum to choose Left, Center, or Right.

TextColor➤➤ : Assigns a named color (such as UIColor.Blue) or a System color (such as
UIColor.DarkTextColor), or a From method to use any other color.

SecureTextEntry➤➤ : Determines if a mask is used to hide the displayed text.

AutocapitalizationType➤➤ : Determines when the Shift key is automatically used (for exam-
ple, at the start of typing and new sentences). The default is None.

AutocorrectionType➤➤ : Shows whether auto-correction is enabled during typing. The default
is correction enabled.

ReturnKeyType➤➤ : Note that UITextView does not support the same Done editing behavior as
UITextField.

KeyboardType➤➤ : Allows the control to show a keyboard appropriate for the type of data you
are expecting, for example, plain text, an e-mail address, or numeric data.

The code using these properties is shown here:

// UITextField outlet is named TextField
TextField.Font = UIFont.FromName(“Times New Roman”, 17f);
TextField.TextAlignment = UITextAlignment.Left;
TextField.TextColor = UIColor.Black;
TextField.SecureTextEntry = false;

figure 3-9 figure 3-10

44 ❘ chaPter 3 PlannIng Your aPP’s uI: exPlorIng the screen controls

uislider

The UISlider displays a horizontal bar, called a track, which represents a finite range of values.
The current value is shown by the position of an indicator, or thumb. A user selects a value by slid-
ing the thumb along the track. You can customize the appearance of both the track and the thumb:

MinValue➤➤ : The minimum value that the control will display.

MaxValue➤➤ : The maximum value that the control will display.

MinValueImage➤➤ : Contains the image that is drawn on the side of the slider representing the
minimum value.

MaxValueImage➤➤ : Contains the image that is drawn on the side of the slider representing the
maximum value.

Figure 3-11 shows the UISlider options in Interface Builder.

The following shows the code using these properties and creating a delegate for when the value is
updated:

// UISlider outlet is named slider
slider.MinValue = 0.0f;
slider.MaxValue = 10.0f;
slider.SetValue(10.0f, false);
slider.ValueChanged += delegate(object sender, EventArgs e) {
 Console.WriteLine(“New Value: “ + slider.Value);
};

uiactivityindicatorview

The UIActivityIndicatorView displays an element that provides user feedback on the progress of
a task or process with an unknown duration (to show the progress of a task with known duration,
use UIProgressView instead). As long as the task or process continues, the activity indicator spins.
A user does not interact with an activity indicator. The following is a list of properties that are most
frequently used with the UIActivityIndicatorView.

HidesWhenStopped➤➤ : A Boolean value that determines whether or not the control will display
when it is not animated.

ActivityIndicatorViewStyle➤➤ : Use the UIActivityIndicatorViewStyle enum to choose
Gray, White, or WhiteLarge.

Figure 3-12 shows the UIActivityIndicatorView options in Interface Builder.

The following code uses these properties and to start and stop the animation:

// UIActivityIndicatorView outlet is named activity
activity.ActivityIndicatorViewStyle = UIActivityIndicatorViewStyle.WhiteLarge;
activity.HidesWhenStopped = true;
activity.StartAnimating();
//Do Something
activity.StopAnimating();

UisegmentedControl ❘ 45

uisegmentedcontrol

The UISegmentedControl provides a compact, persistent grouping of buttons that switch between
views. According to the mobile HIG, segmented controls should provide feedback to users by swap-
ping views or otherwise appropriately updating the UI. The feedback should be immediate, avoiding
animation effects. That being said, it is, however, conceivable that you could use segmented controls
for more complex view management. It displays an element that comprises multiple segments, each
of which functions as a discrete button. Each segment can display either text or an image, but not
both. UISegmentedControl ensures that the width of each segment is proportional, based on the
total number of segments, unless you set a specific width.

NumberOfSegements➤➤ : This is a read-only property from inside code; but using Interface
Builder you can use it to set the number of segments you want to display.

ControlStyle➤➤ : Use the UISegmentedControlStyle enum to choose Plain, Bordered, or Bar.

Figure 3-13 shows the UISegmentedControl options in Interface Builder.

uislider

The UISlider displays a horizontal bar, called a track, which represents a finite range of values.
The current value is shown by the position of an indicator, or thumb. A user selects a value by slid-
ing the thumb along the track. You can customize the appearance of both the track and the thumb:

MinValue➤➤ : The minimum value that the control will display.

MaxValue➤➤ : The maximum value that the control will display.

MinValueImage➤➤ : Contains the image that is drawn on the side of the slider representing the
minimum value.

MaxValueImage➤➤ : Contains the image that is drawn on the side of the slider representing the
maximum value.

Figure 3-11 shows the UISlider options in Interface Builder.

The following shows the code using these properties and creating a delegate for when the value is
updated:

// UISlider outlet is named slider
slider.MinValue = 0.0f;
slider.MaxValue = 10.0f;
slider.SetValue(10.0f, false);
slider.ValueChanged += delegate(object sender, EventArgs e) {
 Console.WriteLine(“New Value: “ + slider.Value);
};

uiactivityindicatorview

The UIActivityIndicatorView displays an element that provides user feedback on the progress of
a task or process with an unknown duration (to show the progress of a task with known duration,
use UIProgressView instead). As long as the task or process continues, the activity indicator spins.
A user does not interact with an activity indicator. The following is a list of properties that are most
frequently used with the UIActivityIndicatorView.

HidesWhenStopped➤➤ : A Boolean value that determines whether or not the control will display
when it is not animated.

ActivityIndicatorViewStyle➤➤ : Use the UIActivityIndicatorViewStyle enum to choose
Gray, White, or WhiteLarge.

Figure 3-12 shows the UIActivityIndicatorView options in Interface Builder.

The following code uses these properties and to start and stop the animation:

// UIActivityIndicatorView outlet is named activity
activity.ActivityIndicatorViewStyle = UIActivityIndicatorViewStyle.WhiteLarge;
activity.HidesWhenStopped = true;
activity.StartAnimating();
//Do Something
activity.StopAnimating();

figure 3-11 figure 3-12 figure 3-13

46 ❘ chaPter 3 PlannIng Your aPP’s uI: exPlorIng the screen controls

The following code uses these properties and to a delegate to respond to the value being changed:

// UISegmentedControl outlet is named segmentedControl
segmentedControl.InsertSegment(“First”, 0, false);
segmentedControl.InsertSegment(“Second”, 1, false);
segmentedControl.InsertSegment(“Third”, 2, false);
segmentedControl.SelectedSegment = 0;
segmentedControl.ControlStyle = UISegmentedControlStyle.Plain;

segmentedControl.ValueChanged += delegate {
 if (segmentedControl.SelectedSegment == 0)
 Console.WriteLine(“First Selected”);
 //Show Your View
 else if (segmentedControl.SelectedSegment == 1)
 Console.WriteLine(“Second Selected”);
 //Show Your View
 else if (segmentedControl.SelectedSegment == 2)
 Console.WriteLine(“Third Selected”);
 //Show Your View
};

uiPagecontrol

The UIPageControl indicates the number of open pages in an
application by displaying a dot for each open page. The dot
that corresponds to the currently viewed page is highlighted.
UIPageControl supports navigation by sending the delegate an
event when a user taps to the right or to the left of the currently
highlighted dot. This control is generally used in conjunction with
a UIScrollView. (UIScrollView is covered in Chapter 4.)

Figure 3-14 shows the UIPageControl options in Interface Builder.

summary

This chapter introduced the various types of interface patterns that
are suggested by Apple:

Command interfaces are best used for limited functionality.➤➤

Radio interfaces use a ➤➤ UITabBar to provide access to related
views.

Navigation interfaces use a ➤➤ UINavigationController to
provide hierarchical data or functionality that you’d like to
allow users to traverse. figure 3-14

summary ❘ 47

Modal interfaces use a ➤➤ UIViewController to provide a secondary set of functionality that
users can optionally engage while remaining in the context of the current view.

Combination interfaces are good when you have complex data or functionality that would ➤➤

benefit from the use of different user interfaces.

You were also introduced to the Input & Value objects from the Interface Builder Objects Library,
which gives you a great introduction to some of the controls that you’ll use to create your user inter-
faces. This chapter combined with Chapter 4 should give you all the tools you need to build a great
UI with MonoTouch.

4
Data Controls

what’s in this chaPter?

Understanding windows, views, and controllers➤➤

Displaying data and editing controls➤➤

Using a toolbar➤➤

Navigating with tabs➤➤

The Interface Builder Objects Library divides the Cocoa Touch controls into four groups:
Controllers; Data Views; Inputs & Values; and Windows, Views & Bars. The Inputs & Values
objects were introduced in Chapter 3, and a few other objects like Tables, Maps, and Image-
related controls appear in Chapters 6, 7, and 10.

These are the remaining classes, which you are going to learn about in this chapter:

Controllers➤➤

UIViewController➤➤

UINavigationController➤➤

UITabBarController➤➤

UIToolBarController➤➤

Data Views➤➤

UIWebView➤➤

UITextView➤➤

UIScrollView➤➤

UIPickerView➤➤

UIDatePicker➤➤

50 ❘ chaPter 4 data controls

Windows, Views & Bars➤➤

UIWindow➤➤

UIView➤➤

UINavigationBar➤➤

UINavigationItem➤➤

UIToolbar➤➤

UIBarButtonItem➤➤

UITabBar➤➤

UITabBarItem➤➤

Figure 4-1 shows how each of these classes appear in Interface Builder, so you know where to
find them.

figure 4-1

windows and views

Windows and views form the underpinnings of all iPhone OS applications. They are the basis of the
layout system and capture and handle user input. The UIWindow class in the iPhone OS is relatively
simple and won’t require a great deal of customization while UIView and its subclasses form the
basis of every piece of your user interface.

Windows and Views ❘ 51

uiwindow
An iPhone OS application generally has only one window — it provides the background upon
which the rest of your user interface is displayed. Unlike windows in a desktop operating system,
the UIWindow class has no “chrome” (no title bar; resize handles; borders; or minimize, maximize,
or close buttons) and must always fill the entire screen. The only adornment is the status bar at
the top of your window, which you can optionally show or hide.

When you create a new application solution in MonoDevelop it automatically adds MainWindow.xib
to your project, which contains a UIWindow instance called window. It also adds the AppDelegate
.FinishedLaunching method that includes the line window.MakeKeyAndVisible(), which shows
the window.

It is possible to create a window directly in code. Listing 4-1 shows the simplest possible MonoTouch
application requiring no Interface Builder files in order to display some text on the screen. Most exam-
ples in this book do use Interface Builder in the examples, but it’s worthwhile remembering that you
can always accomplish the same effect constructing your UIView objects in code.

listing 4-1: Creating UiWindow in code (Window01\appController.cs)

using System;
using MonoTouch.Foundation;
using MonoTouch.UIKit;
namespace Window01
{
[Register(“AppController”)]
public class AppController : UIApplicationDelegate
{
 UIWindow window;
 public override void FinishedLaunching (UIApplication app)
 {
 window = new UIWindow (UIScreen.MainScreen.Bounds)
 {
 new UILabel(new System.Drawing.RectangleF (50,150,230,100))
 { Text = “Hello world” }
 };
 window.MakeKeyAndVisible();
 }
}
class HelloWorld
{
 static void Main (string[] args)
 { UIApplication.Main (args, null, “AppController”); }
}}

UIWindows should always fill the entire screen, hence the use of UIScreen.MainScreen.Bounds to
size the window.

52 ❘ chaPter 4 data controls

uiview
Although not an exact parallel, the UIView class has some similar characteristics to the User Control
concept in ASP.NET, WinForms, and WPF.

UIView is the base class of every other control in the UIKit framework — it is responsible for both
rendering content to the screen and responding to touch events within its bounds. A UIView can also
contain other UIView instances — which are referred to as sub-views — in as deep a hierarchy as
required. The parent (or superview) manages its sub-views’ sizes and positions and may also respond
to events that are not handled by a sub-view.

In very simple applications (such as many of the control-specifi c examples in this book) a UIView
(or subclass) may be added directly to the window for display and user interaction. Most applica-
tions require more complex view handling, which is done by UIViewControllers such as the
UINavigationController covered in this chapter and the UITableViewController covered in
Chapter 6. UIViewControllers orchestrate all the different views in your application: showing and
hiding them as appropriate and resizing them when the device’s orientation changes.

As mentioned previously, an application should have only one UIWindow; the remainder of the views
you add to your project will be a UIView, a UIViewController, or one of their subclasses. The key
members to know on UIView are:

Bounds➤➤ : Location and size of the view in the view’s coordinate system within its frame
rectangle; that is, the default origin is (0, 0) at the top left of the screen.

Frame➤➤ : Position and size of the view in the coordinate system of its containing superview.

UIView(frame)➤➤ : Constructor for UIView that requires a RectangleF to set its size.

AddSubview➤➤ : Adds the supplied UIView instance as a sub-view to the current view. The new
view is displayed on top of any existing sub-views and is positioned according to its Frame or
Bounds property.

The Bounds and Frame properties are of type System.Drawing.RectangleF in
MonoTouch, not CGRect from the CoreGraphics framework (which is what the
underlying Objective-C methods accept). This is one of many examples where
MonoTouch makes iPhone development more familiar to .NET developers by
using familiar classes wherever possible.

data view controls

The Interface Builder Data Views library category contains a number of different types of views, includ-
ing some important classes that deserve their own chapters: UITableView (Chapter 6), UIMapView
(Chapter 8), and UIImageView, which is covered in Chapter 10. The rest are discussed in this section.

uiwebview
The UIWebView control allows you to embed web content in your application: Internet-based web
sites, HTML fi les distributed in your application, or dynamically generated HTML strings. It is

Data View Controls ❘ 53

a very similar concept to the .NET WebBrowser control in Windows Forms and WPF, and for all
intents and purposes is like having an instance of Safari inside your application.

Web-based Content
The most obvious use of the UIWebView is to display a web page in your application. There aren’t
many members on the control; the main ones are:

LoadRequest()➤➤ : This method passes a URL (in an NSUrlRequest object) to load that
address from the Internet. In the following example this method is called from the Go button.

ScalesPageToFit➤➤ : This property controls whether the content is automatically scaled to
fit (with zooming allowed) or whether it is forced to always be displayed “actual size.” The
default is false, which means web pages aren’t scaled down for you. Users familiar with
Mobile Safari will expect to be able to zoom in and out of web pages, so for web content you
should usually set this to true, or check the Scales Page To Fit option in Interface Builder.

LoadStarted➤➤ : This event is triggered whenever new content is loaded by the web browser.
The following example shows the Network Activity animation to give some visual feedback
that something is happening.

LoadFinished➤➤ : This event is triggered when content has finished loading (the entire page and
all its content, including images and scripts). Useful to hide the Network Activity animation.

LoadError➤➤ : This event is triggered when a page cannot be loaded. The following example
stops the Network Activity animation and displays the error message to the user. In a real
application you might filter out some of these errors or display a more user-friendly message.

To demonstrate loading a web page, one sample in this chapter’s download — WebView01 — has
three controls placed on a window in Interface Builder: UIWebView, UITextField, and a UIButton.
This code added to FinishedLaunching() makes it work:

GoButton.TouchUpInside += delegate
{
 WebBrowser.LoadRequest(new NSUrlRequest(new NSUrl(UrlInput.Text)));
};
WebBrowser.LoadStarted += delegate
{
 UIApplication.SharedApplication.NetworkActivityIndicatorVisible = true;
};
WebBrowser.LoadFinished += delegate
{
 UIApplication.SharedApplication.NetworkActivityIndicatorVisible = false;
};
WebBrowser.LoadError += delegate(object sender, UIWebErrorArgs e)
{
 UIApplication.SharedApplication.NetworkActivityIndicatorVisible = false;
 using (var alert = new UIAlertView(“WebView Error”
 ,e.Error.LocalizedDescription,null,”OK”,null))
 { alert.Show(); }
};

WebView01\Main.cs

54 ❘ chaPter 4 data controls

The result is shown in Figure 4-2. Try navigating to an invalid URL (for example, http://wrox.co)
or testing it with no network connectivity to trigger the LoadError delegate.

If you read through Apple’s documentation for UIWebView you will notice the
events such as LoadStarted, LoadFinished, and LoadError are actually methods
in another class — UIWebViewDelegate. This is an example of how MonoTouch
makes the Objective-C APIs more familiar for .NET developers by exposing del-
egate methods as events on the object itself (in this case UIWebView).

Although it is possible to subclass and use Delegate classes provided by the
iPhone OS, throughout this book we use the MonoTouch events/delegates where
they have been provided.

To make this example work more like a real web browser you can use more UIWebView members
to implement Back and Forward behavior and keep the address bar in-sync with the displayed
web page. Using Interface Builder, add two UIButtons (labeled Back and Forward) that use these
members:

CanGoBack➤➤ : Whether there is a previous address in the navigation history to show.

CanGoForward➤➤ : Whether there is a previously visited address to return to.

GoBack()➤➤ : Show the previous address in the navigation history.

GoForward()➤➤ : Return to an address that has previously been visited and “gone back” from.

Listing 4-2 shows the code required in FinishedLaunching and provided in the chapter download
WebView02. The updated example with Back/Forward buttons is shown in Figure 4-3.

figure 4-2 figure 4-3

http://wrox.co

Data View Controls ❘ 55

listing 4-2: Mini Web Browser (WebView02\Main.cs)

GoButton.TouchUpInside += delegate
{
 WebBrowser.LoadRequest(new NSUrlRequest(new NSUrl(UrlInput.Text)));
};
WebBrowser.LoadStarted += delegate
{
 UIApplication.SharedApplication.NetworkActivityIndicatorVisible = true;
 if (!String.IsNullOrEmpty(WebBrowser.Request.Url.AbsoluteString))
 UrlInput.Text = WebBrowser.Request.Url.AbsoluteString;
};
WebBrowser.LoadFinished += delegate
{
 UIApplication.SharedApplication.NetworkActivityIndicatorVisible = false;
 UrlInput.Text = WebBrowser.Request.Url.AbsoluteString;
 BackButton.Enabled = WebBrowser.CanGoBack;
 ForwardButton.Enabled = WebBrowser.CanGoForward;
};
WebBrowser.LoadError += delegate(object sender, UIWebErrorArgs e)
{
 UIApplication.SharedApplication.NetworkActivityIndicatorVisible = false;
 BackButton.Enabled = WebBrowser.CanGoBack;
 ForwardButton.Enabled = WebBrowser.CanGoForward;
 using (var alert = new UIAlertView(“WebView Error”
 ,e.Error.LocalizedDescription,null,”OK”,null))
 { alert.Show(); }
};
BackButton.TouchUpInside += delegate
{
 WebBrowser.GoBack();
 UrlInput.Text = WebBrowser.Request.Url.AbsoluteString;
};
ForwardButton.TouchUpInside += delegate
{
 WebBrowser.GoForward();
 UrlInput.Text = WebBrowser.Request.Url.AbsoluteString;
};

local HTMl Content
Another great use of the UIWebView control is to display HTML-formatted text and images.
The simplest way to do this is add an HTML file to your project (don’t forget to set the
Build Action: Content) and load it into a UIWebView control. When you are writing
HTML specifically for display on iPhone OS devices it is a good idea to target the exact width
of the display and set ScalesPagesToFit to false.

NSUrl localFile = NSUrl.FromFilename(“MyContent.html”);
NSUrlRequest request = new NSUrlRequest(localFile);
WebBrowser.LoadRequest(request);
WebBrowser.ScalesPageToFit = false;

WebView03\Main.cs

56 ❘ chaPter 4 data controls

A snippet of the HTML source from download WebView03 and the resulting output are shown in
Figure 4-4.

figure 4-4

There are some things that you still can’t do with an HTML fi le. You might want to generate the
HTML dynamically in your code or reference local fi les such as images and style sheets. To allow
the UIWebView to fi nd local fi les you need to pass in the basedirectory that all the fi le references
are relative to.

Any fi les (such as HTML and images) in your MonoTouch project that are
marked as Build Action: Content will become part of your application
bundle when deployed to the simulator or a device. You can discover the
complete path (including the bundle name) using the static property NSBundle
.MainBundle.BundlePath.

That location is useful for displaying data fi les embedded in your application;
however, you should not save fi les within the application bundle. If your code
saves user data to a fi le, you should use a different path such as Environment
.GetFolderPath (Environment.SpecialFolder.Personal), which corre-
sponds to the Documents folder — this data will be backed up by iTunes and
won’t be lost if the application is upgraded to a newer version.

The next example in the download — WebView04 — shows how to display dynamically generated
HTML and reference local fi les in the HTML. The code does the following:

Determines the application bundle location.➤➤

Generates an HTML string in code (the complete HTML string has been truncated in the ➤➤

printed example shown).

Data View Controls ❘ 57

Creates an ➤➤ NSUrl to the base directory set and passes that to the UIWebView along with the
dynamically generated HTML string. Setting the base URL in this way tells the UIWebView to
prepend that location to all relative addresses in the HTML, meaning it can then resolve image
locations, style sheets, and even links to other HTML pages in your application bundle.

Sets ➤➤ ScalesPageToFit = false because the dynamically generated HTML is intended to be
viewed at normal zoom on the iPhone screen, and should not be resizable by the user.

basedir = NSBundle.MainBundle.BundlePath; // .app bundle
string name = “Reader”; // example of custom content
string html = @”<html><head>
<link rel=’stylesheet’ type=’text/css’
 href=’Styles/default.css’ /></head>
<body>Dear “+ name +@”,
<p>Styled text - <i>not possible</i> with
<code>UITextView</code>...
...”; // truncated
WebBrowser.LoadHtmlString(html, new NSUrl(basedir, true));
WebBrowser.ScalesPageToFit = false;

WebView04\Main.cs

Figure 4-5 shows how this looks on the screen.

There is one more useful feature of the UIWebView control to
learn about: the ability to intercept “navigation events” and
perform some other behavior either before or instead of opening
the link in the browser. ShouldStartLoad requires a delegate
method with three parameters:

UIWebView➤➤ : The control that has triggered the naviga-
tion event.

NSUrlRequest➤➤ : The URL requested by the user.

UIWebViewnavigationType➤➤ : The type of navigation
triggered by the user, listed in Table 4-1.

If ShouldStartLoad returns true, the requested navigation is
allowed; if false, the navigation is cancelled. Your code could
perform some alternate action such as showing another view or
displaying an alert to the user.

WebBrowser.ShouldStartLoad = delegate (UIWebView webView,
 NSUrlRequest request, UIWebViewNavigationType navigationType)
{
 if (navigationType == UIWebViewNavigationType.LinkClicked)
 { // open links in Safari rather than in the UIWebView
 UIApplication.SharedApplication.OpenUrl(request.Url);
 return false; // already handled
 }
 return true; // show everything else *in* the UIWebView
}

WebView04\Main.cs

figure 4-5

58 ❘ chaPter 4 data controls

Note that because the delegate must have a return value, it should be assigned to
ShouldStartLoad with an equals sign (=) and not attached using +=.

The return type of the delegate must match the type it is being assigned to
(WebBrowser.ShouldStartLoad is a boolean in this example, which matches
the return type of the delegate method).

You can interrogate the target location from the request parameter and the type of navigation
requested with the navigationType parameter in order to handle them differently (for example,
open a link in Safari but allow a form post to continue in the UIWebView). The possible values for
navigationType are shown in Table 4-1.

table 4-1: UIWebViewNavigationType

value descriPtion

LinkClicked A link was tapped .

FormSubmitted An HTML form was submitted .

BackForward The GoBack() or GoForward() methods were triggered .

Reload The currently displayed content is being reloaded .

FormResubmitted A form was resubmitted .

Other Another navigation action occurred .

other Content
UIWebView can also be used to display other content too. Using the same C# that loads a local
HTML fi le, you can display:

PDF documents your application might contain or download from the Internet➤➤

Images (which you can also display using ➤➤ UIImageView and UIScrollView, covered later)

uiscrollview
UIScrollView allows you to display and navigate content that is larger than the control itself (often
sized to the entire device screen). It provides built-in support for swiping to move around the con-
tent and pinching to zoom (depending on the type of UIScrollView). It is also the base class for
other controls that need to scroll content larger than their display Frame, like UITableView and
UITextView.

Data View Controls ❘ 59

image scrolling
The built-in Photos application is the most used example of a UIScrollView interface. Listing 4-3
shows the code required to load a large image into a UIScrollView and enable the user to pan and
zoom around it.

Bounces➤➤ : If true, scrolling to the edges of the image will “bounce” beyond the edge of the
image before stopping.

BouncesZoom➤➤ : If true, when you zoom to the minimum or maximum size the content tempo-
rarily exceeds the limits before animating to the correct size.

ContentSize➤➤ : The true size of the content being displayed. The UIScrollView needs to
know this so that it can calculate the scroll indicators’ size and position.

IndicatorStyle➤➤ : Use the UIScrollViewIndicatorStyle enum to select a Black or White
scrollbar (or leave it as Default).

MaximumZoomScale➤➤ : The maximum scaling factor that can be applied to the content. The fol-
lowing example allows expanding the content to four times its original size.

MinimumZoomScale➤➤ : The minimum scaling factor that can be applied to the content. The fol-
lowing example allows shrinking to a quarter of its original size.

ContentOffset➤➤ : The current position of the content view’s top-left corner in relation to the
UIScrollView, represented as a System.Drawing.PointF.

ZoomScale➤➤ : The current scaling applied to the content (default is 1.0). Listing 4-3 initially
displays the image at 80 percent of its actual size.

The default value for MaximumZoomScale and MinimumZoomScale is 1.0, which means that if neither
is set, zooming is effectively disabled.

listing 4-3: image Viewing with UiscrollView (scrollView01\Main.cs)

UIImage image = UIImage.FromFile(“GoldenGate.jpg”);
UIImageView imageView = new UIImageView(image);
MyScrollView.AddSubview(imageView);
MyScrollView.ContentSize = imageView.Frame.Size;
MyScrollView.MaximumZoomScale = 4f; // four times
MyScrollView.MinimumZoomScale = 0.25f; // one quarter size
MyScrollView.Bounces = false;
MyScrollView.BouncesZoom = false;
MyScrollView.IndicatorStyle = UIScrollViewIndicatorStyle.White;
MyScrollView.ViewForZoomingInScrollView = delegate (UIScrollView sender)
{ // could use a higher resolution copy here
 return imageView;
};
MyScrollView.ContentOffset = new System.Drawing.PointF(250,20);
MyScrollView.ZoomScale = 0.8f; // after assigning delegate

60 ❘ chaPter 4 data controls

Figure 4-6 shows the relationship between the device’s display and the UIScrollView’s content
being clipped to fit.

figure 4-6

Paging
Paging with UIScrollView provides behavior like the iPhone OS Home screen and Weather applica-
tion or third-party book-reading applications like Stanza and Kindle. Instead of allowing freeform
scrolling around the image in the previous example, UIScrollView can skip to defined “pages” of
the view (which are multiples of the view’s Bounds).

The most important difference between this example and Listing 4-4 is setting PagingEnabled = true
(which can be done in code or using the checkbox in Interface Builder). Figure 4-7 shows how the three
Frames relate to the UIScrollView and the iPhone’s screen.

listing 4-4: Paging with UiscrollView (scrollView02\Main.cs)

RectangleF scrollFrame = MyScrollView.Frame;
scrollFrame.Width = scrollFrame.Width * 3; // 3 pages
MyScrollView.PagingEnabled = true;
MyScrollView.ContentSize = scrollFrame.Size;
MyScrollView.ShowsHorizontalScrollIndicator = false;

RectangleF frame = MyScrollView.Frame;
frame.X = 0; // left-most ‘page’
UITextView textView = new UITextView (frame);

www.allitebooks.com

http://www.allitebooks.org

Data View Controls ❘ 61

textView.Editable = false;
textView.Text = “This is page one”;
MyScrollView.AddSubview(textView);

frame.X = frame.Width + 1; ; // middle-most ‘page’
textView = new UITextView (frame);
textView.Editable = false;
textView.Text = “This is page two”;
MyScrollView.AddSubview(textView);

frame.X = frame.Width * 2 + 1; ; // right-most ‘page’
textView = new UITextView (frame);
textView.Editable = false;
textView.Text = “This is page three”;
MyScrollView.AddSubview(textView);

Frame

UIScrollView

This is page three

Frame

ContentSize

This is page two

Frame

This is page one

figure 4-7

uitextview
The UITextView class is similar to the TextBox familiar to WPF programmers — it provides edit-
able (or read-only) scrollable multiline text display. You can specify the font, style, color, and align-
ment for the all the text in the view; however you cannot style individual words or characters. To
display styled text you need to use the UIWebView. Unfortunately there is no built-in control for
editing styled text (that is, that mixes fonts, colors, or sizes).

read-only Text View
To display multiple lines of text you can simply drag a UITextView onto your window or view in
Interface Builder and type the text into the Attributes window. You can also create the UITextView

62 ❘ chaPter 4 data controls

in code and use the Add or AddSubview methods to add it to a window or view, respectively. The fol-
lowing properties are demonstrated in the code download TextView01.

Some properties are easy to set in Interface Builder by simply checking a box, such as:

Detects Phone Numbers:➤➤ When checked, the UITextView automatically hyperlinks tele-
phone numbers in the text, and if the view is not editable they initiate a call when touched.
Recognized formats include 1-800-555-1234 and 555-1234.

Detects Links:➤➤ When checked, any URLs in the text are displayed as hyperlinks and open in
Safari when touched. Recognized formats include http://wrox.com and www.wrox.com.

The following properties can be set via Interface Builder or in code:

Editable➤➤ : Defaults to true, which means the text is editable and shows a keyboard when
touched. Set this to false to make the text read-only.

TextAlignment➤➤ : Use the UITextAlignment enum to choose Left, Center, or Right.

TextColor➤➤ : Assign a named color (such as UIColor.Blue) or a System color (such as
UIColor.DarkTextColor), or a “From” method to use any other color (UIColor has a num-
ber of methods such as FromRGB and FromHSB to create specific colors from Red/Green/Blue
or Hue/Saturation/Brightness values).

ScrollsToTop➤➤ : Enables the “shortcut,” where touching the status bar (if shown) automati-
cally scrolls a UITextView to the top of its content. This should be set to true if your text
view is the main control on the screen.

IndicatorStyle➤➤ : Because UITextView inherits from UIScrollView you can set the color of
the scrollbar using the UIScrollViewIndicatorStyle to Black or White so it is easy to see
regardless of the background color you choose.

In code you can also modify:

Font➤➤ : Set the font typeface and size for the text.

The code using these properties is shown here:

// UITextView outlet is named TextBox
TextBox.Font = UIFont.FromName(“Times New Roman”, 24f);
TextBox.TextAlignment = UITextAlignment.Left;
TextBox.TextColor = UIColor.White;
TextBox.BackgroundColor = UIColor.DarkGray;
TextBox.ScrollsToTop = true;
TextBox.IndicatorStyle = UIScrollViewIndicatorStyle.White;

TextView01\Main.cs

Figure 4-8 shows the UITextView options in Interface Builder and an example showing Phone
Numbers and Links. Refer back to Chapter 2 to review how to create outlets using Interface Builder.

http://wrox.com
http://www.wrox.com

Data View Controls ❘ 63

figure 4-8

editable Text View
To make a UITextView editable simply tick the Editable checkbox in Interface Builder or set
Editable = true. When the view is first displayed it just displays scrollable content — it does not
immediately accept input. Touching the view enables editing and the iPhone OS displays a keyboard
(according to the KeyboardType chosen) ready to start typing. Listing 4-5 shows how to use notifi-
cations to respond to keyboard events and dynamically resize the input so that parts of it do not get
obscured by the keyboard.

listing 4-5: TextView02\Main.cs

NSObject observer1, observer2; // for notifications
public override bool FinishedLaunching (UIApplication app, NSDictionary options)
{
 TextBox.Font = UIFont.FromName(“Helvetica”, 24f);
 TextBox.ScrollsToTop = true;
 DoneButton.Enabled = false; // set in notification
 DoneButton.TouchUpInside += delegate
 {
 TextBox.ResignFirstResponder(); // similar to ‘losing focus’ in .NET
 };
 // usually created in ViewWillAppear
 // on a ViewController, rather than AppDelegate

continues

64 ❘ chaPter 4 data controls

 observer1 = NSNotificationCenter.DefaultCenter.AddObserver
 (UIKeyboard.WillShowNotification, delegate (NSNotification n)
 {
 var kbdRect = UIKeyboard.BoundsFromNotification (n);
 var frame = TextBox.Frame;
 frame.Height -= kbdRect.Height;
 TextBox.Frame = frame;
 DoneButton.Enabled = true;
 });
 observer2 = NSNotificationCenter.DefaultCenter.AddObserver
 (UIKeyboard.WillHideNotification, delegate (NSNotification n)
 {
 var kbdRect = UIKeyboard.BoundsFromNotification (n);
 var frame = TextBox.Frame;
 frame.Height += kbdRect.Height;
 TextBox.Frame = frame;
 DoneButton.Enabled = false;
 });
 window.MakeKeyAndVisible ();
 return true;
}
public override void WillTerminate (UIApplication application)
{ // usually removed in ViewWillDisappear
 NSNotificationCenter.DefaultCenter.RemoveObserver (observer1);
 NSNotificationCenter.DefaultCenter.RemoveObserver (observer2);
}

When a control has fi rst responder status in the iPhone OS (that is,
IsFirstResponder = true), it behaves similarly to a .NET control that
“has focus”: It is the fi rst recipient of any user input.

When a UITextView becomes editable, it becomes the FirstResponder and
automatically causes the keyboard to appear. To make the keyboard disap-
pear you must call ResignFirstResponder(), which is similar to a .NET
control “losing focus”.

Figure 4-9 shows the UITextView in read and edit modes.

UITextView shares some features with UITextField from Chapter 3:

AutocapitalizationType➤➤ : Determines when the Shift key is automatically used (for example,
at the start of typing and new sentences). The default is None.

AutocorrectionType➤➤ : Whether auto-correction is enabled during typing. The default is cor-
rection enabled.

ReturnKeyType➤➤ : Note that UITextView does not support the same Done editing behavior as
UITextField.

KeyboardType➤➤ : Allows the control to show a keyboard appropriate for the type of data you
are expecting, for example, plain text, an e-mail address, or numeric data.

listing 4-5 (continued)

Data View Controls ❘ 65

figure 4-9

It also shares some properties with UIWebView that operate in the same way:

Detects phone numbers➤➤

Detects URLs➤➤

uiPickerview
The UIPickerView is analogous to a Drop Down List Box in
Windows Forms or WPF or the <asp:DropDownList> element
in ASP.NET; the iPhone OS just has a unique display style. It
provides a fixed set of options for the user to scroll through and
only supports a single selection from that list — the row cur-
rently displayed in the center of the picker. Figure 4-10 shows
an example picker from Safari where the web page used a
<select> element to capture user input.

single Component Picker
UIPickerView instances should always sit on the edge of the window (normally the bottom) and
take up the entire width of the screen. It has only two important members to discuss:

ShowsSelectionIndicator➤➤ : Whether the transparent blue guide is shown over the center
row of the control.

Model➤➤ : Requires a delegate class that provides the picker with all the information it needs to
display and react to user selection. The Model must contain or have a reference to the data
you want to use for your picker.

figure 4-10

66 ❘ chaPter 4 data controls

The Model must be a subclass of UIPickerViewModel that implements the following methods:

GetComponentCount➤➤ : The number of wheels to display in the control. The following example
shows a single wheel so it is hardcoded to return 1.

GetRowsInComponent➤➤ : The number of data items to display in the wheel.

GetTitle➤➤ : Returns the text to display in each row.

Selected➤➤ : Called when the user changes the row.

Listing 4-6 shows the code for the PickerView01 example in the code download for this chapter. It
requires a UIPickerView and a UITextBox to be placed on the window using Interface Builder.

listing 4-6: PickerView01\Main.cs

public override bool FinishedLaunching (UIApplication app, NSDictionary options)
{
 ListBox.Model = new ListBoxModel(this);
 ListBox.ShowSelectionIndicator = true;
 window.MakeKeyAndVisible ();
 return true;
}
class ListBoxModel : UIPickerViewModel
{
 AppDelegate app;
 List<string> data;
 public ListBoxModel(AppDelegate appDelegate)
 {
 app = appDelegate;
 data = new List<string> {“Cirrus”,”Stratus”,”Cumulus”,”Fog”};
 }
 public override int GetComponentCount (UIPickerView picker)
 {
 return 1;
 }
 public override int GetRowsInComponent (UIPickerView picker, int component)
 {
 return data.Count;
 }
 public override string GetTitle (UIPickerView picker, int row, int component)
 {
 return data[row];
 }
 public override void Selected (UIPickerView picker, int row, int component)
 {
 app.DisplayText.Text = “You selected “ + data[row];
 }
}

Figure 4-11 shows the preceding single component picker and an example of a multiple component
picker (explained in the following section).

Data View Controls ❘ 67

figure 4-11

Multiple Component Picker
UIPickers can also show multiple components, which can be independent or related.

A multiple component picker uses the same methods as before, except the return values must change
depending on which component is passed in. There is an additional method, GetComponentWidth,
to set the width of each component.

Listing 4-7 shows the code required to enable the three-wheeled example from Figure 4-11.

listing 4-7: PickerView02\Main.cs

class ListBoxModel : UIPickerViewModel
{
 AppDelegate app;
 List<List<string>> data;
 public ListBoxModel(AppDelegate appDelegate)
 {
 app = appDelegate;
 data = new List<List<string>>();
 data.Add(new List<string> {“Coffee”,”Tea”,”Chocolate”});
 data.Add(new List<string> {“Black”,”Milk”,”Skim”,”Soy”});
 data.Add(new List<string> {“straight”,”1 sugar”,”2 sugars”,”3 sugars”});
 }
 public override int GetComponentCount (UIPickerView picker)
 {
 return data.Count;
 }
 public override int GetRowsInComponent (UIPickerView picker, int component)
 {
 return data[component].Count;
 }
 public override string GetTitle (UIPickerView picker, int row, int component)
 {
 return data[component][row];
 }
 public override float GetComponentWidth (UIPickerView picker, int component)
 {
 switch (component)

continues

68 ❘ chaPter 4 data controls

 {
 case 0: return 110;
 case 1: return 80;
 default: return 100; // 3rd wheel
 }
 }
 public override void Selected (UIPickerView picker, int row, int component)
 {
 app.DisplayText.Text = “You selected “
 + data[0][picker.SelectedRowInComponent(0)] + “ “
 + data[1][picker.SelectedRowInComponent(1)] + “ “
 + data[2][picker.SelectedRowInComponent(2)];
 }
}

If your components are dependent on each other, you might call the following two methods in your
Selected method implementation:

ReloadComponent➤➤ : If the choice in one component affects what is displayed in the other/s,
call this method for each one.

Select➤➤ : Forces selection of a specific row in a component. If you use ReloadComponent, you
might also want to reset the selected row for that component to the first item, or you might
keep track of previous selections and use that information.

Listing 4-8 shows how you would implement a two-level hierarchy in a UIPickerView, where differ-
ent options in the second component depend on the choice in the first as shown in Figure 4-12.

listing 4-8: PickerView03\Main.cs

class ListBoxModel : UIPickerViewModel
{
 AppDelegate app;
 List<string> data1;
 List<List<string>> data2;
 public ListBoxModel (AppDelegate appDelegate)
 {
 app = appDelegate;
 // separate data for each component
 data1 = new List<string> {“Coffee”, “Tea”};
 data2 = new List<List<string>> ();
 data2.Add (new List<string> {“Espresso”, “Latte”, “Cappuccino”, “Macchiato”});
 data2.Add (new List<string> {“Black”, “Green”, “Peppermint”, “Chai”});
 }
 public override int GetComponentCount (UIPickerView picker)
 {
 return 2;
 }
 public override int GetRowsInComponent (UIPickerView picker, int component)
 {
 if (component == 0)
 return data1.Count;

listing 4-7 (continued)

Data View Controls ❘ 69

 else // which data to use depends on what’s selected in component 0
 return data2[picker.SelectedRowInComponent(0)].Count;
 }
 public override string GetTitle (UIPickerView picker, int row, int component)
 {
 if (component == 0)
 return data1[row];
 else // which data to use depends on what’s selected in component 0
 return data2[picker.SelectedRowInComponent(0)][row];
 }
 public override float GetComponentWidth (UIPickerView picker, int component)
 {
 switch (component)
 {
 case 0:
 return 110;
 case 1:
 return 200;
 }
 return 0;
 }
 public override void Selected (UIPickerView picker, int row, int component)
 {
 if (component == 0)
 { // whenever the first wheel is changed, reload the second
 picker.ReloadComponent (1);
 picker.Select (0, 1, true); // and select the top row
 }
 app.DisplayText.Text = “You selected “ +
 data1[picker.SelectedRowInComponent (0)] + “ “ +
 data2[picker.SelectedRowInComponent(0)]
 [picker.SelectedRowInComponent (1)];
 }
}

figure 4-12

uidatePicker
The UIDatePicker control is a specialized version of the UIPickerView, however it is much sim-
pler to use because no Model class is required — the data source is just made up of dates and times.
iPhone OS users see this view in the Calendar and Clock built-in applications.

70 ❘ chaPter 4 data controls

Figure 4-13 shows the four different varieties of UIDatePicker: the countdown timer from Clock,
the date view, the date & time view used in Calendar, and the time view also used in Clock.

figure 4-13

The key members that you will use on the UIDatePicker control are:

Date➤➤ : This property defaults to the current date/time.

SetDate()➤➤ : Method to set the date/time for the control, optionally specifying that the transi-
tion should be animated (that is, the wheels “spin” to the new value) or instant (the wheels
are simply set to the new value).

MinuteInterval➤➤ : The minimum value is 1, the maximum is 30, and the default is 5.

MinimumDate➤➤ : The earliest selectable date. If today’s date is prior to this, the control still
defaults to “today” but all values prior to this date in the list are greyed-out. Attempting to
select a date prior to the minimum automatically selects the minimum date.

MaximumDate➤➤ : The latest selectable date. Any scrolling past this date resets the selection to
this date and all values past this date are rendered in grey.

Mode➤➤ : One of the UIDatePickerMode values shown in Table 4-2.

table 4-2: UIDatePickerMode Values

enum descriPtion

CountDownTimer Select hours and minutes . Useful for selecting a TimeSpan that isn’t directly
related to the time of day .

Date Shows month, date, and year (but not day of week) . Used for selecting
birthdays, holidays, or other dates where the year is significant .

DateAndTime (default) Shows day of week with the month and date, hour, minute, and am/
pm selection . Does not show the year . Useful for selecting appointments and
reminders .

Time Select hour, minute, and am/pm . Useful for setting alarms or the time .

The example DatePicker01 in the chapter download demonstrates a basic “appointment chooser”
similar to the Calendar application where you choose the start and end time using the same

Controllers and Bars ❘ 71

UIDatePicker. In Interface Builder you need two buttons, two labels, and a date picker on your
window, with the following code in FinishedLaunching:

DateSelection.MinuteInterval = 6; // default 5
DateSelection.MinimumDate = new DateTime (2010,05,01);
DateSelection.MaximumDate = new DateTime (2011,01,01);
DateSelection.Mode = UIDatePickerMode.DateAndTime;
FromDate.Text = DateTime.Now.ToString(“ddd dd MMM yyyy h:mm tt”);
ToDate.Text = DateTime.Now.AddHours(1).ToString(“ddd dd MMM yyyy h:mm tt”);
FromButton.TouchUpInside += delegate
{ // edit the start time
 editingStart = true;
 DateSelection.Date = DateTime.Parse(FromDate.Text);
};
ToButton.TouchUpInside += delegate
{ // edit the finish time
 editingStart = false;
 DateSelection.SetDate(DateTime.Parse(ToDate.Text),false);
};
DateSelection.ValueChanged += delegate(object sender, EventArgs e)
{ // update the display
 var ctrl = (UIDatePicker)sender;
 var dateString = DateTime.Parse(ctrl.Date.ToString())
 .ToString(“ddd dd MMM yyyy h:mm tt”);
 if (editingStart) FromDate.Text = dateString;
 else ToDate.Text = dateString;
};

DatePicker01\Main.cs

The result is shown in Figure 4-14 — touch either of the two
dates to edit them using the UIDatePicker.

controllers and bars

Along with the Window and View classes mentioned at the start
of the chapter, UIViewController and its subclasses form the
basis of all iPhone OS applications. The UIViewController class
itself is used to present a single full-screen view (and sub-views).
Custom subclasses are a good way to re-use common view-
related code in your applications.

Two of the other classes in this section — UITabBarController
and UINavigationController — are used to orchestrate
multiple different views in an application. The tab bar has
the same purpose as a TabControl in WPF or Windows
Forms: allowing the user to navigate back and forth between
different views. The navigation controller is hierarchical in
nature, allowing the user to “drill down” with support for a
“back” button. Both use a number of supporting classes to provide their functionality, such as the
UITabBarItem and the UINavigationBar and UINavigationItem, respectively.

figure 4-14

72 ❘ chaPter 4 data controls

The UIToolbar is slightly different — it is designed to present options that are applicable within a
single view using the UIBarButtonItem and the fi xed and fl exible spacing options.

uiviewcontroller
The most common methods and properties of the UIViewController are:

ViewDidLoad➤➤ : Called after any associated views have been loaded. This method is where
you typically put initialization code such as wiring up event delegates. It is called once in the
object’s lifetime.

ViewWillAppear➤➤ : Perform any additional tasks associated with presenting the view. This
method is called straight after ViewDidLoad and then again whenever the view is re-dis-
played. Always call base.ViewWillAppear() in your implementation.

ViewWillDisappear➤➤ : Notifi cation that the view is being hidden. You can use this method to
commit editing changes, because you don’t know whether the view will ever be re-displayed.
Always call base.ViewWillDisappear() in your implementation. During the life cycle of
the view controller ViewWillDisappear and ViewWillAppear can be called multiple times.

Title:➤➤ A property used to represent the view (see the UINavigationController example in
Listing 4-13 later in the chapter).

If you override a method on a framework class and are unsure whether you
need to call the base method in your code, check the Apple or MonoTouch
documentation.

http://developer.apple.com/iphone/library/
http://go-mono.org/docs/

Apple’s documentation for ViewWillAppear and ViewWillDisappear explicitly
states “If you override this method, you must call super at some point in your
implementation”. super is the Objective-C equivalent of base in C#.

Other properties are only set (and used) when the view controller is associated with other classes
discussed later in the chapter. They are briefl y described here, but you should read the later sections
to fully understand their purpose.

NavigationController➤➤ : null unless this controller is already in a navigation stack.

NavigationItem➤➤ : Read-only reference to the UINavigationItem that represents this con-
troller, assuming it has been pushed onto a navigation stack.

TabBarController➤➤ : null unless this controller has been added to a tab bar.

TabBarItem➤➤ : If part of a tab bar, this references the UITabBarItem representing the control-
ler (that is, the display text and image).

ToolbarItems➤➤ : If this controller is being used by a UINavigationController, contains an
array of UIToolbarItems.

http://developer.apple.com/iphone/library/
http://go-mono.org/docs/

Controllers and Bars ❘ 73

uitoolbar
A good example of the toolbar is the navigation buttons in Safari. To demonstrate the use of
UIToolbar you will add toolbar buttons to the UIWebView example from earlier in the chapter —
Toolbar01 in the code download. Figure 4-15 shows Safari on the left and our example on the right.

figure 4-15

Starting with the WebView02 example code, delete the Back and Forward buttons and drag a
UIToolbar control onto the window. Then add four UIBarButtonItems and spacing items to
match Figure 4-16.

figure 4-16

74 ❘ chaPter 4 data controls

Update the items in Interface Builder as follows:

The Back and Forward buttons can be connected to the existing outlets in the example code. ➤➤

These buttons use the Bordered style and have their Titles set as text.

Create two additional outlets for the Reload and Stop buttons. They should be updated to ➤➤

use the Plain style and instead of display text choose one of the built-in Identifiers (Refresh
and Stop, respectively). The other style options are listed in Table 4-3.

Use the Fixed and Flexible spacing controls to arrange the icons in exactly the location you ➤➤

want.

table 4-3: UIBarButtonItemStyle Options

value descriPtion

Bordered Button is displayed with a round-rectangle border .

Plain Borderless button that glows when tapped .

Done Similar to the Bordered style but with a blue background . Should be used only if
the view will be dismissed when tapped .

Table 4-4 shows the available system values for toolbar buttons — if your application performs a
similar function to what these options describe, you should use the system icon to adhere to Apple’s
consistent user interface. Conversely, you should not use a system icon for a feature that is not
equivalent to the built-in functionality — this confuses the user and should instead be represented
by a custom icon or text.

table 4-4: UIBarButtonSystemItem Options

value image descriPtion

Add Icon containing a plus sign (+)

Edit Localized text

Done Localized text

Cancel Localized text

Save Localized text

Undo Text “Undo”

Redo Text “Redo”

Compose Icon of a notepad with a pencil (used in Mail app)

Controllers and Bars ❘ 75

value image descriPtion

Reply Icon of a left-pointing curved arrow (used in Mail app)

Action Icon of a right-pointing curved arrow inside a square (used in Photos)

Organize Icon of a folder with a down arrow (used in Mail app)

Trash Trash can (used in Mail app)

Bookmarks Icon of an open book (used in Safari)

Search Magnifying glass icon

Refresh Circular arrow icon (used in Safari)

Stop Icon containing an X

Camera Camera icon

Play Icon of a right-facing triangle (used in iPod app)

Pause Icon with two vertical bars (used in iPod app)

Rewind Icon with two left-facing triangles (used in iPod app)

FastForward Icon with two right-facing triangles (used in iPod app)

The following code must be added to FinishedLaunching to make the buttons work — note that
UIBarButtonItems have a Clicked event rather than TouchUpInside. The methods are simple calls
to the UIWebView’s Reload and StopLoading functions, which are fairly self-explanatory.

BackButton.Clicked += delegate
{
 WebBrowser.GoBack();
 UrlInput.Text = WebBrowser.Request.Url.AbsoluteString;
};
BackButton.Clicked += delegate
{
 WebBrowser.GoForward();
 UrlInput.Text = WebBrowser.Request.Url.AbsoluteString;
};
RefreshButton.Clicked += delegate
{

76 ❘ chaPter 4 data controls

 WebBrowser.Reload();
};
StopButton.Clicked += delegate
{
 WebBrowser.StopLoading();
};

Toolbar01\Main.cs

uitabbarcontroller
The most obvious example of the tab bar is the iPod application
(shown in Figure 4-17) with tabs for Artists, Albums, Videos,
and more.

Recall the mention of the UIViewController’s ViewWillAppear
and ViewWillDisappear methods — each time the user touches
a tab, the current tab’s ViewWillDisappear method is called, and
then the chosen tab’s ViewWillAppear method is called. As the
user navigates around the tab views, these two methods are called
so that your views can respond to being hidden and shown.

simple TabBar
The first UITabBarController example uses Interface Builder
to construct the tabs and their contents. This is an easy way
to build your user interface but requires some care because
the XIB filenames for each tab are entered into the Attributes
Inspector, so you must ensure they match the files themselves.
The other problem is that Interface Builder currently doesn’t
show custom tab images on the design surface.

The MonoDevelop solution and the Interface Builder MainWindow.xib from TabBar01 in the code
download are shown in Figure 4-18.

figure 4-18

figure 4-17

Controllers and Bars ❘ 77

The following steps were required to create this project:

MainWindow.xib➤➤ was created as part of the MonoDevelop solution and opened in Interface
Builder.

A ➤➤ UITabBarController (the orange-circled icon in the Library window) was dragged onto
the MainWindow.xib window (not onto the “window” design surface). This automatically
creates the Tab Bar and two Tab Bar Items hierarchy that are shown in Figure 4-18.

In MonoDevelop you add two View Interface Defi nition with Controller XIBs: ➤➤

MyScrollViewController and MyTextViewController.

Back in Interface Builder you then hook up the tabs to the new XIB fi les. For each tab:➤➤

Click ➤➤ once on the tab to set the XIB name and class name in the Attributes and
Identity Inspectors, respectively, as shown in Figure 4-19.

figure 4-19

Click ➤➤ twice on the tab to choose its Title and Image in the Attributes Inspector.
Figure 4-20 shows the two different tab settings. The fi rst tab uses a built-in Identifi er,
which sets a specifi c Image and Title — the complete list is shown in Table 4-5. The
second tab has a custom Title and Image — the image fi le must be added to the
MonoDevelop solution with Build Action: Content. The image will not appear on
the Interface Builder design surface but it will show when the application runs.

figure 4-20

Making custom images for UITabBarItems can be tricky. The images should be
PNG format and 30x30 pixels in size. They cannot contain any color or gray-
scale effect — you can only use black or varying degrees of transparency to cre-
ate a shaded effect. The iPhone OS automatically renders them blue-on-black in
the toolbar and black-on-white in the More list (if shown).

78 ❘ chaPter 4 data controls

Once the tabs have been “wired up” to specific ➤➤ ViewControllers you can implement what-
ever behavior you like. This example uses the UIScrollView and UITextView example code
from earlier in the chapter for the tabs; Figure 4-21 shows the result.

figure 4-21

table 4-5: UITabBarSystemItem

value image descriPtion

More Ellipsis-like icon (three dots) normally used by the system to indicate
that there are additional, hidden tabs .

Favorites Star icon .

Featured Two spotlights, used in the App Store .

Top Rated Star icon (same as Favorites but with different text) .

Recents Clock icon, used in the Phone app .

Contacts Head and shoulders icon, used in the Phone app .

History Clock icon (same as Recents but with different text) .

Bookmarks Open book icon .

Search Magnifying glass icon, used in the App Store .

Controllers and Bars ❘ 79

value image descriPtion

Downloads Down arrow inside a circle, used in iTunes .

Most Recent Plus sign in a square .

Most Viewed Three head and shoulders icons .

editable TabBar
The iPhone screen is wide enough to support up to five tabs as
the iPod application shows in Figure 4-22. When you add six
or more tabs to your UITabController it automatically adds
the More tab and presents the remaining options in a list. It
can also (optionally) add an Edit button that allows the user to
change the order of the tabs.

Demonstrating an editable tab bar requires a number of view
controllers and associated code. To keep the example simple,
and also to introduce another new concept, no Interface Builder
files are used. Because of the lack of XIB files to define the user
interface, a complete listing of the classes is shown in Listings
4-9 through 4-12.

Listing 4-9 shows the core of the application — it creates
the UIWindow, UITabBarController and delegate, adds the
tab view to the window, and shows it on the screen. The
UITabBarControllerDelegate (Listing 4-11) is also created
and assigned.

listing 4-9: TabBar02\Main.cs

public class Application
{
 static void Main (string[] args)
 {
 UIApplication.Main (args,”TabBar02”, “AppDelegate”);
 }
}
[Register (“TabBar02”)]
public class TabBar02 : UIApplication {}

[Register (“AppDelegate”)]
public partial class AppDelegate : UIApplicationDelegate
{
 UIWindow window;
 MyTabBarController tabBarController;

figure 4-22

continues

80 ❘ chaPter 4 data controls

 public override bool FinishedLaunching (UIApplication app, NSDictionary options)
 {
 window = new UIWindow (UIScreen.MainScreen.Bounds);
 tabBarController = new MyTabBarController();
 tabBarController.Delegate = new MyTabBarControllerDelegate();
 window.AddSubview (tabBarController.View);
 window.MakeKeyAndVisible ();
 return true;
 }
 // This method is required in iPhoneOS 3.0
 public override void OnActivated (UIApplication application)
 {}
}

Listing 4-10 shows the UITabBarController setting up the six views. In this example they are
all image views showing a different photo (the initialization of all six has been hidden in the list-
ing, for clarity). The second half of the method attempts to extract the custom tab order from
NSUserDefaults (set in Listing 4-10) and re-order the tabs before they are displayed. Refer to
Chapter 8 for more information on storing settings with NSUserDefaults.

listing 4-10: TabBar02\MyTabBarController.cs

public class MyTabBarController : UITabBarController
{

MyImageViewController imgController1,imgController2,imgController3,
 imgController4,imgController5,imgController6;

public MyTabBarController () : base() {}

public override void ViewDidLoad ()
{
 imgController1 = new MyImageViewController(“GoldenGate.jpg”);
 imgController1.Title = “Golden Gate”;
 imgController1.TabBarItem = new UITabBarItem(UITabBarSystemItem.Bookmarks, 0);
#region imgControllerX repeated 5 more times (repeated code not shown)

 // source array
 var tablist = new UIViewController[]
 {
 imgController1, imgController2, imgController3
 , imgController4, imgController5, imgController6
 };
 // this.ViewControllers = tablist; // if no customization req’d

 // sort the array according to edited preferences
 var tabOrder = new UIViewController[tablist.Length];
 var tabPrefs = NSUserDefaults.StandardUserDefaults.StringArrayForKey
 (“TabPreferences”);

listing 4-9 (continued)

Controllers and Bars ❘ 81

 if (tabPrefs == null)
 {
 tabOrder = tablist; // no sort saved
 }
 else
 {
 for (int i = 0; i < tabPrefs.Length; i++)
 {
 int index = Convert.ToInt32(tabPrefs[i]);
 tabOrder[i] = tablist[index];
 }
 }
 this.SelectedIndex = 0; // ensures the first icon is ‘blue’
 this.ViewControllers = tabOrder;
}
}

If you would prefer to disable editing of the tab order (and automatically hide the Edit button), pass
an empty array like this:

this.CustomizableViewControllers = new UIViewController[]{};

Alternatively you can partially populate that array with only some of your UIViewControllers, and
only those will be moveable when the tab controller is in edit mode.

Listing 4-11 shows the implementation of the delegate that keeps track of the edited tab order and
saves it to NSUserDefaults. We have used the Tag values on the controllers as a reference to their
array position, and stored that list as a comma-separated string. Your implementation may vary —
this is just one way to persist the changes.

listing 4-11: TabBar02\MyTabBarControllerDelegate.cs

public class MyTabBarControllerDelegate : UITabBarControllerDelegate
{
 public MyTabBarControllerDelegate() : base() {}
 public override void FinishedCustomizingViewControllers
 (UITabBarController tabBarController,
 UIViewController[] viewControllers, bool changed)
 {
 if (changed)
 {
 var tabOrderList = new List<string>();
 foreach (var item in viewControllers)
 {
 tabOrderList .Add(item.TabBarItem.Tag.ToString());
 }
 NSArray array = NSArray.FromStrings(tabOrderList.ToArray())
 NSUserDefaults.StandardUserDefaults[“TabPreferences”] = array;
 }
 }
}

82 ❘ chaPter 4 data controls

Listing 4-12 shows the class being used for each of the tabs. It is very similar to the UIScrollView
example, except that we have discarded the XIB and created the view entirely in C# code.

listing 4-12: TabBar02\MyimageViewController.cs

public class MyImageViewController : UIViewController
{
 UIScrollView ViewPort;
 string ImageName;
 public MyImageViewController (string imageName)
 {
 ImageName = imageName;
 }
 public override void ViewDidLoad ()
 {
 ViewPort = new UIScrollView(this.View.Bounds);

 UIImage image = UIImage.FromFile(ImageName);
 UIImageView imageView = new UIImageView(image);
 ViewPort.PagingEnabled = false; // freeform scrolling
 ViewPort.AddSubview(imageView);
 ViewPort.ContentSize = imageView.Frame.Size;
 ViewPort.ViewForZoomingInScrollView = delegate (UIScrollView sender)
 { // could use a higher resolution copy here
 return imageView;
 };
 ViewPort.ZoomScale = 0.8f; // after assigning delegate

 this.View.AddSubview(ViewPort);
 }
}

uinavigationcontroller
UINavigationController is used to manage multiple views that are related (such as drilling down
into related information, which can be seen in the iPod application’s Artist➤➪➤Album➤➪➤Song naviga-
tion). The controller keeps track of the views as though they are in a “stack” — when you make a
selection that view is “pushed” onto the top of the stack, but you can always “pop” it off and return
to the previous view.

The download example NavigationController01 is based on the MonoDevelop application tem-
plate for Navigation-based applications. When you create the solution it is prepopulated with two
XIB files:

MainWindow.xib➤➤ already contains an instance of UINavigationController and associated
objects (UINavigationBar and UINavigationItem)

RootViewController.xib➤➤ initially contains a UITableViewController. However,
they are covered in Chapter 6, so this example uses some UIButtons on a plain
UIViewController instead.

Controllers and Bars ❘ 83

It also contains three View Interface Definition with Controller classes (View1Controller,
View2Controller, and View3Controller). On the views for these controllers we need some labels
to identify the views and buttons to navigate between them, using the UINavigationController in
MainWindow.xib. Figure 4-23 shows the final navigation sequence.

figure 4-23

Figure 4-24 shows the MainWindow.xib view hierarchy that is automatically created. To make the
navigation controller work you just need to add two buttons to the RootController.xib and wire
them up. The code is shown in Listing 4-13: each button creates another view controller and pushes
it onto the navigation stack.

figure 4-24

84 ❘ chaPter 4 data controls

listing 4-13: navigationController01\rootViewController.xib.cs

public override void ViewDidLoad ()
{
 this.Title = “Nav Example”; // shown top of screen, and ‘back’ button
 View1Button.TouchUpInside += delegate
 {
 var vc1 = new View1Controller ();
 vc1.Title = “View1”; // shown top of screen, and ‘back’ button
 this.NavigationController.PushViewController(vc1, true);
 };
 View2Button.TouchUpInside += delegate
 {
 var vc2 = new View2Controller ();
 vc2.Title = “View2”; // shown top of screen, and ‘back’ button
 this.NavigationController.PushViewController(vc2, true);
 };
}

Note that when a view is pushed onto the stack, the UINavigationBar across the top of the screen
displays that view’s Title, and the UINavigationBarItem acting as the Back button displays the
Title of the previous view controller.

The following listings show two of the view controllers that also form part of this navigation stack.
The code in Listing 4-14 creates another view controller and pushes it onto the navigation stack.

listing 4-14: navigationController01\View1Controller.xib.cs

public override void ViewDidLoad ()
{
 View3Button.TouchUpInside += delegate
 {
 var vc3 = new View3Controller ();
 vc3.Title = “View3”; // shown top of screen, and ‘back’ button
 this.NavigationController.PushViewController(vc3, true);
 };
}

Listing 4-15 demonstrates the “back to start” method PopToRootViewController. If your navi-
gation stack is particularly deep, you might want to provide the user with an option to start over,
without having to touch the Back button in the navigation bar multiple times.

If you wish to mimic the behavior of the automatically provided “back” button in the navigation
bar, the PopViewControllerAnimated method takes the user back to the previously displayed view.

listing 4-15: navigationController01\View3Controller.xib.cs

public override void ViewDidLoad ()
{
 PopViewButton.TouchUpInside += delegate
 { // back to the ‘base’ view

summary ❘ 85

 this.NavigationController.PopToRootViewController(true);
 };
 PopOneButton.TouchUpInside += delegate
 { // pop one view - same behavior as ‘back’ button
 this.NavigationController.PopViewControllerAnimated(true);
 };

}

Navigation controllers are a particularly powerful class that lets you easily create user-
friendly hierarchies of information. They are used throughout the built-in applications.
UINavigationController is covered again in Chapter 6 because it is frequently coupled with
UITableView where the table rows are used to present lists of navigation options.

summary

This chapter has introduced some of the fundamental building blocks of iPhone OS applications:

UIWindow➤➤ , UIView, and UIViewController are the underlying elements of the operating sys-
tem’s presentation of your code.

UITabBarController➤➤ and UINavigationController form the basis of most multi-view
applications.

The remainder of the classes complement those in Chapter 3. Together these two chapters have intro-
duced almost all the user interface elements you need to construct great iPhone OS applications.

5
Working with Data on the iPhone

what’s in this chaPter?

Working with the SQLite database engine using ADO .NET➤➤

Working with remote data using SOAP-based web services➤➤

Working with REST-style web services using XML and JSON➤➤

Storing data➤➤

Data is the lifeblood of applications. The application might be an app to interact with Twitter,
an instant message application, or your own personal address book. This chapter looks at the
SQLite database engine as well as strategies to store data off the device on a central server
through SOAP and REST without tying up the user interface.

This chapter is not an overview of ADO.NET, SOAP, or REST. The goal of
this chapter is to show that the basic features work and help in areas that are
specifi c to the iPhone.

working with sQlite

SQLite is an embedded data engine running in the iPhone and is the native database on the
iPhone. It is different from client-server style databases, such as SQL Server, Oracle, and DB/2.
With a client-server style database, a query, or operation, is sent to the database engine, the
operation is performed, and the result is sent back to the client. With this type of database
engine, the database runs in a separate process and typically on a separate machine. SQLite
does not run on a separate machine; it runs on the same machine, the iPhone, and runs in the
same process as the application. SQLite is embedded in the application and linked to the app
during the compilation process. Calls made to SQLite are not made over a network, but stay

88 ❘ chaPter 5 workIng wIth data on the IPhone

on the physical device. SQLite uses SQL (Structured Query Language) to interact with it. Another
good feature of SQLite is that it is 100 percent free.

This chapter is not meant to be an introduction to the SQL language, databases, tables, columns,
data types, foreign keys, rows, or any other type database feature. The reader is expected to under-
stand these concepts.

using mono.data.sqlite
The data provider for SQLite is contained within the Mono.Data.Sqlite assembly. This assembly
provides support for SQLite version 3. The assembly is intended for ADO.NET 2.0, which isn’t a
problem for writing an application in MonoTouch. For the purposes of this chapter, we use a con-
nection string of Data Source=filename.db3.

The code for the SQLite database example is taken from the Sqlite MonoDevelop
project, which is available as part of this chapter’s download from www.wrox.com.

This example does authentication against Twitter. As a result, you need to
change the private variables TwitterUserId and TwitterPassWord that are in
the Main.cs fi le

setting up a database
The fi rst step in getting an app to work with SQLite is to set up the database. With server-based
databases, this is done a single time by a DBA. With SQLite, the creation of a database must be done
on the initial run of an application on a device and it must be done on each device that the applica-
tion runs on. Because the application must run on the end user’s device, the database setup process
must work without user intervention and it must run within the time constraints of the device. Take
a look at some code that creates a database:

string DatabaseName = “TwitterData.db3”;
string documents = Environment.GetFolderPath(Environment.SpecialFolder.Personal);
string db = Path.Combine(documents, DatabaseName);
bool exists = File.Exists(db);
if (!exists)
{
 SqliteConnection.CreateFile(db);
}

Found in the Sqlite/Main.cs fi le of the download

This code creates a database through the following steps:

 1. A string with the folder name of the personal folder on the iPhone is determined.

 2. A string with the full path plus fi lename to the database is created.

 3. If the fi le does not exist, the database is created by calling the CreateFile() static method of
the SqliteConnection object.

http://www.wrox.com
Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

Working with sQlite ❘ 89

setting up tables
Now that your database has been created, the next step is to set up tables, indexes, triggers, and any
other particular database objects that are needed. Listing 5-1 shows some code that creates tables,
triggers, and indexes:

listing 5-1: Creating tables and other objects

string DatabaseName = “TwitterData.db3”;
string documents = Environment.GetFolderPath (Environment.SpecialFolder.Personal);
string db = Path.Combine (documents, DatabaseName);
var conn = new SqliteConnection(“Data Source=” + db);
var commands = new[] {
 “DROP TABLE IF EXISTS TWITTERDATA”,
 “DROP TRIGGER IF EXISTS TWITTERDATA_INSERT”,
 “CREATE TABLE TWITTERDATA (STATUSID BIGINT PRIMARY KEY, “ +
 “TWITTERID VARCHAR(20), STATUS VARCHAR(140), TWEETDATE DATETIME, “ +
 “DATEENTERED DATETIME)”,
 “CREATE TRIGGER TWITTERDATA_INSERT INSERT ON TWITTERDATA “ +
 “BEGIN UPDATE TWITTERDATA SET DATEENTERED=DATE(‘now’) “ +
 “WHERE STATUSID=NEW.STATUSID; END;”,
 “CREATE INDEX IDX_TWITTERID ON TWITTERDATA (TWITTERID)”,
 “CREATE INDEX IDX_DATEENTERED ON TWITTERDATA (DATEENTERED)”,
 “CREATE INDEX IDX_TWEETDATE ON TWITTERDATA (TWEETDATE)”
 };
 foreach (var cmd in commands)
 using (var sqlitecmd = conn.CreateCommand()) {
 sqlitecmd.CommandText = cmd;
 sqlitecmd.CommandType = CommandType.Text;
 conn.Open ();
 sqlitecmd.ExecuteNonQuery ();
 conn.Close ();
 }

Found in the Sqlite/Main.cs file of the download

This code creates a set of database objects. Here are the specifics:

A SqliteConnection object is created.➤➤

A series of SQL commands are placed within a string array. Each string within the array is a ➤➤

database command.

The commands will drop a table if it exists, create a table, create a trigger, and then create a ➤➤

set of indexes.

A ➤➤ foreach iteration is used to iterate through the commands and execute each command in
the string array.

One thing that you will notice is that there is no GUI tool for creating the files in SQLite. Also,
developers should not expect a user to be able to follow a sequence of commands to create a data-
base, tables, and the other objects necessary for an application.

90 ❘ chaPter 5 workIng wIth data on the IPhone

using sQl statements
Creating, altering, and dropping database objects is interesting. However, CRUD (create, read,
update, delete) is the lifeblood of database applications. The ability to select, insert, update, and
delete data through SQL is at the core of an application.

Using read/select to read Data
Reading data is a very important operation for an application. Reading data out of a database
table is the operation that is done 95+ percent of the time in an application. The .NET Framework
provides us with datareaders, connections, and a series of objects that allow us to access database
tables. MonoTouch provides an implementation of these .NET methods for the iPhone. Listing 5-2
shows some code that shows how to read data out of a table:

listing 5-2: reading data from a table

string documents = Environment.GetFolderPath (Environment.SpecialFolder.Personal);
string db = Path.Combine (documents, DatabaseName);
string strSql = “select Max(TweetDate) as MaxTweetDate, Count(Status) “ +
 “as StatusCount from TwitterData”;
string output = String.Empty;
var conn = new SqliteConnection(“Data Source=” + db);
SqliteDataReader dr;
var cmd = new SqliteCommand(strSql, conn);
conn.Open();
dr = cmd.ExecuteReader();
if (dr.HasRows == true) {
 while(dr.Read())
 {
 output = “Number of records: “ + Convert.ToString(dr[“StatusCount”]) +
 “ Most recent post date: “ + Convert.ToString(dr[“MaxTweetDate”]);
 }
}
else{
 output = “No records found.”;
}
conn.Close();
Status.Text = output;

Found in the Sqlite/Main.cs fi le of the download

As you can see, it’s possible to use objects that you know and understand. You can create a connec-
tion object, SqliteConnection, and then create a datareader. With the datareader, you can iterate
through the records returned and use the records just like in a .NET application.

At the time of this writing, there is a bug in the SqliteDataAdapter when call-
ing .Fill() and DataTable. This bug has been documented and submitted to
the MonoTouch bugzilla system, but no ETA has been determined for this bug
to be fi xed.

Working with sQlite ❘ 91

Using sQl statements to Get Data
Now that you know how to read data out of a database table, the next obvious question is “How do
I put data into a table?” Your first step is to go get some data. Follow these steps and take a look at
Listing 5-3:

 1. Make a call to the Twitter.com API to get data through XML.

 2. Use LINQ to XML to convert the data into a set of objects. With these objects, the code can
then process the data fairly easily.

 3. Once the query is created, your next step is loop through the result. Remember, with LINQ,
the query is not executed until the data is needed.

 4. The next step is to save the data. This is done in the custom written SaveData method.

listing 5-3: Getting data from Twitter and saving it to sQlite

string url = “http://twitter.com/statuses/friends_timeline.xml”;
HttpWebRequest request = (HttpWebRequest)HttpWebRequest.Create(url);
request.Method = “GET”;
request.Credentials = new NetworkCredential(TwitterUserId, TwitterPassWord);
WebResponse response = request.GetResponse();
StreamReader reader = new StreamReader(response.GetResponseStream());
string responseString = reader.ReadToEnd();
reader.Close();
XDocument document = XDocument.Parse(responseString);
var query = from e in document.Root.Descendants()
 where e.Element(“user”) != null
 select new UserStatusSvc
 {
 StatusId = Convert.ToInt64(e.Element(“id”).Value),
 UserName = e.Element(“user”).Element(“screen_name”).Value,
 ProfileImage = e.Element(“user”).Element(“profile_image_url”).Value,
 Status = e.Element(“text”).Value,
 StatusDate = e.Value.ParseDateTime().ToString()
 };
foreach(UserStatusSvc uss in query)
{
 SaveData(uss);
}

Found in the Sqlite/Main.cs file of the download

The SaveData method does a simple check to verify whether a record already exists. If the record
does not already exist, that record is then inserted into the table. The insert is performed using a
prepared statement and a set of parameters. See Listing 5-4. If the record already exists locally, no
action is taken.

92 ❘ chaPter 5 workIng wIth data on the IPhone

listing 5-4: inserting data into sQlite

private void SaveData(UserStatusSvc uss)
{
var documents = Environment.GetFolderPath (Environment.SpecialFolder.Personal);
string db = Path.Combine (documents, DatabaseName);
var conn = new SqliteConnection(“Data Source=” + db);
var sql = “SELECT COUNT(*) FROM TWITTERDATA WHERE STATUSID=” + uss.StatusId;
var cmd = new SqliteCommand(sql, conn);
try{
 conn.Open();
 var Count = Convert.ToInt32(cmd.ExecuteScalar());
 if (Count == 0) {
 var sqlStatusId = new SqliteParameter(“@StatusId”, uss.StatusId);
 cmd.Parameters.Add(sqlStatusId);
 var sqlTwitterId = new SqliteParameter(“@TwitterId”, uss.UserName);
 cmd.Parameters.Add(sqlTwitterId);
 var sqlStatus = new SqliteParameter(“@Status”, uss.Status);
 cmd.Parameters.Add(sqlStatus);
 var sqlTweetDate = new SqliteParameter(“@TweetDate”, uss.StatusDate);
 cmd.Parameters.Add(sqlTweetDate);
 sql = “insert into twitterdata (STATUSID, TWITTERID, STATUS, TWEETDATE) VALUES
 (“ + “@StatusId, @TwitterId, @Status, @TweetDate)”;
 cmd.CommandText = sql;
 cmd.ExecuteNonQuery();
 }
}
finally{
 if (conn.State != ConnectionState.Closed) {
 conn.Close();
 }
 conn.Dispose();
 cmd.Dispose();
}
}

Found in the Sqlite/Main.cs file of the download

Now that you are able to insert data into the table, handling other operations is similar. Update
and Delete operations can easily be handled through SQLite’s command object. The command can
be a direct SQL statement or a prepared statement. Either will work. One word of warning: If you
choose to use a simple SQL statement, don’t open code up to a SQL injection attack.

Figure 5-1 shows the app reporting that data exists in your SQLite database.

upgrading strategies
With a web application, there is typically only one database instance that has to be managed. With an
application installed on an iPhone and using SQLite, there are as many database instances as instal-
lations of the application. With a new version of your application, there is most likely a new version

Working with remote Data ❘ 93

of the database schema to support the new features in that
upgraded application. What are the strategies that can be
inserted into an application to handle upgrading a database
that is out in the wild?

Upgrading in Place
With an existing application’s database, one strategy is to
track the version of an application within a table. By tracking
the database schema version, the application can check the
version on startup. If the version is not the current version,
an upgrade of the schema can be done by executing a series
of SQLite commands against the database. This strategy
requires a check on each startup of the application. This strat-
egy would be good for a complicated database schema.

Copying Data
The upgrade in place solution requests a check each time
the application starts. Another option is to check on startup
and if the schema is not the correct version to create a new
instance of the database and copy the necessary data over.
Then you can assume that the schema is correct. This strategy
requires a significant number of commands to be executed
and potentially a lot of data to be moved. The more com-
mands that must be executed and the more data that is moved, the more opportunity there is for a
mistake to be made. This option would be a good idea for an application that must make an exten-
sive number of changes.

storing Data remotely
The two options mentioned — and there are most likely others — both result in data being stored in
the application. Neither takes into account what happens if the device is lost or damaged. Another
option to the problem of storing data is storing that data remotely. The next section focuses on the
web services support necessary to store data remotely.

working with remote data

Applications no longer live as little islands of data. Everything is interconnected, or will be. The abil-
ity to connect with remote data is not only nice to have, but a requirement with today’s applications.
When I got my first cell phone, I had all kinds of places where I lost connection or didn’t have any sig-
nal. Those days are over. Signal connections are available in all of the places that I frequent, though I
do have problems when I am surrounded by metal, such as in a gym locker room. Typically, the remote
data problem is seen as a problem that has been solved. This section looks at two primary ways to
connect to data services over the Internet: SOAP and REST. Each operates over HTTP and port 80.
Other mechanisms exist to interchange data, but this section just looks at these two.

listing 5-4: inserting data into sQlite

private void SaveData(UserStatusSvc uss)
{
var documents = Environment.GetFolderPath (Environment.SpecialFolder.Personal);
string db = Path.Combine (documents, DatabaseName);
var conn = new SqliteConnection(“Data Source=” + db);
var sql = “SELECT COUNT(*) FROM TWITTERDATA WHERE STATUSID=” + uss.StatusId;
var cmd = new SqliteCommand(sql, conn);
try{
 conn.Open();
 var Count = Convert.ToInt32(cmd.ExecuteScalar());
 if (Count == 0) {
 var sqlStatusId = new SqliteParameter(“@StatusId”, uss.StatusId);
 cmd.Parameters.Add(sqlStatusId);
 var sqlTwitterId = new SqliteParameter(“@TwitterId”, uss.UserName);
 cmd.Parameters.Add(sqlTwitterId);
 var sqlStatus = new SqliteParameter(“@Status”, uss.Status);
 cmd.Parameters.Add(sqlStatus);
 var sqlTweetDate = new SqliteParameter(“@TweetDate”, uss.StatusDate);
 cmd.Parameters.Add(sqlTweetDate);
 sql = “insert into twitterdata (STATUSID, TWITTERID, STATUS, TWEETDATE) VALUES
 (“ + “@StatusId, @TwitterId, @Status, @TweetDate)”;
 cmd.CommandText = sql;
 cmd.ExecuteNonQuery();
 }
}
finally{
 if (conn.State != ConnectionState.Closed) {
 conn.Close();
 }
 conn.Dispose();
 cmd.Dispose();
}
}

Found in the Sqlite/Main.cs file of the download

Now that you are able to insert data into the table, handling other operations is similar. Update
and Delete operations can easily be handled through SQLite’s command object. The command can
be a direct SQL statement or a prepared statement. Either will work. One word of warning: If you
choose to use a simple SQL statement, don’t open code up to a SQL injection attack.

Figure 5-1 shows the app reporting that data exists in your SQLite database.

upgrading strategies
With a web application, there is typically only one database instance that has to be managed. With an
application installed on an iPhone and using SQLite, there are as many database instances as instal-
lations of the application. With a new version of your application, there is most likely a new version

figure 5-1

94 ❘ chaPter 5 workIng wIth data on the IPhone

One of the problems that I ran into when working on this section was in creat-
ing examples with code that I was familiar with. My fi rst thought was to create
a series of examples using the Twitter.com API. Unfortunately, the Twitter.com
API is based on REST and there is no SOAP-based API. Therefore, there is no
ASMX or WCF native solution to Twitter. I decided to use some simple web
services to illustrate the issues. The ASMX web service example was found
through the MonoTouch site and its examples. The WCF web service example
was built on a sample found through the MonoTouch site as well; however, the
WCF service was running on another computer within the network.

After speaking with many other developers, I found a lot of new development
being done with WCF; however, a large number of ASMX-based web services
out there are currently used in production, so I decided that it was important to
add a short section on ASMX-based web services.

using soaP
SOAP refers to the Simple Object Access Protocol, which is a mechanism to exchange informa-
tion in the form of web services over computer networks. SOAP is highly reliant on XML. Due to
this reliance on web standards and XML, SOAP is a natural tool to easily allow different systems
to communicate. For example, a Windows-based system can easily communicate with a UNIX or
mainframe system over HTTP without requiring the heavy layer of access software that is normally
associated with such communication. One of the big advantages that SOAP has is that developers
are familiar with creating and using SOAP-based web services in Visual Studio. With .NET, there
are ASMX- as well as WCF-based web services that support SOAP.

Working with asMX Web services
ASMX web services are the fi rst mechanism in ASP.NET for building web services. ASMX web
services operate with the Web Services Description Language (WSDL) and SOAP. Consuming an
ASMX web service to operate with MonoTouch is similar in concept to consuming a WCF web ser-
vice to run in MonoTouch.

I do not have an ASMX web service handy to work with. Instead of creating
one and potentially causing my own DDOS attack on one of my services with
an example application, I decided to use a simple web service that allows for
converting Celsius to Fahrenheit and back.

The next example takes a look at how to call an ASMX-based web service using MonoTouch. The
steps are:

 1. Add the System.Web.Services.dll assembly to your project.

 2. Add a reference to the web service’s wsdl within a project. You do this by right-clicking the
project and adding the location of the URL. The URL is http://www.w3schools.com/
WebServices/TempConvert.asmx. The Add Web Reference dialog box is shown in Figure 5-2.

http://www.w3schools.com/

Working with remote Data ❘ 95

 3. Now that the reference has been created for the code, it is possible to program against that
API. Figure 5-3 shows programming against the API exposed by the web service.

Now that this is set up, take a look at Listing 5-5.

listing 5-5: Calling an asMX service

public override bool FinishedLaunching (UIApplication app, NSDictionary options)
{
 Calculate.TouchUpInside += delegate(object sender, EventArgs e) {
 string TempC = TempInC.Text;
 www.w3schools.com.TempConvert tc = new www.w3schools.com.TempConvert();
 AsyncCallback ac = new AsyncCallback(FarenheitCallback);
 tc.BeginCelsiusToFahrenheit(TempC, ac, tc);
 };
 TempInC.EditingDidEndOnExit += delegate(object sender, EventArgs e) {
 TempInC.ResignFirstResponder();
 };
 window.MakeKeyAndVisible ();
 return true;
}
private void FarenheitCallback(IAsyncResult iar)
{
 www.w3schools.com.TempConvert tc = (www.w3schools.com.TempConvert)iar.AsyncState;
 string faren = tc.EndCelsiusToFahrenheit(iar);
 InvokeOnMainThread (delegate {
 TempInF.Text = faren;
 });
 Console.WriteLine(“Temp: “ + faren);
}

Found in the ConsumeASMXWebService/Main.cs file of the download

figure 5-2 figure 5-3

96 ❘ chaPter 5 workIng wIth data on the IPhone

Take notice of the following points in Listing 5-5:

In the ➤➤ FinishedLaunching method, a delegate is created to handle the touching of the
Calculate button.

Within the delegate, a class representing the web service is created and an asynchronous ➤➤

call is made. The calling sequence for an asynchronous web service call is
Method(param1, param2, ..., paramN, callback, state).

The first set of parameters is the parameters that are passed to the calling methods.➤➤

The next parameter is the method that will be called when the method is completed.➤➤

The final parameter is an object that is passed ➤➤

into the callback.

Setting up the event ➤➤ EditingDidEndOnExit
and calling ResignFirstResponder() results
in the keyboard being hidden after input is
finished.

The callback method, ➤➤ FarenheitCallback,
accepts an IAsyncResult parameter. This
parameter is used to get the asynchronous state
that was passed in.

Calling the ➤➤ EndCelsiusToFarenheit method
allows the program to retrieve the result of the
web service call.

The final issue is how to return the value to ➤➤

the user interface so that the data can be avail-
able to the user. This is done through the
InvokeOnMainThread method. The reason that
InvokeOnMainThread must be used is that the
response from the web service is handled in a
different thread from the main thread. To write
to the user interface, the command must be
written on the main thread.

The final line results in debugging information ➤➤

being sent to the connected computer.

Figure 5-4 shows the output of the asynchronous call
to a web service.

Working with Windows Communication foundation (WCf)
This section explores WCF-based web services. WCF was released with .NET 3.5, and is an API
designed to build service-oriented applications.

Visual Studio hides a number of the complexities of SOAP-based web services from develop-
ers. One of the complexities is the creation and generation of web service proxies. These proxies

figure 5-4

Working with remote Data ❘ 97

allow developers to generate and use these web services as if they are local libraries on a computer.
Unfortunately, the iPhone does not allow for code to be generated dynamically at runtime. This cre-
ates a problem for an application because, typically, we now have to generate the proxies manually.
The steps to generate the proxies and get things running are:

 1. Manually generate the runtime proxy. Silverlight version 3 ships with a utility to generate a
proxy. This utility is available on a Windows system with Silverlight Version 3 installed and is
called by C:\Program Files\Microsoft SDKs\Silverlight\v3.0\Tools\SlSvcUtil.exe/
noConfig http://example.com/service.svc?wsdl. The result is a proxy that can be used in
a MonoTouch application. The resulting file can be imported into a MonoDevelop project.

 2. Add the generated proxy to your project.

 3. Add references to System.Runtime.Serialization, System.ServiceModel, and System
.ServiceModel.Web to your project.

 4. Make requests against the service. The constructor for the method should use the
BasicHttpBinding type and the endpoint address.

 5. Add the System.ServiceModel namespace n the Main.cs file (or any file that calls code in
the proxy class).

Listing 5-6 shows the MonoTouch code for calling a remote method hosted in WCF.

listing 5-6: Calling a WCf web service

btnDoIt.TouchUpInside += delegate(object sender, EventArgs e) {
 AddNumberServiceClient asc = new AddNumberServiceClient(
 new BasicHttpBinding (),
 new EndpointAddress (“http://10.1.10.92/webservices/AddNumberService.svc”));
 asc.AddNumbersCompleted += HandleAscAddNumbersCompleted;
 asc.AddNumbersAsync(3, 4);
};
void HandleAscAddNumbersCompleted (object sender, AddNumbersCompletedEventArgs e)
{
 InvokeOnMainThread(delegate{
 lblOutput.Text = “Result: “ + e.Result.TotalNum.ToString();
 });
}

Found in the WCFTestService/Main.cs file of the download. The WebServices

directory in the download contains the WCF web service that is called.

Take note of the following in Listing 5-6:

On a simple button touch-up event, code is called.➤➤

The ➤➤ AddNumberServiceClient class is created. When the class is instantiated, the
BasicHttpBinding is passed as the binding, and the EndPointAddress is created and
passed with the URI to the WCF service.

Because the WCF service is asynchronous, the completed event is set up. In this case, it is call-➤➤

ing a defined method; however, it could just as easily be calling a delegate.

http://10.1.10.92/webservices/AddNumberService.svc%E2%80%9D

98 ❘ chaPter 5 workIng wIth data on the IPhone

In the callback, the result is received through the ➤➤

event arguments that are passed in.

The fi nal step is to do something with the result. ➤➤

In this case, the code will just display data to the
user. The result is that InvokeOnMainThread is
called to put data back in the UI.

Figure 5-5 shows the output of a call to the test
WCF service.

using rest-based web services
REST stands for REpresenational State Transfer, and
it is a general architecture for distributed systems, such
as the World Wide Web. REST architectures are made
up of clients and servers. Servers process requests that
come from clients.

REST-based web services are web services that run over
HTTP and implement a more readable (and simpler)
interface than SOAP. With REST, there is no need for
proxies or some of the other things that make SOAP
somewhat complicated.

REST-based web services typically have these three
features:

 1. Addressability of the resources. Some portion of
the data is available over a URL.

 2. Data is sent over various HTTP verbs, such as POST, GET, PUT, and DELETE. The verbs are
typically used as:

GET➤➤ : A GET operation will have input data sent over the URL. This is thought of as a
request for data.

POST➤➤ : A POST operation will have input data sent in the body of the request. A POST
is used to add/insert data.

PUT➤➤ : A PUT operation will have input data sent in the body of the request. A PUT is
used to update data.

DELETE➤➤ : A DELETE operation will have all data sent in the body of the request. A
DELETE is used to delete data.

While some purists will argue the point, there may be valid reasons to perform
REST-style operations by using different HTTP verbs. In addition, some operat-
ing systems and devices do not support all of the HTTP verbs. The examples
here use the GET and POST verbs for operations.

figure 5-5

Working with remote Data ❘ 99

 3. Data may be sent encoded in various formats, such as text, XML, and any other valid data
type. Officially, this is referred to as the MIME type.

Using Javascript object notation (Json)
Most developers are familiar with the eXtensible Markup Language (XML), which is used for data
interchange. JSON is a similar technology; it is a data-interchange format based on the JavaScript
scripting language. The JSON format uses a series of conventions that are familiar to most program-
mers that use the C-family of languages. JSON is built on two concepts:

Data is transmitted as a series of name-value pairs. The values may be a single value or a ➤➤

series of values, such as an array.

Data is stored in a structure that can be thought of as a sequence.➤➤

Because these concepts are commonly accepted, the concepts are available across nearly all mod-
ern programming languages. As a result, nearly all programming languages have some support for
JSON. In .NET, Microsoft introduced support for JSON with the ASP.NET 2 AJAX library that
shipped in 2007. Now programmers have various options for JSON in .NET thanks to WCF, the
popular JSON.NET library, and various other libraries.

Following is an example of a JSON data packet:

{
 “ld”:{
 “UserName”:”tiger”,
 “PassWord”:”scott”,
 “AppKey”:”blah”
 },
 “TwitterId”:”wbm”,
 “PageIndex”:”1”
}

In this example, three parameters are shown:

ld➤➤ : This object has three properties within it:

UserName➤➤ : The UserName property has a value of tiger.

PassWord➤➤ : The PassWord property has a value of scott.

AppKey➤➤ : The AppKey property has a value of blah.

TwitterId➤➤ : The TwitterId property has a value of wbm.

PageIndex➤➤ : The PageIndex property has a value of 1.

retrieving data
This section is an introduction to getting data from Twitter using the Twitter Search API.

100 ❘ chaPter 5 workIng wIth data on the IPhone

Using linQ to XMl
Language Integrated Query (LINQ) is a set of methods, operations, rules, and types that allow for
data to be queried within a .NET language such as Visual Basic or C#. LINQ shipped within the
.NET 3.5 Framework, and LINQ support for several data providers exists within the Mono project.

LINQ to XML is a technology that allows for XML documents to be converted into XElement
objects, queried based on some criteria, and to be converted into a collection of objects. The queries
are performed within the local execution engine.

Listing 5-7 shows a simple example of querying data from Twitter:

listing 5-7: retrieving data from Twitter

private Dictionary<int, TCController> controllers;
private String[] str;
public void SearchByTerm(string SearchTerm)
{
 string strUrl = “http://search.twitter.com/search.atom?q=”;
 SearchTwitterResult sr = new SearchTwitterResult();
 if (controllers == null)
 {
 controllers = new Dictionary<int, TCController>();
 }
 List<SearchTwitterResult> strl = new List<SearchTwitterResult>();
 if ((!String.IsNullOrEmpty(SearchTerm)))
 {
 strUrl += SearchTerm;
 XDocument xdoc = XDocument.Load(strUrl);
 Console.WriteLine(“Document Loaded.”);
 XNamespace atomNS = “http://www.w3.org/2005/Atom”;
 XNamespace google = “http://base.google.com/ns/1.0”;
 var query = (from tweet in xdoc.Descendants(atomNS + “entry”)
 where tweet != null
 select new SearchTwitterResult
 {
 TwitterUri = tweet.Element(atomNS + “author”).Element(atomNS +
 “uri”).Value,
 TwitterName = tweet.Element(atomNS + “author”).Element(atomNS +
 “name”).Value,
 StatusDate = Convert.ToDateTime(tweet.Element(atomNS +
 “updated”).Value),
 Status = tweet.Element(atomNS + “title”).Value,
 });
 Console.WriteLine(“Query formed.”);
 strl = query.ToList();
 Console.WriteLine(“Query Completed.”);
 Console.WriteLine(“Records stored: “ + strl.Count);
 }
 str = strl.ToArray();
}

public class SearchTwitterResult

Working with remote Data ❘ 101

{
 public string TwitterName { get; set; }
 public string TwitterUri { get; set; }
 public string Location { get; set; }
 public string Status { get; set; }
 public DateTime StatusDate { get; set; }
 public int StatusID { get; set; }
 public double? Latitude { get; set; }
 public double? Longitude { get; set; }
}

Found in the RemoteData/Main.cs and the RemoteData/UserStatusSvc.cs files of the download

In this example, a query is made against the Twitter Search API based on a specific term. The term
is entered through the user interface, and data is passed
through to the Twitter Search API. The programmatic
steps are:

 1. Data is loaded by a call to XDocument
.Load(...). The XDocument.Load() method
is a synchronous method.

 2. A query is formed against the XDocument.
When the query is executed, the data is con-
verted from an XML format into a collection of
objects.

 3. LINQ queries are executed when the results are
enumerated. The .ToList() method is called to
cause the data to be retrieved.

Several pieces of code might seem strange or out of
place to you in this listing, but they are there for a rea-
son. These objects and lines of code are as follows:

The ➤➤ if(controllers == null) section: With
the UITableView, the controllers for
the UITableCells should be cached. The
controllers object is a Dictionary that
contains the UITableCells’ controllers.

A check is performed to verify that a string ➤➤

is passed in. This is not really necessary in
example code.

The result is shown in Figure 5-6.➤➤

You may have noticed that the above code makes a request synchronously. There is one negative to
performing synchronous operations. Performing a synchronous operation over a wireless network
may not be a reliable mechanism. If the connection is unreliable, the application may freeze for more
than the iPhone’s self-imposed 20-second limit. The result would be that the iPhone would detect
the timeout and close the application. The easiest way around this issue is to perform the operation
asynchronously. Some examples of asynchronous operations in MonoTouch follow.

figure 5-6

102 ❘ chaPter 5 workIng wIth data on the IPhone

Using asynchronous Data retrieval
Performing an asynchronous call to a REST-based web service is possible. Though the iPhone is
limited in its ability to multitask third-party applications, it is possible to make asynchronous calls
through MonoTouch. Calling a REST-based web service asynchronously is an easy way to get
around the iPhone’s 20-second time spent in an application executing code. Another positive is that
this is done through the exact same API as in .NET. Chances are that a developer is familiar with
the .NET asynchronous programming methodologies of calling BeginXXX/EndXXX.

In Listing 5-8, the code makes asynchronous requests against a set of third-party web services
hosted on the twtmstr.com domain. TwtMstr is an application that interfaces to Twitter and allows
for the scheduling of Twitter entries.

listing 5-8: Calling a resT web service asynchronously

void HandleGetDataTouchUpInside (object sender, EventArgs e)
{
 string Url = “http://www.twtmstr.com/WebServices/RemoteAPI.svc/GetUserTimeLine”;
 string Body = “{\”ld\”:{\”UserName\”:\”userid1\”,\”PassWord\”:\”pwd1\”,
 \”AppKey\”:\”blah\”}, \”TwitterId\”:\”wbm\”, \”PageIndex\”:\”1\”}”;
 byte[] byteData = UTF8Encoding.UTF8.GetBytes(Body);
 try
 {
 // Create the web request
 HttpWebRequest request = WebRequest.Create(Url) as HttpWebRequest;
 request.ContentLength = Body.Length;
 // Set type to POST
 request.Method = “POST”;
 request.ContentType = “text/json”;
 // Write the parameters
 StreamWriter stOut = new StreamWriter(request.GetRequestStream(),
 System.Text.Encoding.ASCII);
 stOut.Write(Body);
 stOut.Close();
 request.BeginGetResponse(new AsyncCallback(ProcessHttpResponse), request);
 }
 catch (WebException we)
 {
 Console.Error.WriteLine(“Exception: “ + we.Message);
 }
}

Found in the RemoteData/Main.cs file of the download

Here are the specifics of this code:

 1. A URL to call is set up. This URL is to a REST-based WCF service. This method will return a
set of user statuses and has the following signature:

[OperationContract]
UserStatusSvc[] GetUserTimeLine(LoginData ld, string TwitterId, int PageIndex);

http://twtmstr.com

Working with remote Data ❘ 103

 2. Due to the necessity of providing userid/password information to the application, it was
determined that this was a security vulnerability. As a result, a POST is required.

 3. A body is set up to pass information through. This body contains the content that is passed
to the method.

 4. The body is set up manually. Another way to handle this is to use a library that will serialize/
deserialize JSON.

 5. The HTTP request is set up as the JSON MIME type.

 6. The HTTP request is made asynchronously. A callback is set up so that when data returns
from the web service, a method is called to handle the returned data.

 7. The ProcessHttpResponse method takes the result that is returned from the web service.

 8. Within the ProcessHttpResponse callback method (Listing 5-9) are two things to note:

JSON serialization is performed through the Mono JavaScript serializer that is com-➤➤

patible with ASP.NET 2 AJAX. With this serializer, the properties must match up in
their names for the properties to flow across. Other JSON serializers could be used as
well.

It is important to close the ➤➤ HttpWebResponse after data has been retrieved.

listing 5-9: Processing the callback from a web service called asynchronously

private void ProcessHttpResponse(IAsyncResult iar)
{
 HttpWebRequest request = (HttpWebRequest)iar.AsyncState;
 HttpWebResponse response;
 response = (HttpWebResponse)request.EndGetResponse(iar);
 Console.Error.WriteLine(“get response.”);
 System.IO.StreamReader strm = new System.IO.StreamReader(
 response.GetResponseStream());
 string responseString = strm.ReadToEnd();
 responseString = responseString.Replace(“{\”GetUserTimeLineResult\”:”,
 String.Empty);
 responseString = responseString.Substring(0, responseString.Length - 1);
 response.Close();
 Console.Error.WriteLine(“response: “ + responseString);
 JavaScriptSerializer ser = new JavaScriptSerializer();
 List<UserStatusSvc> uss = ser.Deserialize<List<UserStatusSvc>>(responseString);
 Console.Error.WriteLine(“Count: “ + uss.Count.ToString());
}

Found in the RemoteData/Main.cs file of the download

Now that the callback has processed, you have a set of objects that you can work with. Though this
code will just output to the Mono debugger that a set of objects has been returned, it is possible to
save the data in another format, such as SQLite, presented to the user in the UITableView, or pro-
cessed in any set of ways.

104 ❘ chaPter 5 workIng wIth data on the IPhone

Posting data with Post
Now that you have learned how to get data from a service, you need to take a closer look at how to
post data to a service. In this example, you look at posting data to a service with JSON.

First some background on the service: TwtMstr is a service that provides a number of enhancements
to businesses that are using Twitter as part of their social media efforts. TwtMstr exposes a set of
REST-based JSON web services that allow third-party applications to integrate with it. One of the
features that TwtMstr provides is the ability to schedule Tweets to go out on Twitter in the future.

Listing 5-10 shows some example code that would schedule a post to be done in the future. The
code will schedule a post one hour in the future.

listing 5-10: Posting data asynchronously

void HandleTweetTouchUpInside (object sender, EventArgs e)
{
 string Url = “http://www.twtmstr.com/WebServices/RemoteAPI.svc/ScheduleMessage”;
 string DateToPost = DateTime.Now.AddHours(1).ToString(“MM/dd/yyyy”);
 string TimeToPost = DateTime.Now.AddHours(1).ToString(“HH:mm”);
 string Body = “{\”ld\”:{\”UserName\”:\”xxxx\”,\”PassWord\”:\”yyyyy\”,
 \”AppKey\”:\”blah\”}, “ +
 \”TwitterId\”:\”zzzzz\”,
 \”ReplyStatusId\”:\”\”, \”DateToPost\”:\”“ + DateToPost + “\”,
 \”TimeToPost\”:\”“ + TimeToPost + “\”, \”Tweet\”:\”“ + TweetText.Text + “\” }”;
 byte[] byteData = UTF8Encoding.UTF8.GetBytes(Body);
 // Create the web request
 HttpWebRequest request = WebRequest.Create(Url) as HttpWebRequest;
 request.ContentLength = Body.Length;
 // Set type to POST
 request.Method = “POST”;
 request.ContentType = “text/json”;
 // Write the parameters
 StreamWriter stOut = new StreamWriter(request.GetRequestStream(),
 System.Text.Encoding.ASCII);
 stOut.Write(Body);
 stOut.Close();
 request.BeginGetResponse(new AsyncCallback(ProcessHttpResponseAndForget), request);
}

Found in the RemoteData/Main.cs of the download

Note the following in the code:

You create the URL for calling this method. This is stored in the ➤➤ Url variable.

The code creates a date and a time to post. In this simple example, the date and time are ➤➤

separate controls and are passed separately to the method.

The body of the method is created. Ideally, this would be done with a custom object that is ➤➤

serialized. The reason for showing it here is merely to display the content. The body is put
into a byte array.

Working with remote Data ❘ 105

An ➤➤ HttpWebRequest is created with several properties set. The key is the Method and the
ContentType. The Method is set to POST and the ContentType is set as a JSON data packet.

Finally, ➤➤ BeginGetResponse() is called. This results in the web request being made
asynchronously.

When the response returns, a call is made into the method ➤➤

ProcessHttpResponseAndForget(). This method handles the callback event.

The ➤➤ ProcessHttpResponseAndForget() method, shown in the following code block, does
nothing more than close the web request when it is finished.

private void ProcessHttpResponseAndForget(IAsyncResult iar)
{
 HttpWebRequest request = (HttpWebRequest)iar.AsyncState;
 HttpWebResponse response;
 response = (HttpWebResponse)request.EndGetResponse(iar);
 Console.Error.WriteLine(“get response.”);
 System.IO.StreamReader strm = new System.IO.StreamReader(
 response.GetResponseStream());
 string responseString = strm.ReadToEnd();
 response.Close();
}

Figure 5-7 shows that a record has been successfully entered into TwtMstr for the supplied user id.

figure 5-7

106 ❘ chaPter 5 workIng wIth data on the IPhone

using web services responsibly
Now that you have learned how to use web services in various forms in MonoTouch, let’s look at
some issues. Web services are great tools for:

Building apps that run over the Internet. Because they run over port 80, there is a very small ➤➤

chance that the communication will be blocked.

Keeping information centralized. ➤➤

Easily allowing for disparate systems to communicate.➤➤

At the same time, web services have their drawbacks. Some of the cons of web services over wire-
less are:

Web services tend to be slow. Sending information over a textual format, such as JSON or ➤➤

XML, can be slower than sending the same information over a binary/compressed protocol.

Wireless communications tend to be unreliable.➤➤

Sending data over numerous networks, which the Internet is, tends to be unreliable.➤➤

As a result, it is important to remember to use web services in a responsible manner:

Be efficient in the amount of data that is sent to the web service and sent back to the iPhone. ➤➤

There is no reason to overburden the iPhone or the connection to the web service.

The iPhone has a limit of 20 seconds to wait on user code to finish executing. After 20 sec-➤➤

onds, the code that is being executed will terminate. As a result, for calling web services, it
makes sense to call web services asynchronously or in another thread.

summary

This chapter looked at data strategies on the iPhone. By using these technologies, developers can build
native applications that run when a network connection is not available. You’ve learned how to:

Set up a local database in SQLite on the iPhone➤➤

Run commands against the SQLite database on the iPhone➤➤

Work with SOAP-based web services on the iPhone➤➤

Work with REST-based web services on the iPhone➤➤

When they add in the ability to call web services, iPhone developers and their applications can inte-
grate with central datastores. This allows an application’s users to interact with other users. For
example, Twitter users on their iPhone can interact with other Twitter users without ever having to
go to the Twitter.com web site. By taking advantage of the features in the iPhone, developers can
create applications that provide more features for users and are more resistant to problems when
connecting to the Internet and its datasources.

http://Twitter.com

6
Displaying Data Using Tables

what’s in this chaPter?

Displaying information in a table➤➤

Using tables for navigation➤➤

Taking advantage of UITableView’s built-in editing features➤➤

Adding a search bar to a table➤➤

Most programmers visualize a “table” as a grid: a set of rows and columns used to display
structured information similar to a spreadsheet. C#/.NET developers probably think of the
DataGrid or GridView control in their area of expertise (WinForms, ASP.NET, or WPF).

Tables on the iPhone are a more like a Repeater control in ASP.NET, with an almost infi nitely
fl exible ItemTemplate. The two key classes are UITableView and the UITableViewCell.
Both are provided with useful default functionality and can be highly customized via either
Interface Builder or in code to produce almost any structured content display you can imagine.
Coupled with the UINavigationController to help manage multiple levels of navigation, the
UITableView forms the basis for much of the iPhone OS UI that you are familiar with. Tables
and how you use and manage them in the iPhone OS are what this chapter is all about.

Tables are used throughout the iPhone OS, from obvious places like the iPod Album/Artist/
Track and Contact lists to the Messages application and the display/editing of values in
Settings. Figure 6-1 shows a variety of different examples, highlighting how fl exible and cus-
tomizable the UITableView control can be.

108 ❘ chaPter 6 dIsPlaYIng data usIng tables

figure 6-1

The main classes required to create these user interfaces are UITableView and its associated
UITableViewSource delegate. UITableViewCell is also used when customizing the display
beyond the built-in options, and the UISearchBar and Search Display Controller provides an
easy way to set up a search function with the results in a table. UITableView can also be com-
bined with a NavigationController to facilitate navigating through a hierarchy of options with
built-in “back” functionality.

Displaying Data in a Table ❘ 109

disPlaying data in a table

The simplest form of table renders a list of data on the screen using a built-in cell style. Create a
new solution Tables01 in MonoDevelop, drag a UITableView onto the main window using Interface
Builder, and create an outlet called Table for it. Add the code in Listing 6-1 to Main.cs to create a
basic table. The key aspects of the code are:

Creating some data to display, in this case a simple array of strings called ➤➤ colors. Data
for your table could come from anywhere — a hardcoded list, a database query, or web
service call.

Assigning the ➤➤ UITableView.Source property an instance of a custom UITableViewSource
subclass, passing a reference to the data being displayed. This is the key to the delegate pat-
tern — the UITableView instance “asks” the UITableViewSource for the information it
needs to render, including the number of rows and what view object to display in each cell.

Implementing the two required methods in the ➤➤ UITableViewSource subclass:

RowsInSection➤➤ : Tells the table how many rows will be required to display the entire
data set.

GetCell➤➤ : Called by the table when it is rendering the user interface. Here you
simply create a new UITableViewCell each time and assign your data to the
TextLabel. Notice that you pass a reuseidentifier “mycell” to the construc-
tor — it isn’t used elsewhere in this code but it becomes very important for larger
tables later in the chapter.

listing 6-1: Basic table display (Tables01\Main.cs)

using System;
using System.Collections.Generic;
using System.Linq;
using MonoTouch.Foundation;
using MonoTouch.UIKit;
namespace Tables01
{
public class Application
{
 static void Main (string[] args)
 { UIApplication.Main (args);}
}
public partial class AppDelegate : UIApplicationDelegate
{
 // This method is required in iPhoneOS 3.0
 public override void OnActivated (UIApplication application) {}
 private List<string> colors;
 public override bool FinishedLaunching
 (UIApplication app, NSDictionary options)

continues

110 ❘ chaPter 6 dIsPlaYIng data usIng tables

 {
 colors = new List<string>
 {“Red”,”Orange”,”Yellow”,”Green”,”Blue”,”Indigo”,”Violet”};
 Table.Source = new MyTableViewSource (colors);
 window.MakeKeyAndVisible ();
 return true;
 }
 // Replaces/combines UITableViewDataSource and UITableViewDelegate
 private class MyTableViewSource : UITableViewSource
 {
 private List<string> rows;
 public MyTableViewSource (List<string> list)
 { // store the data in this class
 rows = list;
 }
 public override int RowsInSection (UITableView tableview, int section)
 { // tell the table how many rows will be needed
 return rows.Count;
 }
 public override UITableViewCell GetCell
 (UITableView tableView, NSIndexPath indexPath)
 { // we will learn what “mycell” is for later...
 UITableViewCell cell = new
 UITableViewCell(UITableViewCellStyle.Default,”mycell”);
 cell.TextLabel.Text = rows[indexPath.Row];
 return cell;
 }
 }
}}

The “format” of your data (for example, the underlying class or type of collection you use) isn’t
important because you are responsible for determining the number of rows and for instructing the
table how to display each row via the GetCell method. The result of this very simple code is shown
in Figure 6-2.

figure 6-2

listing 6-1 (continued)

Displaying Data in a Table ❘ 111

If you are converting an Objective-C example or reading Apple’s documenta-
tion you will fi nd references to UITableView’s Delegate and DataSource prop-
erties. In Objective-C UITableViewDelegate and UITableViewDataSource are
protocols that can both be implemented by the same class, but in C# they are
exposed as abstract classes, which means you must implement two subclasses
for every table you create.

In MonoTouch the properties and methods of those two classes have been
“merged” into UITableViewSource as a convenience for C# developers.
MonoTouch allows you to use either approach: Implement UITableViewSource
only OR implement both UITableViewDelegate and UITableViewDataSource.
There is no difference in functionality — in this chapter only the
UITableViewSource approach has been used because it involves less typing.

selecting a cell
UITableView provides a lot of default functionality with little or no additional coding — already
the example behaves like an iPhone OS application by inheriting the default font and text settings
and supporting smooth scrolling. Responding to the user touching a cell takes only a few lines of
code — fi rst create this helper method in the UITableViewSource subclass to pop up a message:

public void ShowAlert (string title, string message)
{
 using(var alert=new UIAlertView(title,message,null,”OK”,null))
 {
 alert.Show();
 }
}

Then implement the RowSelected method on the UITableViewSource subclass. The NSIndexPath
object contains information on which row was selected — the Row property tells you the index that
is used to retrieve the value in the rows array:

public override void RowSelected
 (UITableView tableView, NSIndexPath indexPath)
{
 ShowAlert(“RowSelected”,”You selected “+rows[indexPath.Row]);
}

An instance of NSIndexPath contains enough information to identify a specifi c
row in a UITableView. In these simple examples only the Row property is used, but
when grouping is used (later in the chapter) the Section property is also required.

You can take many actions when a table cell is touched: Add a checkmark to the cell, open a new
view, navigate elsewhere in your application, or whatever else you can think of. Some of these other
actions are covered later in the chapter.

112 ❘ chaPter 6 dIsPlaYIng data usIng tables

There is another type of “row selection” provided by the UITableView — the
DetailDisclosureButton — most commonly seen in the Phone application. This user interface
element has a special meaning: It indicates that touching the main part of the cell can perform one
action (for example, initiating a telephone call) whereas touching the blue-circle-arrow performs a
different action (such as opening the contact details). To use this feature, set the Accessory prop-
erty of cell in the GetCell method.

cell.Accessory = UITableViewCellAccessory.DetailDisclosureButton;

and implement this method in the UITableViewSource subclass:

public override void AccessoryButtonTapped
 (UITableView tableView, NSIndexPath indexPath)
{
 app.ShowAlert (“AccessoryButton”, “You tapped “+text[indexPath.Row]);
}

Figure 6-3 shows the RowSelected and AccessoryButtonTapped methods in action — touching the
row calls RowSelected and touching the DetailDisclosureButton calls AccessoryButtonTapped
so you can respond to two different actions from the row.

figure 6-3

In addition to the special DetailDisclosureButton, as you can see in Table 6-1, there are two
other possible values for cell.Accessory, each with a specific purpose in the iPhone Human
Interface Guidelines.

table 6-1: UITableViewCellAccessory Options

tyPe descriPtion

None The default value — no accessory is displayed . Either this cell is a read-only
piece of data or it responds to a touch .

Checkmark Use this to indicate single- or multi-selection in a table . Do not use the blue
selection state — that is only intended as a visual indicator that the cell has
been touched .

Displaying Data in a Table ❘ 113

tyPe descriPtion

Disclosure Simple grey > arrow usually used to indicate that touching this cell results in
some sort of navigation .

DetailDisclosure Blue circle with small white > arrow, which indicates that touching this acces-
sory has a diff erent behavior than touching the rest of the cell .

changing the cell layout
The table would be fairly uninspiring if you could not include some additional text or images in each
cell. Four predefi ned layouts are available (see Table 6-2) that are used by the built-in applications.

table 6-2: UITableViewCellStyle Options

style descriPtion

Default Shows a single black TextLabel and an optional image on the left of the text . Does
not support DetailTextLabel . This style is used in the iPod application .

Subtitle Displays two left-aligned fi elds: TextLabel uses larger black text;
DetailTextLabel uses smaller grey text . An image can optionally be added to the
left of both labels . This style is used in the iPod application .

Value1 TextLabel is smaller than the Default, right-aligned and blue . DetailTextLabel is
left-aligned and black . It doesn’t support an image . This style is used in the Contacts list .

Value2 TextLabel is left-aligned black text . DetailTextLabel is right-aligned blue text . It
doesn’t support an image . This style is used in the Settings application .

When using these styles do not attempt to set unsupported properties (for exam-
ple, the DetailTextLabel isn’t supported by Default; and the ImageView isn’t
supported by Value1) because a null reference exception will result.

The code download folder Tables02 in the code download for this chapter contains seven PNG
images (one for each color), and an additional Hex property has been added to the Color class to
demonstrate the different styles. Change the instantiation of each UITableViewCell in the GetCell
method to use a different style like this:

var cell = new UITableViewCell (UITableViewCellStyle.Subtitle,
 “mycell”);
MyColor display = sectionColors[indexPath.Section][indexPath.Row];
cell.TextLabel.Text = display.Name;
cell.DetailTextLabel.Text = display.Hex;
cell.ImageView.Image = UIImage.FromFile(display.Name + “.png”);

114 ❘ chaPter 6 dIsPlaYIng data usIng tables

Figure 6-4 shows the four different cell style options using the preceding code as well as an example
of each style from the built-in applications.

Default

Subtitle

Value 1

Value 2

figure 6-4

The visual styles such as the text font size and color of the built-in views can also be changed in
GetCell like this:

cell.DetailTextLabel.Font = UIFont.SystemFontOfSize(20); //bigger
cell.DetailTextLabel.TextColor = new UIColor(0,0,255,255); //blue

Presenting grouped data
Short lists such as the seven colors used in previous examples are easy to navigate and unlikely to
cause performance problems. However, when you need to display dozens, hundreds, or thousands
of rows (for example, the Songs list in the iPod application), a little more code is required to ensure
your application is responsive and follows the iPhone Human Interface Guidelines. To address these
concerns you need to:

Implement reusable cell objects in your table➤➤

Use grouping and possibly an index to make your table easier to navigate➤➤

The GetCell method is called whenever a new row is scrolled into view, so the code shown in
Listing 6-1 would return a new UITableViewCell object for every row that comes into view. A table
with the default layout and cell size shows only about 10 rows on an iPhone-sized screen, but without

Displaying Data in a Table ❘ 115

reusing cell objects there would potentially be hundreds (or thousands) created if you scrolled through a
very long list — your application would slow down and possibly run out of memory.

The iPhone OS provides a neat solution to this problem that resembles the
VirtualizingStackPanel familiar to .NET/WPF developers. When a row moves offscreen, the
view object for that row is placed in a queue for reuse, and a method is provided by UITableView
to look for objects in this queue before creating new ones. An improved GetCell method that
uses this approach is shown in the following code:

public override UITableViewCell GetCell
 (UITableView tableView, NSIndexPath indexPath)
{
 UITableViewCell cell = tableView.DequeueReusableCell(“mycell”);
 if (cell == null)
 { // none to re-use, create a new object
 cell = new UITableViewCell (UITableViewCellStyle.Value1,”mycell”);
 }
 Element display = sectionElements[indexPath.Section][indexPath.Row];
 cell.TextLabel.Text = display.Symbol;
 return cell;
}

The DequeueReusableCell method asks the table if there are any spare UITableViewCell objects
that can be reused, and returns null if none are available. In that case your code creates a new
UITableViewCell object and returns it at the end of the method (and ultimately back into the queue
if it is scrolled off-screen).

The “mycell” parameter is used to distinguish between cell layouts that can be re-used inter-
changeably. Because this example only has one cell layout, you pass the same string into the
UITableViewCell constructor and DequeueReusableCell. The Messages application uses a table
to display each conversation with grey and green “speech bubble” cells that would need different
identifiers because you obviously can’t re-use a green cell when you need a grey one. In that case you
would probably check the contents of indexPath first to determine what type of cell is required and
potentially dequeue or instantiate different UITableViewCell implementations with “greycell” or
“greencell” identifiers. The actual strings you choose are not important; all that matters is differ-
ent cell layouts have different identifiers.

To demonstrate DequeueReusableCell and grouping/indexing the next few examples use a collec-
tion of Elements (too long to reprint here) that is included in the code download for this chapter
(folder Tables03). The initialization of the collection starts like this:

elements = new List<Element>{
 new Element{Name=”hydrogen”,Number=”1”,Symbol=”H”, Family=”Hydrogen”},
 new Element{Name=”helium”, Number=”2”,Symbol=”He”,Family=”Noble gas”},
 // etc...

In most cases the data you present in a table will be a single flat structure like this list of Elements.
Using the grouping functionality of the UITableView requires you to restructure your data so that
your UITableViewSource delegate can tell the table how many groups to display and how many
items are in each group.

Figure 6-5 shows the difference between a data structure used for the plain and grouped tables.
For the previous examples a simple array is sufficient to display a table because there is an

116 ❘ chaPter 6 dIsPlaYIng data usIng tables

“implicit” single section and the row index is enough to identify each cell. When grouping is used
UITableView uses Section and Row to identify each cell (the two properties of NSIndexPath) so a
two-dimensional-array–type structure works better.

figure 6-5

Listing 6-2 contains an example UITableViewSource implementation using LINQ to create a
SortedDictionary that conforms to the Section-Row hierarchy and makes displaying the groups easy:

In the constructor for ➤➤ MyTableViewSource the list of Element objects is turned into a
two-level hierarchy:

First it extracts the criteria for each group using a ➤➤ Distinct LINQ query and the
Sort() method to create an array of the first letters of each Element. This creates
the sectionTitles list, which is used to populate the index bar and to help divide
the Elements into groups in the next step.

Then it loops through the ➤➤ Elements to create a SortedDictionary where the key
is the integer position of the starting letter and the element is a collection of Element
objects to display in that group.

The result is two collections that are easily referenced with integer parameters for the sec-
tion and row number.

NumberOfSections➤➤ : The number of groups to be displayed.

TitleForHeader➤➤ : The display name of the group, in this case a letter of the alphabet.

RowsInSection➤➤ : Returns the count of items in the specified group.

RowSelected➤➤ : The previous simple example only checked indexPath.Row to determine
which cell was touched. Now that your cells are grouped you need to check the indexPath
.Section value as well.

GetCell➤➤ : Similar to the RowSelected method, you now need to check both Row and
Section properties of IndexPath.

Displaying Data in a Table ❘ 117

listing 6-2: Grouped data table (Tables03\Main.cs)

private class MyTableViewSource : UITableViewSource
{
 private AppDelegate app;
 private List<string> sectionTitles;
 private SortedDictionary<int,List<Element>> sectionElements
 = new SortedDictionary<int, List<Element>>();
 public MyTableViewSource (AppDelegate appDelegate, List<Element> list)
 {
 sectionTitles = (from c in list
 select c.StartsWith).Distinct().ToList();
 sectionTitles.Sort();
 foreach (var c in list)
 { // ‘group’ elements together into alphabet
 int sectionNum = sectionTitles.IndexOf(c.StartsWith);
 if (sectionElements.ContainsKey(sectionNum))
 sectionElements[sectionNum].Add(c);
 else
 sectionElements.Add(sectionNum, new List<Element> {c});
 }
 app = appDelegate;
 }
 public override int NumberOfSections (UITableView tableView)
 { // ie. 26 if you were using the English alphabet
 return sectionTitles.Count;
 }
 public override string TitleForHeader (UITableView tableView, int section)
 { // ie. “A”, “B”, “C”, etc if you were using the alphabet,
 // but could also be a word/heading
 return sectionTitles[section];
 }
 public override int RowsInSection (UITableView tableview, int section)
 {
 return sectionElements[section].Count;
 }
 public override void RowSelected (UITableView tableView, NSIndexPath indexPath)
 {
 Element display = sectionElements[indexPath.Section][indexPath.Row];
 app.ShowAlert (“RowSelected”, “You selected “ + display.Name);
 }
 public override UITableViewCell GetCell (UITableView tableView, NSIndexPath indexPath)
 {
 UITableViewCell cell = tableView.DequeueReusableCell (“mycell”);
 if (cell == null)
 {
 cell = new UITableViewCell (UITableViewCellStyle.Value2, “mycell”);
 }
 Element display = sectionElements[indexPath.Section][indexPath.Row];
 cell.TextLabel.Text = display.Symbol;
 cell.DetailTextLabel.Text = display.Name;
 return cell;
 }
}

118 ❘ chaPter 6 dIsPlaYIng data usIng tables

adding an index
Adding an index (the alphabetic list down the right side of the table that lets you jump directly to
any part of the table) is as easy as implementing a method to describe what values should be dis-
played for each section: SectionIndexTitles. It is your responsibility to ensure the number of ele-
ments in this array is the same as the number of groups in your data.

public override string[] SectionIndexTitles (UITableView tableView)
{ // for the right-vertical index: preferably only one character
 // ie. “A”, “B”, “C”, etc if you were using the alphabet
 return sectionTitles.ToArray();
}

There is limited vertical space for the index on iPhone-sized devices so choose your indexing strat-
egy carefully — an index is most commonly used to display the alphabet (such as in the Contacts
and iPod applications). Use too few items and it looks sparse and unfamiliar to users; with too many
items it will be crowded and unusable. Figure 6-6 shows a table with and without an index — it’s
much easier to scroll quickly to “Z” with the index.

figure 6-6

To show the search magnifying glass that the built-in applications use in
their indexes, return “{search}” as an element of the SectionIndexTitles
array. This is equivalent to using the constant UITableViewIndexSearch in
Objective-C.

Displaying Data in a Table ❘ 119

grouped table style
When you are placing a UITableView in Interface Builder it defaults to the Plain style shown in
the previous examples. There is another style — Grouped — which provides a more visual connec-
tion between grouped elements. The Grouped style can be used for long lists but is also commonly
used to display tables containing short lists of perhaps unrelated information (such as in the Settings
application).

Because the style of a table is set during its initialization, the Style property is read-only and can-
not be changed in FinishedLaunching. Unless you are creating your UITableView in code (beyond
the scope of this chapter), you should choose the style in Interface Builder when you are designing
the window (as shown in Figure 6-7).

figure 6-7

UITableView also allows a footer to be shown at the end of each section. It can be added in both
Plain and Grouped styles, although it looks better with Grouped tables. You can easily add footers
to the table with another method in the delegate class: TitleForFooter.

public override string TitleForFooter (UITableView tableView, int section)
{
 int count = sectionElements[section].Count;
 return String.Format(“{0} elements start with {1}”,
 count, sectionTitles[section]);
}

Grouped tables aren’t usually used for alphabetic grouping but more often for when you
want to show smaller sets of data or for when the table is being used to display a form. The
iPhone Human Interface Guidelines state that you should not use an index (that is, implement
SectionIndexTitles) with the Grouped table style.

120 ❘ chaPter 6 dIsPlaYIng data usIng tables

customizing the cell layout
In addition to the four built-in cell layouts shown in Figure 6-4 there are many other examples (both
built-in and third party) of tables with much more sophisticated cell layouts. These layouts can be
designed in Interface Builder by creating a custom UITableViewCell and then loading it dynami-
cally in the UITableViewSource.GetCell method. This requires some careful use of Interface
Builder to ensure your XIB is set up correctly for access via MonoTouch.

To build a table with custom cells, use MonoDevelop to create a new iPhone Window-based
Project called Tables04 and add a fullscreen UITableView to MainWindow.xib (or look for it in
the code download for this chapter). From within MonoDevelop right-click on the project, choose
Add ➪ New File, choose View Interface Definition, and name it MyTableViewCell.xib.

In Interface Builder perform the following steps, partly depicted in Figure 6-8:

 1. Delete the default UIView from the XIB — a more specific view class is required.

 2. Drag a UITableViewCell from the Objects Library into MyTableViewCell.xib. Open it
and drag four UILabels from the Objects Library; position and format them as required.

In the Identity Inspector set the Class to ➤➤ MyTableViewCell (matching the filename).

In the Attributes Inspector set the Identifier to ➤➤ MyCellIdentifier. This is the re-use
identifier that is referenced in DequeueReusableCell() calls.

In the Classes Library select ➤➤ MyTableViewCell and create outlets for each label
(Number, Symbol, Name, Family).

In the Connections Inspector “wire up” the outlets to the four labels.➤➤

 3. Make the following changes to File’s Owner:

In the Identity Inspector set the Class to ➤➤ MyTableViewController.

In the Library select ➤➤ MyTableViewController from the Classes list and add an out-
let named Cell.

In the Connections Inspector “wire up” the ➤➤ Cell outlet to MyTableViewCell.

figure 6-8

www.allitebooks.com

http://www.allitebooks.org

Displaying Data in a Table ❘ 121

After you save the XIB in Interface Builder and return to MonoDevelop, the designer.cs file
contains two partial class definitions: MyTableViewController should have a Cell property, and
MyTableCellView has the four labels. The designer.cs should never be edited; however, notice
that MonoTouch adds the following helpful comments on each class:

// Base type probably should be MonoTouch.UIKit.UIViewController or subclass
[MonoTouch.Foundation.Register(“MyTableViewController”)]
public partial class MyTableViewController {

and

// Base type probably should be MonoTouch.UIKit.UITableViewCell or subclass
[MonoTouch.Foundation.Register(“MyTableViewCell”)]
public partial class MyTableViewCell {

These generated comments provide guidance for how to complete the class definitions.
Listing 6-3 shows the code you need to complete the partial classes, by inheriting from
UITableViewController and UITableViewCell, respectively. You also need to add four
public properties for the privately defined outlets and two constructors required to load the
MyTableViewCell from an XIB (most importantly they call the base constructor).

listing 6-3: Tables04\MyTableViewCell.xib.cs

public partial class MyTableViewCell : UITableViewCell
{
// The IntPtr and NSCoder constructors are required for controllers that need
// to be able to be created from a xib rather than from managed code
 public MyTableViewCell (IntPtr handle) : base(handle)
 { Initialize (); }
 [Export(“initWithCoder:”)]
 public MyTableViewCell (NSCoder coder) : base(coder)
 {
 Initialize ();
 }
 void Initialize () {}
 public string ElementName
 {
 get {return Name.Text;}
 set {Name.Text = value;}
 }
 #region Other properties: ElementSymbol, ElementNumber, ElementFamily
}

Only a few minor changes are required in Main.cs to complete the implementation. The
AppDelegate requires a field for the UITableViewController that has been “created” through
Interface Builder

MyTableViewController myTVC = new MyTableViewController();

122 ❘ chaPter 6 dIsPlaYIng data usIng tables

and the GetCell method uses that field to load the XIB with LoadNib(). The controller is not actu-
ally connected to the table in this case and exists solely to load its MyCell property from the XIB.

public override UITableViewCell GetCell
 (UITableView tableView, NSIndexPath indexPath)
{
 UITableViewCell cell = tableView.DequeueReusableCell
 (“MyCellIdentifier”); // set in XIB
 MyTableViewCell mycell = null;
 if (cell == null)
 { // no re-usable cell found, load new object (from XIB file)
 NSBundle.MainBundle.LoadNib(“MyTableViewCell”, app.myTVC, null);
 mycell = app.myTVC.MyCell;
 app.myTVC.MyCell = null;
 }
 else
 {
 mycell = (MyTableViewCell)cell;
 }
 // now we have a cell, set the display properties
 Element display = sectionElements[indexPath.Section][indexPath.Row];
 mycell.ElementName = display.Name;
 mycell.ElementSymbol = display.Symbol;
 mycell.ElementNumber = display.Number;
 mycell.ElementFamily = display.Family;
 return mycell;
}

The finished table with custom cells is shown in Figure 6-9.

figure 6-9

navigating with Tables ❘ 123

navigating with tables

Many iPhone OS applications use tables to navigate through hierarchical data structures, such as the
iPod Artists list, which takes you to a list of Albums and then a list of Songs. The previous examples in
this chapter have the UITableView as the window’s only view. To use tables for navigation you need to
introduce a new class — UINavigationController — which manages a collection of UITableViews
as sub-views, showing and hiding them as required. Figure 6-10 shows two levels of table navigation
leading to a static table being used as a “detail view.”

figure 6-10

using uinavigationcontroller
This example uses a small list to keep it simple — the seven colors from the earlier example in the
chapter. You start with the list of three color groups, drill down into a subset of colors, and then
show a “color detail” view.

To create an example table navigation create a new MonoDevelop “iPhone Navigation Application”
called Tables05 (you can find it in the download for this chapter).

124 ❘ chaPter 6 dIsPlaYIng data usIng tables

The new solution will already have some of the required classes
included as shown in Figure 6-11.

MainWindow.xib already contains a UINavigationController,
UINavigationBar, a class called RootViewController, and
a UINavigationItem, as shown in Figure 6-12. None of these
classes requires any change in Interface Builder — if you click
the Navigation Controller, the designer shows the navigation bar
along the top of the window and the content area with a message
Loaded from “RootViewController” (as in Figure 6-12).

figure 6-12

Figure 6-12 also shows if you click the App Delegate two outlets are already defined in the
Connections Inspector: window and navigationController. These two objects are already refer-
enced in FinishedLaunching and allow the window to reference the navigation controller and — if
you start/debug the application now — display an empty table.

public override bool FinishedLaunching
 (UIApplication app, NSDictionary options)
{
 window.AddSubview (navigationController.View);
 window.MakeKeyAndVisible ();
 return true;
}

To get the first table view working you need to “finish” the RootViewController provided by the
template. Nothing needs to be edited in Interface Builder — RootViewController.xib already con-
tains a UITableView — but you need to provide the UITableViewSource implementation so it has
some data to display. The code is shown in Listing 6-4, and should look very familiar. The only new
code is Title = “Colors”;, which appears in the navigation bar at the top of the screen.

figure 6-11

navigating with Tables ❘ 125

listing 6-4: Tables05\rootViewController.xib.cs

partial class RootViewController : UITableViewController
{ // constructor required to create class
 public RootViewController (IntPtr handle) : base(handle) {}
 public override void ViewDidLoad ()
 {
 Title = “Colors”; // appears at top of screen
 colors = new List<MyColor>
 {
 new MyColor{Name=”Red”,Hex=”#FF0000”,Group=”Primary”},
// etc...
 };
 groups = (from c in colors
 select c.Group).Distinct().ToList();
 this.TableView.Source = new DataSource (this, groups);
 }
 private List<MyColor> colors;
 private List<string> groups;
 class DataSource : UITableViewSource
 {
 RootViewController controller;
 List<string> rows;
 public DataSource (RootViewController controller, List<string> data)
 {
 this.controller = controller;
 rows = data;
 }
 public override int RowsInSection (UITableView tableview, int section)
 {
 return rows.Count;
 }
 public override UITableViewCell GetCell
 (UITableView tableView, MonoTouch.Foundation.NSIndexPath indexPath)
 {
 string cellIdentifier = “Cell”;
 var cell = tableView.DequeueReusableCell (cellIdentifier);
 if (cell == null)
 {
 cell = new UITableViewCell
 (UITableViewCellStyle.Default, cellIdentifier);
 }
 cell.TextLabel.Text = rows[indexPath.Row];
 return cell;
 }
 // TODO: Add RowSelected method after creating 2nd level
 }
}

The application will now show a list of color groups in a table, but notice there is a //TODO: place-
holder where the RowSelected method should be. First you need to create the next level of the navi-
gation hierarchy.

126 ❘ chaPter 6 dIsPlaYIng data usIng tables

implementing a second level of navigation
In MonoDevelop choose to add a New File and select View Interface Definition with Controller to
add ColorsTableViewController. Then double-click to open it in Interface Builder.

Delete the ➤➤ UIView from the XIB.

Drag a ➤➤ UITableView from the Objects Library into the XIB.

Connect the ➤➤ File’s Owner view outlet to the UITableView. Notice the File’s Owner is
already of type ColorsTableViewController.

Close Interface Builder and open ColorsTableViewController.xib.cs in MonoDevelop so you
can complete the partial class that was created by parsing your Interface Builder XIB file. The com-
plete class should look very similar to Listing 6-4, replacing the constructors and ViewDidLoad
method with the constructors shown in Listing 6-5.

listing 6-5: Tables05\ColorsTableViewController.xib.cs

public partial class ColorsTableViewController : UITableViewController
{ // constructors:base reference XIB filename to load from
 public ColorsTableViewController () :
 base (“ColorsTableViewController”, null) {}
 public ColorsTableViewController (List<MyColor> data, string key) :
 base (“ColorsTableViewController”, null)
 { // find the colors that match the group key
 colors = (from c in data
 where c.Group == key
 select c).ToList();
 this.TableView.Source = new DataSource (this, colors);
 }
 private List<MyColor> colors;
 // TODO: insert DataSource from Listing 6-4 (without RowSelected)
}

Now that you have a table to show, implement this RowSelected method in the RootViewController
.xib.cs from Listing 6-4. When a row is selected you create an instance of the new
ColorsTableViewController and pass it a reference to the data (controller.colors) and the
value of the selected row (rows[indexPath]) so that it can display the correct subset of the data. It
also sets the Title property, which is displayed in the navigation area of the table, and then calls
PushViewController, which tells the UINavigationController to put that view on the “top of the
stack” and display it.

// for Listing 6-4 RootViewController.xib.cs
public override void RowSelected
 (UITableView tableView, MonoTouch.Foundation.NSIndexPath indexPath)
{
 var colorsViewController = new ColorsTableViewController
 (controller.colors, rows[indexPath.Row]);
 colorsViewController.Title = rows[indexPath.Row];
 controller.NavigationController.PushViewController

navigating with Tables ❘ 127

 (colorsViewController, true);
 tableView.DeselectRow(indexPath, true);
}

DeselectRow() is called to remove the blue selection indicator from this table.
If DeselectRow isn’t called and the user returns to this table (using the Back
functionality of the navigation controller), the row will still appear selected —
not the expected behavior for iPhone OS applications.

Running the application now will display a two-level hierarchy that you can easily navigate by
touching the rows and the Back button provided by the navigation controller.

creating static row content
The fi nal step in this example is a different kind of table — a “detail view” using table cells — for
the third level of the hierarchy. Create another New File in MonoDevelop and select the View
Interface Defi nition with Controller to add ColorsTableViewController. Then double-click to
open it in Interface Builder. These will be the most involved Interface Builder steps in this chapter —
a snapshot is shown in Figure 6-13 and the detailed instructions follow. The goal is to create a table
and the cells it will use in a single XIB fi le to be wired up in a GetCell method using hardcoded
references to the outlets you create.

figure 6-13

128 ❘ chaPter 6 dIsPlaYIng data usIng tables

To create this table and its cells:

 1. Delete the UIView from the XIB.

 2. Drag a UITableView from the Objects Library into the XIB.

 3. Click the table view and change its style to Grouped in the Attributes Inspector.

 4. Drag three UITableViewCells from the Objects Library into the XIB. Click each and give
them a name (CellGroup, CellHex, and Cellname).

 5. Open all three cells and drag a UILabel into each one. Apply some formatting (for example,
italics or grey color) to each one to distinguish them.

 6. Select the SingleColorTableViewController in the Classes Library and add the following
outlets: CellGroup, CellHex, Cellname, LabelGroup, LabelHex, LabelName.

 7. Select File’s Owner in the XIB and in the Connections Inspector connect the cell and label
outlets.

The code for this table is shown in Listing 6-6. It has the same structure as the previous
UITableViewControllers; however, there is an important difference: Most of the UITableViewSource
methods are hardcoded to reflect a specific layout of cells and data. The NumberOfSections and
RowsInSection both return numbers to show a very specific design. GetCell is even more unusual —
there is no object instantiation, and there are no DequeueReusableCell calls. Instead you reference the
labels and cells directly from the XIB via the outlets. In previous examples you used UITableView to
present a list of data where each cell uses the same layout to display a row of data. This code does the
opposite: Each cell can have a totally different layout — they can be designed independently in Interface
Builder and can display different pieces of data.

listing 6-6: Tables05\singleColorTableViewController.xib.cs

public partial class SingleColorTableViewController : UITableViewController
{
 public SingleColorTableViewController() : base() {}
 public SingleColorTableViewController(MyColor data)
 : base(“SingleColorTableViewController”, null)
 { // loads from XIB via base, then sets DataSource
 this.TableView.Source = new DataSource(this, data);
 this.TableView.AllowsSelection = false;
 }
 class DataSource : UITableViewSource
 {
 public DataSource
 (SingleColorTableViewController controller, MyColor data)
 {
 this.controller = controller;
 row = data;
 }
 SingleColorTableViewController controller;
 MyColor row;
 public override int NumberOfSections (UITableView tableView)
 {

navigating with Tables ❘ 129

 return 2; // yes, hardcoding to reflect the layout we want
 }
 public override int RowsInSection (UITableView tableview, int section)
 { // more hardcoding to break the cells into sections
 if (section == 0)
 return 1;
 else
 return 2;
 }
 public override UITableViewCell GetCell
 (UITableView tableView, NSIndexPath indexPath)
 { // even more hardcoding to layout correctly
 if (indexPath.Section == 0)
 {
 controller.LabelName.Text = row.Name;
 return controller.CellName;
 }
 else // Section == 1
 if (indexPath.Row == 0)
 {
 controller.LabelHex.Text = row.Hex;
 return controller.CellHex;
 }
 else
 {
 controller.LabelGroup.Text = row.Group;
 return controller.CellGroup;
 }
 }
 }
}

Now you can implement the final RowSelected method in the ColorsTableViewController.xib
.cs from Listing 6-5. When a row is selected, you create an instance of the “single color view,”
passing in the object to display (rows[indexPath.Row]) — all the work wiring up the objects prop-
erties to the UILabels is done in GetCell. The next line sets the Title, and then you push the view
(which displays it) and deselect the row.

// for Listing 6-5 ColorsViewController.xib.cs
public override void RowSelected
 (UITableView tableView, NSIndexPath indexPath)
{
 var single = new SingleColorTableViewController (rows[indexPath.Row]);
 single.Title = rows[indexPath.Row].Name;
 controller.NavigationController.PushViewController (single, true);
 tableView.DeselectRow(indexPath, true);
}

Now you have a complete three-level navigation hierarchy (refer back to Figure 6-10) managed by a
UINagivationController. Using the built-in navigation controller provides a simple way to navi-
gate back and forth between views, operating like a stack where new windows are pushed to the
top and when going back they are popped off. This example uses tables and RowSelected for every
navigation action. However, NavigationController.PushViewController could also be called
from within a UIButton.TouchDown event or other control depending on your requirements.

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

130 ❘ chaPter 6 dIsPlaYIng data usIng tables

editing table rows

Another of the UITableView’s features is the built-in editing: deleting cells, re-ordering cells, and
providing a consistent user interface to add new rows. Each of these elements can be individually
enabled with the implementation of methods on the UITableViewSource delegate class.

Once again you will start with the Colors list for this example. The code for Tables06 is in the
download for this chapter.

adding swipe to delete
The simplest editing function to implement is swipe and delete. There is no visual indicator on the
table that any editing functionality is enabled, but if the user swipes across the row a Delete button
appears. Touching the button immediately deletes the row. The following three methods are used by
the UITableViewSource subclass to enable this functionality:

CanEditRow➤➤ : This method is called when the table is being rendered so that it can respond to
“editing input” (such as a swipe). indexPath is a parameter, so the response can be changed
for each row. However, for this example it is hardcoded true. Every row in the table will
respond to the swipe gesture and display a Delete button.

CommitEditingStyle➤➤ : Called when “editing” takes place. Because only Delete is functional
in this simple example, the code shows only how Delete works. First delete the data from the
underlying data structure (rows.RemoveAt is called in this case) and then call DeleteRows on
the table to remove the corresponding cell from the table.

TitleForDeleteConfirmation➤➤ : Optional customization of the text in the button.

public override int RowsInSection (UITableView tableview, int section)
{
 return rows.Count;
}
public override bool CanEditRow (UITableView tableView,
 MonoTouch.Foundation.NSIndexPath indexPath)
{
 return true;
}
// Override to support editing the table view.
public override void CommitEditingStyle (UITableView tableView,
 UITableViewCellEditingStyle editingStyle, NSIndexPath indexPath)
{
 rows.RemoveAt(indexPath.Row);
 tableView.DeleteRows (
 new NSIndexPath[] { indexPath }, UITableViewRowAnimation.Fade);
}
public override string TitleForDeleteConfirmation
 (UITableView tableView, NSIndexPath indexPath)
{ // OPTIONAL: Defaults to Delete
 return “Trash this”;
}

DeleteRows takes an array of indexPaths so it knows which visual representations (cells) to ani-
mate out of the table; it also accepts a parameter to choose how to animate the deletion. The anima-
tion options are listed in Table 6-3 and apply to row insertion, which is covered later in the chapter.

editing Table rows ❘ 131

table 6-3: UITableViewRowAnimation

animation behavior (for insertion and deletion)

None No animation

Fade Cell fades in or out

Right Slides in from or out to the right

Left Slides in from or out to the left

Top Slides down from or up toward the top

Bottom Slides up from or down to the bottom

enabling edit “mode”
The UITableView also provides a more obvious editing UI, which is enabled with the
SetEditing method. This mode uses a red stop-sign switch in each row, which causes the
Delete button to appear. Most applications provide an Edit button to show these switches,
and UINavigationController makes it easy to add a button as shown in the following code.
ViewDidLoad creates two buttons with slightly different appearances, and Clicked toggles the
Editing mode and displays the appropriate button.

public override void ViewDidLoad ()
{
 // ... initialization code here ...
 editButton = new UIBarButtonItem
 (“Edit”, UIBarButtonItemStyle.Bordered, Clicked);
 doneButton = new UIBarButtonItem
 (“Done”, UIBarButtonItemStyle.Done, Clicked);
 NavigationItem.RightBarButtonItem = editButton;
 TableView.Source = new DataSource (this, colors);
}
void Clicked (object sender, EventArgs ea)
{
 if (TableView.Editing)
 { // toggle off, show edit
 TableView.SetEditing (false, true);
 NavigationItem.RightBarButtonItem = editButton;
 }
 else
 { // toggle on, show done
 TableView.SetEditing (true, true);
 NavigationItem.RightBarButtonItem = doneButton;
 }
}

After SetEditing is called the table will normally display both delete and move visual cues.
CanMoveRow is called for each row to determine whether it can be moved — if you don’t want to
support re-ordering (as shown in Figure 6-14), return false.

class DataSource : UITableViewSource
 // ... other methods here ...

132 ❘ chaPter 6 dIsPlaYIng data usIng tables

 public override bool CanMoveRow
 (UITableView tableView, NSIndexPath indexPath)
 {
 return false; // can’t move (yet)
 }

figure 6-14

re-ordering cells
Some tables do need re-ordering (such as the Stocks app), which requires the following two methods:

CanMoveRow➤➤ : Returns true for each row, causing the move indicator to display and the row
to be moveable.

MoveRow➤➤ : Gets passed two parameters for the old and new location of the row, making it
easy to update the underlying data. The UITableView isn’t updated because it already knows
about the movement and has reflected it in the user interface (in contrast to the DeleteRows
method, which is called on the table from CommitEditingStyle).

public override bool CanMoveRow
 (UITableView tableView, NSIndexPath indexPath)
{ // all rows are moveable, always return true
 return true;
}
public override void MoveRow (UITableView tableView,
 NSIndexPath sourceIndexPath, NSIndexPath destinationIndexPath)
{
 var tempRow = rows[sourceIndexPath.Row];
 rows.Remove(tempRow); // remove it from here
 int targetRowIndex = destinationIndexPath.Row;
 rows.Insert(targetRowIndex, tempRow); // and put it here
}

Figure 6-15 shows a row in the process of being moved.

figure 6-15

editing Table rows ❘ 133

Moving rows in the simulator can be a bit tricky — the Move indicator (three hori-
zontal bars) is designed to be activated by a fi nger and the tiny single-pixel mouse
pointer sometimes has trouble “grabbing” it. It is much easier to test on a device.

creating an insert icon
The fi nal editing feature supported by UITableView is adding a new row. The Contacts application
uses the green plus (+) icon to add new items, so you’ll put a similar option at the end of your table.
Implementing the (+) row requires changes to almost every method in the UITableViewSource
because in addition to displaying your data you must also keep track of the new non-data-related
cell. Each method now contains an if-else clause that checks whether it is being called for a data
display row or for the (+) row. The changes are described here and shown in Listing 6-7:

GetCell➤➤ : Creates two different cell styles — Subtitle for the data and Value2 for the “add
new” row.

EditingStyleForRow➤➤ : Sets the Delete style on all the data rows and the Insert style on the
last row.

RowSelected➤➤ : If the data rows are touched, an alert is shown. However, if the (+) row is
touched, AddNewRows is called. In a real application this might instead open a new view for
data entry, but for this example you will just insert some hardcoded data.

CommitEditingStyle➤➤ : Called when an editing action is triggered — either touching the
Delete button or the (+) icon. The method parameters contain which action has been
requested on a specifi c row.

listing 6-7: Tables06\rootViewController.xib.cs

public override UITableViewCell GetCell
 (UITableView tableView, NSIndexPath indexPath)
{
 UITableViewCell cell = null;
 if (indexPath.Row < rows.Count)
 { // normal data
 cell = tableView.DequeueReusableCell (“Cell”);
 if (cell == null)
 {
 cell = new UITableViewCell
 (UITableViewCellStyle.Subtitle, “Cell”);
 }
 cell.TextLabel.Text = rows[indexPath.Row].Name;
 cell.DetailTextLabel.Text = rows[indexPath.Row].Hex;
 }
 else
 { // the ‘(+) add new cell
 cell = tableView.DequeueReusableCell (“Cell2”);
 if (cell == null)

continues

134 ❘ chaPter 6 dIsPlaYIng data usIng tables

 {
 cell = new UITableViewCell
 (UITableViewCellStyle.Value2, “Cell2”);
 }
 cell.TextLabel.Text = “add new color”;
 }
 return cell;
}
public override UITableViewCellEditingStyle EditingStyleForRow
 (UITableView tableView, NSIndexPath indexPath)
{
 if (indexPath.Row < rows.Count) // data row
 return UITableViewCellEditingStyle.Delete;
 else // (+) ‘add new’ row
 return UITableViewCellEditingStyle.Insert;
}
public override void RowSelected
 (UITableView tableView, NSIndexPath indexPath)
{
 if (indexPath.Row < rows.Count)
 { // a data row was touched
 displayText = rows[indexPath.Row].Name;
 ShowAlert (“RowSelected”,”You selected “+displayText);
 }
 else
 { // the (+) ‘add new’ row was touched
 AddNewRows(tableView, indexPath); // or show data-entry view
 }
 tableView.DeselectRow(indexPath,true);
}
public override void CommitEditingStyle (UITableView tableView,
 UITableViewCellEditingStyle editingStyle, NSIndexPath indexPath)
{
 if (editingStyle == UITableViewCellEditingStyle.Delete)
 { // the delete button was touched on this row
 rows.RemoveAt(indexPath.Row);
 tableView.DeleteRows
 (new NSIndexPath[] {indexPath}, UITableViewRowAnimation.Fade);
 }
 else if (editingStyle == UITableViewCellEditingStyle.Insert)
 { // the insert icon (+) was touched on this row
 AddNewRows (tableView, indexPath);
 }
}

Figure 6-16 shows a table with the final cell rendered with an insert (+) icon. In your code the
RowSelected method might display a new data-entry view rather than directly insert data as the
example does.

adding new rows
The InsertRows method allows you to add multiple rows to a table and take advantage of the built-in
animation to update the table’s appearance. You might need to add multiple rows if you are creating

listing 6-7 (continued)

editing Table rows ❘ 135

an editable table such as the Contacts application’s user interface (the animation occurs between View
and Edit Contact as shown in Figure 6-17) or if your underlying datasource is being updated exter-
nally (such as new e-mails or tweets appearing at the top of the Inbox or a Twitter client).

The AddNewRows method shown below demonstrates how to use InsertRows. The most important
aspects of this method are:

Calling ➤➤ BeginUpdates and EndUpdates around your modifications to the table and the data.

Creating and passing ➤➤ NSIndexPath instances that inform the table which rows are to be
inserted. Here you are adding three rows to table starting at the index of the row that
was touched, hence the array containing the passed-in indexPath and two additional
NSIndexPaths offset by 1 and 2.

Ensuring that you add the same number of rows to the data as you pass to ➤➤ InsertRows, so that
when the table animates the appearance of these rows they are already present in the collection
and available for GetCell to access. In this case you add the objects to the end of the collection
using rows.Add(), but if you had specified a different location using the NSIndexPath array,
you should ensure the data is inserted into exactly those positions as well.

Choosing the type of animation to use.➤➤

void AddNewRows (UITableView tableView, NSIndexPath indexPath)
{
 tableView.BeginUpdates(); // data for rows being inserted
 rows.Add(new MyColor{Name=”Puce”, Group=”Other”, Hex=”#CC8899”});
 rows.Add(new MyColor{Name=”Avocado”, Group=”Other”, Hex=”#98A148”});
 rows.Add(new MyColor{Name=”Azure”, Group=”Other”, Hex=”#F0FFFF”});
 NSIndexPath indexPath1, i2indexPath2;// location of rows being inserted
 indexPath1 = NSIndexPath.FromRowSection(indexPath.Row + 1, 0);
 indexPath2 = NSIndexPath.FromRowSection(indexPath.Row + 2, 0);

 {
 cell = new UITableViewCell
 (UITableViewCellStyle.Value2, “Cell2”);
 }
 cell.TextLabel.Text = “add new color”;
 }
 return cell;
}
public override UITableViewCellEditingStyle EditingStyleForRow
 (UITableView tableView, NSIndexPath indexPath)
{
 if (indexPath.Row < rows.Count) // data row
 return UITableViewCellEditingStyle.Delete;
 else // (+) ‘add new’ row
 return UITableViewCellEditingStyle.Insert;
}
public override void RowSelected
 (UITableView tableView, NSIndexPath indexPath)
{
 if (indexPath.Row < rows.Count)
 { // a data row was touched
 displayText = rows[indexPath.Row].Name;
 ShowAlert (“RowSelected”,”You selected “+displayText);
 }
 else
 { // the (+) ‘add new’ row was touched
 AddNewRows(tableView, indexPath); // or show data-entry view
 }
 tableView.DeselectRow(indexPath,true);
}
public override void CommitEditingStyle (UITableView tableView,
 UITableViewCellEditingStyle editingStyle, NSIndexPath indexPath)
{
 if (editingStyle == UITableViewCellEditingStyle.Delete)
 { // the delete button was touched on this row
 rows.RemoveAt(indexPath.Row);
 tableView.DeleteRows
 (new NSIndexPath[] {indexPath}, UITableViewRowAnimation.Fade);
 }
 else if (editingStyle == UITableViewCellEditingStyle.Insert)
 { // the insert icon (+) was touched on this row
 AddNewRows (tableView, indexPath);
 }
}

Figure 6-16 shows a table with the final cell rendered with an insert (+) icon. In your code the
RowSelected method might display a new data-entry view rather than directly insert data as the
example does.

adding new rows
The InsertRows method allows you to add multiple rows to a table and take advantage of the built-in
animation to update the table’s appearance. You might need to add multiple rows if you are creating

figure 6-16 figure 6-17

136 ❘ chaPter 6 dIsPlaYIng data usIng tables

 controller.TableView.InsertRows(
 new NSIndexPath[] {indexPath, indexPath1, indexPath2},
 UITableViewRowAnimation.Fade);
 tableView.EndUpdates();
}

This example showing the insertion of three hardcoded objects is not very realistic. Most applica-
tions would use the insert icon to show a new view for data entry, update the table’s data, and
call ReloadDatawhen navigating back to this view. You should also use ReloadData instead of
InsertRows when a large proportion of the table’s data is changing or if you do not want to show
the animation.

The editing commands you’ve implemented in this chapter ensure the underlying data structure
(for example, the rows List<> in this case) is modified as the user interacts with the application.
However, you must remember to provide a mechanism to save/persist the changes as well. You might
choose to persist changes in the MoveRow and CommitEditingStyle methods or else keep them in
memory and save at a later point in the application’s life cycle (such as WillTerminate).

adding a search bar to a table

Many tables in the built-in applications include a search bar to make navigating long lists easier,
including the Mail Inbox and all of the tabs in the iPod application. Touching in the search input of
these tables “greys out” the underlying rows and shows the keyboard. Typing in the search box pro-
duces only matching rows in a new UITableView displayed on top of the original data.

The search bar example is based on the Elements data used in the Tables03 example from earlier in
the chapter. You can add the search functionality with the Search Bar and Search Display Controller
from the Interface Builder Library, which is included as example Tables07 in the code download.
Figure 6-18 shows how to drag the controller onto your table. Be sure to choose the Search Bar and
Search Display Controller class (and not the regular Search Bar).

Notice that the object should be dragged onto the UITableView itself (and not elsewhere in the
view); doing so causes Interface Builder to wire up a number of outlets automatically, including the

figure 6-18

adding a search Bar to a Table ❘ 137

UISearchDisplayController. Figure 6-19 shows all the automatically generated outlets for the
App Delegate, Table View Controller, and Search Display Controller. The only two outlets that need
to be defined by you are circled: MyTableView and MySearchDisplayController.

figure 6-19

enabling the search bar
After you have dragged the control onto the table view, you must add the following three things to
enable the search bar:

A collection to hold the results matching the search criteria. This collection will be updated ➤➤

every time the search criteria change.

A ➤➤ UITableViewSource subclass to be used by the UITableView created by the search con-
troller. This class will be responsible for displaying the results rows.

A ➤➤ UISearchDisplayDelegate subclass that can respond to events from the
UISearchBarController. You must use the methods on this class to respond to search
events, such as updating the results collection so that the UITableView can display them.

First, add a FilteredElements property to the AppDelegate that will be used to store the search
results. This will be populated by the search controller and then displayed by the search controller’s
table view.

List<Element> FilteredElements { get; set; }

You must then implement a UITableViewSource that will use the FilteredElements collection as
its data, as shown in Listing 6-8. To access the collection you can pass the AppDelegate into the
class and reference the FilteredElements property.

listing 6-8: UiTableViewsource to support searching (Tables07\Main.cs)

class MySearchResultsSource : UITableViewSource
{
 AppDelegate _appd;
 public MySearchResultsSource (AppDelegate appd)
 {

continues

138 ❘ chaPter 6 dIsPlaYIng data usIng tables

 _appd = appd; // to access FilteredElements for display
 }
 public override int RowsInSection(UITableView tableview, int section)
 {
 return _appd.FilteredElements.Count;
 }
 public override UITableViewCell GetCell
 (UITableView tableView, NSIndexPath indexPath)
 {
 string kCellIdentifier = “mycell”;
 UITableViewCell cell = tableView.DequeueReusableCell(kCellIdentifier);
 if (cell == null)
 { // No re-usable cell found, create a new one
 cell = new UITableViewCell
 (UITableViewCellStyle.Default, kCellIdentifier);
 }
 Element display = _appd.FilteredElements[indexPath.Row];
 cell.TextLabel.Text = display.Name;
 return cell;
 }
 public override void RowSelected
 (UITableView tableView, NSIndexPath indexPath)
 {
 Element display = _appd.FilteredElements[indexPath.Row];
 ShowAlert (“RowSelected”, “You selected “ + display.Name);
 tableView.DeselectRow(indexPath,true);
 }
 public void ShowAlert (string title, string message)
 {
 using (var alert = new UIAlertView(title,message,null,”OK”,null))
 { alert.Show(); }
 }
}

The next step is to create the UISearchDisplayDelegate that responds to input in the search
bar and sets the FilteredElements property, as shown in Listing 6-9. You must override the
ShouldReloadForSearchString() method to perform the actual search against the source data
(Elements collection) and populate the FilteredElements search results. The method must then
return true, which instructs the search controller to call ReloadData() on the UITableView for
you, picking up the updated FilteredElements collection and displaying the search results.

listing 6-9: Custom UisearchDisplayDelegate class (Tables07\Main.cs)

class MySearchDisplayDelegate : UISearchDisplayDelegate
{
 AppDelegate _appd;
 public MySearchDisplayDelegate(AppDelegate appd)
 {

listing 6-8 (continued)

adding a search Bar to a Table ❘ 139

 _appd = appd;
 }
 public override bool ShouldReloadForSearchString
 (UISearchDisplayController controller, string forSearchString)
 {
 // updated the filtered list on the AppDelegate
 _appd.FilteredElements = _appd.Elements.Where(
 r => r.Name.ToLower().StartsWith(forSearchString.ToLower())
).ToList();
 // sort the filtered list
 _appd.FilteredElements.Sort(delegate(Element e1, Element e2)
 {
 return e1.Name.CompareTo(e2.Name);
 });
 return true; // tells the controller to call ReloadData()
}

Finally, add the following lines to FinishedLaunching to wire up these new classes (and the exist-
ing MyTableViewSource from the Tables03 example).

MyTableView.Source = new MyTableViewSource(Elements); // existing class
MySearchDisplayController.Delegate
 = new MySearchDisplayDelegate(this); // pass reference to AppDelegate
MySearchDisplayController.SearchResultsSource
 = new MySearchResultsSource(this); // pass reference to AppDelegate

Figure 6-20 shows the example with the original table, an empty search, and with some filtering
applied.

figure 6-20

140 ❘ chaPter 6 dIsPlaYIng data usIng tables

customizing search appearance
There are a number of properties on the UISearchBar that you can use to customize the appearance
and behavior of the search. These properties include:

Placeholder➤➤ : The “watermark” grey text that appears when the search box is empty.

Prompt➤➤ : Instructional text that appears above the search box when it is in use.

Text➤➤ : Allows you to pre-set the search text to a specific value.

KeyboardType➤➤ : Used to specify which keyboard appears to type the search text (for example,
EmailAddress, NumberPad, or PhonePad if you are searching for specific data types).

AutocorrectionType➤➤ : Whether or not the search input text should be autocorrected.

AutocapitalizationType➤➤ : Whether or not the search input text should be autocapitalized.
Regardless of this setting you should consider making your search code case-insensitive, as
most users will not expect searches to fail because of different capitalization.

BarStyle➤➤ : The color of the search bar (Default or Black).

The following is an example of how to set these properties in FinishedLaunching; in this case the
code sets the watermark text when the search input is empty:

MySearchDisplayController.SearchBar.Placeholder = “Begin typing element...”;

You can set the other properties as required to reflect the type of data your code is searching.

summary

This chapter has covered one of the key user interface elements in the iPhone OS: the table. Tables
are used throughout the operating system and built-in applications. This chapter covered the essen-
tials of using a UITableView and related classes to:

Display a simple list of data in a table➤➤

Change the appearance of table cells using built-in designs or creating a custom layout in ➤➤

Interface Builder

Use grouping and indexing to make a table easier to read and use➤➤

Implement ➤➤ DequeueReusableCell to improve performance

Add the ability to edit a table’s contents➤➤

Implement search functionality in a table➤➤

Along the way you used MonoTouch’s special UITableViewSource class instead of Apple’s
UITableViewDataSource and UITableViewDelegate and used the UINavigationController to
create a hierarchical menu user interface.

7
Mapping

what’s in this chaPter?

Understanding CoreLocation and MapKit➤➤

Using Location Services ➤➤

Adding maps and geocoding to your application➤➤

The display of location-specifi c information including
maps, addresses, and points of interest is a natural feature
for mobile devices such as the iPhone and iPod Touch.
Outside of some niche markets it has never had great suc-
cess on the desktop, primarily because the desktop PC is
often stuck in a single location. Mobile devices, on the
other hand, are naturally going to be carried around wher-
ever the user goes; and as GPS technology has become
smaller and cheaper it has found its way into the cell
phone market.

When the iPhone fi rst appeared its Maps application
(shown in Figure 7-1) was one of the key selling fea-
tures — a perfect example of the iPhone’s multitouch user
interface. No other mobile device had previously made
navigating maps as elegant as the pinch-to-zoom, swipe-
to-pan operation of Maps on the iPhone’s large screen.
This chapter shows you how to incorporate that same user
experience into your own MonoTouch applications. figure 7-1

142 ❘ chaPter 7 maPPIng

maP basics

Before you start looking at the mapping capabilities of iPhone OS and MonoTouch, here are some
mapping terms that are used throughout this chapter:

Latitude:➤➤ The Y value of a location (90 to –90 degrees north to south).

Longitude:➤➤ The X value of a location (180 to –180 degrees east to west).

Heading:➤➤ Compass direction expressed in degrees (0–360).

GPS:➤➤ Global Positioning System. A collection of satellites using radio signals to enable earth-
based receivers to determine their location with a high degree of accuracy.

Geocode:➤➤ Resolving a search string (for example, an address, business, or landmark name) to
a geographic location (latitude/longitude).

Reverse geocode:➤➤ Finding the “human readable” address for a specific latitude/longitude
location.

The iPhone SDK provides two frameworks to enable mapping-related functionality within your
application:

MapKit:➤➤ Provides a control to display map imagery, allows you to add markers (pins) and
reverse geocode a location.

CoreLocation:➤➤ Uses whatever capabilities the device supports to determine the user’s location
and heading (if possible).

Used together these enable you to add mapping and location-based services to iPhone applications,
and MonoTouch provides easy access to all the features they provide.

introducing mapkit
The MapKit framework provides a visual representation of geographic information using Google
Maps images and data. Users can access the same road, satellite, and hybrid maps that they are
familiar with from web-based mapping applications; and you can look up the closest “real” address
for a given latitude/longitude location. The map is navigated with the same drag and pinch gestures
used across the iPhone OS without any additional coding.

The MapKit framework is exposed in MonoTouch via the MonoTouch.MapKit namespace.

introducing corelocation
CoreLocation works on a number of iPhone OS devices using a variety of technologies to determine
position, and using the built-in compass of newer devices provides the heading the device is pointing
to. Using this information you can determine where users are and what direction their device is facing,
and by monitoring changes to that data how fast they are moving and how far they have traveled.

Map Basics ❘ 143

The CoreLocation framework is exposed in MonoTouch via the MonoTouch.CoreLocation
namespace and deals with two types of information:

Location➤➤

Heading➤➤

location
The location of a device is expressed in latitude and longitude, and is typically determined by a GPS
device. Consumer GPS devices were previously limited to bulky car navigation systems but are now
small enough to fit inside a cell phone!

Devices without GPS capability (for example, the original iPhone and the iPod Touch range) can still
calculate location information using a combination of cell tower triangulation and Wi-Fi network
lookups. This means a large proportion of iPhone OS devices have some sort of Location Services
capability that you can program against.

Because CoreLocation uses these different technologies to determine the device’s position, the avail-
ability and accuracy of the data can vary widely. Devices with GPS capability can determine a very
accurate latitude/longitude position under the right conditions (usually outdoors with a clear view
of the sky). When no GPS is available and cell-tower or wireless network information is used, the
data is much less accurate. Each different data source offers differing levels of accuracy: from a few
feet to a few kilometers. Location-enabled applications should consider the accuracy of the data they
receive to ensure they don’t present misleading information. CoreLocation provides an accuracy
estimate with each reading — the “margin of error” of the location information in meters — which
should be taken into account in your code.

Sometimes CoreLocation will be unable to provide data — this could be due to a number of
reasons:

GPS reading could not be taken (user is inside or otherwise out of range of GPS signals).➤➤

Other location providers cannot be accessed (for example, cell towers or Wi-Fi network info).➤➤

The user has prevented ➤➤ CoreLocation from supplying
data to your application. To prevent applications from
accessing a user’s location without their knowledge, the
operating system will ask for their permission before
sending the data to your application. The warning in
Figure 7-2 will be displayed the first few times your
application is used; after that the operating system
remembers the user’s preference.

The user has disabled Location Services. For privacy or battery-saving reasons Location ➤➤

Services can be turned off in Settings. You should always check whether Location Services
are available and for any error condition (including the user denying access) before using
location data in your code. Use the boolean LocationServicesEnabled property of the

figure 7-2

144 ❘ chaPter 7 maPPIng

CLLocationManager class to determine if Location Services are available. If they have been
turned off and your application attempts to access location data, the message in Figure 7-3
will be displayed to prompt the user to turn Location Services back on.

figure 7-3

Application code should gracefully handle situations where no location information is available.
If your application cannot operate without Location Services you can add an entry in your
Info.plist to prevent it from installing or running unless the correct capabilities are present on
the device. Table 7-1 describes the entries you can include to control this behavior. Refer to
Chapter 8 for details on how to confi gure Info.plist.

table 7-1: UIRequiredDeviceCapabilities Key in Info .plist

key descriPtion

location-services The device must support Location Services and they must be enabled in
Settings before the application will run .

gps The device must specifi cally support GPS hardware before the application will
install or run .

magnometer The device must specifi cally support compass hardware before the application
will install or run .

iPhone Application Programming Guide

Heading
Only newer iPhone OS devices (for example, the 3GS) have a built-in compass to provide heading
information. You should use the HeadingAvailable property of the CLLocationManager class to
determine whether you can access heading data to ensure your application displays relevant infor-
mation on devices without a compass.

The simulator has a number of limitations compared to testing with a real
device. When testing Location Services in the simulator the location will always
be 37.331689, –122.030731, which is Apple’s headquarters in Cupertino,
California. The heading will always return 103.27 degrees.

This means some mapping and location features (such as tracking a user’s move-
ment to measure speed or distance) can only be tested on a device.

Using Corelocation ❘ 145

using corelocation

The main CoreLocation classes are shown in Figure 7-4.

figure 7-4

CLLocationManager is the class responsible for interfacing with the hardware and a subclass
of CLLocationManagerDelegate is required to receive “events” from it.

Delegate classes and methods in the iPhone SDK perform a similar function to event handlers in
.NET. The delegate subclass implements certain methods and then gets assigned to a framework
class that is responsible for interfacing with the hardware. As data becomes available from the hard-
ware the delegate methods are called on your subclass and your application can respond.

It takes some time (possibly many seconds) to retrieve location information so using a delegate class
allows your FinishedLaunching “startup code” to call StartUpdatingLocation() and then con-
tinue to run, knowing that when the data becomes available your delegate method will be called for
you to process it.

determining device location
The first example in this chapter uses CLLocationManager with custom delegate classes to build
an application that displays latitude, longitude, heading, and the nearest address on the screen.
CoreLocation does not have any visual classes so to start using it you need to create some regu-
lar buttons and labels using Interface Builder. Create a new MonoTouch iPhone application called

146 ❘ chaPter 7 maPPIng

Mapping01 in MonoDevelop and drag the controls onto your window, as shown in Figure 7-5
(make sure you link the outlets to the correct controls).

figure 7-5

Once the MainWindow.xib has been constructed in Interface Builder you need to add the code in
Listing 7-1 to Main.cs.

The custom subclass MyLocationManagerDelegate is shown first. It receives notifications of
updated data through the overridden UpdatedLocation and UpdatedHeading methods and displays
the data using UILabel controls. Each method then tells the CLLocationManager not to send any
more notifications using the StopUpdatingLocation() and StopUpdatingHeading() methods.

The Failed method checks the NSError.Code against the CLError enumeration to decide what
action to take. If the value is Denied then you should always stop the location manager from
attempting further updates, however other errors can be ignored as the operating system will keep
trying to obtain a reading.

Using Corelocation ❘ 147

listing 7-1: CllocationManagerDelegate subclass (Mapping01\Main.cs)

private class MyLocationManagerDelegate: CLLocationManagerDelegate
{
 private AppDelegate app;
 public MyLocationManagerDelegate (AppDelegate appd):base()
 {
 app = appd;
 }
 public override void UpdatedLocation (CLLocationManager locationMgr,
 CLLocation newLocation, CLLocation oldLocation)
 {
 app.LocationLabel.Text = newLocation.Coordinate.Latitude
 + “,” + newLocation.Coordinate.Longitude;
 app.AccuracyLabel.Text = newLocation.HorizontalAccuracy.ToString();
 app.TimestampLabel.Text = newLocation.Timestamp.ToString();
 locationMgr.StopUpdatingLocation(); // stop updating after the first time
 app.ActivityIndicator.StopAnimating();
 app.AddressButton.Hidden = false;
 }
 public override void UpdatedHeading (CLLocationManager locationMgr, CLHeading h)
 {
 app.HeadingLabel.Text = h.TrueHeading.ToString();
 locationMgr.StopUpdatingHeading();
 app.ActivityIndicator2.StopAnimating();
 }
 public override void Failed (CLLocationManager locationMgr, NSError e)
 {

 switch (e.Code)
 {
 case (int)CLError.LocationUnknown:
 app.LocationLabel.Text = “Failed to get location, still trying”;
 break;
 case (int)CLError.Denied:
 locationMgr.StopUpdatingHeading ();
 app.ActivityIndicator.StopAnimating ();
 app.LocationLabel.Text = “Access to location denied. Stop trying.”;
 break;
 case (int)CLError.Network:
 app.LocationLabel.Text = “Failed to get location, still trying”;
 break;
 case (int)CLError.HeadingFailure:
 app.LocationLabel.Text =
 “Heading could not be determined (magnetic interference)”;
 break;
 }
 }
}

This delegate class doesn’t work without being assigned to a CLLocationManager and calling the
StartUpdatingLocation() and StartUpdatingHeading() methods. Listing 7-2 shows how to do
that — add the delegate code above where the //TODO: comment indicates.

148 ❘ chaPter 7 maPPIng

listing 7-2: showing device location (Mapping01\Main.cs)

public partial class AppDelegate : UIApplicationDelegate
{ public override void OnActivated (UIApplication application) {}
 CLLocationManager locationMgr;
 public override bool FinishedLaunching (UIApplication a, NSDictionary o)
 {
 locationMgr= new CLLocationManager();
 locationMgr.Delegate = new MyLocationManagerDelegate(this);

 WhereButton.TouchUpInside += delegate
 { // latitude,longitude
 if (locationMgr.LocationServicesEnabled)
 {
 ActivityIndicator.Hidden = false;
 ActivityIndicator.StartAnimating();
 locationMgr.StartUpdatingLocation();
 }
 else ShowAlert (“Not Supported”,”LocationServicesEnabled==false”);
 };
 HeadingButton.TouchUpInside += delegate
 { // compass direction
 if (locationMgr.HeadingAvailable)
 {
 ActivityIndicator2.Hidden = false;
 ActivityIndicator2.StartAnimating();
 locationMgr.StartUpdatingHeading();
 }
 else ShowAlert (“Not Supported”,”HeadingAvailable==false”);
 };
 window.MakeKeyAndVisible ();
 return true;
 }
 private void ShowAlert (string title, string message)
 {
 using (var alert = new UIAlertView(title,
 message, null, “OK”, null))
 { alert.Show(); }
 }
 //TODO: Delegate implementation go here
}

The WhereButton.TouchUpInside delegate first checks whether Location Services are turned on
and then calls StartUpdatingLocation. HeadingButton.TouchUpInside does a similar job for the
compass. They both require that the CLLocationManager variable is declared at the AppDelegate
level. When the device has calculated that information the Updated methods are called on the del-
egate class, which then displays it on the screen.

Running the application should display the location and heading after a few seconds (the simulator
will say it is in Cupertino!).

Using Corelocation ❘ 149

reverse Geocoding
Having determined the latitude and longitude using
CoreLocation, the “real” address can be determined
using MapKit’s reverse geocoding functionality. The
required classes are shown in Figure 7-6.

The following changes to Main.cs are required
(as well as ensuring there is an AddressLabel in
Interface Builder). First, the MapKit namespace must
be added:

using MonoTouch.MapKit;

Then an instance variable declared in the
AppDelegate class:

 MKReverseGeocoder geocoder;

Add the following code in the FinishedLaunching method:

 AddressButton.TouchUpInside += delegate
 { // reverse geocode
 geocoder = new MKReverseGeocoder (locMgr.Location.Coordinate);
 geocoder.Delegate = new MyGeocoderDelegate (this);
 geocoder.Start();
 };

And declare this delegate subclass within AppDelegate:

 private class MyGeocoderDelegate : MKReverseGeocoderDelegate
 {
 AppDelegate app;
 public MyGeocoderDelegate (AppDelegate appd)
 {
 app = appd;
 }
 public override void FoundWithPlacemark
 (MKReverseGeocoder geocoder, MKPlacemark place)
 {
 app.AddressLabel.Text = place.SubThoroughfare + “ “
 + place.Thoroughfare+ “ “ + place.Locality + “ “
 + place.AdministrativeArea + “ “ + place.Country;
 }
 public override void FailedWithError (MKReverseGeocoder geocoder, NSError e)
 {
 app.AddressLabel.Text = “Geocode error: “ + e.LocalizedDescription;
 }
 }

Mapping01\Main.cs

figure 7-6

150 ❘ chaPter 7 maPPIng

When the AddressButton is touched it calls the
MKReverseGeocoder’s Start() method, which starts a web
service request to reverse geocode the latitude/longitude. The
web service is managed by the framework and uses Google
Maps data to determine the address. When the web service
returns it calls the FoundWithPlacemark delegate method,
which displays the information on-screen.

The completed application is shown in Figure 7-7, displaying
the hardcoded location information that the simulator always
returns.

tracking device movement
CoreLocation doesn’t just provide a single location read-
ing — it can be confi gured to continuously provide your appli-
cation with a stream of location updates as the device moves
around. You can affect the frequency of these updates by set-
ting the following properties on CLLocationManager:

DistanceFilter➤➤ : Number of meters that the device must move before an updated location
event is generated. The default value is to be notifi ed of all events.

HeadingFilter➤➤ : Number of degrees the device needs to turn before an updated compass
reading is generated. The default value is to be notifi ed of all events.

DesiredAccuracy➤➤ : The level of accuracy of location data that your application requires. If
you are simply trying to determine the user’s city or country, then ThreeKilometers should
be suffi cient; if you are trying to determine a street address you need the Best available. The
default value is to require the best available accuracy, otherwise use the following enum to
choose a value:

enum CLLocationAccuracy
{
 Best = -1
, NearestTenMeters = 10
, HundredMeters = 100
, Kilometer = 1000
, ThreeKilometers = 3000
}

MyLocationManagerDelegate and MyGeocoderDelegate are implemented as
“nested types” within the AppDelegate class for good reason. Because the
buttons and labels created in Interface Builder have references automatically
generated by MonoTouch in MainWindow.xib.designer.cs as private proper-
ties, classes defi ned outside the AppDelegate cannot access them. Nested
classes can access the private properties of their containing class (for example,
app.LocationLabel and app.Addresslabel), which is why delegate subclasses
in MonoTouch are usually declared inside the class that uses them.

figure 7-7

Using Corelocation ❘ 151

To see how this works create a new MonoTouch iPhone application Mapping02 and create a
window like the one shown in Figure 7-8 in Interface Builder.

figure 7-8

Like the previous example, a delegate subclass is required to handle the location data as it is recorded.
In this case we have changed the UpdatedLocation method to append each reading to a UITextView
so it will continually update on the screen as the device is moved. Rounding has been applied for easy
reading on the limited screen space of iPhone devices. The new delegate class is shown in Listing 7-3.

listing 7-3: Tracking position with CllocationManagerDelegate (Mapping02\Main.cs)

private class MyLocationManagerDelegate: CLLocationManagerDelegate
{
 private AppDelegate app;
 int updateCount = 0;
 public LocationManagerDelegate(AppDelegate appd):base() {
 app = appd;
 }
 public override void UpdatedLocation (CLLocationManager locManager,
 CLLocation newLocation, CLLocation oldLocation)

continues

152 ❘ chaPter 7 maPPIng

 {
 var latLong = Math.Round(newLocation.Coordinate.Latitude,4)
 + “,” + Math.Round(newLocation.Coordinate.Longitude,4);
 app.LocationLabel.Text = latLong;
 app.AccuracyLabel.Text = newLocation.HorizontalAccuracy.ToString();
 app.TimestampLabel.Text = newLocation.Timestamp.ToString();
 var dist = 0.0;
 if (oldLocation != null)
 {
 dist = Math.Round(newLocation.Distancefrom(oldLocation),1);
 }
 var text = “Location: “ + latLong + Environment.NewLine;
 text += “Accuracy: “ + newLocation.HorizontalAccuracy
 + Environment.NewLine;
 text += dist + “m from last reading” + Environment.NewLine;
 text += newLocation.Timestamp + Environment.NewLine;
 text += “__________”+ Environment.NewLine;
 app.HistoryText.Text += text;
 }
 public override void UpdatedHeading
 (CLLocationManager locManager, CLHeading newHeading)
 {
 app.HeadingLabel.Text = newHeading.TrueHeading.ToString();
 app.AccuracyLabel2.Text = Math.Round
 (newHeading.HeadingAccuracy,2).ToString();
 }
 public override void Failed (CLLocationManager locManager, NSError e)
 {
 switch (e.Code)
 {
 case (int)CLError.LocationUnknown:
 app.LocationLabel.Text = “Failed to get location, still trying”;
 break;
 case (int)CLError.Denied:
 locationMgr.StopUpdatingHeading ();
 app.ActivityIndicator.StopAnimating ();
 app.LocationLabel.Text = “Access to location denied. Stop trying.”;
 break;
 case (int)CLError.Network:
 app.LocationLabel.Text = “Failed to get location, still trying”;
 break;
 case (int)CLError.HeadingFailure:
 app.LocationLabel.Text =
 “Heading could not be determined (magnetic interference)”;
 break;
 }
 }
}

The code for the AppDelegate class is shown in Listing 7-4; in addition to the button
TouchUpInside handlers that can be used to start and stop location updates there are additional
lines setting the DesiredAccuracy, DistanceFilter, and HeadingFilter properties.

listing 7-3 (continued)

Using Corelocation ❘ 153

listing 7-4: start and stop location updates (Mapping02\Main.cs)

public partial class AppDelegate : UIApplicationDelegate
{ public override void OnActivated (UIApplication application) {}
 CLLocationManager locationMgr;
 public override bool FinishedLaunching (UIApplication a, NSDictionary o)
 {
 StartButton.TouchUpInside += delegate
 {
 locationMgr.StartUpdatingLocation();
 if (locationMgr.HeadingAvailable)
 {
 locationMgr.StartUpdatingHeading();
 }
 StopButton.Hidden = false; StartButton.Hidden = true;
 };
 StopButton.TouchUpInside += delegate
 {
 locationMgr.StopUpdatingLocation();
 if (locMgr.HeadingAvailable)
 {
 locationMgr.StopUpdatingHeading();
 }
 StopButton.Hidden = true; StartButton.Hidden = false;
 };
 locationMgr = new CLLocationManager();
 locationMgr.DesiredAccuracy = 10;
 locationMgr.DistanceFilter = 10;
 locationMgr.HeadingFilter = 1;
 locationMgr.Delegate = new MyLocationManagerDelegate(this);
 window.MakeKeyAndVisible ();
 return true;
 }
 // Delegate goes here
}

The output in the simulator is shown in Figure 7-9. Because the
simulator only returns the same location data, this example works
much better on a real device. Try changing the DesiredAccuracy
and DistanceFilter values to see how the frequency and accu-
racy of the data is affected.

This example highlights one of the problems with using loca-
tion data — the varying accuracy of readings and how your
application should interpret them. Notice the code that reports
distance using newLocation.Distancefrom(oldLocation),
which calculates and displays the distance in meters between
this location and the last recorded location. Intuitively that
might sound like an easy way to track the distance that a user
has traveled (for example, how far they have walked or driven
while your application is running).

figure 7-9

154 ❘ chaPter 7 maPPIng

However it is not quite that easy! When this example is tested on a GPS-enabled device the first few
readings might look like those shown in Table 7-2 even though the device is perfectly stationary.

table 7-2: Mapping02 Example Output

location (rounded) accuracy distance from last reading (rounded)

–33 .8898,151 .249 2917 0

–33 .8909,151 .251 2283 227 .2

–33 .8907,151 .2486 162 223 .9

–33 .8911,151 .2488 76 43 .9

–33 .8911,151 .2497 17 7 .4

What’s happening? The code is receiving multiple notifications with varying levels of accuracy,
which affects the reported location. As the accuracy improves, the location is (likely to be) closer
to the actual location of the device. Even though the device hasn’t moved, the reported location is
moving. Unless your code has some intelligence to deal with varying accuracy, it might try to tell the
user in this situation that he has traveled 502.4 meters when he hasn’t actually moved an inch!

Strategies to address this issue include:

Setting the distance and accuracy filter to the level of detail that you need.➤➤

Evaluating the accuracy of location data to see whether it meets your requirements: If you ➤➤

need high levels of accuracy you might ignore inaccurate readings.

Comparing location data to recent historical reports to determine whether they fall within a ➤➤

reasonable range (in particular for the elapsed time period).

Communicating the margin of error to the user (such as the blue “halo” of uncertainty dis-➤➤

played around the Current Location marker in the built-in Maps application).

Checking the ➤➤ Timestamp on location reports: Often the first location returned will be cached
from a previous CoreLocation request. This might cause an obvious “bug” if the user has
just turned on his phone after stepping off a plane, and the cached location data is from
another city or country!

using maPkit

The MapKit framework consists of the MKMapView visual control and a number of supporting
classes to manipulate and annotate the map’s display. Figure 7-10 shows the most commonly
used MapKit classes.

Using MapKit ❘ 155

figure 7-10

Because the data used by MapKit (both the imagery and the reverse geocoding
service) is provided by Google, the use of that data in your application must
adhere to certain terms. Apple’s developer web site contains the following
message:

Important: The MapKit framework uses Google services to provide map data.
Use of this class and the associated interfaces binds you to the Google Maps/
Google Earth API terms of service. You can fi nd these terms of service at
http://code.google.com/apis/maps/iphone/terms.html.

http://code.google.com/apis/maps/iphone/terms.html

156 ❘ chaPter 7 maPPIng

showing a map
The MKMapView control provides a sophisticated user interface to present mapping data on the device
with no additional coding. Once the MKMapView control has been placed on a window in Interface
Builder your application immediately has the ability to display, pan, and zoom Google Maps imag-
ery and show the current location of the device (using CoreLocation of course).

The only caveat is that because the map images are downloaded from the Internet, using MKMapView
requires a network connection (either cellular data or a wireless network). The control itself does
cache images so when the device is offline it will show map data for the most recently viewed loca-
tion, however new map data can’t be downloaded. This is of particular interest to applications on
the iPod Touch, which are less likely to be constantly networked.

MKMapView has a number of properties that control how the user can interact with it.

UserInteractionEnabled➤➤ : When set to false the map does not respond to any user input;
it cannot be scrolled or zoomed and pins (including the current user location) will not show
their callout when touched. This property overrides ZoomEnabled and ScrollEnabled.

ZoomEnabled➤➤ : When false the user cannot pinch to zoom in or out of the map, although
scrolling and pin callouts will still work.

ScrollEnabled➤➤ : When false the user cannot scroll around the map (that is, cannot change
the center point from whatever is set in code). Zooming and pin callouts will still work.

ShowUserLocation➤➤ : This is a simple property that causes the map to display a blue dot (and
“accuracy halo”) if the device location can be determined. The map will also be centered and
zoomed to that location. It can be set via a checkbox in Interface Builder or programmati-
cally set on the MKMapView instance.

MapType➤➤ : This is an enumeration that defines the types of map imagery available for display;
the same three options that Internet users have become familiar with using Google Maps:

Standard➤➤ : Road map

Satellite➤➤ : Aerial photographic images

Hybrid➤➤ : Aerial images overlaid with roads and place names

The following MapKit example demonstrates these properties. Create a new MonoTouch applica-
tion Mapping03 and use Interface Builder to drag an MKMapView and UISegmentedControl onto the
window as shown in Figure 7-11.

Then add the code from Listing 7-5 to Main.cs to wire up the map type selection and set the prop-
erties just described.

listing 7-5: simple map display (Mapping03\Main.cs)

public partial class AppDelegate : UIApplicationDelegate
{ public override void OnActivated (UIApplication application) {}
 public override bool FinishedLaunching (UIApplication a, NSDictionary o)
 {

Using MapKit ❘ 157

 MapType.ValueChanged += delegate
 {
 if (MapType.SelectedSegment == 0)
 Map.MapType = MKMapType.Standard;
 else if (MapType.SelectedSegment == 1)
 Map.MapType = MKMapType.Satellite;
 else if (MapType.SelectedSegment == 2)
 Map.MapType = MKMapType.Hybrid;
 };
 Map.ShowsUserLocation = true;
 Map.MapType = MonoTouch.MapKit.MKMapType.Standard; // Hybrid | Satellite
 Map.Region = new MKCoordinateRegion (
 new CLLocationCoordinate2D(37.331689, -122.030731)
 , new MKCoordinateSpan(0.5,0.5));
 Map.ZoomEnabled = true; // false=cannot zoom
 Map.ScrollEnabled = true; // false=cannot scroll
 Map.UserInteractionEnabled = true; // false=cannot even click on pin
 window.MakeKeyAndVisible ();
 return true;
 }
}

figure 7-11

158 ❘ chaPter 7 maPPIng

annotating the map
Adding pin markers to the map requires creating and adding MKAnnotations to the MKMapView.
When using the MapKit framework from Objective-C, MKAnnotation is a protocol — a similar
concept to interfaces in C# except that protocols can have optional members. In MonoTouch, pro-
tocols like MKAnnotation are modeled as abstract classes to be implemented in your application. In
the case of MKAnnotation three properties are required: Coordinate, Title, and Subtitle. The
subclass in Listing 7-6 adds private backing variables and a constructor to set them; however, other
implementations could vary.

listing 7-6: MKannotation subclass (Mapping04\Main.cs)

 public class MyAnnotation : MKAnnotation
 {
 private CLLocationCoordinate2D coordinate;
 private string title, subtitle;
 public override CLLocationCoordinate2D Coordinate
 {
 get { return coordinate; }
 }
 public override string Title
 {
 get { return title; }
 }
 public override string Subtitle
 {
 get { return subtitle; }
 }
 public MyAnnotation (CLLocationCoordinate2D l, string t, string s)
 {
 coordinate = l;
 title = t;
 subtitle = s;
 }
 }

To try out MyAnnotation create a new MonoTouch application Mapping04 (which has been
updated for this use), use Interface Builder to draw the controls in Figure 7-12, and connect the out-
lets for the MKMapView and two UIButtons.

Add the code from Listing 7-7 to Main.cs and include the MyAnnotation class where the //TODO:
comment indicates. The key elements of the code are:

A list of ➤➤ MyAnnotation objects is hardcoded to be used in the application. This list could be
the result of a web-service call, a custom set of data in your application, or any other source
of location data you can find.

AddButton.TouchUpInside➤➤ calls Map.AddAnnotationObject(), which results in the pin
appearing on the map.

CenterButton.TouchUpInside➤➤ calls Map.SetCenterCoordinate(), which moves the map
to show the pin in the center. The second parameter causes the change to be animated; if set
to false the map just re-draws at the new location.

Using MapKit ❘ 159

Map.GetViewForAnnotation➤➤ allows the pin and associated callout to be customized before
appearing on the map. Notice how this delegate is assigned with an equals sign rather
than attached with plus-equals like the button delegates. This is an important distinction:
GetViewForAnnotation is a property of the MKMapView class and not an event.

Two ➤➤ UserLocation properties are customized, changing the text that appears when you
touch the blue Current Location marker.

figure 7-12

listing 7-7: annotating the map (Mapping04\Main.cs)

public partial class AppDelegate : UIApplicationDelegate
{
 // This method is required in iPhoneOS 3.0
 public override void OnActivated (UIApplication application) {}
 List<MyAnnotation> pins = new List<MyAnnotation>();
 public override bool FinishedLaunching (UIApplication a, NSDictionary o)
 {

continues

160 ❘ chaPter 7 maPPIng

 MapType.ValueChanged += delegate
 {
 if (MapType.SelectedSegment == 0)
 Map.MapType = MKMapType.Standard;
 else if (MapType.SelectedSegment == 1)
 Map.MapType = MKMapType.Satellite;
 else if (MapType.SelectedSegment == 2)
 Map.MapType = MKMapType.Hybrid;
 };
 int pinCount=0;
 // initialize Pins collection
 pins.Add(new MyAnnotation(new CLLocationCoordinate2D(37.2, -122.4)
 , “Annotation #1”, “Red pin”));
 pins.Add(new MyAnnotation(new CLLocationCoordinate2D(37.6, -122.2)
 , “Annotation #2”, “Red pin”));
 pins.Add(new MyAnnotation(new CLLocationCoordinate2D(37.4, -122.0)
 , “Annotation #3”, “Red pin”));
 AddButton.TouchUpInside += delegate
 { // Add a pin
 if (pinCount < pins.Count)
 Map.AddAnnotationObject(pins[pinCount++]);
 };
 CenterButton.TouchUpInside += delegate
 { // navigate to pin location
 if (pinCount > 0)
 Map.SetCenterCoordinate(pins[pinCount-1].Coordinate, true);
 };
 Map.GetViewForAnnotation = delegate
 (MKMapView mapView, NSObject annotation)
 {
 if (annotation is MKUserLocation) return null; // line 1
 var mapAnnotation = (MyAnnotation)annotation; // line 2
 var pinView = new MKPinAnnotationView(mapAnnotation,”mypin”); // line 3
 pinView.AnimatesDrop = true; // line 4
 pinView.CanShowCallout = true;
 //TODO: add callouts here later
 //TODO: add pin color customisation here later
 return pinView; // line 8
 };
 Map.Region = new KMCoordinateRegion (
 new CLLocationCoordinate2D (37.331689, -122.0307311)
 , new MKCoordinateSpan (0.5, .05));
 Map.UserLocation.Title = “You are here”;
 Map.UserLocation.Subtitle = “Location of your device”;
 window.MakeKeyAndVisible ();
 return true;
 }
 //TODO: MyAnnotation class goes here (Listing 7-6)
}

listing 7-7 (continued)

Using MapKit ❘ 161

The annotation (or callout) is added by the call to Map.AddAnnotationObject(). Map
.GetViewForAnnotation usually gets called soon after — it is executed every time an annotation
becomes visible on the map in order for the relevant View object to be fetched so that the annotation
can be placed within it. Here are some important features of the GetViewForAnnotation method to
review:

Line 1 ➤➤ returns immediately if the annotation parameter is of type MKUserLocation. This
is because the method is called for every annotation added to the map, including the Current
Location marker, which you do not want to customize.

Line 2 casts the ➤➤ annotation parameter to a subclass of MKAnnotation. This is important
because the type of the parameter is NSObject, which does not allow you to access any of the
MKAnnotation properties required to customize the pin.

Line 3 creates a new instance of ➤➤ MKPinAnnotationView passing the MyAnnotation class to
provide the callout text and location information. The second parameter “mypin” is for re-
using objects to save memory, which is discussed in more detail later in the chapter.

AnimatesDrop➤➤ determines whether the pin “drops” from the top of the screen onto the map,
or just appears in place.

CanShowCallout➤➤ determines whether a callout appears
when the pin is touched. If this is false the callout
won’t appear, even if it has been created.

Line 8 returns ➤➤ MKPinAnnotationView to be added to
the MKMapView.

The fi nished application in Figure 7-13 shows an annotation
with its callout displayed.

Objective-C doesn’t have the same event concept that .NET does, which is why
the iPhone SDK uses the delegate class pattern to provide a mechanism to “call
back” into your code. The delegate pattern has been used a number of times in
this chapter for CoreLocation functionality.

Early versions of MonoTouch also required MKMapKit to use a subclass of
MKMapViewDelegate to handle methods like GetViewForAnnotation and
RegionDidChange; however, this pattern is unfamiliar to C# programmers. The
MonoTouch team is gradually making the Objective-C APIs more .NET-like by
exposing .NET events and properties in place of the delegate classes.

The result is the GetViewForAnnotation delegate in this example — much
easier to use because no additional classes are required. The MKMapView
.Delegate = MKMapViewDelegate subclass approach still works, but offers
no advantage over the neater C# syntax.

Over time it is likely that other areas of the iPhone SDK that use delegates will
be similarly “improved” in MonoTouch by the addition of C# events.

figure 7-13

162 ❘ chaPter 7 maPPIng

Zoom level
Setting the Region in the previous code uses the MKCoordinateSpan struct and is equivalent to
setting the “zoom level.” The units passed to MKCoordinateSpan are degrees of latitude and
longitude — around the equator a degree of latitude or longitude is approximately 111 kilome-
ters/70 miles. As you approach the poles, degrees of longitude converge and the distance between
them diminishes while degrees of latitude remain about the same distance apart. You needn’t cal-
culate exactly the correct aspect ratio for the screen because the map control will automatically
attempt to accommodate the span you requested and match it to the closest available “actual” zoom
level. As an example, the code in Listing 7-5 uses MKCoordinateSpan(0.5,0.5); however, querying
Map.Region.Span.LatitudeDelta and LongitudeDelta after the map is drawn shows the actual
values were 0.88447,0.87890. That’s approximately 95 km/61 miles of visible terrain, which is
pretty close to what you see on the screen.

Looking at it another way, the popular web-based mapping tools typically treat their “most zoomed
out” display as level 1 and halve the size of the viewport for each level of zoom. Table 7-3 shows a
rough comparison of those levels to degrees that you can pass to MKCoordinateSpan — notice how
level 13 is very close to the map’s resolution of (0.5, 0.5) as described earlier.

table 7-3: Rough Comparison to Web-based Mapping Zoom Levels

Zoom level degrees Zoom level degrees

1 360 (world) 10 0 .70313

2 180 11 0 .35156 (city)

3 90 12 0 .17578

4 45 (country) 13 0 .08789

5 22 .5 14 0 .04395

6 11 .25 15 0 .02197 (suburb)

7 5 .625 (state) 16 0 .01099

8 2 .8125 17 0 .00549

9 1 .40625 18 0 .00275 (street)

Figure 7-14 shows the map using these parameters (180, 180), (10, 10), (0.5, 0.5), (0.02, 0.02), and
(0.00275, 0.00275).

Using MapKit ❘ 163

figure 7-14

You can use the preceding table to select an appropriate zoom level to display a single point, or if
you have a group of locations you can calculate an appropriate Span. Replace the CenterButton
.TouchUpInside delegate with the following to calculate an appropriate Span that includes all cur-
rent Annotations placed on the map:

// Centering on a group of locations
CenterButton.TouchUpInside += delegate
{ // expects at least one Annotation
 var userWasVisible = Map.ShowsUserLocation;
 Map.ShowsUserLocation = false; // ignoring the blue blip
 // start with the widest possible viewport
 var tl = new CLLocationCoordinate2D (-90,180); // top left
 var br = new CLLocationCoordinate2D (90,-180); // bottom right
 foreach (var an in Map.Annotations)
 { // narrow the viewport bit-by-bit

164 ❘ chaPter 7 maPPIng

 tl.Longitude = Math.Min(tl.Longitude, an.Coordinate.Longitude);
 tl.Latitude = Math.Max(tl.Latitude, an.Coordinate.Latitude);
 br.Longitude = Math.Max(br.Longitude, an.Coordinate.Longitude);
 br.Latitude = Math.Min(br.Latitude, an.Coordinate.Latitude);
 }
 var center = new CLLocationCoordinate2D
 { // divide the range by two to get the center
 Latitude = tl.Latitude - (tl.Latitude - br.Latitude) * 0.5
 , Longitude = tl.Longitude + (br.Longitude - tl.Longitude) * 0.5
 };
 var span = new MKCoordinateSpan
 { // calculate the span, with 20% margin so pins aren’t on the edge
 LatitudeDelta = Math.Abs(tl.Latitude - br.Latitude) * 1.2
 , LongitudeDelta = Math.Abs(br.Longitude - tl.Longitude) * 1.2
 };
 var region = new MKCoordinateRegion { Center = center, Span = span};
 region = Map.RegionThatFits (region); // adjusts zoom level too
 Map.SetRegion (region, true); // animated transition
 Map.ShowsUserLocation = userWasVisible;
};

Mapping04a\Main.cs

The math is fairly self-explanatory — at the end you have calculated a center-point and rectangle
bounded by the outermost Annotations (plus a 20% buffer so the pins aren’t obscured). The
RegionThatFits method takes this information and adjusts it to return a Region that fi ts the maps
view, which is then supplied to SetRegion with the parameter to animate the changed view.

The algorithm used to fi nd the appropriate zoom level and bounding box was
inspired by the Objective-C example on this site:

http://codisllc.com/blog/zoom-mkmapview-to-fit-annotations

functional annotations
The default pin callout is not very functional — in the Maps application there is an icon and a dis-
closure button on either side of the callout text. Add the code in Listing 7-8 where the Listing 7-7
says //TODO: (don’t forget to also include a wrox.png image in your MonoTouch solution and set
its Build Action to Content) to improve the callout’s appearance and functionality. The image fi le
and completed code is in the chapter download folder Mapping05.

listing 7-8: setting accessory views (Mapping05\Main.cs)

 // Left callout image
 UIImage img = UIImage.FromFile(“wrox.png”);
 UIImageView imgView = new UIImageView();
 imgView.Image = img;
 pinView.LeftCalloutAccessoryView = imgView;
 // Right callout button

http://codisllc.com/blog/zoom-mkmapview-to-fit-annotations

Using MapKit ❘ 165

 UIButton rightCallout = UIButton.FromType(UIButtonType.DetailDisclosure);
 rightCallout.Frame = new System.Drawing.RectangleF(250,8f,25f,25f);
 rightCallout.TouchUpInside += delegate
 {
 NSUrl url = new NSUrl(“http://wrox.com/”);
 UIApplication.SharedApplication.OpenUrl(url);
 };
 pinView.RightCalloutAccessoryView = rightCallout;

The new callout is shown in Figure 7-15. Clicking the disclosure
button opens Safari and navigates to the Wrox web site!

In the rightCallout declaration from Listing 7-8 a delegate
was explicitly created and attached to the TouchUpInside
method to make it functional. There is also an event
CalloutAccessoryControlTapped on MKMapView that can provide similar functionality with a
single event that is called when any annotation on the map is touched.

To test the CalloutAccessoryControlTapped event, change the LeftCalloutAccessoryView in
Listing 7-8 to a UIButton instead of a UIImageView:

 // Left callout image
 UIButton leftCallout = UIButton.FromType(UIButton.InfoLight);
 pinView.LeftCalloutAccessoryView = leftCallout;

and add this event handler to the MKMapView instance:

 Map.AccessoryControlTapped += delegate
 (object sender, MKMapViewAccessoryTappedEventArgs e)
 {
 var tapped = e.View.Annotation as MyAnnotation;
 using (var alert = new UIAlertView (tapped.Title,
 tapped.Subtitle + “ clicked”, null, “OK”, null))
 {
 alert.Show();
 }
 }

Mapping05\Main.cs

The results are shown in Figure 7-16 — rather than adding a TouchUpInside handler to
every pin you can centralize behavior in this single method. The only restriction on the use
of CalloutAccessoryControlTapped is that the view you specify must be a subclass of
UIControl — which does not include UIImage.

figure 7-16

figure 7-15

166 ❘ chaPter 7 maPPIng

Colorful annotations
The color of the pin associated with the MKPinViewAnnotation can also be customized with three
small updates to the code. First, add a Color property to your MKAnnotation subclass with the fol-
lowing code:

 public class MyAnnotation : MKAnnotation
 {
 private CLLocationCoordinate2D color;
 public override MKPinAnnotationColor Color
 {
 get { return color; }
 }
 public MyAnnotation (CLLocationCoordinate2D l, string t, string s,
 MKPinAnnotationColor c)
 {
 coordinate = l;
 title = t;
 subtitle = s;
 color = c;
 }
 }

Then initialize the example pins with a color value — currently only three colors are supported in
the MKPinAnnotationColor enumeration: Purple, Green and Red.

pins.Add(new MyAnnotation(new CLLocationCoordinate2D(37.2, -122.4)
 , “Annotation #1”, “Purple pin”, MKPinAnnotationColor.Purple));
pins.Add(new MyAnnotation(new CLLocationCoordinate2D(37.6, -122.2)
 , “Annotation #2”, “Green pin“, MKPinAnnotationColor.Green));
pins.Add(new MyAnnotation(new CLLocationCoordinate2D(37.4, -122.0)
 , “Annotation #3”, “Red pin“, MKPinAnnotationColor.Red));

Finally, set the color in the GetViewForAnnotation delegate and the code should now display three
different colored pins on the map.

 pinView.PinColor = mapAnnotation.Color;

Mapping05\Main.cs

Better Performing annotations
The preceding example adds only three annotations to the map so it is unlikely to cause memory
pressure or performance issues. However, some applications will use dozens or hundreds of annota-
tions and in those cases you don’t want to create that many views if only a small portion appear on-
screen at any one time.

MapKit provides for this by calling Map.GetViewForAnnotation only when an annotation is required
to appear on-screen. If your data contains a large number of annotations you can safely add them all
to the MKMapView — it only attempts to render them as required (that is, their Coordinate falls within
the current MKMapRegion). As the map is panned and zoomed some annotations will go out of view as
others come into view — MapKit also provides a facility to re-use MKPinAnnotationViews (in much

Using MapKit ❘ 167

the same way as table cells are re-used by UITableView in Chapter 6; and similar to virtualized list
controls in Windows Presentation Foundation).

The updated GetViewForAnnotation code in Listing 7-9 shows how this works.

listing 7-9: reusable annotations in GetViewforannotation (Mapping05\Main.cs)

 Map.GetViewForAnnotation = delegate
 (MKMapView mapView, NSObject annotation)
 {
 if (annotation is MKUserLocation) return null; // line 1
 MyAnnotation ma = annotation as MyAnnotation; // line 2
 var pinView=mapView.DequeueReusableAnnotation(“mypin”);// line 3
 if (pinView == null) // line 4
 { // new object with same identifier, passing in the annotation
 pinView = new MKPinAnnotationView(ma, “mypin”); // line 5
 }
 else
 { // re-use MKPinAnnotationView with ‘mypin’ identifier
 pinView.Annotation = annotation; // line 7
 }
 pinView.AnimatesDrop = true; // line 8
 pinView.CanShowCallout = true;
 pinView.PinColor = ma.Color;
 return pinView;
 };

Changes from the previous implementation of GetViewForAnnotation are:

Line 3 shows ➤➤ DequeueReusableAnnotation requesting an existing MKPinAnnotationView
from the MKMapViews unused object queue, using the identifier “mypin”.

Line 5 shows the creation of a new object if ➤➤ null was returned (meaning there was no object
to reuse). The reuseidentifier “mypin” is passed to the new object: This is how the
MKMapView distinguishes different types of views in the unused object queue.

Line 7 shows the annotation to be displayed being assigned to a re-used ➤➤ View object.

Lines 8, 9, and 10 set properties on the ➤➤ View before it is returned to the map for display.

To conform to Apple’s Human Interface Guidelines most mapping applications use the standard
MKPinAnnotationView to place markers, which means you can use a single re-use identifier to
retrieve those objects from the queue. If you create your own subclasses of MKAnnotationView, you
should use different reuseidentifier strings for each different type of view, otherwise you might
get unexpected results. The code would check some property of the annotation to see what view is
required and then call DequeueReusableAnnotation with the correct reuseidentifier before try-
ing to create the object.

using the geocoding feature
Geocoding functionality is not directly provided by any of the built-in frameworks but is a very useful
feature of location-aware applications. One of the great advantages of MonoTouch is the vast array of

168 ❘ chaPter 7 maPPIng

existing .NET code and samples that you can bring to the iPhone OS. The simple Geocoder class in
Listing 7-9 uses a number of familiar .NET libraries such as System.Xml, System.IO, and System.Net.

To implement the geocoding sample, create a new MonoTouch iPhone application Mapping06 and
add the code from Listing 7-10 to a new C# file Geocoder.cs.

listing 7-10: Geocoding an address with the Google Maps aPi (Mapping06\Geocoder.cs)

/// <summary>
/// Documentation for the service
/// http://code.google.com/apis/maps/documentation/geocoding/
/// </summary>
public class Geocoder
{
 /// <summary>
 /// Sign up for a Google Maps key to pass in
 /// http://code.google.com/apis/maps/signup.html
 /// </summary>
 public Geocoder (string key)
 {
 _GoogleMapsKey = key;
 }
 private string _GoogleMapsKey = ““;
 private string xmlString = ““;
 public bool LocateGoogle(string query, out CLLocationCoordinate2D result)
 {
 string url = “http://maps.google.com/maps/geo?q={0}&output=xml&key=”
 + _GoogleMapsKey;
 url = String.Format(url, query);
 XmlNode coords = null;
 result = new CLLocationCoordinate2D (0,0);
 try
 {
 xmlString = GetUrl(url);
 XmlDocument xd = new XmlDocument();
 xd.LoadXml(xmlString);
 XmlNamespaceManager xnm = new XmlNamespaceManager(xd.NameTable);
 coords = xd.GetElementsByTagName(“coordinates”)[0];
 }
 catch { }
 string gl = ““;
 if (coords != null)
 {
 string[] coordinateArray = coords.InnerText.Split(‘,’);
 if (coordinateArray.Length >= 2)
 {
 result = new CLLocationCoordinate2D
 (Convert.ToDouble(coordinateArray[1].ToString())
 , Convert.ToDouble(coordinateArray[0].ToString()));
 return true;
 }

Using MapKit ❘ 169

 return false;
 }
 private static string GetUrl(string url)
 {
 string result = string.Empty;
 System.Net.WebClient Client = new WebClient();
 using (Stream strm = Client.OpenRead(url))
 {
 StreamReader sr = new StreamReader(strm);
 result = sr.ReadToEnd();
 }
 return result;
 }
}

To build the user interface add a UISearchBar and MKMapView to MainWindow.xib using Interface
Builder (see Figure 7-17) and create the necessary outlets.

figure 7-17

170 ❘ chaPter 7 maPPIng

Like CLCoreLocationManager the search bar requires a delegate subclass to handle events that
it generates. Listing 7-11 is not a complete implementation of the UISearchBarDelegate but it
implements the necessary behavior to enable searching the map. It uses the custom Geocoder
(Listing 7-10) to retrieve a latitude/longitude from Google’s web service, and uses the MyAnnotation
subclass from Listing 7-6 to add the location to the map. Once the Geocoder class returns a location
you center the map on that location and add an annotation to mark the spot.

listing 7-11: Basic UisearchBarDelegate (Mapping06\Main.cs)

public class MySearchBarDelegate : UISearchBarDelegate
{
 private AppDelegate app;
 private MyAnnotation lastResult;
 public MySearchBarDelegate (AppDelegate a)
 {
 app = a;
 }
 public override void SearchButtonClicked (UISearchBar searchBar)
 {
 var g = new Geocoder(GoogleMapsKey);
 CLLocationCoordinate2D location;
 if (g.LocateGoogle(searchBar.Text, out location))
 {
 if (lastResult != null)
 app.Map.RemoveAnnotation(lastResult);
 app.Map.SetCenterCoordinate(location,true);
 var pin = new MyAnnotation(
 location
 , searchBar.Text
 , location.Latitude + “,” + location.Longitude
);
 app.Map.AddAnnotationObject(pin);
 lastResult = pin;
 }
 else
 {
 using (var alert = new UIAlertView(“Not found”,
 “No match found for “ + searchBar.Text, null, “OK”, null))
 {
 alert.Show();
 }
 }
 }
}

Type Listing 7-12 into Main.cs. Note that you must sign up for a Google Maps Key at
http://code.google.com/apis/maps/signup.html to use this class. When you have
received your Key, paste it into the relevant spot in the code.

http://code.google.com/apis/maps/signup.html

Using MapKit ❘ 171

listing 7-12: Geocoding (Mapping06\Main.cs)

public partial class AppDelegate : UIApplicationDelegate
{
 // This method is required in iPhoneOS 3.0
 public override void OnActivated (UIApplication application) {}
 // http://code.google.com/apis/maps/signup.html
 public static string GoogleMapsKey = “YOU_MUST_OBTAIN_A_KEY_TO_PASTE_HERE”;
 public override bool FinishedLaunching (UIApplication a, NSDictionary o)
 {
 MapType.ValueChanged += delegate
 {
 if (MapType.SelectedSegment == 0)
 Map.MapType = MKMapType.Standard;
 else if (MapType.SelectedSegment == 1)
 Map.MapType = MKMapType.Satellite;
 else if (MapType.SelectedSegment == 2)
 Map.MapType = MKMapType.Hybrid;
 };
 Map.MapType = MonoTouch.MapKit.MKMapType.Standard; // Hybrid | Satellite
 Map.Region = new MKCoordinateRegion(
 new CLLocationCoordinate2D(37.331689, -122.030731)
 , new MKCoordinateSpan(0.5,0.5));
 Map.GetViewForAnnotation = delegate
 (MKMapView mapView, NSObject annotation)
 {
 if (annotation is MKUserLocation) return null;
 var mapAnnotation = (MyAnnotation)annotation;
 var pinView = mapView.DequeueReusableAnnotation (“search”);
 if (pinView == null)
 { // create new view
 pinView = new MKPinAnnotationView(mapAnnotation, “search”);
 }
 else
 { // re-use view, with new annotation
 annView.Annotation = annotation;
 }
 pinView.AnimatesDrop = true;
 pinView.PinColor = MKPinAnnotationColor.Red;
 pinView.CanShowCallout = true;
 return annView;
 };
 Search.Delegate = new MySearchBarDelegate(this);
 window.MakeKeyAndVisible ();
 return true;
 }
 // MKAnnotation from Listing 7-6
 // SearchBarDelegate from Listing 7-11...
}

172 ❘ chaPter 7 maPPIng

Figure 7-18 shows the Geocoder at work. It should successfully
locate any search string that you would otherwise type into
Google Maps.

summary

In this chapter you have learned about the two different frame-
works that provide location-based services and mapping func-
tionality to iPhone OS devices: CoreLocation and MapKit.

You have built samples to:

Determine the current location of a device, the heading it ➤➤

is facing, and the nearest address to that location.

Track movement with different levels of accuracy.➤➤

Display a map and change the imagery from road to ➤➤

hybrid or satellite photography.

Add pin markers to the map.➤➤

Customize the pin markers to display informational text, images, and buttons and add func-➤➤

tionality to those buttons.

Use standard .NET Framework classes to build a simple geocoder using a Google web service ➤➤

and MKMapKit.

In the process you learned about some of the unique issues around MonoTouch’s implementation of
MapKit (such as the addition of .NET events to the MKMapKit class) and also the strategies for deal-
ing with varying accuracy of location data in your applications.

figure 7-18

8
application settings

what’s in this chaPter?

Exploring the Info .plist➤➤

Peeking in the settings bundle➤➤

Reading and updating your settings➤➤

This chapter focuses on application settings, and looks at two aspects of settings for your
MonoTouch app: the Info.plist and your settings bundle.

The ➤➤ Info.plist contains some basic information about your app and how it should
look and behave.

Your settings bundle is where you would keep data that you need to persist from ses-➤➤

sion to session.

This chapter looks at what settings you might want to set in your Info.plist and why, and
then looks at what code it takes to read and use the settings that you save in the settings bundle.

This chapter also takes you through the building of the settings that you might have in a social
media–type application. Going through each step, you will examine the Root.plist inside the
Property List Editor and see the settings dialog that will result from it.

eXPloring the info.Plist

Info.plist is short for information property list, and it is a structured text fi le that contains
essential confi guration information for your app. The fi le itself is encoded using the Unicode
UTF-8 encoding and the contents are structured using XML. The root XML node is called
“<plist>” and inside that you have the dictionary node “<dict>,” whose contents are a set of
keys and values describing different aspects of your app bundle. The iPhone OS uses these keys
and values to obtain information about your application and how it is confi gured and how it
will initially display your user interface by determining what XIB is loaded. The Info.plist

174 ❘ chaPter 8 aPPlIcatIon settIngs

name is case sensitive and must have an initial capital letter I. In iPhone applications, this file resides
in the top level of the bundle directory.

The contents of a typical Info.plist file convey the following information to the system:

The user-visible name to display for the app➤➤

A unique identifier string (typically in the form com.➤➤ yourcompany.appname) that can be used
to locate the bundle at runtime

Version information➤➤

Information about how the application presents content initially➤➤

In most cases you won’t really need to edit this file or manipulate the values. MonoDevelop handles
these tasks in the iPhone Application Settings options dialog, shown in Figure 8-1, which can be
found by right-clicking on your iPhone project and selecting Options and then iPhone Application
Settings.

figure 8-1

The following sections look at some of the values that you might need to edit and what they do.

uistatusbarhidden
This is a Boolean value that, when set to true, launches the application with the status bar hidden.
Another way to do this is under the FinishedLaunching event in the application delegate. In this
method, you can add the line:

// Hide the StatusBar
UIApplication.SharedApplication.StatusBarHidden = true;

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

Peeking in the settings Bundle ❘ 175

This hides the status bar, but only after the application has, well, fi nished launching. So your splash
screen will come with a status bar for the majority of its appearance. However, if you use the Info
.plist setting, your status bar will always be hidden.

uiinterfaceorientation
This is a key with a string value. The available options are the orientation options for the iPhone.
This is the key you need to set if you want the application to launch in landscape mode. The default
value here is standard portrait.

If you want to launch the application in landscape mode, use UIInterfaceOrientationLandscapeLeft
or UIInterfaceOrientationLandscapeRight.

You can also launch upside down using UIInterfaceOrientationPortraitUpsideDown.

These values are the available orientations for the phone throughout the application.

uirequiresPersistentwifi
This is a Boolean key that, when set to true, will operate a Wi-Fi connection when the application
launches. Use this if your application doesn’t work without Wi-Fi. This is especially helpful with dis-
playing an error to users when no Wi-Fi is available.

Apple wants you to notify your users if Wi-Fi isn’t available (in other words,
they’ll reject your app if you’re don’t), and because this key opens the connec-
tion on launch, it takes care of user notifi cation for you.

If this value is set to false, which is the default, the OS closes any active connection after 30 minutes.

uiPrerenderedicon
When you put your 57×57 icon in the application, you’ll notice that when it gets to the springboard,
it has an added shine effect and looks glossy. Well, sometimes you don’t want that. If you want your
icon to show up how you designed it, without the shine and gloss, set this Boolean key to true, and
it turns off the render effect.

Peeking in the settings bundle

Users are used to all the programs and web sites they have providing them with a preferences win-
dow where they can set application-specifi c options. The iPhone OS provides users with a dedicated
application called Settings that allows users to control preferences for their iPhone and the indi-
vidual apps installed on it. This section shows you how to add settings for your application to the
Settings application and shows you how to access those settings from within your application.

176 ❘ chaPter 8 aPPlIcatIon settIngs

the settings application
The Settings application lets the user enter and change preferences for any applications that have a
settings bundle. A settings bundle is a group of files built into an application bundle that tells the
Settings application what preferences the application wishes to collect from the user.

Figure 8-2 shows the Settings application open, where users can
set preferences for their iPhone or for specific applications.

The Settings application acts as a common user interface for
the iPhone’s User Defaults mechanism. User Defaults is the part
of Application Preferences that stores and retrieves preferences
and is implemented by the NSUserDefaults class. Your appli-
cations use NSUserDefaults to read and store preference data
using a key value, just as you would access keyed data from an
NSDictionary. The difference is that NSUserDefaults data
is persisted to the file system rather than stored in an object
instance in memory.

If you use a settings bundle with your app, you get a UI for free
from the Settings application. You create a property list defin-
ing your application’s available settings, and the Settings appli-
cation creates the interface for you.

There are limits to what you can do with the Settings applica-
tion, however. Any preference that the user might need to change
while your application is running should not be limited to the Settings application because your user
would be forced to quit your application to change those values. If you have built an immersive appli-
cation, you generally want to provide a preferences view from within your application so that the user
doesn’t have to quit in order to make a change. This is especially true in games; however, there are
times that even utility and productivity applications might have preferences that a user should be able
to change without leaving the application. Later in the chapter you learn to how to collect preferences
from the user right in your application and store those in iPhone’s User Defaults.

adding your app to the settings application
The first thing that you want to do is implement a settings bundle so that when the user launches the
Settings application, he or she finds an entry for your application. Once inside the Settings applica-
tion, if a user selects your application, he or she then drills down into a view that shows the prefer-
ences that are relevant only to your app. The Settings application can use lots of UI elements from
the iPhone to gather input from your users.

Working with the settings Bundle
The Settings application bases the display of preferences for a given application on the contents of
the settings bundle inside that application. Each settings bundle must have a property list, called
Root.plist, which defines the root-level preferences view. This property list must follow a very pre-
cise format. When the Settings application finds a settings bundle with an appropriate Root.plist
file, the Settings application builds a settings view for your application based on the contents of the

figure 8-2

Peeking in the settings Bundle ❘ 177

property list. If you want your preferences to include any sub-views, you have to add additional
property lists to the bundle and add an entry to Root.plist for each child view. This is covered in
detail later on in the chapter.

adding a settings Bundle to Your Project
Currently in MonoDevelop adding a settings bundle is a two-step process:

 1. First you must create the Settings.bundle to do this you need to right-click
Project➤➪➤Add➤➪➤New Folder then name this folder Settings.bundle

 2. Then you right-click on the Settings.bundle and choose Add➤➪➤New File➤➪➤XML➤➪➤Empty
XML File, which you name Root.plist.

Figure 8-3 shows the New XML file dialog on the iPhone home screen.

figure 8-3

setting Up Your Property list
If you double-click the Root.plist, you open up the Property List Editor. From here you can edit
your file and make sure it’s in the proper format for the Settings application to pick up. Before get-
ting into the specifics about the format, it would be good to review some of the basics of the prop-
erty lists. Property lists all have a root node that has a node type of Dictionary. This means that
the node stores items using a key/value pair, just as an NSDictionary does. All of the children of a
Dictionary node need to have both a key and a value. To be a valid property list, your Root.plist
must have only one root node, and all additional nodes must come under it.

Several different types of nodes can be put into a property list. In addition to Dictionary nodes,
which allow you to store child nodes, there are also Array nodes, which store an ordered list of
other nodes similar to an NSArray. The Dictionary and Array types are the only property list node
types that can contain other nodes. There are also a number of other node types designed to hold
data. The data node types are Boolean, Data (Base64 encoded data, such as NSData), Date, Number,
and String.

178 ❘ chaPter 8 aPPlIcatIon settIngs

The first item under the root node needs to be PreferenceSpecifiers, and it’s an array. This array
node is designed to hold a set of dictionary nodes, each of which represents a single preference that
the user can enter or a single child view that the user can drill down into.

Before you move on to editing the Root.plist with the Property List Editor, you must open this
file in a Text Editor to get the basics in place. The code that follows shows all of what is required to
have a valid Root.plist. After you have this code in place, you can save the file. When you double-
click the Root.plist, as mentioned earlier, it opens up the Property List Editor, with the foundation
of your application settings ready to go.

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE plist PUBLIC “-//Apple//DTD PLIST 1.0//EN” “http://www.apple.com/DTDs/
PropertyList-1.0.dtd”>
<plist version=”1.0”>
<dict>
 <key>Title</key>
 <string>AppSettings</string>
 <key>StringsTable</key>
 <string>Root</string>
 <key>PreferenceSpecifiers</key>
 <array>
 <dict>
 <key>Type</key>
 <string>PSGroupSpecifier</string>
 <key>Title</key>
 <string>Optional Title</string>
 </dict>
 </array>
</dict>
</plist>

Figure 8-4 shows the Property List Editor with the foundation of your Root.plist.

figure 8-4

Peeking in the settings Bundle ❘ 179

You now need to add a child item to your PreferenceSpecifiers node.

 1. Highlight the PreferenceSpecifiers node and click the Add Child button in the top-left
corner.

 2. The Property List Editor will create an item for you named Item 0. You will want to make
sure that it is of the type Dictionary.

 3. You need to tell the Settings application what type of item this is going to be, so you need to
highlight this newly created item and again click the Add Child button. The key for this item
will be Type, the type will be String, and the value will be PSGroupSpecifier.

The PSGroupSpecifier is used to indicate the start of a new group. Each item that follows this item
is part of the same group until the next PSGroupSpecifier is found. The Settings application uses the
grouped UITableView to display the settings, and the Title key for the PSGroupSpecifier item is
used as the UITableView section header text. The Title key is, however, optional and isn’t required.

You need to be sure that the very fi rst item in your PreferenceSpecifiers
node is always a PSGroupSpecifier item because every valid Root.plist requires
at least one PSGroupSpecifier item.

Figure 8-5 shows the Property List Editor with the foundation of your PSGroupSpecifier item.

figure 8-5

adding a Text field
Now that you have all the foundation of the Root.plist out of the way you can move on to adding
some fi elds to gather input. You can start with the simplest and most frequently used item, the text fi eld.

 1. You need to add another child to the PreferenceSpecifiers node; however, you can’t
simply select the PreferenceSpecifiers node and click Add Child because this inserts
the new item above your PSGroupSpecifier item, which makes your Root.plist invalid

180 ❘ chaPter 8 aPPlIcatIon settIngs

because the item has to be in a group. To take care of this you need to make sure that the
PSGroupSpecifier item is closed. You can do this by clicking the disclosure indicator by the
item. Highlight the item, and you should see a plus icon on the far right. Clicking this adds a
new item in the proper place.

Figure 8-6 shows the Property List Editor with the PSGroupSpecifier item closed and
highlighted so that you can add a new item in the proper place.

figure 8-6

 2. By default this new node has a type of String, but that isn’t what you want. Each item
within a PreferenceSpecifiers array must be of the type Dictionary. You change this
type by clicking the word String under Type and changing it to Dictionary.

 3. Now you need to expand this new item so that you can add the proper child nodes to it, let-
ting the Settings application know how this field should look and act. Click the disclosure
icon beside the item so that it is pointing down. It won’t reveal anything yet because you
don’t have any child nodes, but this enables the Add Child Node button. Click that button,
and a new node then appears underneath your item. This new node has a type of String,
and this time that is exactly what you want. Change the key to Type and change the value to
PSTextFieldSpecifier, which is the way you tell the Settings application how you want
the user to edit the setting — with a text field.

 4. You need to define the label to be displayed beside the text field. Click the button with the
plus icon to the right of the row to add another item to your dictionary. The key for this
node should be Title. You can leave the type for this item as String. Move on over to the
Value column and set it to Username.

 5. Now click the plus button at the end of the row to add yet another item to your dictionary.
Again, the first thing you do is change the key for this new entry. The key for this entry is key.
This is that key that you will use with the NSUserDefaults class to retrieve and set the value
for this setting. So you also need to give the key a value; for this example go with username.

Peeking in the settings Bundle ❘ 181

 6. There are two more things that you will want to do with this text field. Because it is for user-
names, turn off autocapitalization and autocorrection. As you know usernames are often case
sensitive or words/phrases that the iPhone might try to autocorrect. You will want to keep
both of these from happening to prevent frustrating your users.

Add another child row to your ➤➤ PSTextFieldSpecifier item. This item needs a key
of AutocapitalizationType and a value of none. This is the item that prevents the
iPhone from trying to autocapitalize anything typed in this text field.

Finally, the last item that you need for this field will need a key of ➤➤

AutocorrectionType and a value of no. This item prevents the iPhone from trying
to auto-correct any words or phrases that may appear in this text field.

Figure 8-7 shows the Property List Editor with the PSTextFieldSpecifier that creates a text field
within the Settings application with the label “Username.” Figure 8-8 shows the visual result.

figure 8-7

adding a secure Text field
You have learned the basics that go into creating a text field for
the Settings application. There is only one difference between
a regular text field and a secure field, so luckily you can copy
and paste the item you just created. Highlight the item and hit
Command+C, then hit Command+V to paste it in. You then see
a new item has been created that has all the child nodes of the
text field item you just created. First you need to change the title
value to Password and the key value to password.

To make this a secure text field you need to add one more child
node to this field. It needs to have the key of IsSecure. You
need to change its type from String to Boolean. Notice that
instead of a string for the value you have a checkmark instead:
Checked is for true, and unchecked is for false.

figure 8-8

182 ❘ chaPter 8 aPPlIcatIon settIngs

Figure 8-9 shows the Property List Editor with a
PSTextFieldSpecifier that will create a secure text field
within the Settings application with the label “Password.”
Figure 8-10 shows the visual result.

adding a MultiValue field
The MultiValue field allows your users to select from a set of predefined choices. It presents a row
with a disclosure indicator that leads to the available choices.

 1. You start off like you did with the other elements by adding a child row to the
PreferenceSpecifiers node. Click the disclosure button of the last item created so that it
is closed and click the plus button on the end of the row. The newly created child row needs
to have a key of Type and a value of PSMultiValueSpecifier.

 2. Add a second row with a key of Title and a value of Service.

 3. Create a third row with a key of Key and a value of service.

 4. Now you come to the part where you actually establish the values that are going to be dis-
played and stored. This is accomplished with two different arrays: one that has the value that is
displayed to the user and one that has the value that is actually stored. This is so that you can
provide the user with some very friendly text, while behind the scenes you are storing a number
or an internal ID that might not be as friendly to display. The great thing is if you want the
titles and the values to be the same, you can just create one array and copy and paste!

Add another child item to your current item. This item needs to have a key of Values and
a type of Array. Under this item you need to create the nodes to hold the actual values. For
this example all the nodes are going to be String, and they are going to have the values
Twitter, Facebook, and Email. Because you want to display to the user the same values
that you are storing you can copy this item, paste it, and change its key name to Titles.

 5. A MultiValue field has to have one and only one value, so the last thing you need to do for
this field is to set a default value if no value has been selected. To do this you add a new child
item to the PSMultiValueSpecifier item and you give it a key of DefaultValue and a
value of Twitter. The value that you give in DefaultValue must be a valid value from the
Values array (not the Titles array if they are different).

figure 8-9 figure 8-10

Peeking in the settings Bundle ❘ 183

Figure 8-11 shows the Property List Editor with a PSMultiValueFieldSpecifier that creates a
selection of sharing services (Twitter, Facebook, Email) that the user can choose from. Figures 8-12
and 8-13 show the visual result.

figure 8-11

adding a Toggle switch
The next item you need to get from the user is a Boolean value that indicates whether the app shares
with friends. To capture a Boolean value in your preferences, you are going to tell the Settings appli-

figure 8-12 figure 8-13

184 ❘ chaPter 8 aPPlIcatIon settIngs

cation to use a UISwitch by adding another item to your PreferenceSpecifiers array with a type
of PSToggleSwitchSpecifier.

 1. Create a new child item, and change its type to dictionary.

 2. Then add a child item to your newly created item. Give the child row a key of Type with the
value of PSToggleSwitchSpecifier.

 3. Add another child row with the key of Title and the value of Share With Friends.

 4. Next, add a child row with the key of Key and the value of share.

By default, a toggle switch causes a Boolean true or false to get saved into the user
defaults. You can override this behavior and assign a different value to the on and off posi-
tions by specifying the optional keys TrueValue and FalseValue. You can assign strings,
dates, or numbers to either the on position (TrueValue) or the off position (FalseValue)
so that the Settings application stores the string you specify instead of just storing true or
false. Set the on position to save the string Enabled and the off position to store Disabled.

 5. You need to add two more children to this item: one with a key of TrueValue and a value of
Enabled, and a second one with a key of FalseValue and a value of Disabled.

 6. You have one more required item in this dictionary, which is the default value. If you had not
supplied the optional FalseValue and TrueValue items, you would create a new row with a
key of DefaultValue and change the type from string to Boolean. However, because you
did add those two items, the value you put in DefaultValue has to match either the value
passed in TrueValue or the one passed in FalseValue.

 7. Most iPhone users are social media junkies, so enable sharing by default. Create one last child
and give it a key of DefaultValue and a value of Enabled. Note that the string Enabled is
what is going to be stored in the User Defaults, but the UISwitch still displays On/Off.

Figure 8-14 shows the Property List Editor with a PSToggleSwitchSpecifier that allows the user
to turn on or off sharing. Figure 8-15 shows the visual result.

figure 8-14

Peeking in the settings Bundle ❘ 185

adding a slider
Your last item type is the slider like the one for the iPod volume
control.

 1. The slider does allow you to place a small graphic at
the beginning and end of the slider, but not a label,
so generally it’s a best practice to put a slider in its
own PSGroupSpecifier with the Title key explain-
ing to the users what setting they are changing. To
save a little time you can just copy and paste the
PSGroupSpecifier item that you created before. Now
all you need to do is change the Title; for this example,
change it to Refresh Rate.

 2. You now need to add a sibling row to your newly cre-
ated PSGroupSpecifier. Make sure that it is closed
and click the plus button at the end of the row. Like
with all items that hold your specifiers you need to
change the type to a Dictionary.

 3. Then add a child to this item, set its key to Type, and set the value to PSSliderSpecifier.
This lets the Settings application know that it needs to use a UISlider to gather the input
from the user for this setting.

 4. You also need to add another child item with the key Key so that you can retrieve and update
the value later. Set its value to refreshRate.

 5. You can allow your user to select a value between a range of values you specify. For this
instance, let the user select a value between 1 and 10. The PSSliderSpecifier also requires
a default value. All of these values need to be stored as numbers instead of strings. So you
need three more rows to handle all of these values. Give the first one a key of DefaultValue
and a value of 6. Give the second one a key of MinimumValue and a value of 1, and give the
final one a key of MaximumValue and a value of 10.

 6. As mentioned earlier there is one more bit of customization that you can do to the
PSSliderSpecifier: providing images for the MinimumValue and MaximumValue. You
need two more child rows: one MinimumValueImage and another MaximumValueImage.
For their keys you put the image name. You need to copy these image files into your
Settings.bundle directory with your Root.plist.

Figure 8-16 shows the Property List Editor with a PSGroupSpecifier that displays the label
“Refresh Rate” for the PSSliderSpecifier, which allows the users to select at what rate they want
their data refreshed. Figure 8-17 shows the visual result.

cation to use a UISwitch by adding another item to your PreferenceSpecifiers array with a type
of PSToggleSwitchSpecifier.

 1. Create a new child item, and change its type to dictionary.

 2. Then add a child item to your newly created item. Give the child row a key of Type with the
value of PSToggleSwitchSpecifier.

 3. Add another child row with the key of Title and the value of Share With Friends.

 4. Next, add a child row with the key of Key and the value of share.

By default, a toggle switch causes a Boolean true or false to get saved into the user
defaults. You can override this behavior and assign a different value to the on and off posi-
tions by specifying the optional keys TrueValue and FalseValue. You can assign strings,
dates, or numbers to either the on position (TrueValue) or the off position (FalseValue)
so that the Settings application stores the string you specify instead of just storing true or
false. Set the on position to save the string Enabled and the off position to store Disabled.

 5. You need to add two more children to this item: one with a key of TrueValue and a value of
Enabled, and a second one with a key of FalseValue and a value of Disabled.

 6. You have one more required item in this dictionary, which is the default value. If you had not
supplied the optional FalseValue and TrueValue items, you would create a new row with a
key of DefaultValue and change the type from string to Boolean. However, because you
did add those two items, the value you put in DefaultValue has to match either the value
passed in TrueValue or the one passed in FalseValue.

 7. Most iPhone users are social media junkies, so enable sharing by default. Create one last child
and give it a key of DefaultValue and a value of Enabled. Note that the string Enabled is
what is going to be stored in the User Defaults, but the UISwitch still displays On/Off.

Figure 8-14 shows the Property List Editor with a PSToggleSwitchSpecifier that allows the user
to turn on or off sharing. Figure 8-15 shows the visual result.

figure 8-14

figure 8-15

186 ❘ chaPter 8 aPPlIcatIon settIngs

figure 8-16

figure 8-17

Now that you have gotten your settings all done, take a look at the final XML.

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE plist PUBLIC “-//Apple//DTD PLIST 1.0//EN” “http://www.apple.com/DTDs/
PropertyList-1.0.dtd”>
<plist version=”1.0”>
<dict>
 <key>Title</key>

Peeking in the settings Bundle ❘ 187

 <string>AppSettings</string>
 <key>StringsTable</key>
 <string>Root</string>
 <key>PreferenceSpecifiers</key>
 <array>
 <dict>
 <key>Type</key>
 <string>PSGroupSpecifier</string>
 <key>Title</key>
 <string>Optional Title</string>
 </dict>
 <dict>
 <key>Type</key>
 <string>PSTextFieldSpecifier</string>
 <key>Title</key>
 <string>Username</string>
 <key>Key</key>
 <string>username</string>
 <key>AutocapitalizationType</key>
 <string>None</string>
 <key>AutocorrectionType</key>
 <string>No</string>
 </dict>
 <dict>
 <key>Type</key>
 <string>PSTextFieldSpecifier</string>
 <key>Title</key>
 <string>Password</string>
 <key>Key</key>
 <string>password</string>
 <key>AutocapitalizationType</key>
 <string>None</string>
 <key>AutocorrectionType</key>
 <string>No</string>
 <key>IsSecure</key>
 <true/>
 </dict>
 <dict>
 <key>Type</key>
 <string>PSMultiValueSpecifier</string>
 <key>Title</key>
 <string>Service</string>
 <key>Key</key>
 <string>service</string>
 <key>DefaultValue</key>
 <string>Twitter</string>
 <key>Values</key>
 <array>
 <string>Twitter</string>
 <string>Facebook</string>
 <string>Email</string>
 </array>
 <key>Titles</key>
 <array>

188 ❘ chaPter 8 aPPlIcatIon settIngs

 <string>Twitter</string>
 <string>Facebook</string>
 <string>Email</string>
 </array>
 </dict>
 <dict>
 <key>Type</key>
 <string>PSToggleSwitchSpecifier</string>
 <key>Title</key>
 <string>Share With Friends</string>
 <key>Key</key>
 <string>share</string>
 <key>TrueValue</key>
 <string>Enabled</string>
 <key>FalseValue</key>
 <string>Disabled</string>
 <key>DefaultValue</key>
 <string>Enabled</string>
 </dict>
 <dict>
 <key>Type</key>
 <string>PSGroupSpecifier</string>
 <key>Title</key>
 <string>Refresh Rate</string>
 </dict>
 <dict>
 <key>Type</key>
 <string>PSSliderSpecifier</string>
 <key>Key</key>
 <string>refreshRate</string>
 <key>DefaultValue</key>
 <integer>6</integer>
 <key>MinimumValue</key>
 <integer>1</integer>
 <key>MaximumValue</key>
 <integer>10</integer>
 </dict>
 </array>
</dict>
</plist>

reading your settings
Now that you have all of your specifiers set up and users can access your settings through the
Settings application, you need a way to access those settings in your own application. Turns out this
is really easy to do.

 1. First, you need to make sure that you have a reference to MonoTouch.Foundation. You do
this just like you do with any other class:

using MonoTouch.Foundation;

summary ❘ 189

 2. (Optional) You are going to use the class NSUserDefaults to handle the communication
with your saved preferences, so you need to create a reference to this class:

var prefs = NSUserDefaults.StandardUserDefaults;

 3. After you have an instance of NSUserDefaults you can make some very simple calls to get
the value for the key that you want. You will read in the settings that you created in the
previous section of the chapter; notice there is a method for each type of variable that you
may need: StringForKey, IntForKey, BooleanForKey, FloatForKey, DoubleForKey,
DictionaryForKey, and ArrayForKey. You just need to use the method that corresponds to
the variable type that you are expecting:

string username = prefs.StringForKey(“username”);
string password = prefs.StringForKey(“password”);
string sharingService = prefs.StringForKey(“service”);
string shareEnabled = prefs.StringForKey(“share”);
int refreshRate = prefs.IntForKey(“refreshRate”);

updating your settings
You now know how to read your settings, but what if you need to make a change from inside of
your app?

 1. (Optional) Again, you need to make sure that you have a reference to MonoTouch.Foundation.
This gives you access to the NSUserDefaults class that does all of the heavy lifting for you. Just
as before, you need to create a reference to this class:

var prefs = NSUserDefaults.StandardUserDefaults;

 2. After you have an instance of NSUserDefaults you simply use the key for the setting to set
the value and call the Synchronize method as illustrated here:

prefs[“username”] = new NSString(username.ToString());
prefs[“password”] = new NSString(password.ToString());
prefs.[“service”] = new NSString(sharingService.ToString());
prefs[“share”] = new NSString(shareEnabled.ToString());
int refreshRate = prefs.IntForKey(“refreshRate”);
prefs.Synchronize();

You can take this knowledge along with the knowledge that you have learned about the screen con-
trols in previous chapters and make an in-app settings view for settings that the user might need to
adjust while in the application.

summary

This chapter introduced you to the NSUserDefaults class and the Settings.bundle so that you
can allow your users to easily change the preferences for your application. You have also learned
how easy it is to read and change these settings from inside your own app. Together with concepts
and code you have learned in other chapters you can provide both an in-app settings view and also a
settings view inside the Settings application.

9
Programming with
Device Hardware

what’s in this chaPter?

Programming accelerometer, device orientation, and proximity ➤➤

detection support

Supporting networking➤➤

Developing with battery life in mind➤➤

The iPhone has a vast amount of exciting hardware within the device. Although this hard-
ware in and of itself doesn’t interest users, the excitement is when the application presents the
users with information in a way that makes sense to them. This hardware is very interesting
to developers building apps; it allows for applications to provide extraordinary features based
on top of this hardware. This chapter looks at the accelerometer, device orientation, proximity
detection, networking, and the battery. Some example uses of this hardware are as follows:

A program can test that a network connection over any connection (WiFi, 3G, or ➤➤

EDGE) is available. If a connection does not exist, instead of displaying an error mes-
sage when attempting to upload information, the user can be notifi ed that there is no
connection to a service.

The accelerometer can be used to pull random data from a data source. When the device is ➤➤

shaken, the application can respond by reading random data from a data source.

When the user changes the device from portrait to landscape, the application can ➤➤

change how it displays content to the user.

Most of this device support comes from the MonoTouch.UIKit.UIDevice class. The
UIDevice class exposes the CurrentDevice instance, which represents the current device.
CurrentDevice is a static, read-only member of the UIDevice class. The UIDevice class
allows a developer to obtain information about the current device, such as its unique id (used

192 ❘ chaPter 9 ProgrammIng wIth devIce hardware

for uniquely identifying an iPhone), assigned name, device model, operating system name, operating
system version, and its physical device characteristics. These physical device characteristics include
the device orientation, battery state, and the proximity sensor. Other pieces of the iPhone provide
support, such as the networking stack that lets a program test whether an address is reachable, and
the accelerometer, which lets a program know if a device is being shaken.

resPonding to acceleration

The accelerometer is one of the most interesting features of the iPhone. The UrbanSpoon.com
iPhone app, one of the original native applications for the iPhone, is a great example of using
acceleration to return random restaurant data. With that app, you just shake your iPhone and the
app finds a good restaurant nearby for you. The accelerometer is commonly used along with user
interface elements, such as the UIPicker, to randomly retrieve data. By programming the iPhone to
respond to Acceleration events, you can refresh the data displayed to the user whenever they shake
the iPhone.

accelerometer
In general, an accelerometer measures the proper acceleration of the device relative to freefall. The
accelerometer in the iPhone provides changes in the XYZ axis which allows for a program to detect
the orientation of the device and the movement of the device. Because the changes are provided in
the XYZ axis, the acceleration can be calculated in a vector.

The MonoTouch framework makes it easy to access the accelerometer via the MonoTouch.UIKit
namespace, which exposes the UIAccelerometer.SharedAccelerometer member. Instances of the
class are accessed as a static, read-only member of the UIAccelerometer class.

using the XyZ coordinate system
Understanding how the data is returned from the
accelerometer is important. Multiple coordinate sys-
tems can be used. In the end, Apple has implemented
the XYZ coordinate system for providing acceleration
information. Figure 9-1 shows the iPhone within the
coordinate system.

Assuming that the user is along the Z-axis, if the
iPhone is moved toward or away from the user, accel-
eration occurs along the Z-axis. If the iPhone is moved
left or right, acceleration occurs along the X-axis. If the
iPhone is moved up or down, acceleration occurs along
the Y-axis. The acceleration values can be determined
along each axis. With each value known along an axis
and the help of some math, the total magnitude of
acceleration can be calculated as well as the direction
of that acceleration at any given time.

Y-
A

xi
s

Z-A
xis X-Axis

i
P
h
o
n
e

figure 9-1

http://UrbanSpoon.com

responding to acceleration ❘ 193

coding with the accelerometer
The accelerometer allows a program to read when the iPhone is moving and return data about the
movement of the device. The iPhone OS and MonoTouch provide a software solution to integrating
with the Accelerometer and handling acceleration events. The SharedAccelerometer is a shared
C# object that provides access to the acceleration hardware on the device. Listing 9-1 shows how to
handle acceleration events and to display that information to the user.

listing 9-1: reading the accelerometer

// The name AppDelegate is referenced in the MainWindow.xib file.
public partial class AppDelegate : UIApplicationDelegate
{
// This method is invoked when the application has loaded its
// UI and is ready to run
public override bool FinishedLaunching (UIApplication app, NSDictionary options)
{
 // If you have defined a view, add it here:
 // window.AddSubview (navigationController.View);
 window.MakeKeyAndVisible ();
 //Acceleration does not work in the Simulator.
 UIAccelerometer.SharedAccelerometer.UpdateInterval = 1 / 10;
 dataLabel.Text = String.Empty;
 UIAccelerometer.SharedAccelerometer.Acceleration += delegate(object sender,
 UIAccelerometerEventArgs e) {
 UIAcceleration acc = e.Acceleration;
 double thresholdValue = 2.0;
 double Velocity = Math.Sqrt(Math.Pow(acc.X, 2) +
 Math.Pow(acc.Y, 2) +
 Math.Pow(acc.Z, 2));
 string strReturn = System.Environment.NewLine;
 if (Velocity > thresholdValue) {
 dataLabel.Text = “Velocity: “ +
 Velocity.ToString() + strReturn +
 “ X: “ + acc.X.ToString() + strReturn +
 “ Y: “ + acc.Y.ToString() + strReturn +
 “ Z: “ + acc.Z.ToString();
 }};
 return true;
}

Found in the Accelerator\Main.cs file of the download

A couple of notes about programming with the accelerometer:

The accelerometer returns changes in the X, Y, and Z directions. It is up to the developer ➤➤

to perform the math calculations to return the magnitude of the acceleration as well as the
direction. The magnitude of the acceleration is calculated by adding the squares of the accel-
eration in the X, Y, and Z directions and then taking the square root of the sum.

The Accelerometer is not available in the iPhone simulator. It can only be tested on an ➤➤

actual device.

194 ❘ chaPter 9 ProgrammIng wIth devIce hardware

In this example, all that a user would have to do is shake the device and a result is displayed ➤➤

in the X, Y, Z, directions along with the magnitude of the acceleration.

Setting the ➤➤ UpdateInterval directly affects the device. The more times that acceleration
events are handled, the more the battery on the device is drained.

The ➤➤ UpdateInterval can only be within the hardware resolution of the device. If there are
more requested updates per second than the hardware supports, the maximum number of
hardware updates is performed. No error occurs if the UpdateInterval is too quick for the
hardware that the application is running on.

Unless the iPhone is perfectly motionless, it is most likely undergoing some amount of accel-➤➤

eration. The acceleration measured may or may not be significant. It is a good idea to put
some type of threshold value so that the acceleration is only used when it is actually needed.

Acceleration is not the same as velocity. Technically, acceleration is the rate of change of ➤➤

velocity over a unit of time, so they are related. The accelerometer measures acceleration, and
from the acceleration it is possible to determine velocity. (That discussion of mathematics is
beyond this book.) Thanks to some basic calculus, it is fairly easy to take the acceleration
values along with its initial location and to then figure out the location of the iPhone as it
moves around, even if no wireless connection is available.

using acceleration for ui input
As mentioned previously, the accelerometer can be used for user input. The UrbanSpoon app, which
has a database of area restaurants, uses the accelerometer to perform a random search for restau-
rants in an area. When the iPhone is shaken, a random restaurant type is displayed. The user can
then change the values and perform a search.

Listing 9-2 displays a UIPicker with the values rotating. These images are loaded and displayed in a
UIImagePicker. In this example, nine images are displayed, and these images are loaded in through
an array of UIImages.

listing 9-2: Using acceleration to create the Urbanspoon Ui effect

//setting the Animation duration smaller makes the animation tend
// to run quicker.
imageViewPicker.AnimationDuration = .1;
imageViewPicker.Hidden = true;
//load the images.
imageViewPicker.AnimationImages = new UIImage [] {
 UIImage.FromFile (“images/blur01.png”),
 UIImage.FromFile (“images/blur02.png”),
 UIImage.FromFile (“images/blur03.png”),
 UIImage.FromFile (“images/blur04.png”),
 UIImage.FromFile (“images/blur05.png”),
 UIImage.FromFile (“images/blur06.png”),
 UIImage.FromFile (“images/blur07.png”),
 UIImage.FromFile (“images/blur08.png”),
 UIImage.FromFile (“images/blur09.png”)
};
UIAccelerometer.SharedAccelerometer.UpdateInterval = 1/10;
UIAccelerometer.SharedAccelerometer.Acceleration +=

responding to acceleration ❘ 195

 delegate(object sender, UIAccelerometerEventArgs e) {
 double Threshold = 1.5;
 double magnitude;
 UIAcceleration acc = e.Acceleration;
 magnitude = Math.Sqrt(Math.Pow(acc.X, 2) + Math.Pow(acc.Y, 2) +
 Math.Pow(acc.Z, 2));
 if (magnitude >= Threshold) {
 if (PreviousRun == false)
 {
 // Show the imageViewPicker & Start the Animation
 imageViewPicker.Hidden = false;
 imageViewPicker.StartAnimating ();
 PreviousRun = true;
 }
 }
 else{
 if (PreviousRun == true){
 System.Threading.Thread.Sleep(150);
 // Hide the imageViewPicker & Stop the Animation
 imageViewPicker.Hidden = true;
 imageViewPicker.StopAnimating ();
 // Get a random value
 int n = _r.Next(pickerChoices.RowsInComponent(0));
 // Lets select our random index and set the animation
 // to true so that it looks “cool” :)
 pickerChoices.Select(n,0,true);
 }
 PreviousRun = false;
 }
};

Found in the UrbanSpoon\Main.cs fi le of the download

A few things to notice in the code include the following:

A threshold is used to measure against the magnitude of the acceleration. By setting the ➤➤

value, small movements of the iPhone are discounted.

There is a Boolean value called ➤➤ PreviousRun. This is used to determine the last state
of the call for acceleration. Without this, an accelera-
tion event would be occurring on the slightest move-
ment of the iPhone, which would cause a different
value to be displayed.

The currently running thread is put to sleep for some ➤➤

milliseconds. By putting the UI thread to sleep for a
short time, UIPicker appears to rotate for a short time
after a user stops shaking the iPhone.

Figure 9-2 shows the spinning UIPicker.

The UIPicker spinning example was begun by Martin Bowling. The code was
then modifi ed to provide the accelerometer support.

figure 9-2

196 ❘ chaPter 9 ProgrammIng wIth devIce hardware

determining device orientation

When programming with a desktop application, very few situations exist where the screen rotates or
moves in any perceivable way. This is not true with a mobile device, which has a number of orienta-
tions. The seven orientations (six plus Unknown) for an iPhone are:

Unknown➤➤ : The device’s orientation is unknown.

Portrait➤➤ : The device’s orientation is in portrait mode. The device is held upright and the
home button is at the bottom.

PortraitUpsideDown➤➤ : The device’s orientation is in portrait mode. The device is held upside
down and the home button is at the top of the device.

LandscapeLeft➤➤ : The device is in landscape mode. The device is held upright and the home
button is on the right-hand side of the device.

LandscapeRight➤➤ : The device is in landscape mode. The device is held upright and the home
button is on the left-hand side of the device.

FaceUp➤➤ : The device has the screen facing up and is parallel to the ground.

FaceDown➤➤ : The device has the screen facing down and is parallel to the ground.

beginning notifi cation
The fi rst step to obtaining information regarding device orientation is to turn on the device notifi ca-
tions. You do this through a call to

UIDevice.CurrentDevice.BeginGeneratingDeviceOrientationNotifications();

Once this call is made, orientation notifi cation information will be made available to a calling app.
Along with turning this information on, it is important to turn the notifi cations off when they are
not necessary. You can accomplish this by a call to

UIDevice.CurrentDevice.EndGeneratingDeviceOrientationNotifications();

Device orientation notifi cations are not immediately available
after notifi cation starts, but are available after a very short delay.
BeginGenerationDeviceOrientationNotifications() is not synchronous
with respect to starting the notifi cations.

determining static device orientation
Though not the most common scenario, there may be times when a developer needs to obtain the
device orientation. It is simpler to learn the static case and then to learn the dynamic case. There are
two steps in getting the device orientation. The fi rst is to determine if the orientation notifi cations
are on. If the orientations are not on, the value of Unknown is returned. See Listing 9-3.

Determining Device orientation ❘ 197

listing 9-3: Determining device orientation

void HandleOrientationTouchUpInside (object sender, EventArgs e)
{
 if (UIDevice.CurrentDevice.GeneratesDeviceOrientationNotifications == true)
 {
 OrientationLabel.Text = UIDevice.CurrentDevice.
 GeneratesDeviceOrientationNotifications.ToString() +
 “: “ + UIDevice.CurrentDevice.Orientation.ToString();
 }
}

Found in the DeviceSupport\Main.cs file of the download

Once it is determined that the device orientation notifications are on, the current device orientation
is retrieved. In this case, it is displayed to the user.

determining event-based orientation
The more interesting situation is when the device’s orientation change notification is turned on.
Once the orientation change notification is turned on, an application can monitor for events through
the UIDeviceOrientationDidChangeNotification. See Listing 9-4.

listing 9-4: Handling orientation change notifications

NSNotificationCenter.DefaultCenter.
 AddObserver (“UIDeviceOrientationDidChangeNotification”,
 delegate {
 OrientationLabel.Text =
 UIDevice.CurrentDevice.Orientation.ToString(); });

Found in the DeviceSupport\Main.cs file of the download

In this short code example, whenever a device orientation change occurs, a message
is put on the label, so that the change can be communicated to the user. Figure 9-3
shows the output of event-based orientation.

The next step in this process is to actually do something with this change in the
application. When the orientation of the iPhone changes, the application may need to
change. This is done by overriding the ShouldAutorotateToInterfaceOrientation
method to return true. This method is overridden on the view controller that is
showing the current data.

public override bool ShouldAutorotateToInterfaceOrientation
 (UIInterfaceOrientation toInterfaceOrientation)
{
 return(true);
}

figure 9-3

198 ❘ chaPter 9 ProgrammIng wIth devIce hardware

This code needs to be placed within a view controller. This code indicates if a view controller sup-
ports the specifi ed orientation. By default, this method returns a true for the Portrait orientation. If
the application needs to support other orientations, the method should be overridden.

reading the ProXimity sensor

Users think of the iPhone as an iPod, web browser, app device, and sometimes a phone. The phone
can be the least thought of feature of the iPhone for a software developer. The iPhone has a prox-
imity sensor, which is used within the iPhone OS to deactivate the screen and the display when the
iPhone is held up to the user’s ear to make a phone call.

When an application is running, there may be situations when it needs to perform the same type of
operation. The iPhone’s proximity sensor is exposed to a developer through the UIDevice class. A
notifi cation can be set up on the proximity sensor as shown in Listing 9-5.

listing 9-5: reading the proximity sensor

UIDevice.CurrentDevice.ProximityMonitoringEnabled = true;
NSNotificationCenter.DefaultCenter.AddObserver
 (“UIDeviceProximityStateDidChangeNotification”,
 delegate {
 ProximityLabel.Text = UIDevice.CurrentDevice.ProximityState.ToString();
 });

Found in the DeviceSupport\Main.cs fi le of the download

The proximity sensor is not available in all iPhones. To test for it, the following code will enable the
proximity sensor.

UIDevice.CurrentDevice.ProximityMonitoringEnabled = true;
if (UIDevice.CurrentDevice.ProximityMonitoringEnabled == true) {
// Place code here.
// This code will test for the proximity sensor.
// If the code detects the proximity sensor, the
// code within the if statement is executed.
}

If, after enabling the proximity sensor, the value of ProximityState is still false,
the proximity sensor is not available on the device. Figure 9-4 shows the cropped
output of the proximity sensor after it has moved away from a user’s face.

The ProximityState returns a Boolean value. If the value is true, the device is
near the user’s face. If the value of ProximityState is false, the device is not
near the user’s face.

figure 9-4

networking ❘ 199

networking

While most of the work with integrating with the iPhone device is done through the UIDevice
.CurrentDevice class, networking is done through the NetworkReachability class. The class
checks for connectivity and returns a set of flags. See Listing 9-6. The flags for checking for network
connectivity are not exclusive to each other.

listing 9-6: Determining the connection to a web site

void HandleNetworkingTouchUpInside (object sender, EventArgs e)
{
 NetworkReachability nr = new NetworkReachability(“www.apple.com”);
 NetworkReachabilityFlags flgs = new NetworkReachabilityFlags();
 nr.TryGetFlags(out flgs);
 NetworkingLabel.Text = String.Empty;
 if ((flgs & NetworkReachabilityFlags.IsWWAN) == NetworkReachabilityFlags.IsWWAN)
 {
 NetworkingLabel.Text += “IsWWAN”;
 }
 NetworkingLabel.Text += “Network Flag: “ + flgs.ToString();
}

Found in the DeviceSupport\Main.cs file of the download

The flags for network reachability are:

ConnectionAutomatic➤➤ : The connection happens automatically. This value for the flag is an
alias for ConnectionOnTraffic.

ConnectionOnDemand➤➤ : The connection happens when a connection is initiated. The connec-
tion will occur when a socket connection is made.

ConnectionOnTraffic➤➤ : The host is reachable. Once traffic is requested, a connection is
made.

ConnectionRequired➤➤ : The host is reachable; however, a connection must be made.

InterventionRequired➤➤ : A connection to the host will require user intervention.

IsDirect➤➤ : The connection is direct and will not go through a gateway.

IslocalAddress➤➤ : The connection is to the local device.

IsWWAN➤➤ : The connection is made through a cellular connection, such as EDGE or 3G.

Reachable➤➤ : The host is reachable.

TransientConnection➤➤ : The host is reachable through a transient connection, such as PPP.

Testing the connections can be somewhat confusing. To assist with this, Miguel de Icaza has placed
some code on the site http://github.com/migueldeicaza/monotouch-samples/tree/master/
reachability to assist. The code allows for easy testing as to whether a host is available over WiFi
or a wireless phone network, which most developers
need. Figure 9-5 shows output when checking for the host
www.apple.com over a WiFi connection. figure 9-5

http://github.com/migueldeicaza/monotouch-samples/tree/master/reachability
http://www.apple.com

200 ❘ chaPter 9 ProgrammIng wIth devIce hardware

taking battery life into account

The battery is an important part of mobile devices. Unlike a laptop, which is typically only discon-
nected from power for short periods of time (1–2 hours), mobile devices can be disconnected from
power for several days in a row. Because of this, there are several important things to remember:

Applications should not continually use features that will use the battery while providing ➤➤

no benefit back to the user. These features include networking, watching the accelerometer,
device orientation, or any other device feature that uses extra power. A great question to ask
is, “Does the user, or application, really need this feature all the time or just at this certain
point?”

It is important for applications to know what is happening with the battery at certain points.➤➤

determining the static battery state
One way to determine the current status of the battery is to specifically ask for the information.
This is done in a two-step process shown in the following code. In this code (Listing 9-7), the bat-
tery monitoring is turned on, and once the monitoring is turned on, the level and state of the battery
can be determined.

The level of the battery is a floating-point number between 0.0, which is fully discharged, and 1.0,
which is fully charged.

The state of the battery is one of four values from the BatteryState enum. These values are:

Unknown➤➤ : The state of the battery is unknown. This value typically occurs when UIDevice
.CurrentDevice.BatteryMonitoringEnabled is set to false. The default state of
BatteryMonitoringEnabled is false.

Unplugged➤➤ : This is the state when a user is actively using his or her iPhone and it is not
attached to a charger.

Charging➤➤ : This is the battery’s state when the iPhone is attached to the charger.

Full➤➤ : This is the battery’s state when the iPhone is 100 percent charged.

listing 9-7: reading battery levels

void HandleBatteryTouchUpInside (object sender, EventArgs e)
{
 try
 {
 UIDevice.CurrentDevice.BatteryMonitoringEnabled = true;
 BatteryLabel.Text = “Battery: “ +
 UIDevice.CurrentDevice.BatteryLevel.ToString() + “ “ +
 “Battery Status: “ +
 UIDevice.CurrentDevice.BatteryState.ToString();
 }
 finally
 {

accessing system information ❘ 201

 UIDevice.CurrentDevice.BatteryMonitoringEnabled = false;
 }
}

Found in the DeviceSupport\Main.cs file of the download

using battery change events
Just like when dealing with other parts of the iPhone’s hardware, some events are based on changes
in the iPhone’s battery. When the battery changes, an event is fired. Listing 9-8 shows how to listen
for a battery state change event.

In this code, the UIDeviceBatteryStateDidChangeEventNotification is hooked up so that when
a battery state change occurs, the developer can be notified of the change. The following code shows
tracking the change in the battery state.

listing 9-8: Handling battery change notifications

NSNotificationCenter.DefaultCenter.AddObserver
 (“UIDeviceBatteryStateDidChangeNotification”,
 delegate {
 BatteryLabel.Text = UIDevice.CurrentDevice.BatteryLevel.ToString() +
 “, “ + UIDevice.CurrentDevice.BatteryState.ToString(); });

Found in the DeviceSupport\Main.cs file of the download

Figures 9-6 and 9-7 show the output of the battery state change notification while the iPhone is
plugged in and unplugged, respectively.

accessing system information

The UIDevice class provides access to information about the current device beyond the features in
the device. The UIDevice.CurrentDevice class exposes a set of properties that allow for system-
level information to be determined. These properties are:

LocalizedModel➤➤ : The localized model property is a localized string representing information
about the specific model.

Model➤➤ : The model property returns a string with information about the specific model.

Name➤➤ : The name property returns a string with the name of the device. This is the value from
the General➤➪➤About settings.

SystemName➤➤ : The system name is the name of the operating system currently running on
the iPhone.

figure 9-6 figure 9-7

202 ❘ chaPter 9 ProgrammIng wIth devIce hardware

SystemVersion➤➤ : The system name is the version of the operating system currently running
on the iPhone.

UniqueIdentifier➤➤ : The unique identifier is a unique string based on hardware values.

Listing 9-9 shows getting the system information:

listing 9-9: reading system information

string Output = String.Empty;
Output += “System Name: “ + UIDevice.CurrentDevice.SystemName + Environment.NewLine;
Output += “System Version: “ + UIDevice.CurrentDevice.SystemVersion +
 Environment.NewLine;
Output += “Unique ID: “ + UIDevice.CurrentDevice.UniqueIdentifier +
 Environment.NewLine;
Output += “Localized Model: “ + UIDevice.CurrentDevice.LocalizedModel +
 Environment.NewLine;
Output += “Name: “ + UIDevice.CurrentDevice.Name + Environment.NewLine;
SystemInformationText.Text = Output;

Found in the DeviceSupport\Main.cs file of the download

Figure 9-8 shows the output of this code running in the simulator.

mobile develoPment

There are a number of important points to remember when developing
for the iPhone, or any other mobile devices:

The iPhone is a mobile device and it has limited resources. ➤➤

Continually monitoring for notifications will use the battery.

There is a tradeoff between notifications and using device resources that provide value to a ➤➤

user interface. Don’t turn on features that are not needed.

The iPhone simulator will allow developers to build applications; however, it does not have ➤➤

the complete featureset, such as the battery and device orientation.

summary

The iPhone device has a number of interesting hardware features. These are exposed through the
MonoTouch.UIKit.UIDevice.CurrentDevice and the NetworkReachability classes. These classes
allow developers to interact with acceleration, device orientation, the battery, networking, and sys-
tem information. Though a user is not interested in these features, they are important for develop-
ers. Developers can use these features to weave an exciting application for end users.

figure 9-8

10
Programming with Multimedia

what’s in this chaPter?

Integrating images and the image picker➤➤

Watching and recording videos➤➤

Playing and recording audio➤➤

Using animation➤➤

Multimedia covers a broad range of items in the real world. Within the iPhone context, mul-
timedia covers images, audio, video, and animation. The iPhone creates an innovative way of
consuming multimedia, which hasn’t gone unnoticed in the general media. The iPhone APIs
provide an easy way of interacting with the multimedia functions of the device. We discuss
each of the multimedia items throughout this chapter.

images

This section covers using images within your application, whether you want to display images,
pick images, or even create your own.

displaying images
To use and display images within a view, you can use the UIImageView control. UIImageView
is a simple control that allows two basic actions: the ability to view an image and the ability to
view multiple images with animations.

204 ❘ chaPter 10 ProgrammIng wIth multImedIa

To view images, you can either drag a UIImageView into the design view using Interface Builder or
you can create a UIImageView in code. For this example, you create your UIImageView in code.

First you want to grab an image that you may have from your application. You can do this by using
the static method FromFile on the UIImage class, passing in the path to the fi le.

Make sure you have included your image in the project and set the image’s build
action to Content; otherwise the image will not show. You can do this by right-
clicking on the image, going to Build Action, and then selecting Content.

You next pass the image into the UIImageView constructor. When you have created the new image
view, you set the frame size for the image. You can use the actual width and height from your image
to make sure it fi ts correctly. You can then simply add the image view as a sub-view of the main win-
dow to display it on the screen. Figure 10-1 shows the image in an image view on the screen,
and Listing 10-1 shows the code.

listing 10-1: adding a simple UiimageView in code

public override bool FinishedLaunching (UIApplication app, NSDictionary
 options)
{
 var image = UIImage.FromFile(“image.png”);

 var imageView = new UIImageView(image);
 imageView.Frame = new RectangleF(0f, 20f, image.Size.Width,
 image.Size.Height);
 window.AddSubview(imageView);

 window.MakeKeyAndVisible ();

 return true;
}

As well as being able to display one image using the image
view, you can allow the image view to animate through a series
of images. To do this you pass in an array of UIImage objects
and use the StartAnimating and StopAnimating methods to
control when the images are animating. You can set additional
properties to determine the length of the animation and the
number of times the animation repeats. When the image is not
animating, it just shows the default image. This default image
is the one you pass into the constructor; you need to reuse the
image object in the UIImage array if you want it to appear in
the animation. Listing 10-2 shows how you would create a list
of UIImage objects and start animating a UIImageView.

figure 10-1

images ❘ 205

listing 10-2: Using UiimageView for animations

public override bool FinishedLaunching (UIApplication app, NSDictionary
 options)
{
 var image = UIImage.FromFile(“image.png”);
 var image2 = UIImage.FromFile(“image2.png”);
 var image3 = UIImage.FromFile(“image3.png”);

 var imageViewRectangle = new RectangleF(0f, 20f, image.Size.Width,
 image.Size.Height);
 var imageView = new UIImageView(image);
 imageView.Frame = imageViewRectangle;
 imageView.AnimationImages = new [] {image, image2, image3};
 imageView.AnimationDuration = 4;
 imageView.AnimationRepeatCount = 2;

 imageView.StartAnimating();

 window.AddSubview(imageView);

 window.MakeKeyAndVisible ();

 return true;
}

The UIImageView class also provides a way of showing a highlighted image for a set image using the
Highlighted property. You will normally want to provide a highlighted image when a user touches
an image. To do this you can create your own UIImageView class and override the TouchesBegan
and TouchesEnded methods to set the property to true and false, respectively. You must set the
UserInteractionEnabled property to true so that it listens for touches. Listing 10-3 shows the
initial setup of creating a new MyImageView using the MyImageView with a UIImageView base class.

listing 10-3: overriding default UiimageView methods

public override bool FinishedLaunching (UIApplication app, NSDictionary options)
{
 var image = UIImage.FromFile(“image.png”);
 var imageHighlighted = UIImage.FromFile(“image2.png”);

 var imageView = new MyImageView(image, imageHighlighted);
 imageView.Frame = new RectangleF(0f, 20f, image.Size.Width, image.Size.Height);
 imageView.UserInteractionEnabled = true;

 window.AddSubview(imageView);

 window.MakeKeyAndVisible ();

 return true;

continues

206 ❘ chaPter 10 ProgrammIng wIth multImedIa

}

...

public class MyImageView : UIImageView
{
 public MyImageView(UIImage image, UIImage imageHighlighted) :
 base(image, imageHighlighted)
 {
 }

 public override void TouchesBegan (NSSet touches, UIEvent evt)
 {
 Console.WriteLine (“Touches began”);
 this.Highlighted = true;
 }

 public override void TouchesEnded (NSSet touches, UIEvent evt)
 {
 Console.WriteLine (“Touches ended”);
 this.Highlighted = false;
 }
}

Picking an image
In a lot of applications, the ability to upload an image is often used. What you want is to allow a
user to upload an existing photo they have in their photo album. The UIImagePickerController is
used as a modal view; this means the user only has the option of selecting an image or canceling the
image picker controller.

When you create the UIImagePickerController, you’ll want to define your own delegate
method, which will inherit the UIImagePickerControllerDelegate class. This enables you to
override methods on the class as and when you need to override the default action for the meth-
ods. The UIImagePickerControllerDelegate provides two useful methods to override and one
deprecated method.

The two methods you want to override are Canceled and FinishedPickingMedia. The Canceled
method returns the picker that called the method. The FinishedPickingMedia method returns the
picker that called the method as well as a dictionary of info. This dictionary contains key value
pairs of information about the selected image, which you use later to handle this selected image. The
FinishedPickingImage method is the deprecated method; the FinishedPickingMedia method has
taken over the functionality for picking both images and video.

Listing 10-4 shows how you would use the UIImagePickerController and
UIImagePickerControllerDelegate to display all photos from your album.

listing 10-4: Getting started with the UiimagePickerController

public partial class MainViewController : UIViewController
{
 public override void ViewDidLoad ()

listing 10-3 (continued)

images ❘ 207

 {
 base.ViewDidLoad ();

 UIButton button = UIButton.FromType(UIButtonType.RoundedRect);
 button.Frame = new RectangleF(0f, 30f, 320, 40f);
 button.SetTitle(“Select Image”, UIControlState.Normal);
 button.TouchUpInside += delegate(object sender, EventArgs e) {
 UIImagePickerController picker = new UIImagePickerController();
 picker.Delegate = new MyImagePickerDelegate(this);
 this.PresentModalViewController(picker, true);
 };
 this.View.AddSubview(button);
 }
}

public class MyImagePickerDelegate : UIImagePickerControllerDelegate
{
 MainViewController _mvc;
 public MyImagePickerDelegate(MainViewController mvc)
 {
 _mvc = mvc;
 }

 public override void Canceled (UIImagePickerController picker)
 {
 _mvc.DismissModalViewControllerAnimated(true);
 Console.WriteLine (“Cancelled picking an image”);
 }

 public override void FinishedPickingMedia (UIImagePickerController
 picker, NSDictionary info)
 {
 _mvc.DismissModalViewControllerAnimated(true);
 foreach (var key in info.Keys)
 Console.WriteLine(key + “ = “ + info[key]); }
}

Listing 10-4 uses a button to display the image picker; however,
this could be attached to any type of control. You might notice
that the custom image picker delegate passes the current view
controller into the delegate constructor method. This is so that
when the image picker is cancelled or an image is selected, you
can modify the current view to reflect this, such as removing the
image picker controller from the screen and displaying the selected
image. To remove the image picker once an event has fired, you
simply use the DismissModalViewControllerAnimated method
on the view controller you passed in. Figure 10-2 shows what the
default UIImagePickerController looks like.

figure 10-2

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

208 ❘ chaPter 10 ProgrammIng wIth multImedIa

image Picking and the simulator

The simulator by default does not contain any images. This results in your inability
to select an image from the image picker. To add images you can use the built-in
Safari application to select an image and save it to the simulator. Your saved images
then show up in the simulator.

handling a Picked image
Once an image has been picked, you want to grab the information from the info dic-
tionary and handle what to do with the selected image. The dictionary uses the keys
UIImagePickerControllerMediaType, UIImagePickerControllerOriginalImage,
UIImagePickerControllerEditedImage, UIImagePickerControllerCropRect, and
UIImagePickerControllerMediaURL. The dictionary does not include all the keys listed, so you
need to check if they exist before using them. The keys exist depending on whether the image is
edited and whether the image is actually a video.

For now you will only be using the UIImagePickerControllerMediaType and
UIImagePickerControllerOriginalImage keys because this is all the information given when you
select an image from a photo album. Using the UIImagePickerControllerOriginalImage key on
the info dictionary gives you back an NSObject. You need to create the key as an Objective-C style
object so you have to use NSString instead of just a String since you are interacting directly with
the Objective-C bindings. Because you know this is a UIImage object you can cast it to that type. To
show that this is the image picked, Listing 10-5 puts the newly picked image within an image view
too.

listing 10-5: Handle a picked image

public override void FinishedPickingMedia (UIImagePickerController picker,
 NSDictionary info)
{
 var originalImage = new NSString(“UIImagePickerControllerOriginalImage”);
 UIImage image = (UIImage) info[originalImage];
 UIImageView imageView = new UIImageView(new RectangleF(0f, 0f,
 320f, 460f));
 imageView.Image = image;
 _mvc.View.AddSubview(imageView);

 _mvc.DismissModalViewControllerAnimated(true);
 Console.WriteLine (“Did finish picking media”);
}

Sometimes you may want to restrict what source the users get their images from when
provided with an image picker. The three different source types are defi ned in the

images ❘ 209

UIImagePickerControllerSourceType enumeration as SavedPhotosAlbum, PhotoLibrary, and
Camera.

The ➤➤ SavedPhotosAlbum is a list of images that have been saved from an external source,
such as Safari or through another application, and have not been created from the camera.

The ➤➤ PhotoLibrary contains all the photos that are taken with the camera and also all the
photos that may be synced to the device.

The ➤➤ Camera source triggers that the source of the image will be a picture taken straight from
the camera.

Images taken with the camera through an application are not persisted in the
other photo libraries, so it is a good idea to save the original image.

creating an image from the camera
Using the camera to take images can be a great way of getting impromptu images from a user as and
when necessary. Because iPod Touch devices do not include a camera, you need to check whether a user
can use the camera functionality from within your application. The UIImagePickerController gives
you the functionality to do this programmatically so you can handle the situation if it were to happen.

The iPhone simulator does not support the camera feature; therefore, you need
to do any testing with the camera on an actual device.

To check this functionality programmatically you use the static method IsSourceTypeAvailable
and pass in the source type you want to determine is available. In this example you pass in the
source type Camera from the UIImagePickerControllerSourceType enumeration. Once you have
successfully found out that a camera exists, you simply set the UIImagePickerController’s source
type to Camera. If a camera doesn’t exist, you just show an error message. Listing 10-6 shows a way
of validating the presence of a camera and displaying it.

listing 10-6: Picking an image from the camera

var cameraType = UIImagePickerControllerSourceType.Camera;
if(UIImagePickerController.IsSourceTypeAvailable(cameraType))
{
 UIImagePickerController picker = new UIImagePickerController();
 picker.SourceType = cameraType;
 picker.Delegate = new MyImagePickerDelegate(this);
 this.PresentModalViewController(picker, true);
}
else
{
 using (var alert = new UIAlertView(“Whoops”, “No Camera found”,

continues

210 ❘ chaPter 10 ProgrammIng wIth multImedIa

 null, “Ok!”, null))
 {
 alert.Show();
 }
}

Figure 10-3 shows this code running on the simulator where the camera is not found.

Figure 10-4 shows the same code running on an actual device where the image picker with the cam-
era will be showing.

editing an image
The image picker provides simple functionality to allow users to crop and edit an image after it has
been picked. The image can be either a pre-existing image or an image taken from the camera. A
rectangle shape is placed over the selected image within the image picker and provides the cut-off
point for the cropped image. Despite the fact that users can crop their selected image, the original
image is also kept for you to manipulate the way you would like.

To allow users to crop and edit their photos, you need to set the AllowsEditing property to
true. There is also an AllowsImageEditing property; however, this has been superseded by the
AllowsEditing property since the ability to edit and crop video was added. Editing and cropping
videos are discussed further in the “Video” section later in this chapter.

As in Listing 10-5, you use the info dictionary and key to get the image reference from the info
dictionary of the newly edited image and the size of the editing rectangle shape. The two addi-
tional keys that are added into the dictionary are UIImagePickerControllerEditedImage and
UIImagePickerControllerCropRect. Even though the edited image is provided, the original image
object is available, too. This allows you to manually update or store the original image as and when
you need. The actual editing functions provided by the API are rather limited, but provide simple
functionality for cropping and editing. Figure 10-5 shows the rectangle when editing is allowed.

figure 10-3 figure 10-4 figure 10-5

listing 10-6 (continued)

images ❘ 211

customizing the camera
Using the camera on a device provides you with a few different options when it comes to custom-
izing how the camera looks and how it works. This section explains what customization you can do
when using the camera.

One of the things that you can customize with the camera is the camera “controls” that are dis-
played on screen by default. These controls are the same default controls that are used on the cam-
era application on the iPhone. Most of the time the default controls are sufficient, but you also have
support to override these and build up your own interface. The property ShowsCameraControls can
be optionally set to false so that the controls are not visible.

Once the controls are not on the screen, notice that you cannot take a photo. To take a photo you
need to overlay a control or two on the camera view to raise an event where you can programmati-
cally take a photo. The CameraOverlayView allows you to provide a view to overlay over the top of
the camera view. For this example you use a custom view shown in Listing 10-7.

listing 10-7: overlaying a view in while using the camera

var cameraType = UIImagePickerControllerSourceType.Camera;
picker = new UIImagePickerController();
picker.SourceType = cameraType;
picker.ShowsCameraControls = false;
picker.CameraOverlayView = new MyOverlayView(this);
picker.Delegate = new MyImagePickerDelegate(this);
this.PresentModalViewController(picker, true);

...

public class MyOverlayView : UIView
{
 public MyOverlayView (MainViewController mvc)
 {
 this.Frame = new RectangleF(0f, 0f, 320f, 480f);
 UIButton button = UIButton.FromType(UIButtonType.RoundedRect);
 button.SetTitle(“Take a Photo”, UIControlState.Normal);
 button.Frame = new RectangleF(0f, 420f, 320f, 40f);
 button.TouchUpInside += delegate(object sender, EventArgs e) {
 mvc.picker.TakePicture();
 Console.WriteLine (“Took a picture!”);
 };
 this.AddSubview(button);
 }
}

Listing 10-7 uses a simple custom view inheriting from the UIView base class. To set the custom
view as the camera overlay, you create a new instance of your overlay view and pass it to the
CameraOverlayView property. In the constructor you pass in the view that you are using the picker
control within. This allows you to call into the current controller and programmatically take a
picture using the TakePicture method. This is shown in the bold line in Listing 10-7. Figure 10-6
shows the overlaid button image.

212 ❘ chaPter 10 ProgrammIng wIth multImedIa

The UIImagePickerController also provides the CameraViewTransform property. This allows you
to pass in a transform using CGAffineTransform methods such as MakeScale and MakeRotate. You
may have noticed that removing the camera controls leaves a black bar at the bottom the screen.
This is because of the aspect ratio of the camera compared to the screen. You can optionally scale
the camera view up with the CameraViewTransform property so the camera fi ts the whole screen
using the code in the following snippet. However, it might skew the image slightly. The fi rst param-
eter of the MakeScale method is the amount to scale the x coordinate by and the second parameter
is the amount to scale the y coordinate by. To get the camera to fi ll the screen, you’ll just scale the y
coordinate by a ratio of 1.13.

picker.CameraViewTransform = CGAffineTransform.MakeScale(1f, 1.13f);

The result of using this transform is shown in Figure 10-7.

saving an image to the Photo album
To save an image to your picture library, you fi rst want to instantiate a new UIImage object. On the
UIImage class there is a method called SaveToPhotosAlbum. The photo album has a special folder
that is used for just images saved from external sources, such as Safari or through an application,
and not taken from the built-in camera.

The SaveToPhotosAlbum method takes a delegate to allow it to pass back the saved image or an
NSError object if an error occurs as trying to save the image. You can check to see if the NSError
comes back as null; if this is the case, then you know the image was saved successfully. Listing 10-8
shows how you would save a static fi le from the project to the photos album.

Make sure the image is included in the project and has its build action set to
Content.

figure 10-6 figure 10-7

Video ❘ 213

Figure 10-8 shows the image picker without any photos in it. After saving a photo with the code in
Listing 10-8, you can see that Figure 10-9 shows the same image picker with the newly added photo.

listing 10-8: saving an image to the photo album

UIImage imageFile = UIImage.FromFile(“image.png”);
imageFile.SaveToPhotosAlbum(delegate (UIImage image, NSError error) {
 Console.WriteLine (“Saved to photo album”);
});

video

The video functionality varies from device to device. All devices allow playback of video, but only
the iPhone 3GS devices allow the ability to record video. The APIs allow you to detect what will or
won’t work for each device, enabling you to create a great experience for all users using video func-
tionality. This section discusses how you can integrate video into your application and how you can
use certain devices to record video as well.

Playing a video
The iPhone SDK provides a simple controller to play videos within your application. Tucked away
in the MonoTouch.MediaPlayer namespace, the MPMoviePlayerController class provides the
functionality to play a movie, prepare to play a movie, and stop a movie. Listing 10-9 shows how to
start playing a video. The first line shows the instantiation of a new movie player object, passing the
video content file path in the constructor, and the second line simply calls the Play method, which
displays the movie player and starts playing the video.

figure 10-8 figure 10-9

214 ❘ chaPter 10 ProgrammIng wIth multImedIa

listing 10-9: Playing a video from a file

var player = new MPMoviePlayerController(NSUrl.FromFilename(“video.mp4”));
player.Play();

If you would rather use an external video and progressively download the video than play one
directly from the device, you use the NSUrl method FromString instead of FromFilename and pass
in the URL location of the video. Of course, you need to replace the URL string with your own
external video.

var videoUrl = NSUrl.FromString(“http://example.com/video.mp4”)
var player = new MPMoviePlayerController(videoUrl);
player.Play();

You might have noticed that there is a short buffering period before the video starts to play. This is
known as the preload. You can set notifications on the video player, which fires off a message when
the video has preloaded so you can first show a loading screen and then show the video when the
preload finishes. You can also use notifications to get messages fired off when the video has finished
playing and when the user has changed the scaling of the video.

You use the DefaultCenter property from the NSNotificationCenter class to add observ-
ers so that your messages fire off when a notification happens. You can think of an observer
as a way of adding events on certain actions by using strings as a way of creating these events
instead of using strongly typed events that you might be used to in C#. For this example,
you just use the notifications MPMoviePlayerContentPreloadDidFinishNotification
and MPMoviePlayerPlaybackDidFinishNotification. The other notification is named
MPMoviePlayerScalingModeDidChangeNotification. You can add two class variables
of type NSObject, which can be your preload and playback finished observers. Using the
AddObserver method, you pass in an action method for each observer, which runs when the
notifications are called. You can use a lambda expression to place this code inline. When the
preload notification is fired, you just want to start playing the video so you call Play on your
MPMoviePlayerController, and when the playback notification is fired, you want to remove the
observers and clean up the movie player instance. You can use an activity indicator to make sure
the user is aware that you are preloading the video when the application starts up. Listing 10-10
shows the example code to do this. Again, you need to make sure you change the URL on the
eighth line to point to an external video of your choice.

listing 10-10: Using movie player observers

MPMoviePlayerController moviePlayer;
NSObject didFinishPreload, didFinishPlayback;

public override void ViewDidLoad()
{

Video ❘ 215

 base.ViewDidLoad ();

 var videoUrl = NSUrl.FromString(“http://example.com/video.mp4”);
 moviePlayer = new MPMoviePlayerController(videoUrl);

 activityIndicator.StartAnimating();

 var centre = NSNotificationCenter.DefaultCenter;
 var preloadFinish = “MPMoviePlayerContentPreloadDidFinishNotification”;
 didFinishPreload = centre.AddObserver(preloadFinish,
 (notify) => {
 Console.WriteLine (“Start playing movie”);
 activityIndicator.StopAnimating();
 moviePlayer.Play();
 });

 var playbackFinished = “MPMoviePlayerPlaybackDidFinishNotification”;
 didFinishPlayback = centre.AddObserver(playbackFinished,
 (notify) => {
 Console.WriteLine (“Movie finished, Clean up”);

 centre.RemoveObserver(didFinishPreload);
 centre.RemoveObserver(didFinishPlayback);

 activityIndicator.Hidden = true;

 moviePlayer.Dispose();
 moviePlayer = null;
 }); }
}

customizing the video Player
The functionality that the movie player provides is rather limited, allowing only two properties to
be tweaked to your needs. These properties are ScalingMode and MovieControlMode.

Scaling mode sets the aspect ratio of the video playing. The options available for this are Fill,
AspectFill, AspectFit, and None.

Fill➤➤ , as the name suggests, fills the screen with your video so both edges of the video fit on
the screen, but the aspect ratio may not remain the same.

AspectFill➤➤ doesn’t skew your video while filling the screen, but it does crop your video so
that the video fits full on the screen leaving no gaps.

AspectFit➤➤ keeps the same aspect ratio for the video and fits it on the screen as best as pos-
sible for one edge of the video, but it might expose the background view if the video does not
fit completely.

None➤➤ does not try to fit the video at all and plays it at its native size.

216 ❘ chaPter 10 ProgrammIng wIth multImedIa

Using the MPMovieScalingMode enumeration, you can set the ScalingMode to any of the options
in this list. See Figures 10-10 through 10-13 for examples of each scaling mode. The background
of the player is set to blue (which shows as a lighter gray in the printed version of the figure you are
looking at) so you can see the difference between the video size and the player size. Notice in this
example that Aspect Fit and Fill video are the same. This is because the ratio of the video allows the
edges of the video to fit on the screen without needing to change the aspect ratio.

The other property that you can modify for a video player is the MovieControlMode property.
Using the MPMovieControlMode enumeration, you can set the control mode to Default, Hidden, or
VolumeOnly. Figures 10-14 and 10-15 show the Default and VolumeOnly control modes. Hidden
hides all the default actions on the screen; this is useful if you want to provide your own user inter-
face over the top of a video.

The movie player presents itself on the screen as a key window. To add a custom interface over the top
of the movie player’s key window, you can grab a reference of it from the list of windows that you have
in your application. (A key window is essentially the topmost visible view available within the window
frame.) You then can simply add a sub-view to the movie player key window. Because the movie player
is presented in a landscape mode, you have to transform your overlay view to match. Listing 10-11
shows how you do everything just mentioned in this paragraph in code.

figure 10-10 figure 10-11

figure 10-12 figure 10-13

Video ❘ 217

listing 10-11: overlaying a view on a video player

public MPMoviePlayerController mPlayer;

public override void ViewDidLoad ()
{
 base.ViewDidLoad ();

 var button = UIButton.FromType(UIButtonType.RoundedRect);
 button.Frame = new RectangleF(0f, 20f, 320f, 40f);
 button.SetTitle(“Play Video”, UIControlState.Normal);
 button.TouchUpInside += delegate(object sender, EventArgs e)
 {
 PlayMovie ();

 var windows = UIApplication.SharedApplication.Windows;
 if(windows.Count() > 1)
 {
 var moviePlayerWindow = UIApplication.SharedApplication.KeyWindow;
 var customView = new MyOverlayView(this);
 moviePlayerWindow.AddSubview(customView);
 }
 };
 this.View.AddSubview(button);
}

void PlayMovie ()
{
 var url = NSUrl.FromFilename(“video.mp4”);
 mPlayer = new MPMoviePlayerController(url);
 mPlayer.Play();
}

...

public class MyOverlayView : UIView
{
 public MyOverlayView (MainViewController mvc)

figure 10-14 figure 10-15

continues

218 ❘ chaPter 10 ProgrammIng wIth multImedIa

 {
 this.Frame = new RectangleF(0f, 0f, 320f, 480f);
 this.Transform = CGAffineTransform.MakeRotation((float)(Math.PI / 2));

 UIButton button = UIButton.FromType(UIButtonType.RoundedRect);
 button.SetTitle(“Pause”, UIControlState.Normal);
 button.Frame = new RectangleF(65f, 360f, 190f, 32f);
 button.TouchUpInside += delegate(object sender, EventArgs e) {
 Console.WriteLine (“Paused the video”);
 mvc.mPlayer.Pause();
 };

 this.AddSubview(button);
 }
}

Figure 10-16 shows the overlay view created in
Listing 10-11.

Picking a video
To allow a user to pick from a list of videos
that are stored on the device, you use the
UIImagePickerController you became
familiar with earlier in the chapter. Because
the video functionality for the iPhone is very
similar to the camera functionality, it’s no
surprise to see that the video functionality is
part of the UIImagePickerController class.
In Listing 10-6 you used the method IsSourceTypeAvailable to determine if the device has a
camera. Because video functionality is limited to the iPhone 3GS model, simply finding out if
there is a camera is not enough. This is where the static method AvailableMediaTypes on the
UIImagePickerController class comes in handy.

The AvailableMediaTypes method accepts a source type and returns an array of media types
that the device has available. The media type of an image is public.image and the type of a video
is public.movie. If the method returns the public.movie type, you can set your instance of the
UIImagePickerController’s MediaTypes property to only have the public.movie media type.
Listing 10-12 shows the picker being set in this way.

listing 10-12: Picking a video with an image picker controller

if (HasVideoSupport())
{
 UIImagePickerController picker = new UIImagePickerController();
 picker.SourceType = UIImagePickerControllerSourceType.PhotoLibrary;
 picker.MediaTypes = new []{“public.movie”};
 picker.Delegate = new MyImagePickerDelegate(this);

figure 10-16

listing 10-11 (continued)

Video ❘ 219

 this.PresentModalViewController(picker, true);
}
else
{
 using (var alert = new UIAlertView(“Whoops”, “No video support found”,
 null, “Ok!”, null))
 {
 alert.Show();
 }
}

...

bool HasVideoSupport()
{
 var cameraType = UIImagePickerControllerSourceType.Camera;
 var cameraSupport =
 UIImagePickerController.IsSourceTypeAvailable(cameraType);
 return (!cameraSupport) ? false :
 UIImagePickerController.AvailableMediaTypes(cameraType)
 .Contains(“public.movie”);
}

When you display the picker, notice that you see only vid-
eos because they are the only type of media you can pick.
Figure 10-17 shows how to display a video-only picker.

When a video is picked, it uses the same callback
that the image picker uses: FinishedPickingMedia.
The NSDictionary is populated with the two
keys, UIImagePickerControllerMediaURL and
UIImagePickerControllerMediaType. The media URL con-
tains an NSUrl object that points to a temporary location for
the selected video. This is where you can handle the video —
either by moving it into the Documents directory or by using
it another way. The temporary video is stored in the tmp direc-
tory of the application and is cleaned up by the OS at a time it
thinks is appropriate.

recording video
Recording a video with the iPhone is very similar to taking a
photo with the iPhone. From the previous example, you can just set the source type to the camera
rather than the default of the photo library, and you are all set to record video instead of tak-
ing a photo. This is, of course, assuming that you have checked that the device can record video
using the AvailableMediaTypes method. Notice that the camera controls change to reflect the
fact that you are recording a video and not taking a photo. You can optionally choose to hide the
camera controls by setting the ShowsCameraControls to false; however, at the time of this writ-
ing, there is no way of programmatically recording a video without using the default camera con-
trols. Listing 10-13 is an example of setting up the UIImagePickerController to record video.
Figure 10-18 shows the video recording screen.

figure 10-17

220 ❘ chaPter 10 ProgrammIng wIth multImedIa

listing 10-13: recording a video

public override void ViewDidLoad ()
{
 base.ViewDidLoad ();

 UIButton button = UIButton.FromType(UIButtonType.RoundedRect);
 button.Frame = new RectangleF(0f, 30f, 320, 40f);
 button.SetTitle(“Record Video”, UIControlState.Normal);
 button.TouchUpInside += delegate(object sender, EventArgs e) {

 var cameraType = UIImagePickerControllerSourceType.Camera;
 if(HasVideoSupport())
 {
 UIImagePickerController picker = new UIImagePickerController();
 picker.SourceType = cameraType;
 picker.MediaTypes = new []{“public.movie”};
 picker.Delegate = new MyImagePickerDelegate(this);
 this.PresentModalViewController(picker, true);
 }
 else
 {
 using (var alert = new UIAlertView(“Whoops”,
 “No video support found”, null, “Ok!”, null))
 {
 alert.Show();
 }
 }
 };
 this.View.AddSubview(button);
}

...

bool HasVideoSupport()
{
 var cameraType = UIImagePickerControllerSourceType.Camera;
 var cameraSupport =
 UIImagePickerController.IsSourceTypeAvailable(cameraType);
 return (!cameraSupport) ? false :
 UIImagePickerController.AvailableMediaTypes(cameraType)
 .Contains(“public.movie”);
}

When recording a video, you can also set the quality of the video recording. The lower the quality,
the smaller the file size of the resulting video. You can set the VideoQuality property on the image
picker using the UIImagePickerControllerQualityType enumeration like so:

picker.VideoQuality = UIImagePickerControllerQualityType.Low;

Video ❘ 221

The enumeration provides three options for quality: High,
Medium, and Low. The default setting used in video recording is
Medium. The other property you can use while recording a video
is the VideoMaximumDuration property. As you would gather
from the property name, this is where you can set the maximum
duration for a recorded video in seconds. The longest a video
can be is 10 minutes, and the default value for recording a video
is 10 minutes, too.

editing a video
In the same way that you can allow the editing of images
through the UIImagePickerController, you can also set the
AllowEditing property to true for when you are recording
or picking a video. This provides you with an interface to trim
a video when you have picked a video from the image picker.
Unlike when you are editing an image, when the editing has
finished, you only get back a temporary trimmed or edited
video with the UIImagePickerControllerMediaURL key in the
NSDictionary available after a video is selected or recorded —
and not the original video. The video, which is temporarily
created, is eventually cleaned up automatically by the device,
so you want to save the video out to a different place. The
UIImagePickerControllerMediaURL object is of type NSUrl,
and you need to cast the object to NSUrl to extract the Path
property needed to locate the file. Figure 10-19 shows what the
image picker video editor looks like.

However, the video picker is not the most recommended way
of editing the video. For editing, you are better off using the
specialized class UIVideoEditorController instead. The
video editor controller presents you with an editing window
that is similar to the one used with the image picker. However,
notice that there are two options for the user to select: Cancel
and Save. You are exposed to three different events on the
UIVideoEditorController class:

UserCancelled➤➤ : Handles when the user clicks Cancel.

Saved➤➤ : Handles when a user clicks Save.

Failed➤➤ : Fired off when an unexpected error happens, such as the video was in the wrong
format to be edited.

The Saved event returns the path to the edited video file, the Failed event returns an NSError
object, and the UserCancelled event does not return any extra information. If you need to get back
the original file path, you can always cast the sender to a UIVideoEditorController object and use
the VideoPath property.

figure 10-19

listing 10-13: recording a video

public override void ViewDidLoad ()
{
 base.ViewDidLoad ();

 UIButton button = UIButton.FromType(UIButtonType.RoundedRect);
 button.Frame = new RectangleF(0f, 30f, 320, 40f);
 button.SetTitle(“Record Video”, UIControlState.Normal);
 button.TouchUpInside += delegate(object sender, EventArgs e) {

 var cameraType = UIImagePickerControllerSourceType.Camera;
 if(HasVideoSupport())
 {
 UIImagePickerController picker = new UIImagePickerController();
 picker.SourceType = cameraType;
 picker.MediaTypes = new []{“public.movie”};
 picker.Delegate = new MyImagePickerDelegate(this);
 this.PresentModalViewController(picker, true);
 }
 else
 {
 using (var alert = new UIAlertView(“Whoops”,
 “No video support found”, null, “Ok!”, null))
 {
 alert.Show();
 }
 }
 };
 this.View.AddSubview(button);
}

...

bool HasVideoSupport()
{
 var cameraType = UIImagePickerControllerSourceType.Camera;
 var cameraSupport =
 UIImagePickerController.IsSourceTypeAvailable(cameraType);
 return (!cameraSupport) ? false :
 UIImagePickerController.AvailableMediaTypes(cameraType)
 .Contains(“public.movie”);
}

When recording a video, you can also set the quality of the video recording. The lower the quality,
the smaller the file size of the resulting video. You can set the VideoQuality property on the image
picker using the UIImagePickerControllerQualityType enumeration like so:

picker.VideoQuality = UIImagePickerControllerQualityType.Low;

figure 10-18

222 ❘ chaPter 10 ProgrammIng wIth multImedIa

The video editor can be used only in portrait mode.

With the video editor you can set the edited video to be of lower
quality and force the edited video to be of a set maximum length
by setting the VideoQuality and VideoMaximumDuration,
respectively.

Creating a video edit screen is pretty straightforward. You instan-
tiate a new UIVideoEditorController, set the VideoPath
property to the path of the video you want to edit, and then
present the video editor as a modal view. Because you won’t
know if the iPhone that is running the application has support
for editing video, you want to use the video editor static method
CanEditVideoAtPath. Passing in the video path returns true if the
video can be edited. Listing 10-14 shows an example of creating a
dedicated video editing screen and Figure 10-20 shows what the
UIVideoEditorController screen looks like.

listing 10-14: Using a dedicated video editor screen

if(UIVideoEditorController.CanEditVideoAtPath(ChosenVideoPath))
{
 var videoEditor = new UIVideoEditorController();
 videoEditor.VideoPath = ChosenVideoPath;
 videoEditor.Saved += delegate(object sender, UIPathEventArgs e) {
 this.DismissModalViewControllerAnimated(true);
 // Handle edited video with e.Path
 };
 videoEditor.Failed += delegate(object sender, NSErrorEventArgs e) {
 this.DismissModalViewControllerAnimated(true);
 // Handle error here with e.Error
 };
 videoEditor.UserCancelled += delegate(object sender, EventArgs e) {
 this.DismissModalViewControllerAnimated(true);
 // Handle cancel
 };
 this.PresentModalViewController(videoEditor, true);
}

saving a video to the saved Photo album
When saving an image to the saved photo album, you use a static method on the UIImage class to
save the fi le. Because all references to a video fi le are using a path and not the object in memory,

figure 10-20

audio ❘ 223

the UIVideo static class provides the methods you need to save the video to a photo album. As you
know, video functionality is limited to only certain devices, so before you save the video to the
photo album, you need to check if the device can actually save a video to its photo album. The static
method IsCompatibleWithSavedPhotosAlbum provides this functionality and returns true if you
pass in a path of a video that can be saved to the photo album.

To save the video to the photo album, once you have checked that the device can actually save a
video, you use the SaveToPhotosAlbum static method on the UIVideo class. You pass in the path to
the video you want to save and a callback that triggers when the video has been saved. Listing 10-15
shows the code to do this.

listing 10-15: saving a video to the photo album

var videoPath = videoSavePath;
if(UIVideo.IsCompatibleWithSavedPhotosAlbum(videoPath))
{
 UIVideo.SaveToPhotosAlbum(videoPath, delegate (string path,
 NSError errors)
 {
 using (var alert = new UIAlertView(“Success”, “Video saved!”,
 null, “Ok!”, null))
 {
 alert.Show();
 }
 });
}

audio

The iPhone provides many different ways of playing audio on the device, whether it is a short sound
clip or a full-length podcast show. This section discusses the different ways that you can play audio
through the iPhone, how to handle listening to audio, and also how to record audio.

Playing audio
Using audio in an application allows you either to play a short system sound, which offers a quick
and limited audio experience, or to play a much longer sound making use of the AVAudioPlayer
class. The next few sections describe how to use audio in both these ways.

short audio
Using the SystemSound functionality in the AudioToolbox is the best way to play short audio clips.
You can only use the SystemSound method for playing audio that is shorter than 30 seconds in
duration. This is because the SystemSound class uses a low-level C interface to play short system
sounds. I discuss playing audio for a longer amount of time later in this chapter.

224 ❘ chaPter 10 ProgrammIng wIth multImedIa

To use SystemSound, you need to instantiate a new SystemSound object, passing in to the construc-
tor an NSUrl containing the fi le path to the audio you want to play. The SystemSound object then
exposes two methods to play the sounds.

You can play an alert sound with the ➤➤ PlayAlertSound method. The alert sound behaves
differently depending on the user settings on the device (such as vibrate when the sound is
played) and the type of device (for example, an iPod Touch versus an iPhone).

The other method exposed to you is the ➤➤ PlaySystemSound, and this is likely to be the
method you would use most for playing short sound clips.

Listing 10-16 shows how to create the SystemSound object and play the audio fi le. The
PlaySystemSound and PlayAlertSound methods are asynchronous, so they do not block the thread
and therefore do not block the UI thread.

Remember the audio fi le needs to be included in your project and have the build
action set to Content for it to work. Compressed audio fi les such as MP3 fi les
are not supported, so you either need to use the AVAudioPlayer class (discussed
later in the chapter) to play compressed audio fi les or use an uncompressed fi le
type such as CAF (Core Audio Format).

listing 10-16: Playing uncompressed audio

using MonoTouch.AudioToolbox;

...

var audioFile = NSUrl.FromFilename(“audio.caf”);
SystemSound sound = SystemSound.FromFile(audioFile);
sound.PlaySystemSound();

Vibration
You’re probably thinking this is in the wrong place; vibration is not a sound or audio. However, to
make the device vibrate, you use the PlaySystemSound method on a special fi eld on the class called
Vibrate. You can directly call the play method on this fi eld to make the device vibrate. You should
note that the vibration works only on a device and nothing happens in the simulator.

SystemSound.Vibrate.PlaySystemSound();

long audio
Chances are you are going to want to either play compressed audio in your application or play audio
that lasts longer than 30 seconds. The AVAudioPlayer class provides functionality to play different
types of fi les and much longer audio fi les.

audio ❘ 225

The methods available on the AVAudioPlayer are shown in Table 10-1.

table 10-1: AVAudioPlayer Methods

method descriPtion

AveragePower(uint channel) The average power, in decibels, for the channel passed in .
UpdateMeters() must be run before calling this method .

Pause() Pauses the audio playback .

PeakPower(uint channel) The peak power, in decibels, for the channel passed in .
UpdateMeters() must be run before calling this method .

Play() Starts the audio playback . If it was previously paused, it con-
tinues from the place where it was paused .

PrepareToPlay() Prepares the audio to play . The Play() method calls this
method if it isn’t explicitly called .

Stop() Stops the audio playback and requires PrepareToPlay() to
be called again .

UpdateMeters() Updates the values for AveragePower and PeakPower
 .MeteringEnabled needs to be set to true .

To get a simple track to play, you can instantiate a new AVAudioPlayer from the static method
FromUrl. Using this method you pass in the location of the audio file you want to play, similar
to the way you used the SystemSound class. You can optionally use the FromData method to
pass in an NSData object of audio data. Once the class is instantiated, you can just call the Play
method, which in turn first calls the PrepareToPlay method to start the audio playing. You use
the FinishedPlaying delegate to clean up the audio player after the audio file has finished playing.
Listing 10-17 shows the way to play a long audio file.

listing 10-17: Playing longer audio

var audioFile = NSUrl.FromFilename(“audio.caf”);
var audioPlayer = AVAudioPlayer.FromUrl(audioFile);
audioPlayer.Play();
audioPlayer.FinishedPlaying += delegate(object sender, AVStatusEventArgs e)
 {
 audioPlayer.Dispose();
 };

recording audio
To allow recording functionality within your application, you need to use the AVAudioRecorder
class. To create a new audio recorder, you use the static method ToUrl, which is expecting the path

226 ❘ chaPter 10 ProgrammIng wIth multImedIa

location to save the recorded audio to, an NSDictionary containing recording settings, and an
NSError object.

First you construct two NSObject arrays. The first object array contains NSNumber objects repre-
senting the settings values, and the second represents the settings keys. Using the NSDictionary
static method FromObjectsAndKeys, you pass in the two arrays, which populate the settings
NSDictionary.

Now that the settings dictionary is set, you want to set up a location for the audio file to be recorded
to. Because the Documents folder is saved when an iPhone backup happens, you save it in there for
this example. You can use the Environment.GetFolderPath method to get the Documents folder,
and then you simply use the Path.Combine method to concatenate the Documents folder with the
name of the audio file you want to save.

Once you have the AVAudioRecorder set up, you can call Record to start recording and then Stop
to stop recording, or you can use the RecordFor method and pass in the amount of seconds you
want to record. You use the FinishedRecording event to tell you when recording has finished so
you can clean up the AVAudioRecorder you created. You can also check whether the audio file you
just recorded exists and create a button that allows you to play the recorded file. Listing 10-18 shows
how to record audio for 5 seconds.

listing 10-18: recording audio in code

var values = new NSObject[]
 {
 NSNumber.FromFloat(44100.0f),
 NSNumber.FromInt32((int)AudioFileType.WAVE),
 NSNumber.FromInt32(1),
 NSNumber.FromInt32((int)AVAudioQuality.Max)
 };

var keys = new NSObject[]
 {
 AVAudioSettings.AVSampleRateKey,
 AVAudioSettings.AVFormatKey,
 AVAudioSettings.AVNumberOfChannelsKey,
 AVAudioSettings.AVEncoderAudioQualityKey
 };

var settings = NSDictionary.FromObjectsAndKeys(values, keys);

var documentsFolder =
 Environment.GetFolderPath(Environment.SpecialFolder.Personal);
var audioUrl =
 NSUrl.FromFilename(Path.Combine(documentsFolder, “audio.wav”));

var error = new NSError();

var recorder = AVAudioRecorder.ToUrl(audioUrl, settings, out error);
recorder.FinishedRecording += delegate
 {

animation ❘ 227

 using (var alert = new UIAlertView(“Success”, “Finished recording!”,
 null,”Ok!”, null))
 {
 alert.Show();
 }

 if(File.Exists(audioUrl.Path))
 {
 var button = UIButton.FromType(UIButtonType.RoundedRect);
 button.Frame = new RectangleF(0f, 30f, 320f, 32f);
 button.SetTitle(“Play recorded audio”, UIControlState.Normal);
 button.TouchUpInside += delegate(object s, EventArgs events) {
 var audioPlayer = AVAudioPlayer.FromUrl(audioUrl);
 audioPlayer.Play();
 audioPlayer.FinishedPlaying += delegate(object sender,
 AVStatusEventArgs e)
 {
 audioPlayer.Dispose();
 };
 };
 this.View.AddSubview(button);
 }

 recorder.Dispose();
 };
recorder.RecordFor(5f);

animation

Animation with the iPhone is a big topic and could quite easily be a book on its own. This chapter
touches on a few of the key points on animation to get you on your way. The following examples
show how to animate individual controls as well as how to animate with views.

creating basic animation
As a simple animation example, you are going to create a new text label and animate it to move
from the top of the screen to the bottom.

To perform a basic animation like this one you need to be familiar with some important concepts:

Key path:➤➤ A path mapping to a layers property on a control. You can think of this like
accessing properties with a string path rather than strongly typed properties.

CALayer: ➤➤ The layer contains generic properties on an object such as the position, frame and
opacity. This allows you to change the properties (such as setting the opacity) on a view
through the layer properties.

CABasicAnimation: ➤➤ A class that you use to animate a property on an object, like a text
label’s opacity or its Y position.

228 ❘ chaPter 10 ProgrammIng wIth multImedIa

To get started, you want to create a CABasicAnimation object from a specific key path. The key
path is a string that represents a CALayer property (when creating the animation, you are actually
animating the Layer property of your object). A few examples of key paths would be position.y,
transform.translation.x, and opacity. The following is a list of the possible properties that you
can animate from a CALayer.

anchorPoint➤➤

backgroundColor➤➤

borderColor➤➤

borderWidth➤➤

bounds➤➤

contents➤➤

contentsRect➤➤

cornerRadius➤➤

doubleSided➤➤

hidden➤➤

masksToBounds➤➤

opacity➤➤

position➤➤

sublayers➤➤

sublayerTransform➤➤

transform➤➤

zPosition➤➤

When you animate your layer, you use the key path and use From, To, and By properties to set up the
animation.

Because you want to animate a label from the top of the screen to the bottom, you first should create
the label and place it on the view. To animate the label going from the top of the view to the bot-
tom of the view, you want to translate the label on the Y-axis to 420 (which is near the bottom of
the iPhone). When creating the CABasicAnimation object, you use the static method FromKeyPath
passing in transform.translation.y as the key path you will use. Setting the To property to
420 allows you to transform the label 420 pixels on the Y-axis (move the label 420 pixels down
on the device). Because the From property is expecting an NSNumber, you can use a float with the
NSNumber.FromFloat method to get this for you.

All animations last an explicit amount of time, so you want to set the Duration property. For this
example it will be 3 seconds. You probably don’t want the label left at the bottom of the screen so
you can set the AutoReverses property to true so that when the animation finishes, it returns back
to the top.

Now that the animation has been created, you can apply it to your label that you created first. Every
UIView object has a Layer property that allows you to animate any UIView object you want. For
this example, you will use the method AddAnimation on the Layer property and pass in your newly
created animation and a unique key for the animation. Adding the animation to the layer starts the
animation straight away.

You might want to trigger an event when an animation starts or finishes. You can do this by creat-
ing your own CAAnimationDelegate class and using this as the delegate for the animation you
created. You override both the AnimationStarted and AnimationStopped methods to update the
label’s text to reflect the animation status.

Listing 10-19 shows the code for a simple animation of the label animating from the top of the
screen to the bottom of the screen and back again.

animation ❘ 229

listing 10-19: a simple animation

public override void ViewDidLoad ()
{
 base.ViewDidLoad ();

 var label = new UILabel (new RectangleF (0f, 20f, 320f, 40f));
 label.TextAlignment = UITextAlignment.Center;
 label.Text = “Example Label”;
 this.View.AddSubview (label);

 var animation = CABasicAnimation.FromKeyPath (“transform.translation.y”);
 animation.To = NSNumber.FromFloat (420f);
 animation.Duration = 3;
 animation.AutoReverses = true;
 animation.Delegate = new MyAnimationDelegate (label);
 label.Layer.AddAnimation (animation, “moveToBottomAndBack”);
}

...

public class MyAnimationDelegate : CAAnimationDelegate
{

 public UILabel Label { get; set; }

 public MyAnimationDelegate (UILabel label)
 {
 Label = label;
 }

 public override void AnimationStarted (CAAnimation anim)
 {
 Console.WriteLine (“Animation Started”);
 Label.Text = “Animation Started”;
 }

 public override void AnimationStopped (CAAnimation anim, bool finished)
 {
 Console.WriteLine (“Animation stopped.”);
 Label.Text = “Animation Stopped”;
 }

}

using uiview animations
Using the basic animation class is a good way of providing simple animations to properties on a
UIView. However, creating an individual animation for each property you want to modify can be
quite verbose. Using static methods on the UIView class, you can animate a group of controls and
properties in one animation.

230 ❘ chaPter 10 ProgrammIng wIth multImedIa

In Listing 10-19 you animated a label going to the bottom of the screen and back up to the top. For
this example, you animate the label you had previously spinning and fading out while revealing a
button that was previously hidden. Listing 10-20 shows an example of how to achieve this in code.

listing 10-20: animation with UiViews

UILabel label;
UIButton hiddenButton;

public override void ViewDidLoad ()
{
 base.ViewDidLoad ();

 label = new UILabel (new RectangleF (0f, 20f, 320f, 40f));
 label.TextAlignment = UITextAlignment.Center;
 label.Text = “Example Label”;
 this.View.AddSubview (label);

 hiddenButton = UIButton.FromType (UIButtonType.RoundedRect);
 hiddenButton.Frame = new RectangleF (0f, 60f, 320f, 50f);
 hiddenButton.SetTitle (“Surprise!”, UIControlState.Normal);
 hiddenButton.Layer.Opacity = 0;
 this.View.AddSubview (hiddenButton);

 UIView.BeginAnimations (“AnimateLabel”);
 UIView.SetAnimationDuration (1);
 UIView.SetAnimationDidStopSelector (new Selector
 (“didFinishAnimation:”));
 UIView.SetAnimationDelegate(this);

 label.Layer.Opacity = 0;
 hiddenButton.Layer.Opacity = 1;
 label.Transform = CGAffineTransform.MakeRotation ((float)(Math.PI));

 UIView.CommitAnimations ();
}

[Export(“didFinishAnimation:”)]
void DidFinishAnimation ()
{
 label.Dispose();
 Console.WriteLine (“Did finish animation”);
}

Listing 10-20 starts off by creating a UILabel and a UIButton; you initialize the controls in the
ViewDidLoad method. Notice that you set the hiddenButton’s opacity to 0. This allows you to
animate the opacity later to reveal the button. To create an animation, you use the static method
BeginAnimations on UIView to start an animation block. Once you have finished animating
your objects, you then use CommitAnimations to commit the block of animations and to start the
animation.

summary ❘ 231

Within your animation block, you do two things. The first is to set up additional parameters on the
animation block. In this example you’re setting the animation duration to last one second, creat-
ing a new selector to fire when your animation has finished, and you’re setting the delegate to the
class you’re in so that the selector will be found. Because the selector needs to be fired off from
Objective-C, you use the Export method on your DidFinishAnimation method to expose this. (A
selector is simply the name of a method within Objective-C.) When the animation is complete, your
label’s opacity will be set to 0 and will not be visible. In your DidFinishAnimation method, you
can dispose of the label.

The second thing you do within your animation block is to animate the actual objects. You set the
final properties on your objects to how you want them to appear after the animation happens, and
CoreAnimation takes care of the transformation between the two states. By default, the label’s
opacity is set to 1. Because you want this to be hidden, you set the opacity to 0 so it animates a fade
out. You want the hiddenButton to appear so you do the inverse of the label and set the opacity to
1, and to create the rotation effect, you put a transform on the label to rotate it upside down.

summary

As you have seen from this chapter, you have a plethora of possibilities with the multimedia side
of the iPhone; however, it’s wise to check whether the device supports rich features such as video
recording or even whether it has a camera. The ability to add in this functionality allows your appli-
cation not just to consume multimedia, but also to create multimedia.

11
Talking to other applications

what’s in this chaPter?

Making MonoTouch talk with other applications with the ➤➤

OpenURL method

Having your applications integrate with third-party applications➤➤

Accessing the iPhone Address Book or the iPod music library➤➤

Integrating with third-party libraries with Objective-C and .NET➤➤

This chapter discusses the ways you can use MonoTouch to talk to other applications on the
iPhone, both Apple-built applications and those downloaded from the App Store. It also pro-
vides helpful ways of accessing the iPhone’s Address Book and the iPod music library.

The secret behind interfacing with any application on the device is the OpenUrl method on the
current UIApplication, which can be accessed via UIApplication.SharedApplication. This
method handles where and what to open when you pass in an NSUrl object for it to parse. When
the method is called, the app closes in its normal fashion by calling the WillTerminate method
as it closes and carries out the appropriate action based on the URL passed in.

integrating aPPle aPPlications

This section shows how you can integrate Apple-built applications into your own application.

opening up safari
Opening up Safari is a pretty straightforward place to start. The most likely reason for you to
close down your app and open up Safari is because you would like a web site to be displayed.
The web site URL is the NSUrl object that you pass into the OpenUrl method:

var url = NSUrl.FromString(“http://wrox.com”);
UIApplication.SharedApplication.OpenUrl(url);

234 ❘ chaPter 11 talkIng to other aPPlIcatIons

You may notice we are using NSUrl.FromString() here and not just simply
new NSUrl(). This is because using the constructor would throw an exception
if there were an error, whereas FromString will return null.

You can achieve a similar solution by using the UIWebView to include web sites directly within
your application without the need for the app to close down. This is covered earlier in this book in
Chapter 4.

opening up e-mail
Opening e-mail is very similar to how you’d expect it to work with the mailto: protocol:

var url = NSUrl.FromString(“mailto:chris@example.com”);
UIApplication.SharedApplication.OpenUrl(url)

Whoops. This code won’t run in the simulator. The simulator does not have the
Mail capability, so you need to test this code on the device. You’ll notice this is the
same for making phone calls, sending text messages, and working with other appli-
cations, which might not be installed on the device, including third-party apps.

The OpenUrl method returns a Boolean telling you whether or not the method
was run successfully. You should use this information when it doesn’t run suc-
cessfully to show an appropriate error message.

As the mailto: protocol states, you can also pass in these other commands: bcc, cc, subject, and
body. This populates the necessary fi elds in the standard mail template. The from command nor-
mally used with the mailto: protocol is ignored by the iPhone SDK, so it will not work. Here’s an
example of the extra commands being used:

var url = NSUrl.FromString(“mailto:chris@example.com?cc=other@example.com
 &subject=Wrox&body=Monotouch”);
UIApplication.SharedApplication.OpenUrl(url);

making a telephone call
Using the tel: protocol, you can use the built-in telephone functionality of the iPhone by using the
following NSUrl example. This example shows hyphens within the number, which are automatically
stripped out as necessary.

var url = NSUrl.FromString(“tel:+1-408-867-5309”);
UIApplication.SharedApplication.OpenUrl(url);

integrating apple applications ❘ 235

sending a text/sms message
The sms: protocol enables you to open the Messages application and open a new message to a speci-
fi ed number. There is no option to pass a predefi ned message into a new text message. This fi rst
code example shows how to just open up a list of texts on the device:

var url = NSUrl.FromString(“sms:”);
UIApplication.SharedApplication.OpenUrl(url);

This next example shows how to open up a new text message with the passed-in number:

var url = NSUrl.FromString(“sms:1-408-537-6309”);
UIApplication.SharedApplication.OpenUrl(url);

opening a location in the maps application
To load up the Maps application from within a native iPhone app, you simply use a normal web site
link to Google Maps. A few query string parameters are available to use when creating a Google
Maps URL, such as q for a search query and saddr and daddr for source and destination address,
respectively. This example loads up a map of Manchester, United Kingdom:

var url = NSUrl.FromString(“http://maps.google.com/maps?q=Manchester,UK”);
UIApplication.SharedApplication.OpenUrl(url);

If you are running this in the simulator, since the simulator does not have the
Google Maps application, the map loads up in Safari. On the device, the link
loads up in the Google Maps application.

The ability to have web sites within your own application without closing your application down is
also available with the MapKit API. You can see how to use this in Chapter 7.

opening a youtube video
As you saw previously with the Maps example, you just use a normal URL to open up the Maps
application; this principle is the same when you want to play a YouTube video. You can use either of
the two YouTube URLs in the following example code. You need to use the video identifi er to play
the video. The two variables in the code snippet below — youTubeUrl1 and youTubeUrl2 — show
examples of the two different types of URLs that can open up a YouTube video.

var videoId = “QHy0nBYwIKM”;
var youTubeUrl1 =
 String.Format(“http://youtube.com/watch?v={0}”, videoId);
var youTubeUrl2 =
 String.Format(“http://youtube.com/v/{0}”, videoId);
var url = NSUrl.FromString(youTubeUrl2)
UIApplication.SharedApplication.OpenUrl(url);

236 ❘ chaPter 11 talkIng to other aPPlIcatIons

Just as was the case with the Google Maps example in the previous section,
in the simulator the link in this example opens up Safari and plays the video
through there, whereas on the device it opens the YouTube application.

opening up the itunes store and the app store
To open up the iTunes store and the App Store in an application you use the same URLs you would
expect to use with iTunes or the App Store on the desktop. With this code, you don’t need to tell
your application which store to open; the device decides this based on the URL that it is using.

// This appStoreUrl will open up the AppStore.
var appStoreString =
 “http://itunes.apple.com/gb/app/linked-app/id342467961?mt=8”;
var appStoreUrl = NSUrl.FromString(appStoreString);

// This iTunesUrl will open up the iTunes Store.
var iTunesString = “http://itunes.apple.com/gb/album/effloresce/id27518899”;
var iTunesUrl = NSUrl.FromString(iTunesString);
UIApplication.SharedApplication.OpenUrl(iTunesUrl);

third-Party aPPlication integration

In addition to opening up native Apple applications from your own app, you can also open up appli-
cations written by third-party companies. These third-party applications need to optionally expose
a protocol for them to allow this interaction with other applications (this method is explained in the
next section). Because applications can pick and choose how they go about implementing a protocol,
they also need to provide documentation on how to use their protocols.

Finding a particular application’s web site and then additionally how to implement its protocol can
be very diffi cult. Luckily, a web site called www.handleopenurl.com provides a great resource for
this. It’s a community-driven site where you can easily search for an application you may want to
interact with. The following examples show you how to interact with two free applications available
from the AppStore.

simple integration with google earth
Google Earth on the iPhone is a version of the desktop program of Google Earth you may already
be familiar with. Using the information found on www.handleopenurl.com, you can see that to
open up the Google Earth application, you have to use the comgoogleearth: protocol. Because you
can’t rely on the user having the application installed, or even having a version that allows you to
call it, you can use the CanOpenUrl method to determine this. This static method, on the current

http://www.handleopenurl.com
http://www.handleopenurl.com

accepting Calls from other applications ❘ 237

UIApplication instance, can be useful when you want to contextually show a link to open up an
application but only when you know that it exists on the device. The following code shows how you
would use this:

var application = UIApplication.SharedApplication;
var url = NSUrl.FromString(“comgoogleearth:”);
if(application.CanOpenUrl(url))
{
 // Show button to open Google Earth app.
}

Since you’ve already gone through the Apple application protocols earlier in this chapter, loading
Google Earth works as you might expect, and you can call it using the following example:

var url = NSUrl.FromString(“comgoogleearth:”);
UIApplication.SharedApplication.OpenUrl(url);

further integration with skype
Unlike the Google Earth application, the Skype application allows a few different options to choose
from when you want to open up the application on the iPhone. The Skype developer zone publishes
a list of URLs that the Windows version of Skype will handle (see http://bit.ly/skypeopenurl
for the full list), but it doesn’t mention anything about the URLs handled on the iPhone. With a bit
of trial and error, the URLs from that list that will complete the correct actions in the iPhone app
are displayed in Table 11-1. Any URL starting with skype: will open the app regardless.

table 11-1: Skype iPhone URLs

url action

skype: Opens Skype application

skype:echo123?call Calls the user echo123

skype:echo123?chat Starts a chat with the user echo123

Because there is no official word on what the Skype iPhone app supports in the way of URL struc-
ture, this could change at any point with no notice. Extra URLs could be added that support more
features, so it’s best not to rely on these existing too much.

accePting calls from other aPPlications

Having your application be able to open up other applications can be very useful; however, enabling
your application to be opened by other applications can create many other useful situations.

http://bit.ly/skypeopenurl

238 ❘ chaPter 11 talkIng to other aPPlIcatIons

configuring your info.plist file
To enable your application to be opened by oth-
ers, you need to update your Info.plist file.
The plist file is essentially an XML file made up
of key-value pairs describing information about
your application. This is covered in more detail
in Chapter 8. MonoDevelop generates this file for
you when you build and run your application, but
if you want to add in custom settings, you need
to create this from scratch. To do this, right-click
your project and go to Add➤➪➤New File as shown
in Figure 11-1.

From here the New File template dialog box
appears. Select the iPhone Application Manifest
Template icon (see Figure 11-2). You’ll notice that
it is already named Info.plist.

Double-clicking the Info.plist file causes
Apple’s Property List Editor to pop up. This
program helps in adding parent and child XML
nodes to the plist file. To make sure your app responds correctly to incoming calls from other
applications, you need to add in a parent node of URL types to the plist file. You also need to add
a URL identifier string. This value is sent to an application when you call its open URL schema —
this will become clearer further in the chapter. Normally you would use a reverse domain to keep
the URL identifier value unique (for example, com.chrisntr.myapp). In addition to adding a URL
identifier, you need to add in a node within URL Schemes. The URL Schemes are the protocol that
another app calls when addressing your app, such as skype or comgoogleearth. For this example,
the scheme is myapp:. Because myapp probably is not a very unique scheme, it’s a good idea to also
use your URL identifier as an additional scheme to use in case of a conflict. Figure 11-3 shows how
your plist file should look.

figure 11-2

figure 11-1

accepting Calls from other applications ❘ 239

figure 11-3

I often find the Property List Editor to be a little fiddly and quite difficult to make it do exactly as I
want. Luckily, plist files are just simple XML files — if you open up the file in a normal text editor
you can easily modify the file this way. Listing 11-1 is the raw text example of the Info.plist file
shown previously.

listing 11-1: raw info.plist file

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE plist PUBLIC “-//Apple//DTD PLIST 1.0//EN”
 “http://www.apple.com/DTDs/PropertyList-1.0.dtd”>
<plist version=”1.0”>
<dict>
 <key>CFBundleURLTypes</key>
 <array>
 <dict>
 <key>CFBundleURLName</key>
 <string>com.chrisntr.myApp</string>
 <key>CFBundleURLSchemes</key>
 <array>
 <string>com.chrisntr.myapp</string>
 <string>myapp</string>
 </array>
 </dict>
 </array>
</dict>
</plist>

You can find this Info.plist file as part of the files in the Listing 11-2 folder of the download.

You can see in the XML that you can define keys, dictionaries, and arrays. In this sample you can see
the two keys, CFBundleURLName and CFBundleURLSchemes, are wrapped in a CFBundleURLTypes
array. This sets the application up to listen out for requests to the URL schemes provided, and since the
CFBundleURLSchemes value is an array, you can set up multiple URL schemes for the application to lis-
ten out for. Once this has been set up, save the file and then you’re ready to listen for it in your code.

240 ❘ chaPter 11 talkIng to other aPPlIcatIons

implementing an openurl schema
If you have already played around with the UIApplication.SharedApplication object, you may
have noticed the event HandleOpenURL is exposed. In the second version of the iPhone SDK, this
method was the recommended way of handling incoming requests with the open URL Schemes.
In the latest version of the iPhone SDK (Version 3.1.3 at the time of writing), the HandleOpenURL
method has been superseded by the method FinishedLaunching that has the NSDictionary
parameter options. This method was introduced to be the de facto standard of handling the appli-
cation starting up, handling opening URLs, and handling Apple Push Notification Service (APNS)
requests. This method is the default FinishedLaunching method used in the MonoDevelop iPhone
templates, so you shouldn’t need to change any code to add this in.

When an application calls into your app, the options dictionary contains two key-value pairs:
UIApplicationLaunchOptionsURLKey and UIApplicationLaunchOptionsSourceApplicationKey.
Listing 11-2 shows how to extract the URL used to call into your application and how to work out the
source of the call.

listing 11-2: extract open Url information

public override bool FinishedLaunching (UIApplication app, NSDictionary options)
{
 if(options != null)
 {
 var urlOptionKey = new NSString(“UIApplicationLaunchOptionsURLKey”);
 var urlSourceKey = new
 NSString(“UIApplicationLaunchOptionsSourceApplicationKey”);
 var url = (NSUrl) options[urlOptionKey];
 var source = options[urlSourceKey].ToString();

 // Grab information from NSUrl object.
 Console.WriteLine (“Url = “ + url.AbsoluteString);
 // The URL Identifier from the app that called this app.
 Console.WriteLine (“Source = “ + source);
 }
 ...

The URL that you receive back can be parsed to enable deep linking into your app by extracting
the relevant information. To test that this works and that your app opens up as it should, you can
use Safari on the simulator as a way to call the URL. To do this, you want to enter the URL in the
address bar of the Safari app, which then closes Safari and opens up your application. This works
for all the previously mentioned URLs and protocols.

integrating with the address book

The Address Book is a key part of the existing iPhone functionality. This is where all the contacts
users might have on their phone live. Accessing this information can be very useful within your
application. You may want to allow users to see a list of their friends so they can send a link to your
application, for example.

integrating with the address Book ❘ 241

To get access to the Address Book you need to create a new ABAddressBook object. This object type
exposes a few different methods to gather data from the Address Book. These methods are shown in
bold in Listing 11-3.

listing 11-3: accessing the address Book object

using MonoTouch.AddressBook;

...

 ABAddressBook adBook = new ABAddressBook();

 // Groups can define a section of contacts
 // Used if you’ve synced contacts from another machine.
 ABGroup[] allGroups = adBook.GetGroups();
 Console.WriteLine (“Group Count: “ + allGroups.Count());

 // Gets an array of ABPerson objects
 ABPerson[] allPeople = adBook.GetPeople();
 Console.WriteLine (“People Count: “ + allPeople.Count());

 // Gets People with First or Last Name “Fred”
 ABPerson[] allFreds = adBook.GetPeopleWithName(“Fred”);
 Console.WriteLine (“Fred Count: “ + allFreds.Count());

 // If you already know the Id, you can get an individual person
 int personRecordId = 57;
 ABPerson person = adBook.GetPerson(personRecordId);

When you are starting out with iPhone development, the iPhone simulator’s
address book will be empty. To make sure the code in Listing 11-3 works, you
want to add someone called “Fred” as a contact. Chances are you will not have an
ID for an individual person so you may also want to comment this code out too.

If you look at the person object created, you see many properties you would expect such as
FirstName, LastName, and Birthday; however, also notice there is no TelephoneNo property. This
is because the data for properties such as e-mail addresses, phone numbers, and URLs comes in a
typed ABMultiValue object. There are a few methods you call to extract this information as needed.
Listing 11-4 shows an example of getting back a list of phone numbers and e-mail addresses when
you already have an array of people.

listing 11-4: accessing phone and e-mail information

foreach(var person in allPeople)
{
 var phones = person.GetPhones();

continues

242 ❘ chaPter 11 talkIng to other aPPlIcatIons

 if(phones.Count > 0)
 {
 foreach(var phone in phones)
 {
 Console.WriteLine(“Phone Type “ + phone.Label);
 Console.WriteLine(“Phone Number “ + phone.Value);
 }
 }

 var emails = person.GetEmails();
 if(emails.Count > 0)
 {
 foreach(var email in emails)
 {
 Console.WriteLine(“E-mail Type “ + email.Label);
 Console.WriteLine(“E-mail Address “ + email.Value);
 }
 }
}

You may have noticed while running through the example that labels come back as “_$!<Mobile>!$_”
or “_$!<Home>!$_”, and this happens for all labels except for custom labels or the iPhone label. This is
because the labels can be localized to the device’s current locale. To programmatically access this, you
use the static method LocalizedLabel on ABAddressBook. By passing in the label that you get from
the original label, you are returned the localized string label.

Accessing the Address Book programmatically can be useful for the most part, but to hand crank
UI components on top of this takes a long time when you really just want the default behavior users
expect from their iPhones. Fortunately Monotouch.AddressBookUI has this covered and provides a
few helpful view controllers to make this interaction easier.

The four classes that provide this functionality are ABPersonViewController,
ABPeoplePickerNavigationController, ABNewPersonViewController, and
ABUnknownPersonViewController.

All the views but the ABPeoplePickerNavigationController need to be used
with a navigation controller; otherwise they do not work properly.

abPersonviewcontroller
The ABPersonViewController is a view controller that provides the ability to display and edit
a single Address Book contact. Figure 11-4 shows how a default person view would look, and
Figure 11-5 shows the edit view. By default, editing is not enabled, but you can enable it by setting
AllowEditing to true. The DisplayedPerson property requires an ABPerson variable and sets the
view controller to display this person. Listing 11-5 shows how you would use this view controller.
Make sure you have a person with “Example” in their name for the sample to work.

listing 11-4 (continued)

integrating with the address Book ❘ 243

listing 11-5: adding a person view controller

var adBook = new ABAddressBook();
var personvc = new ABPersonViewController();
personvc.DisplayedPerson = adBook.GetPeopleWithName(“Example”)[0];
personvc.AllowsEditing = true;
navigationController.PushViewController(personvc, true);

The Address Book object is only used to populate the displayed person and not
needed to use the person view controller. Make sure you add in a contact with
the name “Example” for the example to work.

abPeoplePickernavigationcontroller
To allow users to select a particular person from a list of all their contacts, you use the
ABPeoplePickerNavigationController. The picker is generally used as a modal view and not
pushed onto a navigation controller. When the view is loaded, you are presented with a list of all
users, similar to that list shown in the Contacts applications (see Figure 11-6). With the picker, you
have two options when handling the user selecting a contact.

If you want to handle the picker the automated way and continue to a person view control-➤➤

ler, you set the event argument Continue to true in the SelectPerson event callback.

By default, ➤➤ Continue is set to false and it will leave you to handle the action once a person
is selected.

 if(phones.Count > 0)
 {
 foreach(var phone in phones)
 {
 Console.WriteLine(“Phone Type “ + phone.Label);
 Console.WriteLine(“Phone Number “ + phone.Value);
 }
 }

 var emails = person.GetEmails();
 if(emails.Count > 0)
 {
 foreach(var email in emails)
 {
 Console.WriteLine(“E-mail Type “ + email.Label);
 Console.WriteLine(“E-mail Address “ + email.Value);
 }
 }
}

You may have noticed while running through the example that labels come back as “_$!<Mobile>!$_”
or “_$!<Home>!$_”, and this happens for all labels except for custom labels or the iPhone label. This is
because the labels can be localized to the device’s current locale. To programmatically access this, you
use the static method LocalizedLabel on ABAddressBook. By passing in the label that you get from
the original label, you are returned the localized string label.

Accessing the Address Book programmatically can be useful for the most part, but to hand crank
UI components on top of this takes a long time when you really just want the default behavior users
expect from their iPhones. Fortunately Monotouch.AddressBookUI has this covered and provides a
few helpful view controllers to make this interaction easier.

The four classes that provide this functionality are ABPersonViewController,
ABPeoplePickerNavigationController, ABNewPersonViewController, and
ABUnknownPersonViewController.

abPersonviewcontroller
The ABPersonViewController is a view controller that provides the ability to display and edit
a single Address Book contact. Figure 11-4 shows how a default person view would look, and
Figure 11-5 shows the edit view. By default, editing is not enabled, but you can enable it by setting
AllowEditing to true. The DisplayedPerson property requires an ABPerson variable and sets the
view controller to display this person. Listing 11-5 shows how you would use this view controller.
Make sure you have a person with “Example” in their name for the sample to work.

figure 11-4 figure 11-5

244 ❘ chaPter 11 talkIng to other aPPlIcatIons

The Person event argument is populated with the selected person. If the user selects Cancel, a
Cancelled event will be fired. See Listing 11-6 for an example on how to instantiate the picker con-
troller and how to handle the events just mentioned.

listing 11-6: Using the people picker navigation controller

var ppvc = new ABPeoplePickerNavigationController();

ppvc.Cancelled += delegate(object sender, EventArgs e) {
 Console.WriteLine(“Picker cancelled”);
 navigationController.DismissModalViewControllerAnimated(true);
};

ppvc.SelectPerson += delegate(object sender,
 ABPeoplePickerSelectPersonEventArgs e) {
 // Uncomment to allow Picker to show Person View Controller
 // e.Continue = true;
 Console.WriteLine(“Selected “ + e.Person.FirstName);
 if(!e.Continue)
 navigationController.DismissModalViewControllerAnimated(true);
};

navigationController.PresentModalViewController(ppvc, true);

In Listing 11-6, you first create a new instance of the ABPeoplePickerNavigationController.
This creates your view controller that you can then present using the navigation controller (see the
last line). Since you want to handle how a cancelled event or a select person event happens, you cre-
ate delegate methods on the events. The cancelled event simply uses the navigation controller and
dismisses the view controller you originally passed to it. This acts as if the picker was closed. The
select person event will want to handle the selected person before it closes the picker, so again you
create a delegate method for it to handle this event.

abnewPersonviewcontroller
As you would expect from the view controller name, the ABNewPersonViewController is what you
would use if you want the user to create a new person to add into the Address Book. The view con-
troller provides the same view that you would see in the Contacts app (see Figure 11-7).

Because all you can do with the new person view controller is add a new person, there is only one
event named NewPersonComplete. In the event arguments, it returns whether or not a person was
added through the Completed property. If Completed is true, the Person property is filled with the
person who was just added to the Address Book. An example of how to use the new person view
controller is shown in Listing 11-7.

listing 11-7: Using the new person view controller

var pvc = new ABNewPersonViewController();

pvc.NewPersonComplete += delegate(object sender,
 ABNewPersonCompleteEventArgs e) {
 if(e.Completed)

integrating with the address Book ❘ 245

 Console.WriteLine (“Added new person “ + e.Person.ToString());
 else
 Console.WriteLine (“Cancelled View”);
 navigationController.PopViewControllerAnimated(true);
};

navigationController.PushViewController(pvc, true);

abunknownPersonviewcontroller
The ABUnknownPersonViewController is used when a person may exist but you do not retrieve the
information from your Address Book. For example, this unknown person view controller is used
when you receive a telephone call from an unknown number but you may want to create a new con-
tact with the number or add the number to an existing contact. You want to create a new ABPerson
object to fill what information you do know about a person. If you don’t have a name for the person,
the AlternativeName property shows up as a name placeholder but is not used if you create a new
contact or add to an existing contact. If you have only one property, this is best used as the alternative
title. Listing 11-8 shows how you would instantiate and use the unknown person view controller.

listing 11-8: Using the unknown person view controller

var upvc = new ABUnknownPersonViewController();

// Create a new person
upvc.DisplayedPerson = new ABPerson();

// Set the phone number as Alternate name and
// the pre-defined person property.
var phoneNumber = “0123456789”;
upvc.AlternateName = phoneNumber;
var numberProperty = new ABMutableStringMultiValue();

figure 11-6 figure 11-7

continues

246 ❘ chaPter 11 talkIng to other aPPlIcatIons

numberProperty.Add(phoneNumber, ABLabel.Home);
upvc.DisplayedPerson.SetPhones(numberProperty);

// Allow Actions and Adding to Address Book
upvc.AllowsActions = true;
upvc.AllowsAddingToAddressBook = true;

// Handle Person Created Event Callback
upvc.PersonCreated += delegate(object sender,
 ABUnknownPersonCreatedEventArgs e) {

 if(e.Person != null)
 {
 Console.WriteLine(“Person Created”);
 upvc.ModalViewController.DismissModalViewControllerAnimated(true);
 // Optionally close view controller after creating a person
 //
 }
 else
 {
 Console.WriteLine(“Cancelled”);
 upvc.ModalViewController.DismissModalViewControllerAnimated(true);
 }
};

this.NavigationController.PushViewController(upvc, true);

In Listing 11-8 you first instantiate a new unknown person view controller. This view controller will
be used to display what known details of a person that are available. To display a person, you need
to first create a new person object to set values on; this person will be the DisplayedPerson. To
start with you create a new ABPerson object and assign this to
the DisplayedPerson property. In a real-life situation, you may
have a telephone number and no other information. For this
example, you just use the telephone number as the known infor-
mation. Since the device does not know what the person’s name
is, you can set an alternative name to show. To do this you set
the AlternativeName property to the known telephone num-
ber. To set the telephone number for this person, you first create
an empty ABMutableStringMultiValue object. This allows you
to enter multiple telephone numbers, but you are just adding on
for this example. You simply add the telephone number with
the label property into the new ABMutableStringMultiValue
object and then pass this object into the SetPhones method on
the DisplayedPerson property.

Setting AllowsActions and AllowsAddingToAddressBook to
true enables the context buttons at the bottom of the view con-
troller (see Figure 11-8) to be visible. By default these are both
set to false. Since creating a person or cancelling the creation figure 11-8

listing 11-8 (continued)

integrating with the address Book ❘ 247

of a person presents a modal view controller, when the user decides to either cancel the creation or
does go through and create a person, after you have dealt with their choice, you want to dismiss the
modal view controller so it returns back to the unknown person view controller.

handling the selection of Properties
On most of the views in the last few code samples, notice some of the properties (such as telephone
number or e-mail address) are selectable, but when they are selected, nothing happens. This is
because you need to decide whether or not the default action for the property (such as selecting
a phone number would start dialing it) should happen. On the view controllers that allow you to
handle this, you see a PerformDefaultAction event. The event arguments for this event include a
property called ShouldPerformDefaultAction. To allow the default action to happen, you simply
set the property to true. Along with a few other properties in the event arguments, the property
that was selected is also passed in. This means you can optionally let only certain types of properties
perform their default action. This is useful, for example, if you don’t want your application quitting
from someone clicking a telephone number but you want to provide the in-app mail functionality.
Listing 11-9 shows an example of achieving this.

listing 11-9: Handling default actions

// Example for ABPersonViewController
personvc.PerformDefaultAction += delegate(object sender,
 ABPersonViewPerformDefaultActionEventArgs e) {

 // Only allow E-mails to be clickable
 if(e.Property == ABPersonProperty.Email)
 {
 if (MFMailComposeViewController.CanSendMail)
 {
 var email = e.Person.GetEmails()[e.Identifier.Value];
 var mail = new MFMailComposeViewController();
 mail.SetToRecipients(new []{ email.Value });
 mail.Finished += delegate {
 personvc.DismissModalViewControllerAnimated(true);
 };
 personvc.PresentModalViewController(mail, true);
 }
 else
 e.ShouldPerformDefaultAction = true;
 }
};

Make sure you have a contact with the name “Example” in your address book
that also has an e-mail address so that this example works.

Listing 11-9 shows how you would go about creating a default action when tapping a property on a
person view controller. The ABPersonViewPerformDefaultActionEventArgs event argument has a

248 ❘ chaPter 11 talkIng to other aPPlIcatIons

property named Property. This is of ABPersonProperty type so you can check the type before you
handle the default action. In this example, notice that it handles the action when an e-mail property
is tapped. Using the CanSendMail method on MFMailComposeViewController, you can check if the
device can send e-mail, and if this is the case, you can provide the MFMailComposeViewController
to allow the user to send an e-mail inside your application. If the user cannot send an e-mail inside
the application, you want to set ShouldPerformDefaultAction to true. This means the device
handles the tap how it thinks is necessary — for an e-mail fi eld this means that the application
closes and the e-mail application opens.

integrating with iPod music collections

Using the user’s iPod music within your application is a great way of providing extra functional-
ity, especially when you could potentially add it in as a paid feature. Similar to the way the Address
Book allows you to programmatically code against the data stored within it, the iPod music col-
lection provides the same sort of ability and also provides two different ways to play this content.
You also have access to the methods you would normally expect from a music player such as Play,
Pause, Stop, SkipToBeginning, SkipToPreviousItem, SkipToNextItem, BeginSeekingForward,
and BeginSeekingBackward, as well as the property CurrentPlaybackTime, which you can set so
that it skips to that time on the current track or read the value so you can use this information to set
the value on a slider to indicate the current track position.

The iPod integration only allows you to play audio content and will not play
video content.

The MPMusicPlayerController has two Music Player properties: ApplicationMusicPlayer and
iPodMusicPlayer.

The application music player is self-contained in your application. This means that if you ➤➤

quit your app, the music stops as well.

The iPod music player, however, starts playing with the built-in iPod functionality and when ➤➤

your application quits, the music continues playing.

Listings 11-10 and 11-11 show how to create both types of music player and start playing a queue of
all the songs on the device.

Because the simulator does not have iPod functionality or any music on it, you
will only be able to test and develop applications with iPod integration func-
tionality on the device. You will need to have the full version of MonoTouch
installed and the correct certifi cates from Apple to do so. You will also need at
least one song on the device.

integrating with iPod Music Collections ❘ 249

listing 11-10: Creating an application music player

var musicPlayer = MPMusicPlayerController.ApplicationMusicPlayer;
musicPlayer.SetQueue(MPMediaQuery.songsQuery);
musicPlayer.Play();

listing 11-11: Creating an iPod music player

var musicPlayer = MPMusicPlayerController.iPodMusicPlayer;
musicPlayer.SetQueue(MPMediaQuery.songsQuery);
musicPlayer.Play();

The NowPlayingItem property provides information on the current item that is playing. You can
use this property to show information on the screen. To do this, you use the ValueForProperty
method and pass in an MPMediaItemProperty property:

MusicPlayer.NowPlayingItem.ValueForProperty(MPMediaItemProperty.Title);

This returns an NSObject, so you may need to cast it to the appropriate type such as an NSString
for an album title or an MPMediaItemArtwork for artwork from an album. To display the artwork
for the currently playing item, you need to create a UIImageView for the artwork to sit in. For this
example my UIImageView is called albumArtworkView. This can be created either within Interface
Builder or in code. Once the image view is in place, you can pull the image from the artwork media
item in the NowPlayingItem and set the Image property on your UIImageView to the newly created
artwork. Listing 11-12 shows setting the album artwork in code.

listing 11-12: setting the album artwork image

var albumArtwork = (MPMediaItemArtwork)
MusicPlayer.NowPlayingItem.ValueForProperty(MPMediaItemProperty.Artwork);

if(albumArtwork != null)
{
 var imageSize = new PointF(albumArtworkView.Frame.Width,
 albumArtworkView.Frame.Height);
 UIImage albumArtworkImage = albumArtwork.ImageWithSize(imageSize);
 albumArtworkView.Image = albumArtworkImage;
}
else
{
 // No artwork so use a placeholder image.
 // Make sure the file is included in the project and
 // the build action is set to “Content”
 albumArtworkView.Image = UIImage.FromFile(“emptyArtwork.png”);
}

250 ❘ chaPter 11 talkIng to other aPPlIcatIons

You may realize that when a new song starts playing, the UI still shows the old track information
and doesn’t get updated. To address this issue, you can use notifications to provide information to
you when the player state changes (such as going from Play to Pause) as well as when a new song is
playing so you can update the track information. This allows you to update the UI as and when it is
needed. You can declare your NSObject observers (these listen for certain notifications sent from the
music player) as class variables; this makes them easier to add and remove so you don’t listen multi-
ple times for notifications. Listing 11-13 shows how to add observers to listen for these notifications.

listing 11-13: Using notifications with the music player

NSObject NowPlayingItemChanged, PlaybackStateChanged;
MPMusicPlayerController MusicPlayer;

public override void ViewDidLoad()
{
 base.ViewDidLoad();

 var center = NSNotificationCenter.DefaultCenter;

 var nowPlayingNotification =
 “MPMusicPlayerControllerNowPlayingItemDidChangeNotification”;
 NowPlayingItemChanged = center.AddObserver(nowPlayingNotification,
 (notification) => {
 Console.WriteLine(“Update UI with Now Playing Info”);
 });

 var playbackStateNotification =
 “MPMusicPlayerControllerPlaybackStateDidChangeNotification”;
 PlaybackStateChanged = center.AddObserver(playbackStateNotification,
 (notification) => {
 Console.WriteLine(“Update UI with Playback State: “ +
 MusicPlayer.PlaybackState);
 });

 MusicPlayer = MPMusicPlayerController.iPodMusicPlayer;
 MusicPlayer.SetQueue(MPMediaQuery.songsQuery);
 MusicPlayer.BeginGeneratingPlaybackNotifications();
 MusicPlayer.Play();

}

public override void ViewWillDisappear (bool animated)
{
 base.ViewWillDisappear(animated);

 NSNotificationCenter.DefaultCenter.RemoveObserver(NowPlayingItemChanged);
 NSNotificationCenter.DefaultCenter.RemoveObserver(PlaybackStateChanged);

 MusicPlayer.EndGeneratingPlaybackNotifications();
 MusicPlayer.Dispose();
}

integrating with iPod Music Collections ❘ 251

Hopefully you will be familiar with using notifications by now and using notifications with the
MPMusicPlayerController is very similar to the way other notifications work. One differ-
ence you may notice in the preceding listing is that you need to explicitly begin and end notifi-
cations whereas other notifications start automatically when you add and remove an observer.
Line 27 shows BeginGeneratingPlaybackNotifications being called and line 39 shows
EndGeneratingPlaybackNotifications being called to stop observers from being called.

At the moment you’re still just playing all the songs on the device. This isn’t really useful, so you’ll
want to programmatically filter down the music that’s playing. You should note that there are other
convenient predefined media queries to use aside from the songsQuery. To do this you’ll create your
own MPMediaQuery using the MPMediaPropertyPredicate filters. Because not all media item prop-
erties are allowed as a filter, you also should check whether or not the media item you are filtering
against can actually be filtered. For example, you cannot filter against the artwork media item prop-
erty. Listing 11-14 shows how to filter the iPod music collection by a media item property.

listing 11-14: Creating a media query

var musicPlayer = MPMusicPlayerController.iPodMusicPlayer;
var mediaQuery = new MPMediaQuery();

if(MPMediaItem.CanFilterByProperty(MPMediaItemProperty.Artist))
{
 var artistFilter = MPMediaPropertyPredicate.PredicateWithValue
 (new NSString(“Mew”), MPMediaItemProperty.Artist);
 mediaQuery.AddFilterPredicate(artistFilter);
}

if(MPMediaItem.CanFilterByProperty(MPMediaItemProperty.AlbumTitle))
{
 var albumFilter = MPMediaPropertyPredicate.PredicateWithValue
 (new NSString(“Frengers”), MPMediaItemProperty.AlbumTitle);
 mediaQuery.AddFilterPredicate(albumFilter);
}

musicPlayer.SetQueue(mediaQuery);
musicPlayer.Play();

Listing 11-14 shows how you would use the AddFilterPredicate method to filter down the
MediaQuery of all the songs in your iTunes library. You may want to change the artist “Mew” and
the album name “Frengers” to an artist and album that you have in your iTunes collection. To fil-
ter the MediaQuery you first create a MPMediaPropertyPredicate by providing the value you want
to filter down on (in the first predicate the example uses “Mew”) and the property type of the media
(in this case MPMediaItemProperty is Artist). After the MPMediaPropertyPredicate is popu-
lated, you then add the predicate to the MediaQuery with AddFilterPredicate and continue to use
MediaQuery as you have done previously. This then gets you back the filtered list of media items.

As you saw with the Address Book functionality, there was a useful picker control to allow the easy
selection of a person using a familiar interface. With the iPod functionality there is a media picker,

252 ❘ chaPter 11 talkIng to other aPPlIcatIons

which allows you to provide the default user interface for iPod audio picking. Listing 11-15 shows
how to create the picker.

listing 11-15: Using the iPod media picker view controller

using(MPMediaPickerController mediaPicker = new MPMediaPickerController())
{
 mediaPicker.AllowsPickingMultipleItems = true;
 mediaPicker.ItemsPicked += delegate(object sender,
 ItemsPickedEventArgs e)
 {
 if(e.MediaItemCollection != null)
 {
 foreach(var item in e.MediaItemCollection.Items)
 {
 Console.WriteLine (“Title: “ +
 item.ValueForProperty(MPMediaItemProperty.Title));
 }
 }
 mPlayer.SetQueue(MPMediaQuery.songsQuery);
 mPlayer.Play();
 Console.WriteLine (“Hiding media picker.”);
 this.NavigationController.DismissModalViewControllerAnimated(true);
 };
 Console.WriteLine (“Presenting media picker”);
 this.NavigationController.PresentModalViewController(mediaPicker, true);
}

Using the ItemsPicked callback allows you to get a list of the collection of picked songs from the
user. Here you are able to send it straight to the music player to play; however, you could also store
this information and re-use it again later.

interfacing with obJective-c

Even though you can use C# and .NET to write iPhone applications with MonoTouch, there are a
lot of Objective-C third party libraries that you may want to utilize in your application. To get a
better understanding of Objective-C and using MonoTouch, read Chapter 14, which should help you
out for this section. Before you jump right into how you go about using the Objective-C library in
your application, however, you need to take a look at the namespaces that enable you to do this. The
example in this section will be using the analytics library “Flurry™ (“Flurry”).”

monotouch.foundation
The MonoTouch.Foundation namespace contains all the important bindings to the core Objective-C
types in the Cocoa API. The most familiar type would be the NSObject type, which almost all of the
non-.NET objects use as their base class. Another example that was used heavily in this chapter would

interfacing with objective-C ❘ 253

be the NSUrl class. These classes and types work by using the classes that are found in the MonoTouch
.ObjCRuntime namespace, and this is what actually communicates with the Objective-C runtime.

monotouch.objcruntime
When you want to communicate with any Objective-C code, the MonoTouch.ObjCRuntime
namespace and the classes within it are the place to start. The key classes that you are most likely to
use are Runtime, Selector, and Messaging.

The ➤➤ Runtime class allows you to gather information back from the Objective-C world such
as NSObjects.

The ➤➤ Selector class allows you to work with selectors (remember selectors are essentially
methods in Objective-C) from C#.

Messaging➤➤ is the glue between these two classes allowing them to communicate and work
together.

In the next section you can see a very simple binding to the Flurry analytics using a tool called
btouch, which is created by the MonoTouch team to enable an easy automated way of creating the
Objective-C binding. This saves having to manually create a binding yourself.

automatic binding to objective-c with btouch
Using btouch is a great way of using third-party Objective-C libraries within your MonoTouch
application. To allow this to happen, first you must download the third-party library you want
to bind to. The example uses the analytics library “Flurry.” This example uses the 1.4 version of
Flurry, so using a different version may vary. With this library, the downloaded files consist of a few
different files.

FlurryLib:➤➤ Flurry library folder without location functionality.

FlurryLib.h:➤➤ Header file for the Flurry library.

libFlurry.a: ➤➤ A statically compiled library file.

FlurryLibWithLocation➤➤

FlurryLib.h:➤➤ Header file for the Flurry library with added location specific methods.

libFlurryWithLocation.a:➤➤ A statically compiled library file with location functionality.

ProjectApiKey.txt: ➤➤ This text file contains the API key you need to use with the library.

README.txt: ➤➤ ReadMe file on how to use the library; this won’t be needed since it focuses on
Objective-C code.

RELEASE_NOTES.txt: ➤➤ Release notes explaining what has changed since previous versions.

254 ❘ chaPter 11 talkIng to other aPPlIcatIons

Since this example is rather straightforward, it uses the first “FlurryLib” folder, which does not
include the location functionality.

Next, you want to create a C# interface, which is used by btouch to automatically generate the
Objective-C bindings. To allow btouch to know what to bind, you need to decorate the interface
with different attributes that define the bindings. You need to look at the header file included with
the statically compiled library to understand how you want to translate that into C#. A header file
in Objective-C is essentially a way of allowing you to code against a static library so this is useful
when trying to bind against it, too. Listing 11-16 shows the Flurry header file in the Flurry 1.4 SDK.

listing 11-16: flurry objective-C header file

//
// FlurryAPI.h
// Flurry iPhone Analytics Agent
//
// Copyright 2009 Flurry, Inc. All rights reserved.
//
#import <UIKit/UIKit.h>

@class CLLocationManager;
@class CLLocation;

@interface FlurryAPI : NSObject {
}

+ (void)startSession:(NSString *)apiKey;
+ (void)logEvent:(NSString *)eventName;
+ (void)logEvent:(NSString *)
 eventName withParameters:(NSDictionary *)parameters;
+ (void)logError:(NSString *)
 errorID message:(NSString *)message exception:(NSException *)exception;

+ (void)setUserID:(NSString *)userID;
+ (void)setEventLoggingEnabled:(BOOL)value;
+ (void)setServerURL:(NSString *)url;
+ (void)setSessionReportsOnCloseEnabled:(BOOL)sendSessionReportsOnClose;

@end

There are a few things to note about this header file and things you need to take into consideration
when creating the C# interface file for it. These are:

The ➤➤ UIKit namespace is used.

@class CLLocationManager➤➤ and CLLocation don’t actually get used, so you won’t
need these.

The base class of the ➤➤ FlurryAPI is NSObject.

All the methods are static.➤➤

interfacing with objective-C ❘ 255

One more thing to note is the method name; if the method has no parameters,
then the method name will look like “methodName.” If the method has one
parameter, then you simply attach a semicolon to the end, and the method
name is “methodName:.” Finally, if the method has more than one parameter,
then the method name would be “methodName:secondParameter:.” You
need to correct exported Objective-C method names to C# methods, so it’s
good to remember this.

Now that you have looked through the header fi le, you can go and create the C# interface.
Listing 11-17 shows the fi nished interface fi le that we will use with btouch.

listing 11-17: flurry C# interface

///
// Binding to the FlurryAPI Analytics SDK from Flurry
//
// MIT X11 licensed
//
// Copyright 2009 ChrisNTR
//
using System;
using MonoTouch.Foundation;
using MonoTouch.UIKit;

namespace MonoTouch.Binding
{

 [Static][BaseType (typeof (NSObject))]
 interface FlurryAPI
 {

 [Static][Export (“startSession:”)]
 void StartSession(string apiKey);

 [Static][Export (“logEvent:”)]
 void LogEvent(string eventName);

 [Static][Export (“logEvent:withParameters:”)]
 void LogEvent(string eventName, NSDictionary parameters);

 [Static][Export (“logEvent:message:”)]
 void LogEvent(string errorId, string message);

 [Static][Export (“setUserID:”)]
 void SetUserId(string userId);

 [Static][Export (“setEventLoggingEnabled:”)]
 void SetEventLoggingEnabled(bool enabled);

 [Static][Export (“setServerURL:”)]

continues

256 ❘ chaPter 11 talkIng to other aPPlIcatIons

 void SetServerUrl(string url);

 [Static][Export (“setSessionReportsOnCloseEnabled:”)]
 void SetSessionReportsOnCloseEnabled(bool enabled);
 }
}

There are a few things you should notice from the interface file. Most of what you see should make
sense following on from the Objective-C header file. Since Objective-C doesn’t have namespaces,
you can see that one has been added in. Since the Flurry API is a completely static class, all the
methods have been decorated with the [Static] attribute so that when btouch runs through the
interface creating the bindings, it create this class and corresponding methods as static. Since the
API also has the base type of NSObject, you simply add the [BaseType()] attribute and pass in
the NSObject type. The only other attribute that needed to be added was the [Export ()] attri-
bute. Following from the note mentioned earlier in this section on method names, you can see in
Listing 11-17 how these are translated for each method.

Now that the C# interface file has been created, you want to run the btouch tool against it. To
do this you need to use the terminal, which is similar to the command-line window on Windows.
Navigate to where you saved the interface file; the interface file is simply called Flurry.cs in these
examples. The line you need to run looks like this

/Developer/MonoTouch/usr/bin/btouch Flurry.cs

where Flurry.cs is the C# interface file and /Developer/MonoTouch/usr/bin/btouch is the loca-
tion to the btouch application to run. You won’t see a confirmation, but if you have a look in the
directory, you should see a dll named Flurry.dll. This will be the assembly of the Objective-C bind-
ings of the API.

You can now go ahead and reference the new dll in a project to enable coding against the library
in C#. In addition to adding the reference, you need to add in the static library libFlurry.a from the
Flurry 1.4 SDK into the same folder as your project, but you will not need to include it into the proj-
ect. It will be used when extra arguments are added to the project. The extra arguments you need to
add to the project enable MonoTouch to build the project to allow bindings to third-party libraries.
These extra arguments look like this:

-gcc_flags “-L${ProjectDir} -lFlurry -ObjC”

and this needs to be added in the iPhone Build section of the project settings. You should notice that
you don’t need to include the full name of the library libFlurry.a. You just need to add in a hyphen
and lower case l followed straightaway with the library name stripped of its extension and the pre-
appended “lib”.

To code against the new Objective-C binding, since the namespace is MonoTouch.Binding, you can
type in MonoTouch.Binding.FlurryAPI.StartSession(“YourAPIKey”) to start using analytics on
the iPhone. The best way to take this all in is to use the API with a real iPhone project. Listing 11-18

listing 11-17 (continued)

summary ❘ 257

shows the API being used and the download material contains the extra arguments in the project
added in with the static library.

listing 11-18: Using the created flurry aPi in a project

using MonoTouch.Binding;
using MonoTouch.Foundation;
using MonoTouch.UIKit;

...

public override bool FinishedLaunching (UIApplication app,
 NSDictionary options)
{
 // API Key from ProjectAPIKey.txt
 var apiKey = “Your API Key here”;

 // Call the Flurry API to start the session.
 FlurryAPI.StartSession(apiKey);

 window.MakeKeyAndVisible ();

 return true;
}

Although this shows how to bind to a third-party Objective-C library with btouch, there is still
a lot that cannot be covered in this book, which you can find on the MonoTouch web site here,
http://bit.ly/objc-binding. Hopefully this example is useful in getting you started with con-
verting third-party libraries for use with MonoTouch.

summary

Allowing applications to talk to each other is great way of allowing communication between the
native Apple applications to keep a consistent and intuitive user experience. Allowing access to the
user’s address book and music collection can enable unique application experiences and allow your
application to make a much more personal connection with the user.

http://bit.ly/objc-binding

12
localizing for an
international audience

what’s in this chaPter?

Defi ning internationalization and localization➤➤

Displaying translated text and images➤➤

Formatting dates, times, and numbers ➤➤

Extracting text for translation ➤➤

Localization and internationalization sound similar; however, they describe different parts of
the multilingual software development process.

Internationalization describes the writing of software that supports multiple languages and
display formatting. It is a task generally undertaken by software architects and developers
and infl uences the way that applications store and represent their user interface and data.
Attributes of internationalized code include:

All display text is stored separately from the code, so that it is easy to update.➤➤

Images, videos, colors, and icons are easily updatable.➤➤

Sorting of lists is language-sensitive.➤➤

Date and time formatting (and measurement) and time calculations take the current ➤➤

user’s settings into account.

Number and currency formats (symbols, commas, and points) are fl exible and ➤➤

appropriate for the user.

Measurements (temperature, weight, distance) can be represented in different units.➤➤

Appropriate input and display of addresses, telephone numbers, and government ➤➤

identifi cation numbers.

260 ❘ chaPter 12 localIzIng for an InternatIonal audIence

It should be possible to release an internationalized application in many different countries/
languages, once it has been localized.

Localization is the process of translating the text into a target language, updating images and other
cultural references. It is a task usually performed by translators and/or native speakers of the target
locale. Important aspects of localization include:

Translating the text into the target language.➤➤

Using appropriate cultural references (colors, imagery, writing style).➤➤

Providing parameters/guidance for localized requirements such as tax rates and applicability ➤➤

(assuming the internationalization process for the application made it fl exible enough to cope
with such localized business rules).

Globalization is another term that is sometimes used to describe both internationalization and
localization. In the .NET Framework the System.Globalization namespace contains the classes
used to create multilingual applications.

Figure 12-1 shows some of the built-in applications with different language and region settings. This
chapter shows you how to achieve similar results for your applications, vastly expanding the market
for your iPhone OS applications!

figure 12-1

The terms internationalization and localization are often shortened to i18n and
L10n, respectively — the numbers refer to the number of characters between the
fi rst and last letter of each word.

Changing language and region settings ❘ 261

internationaliZing an aPPlication

To internationalize an application you must be able to:

Detect what language the user wants to view.➤➤

Detect what regional settings (also known as locale) the user has selected.➤➤

Display all text, numbers, dates, imagery, colors, and so on according to those settings.➤➤

Accept and validate user input in their preferred language.➤➤

The iPhone OS and the .NET SDK provide frameworks that will assist you with all of these tasks,
as long as you structure your code to take advantage of them. This chapter focuses on the built-in
iPhone OS internationalization and localization features that are exposed/supported by MonoTouch,
mentioning the .NET System.Globalization classes where relevant.

changing language and region settings

You confi gure iPhone language and region information via the Settings ➭ General ➭ International
screen.

Changing the Language on your iPhone causes the operating system to display the Home screen
with all the text translated into the selected language. Applications that support that language will
also display content in that language.

Choosing a language does not imply any particular region/locale settings.

Enabling Keyboards on your iPhone allows different languages (and their corresponding characters)
to be entered.

Changing the Region Format on your iPhone affects the formatting of dates, numbers, and the
calendar.

Before writing code that uses these settings, Figure 12-2 shows you how to change them on the
simulator (many more unrelated options exist on a real device). It is easier to set the Region Format
fi rst before changing languages, because a language change causes the operating system to reload the
Home screen (which takes a second or two).

Remember where these options are before you change your phone or simulator to a language you
can’t read, otherwise it might be tricky to change them back to your native language. If you do
forget, you can always use the Reset Content and Settings menu option in the simulator.

262 ❘ chaPter 12 localIzIng for an InternatIonal audIence

figure 12-2

The choices you make on those screens affect the way content is displayed by iPhone native classes
and by .NET, which both use the same standard to identify language and region. The standard
consists of two parts:

Language code:➤➤ The two-letter ISO 639-1 code is the preferred method to identify languages.
Common examples are en for English, ja for Japanese, es for Spanish, fr for French, and de
for German.

Region code:➤➤ The two-character ISO 3166-1 code that identifies a region or locale that speaks a
particular language (for example, US for the United States, FR for France, and ES for Spain).

These two values combined make a locale. Sometimes the region code is the same as the language
code, for example fr-FR indicates French spoken in France and es-ES indicates Spanish spoken in

Displaying Multiple languages ❘ 263

Spain. By contrast, some iPhone users will use fr-CA (French spoken in Canada) or es-US (Spanish
spoken in the United States). Common region codes for English include en-US, en-GB, en-CA, en-AU,
and en-NZ (for the United States, Great Britain, Canada, Australia, and New Zealand, respectively).

In addition to locales defi ned by a language and region code are some custom locale tags such as
zh-Hans (simplifi ed Chinese script) and zh-Hant (traditional Chinese script) that aren’t linked to a
specifi c region.

The locale identifi ers in the preceding text used the .NET formatting with a dash
(-) separating the language and region. iPhone OS methods use an underscore (_)
instead.

Both formats are used in this chapter because some examples use MonoTouch
methods calling into the iPhone framework and others use the .NET class
libraries (in the System.Globalization namespace).

Both follow the convention of lowercase for the language code and uppercase
for the region code.

disPlaying multiPle languages

Developers building applications without considering other languages frequently “hardcode” text
into the application — in the case of the iPhone the text could be in constants or variables, directly
assigned to UIKit objects

var greeting = “Hello world”;
MyLabel.Text = “First name:”;

or even embedded in the XIB fi les that defi ne your views. Images, audio, and video resources may
be similarly “hardcoded.” Such an application has not been internationalized and therefore cannot
be localized (unless the developer was to go into the code and replace every language-specifi c piece
with the equivalent in another language).

The process of internationalizing requires the separation of text, images, and so on from the code
so that you can create different versions of that content for each locale. Once you have separated the
content you just need to load the correct values based on the user’s language and locale settings.

The iPhone OS facilitates internationalization with these features:

Language-specifi c (.lproj) folders:➤➤ You can place certain content, such as images and .strings
fi les (more on them later) in these folders and the operating system will know where to look for
them when the following two methods are called. The folders are named with the two-character
language code for their contents, such as en.lproj, fr.lproj, and es.lproj.

.strings fi les: ➤➤ Specially formatted text fi les that contain translations for individual pieces of
strings. The default fi le in each language-specifi c folder is called Localizable.strings.

264 ❘ chaPter 12 localIzIng for an InternatIonal audIence

LocalizedString() method:➤➤ Loads a localized string from a .strings file.

PathForResource() method: ➤➤ Resolves a path to a localized image or other file type in a
language-specific folder.

Figure 12-3 shows how the language-specific folders and .strings files are
structured. The following sections describe how they work.

The .strings file format is a collection of key-value pairs that allows com-
ments. An example of the “standard” format is shown in Listing 12-1 —
notice the keys and values are quoted and the line is terminated with a
semicolon. C-style comments are allowed in the file to provide directions or
explanations to the translator, who should only edit the bolded text. Apple
recommends saving these files in the UTF-16 encoding (although the UTF-8
encoding works).

listing 12-1: .strings standard file format

/* comment to aid translation */
“text to translate (key)” = “translation (value)”;
/* this text has a newline */
“text with escaped\nnewline” = “translation with escaped\nnewline”;
/* this text has quotes */
“text with escaped \”quotes\”“ = “translation with escaped \”quotes\”“;
/* this text has greaterthan and lessthan */
“text with angles” = “this text has < angle brackets >”;

The .strings file may also use a Property List (.plist) format although it should still have the
same .strings file extension. Listing 12-2 shows the same data in Property List XML format —
note that different characters require “escaping” with this format: Quotes and newlines are allowed,
but greater-than/less-than must be XML entity encoded. This type of file is saved with UTF-8
encoding (as specified in the XML).

listing 12-2: .strings file using XMl plist format

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE plist PUBLIC “-//Apple//DTD PLIST 1.0//EN”
“http://www.apple.com/DTDs/PropertyList-1.0.dtd”>
<plist version=”1.0”>
 <dict>
 <!-- comment to aid translation -->
 <key>text to translate (key)</key>
 <string>translation (value)</string>
 <!-- this text has a newline -->
 <key>text with escaped
newline</key>
 <string>translation with escaped
newline</string>

figure 12-3

Displaying Multiple languages ❘ 265

 <!-- this text has quotes -->
 <key>text with escaped “quotes”</key>
 <string>translation with escaped “quotes”</string>
 <!-- this text has greaterthan and lessthan -->
 <key>text with angles</key>
 <string>this text has < angle brackets > </string>
 </dict>
</plist>

Most Apple-supplied examples use the standard format, however both formats work fi ne in
MonoTouch/MonoDevelop. Remember when using the Property List Editor application to Save As
the correct File Type (XML in this case).

Apple’s SDK Reference specifi cally states “In iPhone OS, the bundle interfaces
do not take dialect or script information into account when looking for local-
ized resources; only the language designator code is considered. Therefore if
your project includes language-specifi c project directories with both a language
and region designator, those directories are ignored.”

This means you should create language-specifi c directories only for the two-char-
acter language codes (such as en, es, fr, ja, and so on). Whereas MacOS does
support region-specifi c .lproj folders (such as fr-CA), the iPhone OS does not.

showing translated text
The fi rst example in the chapter download — Localization01 — displays some simple strings in a
different language depending on the user settings.

First add two labels to a new iPhone MonoTouch project’s MainWindow and add the following two
lines to set their Text property:

LocaleLabel.Text = NSLocale.CurrentLocale.LocaleIdentifier;
LanguageLabel.Text = NSLocale.PreferredLanguages[0];

Localization01\Main.cs

These methods allow your code to retrieve the user’s settings:

NSLocale➤➤ : Class that provides information about the current language and locale settings on
the device.

CurrentLocale➤➤ : Provides information about the region that the user has selected. The
LocaleIdentifier returns the code in the format discussed previously, such as en_US.

PreferredLanguages➤➤ : Provides a list of language codes in the order in which they will be
searched. It is an array of two-letter language codes, with the fi rst element refl ecting the
user’s language choice.

266 ❘ chaPter 12 localIzIng for an InternatIonal audIence

Figure 12-4 shows these two fields populated with data for English, Spanish, and French settings.

figure 12-4

Now place some more labels and a segment control (with three segments) on the view.

Second, in FinishedLoading set the display properties using the LocalizedString as shown here:

HelloLabel.Text =
 NSBundle.MainBundle.LocalizedString(“Hello”,”A greeting”);
GoodbyeLabel.Text =
 NSBundle.MainBundle.LocalizedString(“Goodbye”,”Say bye bye”);
Segments.SetTitle(
 NSBundle.MainBundle.LocalizedString(“One”,”Number one”), 0);
Segments.SetTitle(
 NSBundle.MainBundle.LocalizedString(“Two”,”Number two”), 1);
Segments.SetTitle(
 NSBundle.MainBundle.LocalizedString(“Three”,”Number three”), 2);

Localization01\Main.cs

The parameters for LocalizedString are:

key➤➤ : The string used to lookup the translation in the default .strings file (and is also used
as the fallback display value). This string should not contain extended ASCII characters such
as accented letters (like é).

comment➤➤ : Comment describing the text to aid translators. It is useful to store this in the code
where the string is used. The comment is not displayed in the application.

And the method works like this:

 1. Look for a matching key in the language-specific directory’s default Localizable.strings file.

 2. If no match is found, use the key passed to the LocalizedString method as the display text.

Because the operating system looks in multiple places and then defaults to the key string passed to
the method, when the application is run without any .strings files it is still usable. Apple’s develop-
ment documentation recommends always using displayable text as the key for this reason — if no
suitable translation can be found, at least proper English will be displayed.

There are two more overloads of the LocalizedString method:

When three parameters are passed, they are:

key➤➤ : The string used to lookup a translation in the default .strings file.

value➤➤ : The fallback value to use if no translation is found in any .strings file. When this
overload is used, the key is never displayed to the user. Extended ASCII (including accented
characters like é) are allowed in this parameter.

Displaying Multiple languages ❘ 267

table➤➤ : Allows you to specify a different .strings fi le to use or to pass an empty string to
indicate this item is in the default Localizable.strings fi le. You should specify the fi le-
name without the .strings extension. For example, if you called

HelloLabel.Text =
 NSBundle.MainBundle.LocalizedString(“Hello”,”Hi there”,”More”);

the operating system will search in More.strings instead of Localizable.strings
for the translation of “Hello”, and if nothing is found, “Hi there” will be displayed
by HelloLabel. This enables you to create multiple smaller fi les to help manage your
translations.

When four parameters are passed, they are:

key➤➤ : The string used to lookup a translation in the default .strings fi le.

value➤➤ : The fallback value to use if no translation is found in any .strings fi le. When this
overload is used, the key is never displayed to the user. Extended ASCII (including accented
characters like é) are allowed in this parameter.

table➤➤ : Allows you to specify a different .strings fi le to use. You should specify the fi le-
name without the .strings extension.

comment➤➤ : Comment describing the text to aid translators.

Note that the key and table parameters of LocalizedString are case-sensitive.
You should also use the comment parameter wherever possible to provide context
for the translator, to ensure it chooses the most appropriate words or phrases for
your application.

To provide translations for the example create language-specifi c folders es.lproj and fr.lproj,
then in each folder create a new text fi le called Localizable.strings (the folder structure was
shown in Figure 12-3). Provide translations for these strings as shown in Table 12-1.

table 12-1: Localized strings Files

es.lProJ/localiZable.strings fr.lProJ/localiZable.strings

“Hello” = “Hola”;

“Goodbye” = “Adiós”;

“OK” = “Si”;

“Cancel” = “Cancelar”;

“One” = “Uno”;

“Two” = “Dos”;

“Three” = “Tres”;

“Hello” = “Bonjour”;

“Goodbye” = “Au revoir”;

“OK” = “Oui”;

“Cancel” = “Annuler”;

“One” = “Un”;

“Two” = “Deux”;

“Three” = “Trois”;

268 ❘ chaPter 12 localIzIng for an InternatIonal audIence

Figure 12-5 shows the application running in English, Spanish, and French. Notice how “Bonjour”
has been resized — element sizing is an important part of internationalizing software because the
amount of space required for equivalent text can vary widely. A word in English (such as “Hello”)
may translate into a longer word in another language (such as “Bonjour” in French), and if you have
sized your UILabel to exactly fit the English text, other languages may be resized or even truncated.
There is no “magic rule” to fix this problem; you need to be aware of text sizing issues and try to
design your view layout to accommodate all the languages you intend to support.

figure 12-5

Translating Buttons
Translating UIButtons is slightly different than you might expect, because a common way for setting
a button’s Title property doesn’t work as you’d expect — it only sets the text value for one possible
display state of the button. If you internationalize a button’s text like this

OkButton.TitleLabel.Text =
 NSBundle.MainBundle.LocalizedString(“OK”,”Affirmative”);

the translation will be displayed at first but will revert to English (or whatever the base language is)
when it is touched/enabled/disabled or any other state-change is applied.

Buttons have six states (defined by the UIControlState enum: Normal, Disabled, Highlighted,
Selected, Application, and Reserved) and each state can have its own text. To localize the button
properly use the SetTitle() method so that all states will reflect the localized text:

OkButton.SetTitle(
 NSBundle.MainBundle.LocalizedString(“OK”,”Affirmative button”),
 UIControlState.Normal);
CancelButton.SetTitle(
 NSBundle.MainBundle.LocalizedString(“Cancel”,”Negative button”),
 UIControlState.Normal);

Alternatively, you could set the title for the other states explicitly, potentially using different text on
each state (although be careful not to make your user interface more confusing by doing so):

OkButton.SetTitle(
 NSBundle.MainBundle.LocalizedString(
 “OK”,”Affirmative button”),
 UIControlState.Normal);
OkButton.SetTitle(
 NSBundle.MainBundle.LocalizedString(
 “OK (unavailable)”,”Affirmative button disabled”),
 UIControlState.Disabled);

Localization01\Main.cs

Displaying Multiple languages ❘ 269

Figure 12-6 shows the example complete with labels, segments, and buttons.

figure 12-6

Sometimes you will need to display text that is partially generated in code (for example, a message
about how many e-mails have arrived). In non-internationalized code developers often write code
like this:

var message = “You have “ + count + “ new emails”;

However, that is both diffi cult to localize and has poor usability. A better approach is to provide
three different strings for all possible cases and select the correct message at runtime:

var message0 = NSBundle.MainBundle.LocalizedString
 (“You have no new messages”,”no messages”);
var message1 = NSBundle.MainBundle.LocalizedString
 (“You have 1 new message”,”1 message”);
var messageN = NSBundle.MainBundle.LocalizedString
 (“You have {0} new messages”,”{0} placeholder messages”);
// choose the correct message to show, if the last one, apply format
messageN = String.Format (messageN, count);

These types of messages are much easier to translate accurately and provide the best user experience
in all languages.

Always use placeholders in preference to concatenating strings together.

If you include placeholders (such as {0} or {1}) in your Localizable.strings
fi les, be sure to instruct the translator how to deal with them. Be aware that the
translator may need to change the order that placeholders appear in the trans-
lated string.

displaying images
The second code sample in the chapter download — Localization02 — shows how images are
handled. Images are normally loaded by path so to internationalize image references you obtain a
localized image path using the PathForResource method.

In the following example we have created three images (one each for English, Spanish, and French)
and placed them in the respective language folders (en.lproj, es.lproj, fr.lproj), all with the

270 ❘ chaPter 12 localIzIng for an InternatIonal audIence

same name: MyImage.jpg. We then use the PathForResource() method to provide a path to the
correct localized image to be displayed.

var imageName = NSBundle.MainBundle.PathForResource(“MyImage”,”jpg”);
UIImage image = UIImage.FromFile(imageName);
MyImage.Image = image;

Localization02\Main.cs

Figure 12-7 shows the result.

figure 12-7

The downside of this approach is that you must provide a localized image in every language-specific
directory — otherwise an ArgumentNullException reference will result. PathForResource only
determines the correct path based on the language settings; it doesn’t verify that the image exists.

If a particular image requires localization only for a small number of your supported languages, you
might consider using the image’s path as a localizable string; for example, place the image in your
en.lproj folder and reference its full path in Localizable.strings

/* Path to image that isn’t usually localized */
“en.lproj/CommonImage.jpg” = “en.lproj/CommonImage.jpg”;

then in your code create the image like this

var imageName = NSBundle.MainBundle.LocalizedString
 (“en.lproj/CommonImage.jpg”,
 “Path to image that isn’t usually localized”,);
UIImage image = UIImage.FromFileUncached(imageName);
MyImage.Image = image;

which means that any language for which that key hasn’t been given a value, the English image will
automatically be shown. For the languages that do require a custom image (such as Japanese, in this
example), place the localized CommonImage.jpg in the ja.lproj folder and add this key-value pair
to ja.lproj/Localizable.strings:

/* Path to image that isn’t usually localized */
“en.lproj/CommonImage.jpg” = “ja.lproj/CommonImage.jpg”;

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

Displaying Multiple languages ❘ 271

If you include image paths in your Localizable.strings fi les, be sure to
instruct the translator how to deal with them so they do not attempt to trans-
late the string as a phrase. If your translator is also translating and supplying
updated images, be sure to agree in advance on the correct dimensions, fi le
format, fonts, styles and colors to ensure translated images fi t seamlessly into
your application.

localizing app icon and name
Localizing your application’s icon won’t always be necessary — icons rarely include text due to the
size when rendered on the iPhone — however, you may still want to display a different icon depend-
ing on the language of your user.

Simply place the localized application icons in the relevant language-specifi c directory named icon
.png. Localized icons have been added to the Localization02 example in the chapter download.

The application name is typically set in the MonoDevelop Project Properties or in a manually added
Info.plist fi le (as discussed in Chapter 8). It is possible to localize entries in the Info.plist fi le
by adding a specially named InfoPlist.strings fi le to the language-specifi c directories.

Table 12-2 shows the two additional fi les added to your project to provide a localized application name.

table 12-2: Localized strings Files

es.lProJ/infoPlist.strings fr.lProJ/infoPlist.strings

“CFBundleDisplayName” = “L10n-es”; “CFBundleDisplayName” = “L10n-fr”;

Figure 12-8 shows the directory structure with InfoPlist and icon fi les as well as the fi nal result of a
localized icon and application name. The iPhone OS caches icon images so if you don’t always see
the updated image when you switch back and forth during testing, delete the application completely
and re-install.

displaying “double byte” characters
The term “double byte character-set” is often used to refer to
scripts such as Chinese, Japanese, and Korean because histori-
cally they required two bytes to store most characters whereas
most Western languages required only one byte. With the
broad acceptance of Unicode and its various encodings (UTF-8
being the most common) the “double byte” distinction is
irrelevant — the iPhone supports a number of complex scripts
including Japanese, Korean, and Chinese.

Unfortunately, MonoDevelop (version 2.2) doesn’t seem to like
editing .strings fi les containing some of these characters. The figure 12-8

272 ❘ chaPter 12 localIzIng for an InternatIonal audIence

solution is to use Xcode — Figure 12-9 shows the ja.lproj/Localizable.strings file from the
code download in Xcode and the resulting output on the iPhone simulator.

figure 12-9

formatting dates, times, numbers, and currency
The other thing that is important to customize to a user’s preference is the format used for display
dates, times, and numbers. This is especially critical when the data can have a totally different
meaning based on its format; for example, a date shown as 3/12 means March 12th in the United
States but the 3rd of December in many other countries.

Because MonoTouch C# code will usually be using the .NET Framework classes for string and date/
time handling, these methods need to respect the preferences set by the user. The CultureInfo
class in the System.Globalization is the .NET “equivalent” of NSLocale. The two properties
CurrentCulture and CurrentUICulture tell us which region the .NET Framework will use when
formatting output.

The third example in the code download — Localization03 — adds more display labels to show
how the localized formatting works. First it uses two labels to display the current CultureInfo
settings being used. These values will often (but not always) be the same as the LocaleIdentifier
you learned about earlier — the set of locales supported by .NET and the iPhone OS isn’t the same,
which is why they sometimes differ (for example, es-US can be selected on the iPhone but is not
supported by .NET).

MonoCultureLabel.Text =
 System.Globalization.CultureInfo.CurrentCulture.ToString();
MonoUICultureLabel.Text =
 System.Globalization.CultureInfo.CurrentUICulture.ToString();

Having verified that the .NET Framework does reflect the iPhone’s region settings, the following
lines of code show the easiest way to output locale-aware dates and times:

DateLabel.Text = “LongDate “ + DateTime.Now.ToLongDateString();
DateLabel2.Text = “ShortDate “ + DateTime.Now.ToShortDateString();

Displaying Multiple languages ❘ 273

DateLabel3.Text = “LongTime “ + DateTime.Now.ToLongTimeString();
DateLabel4.Text = “ShortTime “ + DateTime.Now.ToShortTimeString();

Localization03\Main.cs

Many non-internationalized applications use custom format strings to achieve a specifi c output (such
as ToString(“dd-MMM-yyyy”), which outputs 03-Mar-2010). Even though that output might be desir-
able in English, it may not match the expectations of users in other languages. Using the locale-aware
built-in formats is the best way to achieve a user interface that all users can understand.

The same consideration applies to displaying currency and numbers. Non-internationalized code
might use “$” + someValue to show a price, however many countries have a different currency
symbol and it is customary in some places to put the symbol at the end of the price (rather than
before it). The decimal point and thousands separator also differ across cultures — sometimes the
point is a comma and the separator is a space, for example. These two lines show syntax for display-
ing currency and a formatted number:

NumberLabel.Text = “Currency “ + String.Format(“{0:c}”, 5432.11);
NumberLabel2.Text = “Thousands “ + String.Format(“{0:n}”, 123456789.01);

Localization03\Main.cs

The localized output of these examples is shown in Figure 12-10.

When displaying different currencies, remember that it is your code’s responsi-
bility to do any conversions to ensure the correct amount is being displayed.

figure 12-10

274 ❘ chaPter 12 localIzIng for an InternatIonal audIence

managing localiZable.strings in real-world aPPlications

In a sample application like in the chapter download, you find only a handful of calls to
LocalizedString, making it relatively easy to keep the Localizable.strings files up-to-date with
all the keys you have used.

However, in a large application keeping track of all the strings you need translated will be more
difficult as the calls to LocalizedString will be spread across your entire codebase. Every time you
add, delete, or alter a localizable string, you need to remember to update the .strings files to reflect
the changes in your code. It could become a very time-consuming manual task to extract all the keys
and comments to create the base .strings files to send off for translation.

genstrings
To help Objective-C programmers extract all the localizable strings from their code Apple provides
a tool called genstrings. Developers use genstrings to parse their source code to find calls to
LocalizedString methods, extract the parameters and create a Localizable.strings file (or files)
to be translated.

Unfortunately the genstrings tool can only parse C, Objective-C, and Java code so it cannot be
used with MonoTouch.

ngenstrings
The download for this chapter contains a project ngenstrings that performs the same function
as Apple’s tool but for MonoTouch projects. It works slightly differently — instead of parsing the
source code, it parses the .NET assembly compiled by MonoDevelop — but the output is the same:
.strings files that you can translate and then include in your application.

ngenstrings not only extracts the keys and default values from your code, but also any comments
you’ve included in certain LocalizedString() method overloads. This helps translators to under-
stand the context of each piece of text (assuming your comments
are good) and ultimately improves the quality of their translation
and therefore your localized application.

Using ngenstrings
Find ngenstrings.exe and lib.dll in the chapter download
and save to the Applications folder on your Mac. You can then
automatically generate .strings files from your international-
ized application with the following steps:

 1. Compile your application for the iPhone simulator in
Debug mode. (Release mode will also work but the folder
specified in step 3 will be different.)

 2. Use the MonoDevelop context menu to find where your
application files are as shown in Figure 12-11. This direc-
tory will contain a /bin/ folder; the .NET assembly is
located in /bin/iPhoneSimulator/Debug/. figure 12-11

Managing localizable.strings in real-World applications ❘ 275

 3. Copy the .NET assembly to the Applications folder where you saved ngenstrings.exe.

 4. Open the MacOS Terminal application from
the Utilities folder (the icons are shown in
Figure 12-12).

 5. Navigate to the ngenstrings Applications
folder in the Terminal application.

 6. Use Mono to execute ngenstrings passing your
.NET assembly as a parameter like this:

mono ngenstrings.exe <yourapplication>.exe

or to use an example from this chapter:

mono ngenstrings.exe Localization03.exe

The Terminal output will look similar Figure 12-13 (each string is written to the Terminal as it is
processed) and the resulting Localizable.strings fi le is shown in Figure 12-14.

You can then supply the .strings fi les to translators for each language you wish to support. When
they supply the fi nished translations, simply place the fi les in the correct .lproj folders within your
MonoDevelop project and rebuild your application.

The content of the .strings fi les is sorted alphabetically by the key, so you can
easily see changes, additions, and deletions over time with a fi le-comparison tool.

figure 12-12

figure 12-13 figure 12-14

276 ❘ chaPter 12 localIzIng for an InternatIonal audIence

limitations of ngenstrings
ngenstrings works by examining your compiled code for calls to the LocalizedString method, it
then extracts the parameters from the method to build the .strings output fi les.

Because of this you should always embed the actual strings in the method call, like this:

NSBundle.MainBundle.LocalizedString (“First name:”,”Label for firstname”);
NSBundle.MainBundle.LocalizedString (“Greeting”,”Hi {0}”,”“);
NSBundle.MainBundle.LocalizedString (“One”,”1”,”Nums”,”The number one”);

You should not pass variables into this method as the ngenstrings tool cannot parse them. The
following localizable strings will not be extracted successfully:

var key = “Firstname”;
var product = “iPad”;
NSBundle.MainBundle.LocalizedString (key,”Label for firstname”);
NSBundle.MainBundle.LocalizedString (“Product”,”The “ + product,”“);

The genstrings tool from Apple has the same limitation.

ngenstrings is an open source tool written in C# with Mono. You are free to
modify the source code provided in the download or get the latest release online
from http://github.com/conceptdev/ngenstrings.

summary

The App Store is available in more than 70 countries, which means there is a large market for appli-
cations in native languages. If you take the time to internationalize your code from the start — using
.strings fi les and retrieving text and images using the methods on MainBundle — it will be much
easier for translators to localize it.

You also learned about the open-source tool ngenstrings that can help you manage the localized
strings regardless of the size of your project and the amount of translation required.

Releasing a translated application that makes careful use of localized formatting and culturally
aware images and concepts will give you the maximum chance of success. Ideally, foreign-language
users will not be able to distinguish your localized application from something that was created
specifi cally for their market. Achieving that level of familiarity can be diffi cult across a large
number of languages, but the iPhone with MonoTouch provides you with the tools to do it.

http://github.com/conceptdev/ngenstrings

13
Programming the iPad

what’s in this chaPter?

Short history of the iPad➤➤

Learning how iPad diff ers from iPhone➤➤

Using some of the new controls➤➤

Building a Universal Application➤➤

On January 27, 2010, Apple announced the eagerly anticipated iPad tablet computer running
the iPhone OS, and on April 3 the device fi rst went on sale. The iPad falls into a category
between a laptop and a mobile phone. It is the fi rst large-screen device from Apple that runs
the iPhone Operating System, with roughly four times the screen area of the iPhone and
iPod Touch.

In this chapter you learn what the capabilities of the device are, what new APIs and controls
have been introduced that you can use in iPad-specifi c applications, and how to build applica-
tions that can work on both iPad and iPhone devices.

the iPad device

The iPad is a tablet computer running the iPhone Operating System. It has a 9.7-inch LED
backlit multi-touch display and is powered by a 1-gigahertz ARM processor designed by Apple
and referred to as the A4. Connectivity is supported via a 30-pin standard iPhone connector,
Bluetooth 2.1 support, and 802.11n Wi-Fi networking. A separate model adds support for 3G
network connectivity. Figure 13-1 shows the iPad next to an iPhone, demonstrating the differ-
ence in the size of the screen and the on-screen keyboard.

278 ❘ chaPter 13 ProgrammIng the IPad

figure 13-1

The biggest change with the iPad is its screen resolution of 1024×768. This is an increase from the
iPhone and iPod Touch’s 480×320 screen resolution. The question for a developer is “What should
I do with the additional screen real estate?” For a game application, the strategy will most likely
involve providing more visual detail in the application, more control presented to the user, and more
status information within the game. For productivity applications, you can take advantage of some
new controls and APIs.

The iPad brings a variety of new hardware and user interface capabilities to the iPhone OS platform,
such as:

Split views allow two custom views to be presented side-by-side. These can be used along ➤➤

with master detail views and navigation-based interfaces.

Popovers allow for data to be presented on top of existing views in a temporary fashion. ➤➤

Popovers are useful for menus and palettes.

New presentation styles are available for modally presented views.➤➤

Toolbars can now be placed at the top and bottom of a view and can contain more informa-➤➤

tion due to the increased screen size.

Gesture recognition is now part of the ➤➤ UIKit framework, making it easy to support pinch,
pan, tap, rotate, and the long press in your applications.

Custom input views are now supported. The custom input view slides up from the bottom ➤➤

of the screen when the view becomes the first responder (as the on-screen keyboard does).
Previously, text fields and text views supported only the keyboard as the input view, but on
the iPad you can provide your own custom input methods.

What Makes an iPad application? ❘ 279

Custom input accessory views are also available. An input accessory view is a view that is ➤➤

attached to the top of an input view (such as the Previous and Next buttons attached to the
keyboard when entering data on a web form in Safari). It slides in with the input view when
the object becomes the first responder. This allows you to add a custom toolbar to the top of
the virtual keyboard.

There is new support for text display and input:➤➤

Sophisticated text display and layout has been added in the Core Text framework.➤➤

The ➤➤ UIKit framework includes enhancements to support custom views, a new
UITextChecker class for spell checking, and support for new custom commands in
editing menus.

External displays and projectors can be detected and content can be displayed on the sec-➤➤

ond screen.

There is support for files and documents. This is needed for productivity style applications.➤➤

The ➤➤ UIKit framework has been enhanced to support creating PDF content from an
application.

what makes an iPad aPPlication?

An iPhone OS application identifies itself as an iPad application via the UIDeviceFamily entry in the
Info.plist configuration file. The number “1” indicates iPhone/iPod Touch support, the number “2”
indicates iPad support, and supplying both means the application runs on all iPhone OS devices.

<key>UIDeviceFamily</key>
<array>
 <string>1</string>
 <string>2</string>
</array>

When you create an iPad application in MonoTouch, this file and entry is created for you auto-
matically. You can choose to support iPhone, iPad, or both via the Project Options as shown in
Figure 13-2, and the Info.plist entry is automatically adjusted. Unless otherwise specified, the
examples in the chapter download all target the iPad only.

figure 13-2

If you change this setting in a well-written existing iPhone application (that already has a flexible
user interface layout) it should run at the full iPad resolution without further changes. This configu-
ration entry is the smallest possible difference between an iPhone and iPad application.

Of course you want your iPad application to be optimized for the device — and the rest of this chap-
ter shows you how to do that.

280 ❘ chaPter 13 ProgrammIng the IPad

device orientation support
One important feature of the iPad Human Interface Guidelines is that all iPad applications must
operate in any device orientation. Although some iPhone applications already support portrait and
landscape orientations (the built-in applications such as Mail and Safari are good examples), even they
support only three views: Portrait, LandscapeRight, and LandscapeLeft. To conform to Apple’s
guidelines, iPad applications are expected to work in the PortraitUpsideDown position as well.

When your application rotates you must then ensure your views will resize appropriately, which can
be simple or complex depending on how you build your user interface. When developing iPhone
applications, you can often create and use a UIViewController object directly; however, to override
the autorotation behavior for an iPad application you always need to create a subclass as shown in
Listing 13-1.

listing 13-1: overriding shouldautorotateTointerfaceorientation (iPad01\MyViewController.cs)

[Register(“MyViewController”)]
public class MyViewController : UIViewController
{
 public MyViewController () {}

 public override bool ShouldAutorotateToInterfaceOrientation
 (UIInterfaceOrientation toInterfaceOrientation)
 {
 return true;
 }
}

To see this work you need to place some controls on this UIViewController and add it to your win-
dow. On each control you need to set the AutoresizingMask property to indicate how the control’s
shape and position should change when the device is rotated. Listing 13-2 contains two autoresizing
examples:

A ➤➤ UITextView that has flexible Left, Top, Right, and Bottom margins. This means the con-
trol keeps the same Height and Width but the position changes in proportion to its original
place in the window.

A ➤➤ UIScrollView that has flexible Height and Width, which implies that the margins are
“fixed” and will remain “anchored” to the edges of the window regardless of orientation.

listing 13-2: finishedlaunching (iPad01\Main.cs)

text = new UITextView();
text.Text = “Golden Gate Bridge,\nSan Francisco”;
text.Font = UIFont.FromName(“Helvetica”, 36f);
text.Frame = new System.Drawing.RectangleF(200,40,400,100);
text.AutoresizingMask = UIViewAutoresizing.FlexibleLeftMargin
 | UIViewAutoresizing.FlexibleTopMargin

What Makes an iPad application? ❘ 281

 | UIViewAutoresizing.FlexibleRightMargin
 | UIViewAutoresizing.FlexibleBottomMargin;
text.ScrollEnabled = false;
text.Editable = false;
// create image
UIImage image = UIImage.FromFile(“GoldenGate.jpg”);
UIImageView imageView = new UIImageView(image);
// assign to scrollview
customScrollView = new UIScrollView(this.window.Bounds);
customScrollView.AutoresizingMask = UIViewAutoresizing.FlexibleHeight
 | UIViewAutoresizing.FlexibleWidth;
customScrollView.AddSubview(imageView);
customScrollView.ContentSize = imageView.Frame.Size;
customScrollView.ViewForZoomingInScrollView = delegate (UIScrollView sender)
{
 return imageView;
};
customViewController = new MyViewController();
customViewController.Add(customScrollView);
customViewController.Add(text);
window.AddSubview (customViewController.View);

Figure 13-3 shows the image and text rotating and re-centering to match the device orientation.

figure 13-3

You can use any combination of UIViewAutoresizing values to create the layout behavior you
need, and if that does not provide sufficient control you can subscribe to notifications about orienta-
tion change events and write custom code to resize and re-layout your classes manually.

282 ❘ chaPter 13 ProgrammIng the IPad

Your FinishedLaunching code should not attempt to determine the device’s
orientation before building the original layout. Instead you should construct
your user interface (either in code or in your MainWindow.xib fi le) for a single
orientation — once the application has fi nished loading, the operating system
will notify your app of the device’s current orientation and cause the layout to
change appropriately before it is displayed for the fi rst time.

startup images
Now that your application supports all available orientations, you should ensure your launch image
similarly adapts to the screen. The image should fi ll the screen, leaving 20 pixels along the top for
the status bar.

Two elements are required to provide this support: First, use the Info.plist fi le to advise the oper-
ating system which orientations your application supports and then add specially named images to
your project to be displayed for each orientation.

Your Info.plist fi le should contain the following key and value array:

<key>UISupportedInterfaceOrientations</key>
<array>
 <string>UIInterfaceOrientationPortrait</string>
 <string>UIInterfaceOrientationLandscapeLeft</string>
 <string>UIInterfaceOrientationLandscapeRight</string>
 <string>UIInterfaceOrientationPortraitUpsideDown</string>
</array>

and your MonoDevelop project should include specially named images described in Table 13-1 (with
their Build Action set to Content).

table 13-1: Orientation-Specifi c Startup Images

key descriPtion

Default.png The fi lename used in the iPhone OS to identify the
startup image prior to the release of the iPad . You
should not use this fi lename for iPad applications, but
provide a 320x460-pixel image if you have built a
Universal Application that runs on both types of device;
this image will be used on the iPhone and iPod Touch .
For iPad applications you should provide at least
two images: Default-Portrait.png and
Default-Landscape.png as described next .

What Makes an iPad application? ❘ 283

key descriPtion

Default-Portrait.png A 768x1004-pixel image that is displayed if the device is
vertical (that is, the Home button is at the top or bottom),
unless Default-PortraitUpsideDown.png has also
been supplied, in which case that image will be used
when the Home button is at the top .

Default-PortraitUpsideDown.png A 768x1004-pixel image that is displayed if the device is
upside down (that is, the Home button is at the top) . This
image supersedes the Default-Portrait.png that has
also been supplied and is used when the Home button is
at the top .

Default-Landscape.png A 1024x748-pixel image that is displayed if the device is on
either side . You can choose to supply this single image or
create the following two images depending on whether the
Home button is to the left or right of the device .

Default-LandscapeLeft.png A 1024x748-pixel image that supersedes
Default-Landscape.png .

Default-LandscapeRight.png A 1024x748 pixel image that supersedes
Default-Landscape.png .

Example iPad02 in the chapter download uses the orientation-specific filenames to demonstrate how
these work. Figure 13-4 shows two of the four possible orientations using Default-Portrait.png
and Default-Landscape.png images.

figure 13-4

284 ❘ chaPter 13 ProgrammIng the IPad

new iPad features

In addition to the controls covered in Chapters 3 and 4, the iPad supports some new user inter-
face controls that take advantage of the larger screen and the “any orientation” user interface.
Figure 13-5 shows the iPad Mail application using the new orientation-aware split view control. On
an iPhone you must switch back and forth between your Inbox and messages; however, the iPad
allows you to see both. The Inbox and message appear side-by-side in landscape mode, whereas in
portrait mode the Inbox is available in a new popover view control.

figure 13-5

using uisplitviewcontroller
A split view manages two other view controllers and displays one or both of them depending on the
orientation of the device. In landscape mode the first view has a fixed width of 320 pixels (the width
of the iPhone’s screen) and the second view uses up the rest of the display. In portrait mode the
320-pixel-wide view is hidden by default but is accessible via a popover control.

To use the UISplitViewController class you simply need to tell it which view controllers to use;
it then detects the device’s orientation and shows or hides the first view as required. Listing 13-3
shows how easy it is to set up a split view (the UISplitViewController was dragged onto the win-
dow in Interface Builder and outlets were created to the other controls).

new iPad features ❘ 285

The only requirement for the other two view controllers is that they support any orientation as
shown in Listing 13-1.

listing 13-3: Creating a split view (iPad03\Main.cs)

public override void FinishedLaunching (UIApplication app, NSDictionary options)
{
 DetailViewController = new MyDetailViewController();
 MasterViewController = new MyMasterViewController(this);
 SplitViewController = new UISplitViewController();
 SplitViewController.ViewControllers =
 new UIViewController[] {MasterViewController, DetailViewController};

 window.AddSubview(SplitViewController.View);
 window.MakeKeyAndVisible ();
 return true;
}

You can find the complete code for the two view controllers in the chapter download iPad03 files
MyMasterViewController.cs and MyDetailViewController.cs. Neither contains anything new:
The detail view controller uses the code from Listings 13-1 and 13-2 combined into a single class,
and the master view controller contains a simple UITableView covered in Chapter 6.

The example is shown in Figure 13-6 with the table showing in landscape mode but hidden in por-
trait mode. Notice that in portrait mode there is currently no way to access the popover containing
the list of photos.

figure 13-6

286 ❘ chaPter 13 ProgrammIng the IPad

Although it is not implemented by default, it is recommended that when the first view controller is
hidden (in portrait mode) you provide a button on the remaining view that displays the hidden view
controller in a popover (for example, the Mail application as shown in Figure 13-4).

Example iPad04 in the code download shows how to implement the button and take advantage of
the automatic popover support.

 1. First, you must add a toolbar to the view containing the scrolling image (a navigation bar can
also be used) so that you have somewhere to place the button.

 2. Second, you must implement and assign a UISplitViewControllerDelegate to manage
the showing and hiding of the button. Place this line of code in your FinishedLaunching
method and then implement the delegate:

SplitViewController.Delegate = new MySplitViewDelegate(this);

Listing 13-4 shows how to implement the delegate class. You do not have to know anything
about the UIPopover control to make this work; simply place the button passed into the
WillHideViewContoller method on your toolbar and everything else is wired up automatically.

listing 13-4: UisplitViewDelegate (iPad04\Main.cs)

class MySplitViewDelegate : UISplitViewControllerDelegate
{
 AppDelegate appd;
 public MySplitViewDelegate(AppDelegate app)
 {
 appd = app; // passed in so we can access the toolbar
 }
 public override void WillHideViewController (UISplitViewController svc,
 UIViewController aViewController,
 UIBarButtonItem barButtonItem,
 UIPopoverController pc)
 { // show the button when the view is otherwise hidden
 appd.Toolbar.SetItems (new UIBarButtonItem[]{barButtonItem},false);
 }
 public override void WillShowViewController (UISplitViewController svc,
 UIViewController aViewController,
 UIBarButtonItem button)
 { // remove ALL buttons with empty array when the view is being shown
 // you could use the passed in one to remove from array
 appd.Toolbar.SetItems(new UIBarButtonItem[0],false);
 }}

Figure 13-7 shows the UISplitView in action: In landscape orientation the toolbar is empty, and
both the table and image are visible. In portrait mode the table view is hidden and accessed via the
button added to the toolbar (popovers default to 1100 pixels tall which just fills the screen).

You can get more control of the popover by implementing the WillPresentViewController
method on the split view delegate class. In Listing 13-5 that method is used to set the size of the

new iPad features ❘ 287

popover to 140 pixels high. However, you can perform any other actions that you might need before
the view is displayed in the popover.

figure 13-7

listing 13-5: UisplitViewDelegate (iPad05\Main.cs)

class MySplitViewDelegate : UISplitViewControllerDelegate
{
 AppDelegate appd;
 public MySplitViewDelegate(AppDelegate app)
 {
 appd = app;
 }
 // ...WillHideViewController implementation...
 // ...WillShowViewController implementation...
 public override void WillPresentViewController (
 UISplitViewController svc,
 UIPopoverController pc,
 UIViewController aViewController)
 {
 // Set the size, otherwise it defaults to 320x1100;
 pc.SetPopoverContentSize(new System.Drawing.SizeF(320,140),true);
 }}

288 ❘ chaPter 13 ProgrammIng the IPad

creating a custom uiPopover
The UISplitViewController automatically creates a popover for one of its views, but the
UIPopover control is used throughout the iPad’s built-in applications for a variety of other purposes
(some of which are shown in Figure 13-8):

To display information about an item on the screen by showing the popover when the object ➤➤

is touched (similar to the annotations in the Maps application)

To present actions that can be taken on a particular object (similar to a context-sensitive menu)➤➤

To act as an input helper (such as the birthday field in the Contacts application, which ➤➤

presents a UIDatePicker in a UIPopover)

figure 13-8

Chapter download example iPad05 adds a button to the toolbar that displays a custom pop-
over. Listing 13-5 shows how to create the button, add it to the toolbar, and assign a delegate
that displays the popover (defined later). The delegate assigns the popover to a public field on the
AppDelegate class declared like this:

public UIPopoverController CustomPopover;

so that other code can reference it (to dismiss it, for example).

new iPad features ❘ 289

The highlighted code in Listing 13-6 works as follows:

Create an instance of a ➤➤ UIViewController that you want to display in a popover. This view
controller can be as simple as a few buttons (such as the Mail reply/forward popover), or it
could contain a complex UINavigationController hierarchy (such as the Mail inbox).

Create an instance of ➤➤ UIPopover, passing it the view controller to display.

Call the ➤➤ PresentFromBarButtonItem method, passing the button and direction so that the
popover knows where to draw itself. You should normally leave the direction as Any and let
the popover decide how to best render.

listing 13-6: Creating a popover (iPad05\Main.cs)

barButton = new UIBarButtonItem();
barButton.Title = “Popover”;
barButton.Style = UIBarButtonItemStyle.Bordered;
barButton.Clicked += delegate(object sender, EventArgs e)
{
 MyCustomPopoverViewController content =
 new MyCustomPopoverViewController (this);
 CustomPopover = new UIPopoverController (content);
 CustomPopover.PresentFromBarButtonItem (
 (UIBarButtonItem)sender,
 UIPopoverArrowDirection.Any, true);
};
ToolbarItems = new UIBarButtonItem[]{barButton};
customToolbar.Items = ToolbarItems;

Listing 13-7 shows the implementation for the popover view controller. In most respects it is
a regular view controller — in this case containing three buttons — with the addition of the
ContentSizeForViewInPopover property being set to control the size of the popover. The buttons ref-
erence the customPopover field on AppDelegate to call the Dismiss() method and hide the popover.

listing 13-7: iPad05\MyCustomPopoverViewController.cs

[Register(“MyCustomPopoverViewController”)]
public partial class MyCustomPopoverViewController : UIViewController
{
 AppDelegate appd;
 public MyCustomPopoverViewController(AppDelegate app)
 {
 appd = app;
 }
 readonly UIButton button1 = UIButton.FromType(UIButtonType.RoundedRect);
 readonly UIButton button2 = UIButton.FromType(UIButtonType.RoundedRect);
 readonly UIButton button3 = UIButton.FromType(UIButtonType.RoundedRect);
 public override void ViewDidLoad ()
 {

continues

290 ❘ chaPter 13 ProgrammIng the IPad

 ContentSizeForViewInPopover = new SizeF(320, 110);
 button1.SetTitle(“PageSheet”,UIControlState.Normal);
 button1.Frame = new RectangleF(10,10,144,40);
 button1.TouchUpInside += delegate
 {
 Console.WriteLine(“Button1 touched”);
 appd.CustomPopover.Dismiss(true);
 };
// ...repeat for two more buttons: button2 and button3...
 View.AddSubview(button1);
 View.AddSubview(button2);
 View.AddSubview(button3);
 }
}

Note that your code does not have to dismiss the popover if it makes sense to stay open (such as if
the user is entering multiple pieces of data or can make multiple choices within the popover). If the
user touches outside the popover, it is automatically dismissed. Figure 13-9 shows how the popover
looks on the screen.

figure 13-9

Popovers can also be triggered by other controls than UIBarButtonItem (in response to tapping
an image or other view, for example). Instead of the UIPopover.PresentFromBarButtonItem()
method you would call PresentFromRect with the following parameters:

rect➤➤ : The RectangleF area in the view where the popover will originate

view➤➤ : The view containing the rect specified

arrowDirections➤➤ : The arrow directions the popover can use to display itself

animated➤➤ : Whether to animate the display of the popover or just display immediately

listing 13-7 (continued)

new iPad features ❘ 291

displaying modal views
In earlier versions of the iPhone OS a modal view took up the entire visible area of the window.
UIViewController now has a ModalPresentationStyle property that allows you choose whether
to fill all or only part of the screen. Visible parts of the underlying view are dimmed when a modal
view is being displayed. Table 13-2 lists the available styles.

table 13-2: ModalPresentationStyle Options

style descriPtion

PageSheet Full height and width of portrait (therefore appears fullscreen in portrait
mode but in landscape mode the background view is visible on either side)

FormSheet Small centered view

FullScreen Fullscreen (same as earlier iPhone OS versions)

CurrentContext Inherits the same style used by the parent view controller

You can also choose from four different animation styles to use when displaying a modal view,
shown in Table 13-3.

table 13-3: ModalTransitionStyle Options

style descriPtion

CoverVertical Slides up from the bottom of the screen then slides back down when done .

FlipHorizontal Horizontal right-to-left flip to show the modal view on the “back” of the previ-
ous view . Animation is reversed when done .

CrossDissolve Old view fades out as the modal view fades in .

PartialCurl One corner of the current view curls up to reveal the modal view underneath .
You can only use this transition when the parent view controller is fullscreen,
and you cannot present any additional modal views when using this style .

Listing 13-8 contains two new methods for your AppDelegate to show and hide a modal
view using different transition styles with the PresentModalViewController() and
DismissModalViewController() methods on UIViewController.

listing 13-8: showing a modal view (iPad05\Main.cs)

public void ShowModal(int buttonId)
{
 switch (buttonId)

continues

292 ❘ chaPter 13 ProgrammIng the IPad

 {
 case 1:
 modalView = new MyModalViewController(this, “PageSheet”, 0);
 modalView.ModalTransitionStyle = UIModalTransitionStyle.CrossDissolve;
 modalView.ModalPresentationStyle = UIModalPresentationStyle.PageSheet;
 break;
 case 2:
 modalView = new MyModalViewController(this, “FormSheet”, 0);
 modalView.ModalTransitionStyle = UIModalTransitionStyle.CoverVertical;
 modalView.ModalPresentationStyle = UIModalPresentationStyle.FormSheet;
 break;
 case 3:
 modalView = new MyModalViewController(this,”FullScreen”,500);
 modalView.ModalTransitionStyle = UIModalTransitionStyle.PartialCurl;
 modalView.ModalPresentationStyle = UIModalPresentationStyle.FullScreen;
 break;
 }
 this.SplitViewController.PresentModalViewController(modalView, true);
}
public void HideModal()
{
 this.SplitViewController.DismissModalViewControllerAnimated(true);
}

Then add the following line to each button TouchUpInside delegate (in Listing 13-6) to test each
modal style:

_appd.ShowModal(1); // or 2 or 3

Figure 13-10 shows the resulting PageSheet, FormSheet, and FullScreen modal presentation styles.

figure 13-10

recognizing gestures
Touch gestures are an important part of the iPhone and iPad user interface; however, previous ver-
sions of the iPhone OS required some programming to react to gestures. iPhone OS 3.2 introduced
the six gestures shown in Table 13-4 to simplify the code required to respond to these types of user
interactions.

listing 13-8 (continued)

new iPad features ❘ 293

table 13-4: Types of UIGestureRecognizer

class gesture

UITapGestureRecognizer Tapping a configurable number of times

UIPinchGestureRecognizer Pinching fingers together or apart (for zooming)

UIPanGestureRecognizer Panning by dragging a finger across the screen

UISwipeGestureRecognizer Swiping in any direction

UIRotationGestureRecognizer Rotating using fingers moving in opposite directions

UILongPressGestureRecognizer Holding down a finger

Listing 13-9 shows how to use the UITapGestureRecognizer to detect and respond to a double-tap.
The important lines are as follows:

Create an instance of ➤➤ UITapGestureRecognizer to watch for this type of gesture.

Set the ➤➤ NumberOfTapsRequired property to 2 to detect double-taps. You can choose to
respond to “triple-taps” or “quadruple-taps” as well.

Call the ➤➤ AddTarget() method to inform the recognizer which method to call when the ges-
ture is detected. Generally you will specify this as the class and create a new Selector to
indicate which method.

“Register” the gesture recognizer with the ➤➤ UIView that you want to be double-tappable
using the AddGestureRecognizer() method. Note that the UIImageView also requires
UserInteractionEnabled=true.

Declare the method to handle your double-tap and mark it with an export attribute using the ➤➤

same Selector string you passed to AddTarget(). The C# method name is not important as
long as the export and selector strings match.

Within the method you can capture details about the double-tap event from the ➤➤

UIGestureRecognizer sender, such as the location the tap occurred. You must pass in
the UIView that you want the coordinates relative to — in most cases that will be the view
that detected the event (which in the example code is a UIImageView). Your code can then
respond to the double-tap using those coordinates.

listing 13-9: DoubleTap Gesture (iPad06\MyViewController.cs)

[Register(“MyViewController”)]
public class MyViewController : UIViewController
{
 AppDelegate appd;
 UIImage image;
 public MyViewController (AppDelegate app)

continues

294 ❘ chaPter 13 ProgrammIng the IPad

 {
 appd=app;
 image = UIImage.FromFile(“GoldenGate.jpg”);
 appd.Image.Image = image;
 appd.Image.UserInteractionEnabled = true;

 UITapGestureRecognizer doubletap = new UITapGestureRecognizer();
 doubletap.NumberOfTapsRequired = 2;
 doubletap.AddTarget(this,
 new MonoTouch.ObjCRuntime.Selector(“DoubleTapSelector”));
 appd.Image.AddGestureRecognizer(doubletap);
 }
 [Export(“DoubleTapSelector”)]
 public void DoubleTap (UIGestureRecognizer sender)
 {
 var locInView = sender.LocationInView(sender.View);
 appd.Text.Text += “\n[DoubleTap] “ + sender.State +
 “ Location: “ + locInView.X + “,” + locInView.Y;
 }
 public override bool ShouldAutorotateToInterfaceOrientation
 (UIInterfaceOrientation toInterfaceOrientation)
 {
 return true;
 }
}

When you double-tap anywhere in the image, the DoubleTap() method is called once and
the coordinates will be added to the scrolling text area. This is called a discrete gesture. The
UILongPressGestureRecognizer also represents a discrete gesture that generates only one message
to the Selector.

Similar code can be used to react to other gestures such as pinch and pan. Listings 13-10 and
13-11 show how to respond to pinch and pan, respectively. There is a very important dif-
ference between the UITapGestureRecognizer and the UIPinchGestureRecognizer and
UIPanGestureRecognizer: these latter gestures take place over time and multiple action messages
are sent to the Selector as the gesture is taking place. These are called continuous gestures and
they require more complex Selector code that checks the State property to help decide what to do
with each message and to detect when the gesture has completed (either successfully or if it fails).

listing 13-10: Pinch gesture (iPad06\MyViewController.cs)

public Initialize ()
{
 // ... image setup code ...
 UIPinchGestureRecognizer pinch = new UIPinchGestureRecognizer();
 pinch.AddTarget(this, new MonoTouch.ObjCRuntime.Selector(“PinchSelector”));
 appd.Image.AddGestureRecognizer(pinch);
}
[Export(“PinchSelector”)]
public void Pinch (UIGestureRecognizer sender)

listing 13-9 (continued)

new iPad features ❘ 295

{
 UIPinchGestureRecognizer pgr = (UIPinchGestureRecognizer)sender;
 var locInView = sender.LocationInView(sender.View);
 switch (sender.State)
 {
 case UIGestureRecognizerState.Began:
 appd.Text.Text += “\n[Pinch] Began-store the start value”;
 break;
 case UIGestureRecognizerState.Changed:
 appd.Text.Text += “\n[Pinch] “+sender.State +
 “ Scale: “ + pgr.Scale +
 “\t\tLocation: “ + locInView.X + “,” + locInView.Y;
 break;
 case UIGestureRecognizerState.Cancelled:
 // revert
 break;
 case UIGestureRecognizerState.Recognized:
 appd.Text.Text += “\n[Pinch] Recognized”;
 break;
 }
}

The UIGestureRecognizerState values are listed in Table 13-5. All gestures start in the Possible
state. Discrete gestures then send a message only with Recognized state (or else no message if they
Failed). Continuous gestures go through a number of states and generate multiple messages.

table 13-5: UIGestureRecognizerStates

state gesture

Possible Default state — gesture has not been recognized .

Began Indicates that the gesture has been recognized . You should capture starting val-
ues of the properties your gesture affects in this state .

Changed Message contains updated gesture data (such as location, scale, translation,
velocity) depending on the type of gesture . This data is not sent as a delta value
since the last message but rather the change since the gesture Began .

Ended Take any final actions related to the gesture, such as performing a page anima-
tion once a swipe gesture has Ended .

Recognized Synonymous with Ended for multi-touch gestures (for example, generated by
pinch but not pan) .

Failed Recognition failed . No action message is sent for this state .

Cancelled Recognition cancelled . Your code should discard any property changes applied
during the gesture (for example, snap an updated visual object back to its previ-
ous size/location) .

The pan gesture code in Listing 13-11 is slightly different again: It has Translation and Velocity
properties in addition to the location.

296 ❘ chaPter 13 ProgrammIng the IPad

listing 13-11: Pan gesture (iPad06\MyViewController.cs)

public Initialize ()
{
 // ... image setup code ...
 UIPanGestureRecognizer pan = new UIPanGestureRecognizer();
 pan.AddTarget(this, new MonoTouch.ObjCRuntime.Selector(“PanSelector”));
 appd.Image.AddGestureRecognizer(pan);
}
[Export(“PanSelector”)]
public void Pan (UIGestureRecognizer sender)
{
 UIPanGestureRecognizer pan = (UIPanGestureRecognizer)sender;
 var locInView = sender.LocationInView(sender.View);
 System.Drawing.PointF translate = pan.Translation;
 switch (sender.State)
 {
 case UIGestureRecognizerState.Began:
 appd.Text.Text += “\n[Pinch] Began-store the start value”;
 break;
 case UIGestureRecognizerState.Changed:
 appd.Text.Text += “\n[Pan] “+sender.State +
 “\t\tTranslate: “ + translate.X + “,” + translate.Y +
 “\t\tVelocity: “ + pan.Velocity +
 “\t\tLocation: “ + locInView.X + “,” + locInView.Y;
 break;
 case UIGestureRecognizerState.Cancelled:
 // revert
 break;
 case UIGestureRecognizerState.Recognized:
 appd.Text.Text += “\n[Pinch] Recognized-now do pan content “;
 break;
 }
}

The output of these gesture recognizers is shown in Figure 13-11. Your code would take some action
in response to each gesture rather than just emitting the changing property values to the screen.

building a universal aPP

A Universal App runs on both the iPad and iPhone class devices. The key elements of a Universal
App are:

Inform the App Store and operating system that both platforms are supported in the ➤➤

Info.plist file (using the MonoDevelop Project Options windows to choose “iPhone and
iPad,” as shown in Figure 13-2).

Specify what orientations are supported for each platform (recalling that Portrait is the ➤➤

default if none are specified).

Provide auto-resizing views that will work on both platforms ➤➤ or use different view layouts
after checking which device is being used.

Building a Universal app ❘ 297

figure 13-11

You should also provide at least three startup images from the options listed in Table 13-1:

Default.png➤➤ , which will be displayed on the iPhone and iPod Touch devices

Default-Portrait.png➤➤ and Default-Landscape.png, which will be used by the iPad
(depending on its orientation)

You can also set the application icon in the Info.plist. The CFBundleIconFiles key can contain an
array of icon filenames so that a different icon appears on the iPhone and the iPad. Simply create two
icon images and add them to your MonoDevelop project: a 57×57 pixel image for the iPhone and a
72×72 pixel image for the iPad. Then add both filenames in the CFBundleIconFiles array (as shown in
Listing 13-12). The iPhone OS will automatically choose the correct image based on its dimensions.

listing 13-12: iPhone and iPad icon settings (iPad07\info.plist)

<key>CFBundleIconFiles</key>
<array>
 <string>Icon.png</string>
 <string>IconiPad.png</string>
</array>

298 ❘ chaPter 13 ProgrammIng the IPad

Using AutoresizingMask and ShouldAutorotateToInterfaceOrientation ensures that the con-
trols fill the screen on each device. To make chapter download example iPad07 work on iPhones
and iPads, it presents the same two view controllers as the other examples in this chapter but with a
UINavigationController in place of the UISplitView. The code is shown in Listing 13-13.

listing 13-13: Universal finishedlaunching (iPad07\appDelegate.cs)

public override bool FinishedLaunching (UIApplication app, NSDictionary options)
{
 tv = new UITableView();
 tv.Source = new MyTableViewSource(this);
 TableViewController = new MyTableViewController();
 TableViewController.TableView = tv;

 navigationController = new UINavigationController();
 navigationController.PushViewController(TableViewController, false);
 navigationController.TopViewController.Title =”My Photos”;

 window = new UIWindow (UIScreen.MainScreen.Bounds);
 window.AddSubview(navigationController.View);
 window.MakeKeyAndVisible ();
}

To test a Universal App on multiple device types you need to target the correct SDK version (that is,
the SDK that runs on all of those devices). At the time of writing, the latest release for the iPhone is
3.1.3, and the iPad is running 3.2. So, in the Project Options you should choose 3.1.3 as shown in
Figure 13-12.

figure 13-12

Once you have selected a particular SDK, the Run menu in MonoDevelop presents simulator
options for you to test. Choose both iPhone Simulator 3.1.3 and iPad Simulator 3.2 (shown in
Figure 13-13) to test your code on both device types.

figure 13-13

Building a Universal app ❘ 299

Figures 13-14 and 13-15 show the application (example iPad07 from the chapter download) running
on the iPhone and iPad, respectively.

The iPad version obviously wastes a lot of screen space — while you have the same code running on
both devices, it does not take full advantage of the iPad’s larger screen.

figure 13-14

figure 13-15

300 ❘ chaPter 13 ProgrammIng the IPad

A “true” Universal App should adapt to the iPad’s capabilities where appropriate. If you want to
build customized layouts for each platform, either of these lines of code can help you determine
whether or not the device is an iPad so you can optimize your user interface:

bool IsIPad = UIDevice.CurrentDevice.Model.ToLower().Contains(“ipad”);

or

bool IsIPad = (UIScreen.MainScreen.Bounds == new RectangleF(0,0,768,1024));

Example iPad08 in the chapter download performs a device check in order to provide an iPad-spe-
cific user interface while continuing to work on the iPhone. The code in Listing 13-14 shows how it
works:

First, the table view and controller are created regardless of the device type. On the iPhone ➤➤

the table is the only view initially displayed, and on the iPad the table is incorporated into a
split view.

Then the device type is detected by comparing the ➤➤ MainScreen.Bounds property. 768x1024
means the device is an iPad.

If the device is an iPhone (or iPod Touch), then a ➤➤ UINavigationController is created and
added to the window. This then presents the table and images as a regular iPhone application.

If the device is an iPad, the code creates a ➤➤ Toolbar to add to the DetailViewController,
then it creates and assigns the DetailViewController and the SplitViewController
before adding the split view to the window.

listing 13-14: optimized finishedlaunching (iPad08\appDelegate.cs)

public override bool FinishedLaunching (UIApplication app, NSDictionary options)
{
 window = new UIWindow (UIScreen.MainScreen.Bounds);
 // the table view is used regardless of which device is targetted
 tv = new UITableView ();
 tvs = new MyTableViewSource (this);
 tv.Source = tvs;
 TableViewController = new MyTableViewController (tv);
 TableViewController.Title = “My Photos”;
 IsIPad = (UIScreen.MainScreen.Bounds == new RectangleF (0, 0, 768, 1024));
 if (!IsIPad)
 { // iPhone - use a navigation controller
 navigationController = new UINavigationController ();
 navigationController.PushViewController (TableViewController, false);
 navigationController.TopViewController.Title = “My Photos”;
 window.AddSubview (navigationController.View);
 }
 else
 { // iPad - use a splitview, and add a toolbar to the image view controller

Building a Universal app ❘ 301

 Toolbar = new UIToolbar ();
 Toolbar.Frame = new RectangleF(0,0,UIScreen.MainScreen.Bounds.Width,40);
 DetailViewController = new MyDetailViewController (Toolbar);
 ViewPort = DetailViewController.ViewPort; // for RowSelected
 SplitViewController = new UISplitViewController ();
 SplitViewController.Delegate = new MySplitViewDelegate (this);
 SplitViewController.ViewControllers = new UIViewController[]
 { TableViewController, DetailViewController };
 window.AddSubview (SplitViewController.View);
 }
 window.MakeKeyAndVisible ();
 return true;
}

The RowSelected method for the table is the only other method that requires customization
depending on the device. On the iPhone, when a row is selected, you need to push a new image
view onto the navigation controller stack (refer to Chapters 4 and 6 for more information about
navigating with tables). For an iPad the image view is already created in the other half of the split
view, so you simply need to reset the image file each time a row is selected.

Listing 13-15 demonstrates the two different approaches. The iPad-specific code uses the
ViewPort public field on the AppDelegate to allow the other half of the split view to be accessed
from this method.

listing 13-15: rowselected (iPad08\appDelegate.cs)

public override void RowSelected (UITableView tableView, NSIndexPath indexPath)
{
 if (!appd.IsIPad)
 { // iPhone, need to create and push new view controller
 var ivc = new MyDetailViewController (imagePath[indexPath.Row]);
 appd.navigationController.PushViewController (ivc, true);
 }
 else
 { // just create and set the image in the Split View
 image = UIImage.FromFile (imagePath[indexPath.Row]);
 imageView = (UIImageView)appd.ViewPort.Subviews[0];
 imageView.Image = image;
 }
 tableView.DeselectRow (indexPath, true);
}

The optimized Universal App looks just like Figure 13-14 when used on an iPhone; however, the
addition of the split view (as shown in Figure 13-16) makes a much better iPad user interface than
Figure 13-15.

302 ❘ chaPter 13 ProgrammIng the IPad

figure 13-16

With careful planning you can often reuse views for both iPhone and iPad display in a Universal
App. UISplitViewController and UIPopover both help to present iPhone-formatted (that is, 320
pixel wide) views on the larger iPad screen in a usable way while allowing them to be functional on
the iPhone as well.

summary

This chapter introduced you to the iPad and some of the new iPhone OS features that have been
introduced in version 3.2 to take advantage of the device’s large screen. The chapter covered:

An overview of the iPad hardware➤➤

A list of the new features of iPhone OS 3.2➤➤

Examples of the main new user interface elements: ➤➤ UISplitView and UIPopover

How to take advantage of the new ➤➤ UIGestureRecognizer

An example Universal Application that can run on both iPhone and iPad platforms from the ➤➤

one binary

The launch of the iPad has introduced a lot of new features to iPhone OS, and this chapter has pro-
vided working examples of the most important elements to build compelling iPad applications using
MonoTouch.

14
Just enough objective-C

what’s in this chaPter?

Looking at Objective-C and Cocoa➤➤

Using an academic approach versus a pragmatic approach➤➤

Learning basic syntax and concepts➤➤

Helpful cheat sheets➤➤

MonoTouch is appealing for many reasons. If you’re already a .NET developer, the utility is
obvious. If you’re accustomed to writing managed code (Java, Python, and so on), MonoTouch
is a sensible choice regardless of your level of experience with .NET. Whether you’re a Java
dev, a Python dev, or a VB dev, you’re used to working with tools and languages that do a lot
of the heavy lifting for you.

As far as object-oriented versions of C go, Objective-C is a fairly simple, straightforward
implementation. However, compared to other, more modern C-style languages, Objective-C
can seem arcane, verbose, and cumbersome. It isn’t a bad language by any means, but there’s a
reason you chose MonoTouch.

Why, then, is there a chapter on Objective-C in a MonoTouch book? Especially considering
that you likely chose MonoTouch in part to avoid learning Objective-C?

It would be nice if those of us who choose MonoTouch over the native dev stack could spend
all our time in the comfort of C#, the MonoTouch bindings, and the subset of the .NET
Framework it ships with, but the reality is that, the deeper you go with iPhone MonoTouch
development, the more likely it is you’re going to run up against a question or problem that
can only be addressed if you have at least a rudimentary understanding of Objective-C.

Novell did such a good job of creating a .NET development platform for the iPhone that it’s
easy to forget MonoTouch apps ultimately compile down to native binaries. When you do
fi nally encounter an issue that exists in the Objective-C runtime rather than in MonoTouch,

304 ❘ chaPter 14 Just enough obJectIve-c

you’re going to find yourself digging through Apple’s documentation rather than Novell’s.
Obviously, that documentation isn’t going to be presented in terms of MonoTouch and C#. At that
point, everything will be in Objective-C.

Although MonoTouch is growing in popularity, Apple’s dev tools are, and will remain, the standard
for iPhone app development. As such, if you want to take advantage of the majority of iPhone app
example code, whether to learn from it or incorporate it into your own work, an ability to mentally
parse Objective-C and translate it into C# is a useful skill to have even if you never intend to write a
line of Objective-C yourself.

Many third-party iPhone libraries will be provided exclusively in Objective-C. It’s easy to find
MonoTouch bindings for the most popular of these libraries, but it’s inevitable that, if you do end up
needing to use a third-party library, you will eventually find at least one for which Objective-C will
be the exclusive language in the documentation and sample code.

An ability to comprehend Objective-C is something that will come in very handy. The goal of this
chapter is to provide you with a reference and introduction to Objective-C that will help you acquire
that comprehension.

how to use this chaPter

You don’t need to learn Objective-C inside-out to be able to read and make sense of it. If you’re
comfortable with OOP concepts and C-style languages, which you likely are if you’re using
MonoTouch, the amount of time you need to invest is surprisingly small. That said, it’s also impor-
tant to be realistic when learning new things. Setting expectations accordingly helps you not to
become discouraged.

Being realistic, here are a few things to keep in mind as well as directions on how you might best
make use of the information here.

Many Objective-C tutorials and books go on and on about how simple Objective-C is. There’s some
truth to this if:

 1. You already know C. Not just a C-like language, but C itself.

 2. You’re familiar with Smalltalk (Objective-C was influenced by Smalltalk and has Smalltalk-
style messaging).

For the developer coming from C#, Objective-C does look a bit odd. Some of the terminology used
to describe the language will be foreign. Aspects of the Objective-C runtime, Objective-C conven-
tions, and so on, might temporarily make you feel like you’re learning to code all over again.

If you were to spend your life working in Objective-C, there are very real differences between how it
and, say, C#, work that you would benefit from learning. However, the syntax, jargon, runtime, and
so on, have, for the most part, analogs in C#. In the same way a Spanish speaker can get by with
reading Portuguese, a C# developer can, with a little help, get by with reading Objective-C.

If you’re interested in learning more about Objective-C than just how to read it, you can go through
this chapter from start to finish.

a Brief look at objective-C and Cocoa ❘ 305

If you’re in a hurry and trying to meet a deadline, and if part of meeting that deadline involves
making sense of Objective-C, your first stop should be the “cheat sheets” at the end of this chapter.
There you’ll find “translation tables” organized by keywords, syntax, concepts, and so on. The
information in those tables might be sufficient to get you through. If you need more information,
each table has a corresponding section in this chapter that goes into more detail.

Ultimately, whatever route you choose, don’t be too intimidated by the thought of learning about
a language that’s new to you and likely different from what you’re accustomed to. Expect to be
challenged. But, you’re a coder, and what coders do for a living is work with tools most people will
never see or understand. You absolutely can wrap your head around foreign syntax and conventions.
C# was strange to you once (if not C#, then whatever other language you began with).

Remember: you don’t need to be able to write Objective-C; you only need to be able to read it.
Armed with a decent phrasebook and multilingual dictionary, you can make your way through a
foreign country well enough. If you were moving to another country, it would pay to become fluent
in the language. But, when you’re only visiting, there’s no need to take it any further.

Use this chapter, then, as you might a travel guide.

a brief look at obJective-c and cocoa

Before learning to read/understand Objective-C and Cocoa, it helps to know what they are. It’s clear
enough from its name that Objective-C is an object-oriented version of C.

To clarify, Objective-C is C, but with an object-oriented layer built on top of it. You might expect,
then, that Objective-C will look and behave much like C itself. Though a reasonable assumption,
when you dig in a little, it will initially surprise you to learn all the ways in which they’re dissimilar.

C is a simple, if cumbersome, language. It can feel stiff, curmudgeonly, and stubborn; it can be
relentless and unforgiving. Someone’s first dip into C will introduce him or her to C’s cleanliness,
but also the fact that it’s like a house that’s been designed to be dangerous to newborns. Power out-
lets are well within reach, stove burners are left on, and you occasionally come across a gun with
which to shoot yourself in the foot. It teaches you to code well by being your drill instructor and
giving you little leeway.

Objective-C, as is covered in more detail later in this chapter, is powerful and, for most developers,
a much faster and easier way to write applications than straight C. You can still shoot yourself in
the foot and accidentally burn yourself from time to time, but it was designed in part to achieve that
increased productivity by being more forgiving. It comes with the potential dangers of C, and some
APIs for the iPhone are strictly C (no corresponding Objective-C framework), but most of a typical
iPhone app’s source will be a combination of C and Objective-C that borrows from the former to
provide a foundation to build on (basic data types like integers, if/for blocks, and so on), whereas
the latter creates a more developer-friendly way to take advantage of that foundation.

Compared to C, and even C#, Objective-C is also much looser when it comes to how certain things
are done. In C#, much functionality is enforced by the compiler. In Objective-C, many things, rather
than being subject to hard and fast rules, are done by convention. Constructors are a great illustra-
tion of the difference. In C#, there is a single, formal way to create constructors. In Objective-C, by

306 ❘ chaPter 14 Just enough obJectIve-c

convention, one implements equivalent functionality in initializers. Rather than creating an object
by invoking the process through a constructor, an Objective-C object, with a little help from the
developer (memory-management is simple in Objective-C, but not automatic), is created, and then
the developer explicitly calls a method on the newly created object — one of its initializers — that
carries out the duties a C# developer would usually place in a proper constructor.

The fact that so much is done by convention is one of the trickier aspects of Objective-C if you’re
used to a world that is run according to rules. That kind of flexibility can give you more power over
your code, but comes with a lot of responsibility. It puts developers in charge of things that, in more
formal environments, are governed by syntax and compilers.

As for Cocoa, it’s not so clear from its name what it is. The one thing you might already know is
that, wherever you go in the world of Objective-C, you’re all but certain to encounter Cocoa as well.
The two are linked in a way that could easily lead you to confuse one with the other.

Why is this? If Objective-C is the language, what’s Cocoa?

Fortunately, having already learned C# (or a similar language like Java), you’re familiar with the
separation of a language (C#) from its framework (.NET). Outsiders to C# tend to assume that C#
and the .NET Framework are the same thing. Of course, the .NET Framework is the set of libraries
that does the heavy lifting for your applications, and C# is one of the languages you can use to code
against that framework.

Objective-C and Cocoa have a similar relationship. Objective-C is the language, and Cocoa is basi-
cally the framework against which Objective-C developers write their applications.

Cocoa is to Objective-C what the .NET Framework is to C#.

In Objective-C terms, frameworks are called kits. As you explore the various iPhone frameworks
(UIKit, Game Kit, Map Kit), you’ll quickly learn and remember this.

The name Cocoa is also used as an umbrella term to refer to the core frameworks as well as frame-
works that provide additional functionality. Just as a C# developer might refer to an ASP.NET proj-
ect simply as a .NET project, an Objective-C developer might refer to Cocoa rather than the specific
kit he or she is using.

To make matters a little confusing, Cocoa for the iPhone is actually called Cocoa Touch. Cocoa
Touch is a version of Cocoa that has been designed specifically around the form-factor and capabili-
ties of the iPhone, iPod, and, more recently, the iPad. Much of the core functionality remains the
same, but there are differences in design that shift dependencies around, and the desktop versions of
Cocoa’s various kits have iPhone equivalents that have very different names (AppKit, for example,
which provides much of the core support for application development on the desktop, has an equiva-
lent on the iPhone called UIKit).

Differences aside, it’s perfectly acceptable to refer to Cocoa Touch simply as Cocoa. The context of
the conversation makes it clear that it isn’t the desktop version of Cocoa being discussed.

Purists might not care for using certain terms in ways that are technically incorrect, and that brings
us to the next section of this chapter.

academic Versus Pragmatic approaches ❘ 307

academic versus Pragmatic aPProaches

MonoTouch is an interesting place to be.

Although Objective-C is built on top of plain old C, what sets it apart is that it’s a layer of object-ori-
entation implemented in a message-passing, dynamic paradigm. With Objective-C, you can basically
pick up the phone, call an object, say whatever you’d like to it, and it’ll either answer or it won’t.

C#, on the other hand, began its life as a statically typed language. You couldn’t pick up the phone
and call a C# object at runtime, tell it whatever you wanted to, and then expect it to behave. For
the most part, if you could place a call to a C# object, you would have to “Press 1 to place an order,
press 2 to check the status of an order, press 3 to cancel and order, and, if you’d like to do anything
else, please call another object.” Functionality is baked in at compile time.

Objective-C, being built on top of C, isn’t purely dynamic. C#, which has been acquiring dynamic
features over the years, is no longer purely static. Each is an amalgam of methodologies, incorporat-
ing a little of this, and a little of that.

In the middle is MonoTouch.

You can now write statically typed code that gives you the benefits of compile-time error checking.
Some developers consider this a hindrance, whereas others like the idea of catching simple errors
due to typos before their apps are in the hands of customers.

Although MonoTouch isn’t nearly as widely known as Apple’s native developer stack, there’s a ten-
dency for Objective-C developers to butt heads with C#/MonoTouch developers in forums, at talks,
in letters to the editor, and anywhere else you might find the two worlds overlapping.

When the emotions and brand loyalties are stripped from the arguments, there’s usually nothing left.
However, in the cases where the stacks and their actual technical details are being discussed, they
can be pared down even further.

Ultimately, die-hard Objective-C developers tend to dislike it when Objective-C is talked about in
terms that don’t belong to the domain of languages based on messaging (Smalltalk, the inspiration
for Objective-C, being one such language). This is perfectly fair. There are significant differences in
how Objective-C works as opposed to how C# works.

A common example of a dispute-causing difference is when a C# developer says something like, “I
have an NSString object, and I’m trying to call its intValue method, but I’m getting an error…”

In Objective-C, one doesn’t “call methods.” Rather, “messages” are “sent” to an object. At runtime,
if the class the object is an instance of has a method implementation that can be reached by the mes-
sage being sent, the object instance will handle it and do its job. If an object, or “receiver,” doesn’t
“respond” to a message, meaning that it doesn’t have a corresponding method implementation, that
message could be ignored.

If you’re accustomed to languages like C#, and if that paragraph didn’t make much sense to you,
you aren’t alone. Developers might argue about the advantages of either paradigm, but developers
are also known for presenting their opinions as facts.

308 ❘ chaPter 14 Just enough obJectIve-c

Whether one system is better than the other doesn’t ultimately matter. Presumably, you’re a C#
developer, and you want to write apps for the iPhone using C#. With that in mind, the goal here
isn’t to teach you to code in Objective-C, but to teach you just enough that you’ll be able to mentally
parse Objective-C code and “translate” the associated jargon into terms you’re familiar with when
reading documentation.

The approach here, then, is pragmatic rather than academic. You have a job to do. The philosophy
and deeper explanations behind Objective-C are available should you choose to go on and learn
about the language for reasons beyond those presented here.

An aspect of the pragmatic method in this case is trying to map the closest concepts and terms
between the two languages, their runtimes, and frameworks. To return to an earlier example, as dif-
ferent as it might be to send a message as opposed to calling a method, sending messages and calling
methods are, to an app developer, basically the same thing.

basic syntaX and concePts

As discussed earlier, Objective-C is a set of object-oriented functionality built on top of C. As such,
much of the code in an Objective-C app, despite how different it can look, is C.

In those cases, C#, Java, Python, or any other number of languages, will have already familiar-
ized you with variable creation, flow-control, and other core details of coding. An if block in
Objective-C will be instantly recognizable.

The aspects of Objective-C most likely to trip you up are:

Initializers versus constructors➤➤

Sending messages versus calling methods➤➤

Reference-counting versus garbage-collection➤➤

What’s great about MonoTouch is that it, for the most part, lets you write C# as you normally
would, abstracting away the unfamiliar and presenting it to you in a manner so natural that you
might never have realized how differently things are done in Objective-C:

Initializers are implemented as constructors.➤➤

You call methods like you always would, not having to worry about what it means to “send ➤➤

a message” (for more information, see Chapter 11).

Reference-counting is hidden from you.➤➤

To read Objective-C, you still need to know a little about what this all means and how to parse it in
your head.

At this point, code is the easiest way to demonstrate the differences and how Objective-C concepts
map to C#.

Listing 14-1 shows a block of Objective-C. Take a look at it, allow yourself to be confused, and let
questions form in your mind. This will prime you for quickly learning how to see this code as C#.

Basic syntax and Concepts ❘ 309

listing 14-1: object Creation and initialization in objective-C

// Create and initialize our objects
NSString *aString = @”Hello, World”;
UILabel *aLabel = [[UILabel alloc] init];

// “Send a message”, accompanied by an argument, to “aLabel”
[aLabel setTextAlignment:UITextAlignmentLeft];

// Assign a string value to the label’s “text” property
aLabel.text = aString;

// Print formatted output to the console consisting of
// the string we assigned to the label’s “text” property
NSLog(@”The label’s text: %@”, aLabel.text);

As is sometimes the case with example code, this code doesn’t do much, but it does introduce some
of Objective-C’s idiosyncrasies.

Before I explain what’s going on here, take a look at the equivalent code in C# (using MonoTouch)
in Listing 14-2.

listing 14-2: object Creation and initialization in C#

// Create our objects using constructors
string aString = “Hello, World”;
UILabel aLabel = new UILabel();

// Assign a value to a property that wraps
// the Objective-C “message”
aLabel.TextAlignment = UITextAlignment.Left;

// Assign a string value to the label’s “text” property
aLabel.Text = aString;

// Print formatted output to the console consisting of
// the string we assigned to the label’s “text” property
Console.WriteLine(“The label’s text: {0}”, aLabel.Text);

These examples are extremely simple and don’t show off many of the benefits of MonoTouch,
but they’re more than enough to give you a base off of which to conduct your mental parsing of
Objective-C.

initialization
This line from Listing 14-1 is the string initialization in Objective-C:

NSString *aString = @”Hello, World”;

Here is the C# version from Listing 14-2:

string aString = “Hello, World”;

310 ❘ chaPter 14 Just enough obJectIve-c

The data types NSString and string (“string” being a C# shortcut to refer to System.String) are
functionally equivalent. They also both get special treatment as far as object construction goes, due
to the frequency with which strings are used in apps.

In the Objective-C version, you declare your variable’s type (NSString) and then assign it a string
value. There’s no manual allocation of memory, nor do you have to call a constructor, just like C#.

In Objective-C, a string literal always takes the format @”String value goes here.” The @ sym-
bol indicates that this is a compiler directive, all of which begin with the @ symbol. The purpose of
these directives is to notify the compiler that it has to do some work for you. In this case, that work
is to process the string literal’s convenience shortcut. The @ symbol isn’t used exclusively for this
purpose, as you’ll see in the string formatting section of the line that outputs the string value to the
console, but, outside a string literal, the @ symbol before a word indicates that the compiler has to
step in and help out. Mostly, it’s to handle drudgework for you (nobody wants to have to manually
create string objects again and again).

The * indicates that the variable you’re creating is a pointer to the location in memory where the
object is stored. Functionally, you can think of this as an everyday object in C#. Developers who
have never worked with pointers tend to fear them, but because you’re reading this code rather than
writing it, don’t let the * scare you.

In the C# version, the quotes alone act as the shortcut. The C# compiler “knows” what to do here.
You also don’t need to add a * because you don’t need to tell C# that your variable is ultimately a
reference to memory where your object is stored. It’s just understood.

The next line, repeated in the following code snippet, gets you right into the differences between
constructors and initializers. It also shows the syntactical differences between “sending messages”
and “calling methods.”

UILabel *aLabel = [[UILabel alloc] init];

Code like this is everywhere in Objective-C.

You declare your variable, along with its type, much as you would in C#. Where it’s dramatically
different is the code on the other side of the assignment operator (“=”).

You aren’t using new to create your object. The allocation of memory and object creation takes place
when you “send” the alloc “message” to the UILabel class. Somewhere up the food chain, the
Objective-C runtime sets aside memory for your object and returns a pointer to that object space.

It’s confusing for the moment on account of Objective-C’s syntax (which is addressed momentarily),
but, after you’ve received a pointer to your newly created object, you send it the init message. As
noted earlier, init is an Objective-C convention that performs the duties you would usually handle
in a C# constructor. An Objective-C class may have many initializers, and they’re named differently
depending on what special set each may contain. In C#, you would create multiple constructors,
each containing a different set of parameters to accomplish the same job. An example of this may
look like the following.

If you have a C# constructor that you define like this:

public MyClass(string theString)

Basic syntax and Concepts ❘ 311

then in Objective-C it would look like:

-(id)initWithString: (NSString *)theString;

For a constructor with an extra variable in C# it would look like this:

public MyClass(string theString, DateTime theDate)

In Objective-C, it would look like:

-(id)initWithStringAndDate: (NSString *)theString date:(NSDate *)theDate;

messages and methods
To return to the part of Objective-C’s syntax that will probably look the most foreign to you, take a
look at the square brackets (“[…]”).

Because Objective-C is built on top of C, and because dot-notation (which is used in C# for various
purposes, including accessing an object’s members) is already used by C for accessing the values of a
struct, something needed to be done to tell the compiler that you’re using an Objective-C object and
that you need it to do something.

The square brackets are what distinguish that code. The general format is
[variableName messageToSend];.

When the compiler sees the square brackets, it knows that you’re entering Objective-C territory; spe-
cifically, that you’re sending a message to an object instance.

Before continuing, let’s discuss what “message sending” is.

Pragmatically speaking (see “Academic versus Pragmatic Approaches,” earlier in this chapter),
“sending a message” to an object is basically the same thing as calling a method on a C# object.
Yes, the purists will want to point out how different the technical underpinnings are, but for your
purposes, it’s perfectly fine to say that sending messages is analogous to calling methods.

While reading documentation, books, posts, and so on, you might also run into the term “receiver.”
Again, pragmatically speaking, you can simply think of the “receiver” as being your object instance.

All together, when discussing Objective-C, if it’s written or said that, for example, “You’re sending
the init message to its receiver,” you can read it as, “You’re calling the object’s init method.” If
you say it out loud, you’ll get kicked out of the Objective-C club, but at least you’ll understand in C#
terms what’s being said.

Now, you also likely noticed that the line contained nested square brackets. In C#, this would be
similar to chaining methods together using dot-notation.

To translate, you’d take this snippet of Objective-C:

[[variableName messageToSend] anotherMessageToSend];

and translate it into C# like so:

someVariable.SomeMethod().AnotherMethod();

312 ❘ chaPter 14 Just enough obJectIve-c

The fi rst few times you look at the Objective-C syntax, you might feel like your head is going to
explode. It’s certainly different from C#, but concerns about head explosions will be allayed over
time as you grow more familiar with Objective-C.

Something that will take a little more getting used to is the way arguments are passed in
Objective-C. Consider the following code from the Listing 14-1 example:

// “Send a message”, accompanied by an argument, to “aLabel”
[aLabel setTextAlignment:UITextAlignmentLeft];

Once again, you’re looking at the square brackets that indicate you’re sending a message to a
receiver (from here on out, to familiarize you with it, Objective-C terms are used when discussing
Objective-C, provided the terms has already been explained).

What’s different is that you’re passing an argument along with the message you’re sending.

You’ve established that messages can be thought of as C# methods. In this code snippet, the mes-
sage you’re sending to the receiver (aLabel) is setTextAlignment:. Note the colon at the end of the
message. The colon indicates that what follows is an argument. In C#, you would call the equivalent
method and then, rather than appending a colon followed by your argument, you’d place the argu-
ment inside parentheses.

In this example, the argument you’re passing is a value that tells your label you want all text to be
left-justifi ed.

The following is the equivalent code in C# (although the MonoTouch binding wraps the
setTextAlignment: message in a property, for the sake of this example, you’re going to pretend
it was bound instead as a method).

// Call the SetTextAlignment method on the “aLabel” object with an argument
aLabel.SetTextAlignment(UITextAlignment.Left);

An important distinction is that, in Objective-C, the colon that precedes the argument is part of
the message name. If an Objective-C message can take an argument, when typing out the message
name, the colon must be included. Some of the dynamic functionality of Objective-C allows you
to choose messages at runtime to send to a receiver. If the means by which you’re taking advantage
of this dynamic feature requires that you fi rst notify the runtime of the message name (usually as a
string value), if the message takes an argument, you must append the colon. The colon, then, is part
of the signature.

The Objective-C runtime wouldn’t know that the message you’re calling takes
an argument without the colon, and the result would usually be an error that’s
diffi cult to track down. It’s easy to forget this rule, so do your best to burn it
into your mind.

Moving on, the syntax for assigning and retrieving values to/from properties in Objective-C is
similar enough to C# that it doesn’t require explanation. It’s the one place in Objective-C where
dot-notation is used, so it’s easy to spot. The only thing to watch out for is whether the operation in

Basic syntax and Concepts ❘ 313

question is on an Objective-C object or a C struct. Typically, this doesn’t represent much of a prob-
lem, because it’s clear from context which it is. If you’re accessing the text property of a label, for
example, you’re clearly working with an Objective-C object. C structs act strictly as data models;
they do not have methods. In the example code, aLabel is sent a message, so you can see that it is
not a struct. In Objective-C 2.0, dot notation for property values were added so instead of

[label setText:aString];

you can now just write

label.Text = aString;

Another clue is that, because labels are common UI components, and because most iPhone app
UIs are created using members of the Objective-C based UIKit, you can infer that aLabel is an
Objective-C object.

The last line of the Objective-C example shows where C and Objective-C can mix. NSLog takes its
arguments within parentheses, so it’s a plain old C function. But, because it’s a function written spe-
cifically for Objective-C, it “knows” what to do with the Objective-C objects and values it’s passed.
As a MonoTouch developer learning to read Objective-C, you don’t need to worry about how this is
done. Still, it doesn’t hurt to have some idea of how Objective-C and C can coexist like this. Simply
put, the Objective-C runtime is a library written in C. Anything you can do with Objective-C syntax,
you can also accomplish by coding directly against the Objective-C runtime library. It’s tedious and
cumbersome and something few app developers will ever have to do, but that’s how they would do it.

memory management
The last aspect of Objective-C that’s most likely to confuse you at first is its memory-management.

Based on reference-counting, Objective-C’s method of managing memory leaves the developer with
a lot of control and responsibility over when an object should be created and when it should be
destroyed. On the desktop, Objective-C supports garbage collection (as of Objective-C 2.0). It is
not, however, available on the iPhone. This is one of the many things MonoTouch does for us. And
although reference-counting is trivially simple compared to other methods of non-GC memory-
management, it still requires that a developer be cautious and extremely methodical while writing
iPhone apps in Objective-C.

If you’ve ever used an iPhone app for a few minutes and then had it crash on you, it’s likely that the
developer wasn’t paying enough attention to managing memory, and a leak resulted in depletion of
system resources. That scenario prompts the OS to shut the app down before it takes everything and
brings the device to a halt, likely requiring a reboot. Hence, the crash.

As a MonoTouch developer, you’re fortunate in that you can generally safely ignore any reference-
counting you find in the Objective-C source you’re reading.

Here’s a list of messages involved in reference-counting:

retain➤➤

release➤➤

autorelease➤➤

314 ❘ chaPter 14 Just enough obJectIve-c

When you see these messages, feel free to discard them when mentally translating to C#.

In terms of implementation, reference-counting doesn’t go away just because of MonoTouch, but
because MonoTouch handles it for you, you can skip over those three messages and continue men-
tally parsing without concern.

It isn’t inconceivable that there will be times when you do need to be aware of how memory is being
handled in a particular block of Objective-C, but, for now, be happy that the burden has all but
been taken off your shoulders.

Incidentally, the number of bugs in your apps, and, in turn, the number of crashes your users are likely
to encounter, decreases tremendously because of what MonoTouch does for you. Even seasoned, expert
Objective-C developers routinely make mistakes where memory-management is concerned.

When you belong to a demographic that’s known for staying up for several days straight, drinking gal-
lons of caffeinated beverages to remain alert, becoming sloppier by the minute, and constantly being
“almost done with this feature,” the benefits of having a tool like MonoTouch cannot be overstated.

Once you’ve become comfortable with the syntactical and conceptual issues you looked at in this
section, you should have just enough of an understanding of Objective-C to be able to determine
well enough what’s going on.

For the rest, the “cheat sheets” in the following section should help you with the smaller-picture
issues you’ll encounter along the way (terminology, compiler directives, and so on).

cheat sheets

This section consists of a series of quick-reference translation tables organized by aspects of
Objective-C and their corresponding C# analogs:

Terminology➤➤

Compiler Directives➤➤

Data Types➤➤

The tables are organized by these categories and then in alphabetical order for the term/data type
and so on.

Sometimes there isn’t a C# equivalent for an item. In those cases, an explanation of the closest con-
cept will be given, as well as whether or not it’s something you need to worry about. There are a few
things that can simply be ignored.

It’s important to remember that these tables are meant to be a quick way to find the closest C# ver-
sion of an aspect of Objective-C. The technical underpinnings may vary widely, but for getting the
gist of what’s going on, these tables will help.

terminology
In French, “sensitive” has the same meaning as the English word “sensible,” and the word “sensible”
has the same meaning as the English word “sensitive.” The two languages have many things in com-
mon, and that often helps, but sometimes those commonalities are the source of confusion.

Cheat sheets ❘ 315

The same is true for any true programming languages, but even more so in this case. Objective-C
and C# are both object-oriented languages, but how they’re implemented differs enough that to
properly speak about one or the other requires independent sets of jargon.

Table 14-1 contains terms you’re likely to encounter in documentation or publications on
Objective-C, and how to translate those terms into what you would likely find in C# documentation
when analogous concepts are being discussed.

table 14-1: Terminology in Objective-C and C#

in obJective-c... in c#... notes

Attributes N/A In C#, attributes are used to provide metadata about a class .
In Objective-C, attributes apply specifically to properties . They
give the compiler information on how to generate a property
(whether it should be treated as a value type, a reference type,
and so on) .

Categories Extension
Methods

Almost identical in use . You also might encounter the term “cat-
egory method .” The word “categories” in Objective-C typically
refers to a group of “category methods .” Also note that the con-
vention is for categories to be defined in files that follow the nam-
ing convention ExtendedType+CategoryName.h/.m . So, for
NSString, you might see NSString+JSONParsing.h/.m . What
follows the “+” is a short name that describes what the category
methods are for . In this case, you should expect the category to
add methods to NSString for parsing JSON . It isn’t always so
clear, though, because some developers are better at descriptive
naming than others .

“Conforms to…” “Implements
interface…”

In C#, we say that a class implements an interface . In
Objective-C, interfaces are called protocols, and classes are
said to “conform” to a protocol . So, if an Objective-C class “con-
forms to the XYZ protocol,” it’s basically the same as saying that
a C# sharp class “implements the XYZ interface .”

Delegates Events Many Objective-C types have a property called “delegate”
to which a protocol (an interface in C#) implementation is
assigned . The implementation can exist in the current class
(someObject.delegate = self) or in another object
entirely . Functionally, Objective-C delegates implement meth-
ods that would be events in C# . Where it makes sense, some
Objective-C delegates have been bound as C# events in
MonoTouch, making the experience feel much more natural to
C# developers .

continues

316 ❘ chaPter 14 Just enough obJectIve-c

in obJective-c... in c#... notes

Interfaces Class
definition

In Objective-C, an interface (see @interface in Table 14-2)
specifies the class name, superclass, which protocols (interfaces
in C#) it implements, its local instance variables, method defini-
tions, and properties . It goes in the class’s header file . In C#, the
class definition and its implementation are the same .

Messages Methods Wherever “messages” are discussed, it’s safe to think of them
as C# methods . Though there are differences, for the purposes
of reading Objective-C, you can usually get away without having
to consider these differences .

Properties Properties Though properties are similar between Objective-C and C#,
their purposes can be quite different . In Objective-C, properties
don’t just generate getters and setters for local instance vari-
ables, but can also handle some of the repetitive drudgework
of Objective-C, such as reference-counting . Because C# is
garbage-collected, and because MonoTouch takes care of
reference-counting for us, the particulars of Objective-C’s
property implementation don’t matter much to the C# devel-
oper . One thing to remember is that Objective-C properties
are always accessed via “self” (the equivalent of C#’s “this”) .
It’s also the only place Objective-C makes use of dot-notation
(self.propertyName = someVariable) .

Protocols Interfaces An Objective-C protocol is very similar to a C# interface, but
with one important exception: Objective-C protocols can be
partially implemented . With Objective-C 2 .0, developers can
now specify that a method is required (see @optional and
@required in Table 14-2) . However, traditionally, Objective-C
protocols don’t require full implementation .

Receivers Object
instances

In Objective-C, you “send messages,” and those messages go
to a “receiver .” In C#, you “call methods” on an “object .”

Selectors Methods Like messages, the C# developer can safely think of selectors
as methods . The distinction becomes important when working
with the Objective-C runtime . For more information, see Chapter
11 on creating MonoTouch bindings .

compiler directives
As discussed in the “Basic Syntax and Concepts” section, compiler directives, which are preceded by
the “@” symbol, tell the compiler that there’s work for it to do.

table 14-1 (continued)

Cheat sheets ❘ 317

Sometimes, a compiler directive is intended to replace code that, were it written by the developer,
would be more or less identical regardless of the app being written. The first directive listed — that
for string literals — is a good example. Strings are used often in app development, and developers
shouldn’t have to write the code to manually instantiate a string (unless there’s a specific reason to
do so, which, with strings, is often not the case). So, the @”” directive frees the developer from hav-
ing to write that repetitive code.

In other cases, compiler directives can provide metadata. They can represent code that would be
tedious to write that the compiler can safely generate for you.

Whatever function they perform, they’re instructions that serve a purpose at compile time.
Table 14-2 contains these compiler directives.

table 14-2: Compiler Directives in Objective-C and C#

obJective-c aPPlies to... c# descriPtion

@”string” Data Types “string” The only significant difference between string
literals in Objective-C and string literals in C#
is the “@” symbol that precedes the literal in
Objective-C . Otherwise, the two maybe be
treated equally .

@catch() Exception
Handling

catch Functionally equivalent .

@class Data Types using @class is used in Objective-C when refer-
encing a data type that hasn’t been defined
in any of the header files referenced by the
current class . It’s a way of telling the compiler
that the data type exists, but to resolve it at
runtime .

@dynamic Properties None When properties are declared in Objective-C,
the compiler expects to find a corresponding
implementation in the class body . Sometimes a
property implementation is created at runtime .
@dynamic tells the compiler not to look for
implementations for the specified properties .

@end Classes/
Interfaces/
Extension
Methods

} @end allows the compiler to recognize the
end of an Objective-C definition . Translating
to C# is as simple as substituting a closing
curly-brace

@finally Exception
Handling

finally Functionally equivalent .

continues

318 ❘ chaPter 14 Just enough obJectIve-c

obJective-c aPPlies to... c# descriPtion

@implementation Classes Class
definition

Objective-C splits a class definition and its
implementation between two files (“ .h” and
“ .m”) . C# combines these in the same file .
The C# equivalent is the beginning of a class
definition .

@interface Classes None Not to be confused with C#’s interface key-
word, @interface begins an Objective-C
class definition (found in a class implementa-
tion’s header file) . C# basically combines
@interface and @implementation in one
line (public class ClassName...) .

@optional Interfaces None Indicates that the specified methods in an
Objective-C protocol (analogous to a C# inter-
face) don’t have to be implemented . There is
no equivalent in C# .

@private Scope private Functionally equivalent .

@property Properties property An Objective-C property consists of a definition
and implementation . The @property directive
goes in a class’s header file . It specifies the
property’s attributes (in parentheses), data type,
and name . Its implementation is either gener-
ated automatically (see: @synthesize) or at
runtime (see: @dynamic) .

@protected Scope protected Functionally equivalent .

@protocol Interfaces interface An Objective-C protocol is roughly the
same as a C# interface, and may be treated
as such . The primary difference is that
Objective-C has support for interfaces

@public Scope public Functionally equivalent .

@required Interfaces None Indicates that the specified methods in an
Objective-C protocol (analogous to a C#
interface) must be implemented . There is no
equivalent in C# .

table 14-2 (continued)

Cheat sheets ❘ 319

obJective-c aPPlies to... c# descriPtion

@synthesize Properties None Found in the class implementation file,
@synthesize tells the compiler to
automatically generate the getters and
setters for a property . In C#, this is
done on a case-by-case basis
(property PropertyName { get; set; }).

@throw Exception
Handling

throw Functionally equivalent .

@try Exception
Handling

try Functionally equivalent .

data types
For the most part, the C# equivalent to a data type in an Objective-C application will be obvious
either by name or context. Objective-C actually adds very little on top of C. Most of the differences
are in Cocoa, and it’s fairly easy to determine the C# equivalents of those types as well (NSArray
can be represented as a List, an NSDictionary as a Dictionary, and so on).

Where things get confusing is when you encounter an Objective-C type that has no C# counterpart
or for which C already seemed to have a perfectly good data type.

Table 14-3 is for those times.

table 14-3: Unknown Data Types in Objective-C and C#

obJective-c c# eXPlanation (if needed)

BOOL bool

IBAction None Used by Interface Builder to connect UI component “events” to
Objective-C methods .

IBOutlet None Used by Interface Builder to connect UI components to local
instance variables in Objective-C classes .

id var/object The go-anywhere-and-do-anything generic pointer .

nil null

NO false

YES true

320 ❘ chaPter 14 Just enough obJectIve-c

summary

Objective-C comes in handy for both reading and learning from various Objective-C articles
and books. Although it is not necessary to learn Objective-C at all, it’s key to understanding the
Objective-C-based iPhone SDK and all the documentation provided by Apple on the SDK. This
enables you to quickly figure out how to convert Objective-C sample code into C# in no time at all.

15
The app store: submitting and
Marketing Your app

what’s in this chaPter?

Getting your app ready to submit➤➤

Submitting your app➤➤

Promoting and profi ting from your app➤➤

After hours of wire framing, designing, developing, and testing, you are fi nally ready to share
your app with the world. This chapter discusses all things App Store. First, it talks about the
process that you need to go through before you are ready to submit — this includes fi nal test-
ing with Ad-Hoc builds and a presubmission checklist. Next it addresses actually submitting
to the App Store, and then fi nally what to do with your app after it’s in the App Store. This
chapter also touches on alternative monetization strategies such as ads or in app purchases.

using an ad-hoc build for Presubmission testing

Before you jump right into submitting and marketing in the App Store, you need to make sure
a few items are covered. Apple has a notoriously stringent review process where it tests your
app on a variety of hardware in a variety of conditions. So before I submit my apps, I like to
run them through a similar process.

Now, most people don’t have the whole family of iDevices laying around. This is where the
Ad-Hoc build comes in. Doing an Ad-Hoc build allows you to send your app to up to 100
people and have them install it on their device. If you can, try to fi nd a variety of devices to

322 ❘ chaPter 15 the aPP store: submIttIng and marketIng Your aPP

test your app on, at the minimum at least test on iPhone and iPod Touch; but if you have access to
additional people try to get at least one from each generation of currently released iDevices.

When I am trying to find users to test my Ad-Hoc builds, the first place I look is my Twitter or
Facebook friends. If you have a decent size network on either of these services, chances are you can
find several types of iDevices among those people. So I usually send out a message asking for vol-
unteers to help me test. People are generally very eager to help; they like the idea of having the soft-
ware before it’s in the App Store, and it gives them a sense of being special. Additionally, head over
to some of the iPhone Developer forums, my favorite happens to be http://iphonedevsdk.com/
forum/. Lots of these forums have specialized sections where people can ask for or volunteer to be
an Ad-Hoc tester. If you are looking for someone local who you can meet with face-to-face and give
some feedback, try Craigslist. Another great resource for finding local testers is Tweetups. These are
Meetups that are organized over Twitter. They are usually filled with tech-savvy people who would
be more than willing to jump in and help on a project.

However, before you can have someone test your app you need their UDID (Unique Device
Identifier). Every iPhone or iPod Touch has a sequence of letters and numbers that is unique to each
device. An example UDID might look like this: 7bkls09tqep3674lp0747hxzp4d9k301nf523jh7. I
am sure you are wondering why you need the UDID to install your program — this is because Apple
requires only App Store-approved applications be installed on the iPhone/iPod Touch. By providing
the UDID, Apple can then grant permission for the app to be run on specific devices. This is Apple’s
way of allowing beta testing without having to approve each version of your application.

getting a udid from your testers
You can easily get the UDID from your testers in two ways.

The easiest way is to point them to Erica Sudan’s free Ad Hoc Helper App (http://appsto.re/
adhochelper). Your testers can install this, and as soon as they run it, a Compose Mail Dialog is
presented with their UDID in the body of the message. Provide them with an e-mail address to send
their UDID to and they are done.

The other way to get the UDID involves using iTunes.

 1. Instruct your testers to open iTunes and connect their phone (see Figure 15-1).

 2. Direct them to the Summary tab in the right pane. This is the tab that contains the informa-
tion about their phone such as name, capacity, software version, serial number, and phone
number.

 3. When they click the serial number, it reveals their device’s UDID (see Figure 15-2).

 4. They can now copy the UDID to their clipboard by selecting Edit➤➪➤Copy (see Figure 15-3).

 5. Now they can paste that in an e-mail or use a contact form to get you their UDID.

http://iphonedevsdk.com/forum/
http://appsto.re/adhochelper
http://appsto.re/adhochelper

Using an ad-Hoc Build for Presubmission Testing ❘ 323

figure 15-1

figure 15-2

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

324 ❘ chaPter 15 the aPP store: submIttIng and marketIng Your aPP

figure 15-3

making ad-hoc Provisioning Profiles
Now that you have gathered the UDID from your users, you need to log in to the iPhone Dev Center
(http://developer.apple.com/iphone). Once you are there, navigate to Devices and select Add
Device. See Figure 15-4.

figure 15-4

http://developer.apple.com/iphone

Using an ad-Hoc Build for Presubmission Testing ❘ 325

Under Device Name add your tester’s name (this is only for your own personal reference). Under
Device ID input the UDID for that user. If you need to add additional users click the green plus sign;
otherwise, you can hit Submit if you are done.

The last step in making an Ad-Hoc build that can be installed on your testers’ devices
is creating a provisioning profi le. In the iPhone Developer Program Portal navigate to
Provisioning➤➪➤Distribution, click New Profi le, and then select Ad-Hoc for the Distribution Method.
In the Profi le Name type your application name (that is, monotouchapp). In the App Id select the
name of your app. Select all of the devices that you would like this code to run on, and click Submit
when you are done. You need to hit Refresh at least once (sometimes Apple’s server might be behind
and you may need to hit it multiple times); you will then see the download button. Now download
the provisioning profi le. I save this in my MonoTouch app’s /bin directory, so that I can keep all of
my fi les together; but you can put this anywhere that you want. Keeping the provisioning fi le in your
/bin directory will make it easier for you later when you package your Ad-Hoc builds.

building an ad-hoc version of your app
You need to make a special build of your app that can be used along with the Ad-Hoc provisioning
profi le that you created so that your testers can use your app on their devices.

adding a new Confi guration for ad-Hoc
Before you can make an Ad-Hoc build you need to add a new confi guration to MonoDevelop for
distribution. You must do this for the solution and for each project in the solution.

Select Project➤➪➤Solution Options from the menu, and you will be presented with the Solution
Options dialog box. Select the Confi gurations panel and click the Add button. In the New
Confi guration dialog pick a name for the confi guration, such as AdHoc, and make sure that the
Platform fi eld is set to iPhone.

To save you the step of having to perform this action for each project in your
solution, simply check the box Create confi gurations for all solution items.

Changing the signing options for the Confi guration
In the Project Options dialog, select the iPhone Bundle Signing panel, and using the drop-downs at
the top of the panel, select the confi guration for which you wish to edit signing settings. This should
be the confi guration you created in your previous step, in this case AdHoc. You will need to repeat
this process for each of the projects that are in your solution.

Pick an identity for signing your application. This should be the distribution identity that you
obtained from Apple’s iPhone Developer portal when you created your distribution certifi -
cate. Choose Distribution (Automatic) if you want MonoDevelop to select the correct identity
automatically.

326 ❘ chaPter 15 the aPP store: submIttIng and marketIng Your aPP

Pick the Ad-Hoc provisioning profi le that you have created for your application that you obtained
from Apple’s iPhone Developer portal. MonoDevelop only lists the provisioning profi les that are
associated with the identity you have selected.

Custom entitlements.plist
One way that an Ad-Hoc build differs from a build for the App Store is the need for an
Entitlements.plist fi le. Add a new Entitlements.plist fi le to your project by choosing File➤➪➤

New➤➪➤File➤➪➤iPhone➤➪➤iPhone Entitlements. You will then need to open Entitlements.plist and
disable the get-tasks-allow entitlement. This prevents the debugger from attaching to your applica-
tion, which is required for Ad-Hoc distribution.

reviewing Bundle settings
Before you actually build the app you need to review the bundle settings to ensure that they are cor-
rect for this app. To do this:

 1. Select the iPhone Application pane.

 2. While you are here you want to ensure that you have set a display name and version number,
and that the bundle identifi er matches the bundle identifi er that is part of the provisioning
profi le. You also specify your 57x57 app icon on this screen.

 3. Now you need to switch over to the iPhone Build Signing pane and add the Entitlements
.plist fi le that you created in the previous step to the Custom Entitlements fi eld in the code
signing options. Make sure that you do this only for the Ad-Hoc distribution confi guration.

Building the Project
After completing the preceding steps you can now proceed to making your Ad-Hoc build. Before
starting the build process in MonoDevelop, switch your active build confi guration to the new profi le
you set up earlier (AdHoc).

Then build the project. You can then fi nd the build bundle by going to the project folder /bin (the
default location) or where you have pointed the output for your Ad-Hoc confi guration. This will be
shown in the Output pane of MonoDevelop. You will need to send both the app and the Ad-Hoc
provisioning profi le that you created to anyone that you want to test this app.

Packaging your ad-hoc build
You have your Ad-Hoc build ready to go; now you need to actually get it to your testers. Your testers
will need both the app and your Ad-Hoc provisioning profi le. You have two options: You can make an
.ipa of your app, where iTunes will handle the unzipping, or you can make a .zip of your app.

If you have testers that are on Windows machines, including an .ipa is the pre-
ferred method because iTunes handles the decompression.

Using an ad-Hoc Build for Presubmission Testing ❘ 327

The .zip Method
If you have selected the .zip method, you will need to send your testers the following: YourApp
.app compressed in a .zip file along with the file YourApp_AdHoc_Provisioning_Profile
.mobileprovision.

I usually send these two files to testers via e-mail. Note, however, that some e-mail providers may
not let you send the AppName.zip because it contains a binary file. If this is the case, upload your
files to an FTP server and send your testers a link. Installing an Ad-Hoc build is much like installing
a normal iPhone app.

 1. If you have the .zip and .mobileprovision files in an e-mail, save them to a convenient
location, such as your desktop.

 2. Drag and drop the .mobileprovision file onto Library➤➪➤Applications in iTunes. On the Mac,
you can just drag it to the iTunes icon in your dock (Figure 15-5 shows this in Windows).

 3. Extract the .zip file. To do this, right-click the .zip file and select Extract All... (see
Figure 15-6). Step through the wizard and accept the defaults by clicking Next. Windows Vista
Users: The built-in Extract All... command corrupts the application so that it cannot be installed.
You should try using a different zip program like WinZip or WinRar to extract the zip file.

 4. Find the .app folder (usually AppName.app) (see Figure 15-7).

 5. Drag and drop the whole .app folder onto Library➤➪➤Applications in iTunes. On the Mac,
you can just drag it onto the iTunes icon in the dock (refer back to Figure 15-5).

 6. Verify that the application shows up in Library➤➪➤Applications. Note that it will not have its
normal icon (see Figure 15-8).

figure 15-5 figure 15-6 figure 15-7

328 ❘ chaPter 15 the aPP store: submIttIng and marketIng Your aPP

figure 15-8

 7. In iTunes, select your device under Devices, choose the Application tab, and make sure that
the new application is checked (see Figure 15-9).

figure 15-9

 8. Now sync your iPhone/iPod Touch as you normally would. After the sync is complete, the
new Ad-Hoc app will appear as a regular application on your device.

The .ipa Method
To create an .ipa, move your AppName.app directory into a new directory called Payload and then
zip the Payload folder and change the file extension to .ipa.

 1. If you have the .ipa and .mobileprovision files in an e-mail, save them to a convenient
location, such as your desktop.

 2. Drag and drop the .ipa and .mobileprovision files onto Library➤➪➤Applications in iTunes
(see Figure 15-5). On the Mac, you can just drag them to the iTunes icon in your dock.

 3. Verify that the application shows up in Library➤➪➤Applications. Note that it will not have its
normal icon (see Figure 15-8).

Prepping for submission ❘ 329

 4. In iTunes, select your device under Devices, choose the Application tab, and make sure that
the new application is checked (see Figure 15-9).

 5. Sync your device and try out the new app!

PrePPing for submission

Before you can release a paid app to the App Store, there are several steps you must take. First, you
must agree to all of the paid app contracts, and submit your tax and bank routing info. For best results
you should do this before you even begin working on your apps. These contracts have an approval
process that they must go through and can sometimes take several weeks to be approved by Apple.

building a distribution version of your app
The MonoTouch team has done a great job on making the process of building for distribution in
MonoDevelop mimic closely the process in Xcode to make it possible for you to follow Apple’s
instructions for building for distribution.

Note that you can also export your project to Xcode using the Run➤➪➤Debug in
Xcode command, and follow Apple’s instructions for code signing for distribu-
tion in Xcode.

adding a new confi guration for distribution
Before you can make a distribution build you need to add a new confi guration to MonoDevelop for
distribution. You must do this for the solution and for each project in the solution.

Select Project➤➪➤Solution Options from the menu, and you are presented with the Solution Options
dialog box.

Select the Confi gurations panel and click the Add button. In the New Confi guration dialog pick a name
for the confi guration, such as Distribution, and make sure that the Platform fi eld is set to iPhone.

Again, to save you the step of having to perform this action for each project in
your solution, simply check the box Create confi gurations for all solution items.

As with your solution you would then select the Confi gurations panel and click the Add button. In
the New Confi guration dialog use the same name for the confi guration that you used in your solu-
tion, such as Distribution, and make sure that the Platform fi eld is set to iPhone, just as it was in
your solution.

330 ❘ chaPter 15 the aPP store: submIttIng and marketIng Your aPP

changing the signing options for the confi guration
In the Project Options dialog, select the iPhone Bundle Signing panel, and using the drop-downs at
the top of the panel, select the confi guration for which you wish to edit signing settings. This should
be the confi guration you created in your previous step, in this case Distribution.

Pick an identity for signing your application. This should be the Distribution identity that you
obtained from Apple’s iPhone Developer portal when you created your distribution certifi cate. Choose
Distribution (Automatic) if you want MonoDevelop to select the correct identity automatically.

Pick the distribution provisioning profi le that you have created for your application that you
obtained from Apple’s iPhone Developer portal. MonoDevelop only lists the provisioning profi les
that are associated with the identity you have selected.

reviewing bundle settings
Before you actually build the app you need to review the bundle settings to ensure that they are cor-
rect for this app. To do this, select the iPhone Application pane. While you are here, ensure that you
have set a display name and version number, and that the bundle identifi er matches the bundle iden-
tifi er that is part of the provisioning profi le. You also need to specify your 57x57 app icon on this
screen.

building the Project
After completing the preceding steps you can now proceed to making your distribution build. Before
starting the build process in MonoDevelop, switch your active build confi guration to the new profi le
you set up earlier (Distribution).

Then build the project. You can then fi nd the build bundle by going to the project folder /bin. All
that you need to submit to Apple is the app compressed in a .zip fi le.

Once again, the app could be somewhere other than the /bin folder: It will be
wherever you decided to put it, shown on the Output pane in the project options.

Presubmission checklist
The following checklist covers the basic steps you need to address prior to submitting your app.

 1. Complete all Ad-Hoc testing.

 2. In an Xcode app, this is where you need to make sure that you update the Info.plist fi le in
your app. Luckily MonoDevelop handles all of this for you, with the information that you fi ll
out in the Application Bundle and Application Signing Panes.

 3. Set the bundle identifi er (if you haven’t already) to YourAppName. The identifi er should not
contain spaces or special characters — alphanumeric characters and dashes are okay.

Prepping for submission ❘ 331

 4. If you want your app to be named something different on the actual device than its name in
MonoDevelop, change the Bundle Display Name as well.

 5. Update the bundle version. If this is your first time submitting this app, the version number
should probably be 1.0.

 6. Be sure the icon file is set (this should be a 57x57 .png file).

 7. Write a description for your app for the App Store. The app upload page says the description
should be 700 characters or less, but that limit doesn’t seem to be enforced.

 8. Choose a numeric SKU for your app. This can’t be left blank, and it has to be a unique num-
ber for each of your apps. (I usually use YYMM, like 0902, but you can use whatever you
want as long as it’s a number.)

 9. Assemble your screenshots. You’ll need at least one primary screenshot, and up to four more
secondary screenshots. Be sure they’re the right size (320x480 for portrait or 320x460 for
landscape).

 10. Prepare your iTunes artwork. This is a 512x512 pixel, 72dpi JPEG. It should match your
icon artwork as closely as possible — apps are sometimes rejected if these two images are
dissimilar.

submitting via itunes connect
Now that you have run through your pre-submission checklist and gotten all those items out of the
way, you are ready to submit the app via iTunes Connect. When you log in to developer.apple
.com/iphone, there’s a link to iTunes Connect on the right. Once you’re logged in to iTunes
Connect, click Manage Your Applications and then Add New Application.

The app info page asks for your app name, description, copyright info, version number, SKU, appli-
cation URL and support URL, and support e-mail address (all of these are required). The URLs you
enter translate as follows:

itunes connect calls it: what it shows on your aPP’s Page in itunes:

Application URL Company Name Web Site

Support URL Appname Support

If this is your first time uploading an app to the App Store, and you enrolled as an individual devel-
oper, you’ll be asked if you want to set a Company Name. Think carefully about this — once you
set it, you cannot change it without calling Apple and going through its phone support line. If you
set a company name, all of your apps will show it.

The app upload page is where you upload the goods: your app (the .zip file of the compiled binary),
the iTunes artwork JPG, and your primary and secondary screenshots. When uploading your sec-
ondary screenshots, you should upload them in reverse of the order you want them to appear in the
App Store. For example, if you have screenshots named ss1.jpg, ss2.jpg, ss3.jpg, and ss4.jpg, you’ll
enter ss1.jpg as the primary screenshot, then add (one at a time) ss4.jpg, ss3.jpg, and ss2.jpg to the
secondary screenshots fields.

developer.apple.com/iphone

332 ❘ chaPter 15 the aPP store: submIttIng and marketIng Your aPP

You also need to provide the following information on the upload page:

Ratings:➤➤ You’ll be asked to rate your app by indicating whether it includes any offensive
material.

Pricing and availability:➤➤ This is where you set the price and release date for your app. You’ll
get a chance to review this after you select a pricing tier. The page should show a link to
the pricing tiers, but if it doesn’t show one initially, just set the price to anything and let it
refresh. The link should show up then. The pricing tiers as offered by Apple are as follows:

Free➤➤

Tier1 — 0.99➤➤

Tier 2 — 1.99➤➤

Tier 3 — 2.99➤➤

Tier 4 — 3.99➤➤

Tier 5 — 4.99➤➤

Tier 6 — 5.99➤➤

And so on.➤➤

Release date:➤➤ This defaults to the present day, but you can set it to a date in the future if
you like.

When your app gets approved, log back into iTunes Connect and reset the
release date to the approval date; that way the app shows up at the top of the
new releases section of its category. If you fail to do this, when your app gets
approved, it shows up buried several pages down — not very desirable.

If you’re submitting an app update, however, you shouldn’t touch the release
date until you get word that your update has been approved. If you change the
release date of an update to sometime in the future, your current app vanishes
from the App Store!

Finally you get to the summary page, where you can review all the info on your app before submit-
ting it for review. Check to be sure everything looks okay, and then click Submit.

Now you just have to wait. Apple’s approval process can be a mystery; your app might get approved
in a week, a month, or never. They will usually e-mail you to let you know when your app is ready
for sale. (They’ll also e-mail you the dreaded “your app is taking longer to review,” which means
your app might be in review for several more weeks or months.)

Promoting Your app ❘ 333

Promoting your aPP

Wow, after all that, your app is fi nally in the App Store, but your work is only half done. Even great
apps generally won’t sell themselves. Getting noticed in the App Store is a job all in itself. This sec-
tion reviews some ways that you can help your app stand out from all of the rest.

supporting your app Promotion
When you roll out your app you need a few support items right away:

A web site and blog➤➤

A Twitter account➤➤

A Facebook fan page➤➤

A YouTube channel➤➤

The next sections briefl y discuss how to set up these supports in the most effective ways to give you
the best platform from which to manage the promotion of your app.

Your Web site and Blog
Even though you have a description in the App Store, having at least a one-page web site for each of
your apps can really help your perception among potential buyers.

If this will be an ongoing project for which you plan to add new features or continue development, I
would also encourage you to blog about it. Not only will this help get more content about your app
into search engines, but will also give users and potential buyers a little insight into you and your
app, making them feel a part of the process.

Your web site should include not only screenshots that appear in your App Store description but any
additional screens that are important to the app but didn’t make the cut. The look and feel of an
iPhone app is a big selling point so highlight anything that sets your app apart from the competition.

Use the great SimFinger utility from Atebites (http://bit.ly/SimFinger)
to create a screencast showing your app in use. Not only can you post this on
your web site, but you can also syndicate it out on video sharing sites. This can
increase your exposure and also help with search engine rankings.

Your Twitter account
Being accessible to your users can be key to getting good reviews and also word of mouth refer-
rals. The weapon of choice for mass communication these days seems to be Twitter, so make sure
that you have your Twitter account prominently displayed on your site. Use your Twitter account
to gather user feedback, keep users updated, run contests, and to just have fun. You don’t want
your Twitter account to merely be a feed of your blog; you need to engage users and take part in the

http://bit.ly/SimFinger

334 ❘ chaPter 15 the aPP store: submIttIng and marketIng Your aPP

conversation. If you don’t have anything to share about yourself, your app, or what might be coming
next, look for content items that might relate to your app or that fi t in the same niche that your app
focuses on. By providing this content you are likely to pick up new followers who could turn into
new customers. You should try to read and if possible answer any tweets that pertain to your apps.
Do this by not only looking in the mentions tab on Twitter, but also utilize the Twitter search to
look for your app name, your own name, your company, or anything that might relate to your app.

You might run into some negative comments as well as some constructive criti-
cism. If this happens don’t lose your cool; try to defuse the situation, and do
whatever you can to rectify the issue for the naysayer. This might seem like
overkill, but one unhappy customer can quickly turn into a few tweets, a blog
post, several YouTube videos, bad App Store reviews, and before you know it,
these things can impact your sales and ultimately your brand.

Your app’s facebook Page
In addition to Twitter, Facebook is another wildly popular social media platform that many people
not only use to communicate with friends and family, but also their favorite brands. Set up a
Facebook fan page for your app. Encourage your Twitter followers to also become a fan. You will
fi nd that you will use the fan page much like you will use your Twitter account. Remember, it’s not
just about pushing your content — use this platform to open up the lines of communications with
your users and potential customers.

YouTube Channel
Continuing down the path of social media musts for your app, head over to YouTube and set up an
offi cial YouTube channel for your app. Use this for how-to videos, feature demos, and sneak peeks
of upcoming versions. Your YouTube channel won’t be as much about the two-way communication
with your users as Facebook and Twitter, but it will be equally important because it can serve as a
living sales page for your app. As Google and other search engines have adapted to the increasing
amount of video that is consumed by Internet users, they have started to incorporate video as part
of their search engine result pages, so having a video with your app name and other relevant key-
words are likely to rank high for those search queries. Users are also very likely to head to YouTube
to try and fi nd a video on how something works. Making how-to’s for your app can help reduce sup-
port e-mails, tweets, calls, or forum posts.

key app Promotion techniques
Now that you’ve gone over the basics that you need to have for getting the support structure in place
for your app, this section discusses some specifi c app promotion techniques.

Promoting Your app ❘ 335

running a Contest
With each version of your app you will receive 50 promo codes. This will allow whomever you have
given the promo code to redeem it on the App Store for a free copy of your app. So the first thing I
suggest is to set aside five promo codes and run a contest on Twitter, a simple contest where all the
user has to do is follow you and retweet a message promoting the contest. At the end of the con-
test you award the promo codes to either a random follower or a random retweeter. The web site
twitRand (http://twitrand.com) is a great and easy way to select either a follower or a retweeter.
You can also adapt this to a contest for getting more Facebook fans.

Before you give away all 50 of your promo codes you need to set aside a few and submit them to
App Review sites:

http://gizmodo.com➤➤

http://arstechnica.com/apple/iphone/apps/➤➤

http://www.macworld.com/appguide/index.html➤➤

http://toucharcade.com➤➤

http://appsafari.com➤➤

http://148apps.com➤➤

http://appadvice.com➤➤

http://appcraver.com➤➤

http://iphoneapplicationlist.com➤➤

http://iphonealley.com/reviews/apps/➤➤

http://appleiphoneschool.com/ ➤➤

http://appvee.com ➤➤

http://apptism.com ➤➤

http://appstoreapps.com ➤➤

http://whatsoniphone.com/➤➤

http://krapps.com/ ➤➤

http://iphoneappreviews.net/➤➤

http://dailyappshow.com➤➤

http://freshapps.com/➤➤

http://theiphoneappreview.com/➤➤

http://reviewmyiphoneapp.com/➤➤

http://twitrand.com
http://gizmodo.com
http://arstechnica.com/apple/iphone/apps/
http://www.macworld.com/appguide/index.html
http://toucharcade.com
http://appsafari.com
http://148apps.com
http://appadvice.com
http://appcraver.com
http://iphoneapplicationlist.com
http://iphonealley.com/reviews/apps/
http://appleiphoneschool.com/
http://appvee.com
http://apptism.com
http://appstoreapps.com
http://whatsoniphone.com/
http://krapps.com/
http://iphoneappreviews.net/
http://dailyappshow.com
http://freshapps.com/
http://theiphoneappreview.com/
http://reviewmyiphoneapp.com/

336 ❘ chaPter 15 the aPP store: submIttIng and marketIng Your aPP

http://appshouter.com/➤➤

http://nativeiphoneapps.com ➤➤

http://slapapp.com/➤➤

http://www.imedicalapps.com/➤➤

http://apptheater.com➤➤

http://tapcritic.com/➤➤

http://iphoneblog.de➤➤

http://alliphoneappsreview.com➤➤

http://app-reciationreviews.blogspot.com➤➤

http://ifanzine.blogspot.com/➤➤

http://www.iusethisapp.com/➤➤

http://www.applesauceblog.com/➤➤

http://www.macworld.com/appguide/index.html➤➤

 starting a Pr Campaign
Something many developers overlook is a good PR campaign around their app. There are several
PR sites where you can write a press release and push it out to hundreds or thousands of sites in one
click. Blogs, magazines, papers — they all need content to write about to try and entice readers to
visit their site, so make it easy for them to feature a piece about your app. In your PR include links
to your web site and also a direct link to a media kit, where you can have web and print ready art of
your app’s logo and screenshots. Don’t overlook your local media outlets. Local news organizations
might cover your story; it might not drive lots of downloads, but could increase exposure and also
give you something to quote on your web site.

Using in app ads
In App ads can be a great way to promote your app as well. Lots of the mobile ad networks pro-
vide pinpoint audience targeting that includes age, gender, geography, category, carrier, device, and
handset. Pricing models include bid per-click and per-engagement. Conversion tracking and report-
ing are standard offerings. By using the audience targeting you can be sure that you are reaching
someone who is more likely to take a look at your app. You can choose a cost per click or cost per
engagement with most providers as well. Do some research and find the network that will reach
your demographic and fit your budget.

Marketing through the social Media sites
Not only can you use social media yourself to promote your app, but you can also use it to crowd
source marketing and promotion of your app. A Tell-A-Friend feature on your about or settings
view can be the best selling tool there is. When someone recommends a product to a friend or family

http://appshouter.com/
http://nativeiphoneapps.com
http://slapapp.com/
http://www.imedicalapps.com/
http://apptheater.com
http://tapcritic.com/
http://iphoneblog.de
http://alliphoneappsreview.com
http://app-reciationreviews.blogspot.com
http://ifanzine.blogspot.com/
http://www.iusethisapp.com/
http://www.applesauceblog.com/
http://www.macworld.com/appguide/index.html

summary ❘ 337

member they are more likely to purchase that item than if they saw a commercial or ad for it. I like
to provide several ways for users to share this information. First, I implement an E-mail and SMS
share with friends; this allows me to leverage their contacts to instantly share their new favorite app.
The easier you make it for them, the more likely they are to use it. Next up: the social media big
dogs — yup, you guessed it — Facebook and Twitter. Include a few prewritten blurbs and a short-
ened link to your app in the App Store, or have a space for them to write their own.

summary

This chapter explored the final process to get your app running on end-users’ phones. Remember the
importance of testing on a variety of real devices; this will help you avoid any technical rejections.
Apple will be quick to reject your app if it doesn’t behave properly on a real device.

Promotion is key with your app, make sure you use social media and review sites to maximize your
exposure. Include ways for users to reach out from inside your app; the easier it is for them to tell
their friends, the more likely they are to do it. Free apps can be monetized too; ads or even sponsor-
ships are a great way to monetize free apps.

339

symbols

@ (at symbol), Objective-C, 310, 316–319
: (colon), Objective-C, 312
- (dash), locale, 263
+ (plus sign), Contacts application, 133
[] (square brackets), Objective-C, 311
_ (underscore), locale, 263

a

ABAddressBook, 241
ABMutableStringMultiValue, 246
ABNewPersonViewController, 244–245
ABPeoplePickerNavigationController,

243–244
ABPersonViewPerformDefaultAction-

EventArgs, 247–248
ABUnknownPersonViewController, 245–247
accelerometers, 192–195
Accessory, 112
AccessoryButtonTapped, 112
Action, 75
actions, MonoTouch, 24–25
Activity Indicator View, 21
ActivityIndicatorViewStyle, 44
Ad Hoc Helper App, 322
Add, 62, 74
Add Child button, 179
AddAnimation, 228
Addbutton.TouchInside, 158
AddFilterPredicate, 251
AddNewRows, 134–136
AddNumberServiceClient, 97

Address Book, 15, 240–248
AddressButton, 150
AddressLabel, 149
AddSubview, 52, 62
AddTarget(), 293
Ad-Hoc builds

packaging, 326–329
presubmission checklist, 330–331
presubmission testing, 321–329
provisioning files, 324–325

ADO.NET, 13, 88
AllowEditing, 221, 242
AllowsActions, 246
AllowsAddingToAddressBook, 246
AllowsEditing, 210
AllowsImageEditing, 210
AlternativeName, 245
animated, 290
AnimatesDrop, 161
animations, 15, 227–231
UIImageView, 204–205

AnimationStarted, 228
AnimationStopped, 228
annotation, GetViewForAnnotation, 161
annotations, MapKit, 158–167
AOT Technology, 3
API. See application programming interface
App ads, App Store promotion, 336
App Store, 236, 321–337

MonoTouch, 12
AppDelegate, 148, 288
Dismiss(), 289
reverse geocode, 149

indeX

340

appDelegate (continued) – Cancelled

AppDelegate (continued)
Search Bar, 137
Universal App, 301

Application, UIButton, 268
application programming interface (API)

Cocoa Touch, 14
cryptographic, MonoTouch, 13
MonoTouch, 4, 11

ApplicationMusicPlayer, 248
applications

battery life, 200–201
integrating, 233–257
internationalization, 261
Settings, 173–189
third-party, 236–237

AppName.app, 328
ArgumentNullException, 270
Array, 182
Array node, Property List Editor, 177
arrowDirections, 290
ASMX web services, 94–96
AspectFill, 215
AspectFit, 215
ASP.NET, 16, 107
asynchronous calls

ASMX web services, 96
data, 102–105

attributes, Objective-C, 315
Attributes Inspector, 128
audio, 15

programming, 223–227
AutocapitalizationType, 64, 140
AutocorrectionType, 42, 64, 140
autorelease, 313
AutoresizingMask, 280, 298
AvailableMediaTypes, 218, 219
AVAudioPlayer, 223, 224–225
AVAudioRecorder, 226
AveragePower(uint channel), 225

b

BackForward, 58
Background, 41
Bar Button Item, 22

BarStyle, 140
Base Class Libraries, 2
battery life, applications, 200–201
BatteryState, 200–201
bcc, mailto:, 234
Began, UIGestureRecognizerStates, 295
BeginGeneratingPlaybackNotification, 251
BeginGenerationDeviceOrientation, 196
BeginUpdates, AddNewRows, 135
blogs, App Store promotion, 333
body, mailto:, 234
Bookmarks, UIBarButtonSystemItem, 75
BOOL, Objective-C, 319
bool, C#, 319
Bordered, UIBarButtonItemStyle, 74
Bottom, UITableViewRowAnimation, 131
Bounces, UIScrollView, 59
BouncesZoom, UIScrollView, 59
Bounds, UIView, 52
Bowling, Martin, 195
btouch, Objective-C, 253–257
Build Action, 164
Build Action: Content, 55–56

c

C#, 2, 306
data types, 319
Objective-C, 254, 304
SharedAccelerometer, 193
UITableViewSource, 111

CAAnimationDelegate, 228
CABasicAnimation, 227
CAF. See Core Audio Format
CALayer, 227–228
CalloutAccessoryControlTapped, 165
Camera

customization, 211–212
UIBarButtonSystemItem, 75
UIImagePickerController, 209–210

CameraOverlayView, 211
CameraViewTransform, 212
Cancel, UIBarButtonSystemItem, 74
Canceled, UIImagePickerController, 206
Cancelled, UIGestureRecognizerStates, 295

341

Caneditrow – customPopover

CanEditRow, 130
canEditVideoAtPath, 222
CanGoBack, 54
CanGoForward, 54
CanMoveRow, 131, 132
CanOpenUrl, Google Earth, 236
CanSendMail, 248
CanShowCallout, 161
case sensitivity, LocalizedString, 267
@catch(), 317
categories, Objective-C, 315
cc, mailto:, 234
cells, tables, 111–114

customization, 120–122
reordering, 132–133

CenterButton.TouchUpInside, 158
CF. See Compact Framework
CGAffineTransform, 212
Changed, UIGestureRecognizerStates, 295
Charging, BatteryState, 200–201
Checkmark, UITableViewCellAccessory, 112
CIL. See Common Intermediate Language
@class, 317
@class CLLocationManager, 254
classes

C#, 316
MonoTouch, 4–5, 13–15

CLError, 146
Clicked, UIBarButtonItems, 75
CLLocation, 254
CLLocationManager, 144, 150–154
CLLocationManagerDelegate, 145, 147
CLR. See Common Language Runtime
CLS. See Common Language Specification
Cocoa, Objective-C, 305–306
Cocoa Touch, 4, 14, 306
colorful annotations, 166
ColorsTableViewController, 126
combination interfaces, 38–39
comgooglearth:, 236
command interface, 36
comment, LocalizedString, 266–267
CommitAnimations, 230

CommitEditingStyle, 130, 132, 133, 135
Common Intermediate Language (CIL), 4, 12
Common Language Infrastructure, 2
Common Language Runtime (CLR), 2
Common Language Specification (CLS), 2
Common Type System (CTS), 2
Compact Framework (CF), 2
compiler directives, 310, 316–319
Compose, UIBarButtonSystemItem, 74
ConnectionAutomatic, 199
ConnectionOnDemand, 199
ConnectionOnTraffic, 199
ConnectionRequired, 199
Connections tab, IB, 20
constructors, Objective-C, 308
Contacts application, 133
Content, Build Action, 164
ContentOffset, 59
ContentSize, 59
ContentType, 105
contests, App Store promotion, 335–336
Continue, ABPeoplePickerNavigation-

Controller, 243
continuous gestures, 294
Controllers, IB Library, 20
ControlStyle, 45
Core Audio Format (CAF), 224
CoreData, 15
CoreLocation, 142–154
CountDownTimer, 70
CoverVertical, 291
create, read, update, delete (CRUD), 90
CrossDissolve, 291
CRUD. See create, read, update, delete
cryptographic APIs, MonoTouch, 13
.cs, 18
CTS. See Common Type System
currency, localization, 272–273
CurrentContent, 291
CurrentCulture, 272
CurrentLocale, 265
CurrentUICulture, 272
customPopover, 289

342

data – extension methods

d

data, 87–106
asynchronous calls, 102–105
controls, 49–85
grouped, 114–117
index, 118
remote, 93–106
retrieval, 99–103
tables, 107–140
types

C#, 319
Objective-C, 319

Data Views library, 20, 52–71
DataSource, 111
DataTable, 90
Date, 70
dates, localization, 272–273
Date Picker, 21
DateAndTime, 70
debugging, MonoTouch, 30–31
Debug|iPhone, 32
Debug|iPhone Simulator, 32
Default

MovieControlMode, 216
UITableViewCellStyle, 113

DefaultCenter, MPMoviePlayerController,
214

Default-LandscapeLeft.png, 283
Default-Landscape.png, 283, 297
Default-LandscapeRight.png, 283
Default.png, 282, 297
Default-Portrait.png, 283, 297
Default-PortraitUpsideDown.png, 283
Delegate, UITableView, 111
delegates, Objective-C, 315
DELETE, REST, 98
Delete

EditingStyleForRow, 133
SQLite, 92

DeleteRows, 130, 132
DequeueReusableAnnotation, 167
DequeueReusableCell, 115
DeselectRow(), 127

DesiredAccuracy, 150
DetailDisclosure, 113
DetailDisclosureButton, 112
DetailTextLabel, 113
DetailViewController, 300
device hardware, programming, 191–202
Dictionary node, 177, 180
Digital Millennium Copyright Act (DMCA), 6
Disabled, UIButton, 268
Disclosure, UITableViewCellAccessory, 113
discrete gestures, 294
Dismiss(), AppDelegate, 289
DisplayedPerson, 246
DistanceFilter, 150
Distinct, LINQ, 116
DMCA. See Digital Millennium Copyright Act
Done, 74
double byte characters, 271–272
drawRect, 41
@dynamic, 317

e

Edit, UIBarButtonSystemItem, 74
Edit button, UITabController, 79
Editable checkbox, UITextView, 63–65
EditingDidEndOnExit, 96
EditingStyleForRow, 133
e-mail, 234
Empty MonoTouch Project, MonoTouch project

template, 17
@end, 317
Ended, UIGestureRecognizerStates, 295
EndPointAddress, 97
EndUpdates, AddNewRows, 135
Entitlements.plist, 326
Environment.GetFolderPath, 226
event, Objective-C, 161
events, C#, 315
event-based orientation, 197–198
eXtensible Markup Language (XML), 99, 239
extension methods, C#, 315

343

facebook – iBaction

f

Facebook, 334, 337
FaceDown, 196
FaceUp, 196
Fade, 131
Failed, UIGestureRecognizerStates, 295
false, C#, 319
FastForward, 75
File, Owner, 128
Fill, ScalingMode, 215
.Fill(), SQLiteDataAdapter, 90
FilteredElements, 137–138
@finally, 317
FinishedLaunching, 7, 28, 119, 240, 300–301

ASMX web services, 96
iPad, 280–281
UINavigationController, 124

FinishedLoading, 266
FinishedPickingMedia, 206
FinishedPlaying, 225
Flexible Space Bar Button, 22
FlipHorizontal, 291
FlurryAPI, 254
FlurryLib, 253–257
FlurryLibWithLocation, 253
Font, 40, 62
footers, 119
foreach, SQLite, 89
FormSheet, 291
FormSubmitted, 58
Frame, 52
FromFile, 204
FromObjectAndKeys, 226
FromString, 214, 234
FromUrl, 225
Full, BatteryState, 200–201
FullScreen, 291
functional annotations, MapKit, 164–165

g

games, 15
genstrings, 274
geocode, 142, 167–172

gestures
continuous, 294
discrete, 294
iPad, 292–296

GET, REST, 98
GetCell, 116, 133
Accessory, 112
AddNewRows, 135
UITableViewCell, 114
UITableViewSource, 108

GetComponentCount, 66
GetRowsInComponent, 66
GetTitle, 66
GetViewForAnnotation, 158, 161, 167
Global Positioning System (GPS), 142–144
globalization, 260
GoBack(), 54
GoForward(), 54
Google, 155
Google Earth, 236–237
GPS. See Global Positioning System
Grouped

Attributes Inspector, 128
tables, 119

grouped data, 114–117

h

heading, 142, 144
HeadingAvailble, 144
HeadingFilter, 150
Hidden, MovieControlMode, 216
hiddenButton, UIView, 230
HideWhenStopped, 44
Highlighted, 268
HTML, 55–58
HTTP, 98
HttpWebRequest, 105
Hybrid, MapType, 156

i

IB. See Interface Builder
IBAction, 319

344

iBoutlet – key path

IBOutlet, 319
Icaza, Miguel de, 3
id, 319
IDE. See Integrated Development Environment
Image, 41
images

editing, 210
Info.plist, 282
localization, 269–271
photo albums, 212–213
programming, 203–213
UITabBarItems, 77

Image View, IB Library, 20
@implementation, 318
index, data, 118
indexPath, 130, 135
IndicatorStyle, 59
Info.plist, 144, 173–175

configuration, 238–239
images, 282
UIDeviceFamily, 279

init, Objective-C, 310
initializers, Objective-C, 308–311
Inputs & Values, IB Library, 21
Insert, EditingStyleForRow, 133
insert icon, tables, 133–134
InsertRows, 134–136
Integrated Development Environment (IDE),

MonoDevelop, 16
@interface, 318
interfaces. See also user interface

C#, 316
navigation, 37–38
Objective-C, 316

Interface Builder (IB), 8, 19–25
Data Views library, 52–71
MonoDevelop, 19
UITabBarController, 76
UITableView, 119
.xib, 19

internationalization, 259–276
InterventionRequired, 199
InvokeOnMainThread, 98
.ipa, 328–329

iPad, 7
gestures, 292–296
modal views, 291–292
orientation, 280–282
popover view, 284
programming, 277–302
startup images, 282–283
UIKit, 278–279
UIPopover, 288–290
UISplitViewController, 284–287
UITextChecker, 279

iPhone, 5–7
Bundle Signing, 325–326
Development Program, 9, 33
Navigation-based Project, 17
OpenGL Project, 17
SDK, 8–9, 12
3G, 6–7
Utility Project, 17
Window-based Project, 17

iPod music collections, 248–252
iPodMusicPlayer, 248
IsCompatibleWithSavedPhotosAlbum, 223
IsDirect, 199
IsFirstResponder, 64
IslocalAddress, 199
IsWWAN, 199
ItemsPicked, 252
ItemTemplate, 107
iTunes, 236

Connect, 331

J

jailbreaking, 6
JavaScript, 6
JavaScript Object Notation (JSON), 99
JSON. See JavaScript Object Notation
just-in-time compilation, 2

k

key, LocalizedString, 266–267
key path, animations, 227

345

key windows – Maps application

key windows, 216
KeyboardType

UISearchBar, 140
UITextField, 42
UITextView, 64

l

Label, IB Library, 21
LandscapeLeft, 196, 280
LandscapeRight, 196, 280
Language, Settings, 261–263
languages

codes, 262
displaying multiple, 263–265
translation, 265–269

Language Integrated Query (LINQ)
Distinct, 116
UITableViewSource, 116
to XML, 100–101

latitude, 142, 162
Layer, 228
Left, UITableViewRowAnimation, 131
libaries

MonoTouch Library Project, 17
OpenGL, 15, 17

libraries
Base Class Libraries, 2
Data Views library, 20, 52–71
iPhone SDK, 9
MonoTouch project template, 17
PhotoLibrary, 209

Library window, IB, 20–22
licenses

iPhone SDK, 9
Mono runtime, 12

Lines, UILabel, 40
LinkClicked, 58
linker, MonoTouch, 31–32
LINQ. See Language Integrated Query
LoadError, 53
LoadFinished, 53
LoadRequest(), 53
LoadStarted, 53

LocaleIdentifier, 265, 272
locales, 263
Localizable.strings, 271
localization, 259–276

application icon, 271
application name, 271
currency, 272–273
dates, 272–273
images, 269–271
numbers, 272–273
times, 272–273

LocalizedLabel, 241
LocalizedModel, 201
LocalizedString(), 264
LocalizedString, 266–267
Localized.strings, 274–276
LocationManagerDelegate, 146
longitude, 142, 162
.lproj, 263

m

mailto:, 234
Main, 18
Main Menu, IB, 20
Main.cs, 18, 149
MainScreen.Bounds, 300
MainWindow.xib, 18, 28, 77, 169, 282
CoreLocation, 146
UINavigationController, 82, 124

MainWindow.xib.designer.cs, 18
MakeScale, 212
Map View, 20
Map.AddAnnotationObject(), 158
Map.AddAnnotationObject().Map.

GetViewForAnnotation, 161
Map.GetViewForAnnotation, 158
MapKit, 142, 154–172

annotations, 158–167
geocode, 167–172
reverse geocode, 149

mapping, 15, 141–172
zoom level, 162–163

Maps application, 235

346

Map.setCenterCoordinate – MovieControlMode

Map.SetCenterCoordinate(), 158
MapType, 156
MaximumDate, 70
MaxValue, 44
MaxValueImage, 44
MediaQuery, 251
memory management, Objective-C, 313–314
messages, Objective-C, 311–313, 316
Messaging, 253
Method, 105
methodName, 255
methods, 311–313, 316
MFMailComposeViewController, 248
MinimumDate, 70
MinimumZoomScale, 59
MinuteInterval, 70
MinValue, 44
MinValueImage, 44
MKAnnotations, 158, 161
MKCoordinateSpan, 162
MKMapKit, MonoTouch, 161
MKMapView, 20, 156
CalloutAccessoryControlTapped, 165
GetViewForAnnotation, 158
MainWindow.xib, 169
MKAnnotations, 158
MKPinAnnotationView, 161

MKMapViewDelegate, 161
MKPinAnnotationView, 161, 167
MKPinViewAnnotation, 166
MKReverseGeocoder, 150
MKUserLocation, 161
mobile development, 7–8, 202
modal interfaces, 38
modal views, iPad, 291–292
ModalPresentationStyle, 291–292
ModalTransitionStyle, 291
Mode, UIDatePicker, 70
Model, 65, 201
Mono, 2–3, 12–13
Mono.CompilerServices.SymbolWriter

.dll, 13
Mono.Data.Sqlite, 88
Mono.Data.Sqlite.dll, 13

Mono.Data.Tds.dll, 13
MonoDevelop, 3, 5, 16–19

IB, 19
MonoTouch, 12
settings bundles, 177
UITableView, 108

Mono.Security.dll, 13
MonoTouch, 3–5

accelerometer, 192
actions, 24–25
classes, 4–5, 13–15
components, 4
debugging, 30–31
introduction, 11–33
Library Project, 17
linker, 31–32
MKMapKit, 161
Mono, 12–13
namespaces, 4–5, 13–15
outlets, 22–24
project templates, 17

MonoTouch.AddressBook, 15
MonoTouch.AddressBookUI, 15, 241
MonoTouch.AudioToolbox, 15
MonoTouch.AVFoundation, 15
MonoTouch.CoreAnimation, 15
MonoTouch.CoreFoundation, 15
MonoTouch.CoreGraphics, 15
Monotouch.dll, 4
monotouch.dll, 12, 14, 18
MonoTouch.Foundation, 4, 14, 188–189,

252–253
MonoTouch.GameKit, 15
MonoTouch.MediaPlayer, 15, 213–215
MonoTouch.MessageUI, 15
MonoTouch.ObjCRuntime, 4, 253
MonoTouch.OpenGLES, 15
MonoTouch.StoreKit, 15
MonoTouch.SystemConfiguration, 15
MonoTouch.UIKit, 4, 14
Moonlight, 16
More tab, UITabController, 79
MoveRow, 132, 135
MovieControlMode, 215–218

347

MPMediaPickerController – objective-C

MPMediaPickerController, 252
MPMediaProperty, 249
MPMediaPropertyPredicate, 251
MPMediaQuery, 251
MPMoviePlayerController, 213–215
MPMusicPlayerController, 248, 251
mscorlib.dll, 13
MSIL, 2
mtouch, 12
multimedia, programming, 203–231
MultiValue, 182–183
MyAnnotation, 158–159
mycell, 115
MyDetailViewController.cs, 285
MyGeocoderDelegate, 150
MyLocationMangerDelegate, 150
MyMasterViewController.cs, 285
MyScrollViewController, 77
MyTableViewSource, 116
MyTextViewController, 77

n

Name, UIDevice.CurrentDevice, 201
namespaces, 4–5, 13–15
navigation

interfaces, 37–38
MonoTouch project template, 17
tables, 123–129

Navigation Bar, IB Library, 22
NavigationController:null, 72
NavigationController

.PushViewController, 129
NavigationItem, 72
.NET Framework, 2

C#, 306
Mono, 12–13
Objective-C, 15

networking, 199
New Configuration, Ad-Hoc builds, 329
NewPersonComplete, 244
ngenstrings, 274–276
nil, Objective-C, 319
NO, Objective-C, 319

None

ScalingMode, 215
UITableViewCellAccessory, 112
UITableViewRowAnimation, 131

Normal, UIButton, 268
NowPlayingItem, 249
NSArray, 14
NSBundle.MainBundle.BundlePath, 55–56
NSDictionary, 226, 240
NSError

AVAudioRecorder, 226
SaveToPhotosAlbum, 212
UIVideoEditorController, 221

NSError.Code, 146
NSIndexPath, 111, 135
NSLocale, 265
NSNotificationCenter, 214
NSObject

AVAudioRecorder, 226
FlurryAPI, 254
iPod, 249
MonoTouch.Foundation, 14, 252

NSString, 310
NSUrl

MonoTouch.Foundation, 253
MPMoviePlayerController, 214
Safari, 233–234
SystemSound, 224
UIWebView, 57

NSUrlRequest, 57
NSUserDefaults, 180
null, C#, 319
NumberOfSections, 116
NumberOfSegments, 45
NumberOfTapsRequired, 293
numbers, localization, 272–273

o

object instances, C#, 316
Objective-C, 111, 118, 252–257, 303–320
btouch, 253–257
C#, 254, 304
Cocoa, 305–306

348

objective-C (continued) – PsToggleswitchspecifier

Objective-C (continued)
compiler directives, 316–319
CoreData, 15
event, 161
initializers, 308–311
memory management, 313–314
messages, 311–313, 316
methods, 311–313
MonoTouch, 11
MonoTouch.Foundation, 252–253
MonoTouch.ObjCRuntime, 253
.NET Framework, 15
reference-counting, 313–314

Open Graphics Library (OpenGL), 15, 17
OpenGL. See Open Graphics Library
OpenTK, 5, 15
OpenUrl, 233
@optional, 318
Organize, UIBarButtonSystemItem, 75
orientation, 196–198

event-based, 197–198
iPad, 280–282
static, 196–197

Other, UIWebViewNavigationType, 58
Owner, File, 128

P

Page Control, IB Library, 21
PageSheet, 291
paging, UIScrollView, 60–61
PartialCurl, 291
Password, 181
password, 181
PathForResource(), 264
PathForResource, 269–270
Pause(), 225
Pause, UIBarButtonSystemItem, 75
PeakPower(uint channel), 225
PerformDefaultAction, 247
Person, ABPeoplePickerNavigation-

Controller, 244
photo albums, 212–213, 222–223
PhotoLibrary, 209

Picker View, 21
Placeholder, 42, 140
Plain, 74, 119
Play, 75, 213–215
Play(), 225
PlayAlertSound, 224
PlaySystemSound, 224
plist, 239
popover views, 288, 289

iPad, 284
PresentFromRect, 290

Portrait, 196, 280
PortraitUpsideDown, 196, 280
Possible, UIGestureRecognizerStates, 295
POST, 98, 104–105
PR campaign, App Store promotion, 336
PreferenceSpecifiers, 178, 179, 184
PreferredLanguages, 265
PrepareToPlay(), 225
PresentFromBarButtonItem, 289
PresentFromRect, 290
PreviousRun, 195
@private, 318
ProcessHttpResponseAndForget(), 105
Progress View, 21
Project Options, iPhone Bundle Signing,

325–326
ProjectApiKey.txt, 253
Prompt, UISearchBar, 140
Property, ABPersonViewPerformDefault-

ActionEventArgs, 247–248
@property, 318
Property List Editor, 177–179
MultiValue, 182–183
PSTextFieldSpecifier, 181
Save As, 265

@protected, 318
@protocol, 318
protocols, Objective-C, 316
proximity sensor, 198
ProximityState, 198
PSGroupSpecifier, 179
PSTextFieldSpecifier, 181
PSToggleSwitchSpecifier, 184

349

@public – selected

@public, 318
PushViewController, 126
PUT, REST, 98

Q

Quartz 2D Graphics, 15

r

radio interfaces, 37
Reachable, 199
README.txt, 253
receivers, Objective-C, 316
Recognized, UIGestureRecognizerStates,

295
rect, PresentFromRect, 290
Redo, UIBarButtonSystemItem, 74
reference-counting, Objective-C, 313–314
References folder, 18
Refresh, UIBarButtonSystemItem, 75
Region, 162, 164
region codes, 262
Region Format, Settings, 261–263
RegionDidChange, 161
RegionThatFits, 164
release, Objective-C reference counting, 313
Release|iPhone, 32
Release|iPhone Simulator, 32
RELEASE_NOTES.txt, 253
Reload, 58, 75
ReloadComponent, 68
ReloadData, 135
remote data, 93–106
Repeater, 107
Reply, UIBarButtonSystemItem, 75
REpresentational State Transfer (REST), 98–99,

102–103
@required, 318
Reserved, 268
ResignFirstResponder(), 64, 96
REST. See REpresentational State Transfer
retain, 313
ReturnKey, 42

ReturnKeyType, 64
returns, 161
reuseidentifer “mypin”, 167
reverse geocode, 142, 149–150
Rewind, 75
Right, UITableViewRowAnimation, 131
Root.plist, 178
RootViewController.xib, 82, 124, 126
Round Rect Button, 21
Row, 111, 116
rows, tables, 130–136
rows.Add(), AddNewRows, 135
RowSelected, 112, 116, 125, 133, 301
RowsInSection, 108, 116
Runtime, Objective-C, 253

s

Safari, 6, 233–234
Satellite, MapType, 156
Save, UIBarButtonSystemItem, 74
Save As, Property List Editor, 265
Saved, UIVideoEditorController, 221
SaveData, SQLite, 91
SavedPhotosAlbum, 209
SaveToPhotosAlbum, 212–213, 223
ScalesPageToFit, 53, 57
ScalingMode, 215–218
Scroll View, 20
ScrollsToTop, 62
Search, UIBarButtonSystemItem, 75
Search Bar

IB Library, 22
tables, 136–140

Search Bar and Search Display Controller, IB
Library, 22

Search Display Controller, 108
Section, 111, 116
SectionIndexTitles, 118
sectionTitles, 116
secure fields, Settings, 181–182
SecureTextEntry, 42
Segmented Control, 21
Selected, 66, 68, 268

350

selector – system.Web.services.dll

Selector, 253, 293, 294
selectors, Objective-C, 316
SelectPerson, 243
SetDate(), 70
SetEditing, 131–132
Settings, 175–189

applications, 176–188
Language, 261–263
MonoTouch.Foundation, 188–189
Property List Editor, 177–179
reading, 188–189
Region Format, 261–263
secure fields, 181–182
sliders, 185–188
toggle switch, 183–184
updates, 189

Shadow, 41
SharedAccelerometer, 193
SharpDevelop, 3
ShouldAutorotateToInterfaceOrientation,

197, 280, 298
ShouldPerformDefaultAction, 247
ShouldReloadForSearchString(), 138
ShouldStartLoad, 57
ShowsCameraControls, 211, 219
ShowsSelectionIndicator, 65
ShowUserLocation, 156
Silverlight, 13–14, 16
SimFinger, 333
Simple Object Access Protocol (SOAP), 94–98
Simulator, 9
Skype, 237
Slider, IB Library, 21
sliders, Settings, 185–188
sms:, 235
SOAP. See Simple Object Access Protocol
social media sites, App Store promotion,

336–337
Sort(), 116
SortedDictionary, 116
SplitViewController, 300
SQLite, 87–93

MonoTouch, 13
SQL statements, 90–92

tables, 89
upgrades, 92–93

SQLiteConnection, 90
SQLiteDataAdapter, 90
Standard, MapType, 156
Start(), MKReverseGeocoder, 150
StartAnimation, 204
StartUpdatingLocation(), 145
StartUpdatingLocation.HeadingButton.

TouchUpInside, 148
static battery state, 200–201
static orientation, 196–197
static row content, tables, 127–129
Stop(), AVAudioPlayer, 225
Stop, UIBarButtonSystemItem, 75
StopAnimating, 204
StopLoading, 75
StopUpdatingHeading(), 146
String, Dictionary node, 180
string, Objective-C, 310
@”string’, 317
.strings, 264
Style, FinishedLaunching(), 119
subject, mailto:, 234
Subtitle, 113, 133
Sudan, Erica, 322
swipe, tables, 130–131
Switch, IB Library, 21
@synthesize, 319
system information, 201–202
System.Core.dll, 13
System.Data.dll, 14
System.dll, 13
System.Globalization, 260, 261
System.Json.dll, 14
System.Linq, 14
SystemName, 201
System.ServiceModel.dll, 14
SystemSound, 223–224
System.String, 310
System.Transactions.dll, 14
SystemVersion, 202
System.Web, 8
System.Web.Services.dll, 14, 94

351

system.Xml.dll – UiButton

System.Xml.dll, 14
System.Xml.Linq.dll, 14

t

Tab Bar, 22
Tab Bar Item, 22
TabBarController:null, 72
TabBarItem, 72
table, LocalizedString, 267
tables
AddNewRows, 134–136
cells, 111–114

customization, 120–122
reordering, 132–133

data, 107–140
delete, 130–131
editing mode, 131–132
Grouped, 119
insert icon, 133–134
navigation, 123–129
Plain, 119
rows, 130–136
Search Bar, 136–140
SQLite, 89
static row content, 127–129
swipe, 130–131
UINavigationController, 123–125

Table View, 20
Table View Cell, 20
TakePicture, 211
TDS Protocol, 13
tel:, 234
TelephoneNo, 241
Text

UILabel, 40
UISearchBar, 140
UITextField, 42

text, Objective-C, 313
Text Field, IB Library, 21
text messages, 235
Text View, IB Library, 20
TextAlignment, 40, 42, 62
TextColor, 40, 41, 42, 62

TextLabel, 113
third-party applications, 236–237
@throw, 319
Time, UIDatePicker, 70
times, localization, 272–273
Timestamp, CoreLocation, 154
Title

PSGroupSpecifier, 179
UIButton, 41
UIViewController, 72

TitleForDeleteConfirmation, 130
TitleForFooter, 119
TitleForHeader, 116
//TODO, 125, 158
toggle switch, Settings, 183–184
.ToList(), LINQ, 101
Toolbar, 300
ToolbarItems, 72
Top, UITableViewRowAnimation, 131
TouchUpInside, 292
TransientConnection, 199
translation, languages, 265–269
Translation, UIPanGestureRecognizer, 295
Trash, UIBarButtonSystemItem, 75
true, C#, 319
@try, 319
Twitter, App Store promotion, 333–334, 337

u

UDID. See Unique Device Identifier
UI. See user interface
UIActivityIndicatorView, 21, 22, 44
UIAlertView, 38
UIApplication, 237
UIApplicationLaunchOptionsSource-

ApplicationKey, 240
UIApplicationLaunchOptionsURLKey, 240
UIApplication.SharedApplication, 240
UIBarButtonItem, 22
UIBarButtonItems, Clicked, 75
UIBarButtonItemStyle, 74
UIBarButtonSystemItem, 74–75
UIButton, 21, 40–42, 54, 230, 268–269

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

352

UiButton.TouchDown – UiTableViewrowanimation

UIButton.TouchDown, 129
UIControl, 165
UIControlState, 268
UIDatePicker, 21, 69–71
UIDatePickerMode, 70
UIDevice, 201–202
UIDeviceBatteryStateDidChange-

EventNotifcation, 201
UIDevice.CurrentDevice, 199, 201–202
UIDeviceFamily, 279
UIDeviceOrientationDidChangeNotification,

197
UIGestureRecognizer, 293
UIGestureRecognizerStates, 295
UIImage, 204, 212–213
Acceleration, 194–195

UIImagePicker, 194–195
UIImagePickerController, 206–208,

218–219
AllowEditing, 221
Camera, 209–210
CameraViewTransform, 212

UIImagePickerControllerCropRect, 208
UIImagePickerControllerEditedImage,

208, 210
UIImagePickerControllerMediaType,

208, 219
UIImagePickerControllerMediaURL, 208, 219
UIImagePickerControllerOriginalImage,

208
UIImagePickerControllerSourceType, 209
UIImageView, 20, 203–206, 249
UIInterfaceOrientation, 175
UIKit, 254, 278–279, 313
UILabel, 21, 39–40, 128, 230, 310
UILongPressGestureRecognizer, 293, 294
UINavigationBar, 22
UINavigationController, 37, 82–85,

123–125, 298, 300
UINavigationItem, 22
UIPageControl, 21, 46
UIPanGestureRecognizer, 293, 295
UIPicker, 192, 194–195
UIPickerView, 21, 65–69

UIPickerViewModel, 66, 68
UIPinchGestureRecognizer, 293–295
UIPopover, 288–290
UIPrerenderedIcon, 175
UIProgressView, 21
UIRequiredDeviceCapabilities, 144
UIRequiresPersistentWiFi, 175
UIRotationGestureRecognizer, 293
UIScrollView, 20, 58–61, 280
UISearchBar, 22, 108, 140, 169
UISearchBarController, 137
UISearchBarDelegate, 170
UISearchDisplayController, 22, 137
UISearchDisplayDelegate, 138–139
UISegmentedControl, 21, 45–46
UISlider, 21, 44
UISplitViewController, 284–288
UISplitViewControllerDelegate, 286–287
UIStatusBarHidden, 174–175
UISwipeGestureRecognizer, 293
UISwitch, 21, 43, 184
UITabBar, 22, 37
UITabBarController, 76–82
UITabBarItem, 22, 50
UITabBarSystemItem, 78–79
UITabController, 79
UITableCell, 101
UITableView, 20, 107–108
DetailDisclosureButton, 112
IB, 119
LINQ, 101
MonoDevelop, 108
Objective-C, 111
PSGroupSpecifier, 179
Row, 116
Search Bar, 137
Section, 116
SetEditing, 131–132
UITableViewSource, 115

UITableViewCell, 20, 107, 114
UITableViewCellAccessory, 112–113
UITableViewCellStyle, 113
UITableViewIndexSearch, 118
UITableViewRowAnimation, 131

353

UiTableViewsource – Volumeonly

UITableViewSource, 108, 130
C#, 111
LINQ, 116
Search Bar, 137
UITableView, 115

UITableView.Source, 108
UITapGestureRecognizer, 293
UITextChecker, 279
UITextField, 21, 42–43
UITextView, 20, 61–65, 151, 280
UIToolbar, 22, 36, 73–76
UIVideo, 223
UIVideoEditorController, 221–223
UIView, 21, 52

animations, 229–231
Layer, 228

UIView(frame), 52
UIViewAutoresizing, 281
UIViewController, 20, 37, 72, 280
MonoTouch.Foundation, 14
popover view, 289

UIWebView, 20, 52–58, 75
UIWebViewNavigationType, UIWebView, 57–58
UIWindow, 21, 51
Undo, UIBarButtonSystemItem, 74
Unique Device Identifier (UDID), 322
UniqueIdentifier, 202
Universal App, 296–302
Unknown

BatteryState, 200–201
orientation, 196

Unplugged, BatteryState, 200–201
Update, SQLite, 92
UpdatedHeading, 146
UpdatedLocation, 146, 151
UpdateInterval, 194
UpdateMeters(), 225
UrbanSpoon, 194–195
Url, 104
user interface (UI), 35–47
Acceleration, 194–195
combination interfaces, 38–39
command interface, 36
modal interfaces, 38

navigation interfaces, 37–38
radio interfaces, 37

UserCancelled, 221
UserInteractionEnabled, 156
UserLocation, 158
UTF-8, 173

v

value, LocalizedString, 266–267
Value1, UITableViewCellStyle, 113
Value2

GetCell, 133
UITableViewCellStyle, 113

ValueForProperty, 249
Values, Array, 182
var/object, C#, 319
Velocity, UIPanGestureRecognizer, 295
VES. See Virtual Execution System
vibration, PlaySystemSound, 224
video, 15

editing, 221–223
photo albums, 222–223
picking, 218–219
player customization, 215–218
programming, 213–223
recording, 219–221

VideoMaximumDuration, 222
VideoPath, 221
VideoQuality, 222
View, 50–52
view, PresentFromRect, 290
View Interface Definition, 83, 126
View window, 20, 21
ViewDidLoad, 72, 131, 230
ViewPort, 301
ViewWillAppear, 72
ViewWillDisappear, 72
Virtual Execution System (VES), 2
virtual machines, .NET Framework, 2
VirtualizingStackPanel, 115
Visual Basic, 2
Visual Studio, 16
Visual Studio .NET, 2
VolumeOnly, 216

354

WCf – Zoomscale

w

WCF. See Windows Communication
Foundation

web services, MonoTouch, 14
Web Services Description Language (WSDL), 94
Web View, 20
WhereButton.TouchUpInside, 148
Window, IB Library, 21
Window, 50–52
window, UINavigationController, 300
Windows Communication Foundation (WCF),

14, 96–98
Windows, Views, & Bars, IB Library, 21
WSDL. See Web Services Description Language

X

XBOX, 2
Xcode, 8, 272

XDocument.Load(), 101
XElement, 100
XIB. See XML-based Interface Builder
.xib, 19
XML. See eXtensible Markup Language
XML-based Interface Builder (XIB), 18
XYZ coordinate system, Acceleration, 192

y

YES, Objective-C, 319
YouTube, 235–236, 334

Z

.zip, 327–328
zoom level, mapping, 162–163
ZoomEnabled, 156
ZoomScale, 59

	WroxBooks
	iPhone Programming with MonoTouch and .NET/C#
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Introduction to iPhone Development with MonoTouch for C# Developers
	Product Comparison
	Mobile Development
	Apple iPhone SDK Tools
	Summary

	Introduction to MonoTouch
	Before You Begin Developing
	The Components of MonoTouch
	Working with MonoDevelop
	Using Interface Builder
	Hello World with Interface Builder
	Hello World in Code
	Debugging
	Understanding the Linker
	Deploying Your Application
	Summary

	Data Controls
	Windows and Views
	Data View Controls
	Controllers and Bars
	Summary

	Working with Data on the iPhone
	Working with SQLite
	Working with Remote Data
	Summary

	Displaying Data Using Tables
	Displaying Data in a Table
	Navigating with Tables
	Editing Table Rows
	Adding a Search Bar to a Table
	Summary

	Mapping
	Map Basics
	Using CoreLocation
	Using MapKit
	Summary

	Application Settings
	Exploring the Info.plist
	Peeking in the Settings Bundle
	Summary

	Programming with Device Hardware
	Responding to Acceleration
	Determining Device Orientation
	Reading the Proximity Sensor
	Networking
	Taking Battery Life into Account
	Accessing System Information
	Mobile Development
	Summary

	Programming with Multimedia
	Images
	Video
	Audio
	Animation
	Summary

	Talking to Other Applications
	Integrating Apple Applications
	Third-Party Application Integration
	Accepting Calls from Other Applications
	Integrating with the Address Book
	Integrating with iPod Music Collections
	Interfacing with Objective-C
	Summary

	Localizing for an International Audience
	Internationalizing an Application
	Changing Language and Region Settings
	Displaying Multiple Languages
	Managing Localizable.strings in Real-World Applications
	Summary

	Programming the iPad
	The iPad Device
	What Makes an iPad Application?
	New iPad Features
	Building a Universal App
	Summary

	Just Enough Objective-C
	How to Use This Chapter
	A Brief Look at Objective-C and Cocoa
	Academic Versus Pragmatic Approaches
	Basic Syntax and Concepts
	Cheat Sheets
	Summary

	The App Store: Submitting and Marketing Your App
	Using an Ad-Hoc Build for Presubmission Testing
	Prepping for Submission
	Promoting Your App
	Summary

	Planning Your App’s UI: Exploring the Screen Controls
	Creating iPhone(y) UI and Application Interaction Patterns
	UILabel
	UIButton
	UITextField
	UISwitch
	UISlider
	UIActivityIndicatorView
	UISegmentedControl
	UIPageControl
	Summary

	Index

