
www.allitebooks.com

http://www.allitebooks.org

■ ■ ■

P A R T 1

Say Hello to My Little
Friend: JavaScript!

Eaten any good books lately?

Q (to Worf) in the Star Trek: The Next Generation episode, “Deja-Q”

The Internet? Is that thing still around?

Homer Simpson

Programming today is a race between software engineers striving to build bigger and
better idiot-proof programs, and the Universe trying to produce bigger and better idiots.
So far, the Universe is winning.

Rich Cook

The first 90% of the code accounts for the first 10% of the development time. The
remaining 10% of the code accounts for the other 90% of the development time.

Tom Cargill

There are only two kinds of programming languages: those people always bitch about
and those nobody uses.

Bjarne Stroustrup

There are only two industries that refer to their customers as ‘users.’

Edward Tufte

Zammetti-816-4C01.fm Page 1 Wednesday, February 14, 2007 12:30 PM

www.allitebooks.com

http://www.allitebooks.org

Practical JavaScript™,
DOM Scripting, and
Ajax Projects

■ ■ ■

Frank W. Zammetti

Zammetti-816-4FRONT.fm Page i Saturday, March 17, 2007 1:17 PM

www.allitebooks.com

http://www.allitebooks.org

Practical JavaScript™, DOM Scripting, and Ajax Projects

Copyright © 2007 by Frank W. Zammetti

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-816-0

ISBN-10 (pbk): 1-59059-816-4

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
United States and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book
was written without endorsement from Sun Microsystems, Inc.

Lead Editor: Matthew Moodie
Technical Reviewer: Herman van Rosmalen
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Jeff Pepper, Paul Sarknas, Dominic
Shakeshaft, Jim Sumser, Matt Wade

Project Manager: Tracy Brown Collins
Copy Edit Manager: Nicole Flores
Copy Editor: Marilyn Smith
Assistant Production Director: Kari Brooks-Copony
Production Editor: Laura Esterman
Compositor: Susan Glinert
Proofreaders: Lori Bring and April Eddy
Indexer: Broccoli Information Management
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/Download
section.

Zammetti-816-4FRONT.fm Page ii Saturday, March 17, 2007 1:17 PM

www.allitebooks.com

http://www.allitebooks.org

Dedicated to all the animals I’ve eaten over the years, without whom I
most certainly would have died a long time ago due to starvation. Well, I suppose

I could have been a vegan, but then I’d have to dedicate this to all the plants
I’ve eaten, and that would just be silly because very few plants can read.

To all my childhood friends who provided me with cool stories to tell: Joe, Thad,

Meenie, Kenny, Franny, Tubby, Stubby, Kenway, JD, dVoot, Corey, and Francine.

To Denny Crane, for raising awareness of Mad Cow disease.

Hmm, who am I forgetting? Oh yeah, and to my wife and kids.
You guys make life worth living.

Zammetti-816-4FRONT.fm Page iii Saturday, March 17, 2007 1:17 PM

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author . xv

About the Technical Reviewer . xvii

About the Illustrator . xix

Acknowledgments . xxi

Introduction . xxiii

PART 1 ■ ■ ■ Say Hello to My Little Friend:
JavaScript!

■CHAPTER 1 A Brief History of JavaScript . 3

■CHAPTER 2 The Seven Habits of Highly Successful
JavaScript Developers . 29

PART 2 ■ ■ ■ The Projects
■CHAPTER 3 Hodgepodge: Building an Extensible JavaScript Library 71

■CHAPTER 4 CalcTron 3000: A JavaScript Calculator . 107

■CHAPTER 5 Doing the Monster Mash: A Mashup . 147

■CHAPTER 6 Don’t Just Live in the Moment: Client-Side Persistence 185

■CHAPTER 7 JSDigester: Taking the Pain Out of Client-Side XML 231

■CHAPTER 8 Get It Right, Bub: A JavaScript Validation Framework 261

■CHAPTER 9 Widget Mania: Using a GUI Widget Framework 305

■CHAPTER 10 Shopping in Style: A Drag-and-Drop Shopping Cart 351

■CHAPTER 11 Time for a Break: A JavaScript Game . 403

■CHAPTER 12 Ajax: Where the Client and Server Collide . 465

■INDEX . 525

Zammetti-816-4FRONT.fm Page v Saturday, March 17, 2007 1:17 PM

ae1c89095f95abda90126f30663a4984
www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author . xv

About the Technical Reviewer . xvii

About the Illustrator . xix

Acknowledgments . xxi

Introduction . xxiii

PART 1 ■ ■ ■ Say Hello to My Little Friend:
JavaScript!

■CHAPTER 1 A Brief History of JavaScript . 3

How JavaScript Came to Exist . 3
The Evolution of JavaScript: Teething Pains . 6

But It’s the Same Code: Browser Incompatibilities 6

Of Snails and Elephants: JavaScript Performance and
Memory Issues . 9

The Root of All Evil: Developers! . 14

DHTML—The Devil’s Buzzword . 16

The Evolution Continues: Approaching Usability . 18

Building a Better Widget: Code Structure . 19

Relearning Good Habits . 20

The Final Evolution: Professional JavaScript at Last! 21

The Browsers Come Around . 22

Object-Oriented JavaScript . 24

“Responsible” JavaScript: Signs and Portents 26

Summary . 27

Zammetti-816-4FRONT.fm Page vii Saturday, March 17, 2007 1:17 PM

www.allitebooks.com

http://www.allitebooks.org

viii ■C O N T E N T S

■CHAPTER 2 The Seven Habits of Highly Successful
JavaScript Developers . 29

More on Object-Oriented JavaScript . 30

Simple Object Creation. 30

Object Creation with JSON . 31

Class Definition . 32

Prototypes . 33

Which Approach Should You Use? . 33

Benefits of Object-Orientation . 34

Graceful Degradation and Unobtrusive JavaScript 35

Keep JavaScript Separate . 35

Allow Graceful Degradation . 36

Don’t Use Browser-Sniffing Routines . 39

Don’t Create Browser-Specific or Dialect-Specific JavaScript 40

Properly Scope Variables . 40

Don’t Use Mouse Events to Trigger Required Events 41

It’s Not All Just for Show: Accessibility Concerns 42

When Life Gives You Grapes, Make Wine: Error Handling 43

When It Doesn’t Go Quite Right: Debugging Techniques 46

Browser Extensions That Make Life Better . 49

Firefox Extensions. 49

IE Extensions . 54

Maxthon Extension: DevArt . 59

JavaScript Libraries . 60

Prototype . 61

Dojo . 62

Java Web Parts . 64

Script.aculo.us . 64

Yahoo! User Interface Library . 65

MochiKit . 65

Rico . 66

Mootools . 66

Summary . 67

Zammetti-816-4FRONT.fm Page viii Saturday, March 17, 2007 1:17 PM

www.allitebooks.com

http://www.allitebooks.org

■C O N T E N T S ix

PART 2 ■ ■ ■ The Projects
■CHAPTER 3 Hodgepodge: Building an Extensible

JavaScript Library . 71

Bill the n00b Starts the Day . 71

Overall Code Organization . 72

Creating the Packages . 76

Building the jscript.array Package . 76

Building the jscript.browser Package . 78

Building the jscript.datetime Package . 78

Building the jscript.debug Package . 80

Building the jscript.dom Package . 83

Building the jscript.form Package . 87

Building the jscript.lang Package . 91

Building the jscript.math Package . 91

Building the jscript.page Package . 92

Building the jscript.storage Package . 94

Building the jscript.string Package . 96

Testing All the Pieces . 103

Suggested Exercises . 105

Summary . 105

■CHAPTER 4 CalcTron 3000: A JavaScript Calculator 107

Calculator Project Requirements and Goals . 107

A Preview of CalcTron . 108

Rico Features . 110

Dissecting the CalcTron Solution . 112

Writing calctron.htm . 113

Writing styles.css . 116

Writing CalcTron.js . 118

Writing Classloader.htm . 122

Writing Mode.js . 127

Writing Standard.json and Standard.js . 131

Writing BaseCalc.json and BaseCalc.js . 140

Suggested Exercises . 146

Summary . 146

Zammetti-816-4FRONT.fm Page ix Saturday, March 17, 2007 1:17 PM

www.allitebooks.com

http://www.allitebooks.org

x ■C O N T E N T S

■CHAPTER 5 Doing the Monster Mash: A Mashup . 147

What’s a Mashup? . 147

Monster Mash(up) Requirements and Goals . 148

The Yahoo APIs . 148

Yahoo Maps Map Image Service. 151

Yahoo Registration . 153

The Google APIs . 153

Script.aculo.us Effects . 155

A Preview of the Monster Mash(up) . 159

Dissecting the Monster Mash(up) Solution . 161

Writing styles.css . 162

Writing mashup.htm . 164

Writing ApplicationState.js. 168

Writing Hotel.js . 169

Writing SearchFuncs.js . 170

Writing Masher.js . 173

Writing CallbackFuncs.js . 176

Writing MapFuncs.js . 178

Writing MiscFuncs.js . 181

Suggested Exercises . 182

Summary . 183

■CHAPTER 6 Don’t Just Live in the Moment:
Client-Side Persistence . 185

Contact Manager Requirements and Goals . 185

Dojo Features . 186

Dojo and Cookies . 188

Dojo Widgets and Event System . 189

Local Shared Objects and the Dojo Storage System 190

A Preview of the Contact Manager . 192

Dissecting the Contact Manager Solution . 194

Writing styles.css . 196

Writing dojoStyles.css . 199

Writing index.htm . 199

Writing goodbye.htm . 207

Writing EventHandlers.js . 208

Writing Contact.js . 212

Writing ContactManager.js . 217

Writing DataManager.js . 223

Zammetti-816-4FRONT.fm Page x Saturday, March 17, 2007 1:17 PM

www.allitebooks.com

http://www.allitebooks.org

■C O N T E N T S xi

Suggested Exercises . 229

Summary . 229

■CHAPTER 7 JSDigester: Taking the Pain Out of Client-Side XML 231

Parsing XML in JavaScript . 231

JSDigester Requirements and Goals . 234

How Digester Works . 234

Dissecting the JSDigester Solution . 237

Writing the Test Code . 238

Understanding the Overall JSDigester Flow 244

Writing the JSDigester Code . 246

Writing the Rules Classes Code . 253

Suggested Exercises . 258

Summary . 259

■CHAPTER 8 Get It Right, Bub: A JavaScript
Validation Framework . 261

JSValidator Requirements and Goals . 261

How We Will Pull It Off . 262

The Prototype Library . 263

A Preview of JSValidator . 265

Dissecting the JSValidator Solution . 268

Writing index.htm . 269

Writing styles.css . 270

Writing jsv_config.xml . 271

Writing JSValidatorObjects.js . 274

Writing JSValidator.js . 287

Writing JSValidatorBasicValidators.js . 297

Writing DateValidator.js . 301

Suggested Exercises . 303

Summary . 303

■CHAPTER 9 Widget Mania: Using a GUI Widget Framework 305

JSNotes Requirements and Goals . 305

The YUI Library . 306

A Preview of JSNotes . 307

Zammetti-816-4FRONT.fm Page xi Saturday, March 17, 2007 1:17 PM

xii ■C O N T E N T S

Dissecting the JSNotes Solution . 310

Writing index.htm . 311

Writing styles.css . 313

Writing Note.js. 317

Writing JSNotes.js . 318

Suggested Exercises . 349

Summary . 349

■CHAPTER 10 Shopping in Style: A Drag-and-Drop Shopping Cart 351

Shopping Cart Requirements and Goals . 351

Graceful Degradation, or Working in the Stone Age 352

The MochiKit Library . 355

The Mock Server Technique . 357

A Preview of the Shopping Cart Application . 359

Dissecting the Shopping Cart Solution . 363

Writing styles.css . 365

Writing index.htm . 367

Writing main.js . 370

Writing idX.htm . 373

Writing CatalogItem.js . 375

Writing Catalog.js . 380

Writing CartItem.js . 382

Writing Cart.js . 385

Writing viewCart.htm . 392

Writing checkout.htm . 396

Writing mockServer.htm . 398

Suggested Exercises . 401

Summary . 401

■CHAPTER 11 Time for a Break: A JavaScript Game 403

K&G Arcade Requirements and Goals . 403

A Preview of the K&G Arcade . 405

Dissecting the K&G Arcade Solution . 408

Writing index.htm . 409

Writing styles.css . 413

Writing GameState.js . 415

Writing globals.js . 417

Zammetti-816-4FRONT.fm Page xii Saturday, March 17, 2007 1:17 PM

■C O N T E N T S xiii

Writing main.js . 417

Writing consoleFuncs.js . 424

Writing keyHandlers.js . 428

Writing gameFuncs.js. 432

Writing MiniGame.js . 435

Writing Title.js . 435

Writing GameSelection.js . 437

Writing CosmicSquirrel.js. 440

Writing Deathtrap.js . 448

Writing Refluxive.js . 456

Suggested Exercises . 462

Summary . 463

■CHAPTER 12 Ajax: Where the Client and Server Collide 465

Chat System Requirements and Goals . 465

The “Classic” Web Model . 466

Ajax . 469

The Ajax Frame of Mind . 470

Accessibility and Similar Concerns . 472

Ajax: A Paradigm Shift for Many . 473

The “Hello World” of Ajax Examples. 474

JSON . 481

Mootools . 483

A Preview of the Chat Application . 484

Dissecting the Chat Solution . 486

Writing SupportChat.js . 488

Writing ChatMessage.js . 497

Writing styles.css . 500

Writing index.htm and index_support.htm. 501

Writing chat.htm . 503

Writing goodbye.htm . 508

Creating the Database . 508

Writing the Server Code . 509

Suggested Exercises . 523

Summary . 523

■INDEX . 525

Zammetti-816-4FRONT.fm Page xiii Saturday, March 17, 2007 1:17 PM

xv

About the Author

■FRANK W. ZAMMETTI is a web architect specialist for a leading worldwide financial company by
day, and a PocketPC and open source developer by night. He is the founder and chief software
architect of Omnytex Technologies, a PocketPC development house.

Frank has more than 13 years of “professional” experience in the IT field, and over 12 more
of “amateur” experience. He began his nearly lifelong love of computers at age 7, when he became
one of four students chosen to take part in the school district’s pilot computer program. A year
later, he was the only participant left! The first computer Frank owned was a Timex Sinclair 1000,
in 1982, on which he wrote a program to look up movie times for all of Long Island (and without
the 16kb expansion module!). After that, he moved on to an Atari computer, and then a
Commodore 64, where he spent about four years doing nothing but assembly programming
(games mostly). He finally got his first IBM-compatible PC in 1987, and began learning the finer
points of programming (as they existed at that time!).

Frank has primarily developed web-based applications for about eight years. Before that,
he developed Windows-based client/server applications in a variety of languages. Frank holds
numerous certifications, including SCJP, MCSD, CNA, i-Net+, A+, CIW Associate, MCP, and
numerous BrainBench certifications. He is a contributor to a number of open source projects,
including DataVision, Struts, PocketFrog, and Jakarta Commons. In addition, Frank has started
two projects: Java Web Parts and The Struts Web Services Enablement Project. He also was one
of the founding members of a project that created the first fully functioning Commodore 64
emulator for PocketPC devices (PocketHobbit).

Frank has authored various articles on topics that range from integrating DataVision into
web applications to using Ajax in Struts-based applications, as well as a book on Ajax for Apress.
He is currently working on a new application framework specifically geared to creating next-
generation web applications.

Frank lives in the United States with his wife Traci, his two kids Andrew and Ashley, and his
dog Belle. And an assortment of voices in his head, but the pills are supposed to stop that.

Zammetti-816-4FRONT.fm Page xv Saturday, March 17, 2007 1:17 PM

xvii

About the Technical Reviewer

■HERMAN VAN ROSMALEN works as a developer/software architect for De Nederlandsche Bank N.V.,
the central bank of the Netherlands. He has more than 20 years of experience in developing
software applications in a variety of programming languages. Herman has been involved in
building mainframe, PC, and client/server applications. For the past six years, however, he has
been involved mainly in building J2EE web-based applications. After working with Struts
(pre-1.0) for years, he got interested in Ajax and joined the Java Web Parts open source project
in 2005.

Herman lives in a small town, Pijnacker, in the Netherlands, with his wife Liesbeth and
their children, Barbara, Leonie, and Ramon.

Zammetti-816-4FRONT.fm Page xvii Saturday, March 17, 2007 1:17 PM

xix

About the Illustrator

■ANTHONY VOLPE did the illustrations for this book and the K&G Arcade game. He has worked on
several video games with author Frank Zammetti, including Invasion Trivia!, Io Lander, and
Ajax Warrior. Anthony lives in Collegeville, Pennsylvania, and works as a graphic designer and
front-end web developer. His hobbies include recording music, writing fiction, making video
games, and going to karaoke bars to make a spectacle of himself.

Zammetti-816-4FRONT.fm Page xix Saturday, March 17, 2007 1:17 PM

xxi

Acknowledgments

Many people helped make this book a reality in one form or another, and some of them may
not even realize it! I’ll try to remember them all here, but chances are I haven’t, and I apologize
in advance.

First and foremost, I would like to thank everyone at Apress who made this book a reality.
This is my second go-round with you folks, and it was just as pleasurable an experience this
time as the first. Chris, Matt, Tracy, Marilyn, Laura, Tina, and all the rest, thank you!

A great deal of thanks goes to Herman van Rosmalen, one of my partners in crime on the
Java Web Parts project (http://javawebparts.sourceforge.net) project, and technical reviewer
for this book. I know you put in a lot of time and effort in keeping me honest, and I can’t tell you
how much I appreciate it! Now, let’s get back to work on JWP!

A big thanks must also go to Anthony Volpe, the fine artist who did the illustrations for
this book. He and I have been friends for about ten years now, and we have collaborated on a
number of projects, including three PocketPC games (check ’em out: http://www.omnytex.com),
as well as a couple of Flash games (http://www.planetvolpe.com/crackhead) and some web
cartoons (http://www.planetvolpe.com/du). He is a fantastic artist, as I’m sure you can see for
yourself, an incredibly creative person, and a good friend to boot.

I would also like to thank those that built some of the libraries used in this book, including
all the folks working on Dojo, Sam Stephenson (Prototype), Aaron Newton, Christophe Beyls,
and Valerio Proietti of the Mootools team; Bob Ippolito of MochiKit fame; all the YUI developers;
and everyone working on script.aculo.us and Rico.

Last but most definitely not least, I would like to thank everyone who bought this book! I
sincerely hope you have as much fun reading it as I did writing it, and I hope that you find it to
be worth your hard-earned dollars and that it proves to be an educational and eye-opening
experience.

As I said, I know I am almost certainly forgetting a boatload of people, so how about I just
thank the entire world and be done with it?!? In fact, if I had the technology, I’d be like Wowbagger
the Infinitely Prolonged, only with “Thanks!” instead of insults.

And on that note, let’s get to some code!

Zammetti-816-4FRONT.fm Page xxi Saturday, March 17, 2007 1:17 PM

xxiii

Introduction

So there I was, just minding my own business, when along came a publisher asking me if I’d
be interested in writing a book on JavaScript. It seemed like a good thing to do at the time, so I
said yes.

I’m just kidding. No one asked me, I just showed up one day on the doorstep of Apress with
a manuscript and some puppy-dog eyes. I’m just kidding again.

Seriously though, JavaScript is one of those kids we all knew when we were young who start
out really ugly, but whom everyone wants as their beautiful date to the prom years later. Then
they go on to Yale, become a district attorney, and suddenly everyone realizes that they really
want to be with that person. Fortunately, unlike the DA, JavaScript doesn’t involve crimes and
misdemeanors, since you know you don’t have a chance any other way with the DA!

JavaScript has quickly become one of the most important topics in web development, one
that any self-respecting web developer can’t do without. With the advent of Ajax, which I’ll talk
about in this book, JavaScript has very quickly gone from something that can enhance a web
site a little to something used to build very serious, professional-quality applications. It’s no
longer a peripheral player; it’s a main focus nowadays.

There are plenty of books on JavaScript and plenty of how-to articles strewn across the
intrawebs, any of which can be of great help to you. Far harder to come by though are real,
substantial examples. Oh, you can get a lot of simplistic, artificial examples to be sure, but it’s
more difficult to find full-blown, real-world applications that you can examine. Many developers
learn best by tearing apart code, messing around with it a bit, and generally getting their hands
dirty with real, working bits. That’s why I wrote this book: to fill that gap.

In this book, you will find two chapters on some general JavaScript topics, including a brief
history of JavaScript, good coding habits, debugging techniques, tools, and more. From then
on, it’s ten chapters of nothing but projects! Each chapter will present a different application,
explain its inner workings, and offer some suggested exercises you can do to sharpen your skills
and further your learning. The projects run the gamut from generally useful (an extensible
calculator) to current ideas (a mashup) to just plain fun (a JavaScript game).

In the process, you will learn about a wide variety of topics, including debugging techniques,
various JavaScript libraries, and a few somewhat unique and useful approaches to coding. I
believe you will also find this to be an entertaining book, and in fact, one of the exercises I suggest
from the beginning is to try to pick out all the pop-culture references scattered all over the place
(try to place them without looking at the footnotes that accompany most, but not all!). I tried to
make this book like an episode of Gilmore Girls in that regard (and if you aren’t familiar with the
show, there’s your first pop-culture reference!).

So, enough babbling (for the time being anyway). You know what’s coming, so let’s stop
dropping hints about numbers, Dharma, and bizarre connections between characters (pop-
culture reference number 2!), and get on with the good stuff. Let’s get on with the show!

Zammetti-816-4FRONT.fm Page xxiii Saturday, March 17, 2007 1:17 PM

xxiv ■I N T R O D U CT I O N

An Overview of This Book
This book is divided into two main parts. Part 1, “Say Hello to My Little Friend: JavaScript!,”
contains two chapters:

• Chapter 1 is a brief history of JavaScript, from its humble beginning to its current state
of acceptance.

• Chapter 2 goes into the techniques and approaches employed by modern-day “profes-
sional” JavaScript developers.

Part 2, “The Projects,” contains ten chapters:

• Chapter 3 starts you off with the first project: an extensible, packaged collection of
utility functions.

• Chapter 4 develops an extensible calculator and introduces the first JavaScript library, Rico.

• Chapter 5 introduces the concept of a mashup, one of the hottest topics going today, by
way of a working example using the very popular script.aculo.us library.

• Chapter 6 uses the Dojo library to deal with an issue that comes up frequently in JavaScript
development, that of client-side data persistence.

• Chapter 7 explores the very useful JSDigester component of the Java Web Parts project,
which allows you to parse XML and create JavaScript objects from it without tedious
coding on your part.

• Chapter 8 develops an extensible validation framework for doing client-side form valida-
tion in a purely declarative fashion.

• Chapter 9 introduces the Yahoo! User Interface Library and uses it to create a handy little
contact manager application.

• Chapter 10 uses the MochiKit library to develop a drag-and-drop shopping cart for
e-commerce applications.

• Chapter 11 is where we get into the fun stuff: a JavaScript game! And not a simple little
Tetris clone or tile-matching game, but something a fair bit more substantial.

• Chapter 12 is where we have an in-depth look at Ajax, perhaps the biggest reason JavaScript
has taken on a whole new level of importance in recent years, using the relatively new
Mootools library.

Obtaining This Book’s Source Code
All the examples in this book are freely available from the Source Code section of the Apress
web site. In fact, due to the nature of this book, you will absolutely have to download the source
code before you begin Chapter 3. To do so, visit http://www.apress.com, click the Source Code
link, and find Practical JavaScript, DOM Scripting, and Ajax Projects in the list. From this
book’s home page, you can download the source code as a zip file. The source code is organized
by chapter.

Zammetti-816-4FRONT.fm Page xxiv Saturday, March 17, 2007 1:17 PM

Obtaining Updates for This Book
Writing a book is a big endeavor—quite a bit bigger than many people think! Contrary to what
I claim in private to my friends, I am not perfect. I make my mistakes like everyone else. Not in
this book of course. Oh no, none at all.

Ahem . . .
Let me apologize in advance for any errors you may find in this book. Rest assured that

everyone involved has gone to extremes to ensure there are none, but let’s be real here. We’ve
all read technical books before, and we know that the cold, sharp teeth of reality bite every now
and again. I’m sorry, I’m sorry, I’m sorry!

A current errata list is available from this book’s home page on the Apress web site
(http://www.apress.com) along with information about how to notify us of any errors you may
find. This will usually involve some sort of telepathy, but my understanding is that Windows
Vista Service Pack 1 will include this feature, so rest easy my friends.

Contacting the Author
I very much would like to hear your questions and comments regarding this book’s content and
source code examples. Please do feel free to email me directly at fzammetti@omnytex.com
(spammers will be hunted down by Sentinels and disposed of). I will reply to your inquiries as
soon as I can, but please remember, I do have a life (no, really, I do . . . OK, no I don’t), so I may
not be able to reply immediately.

Lastly, and most important, thank you for buying this book! I thank you, my wife thanks
you, my kids thank you, my kids’ orthodontist thanks you, my dog’s veterinarian thanks you,
my roofing contractor thanks you . . .

Zammetti-816-4FRONT.fm Page xxv Saturday, March 17, 2007 1:17 PM

www.allitebooks.com

http://www.allitebooks.org

■ ■ ■

P A R T 1

Say Hello to My Little
Friend: JavaScript!

Eaten any good books lately?

Q (to Worf) in the Star Trek: The Next Generation episode, “Deja-Q”

The Internet? Is that thing still around?

Homer Simpson

Programming today is a race between software engineers striving to build bigger and
better idiot-proof programs, and the Universe trying to produce bigger and better idiots.
So far, the Universe is winning.

Rich Cook

The first 90% of the code accounts for the first 10% of the development time. The
remaining 10% of the code accounts for the other 90% of the development time.

Tom Cargill

There are only two kinds of programming languages: those people always bitch about
and those nobody uses.

Bjarne Stroustrup

There are only two industries that refer to their customers as ‘users.’

Edward Tufte

Zammetti-816-4C01.fm Page 1 Wednesday, February 14, 2007 12:30 PM

3

■ ■ ■

C H A P T E R 1

A Brief History of JavaScript

I can only hope Stephen Hawking doesn’t mind me paraphrasing his book title as the title of
this chapter!1 Just as in his book A Brief History of Time, we are about to begin an exploration of
a universe of sorts, from its humble beginnings to its current state of being.

In this chapter, we will explore the genesis of JavaScript. More than providing a mere history
lesson though, in the tradition of Mr. Hawking himself, I’ll give you a deeper look and show
what’s below the surface. In the process, you’ll gain an understanding of the problems inherent
in early JavaScript development and how those flaws have largely been overcome. By the end
of our journey, you’ll have a good understanding of the pitfalls to avoid and start to know how
to overcome them (the rest of that knowledge will be revealed in subsequent chapters). So, let’s
get ready for an adventure, and let’s do Mr. Hawking proud!

How JavaScript Came to Exist
The year was 1995, and the Web was still very much in its infancy. It’s fair to say that the vast
majority of computer users couldn’t tell you what a web site was at that point, and most devel-
opers couldn’t build one without doing some research and learning first. Microsoft was really
just beginning to realize that the Internet was going to matter. And Google was still just a made-
up term from an old Little Rascals episode.2

Netscape ruled the roost at that point, with its Navigator browser as the primary method
for most people to get on the Web. A new feature at the time, Java applets, was making people
stand up and take notice. However, one of the things they were noticing is that Java wasn’t as
accessible to many developers as some (specifically, Sun Microsystems, the creator of Java)
had hoped. Netscape needed something more.

1. A Brief History of Time is the title of one of the most famous books on physics and cosmology ever written,
and is the obvious, ahem, inspiration, for the title of this chapter. Its author, Professor Stephen Hawking of
the University of Cambridge, is considered one of the world’s best theoretical physicists. His book
brought many of the current theories about the universe to the layman, and those of us that pretend
we actually know what we’re talking about when discussing things like superstrings, supersymmetry,
and quantum singularities (outside a Star Trek episode, that is!). For more information, see http://
en.wikipedia.org/wiki/Stephen_Hawking.

2. The word google was first used in the 1927 Little Rascals silent film Dog Heaven, to refer to having a
drink of water. See http://experts.about.com/e/g/go/Google.htm. Although this reference does not
state it was the first use of the word, numerous other sources on the Web indicate it was. I wouldn’t bet
all my money on this if I ever made it to the finals of Jeopardy, but it should be good enough for polite
party conversation!

Zammetti-816-4C01.fm Page 3 Wednesday, February 14, 2007 12:30 PM

4 C H A P T E R 1 ■ A B R I E F H I S T O R Y O F J A V A SC R I P T

Enter Brendan Eich, formerly of MicroUnity Systems Engineering, a new hire at Netscape.
Brendan was given the task of leading development of a new, simple, lightweight language for
non-Java developers to use. Many of the growing legions of web developers, who often didn’t
have a full programming background, found Java’s object-oriented nature, compilation require-
ments, and package and deployment requirements a little too much to tackle. Brendan quickly
realized that to make a language accessible to these developers, he would need to make certain
decisions. Among them, he decided that this new language should be loosely typed and very
dynamic by virtue of it being interpreted.

The language he created was initially called LiveWire, but its name was pretty quickly
changed to LiveScript, owing to its dynamic nature. However, as is all too often the case, some
marketing drones got hold of it and decided to call it JavaScript, to ride the coattails of Java.
This change was actually implemented before the end of the Navigator 2.0 beta cycle.3 So for
all intents and purposes, JavaScript was known as JavaScript from the beginning. At least the
marketing folks were smart enough to get Sun involved. On December 4, 1995, both Netscape
and Sun jointly announced JavaScript, terming it “complementary” to both HTML and Java
(one of the initial reasons for its creation was to help web designers manipulate Java applets
easier, so this actually made some sense). The shame of all this is that for years to come, JavaScript
and Java would be continually confused on mailing lists, message boards, and in general by
developers and the web-surfing public alike!

It didn’t take long for JavaScript to become something of a phenomenon, although tellingly on
its own, rather than in the context of controlling applets. Web designers were just beginning to take
the formerly static Web and make it more dynamic, more reactive to the user, and more multi-
media. People were starting to try to create interactive and sophisticated (relatively speaking)
user interfaces, and JavaScript was seen as a way to do that. Seemingly simple things like swapping
images on mouse events, which before then would have required a bulky browser plug-in of
some sort, became commonplace. In fact, this single application of JavaScript—flipping images in
response to user mouse events—was probably the most popular usage of JavaScript for a long
time. Manipulating forms, and, most usually, validating them, was a close second in terms of
early JavaScript usage. Document Object Model (DOM) manipulation took a little bit longer to
catch on for the most part, mostly because the early DOM level 0, as it came to be known, was
relatively simplistic, with form, link, and anchor manipulation as the primary goals.

In early 1996, shortly after its creation, JavaScript was submitted to the European
Computer Manufacturers Association (ECMA) for standardization. ECMA (http://www.
ecma-international.org) produced the specification called ECMAScript, which covered the
core JavaScript syntax, and a subset of DOM level 0. ECMAScript still exists today, and most
browsers implement that specification in one form or another. However, it is rare to hear people
talk about ECMAScript in place of JavaScript. The name has simply stuck in the collective
consciousness for too long to be replaced. And, of course, this book itself is about JavaScript,
not ECMAScript. But do be clear about it: they are the same thing!

What made JavaScript so popular so fast? Probably most important was the very low barrier to
entry. All you had to do was open any text editor, type in some code, save it, and load that file
in a browser, and it worked! You didn’t need to go through a compilation cycle or package and

3. As a historical aside, you might be interested to know that version 2.0 of Netscape Navigator introduced not
one but two noteworthy features. Aside from JavaScript, frames were also introduced. Of course, one of
these has gained popularity, while the other tends to be shunned by the web developer community at
large, but that’s a story for another book!

Zammetti-816-4C01.fm Page 4 Wednesday, February 14, 2007 12:30 PM

C H A P T E R 1 ■ A B R I E F H I S T O R Y O F JA V A S CR I P T 5

deploy it—none of that complex “programming” stuff. And no complicated integrated devel-
opment environment (IDE) was involved. It was really just as easy as saving a quick note to
yourself.

Another important reason for JavaScript’s early success was its seeming simplicity. You
didn’t have to worry about data types, because it was (and still is) a loosely typed language. It
wasn’t object-oriented, so you didn’t have to think about class hierarchies and the like. In fact,
you didn’t even have to deal with functions if you didn’t want to (and wanted your script to
execute immediately upon page loading). There was no multithreading to worry about or
generic collections classes to learn. In fact, the intrinsic JavaScript objects were very limited,
and thus quickly picked up by anyone with even just an inkling of programming ability. It was
precisely this seeming simplicity that lead to a great many of the early problems.

Unfortunately, JavaScript’s infancy wasn’t all roses by any stretch. A number of highly
publicized security flaws hurt its early reputation considerably. A flood of books aimed squarely at
nonprogrammers had the effect of getting a lot of people involved in writing code who probably
shouldn’t have been doing so (at least, not as publicly as a web site tends to be).

Probably the biggest problem, however, was the frankly elitist attitude of many “real”
programmers. They saw JavaScript’s lack of development tools (IDEs, debuggers, and so on),
its inability to be developed outside a browser (in some sort of test environment), and apparent
simplicity as indications that it was a “script kiddie” language—something that would be used
only by amateurs, beginners, and/or hacks. For a long time, JavaScript was very much the “ugly
duckling” of the programming world. It was the Christina Crawford,4 forever being berated by
her metaphorical mother, the “real” programmers of the world.

Poor javascript—other languages can be so cruel!

4. Christina Crawford was the daughter of Jane Crawford, and her story is told in the classic movie Mommy
Dearest (http://www.imdb.com/title/tt0082766). Even if you don’t remember the movie, you almost
certainly remember the phrase “No more wire hangers!” uttered by Jane to Christina in what was probably
the most memorable scene in the movie.

Zammetti-816-4C01.fm Page 5 Wednesday, February 14, 2007 12:30 PM

6 C H A P T E R 1 ■ A B R I E F H I S T O R Y O F J A V A SC R I P T

This attitude blinded programmers to the amazing potential that lay just below the surface,
and that would become apparent as both JavaScript and the skill of those using it matured.
This attitude also kept away a lot of excellent developers, who could have been helping accel-
erate that maturation process instead of stunting it. But JavaScript was destined for greatness,
no matter what anyone else said!

The Evolution of JavaScript: Teething Pains
While it’s true that JavaScript wasn’t given a fair shake early on by programmers, some of their
criticisms were, without question, true. JavaScript was far from perfect in its first few iterations—
a fact I doubt that Netscape or Brendan Eich would dispute! As you’ll see, some of it was a simple
consequence of being a new technology that needed a few revisions to get right (the same
problem Microsoft is so often accused of having), and some of it was, well, something else.

So, what were the issues that plagued early JavaScript? Several of them tend to stand out
above the rest: browser incompatibilities, memory, and performance. Also, there was the true
reason JavaScript wasn’t embraced by everyone from the get-go: developers themselves! Let’s
explore these areas in some detail, because in order to understand where we are now, it helps
to understand where we were not so very long ago.

But It’s the Same Code: Browser Incompatibilities
To better understand the discussion to follow, and in the interest of those who prefer the graphical
representation of information to the textual, let’s look at two timelines. Figure 1-1 shows the
somewhat simplified release history of Netscape’s Navigator browser, and in lockstep, versions
of JavaScript. Figure 1-2 shows the same basic information for Microsoft’s Internet Explorer
(IE) and its JScript implementation of JavaScript. While these data points are accurate, I have
probably left out a point release here and there. And I haven’t carried these timelines to the
current day, because from the point where they end, we’ve been in the realm of ECMAScript
and largely compatible implementations across browsers.

Figure 1-1. The quick-and-dirty history of Netscape Navigator and JavaScript

Zammetti-816-4C01.fm Page 6 Wednesday, February 14, 2007 12:30 PM

C H A P T E R 1 ■ A B R I E F H I S T O R Y O F JA V A S CR I P T 7

Figure 1-2. The quick-and-dirty history of Internet Explorer and JScript

When JavaScript came out, Microsoft developers realized they had a problem on their
hands. Despite whatever issues may have existed with JavaScript early on, it was clear that this
was something web developers were going to want. How could it be otherwise? For the first
time, static pages could come alive.5

Microsoft found an answer for this situation. In fact, it had two! First, it created VBScript,
which was at least syntactically modeled after its Visual Basic product. Second, and most impor-
tant for the discussion in this section, Microsoft also created JScript, which was a (mostly)
compatible version of JavaScript. It’s that “mostly” part that caused problems.

One of the biggest perceived problems with JavaScript for a long time—really, until just
two or three years ago—was incompatibilities among different browser versions. Most of this
problem was caused by Microsoft’s implementation coming into the picture. Logically, had
Netscape remained the dominant browser, there likely would not have been any compatibility
issues to speak of! On the gripping hand,6 when Microsoft released JScript 1.0, it was actually
quite compatible with JavaScript 1.0—close enough that cross-browser development could
begin. It wasn’t until Netscape released JavaScript 1.1 that compatibility issues really began.
So, if you’re a Microsoft booster, you can feel free to bash Netscape. If you’re a Micro$oft hater,
then it was clearly at fault!

From the point when Netscape released JavaScript 1.1 with Navigator 3.0 on, Microsoft’s
JScript implementation was at least one point release behind Netscape’s at any given time, and

5. Well, not really the first time, but the first time without cumbersome, not to mention often buggy, plug-
ins that required extra download time. Remember that this was years before broadband came into
play, back in the days when a 56kbps modem that never quite performed up to spec was the predomi-
nant technology for connecting to the Internet.

6. “On the gripping hand” is a phrase used in the science-fiction book The Mote in God’s Eye, written by
Larry Niven and Jerry Ournelle, and also in The Gripping Hand, the sequel. It is used to describe the
third choice sometimes available to us. For example, when you say, “We could do A . . . ; on the other
hand, we could do B,” you can also say “. . . on the gripping hand, we could do C.” The phrase stems
from the fact that the alien race the book deals with, the Moties, are asymmetrical in terms of their
appendage layout; they have two arms on one side! It also happened to usually be the strongest of the
three arms possessed by these creatures. These are excellent books, and if you are into science fiction
and haven’t read them yet, I highly recommend picking them up! They are considered classic works by
most (so how you could call yourself a sci-fi fan without having read them?).

Zammetti-816-4C01.fm Page 7 Wednesday, February 14, 2007 12:30 PM

8 C H A P T E R 1 ■ A B R I E F H I S T O R Y O F J A V A SC R I P T

this condition persisted for quite some time. So, as one example, while image rollovers were
becoming commonplace in Netscape browsers, this ability was not yet present in IE (around
the IE 3.0 timeframe). To handle the differences, using “browser-sniffing” code to enable or
disable bits of functionality became commonplace. This code would look something like that
shown in Listing 1-1.

Listing 1-1. An Old Browser-Sniffer Routine

function Redirect() {
 var WhatBrowser;
 var WhatVersion;
 WhatBrowser = navigator.appName.toUpperCase();
 WhatVersion = navigator.appVersion.toUpperCase();
 if (WhatBrowser.indexOf("MICROSOFT") >= 0) {
 if (WhatVersion.indexOf("3") >= 0) {
 top.location = "MainPage.html";
 } else {
 top.location = "BadVersion.html";
 }
 }
 if (WhatBrowser.indexOf("NETSCAPE") >= 0) {
 if (WhatVersion.indexOf("2") >= 0) {
 top.location = "MainPage.html";
 } else {
 top.location = "BadVersion.html";
 }
 }
}

In this code, if the browser version detected is not 3.x or higher for IE, or 2.x for Netscape,
users are directed to BadVersion.html, which presumably tells them their browser is not compat-
ible. They wind up at MainPage.html if the version meets these minimum requirements. This is
obviously very flawed code for a number of reasons, which I’ll leave as an exercise for you to find.

The important point here is that this “sniffing” of browser versions (and type, in some
cases) was commonplace for a long time. In fact, you would often find two different versions of
the same page: one designed for IE and the other for Netscape. This was clearly not an optimal
situation! But for a long time, it was really the only way, because a piece of code would simply
not work as expected in one browser vs. another. Often, it was more a matter of one browser
supporting some feature that the other did not—sometimes because of proprietary extensions,
and sometimes because one browser implemented an earlier version of JavaScript. Other times,
it was outright differences in the way things worked.

It wasn’t just enough to test for browser type and version though, because Microsoft had
designed things such that the browser and the JScript language were separate entities. They
could upgrade one without touching the other, because JScript was just a dynamic link library
(DLL, a library of code linked to by another program at runtime). When IE 3.0 shipped, it did so
with the first version of the JScript DLL. A short while later, when IE 3.0 was still the most current
shipping version of the browser, Microsoft updated JScript to version 2.0. Microsoft did provide
two functions, ScriptEngineMajorVersion() and ScriptEngineMinorVersion(), but aside from

Zammetti-816-4C01.fm Page 8 Wednesday, February 14, 2007 12:30 PM

C H A P T E R 1 ■ A B R I E F H I S T O R Y O F JA V A S CR I P T 9

those functions not being supported by anything other than IE, they also were not available
in JScript 1.0! So dealing with them was often more trouble than they were worth. Still, they
tended to be the best answer, because you sometimes needed the information to branch your
code accordingly.

As an example of some of the sorts of incompatibilities you had to deal with back in the day,
the split() method of the String class allowed for an optional limitInteger parameter, which
would restrict the number of items converted into an array element. However, this parameter
was recognized only by Navigator 4. As another example, Netscape did not support the typeof
operator until Navigator 3, while Microsoft introduced it with JScript 1.0 (this is one of those
proprietary extensions that proved so useful it was added to the ECMAScript 1.0 specification).
For one more example, check out this simple snippet:

var d = new Date();
alert(d);

Something this simple would have been a problem early on because the toString() method of
the Date object, which was intrinsically present in Netscape’s implementation of the Date
object, was not present in JScript until version 2.0!

Various problems like these would arise, and seemingly always at the most inopportune
time! A tight deadline and a substring() function that doesn’t treat negative values quite the
same in IE as it does in Navigator are a sure recipe for disaster!7 That’s why browser sniffing
was so common for so long, even though we all knew it wasn’t a good idea.

If that had been the only real problem with JavaScript though, I suspect developers would
have griped and muttered under their breaths, but would have worked around it and gotten
used to it. Unfortunately, it wasn’t the only strike against JavaScript.

Of Snails and Elephants: JavaScript Performance and
Memory Issues
JavaScript can be slow. There, I said it! Even today, you can easily write code that performs
quite poorly. One trivial example is shown in Listing 1-2.

Listing 1-2. An Example of Poor JavaScript Performance (and How to Fix It)

<html>
 <head>
 <title>Listing 1-2</title>
 <script>

 function badTest() {
 var startTime = new Date().valueOf();
 var s = "";
 for (var i = 0; i < 10000; i++) {
 s += "This is a test string";
 }

7. I remember something like this being an issue, but I frankly couldn’t pull anything out of Google to
substantiate it. So, I offer it purely anecdotally, with the hope that my memory isn’t failing quite this
early in life!

Zammetti-816-4C01.fm Page 9 Wednesday, February 14, 2007 12:30 PM

10 C H A P T E R 1 ■ A B R I E F H I S T O R Y O F J A V A SC R I P T

 return new Date().valueOf() - startTime;
 }

 function goodTest() {
 var startTime = new Date().valueOf();
 var stringBuffer = new Array();
 for (var i = 0; i < 10000; i++) {
 stringBuffer.push("This is a test string");
 }
 var s = stringBuffer.join("");
 return new Date().valueOf() - startTime;
 }

 function betterTest() {
 var startTime = new Date().valueOf();
 var stringBuffer = new Array();
 for (var i = 0; i < 10000; i++) {
 stringBuffer[stringBuffer.length] = "This is a test string";
 }
 var s = stringBuffer.join("");
 return new Date().valueOf() - startTime;
 }

 function doTests() {
 var htm = "";
 htm += "Time badTest took: " + badTest() + "
";
 htm += "Time goodTest took: " + goodTest() + "
";
 htm += "Time betterTest took: " + betterTest();
 document.getElementById("result").innerHTML = htm;
 }

 </script>

 </head>

 <body>
 Click here to test

 <div id="result"> </div>
 </body>

</html>

Zammetti-816-4C01.fm Page 10 Wednesday, February 14, 2007 12:30 PM

C H A P T E R 1 ■ A B R I E F H I S T O R Y O F JA V A S CR I P T 11

As the caption for Listing 1-2 says, this example also gives you a free bonus: an optimization
that you can definitely use in the real world! This example does the same (admittedly contrived)
thing in three different ways:

• It constructs a string that consists of the string “This is a test string” 10,000 times (“This
is a test stringThis is a test stringThis is a test string” and so on 10,000 times). It does a
simple string concatenation using the + operator.

• It creates an array and uses the push() method to add “This is a string” to the array
10,000 times, and then finally uses the join() method of the Array class with a blank
character, which returns a string formed by combining all the elements of the array
together, separated by essentially nothing.

• It does this same array trick, but instead of using push(), it sets each element of the array
explicitly, making use of the fact that if you try to set an element of an array whose index
equals the length of the array, the array will grow by one.

Figure 1-3 shows how long each approach took in Firefox. You can see that none of them
took an especially long time. The Mozilla developers have done an excellent job of optimizing
their JavaScript engine, and this is especially evident in the simple + concatenation test case
taking the least amount of time. This wasn’t the case just a short while ago!

Figure 1-3. The speed test results in Firefox (1.5.0.6, latest as of this writing)

Now look at the same speed test results in IE, shown in Figure 1-4. The array tests are actually
a little faster than in Firefox, although certainly not drastically so. But obviously string concat-
enation is a big no-no in IE. It’s a whooping 95 times slower than Firefox!

Zammetti-816-4C01.fm Page 11 Wednesday, February 14, 2007 12:30 PM

www.allitebooks.com

http://www.allitebooks.org

12 C H A P T E R 1 ■ A B R I E F H I S T O R Y O F J A V A SC R I P T

Figure 1-4. The speed test results in Internet Explorer (6.0.2900.2180, latest as of this writing)

Lest anyone think something fishy is going on, these speed tests were run on the same PC,
without virtual machines or anything like that. So the difference is attributable to the browsers
almost entirely. It’s possible that differences at runtime in the operating system itself could have
had an impact. But I actually went so far as to reboot before running each test and didn’t load
anything else, so it was roughly as close to identical at runtime as could reasonably be expected.

■Note I ran the same speed test on Maxthon, version 1.5.6 build 4.2, latest as of this writing. Maxthon
tends to be my preferred browser for day-to-day browsing. It is a wrapper around IE that extends it with all
sorts of features and fixes, putting it, in my opinion, on par with Firefox and most other browsers, while still
using the IE rendering engine (some will say this is a bad thing, but most sites tend to work correctly in IE even
if they don’t in Firefox). The results were very surprising: 19141 for the bad test, 141 for the good test, and 93 for
the better test. I have no explanation why it should be that much slower, especially the string concatenation
approach. I don’t mean this as a criticism of Maxthon, but it does illustrate the point that performance across
different browsers, even where it seems that logically there should be no appreciable difference, is still some-
thing to be aware of when doing your work.

None of this is meant to persuade you that one browser is better than any other. In fact, a
great many web developers will tell you that Firefox is superior, yet here we can see that in two
out of three approaches to the same thing, it’s a little slower than IE. The point is to illustrate
the following:

• The same piece of JavaScript executed in one browser won’t necessarily perform the
same as in another browser, and sometimes the difference can be drastic.

• Performance of modern JavaScript engines still, in some cases, leaves a lot to be desired.

Zammetti-816-4C01.fm Page 12 Wednesday, February 14, 2007 12:30 PM

C H A P T E R 1 ■ A B R I E F H I S T O R Y O F JA V A S CR I P T 13

That’s the situation today. It used to be much worse. As an example, Figure 1-5 shows the
results of the same example in IE 4.0, which shipped with Windows 98.

Figure 1-5. The speed test results in Internet Explorer 4.0

Wow, the IE development team has clearly been busy! The simple bad test, using the +
operator, is something on the order of 13 times faster now than it was with IE 4.0! The better
test is about twice as fast. Note that the good test could not be run because the push() method
was not available on the Array object in this iteration of JScript. I think we can reasonably surmise
that it also would have been significantly slower back then.

The same tests on Netscape 3.01 yield even worse results. In fact, the bad test was taking
so long, and was eating up so many system resources, that I had to kill the process! Suffice it to
say the test more than validated my point about performance having improved markedly over
the years.

Netscape 3.0 also demonstrates the other common failing of early JavaScript implementa-
tions: they were not efficient with memory. This inefficiency can largely be attributed to the
simple evolution that occurs for virtually all software over time. You write something, you see
what the flaws are, and you correct them for the next version. A JavaScript engine is no different.

Even just a few years ago, it was not uncommon to find that relatively simple pieces of
code could cause the browser to use much more memory than it really needed. Memory leaks
were not uncommon. Although they tended to be caused by developers doing things incorrectly,
there were times when the engine and browser themselves caused such leaks. Remember, too,
that JavaScript, like Java, is a memory-managed language with a garbage collector task running
in the background. If the JavaScript interpreter may have had flaws, is it so crazy to imagine
that the garbage collector implementation might have had its own set of flaws?

The speed and memory factors lent to the impression that JavaScript was slow and bloated.
It was just in its early stages of development, and like all (relatively) complex pieces of software,
it wasn’t perfect out of the gate. That isn’t to say that some problems don’t exist to this day,
because they do (just look at that first example). But the problems are far less frequent. In fact,
I would dare say they are rare, except when caused by something the developer does. The
problems also tend to not be as drastic as they once might have been. For example, unless you
do something truly stupid, you won’t usually kill the browser, as my test on Netscape 3.01 did.

And speaking of developers and doing something stupid . . .

Zammetti-816-4C01.fm Page 13 Wednesday, February 14, 2007 12:30 PM

14 C H A P T E R 1 ■ A B R I E F H I S T O R Y O F J A V A SC R I P T

The Root of All Evil: Developers!
As I talked about in the previous section, there were legitimate problems with early JavaScript
implementations. It is also true that while you may find some problems today, they are few and
far between. The one constant has been developers. Simply put, JavaScript is a tremendously
powerful language, yet it is also easy to mess up. It is easy to write slow, bloated, error-prone
code without trying very hard.

Like the language itself, developers had to evolve. They needed to learn what worked and
what didn’t, and they had to fight their own urges to take the easy way out. JavaScript is very
flexible and dynamic, and this leads many developers to do things that in a more rigid language
they would know not to do. For instance, consider the example in the previous section. If you
were working in Java, you would almost certainly know that doing string concatenations is a
Bad Thing™ and that the string buffer is your friend! But there is no string buffer in JavaScript,
so many developers simply assume that string concatenation must be the way to go. In Firefox,
that likely won’t kill you, as the example showed, but in IE, you’re just asking for trouble!

Another example is passing parameters to a function. Look at the code in Listing 1-3.

Listing 1-3. An Example of Inefficient Coding

<html>
 <head>
 <title>Listing 1-3</title>
 <script>

 function Person1(firstName, lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.toString = function() {
 return this.firstName + " " + this.lastName;
 }
 }

 function Person2(attrs) {
 this.firstName = attrs["firstName"]
 this.lastName = attrs["lastName"];
 this.toString = function() {
 return this.firstName + " " + this.lastName;
 }
 }

 function showPerson() {
 var p1 = new Person1("Frank", "Zammetti");
 var p2 = new Person2({"firstName":"Frank","lastName":"Zammetti"});
 document.getElementById("divPerson").innerHTML = p1 + "

" + p2;
 }

Zammetti-816-4C01.fm Page 14 Wednesday, February 14, 2007 12:30 PM

C H A P T E R 1 ■ A B R I E F H I S T O R Y O F JA V A S CR I P T 15

 </script>
 </head>
 <body onLoad="showPerson();">
 <div id="divPerson"> </div>
 </body>
</html>

Here, we have two different classes representing a person: Person1 and Person2. Person1’s
constructor accepts two parameters, firstName and lastName. Person2 accepts a single parameter,
attrs, which is an array of attributes. The showPerson() function creates two identical people,
one using Person1 and the other using Person2. What happens when we want to have other
attributes to help describe a person? For Person1, we need to modify the constructor to accept
more parameters. For Person2, it’s just a matter of adding the appropriate field set lines. The
call to the constructor has to change for both, so that’s a wash. But what does the Person1 call
tell us?

 var p1 = new Person1("Frank", "Zammetti");

You cannot deduce the meaning of the parameters just by looking at this call. How do we
know that Zammetti isn’t actually my first name? Or that Frank isn’t the name of my father
(which it just happens to be)? Clearly, the call syntax for Person2 is better in terms of code clarity.
The code is also a bit more easily extensible with that approach.

This is a relatively minor point, but it is an element of style that has only in the past few
years come into the minds of JavaScript developers. Early on, you would rarely have seen the
approach used in Person2. You would have instead seen function calls with oodles of arguments.
But if you asked C++ developers how they would have coded this, you almost certainly would
hear an answer involving some sort of collection, maybe a value object being passed in, or
something along those lines.

Another problem that was prevalent for a long time was variable scoping. Everything was
in the global scope, which is counter to most every other language out there, where variables
are generally scoped only at the level they are required. Another thing that tripped up a lot
of people for a long time, and sometimes still does, is the lack of block scope. Take a look at
Listing 1-4.

Listing 1-4. An Example of JavaScript’s Lack of Block-Level Scoping

<html>
 <head>
 <title>Listing 1-4</title>
 <script>
 function test() {
 var i = 1;
 if (1) {
 var i = 2;
 if (1) {
 var i = 3;
 alert(i);
 }

Zammetti-816-4C01.fm Page 15 Wednesday, February 14, 2007 12:30 PM

16 C H A P T E R 1 ■ A B R I E F H I S T O R Y O F J A V A SC R I P T

 alert(i);
 }
 alert(i);
 }
 </script>
 </head>
 <body onLoad="test();"></body>
</html>

In just about every other language on the planet, you would get the alerts 3, 2, 1, in that
order. In JavaScript, however, you’ll get the alerts 3, 3, 3. The variable i is allocated just once,
the first time it is encountered, and overrides any declarations at a lower scope level.

One of the bigger changes is the drive toward more proper object-orientation. For many
years, JavaScript developers—ones who seemed to know their stuff pretty well—didn’t even
realize that JavaScript was object-oriented! They tended to just write collections of functions,
and that was that (for a long time, externalizing JavaScript wasn’t even a common practice,
which is another way in which developers have evolved). But if you look at most modern JavaScript
libraries, such as Dojo and script.aculo.us, you will find a very clean, object-oriented design.

Another one of the early criticisms of JavaScript—something of a self-fulfilling prophecy—
was that developers using JavaScript were somehow amateurs and didn’t know their stuff.
Unfortunately, as with most unpleasant generalizations, it started with a grain of truth. As
previously discussed, the barrier to getting started with JavaScript is very low. You just need to
throw together an HTML page, put some script in it, and point your browser at it. No compila-
tion is required, and no development kit needs to be installed. Just Notepad and a reference
web site somewhere would do the trick. Because of this, everyone and their mothers (literally,
in some cases) started coding scripts. All of a sudden, you had forms being validated client-
side, which was cool, but then the validations were not performed server-side, because the
JavaScript coder didn’t have the experience to know that’s a Good Thing™ to do. You had
image rollovers that didn’t preload the images, so that each mouse event resulted in spurious
network traffic, not to mention seemingly unresponsive user interfaces. You had the bane of all
web surfers: pop-up ads!

All of these (except maybe pop-up ads, which are just the result of some evil marketing
suits muscling their way into the technological side of the Web) are really just things that inexperi-
enced developers do because they don’t yet know any better. None were the fault of JavaScript per
se, because it’s likely that something else would have come along in its place anyway and caused all
the same problems. Still, like our hairy ancestors before us, we had some evolving to do!

DHTML—The Devil’s Buzzword
One more element to the “evil developers” story has to do with Dynamic HTML (DHTML).
Although the label DHTML still correctly applies to effects used today, a certain connotation
that goes along with that term makes people not want to use it any longer. The connotation is
that while there was plenty of sizzle early on, there was very little steak.

Early JavaScript developers discovered that they could do all sorts of whiz-bang tricks—
from fading the background color of a page when it loaded to having a colorful trail follow the
cursor around the page. You could see various types of scrolling text all over the place, as well
as different page-transition effects, such as wipes and the like. While some of these effects may
look rather cool, they serve virtually no purpose other than as eye candy for the user. Now, don’t get

Zammetti-816-4C01.fm Page 16 Wednesday, February 14, 2007 12:30 PM

C H A P T E R 1 ■ A B R I E F H I S T O R Y O F JA V A S CR I P T 17

me wrong here—eye candy is great! There’s nothing I like more than checking out a new screen
saver or a new utility that adds effects to my Windows shell. It’s fun! But I always find myself
removing those things later on, not only because they hurt system performance, but also because
they pretty quickly become annoying and distracting.

Early JavaScript developers were huge purveyors of such muck, and it got old pretty fast. I
don’t think it is going too far to say that some people began to question whether the Web was
worth it or not, based entirely on the perception that it was a playground and not something for
serious business. A web site that annoys visitors with visual spam is not one they will likely use
again. And if you’re trying to make a living with that site and your company’s revenues depend
on it, that’s going to lead to bad news real fast!

This obviously was not a failing of the technology. Just because we have nuclear weapons
doesn’t mean we should be flinging them all over the place! I suppose equating nuclear war to
an annoying flashing thing on a web page is a bit of hyperbole, but the parallel is that just because
a technology exists and allows you to do something doesn’t necessarily mean you should go off
and do it.8

Here’s a quick test: if you are using Microsoft Windows, take a quick look at the Performance
options for your PC (accessed by right-clicking My Computer, selecting Properties, clicking the
Advanced tab, and clicking the Settings button under the Performance group). Did you turn off
the expanding and collapsing of windows when minimized and maximized? Did you turn off
shadows under the cursor? Did you disable the growing and shrinking of taskbar buttons when
applications close? Many of us make it a habit to turn this stuff off, not only because it makes
our system snappier (or at least gives that perception), but also because some of it just gets in
the way. Seeing my windows fly down to the taskbar when I minimize them is pretty pointless.
Now, you may argue that it depends on the implementation, because the effects on a Macintosh
are better and not as annoying, and to a certain extent I would agree. But you still have to ask
yourself whether the effect is helping you get work done. Is it making you more productive? I
dare say the answer is no for virtually anyone. So while there may be degrees of annoyance and
obtrusiveness, certain things are still generally annoying, obtrusive, and pointless. Unfortunately,
this is what DHTML means to many people, and while I wish it weren’t so, it isn’t at all an unde-
served connotation to carry.

So, part of the evolution of the JavaScript developer was in starting to recognize when the
super-cool, neat-o, whiz-bang eye candy should be put aside. Developers began to realize that
what they were doing was actually counterproductive, since it was distracting and annoying in
many cases. Instead, a wave of responsibility has been spreading over the past few years. Some
will say this is the single most important part of JavaScript’s overall evolution towards acceptance.

You can still find just as many nifty-keen effects out there today as in the past—perhaps
even more so. But they tend to truly enhance the experience for the user. For example, with the
yellow fade effect (originated by 37signals, http://www.37signals.com), changes on a page are
highlighted briefly upon page reload and then quickly fade to their usual state. Spotting changes
after a page reload is often difficult, and so this technique helps focus the users on those changes.
It enhances their ability to work effectively. This is the type of responsible eye candy that is in
vogue today, and to virtually everyone, it is better than what came before.

8. I remember a television commercial where a bunch of web developers were showing their newly created
site to their boss. The boss says there needs to be more flash, like a flaming logo. The developers look at
him a little funny, and proceed to put a flaming logo on the page. It was pretty obvious to anyone watching
the commercial that the flaming logo served no useful purpose, and in fact, had the opposite effect as
was intended in that it made the site look amateurish. It’s so easy to abuse eye candy it’s not even funny!

Zammetti-816-4C01.fm Page 17 Wednesday, February 14, 2007 12:30 PM

18 C H A P T E R 1 ■ A B R I E F H I S T O R Y O F J A V A SC R I P T

■Tip To see an example of the positive usage of the yellow fade effect, take a peek at the contact form for
ClearLeft at http://clearleft.com/contact/. Just click the submit button without entering anything
and see what happens. You can also see the effect all over the place in the 37signals BaseCamp product at
http://www.basecamphq.com/ (you’ll need to sign up for a free account to play around). You can get a
good sense of where and why this seemingly minor (and relatively simple technically) technique has gained a
great deal of attention. Other 37signals products make use of this technique, too, so by all means explore—
it’s always good to learn from those near the top! And if you would like to go straight to the source, check
Matthew Linderman’s blog entry at http://www.37signals.com/svn/archives/000558.php.

So, when you hear the term DHTML, don’t automatically recoil in fear, as some do, because it
still accurately describes what we’re doing today from a purely technical definition. However,
you should, at the same time, recognize that the term does have a well-earned negative conno-
tation, brought on by the evils of early JavaScript developers.9

The Evolution Continues: Approaching Usability
After the initial wave of relatively inexperienced developers using JavaScript, and many times
doing so poorly, the next iteration began to emerge. Certain common mistakes were recognized
and began to be rectified.

Perhaps most important of all, the more experienced programmers who had initially
shunned JavaScript began to see its power and brought their talents to bear on it. Those with
true computer science backgrounds began to take a look and point out the mistakes and the
ways to fix them. With that input came something akin to the Renaissance. Ideas began to flow,
and improvements started to be made. It wasn’t the final destination, but an important port of
call along the way.

Javascript developers: out of the trees and onto the Web!

9. I’m not only the hair club president, but I’m also a client. I have some old web sites in my archives
(thankfully, none are still live) with some really horrendous things on them! I certainly was not immune
to the DHTML whiz-bang disease. I had my share of flaming logos, believe me. I like to think I’ve learned
from my mistakes (and so would my boss).

Zammetti-816-4C01.fm Page 18 Wednesday, February 14, 2007 12:30 PM

C H A P T E R 1 ■ A B R I E F H I S T O R Y O F JA V A S CR I P T 19

Building a Better Widget: Code Structure
It may not sound like much, but simply structuring code in a clean, efficient way makes that
code easier to follow, comprehend, and maintain months or years down the road. How many
times have you run into something like the following code?

1: function f(
2: p1, p2)
3: {
4: p2 =
5: p2.toUpperCase();
6: s = ""
7: for (i = 0; i < 10; i++) { s = s + p1;
8: s += p2 + '-' + i
9: }
10: if (p1 == "y") s += '
' + s
11: if (p2 == 'n')
12: {
13: s = s + "

"; }
14: }

Do yourself a favor and don’t try to figure out what it’s supposed to do. It’s nonsense (I just
threw some gibberish together). But it is syntactically correct and does execute, even if it does
nothing intelligible. The point of the example is the structure of the code. It stinks, doesn’t it?
Let’s try to spot the problems with it, in no particular order:

• Indentation is either nonexistent on some lines (line 2) or inconsistent between lines
(two spaces on line 5 and four spaces on line 8).

• The argument names are not descriptive.

• Quotes are used inconsistently (single quotes vs. double quotes).

• Some lines end with semicolons; some do not.

• Some code blocks are surrounded by braces (the for loop in lines 7 through 9); some are
not (the if on line 10).

• No checking is done before the call toUpperCase() on p2. If only one parameter were
passed in, or the second parameter were passed as null, this would throw an error.

• Sometimes the code uses the Sun standard of an opening brace at the end of the line
starting the block (line 7); other times it’s on its own line (line 3). Sometimes the closing
brace is on its own line (line 14); sometimes it’s at the end of the block (line 13).

• Sometimes the += operator is used; other times the expanded s = s + form is used.

• The function itself doesn’t have a meaningful name.

• There’s not a single comment throughout the entire function, or before it.

• Characters that could cause problems, namely the < and > characters, are not escaped.

Zammetti-816-4C01.fm Page 19 Wednesday, February 14, 2007 12:30 PM

20 C H A P T E R 1 ■ A B R I E F H I S T O R Y O F J A V A SC R I P T

You may argue that most of this stuff, save maybe the null check of the incoming parameters,
is simply sloppy coding. The problem is that this type of sloppy programming was prevalent for
a long time in the JavaScript world. As more seasoned developers got involved, this problem
started to go away. Anyone who programs for a living probably maintains code for a living, too
(their own or someone else’s), and seemingly little things like those in the example just won’t
fly. That isn’t to say that you won’t still see garbage code like this from time to time, and not just
in JavaScript either, but it tends to be a lot less frequent nowadays.

Even the use of functions, as seen in the previous bad code example, isn’t required in
JavaScript. Indeed, early on, you could often find whole pages that didn’t use functions at all,
or used them only sparingly. You would find <script> blocks strewn throughout the page, executed
as they were encountered as the page was parsed. This is still valid, and sometimes the best way
to accomplish some goals, but in a whole page like this, it’s not generally a good idea! So, devel-
opers started learning that functions were a good way to organize their code. The use of the
onLoad page event to call setup functions, which previously would have just been anonymous
<script> blocks somewhere on the page, became commonplace.

Another relatively important change was the notion of externalizing JavaScript. This is one
of the tenants of unobtrusive JavaScript, which will be discussed in the next chapter. External-
izing your script tends to make your pages easier to follow, because you can concentrate on the
markup and then refer to the code as required. It also leads to reusability, something else that
was severely lacking early on.10 Externalizing script tends to make you think in terms of reusability
a little more. Another benefit of externalizing scripts is that it can lead to some performance gains.
The browser can then cache a .js file, and if you happen to reuse it on another page, that’s one
less request the browser needs to make. Another possibly less obvious advantage is that others
can easily use your scripts and see how they work. If you’ve ever tried to dig a couple lines of
JavaScript out of a 200kb web page to see how the developers did some neat trick, you’ll know
exactly what I’m talking about. It can be a pain to find what you’re looking for amidst all the
markup and other script (and probably style sheets, too, since if they didn’t externalize their
scripts, they probably didn’t externalize their style sheets either). Modern browser tools make
this a lot less difficult, but it can still be an unpleasant experience, and it was certainly less
pleasant in the not-too-distant past.

Relearning Good Habits
While a lot of the early problems with JavaScript undoubtedly did come from less experienced
programmers getting into the mix, certainly that didn’t account for everything. Overnight,
thousands of otherwise good, experienced programmers got stupid all at once!

As I mentioned earlier, working on JavaScript was almost too easy in a sense—throw some
code in a file, fire up a browser, and off you go! In most other languages, you have a compile
cycle, which tends to ferret out a lot of problems. Then you often have static code analysis
tools, which find even more things to fix. You may even have a code formatter involved to
enforce the appropriate coding standards. None of this is (typically) present when working

10. Reusability is often hard! It’s frequently—maybe even usually—easier to write code specific to the task
at hand. It takes effort to think generically enough that the code can be applied to other similar situations
later, but specific enough to solve the problem at hand. Programmers are often lazy beasts (I know
because I am one!) and like to take the easy road. Just as anger, fear, and aggression are the path to the
dark side of the Force, laziness is the path to code that can’t (easily) be reused. Of course, not knowing
better also has something to do with it.

Zammetti-816-4C01.fm Page 20 Wednesday, February 14, 2007 12:30 PM

C H A P T E R 1 ■ A B R I E F H I S T O R Y O F JA V A S CR I P T 21

with JavaScript. I put typically in parentheses because modern development tools now exist to
give you all of this (well, generally not the compile part).

Maybe “the bubble” had something to do with it, too. I’m referring to that period when
everyone thought he had the sure-fire way to make a buck off the Web, and when the public
was just starting to get online and figure out how cool a place the Web was. There were 80-hour
work weeks, powered by Jolt cola, jelly donuts, and the incessant chant of some flower shirt-
wearing, Segway-riding (OK, Segway wasn’t out then, but work with me here!) recent college
grad with an MBA, who promised us all those stock options would be worth more than we
could count. Maybe that caused everyone to just slap the code together so it at least appeared
to work, in a pointless attempt to implement the business plan, and is really what caused all the
trouble.

Yeah, you’re right, probably not. Ahem.
The good habits that developers had learned over time—like code formatting, commenting,

and logical code structure—had to essentially be relearned in the context of JavaScript. And, of
course, those who hadn’t done much programming before had to learn it all anew. But learn
they did, and from that point, JavaScript started to become something “professional” developers
didn’t thumb their noses at as a reflex act. Now it could start to become a first-class citizen,
with the knowledge of how to do it right.

Of course, the last step was yet to come.

The Final Evolution: Professional JavaScript
at Last!
We’ve arrived at the present time, meaning the past two to three years. JavaScript has really
come into its own.

The whole Ajax movement has certainly been the biggest catalyst for getting JavaScript on
a more solid footing, but even a bit before then, things were starting to come around. The desire to
build fancier, more reactive, user-friendly, and ultimately fat-client-like web applications drove
the need and desire to do more on the client. Performance considerations certainly played a
role, too, but I suspect a lot smaller one than many people tend to think.

The bottom line is that JavaScript has moved pretty quickly into the realm of first-class
citizen, the realm of “professional” development. Perhaps the best evidence of this is that you
can now find terms like JavaScript engineer, JavaScript lead, and senior JavaScript developer
used to describe job offerings on most job search sites. And people now say them with a straight
face during an interview!

So, aside from Ajax, what are the reasons for this relatively current trend toward respect-
ability that JavaScript seems to have earned? Let’s have a look.

Zammetti-816-4C01.fm Page 21 Wednesday, February 14, 2007 12:30 PM

22 C H A P T E R 1 ■ A B R I E F H I S T O R Y O F J A V A SC R I P T

Javascript: finally getting the respect it deserves!

The Browsers Come Around
Over the past few years, the major browsers, and even the more minor ones, have come to a
point of relative equilibrium where their JavaScript implementations are mostly compatible.
You can still find discrepancies here and there, but they have become what they always should
have been: the exceptions to the rules. Today, it’s relatively rare that you need to write branching
code for different browsers, and it’s virtually unheard of to do browser-sniffing to redirect to a
browser-specific version of a page.

If you write ECMAScript-compliant code these days, you’ll find that it works correctly in
the vast majority of client browsers. That isn’t to say that you won’t need to do some perfor-
mance tuning for a browser. The example in Listing 1-3 is a good example. The code is compatible
across browsers, but you still need to accommodate the performance of IE if you initially did
string concatenations.

Indeed, the major problem you find today is not at all about the JavaScript implementa-
tion, because all the big players have been based on ECMAScript for a few versions now. The
problem that still crops up in terms of compatibility is actually the DOM.

DOM is the in-memory representation of the current page. Each item on the page is a node
in a tree—the tree formed by the relationship between the elements on the page. JavaScript has
been standardized as ECMAScript for some time now, but the DOM was not standardized for a
while after JavaScript was released. This led to the major browser vendors doing things in some-
times drastically different ways.

Just as one example, let’s consider handling keypresses in IE vs. Firefox. Let’s say we want
to hook the keyDown event for the current document. We can do this like so:

document.onkeydown=keyDown;

Zammetti-816-4C01.fm Page 22 Wednesday, February 14, 2007 12:30 PM

C H A P T E R 1 ■ A B R I E F H I S T O R Y O F JA V A S CR I P T 23

That will work just fine in IE, but in Firefox, you also have to do this:

document.captureEvents(Event.KEYDOWN);

The basic keyDown() function signature for either browser is this:

function keyDown(e) { }

In Firefox, the parameter e will be an event object passed in that describes the keypress
event. In IE, however, this parameter is not passed in at all because IE uses an event model
called event bubbling. To get a reference to the event object in IE, you need to reference the
event property of the window object. This isn’t a difference in JavaScript itself; this is a difference
in the event-handling model in the DOM of each browser.

To take the example further, once you have a reference to the event object, you will quite
likely want to figure out which key was actually pressed. Again, there are DOM differences to
overcome. In IE, the event object exposes a keyCode property. In Firefox, the corresponding
property is called charCode. So, you will necessarily have some branching code to obtain the
key code properly. You will usually wind up with code along these lines:

document.onkeydown = keyDown;
if (document.layers) {
 document.captureEvents(Event.KEYDOWN);
}
function keyDown(e) {
 var ev = (e) ? e : (window.event) ? window.event : null;
 if (ev) {
 return (ev.charCode) ? ev.charCode:
 ((ev.keyCode) ? ev.keyCode : ((ev.which) ? ev.which : null));
 }
 return -1;
}

This code should work in any browser. The first if check in the second line will be true
only in non-IE browsers, where the layers attribute of the document object is present. In that
case, the captureEvents() call is made. Then, inside keyDown() itself, the first line will set ev to
the passed-in argument e, if e was passed in. If it wasn’t, then window.event is used. But if
window.event is itself not defined, then ev is set to null (this can happen in certain situations, so
it must be checked). Then, if ev is set, the code of the key is discovered by determining if charCode
or keyCode is present in the event object. If ev was null, then –1 is returned.

Code like this is becoming less and less necessary, as the browsers begin to converge on
their implementations of not only JavaScript, but the DOM specification as well. You may still
need to do it occasionally, but it’s a far better situation than it used to be!

The other improvements that the browser vendors made were in the areas of performance
and memory utilization. While still interpreted, JavaScript performs much better in modern
browsers than it did in earlier ones. Optimizations have come fast and furious. Each successive
JavaScript release has improved optimization by leaps and bounds. Probably the biggest reason is
simply that usage patterns began to emerge over time. For instance, DOM manipulation is
without question the most common use of JavaScript, so a lot of work has gone into making
that as efficient as possible.

Zammetti-816-4C01.fm Page 23 Wednesday, February 14, 2007 12:30 PM

24 C H A P T E R 1 ■ A B R I E F H I S T O R Y O F J A V A SC R I P T

Likewise, the garbage collection algorithms have improved greatly, resulting in less memory
utilization over a given period of time. The JavaScript engines themselves are better written
these days, so they intrinsically take up less memory. The code has been tightened up, too.
Memory leaks are nearly always caused by developer mistakes nowadays; the browser and
JavaScript engine are virtually never the culprits anymore.

Finally, crashes are infrequent in any current implementation. It used to be that you might
occasionally see some random crashes here and there—the browser just “disappearing” and
things like that. This was sometimes caused by the JavaScript engine (usually because the devel-
oper did something that wasn’t too smart, but still, the engine should have been able to cope).
This was never a huge problem, but even it has improved, so the browsers get credit for it
anyway!

Object-Oriented JavaScript
The life of most JavaScript developers changes the day they discover the prototype. Once they
realize that every JavaScript object can be extended via its prototype, and that this also allows
them to create custom classes, things are never the same again. For instance, take a look at this
code:

var answer = 0;
function addNumbers(num1, num2) {
 answer = num1 + num2;
}
function subtractNumbers(num1, num2) {
 answer = num1 - num2;
}
function multiplyNumbers(num1, num2) {
 answer = num1 * num2;
}
function divideNumbers(num1, num2) {
 if (num2 != 0) {
 answer = num1 / num2;
 } else {
 answer = 0;
 }
}

Now, there isn’t anything technically wrong with that code. It will work just fine. But is it
organized especially well? Not really. The answer variable being in global scope is a code smell,
and each of the functions is just that: a stand-alone function, which also happens to be in the
global scope. One of the things I’ll talk about in the next chapter that contributes to a more
professional style of JavaScript is not “polluting” the global scope.

Using global variables in most other languages is considered a bad practice because their
nonlocality means they can be modified from any part of the program, thereby creating the
potential for mutual dependencies and difficult-to-locate problems (which are often transient
and therefore even more insidious). The same is true in JavaScript. Functions in the global
scope are a little less bothersome, although the lack of structure means that there is no inherent
relationship among the functions and no logical groups to make sense of it all at a higher level.

Zammetti-816-4C01.fm Page 24 Wednesday, February 14, 2007 12:30 PM

C H A P T E R 1 ■ A B R I E F H I S T O R Y O F JA V A S CR I P T 25

In contrast, let’s see the code rewritten with a more object-oriented twist:

function NumberFunctions() {
 var answer = 0;
}
NumberFunctions.prototype.addNumbers = function(num1, num2) {
 this.answer = num1 + num2;
}
NumberFunctions.prototype.subtractNumbers = function(num1, num2) {
 this.answer = num1 - num2;
}
NumberFunctions.prototype.multiplyNumbers = function(num1, num2) {
 this.answer = num1 * num2;
}
NumberFunctions.prototype.divideNumbers = function(num1, num2) {
 if (num2 != 0) {
 this.answer = num1 / num2;
 } else {
 this.answer = 0;
 }
}
NumberFunctions.prototype.toString = function() {
 return this.answer;
}

To use this code, we would do something like this:

var nf = new NumberFunctions();
nf.addNumbers(2, 1);
alert(nf);
nf.subtractNumbers(10, 3);
alert(nf);
nf.multiplyNumbers(4, 5);
alert(nf);
nf.divideNumbers(12, 6);
alert(nf);

This version of the code has a few advantages:

• There is no pollution of the global scope, save the fact that NumberFunctions is there. This
is most important in terms of the answer variable. Because it is declared using the var
keyword, it is not accessible from outside the class, so only functions of NumberFunctions
can change it.

• All the functions are clearly related by virtue of being members of the NumberFunctions
class.

• Basic object-orientation: the data and the function that operates on it are encapsulated
nicely.

Zammetti-816-4C01.fm Page 25 Wednesday, February 14, 2007 12:30 PM

26 C H A P T E R 1 ■ A B R I E F H I S T O R Y O F J A V A SC R I P T

None of this is anything special or unusual in most other modern languages, but it took a
while to find its way into JavaScript.

Object-orientation isn’t the final word in JavaScript’s evolution to the modern day, however.
A few others concepts come into play.

“Responsible” JavaScript: Signs and Portents
Responsibility may seem like an odd term to use with regard to a programming language. We’re not
dealing with handguns or nuclear weapons after all! But it is indeed a very important concept
that, until recently, was severely lacking in JavaScript circles.

You probably have heard the term graceful degradation. This is the idea that a web page
designed for a certain version of a browser should degrade gracefully in older versions, and still
be usable, if not optimal. The same guiding principle can, and should, be applied to JavaScript
as well.

A somewhat more recent term is unobtrusive JavaScript. This is graceful degradation in a
more refined form, but it also covers other areas such as making pages that use JavaScript still
accessible for those with handicaps, creating future-proofed code, and keeping your script sepa-
rate from the markup and style of the page.

Another factor that frequently comes into play is making JavaScript an enhancement to
the browsing experience, but something you barely notice (this, too, is one of the meanings of
unobtrusiveness as applied to JavaScript). Users expect a certain level of interaction and power
in modern web user interfaces, and JavaScript definitely helps enable them. But any time users
notice any of this, and most especially if it gets in their way, your code has probably intruded
on their experience. There is a very fine line between a whiz-bang feature that your users will
feel empowers them and an annoying feature that they dread.

Proper error handling is also a tenet of responsible JavaScript. Error handling in JavaScript
used to amount to not much more than letting the browser display whatever error messages it
needed to! After a while, people discovered that they could hook into the error-handling mech-
anism and present their own error messages, but it still amounted to little more than a message
to the user saying, “Sorry, something went wrong. You’re boinked.” Modern JavaScript imple-
mentations provide better ways to handle errors, using mechanisms built in to the language to
allow your code to continue and recover in the face of exceptions. Doing so makes your code
more robust and pleasant for the user.

Lastly, although not strictly speaking functions of JavaScript itself, modern development
tools far exceed those available in the past. All sorts of browser plug-ins and extensions now
make developing JavaScript, if not a pleasant experience, at least a far less painful one. Even
more powerful commercial tools offer whole environments dedicated to JavaScript. Most modern
IDEs support JavaScript natively, as a first-class citizen.

If it seems like I’ve glossed over these points, it’s because I have! The next chapter will go
into these topics in much greater detail, I promise! This last section is just my way of whetting
your appetite a bit, giving you a heads-up about what is to come. Stick around—it’s going to be
a fun ride!

Zammetti-816-4C01.fm Page 26 Wednesday, February 14, 2007 12:30 PM

C H A P T E R 1 ■ A B R I E F H I S T O R Y O F JA V A S CR I P T 27

Summary
This chapter covered the genesis of JavaScript—how it evolved in terms of usage from its not so
spectacular early days to the current professional-quality JavaScript. We looked at some of the
problems faced by early JavaScript developers and how they began to overcome them. You
then got a glimpse of the ways in which JavaScript is now being used so it is much cleaner, less
intrusive, and just generally better! In the next chapter, we’ll look at what goes into working
with JavaScript in a more mature way than used to be the case.

Zammetti-816-4C01.fm Page 27 Wednesday, February 14, 2007 12:30 PM

29

■ ■ ■

C H A P T E R 2

The Seven Habits of
Highly Successful
JavaScript Developers

In this chapter, we’ll continue the discussion began in Chapter 1 and look in more detail at the
art of making JavaScript a first-class language. We’ll look at object-oriented techniques, as well
as some of the latest buzzwords such as unobtrusive JavaScript and graceful degradation. We’ll
talk about how to make your web applications accessible, even with JavaScript involved (no
easy task!). We’ll look at error-handling and debugging techniques, since things sometimes
(OK, frequently!) don’t go right. We’ll also take a look at some of the tools available to you that
will make working with JavaScript a much more pleasant experience. Lastly, we’ll do a quick
survey of some of the most popular JavaScript libraries out there today, and discuss why you
really, honestly, and truly want to be using them! That’s a lot to cover, so let’s get to it!

JavaScript: reach divinity in the eyes of your users by doing it right!

Zammetti-816-4C02.fm Page 29 Tuesday, February 20, 2007 7:42 AM

30 C H A P T E R 2 ■ T H E S E V E N H A B I T S O F H I G H L Y S U C C E S S F U L JA V A S C R I P T D E V E L O P E R S

More on Object-Oriented JavaScript
When many JavaScript programmers start out, they often do not even realize that the language
offers some object orientation. Indeed, JavaScript does not require the use of objects at all.1

There is more than one way to skin a cat, and likewise, there is more than one way to create
objects in JavaScript.

Simple Object Creation
Perhaps the easiest way to create an object is to start with a new Object, and then add to it. To
create a new Object, you simply do this:

var newObject = new Object();

The variable newObject now points to an instance of Object, which is the base class of all
objects in JavaScript. To add elements to it, say a property named firstName, all you need to do
is this:

newObject.firstName = "frank";

From that point on in the code, newObject.firstName will have the value "frank", unless
it’s changed later. You can add functions just as easily:

newObject.sayName = function() {
 alert(this.firstName);
}

A call to newObject.sayName() now results in an alert message showing “frank.” Unlike
most full-blown object-oriented languages, in JavaScript, you do not necessarily need to create
a class, or blueprint, for an object instance. You can instead create it on the fly, as shown here.
You can do this throughout the life of the object. On a web page, that means that you can add
properties and methods to the object at any time.

JavaScript actually implements all objects as nothing but associative arrays. It then puts a
façade over that array to make the syntax look more like Java, or C++, using dot notation. To
emphasize this point, note that you could retrieve the value of the firstName field of newObject
like so:

var theFirstName = newObject["firstName"];

Likewise, the sayName() function could be called like so:

newObject["sayName"]();

This simple fact can be the basis for a lot of power. For instance, what if you wanted to call
a method of an object based on some bit of logic? Well, you can do this:

1. Well, implicitly it does, since you use built-in objects in many cases, but your code itself doesn’t have to
be object-oriented.

Zammetti-816-4C02.fm Page 30 Tuesday, February 20, 2007 7:42 AM

CH A P T E R 2 ■ T H E S E V E N H AB I T S O F H I G H L Y S U C C E S S F U L J A V AS C R I P T D E V E L O P E R S 31

var whatFunction;
if (whatVolume ==1) {
 whatFunction = "sayName";
}
if (whatVolume == 2) {
 whatFunction = "sayLoudly";
}
newObject[whatFunction]();

Assume that we had the function sayLoudly() added to newObject, which called toUpperCase()
on the firstName field before the alert(). Then we could have that object saying the name
loudly (all caps) or softly (all lowercase, as shown), and do this based on the value of a variable.

When adding functions to an object, you can also use existing functions. Let’s go ahead
and add that sayLoudly() function now as an example:

function sayLoudly() {
 alert(this.firstName.toUpperCase());
}
newObject.sayLoudly = sayLoudly;

Note the use of the this keyword here. The object it refers to will be dynamically calculated,
so to speak, at runtime. Therefore, in this case, it will point to the object the sayLoudly() func-
tion is a member of, newObject in this case. What’s interesting to note is that when sayLoudly()
is part of another object entirely, the keyword this will then reference that other object. This
runtime binding is another very powerful feature of JavaScript’s object-oriented implementa-
tion, since it allows for sharing of code, and, in essence, a form of inheritance.

Object Creation with JSON
Because JavaScript Object Notation (JSON) has recently been getting a great deal of attention
with its use in Ajax requests, many people are aware of it. However, many people are still not
aware that JSON is actually a core part of the JavaScript specification, and it was designed even
before Ajax came onto the scene. Its original goal was for quickly and easily defining complex
object graphs; that is, instances where objects are nested within others. Even in its simplest
form though, it allows for another way to create objects.

Recall that objects in JavaScript are just associative arrays under the covers. This fact is
what allows JSON to work. Let’s see how to create the previous example’s newObject with JSON:

function sayLoudly() {
 alert(this.firstName.toUpperCase());
}
var newObject = {
 firstName : "frank",
 sayName : function() { alert(this.firstName); },
 sayLoudly : sayLoudly
};

Zammetti-816-4C02.fm Page 31 Tuesday, February 20, 2007 7:42 AM

32 C H A P T E R 2 ■ T H E S E V E N H A B I T S O F H I G H L Y S U C C E S S F U L JA V A S C R I P T D E V E L O P E R S

Using JSON is very similar to defining an array, except that you use curly braces instead of
square brackets. Note that functions can be defined inline or can reference external functions.
(It may be a little confusing to see sayLoudly : sayLoudly, but JavaScript understands that the
first sayLoudly is to be a member of the object, while the second sayLoudly is a reference to an
existing object.)

You can nest object definitions as much as you like in JSON to create a hierarchy of objects.
For instance, let’s add an object into newObject named LastName:

function sayLoudly() {
 alert(this.firstName.toUpperCase());
}
var newObject = {
 firstName : "frank",
 sayName : function() { alert(this.firstName); },
 sayLoudly : sayLoudly,
 LastName : {
 lastName : "Zammetti",
 sayName : function() { alert(this.lastName); }
 }
};

You can then display the last name by calling the following:

newObject.LastName.sayName();

Class Definition
In JavaScript, virtually everything is an object. This is true with only a few exceptions, such as
some built-in primitives. Most important for this discussion, functions themselves are objects!
You’ve seen how you can create instances of Object and add properties and methods to it, but
that means that every time you want a new instance of that object, you essentially need to
construct it from scratch. Certainly there must be a better way, right? Of course there is: create
a class!

A class in JavaScript is actually nothing more than a function. This function also serves
as the constructor of the class. So, for example, let’s write that newObject as a class, renamed
newClass:

function newClass() {
 alert("constructor");
 this.firstName = "frank";
 this.sayName = function() {
 alert(this.firstName);
 }
}
var nc = new newClass();
nc.sayName();

When this code is executed, you see two alerts in sequence: first, one saying “constructor”
when the line var nc = new newClass(); executes, and then one saying “frank” when the line

Zammetti-816-4C02.fm Page 32 Tuesday, February 20, 2007 7:42 AM

www.allitebooks.com

http://www.allitebooks.org

CH A P T E R 2 ■ T H E S E V E N H AB I T S O F H I G H L Y S U C C E S S F U L J A V AS C R I P T D E V E L O P E R S 33

nc.sayName(); executes. You can create as many instances of newClass as you want, and they
will have the same properties and methods. Upon creation, they will generate the same alert,
and firstName will have the same starting value. In short, you have created a blueprint for
creating newClass objects. You have defined a class!

However, one problem that arises from this is that each instance of newClass has a copy of
firstName and a copy of the sayName() method, so every instance adds more memory usage.
Each copy of newClass having its own copy of firstName is probably what you want, but wouldn’t it
be great if all instances could share the same copy of sayName(), thereby saving memory? Clearly,
in this instance, we’re not talking about a big deal in terms of memory, but you can easily imagine
a more substantial piece of code where it would make a much bigger difference. Fortunately,
there is a way to do that.

Prototypes
Every single object in JavaScript has a prototype property associated with it. There is no real
equivalent to prototype in any other language that I am aware of, but it can be seen as a simplistic
form of inheritance. Basically, the way it works is that when you construct a new instance of an
object, all the properties and methods defined in the prototype of the object are attached to the
new instance at runtime.

I realize this can be a bit bizarre to comprehend at first blush, but fortunately, it is simple
enough to demonstrate:

function newClass() {
 this.firstName = "frank";
}
newClass.prototype.sayName = function() {
 alert(this.firstName);
}
var nc = new newClass();
nc.sayName();

When executed, this code results in the familiar alert saying “frank.” What makes this
different from the previous example is that no matter how many instances of newClass you
create, only a single instance of the sayName() function will be in memory. This method will
essentially be attached to each of those instances, and the this keyword will again be calculated at
runtime, so that it always refers to the specific instance of newClass to which it belongs. For
example, if you have two instances of newClass named nc1 and nc2, then a call to nc1.sayName()
results in this pointing to nc1, and a call to nc2.sayName() results in this pointing to nc2.

Which Approach Should You Use?
Each of the preceding approaches has its own pluses and minuses, and I doubt there is any real
consensus anywhere about when one approach should be used over another. They are all func-
tionally equivalent, so it’s largely a matter of how you prefer your code to look. That being said,
I think there are a few general guidelines to making your decision.

Probably the biggest one is that if you are creating a class that is rather large and you know
there may be multiple instances of it, you almost certainly want to use the prototype approach.
This will lead to the best memory efficiency, which is always an important goal.

Zammetti-816-4C02.fm Page 33 Tuesday, February 20, 2007 7:42 AM

34 C H A P T E R 2 ■ T H E S E V E N H A B I T S O F H I G H L Y S U C C E S S F U L JA V A S C R I P T D E V E L O P E R S

If you are creating a singleton class—something that you know there will be only one
instance of—I personally would opt for defining a class. To me, the code is the most logical and
the most similar to the more fully object-oriented languages, and so will probably tend to be
easier to comprehend for new developers on a project.

The JSON approach is probably a good choice if (a) your object hierarchy is going to be
highly nested and/or (b) you need to define the object in a dynamic fashion (as the result of
logic code). JSON is also pretty clearly the best choice if you need to serialize an object and
transmit it over the wire. This is also true if you need to reconstitute an object sent from a server.
I doubt there are many easier ways than JSON for this, and that is in no small part because that’s
largely what it was designed for!

Benefits of Object-Orientation
Whatever approach you choose, object-orienting your code has a lot of benefits. One important
benefit is that each object is essentially a namespace. You can simulate Java and C# packaging
this way, as you will see in the next chapter.

Another benefit is that you can hide data using objects. Consider the following:

function newClass() {
 this.firstName = "Frank";
 lastName = "Zammetti";
}
var nc = new newClass();
alert(nc.firstName);
alert(nc.lastName);

Executing this code results in two alerts: the first saying “Frank” and the second saying
“undefined.” That is because the lastName field is not accessible outside an instance of newClass.
Note the difference in how the fields are defined. Any fields defined with the this keyword, as
firstName is, will be accessible outside the class. Any defined without this will be accessible
only inside the class. This goes for methods as well.

Also, don’t forget that the built-in JavaScript objects can be extended using their prototype. In
fact, the JavaScript library named Prototype does exactly this, as you will see in the “JavaScript
Libraries” section later in this chapter. However, you can really mess up things if you’re not
careful, so extend built-in objects with caution!

You can also “borrow” functions from other objects and add them to your own. For instance,
let’s say you want to be able to display the firstName field of newClass simply by outputting
newClass itself. To do this, you implement the toString() function. Let’s further say you want
to always use the toUpperCase() function from the String object on it. You can do all that easy
enough:

function newClass() {
 this.firstName = "frank";
 this.toUC = String.toUpperCase;
 this.toString = function() {
 return this.toUC(this.firstName);
 }
}
var nc = new newClass();
alert(nc);

Zammetti-816-4C02.fm Page 34 Tuesday, February 20, 2007 7:42 AM

CH A P T E R 2 ■ T H E S E V E N H AB I T S O F H I G H L Y S U C C E S S F U L J A V AS C R I P T D E V E L O P E R S 35

Executing this code results in an alert saying “FRANK.” Note that toString() was called,
but not as a method of the firstName String object. Instead, it was called via the reference to it
included as part of newClass under the property named toUC(). This is a handy capability, espe-
cially when you create your own objects and later decide to create new ones that leverage code
you have already written. You don’t need to copy, cut, and paste. You just reference the existing
methods of other classes, and you’re all set.

Graceful Degradation and Unobtrusive JavaScript
Unobtrusive JavaScript is a term that has come onto the scene relatively recently. It is, in simplest
terms, a trend where JavaScript on web pages is done in such a way that it doesn’t, well, intrude
on the page.

The basic tenets of unobtrusive JavaScript are pretty simple and can be easily summarized:

• Keep JavaScript separate.

• Generally, allow graceful degradation.

• Never use browser-sniffing scripts to determine the capabilities of a browser.

• Never, under any circumstances, create JavaScript that is not cross-browser, or more
specifically, code that is dialect-specific.

• Properly scope variables.

• For accessibility, avoid triggering required events as the result of mouse events.

However, the term unobtrusive JavaScript can have different meanings to different people.
Some like to extend the rules a bit further and make it more rigid. Others try to trim the rules
back a bit and make it more flexible. The key point is to implement JavaScript in such a way
that we learn from some of our past mistakes.

Let’s now look at each of the basic tenets in a little more detail.

Keep JavaScript Separate
The idea is to treat JavaScript as a layer of your application, and try to make it as separate as
possible, with well-defined interaction points. For instance, always import JavaScript from
external files. None of this JavaScript embedded in HTML stuff!

This is one of those rules that can be a little flexible, in my opinion. For instance, a few
configuration variables on the main page wouldn’t upset me much, but others may tell you to
externalize even those. But the basic idea is sound: keep scripts separate to the largest extent
possible.

Think of Cascading Style Sheets (CSS). You’re in the habit of externalizing style sheets,
right? Look at JavaScript in the same way! This will logically break up the pieces that compose
your page, making it easier to quickly home in on what you’re actually interested in working
on. It will also lead you down a path of reuse. Scripts that are externalized stand a much better
chance of being used on other pages, other sites, and other projects. It doesn’t guarantee it of
course, but it tends to help.

Zammetti-816-4C02.fm Page 35 Tuesday, February 20, 2007 7:42 AM

36 C H A P T E R 2 ■ T H E S E V E N H A B I T S O F H I G H L Y S U C C E S S F U L JA V A S C R I P T D E V E L O P E R S

Some people even advocate adding event handlers via scripts. The usual reasons given for
doing this are to keep scripts out of markup entirely and to avoid having to modify code in many
places if the function names change. I do not entirely agree with this directive, mainly because of
the argument that an event handler is specific to a given element, so why shouldn’t it be directly
attached to the element? To me, if I need to change an event handler, it is easier to go directly to
the element than to figure out which external .js file contains the code. An exception is if the
handler will be shared (used by more than one element); in that case, I would externalize it.

I leave you to reach your own conclusion on what is best for you. However, I do encourage
you to keep your event handlers as small as possible, regardless of where you put them. They
should generally do little more than call some larger piece of code or execute one or two state-
ments. This is an especially good idea if you do decide to have the handlers in-line with the
elements.

Allow Graceful Degradation
A page should work, even if in a degraded form, without JavaScript. A good example is form
validation. Don’t have a plain button that calls a function that submits the form, as the form
will be unsubmittable without JavaScript. For example, try the code in Listing 2-1 and see what
happens if JavaScript is disabled.

Listing 2-1. Form Submission That Doesn’t Degrade

<html>
 <head>
 <script>

 function doSubmit(inForm) {
 if (inForm.firstName.value == "") {
 alert("You must enter a first name");
 return false;
 }
 if (inForm.lastName.value == "") {
 alert("You must enter a last name");
 return false;
 }
 inForm.submit();
 return true;
 }

 </script>

 </head>
 <body>

 <form name="test" action="#" method="post">
 First name: <input type="test" name="firstName">

 Last name: <input type="test" name="lastName">

Zammetti-816-4C02.fm Page 36 Tuesday, February 20, 2007 7:42 AM

CH A P T E R 2 ■ T H E S E V E N H AB I T S O F H I G H L Y S U C C E S S F U L J A V AS C R I P T D E V E L O P E R S 37

 <input type="button" onClick="doSubmit(this.form);" value="Submit">
 </form>

 </body>
</html>

If you run Listing 2-1 with JavaScript disabled, you’ll see that nothing happens, because
the form submission depends on the JavaScript executing. This is clearly bad.

Instead of this approach, validate in response to the onSubmit event. That way, if JavaScript
is enabled, users get the benefit of the client-side validations. But if JavaScript is turned off, the
form can still be submitted. Listing 2-2 shows how this works.

Listing 2-2. Form Submission That Gracefully Degrades

<html>
 <head>
 <script>

 function doSubmit(inForm) {
 if (inForm.firstName.value == "") {
 alert("You must enter a first name");
 return false;
 }
 if (inForm.lastName.value == "") {
 alert("You must enter a last name");
 return false;
 }
 inForm.submit();
 return true;
 }

 </script>

 </head>
 <body>

 <form name="test" action="#" method="post"
 onSubmit="return doSubmit(this);">
 First name: <input type="test" name="firstName">

 Last name: <input type="test" name="lastName">

 <input type="submit" value="Submit">
 </form>

 </body>
</html>

Zammetti-816-4C02.fm Page 37 Tuesday, February 20, 2007 7:42 AM

38 C H A P T E R 2 ■ T H E S E V E N H A B I T S O F H I G H L Y S U C C E S S F U L JA V A S C R I P T D E V E L O P E R S

By the way, one cardinal sin is using purely client-side validation and assuming any data
coming from the client is good. In fact, your systems should always be designed to assume the
data coming from the client is bad. It’s perfectly acceptable to do client-side validation. But it’s
virtually never acceptable for that to be the only validation your system performs.

Now for some opinion. Some people believe that graceful degradation, and some of the
other tenets of unobtrusiveness and accessibility, should apply to any web application. I do not
agree with that view, and moreover, I believe it is a view that is untenable.

Take a web-based game like the project in Chapter 11—can you imagine one being written
without requiring JavaScript? That would be akin to saying Electronic Arts should write the
next version of Madden Football using Logo, or that Bungie should write the next version of
Halo in HTML, or that Microsoft should create a version of Windows based on any program-
ming language that doesn’t supply logic branching, looping, variables, or data structures.

The point is that a game requires executable code, as you’ll see in Chapter 11 (go ahead,
feed your curiosity and take a quick peek—I’ll still be here when you return!). Do you think
graceful degradation in such a project is a reasonable goal? Aside from degrading to a page that says
something like, “Sorry, you can’t play without JavaScript,” I certainly can’t. Should JavaScript be
optional in such an application? I don’t doubt that someone, somewhere, has written a web-
based game that requires just straight HTML and/or degrades gracefully in the absence of
JavaScript. But I also don’t doubt that such a creation is an exceedingly rare exception.

We are in an era when Rich Internet Applications (RIAs) are beginning to rule the roost.
Google, for instance, is now in the early stages of putting a full office suite on the Web for all to
use.2 Do you think the developers will attempt to make a version that adheres to all the tenets
of unobtrusiveness, degrades gracefully (beyond a certain minimum level), and is fully acces-
sible? Almost certainly not, because it is a nearly impossible task in such advanced
applications. Let me be clear: most of what unobtrusiveness is all about as described here is still
perfectly doable in an RIA world. It’s just that some of it probably isn’t.

This is where the distinction between a web site and a web application comes into play. A
web site is something that primarily has the goal of disseminating information. It has limited
requirements in terms of user interaction; usually, simple HTML forms suffice nicely. In a web
site, all of the rules described here should almost certainly be followed, and more important,
the rules can be followed. Web applications, on the other hand, are more complex and require
more advanced user interactions. They are meant to replace fat clients, applications that users
have become accustomed to over the years. They expect a dynamic user interface (UI) that is
powerful and yet simple, bells and whistles, and features that simply can’t be done without
code—and some of that code will have to wind up on the client. In these situations, my opinion
is that following all these rules is simply not reasonable and will lead to a lot of failed projects.

However, for anything that is for public consumption on the Web, you should without
question strive for perfect accessibility, graceful degradation, and all the other unobtrusive
JavaScript goals. For the places you don’t achieve those goals, you should have very clear and
solid reasons for not doing so, and you should be utterly convinced that you can’t meet the
goals of your application while at the same time adhering to these rules.

2. Google’s application is called Google Docs & Spreadsheets. You can play with it by going to http://
docs.google.com.

Zammetti-816-4C02.fm Page 38 Tuesday, February 20, 2007 7:42 AM

CH A P T E R 2 ■ T H E S E V E N H AB I T S O F H I G H L Y S U C C E S S F U L J A V AS C R I P T D E V E L O P E R S 39

So, in short, I believe you should examine what you’re doing and what your goals are, and
decide which of these guidelines to follow. Make no mistake, I do believe you should be trying
to follow them all! But that will not always be possible in my estimation. Again, this is one man’s
opinion. Please do form your own opinion based on your own best judgment.

Don’t Use Browser-Sniffing Routines
Rather than using browser-sniffing scripts to determine the capabilities of a browser, check for
object existence and capabilities. As an extension to this, JavaScript errors that occur simply
because the developer was lazy, and didn’t check whether a given object existed before accessing
it, are obtrusive and not good.

As an example, look at the following code:

function setContent(inObj, inContent {
 inObject.innerHTML = inContent;
}

Here, if the object inObj does not support innerHTML, which is possible since innerHTML is
not a standard part of the DOM (although, in practice, I don’t know of any browser that fails to
implement it), an error will occur. Rewriting this to avoid the error is trivial:

function setContent(inObj, inContent {
 if (inObj.innerHTML) {
 inObject.innerHTML = inContent;
 }
}

While checks like this are good practice in general, the real point is to determine whether
a browser supports a certain capability. One of the best examples of this is basic Ajax program-
ming, where you need an instance of the XMLHttpRequest object. Unfortunately, various browsers
support this in different ways (Ajax will be discussed in Chapter 12, so don’t worry about the
details if this is new to you). However, you can check for various objects, and based on their
existence or nonexistence, branch your code accordingly, like so:

var xhr = null;
if (window.XMLHttpRequest) {
 xhr = new XMLHttpRequest();
} else if (window.ActiveXObject) {
 xhr = new ActiveXObject("Microsoft.XMLHTTP");
}

It’s always better to write code that doesn’t need to branch at all, of course, but that just
isn’t always possible. Browser-sniffing is a bad idea because, as many developers have learned
over the years, you always need to worry about keeping the sniffing code up-to-date and able
to recognize new browsers. Object-existence checks are much less brittle and don’t generally
require reworking to handle new browsers, so this technique is preferred over browser-sniffing.

Zammetti-816-4C02.fm Page 39 Tuesday, February 20, 2007 7:42 AM

40 C H A P T E R 2 ■ T H E S E V E N H A B I T S O F H I G H L Y S U C C E S S F U L JA V A S C R I P T D E V E L O P E R S

Don’t Create Browser-Specific or Dialect-Specific JavaScript
You shouldn’t ever, under any circumstances, create JavaScript that is not cross-browser, or more
specifically, code that is dialect-specific—well, unless there is an exceptionally good reason!

This is one rule that should be obvious to anyone who has done even relatively trivial
JavaScript coding. The simple fact is that JavaScript in modern browsers is pretty close to
100% compatible anyway. There are still exceptions here and there, but you will find that the
vast majority of the differences are actually in regard to DOM differences and how to work with
the DOM in a particular browser. So, while this guideline refers to cross-browser JavaScript, in
reality, it probably has more to do with DOM access.

As a trivial example, you should no longer need to check for things like document.layers or
document.all to determine how to properly access an element on a page. Almost all modern
browsers will support document.getElementById(), which is the spec-compliant way to do it,
and that’s what you should be using. Any time you find yourself coding to a specific dialect of
JavaScript, or for a specific browser, ask yourself (a) is there a spec-compliant way to accom-
plish this? and (b) will it work across all browsers I’m interested in supporting? When you find
those exceptions, clearly note via comments in the code why you did it. That will save you a lot
of mental anguish down the road, and will also remind you which parts of your code to check
later to see if you can update to standards-compliancy.

Properly Scope Variables
Variables should be local unless they are truly meant as globals. In particular, be careful when
working with Ajax, because global variables in an asynchronous world can be the cause of
many difficult-to-debug problems.

As an example of bad scoping, take a look at the code in Listing 2-3.

Listing 2-3. Bad Variable Scoping

<html>
 <head>

 <script>

 var fauxConstant = "123";

 function badFunction() {
 fauxConstant = "456";
 }

 function goodFunction() {
 var fauxConstant = "456";
 }

Zammetti-816-4C02.fm Page 40 Tuesday, February 20, 2007 7:42 AM

CH A P T E R 2 ■ T H E S E V E N H AB I T S O F H I G H L Y S U C C E S S F U L J A V AS C R I P T D E V E L O P E R S 41

 function testIt() {
 alert(fauxConstant);
 goodFunction();
 alert(fauxConstant);
 badFunction();
 alert(fauxConstant);
 }

 </script>

 </head>

 <body>
 Three alerts will follow... the first should and does say "123."
 The second should and does say "123" again. And the third should say
 "123" but instead says "456."

 <input type="button" value="Click to test scoping" onClick="testIt();">

 </body>
</html>

In this example, notice how the last value displayed is not correct because of how the vari-
ables are scoped. The idea is that both goodFunction() and badFunction() will create a variable
with the same name as the global variable, and then use it locally, but not change the value
of the global version. badFunction(), as you can guess, doesn’t work that way; it touches the
global version. Had fauxConstant been declared locally in badFunction(), the problem would be
avoided, as is the case in goodFunction(). If the intent were to actually have a global variable, then
goodFunction() would be wrong, since it declares a local variable. However, the name fauxConstant
should be a hint that the value is not expected to be changed after it is declared and initialized.
Since there are no true constants in JavaScript, we can only fake it—hence the name fauxConstant.
In short, scope your variables locally whenever possible.

One other point to remember is that any JavaScript variable declared inside a function
without the var keyword will continue to exist outside that function. This can often lead to
difficult-to-diagnose problems, so do yourself a favor and always use the var keyword unless
you specifically know you have a reason not to!

Don’t Use Mouse Events to Trigger Required Events
For accessibility, you should avoid triggering required events as the result of mouse events.
onChange, while not strictly speaking a mouse event, is often misused. For instance, we’ve all
seen sites with a <select> that, when changed, navigates to a new page, as in the example in
Listing 2-4. This is generally bad because the page cannot properly be used without a mouse,
which means it will be difficult, or even impossible, for those with certain disabilities to use
your site.

Zammetti-816-4C02.fm Page 41 Tuesday, February 20, 2007 7:42 AM

42 C H A P T E R 2 ■ T H E S E V E N H A B I T S O F H I G H L Y S U C C E S S F U L JA V A S C R I P T D E V E L O P E R S

Listing 2-4. Inaccessible Page Change

<html>
 <head>
 </head>
 <body>
 <select onChange="alert('Change to page ' + this.value);">
 <option value="page1.htm"></option>
 <option value="page1.htm">Page 1</option>
 <option value="page2.htm">Page 2</option>
 </select>
 </body>
</html>

Instead, rely on events that can be activated with the keyboard, as in Listing 2-5.

Listing 2-5. A More Accessible Page Change

<html>
 <head>
 </head>
 <body>
 <select id="theSelect">
 <option value="page1.htm"></option>
 <option value="page1.htm">Page 1</option>
 <option value="page2.htm">Page 2</option>
 </select>

 <input type="button" value="Click to change pages"
 onClick=
 "alert('Change to page ' + document.getElementById('theSelect').value);">
 </body>
</html>

This example places a button beside the <select>, and the button is what activates the
page change. This can easily be activated with the mouse as well as the keyboard, greatly
enhancing the accessibility of your page.

It’s Not All Just for Show: Accessibility Concerns
Accessibility for the disabled in modern RIAs, especially those using Ajax techniques, is a very
difficult problem. Anyone who says differently is probably trying to sell you a solution you
probably don’t want! The fact is that accessibility is a growing problem, not a diminishing one,
and this is due to the nature of “modern” web applications.

Accessibility generally boils down to two main concerns: helping the vision-impaired and
helping those with motor dysfunctions. Those with hearing problems tend to have fewer issues
with web applications, although with more multimedia-rich applications coming online each
day, this may be increasingly less true. Those with motor disorders will be concerned with things

Zammetti-816-4C02.fm Page 42 Tuesday, February 20, 2007 7:42 AM

CH A P T E R 2 ■ T H E S E V E N H AB I T S O F H I G H L Y S U C C E S S F U L J A V AS C R I P T D E V E L O P E R S 43

like keyboard shortcuts, since they tend to be easier to work with than mouse movements (and
are generally easier than mouse movements for specialized devices to implement).

Often overlooked is another kind of vision impairment: color blindness. Web developers
usually do a good job of helping the blind, but they typically don’t give as much attention to
those who are color-blind. It is important to understand that color-blind people do not usually
see the world in only black and white.3 Color blindness, or rather color deficiencies, is a failing
of one of the three pigments that work in conjunction with the cone cells in your eyes. Each of
the three pigments, as well as the cones, is sensitive to one of the three wavelengths of light:
red, green, or blue. Normal eyesight, and therefore normal functioning of these pigments and
cone cells, allows people to see very subtle differences in shades of the colors that can be made
by mixing red, green, and blue. Someone with color blindness cannot distinguish these subtle
shading differences as well as someone with normal color vision can, and sometimes cannot
distinguish such differences at all. To someone with color blindness, a field of blue dots with
subtle red ones mixed in will appear as a field of dots all the same color, just as one example. A
page that demonstrates the effects of color deficiencies to someone with normal vision can be
found at http://colorvisiontesting.com/what%20colorblind%20people%20see.htm.

When Life Gives You Grapes, Make Wine:
Error Handling
A soberingly short time ago, error/exception handling in JavaScript amounted to little more than
hoping the browser would display a not too unpleasant message to the user when something
went wrong. Most “real” languages had rather sophisticated exception-handling mechanisms,
but JavaScript was not one of them. Java had try . . . catch blocks. So did C++, even before
Java did. Heck, even the much maligned Visual Basic had On Error, which was considered
“unstructured” exception handling (as opposed to try . . . catch, which is considered
“structured”), but even that was better than what JavaScript had to offer for a long time!

At some point, a clever JavaScript coder discovered that you could hook into the browser’s
exception-handling mechanism. So now, instead of a plain-old browser error message, like the
one shown in Figure 2-1, you could put in your own (slightly) more pleasant version, as in
Figure 2-2.

Figure 2-1. A plain JavaScript error message from Internet Explorer

3. Seeing only in black, gray, and white is termed monochromasy and is actually quite rare. Monochromasy
would actually be easier to deal with than the typical forms of color blindness.

Zammetti-816-4C02.fm Page 43 Tuesday, February 20, 2007 7:42 AM

44 C H A P T E R 2 ■ T H E S E V E N H A B I T S O F H I G H L Y S U C C E S S F U L JA V A S C R I P T D E V E L O P E R S

Figure 2-2. A custom JavaScript error message

The code for a custom error handler is pretty trivial, but it is still often a very useful capa-
bility to have in your toolbox. Listing 2-6 shows the code for the page with the handler that
generated the message in Figure 2-2, along with the error-generating code to test it. In general,
errors can often be handled by structured exception handling instead, but there are still times
when a true last-resort error handler such as this is a good idea. In fact, it isn’t too hard to
convince yourself that a handler like this should always be present, even if you make every
attempt to avoid it ever being activated, which you should, of course!

Listing 2-6. An Example of an Error Handler and Test Code

<html>
 <head>

 <script>

 window.onerror = handleError;
 var s = null;
 s.toString();

 function handleError(desc, page, line) {
 s = "An unexpected JavaScript error has occurred. ";
 s += "We apologize unreservedly!\n\n";
 s += "Page 'test.htm', line " + line + "\n";
 s += "Description: " + desc + "\n\n";
 s += "Please contact customer support at 555-123-4567.";
 alert(s);
 }

 </script>

 </head>

 <body>
 </body>

</html>

Zammetti-816-4C02.fm Page 44 Tuesday, February 20, 2007 7:42 AM

CH A P T E R 2 ■ T H E S E V E N H AB I T S O F H I G H L Y S U C C E S S F U L J A V AS C R I P T D E V E L O P E R S 45

■Note The difference between an error and an exception is something that many developers tend to ignore,
but it’s a fairly important distinction when designing your code. An error is a condition that you do not expect
to happen and usually will, and even arguably should, lead to a program crash (or, at best, an error message
saying the program cannot continue). On the other hand, an exception is a situation you expect can and might
happen, and the program should be able to handle it in some way and continue. You will often find that an
error is really an exception in disguise; that is, if you think about it a bit and plan accordingly, you can handle
it just like any other exception. It may require more work on your part, but that’s one of the tickets to writing
more robust code!

So, what is this structured exception handling I refer to, in the context of JavaScript? Like
Java, C++, and many other languages, the try . . . catch construct is at the heart of it. Listing 2-7
shows a simple example of try . . . catch in action.

Listing 2-7. JavaScript Exception Handling in Action

<html>
 <head>

 <script>

 function test(inVal) {
 try {
 inVal = inVal.toLowerCase();
 } catch(error) {
 alert("An error has occurred. Error was:\n\n" + error.message);
 }
 }

 </script>

 </head>

 <body>
 <input type="button" value="Test" onClick="test(null);">
 </body>

</html>

The exception in this code should be pretty easy to spot: it tries to call toLowerCase() on a
string that was passed in as null. This is the type of thing that may not be caught by a developer
at design time, because the conditions that call the test() function may be dependent on various
factors (here, obviously the developer should catch this, since null is passed specifically, but
you know what I mean!). Exceptions tend to be things that wouldn’t occur until runtime based
on some user-generated condition. Even still, this demonstrates how try . . . catch works.

Zammetti-816-4C02.fm Page 45 Tuesday, February 20, 2007 7:42 AM

46 C H A P T E R 2 ■ T H E S E V E N H A B I T S O F H I G H L Y S U C C E S S F U L JA V A S C R I P T D E V E L O P E R S

In short, some condition that you, as the developer, know could throw an exception is
enclosed in try { }. This is followed by a catch { } block, which will be executed if an excep-
tion occurs in the try { } block. In the example in Listing 2-7, the exception-handling code does
nothing more than pop up an alert message, which sometimes is all you can really do anyway.

When It Doesn’t Go Quite Right:
Debugging Techniques
Let’s face facts folks: we developers are like baseball players in that we probably get it right
maybe only three out of every ten tries, and that actually makes us pretty good! What I mean is
that the modern development model is quite different from the old days.

I admit I wasn’t around for the period when programming was an exercise in patience, but
I’ve heard all about it. Programmers would spend all day writing out programs on special
paper, thinking every last detail through as best they could. They then sent those papers down
to another department, which entered the program into a machine that spit out punch cards.
The next day, the programmer (or a whole other department sometimes) would feed those
punch cards into the computer (and I’m not even going to mention the times someone would
trip while bringing the box of punch cards somewhere, and then frantically try to reorder
hundreds or thousands of cards before his boss noticed!). Then the programmer sat around,
waiting for some output somewhere to verify his program was correct, or whether he had to
start all over again.

Today, things are quite considerably better. We generally get immediate feedback about
the correctness of our programs. In fact, we often get earlier hints about mistakes we’ve made.
Correcting them is a simple matter of typing in some new code and clicking a button. Yes, we
definitely have it good compared to just a few (relatively speaking) years ago.

Even so, how many times do you write more than a handful of code and have it work
perfectly the first run? It’s a pretty rare thing. There’s a reason the saying “Programmers curse
a lot, but only at inanimate objects” was invented!

In the world of JavaScript, things are getting better at a breakneck speed. That being said,
debugging JavaScript in a modern web application is usually not the most pleasant of experiences.
It is not as bad as the punch card days, but generally not as nice as working in modern fourth-
generation languages (4GLs). IDEs have only relatively recently begun to support JavaScript
fully in terms of debugging capabilities and static code analysis capabilities. So, we still need to
develop our own debugging techniques and learn to put them to good use. Of course, a proper
debugger is no longer as rare as it was two to three years ago, and so some of the techniques are
beginning to give way to using debuggers.

Perhaps the earliest debugging technique, if one can really call it that, was “alert debugging.”
This amounts to sprinkling alert() calls throughout your code to display various messages.
For instance, let’s say you need to debug the code in Listing 2-8.

Zammetti-816-4C02.fm Page 46 Tuesday, February 20, 2007 7:42 AM

CH A P T E R 2 ■ T H E S E V E N H AB I T S O F H I G H L Y S U C C E S S F U L J A V AS C R I P T D E V E L O P E R S 47

Listing 2-8. Using alert() Debugging

<html>
 <head>

 <script>

 function test() {
 var a = 0;
 alert("checkpoint 1");
 a = a + 1;
 alert("checkpoint 2");
 a = a - 1;
 alert("checkpoint 3");
 a = a.toLowerCase();
 alert("checkpoint 4");
 }

 </script>

 </head>

 <body>
 <input type="button" value="Test" onClick="test(null);">
 </body>

</html>

In this example, you know you are seeing an error somewhere in the function. So, you
sprinkle some alert() calls throughout, showing some checkpoint messages. When you view
this page and click the Test button, you’ll get a series of pop-ups, and eventually the error will
occur. You now know that the error occurs between the pop-up showing “checkpoint 3” and
“checkpoint 4.” In effect, you’ve created a rudimentary “step-into” debugging facility of a sort.
Now, this certainly can get the job done, and I often find myself doing it simply because I’ve
gotten so quick and efficient at it. That being said, it clearly isn’t the best answer. What if there
were a loop involved in this code that iterated 300 times? Do I really want to be clicking through
300 alert pop-ups? Heck no!

What are the alternatives? Well, if you do your development in Firefox, you have access to
a great tool call Firebug, which I’ll discuss in more detail in the next section. As a preview though,
Firebug offers logging to a console. So, the code from Listing 2-8 can be changed to that in
Listing 2-9.

Zammetti-816-4C02.fm Page 47 Tuesday, February 20, 2007 7:42 AM

48 C H A P T E R 2 ■ T H E S E V E N H A B I T S O F H I G H L Y S U C C E S S F U L JA V A S C R I P T D E V E L O P E R S

Listing 2-9. Firebug Console Logging

<html>
 <head>

 <script>

 function test() {
 var a = 0;
 console.log("checkpoint 1");
 a = a + 1;
 console.log("checkpoint 2");
 a = a - 1;
 console.log("checkpoint 3");
 a = a.toLowerCase();
 console.log("checkpoint 4");
 }

 </script>

 </head>

 <body>
 <input type="button" value="Test" onClick="test(null);">
 </body>

</html>

Now, instead of a bunch of pop-ups, if you look in the Firebug console, you’ll see the messages
displayed there. Sweet! Note, however, that trying to run this in IE will result in errors, because
the console object isn’t known to IE. If you wanted to work in IE, you could create the following
code and add it to the page (as a script import most likely):

function Console() {
 this.log = function(inText) {
 alert(inText);
 }
}
console = new Console();

Of course that goes back to logging to an alert() popup, so you would probably instead
want to write out to a <div> that is on the page. But the basic idea is to somehow emulate the
console object, and this does the trick, if not perfectly.

But, what if you don’t work in Firefox or don’t have Firebug installed? What if you need to
send the code to a client’s site, and you can’t assume that client has Firefox and Firebug? Well,
one option is to write your own simple message logger. This is actually part of the project in
Chapter 3, so I’ll save it for then, but suffice it to say that it’s a relatively trivial exercise.

Zammetti-816-4C02.fm Page 48 Tuesday, February 20, 2007 7:42 AM

CH A P T E R 2 ■ T H E S E V E N H AB I T S O F H I G H L Y S U C C E S S F U L J A V AS C R I P T D E V E L O P E R S 49

At the end of the day though, a logger is really just a less annoying implementation of
alert() debugging, isn’t it? “What about a proper debugger?” I hear you ask. You have it in your
IDE of choice when doing development in C/C++, Java, Visual Basic, or just about any other
language you use, right? If JavaScript is going to play with the big boys, it has to come to the
party well equipped. Well, guess what? JavaScript debugger used to be almost an oxymoron,
but no more! There are now quite a few options—some better than others, some free, and some
not, but they most certainly exist. Let’s talk about those debuggers and some other tools that all
JavaScript coders should have in their toolbox.

Browser Extensions That Make Life Better
The web browser isn’t just for rendering markup any more! Modern web browsers are really
their own runtime platform for running other bits of software. Some are better than others, but
all offer some extensibility in the form of extensions. In this section, we will look at a just a few
of my personal favorites that I find help me do my day-to-day development work. Of course, I
can only hope to scratch the surface in terms of what is available. I believe I’ve covered probably
the most useful in each browser (for a developer I mean), but explore on your own, because there
are plenty more out there!

Firefox Extensions
Whether you use IE, Firefox, Opera, or some other browser on a day-to-day basis, I very much
recommend doing your primary development in Firefox. The reason is twofold. First, Firefox
tends to be a bit more standards-compliant than other browsers, most notably IE, so your code
and markup developed in Firefox will tend to be more standards-compliant. Second, Firefox
has some of the best client-side development tools available today, and nearly all of them are
totally free!

You can find all sorts of Firefox extensions (or add-ons, which is another term for the same
thing) by opening Firefox, clicking the Tools menu, and selecting Add-ons. A sidebar will open,
and there you will see an icon that looks like a little gray gear with a black down arrow next to
it. Click the gear to open a menu that lists Firefox Add-ons near the bottom. Click that item, and
you’ll be taken to the Firefox Add-ons page. Alternatively, you can simply navigate to https://
addons.mozilla.org/firefox/extensions. On the Add-ons page, you can browse through all
the available extensions.

Now I’ll talk about a few of the extensions I personally find to be the most useful, but I very
much recommend taking some time to browse for yourself, because there is plenty more where
these come from!

Venkman

It is truly amazing to think that something as powerful as the Venkman debugger is 100% free!
All your favorite debugging tricks are available here, including call stack navigation, the ability
to watch the values of specified variables, breakpoints in code, and real-time changing of vari-
able values to see how the code reacts. As you can see from Figure 2-3, Venkman looks a whole
lot like any of the debuggers you’ve probably used on the server side of things.

Zammetti-816-4C02.fm Page 49 Tuesday, February 20, 2007 7:42 AM

50 C H A P T E R 2 ■ T H E S E V E N H A B I T S O F H I G H L Y S U C C E S S F U L JA V A S C R I P T D E V E L O P E R S

Figure 2-3. The Venkman debugger for Firefox

Firebug

Firebug has very quickly garnered the reputation as one of the most popular developer extensions
for Firefox in existence today. In fact, a great many of us have taken to using almost nothing but
Firebug for our client-side development efforts. Little else seems necessary!

Firebug offers a number of different capabilities all rolled into one nice, neat package. For
instance, the Console tab, which you can see in Figure 2-4, shows errors and warning of various
kinds, with filtering capabilities. A really nice thing about it is that when an error occurs, you
can expand the error and see the full stack trace. Each item in that list is clickable and brings
you directly to the offending line. Also, this console is accessible to your applications by simply
doing this:

console.log("message");

This is exceedingly handy!

Zammetti-816-4C02.fm Page 50 Tuesday, February 20, 2007 7:42 AM

CH A P T E R 2 ■ T H E S E V E N H AB I T S O F H I G H L Y S U C C E S S F U L J A V AS C R I P T D E V E L O P E R S 51

Figure 2-4. Firebug: perhaps the single most important developer extension for Firefox to date!

Firebug registers Ajax requests, which few other extensions I’ve seen do. You can expand
the request and see the parameters that were passed, the POST body, the response, and so on.
If you’re doing Ajax work, this is absolutely invaluable.

Firebug also provides a debugger that shows full stack traces, as well as the ability to
change values in real time and set breakpoints. The debugger is shown in Figure 2-5.

Zammetti-816-4C02.fm Page 51 Tuesday, February 20, 2007 7:42 AM

52 C H A P T E R 2 ■ T H E S E V E N H A B I T S O F H I G H L Y S U C C E S S F U L JA V A S C R I P T D E V E L O P E R S

Figure 2-5. Firebug’s debugger, while extremely simple, is at the same time very powerful.

Firebug’s Inspector facility is another great feature. It allows you to hover over items on
the page and see their definition, including their styles, where they were inherited from, and so
on. You can explore the DOM tree at any point, digging down as far as you like.

Keep in mind that I’ve only scratched the surface of what Firebug can do! In short, it takes
many popular features from other extensions and rolls them into one tidy, powerful package.
By the way, you can put Firebug on the side rather than the bottom; I just choose to have it at
the bottom, as reflected in Figures 2-4 and 2-5.

If you primarily do your development in Firefox, which I recommend, and if you install no
other extension, install Firebug!

Page Info

Page Info is an immensely useful, yet immensely simple, Firefox tool, as shown in Figure 2-6. Page
Info actually comes with Firefox, and is accessible from the browser’s Tools menu.

Zammetti-816-4C02.fm Page 52 Tuesday, February 20, 2007 7:42 AM

CH A P T E R 2 ■ T H E S E V E N H AB I T S O F H I G H L Y S U C C E S S F U L J A V AS C R I P T D E V E L O P E R S 53

Figure 2-6. Page Info, another invaluable Firefox tool

Page Info displays, as its name clearly states, information about the current page, such as
the following:

• The render mode the page uses

• A list of all the forms on the page and all the pertinent information about them

• A list of all the links on the page

• Links to all the images and other media resources on the page (plus dimensions for
images and other information about each)

• A list of cookies the page uses (with the ability to remove each one or all of them together)

• A list of scripts and style sheets used on the page (with the ability to open each separately)

• A tree view of all the page’s dependencies (images, scripts, applets, and so on)

• All the HTTP headers for both the request of the page and the response, and security-related
information for the page

If this sounds like an absolute treasure trove of information to you, then you’ve definitely
gotten the right picture!

Zammetti-816-4C02.fm Page 53 Tuesday, February 20, 2007 7:42 AM

54 C H A P T E R 2 ■ T H E S E V E N H A B I T S O F H I G H L Y S U C C E S S F U L JA V A S C R I P T D E V E L O P E R S

Web Developer

The Web Developer toolbar is another extension that you won’t want to do without! This exten-
sion, in the form of a toolbar, offers such a tremendous wealth of features that I simply can’t
cover even a quarter of them. So, I’ll just throw out a list of some things it lets you do, in no
particular order. But keep in mind, and I can’t emphasis this enough, the following is a very
small portion of what it offers:

• Disable all sorts of things, like JavaScript, meta redirects, page colors, and so on.

• View cookie information, as well as clear individual cookies, or all cookies for a domain,
and so on.

• Edit CSS used on the page, disable CSS entirely, or just view style sheets that were imported.

• Change the method of a form, make disabled form fields writable, change <select>
elements to text fields, and so on.

• Manipulate images in a number of ways, as well as get all sorts of information about them.

• Get virtually any piece of information about a page you can imagine.

• Make locked frames resizable.

• Outline virtually any type of page elements you want, so you can see tables, <div> elements,
forms . . . whatever you wish, clearly.

• Resize the window, as well as automatically resize it to any of the most common window
sizes (great to see what your page looks like on a 640-by-480 monitor, for example).

• Get quick access to numerous online validators, as well as the JavaScript and Java consoles.

• View generated source, an absolutely invaluable aid!

You may by now realize that this toolbar has a great deal of overlap with the Page Info tool.
However, Page Info presents it in a more well-organized manner, and makes it a little easier to
access. Either one will do the trick, though.

Five minutes with this toolbar is probably enough to convince you of its merit, so I suggest
taking those five minutes now and having a look. Go ahead, I’ll wait.

Back already? OK, let’s move on to some IE extensions.

IE Extensions
When you compare the landscape of browser extensions available in Firefox vs. IE, at least as
far as developer tools go, you quickly conclude that Firefox has the edge. Heck, just putting
Firebug against most of what is available for IE is a win for Firefox! However, that isn’t to say
that there aren’t some excellent tools available for IE.

HttpWatch

HttpWatch (http://www.httpwatch.com), shown in Figure 2-7, offers the ability to capture
requests and responses between the browser and a remote system. And when I say capture
them, I mean capture them! Every available detail is recorded for your analysis, and better still,

Zammetti-816-4C02.fm Page 54 Tuesday, February 20, 2007 7:42 AM

CH A P T E R 2 ■ T H E S E V E N H AB I T S O F H I G H L Y S U C C E S S F U L J A V AS C R I P T D E V E L O P E R S 55

it is organized very well, making it easy to get the information you need. One of the best features is
that it shows you the raw HTTP data stream that was sent or retrieved. This can help a great
deal in debugging some tricky issues.

Figure 2-7. In the world of Internet Explorer, HttpWatch is unmatched.

The unfortunate thing about HttpWatch is that it isn’t free, and it isn’t especially cheap for
an individual. That being said, it’s a truly helpful tool that will pay for itself in short order. Grab
the demo and have a look!

Web Accessibility Toolbar

The Web Accessibility Toolbar (http://www.visionaustralia.org.au/ais/toolbar) is a great
aid in making sure your site is accessible, and it offers other useful features. It is akin to the Web

Zammetti-816-4C02.fm Page 55 Tuesday, February 20, 2007 7:42 AM

56 C H A P T E R 2 ■ T H E S E V E N H A B I T S O F H I G H L Y S U C C E S S F U L JA V A S C R I P T D E V E L O P E R S

Developer toolbar in Firefox, but not quite as feature-rich (which is to be expected, since this
toolbar has a bit narrower focus). Here are some of the features it offers:

• The ability to resize the window to common window sizes

• Quick and easy access to a large number of online validators

• Manipulation of and information about images on the page

• Color contrast analysis

• All sorts of page structure analyses (to help ensure your page is properly readable by
screen readers)

• The ability to simulate various disabilities, including color blindness and cataracts

• Tons of page information displays

Accessibility can be difficult to implement—sometimes nearly impossible with modern
RIAs. This toolbar will give you a good leg up on that difficult task, and even if for some reason
you have no concern about accessibility, this would still be a great tool. It’s free, so I can’t think
of a single good reason not to add it to you repertoire.

IEDocMon

IEDocMon (http://www.cheztabor.com/IEDocMon/index.htm) is another one of those tools that
makes you wonder how someone released it for free! This IE extension allows you to view the
page’s DOM tree, expanding down to the point you need, as shown in Figure 2-8. It can high-
light the element on the page from the tree, so you can be sure you are looking at the right
thing. It can show you the snippet of HTML representing the current element, so you can find
precisely what you’re looking for (a huge help when you’re trying to figure out how some clever
developer pulled off a specific trick!). Moreover, it can do the same thing with scripts, so you
can focus in on the precise bit of script that performs a given task.

One of IEDocMon’s best features is its ability to monitor events for selected elements. Say
you have a <div>, and you have it changing colors when you mouse over it, but it doesn’t seem
to be working. With IEDocMon, you can select the <div> from the DOM tree, and you will see
every event that occurs for that element. Especially in a complex RIA, this is a capability that is
worth its weight in gold, and I frankly haven’t found many other extensions, for any browser,
that can do it.

Zammetti-816-4C02.fm Page 56 Tuesday, February 20, 2007 7:42 AM

CH A P T E R 2 ■ T H E S E V E N H AB I T S O F H I G H L Y S U C C E S S F U L J A V AS C R I P T D E V E L O P E R S 57

Figure 2-8. IEDocMon: anyone who says free isn’t good hasn’t seen this!

Visual Studio Script Debugger

The Microsoft Visual Studio Script Debugger, a part of Visual Studio, is a full-fledged just-in-
time debugger, as shown in Figure 2-9. It can intercept errors on the page in IE and pop up to
show you the offending line and allow you to manipulate the code on the fly.

Zammetti-816-4C02.fm Page 57 Tuesday, February 20, 2007 7:42 AM

58 C H A P T E R 2 ■ T H E S E V E N H A B I T S O F H I G H L Y S U C C E S S F U L JA V A S C R I P T D E V E L O P E R S

Figure 2-9. Visual Studio Script Debugger makes debugging in Internet Explorer a tolerable
experience.

As a part of Visual Studio, this debugger is not only not free, it also is fairly heavyweight. If
you are fortunate enough to have a subscription to MSDN, or already have Visual Studio, this
debugger can be a big help when working in IE.

Unfortunately, there aren’t many debuggers for IE in the first place, so your choices are
somewhat limited. If you must use IE, this debugger will serve you pretty well, as long as you
aren’t looking for something particularly svelte and sprightly.

Microsoft Script Debugger

Not to be confused with the Visual Studio Script Debugger, there is also a separate Microsoft
Script Debugger. This debugger is not as full-featured as the Visual Studio Script Debugger.
Although it is more lightweight, it can still be quite useful. Once installed, it exposes itself via a
new Script Debugger menu in IE.

If you have access to Visual Studio, you will want to use that debugger. Otherwise, have a
peek at the Microsoft Script Debugger at http://www.microsoft.com/downloads/details.aspx?
FamilyID=2f465be0-94fd-4569-b3c4-dffdf19ccd99&DisplayLang=en.

Microsoft Internet Explorer Developer Toolbar

Microsoft recently released a new developer’s toolbar for IE that is very much along the lines of
the Web Developer toolbar for Firefox. It isn’t quite as extensive yet, but it is, as of this writing,
a beta release, so it certainly could be expanded in the future. Here are a few of its features:

• The ability to outline tables, images, selected tags, and other items

• The ability to resize the browser window to a specified size

Zammetti-816-4C02.fm Page 58 Tuesday, February 20, 2007 7:42 AM

CH A P T E R 2 ■ T H E S E V E N H AB I T S O F H I G H L Y S U C C E S S F U L J A V AS C R I P T D E V E L O P E R S 59

• A full-featured design ruler (to help align and measure items)

• The ability to explore the DOM of the current page in a tree view

If you would like to check this out for yourself, you can do so at this (rather long and
unwieldy) address: http://www.microsoft.com/downloads/details.aspx?familyid=e59c3964-
672d-4511-bb3e-2d5e1db91038&displaylang=en.

Maxthon Extension: DevArt
Maxthon is my day-to-day browser of choice. It is a wrapper around IE that provides many of
the more advanced features IE is lacking, but keeps the underlying IE rendering engine intact.
This means I rarely, if ever, have to worry about a site not working for me. It also deals with
many of the security flaws IE tends to have, so it’s safer than “naked” IE to boot. But we’re not
here to talk about which browser is better or more secure, we’re talking about developer tools!

Like Firefox, Maxthon (http://www.maxthon.com) has a much more robust extension archi-
tecture than does IE. One of those extensions is DevArt (http://forum.maxthon.com/index.php?
showtopic=14885), which provides a number of very handy developer features, as shown in
Figure 2-10.

Figure 2-10. DevArt, an excellent extension for Maxthon

Zammetti-816-4C02.fm Page 59 Tuesday, February 20, 2007 7:42 AM

60 C H A P T E R 2 ■ T H E S E V E N H A B I T S O F H I G H L Y S U C C E S S F U L JA V A S C R I P T D E V E L O P E R S

DevArt provides the following capabilities:

• Toggle style sheets on and off.

• Put outlines around tables, images, and <div> elements.

• Remove tables.

• Display DOM trees.

• Show hidden input fields on forms and show the values of input fields.

• Display the sources of all images on a page as well as their dimensions.

• Show response headers for the current page.

• View the generated source for the page (that is, what the browser actually used to render
the page).

• Validate the current page in various ways.

All of this makes DevArt a must-have for developers if you use Maxthon. DevArt comes in
two flavors: a toolbar and a sidebar.

JavaScript Libraries
JavaScript libraries have grown leaps and bounds over just the past two to three years. It used
to be that you could spend a few hours scouring the Web looking for a particular piece of code,
and you would eventually find it. Often, you might have to, ahem, appropriate it from some
web site. Many times, you could find it on one of a handful of “script sites” that were there
expressly to supply developers with JavaScript snippets for their own use.

Larger libraries that provide all sorts of bells and whistles, as exist in the big-brother world
of Java, C++, PHP, and other languages, are a more recent development in the world of JavaScript.
In many ways, we are now in a golden age, and you will find almost more options than you
would want!

Some libraries out there focus on one area or another: GUI widgets, Ajax, UI effects, and so
on. Other libraries try to be the proverbial jack-of-all-trades, covering a wide variety of areas
such as client-side storage, widgets, Ajax, collections, basic JavaScript enhancements, and
security.

The one thing they all have in common is that their quality is light-years beyond what
came before, and they all will make your life considerably easier! There’s usually no sense in
reinventing the wheel. If you are doing Ajax, unless you need absolute control over every detail,
I can’t think of a good reason not to use a library for it. If you know your UI design requires
some more advanced widgets that the browser doesn’t natively provide, these libraries can be
invaluable. Do you need to store some data client side and want to use Flash scope (covered in
Chapter 6)? Let a library handle the details for you!

In this section, I’ll introduce you to some representative libraries, give you a basic over-
view of what they offer, and point you to more expansive documentation on them. These
libraries will be used in the projects throughout the book, so you’ll get to see some real-world
examples of their usage.

Zammetti-816-4C02.fm Page 60 Tuesday, February 20, 2007 7:42 AM

CH A P T E R 2 ■ T H E S E V E N H AB I T S O F H I G H L Y S U C C E S S F U L J A V AS C R I P T D E V E L O P E R S 61

No point in reinventing the wheel, so USE THOSE LIBRARIES, lest you wind up like Tor!

There are oodles of libraries out there today, and it would be impossible to cover more
than just a handful here, and even these will not be covered in excruciating detail. So, please
don’t look at this as the definitive reference on these libraries. I’m offering a brief introduction
to whet your appetite. I’m confident that once you read this section, and look at the usage of
these libraries in the projects to follow, you will want to check them out yourself in much more
detail! Until you explore them on your own, I guarantee you won’t get the full feel for the bene-
fits they offer.

Prototype
Some libraries focus squarely on Ajax; others are concerned with GUI widgets; still others
provide all sorts of whiz-bang effects you can easily add to your pages. Prototype is something
that exists at a layer below most of that, as evidenced by the fact that many libraries are actually
built on top of Prototype.

Prototype (http://prototype.conio.net) can, in a sense, be viewed as an extension to
JavaScript itself. On a more technical level, it works a lot of its magic by quite literally extending
some of the built-in JavaScript objects.

As is the case with most of these libraries, the only way to really get your brain wrapped
around Prototype is to explore it and use it. That’s one of the points of the projects in this book,
which begin in the next chapter. However, I want to highlight a few of the more notable things
Prototype provides:

• Prototype includes a number of shorthand utility functions, including $(),$(), which is
a shortcut to writing document.getElementById(). Likewise, $F() returns the value of any
form field. There are others, but these are the two I find to be the most useful.

• Prototype offers relatively basic Ajax support via its Ajax object. One of its most useful
features is Ajax.Updater, which provides a quick and easy way to fill an existing page
element with the response from the server, assumed to be HTML. This is by far the most
common thing to do in the realm of Ajax.

Zammetti-816-4C02.fm Page 61 Tuesday, February 20, 2007 7:42 AM

62 C H A P T E R 2 ■ T H E S E V E N H A B I T S O F H I G H L Y S U C C E S S F U L JA V A S C R I P T D E V E L O P E R S

• The PeriodicalExecuter object provides a simple way to set up a piece of code to be
executed repeatedly at a known interval. This saves you from having to set up timeouts
and such.

• Prototype extends the built-in Array object to provide some excellent added value, such
as an Enumerable interface so that you can iterate over an array very cleanly, without
having to set up a for loop using the length of the array.

Some people have an aversion to Prototype because of the way it extends built-in objects,
which can cause some subtle problems. There are those who will not touch Prototype, or any
library that uses it, because of this. My take—from my own experience with Prototype, as well
as a lot of reading on the issues—is that while the problems are not to be ignored, they are not
enough to stop me from using Prototype. Still, you should be aware of the potential issues in
case they do come up.

Dojo
Dojo (http://dojotoolkit.org) is probably one of the fastest growing and most popular libraries
out there today. It has a massive scope, seeking to provide just about everything you need to
effectively do modern client-side development.

In my previous book on Ajax (Practical Ajax Projects with Java Technology), I said that Dojo
had one problem at that point: lack of documentation and good examples. I said that using
Dojo means fending for yourself, often having to look over the source to figure out how to do
things. While I can’t yet reverse that opinion, I can back off of it a little. Dojo has improved a
good bit in all these regards. The documentation is coming along nicely, and you can find more
examples now. This is the logical progression you would expect from a library that is obviously
run by people who know what they’re doing, as is the case with Dojo.

Also, IBM, Sun, and some other vendors have pledged support for Dojo, and one of the
primary areas they talk about helping with is documentation. So, there is every reason to believe
that this evolution will continue, and perhaps even quicken, in short order. Until then, I still do
highly suggest you sign up for the Dojo mailing list if you intend to use this library. Plenty of
helpful people will do their best to answer your questions. However, please do bring a good
dose of patience with you, because it often does take a day or two to get a useful response. But
the responses usually will come, and that’s what counts!

So, what does Dojo have to offer? Tons! As I mentioned, Dojo has a very wide scope, but
here are a few things that I find to be of immense interest:

• The widgets! Dojo is, I think it’s fair to say, best known for its many widgets. Some are
definitely better than others, but that’s to be expected. They all extend from the same
basic widget framework, so they expose a similar set of baseline functionality. This makes
working with them fairly easy for the most part. Some of the more noteworthy widgets
include the following:

• The Fisheye, which emulates the Apple launcher bar, with its expanding icons as you
mouse over them

• The tree widget, which gives you an expanding/collapsing tree interface similar to
Windows Explorer’s folder list

Zammetti-816-4C02.fm Page 62 Tuesday, February 20, 2007 7:42 AM

CH A P T E R 2 ■ T H E S E V E N H AB I T S O F H I G H L Y S U C C E S S F U L J A V AS C R I P T D E V E L O P E R S 63

• A very nice slideshow widget

• A widget for inserting Google maps into your pages

• Analogies to most of the basic HTML form elements, as well as expanded form elements,
such as buttons with arrows to open a drop-down list, a rich text editor, a date picker,
a color picker, and combo box

• Dojo’s support of Ajax is very, very good. I can’t go so far as to say it’s the best, but you
can’t go wrong with it.

• Dojo provides most of the commonly used effects, such as wipes and fades, and makes
it very easy to do them.

• Dojo provides drag-and-drop support that is drop-dead easy to use.

• The storage support Dojo provides is unique as far as I can see. It offers the ability to use
durable client-side data stores such as Flash storage (this is essentially cookies on steroids,
provided by the Adobe Flash plug-in).

• Dojo contains a number of collection implementations and other commonly used data
structures that can make your JavaScript code much more robust and more akin to what
you write on the server side of things.

• A number of “core” libraries are part of Dojo. They provide things like advanced string
manipulations, simplified DOM manipulation, functions to make JavaScript itself easier
and more powerful, and functions specifically for manipulating HTML.

• Dojo contains some basic cryptography functionality and some more powerful math-
related functionality.

Although serious improvements have been made to Dojo since I wrote about it in my Ajax
book, I still feel it necessary to put up a slight caution sign: Dojo will occasionally give you fits.
I am currently using it on a very complex project, and while it cooperates and makes life better
the vast majority of the time, there are still days when I have to fight with it a bit. Now, to be fair
about it, some of that (maybe even most of that) is due to me not being an expert in it. I’m
learning about all Dojo has to offer and how it works, right along with everyone else! However,
I have found definite bugs here and there, and have found things that could probably work a
little better. All that this means is that you should be prepared to take the initiative when working
with Dojo. Don’t just expect that it will be plug-and-play, even though you’ll find more and
more that is indeed the case. You will have questions, and some of them won’t be answered by
any existing documentation. Google will help sometimes, but often you will find you need to
ask someone, which is where the mailing list comes into play.

At the end of the day, Dojo, in my opinion, offers so much that it is ultimately a no-brainer
in terms of whether it’s worth it or not. It is! Any problems you may encounter and have to
overcome will be more than balanced by how powerful it is and by how much time and effort
it ultimately saves you. Dojo has a tremendously bright future, and even in the year since I first
wrote about it, I have clearly seen the improvements. Give it a shot—it’s getting a lot of press
for very good reason!

Zammetti-816-4C02.fm Page 63 Tuesday, February 20, 2007 7:42 AM

64 C H A P T E R 2 ■ T H E S E V E N H A B I T S O F H I G H L Y S U C C E S S F U L JA V A S C R I P T D E V E L O P E R S

Java Web Parts
Java Web Parts (http://javawebparts.sourceforge.net) is a project that is geared toward Java
developers, but provides some JavaScript functionality as well. The way it provides this func-
tionality is a bit unique: it is part of a component called JSTags, which is a tag library that emits
JavaScript. A number of useful functions can be found there, including the following:

• JSDigester, a client-side implementation of the popular Jakarta Commons Digester
component

• A function to convert a form to XML

• Functions for working with cookies

• A function for validating string input

• A function for disabling right-click functionality

If you’re not a Java developer, you can steal the JavaScript the tags emit and use it indepen-
dently. If you’re a Java developer though, the tag library will make your life easier.

Also of note is another tag library in Java Web Parts: UI Widgets, which provides a couple
of good widgets, including a pop-up calendar and a swapper.

Finally, the AjaxParts Taglib (APT) is, I believe, one of the best Ajax libraries around. This is
one you won’t be able to use unless you are a Java developer, but if you are a Java developer,
prepare to have Ajax become as easy as pie! APT allows you to add Ajax by doing nothing but
adding tags to your page and configuring some XML. Every Ajax function that occurs on your
page is defined in an XML configuration file—there is zero JavaScript to write yourself! All the
most common Ajax functions are built in, which should cover your needs probably 95% of the
time. For the other 5%, APT is extensible in a very simple and logical manner. So, if you need to
do something more advanced, you can do so, and only have to write the basic JavaScript that
your particular case needs; you still will not need to write the underlying Ajax code. All of this
makes APT an excellent choice for those doing Java web development.

Script.aculo.us
Script.aculo.us (http://script.aculo.us) is one of those libraries built on top of Prototype.
Script.aculo.us offers functionality in a couple of areas, but frankly, it’s best at one thing: effects.
If you’re looking for fades, wipes, animations, and that sort of thing, script.aculo.us is one of
the first libraries you should consider. Here are some of the items it offers:

• Five core effects: opacity, scale, moveBy, highlight, and parallel. Parallel is an effect that
allows you to combine effects, which leads to the next item.

• Combination effects, which can be thought of as more advanced effects, created by
combining more than one core effect. Examples of these are shakes, pulsate, slideDown,
and squish.

• A few controls, such as an auto-complete input box and in-place editing of content.

• The Builder object, which makes it easier to build DOM fragments in JavaScript.

Zammetti-816-4C02.fm Page 64 Tuesday, February 20, 2007 7:42 AM

CH A P T E R 2 ■ T H E S E V E N H AB I T S O F H I G H L Y S U C C E S S F U L J A V AS C R I P T D E V E L O P E R S 65

Script.aculo.us also offers capabilities in the areas of unit testing and functional testing,
which is pretty unique among libraries. If you’ve ever used JUnit, this support will look rather
familiar!

I strongly suggest cruising over to the script.aculo.us page and spending some time looking at
the various demos there, especially if the effects mentioned earlier piqued your interest. Seeing
them in action is the best way to appreciate what this library has to offer. Don’t ignore the other
stuff, though. You’ll find some good features that have nothing to do with effects! But if effects
are your game, than script.aculo.us is your name (uh, or something like that!).

Yahoo! User Interface Library
The Yahoo! User Interface Library (http://developer.yahoo.com/yui), or YUI Library, as it is
often called, has garnered a lot of attention since its introduction earlier this year. It provides a
collection of UI widgets and a collection of commonly needed JavaScript functions, all in a very
clean, well-documented package. While the YUI Library isn’t as eye-catching as some other
libraries out there, the widgets it offers are simple, easy to use, and relatively lightweight, as is
the entire library. The following are some of the items it provides:

• Simple cross-browser logging

• An Event component, which allows you to do things like attach events to elements,
execute code when a DOM element is detected, and fully abstract the browser event
model from your code, among a host of other event-related things

• The ConnectionManager object, which provides Ajax functionality in a clean and simple
way

• Some utility functions for manipulating DOM, such as a handy feature that lets you get
the viewport width and height in a cross-browser fashion (something that can be quite
tricky!)

• Basic animation support, including motion along a curve and scrolling

• A fairly rich drag-and-drop utility (actually one of the more robust drag-and-drop imple-
mentations I’ve seen, providing a great number of events to hook into)

• UI widgets, including a calendar, a drop-down menu, a slider, a tree view, and a number
of containers for organizing your UIs

The YUI Library is a little odd in the sense that when you first look at it, you may not see its
true power. Take some time and explore the documentation, which is excellent, as well as the
examples. After a few minutes, I suspect you’ll begin to see how good and useful it really is.

MochiKit
“MochiKit makes JavaScript suck less.” That’s the site’s tagline, and who am I to disagree?
Indeed, some of the features offered by MochiKit (http://www.mochikit.com) most certainly do
exactly as the tagline says.

Have you ever tried to do rounded corners on tables? Have you looked it up and seen
exactly how many tricks and techniques there are to do this? There are tons, and it’s surpris-
ingly difficult to do well and in a cross-browser fashion at the same time. MochiKit does it for

Zammetti-816-4C02.fm Page 65 Tuesday, February 20, 2007 7:42 AM

66 C H A P T E R 2 ■ T H E S E V E N H A B I T S O F H I G H L Y S U C C E S S F U L JA V A S C R I P T D E V E L O P E R S

you! It may not seem like much, but rounded corners can really make a page look a lot better
when used properly.

MochiKit has a neat feature that displays the source of the current page in a very nicely
formatted way. While I agree this may not be the most useful feature in terms of end users, it
can be a great thing for developers!

MochiKit also provides a client-side sortable table widget and a cross-browser key event-
handling mechanism. On the demo page of the MochiKit site, you’ll also find some neat exam-
ples, such as a live regular expression evaluator and a minimal JavaScript interpreter. All of this
shows that MochiKit has some very interesting capabilities to explore.

Rico
Next up on our parade of libraries is Rico (http://openrico.org), which bills itself simply
enough as “JavaScript for Rich Internet Applications.” Rico offers functionality in four key
areas: Ajax, drag-and-drop, cinematic effects, and behaviors. It has a fairly limited focus, so you
would expect it to cover these areas pretty well, and indeed it does. Here is a brief summation
of what it provides:

• In the Ajax department, Rico offers a nifty feature to populate form elements automati-
cally from an Ajax request. It also provides the prototypical innerHTML change from an
Ajax request and does so in a simple way.

• In the drag-and-drop department, the basics are covered well. It also offers some more
advanced features, such as customized drop zones and custom draggability for
elements.

• In the cinematics department, Rico offers the ability to move and resize elements easily,
as well as the ability to easily round the corners of a section.

• In the behaviors department, you’ll find things like accordion, which allows you to turn
a collection of <div> elements into an excellent accordion. Also present is the live grid,
which takes an ordinary HTML table and hooks it up to an Ajax data source, allowing for
real-time loading and sorting of data, among other things.

I was particularly impressed with the accordion behavior and the ability to round the corners
of arbitrary sections. Both of these are top-notch implementations and things I intend to use in
my own work quite a bit. That isn’t to shortchange the rest of what Rico offers, but in pointing
out highlights, those things stand above the rest for me.

Mootools
As the saying goes, last but not least, we have Mootools (http://mootools.net/). Mootools is a
library I discovered late in the process of writing this book, but I thought it was definitely some-
thing I wanted to include. Mootools is a very lightweight and modular library with a number of
pieces that can be included or not included at your discretion. It is a fully object-oriented library
and designed to be developer-extensible. Its various modules cover a wide range of needs,
including the following:

Zammetti-816-4C02.fm Page 66 Tuesday, February 20, 2007 7:42 AM

CH A P T E R 2 ■ T H E S E V E N H AB I T S O F H I G H L Y S U C C E S S F U L J A V AS C R I P T D E V E L O P E R S 67

• A JavaScript chain of responsibility (CoR) pattern implementation4

• Tons of effects, transitions, and effects-related utility functions

• Ajax functionality (not too different from most other libraries, but a nice, simple, clean
implementation makes using it a breeze)

• Functions to work with cookies, create and consume JSON, work with the browser
window, and helpful string utilities

One especially cool thing about Mootools is actually outside the library itself, and that’s its
download page! Rather than the typical “download this and that” type page, it instead presents
the list of modules offered, from which you select what you want. Your download is then gener-
ated on the fly based on your selections, including compression! You can create your own
custom Mootools library quickly and easily with this handy tool.

Summary
Whew! This chapter has been quite a whirlwind of topics! We opened up by discussing object-
oriented techniques in JavaScript a bit more beyond what was discussed in Chapter 1. We then
looked at the relatively new term unobtrusive JavaScript and discussed what it means and when
and why it should be applied. Tied in with that was the concept of graceful degradation, and
how it still applies today as much as ever. We then discussed accessibility concerns and some
ways to keep our sites accessible to those with disabilities. Next, we took a look at more robust
error handling in JavaScript than used to be possible. After that came a tour of debugging tech-
niques and tools available to us nowadays. Lastly, we looked at some browser plug-ins that
make our lives easier, as well as some of the popular JavaScript libraries out there that save us
time and effort in spades.

Armed with this knowledge, the next chapter will begin the barrage of projects that form
the core of this book. Let’s have some fun, shall we?

4. You can argue that it isn’t technically a CoR implementation, and to be clear, this is my description of
what it is, not the Mootools team’s description. But this is basically what it does, and it’s something
unique to Mootools as far as I am aware. For more information on the CoR pattern in general, see
http://en.wikipedia.org/wiki/Chain-of-responsibility_pattern.

Zammetti-816-4C02.fm Page 67 Tuesday, February 20, 2007 7:42 AM

■ ■ ■

P A R T 2

The Projects

The important thing is not to stop questioning.

Albert Einstein

The dumbest people I know are those who know it all.

Malcolm Forbes

Human beings, who are almost unique in having the ability to learn from the experi-
ence of others, are also remarkable for their apparent disinclination to do so.

Douglas Adams

A computer lets you make more mistakes faster than any invention in human history—
with the possible exceptions of handguns and tequila.

Mitch Ratliffe

Creativity is the sudden cessation of stupidity.

 Edwin Land

Never trust a computer you can’t throw out a window.

Steve Wozniak

Zammetti-816-4C03.fm Page 69 Wednesday, February 14, 2007 12:18 PM

71

■ ■ ■

C H A P T E R 3

Hodgepodge: Building an
Extensible JavaScript Library

No, we aren’t talking about the rabbit1 here. Programmers who have been coding for any
length of time have invariably built up their own little private library of handy bits of code that
they reuse from project to project. JavaScript is certainly no different in this regard. In this
chapter, you’ll put together such a library for yourself—a library you’ll find numerous uses for
in the projects to follow.

This chapter will take the form of a question-and-answer session between an imaginary
junior developer and his senior mentor who is, shall we say, a bit on the eccentric side. Not only
will you put together a batch of handy functions, but you’ll also see how to organize it in a
pseudo-package structure to avoid namespace collisions and make it easier to find what you
want, and also to make it look a bit more like a “real” language, à la Java. Oh yeah, the tongue-
in-cheek structure of this chapter is a bit fun, too! Now it’s time to do a Wayne’s World 2 flashback
fade and have at it!

Bill the n00b Starts the Day
“Geez, 11:30 a.m., and they expect me to start coding right away? I hate this place.”

Gilbert had been working at Initech3 for all of five years (he was exceptionally loyal for a
developer!), and he still couldn’t quite get the hang of getting up “early.” Gilbert rolled out of
bed at around 10:45 a.m., showered (usually), and then hopped in the car for the 15-minute
drive to work. Fortunately, he was a phenomenal developer, and everyone knew it, so he was
cut perhaps more than his fair share of slack.

1. Hodge-Podge was the name of the rabbit in the comic strip Bloom County by Berke Breathed.
2. Wayne’s World was a 1992 movie starring Mike Myers, Dana Carvey, and Tia Carrere, in which two

slacker friends (Myers and Carvey) try to promote their public-access cable television show called
“Wayne’s World.” As you might expect, madness way above and beyond that simple plot quickly
ensues. At least one scene involves a flashback by one of the characters, which is preceded by a transition
effect where the screen begins to wobble as the scene dissolves to the flashback scene (and Myers and
Carvey accompany the waving with hilarious hand motions and sound effects). Still not ringing a bell?
Take a cruise over to YouTube (http://www.youtube.com) and search for it; you’re bound to find a clip in
no time!

3. Initech is the name of the imaginary company where the main characters in the movie Office
Space worked.

Zammetti-816-4C03.fm Page 71 Wednesday, February 14, 2007 12:18 PM

72 C H A P T E R 3 ■ H O D G E P O D G E : B U I L D I N G AN E X T E N S I B L E J A V AS C R I P T L I B R A R Y

But today he was facing a challenge he had never encountered before—a horror so grave
that he could barely comprehend how he would do it, let alone at this ungodly hour of the morning.

Today was Bill’s third day of work. Bill was a n00b4 of the highest order.
Hence, Gilbert was extremely unenthusiastic. Even by his standards.
“Uh, Gilbert, sir?” Bill asked timidly.
“What offering do you have for me today?” Gilbert replied.
“Two cans of Jolt cola, some gummy worms, and a jug of Dunkin’ Donuts coffee.”
Gilbert was pleased with his young apprentice. “You may approach and converse.”
“Well, umm . . . Jack, the senior architect . . .”
“Do not speak the beast’s name in my presence!” exclaimed Gilbert.
Bill had been afraid of this. He knew Gilbert didn’t think too highly of people who sat around

all day just writing “thesis papers,” as he put it, and never actually twiddled bits anymore. Bill
had indeed been prepared, though.

“I realize the beast is not on your level my master, but he is my superior, and I must there-
fore acquiesce to his will.”

Gilbert considered his young apprentice for a moment. “That is true. He is superior to you.
Few aren’t. You may proceed.”

“Well,” Bill continued, “He asked me to add some functions to the online accounting
system, and I have some questions I was hoping you could answer for me, as only you can.”
That last part, Bill knew, would score him some points with Gilbert. Indeed, he looked pleased.

“You may ask your questions, n00b, so that you may receive my wisdom.”
And with that, Bill began.
Whoa, back to reality for just a minute. Yes, this is the voice of your author! I just wanted to

make sure I haven’t lost you here. What we’ll do now is build up a library of JavaScript func-
tions and also learn how to put it in something of a pseudo-package structure reminiscent of
Java or C# packages. Many (but probably not all) of these functions will be used in later projects,
and should give you a nice start on your own little library. You should absolutely add your own
code to build up this library, and you’ll find it to be a very handy tool in your future work!

Overall Code Organization
In this section, we will look at how to organize JavaScript in a clean, logical way that will also
make it a little safer in terms of avoiding naming conflicts.

Question: How can I organize JavaScript code to avoid naming conflicts and generally
group related functions together cleanly?

I want to make sure I organize my code well and that I don’t risk naming anything I add in
such a way that it conflicts with code that’s already in the system.

Answer: In JavaScript, you can, to a certain degree, emulate the packaging system you use
in Java, C#, or most other modern languages. All you need to do is create a new class, and then
make all your utility functions members of that class.

For example, let’s say you want to create a package that will contain a bunch of functions
for displaying various predefined alert messages. You can do this by writing the following code:

4. n00b is short for newbie in Leetspeak (1337). A newbie is someone who is new at something. Leetspeak
is a way of speaking, or more precisely, writing words, usually associated with the computer “underground”
(software pirates, hackers, crackers, hardcore gamers, and so on).

Zammetti-816-4C03.fm Page 72 Wednesday, February 14, 2007 12:18 PM

C H AP T E R 3 ■ H O D G E P O D G E : B U I L D I N G A N E X T E N S I B L E JA V A S CR I P T L I B R A R Y 73

jscript = function() { }
jscript.ui = function() { }
jscript.ui.alerts = new function() { }
jscript.ui.alerts.showErrorAlert = function() { }

What happens when this executes? Simply put, you will have an object named jscript,
which is a reference to a function. Remember that in JavaScript, a function is an object, and
you can therefore have a variable that references the object (similar to how in C you can have a
pointer to a function). Within this object will be a member named ui, which is itself a function.
Then within that object is another object named alerts, again a function. Finally, within that
object is another object named showErrorAlert, which is once again a function.

We are essentially building up a hierarchy of objects, nested within the parent object
jscript. This is the root of our package. Each subsequent line adds a member to that object,
representing a new subpackage.

We can then reference any member (subpackage) of jscript or any object down in its hier-
archy of child objects (in other words, functions or fields defined in a given subpackage). If you
have ever worked in Java or C#, you will recognize that this gives us the appearance of packages. I
say “appearance” because, in truth, you have a series of objects that you can actually instan-
tiate individually. For instance, you can do this:

var v = new jscript.ui.alerts();

Clearly, you can’t do that with a Java package, for instance, but you can do it here. There is
really no way to stop this either, because each function is, in effect, the constructor of a class,
not the mechanism by which an instance is created. In other words, it is tempting to try this:

jscript = new function() {
 return null;
}
var v = new jscript();

It might seem reasonable to suspect that the value of v would be null, but, in fact, that is
not its value. This is because the function that jscript points to is returned, not the result of
that function being executed.

The function that you are instantiating in this case will execute (remember that it’s essen-
tially a constructor), but as in Java, there is no return type, which is why returning null doesn’t
do what we might expect. However, this does allow us to do something like this:

jscript = new function() {
 alert("Do not instantiate me!");
}

Clearly, this isn’t as good as making instantiation impossible in the first place, but it’s
better than nothing.

Now, moving on, what if you want to have a method that displays an alert when an error
occurs, and you want it to be a part of this package? That’s easy enough. You just write this:

Zammetti-816-4C03.fm Page 73 Wednesday, February 14, 2007 12:18 PM

74 C H A P T E R 3 ■ H O D G E P O D G E : B U I L D I N G AN E X T E N S I B L E J A V AS C R I P T L I B R A R Y

jscript = function() { }
jscript.ui = function() { }
jscript.ui.alerts = new function() { }
jscript.ui.alerts.showErrorAlert = function() {
 alert("An error occurred");
}

Now, you can call this:

jscript.ui.alerts.showErrorAlert();

This will pop up the alert “An error occurred,” just as you would expect.
Bill interrupted Gilbert’s explanation at this point and asked, “But what if I want to have a

class in that alerts package, just like I can do in Java, to display a specific message, for instance?”
Gilbert smiled at the attentiveness of his pupil and replied, “Not a problem . . .”

jscript.ui.alerts.MessageDisplayer = function(inMsg) {
 this.msg = inMsg;
 this.toString = function() {
 return "msg=" + this.msg;
 }
}
var v = new jscript.ui.alerts.MessageDisplayer("Hello!");
alert(v);

This effectively creates a class named MessageDisplayer in the jscript.ui.alerts package.
When the last two lines are executed, a new instance of MessageDisplayer will be created, and
the string "Hello!" is passed to the constructor. Then when we call alert(), passing the variable
that points to that instance, the toString() function is called, and we get the expected alert
pop-up that says “msg=Hello!.”

“That’s pretty cool!” exclaimed Bill, clearly excited with his new knowledge. “Let me see if
I can put it all together.” Bill hacked away at the keyboard for a few moments and finally produced
the code shown in Listing 3-1.

Listing 3-1. A Complete Example of Pseudo-Packaging in JavaScript

<html>
 <head>
 <title>JavaScript Packaging Example</title>
 <script>
 jscript = function() { }
 jscript.ui = function() { }
 jscript.ui.alerts = new function() { }
 jscript.ui.alerts.showErrorAlert = function() {
 alert("An error occurred");
 }

Zammetti-816-4C03.fm Page 74 Wednesday, February 14, 2007 12:18 PM

www.allitebooks.com

http://www.allitebooks.org

C H AP T E R 3 ■ H O D G E P O D G E : B U I L D I N G A N E X T E N S I B L E JA V A S CR I P T L I B R A R Y 75

 jscript.ui.alerts.MessageDisplayer = function(inMsg) {
 this.msg = inMsg;
 this.toString = function() {
 return "msg=" + this.msg;
 }
 }
 function test() {
 jscript.ui.alerts.showErrorAlert()
 var v = new jscript.ui.alerts.MessageDisplayer ("Hello!!");
 alert(v);
 }
 </script>
 </head>
 <body>
 <input type="button" value="Test Alert"
 onclick="test();">
 </body>
</html>

Gilbert examined Bill’s code, tried it out, and saw that it worked as expected. He was pleased.
“Only one thing could make this better,” Gilbert said. “Do you have any idea what it might

be?” Bill thought for a moment, and then suddenly realized what Gilbert was getting at. “Yes,
something along the lines of import!” Bill exclaimed. “Exactly,” Gilbert replied, “And you know
what? It’s not even that hard.”

Let’s say we want to have a package named jscript.string, and we want to be able to
import this package separately from any other that may exist in jscript. We’ll create a file like so:

if (typeof jscript == 'undefined') {
 jscript = function() { }
}

jscript.string = function() { }

jscript.string.sampleFunction = function(inMsg) {
 alert(inMsg);
}

Now, to “import” this into a page, we simply do this:

<script src="jscript.string.js"></script>

If this is the only import, then we wind up with a jscript object, which contains a string
function, which finally contains the sampleFunction function, all in a hierarchy, forming our
pseudo-package. Even better, if we have other packages under jscript and we import them,
the if check seen here will ensure we always have only one copy of each package object. One
last benefit: if we want to extend our packages later, say, add a jscript.string.format package,
all we need to do is add a new jscript.string.format.js file, use the same check, and also add
one to check whether jscript.string is defined and instantiate if it is not defined.

Zammetti-816-4C03.fm Page 75 Wednesday, February 14, 2007 12:18 PM

76 C H A P T E R 3 ■ H O D G E P O D G E : B U I L D I N G AN E X T E N S I B L E J A V AS C R I P T L I B R A R Y

If we really wanted to go nuts, we could place each function, or each object, from every single
package, in its own .js file. That way, just like in Java or C#, you can import only the specific classes
you want (here, we are essentially equating stand-alone functions to classes). As it stands now, you
basically can do only the equivalent of wildcard imports, which is probably sufficient, but I wanted
to point out that you could have class-specific imports as well, if you wish.

Keep in mind, however, that unlike Java imports, which don’t affect the size of the final
class if you wind up not using something you imported, the size of the page the user downloads
will be affected by what you import here, whether or not you use it. So, it is important to import
only those packages you actually need. Remember, too, that it isn’t only a matter of size. Each
.js file imported will require another trip to the server to retrieve the resources (ignoring caching,
which should, in many cases, eliminate the request, but not the first time, for sure!).

“You have more questions, my young apprentice?” Bill half expected Gilbert to pull out a
light saber. He was acting even more bizarre than usual today. Bill did indeed have many more
questions though, so he pressed on.

Creating the Packages
Now that we know how the packages will be structured, we’re ready to begin building the
JavaScript library itself. The library will contain a diverse collection of useful functions, many
of which you’ll use throughout this book. Let’s get to it!

Building the jscript.array Package
In this section, we will write some code that will help us work with arrays, and start to create
our first package, jscript.array.

Question: How can I copy the contents of one array into another?
Well, here’s another scenario Jack is bringing up: when the application is first accessed, it

builds up an array of categories, but the user can add to that array later. I’d like to take the array
of entries by the user and append them to the existing array.

Answer: Are you kidding? Is that all? Take a peek at Listing 3-2.

Listing 3-2. The copyArray() Function

jscript.array.copyArray = function(inSrcArray, inDestArray) {

 var i;
 for (i = 0; i < inSrcArray.length; i++) {
 inDestArray.push(inSrcArray[i]);
 }
 return inDestArray;

} // End copyArray().

It’s literally nothing more than looping through inSrcArray, and pushing each element
into inDestArray. The result is that inDestArray will be expanded by X elements, where X is the
length of inSrcArray, and will then include the contents of inSrcArray.

Zammetti-816-4C03.fm Page 76 Wednesday, February 14, 2007 12:18 PM

C H AP T E R 3 ■ H O D G E P O D G E : B U I L D I N G A N E X T E N S I B L E JA V A S CR I P T L I B R A R Y 77

Question: How can I search for a specific element in an array?
Let’s say we let the user enter a series of values on a page. It seems reasonable that we might

want to put them into an array. What if later on we need to find if a specific value is present in
the array? Can JavaScript do that for us intrinsically?

Answer: No, it can’t. We’ll have to throw some bits together to make that happen. Listing 3-3
shows those bits.

Listing 3-3. The findInArray() Function

jscript.array.findInArray = function(inArray, inValue) {

 var i;
 for (i = 0; i < inArray.length; i++) {
 if (inArray[i] == inValue) {
 return i;
 }
 }
 return -1;

} // End findInArray().

Just iterate over inArray, and check each element to see if it matches inValue, the value to
find. If we find it, we’ll return the index we found it at because, presumably, you may want to
actually do something with the value once it is found. If it isn’t found, we’ll return –1, which is,
at this point, almost the universal return value for “nope, not found” in any type of search.

Question: Assuming I have an array of numeric values, how can I calculate the average of
all the elements in the array?

Jack is also asking me to add the capability to calculate an average of all the expense items
the user has entered. Naturally, he has specified this happens on the client side. How?!?

Answer: You know how to calculate an average in general, right? Well, doing it on an array
of numbers is the same thing, as shown in Listing 3-4.

Listing 3-4. The arrayAverage() Function

jscript.array.arrayAverage = function(inArray) {

 var accumulator = 0;
 var i;
 for (i = 0; i < inArray.length; i++) {
 accumulator += inArray[i];
 }
 return accumulator / inArray.length;

} // End arrayAverage().

Begin by iterating over inArray, and adding up all the values you find. Then divide that
accumulated result by the length of inArray, and you have your average!

Zammetti-816-4C03.fm Page 77 Wednesday, February 14, 2007 12:18 PM

78 C H A P T E R 3 ■ H O D G E P O D G E : B U I L D I N G AN E X T E N S I B L E J A V AS C R I P T L I B R A R Y

Building the jscript.browser Package
This section will begin a package of code that deals with the web browser as a whole, indepen-
dent of any specific page that might be loaded at the time.

Question: How can I get identification information on the browser accessing the
application?

Currently, the accounting application supports only IE. Jack would like me to rectify this,
and I believe the first step is simply to be able to display some identification information about
the browser client accessing the web site. How do I do that?

Answer: Check out Listing 3-5.

Listing 3-5. The getBrowserIdentity() Function

jscript.browser.getBrowserIdentity = function() {

 return navigator.appName + " " + navigator.appVersion;

} // End getBrowserIdentity().

This code will return a string consisting of the browser name and version, such as:

Microsoft Internet Explorer 4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; Maxthon;
WebCloner ; .NET CLR 1.1.4322; .NET CLR 2.0.50727; InfoPath.1)

The Microsoft Internet Explorer portion is the result of navigator.appName(). The rest is
the result of navigator.appVersion().

Building the jscript.datetime Package
This section deals with code that helps work with dates and times, and puts it all in a new
package in our ever-growing package structure.

Question: How can I easily determine how many days are in a given month without
having to remember that stupid poem?

I need to validate that a user-entered date is allowed for a given month. For example, if
they enter 31, I need to be sure the entered month has 31 days.

Answer: Well, most kids learn a poem5 to remember that:

30 days has September, April, June, and November

Teaching a computer to understand poetry might prove just a tad difficult, but fortunately,
the “algorithm” to match this poem, such as it is, turns out to be very simple, as Listing 3-6 shows.

5. I could frankly never remember it, but here is what most people seem to have learned early in school:
http://www.kidport.com/Grade1/TAL/G1-TAL-Rhymes.htm.

Zammetti-816-4C03.fm Page 78 Wednesday, February 14, 2007 12:18 PM

C H AP T E R 3 ■ H O D G E P O D G E : B U I L D I N G A N E X T E N S I B L E JA V A S CR I P T L I B R A R Y 79

Listing 3-6. The getNumberDaysInMonth() Function

jscript.datetime.getNumberDaysInMonth = function(inMonth, inYear) {

 inMonth = inMonth - 1;
 var leap_year = this.isLeapYear(inYear);
 if (leap_year) {
 leap_year = 1;
 } else {
 leap_year = 0;
 }
 if (inMonth == 3 || inMonth == 5 || inMonth == 8 || inMonth == 10) {
 return 30;
 } else if (inMonth == 1) {
 return 28 + leap_year;
 } else {
 return 31;
 }

} // End getNumberDaysInMonth().

First, we need to determine if the specified inYear is a leap year. To do that, we’ll be writing
another function called isLeapYear() that does that check. We need to do this because we
know that in a leap year, February has 29 days, and in nonleap years, it has only 28 days. Once
we do that, we check to see if the inMonth is April (3), June (5), September (8), or November (10),
and if it is, we return 30.

Note that the first step is to subtract 1 from the incoming month. The caller uses a value of 1
for January and 12 for December, as is most logical. But in order to make the leap year calculation
easy, internally we subtract 1 so that January becomes 0 and December becomes 11. That’s
why the values for April, June, September, and November seem off by 1. If inMonth is February (1),
then we return 28 plus 1 if it is a leap year, resulting in 29, or 28 plus 0 if it isn’t a leap year,
resulting in 28. If it is any other month, we return 31.

Question: How can I determine if a given year is a leap year?
It’s funny you mention leap years, Gilbert, because Jack identified a flaw in the system

when February is used in a leap year. So, I need to be able to determine if a specified year is a
leap year to correct that flaw.

Answer: Here, we have to play with some math, but it’s still relatively simple, as Listing 3-7
shows.

Listing 3-7. The isLeapYear() Function

jscript.datetime.isLeapYear = function(inYear) {

 if ((inYear % 4 == 0 && !(inYear % 100 == 0)) || inYear % 400 == 0) {
 return true;
 } else {
 return false;
 }

} // End isLeapYear().

Zammetti-816-4C03.fm Page 79 Wednesday, February 14, 2007 12:18 PM

80 C H A P T E R 3 ■ H O D G E P O D G E : B U I L D I N G AN E X T E N S I B L E J A V AS C R I P T L I B R A R Y

The algorithm is basically this: if the year is evenly divisible by 4, and if it isn’t evenly divisible
by 100, or if it’s evenly divisible by 400, then it’s a leap year!

Building the jscript.debug Package
Our jscript package continues to grow in this section as we introduce a new package that will
contain code to help us debug our JavaScript.

Question: How can I display all the properties, and their values, of an arbitrary object?
You know, Gilbert, I often find that when debugging JavaScript, I have some object, and it

would be helpful to see its current state—all its properties and their values. I know I can use a
debugger to do this, but sometimes a simple alert would be sufficient. Is there any way to do that?

Answer: Well, of course, there is, Bill! Listing 3-8 shows how.

Listing 3-8. The enumProps() Function

jscript.debug.enumProps = function(inObj) {

 var props = "";
 var i;
 for (i in inObj) {
 props += i + " = " + inObj[i] + "\n";
 }
 alert(props);

} // End enumProps().

We use the for . . . in loop style to iterate over the properties of inObj. For each, we add
its name (the value of i) and its value (using array notation to access the member) to a string.
At the end, we pass this string to alert(), and we’ve achieved your goal.

Question: How can I implement a somewhat robust logging mechanism, something
similar to Jakarta Commons Logging, for instance?

I often find that I’d like to put logging messages in my code. But I’m not sure how to do it
in JavaScript as I would in, say, Java with the Jakarta Commons Logging package, where I can
create some object, a logger for example, and pass it messages to write to a log without having
to know the details of the underlying logging implementation. Got any thoughts, Gilbert?

Answer: Well, if by “somewhat robust,” you mean something that gives you the ability to
log or not log messages based on a severity level, and not a whole lot more, then sure, we can
do that. Check out Listing 3-9.

Listing 3-9. The DivLogger Class Function

jscript.debug.DivLogger = function() {

 /**
 * The following are faux constants that define the various levels a log
 * instance can be set to output.
 */

Zammetti-816-4C03.fm Page 80 Wednesday, February 14, 2007 12:18 PM

C H AP T E R 3 ■ H O D G E P O D G E : B U I L D I N G A N E X T E N S I B L E JA V A S CR I P T L I B R A R Y 81

 this.LEVEL_TRACE = 1;
 this.LEVEL_DEBUG = 2;
 this.LEVEL_INFO = 3;
 this.LEVEL_WARN = 4;
 this.LEVEL_ERROR = 5;
 this.LEVEL_FATAL = 6;

 /**
 * These are the font colors for each logging level.
 */
 this.LEVEL_TRACE_COLOR = "a0a000";
 this.LEVEL_DEBUG_COLOR = "64c864";
 this.LEVEL_INFO_COLOR = "000000";
 this.LEVEL_WARN_COLOR = "0000ff";
 this.LEVEL_ERROR_COLOR = "ff8c00";
 this.LEVEL_FATAL_COLOR = "ff0000";

 /**
 * logLevel determines the minimum message level the instance will show.
 */
 this.logLevel = 3;

 /**
 * targetDIV is the DIV object to output to.
 */
 this.targetDiv = null;

 /**
 * This function is used to set the minimum level a log instance will show.
 *
 * @param inLevel One of the level constants. Any message at this level
 * or a higher level will be displayed, others will not.
 */
 this.setLevel = function(inLevel) {

 this.logLevel = inLevel;

 } // End setLevel().

Zammetti-816-4C03.fm Page 81 Wednesday, February 14, 2007 12:18 PM

82 C H A P T E R 3 ■ H O D G E P O D G E : B U I L D I N G AN E X T E N S I B L E J A V AS C R I P T L I B R A R Y

 /**
 * This function is used to set the target DIV that all messages are
 * written to. Note that when you call this, the DIV's existing contents
 * are cleared out.
 *
 * @param inTargetDiv The DIV object that all messages are written to.
 */
 this.setTargetDiv = function(inTargetDiv) {

 this.targetDiv = inTargetDiv;
 this.targetDiv.innerHTML = "";

 } // End setTargetDiv().

 /**
 * This function is called to determine if a particular message meets or
 * exceeds the current level of the log instance and should therefore be
 * logged.
 *
 * @param inLevel The level of the message being checked.
 */
 this.shouldBeLogged = function(inLevel) {

 if (inLevel >= this.logLevel) {
 return true;
 } else {
 return false;
 }

 } // End shouldBeLogged().

 /**
 * This function logs messages at TRACE level.
 *
 * @param inMessage The message to log.
 */
 this.trace = function(inMessage) {

 if (this.shouldBeLogged(this.LEVEL_TRACE) && this.targetDiv) {
 this.targetDiv.innerHTML +=
 "<div style='color:#" + this.LEVEL_TRACE_COLOR + ";'>" +
 "[TRACE] " + inMessage + "</div>";
 }

Zammetti-816-4C03.fm Page 82 Wednesday, February 14, 2007 12:18 PM

C H AP T E R 3 ■ H O D G E P O D G E : B U I L D I N G A N E X T E N S I B L E JA V A S CR I P T L I B R A R Y 83

 } // End trace().

} // End DivLogger().

Note that after the trace() function would actually be a couple more: debug(), info(),
warn(), error(), and fatal()—one for each logging level. I left them out just to save some
space here, but they are essentially identical to the trace() method, except that trace is
replaced with debug, info, error, or fatal, as appropriate.

To use this, you instantiate a DivLogger, like so:

var log = new jscript.debug.DivLogger();

The one other required thing for this particular logger is to call setTargetDiv(), passing it
a reference to the <div> element to which all log output should be written. From then on out,
you simply call log.xxxx(yyyy), where xxxx is the severity (trace, debug, info, warn, error, or
fatal) and yyyy is the message to log. You can also call log.setLevel() to set the level of messages
to be logged. If, for instance, you did this:

log.setLevel(log.LEVEL_ERROR);

then from that point on, only messages of severity LEVEL_ERROR or LEVEL_FATAL would be logged.
This is a very simple logger that just appends a message to the target <div>, and it also

color-codes the log messages to make it easier to see messages of a certain type while browsing
the log output. You could easily write another implementation to make an Ajax call to write the
message to a database on the server, or whatever you like. The basic skeleton would be the
same, although you may or may not need the targetDiv stuff or the color-coding stuff.

Building the jscript.dom Package
In this section, we add a new package of functions that will aid us in manipulating the DOM.

Question: How can I center an arbitrary DOM element?
Gilbert, at present, the application shows a “please wait” pop-up when a form is being

submitted. It’s just a <div> with a z-index set to a high number so it is on top of everything else.
Unfortunately, the contractor that wrote the code didn’t know how to center the <div>, so it’s
always in the upper-left corner, and Jack isn’t thrilled with this. How can I center it?

Answer: I have code lying around to do that. Interestingly, it was written a long time ago,
as evidenced by the fact that it uses the term layer, which is an old Netscape term. That doesn’t
really matter, because it still works. Listing 3-10 shows how to center an element horizontally.

Listing 3-10. The layerCenterH() Function

jscript.dom.layerCenterH = function(inObj) {

 var lca;
 var lcb;
 var lcx;
 var iebody;
 var dsocleft;

Zammetti-816-4C03.fm Page 83 Wednesday, February 14, 2007 12:18 PM

84 C H A P T E R 3 ■ H O D G E P O D G E : B U I L D I N G AN E X T E N S I B L E J A V AS C R I P T L I B R A R Y

 if (window.innerWidth) {
 lca = window.innerWidth;
 } else {
 lca = document.body.clientWidth;
 }
 lcb = inObj.offsetWidth;
 lcx = (Math.round(lca / 2)) - (Math.round(lcb / 2));
 iebody = (document.compatMode &&
 document.compatMode != "BackCompat") ?
 document.documentElement : document.body;
 dsocleft = document.all ? iebody.scrollLeft : window.pageXOffset;
 inObj.style.left = lcx + dsocleft + "px";

} // End layerCenterH().

This will actually center any element that has a left style property exposed, which is most
elements, not just <div> elements. It works by first getting the size of the browser window—the
area that the content actually fills. This is done differently, depending on which browser it is
executing in: either by getting the innerWidth property of the window or by getting the body’s
clientWidth property. Next, we get the width of the object by getting its offsetWidth property.
Then it’s a simple bit of math to calculate what the X location should be to center the object (it’s
basically subtracting half the element’s width from half the window’s size).

There is one more bit of calculation to do, and that’s taking the amount that the page may
be horizontally scrolled into account. Once again, there is a different method to get this value
depending on which browser is in use, and what’s worse, there is a different method depending
on which rendering mode IE is in! When rendering in compatibility mode but not BackCompat
mode, we need to go after the document.documentElement element; otherwise, it’s the document.
body element. Next, we see if the document.all element is present in the DOM. If it is, then we’re
running in IE, and we request the scrollLeft property of the object we previously determined
we needed. If document.all is not present, we’re not running in IE, so we need the window’s
pageXOffset property. In either case, we now have the amount the page is scrolled horizontally,
so we add that to the value we calculated to center the element, and voilà, we’ve got it centered
on the page as it is currently displayed!

You probably noticed this would only center horizontally. What about vertically? Well, the
code is nearly identical. It’s just a matter of making some replacements: width with height,
style.left with style.top, scrollLeft with scrollTop, and pageXOffset with pageYOffset.
Listing 3-11 shows what this modified code would look like, and as I said, it’s basically the same.

Listing 3-11. The layerCenterV() Function

jscript.dom.layerCenterV = function(inObj) {

 var lca;
 var lcb;
 var lcy;
 var iebody;
 var dsoctop;

Zammetti-816-4C03.fm Page 84 Wednesday, February 14, 2007 12:18 PM

C H AP T E R 3 ■ H O D G E P O D G E : B U I L D I N G A N E X T E N S I B L E JA V A S CR I P T L I B R A R Y 85

 if (window.innerHeight) {
 lca = window.innerHeight;
 } else {
 lca = document.body.clientHeight;
 }
 lcb = inObj.offsetHeight;
 lcy = (Math.round(lca / 2)) - (Math.round(lcb / 2));
 iebody = (document.compatMode &&
 document.compatMode != "BackCompat") ?
 document.documentElement : document.body;
 dsoctop = document.all ? iebody.scrollTop : window.pageYOffset;
 inObj.style.top = lcy + dsoctop + "px";

} // End layerCenterV().

I made it two separate functions because you may sometimes want to center one way, but
not the other. Now you have that ability.

■Note In Listings 3-10 and 3-11, you may have noticed that I broke one of my own rules from Chapter 1:
self-describing variable names. lca, lcb, lcx, lcy—what exactly do those mean? Well, you’re right to slap
my hand with a ruler next time you see me! However, what good are rules unless you can break them occa-
sionally? The reason it’s probably acceptable here is that we’re talking about very short-lived variables whose
context you can easily see on a single screen. Furthermore, these are used as intermediate parts of a calcu-
lation, so they don’t have any sustained meaning. Think of them as you would loop counter variables, for
which people frequently use just single letters, which generally doesn’t bother anyone. So, while I certainly
stand by the original rule, there are times where breaking it is OK. Just use your best judgment!

Question: When I make an Ajax request, I get a chunk of text back. If that chunk of text
has some <script> blocks in it, how can I execute them?

I’m actually a bit amazed by this, given how backwards the application seems to be, but it
is actually using Ajax for updating parts of a couple of screens. Unfortunately, Jack discovered
that it isn’t working fully (the consultants are at it again!) because the returned text from the
server contains some <script> blocks that are not being executed. Is there a way to execute them?

Answer: Well, of course there is, Bill, and this is a somewhat common problem when doing
Ajax. Take a gander at Listing 3-12 to see how it’s done.

Listing 3-12. The execScripts() Function

jscript.dom.execScripts = function (inText) {

 var si = 0;
 while (true) {
 // Finding opening script tag.
 var ss = inText.indexOf("<" + "script" + ">", si);

Zammetti-816-4C03.fm Page 85 Wednesday, February 14, 2007 12:18 PM

86 C H A P T E R 3 ■ H O D G E P O D G E : B U I L D I N G AN E X T E N S I B L E J A V AS C R I P T L I B R A R Y

 if (ss == -1) {
 return;
 }
 // Find closing script tag.
 var se = inText.indexOf("<" + "/" + "script" + ">", ss);
 if (se == -1) {
 return;
 }
 // Jump ahead 9 characters, after the closing script tag.
 si = se + 9;
 // Get the content in between and execute it.
 var sc = inText.substring(ss + 8, se);
 eval(sc);
 }

} // End execScripts().

I’m sure there are other ways to write this code—some fancy regular expression probably—but
sometimes I like the simple things in life, so I went with the straightforward approach. We take in a
string of text as inText, and we then begin to scan through it, looking for <script> blocks (and note
that it literally must be <script>—<script type="text/javascript">, for instance, won’t be
detected. Do you sense a suggested enhancement?). If we find one, we then find its corresponding
closing </script> tag. Once we have that, we take the substring in between those tags and eval() it.
We then take care to set the location after the closing </script> tag we just found, and we do it
again. At whatever point no more <script> tags are found, our work is done.

Question: How can I get a reference to an arbitrary number of DOM elements?
I know I can use document.getElementById() to get a reference to a DOM element—that’s

no problem. But if I want to get a reference to a batch of elements, it gets a little onerous to
write all those calls. Is there a simpler way?

Answer: Sure, a relatively simple wrapper function can save you a lot of time and effort.
Check out Listing 3-13.

Listing 3-13. The getDOMElements() Function

jscript.dom.getDOMElements = function() {

 if (arguments.length == 0) {
 return null;
 }
 if (arguments.length == 1) {
 return document.getElementById(arguments[0]);
 }
 var elems = new Array();
 for (var i = 0; i < arguments.length; i++) {
 elems.push(document.getElementById(arguments[i]));
 }
 return elems;

} // End getDOMElements().

Zammetti-816-4C03.fm Page 86 Wednesday, February 14, 2007 12:18 PM

C H AP T E R 3 ■ H O D G E P O D G E : B U I L D I N G A N E X T E N S I B L E JA V A S CR I P T L I B R A R Y 87

This function will accept a variable number of arguments, which are presumed to be DOM
element IDs. Remember that every JavaScript function inherently has reference to an
arguments array, which is an array of all the arguments (parameters) that were passed into it.
So, if no arguments are passed in, this function returns null, which is essentially an invalid call.
If just one argument is passed in, we do the typical document.getElementById() and return it,
and that’s that. When the number of arguments is more than one though, that’s when it gets
fun! We loop through the arguments array, and for each, we do document.getElementById(). We
push the return from that call onto a new array we created, and when we’re finished, we return
that array. Each element in the array is now a reference to one of the DOM IDs passed in. Then
you can do whatever you want with that array, and you didn’t have to write all the calls to
document.getElementById() yourself!

Building the jscript.form Package
In the jscript.form package, which we are about to begin building, we will introduce some
code that helps us work with HTML forms and form elements.

Question: How can I generate XML from an HTML form?
Jack has asked me to create a simple web service interface to the application. To test it, I’d

like to take the HTML form on one page of the application, convert it to XML, and submit it to
a specified URL. The only part I’m stuck on is the conversion to XML.

Answer: This is one of those tasks that kind of sounds like it should be difficult, but it’s
actually pretty easy. I’ve put the code in Listing 3-14 together to show you.

Listing 3-14. The formToXML() Function

jscript.form.formToXML = function(inForm, inRootElement) {

 if (inForm == null) {
 return null;
 }
 if (inRootElement == null) {
 return null;
 }
 var outXML = "<" + inRootElement + ">";
 var i;
 for (i = 0; i < inForm.length; i++) {
 var ofe = inForm[i];
 var ofeType = ofe.type.toUpperCase();
 var ofeName = ofe.name;
 var ofeValue = ofe.value;
 if (ofeType == "TEXT" || ofeType == "HIDDEN" ||
 ofeType == "PASSWORD" || ofeType == "SELECT-ONE" ||
 ofeType == "TEXTAREA") {
 outXML += "<" + ofeName + ">" + ofeValue + "</" + ofeName + ">"
 }
 if (ofeType == "RADIO" && ofe.checked == true) {
 outXML += "<" + ofeName + ">" + ofeValue + "</" + ofeName + ">"
 }

Zammetti-816-4C03.fm Page 87 Wednesday, February 14, 2007 12:18 PM

88 C H A P T E R 3 ■ H O D G E P O D G E : B U I L D I N G AN E X T E N S I B L E J A V AS C R I P T L I B R A R Y

 if (ofeType == "CHECKBOX") {
 if (ofe.checked == true) {
 cbval = "true";
 } else {
 cbval = "false";
 }
 outXML = outXML + "<" + ofeName + ">" + cbval + "</" + ofeName + ">"

 }
 outXML += "";
 }
 outXML += "</" + inRootElement + ">";
 return outXML;

} // End formToXML().

Let’s say we have the following HTML form:

<form>
 <input type="text" name="firstName">

 <input type="hidden" name="lastName">

 <input type="password" name="password">

 <textarea name="notes"></textarea>

 <select name="gender">
 <option value="male">Male</option>
 <option value="female">Female</option>
 </select>
 <input type="radio" name="married" value="yes">Yes

 <input type="radio" name="married" value="no">No

 <input type="checkbox" name="haveKids">Check if you have kids</input>

</form>

This function will accept a reference to a form as inForm, and also a string inRootElement,
which is the name of the root element of the XML document to create. After we check the input
values to make sure they are good, we begin to build up the string outXML by first adding the
root element to it.

Then we start iterating over the children of the form. For each, we get its type, name, and
value. Next, we see what its type is. If it’s a text, hidden, password, select-one, or textarea field,
we simply add an element to our XML string with the name of the element as the tag, and then
the value of the field in between the opening and closing tags. select-one, by the way, is the
value that you see in the type attribute for a <select> field, when it’s not multi-enabled (this
code won’t handle multiple selection fields—something for you to extend, I think!). For radio
fields, we’ll actually examine each of them, even if they are all in the same group. Of course,
since only one can be selected at a time, this isn’t a problem. The XML string is generated simi-
larly as for the other element types. Finally, for checkbox fields, we will send the value "true" or
"false", depending on whether or not it is checked.

Zammetti-816-4C03.fm Page 88 Wednesday, February 14, 2007 12:18 PM

C H AP T E R 3 ■ H O D G E P O D G E : B U I L D I N G A N E X T E N S I B L E JA V A S CR I P T L I B R A R Y 89

So, assuming we passed in Person as the root element, and assuming the entries in the
form fields are Frank, Zammetti, myPassword, Hello, Male, and Yes, and haveKids is checked,
the following XML would be generated:

<Person>
 <firstName>Frank</firstName>
 <lastName>Zammetti</lastName>
 <password>myPassword</password>
 <notes>Hello</notes>
 <gender>male</gender>
 <married>yes</married>
 <haveKids>true</haveKids>
</Person>

This is returned as a string, for the caller to handle as desired, such as submit via POST
body to a web service endpoint, as you suggested, Bill.

Question: How can I find, and optionally select, a specified option in a <select> field?
When one of the pages of the accounting application is first shown, there is a <select> field

with some options, and initially, one of those options will be selected, depending on various
criteria. How can I select a given option? Also, what if I just wanted to find it and not select it?

Answer: You can simply take the brute-force approach, Bill. Also, although you didn’t
mention it, I think it would be handy to be able to determine if case will matter during the
search. Listing 3-15 does all of this.

Listing 3-15. The selectLocateOption() Function

jscript.form.selectLocateOption = function(inSelect, inValue, inJustFind,
 inCaseInsensitive) {

 if (inSelect == null ||
 inValue == null || invalue == "" ||
 inCaseInsensitive == null ||
 inJustFind == null) {
 return;
 }
 if (inCaseInsensitive) {
 inValue = inValue.toLowerCase();
 }
 var found = false;
 var i;
 for (i = 0; (i < inSelect.length) && !found; i++) {
 var nextVal = inSelect.options[i].value;
 if (inCaseInsensitive) {
 nextVal = nextVal.toLowerCase();
 }
 if (nextVal == inValue) {
 found = true;

Zammetti-816-4C03.fm Page 89 Wednesday, February 14, 2007 12:18 PM

90 C H A P T E R 3 ■ H O D G E P O D G E : B U I L D I N G AN E X T E N S I B L E J A V AS C R I P T L I B R A R Y

 if (!inJustFind) {
 inSelect.options[i].selected = true;
 }
 }
 }
 return found;

} // End selectLocateOption().

After the usual trivial rejections, we start iterating over the options in the specified <select>
element as passed in as inSelect. For each option, we examine its value. If it matches inValue,
which is the value we are looking for, then we set the found flag to true, which will then be the
return value from the function. Also, we check the value of inCaseInsensitive. If its value is
true, then the match will ignore case. If it is false, then the case must match exactly. Once we
find the option, or run out of options to check, we see if the caller requested the option be selected
via the value of the inJustFind parameter. If the value is true, then we don’t have anything
further to do, but if it is false, we need to select the option as well. Lastly, we return the value
of found, which will be true if the option was found (regardless of whether it was selected or
not) and false if not.

Question: How can I provide the ability to select all the options in a <select>?
Gilbert, Jack has asked me to give the users the ability to select all the options in a <select>

on one screen, at one time. Is there an easy way to do it?
Answer: There is, indeed. Direct your gaze to Listing 3-16.

Listing 3-16. The selectSelectAll() Function

jscript.form.selectSelectAll = function(inSelect) {

 if (inSelect == null || !inSelect.options || inSelect.options.length == 0) {
 return;
 }
 var i;
 for (i = 0; i < inSelect.options.length; i++) {
 inSelect.options[i].selected = true;
 }

} // End selectSelectAll().

inSelect is a reference to the <select> you want to manipulate. Then you simply iterate
over the collection of options it contains, and set selected on each one to true. That’s really it!

I’m sure you’ll also want a selectUnselectAll() function. Well, to do that, simply change
the line:

inSelect.options[i].selected = true;

to:

inSelect.options[i].selected = false;

and you’ve done it!

Zammetti-816-4C03.fm Page 90 Wednesday, February 14, 2007 12:18 PM

C H AP T E R 3 ■ H O D G E P O D G E : B U I L D I N G A N E X T E N S I B L E JA V A S CR I P T L I B R A R Y 91

You may want to consider combining it and making it one function, where you pass in a
boolean parameter. But for now you can keep them separate—no real harm.

Building the jscript.lang Package
In this section, we’ll build the jscript.lang package, which will contain code that helps us
work with JavaScript at a fundamental language level.

Question: How can I take the properties of one object and copy them into another object?
In a couple of instances, I’ve had a JavaScript object that I basically want to combine with

another object. In other words, I want to copy all the properties of one into another. Can you
show me how to do that, Gilbert?

Answer: Ask and ye shall receive. Listing 3-17 is your blessing, Bill.

Listing 3-17. The copyProperties() Function

jscript.lang.copyProperties = function(inSrcObj, inDestObj, inOverride){

 var prop;
 for (prop in inSrcObj) {
 if (inOverride || !inDestObj[prop]) {
 inDestObj[prop] = inSrcObj[prop];
 }
 }
 return inDestObj;

} // End copyProperties().

Using the for . . . in loop style, we iterate over the properties of inSrcObj. For each
property, we check to see if it already exists in inDestObj, and if it does, we see if the caller told
us to override existing properties by passing true as the value of the inOverride parameter. If it
exists and we are overriding, or if it didn’t already exist, we use array notation to set the value
of the property on inDestObj. This has the effect of adding the property if is wasn’t there, or
changing the value to that found in inSrcObj if the property already existed. We then return
inDestObj, and our work here is complete.

Building the jscript.math Package
Now we’ll create some code to help perform some mathematical functions (well, OK, just one
actually), and we’ll stick it in a new package, appropriately named jscript.math.

Question: How can I generate a random number in a specified range?
OK, Gilbert, I admit this one isn’t something Jack asked me about because, after all, random

numbers in an accounting system would probably be a bad thing! But I’m working on a little
JavaScript game on the side, and I’d like to know how to generate a random number in a given
range.

Answer: Ah, well, far be it for me to get in the way of your slackery, Bill! As you’ve probably
discovered, random number generation in JavaScript doesn’t give you this feature for free, so
I’ll show you how to do it. Please review Listing 3-18 now.

Zammetti-816-4C03.fm Page 91 Wednesday, February 14, 2007 12:18 PM

92 C H A P T E R 3 ■ H O D G E P O D G E : B U I L D I N G AN E X T E N S I B L E J A V AS C R I P T L I B R A R Y

Listing 3-18. The genRandomNumber() Function

jscript.math.genRandomNumber = function(inMin, inMax) {

 if (inMin > inMax) {
 return 0;
 }
 return inMin + (inMax - inMin) * Math.random();

} // End genRandomNumber().

First, we do a quick trivial rejection: if the inMin value (the start of the range) is greater than
inMax (the end of the range), then we just return zero, content in the knowledge that the caller
did something stupid and we didn’t blow up because of it! Once that’s out of the way, we use
the basic formula seen in the return statement, which will always result in a number in the
specified range.

Building the jscript.page Package
The jscript.page package will contain code that deals with the current web page as a whole.
Let’s go build it!

Question: How can I programmatically initiate printing of the current page?
Jack asked me to add a Print button to the final report page. I know that the user can just

click the browser’s Print button, but he insists!
Answer: Well, you can call window.print() at any time, but that’s only on more recent

browsers. And also note that even with the function I’m about to show you, the user will still get
the usual print dialog box. There’s no way to simply initiate printing without user intervention
(which is probably a good thing—imagine all the trees you could kill with the right hack!). So, a
little wrapping function is in order. Check out Listing 3-19.

Listing 3-19. The printPage() Function

jscript.page.printPage = function() {

 if (parseInt(navigator.appVersion) >= 4) {
 window.print()
 }

} // End printPage().

We just do a quick version check to ensure the browser will support the window.print()
call, and that’s it. There’s really not much to say about this one, Bill.

Question: How can I access parameters that were passed to a page?
You know, Gilbert, sometimes I try to prototype something locally using just plain HTML

pages. If I want to submit a form, and I want to submit it to another HTML page, is there any
way I can access the parameters?

Answer: Yes, Bill, there certainly is. Listing 3-20 shows how.

Zammetti-816-4C03.fm Page 92 Wednesday, February 14, 2007 12:18 PM

C H AP T E R 3 ■ H O D G E P O D G E : B U I L D I N G A N E X T E N S I B L E JA V A S CR I P T L I B R A R Y 93

Listing 3-20. The getParameter() Function

jscript.page.getParameter = function(inParamName) {

 var retVal = null;
 var varvals = unescape(location.search.substring(1));
 if (varvals) {
 var search_array = varvals.split("&");
 var temp_array = new Array();
 var j = 0;
 var i = 0;
 for (i = 0; i < search_array.length; i++) {
 temp_array = search_array[i].split("=");
 var pName = temp_array[0];
 var pVal = temp_array[1];
 if (inParamName == null) {
 if (retVal == null) {
 retVal = new Array();
 }
 retVal[j] = pName;
 retVal[j + 1] = pVal;
 j = j + 2;
 } else {
 if (pName == inParamName) {
 retVal = pVal;
 break;
 }
 }
 }
 }
 return retVal;

} // End getParameters().

This function actually allows you to get a specific parameter by name, or an array of all
parameters. If inParamName is passed in, then a parameter with the specified name will be returned
(or null will be returned if it isn’t found). If null is passed as the value of inParamName, then an
array of all parameters will be returned.

location.search.substring(1) is the way we get a reference to the query string. By starting
with the second character of the URL, which is what the (1) parameter does, we are removing
the leading question mark, leaving just the parameters themselves. After that, we simply call
split() on that string, splitting on the ampersand character (&) that separates each parameter,
which gives us an array. Then that array is iterated over, and each element is further split on an
equal sign, since each parameter is a name=value pair.

After that, it’s a simple matter to see if a specific parameter was requested or all of them
will be returned. In the latter case, we instantiate a new array the first time through, and add
the parameter to the array, and the value after it, so the array winds up being in the form name,

Zammetti-816-4C03.fm Page 93 Wednesday, February 14, 2007 12:18 PM

94 C H A P T E R 3 ■ H O D G E P O D G E : B U I L D I N G AN E X T E N S I B L E J A V AS C R I P T L I B R A R Y

value, name, value, and so on. Once we run out of parameters, we return the array. In the case
of a specific parameter being requested, as soon as we find it, we return its value.

Question: How can I break out of a frameset via JavaScript?
Jack didn’t ask for this, but I noticed it on my own. We have that home page where all our

users start, and it has links to all of our applications, including this accounting application.
Unfortunately, that home page is built with frames, and when you go to any application, you
are still within that frameset. This isn’t good most of the time, so I’d like to provide a way for the
applications to break out of the frameset.

Answer: You know how many people truly hate frames these days? It seems like no self-
respecting web developer uses frames anymore. I, however, do not suffer the opinions of fools
and therefore I don’t mind frames, when used properly. But I digress. To answer your question,
I have provided Listing 3-21.

Listing 3-21. The breakOutOfFrames() Function

jscript.page.breakOutOfFrames = function() {

 if (self != top) {
 top.location = self.location;
 }

} // End breakOutOfFrames().

Breaking out of frames is a simple matter of making sure that the document in the browser
is also the top, which means, if it were a frameset, it would be the parent frameset document. If
the document isn’t the top document, then we set the location of the top document to the loca-
tion of the current document, which basically causes any frameset to be overwritten with the
new document (as a result of a new retrieval from the server).

Building the jscript.storage Package
Client-side storage isn’t really all that complex, but we could do with some utility functions to
make it that much easier, and that’s exactly what we’ll put together now, in the jscript.storage
package.

Question: How do I create a cookie and store it on the client?
Jack pointed out this one part of the application where we store user preferences on the

server. He thinks, and I agree, that it would be more efficient to store it on the client. I know
storage on the client is a bit limited with JavaScript, but cookies would seem to be a good fit
here. How do I create one?

Answer: You’re right, cookies are perfect for things like this: small bits of data stored per
web site on the client. Let’s make Cookie Monster happy and create a cookie, as shown in
Listing 3-22.

Zammetti-816-4C03.fm Page 94 Wednesday, February 14, 2007 12:18 PM

C H AP T E R 3 ■ H O D G E P O D G E : B U I L D I N G A N E X T E N S I B L E JA V A S CR I P T L I B R A R Y 95

Listing 3-22. The setCookie() Function

jscript.storage.setCookie = function(inName, inValue, inExpiry) {

 if (typeof inExpiry == "Date") {
 inExpiry = inExpiry.toGMTString();
 }
 document.cookie = inName + "=" + escape(inValue) + "; expires=" + inExpiry;

} // End setCookie().

Each cookie has a name and a value, obviously, as well as an expiration date. Therefore,
this function accepts all three as inName, inValue, and inExpiry. The date must be in the form
of a GMT date string, so we’ll allow inExpiry to be either an actual Date object or a presumably
properly formatted GMT date string. If it is a Date object, we call its toGMTString() method
to get the proper format. After that, we set document.cookie equal to a string in the form of
xxxx=yyyy;expires=zzzz, where xxxx is the name of the cookie, yyyy is the value, and zzzz is
the date string. It might seem a little weird to you to be setting the property of document to a
cookie—after all, wouldn’t that mean that if you tried to set another cookie, the first cookie
would be overwritten? But don’t worry, because the browser properly deals with that. It’s just a
bit of syntactical weirdness, probably left over from the Netscape days.

Question: How can I get the value of a specified cookie?
Setting a cookie is easy! How about getting its value later?
Answer: That’s also not difficult, Bill. Examine Listing 3-23.

Listing 3-23. The getCookie() Function

jscript.storage.getCookie = function(inName) {

 var docCookies = document.cookie;
 var cIndex = docCookies.indexOf(inName + "=");
 if (cIndex == -1) {
 return null;
 }
 cIndex = docCookies.indexOf("=", cIndex) + 1;
 var endStr = docCookies.indexOf(";", cIndex);
 if (endStr == -1) {
 endStr = docCookies.length;
 }
 return unescape(docCookies.substring(cIndex, endStr));

} // End getCookie().

When you retrieve the value of document.cookie, what you get is a giant string with all the
cookies applicable for that page. So, the easiest way to find the cookie you are interested in is
just to look for the substring xxxx=, where xxxx is the name of the cookie you want.

If we get back –1 from the call to indexOf(),(), then the cookie is not present, so we just
return null. If it is found, then we need to find the end of it. Since all cookies will have the
;expires=zzzz string after it, we can look for the semicolon. Once we have the start and end

Zammetti-816-4C03.fm Page 95 Wednesday, February 14, 2007 12:18 PM

96 C H A P T E R 3 ■ H O D G E P O D G E : B U I L D I N G AN E X T E N S I B L E J A V AS C R I P T L I B R A R Y

location of the cookie we want, we return only the substring, making sure to unescape() it,
since it is stored as a URL-encoded string, and the caller is happy.

Question: How can I delete a cookie?
OK, Gilbert, so I can create and retrieve cookies. Only one thing remains: how do I delete

them?
Answer: Well, strictly speaking, you can’t actually delete a cookie outright. However, you

can retrieve the cookie, change its expiration date to something that has already passed, and
set it again. That will overwrite the existing cookie, and the browser will immediately see that it
has already expired, and will go ahead and delete it. See Listing 3-24 for the details.

Listing 3-24. The deleteCookie() Function

jscript.storage.deleteCookie = function(inName) {

 if (this.getCookie(inName)) {
 this.setCookie(inName, null, "Thu, 01-Jan-1970 00:00:01 GMT");
 }

} // End deleteCookie().

We use the getCookie() function we built earlier, and then pass what it returns along to
setCookie(),(), as we saw earlier. We also pass in a string with an expiration date of January 1,
1970. Unless the system clock is pretty severely messed up, the cookie will be set, overwriting
the one that’s there already. It will then immediately expire and be deleted by the browser. A bit
of trickery I suppose, but it works!

Building the jscript.string Package
Now we come to the final package we will build for our library, the jscript.string package.
I’m sure you can guess its purpose: to help us work with strings!

Question: How can I count how many times a substring appears in a string?
One of the features Jack is requesting is the ability to check some free-form text that the

user can enter and see how many times certain keywords appear, so we can flag the input as
suspicious. How can I count how many times a given substring appears in a given string?

Answer: Not a big deal really. Check out Listing 3-25.

Listing 3-25. The substrCount() Function

jscript.string.substrCount = function(inStr, inSearchStr) {

 if (inStr == null || inStr == "" ||
 inSearchStr == null || inSearchStr == "") {
 return 0;
 }
 var splitChars = inStr.split(inSearchStr);
 return splitChars.length - 1;

} // End substrCount().

Zammetti-816-4C03.fm Page 96 Wednesday, February 14, 2007 12:18 PM

C H AP T E R 3 ■ H O D G E P O D G E : B U I L D I N G A N E X T E N S I B L E JA V A S CR I P T L I B R A R Y 97

We can call this function, and pass it the string to search (inStr) and the string to search
for (inSearchStr). First, the function does some trivial rejections to be sure the input parameters
are valid. It will return zero if either is not. After that, it uses a handy method of the JavaScript
String object called split(). This is essentially like StringTokenizer in Java. It splits the string
into pieces, breaking it on a specified substring. So, in other words, if we have the string Sally
sells seashells by the seashore on this dreary day, and we want to split it on the substring
ea, it would break like this: Sally sells seashells by the seashore on this dreary day. The
result is four pieces: Sally sells s, shells by the s, shore on this dr, and ry day.

What actually is returned by the call to split() is an array, which, in this case, contains
four elements, as stated. So, all we need to do is return the length of the array minus one, and
we have our answer. “Why minus one?” you ask. Think about splitting the string XYZ on Y. The
length of the array would be 2, with X and Z as the elements. But we want to know how many
times Y occurs, and that is always the length of the resultant array from the call to split(),
minus 1! And if the element we’re looking for isn’t found, the array returned by split() still has
a single element: the string we were trying to split. So, subtracting 1 from the length of that
array still gives the correct answer: 0.

“That makes sense?” asked Gilbert. “Oh yes, completely!” replied Bill, “But I have more,”
he added.

Question: How can I strip certain characters from a string, or alternatively, strip any
characters except certain ones from a string?

Jack also wants me to modify the code on the page where the user enters expense catego-
ries. It seems that, currently, the user can enter anything, even though only numbers are valid
entries. I think I should write the function to be able to strip any characters that aren’t in a list
of allowed characters, as well as be able to strip only characters that appear in a disallowed list,
just to be sure I cover all my bases for the future.

Answer: Neither of these goals is especially difficult. Both basically boil down to scanning
through a source string and examining each character. If it matches any character from another
string, then either copy it or don’t copy it to a new string. You could write two separate functions
to do this, but a single one should do the trick. Listing 3-26 shows the function that does both
types of stripping.

Listing 3-26. The stripChars() Function

jscript.string.stripChars = function(inStr, inStripOrAllow, inCharList) {

 if (inStr == null || inStr == "" ||
 inCharList == null || inCharList == "" ||
 inStripOrAllow == null || inStripOrAllow == "") {
 return "";
 }
 inStripOrAllow = inStripOrAllow.toLowerCase();
 var outStr = "";
 var i;
 var j;
 var nextChar;
 var keepChar;

Zammetti-816-4C03.fm Page 97 Wednesday, February 14, 2007 12:18 PM

98 C H A P T E R 3 ■ H O D G E P O D G E : B U I L D I N G AN E X T E N S I B L E J A V AS C R I P T L I B R A R Y

 for (i = 0; i < inStr.length; i++) {
 nextChar = inStr.substr(i, 1);
 if (inStripOrAllow == "allow") {
 keepChar = false;
 } else {
 keepChar = true;
 }
 for (j = 0; j < inCharList.length; j++) {
 checkChar = inCharList.substr(j, 1);
 if (inStripOrAllow == "allow" && nextChar == checkChar) {
 keepChar = true;
 }
 if (inStripOrAllow == "strip" && nextChar == checkChar) {
 keepChar = false;
 }
 }
 if (keepChar == true) {
 outStr = outStr + nextChar;
 }
 }
 return outStr;

} // End stripChars().

After a quick trivial rejection is done, just to be sure we have valid input values, we start
scanning through the source string inStr. For each character, we scan through the list of allowed
(or disallowed) values, which is also passed in as inCharList. For each, we check the value of
the inStripOrAllow parameter, which is either allow or strip. If it’s allow, and the character in
inStr we are currently checking appears in inCharList, then we are keeping the character. If
inStripOrAllow is strip, and the current character appears in inCharList, then in this case we
are removing that character. To understand that, note the way keepChar is set before the inner
loop begins.

When we are checking for allowed characters, the assumption is that the character will not
be allowed unless it is found in the list. Conversely, when we are stripping characters, the
assumption is that the character will be allowed unless it is found in the list. Finally, every char-
acter we keep in either case is added to outStr, which is returned at the end. So, that returned
string will be less any characters as specified.

Question: What if I don’t want to actually alter the string, but I just want to test if it contains
only valid characters, or alternatively, contains any invalid characters?

stripChars() is indeed handy, but I’m thinking I may at some point just want to do a test
to see if a given string contains only valid characters, or even just to see if it contains any invalid
characters.

Answer: This is also not a big deal, and is quite similar to stripChars(), but I think we can
do it a bit more efficiently, as shown in Listing 3-27.

Zammetti-816-4C03.fm Page 98 Wednesday, February 14, 2007 12:18 PM

C H AP T E R 3 ■ H O D G E P O D G E : B U I L D I N G A N E X T E N S I B L E JA V A S CR I P T L I B R A R Y 99

Listing 3-27. The strContentValid() Function

jscript.string.strContentValid = function(inString, inCharList, inFromExcept) {

 if (inString == null || inCharList == null || inFromExcept == null ||
 inString == "" || inCharList == "") {
 return false;
 }
 inFromExcept = inFromExcept.toLowerCase();
 var i;
 if (inFromExcept == "from_list") {
 for (i = 0; i < inString.length; i++) {
 if (inCharList.indexOf(inString.charAt(i)) == -1) {
 return false;
 }
 }
 return true;
 }
 if (inFromExcept == "not_from_list") {
 for (i = 0; i < inString.length; i++) {
 if (inCharList.indexOf(inString.charAt(i)) != -1) {
 return false;
 }
 }
 return true;
 }

} // End strContentValid().

Again, we start with a trivial rejection, which is usually a good idea, by the way! After that,
we again scan the input string inString. This time, though, our job is a little easier because we
don’t really need to go through the entire string. All we need to do is determine if the current
character is not present in inCharList in the case of inFromExcept being from_list, and if it
isn’t, return false. In the case of inFromExcept being not_from_list, we check to be sure the
current character does not appear in inCharList, and if it does, we again return false. If we
make it all the way through inString, we return true.

Question: How can I replace all occurrences of a substring in a string?
I know that the String object in JavaScript has a replace() method that lets you replace a

substring in a string with another substring. However, what if I want to replace all occurrences
of a substring in a string?

Answer: You are observant to notice this shortcoming of the built-in replace() method,
Bill. Fortunately, handling all occurrences, even though it requires some work on our part, isn’t
a big deal either. Listing 3-28 shows how to do it.

Zammetti-816-4C03.fm Page 99 Wednesday, February 14, 2007 12:18 PM

100 C H A P T E R 3 ■ H O D G E P O D G E : B U I L D I N G AN E X T E N S I B L E J A V AS C R I P T L I B R A R Y

Listing 3-28. The replace() Function

jscript.string.replace = function(inSrc, inOld, inNew) {

 if (inSrc == null || inSrc == "" || inOld == null || inOld == "" ||
 inNew == null || inNew == "") {
 return "";
 }
 while (inSrc.indexOf(inOld) > -1) {
 inSrc = inSrc.replace(inOld, inNew);
 }
 return inSrc;

} // End replace().

Yes, that’s really it! It’s a simple matter of looping, looking for inOld in inSrc, and each
time, replacing it with inNew. Just keep doing this in a loop until inOld doesn’t appear in inSrc
anymore, and we’re finished. Couldn’t be easier!

Question: How can I trim spaces from the start of a string?
I notice that in most other languages, the string class has methods to trim spaces from the

beginning of a string, usually leftTrim() or something like that. JavaScript doesn’t. How can I
do that?

Answer: Oh, come on now, Bill, can’t you challenge me a bit more? Listing 3-29 is your answer.

Listing 3-29. The leftTrim() Function

jscript.string.leftTrim = function(inStr) {

 if (inStr == null || inStr == "") {
 return null;
 }
 var j;
 for (j = 0; inStr.charAt(j) == " "; j++) { }
 return inStr.substring(j, inStr.length);

} // End leftTrim().

It’s just a matter of finding where the first nonspace character is in the string, and we do
that by iterating over the characters in inStr as long as we encounter a space. Then we just use
the built-in substring() function and return the string starting from the value of the loop vari-
able at the end (which, remember, is the first nonspace character) until the end of the string.

Oh yeah, and before you ask, you can easily make a rightTrim() function, too, as shown in
Listing 3-30.

Zammetti-816-4C03.fm Page 100 Wednesday, February 14, 2007 12:18 PM

C H AP T E R 3 ■ H O D G E P O D G E : B U I L D I N G A N E X T E N S I B L E JA V A S CR I P T L I B R A R Y 101

Listing 3-30. The rightTrim() Function

jscript.string.rightTrim = function(inStr) {

 if (inStr == null || inStr == "") {
 return null;
 }
 var j;
 for (j = inStr.length - 1; inStr.charAt(j) == " "; j--) { }
 return inStr.substring(0, j + 1);

} // End rightTrim().

It’s the same basic logic, except that, this time, we iterate backwards over the string, since
we’re looking for the last nonspace character this time. Then we just return the substring
starting from the beginning of the string until that last nonspace character.

I know what you’re going to ask next: what about trimming both at the same time? Certainly,
you could just call both of these on the source string, but why not make it a little more conve-
nient? Listing 3-31 shows the fullTrim() method, which provides that convenience.

Listing 3-31. The fullTrim() Function

jscript.string.fullTrim = function(inStr) {

 if (inStr == null || inStr == "") {
 return "";
 }
 inStr = this.leftTrim(inStr);
 inStr = this.rightTrim(inStr);
 return inStr;

} // End fullTrim().

Might as well use what we’ve already developed, right? So, just call leftTrim() and then
rightTrim() on the input inStr, and we’re good to go.

Question: How can I take a string and break it into pieces of a specified length?
One last thing with regard to strings, Gilbert. We have a free-form text entry area for notes

about an expense, and Jack wants me to store it in a number of database fields, each of which
is 100 characters long. How can I break up what the user enters into 100-character chunks?

Answer: While breaking up a string like that isn’t hard, one thing you didn’t mention was
making sure you don’t break up the string in the middle of words. Certainly, Jack wouldn’t like
that, right? So, we have to take that into account. Listing 3-32 shows one of probably many
ways you can pull this off.

Zammetti-816-4C03.fm Page 101 Wednesday, February 14, 2007 12:18 PM

102 C H A P T E R 3 ■ H O D G E P O D G E : B U I L D I N G AN E X T E N S I B L E J A V AS C R I P T L I B R A R Y

Listing 3-32. The breakLine() Function

jscript.string.breakLine = function(inText, inSize) {

 if (inText == null || inText == "" || inSize <= 0) {
 return inText;
 }
 if (inText.length <= inSize) {
 return inText;
 }
 var outArray = new Array();
 var str = inText;
 while (str.length > inSize) {
 var x = str.substring(0, inSize);
 var y = x.lastIndexOf(" ");
 var z = x.lastIndexOf("\n");
 if (z != -1) {
 y = z;
 }
 if (y == -1) {
 y = inSize;
 }
 outArray.push(str.substring(0, y));
 str = str.substring(y);
 }
 outArray.push(str);
 return outArray;

} // End breakLine().

First things first: make sure we have a string to break up, and also make sure the specified
size is greater than or equal to 1, since anything else wouldn’t make much sense. Also, we check
to see if the size of inText is less than or equal to the specified size. If it is, we just return inText,
and we’re finished!

After those checks, we copy inText to a variable named, creatively enough, str, and we
begin a loop that will continue until str is longer than the specified size. See, with each loop
iteration, we’re going to reduce str, so that eventually it will be shorter than inSize, and the
loop will end. So, in the loop, we get a substring whose size equals inSize. We then find the last
space and line break in the string. If either is found, we set the variable y to its location. If
neither is found, y gets set to the size of the string. We then finally push the substring into our
outArray, and cut str down by the chunk we just removed, and then the loop begins again.
Finally, we return outArray, which contains inText, broken up into chunks of the appropriate
size (or slightly smaller, depending on where the breaks wound up falling).

Zammetti-816-4C03.fm Page 102 Wednesday, February 14, 2007 12:18 PM

C H AP T E R 3 ■ H O D G E P O D G E : B U I L D I N G A N E X T E N S I B L E JA V A S CR I P T L I B R A R Y 103

“Well,” said Bill, “That was quite a ride! I learned a ton today. Thank you, Gilbert!”
“Eh, it’s all in a day’s work,” came the smug reply from Gilbert. “I’ll make a good c0dr out

of you yet.”
“Well, with all you’ve taught me here, I should be able to fulfill all of Jack’s requests, and

then some,” said Bill. “I should be able to impress him greatly, and soon he’ll give me that
promotion that you’ve been after! Oh yeah, who’s the C00l D00D with the M4d 5KiLL2 now,
huh? I R0><0R, j00’r3 0\/\/|\|3D, ll4|\/|4!”

 (For the secret decoder ring you’ll need to understand that mess, visit http://www.
learnleetspeak.com.)

Gilbert sat in stunned silence, looking at the grinning face of Bill, the realization of what
just happened sinking in. Gilbert opened his mouth, trying to prepare a smart-ass comeback
on the fly, but before he could utter a syllable, Bill turned and left the room, a new bounce in
his step obvious to anyone who was looking.

Gilbert looked at his Dilbert mug, his wall of IT certifications, his 1:100 scale models of the
Enterprise NCC-1701D and E, and his Darth Maul mask from last Halloween, and realized he
would have to pack up all this stuff pretty soon.

And for the first time in the five years Gilbert worked at Initech, just as he was realizing his
days were likely numbered, he was smug and arrogant no more!

Testing All the Pieces
OK, back to reality, this time to stay!

The source code presented in this book is available for download from the Source Code/
Download area of the Apress web site (http://www.apress.com). One of the downloadable items
for this chapter, which does not actually appear in the chapter itself, is a test HTML document that
exercises all the functions we have built here. This also doubles as a form of documentation,
since it shows basic usages of all the functions. I highly recommend grabbing that source code
and taking a look to see how all of this fits together and works. Go ahead, Gilbert won’t mind!
In fact, you will really need the source in front of you in later chapters. If you grab everything
now, you’ll be able to move through the rest of the chapters smoothly.

Just as a quick example of what you’ll see when you run this application, Figure 3-1 shows
the tests available for the jscript.array package, and the pop-up shows the result of the
findInArray() function specifically.

Zammetti-816-4C03.fm Page 103 Wednesday, February 14, 2007 12:18 PM

104 C H A P T E R 3 ■ H O D G E P O D G E : B U I L D I N G AN E X T E N S I B L E J A V AS C R I P T L I B R A R Y

Figure 3-1. Some tests for the jscript.array package, and the pop-up showing the result of testing
the findInArray() function

As another example to whet your appetite, Figure 3-2 shows the jscript.debug package
test group, specifically, the DivLogger in action. (Unfortunately, you cannot discern the color-
coding in the screenshot here, but trust me, each message is color-coded!)

One other important aspect that this test page demonstrates is how to use this as a library.
All you actually need to do is have the various package source files that you intend to use avail-
able to your pages, and then “import,” via the appropriate <script> tag, those packages. There
are no packaging requirements aside from that—no building a DLL or anything along those
lines. However, it is reasonable to set aside a directory for just these source files. Then when
you want to include the library in another project, it’s just a matter of copying that single
directory.

Zammetti-816-4C03.fm Page 104 Wednesday, February 14, 2007 12:18 PM

C H AP T E R 3 ■ H O D G E P O D G E : B U I L D I N G A N E X T E N S I B L E JA V A S CR I P T L I B R A R Y 105

Figure 3-2. The tests for the jscript.debug package, with some output from the DivLogger

Suggested Exercises
A chapter like this makes is rather easy to suggest exercises because really one suggestion covers
them all: go add some stuff! I suggest adding various functions to the existing packages—whatever
you think will come in handy. I also suggest adding a package or two, just to see that it works.
You may want to add a whole new package under jscript, as well as add a new subpackage
to an existing package, maybe something like jscript.dom.effects, if you want to add some
functions to do various effects. The possibilities are unlimited!

Summary
In this chapter, we put together a nice little library of functions that you should find a great deal
of use for later. You have also seen how to create a rudimentary package structure that helps
avoid namespace collisions and having a lot of global variables and functions all over the place.

More than likely, not all the functions will be used in this book’s projects. (I wrote this
chapter before writing the code for the projects to follow, so some of my guesses may have
been off). That doesn’t really matter though, because they are useful functions nonetheless
and should serve you down the road.

Zammetti-816-4C03.fm Page 105 Wednesday, February 14, 2007 12:18 PM

107

■ ■ ■

C H A P T E R 4

CalcTron 3000:
A JavaScript Calculator

From Dustin Hoffman to Russell Crowe,1 calculators have played an important role in the
everyday lives of humans ever since the Babylonians first put stones on some lines in the sand
(or was it the Chinese, as some pundits claim—I’m no historian, so I’ll leave that debate to
more qualified folks). Why not bring the idea into the modern age and build one in JavaScript
for ourselves?

Along with the simple add, subtract, multiply, and divide functions, our calculator (dubbed
CalcTron) will include some other common functions, such as percentages, square roots, and,
since we’re programmers, base conversions. Of course, those won’t be quite enough to make a
geek happy, so we’ll make this a fully extensible calculator, to which we can add functions at
will. We’ll also do our best to make the interface a bit fancy, using some styles and cool effects.
We can then see if adding enough features later allows it to gain sentience and take over the
world, but one thing at a time!

Calculator Project Requirements and Goals
A calculator isn’t fundamentally a complex project, as long as you don’t try to include every bit
of functionality possible. At the same time, it should be a good project to get some exposure to
JavaScript concepts and make you think a bit. Let’s throw some requirements out there that
will help to fulfill that goal:

• CalcTron should present a relatively flexible interface that can morph as we add new
features. Specifically, we’ll allow CalcTron to be switched into a number of modes, each
with its own defined layout (within some predefined constraints). Let’s allow these layouts
to be specified in JSON.

• A calculator isn’t fundamentally the most visually exciting project, so to alleviate our
boredom, we’ll put some special effects and visual flair into it where possible. We’ll do
this with a library to save ourselves as much effort as possible.

• CalcTron should be extensible, allowing us to plug in new functions as required.

1. In the movie Rain Man, Dustin Hoffman played Raymond Babbitt, who was an autistic man with some
startling mathematical abilities. In the movie A Beautiful Mind, Russell Crowe played John Nash, a brilliant
mathematician.

Zammetti-816-4C04.fm Page 107 Monday, March 5, 2007 10:33 AM

108 C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J AV A S C R I P T C A L C U L A T O R

That’s a fairly short list, I admit. However, once we get into the code of things, you’ll see
that a project that seems minimal on the outside isn’t necessarily that simplistic on the inside.

A Preview of CalcTron
We’ll begin by having a look at CalcTron, and said look commences with Figure 4-1.

Figure 4-1. CalcTron in Standard mode

CalcTron provides two modes of operation out of the box: Standard mode, as shown in
Figure 4-1, and BaseCalc (base calculations) mode, as shown in Figure 4-2.

Zammetti-816-4C04.fm Page 108 Monday, March 5, 2007 10:33 AM

C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J A V A S C R I P T C A L C U L A T O R 109

Figure 4-2. CalcTron in BaseCalc mode

When you click the Mode button, you are presented with a pop-up that flies onto the screen
and allows you to choose a new mode of operation for the calculator, as shown in Figure 4-3.
The pop-up is pretty simple, but it’s an integral part of making CalcTron extensible.

What you cannot see in a screenshot is the fact that the pop-up flies to the center of the
browser content area from one of the four corners randomly. This flying is accomplished with
the help of a library named Rico. In addition to the flying pop-up, Rico does the rounding of the
corners of the calculator itself. Let’s take a quick peek at what Rico has to offer.

Zammetti-816-4C04.fm Page 109 Monday, March 5, 2007 10:33 AM

110 C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J AV A S C R I P T C A L C U L A T O R

Figure 4-3. Mode change pop-up

Rico Features
I introduced Rico with some of the other representative JavaScript libraries in Chapter 2. Rico
(http://openrico.org) is a smallish library (as compared to something like Dojo, for example)
that covers relatively few topics, but does so quite well. Rico provides functionality in four key
areas: Ajax, drag-and-drop management, cinematic effects, and behaviors.

Rico is one of the many libraries that is built on top of the Prototype library. Rico itself is
housed in one relatively small (88kb) JavaScript file. Add the 46kb of Prototype (depending on
version), and you can see it’s not very big at all. As they say though, it packs a pretty good punch.

Rico provides two Ajax functions: one designed for updating the innerHTML of a target
element, and one for updating multiple elements via an XML response. Both of these use an
interesting model where you register a given Ajax request with the Ajax engine Rico provides
and give it an ID. You can then reuse this request in different circumstances and at different
times by referencing its ID. The latter expects an XML response from the server, and then uses

Zammetti-816-4C04.fm Page 110 Monday, March 5, 2007 10:33 AM

C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J A V A S C R I P T C A L C U L A T O R 111

it to populate elements on the screen. If you jump over to the Rico web site and check out the
demos, which you can get to by clicking the Demos link, you’ll see some good examples of this
(as well as everything else I’m describing here).

Rico also offers some nifty drag-and-drop support. In addition to being able to make arbi-
trary elements (<div> elements usually) draggable, it also allows you to define drop zones. This
means that you can, for instance, have a <div> that is draggable, and have another <div> defined as
a drop zone. When you drag the first <div> onto the second, it becomes a child of the drop zone.
The Rico demos page shows this, as well as another example of a custom swap box that is
drag-and-drop-enabled (that is, there is a list of items on the left, and you can drag those items
into the list box on the right). Coding all this yourself would be a real hassle. Rico makes it very
easy (a few lines of code in most cases).

In the area of cinematic effects, Rico offers functionality such as the ability to animate the
position of an element, animate the size of an element, animate both the size and position of
an element, fade elements in and out, and round shapes. Rounding shapes and animating size
and position are two effects that you’ll be seeing in action in CalcTron.

Another area of functionality Rico provides is called behaviors. Behaviors are what most
other libraries call widgets; at least, that’s true of what’s in Rico now (it might not always be this
way). Behaviors are generally combinations of cinematic effects and/or Ajax that create a unique
component of functionality (a widget). Here are some of the behaviors Rico currently offers:

Accordion: Microsoft Outlook has a sidebar where you can click a category and have it
expand into view. This is roughly what the accordion behavior is. Basically, you have a
bunch of <div> elements running down the screen. You then specify that they form an
accordion. When you click one of them, Rico will expand it, while shrinking any other that
is showing. The effect is really quite impressive. Other libraries offer similar functionality,
but I have to say, Rico’s is the simplest, most straightforward, and cleanest looking imple-
mentation I’ve seen.

Weather: This is the typical show-me-the-weather-in-my-area widget. This makes use of
some effects, the accordion behavior, and Ajax to make calls to a remote server to get the
weather information. Once again, I highly recommend checking out the demos page on
the Rico web site, because this is a really impressive behavior to see in action.

LiveGrid: This is the typical data grid with Ajax connectivity, buffering, and compression
strategies to aid in performance. You’ve probably seen a number of different versions of
this idea, and while Rico’s is nice, it’s not especially remarkable. It is definitely useful, but
just OK in my opinion.

As you can see, Rico isn’t about covering every last requirement a JavaScript and RIA
developer might have. It’s about a handful of targeted areas only, but it covers them rather well.
The drag-and-drop support especially stands out to me as one of the best implementations I’ve
seen. In Chapter 10’s project, we’ll use MochiKit for drag-and-drop support. While that library
also offers pretty good drag-and-drop features, if I had to do it all over again, to be quite honest,
I would choose Rico for this functionality. That’s not meant as a slap against MochiKit at all.
You’ll see that it’s a good library as well. I’m just emphasizing how good Rico’s feature set is in
this area.

I also feel that the accordion behavior is a real standout. I thought of ways I could shoe-
horn it into CalcTron, but decided not to force the issue.

Zammetti-816-4C04.fm Page 111 Monday, March 5, 2007 10:33 AM

112 C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J AV A S C R I P T C A L C U L A T O R

■Tip I’ve said it a couple of times now, but it’s worth repeating: spend some time on the Rico demos page
to see all of this in action. I think you’ll really like what you see there.

Now that you’ve seen CalcTron and Rico, and understand some of our goals and expecta-
tions for this project (and I hope you’ve played with CalcTron a bit by now, too), we can begin
our exploration of what makes it tick.

Dissecting the CalcTron Solution
To get a grasp on how CalcTron is put together, let’s examine the directory structure of the
application, as shown in Figure 4-4.

Figure 4-4. Directory structure for the CalcTron project

The solution consists of the following:

• calctron.htm: In the root directory is our starting point. The calctron.htm file defines
the basic layout of the application, includes all the required JavaScript, and begins executing
the application.

• css: This directory is home to the styles.css file, which is the style information CalcTron
uses to define its display.

• img: This directory is where the images are stored. Only two images are used in CalcTron:
the title graphic and the tag line underneath it.

• js: This directory contains a number of JavaScript files. These files are what literally
make up CalcTron. Also found here are some support libraries that the application uses.

• modes: This directory houses a JavaScript file, as well as a JSON file, for each mode the
calculator has.

Zammetti-816-4C04.fm Page 112 Monday, March 5, 2007 10:33 AM

C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J A V A S C R I P T C A L C U L A T O R 113

Not really much to it, is there? With that brief overview, we can get down to brass tacks and
dive straight into some code.

Writing calctron.htm
CalcTron begins by importing its style sheet, which we’ll look at next, as well as all of the JavaScript
source files it needs:

 <link rel="StyleSheet" href="css/styles.css" type="text/css">

 <script src="js/prototype.js" type="text/javascript"></script>
 <script src="js/rico.js" type="text/javascript"></script>
 <script src="js/jscript.math.js" type="text/javascript"></script>
 <script src="js/Mode.js" type="text/javascript"></script>
 <script src="js/Classloader.js" type="text/javascript"></script>
 <script src="js/CalcTron.js" type="text/javascript"></script>

Prototype is imported first, and then Rico, which needs Prototype (we’ll also be using a
function from Prototype directly). Next is one of the packages we built in Chapter 3, the
jscript.math package. The math package is needed because the code will be making a random
determination of which corner the mode-change pop-up will fly in from, and the math package
includes the random number generation function. After that is the import of the Mode class, the
Classloader class, and the CalcTron class. We’ll get to those shortly.

After these imports comes a single line of JavaScript that is actually key to making every-
thing work:

 <script>
 var calcTron = new CalcTron();
 </script>

This single line of code creates an instance of the CalcTron class and assigns it to the variable
calcTron. The CalcTron class is the core of the application, but let’s not get ahead of ourselves;
there’s more to calctron.htm than this.

Since calctron.htm is the file the user loads, what happens on load is important:

 <body onLoad="calcTron.init();">

The init() method of the CalcTron class is responsible for all application-level initializa-
tion, and hence is called in response to the page’s onLoad event.

The body of calctron.htm is the basic structure of the page, as shown earlier in Figures 4-1,
4-2, and 4-3. The first element we encounter is a <div>:

 <div id="divMode" class="cssDivMode">

 <center>
 Select mode here

 <input type="button" value="Standard"
 onClick="calcTron.setMode('Standard');">

Zammetti-816-4C04.fm Page 113 Monday, March 5, 2007 10:33 AM

114 C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J AV A S C R I P T C A L C U L A T O R

 <input type="button" value="BaseCalc"
 onClick="calcTron.setMode('BaseCalc');">
 </center>
 </div>

This <div> is the mode-change pop-up. It’s pretty straightforward; in fact, the onClick event
handler is the only interesting thing about it. As discussed in previous chapters, you generally
want to avoid in-line JavaScript like this. However, I don’t view it as an egregious breach to do
so when it is just a function call, as is the case here. As the name implies, the setMode() method
of the calcTron object sets the mode as specified. We’ll get into those details soon enough (in
the “Writing CalcTron.js” section), so please allow this explanation to suffice for the time being.

After this <div> is another one with the ID mainContainer, which is where the actual calculator
structure is housed. Within it is a table, where each cell is one of the buttons of the calculator,
preceded by the results, and followed by the information area at the bottom. This is a some-
what large chunk of frankly rather mundane HTML, so I won’t list it all here. However, let’s look
at it in brief. First is the results section:

 <tr>
 <td nowrap colspan="10" align="right" valign="middle">
 <div style="height:16px;" id="divResults"></div>
 </td>
 </tr>

There’s nothing unusual here. That being said, note that the <div> inside the cell with the
ID divResults is where the results (or the number the user is currently entering) are displayed
by altering its innerHTML property.

Following this is the top row of command buttons (the calculator has five command buttons
on top and five below, with the input buttons in between):

<tr>
 <td nowrap colspan="2" align="center" valign="middle"> ➥

 <input type="button" class="cssInputCommandButton" id="commandButton0" ➥

 onClick="calcTron.currentMode.commandButton0();"> ➥

 </td>
 <td nowrap colspan="2" align="center" valign="middle"> ➥

 <input type="button" class="cssInputCommandButton" id="commandButton1" ➥

 onClick="calcTron.currentMode.commandButton1();"> ➥

 </td>
 <td nowrap colspan="2" align="center" valign="middle"> ➥

 <input type="button" class="cssInputCommandButton" id="commandButton2" ➥

 onClick="calcTron.currentMode.commandButton2();"> ➥

 </td>
 <td nowrap colspan="2" align="center" valign="middle"> ➥

 <input type="button" class="cssInputCommandButton" id="commandButton3" ➥

 onClick="calcTron.currentMode.commandButton3();"> ➥

 </td>

Zammetti-816-4C04.fm Page 114 Monday, March 5, 2007 10:33 AM

C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J A V A S C R I P T C A L C U L A T O R 115

 <td nowrap colspan="2" align="center" valign="middle"> ➥

 <input type="button" class="cssInputCommandButton" id="commandButton4" ➥

 onClick="calcTron.currentMode.commandButton4();"> ➥

 </td>
</tr>

I’ve broken the lines here so they’ll fit on the page. In the actual code you execute, each of
the cells is on a single line of code. Unfortunately, IE does not always ignore whitespace as it is
supposed to, and so this code would not display properly if it were actually entered as it is here.

Once again, you see a single function call in the onClick event handler. Note that none of
the buttons has a value (a label), because one is added dynamically when a calculator mode is
selected, as you’ll see in a bit. Also note that the bottom row of command buttons looks basi-
cally the same as this, except for the last button, which is always the mode-change button. It
looks like this:

<td nowrap colspan="2" align="center" valign="middle">
 <input type="button" class="cssInputCommandButton" style="display:block;"
 value="Mode" onClick="calcTron.changeModePopup();">
</td>

As you can see, a value is given here, and the onClick handler is different. Otherwise, it’s
nothing special.

In between the top and bottom row of command buttons are five rows of input buttons.
Let’s take a look at a single row:

<tr>
 <td nowrap align="center" valign="middle">
 <input type="button" class="cssInputButton" id="button0_0"
 onClick="calcTron.currentMode.button0_0();">
 </td>
 <td nowrap align="center" valign="middle">
 <input type="button" class="cssInputButton" id="button0_1"
 onClick="calcTron.currentMode.button0_1();">
 </td>
 <td nowrap align="center" valign="middle">
 <input type="button" class="cssInputButton" id="button0_2"
 onClick="calcTron.currentMode.button0_2();">
 </td>
 <td nowrap align="center" valign="middle">
 <input type="button" class="cssInputButton" id="button0_3"
 onClick="calcTron.currentMode.button0_3();">
 </td>
 <td nowrap align="center" valign="middle">
 <input type="button" class="cssInputButton" id="button0_4"
 onClick="calcTron.currentMode.button0_4();">
 </td>

Zammetti-816-4C04.fm Page 115 Monday, March 5, 2007 10:33 AM

116 C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J AV A S C R I P T C A L C U L A T O R

 <td nowrap align="center" valign="middle">
 <input type="button" class="cssInputButton" id="button0_5"
 onClick="calcTron.currentMode.button0_5();">
 </td>
 <td nowrap align="center" valign="middle">
 <input type="button" class="cssInputButton" id="button0_6"
 onClick="calcTron.currentMode.button0_6();">
 </td>
 <td nowrap align="center" valign="middle">
 <input type="button" class="cssInputButton" id="button0_7"
 onClick="calcTron.currentMode.button0_7();">
 </td>
 <td nowrap align="center" valign="middle">
 <input type="button" class="cssInputButton" id="button0_8"
 onClick="calcTron.currentMode.button0_8();">
 </td>
 <td nowrap align="center" valign="middle">
 <input type="button" class="cssInputButton" id="button0_9"
 onClick="calcTron.currentMode.button0_9();">
 </td>
</tr>

These are substantially similar to the command buttons; only the functions called in the
onClick handlers differ, as well as the style class applied to them. The other four rows are the
same, differing only in the id of each button.

Following the buttons is the information area:

 <td nowrap colspan="10" align="center" valign="middle">
 <div style="height:16px;" id="divInfo"></div>
 </td>

This is pretty much the same as the result area, with just a different style. And with that,
we’ve examined calctron.htm pretty much in its entirety. I never said it was rocket science.

Writing styles.css
styles.css is, naturally enough, the main style sheet used by CalcTron. You’ve already seen a
number of the styles it contains in our examination of calctron.htm, so let’s see if there’s
anything else of interest. The entire style sheet is shown in Listing 4-1.

Listing 4-1. The styles.css File for CalcTron

/* Style applied to all elements */
* {
 font-family : arial;
 font-size : 10pt;
 font-weight : bold;
}

Zammetti-816-4C04.fm Page 116 Monday, March 5, 2007 10:33 AM

C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J A V A S C R I P T C A L C U L A T O R 117

/* Style applied to the outer calculator container */
.cssCalculatorOuter {
 position : absolute;
 background-color : #c6c3de;
}

/* Style applied to the table cell where command buttons are placed */
.cssSpanCB {
 width : 110px;
}

/* Style applied to the table cell where input buttons are placed */
.cssSpanB {
 width : 60px;
}

/* Style applied to input buttons */
.cssInputButton {
 width : 50px;
 display : none;
}

/* Style applied to command buttons */
.cssInputCommandButton {
 width : 100px;
 display : none;
}

/* Style applied to the mode switch popup DIV */
.cssDivMode {
 display : none;
 z-index : 100;
 position : absolute;
 border : 2px solid #000000;
 background-color : #efefef;
}

Let’s look at each selector in turn:

• The first selector is somewhat interesting. It applies to all elements on the page, and is
kind of a catchall style. The nice thing about it is that it cascades down into tables and
cells and such, which usually isn’t the case, so it really does cover everything. This style
sets the font to Arial, 10pt, and makes it all bold.

• The next style is applied to the outer <div>. We set it to a purple-blue color and position
it absolutely, which is required so we can center it.

Zammetti-816-4C04.fm Page 117 Monday, March 5, 2007 10:33 AM

118 C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J AV A S C R I P T C A L C U L A T O R

• Next, two styles are applied to the cells that contain the command buttons and input
buttons, respectively. They ensure each cell is sized for a button to fit nicely, with a little
padding.

• After that, two styles are applied to the command and input buttons. These ensure that
all the buttons have a consistent size. They also ensure that all the buttons start out
hidden, which avoids any unnecessary and ugly flickering when the application loads
and the initial mode initiates.

• Finally, a style is applied to the mode-change pop-up. We set its z-index to ensure it
floats over the calculator itself, and give it a solid color and a border. Like the outer <div>
style, it is positioned absolutely, which is the only way we could make it fly in from a
corner and center it.

Writing CalcTron.js
As mentioned earlier, CalcTron is the main class that powers this application—its core. It contains
fields describing the overall state of the calculator, as well as initialization code, and the code
that deals with switching modes. For all it does, and as central to the application as it is, it really
isn’t that big or complicated at all, as the UML diagram in Figure 4-5 illustrates.

Figure 4-5. UML diagram of the CalcTron class

A mere four fields and three methods are all it takes. Let’s begin by looking at those four fields:

• currentMode: This field stores the id, which is really the name, of CalcTron’s current
mode. As it stands, CalcTron has two modes: Standard and BaseCalc, and those are the
only two values you would find in this field (not counting its initial null value).

• classLoader: This field is a reference to an instance of the Classloader class, which is
described in the next section. In brief, this class is responsible for loading a class that
contains the functions needed for a given mode. It also verifies the class meets certain
interface requirements, which will generally mean the class is a valid CalcTron Mode class.

• scrWidth and scrHeight: These fields store the width and height of the browser window
at startup. This information is used to center the calculator itself, and also for various
calculations dealing with the mode-change pop-up.

Zammetti-816-4C04.fm Page 118 Monday, March 5, 2007 10:33 AM

C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J A V A S C R I P T C A L C U L A T O R 119

Moving along to the methods of the CalcTron class, we first encounter init(). This is the
method called by the onLoad of the calctron.htm file, and its task is to initialize a number of
things to get CalcTron ready for user interaction. The init() function is as follows:

 this.init = function() {

 // Figure out how wide the browser content area is.
 if (window.innerWidth) {
 this.scrWidth = window.innerWidth;
 } else {
 this.scrWidth = document.body.clientWidth;
 }

 // Figure out how high the browser content area is.
 if (window.innerHeight) {
 this.scrHeight = window.innerHeight;
 } else {
 this.scrHeight = document.body.clientHeight;
 }

 // Round the corners of the main content div.
 new Rico.Effect.Round(null, "cssCalculatorOuter");

 // Set initial mode to standard.
 this.setMode("Standard");

 } // End init().

First, the function determines the width of the content area of the browser window. Some
browsers present this information via the innerWidth attribute of the window object, while others
present it via the clientWidth attribute of the document.body object, so a little branching action
is in order, followed by virtually identical code for determining the height of the browser
content area.

Following that is our first exposure to Rico in this application. As mentioned in the earlier
look at Rico, one of the neat features it offers is the ability to round arbitrary elements, so we
can have some nice, soft, round corners around our calculator instead of the usual sharp,
square corners. The code instantiates a new Rico.Effect.Round object, passing it the name of
a style sheet. The first argument to Round() is actually an element to round, and the second is a
class name. I decided to use the class name because, initially, I wasn’t sure if there might be
other shapes to round, and using the class means that I can round any object that uses the
same style class.

■Tip You can pass a third argument to Round() to define the rounding further. For example, if for the third
parameter you pass { corners : 'tl br' }, you are saying that only the top-left and bottom-right corners are
to be rounded. See the Rico documentation and examples for further explanations of what is possible with
these options.

Zammetti-816-4C04.fm Page 119 Monday, March 5, 2007 10:33 AM

120 C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J AV A S C R I P T C A L C U L A T O R

Once the rounding is done, one important piece of business remains, and that’s to set the
initial mode of CalcTron. This is done with the following statement:

 this.setMode("Standard");

Standard is our starting mode, just as with the built-in Windows calculator (which CalcTron
was roughly modeled after, at least as far as the Standard mode goes). Once that’s complete,
CalcTron is ready for the user.

The next method in CalcTron is the changeModePopup() method. This is called when the
Mode button is clicked. Although it’s a bit longer than init(), it’s still a pretty simple animal:

 this.changeModePopup = function() {

 // This is the width and height of the div as it should ultimately appear.
 var divWidth = 150;
 var divHeight = 150;

 // Get reference to mode change div and reset it to begin animation. It's
 // going to randomly come flying from one of the corners of the screen,
 // so first choose which corner, then set the top and left attributes
 // accordingly.
 var modeDiv = $("divMode");
 modeDiv.style.width = "0px";
 modeDiv.style.height = "0px";

 // What corner does it fly from?
 var whatCorner = jscript.math.genRandomNumber(1, 4)

 // Set the starting coordinates accordingly.
 switch (whatCorner) {
 case 1:
 modeDiv.style.left = "0px";
 modeDiv.style.top = "0px";
 break;
 case 2:
 modeDiv.style.left = this.scrWidth - divWidth;
 modeDiv.style.top = "0px";
 break;
 case 3:
 modeDiv.style.left = "0px";
 modeDiv.style.top = this.scrHeight - divHeight;
 break;
 case 4:
 modeDiv.style.left = this.scrWidth - divWidth;
 modeDiv.style.top = this.scrHeight - divHeight;
 break;
 }

Zammetti-816-4C04.fm Page 120 Monday, March 5, 2007 10:33 AM

C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J A V A S C R I P T C A L C U L A T O R 121

 // Calculate the final left and top position for the div so it's centered
 // in the browser content area.
 var left = (this.scrWidth - divWidth) / 2;
 var top = (this.scrHeight - divHeight) / 2;

 // Show the div so the animation can begin. Since its width and height are
 // zero, it won't actually be visible just yet.
 $("divMode").style.display = "block";

 // Ask Rico to do the animation for us.
 new Rico.Effect.SizeAndPosition("divMode", left, top, divWidth, divHeight,
 400, 25, null
);

 } // End changeMode().

First, we have two variables, divWidth and divHeight, which define how wide and how tall
the mode-change pop-up is. These are needed for calculations to come shortly.

We begin the real work by getting a reference to divMode. This is accomplished by using the
$() function, which is actually part of Prototype, not Rico. $() is, in simplest terms, shorthand
for the ubiquitous document.getElementById(), although it adds the ability to get a reference to
multiple objects at the same time. Once we have a reference to the <div>, we set its width and
height to zero. Not only does the mode-change pop-up fly in from one of the four corners of the
browser content area, but it also grows as it flies in. So, it needs to start out as small as possible
to make the effect work correctly.

Next, we see a call to the jscript.math.genRandomNumber() function introduced in Chapter 3. It
generates a random number between 1 and 4, inclusive, which determines from which corner
the pop-up will fly in.

After that, we see a switch on this value. Depending on which corner was chosen, the left
and top attributes of divMode are set to start it out in the proper corner.

Following that are two lines that calculate the final location of the pop-up. These statements
make use of the scrWidth and scrHeight we calculated in init(), as well as divWidth and divHeight,
as set at the beginning of this function. Taking the difference between those two values and
dividing by two, for both width and height, results in the proper coordinates required for the
pop-up to be centered in the content area.

Finally, we see our next usage of Rico, the Rico.Effect.SizeAndPosition object. This object is
fed the name of the <div> to manipulate (divMode), the final X and Y (left and top, respectively)
location where it should end up, the width and height it should wind up, how many millisec-
onds the whole thing should take (400), and how many steps there should be (25). This means
that Rico will take divMode and move it from its current location to the location specified by the
left and top variables, and at the same time, will expand it from its current size to the size
specified by divWidth and divHeight. It will do this over 25 steps in 400 milliseconds (which
means that each step will take 16 milliseconds). Isn’t it cool that we can get all that action from
one function call?

The final method of CalcTron is setMode(), which is called when one of the buttons on the
mode-change pop-up is clicked. It’s actually an interesting little function because it gets called
not once, but twice when modes are switched, and it does something a little different each
time. Let’s have a look at this method first:

Zammetti-816-4C04.fm Page 121 Monday, March 5, 2007 10:33 AM

122 C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J AV A S C R I P T C A L C U L A T O R

 this.setMode = function(inVal) {

 // First time through: should have been passed a string naming the mode
 // to switch to. We simply pass it to the classloader to load it for us.
 if (typeof inVal == "string") {

 $("divMode").style.display = "none";
 this.classloader.load(inVal);

 } else {

 // Second time through, inVal is an instance of a class descending from
 // Mode. In that case, we ask the classloader to verify it for us,
 // and assumimg it's valid, we store a reference to it and ask it to
 // initialize itself.
 if (this.classloader.verify(inVal, new Mode())) {
 this.currentMode = inVal;
 this.currentMode.init();
 } else {
 alert("Not a valid mode class");
 }

 }

 } // End setMode().

OK, so it’s fairly diminutive, but interesting nonetheless. The first time it’s called, immedi-
ately when a mode-selection button is clicked, it’s passed the name of the mode to switch to.
So, the first check is if the incoming parameter is a string. If it is, the mode-change pop-up is
hidden, and the Classloader instance is called with the value that was passed to setMode().

The Classloader loads the class, and when it completes, setMode() is called again (you’ll
see exactly how in just a bit). However, at this point, what is passed in is not a string, but is
instead a class descending from Mode. That’s where the else clause comes into play. Here, we
ask the Classloader to verify the class, and if it doesn’t pass, we just pop up an alert, since
there’s not much we can do about it. If it is verified though, we set the currentMode field of
CalcTron to point to this class that was passed in, and we then call the init() method on it.

And that sums up CalcTron.js. A couple of points probably are not quite clear to you yet,
so let’s commence clearing those things up now. We’ll begin by looking at this Classloader
class I’ve referenced a couple of times.

Writing Classloader.htm
As I’ve noted, CalcTron is designed to be extensible; that is, you can add modes to it with little diffi-
culty. Each mode is implemented as a class extending the Mode class. We’ll be looking at these
implementation classes next, but before we do, let’s talk about how those classes are loaded.

Java has a fairly complex mechanism called the classloader. Its job, as I’m sure you’ll be
unsurprised to learn, is to . . . wait for it . . . load classes. It does more than that, however. It is

Zammetti-816-4C04.fm Page 122 Monday, March 5, 2007 10:33 AM

C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J A V A S C R I P T C A L C U L A T O R 123

also responsible for verifying classes, checking them for security violations, making sure they
aren’t corrupt, and so on.

JavaScript doesn’t offer anything that fancy, but that has never stopped us from doing it
ourselves. What would a JavaScript classloader offer? Well, security isn’t really a concern, since
JavaScript executes in a relatively secure sandbox to begin with, so we can skip that. Could we
check for a corrupt class? Perhaps, but beyond ensuring we didn’t get an error from the server
the class is being loaded from, there isn’t much to be done there either.

One operation we can perform is to verify that the class meets a certain public interface.
Each of the mode implementation classes must implement certain functions for CalcTron to
be able to use it. We can verify that a loaded class does so.

But perhaps we should discuss the idea of how exactly to load a JavaScript class in the first
place, since even that simple concept isn’t native to JavaScript. Before we even do that, however,
let’s take a look at the UML diagram for the Classloader class, as shown in Figure 4-6.

Figure 4-6. UML diagram of the Classloader class

Heck, we might as well look at the code, too. There isn’t a whole lot to it, so the entire
Classloader code is listed in Listing 4-2.

Listing 4-2. The Classloader.js File

function Classloader() {

 /**
 * Load a named class.
 *
 * @param inClassName The name of the class to load. We assume it's a
 * calculator mode class, so it's always in the modes
 * subdirectory.
 */
 this.load = function(inClassName) {

 // Dynamically create a new script tag, point it at the mode source file,
 // and append it to the document's head section, thereby loading and
 // parsing it automatically.
 var scriptTag = document.createElement("script");
 scriptTag.src = "modes/" + inClassName + ".js";
 var headTag = document.getElementsByTagName("head").item(0);
 headTag.appendChild(scriptTag);

Zammetti-816-4C04.fm Page 123 Monday, March 5, 2007 10:33 AM

124 C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J AV A S C R I P T C A L C U L A T O R

 } // End load().

 /**
 * This function verifies that a given class matches another. In other
 * words, it ensures that all the functions of inBaseClass are found in
 * inClass, which means they have the same public interface. It also
 * checks that the id field is present, which is required by code outside
 * a mode class (note that all other non-function fields are ignored, since
 * they do not contribute to the public interface).
 *
 * @param inClass The class to verify.
 * @param inBaseClass The class to verify against.
 * @return True if inClass is "valid", false if not.
 */
 this.verify = function(inClass, inBaseClass) {

 var isValid = true;
 for (i in inBaseClass) {
 if (i != "resultsCurrent" && i != "resultsPrevious" &&
 i != "resultsCurrentNegated" && i != "resultsPreviousNegated" &&
 !inClass[i]) {
 isValid = false;
 }
 }
 return isValid;

 } // End verify().

} // End Classloader class.

With those preliminaries out of the way, let’s see how this all works.
The first step is a call to the load() method. This method accepts the name of the class to

be loaded. This name must match exactly, including case, the name of the JavaScript source
file that contains it. Since this Classloader is specific to loading Mode classes, it assumes the
source file is found in the modes subdirectory. Here’s the load() method:

 this.load = function(inClassName) {

 // Dynamically create a new script tag, point it at the mode source file,
 // and append it to the document's head section, thereby loading and
 // parsing it automatically.
 var scriptTag = document.createElement("script");
 scriptTag.src = "modes/" + inClassName + ".js";
 var headTag = document.getElementsByTagName("head").item(0);
 headTag.appendChild(scriptTag);

 } // End load().

Zammetti-816-4C04.fm Page 124 Monday, March 5, 2007 10:33 AM

C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J A V A S C R I P T C A L C U L A T O R 125

LOADING REMOTE CONTENT VIA A DYNAMIC SCRIPT TAG

Tangent alert! One of the problems with most Ajax techniques is that they do not work across domains. All
current browsers implement a security restriction that says you can make Ajax requests only to the domain
that served the original page. This makes many sorts of things much more difficult than they need to be. A
number of solutions exist to get around this restriction, and one of the most useful is the dynamic <script>
tag trick.

Basically, if you create a new <script> tag and insert it into the DOM, the browser goes off and loads
the source file and evaluates it, just as it does for a <script> tag on the page at load time. Since a <script>
tag does not have a domain restriction, you can do cross-domain calls. Now, if the content that is the source
of the <script> tag adheres to a special rule, you can essentially do Ajax in this manner. What is that special
rule? Simply that the response must contain a JavaScript call to some callback function.

So, when the <script> tag is inserted, the browser loads the source file it specifies. This source file
contains a call to some JavaScript function that already exists on the page. The browser evaluates this source
file, which executes the call to that function. This is akin to the callback function in Ajax, except that it is called
only once in this case, as opposed to many times for an Ajax call. In other words, the source of a <script>
tag doesn’t have to be script. Well, not in the usual sense anyway; it still is JavaScript.

What I mean by this is best illustrated with a simple example. Let’s say we want to retrieve a list of URLs
from a remote server that we want to display in an alert() box when the user clicks a button. Why we would
want to do this is beyond me, but that’s why they invented contrived examples. Anyway, let’s say we want to
do this. Let’s further say that the file js_book_ch4_url_list.txt exists on the Omnytex web server (which
it does, so yes, all of this will work if you try it, but if it should fail for some reason, just create a file with this
name and the contents shown next, and place it on some web server somewhere, and change the target URL
accordingly). So, when we access http://www.omnytex.com/js_book_ch4_url_list.txt, we get
the following response:

showURLs("www.microsoft.com", "www.omnytex.com", "www.apress.com");

Here’s the code to do what we want:

<html>
<head>
<script>
 function testIt() {
 var scriptTag = document.createElement("script");
 scriptTag.src = "http://www.omnytex.com/js_book_ch4_url_list.txt";
 var headTag = document.getElementsByTagName("head").item(0);
 headTag.appendChild(scriptTag);
 }
 function showURLs() {
 var s = "";
 for (var i = 0; i < showURLs.arguments.length; i++) {
 s += showURLs.arguments[i] + "\n";
 }
 alert(s);
 }

Zammetti-816-4C04.fm Page 125 Monday, March 5, 2007 10:33 AM

126 C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J AV A S C R I P T C A L C U L A T O R

</script>
</head>
<body>
 <input type="button" value="Click here to display URLs" onClick="testIt();">
</body>
</html>

Let’s walk through this. The user clicks the button, which calls testIt(). In testIt(), we create a
new <script> tag, setting its src attribute to point to our remote URL file. This new <script> tag is appended to
the document’s <head> element. The browser then goes off and loads the remote file, and evaluates it. This
evaluation causes the call to showURLs(), which is contained in the remote file, to execute. showURLs()
executes, and it iterates over the collection of arguments passed to it, which can be none to as many as we
want. For each, it appends it to a string, breaking the line after each one. Finally, it pops up an alert() showing
the string. Blink and you missed it.

Now take another look at the load() method in the Classloader.js file. Doesn’t that look familiar?
It’s the exact same code, but with a different URL for the src attribute.

Once a class has been loaded via the load() method, the verify() method is called. This
method accepts the class that was loaded and another class that it is to be verified against.
verify() iterates over the properties contained in the class to verify against, and for each, it
ensures that the property is present in the class to be verified. If the property isn’t present,
verify() sets the isValid flag to false. This flag is the return value of the method, so true will
be returned if all properties are found. Note that this method checks only for functions. It ignores
data fields, except for id, which is a required part of the public interface of a Mode-descendant
class. All the other data fields do not contribute to the public interface, so they are ignored.

It is often said that a picture is worth a thousand words, and in the spirit of that statement,
Figure 4-7 is a flow diagram showing all the steps involved in loading a class in CalcTron.

This flow is slightly different for the BaseCalc mode. In that case, everything is the same up
until the step “JSON includes call to init() of Mode object, JSON is passed to it.” This still occurs,
but in the case of the BaseCalc class, the init() method is overridden, so it does some work,
then calls init() on the superclass (which, in case you are unfamiliar with the term, means the
same thing as parent class), namely the Mode class. The rest of the flow after that is again the
same. Don’t worry if this didn’t quite make sense. We haven’t looked at the Mode class or the
classes for the two calculator modes, so this is kind of jumping the gun just a bit. Let’s get to
that stuff now to put this all in the proper context.

Zammetti-816-4C04.fm Page 126 Monday, March 5, 2007 10:33 AM

C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J A V A S C R I P T C A L C U L A T O R 127

Figure 4-7. Flow diagram of the steps involved in loading a class

Writing Mode.js
Every mode that CalcTron supports, including the Standard and BaseCalc modes that come
with it, is implemented in a class that extends from the Mode class. The Mode class itself contains
some fields that are commonly needed by all calculator modes, and it also includes stub methods
for all the methods any calculator mode is expected to implement. Together, these methods
form the public interface a Mode implementation class must expose for CalcTron to be able to
properly interact with it. You can see the overall structure of the Mode class in the UML diagram
in Figure 4-8.

Zammetti-816-4C04.fm Page 127 Monday, March 5, 2007 10:33 AM

128 C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J AV A S C R I P T C A L C U L A T O R

Figure 4-8. UML diagram of the Mode class

The first property, id, is actually part of the public interface as well, as this is needed by
other code outside a class extending from Mode. However, the others—resultsCurrent,
resultsPrevious, resultsCurrentNegated, and resultsPreviousNegated—are not considered
part of the public interface, because they are needed only within the class itself.

The methods begin with init(), which as you saw during the discussion of the class-loading
cycle, is called after the class is loaded and verified to initialize the calculator mode. Most of the
time, the implementation of this method in the Mode class suffices, so let’s look at that code now:

 this.init = function(inVal) {

 if (inVal) {

 var mainDiv = $("mainContainer");

 // Size width and height as specified.
 mainDiv.style.width = inVal.mainWidth + "px";
 mainDiv.style.height = inVal.mainHeight + "px";

 // Center the main content div in the browser content area.
 mainDiv.style.left = (calcTron.scrWidth - parseInt(inVal.mainWidth)) / 2;
 mainDiv.style.top = (calcTron.scrHeight - parseInt(inVal.mainHeight)) / 2;

 // Command buttons (10 of them, numbered 0-8).
 for (var i = 0; i < 9; i++) {
 var btn = $("commandButton" + i);

Zammetti-816-4C04.fm Page 128 Monday, March 5, 2007 10:33 AM

C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J A V A S C R I P T C A L C U L A T O R 129

 if (inVal.commandButtons[i].enabled == "true") {
 btn.style.display = "block";
 btn.value = inVal.commandButtons[i].caption;
 } else {
 btn.style.display = "none";
 }
 }

 // Buttons (50 of them, 10 in a row numbered 0-9 in 5 rows numbered 0-4).
 for (var y = 0; y < 5; y++) {
 for (var x = 0; x < 10; x++) {
 btn = $("button" + y + "_" + x);
 if (inVal.buttons[y][x].enabled == "true") {
 btn.style.display = "block";
 btn.value = inVal.buttons[y][x].caption;
 } else {
 btn.style.display = "none";
 }
 }
 }

 } else {

 this.loadJSON(this.id);

 }

 // Show current mode in info box and clear results div.
 this.updateResults("");
 this.updateInfo(this.id + " Mode");

 } // End init().

As you may recall, this method is actually called twice during a mode switch. The first time
it is called, nothing is passed to it. When that occurs, the else clause kicks in, which results in a
call to loadJSON(), passing it the value of the id field, which would have been populated prior to
this. loadJSON() is conceptually, and quite literally, just like the load() method of the Classloader
class, as you can see here:

 this.loadJSON = function(inID) {

 var scriptTag = document.createElement("script");
 scriptTag.src = "modes/" + this.id + ".json";
 var headTag = document.getElementsByTagName("head").item(0);
 headTag.appendChild(scriptTag);

 } // End loadJSON().

Zammetti-816-4C04.fm Page 129 Monday, March 5, 2007 10:33 AM

130 C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J AV A S C R I P T C A L C U L A T O R

A dynamic <script> tag is created, with its src attribute pointing to the JSON file in the
modes subdirectory with the name matching the name (id field value) of the mode. This causes
the JSON to be loaded and evaluated. When it is evaluated, init() will be called again, this time
with the evaluated JSON itself as an argument. When that happens, the if block executes.

First, the if block code sets the width and height of the calculator outer <div> to the values
specified by the mainWidth and mainHeight properties in the JSON. This is done because
dynamically calculating these values proves to be more difficult than you might at first think, if
cross-browser display and proper display under all conditions are important to you. Instead,
I decided to put the onus on the mode developer. There’s little more to it than a bit of trial and
error, but it’s not that big a hassle when creating a new mode (I should know—I did it twice).

After that, the calculator is centered using the same basic logic you saw earlier to center
the pop-up.

Next, we come to something slightly more interesting: generation of the command buttons.

 // Command buttons (10 of them, numbered 0-8).
 for (var i = 0; i < 9; i++) {
 var btn = $("commandButton" + i);
 if (inVal.commandButtons[i].enabled == "true") {
 btn.style.display = "block";
 btn.value = inVal.commandButtons[i].caption;
 } else {
 btn.style.display = "none";
 }
 }

Ten command buttons are available in a mode layout: five on top and five at the bottom.
The last one on the bottom is always the mode-switch button, so the developer has nine buttons
available; hence, the 9 in the for loop. For each iteration, we first get the reference to the button,
which, if you recall, already exists. We then check the enabled value in the JSON for the appro-
priate button. If it is false, then the button is not used, and we set the display style attribute to
none to hide it. If it is enabled (true), then we set display to block instead to show it, and also
change the label to that specified in the JSON. The event handler is already connected, as seen
in calctron.htm, so that’s all the work we have to do here.

The input buttons are handled in exactly the same way; however, the developer has a total
of fifty different buttons available, ten each in five rows. So, we have two for loops: one for the
row (y) and one for each button in the row (x).

Following loadJSON() is the method updateResults(). This simply displays the value of the
resultsCurrent field in the results box at the top of the calculator, preceding the value with a
negative sign if the resultsCurrentNegated field has a value of true. updateInfo() follows that,
and it simply displays its argument in the info box at the bottom of the calculator.

After those two functions is a rather large batch of empty functions—one for each of the
calculator’s command buttons and input buttons. This is done so that if a calculator mode’s
implementation class doesn’t need a given button, it still will expose an event handler function
for it, but that function will do nothing. This just keeps the public interface a known constant,
so there’s no chance of a button’s onClick handler calling a method that doesn’t exist. (Well, a
developer could set one of these methods to null in the implementation class, but he would
have to go out of his way to do that, and we can’t guard against a developer purposely trying to
break something.)

Zammetti-816-4C04.fm Page 130 Monday, March 5, 2007 10:33 AM

C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J A V A S C R I P T C A L C U L A T O R 131

As mentioned, the Mode class is the superclass for all the implementation classes for the
calculator modes, so as you can probably surmise, it’s now time to look at those implementa-
tion classes. We’ll also look at the JSON that defines each mode as well, since they go hand in hand.

Writing Standard.json and Standard.js
Now that we’ve seen the basic Mode class, let’s look at the classes that extend from it: the imple-
mentation classes that define a CalcTron mode. Let’s begin with the Standard mode.

Two items make up a CalcTron mode: the implementation class extending from the Mode
class and a JSON file, which describes the mode. For instance, the JSON for the standard mode
is shown in Listing 4-3.

Listing 4-3. The JSON Describing the Standard CalcTron Mode

calcTron.currentMode.init(

 {

 "mainWidth" : "340", "mainHeight" : "248",

 "commandButtons" : [
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "true", "caption" : "Backspace" },
 { "enabled" : "true", "caption" : "Clear" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
],

 "buttons" : [
 [
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "true", "caption" : "7" },
 { "enabled" : "true", "caption" : "8" },
 { "enabled" : "true", "caption" : "9" },
 { "enabled" : "true", "caption" : "/" },
 { "enabled" : "true", "caption" : "sqrt" }
],

Zammetti-816-4C04.fm Page 131 Monday, March 5, 2007 10:33 AM

132 C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J AV A S C R I P T C A L C U L A T O R

 [
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "true", "caption" : "4" },
 { "enabled" : "true", "caption" : "5" },
 { "enabled" : "true", "caption" : "6" },
 { "enabled" : "true", "caption" : "*" },
 { "enabled" : "true", "caption" : "%" }
],
 [
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "true", "caption" : "1" },
 { "enabled" : "true", "caption" : "2" },
 { "enabled" : "true", "caption" : "3" },
 { "enabled" : "true", "caption" : "-" },
 { "enabled" : "true", "caption" : "1/x" }
],
 [
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "true", "caption" : "0" },
 { "enabled" : "true", "caption" : "+/-" },
 { "enabled" : "true", "caption" : "." },
 { "enabled" : "true", "caption" : "+" },
 { "enabled" : "true", "caption" : "=" }
],
 [
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" }

Zammetti-816-4C04.fm Page 132 Monday, March 5, 2007 10:33 AM

C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J A V A S C R I P T C A L C U L A T O R 133

]
]

 }

);

If you’ve ever seen JSON before, you may be thinking, “That doesn’t look quite right.” Well,
in fact, this is JSON wrapped in a function call. The JSON itself is the argument to the function,
or more precisely, an object constructed from it. Recall that when the init() method of the
Mode class is first called, by the Classloader class, it is passed nothing, but the second time, it is
passed this JSON. So what actually calls init() the second time? The answer is that the JSON
does. Well, sort of—the JSON is loaded dynamically using the previously discussed dynamic
<script> tag technique.

Like any <script> tag on a page, the browser evaluates the contents returned from the
server. In doing so, it executes any JavaScript not contained within a function, as is the case
with the call to calcTron.currentMode.init(). During mode loading, the currentMode property
of the calcTron instance is pointed to the Standard class loaded before the JSON. So when the
JSON loads and is evaluated, the call to init() occurs, and the JSON is passed to it. init() then
does its thing, as described previously.

■Tip The dynamic <script> tag technique is becoming more and more common. Yahoo was the first to
do it to a degree that people started to become aware of it. It’s basically just a way to define a callback func-
tion that will be executed when the data returns. The data doesn’t need to be JSON, although that is a prevalent
return type. It could be an actual object (imagine a class being defined and an instance created instead of
JSON, with fields populated, and then the call to init() passing a reference to that object). This is becoming
a popular approach because it allows for cross-domain Ajax calls, in essence. As long as the client knows
what callback function will be called, and the server adheres to that contract, there are no same-domain limi-
tations, as is usually the case with Ajax. Just think, you and your friends can create CalcTron modes, host
them on your own server, and your local copy of CalcTron can access them from anywhere in the world (once
you inform CalcTron of these new modes by updating the mode-switch pop-up).

The meaning of the JSON itself is relatively simple. mainWidth and mainHeight, which were
mentioned earlier, define the width and height of the calculator <div>. After that comes a group
of elements, named commandButtons. Each element in this group defines a single command
button. Every button, be it a command button or an input button, has two attributes: enabled
and caption. The enabled attribute defines whether the button is visible (true) or not (false).
The caption attribute is the text that appears on the button.

After the input buttons is a group named buttons. Within this group are five subgroups,
each one corresponding to a row of buttons. Each of these groups contains ten elements, each
corresponding to a button.

Zammetti-816-4C04.fm Page 133 Monday, March 5, 2007 10:33 AM

134 C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J AV A S C R I P T C A L C U L A T O R

EVENT HANDLERS

In calctron.htm, each button has an onClick event handler defined. The Mode class includes stub functions,
which map to the buttons. The correlation between these functions and the JSON you see here is an implied
correlation. For instance, take the command button group:

 "commandButtons" : [
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "true", "caption" : "Backspace" },
 { "enabled" : "true", "caption" : "Clear" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
]

How do we know which function will be called when the Backspace button is clicked? It isn’t named here, so
how do we know? Simply put, it’s positional. The first button defined in this JSON would call commandButton0()
when clicked, the second commandButton1(), the third commandButton2(), and finally, Backspace would
call commandButton3(). For the input buttons, consider the first row as an example:

 [
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "false", "caption" : "" },
 { "enabled" : "true", "caption" : "7" },
 { "enabled" : "true", "caption" : "8" },
 { "enabled" : "true", "caption" : "9" },
 { "enabled" : "true", "caption" : "/" },
 { "enabled" : "true", "caption" : "sqrt" }
]

This works in exactly the same way, except that we need to know the row and column of the button in
this case. For the first row of input buttons, the row number is 0. So, the first button here would call the func-
tion button0_0(). Jumping down to the number 7 button on the screen, it would call function button0_5().

With the JSON out of the way, we can move on to the Standard.js file, the Standard mode
implementation class itself. The UML diagram of the Standard class is shown in Figure 4-9.

In this diagram, I wrote the commandButton and button methods in shorthand because
there are so many of them. The shorthand simply means that there are commandButton0(),
commandButton1(), commandButton2(), and so on, up to commandButton9(). For the button methods,
there are button0_0(), button0_1(), button0_2(), and so on, up to button0_9(), and then this
repeats for button1_x(), button2_x(), button3_x(), and button4_x(), where x is 0–9.

Zammetti-816-4C04.fm Page 134 Monday, March 5, 2007 10:33 AM

C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J A V A S C R I P T C A L C U L A T O R 135

Figure 4-9. UML diagram of the Standard class

As you look at the source (which you should have already downloaded from the Apress
web site), the first thing you see is the id field being set to Standard. Setting the id field is neces-
sary for any implementation class you write, and this value must match exactly, including case,
the .js and .json files for the mode. Next are two fields specific to this mode, currentOperation
and lastKeyPressed. These will likely be needed by any mode you write as well, but I left them
out of the Mode class because there could be some situations where they aren’t required. Their
names should make clear what they are: storage of what operation is currently being
performed (the last operation button clicked, such as +, -, *, or /) and storage of what the last
button clicked was (this is needed for proper operation, as you’ll see).

I want to jump around just a little to cover the methods in a slightly more logical order than
they appear in the code. First, let’s look at the method commandButton3(), which correlates to
the Backspace button:

 this.commandButton3 = function() {

 if (this.resultsCurrent != "") {
 this.resultsCurrent =
 this.resultsCurrent.substr(0, this.resultsCurrent.length - 1);
 this.updateResults();
 }

 } // End commandButton3().

Zammetti-816-4C04.fm Page 135 Monday, March 5, 2007 10:33 AM

www.allitebooks.com

http://www.allitebooks.org

136 C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J AV A S C R I P T C A L C U L A T O R

It’s admittedly not a complex function. After we’re sure we have a current result (because
if we don’t, there’s nothing to delete and hence we would get an error if we tried), we cut the
last character off from the current result string, and call updateResults() to show it.

This is probably a good time to answer a question that has probably already occurred to
you: why exactly are the resultsCurrent and resultsPrevious fields always strings? The answer
is that it makes backspacing easier. It also makes showing negative numbers easier, and makes
base conversions, which are done in the BaseCalc mode, easier. Leaving these values as strings
until calculations are actually performed on them just makes the code a little cleaner and less
verbose.

The Clear button is also a very simple bit of code:

 this.commandButton4 = function() {

 this.resultsCurrent = "";
 this.updateResults();

 } // End commandButton4().

I’m willing to bet you don’t even need an explanation of that, so let’s just keep moving
right along.

Each of the number button handlers is pretty much the same, so let’s look at just one:

 this.button0_5 = function() {

 this.checkLastPressed();
 this.lastKeyPressed = "7";
 this.resultsCurrent += "7";
 this.updateResults();

 } // End button0_5().

As discussed, by pure positional reckoning, the number 7 button winds up mapping to the
button0_5() method. In it, we first call the checkLastPressed() method, which we’ll look at
next. For now, let’s skip over it. We record 7 as being the last button pressed, and then add the
digit 7 to the current results. We then redisplay the current results. The net result is that if 31
were showing in the results box, it would now show 317, and we would know that the last
button pressed was 7.

Now let’s see why knowing which button was last pressed is important by looking at that
checkLastPressed() method:

 this.checkLastPressed = function() {

 if (this.lastKeyPressed == "+" || this.lastKeyPressed == "-" ||
 this.lastKeyPressed == "*" || this.lastKeyPressed == "/") {
 // Time to start entering a new number, but save the current one first.
 this.resultsPrevious = this.resultsCurrent;
 this.resultsPreviousNegated = this.resultsCurrentNegated;
 this.resultsCurrent = "";
 this.resultsCurrentNegated = false;
 }

Zammetti-816-4C04.fm Page 136 Monday, March 5, 2007 10:33 AM

C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J A V A S C R I P T C A L C U L A T O R 137

 // When equals is pressed, it's also time to start a new number, but in
 // that case we clear the previous number too.
 if (this.lastKeyPressed == "=") {
 this.lastKeyPressed = "";
 this.resultsCurrent = "";
 this.resultsCurrentNegated = false;
 this.resultsPrevious = "";
 this.resultsPreviousNegated = false;
 this.currentOperation = "";
 }

 } // End checkLastPressed().

This function is needed because it’s only when a new button is clicked that certain things
can happen. For instance, when the user clicks +, -, *, or /, it is time to start a new number.
Open the standard Windows calculator and enter a number, click one of those buttons, and
then click a number button again. Notice that a new number is started; the old one is cleared
(although it is stored). We want to mimic that functionality, and the only way to do it, without
having a lot of duplicate code all over the place, is to have this function do that work for us. So,
we check if one of those four operation buttons was clicked. If it was, we copy the current number
to the previous field (resultsPrevious = resultsCurrent) and we also copy whether the value
is negative (resultsPreviousNegated = resultsCurrentNegated). We then clear the current
number and make it positive. The net result is that it works like the standard Windows
calculator.

The user clicking the equal sign is also a situation that needs to be handled here. Clicking
the equal sign obviously performs some calculation, and that is done in the event handler for
that button. But what happens when the next button is clicked? We need to start entering a new
number, but in that case, we’re not saving the current value as the previous value. Instead, we
are just starting a new number. The equal sign button is almost like a reset button, so we need
to clear a few extra fields when it is clicked, namely lastKeyPressed and currentOperation.

Using this as a segue, and not the kind you can ride on,2 let’s jump down now to that
method that deals with the equal sign button:

 this.button3_9 = function() {

 if (this.currentOperation) {
 var answer = 0;
 // Negate the current value if the flag says to.
 var resCurrent = parseFloat(this.resultsCurrent);
 if (isNaN(resPrevious)) {
 resPrevious = resCurrent;
 }
 if (this.resultsCurrentNegated) {
 resCurrent = resCurent * -1;
 }

2. Segway, that annoying scooter all the cool kids in Silicon Valley have, was the brainchild of famous
uber-genius Dean Karnen. Yes, I know, bad pun, but work with me here!

Zammetti-816-4C04.fm Page 137 Monday, March 5, 2007 10:33 AM

138 C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J AV A S C R I P T C A L C U L A T O R

 // Negate the previous value if the flag says to.
 var resPrevious = parseFloat(this.resultsPrevious);
 if (this.resultsPreviousNegated) {
 resPrevious = resPrevious * -1;
 }
 // Now perform the current operation.
 switch(this.currentOperation) {
 case "+":
 answer = resPrevious + resCurrent;
 break;
 case "-":
 answer = resPrevious - resCurrent;
 break;
 case "*":
 answer = resPrevious * resCurrent;
 break;
 case "/":
 answer = resPrevious / resCurrent;
 break;
 }
 // Reset some variables so we're ready for the next operation or input
 // key, and finally, update the results to show the answer.
 this.resultsCurrent = "" + answer;
 this.resultsPrevious = "";
 this.resultsPreviousNegated = false;
 this.currentOperation = null;
 this.lastKeyPressed = "=";
 this.updateResults();
 }

 } // End button3_9().

First, a trivial rejection: is there a current operation to perform? This means that if the user
enters a number and just clicks the equal sign, nothing will happen. If there is a current opera-
tion, we start by getting the numeric form of the current value. If the resultsCurrentNegated
flag indicates it is a negative number, multiple it by –1 to make it negative. Then we do the same
for the previous number. We also do a check here: if there is no previous result, which means
that parseFloat() resulted in the value not being a number (which we determine by using the
built-in isNaN() function), we make the previous value the current value. This allows us to
mimic the operation of the standard Windows calculator in that you can do 9+= and get 18, and
then += again gives you 36, and so on.

After that, the code switches on the current operation and performs the appropriate oper-
ation. Next, we set resultsCurrent to the answer, appending it to an empty string to convert it
to a string. We clear the previous value, reset the negated flag to false, clear the current opera-
tion, and record the equal sign as the last button pressed. Finally, we display the answer by
calling updateResults() (remember that updateResults() shows the value of resultsCurrent,
which we just set to the answer). It’s really pretty simple.

Zammetti-816-4C04.fm Page 138 Monday, March 5, 2007 10:33 AM

C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J A V A S C R I P T C A L C U L A T O R 139

That covers the operations involving two numbers. What about those that involve only a
single number—square root and reciprocal? Well, let’s look at square root first:

 this.button0_9 = function() {

 if (this.resultsCurrent != "") {
 this.resultsCurrent = Math.sqrt(parseFloat(this.resultsCurrent)) + "";
 this.updateResults();
 }

 } // End button0_9().

As long as there is a current value, we use the Math package’s sqrt() function to do the
work, appending a blank string onto the result so that the value we put into resultsCurrent is
still a string. Then we display the new number by calling updateResults(), and that’s that.

Reciprocal is similarly easy:

 this.button2_9 = function() {

 if (this.resultsCurrent != "") {
 this.resultsCurrent = (1 / parseFloat(this.resultsCurrent)) + "";
 this.updateResults();
 }

 } // End button2_9().

Only one function remains, and that’s percentage. Percentage is a bit of a hybrid in that it
requires two numbers like addition, subtraction, multiplication, and division, but it operates
immediately when the % button is clicked, so the calculation is performed in the event handler
method, as it is for square root and reciprocal. Here’s the code for that method:

 this.button1_9 = function() {

 if (this.resultsCurrent != "" && this.resultsPrevious != "") {
 var a = parseFloat(this.resultsPrevious) / 100;
 var b = a * parseFloat(this.resultsCurrent);
 this.resultsCurrent = b + "";
 this.updateResults();
 }

 } // End button1_9().

The check to make sure we have a current value also now includes a check to be sure we
have a previous value. Once we know we have both, we get the numeric version of each, and
divide the previous value by 100. Then multiplying that result by the current value results in a
percentage value. So, we again set resultsCurrent to the answer and display it with
updateResults().

The only thing left to discuss is how exactly this class extends the Mode class. The answer is
found in the last two lines of code in the Standard.js file (not including comments):

Zammetti-816-4C04.fm Page 139 Monday, March 5, 2007 10:33 AM

140 C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J AV A S C R I P T C A L C U L A T O R

// Standard inherits from Mode.
Standard.prototype = new Mode();
// Continue the sequence of events after this class is loaded.
calcTron.setMode(new Standard());

The prototype concept was discussed in Chapter 2, so I refer you to that chapter if the first
line isn’t clear. That single line implements the inheritance, and it’s as simple as that.

The second line, however, is new, and it is what continues the class-loading cycle as previ-
ously discussed.

And that covers the Standard CalcTron mode. The BaseCalc mode is next.

Writing BaseCalc.json and BaseCalc.js
In the interest of saving space, I won’t show the JSON for this mode because, frankly, once
you’ve seen one mode’s JSON, you’ve pretty much seen ’em all. You should take a look at it on
your own, but don’t spend more than a minute on it if you’ve already examined the JSON for
the Standard mode—it’s substantially the same.

The BaseCalc mode implementation class is also substantially similar to the Standard
mode class, but there are some differences. To begin, let’s examine the UML diagram for it,
shown in Figure 4-10.

Figure 4-10. UML diagram of the BaseCalc class

Zammetti-816-4C04.fm Page 140 Monday, March 5, 2007 10:33 AM

C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J A V A S C R I P T C A L C U L A T O R 141

As you would certainly expect, it contains all the same fields and methods as the Standard
class owing to the fact that they both extend the Mode class. It also contains a few additional
items though, as is allowed when extending a class. The currentBase field records the number
base of the current value: decimal, hexadecimal, binary, or octal. The baseArray is an array of alpha-
numeric values that is used during base conversions, as you’ll see shortly. In addition to these extra
fields, you also see a couple additional methods: convert() and convertToBase().(). We’ll get to
those soon, but let’s look at some plumbing first.

As you examine this code, you’ll see that it is very similar to the Standard class, but one
difference should jump out at you: BaseCalc implements an init() method. In fact, it overrides
init() in the superclass (Mode). Let’s see what bizarreness is going on there exactly:

 this.init = function(inVal) {

 if (inVal) {

 // Initialize array for base conversions.
 this.baseArray[1] = "0";
 this.baseArray[2] = "1";
 this.baseArray[3] = "2";
 this.baseArray[4] = "3";
 this.baseArray[5] = "4";
 this.baseArray[6] = "5";
 this.baseArray[7] = "6";
 this.baseArray[8] = "7";
 this.baseArray[9] = "8";
 this.baseArray[10] = "9";
 this.baseArray[11] = "A";
 this.baseArray[12] = "B";
 this.baseArray[13] = "C";
 this.baseArray[14] = "D";
 this.baseArray[15] = "E";
 this.baseArray[16] = "F";

 // Call superclass constructor. Note that this only works if the
 // method of the superclass does not reference anything specific to the
 // subclass... see the notes about the id field on the next statement!
 BaseCalc.prototype.init(inVal);

 // Note that the call to init() of the superclass will result in the
 // information bar saying "null Mode" because the this reference points
 // to the instance of Mode that is the prototype for this BaseCalc
 // instance. So, we need to set it here using the id field of this
 // instance so what's in the info bar is correct.
 this.updateInfo(this.id + " Mode");

 } else {

Zammetti-816-4C04.fm Page 141 Monday, March 5, 2007 10:33 AM

142 C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J AV A S C R I P T C A L C U L A T O R

 // Load the JSON for this tab.
 this.loadJSON(this.id);

 }

 } // End init().

Because this version of init() overrides that found in Mode, any time calcTron.
currentMode.init() is called (because currentMode will be pointing to an instance of BaseCalc
when we switch to that mode), the version of init() seen here will be executed, not the one in
Mode, as is the case with the Standard class. The first time it is called, no value is passed, so the
else clause is executed, and the JSON for the mode is loaded. This is what happens in the Mode
class’s version of init() as well.

The second time it is called, however, the loaded JSON will be passed in, so we wind up in
the if block. There, the first thing you see is the baseArray being initialized with values. We’ll
skip over the purpose of that array for a little while longer; for now, it’s enough to know it is
populated with values here.

Next, you see an interesting thing that might be new to you in JavaScript: calling the super-
class version of a function. To do so, we reference the prototype of the BaseCalc class, and call
init() on it. You can think of BaseCalc.prototype as being equivalent to super() in Java, if you
are familiar with Java. The difference is that you must name the method you want to call in
JavaScript; hence, init() is tacked on. This call carries the JSON input argument with it, so the
usual init() functionality you saw in the Mode base class executes now. Once that call returns,
we update the info bar to state the new mode. The astute reader might wonder why this is
necessary, since it is done in the Mode class’s init() method. Here is the code that does so in Mode:

 this.updateInfo(this.id + " Mode");

The problem here is that the this reference points not to the BaseCalc instance, but instead to
Mode itself, and we therefore get the wrong value showing up in the info bar. So, we essentially
override what is done in Mode’s init() method when control returns to BaseCalc’s init()
method, and the problem is solved.

The lastKeyPressed() method of BaseCalc is virtually identical to the version from Standard,
with one extra line of code in the first if block. This line of code takes the current value and
converts it to decimal:

 this.convert("dec");

Any time we do calculations, we do so in decimal, and then just convert the result to what-
ever the current base is. Note that we have a field, currentBase, that tells us the base of the
current value, but we don’t have a field to indicate the base of the previous value. The reason is
that we know, because of this line of code, that it’s always going to be decimal. As I said, the rest
of the method is identical to what you’ve seen already.

The Backspace and Clear command buttons are also identical to their Standard equivalents, so
there’s no need to review them here.

Next, we come to the four command buttons that allow us to switch modes. They are all
similar, so we’ll look at just the one for hexadecimal here:

Zammetti-816-4C04.fm Page 142 Monday, March 5, 2007 10:33 AM

C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J A V A S C R I P T C A L C U L A T O R 143

 this.commandButton1 = function() {

 this.updateInfo("Hexadecimal");
 if (this.resultsCurrent != "") {
 this.convert("hex");
 this.updateResults();
 }
 this.currentBase = "hex";

 } // End commandButton1().

Here, we’re just displaying the new mode in the info bar at the bottom. And if we have a
current value, we convert it to the new base with a call to convert(), passing it the base to
convert to—hex in this case (dec, oct, and bin are the other valid parameter values). We update
the result display as well, which gives us the ability to convert the current number to any base.
Finally, we record the new number base, and we’re finished.

Like the command buttons, the input buttons are all nearly the same as those in the
Standard class. However, there are some differences in a few buttons. Let’s take the number
7 button as an example:

 this.button0_5 = function() {

 if (this.currentBase == "bin") {
 return;
 }
 this.checkLastPressed();
 this.lastKeyPressed = "7";
 this.resultsCurrent += "7";
 this.updateResults();

 } // End button0_5().

Here, we begin with a check to ensure that the current number base isn’t binary. If it is
binary, we immediately return and do nothing else. This has the effect that when binary is the
number base, only the 0 and 1 buttons will be responsive; all others will do nothing (all of the
buttons after 0 and 1 have this check in them). Likewise, if you look at 8 and 9, you’ll see a check
to return immediately if the number base is binary or octal. And the A–F buttons will return
immediately if the number base is anything other than hexadecimal. The net result is that only
buttons valid for the currently selected number base will be reactive, as you would expect.

The +, -, *, and / buttons are the same as in Standard, so we’ll skip them here. There is no
negation, percentage, square root, or reciprocal in this mode, so nothing to see there either.

Now we come to the method for the equal sign. It is again largely like its counterpart in
Standard, so we’ll just look at the differences. First, recall a while back I mentioned that all
calculations are done in decimal? Well, as you may have guessed, one of the first things we see
is a conversion of the current value to decimal (the previous value is already in decimal, so only
the current value is of concern). After that is the same sort of switch on the current operation
as in Standard. After that is something a little different:

Zammetti-816-4C04.fm Page 143 Monday, March 5, 2007 10:33 AM

144 C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J AV A S C R I P T C A L C U L A T O R

 // Next, convert the new current value to the current base. Before we
 // can do that though, we need to set the current base to decimal to
 // match the answer we have.
 var storedCurrentBase = this.currentBase;
 this.currentBase = "dec";
 this.convert(storedCurrentBase);
 this.currentBase = storedCurrentBase;

We need to convert the answer to the current number base. However, you’ll notice when
we look at the convert() method that the currentBase field is changed by convert() to the
number base specified for the conversion. This is because convert() is used by the four number
base command buttons to convert the current value, and also record the new number base. So
what we have here is saving the current number base first, then calling convert(), which results
in currentBase being set to dec. We then set currentBase to the number base stored before the
call to convert(), which may or may not have been dec, and the net result is that the current
number base is preserved; the change by convert() is effectively undone.

Next up is the convert() method itself:

 this.convert = function(inNewBase) {

 var currentValue = null;
 switch (this.currentBase) {
 case "dec":
 currentValue = parseInt(this.resultsCurrent, 10);
 break;
 case "hex":
 currentValue = parseInt(this.resultsCurrent, 16);
 break;
 case "oct":
 currentValue = parseInt(this.resultsCurrent, 8);
 break;
 case "bin":
 currentValue = parseInt(this.resultsCurrent, 2);
 break;
 }
 switch (inNewBase) {
 case "dec":
 currentValue = this.convertToBase(currentValue, 10);
 break;
 case "hex":
 currentValue = this.convertToBase(currentValue, 16);
 break;
 case "oct":
 currentValue = this.convertToBase(currentValue, 8);
 break;

Zammetti-816-4C04.fm Page 144 Monday, March 5, 2007 10:33 AM

C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J A V A S C R I P T C A L C U L A T O R 145

 case "bin":
 currentValue = this.convertToBase(currentValue, 2);
 break;
 }
 this.resultsCurrent = "" + currentValue;

 } // End convert().

It begins by taking the current value and getting it as a numeric value. To do this, we use
the parseInt() function. This function takes the radix, or number base, of the number as its
second argument (its first argument is the number to convert). So, we switch on currentBase to
determine this. Once we have the numeric version of the current value, we then switch on
inNewBase and call convertToBase(), passing it the current value and the radix to convert to.
The current value is then set to the number in the new base, converted to a string.

You may have noticed that no real conversion per se happens in convert(). That function
is performed by the convertToBase() method:

 this.convertToBase = function (inNumber, inNewBase) {

 var str = "";
 var calc = inNumber;
 while (calc >= inNewBase) {
 var divVal = calc % inNewBase;
 calc = Math.floor(calc / inNewBase);
 str += this.baseArray[divVal + 1];
 }
 str += this.baseArray[calc + 1];
 var len = str.length;
 var fnl = "";
 for (var j = 0; j < len; j++) {
 var a = (len - j) - 1;
 var b = len - j;
 fnl += str.substring(a, b);
 }
 return fnl;

 } // End convertToBase().

As you can see, this is where that baseArray field comes into play. In brief, this function
continually divides the incoming number by the radix, and for each division, adds the appro-
priate elements from baseArray to an output string. That iteration ends when the result of the
division is smaller than the number base. At that point, the remainder is used as a lookup into
baseArray as well. The output string now needs to be reversed, because building it up results in
the answer in reverse. Once that reverse is done, the string is returned, and what we have is the
input number converted to the requested base.

And that concludes our look at BaseCalc, and in fact, CalcTron as a whole.

Zammetti-816-4C04.fm Page 145 Monday, March 5, 2007 10:33 AM

146 C H A P T E R 4 ■ C A L C T R O N 3 0 0 0 : A J AV A S C R I P T C A L C U L A T O R

Suggested Exercises
I admit to never being a big fan of math growing up, but as an adult, I’ve come to appreciate it
more, both from a practical standpoint and as a purely intellectual pursuit. It is my hope that
CalcTron can at least start you down that same path. To that end, I offer a few suggestions on
where you can take this project next to learn more not only about JavaScript, but mathematics
in general:

Add memory functions: This is a simple one to get you started. Most calculators have memory
functions, but CalcTron does not. I purposely left these out to give you a nice, easy sugges-
tion to start with, so get to it.

Expand Classloader: Modify the Classloader class to be more generic, and allow it to
load any class. Perhaps pass the load() method a fully qualified package name, such as
com.omnytex.javascript.SomeClass, and then use the com.omnytex.javascript portion as
a subdirectory (so it becomes com/omnytex/javascript). Also, change it so that the load()
method accepts the class to verify against as an argument, and automatically call verify()
when load() completes (you should probably make the verification step optional). Also,
research to see if there’s a way to determine if a <script> tag did not load successfully, and
add that as a verification step (as I write this, I am not even sure this is possible, so it’s
going to be a fun exercise for both of us).

Add conversion capabilities: Originally, this chapter was to have been followed by one
about building ConvertTron. The concept was to expand CalcTron to include conversion
capabilities. Well, things change in the publishing business as a project evolves, so that
chapter didn’t make the cut. However, the basic idea is still a very good one. Conversions
shouldn’t be too difficult to add in, so go for it.

Add simple algebra functions: How about a simple algebra solver? I personally wouldn’t try
to create the code to solve simultaneous equations or anything like that, but 9=x+5 shouldn’t
be too tough to solve. Writing an algorithm to handle such simple equations probably
shouldn’t be too difficult, but should be just challenging enough to be a good learning
exercise.

Summary
This chapter’s project seemed like a pretty simple idea: a JavaScript-based calculator. Far be it
for me to leave things simple though. We took the basic calculator concept and turned it into
an extensible framework that can grow as your mathematical requirements do. You saw how
some common object-oriented techniques can be implemented in JavaScript, and how those
techniques allow you to enhance the basic application as you see fit. You even saw a way to
write a rudimentary classloader that verifies that the classes you load are valid (well, somewhat
anyway) for the application’s purposes.

You also saw how you can dynamically load JavaScript and JSON without reloading the
page and without using the XMLHttpRequest object that implies Ajax techniques. Additionally,
you saw a bit of what the Rico library has to offer. I hope you’ll agree that this chapter enforces
the “never judge a book by its cover” saying. Even a relatively simple project can expose you to
some very interesting techniques.

Zammetti-816-4C04.fm Page 146 Monday, March 5, 2007 10:33 AM

147

■ ■ ■

C H A P T E R 5

Doing the Monster Mash:
A Mashup

A long time ago, some god-like developer came up with the concept of an Application
Programming Interface (API). In short, an API is nothing but a known (to those that might use
it) interface to a program or system. The developer came up with this idea, and everyone saw
it, and saw that it was a Good Thing™. But, in the immortal words of Dr. Leonard H. McCoy,
“. . . engineers, they love to change things.” We couldn’t just stick with the term API. No, we just
had to come up with something new, and that something is the term mashup. Since it’s a term
that is all the rage these days, and also something that often involves JavaScript to a large degree,
it’s most definitely an appropriate topic for this book. So, in this chapter, I’ll introduce the
concept of the mashup, and then we’ll put that concept to use in a handy little application.

What’s a Mashup?
A mashup, as it has come to be known, is basically a web site or application that takes content
from multiple sources, most usually via some sort of public programmatic interface, and inte-
grates it all into a new experience—that is, a new application. If this sounds a bit like the promise
of web services to you, you aren’t too far off. In fact, web services are sometimes involved in
mashups, although that setup typically involves a server infrastructure and some server-side
code, vis-à-vis. You won’t typically call on true web services (SOAP, UDDI, WSDL, and all that
the term web services typically denotes) from a JavaScript client, and almost certainly not from
a web browser (not without plug-ins or similar technology, generally).

No, in recent times, the term mashup has generally come to mean browser-based JavaScript
clients aggregating content through public APIs from various companies and vendors to form
new applications. These APIs are often referred to as web services, and even though they may
not truly be web services in the sense of using the full technology stack, they fulfill the same
basic goal as those types of web services. They provide services and function over a network—
specifically, the Web—so calling them web services isn’t really too far-fetched!

Many companies are getting into the API business, including companies you’ve certainly
heard of: Google, Yahoo, Amazon, and eBay, just to name a few. Google and Yahoo have really
led the charge, and Yahoo, in particular, originated a neat trick that will be central to the appli-
cation we’ll build in this chapter.

Zammetti-816-4C05.fm Page 147 Wednesday, February 28, 2007 8:36 AM

148 C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A S H U P

Mashups are also a part of what people often mean when they use the term Web 2.0. Web 2.0
means different things to different people, but sharing resources is usually part of what people
mean by it, so mashups certainly fit right in.

One of the other things that is often lumped under Web 2.0 is effects. Take a look at a site
like Digg, for instance. I was going to insert a screenshot here, but truthfully, it wouldn’t get the
point across because it has to be seen live. So please visit http://www.digg.com, if you aren’t
already a frequent visitor (and you should be, by the way!) and just look around a bit. As you do,
take note of the various effects. For instance, assuming you aren’t signed in, try to click the Digg
It button next to an article. Notice how the text is faded and you get a little pop-up over it telling
you about signing up? Now, if you create an account, sign in, and try clicking that button again,
you’ll see the Digg count fade out, then fade back in with the new value. These are all examples
of the kinds of UI effects that most consider a part of Web 2.0.

Monster Mash(up) Requirements and Goals
Now, with all of that about mashups in mind, let’s discuss what this chapter’s application will
do and what it will demonstrate.

• The basic function of the application is to be able to enter a ZIP code and to get from that
a list of hotels.

• For each hotel, we should be able to click its name and see some extended information.

• In addition to extended information, we would also like to see a map of the area.

• We should be able to zoom in and out on the map.

• The UI will use various effects provided by the well-known script.aculo.us library.

• We will utilize some APIs from Google and Yahoo to get the hotel information and maps.

• This application should be purely browser-based and not require any server component
to function.

All of this will result in an application that is fully buzzword-compliant and very much fits
the most common definition of Web 2.0 applications. Let’s start by taking a look at the Yahoo
and Google APIs.

The Yahoo APIs
Yahoo did something very cool a short while ago, and it is this one cool thing that makes the
application in this chapter possible. Before we can discuss that though, we have to discuss
what was going on before the coolness occurred.

For a while now, many companies have been exposing public APIs for people to use, Yahoo
among them. For instance, you could perform a Yahoo search remotely, or you could get a
Yahoo map from your own application, and so on. These APIs—these “web services,” if you
will—usually used XML as their data-transport mechanism. You would post some XML to a
given URL, and you would get an XML response back. It was (and still is) as simple as that.
These types of services don’t require all the web services like SOAP, UDDI, WSDL, and the like.

Zammetti-816-4C05.fm Page 148 Wednesday, February 28, 2007 8:36 AM

C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A SH U P 149

You may have heard the term Ajax, which stands for Asynchronous JavaScript And XML.
In fact, if you read Chapter 4, you already saw Ajax in action a bit (although ironically, as we’ll
be doing here, not using the prototypical XMLHttpRequest object). We’ll be getting into Ajax in
detail in later chapters, but for now, it is enough to know that Ajax is a technique by which you
can make a request of a server and use the results it returns in some way without reloading the
entire page. The most common operation is simply to insert the returned result into the page
somewhere, essentially performing an out-of-band partial update of the page. Ajax usually
(and some may say necessarily, but I disagree) implies the use of the XMLHttpRequest object in
the browser to make requests.

XMLHttpRequest is a component that makes the request to the server on your behalf and
then calls a specified JavaScript callback function to process the result. For the sake of the
discussion here, you need to be aware that this object presents one consistent limitation, which is
known as the same-domain restriction. This means that the XMLHttpRequest object will not
allow a request to a domain other than the domain from which the document it is in was served.
For instance, if you have a page named page1.htm located at http://www.omnytex.com, you can
make requests to any URL at www.omnytex.com. However, if you try to make a request to some-
thing at www.yahoo.com, the XMLHttpRequest object won’t allow it. This means that the APIs
Yahoo exposes aren’t of much use to you if you try to access them directly from a browser.

There are ways around this same-domain restriction. Probably the most common is to
write a server-side component on your own server that acts as a proxy. So you can make
requests via XMLHttpRequest to something like www.omnytex.com/proxy, which makes a request
to something at www.yahoo.com for you and returns the results. This is very cool.

However, wouldn’t it be so much more useful if you could make the request directly to
Yahoo from the browser and not need a server-side component? Yes, indeed it would be! And
as you probably have guessed, there is a way to do it. Take a look at the following bit of JavaScript:

 var scriptTag = document.createElement("script");
 scriptTag.setAttribute("src", "www.yahoo.com/someAPI");
 scriptTag.setAttribute("type", "text/javascript");
 var headTag = document.getElementsByTagName("head").item(0);
 headTag.appendChild(scriptTag);

So, what we have here is a new <script> tag being created. We set the src attribute to point
to some API at Yahoo, and finally we append that new tag to the <head> of the document. The
browser will go off and retrieve the resource at the specified URL, and then evaluate it, just as
it does for any imported JavaScript file.

Now, in and of itself, that isn’t very useful. As I said, the Yahoo APIs return XML, and XML
being evaluated by the browser won’t do much (some browsers may generate a DOM object
from it, but even still, that on its own isn’t of much use). Unlike with the XMLHttpRequest object,
you don’t get any events to work with, callback functions that can act upon what was returned,
and so on.

Now we come to the bit of coolness I mentioned before!
Let’s say we have some XML being returned by a Yahoo service like so:

<name>Frank</name>

It may not be very interesting, but it’s perfectly valid XML. So what is the JSON equivalent
to that XML? It’s nothing more than this:

Zammetti-816-4C05.fm Page 149 Wednesday, February 28, 2007 8:36 AM

150 C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A S H U P

{ "name" : "Frank" }

OK, now suppose that we pass that JSON to a JavaScript function like so:

someFunction({ "name" : "Frank" });

What is the parameter passed to someFunction()? As it turns out, it’s an object constructed
from the JSON. This means that if someFunction() is this:

function someFunction(obj) {
 alert(obj.name);
}

the result is an alert pop-up saying “Frank.”
Are you maybe starting to see what Yahoo might have done? If you are saying that the

return is something like this:

someFunction({ "name" : "Frank" });

then you are absolutely right!
What Yahoo came up with is the idea of returning JSON in place of XML, and wrapping the

JSON in a function call. When you call the API function, you tell it what the callback function is.
So let’s say you wanted to interact with some Yahoo API that returns a person’s name, as we’ve
been discussing as our example. Your page might look something like this:

<html>
 <head>
 <title>Dummy Yahoo API Test</title>
 <script>
 function makeRequest() {
 var scriptTag = document.createElement("script");
 scriptTag.setAttribute("src", "www.yahoo.com/someAPI/callback= ➥

myCallback&output=json");
 scriptTag.setAttribute("type", "text/javascript");
 var headTag = document.getElementsByTagName("head").item(0);
 headTag.appendChild(scriptTag);
 }
 function myCallback(inJSON) {
 alert(inJSON.name);
 }
 </script>
 </head>
 <body>
 <input type="button" value="Test" onClick="makeRequest();">
 </body>
</html>

When you click the button, makeRequest() is called, and it uses that dynamic <script> tag
trick to call the Yahoo API function. Notice the URL, which specifies the name of the callback
function and that we want to get back JSON, instead of the usual XML. Now, when the response

Zammetti-816-4C05.fm Page 150 Wednesday, February 28, 2007 8:36 AM

C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A SH U P 151

comes back, the browser evaluates what was inserted into the document via the <script> tag,
which would be this:

myCallback({ "name" : "Frank" });

myCallback() is called at that point, with the object resulting from evaluation of the JSON
being passed to it. You can load this page from any domain, and it will work. Hence, we’ve done
what the XMLHttpRequest object does (in a basic sense anyway), and we’ve gotten around the
same-domain limitation. Sweet!

Yahoo was the first to use this hack (that I am aware of), but as you’ll see, other companies
have begun to follow suit, because what this allows is purely client-side mashups and API utili-
zation. No longer do you need a server-side proxy. You can now make the requests across
domains directly.

■Caution While this technique is very useful because it allows you to make direct requests to any server
you want, it also has the potential for malicious code to be introduced. Remember that what is being returned
is script that winds up executing with the same privileges as any other script on the page. This means that
there is the potential for scams like stealing cookies, spoofing, phishing, and so on. You therefore want to take
care in your choice of services and organizations. Accessing APIs from Yahoo or Google, for instance, isn’t
likely to present any security issues, but less well-known companies may not be quite as safe.

Now that you know the basics of how we’re going to be interacting with the Yahoo APIs, as
well as the Google APIs, as it turns out, let’s take a look at the Yahoo functions that we’ll be
using in this application.

Yahoo Maps Map Image Service
Yahoo is going to be providing the maps that you can see on the right side of the application
(for a preview, see Figure 5-2). Yahoo Maps is a service that has been around for a while, even
before a public interface was provided for it. It allows you to get maps for a given address, as
well as access other features, such as traffic and local places of interest. The API Yahoo provides
has a number of different services, but for our purposes, we’ll be focusing on the Map Image
service.

The Yahoo Maps Map Image API allows you to get a reference to a graphic of a map generated
according to the parameters you specify in your request. You may specify latitude and longitude
or address in your request (we’ll be specifying address).

This service is referenced via a simple HTTP request, such as the following:

http://api.local.yahoo.com/MapsService/V1/mapImage?appid=YahooDemo&location=11719

The location parameter specified is just a US ZIP code, and the appid is an ID you get
when you register for the services, as discussed in the next section. If you go ahead and paste
that into the address bar of your web browser, you’ll see the following response:

Zammetti-816-4C05.fm Page 151 Wednesday, February 28, 2007 8:36 AM

152 C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A S H U P

<Result>
http://img.maps.yahoo.com/mapimage?MAPDATA=ytUWRed6wXWoR2TGzwl3wROg3iyHedtGDvtw ➥

766fmR4iboSayYoDOI4llk594b5QaoMqKvZB5AdndE5FtDXv8lT8apVTrjOY5Zuhrhiugmeogq5t ➥

GHi5&mvt=m
</Result>
<!--
 ws01.search.re2.yahoo.com uncompressed/chunked Sun Dec 10 22:18:44 PST 2006
-->

What you’ve gotten back is a reference to an image now sitting on Yahoo’s servers. If you
pluck out the following URL:

http://img.maps.yahoo.com/mapimage?MAPDATA=ytUWRed6wXWoR2TGzwl3wROg3iyHedtGDvtw ➥

766fmR4iboSayYoDOI4llk594b5QaoMqKvZB5AdndE5FtDXv8lT8apVTrjOY5Zuhrhiugmeogq5t ➥

GHi5&mvt=m

and put that in the address bar of a web browser, you’ll see an image that is a map of the Bellport/
Mastic Beach area of Long Island, New York.

You can also add some parameters to the original request. For instance, you can specify
that you want a GIF back (by default, you get a PNG file), and you can specify that instead of
XML, you want JSON back. The URL would then look like this:

http://api.local.yahoo.com/MapsService/V1/mapImage?appid=YahooDemo&location=11719 ➥

&image_type=gif&output=json&callback=myCallback

Now the response looks like this:

myCallback({"ResultSet":{"Result":"http:\/\/image.maps.yahoo.com\/mapimage? ➥

MAPDATA=cgnWqud6wXUpZCKOcjzKJ3PPgRQkY6thMdXo4raWKRcxvbRSpJ67PGisuDp5Y0829Zi5fd ➥

hWYT0m5mmvfBZCqHKDBG8ePGPcc8AlFAuhbWwd6rPOwZ67&mvt=m"}});

All you need to do now is write the myCallback() function and make it somehow display
the images, like this:

function myCallback(inJSON) {
 document.getElementById("someImgTag").src = inJSON.ResultSet.Result;
}

And as you’ll soon see, that’s just about all this application is doing as far as interacting
with Yahoo’s services goes! A few other parameters are used in the application, as summarized
in Table 5-1.

Table 5-1. Some Yahoo Map Image Service Parameters Used in Monster Mash(up)

Parameter Meaning

width The width of the map image.

height The height of the map image.

zoom The zoom factor to apply to the map. This is a value in the range 1–12, where 1
represents street level and 12 represents regional level (a little wider than
state level).

Zammetti-816-4C05.fm Page 152 Wednesday, February 28, 2007 8:36 AM

C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A SH U P 153

Yahoo Registration
Most API services require you to register to use their APIs, and Yahoo is no exception. As you
saw, in the HTTP request, an appid parameter is passed. This value is a unique identifier you
must pass when making your requests. Not passing this value, or passing an invalid value, will
result in the call failing. YahooDemo is the appid value used in the examples in Yahoo’s own docu-
mentation. However, before you really play with this application a great deal, you should register
and get your own appid. You can access the following page to do so:

http://api.search.yahoo.com/webservices/register_application

You should plug your own appid into the Masher class (in the Masher.js source file) before
you spend time with the application, just so you are playing nice with Yahoo.

There are some limitations associated with using the APIs in terms of request volume, but
the upper limit is so high as to not be a realistic concern for your adventures with this applica-
tion! If you are intent on building a production-level application using these services, you will
need to consult with Yahoo for other registration options that allow for high volumes. Again,
for our purposes, the number of requests allowed is more than sufficient.

The Google APIs
Google Base is, in simplest terms, an online database where people can post about various
items, describing them with various attributes. For instance, if you would like to list a number
of events occurring in your neighborhood, you can do so at Google Base. Do you want to post
your great-aunt Erma’s recipe for stuffed cabbage (you wacko, you!)? Google Base is the place
to do it.

As you would expect, you can search through the posted information. Would you like to
find a list of hotels in a given area? You can do so at Google Base. And that’s exactly what we
need for this application!

The API for Google Base allows you to query for a list of items, and it also allows you to add
items to the database. We care only about querying here, but both capabilities are available.

The Google Base API provides a number of “feeds” through which you can get informa-
tion. Each feed corresponds to a URL that is formed by taking a base URL and appending the
feed-specific path. For instance, the base URL is http://www.google.com/base, and the feed-
specific portion for the snippets feed is /feeds/snippets. You simply put them together to form
the final URL where you can query for items:

http://www.google.com/base/feeds/snippets

So, as a simple example, if you want to do a search for “laptop,” you would use this URL:

http://www.google.com/base/feeds/snippets?bq=laptop&max-results=1

This will result in an XML response like the following:

Zammetti-816-4C05.fm Page 153 Wednesday, February 28, 2007 8:36 AM

154 C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A S H U P

<?xml version="1.0" encoding="UTF-8" ?>
<feed xmlns="http://www.w3.org/2005/Atom" xmlns:openSearch="http://a9.com/-/spec/ ➥

opensearchrss/1.0/" xmlns:g="http://base.google.com/ns/1.0" xmlns:batch= ➥

"http://schemas.google.com/gdata/batch">
 <id>http://www.google.com/base/feeds/snippets</id>
 <updated>2006-12-16T23:28:51.897Z</updated>
 <title type="text">Items matching query: laptop</title>
 <link rel="alternate" type="text/html" href="http://base.google.com" />
 <link rel="http://schemas.google.com/g/2005#feed" type="application/atom+ ➥

xml" href ="http://www.google.com/base/feeds/snippets" />
 <link rel="self" type="application/atom+xml" href="http://www.google.com/base/ ➥

feeds/snippets?max-results=1&bq=laptop" />
 <link rel="next" type="application/atom+xml" href="http://www.google.com/base/ ➥

feeds/snippets?start-index=2&max-results=1&bq=laptop" />
 <generator version="1.0" uri="http://base.google.com">GoogleBase</generator>
 <openSearch:totalResults>3612575</openSearch:totalResults>
 <openSearch:startIndex>1</openSearch:startIndex>
 <openSearch:itemsPerPage>1</openSearch:itemsPerPage>
 <entry>
 <id>http://www.google.com/base/feeds/snippets/18343852209328178501</id>
 <published>2006-11-10T03:41:07.000Z</published>
 <updated>2006-12-08T03:24:30.000Z</updated>
 <title type="text">Portable Laptop Desk</title>
 <content type="html">Looking for portable laptop desk? See our portable ➥

laptop desk guide.</content>
 <link rel="alternate" type="text/html" href="http://portable-laptop- ➥

desk.info" />
 <link rel="self" type="application/atom+xml" href="http://www.google.com/base ➥

/feeds/snippets/18343852209328178501" />
 <author />
 <g:item_language type="text" />
 <g:customer_id type="int">7048781</g:customer_id>
 <g:target_country type="text" />
 </entry>
</feed>

The bq parameter is the query you wish to perform; in this case, simply the word laptop.
The parameter max-results, which is optional, indicates the maximum number of items to return.
For the sake of a short result set being printed here, I requested only a single item be returned.

If you want to query for a particular item type, such as hotels, you can append -/hotels to
the following URL:

http://www.google.com/base/feeds/snippets/-/hotels?bq=laptop&max-results=1

Zammetti-816-4C05.fm Page 154 Wednesday, February 28, 2007 8:36 AM

C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A SH U P 155

Now obviously, that’s a little bit of a nonsensical query,1 but it’s a valid query nonetheless.
As a more practical example, suppose that you want to search for a hotel in a given area,

say a list of hotels in a given ZIP code (signs and portents here!). To perform that query, you
need to use the location parameter. The location parameter can take a location in just about
any form you can imagine—a full street address, just a ZIP code, or even longitude and latitude!
The service generally takes care of understanding what you’ve sent in, so you don’t even have
to tell it!

What would the URL look like to search for hotels in the 90210 area code? Just like this:

http://www.google.com/base/feeds/snippets/-/hotels?bq=%5blocation:@%2290210%22%2 ➥

b50mi%5d&max-results=1

Go ahead and try it in your browser—this one will work, too. To understand this more
fully, I need to point out that the value of the bq parameter, the query you want performed, is
actually this:

[location: @"90210" + 50mi]

This says you want hotels in the 90210 ZIP code, at most 50 miles from roughly the center
of the ZIP code. The reason it looks a little funky in the URL is because of the URL-encoding
that I already did on the URL: left and right brackets, at sign, plus sign, and quotes. You will also
see this is the case in the application, but it’s possible to encode the entire thing in one step.
Either way gets the job done. As long as the URL is ultimately URL-encoded, that’s all that
matters.

As with the Yahoo APIs, you can specify that you want JSON returned wrapped in a JavaScript
function call, and you can specify the function to call. This is done via the alt and callback
parameters. When you pass the value json-in-script for the alt parameter, you get exactly
that: JSON wrapped in a JavaScript call. The callback parameter is naturally the name of the
function to which to send the JSON.

And while it doesn’t seem like much, this is essentially all the information you’ll need to
work with this API in this application!

■Note The snippets feed is a read-only public feed, which means you do not need to get an API key to
access it. If you want to deal with many other feeds, or if you intend to do write or update operations with the
API, you will indeed need a key, just as you do for Yahoo. You can obtain said key at http://code.google.
com/apis/base/signup.html.

Script.aculo.us Effects
Script.aculo.us is all about the effects! Components that fly onto the page, elements that shrink
and expand, parts that fade out of existence, text that color-cycles into existence—all of this
can be done with script.aculo.us.

1. Note that you will get results, because hotels may list laptop wireless support in their description, and
the query will see that.

Zammetti-816-4C05.fm Page 155 Wednesday, February 28, 2007 8:36 AM

156 C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A S H U P

ARE EFFECTS JUST EYE CANDY?

Let’s tackle one question that often comes to mind first: why do we need effects at all? Isn’t it just a bunch of
superfluous eye candy that doesn’t serve much purpose other than to make people go “ooh” and “aah”? Well,
first off, if you’ve ever designed an application for someone else, you know that presentation is an important
part of the mix. The more people like how your application looks, the more they’ll like how it works—whether
it works well or not. It’s a relative measure. That’s the lesser reason though, although one which should not
be quickly dismissed.

The much more important reason has do with how we perceive things. Look around you right now. Pick
up any object you want and move it somewhere else. Did the object just pop out from the starting point and
appear at the new location? No, of course not! It moved smoothly and deliberately from one place to another.
Guess what? This is how the world works! And furthermore, this is how our brains are wired to expect things
to work. When things don’t work that way, it’s jarring, it’s confusing, and it’s frustrating.

People use movement as a visual cue as to what’s going on. This is why modern operating systems are
beginning to add all sorts of whiz-bang features, like windows collapsing and expanding. They aren’t just eye
candy. They do, in fact, serve a purpose: they help our brains maintain their focus where it should be and on
what interests us.

In a web application, the same is true. If you can slide something out of view and something else into
view, it tends to be more pleasant for the users, and more important, helps them be more productive by not
making them lose focus for even a small measure of time.

Using script.aculo.us boils down to three simple steps:

1. Import the required JavaScript files.

2. Create a new Effect object, passing it the ID of the element to perform the effect on,
and optionally, parameters for the effect.

3. Sit back and enjoy!

The required files—prototype.js, scriptaculous.js, builder.js, effects.js, dragdrop.js,
slider.js, and controls.js—are simply imported like any other external JavaScript files, via
<script> tags. Once they are present on the page, you initiate an effect like this:

new Effect.Appear("div1");

This will begin an Appear effect, which makes an element fade in over some time period.
Assuming we had a <div> on the page with the ID div1 that’s what would be faded in. What’s
happening here is a new object is being instantiated, namely the Effect.Appear object. The
first argument to the constructor for an effect is always the ID of the element to operate on or a
DOM object reference itself, the second is a required parameter (although most effects do not
have required parameters), and the third is a collection of options. The options are, well, optional!
You’ll get some set of default values if you don’t pass in any options.

Zammetti-816-4C05.fm Page 156 Wednesday, February 28, 2007 8:36 AM

C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A SH U P 157

Most effects share some common options, as summarized in Table 5-2.

All the effects also support supplying callback functions in the options. This allows you to
perform some function when certain events in the life cycle of an effect occur. Table 5-3
summarizes the possible callbacks.

Table 5-2. Some Common Script.aculo.us Effect Options

Option Description

duration Sets the duration of the effect in seconds, given as a float. Default value is 1.0.

fps Targets this many frames per second. Default value is 25. This cannot be
set higher than 100.

transition Sets a function that modifies the current point of the animation,
which is between 0 and 1. The following transitions are supplied:
Effect.Transitions.sinoidal (default), Effect.Transitions.linear,
Effect.Transitions.reverse, Effect.Transitions.wobble, and
Effect.Transitions.flicker.

from Sets the starting point of the transition, a floating-point value between 0.0
and 1.0. Default value is 0.0.

to Sets the end point of the transition, a floating-point value between 0.0 and 1.0.
Default value is 1.0.

sync Sets whether the effect should render new frames automatically, which it
does by default. If true, you can render frames manually by calling the
render() method of an effect.

queue Sets queuing options. When used with a string, this can be front or end to
queue the effect in the global effects queue at the beginning or end, or a
queue parameter object that can have {position:"front/end",
scope:"scope", limit:1}.

direction Sets the direction of the transition. Values can be top-left, top-right,
bottom-left, bottom-right or center (center is the default value). This is
applicable only on Grow and Shrink effects.

Table 5-3. Possible Script.aculo.us Callbacks for Effects

Callback Event Description

beforeStart Called before the main effects rendering loop is started

beforeUpdate Called on each iteration of the effects rendering loop, before the redraw
takes place

afterUpdate Called on each iteration of the effects rendering loop, after the redraw
takes place

afterFinish Called after the last redraw of the effect was made

Zammetti-816-4C05.fm Page 157 Wednesday, February 28, 2007 8:36 AM

158 C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A S H U P

In this chapter’s project, we’re going to use the following effects:

• BlindUp and BlindDown: These function like blinds in your window, basically rolling an
element up or down correspondingly. They are used to collapse and expand the search
results.

• Shrink: This effect reduces an element to its top-left corner, essentially collapsing it to
that corner. When extended information for a hotel is showing, and you click a new
hotel, we’ll use the Shrink effect to hide the information that is currently showing.

• Grow: This effect expands an element into view. We’ll use it when showing extended hotel
information and hiding any information that is currently showing.

• Puff: This effect gives the illusion of the element puffing away like a cloud of smoke.
We’ll use it to remove the map when a new search is performed.

So, taking all this into account, let’s look at some sample effects and how you code them.
All of these assume we have a <div> on the page with the ID div1 and some text in it. First, let’s
see the BlindUp effect:

 new Effect.BlindUp("div1",
 {
 afterFinish : function() {
 alert("All done!");;
 }
 }
);

Here, we’ve specified a callback function, so that once the element is completely rolled up,
we’ll see an alert message pop-up.

Here’s another example:

 new Effect.Shrink("div1", {duration : 4.0, fps : 60 });

This will shrink our <div> out of view over a period of four seconds and will try to do so at
a rate of 60 frames per second. Assuming the computer and browser can achieve this frame
rate, it will appear super-smooth to the user. Remember that generally speaking, the human
eye begins to perceive animation as being smooth somewhere between 24 and 30 frames per
second, so the default value of 25fps is pretty reasonable.2

2. For reference, most movies have been shot at a rate of 24 frames per second.

Zammetti-816-4C05.fm Page 158 Wednesday, February 28, 2007 8:36 AM

C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A SH U P 159

Here are a few more notes about script.aculo.us effects:

• All of the effects are time-based, which means that if you want an element to expand into
view using the Grow effect, and you want it to take two seconds to do so, the effect will
take two seconds, regardless of how fast the browser renders each frame.

• In general, the effects are ignorant of the type of element to which you apply them. You
should, generally, be able to apply effects to just about anything. Now, you’ll likely find
some exceptions, and that’s to be expected due to the variations in CSS interpretation by
various browsers. But, for the most part, you’ll find it to be true.

• For most of these effects to work, you must specify at least some style attributes in-line
with the element; they will not work if specified in an external style sheet. For instance,
many of the effects you’ll see in this chapter’s application won’t work if the display
attribute isn’t specified in-line. This is not exactly a big deal, but the first time you try an
effect and find that it doesn’t do anything, and you wonder why, remember this point.
You’ll likely save yourself some time!

With the review of the APIs and script.aculo.us out of the way, let’s begin to look at the
application itself and see how it all comes together,

A Preview of the Monster Mash(up)
The Monster Mash(up) application is relatively simple in appearance, until you actually play
with it. The page consists essentially of the following four main sections:

• The top, which contains the title graphic and a place to enter a ZIP code

• A section below that and to the left where hotel search results are shown (as well as hotel
information)

• A section to the right where a map of the area surrounding the hotel will be shown

• Between the results and map sections, a section containing the map zoom buttons

Figure 5-1 shows this page as it appears when you have performed a search and are now
viewing the list of matching hotels.

Zammetti-816-4C05.fm Page 159 Wednesday, February 28, 2007 8:36 AM

160 C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A S H U P

Figure 5-1. Monster Mash(up) showing a list of hotels matching the requested ZIP code

When you search for results, the list of hotels returned expands into view, which obviously
you can’t see in a screenshot here! If results are already showing and you do another search, the
existing results will shrink out of view.

When you click a hotel name, you get extended information about that hotel just below the
clicked item. This information “flies” into view, and conversely, it flies out of view when you
click another hotel name. Figure 5-2 shows the screen when information is being viewed.

Along with the extended information, you’ll also get a map of the area around the hotel,
also visible in Figure 5-2. You can then use the zoom buttons to zoom in for a closer look or
zoom out for a wider look. The smaller the zoom number, the closer you go. Level one is street
level; level 12 is regional/state level.

One of the neatest effects to see is when you perform a new search while a map is showing.
You’ll see that the map “puffs” out of existence—that is, it flies toward you and fades out at the
same time. Everyone say, “Thank you, script.aculo.us!”

And now, in the immortal words of Bugs Bunny and Daffy Duck (you do remember the
theme song from Saturday mornings, don’t you?): “On with the show!”

Zammetti-816-4C05.fm Page 160 Wednesday, February 28, 2007 8:36 AM

C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A SH U P 161

Figure 5-2. Monster Mash(up) showing a map for a selected hotel, along with extended information

Dissecting the Monster Mash(up) Solution
Understanding any application tends to begin with a high-level look at the files—whether
source or executable (or both)—that make up the application, and we’ll not make an exception
to that here! In Figure 5-3, you can see the directory structure of our mashup application.

The root directory holds the single HTML file that constitutes the mashup, quite unimagi-
natively named mashup.htm! The css directory contains a single styles.css style sheet. In the
img directory are four images: buttonBG.gif, which is the background image used to give the
metallic look to all the buttons; pixel_of_destiny.gif, otherwise known as a single-pixel trans-
parent image (Google for “pixel of destiny,” to get the joke!); retrieving_map.gif, which is the
image containing the message seen in the map area while a map is retrieved; and title.gif,
which is simply the title banner at the top of the page.

The js directory is where all the JavaScript files that make up the application are found.
Some of them, namely builder.js, controls.js, dragdrop.js, effects.js, prototype.js,
scriptaculous.js, and slider.js, are all components of the script.aculo.us library, and we
will not be reviewing them here.3

3. It is always a valuable and worthwhile exercise to look at the code of the pros, so I certainly suggest you
spend at least a few minutes looking at how script.aculo.us works. It’s in no way required to understand
the mashup, but you’ll likely pick up some tricks.

Zammetti-816-4C05.fm Page 161 Wednesday, February 28, 2007 8:36 AM

162 C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A S H U P

Figure 5-3. Directory structure of the mashup application

The remaining files make up the mashup application itself, starting with ApplicationState.js,
which defines a class named ApplicationState (and I’m willing to bet you can surmise its
purpose!). CallbackFuncs.js contains the functions that will be “called back” by the Yahoo and
Google web services. Hotel.js defines a Hotel class that is used to describe a hotel. MapFuncs.js
contains functions for working with the map for a given hotel. Masher.js contains the functions
dealing with communicating with the Google and Yahoo web services. MiscFuncs.js contains, well,
miscellaneous functions, what else? Finally, SearchFuncs.js contains functions for performing a
search for hotels.

Now that we’ve completed the preliminaries, let’s get to looking at some actual code!

Writing styles.css
The styles.css file, shown in Listing 5-1, is the single style sheet used to define styling for the
application.

Listing 5-1. The styles.css File

/* Style applied to everything on the page. */
* {
 font-size : 10pt;
 font-weight : bold;
 font-family : arial;
}

Zammetti-816-4C05.fm Page 162 Wednesday, February 28, 2007 8:36 AM

C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A SH U P 163

/* Style applied to the body of the document. */
.cssBody {
 background-color : #ffffff;
}

/* Style applied to the left and right sections. */
.cssSectionBorder {
 border : 2px solid #000000;
}

/* Style applied to the search results div. */
.cssSearchResults {
 width : 100%;
 height : 400px;
 overflow : scroll;
}

/* Style applied to the popup area where hotel info is displayed. */
.hotelInfo {
 width : 98%;
 height : 200px;
 overflow : scroll;
 background-color : #eaeaea;
}

/* Style applied to buttons. */
.cssButton {
 width : 40px;
 border-color : #ffffff;
 background : url(../img/buttonBG.gif);
 color : #000000;
}

/* Style applied to buttons when they are hovered over. */
.cssButtonOver {
 width : 40px;
 border-color : #ff0000;
 background : url(../img/buttonBG.gif);
 color : #ff0000;
}

Zammetti-816-4C05.fm Page 163 Wednesday, February 28, 2007 8:36 AM

164 C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A S H U P

The first style uses the wildcard selector to apply those styles to all elements within the
document. This is a handy trick to cover everything, even things that typically can be problem-
atic to apply styles to globally, such as table cells, which don’t get style information cascaded
down properly in some browsers.

For the body, we apply a background color of white using the cssBody class. The
cssSectionBorder is applied to the cells that house the search results on the left and the map
on the right. The cssSearchResults class styles the search results, ensuring that they fit nicely
within the confines of the left side of the page, and also ensuring that the results will scroll
when bigger than that area (overflow:scroll).

The hotelInfo class styles the section below a particular hotel where its information appears.
With this class, we define that it doesn’t quite stretch across the entire content area it’s in, so
that its scrollbar doesn’t touch the scrollbar of the search results.

The cssButton class is used to style our buttons. With it, we are specifying a background
image and making sure all buttons have a consistent size. The background image is designed
so that it will fill up just about any size button in the proper fashion, giving the button a brushed-
metal look. This is purely an aesthetic touch, but it gives the buttons a nice, unique look. The
cssButtonOver class is essentially the same, but with a red text color and border, which is used
when you hover over the button to give it an active look.

All in all, this is a pretty simple style sheet. Not too much of interest is going on here, except
perhaps for the buttons, which I feel are a neat little touch.

Writing mashup.htm
The mashup.htm file, shown in Listing 5-2, is the starting point for this application, and the file
that defines the basic page layout.

Listing 5-2. The mashup.htm File

<html>
 <head>

 <title>The Monster Mash</title>

 <link rel="StyleSheet" href="css/styles.css" type="text/css">

 <script src="js/prototype.js" type="text/javascript"></script>
 <script src="js/scriptaculous.js" type="text/javascript"></script>

 <script src="js/ApplicationState.js" type="text/javascript"></script>
 <script src="js/Masher.js" type="text/javascript"></script>
 <script src="js/Hotel.js" type="text/javascript"></script>
 <script src="js/CallbackFuncs.js" type="text/javascript"></script>
 <script src="js/SearchFuncs.js" type="text/javascript"></script>
 <script src="js/MapFuncs.js" type="text/javascript"></script>
 <script src="js/MiscFuncs.js" type="text/javascript"></script>

Zammetti-816-4C05.fm Page 164 Wednesday, February 28, 2007 8:36 AM

C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A SH U P 165

 <script>
 masher = new Masher();
 appState = new ApplicationState();
 </script>

 </head>

 <body class="cssBody">

 <center>

 <form onSubmit="search();return false;">
 Zip Code:

 <input type="text" id="zipCodeField" value="">

 <input type="submit" value="Look Up Hotels"
 class="cssButton" style="width:120px;"
 onMouseOver="this.className='cssButtonOver';"
 onMouseOut="this.className='cssButton';">
 </form>

 </center>

 <table border="0" width="100%" cellpadding="4" cellspacing="0">
 <tr>

 <td align="left" height="420" class="cssSectionBorder">

 <center>
 <div id="pleaseWait" style="display:none;">
 Please Wait, Retrieving Data...
 </div>
 </center>
 <div id="searchResults" class="cssSearchResults" style="display:none;">
 </div>
 </td>

 <td width="50" align="center">
 <input type="button" value="1" onClick="zoomMap(1);" id="zoomButton1"
 class="cssButton"
 onMouseOver="this.className='cssButtonOver';"
 onMouseOut="this.className='cssButton';">

 <input type="button" value="2" onClick="zoomMap(2);" id="zoomButton2"
 class="cssButton"
 onMouseOver="this.className='cssButtonOver';"
 onMouseOut="this.className='cssButton';">

Zammetti-816-4C05.fm Page 165 Wednesday, February 28, 2007 8:36 AM

166 C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A S H U P

 <input type="button" value="3" onClick="zoomMap(3);" id="zoomButton3"
 class="cssButton"
 onMouseOver="this.className='cssButtonOver';"
 onMouseOut="this.className='cssButton';">

 <input type="button" value="4" onClick="zoomMap(4);" id="zoomButton4"
 class="cssButton"
 onMouseOver="this.className='cssButtonOver';"
 onMouseOut="this.className='cssButton';">

 <input type="button" value="5" onClick="zoomMap(5);" id="zoomButton5"
 class="cssButton"
 onMouseOver="this.className='cssButtonOver';"
 onMouseOut="this.className='cssButton';">

 <input type="button" value="6" onClick="zoomMap(6);" id="zoomButton6"
 class="cssButton"
 onMouseOver="this.className='cssButtonOver';"
 onMouseOut="this.className='cssButton';">

 <input type="button" value="7" onClick="zoomMap(7);" id="zoomButton7"
 class="cssButton"
 onMouseOver="this.className='cssButtonOver';"
 onMouseOut="this.className='cssButton';">

 <input type="button" value="8" onClick="zoomMap(8);" id="zoomButton8"
 class="cssButton"
 onMouseOver="this.className='cssButtonOver';"
 onMouseOut="this.className='cssButton';">

 <input type="button" value="9" onClick="zoomMap(9);" id="zoomButton9"
 class="cssButton"
 onMouseOver="this.className='cssButtonOver';"
 onMouseOut="this.className='cssButton';">

 <input type="button" value="10" onClick="zoomMap(10);" id="zoomButton10"
 class="cssButton"
 onMouseOver="this.className='cssButtonOver';"
 onMouseOut="this.className='cssButton';">

 <input type="button" value="11" onClick="zoomMap(11);" id="zoomButton11"
 class="cssButton"
 onMouseOver="this.className='cssButtonOver';"
 onMouseOut="this.className='cssButton';">

 <input type="button" value="12" onClick="zoomMap(12);" id="zoomButton12"
 class="cssButton"
 onMouseOver="this.className='cssButtonOver';"
 onMouseOut="this.className='cssButton';">
 </td>

 <td align="center" width="540" class="cssSectionBorder">
 <img id="mapFiller" style="display:block;" width="520" height="400"
 src="img/pixel_of_destiny.gif">
 <img id="map" style="display:none;" width="520" height="400"
 src="img/pixel_of_destiny.gif">

Zammetti-816-4C05.fm Page 166 Wednesday, February 28, 2007 8:36 AM

C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A SH U P 167

 </td>

 </tr>
 </table>

 </body>

</html>

As you can see, mashup.htm begins with a series of JavaScript file imports. The first two,
prototype.js and scriptaculous.js, are the two source files required for script.aculo.us to
work. The scriptaculous.js file takes care of including all the other JavaScript files it depends
on, such as builder.js and effects.js. The remainder of the imports are the source files that
make up the application itself.

Following the JavaScript imports is one very small section of JavaScript that is responsible
for creating an instance of the Masher and ApplicationState objects, which we’ll discuss
shortly. That small block of script concludes the <head> of the document.

Moving along to the <body>, we begin with the title graphic, a text field where you enter the
ZIP code you want to search, and then the search button. This is all part of a form, but ironi-
cally, it only needs to be in order to deal with allowing the Enter key to be used in Firefox (in IE,
you can drop the <form> and just use a plain-old <input type="button">). That’s why we make
a call to search() onSubmit of the form, and also return false, which stops the form from actu-
ally being submitted. This is one of those times Firefox actually makes things more difficult
than IE!

Next up we find the start of a table that is used to define the two halves of the screen: the
search results on the left and the map on the right, with the map zoom buttons separating them.

The first column of the table contains two <div> elements. The first contains the “Please
Wait” message you see while a search is in progress. This is initially hidden. The next <div> will
contain the search results. Note that it, too, is initially hidden. But more important, that style is
specified in-line and not in the external style sheet. This is no oversight! In fact, this <div> will
be involved in some script.aculo.us effects, and for those to work, some style information must
be specified in-line. This is true of one or two other areas of the page, for the same reason. For
elements that will be hidden and shown via script.aculo.us, you need to define their initial visi-
bility in-line in the elements by setting the display style attribute. It’s as simple as that.

■Note The reason that script.aculo.us effects require the initial visibility specified in-line is that
script.aculo.us is based on the Prototype library, and it uses the show() function that Prototype supplies to
make a specified element visible. This function works by setting the element’s display style attribute to an
empty string (undefined, in other words). The idea here is to set it to its default value—the empty string for
that particular attribute—which means the element would be visible. A problem can occur, however, if that attribute
is defined “higher up” in the CSS than at the element level. Remember that Prototype is overwriting what’s at
the element level. In this situation, it will look at the undefined value at the element level, even though your
style sheet may have specified display:none, and the net result is it looks like nothing happens.

Zammetti-816-4C05.fm Page 167 Wednesday, February 28, 2007 8:36 AM

168 C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A S H U P

Following all of that is the second column in the table where the map zoom buttons are
located. Within it is a series of 12 buttons. They all share the same basic structure in that the
onClick event handler attached calls the zoomMap() function, passing it the zoom level corre-
sponding to the button. There are also the same onMouseOver and onMouseOut event handlers we
saw earlier on the search button. It’s nothing too fancy really.

Lastly, we come to the table column that contains the map, or more precisely, will contain
the map, once you select a hotel to view. This column contains two tags. The one with the
ID mapFiller is needed so that the table cell doesn’t collapse and remains a constant size in IE,
which makes for a rather ugly display. The tag with the ID map displays the map or the “Please
Wait” message, which is itself an image. The src of this tag is updated to point to either that
Please Wait image or to the map that Yahoo generates. These two tags are alternatively
hidden and shown as appropriate.

And that wraps it up for the markup!

Writing ApplicationState.js
The ApplicationState.js file contains, not surprisingly, the ApplicationState class. While this
class is simple, it plays a very important role in that it stores values that are used throughout the
application. Figure 5-4 is the UML class diagram for the ApplicationState class.

Figure 5-4. UML diagram of the ApplicationState class

As you can see in Listing 5-3, the ApplicationState class contains a grand total of four fields.

Listing 5-3. The ApplicationState.js File

/**
 * This class stores information about the state of the application.
 */
function ApplicationState() {

 /**
 * This is an array of hotels returned from a search. */
 this.hotels = new Array();

Zammetti-816-4C05.fm Page 168 Wednesday, February 28, 2007 8:36 AM

C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A SH U P 169

 /**
 * This is the index into the hotels array of the hotel that is currently
 * being viewed, i.e., that has info showing and that has a map showing.
 */
 this.currentlyDisplayedIndex = -1;

 /**
 * This is a flag that indicates whether search results are currently
 * showing or not.
 */
 this.searchResultsShowing = false;

 /**
 * This is a flag that indicates whether a map is currently showing or not.
 */
 this.mapShowing = false;

} // End ApplicationState.

The hotels array is a collection of Hotel objects that is populated when a search is
performed. The field currentlyDisplayedIndex stores the index into the hotels array of the
hotel currently being viewed. The searchResultsShowing field is a simple flag that tells us
whether search results are currently visible. Finally, the mapShowing field is another flag that
tells us whether a map is showing.

You will see these fields used throughout the rest of the code in determining what to do at
any given point, but by and large, ApplicationState is a very simple class.

Writing Hotel.js
As you just saw, the ApplicationState class contains an array named hotels, which is informa-
tion for the hotels from the current search results. The array contains Hotel objects, one for
each hotel. In Figure 5-5, you can see the UML class diagram for the Hotel class.

Figure 5-5. UML diagram of the Hotel class

Zammetti-816-4C05.fm Page 169 Wednesday, February 28, 2007 8:36 AM

170 C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A S H U P

Like ApplicationState, the Hotel class does not have a whole lot to it; in fact, less than
there was to the ApplicationState class! A grand total of three fields gives us all the information
about a hotel that we need for this application, as shown in Listing 5-4.

Listing 5-4. The Hotel.js File

/**
 * This class represents a hotel as returned by the Google web service.
 */
function Hotel() {

 /**
 * The name of the hotel.
 */
 this.name = "";

 /**
 * The location (address) of the hotel.
 */
 this.location = "";

 /**
 * The description of the hotel.
 */
 this.description = "";

} // End Hotel.

The name field is the name of the hotel, as seen in the results list. The location field is the
address of the hotel as returned by the web services. The description field is the entire descrip-
tion for the hotel. This description can, and in many cases does, contain the name and location
as well, so there tends to be some redundancy in the display.

Writing SearchFuncs.js
Everything in this application starts with a search, so it seems reasonable to start looking at the
first of the code where the real action takes place by starting with searching. When the search
button is clicked, the search() function is called. This function is shown in Listing 5-5.

Listing 5-5. The SearchFuncs.js File

/**
 * Start execution of a search by ZIP code with Google Base.
 */

Zammetti-816-4C05.fm Page 170 Wednesday, February 28, 2007 8:36 AM

C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A SH U P 171

function search() {

 // Reset things that need to be reset.
 resetZoomButtons();
 appState.currentlyDisplayedIndex = -1;

 // Hide information for all hotels.
 for (var i = 0; i < appState.hotels.length; i++) {
 $("hotelInfo" + i).style.display = "none";
 }

 // If there are search results showing, hide them.
 if (appState.searchResultsShowing) {

 new Effect.BlindUp("searchResults",
 {
 afterFinish : function() {
 // Now do the actual search.
 searchPart2();
 }
 }
);
 // If a map and hotel info are showing, hide them too.
 if (appState.mapShowing) {
 new Effect.Puff("map",
 {
 afterFinish : function() {
 $("map").style.display = "none";
 $("mapFiller").style.display = "block";
 }
 }
);
 }

 } else {

 // No results currently showing, so just do the search.
 searchPart2();

 }

} // End search().

/**
 * Continue search after effect.
 */

Zammetti-816-4C05.fm Page 171 Wednesday, February 28, 2007 8:36 AM

172 C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A S H U P

function searchPart2() {

 // Show Please Wait.
 $("searchResults").style.display = "none";
 $("pleaseWait").style.display = "block";

 // Do search.
 var zipCode = $("zipCodeField").value;
 masher.doRequest(masher.googleURL,
 {
 "bq" : "%5blocation:@%22" + escape(zipCode) + "%22%2b50mi%5d",
 "alt" : "json-in-script",
 "callback" : "googleCallback"
 }
);

} // End searchPart2().

First, before we go any further, notice the use of the $() function ($ is a valid name for a
JavaScript function, even if it looks a little unusual on its own). As you may recall from the
previous chapter, this function comes from Prototype, which underlies script.aculo.us. This is
a shorthand for document.getElementById(), although $() provides a few added capabilities,
such as the possibility of getting multiple elements back. You’ll see this throughout the code
we’re examining.

Moving on, this code does some resetting that puts the application into the proper state
for a search. Most important, this means resetting the zoom buttons so none of them are selected,
and changing the currentlyDisplayedIndex variable to –1, indicating no hotel information is
currently being viewed. The next reset is to make sure no hotel information is showing. To do
this, the list of hotels currently seen on the screen, if any, is iterated over. For each, the infor-
mation <div> below the hotel in the list is hidden by setting its display style attribute to none.

After that, a check is done to see if any search results are currently showing. If they are, we
have to hide both the search results and the map. To hide the search results, we collapse the
area. Script.aculo.us provides a BlindUp effect that collapses, or shrinks, an element, just like rolling
up window blinds. This code tells script.aculo.us to go ahead and collapse our search results:

 new Effect.BlindUp("searchResults",
 {
 afterFinish : function() {
 // Now do the actual search.
 searchPart2();
 }
 }
);

We are also telling it that, upon completion, the searchPart2() function (which you will
see shortly) should be called.

Zammetti-816-4C05.fm Page 172 Wednesday, February 28, 2007 8:36 AM

C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A SH U P 173

After that, we also have to hide the map if it is showing, and again, script.aculo.us provides
a nice effect for us. The Puff effect expands an element and fades it at the same time, like a puff
of smoke. Here’s all that’s required for the image with the ID map to be “puffed” out of existence:

 new Effect.Puff("map",
 {
 afterFinish : function() {
 $("map").style.display = "none";
 $("mapFiller").style.display = "block";
 }
 }
);

When the effect completes, we hide the map image and show the filler image, just to be
sure the cell doesn’t collapse and we get a border back (which vanishes during the effect).

Now, if no search results where showing in the first place, then searchPart2() is simply
called, and nothing needs to be hidden.

So what is the searchPart2() I’ve been talking about? It’s nothing but a continuation of the
search() function. This function first hides the search results <div>, and shows the Please Wait
<div> in its place. Next, it grabs the ZIP code the user entered, and finally, it calls the doRequest()
function of the Masher object, passing it the URL for the Google service and the parameters
required to use that service. These parameters are bq, which defines the query we want the
service to perform; alt, which tells the service we want JSON wrapped in a JavaScript call
returned to us; and finally, callback, which specifies the name of the callback function that will
be called. Note that the bq value is encoded as per the rules for the search service, and the ZIP
code is escaped to make it safe for inclusion in the URL later.

The next step, naturally enough, is seeing what this Masher object is all about!

Writing Masher.js
In short, the Masher object, or more precisely, the Masher class, of which an instance is created
at page load, is responsible for communicating with a JSON-based web API. It is written in a
somewhat generic fashion so that other services can be accessed using it with a minimum of
change. Figure 5-6 shows the rather simple UML diagram for this class.

Figure 5-6. UML diagram of the Masher class

Zammetti-816-4C05.fm Page 173 Wednesday, February 28, 2007 8:36 AM

174 C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A S H U P

The appID field is the application ID needed to access Yahoo’s APIs. The yahooURL field is
the URL for the Yahoo Map Image service. Lastly, the googleURL field is the URL for the Google
Base hotel search service.

The first method, removeOldScriptTag(), is a simple function that deals with removing a
dynamically added <script> tag. This is done so that as we make calls to the services, we aren’t
building up memory usage as we add new tags. Listing 5-6 shows this method’s code, as well as
the rest of the Masher class.

Listing 5-6. The Masher.js File

/**
 * This class allows us to interact with JSON-based web services in the style
 * of Yahoo, that is, JSON wrapped in a function call.
 */
function Masher() {

 // Parameters for Yahoo! services.
 this.appID = "xxxxx";
 this.yahooURL = "http://api.local.yahoo.com/MapsService/V1/mapImage";

 // Parameters for Google services.
 this.googleURL = "http://www.google.com/base/feeds/snippets/-/hotels";

 /**
 * Removes an old script tag used to retrieve JSON.
 */
 this.removeOldScriptTag = function() {

 var scriptTag = $("jsonScriptTag");
 if(scriptTag) {
 scriptTag.parentNode.removeChild(scriptTag);
 }

 } // End removeOldScriptTag().

 /**
 * Perform an Ajax request using the dynamic script tag approach.
 *
 * @param inURL The URL of the service.
 * @param inParams The parameters for the call.
 */
 this.doRequest = function(inURL, inParams) {

Zammetti-816-4C05.fm Page 174 Wednesday, February 28, 2007 8:36 AM

C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A SH U P 175

 // First, to avoid continually building up memory, remove any old script
 // tag out there.
 this.removeOldScriptTag();

 // Now build up a query string using the passed in parameters
 var queryString = "";
 for (param in inParams) {
 var paramVal = inParams[param];
 if (queryString == "") {
 queryString += "?";
 } else {
 queryString += "&";
 }
 queryString += param + "=" + paramVal;
 }

 // Now add a new script tag with the appropriate URL.
 var scriptTag = document.createElement("script");
 scriptTag.setAttribute("id", "jsonScriptTag");
 scriptTag.setAttribute("src", inURL + queryString);
 scriptTag.setAttribute("type", "text/javascript");
 var headTag = document.getElementsByTagName("head").item(0);
 headTag.appendChild(scriptTag);

 } // End doRequest().

} // End Masher.

As you saw in the SearchFuncs.js code, when an API is needed, it is called by using
the doRequest() method in the Masher class. This function begins by making a call to
removeOldScriptTag(), as mentioned, to be sure memory isn’t continually being consumed. Next,
a query string is built up based on the parameters passed in. For each, we add it to the query
string. Note that the values are not escaped at this point because it is assumed any parameters
passed in have already been escaped (this avoids potentially double-escaping something that
shouldn’t be). The ZIP code is the only user-entered value being passed, and you will recall that
it is escaped in the SearchFuncs.js code, so no problem there.

Once the query string is built up, we have essentially the same code you’ve seen already for
adding a <script> tag:

 var scriptTag = document.createElement("script");
 scriptTag.setAttribute("id", "jsonScriptTag");
 scriptTag.setAttribute("src", inURL + queryString);
 scriptTag.setAttribute("type", "text/javascript");
 var headTag = document.getElementsByTagName("head").item(0);
 headTag.appendChild(scriptTag);

Zammetti-816-4C05.fm Page 175 Wednesday, February 28, 2007 8:36 AM

176 C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A S H U P

Note that the ID set on this tag is the same as the one removed in removeOldScriptTag().
Therefore, we have only one dynamic <script> tag on the page at any given time. Otherwise,
this code is the same as what you saw before, and I trust you remember how it works!

There isn’t a whole lot to interacting with these services, as this class clearly illustrates.
Only one piece remains: the callback functions that will be called when the response from the
services returns. That’s precisely where we’re headed next!

Writing CallbackFuncs.js
As you’ve seen, when the Google or Yahoo APIs return their responses, they are in the form of
a JavaScript function call with JSON passed as the argument to it (well, more precisely, the
object resulting from the evaluation of the JSON). The callbacks, googleCallback() and
yahooCallback(), are shown in Listing 5-7.

Listing 5-7. The CallbackFuncs.js File

/**
 * This is the function that is called when a Google service returns.
 *
 * @param inJSON The JSON object returned by the service.
 */
function googleCallback(inJSON) {

 var htmlOut = "";
 appState.hotels = new Array();

 // Iterate over the list of hotels.
 for (var i = 0; i < inJSON.feed.openSearch$itemsPerPage.$t; i++) {

 // Construct markup for the list for each hotel, including its information.
 var entry = inJSON.feed.entry[i];
 var hotel = new Hotel();
 hotel.name = entry.title.$t;
 hotel.location = entry.g$location.$t;
 hotel.description = entry.content.$t;
 appState.hotels.push(hotel);
 htmlOut += "<span onClick=\"" +
 "getMap('" + entry.g$location.$t + "');" +
 "showInfo(" + i + ");\" " +
 "onMouseOver=\"this.style.backgroundColor='#ffff00';" +
 "this.style.cursor='pointer';\" " +
 "onMouseOut=\"this.style.backgroundColor='';" +
 "this.style.cursor='';\"" +
 ">";
 htmlOut += entry.title.$t;
 htmlOut += ""; htmlOut += "<div id=\"hotelInfo" + i + "\" style=\" ➥

display:none;\" ";
 htmlOut += "class=\"hotelInfo\">";

Zammetti-816-4C05.fm Page 176 Wednesday, February 28, 2007 8:36 AM

C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A SH U P 177

 htmlOut += "</div>";
 htmlOut += "

";

 }

 // Put the generated markup in the search results list div.
 $("searchResults").innerHTML = htmlOut;
 $("pleaseWait").style.display = "none";

 // Ask script.aculo.us to show the search results.
 new Effect.BlindDown("searchResults");

 // Set flags so we know what state the application is in.
 appState.searchResultsShowing = true;
 appState.mapShowing = false;

} // End googleCallback().

/**
 * This is the function that is called when a Yahoo service returns.
 *
 * @param inJSON The JSON object returned by the service.
 */
function yahooCallback(inJSON) {

 if (inJSON.Error) {
 var msg = "An error occurred retrieving map: ";
 if (inJSON.Error.Message) {
 msg += inJSON.Error.Message;
 }
 appState.mapShowing = false;
 $("map").src = "img/pixel_of_destiny.gif";
 alert(msg);
 } else {
 $("map").src = inJSON.ResultSet.Result;
 }

} // End yahooCallback().

The first important task the googleCallback() function handles is to clear any existing
hotels that may be stored in the ApplicationState instance by assigning the hotels field to a
new array. Once that’s done, it’s time to iterate over the hotels returned.

To do this iteration, we need to know how many items were returned, and that is found in
the feed.openSearch$itemsPerPage.$t attribute of the JSON object. Once we have that value, we
begin the loop. For each iteration, we grab the entry, which is a hotel, by accessing the feed.entry
array, where we append an index value to the end based on the loop counter, so feed.entry[i].

Zammetti-816-4C05.fm Page 177 Wednesday, February 28, 2007 8:36 AM

178 C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A S H U P

Once we have the entry, it’s just a matter of constructing the HTML for the results list. Each
entry is surrounded by a , and it has some event handlers for when the user hovers over
it (the yellow background with the pointer) as well as an onClick handler that loads the map
for the entry and its extended information. The contents of the are the hotel’s name
(accessed via the entry.title.$t attribute) and a <div> below it, where the extended informa-
tion will go.

At the same time, we are populating a newly instantiated Hotel object with the hotel name
(entry.title.$t), its location (entry.g$location.$t), and its description (entry.content.$t).
This object is pushed onto the hotels array in ApplicationState.

Two things of interest are worth noting here. First, the description itself is not included in
the markup, but is added dynamically later. I admit that I have no real reason for having done
it this way other than to show that it’s possible. Second, notice the onClick handler attached to
the entry’s , which is responsible for retrieving the map for the hotel, via the getMap()call,
and for showing its information, via the showInfo() call.

The Yahoo callback does even less than the Google one. Its sole job is to update the src
attribute of the with the ID of map to point to the URL returned by the Yahoo service.
That’s all there is to showing a map! However, there is a nasty downside to using the dynamic
<script> approach to Ajax, and that’s error handling.

Often, errors can be handled fairly easily, as is the case in the yahooCallback() function. If
an Error attribute is found in the returned JSON, we can get the message and display it to the
user. We also need to reset the mapShowing flag and be sure we show the blank “pixel of destiny”
image again. However, this covers only one type of potential error. If a network failure occurs,
for instance, and the response doesn’t come back, there is no error handling you can do. The
application will simply appear to not work.

Also, if the service returns an invalid data structure, that cannot be handled either. This is
the case with some of the Yahoo functions. For instance, try the ZIP code 94505 and select any
of the first few hotels. You’ll notice the “Please wait, retrieving map” message appears, but no
map ever does appear. If you are running in Firefox and open Firebug, you’ll notice that the
response from the service is invalid and causes a JavaScript error when it is evaluated. Unfor-
tunately, we can do nothing about this. It’s much like including a .js file that has a syntax error,
but it’s worse here, because you can’t just correct it yourself. This is definitely a problem to be
aware of with mashups, and more specifically, the dynamic <script> tag technique. There’s no
free lunch!

Writing MapFuncs.js
The MapFuncs.js file contains four functions that deal with the map or operations performed
on the map, such as zooming in and out. Listing 5-8 shows the code in this file.

Listing 5-8. The MapFuncs.js File

/**
 * Retrieve map for address of selected hotel with Yahoo Maps.
 *
 * @param inLocation The address of the hotel to get a map for.
 * @param inZoom The zoom level, 1-12, of the map.
 */

Zammetti-816-4C05.fm Page 178 Wednesday, February 28, 2007 8:36 AM

C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A SH U P 179

function getMap(inLocation, inZoom) {

 // The default zoom level is 6.
 if (!inZoom) {
 inZoom = 6;
 }

 // Show the Please Wait message while we request the map.
 $("map").src = "img/retrieving_map.gif";
 $("map").style.display = "block";
 $("mapFiller").style.display = "none";

 // Ask the masher to make the request for us.
 masher.doRequest(masher.yahooURL,
 {
 "appid" : masher.appID,
 "location" : escape(inLocation),
 "image_type" : "gif",
 "output" : "json",
 "width" : "520",
 "height" : "400",
 "zoom" : inZoom,
 "callback" : "yahooCallback"
 }
);

 // Set state and reset the zoom buttons, and highlight the current zoom
 // level.
 appState.mapShowing = true;
 resetZoomButtons();
 highlightZoomButton(inZoom);

} // End getMap().

/**
 * Zoom the map according to the zoom button clicked.
 *
 * @param inZoom The zoom level, 1-12, to zoom the map to.
 */
function zoomMap(inZoom) {

 // Obviously this only does something if a map is showing.
 if (appState.mapShowing) {
 var hotel = appState.hotels[appState.currentlyDisplayedIndex];
 getMap(hotel.location, inZoom);
 }

Zammetti-816-4C05.fm Page 179 Wednesday, February 28, 2007 8:36 AM

180 C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A S H U P

} // End zoomMap().

/**
 * Reset all the zoom buttons so none are highlighted.
 */
function resetZoomButtons() {

 for (var i = 1; i < 13; i++) {
 $("zoomButton" + i).style.fontSize = "10pt"
 }

} // End resetZoomButtons().

/**
 * Highlight the specified zoom button.
 *
 * @param inZoom The zoom level, 1-12, of the button to highlight.
 */
function highlightZoomButton(inZoom) {

 $("zoomButton" + inZoom).style.fontSize = "16pt"

} // End highlightZoomButton().

The first function, getMap(), is called when the user clicks one of the hotel links in the
search results. It is also called when one of the zoom buttons is clicked. Because of this dual
purpose, it accepts two arguments: inLocation and inZoom. inLocation, as you would expect, is
the location for which we want a map. This correlates to the location field of a Hotel object.
inZoom is the zoom level. Since Yahoo is generating the map, we need to tell it what level of zoom
we want. However, when the map is first retrieved in response to a hotel being clicked, the
inZoom argument is not passed in. So, the first thing you see in this code is a check of whether
inZoom was passed in. If not, that’s where the default zoom level of 6 is set.

After that are three lines of code that are responsible for showing the “Please Wait” message in
the map area. It’s just a matter of pointing the map tag to the Please Wait image, showing
it, and hiding the mapFiller.

Then we ask the Masher instance to get the map. For this particular API call, we need to pass the
appid that we obtained when we registered for Yahoo’s service. Obviously we need to pass the
location as well, and we also need to specify that we want a GIF back (the image_type parameter).
We specify that we want our output to be JSON (via the output parameter) wrapped in a
JavaScript function call, which is specified with the callback parameter. We want a map that
fits in our map area, which is 520-by-400 pixels in size, so we specify the appropriate width and
height parameters. Lastly, we pass the zoom level that we want via the appropriately named
zoom parameter.

Zammetti-816-4C05.fm Page 180 Wednesday, February 28, 2007 8:36 AM

C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A SH U P 181

A few last details need to be taken care of, namely setting the flag to indicate the map is
showing, resetting the zoom buttons to the default states (no current zoom button is bigger
than the rest), and then setting the button for the zoom level to current.

Once the API call returns, we’ll wind up in yahooCallback(), which you’ve already seen.
The zoomMap() function is called when a map zoom button is clicked. It does a simple

check to be sure the map is showing; otherwise, nothing should happen when a button is
clicked. If a map is showing, zoomMap() gets the Hotel object corresponding to the hotel that is
currently being viewed and uses that to pass the location and the new zoom level, which is the
value passed in, to the getMap() function.

The resetZoomButtons() function that follows performs the simple task of resetting all the
zoom buttons to the default font size, effectively making it so that none of the buttons indicates
the current zoom level. This is just a loop through the 12 buttons, constructing the appropriate
DOM ID for each, and setting the fontSize style attribute on it.4

Last is the highlightZoomButton() function. This is called when a user clicks one of the
buttons, and its task is to make the button “current,” which means to have a bigger font size.
This is again just a straight manipulation of the fontSize style attribute.

Writing MiscFuncs.js
Now we come to the final source file in this project, MiscFuncs.js. This file contains a single
function, but it’s a pretty important one: showInfo() is used to display the extended informa-
tion for a clicked hotel. Listing 5-9 shows this code.

Listing 5-9. The MiscFuncs.js File

/**
 * Function to show extended hotel information.
 *
 * @param inIndex Index into the array of hotels in appState.
 */
function showInfo(inIndex) {

 // Trivial rejection: are we already showing the requested hotel?
 if (inIndex == appState.currentlyDisplayedIndex) {
 return;
 }

 // Shrink the information for the currently showing hotel.
 if (appState.currentlyDisplayedIndex != -1) {
 new Effect.Shrink("hotelInfo" +
 appState.currentlyDisplayedIndex,{duration:1.0});
 }

4. This certainly could have been done by switching the button to a different style class, and in many
ways that is a better approach. But I like to show some of the alternate ways you can accomplish the
same thing, and certainly direct manipulation of the style attributes is one way.

Zammetti-816-4C05.fm Page 181 Wednesday, February 28, 2007 8:36 AM

182 C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A S H U P

 // Update application state and insert the new hotel information.
 appState.currentlyDisplayedIndex = inIndex;
 var hotel = appState.hotels[inIndex];
 var htmlOut = "
" + hotel.location + "

";
 htmlOut += hotel.description;
 $("hotelInfo" + inIndex).innerHTML = htmlOut;

 // And finally, have the new info "grow" into view.
 new Effect.Grow("hotelInfo" + inIndex,{duration:1.0});

} // End showInfo().

This function takes as an argument the index into the hotels array of the hotel for which to
get information. So, first is a quick check to see if the hotel that was just clicked already has
information showing. If it does, we’re finished—bug outta here!

Assuming it’s a different hotel, it next checks to see if any hotel has information showing,
which would mean the currentDisplayedIndex field in appState has a value other than –1. In
that case, we ask script.aculo.us to shrink that information out of view using the Shrink effect.

The code then records the index that is now going to be shown, grabs the appropriate
Hotel object, and builds markup using its location and description. Once the markup is built,
it is inserted into the <div> directly below the clicked hotel, the ID of which is hotelInfo,
followed by the index. Lastly, we ask script.aculo.us to expand this new information into view
using the Grow effect.

Note that the Shrink and Grow effects will occur simultaneously because, when the new
Shrink effect is instantiated, a timer is started to perform that effect, but the code between that
and the new Grow effect instantiation will occur before the Shrink effect finishes. There, we’ll
have two timers running, one for each effect, and they’ll appear to happen at roughly the same
times. This is by design, as it makes the whole transition look a lot cooler. Of course, script.aculo.us
handles all those messy details for us.

And, at long last, we’ve come to the end! I hope you’ve enjoyed seeing a mashup in action,
and appreciate the APIs Yahoo and Google, among many others, are providing for us to use as
building blocks in our own applications.

Suggested Exercises
With mashups, you can just continue to add features to your heart’s content, as long as you can
find a suitable API! While I leave the hunt for APIs to you, here are a small handful of suggestions
you could play around with:

• Add the ability to get a weather report for a particular day, or range of days. This would
be useful if you’re trying to book a vacation!

• Add the ability to look for restaurants instead of hotels (hint: Google provides this capa-
bility as well).

• Extend the map functionality. You can simply look at the features Yahoo Maps provides
and duplicate them, since most, if not all, of the functionality is exposed through the APIs.

Zammetti-816-4C05.fm Page 182 Wednesday, February 28, 2007 8:36 AM

C H A P T E R 5 ■ D O I N G T H E M O N S T E R M A S H : A M A SH U P 183

Summary
In this chapter, we got into one of the most popular buzzwords being tossed around today:
mashups. You saw how to get around the same-domain restriction typical of most Ajax imple-
mentations. We covered using a number of public APIs, how they present themselves to the
developer, and how an application can interact with them. You also saw how the script.aculo.us
library can provide some pretty nifty little UI eye candy with a minimum of code and fuss.

All in all, we managed to create a pretty useful little application without much effort, which
is, of course, the goal of a mashup. Along the way, you saw a few neat JavaScript tricks in the
process, expanding your mental toolbox just a bit further!

Zammetti-816-4C05.fm Page 183 Wednesday, February 28, 2007 8:36 AM

185

■ ■ ■

C H A P T E R 6

Don’t Just Live in the Moment:
Client-Side Persistence

For applications, two types of data storage are available: persistent and nonpersistent, or tran-
sient. Persistent storage is any storage mechanism that provides a place for data to be saved
between program executions, and often for an indefinite period of time (until explicitly removed
from storage). Transient storage is any storage mechanism where the data lives only as long as
the program is actually executing (or for some short time thereafter). A database is generally
considered a persistent storage mechanism, whereas RAM clearly is not. Writing to a hard drive
is usually persistent as well, while session memory generally is not. The term durable is also
often used to describe persistent storage media.

In web applications, storing state on the server—whether in a database or in a session—is
pretty much expected of most applications. But what happens when you don’t have a persistence
mechanism on the server, or possibly don’t want one for some reason? What’s the alternative?

When discussing persistence in a pure JavaScript-based client-side application, there is a
very short list of possible storage mechanisms.1 The ubiquitous cookie—small bits of informa-
tion stored on the client on a per-domain basis—is one. Another is a facility now available on
most browsers, dubbed local shared objects (or Flash shared objects, or even Flash cookies,
depending on the documentation you read). This is a storage mechanism provided by the
Adobe Flash browser plug-in.

Local shared objects are gaining quite a bit of popularity, and we’ll put that approach to
use in this chapter’s project, which is a simple contact manager. Perhaps most interesting
though is the Dojo library we will use to implement this client-side persistence, which makes
our lives so much easier. So, on with the show.

Contact Manager Requirements and Goals
In this chapter, we will build a Contact Manager application that runs entirely on the client
side. This is handy because it means it can run on virtually any PC, without requiring a network
connection (although, conversely, it means that the contact data can’t easily be shared among

1. Java applets or ActiveX controls are other options, but they are generally thought of as a whole other class
of possibilities, because they can, in a sense, be seen as extensions to the browser itself (certainly, ActiveX
controls are meant to be that, but applets can also be viewed in that light). In either case, they require some-
thing more than HTML and JavaScript, and that in and of itself places them in a different category.

Zammetti-816-4C06.fm Page 185 Tuesday, March 6, 2007 8:18 AM

186 C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I ST E N C E

multiple machines). Clearly, persistence will come into play here, since it would be quite a
useless application if we couldn’t actually store contacts.

Let’s list some of the key things this project will accomplish and some of the features we’ll
seek to implement.

• Each contact should include a good amount of data. Along with the basics of name,
phone number, and email address, we’ll also allow for a fair amount of extended infor-
mation, such as birthday, spouse’s name, children’s names, and so on. However, we
want to make these items as free-form as possible, so users can use the different data
fields however they like.

• We’ll implement the typical alphabet selector tabs to make it easier to find contacts.

• We’ll store our contacts with local shared objects.

• We’ll use Dojo to provide some widgets coolness to make the interface fun and attractive.
We’ll also use Dojo to deal with the underlying details of working with local shared objects.

Now that we have some goals in mind, let’s take a look at the library we’ll use for this project.

Dojo Features
To help build the Contact Manager application, we’ll use the very popular Dojo toolkit. Chapter 2
briefly introduced Dojo, but let’s look at it in just a little more detail.

On its front page, Dojo (http://dojotoolkit.org) explains what it is, and I see no need to
try to paraphrase, so here’s a direct quote:

Dojo is the Open Source JavaScript toolkit that helps you build serious applications in
less time. It fills in the gaps where JavaScript and browsers don’t go quite far enough,
and gives you powerful, portable, lightweight, and tested tools for constructing
dynamic interfaces. Dojo lets you prototype interactive widgets quickly, animate tran-
sitions, and build Ajax requests with the most powerful and easiest to use abstractions
available. These capabilities are built on top of a lightweight packaging system, so you
never have to figure out which order to request script files in again. Dojo’s package
system and optional build tools help you develop quickly and optimize transparently.

Dojo also packs an easy to use widget system. From prototype to deployment, Dojo
widgets are HTML and CSS all the way. Best of all, since Dojo is portable JavaScript to
the core, your widgets can be portable between HTML, SVG, and whatever else comes
down the pike. The web is changing, and Dojo can help you stay ahead.

Dojo makes professional web development better, easier, and faster. In that order.

Yes, that does about sum it up! Dojo has been gaining a following of late, and has even
been integrated into some popular frameworks, such as WebWork from OpenSymphony (now
Struts 2 from Apache, http://www.opensymphony.com/webwork or http://struts.apache.org).

Dojo is a rather large library, containing a myriad of packages and features. Dojo is not just
about Ajax, like some other libraries out there. It provides some functions that extend JavaScript
itself, as well as general utility code for JavaScript applications.

Zammetti-816-4C06.fm Page 186 Tuesday, March 6, 2007 8:18 AM

C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I S T E N C E 187

However, Dojo does have a downside: it is still really in its infancy. One look at the online
documentation, and you’ll realize that using Dojo means that, to a large degree, you’ll be fending
for yourself. Many of the packages do not, as of the time of this writing, appear to have any
documentation at all. Examples are a bit thin at this point, and the planned features are not
fully baked just yet. However, Dojo has improved leaps and bounds in this department from
just a few months ago. You can begin to have a certain comfort level with Dojo in this regard if
you are thinking of using it. And the Dojo mailing list is very active, with a large number of truly
helpful people. Any good open source project is defined by the nature and activity level of its
community, and Dojo gets high marks in this regard.

In this chapter, we’ll be using only two (a UI widget and the storage capabilities) of Dojo’s
many packages. Table 6-1 shows some of the packages Dojo offers. Note that this is just a small
sampling, so you will want to explore what else it offers as your time allows.

To begin using Dojo, you have a couple of options. Dojo comes in a number of “editions.”
So, if you’re interested only in the Ajax functionality, you can download just the IO edition. If
you are interested only in GUI widgets, you can download the widget edition. There is also a so-
called “kitchen sink” edition that contains everything Dojo offers. For this chapter’s project,
I used the minimal edition, but we’ll discuss that further in just a bit.

After you have downloaded the proper edition, all you need to do is a typical JavaScript
import of the dojo.js file, like so:

<script src="js/dojo.js"></script>

After that, you’re all set. Dojo also offers an “import” feature. So, for instance, if you have
downloaded the IO edition and later decide you want to use the event system, you can do this:

Table 6-1. Some Dojo Packages

Package Description

dojo.lang Utility routines to make JavaScript easier to use. Contains a number of
functions for manipulating JavaScript objects, testing data types, and
so on.

dojo.string String manipulation functions, including trim(), trimStart(), escape(),
and so on.

dojo.logging JavaScript logging.

dojo.profile JavaScript code profiling.

dojo.validate Data validation functions, such as isNumber(), isText(), isValidDate(),
and so on.

dojo.crypto Cryptographic routines.

dojo.storage Code that implements a durable client-side cache using Flash’s cookie
mechanism. This effectively gives you a client-side analogy to the
HttpSession object on the server.

dojo.widget Various highly cool GUI widgets (such as buttons, dialog windows,
photo slideshow, and so on).

dojo.Collections Various data structures like Dictionary, ArrayList, Set, and so on.

Zammetti-816-4C06.fm Page 187 Tuesday, March 6, 2007 8:18 AM

188 C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I ST E N C E

<script type="text/javascript">
 dojo.require("dojo.event.*");
</script>

Dojo will then take care of loading all the dependencies for you, and you will be good to go.
You can do this for any of the features you want, at any time. In other words, you don’t need to
have a bunch of imports at the top of the page for each package you want to use; you can instead
treat the Dojo import just like a Java import, and let Dojo handle all the details (although the
main import of dojo.js is still required).

Dojo and Cookies
Working with cookies is quite simple, as you saw in Chapter 3 when we built the jscript.storage
package of functions. Dojo offers very similar functionality, with perhaps a bit more capability.
To see some of the functions Dojo provides, check out the online API reference at http://
dojotoolkit.org/api, which has come a long way in a short time and has begun to make Dojo
quite a bit nicer to use. Figure 6-1 shows this page.

Figure 6-1. The Dojo API online reference

Zammetti-816-4C06.fm Page 188 Tuesday, March 6, 2007 8:18 AM

C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I S T E N C E 189

You’ll find the cookie functions in the dojo.io.cookie package (which might seem a little
odd, since there is a dojo.storage package).

As an example, to set a cookie in Dojo, just do the following:

dojo.io.cookie.setCookie("cookieName", "cookieValue");

That doesn’t look a whole lot different than the setCookie() function we developed in
Chapter 3. However, Dojo adds four more (optional) parameters to the end of this function:

• days: Determines how many days this cookie will live before it expires.

• path: Sets the path the cookie is for (what path within the domain the cookie is valid and
will be returned for).

• domain: Sets the domain the cookie is for (what domain the cookie will be returned for).

• secure: Determines if the cookie is secure (when true, the cookie will be returned only
over an SSL channel).

As you might expect, Dojo also provides both getCookie(name) and deleteCookie(name)
functions. It also provides two slightly more advanced functions: setObjectCookie() and
getObjectCookie(). These functions deal with cookies as object/value pairs as the cookie value
instead of a simple data type. These are nice shortcuts that save you from having to write code
to parse your objects before writing them out.

Cookies are rather ubiquitous and are used day in and day out in applications all over the
place. They are simple, quick, and quite sufficient for a great many tasks. They are, however,
not without their limitations:

• Each domain is limited to a maximum of 20 cookies. You may find some browsers that
allow for more, but the HTTP spec states 20 as the required minimum. So it is best to
assume that is actually the maximum to ensure your code won’t break in some browsers,
because most treat 20 as the upper limit.

• Each cookie is limited to 4kb maximum size. Some quick math tells us we have a maximum
of 80kb per domain on the client in cookies. Aside from 80kb not being enough for many
tasks, the fact that it must be divided among 20 cookies, and you’ll have to write that
code yourself, makes cookies less than desirable for many purposes.

Fortunately, the folks at Adobe have a ready solution for us, and as you might expect, Dojo
is there to take advantage of it and make our lives as developers better. So, we won’t be using
cookies in this chapter’s project. We’ll get to the storage mechanism that we’ll use shortly, but
first, let’s look at a few other Dojo features.

Dojo Widgets and Event System
The Contact Manager application will make use of one of the UI widgets Dojo provides, called
the fisheye list. If you’ve played with the application already, you’ll recognize the fisheye list as
the icons across the top that expand and contract as you mouse over them, similar to the Mac
launch bar effect, if you are familiar with Apple’s operating system. The nice thing about the
Dojo widgets is that, because they are built with a common widget framework, they all, by and
large, are used in the same way, so seeing one gives you a pretty good idea of how to use the

Zammetti-816-4C06.fm Page 189 Tuesday, March 6, 2007 8:18 AM

190 C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I ST E N C E

others. The details of using Dojo widgets can get fairly verbose, so I’ll explain them as we
dissect the application. Seeing their use in context is clearer in this instance.

We’ll also use the event system in Dojo, which allows us to attach functions to virtually any
event that can occur, not just UI events like mouse clicks and such. Dojo offers an aspect-oriented
event system, whereby you can have a function called any time another function is called, for
instance. The event system Dojo offers is extensive, and we’ll only be scratching the surface in
this application, but you’ll start to get an idea of what’s possible. Once again, I’ll explain the
details in the dissection process to come.

The real star of the show though, and frankly the main focus of this chapter, is the Dojo
storage system and local shared objects, so let’s dive into that now!

Local Shared Objects and the Dojo Storage System
Local shared objects (also called Flash shared objects) are somewhat akin to cookies, but are a
mechanism of the Adobe Flash plug-in. They were introduced with Flash MX, so earlier versions
(prior to version 6) will not support them. You work with them in much the same way you do
cookies, but the size and number-per-domain limitations that exist for cookies do not apply
with local shared objects. You can, for all intents and purposes, store as much data as you like
in local shared objects, at least until your users’ hard drives fill up.

Flash actually has a larger installed base than even IE: about 97% at the time of this writing.
This means that any concerns you may have had about needing the Flash plug-in for client-
side persistence in the past can probably be thrown out the door—the plug-in is more likely to
be available than many other things, perhaps even JavaScript itself. Flash is even available for
many traditionally limited devices, such as PDAs and cell phones (although, unfortunately, you
may find that local shared objects are not available on some of those devices).

However, there would appear to be a speed bump in our way, and that is the simple fact
that local shared objects are for use in Flash movies, not in JavaScript. How do we overcome
that? By having Dojo handle it for us, of course.

We could write the code ourselves, but that would require writing a Flash movie or two
that exposes a scripting interface, which we could then interact with from JavaScript. If this
makes your brain hurt, join the club. While I’ve worked with Flash a bit, I’m far from any sort of
expert, and it would certainly take a fair amount of time and effort to write these components
myself. But why go through all that trouble anyway, when the folks working on Dojo have already
handled all the difficult bits and given us a simple way to utilize it? Sometimes, being lazy is
actually a good thing!

Dojo provides a storage package that is billed as a pluggable mechanism for client-side
persistence. Its architecture is based on the concept of a storage manager and any number of
storage providers. Each provider can persist data via any method it wants, but the client applica-
tion writes to a common interface that all providers implement, thereby allowing the developer
to swap between various storage mechanisms at the drop of a hat without any change to their
code. It’s very cool.

At the time of this writing, the dojo.storage package provides only a single storage provider,2
and that is one that deals with shared objects. The dojo.storage package is a wonderful creation

2. Cookie functions would obviously be a logical fit here as well. That’s why there has been talk of a cookie
provider (there may even be one by the time you read this). One could conceive of an ActiveX storage
provider that writes directly to a SQL Server database as one example, and yet the application that utilized
dojo.storage wouldn’t need to know about the details of that at all.

Zammetti-816-4C06.fm Page 190 Tuesday, March 6, 2007 8:18 AM

C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I S T E N C E 191

that offers a great deal of power to developers. It’s essentially a simple architecture, as shown
in Figure 6-2, which again proves that simplicity is usually the way to go.

Figure 6-2. The dojo.storage package architecture

As you’ll see when we examine the code behind the application in this chapter, the primary
interaction your code will have with dojo.storage is via the storage manager and storage provider
interfaces, which are shown in Figure 6-3 and Figure 6-4, respectively. Once again, there isn’t a
whole lot to them, and, in fact, for the purposes of the application in this chapter, we won’t use
more than about half of what these interfaces offer.

Figure 6-3. The Dojo storage manager interface

Zammetti-816-4C06.fm Page 191 Tuesday, March 6, 2007 8:18 AM

192 C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I ST E N C E

Figure 6-4. The Dojo storage provider interface

As mentioned, the Dojo developers have dealt with the details of implementing the Flash
movies that can be interacted with via JavaScript. Think of those movies as something like a
Data Access Object (DAO), responsible for the actual storage implementation. The API it
exposes is wrapped by the dojo.storage API in a sense. So, when you call the put() method of
the StorageProvider class (well, the class implementing that API anyway), it calls some function in
the Flash movie that does the actual work of saving to the stored objects. It’s really a rather
elegant solution.

So, now that you have an idea how this storage mechanism works in Dojo, let’s take a look
at the application that will use it.

A Preview of the Contact Manager
Figure 6-5 shows the application we will build in this chapter. I certainly recommend spending
a few minutes playing with it before proceeding. I think you’ll find it to be a fairly clean and
useful little contact list. It won’t make anyone on the Microsoft Outlook team lose any sleep,
but it’s not bad by any stretch.

Zammetti-816-4C06.fm Page 192 Tuesday, March 6, 2007 8:18 AM

C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I S T E N C E 193

Figure 6-5. JS Contact Manager: Outlook may not have to worry, but it ain’t bad!

There is a good chance when you first run the application that you will see a pop-up dialog
box generated by Flash that looks like Figure 6-6.

Figure 6-6. Security warning seen when you first run the application

If you don’t see this pop-up, then great; count yourself lucky and just move on. If you see
it (which is likely), this is a result of some security precautions in place in the Flash plug-in. You
need to tell the plug-in that the folder on your local file system in which you are running the
application is allowed and you shouldn’t be asked about it. The vexing thing about this is that
you will need Internet connectivity to change the setting. Believe it or not, the setting dialog
box that you need is a web page on the Adobe web site! Figure 6-7 shows this page.

Zammetti-816-4C06.fm Page 193 Tuesday, March 6, 2007 8:18 AM

194 C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I ST E N C E

Figure 6-7. The Flash security setting web page

I can only assume there is some good reason for doing it this way and that Adobe knows
that reason, but I sure don’t! In any case, when you click the Settings button in the security
warning dialog box, you will, assuming you are connected to the Internet, be directed to this
page. Here, you will need to click the Edit Locations box and select Add Location. Then browse
for the folder from which you are running the application. That should do the trick. I also select
the radio button next to Always Allow. This probably isn’t necessary, but you may want to do it
as well, just to be sure. Once you make these changes, close that page, reload the application,
and you should be good to go.

Dissecting the Contact Manager Solution
As we typically do with the projects in this book, let’s first get a feel for the lay of the land, so to
speak, and see what the directory structure looks like. Take a look at Figure 6-8.

Zammetti-816-4C06.fm Page 194 Tuesday, March 6, 2007 8:18 AM

C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I S T E N C E 195

Figure 6-8. JS Contact Manager’s directory structure

In the root directory are two files:

• index.htm, really the heart and soul of the application, as you’ll soon see

• goodbye.htm, a simple page that is shown when the user exits the application

Under the root are a couple of directories, starting with the css directory. As is typical, the
css directory is where we keep our style sheets. In this case, we have two:

• styles.css, which is the main style sheet for the application

• dojoStyles.css, which contains styles used specifically for Dojo widgets

The next directory is img, which, obviously enough, contains images used throughout the
application. The images are named in a pretty obvious way, so there’s no need to run through
them all.

Zammetti-816-4C06.fm Page 195 Tuesday, March 6, 2007 8:18 AM

196 C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I ST E N C E

Last is the js directory, which, of course, is where the JavaScript lives. Four .js files are
present:

• Contact.js, which defines a class representing a contact

• ContactManager.js, which contains the main application code; it’s kind of a traffic cop,
more or less, calling the other classes as required

• DataManager.js, which contains the code that actually deals with storing and retrieving
our contacts

• EventHandlers.js, which contains the UI event handlers that make our UI work

Also in the js directory you’ll find a subdirectory named dojo. This is where the Dojo library
lives. Dojo comes in a number of editions, each basically baking certain parts of Dojo into a
single .js file. Alternatively, you can use the minimal edition, which means that only the core
Dojo code will be in dojo.js, and any other parts of Dojo you use will be imported as needed.
This is the edition we’ll use because it reduces the up-front loading time required and loads the
various parts of Dojo as needed. This also, to my way of thinking, makes it less likely that we’ll
run into any problems for no other reason than less code in memory means less that can break.

Within the dojo directory, you’ll find a number of subdirectories containing other Dojo
package source files, as well as HTML and CSS resources, and anything else Dojo needs to
function. While this application uses only a small portion of Dojo, having it all available means
that as you want to extend the application and use more of Dojo, it is all there, ready for you.

And now, without further delay, let’s get to some code.

Writing styles.css
Listing 6-1 shows the styles.css file, which is the main style sheet that defines, for the most
part, all of the visual styling of the application.

Listing 6-1. The styles.css File

/* Generic style applied to all elements */
* {
 font-family : arial;
 font-size : 10pt;
 font-weight : bold;
}

/* Style for body of document */
body {
 margin : 0px;
}

/* Style for spacer between data boxes */
.cssSpacer {
 height : 64px;
}

Zammetti-816-4C06.fm Page 196 Tuesday, March 6, 2007 8:18 AM

C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I S T E N C E 197

/* Non-hover state of contacts in the contact list */
.cssContactListNormal {
 background-color : #ffffff;
}

/* Non-hover state of contacts in the contact list, alternate row striping */
.cssContactListAlternate {
 background-color : #eaeaea;
}

/* Hover state of contacts in the contact list */
.cssContactListOver {
 background-color : #ffffa0;
 cursor : pointer;
}

/* Style for main container box */
.cssMain {
 width : 100%;
 height : 580px;
 z-index : 0;
}

/* Style of the initializing message seen at startup */
.cssInitializing {
 width : 920px;
 height : 2000px;
 z-index : 1000;
}

/* Style of selector tabs */
.cssTab {
 position : relative;
 left : 2px;
 _left : 4px; /* Style for IE */
}

/* Style of the contact list container */
.cssContactList {
 padding : 4px;
 height : 480px;
 border : 2px solid #000000;
 overflow : scroll;
}

Zammetti-816-4C06.fm Page 197 Tuesday, March 6, 2007 8:18 AM

198 C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I ST E N C E

/* Style of the box surrounding the data boxes */
.cssMainOuter {
 padding : 4px;
 height : 480px;
 border : 2px solid #000000;
 overflow : scroll;
}

/* Style of a data box */
.cssDataBox {
 width : 100%;
 border : 1px solid #000000;
}

/* Style for the header of a data box */
.cssDataBoxHeader {
 background-color : #e0e0f0;
}

/* Style for textboxes */
.cssTextbox {
 border : 1px solid #7f9db9;
}

The asterisk selector, as you’ve seen in other projects throughout this book, is here again
employed to allow us to style everything on the page in one fell swoop.

Most of the style sheet is pretty self-explanatory, but one trick to point out is in the cssTab
selector. This style is used to position the alphabetic selector tabs on the left side. To make the
effect of one of them being the current tab work properly required that the tab overlap the border
of the contact list box by a few pixels. Unfortunately, the number of pixels required didn’t seem
be consistent between IE and Firefox, so we use a little trick to allow for the difference.

When Firefox encounters an attribute name that begins with an underscore character, it
ignores it. IE, on the other hand, ignores just the underscore, acting as if it were not there. So,
what essentially happens here is that in both browsers, the first value of 2px for the left attribute is
set. Then when the _left attribute is encountered, Firefox ignores it, but IE strips the under-
score and treats it as if the left attribute were set again, overriding the 2px value with 4px. In
this way, you can deal with the style sheet differences that sometimes come up between IE and
Firefox, without having to write branching code to deal with it or use alternate style sheets for
each browser.

■Note If you find yourself using the attribute name with a preceding underscore trick a lot, you probably
want to rethink the way you’re styling elements, because you may be doing things in a way that is too
browser-specific. But here and there and every now and again, this is a good trick to know. Also be aware
that in the future, one or both browsers could change this behavior, effectively breaking any page that uses
it. This is just something to keep in mind.

Zammetti-816-4C06.fm Page 198 Tuesday, March 6, 2007 8:18 AM

C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I S T E N C E 199

Writing dojoStyles.css
dojoStyles.css is a style sheet containing just a small number of selectors that override default
styles in Dojo. Listing 6-2 shows this rather diminutive source. Whoever said size doesn’t matter
must have been talking about this style sheet.

Listing 6-2. The dojoStyles.css File

/* Style for the fisheye listbar */
.dojoHtmlFisheyeListBar {
 margin : 0 auto;
 text-align : center;
}

/* Style for the fisheye container */
.outerbar {
 text-align : center;
 position : absolute;
 left : 0px;
 top : 0px;
 width : 100%;
}

Although small, this style sheet provides some important styling. Without it, the way-cool
fisheye icons wouldn’t look quite right.

Writing index.htm
index.htm is where we find the bulk of the source that makes up the Contact Manager applica-
tion. It is mostly just markup, with a sprinkle of script. Let’s begin by taking a look at part of the
<head> section where the style sheet and JavaScript imports are, as shown in Listing 6-3.

Listing 6-3. Style Sheet and JavaScript Imports in index.htm

 <link rel="StyleSheet" href="css/dojoStyles.css" type="text/css">
 <link rel="StyleSheet" href="css/styles.css" type="text/css">

 <script type="text/javascript">
 var djConfig = {
 baseScriptUri : "js/dojo/",
 isDebug : true
 };
 </script>
 <script type="text/javascript" src="js/dojo/dojo.js"></script>
 <script language="JavaScript" type="text/javascript">
 dojo.require("dojo.widget.FisheyeList");
 dojo.require("dojo.storage.*");
 </script>

Zammetti-816-4C06.fm Page 199 Tuesday, March 6, 2007 8:18 AM

200 C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I ST E N C E

 <script type="text/javascript" src="js/Contact.js"></script>
 <script type="text/javascript" src="js/EventHandlers.js"></script>
 <script type="text/javascript" src="js/DataManager.js"></script>
 <script type="text/javascript" src="js/ContactManager.js"></script>

First, we import our two style sheets. Next comes a small block of JavaScript that sets up
some Dojo properties. The djConfig variable is an associative array that Dojo looks for when it
starts up (which means this code must come before the Dojo imports), and it contains a number
of options for various Dojo settings. In this case, two are important:

• baseScriptUri defines the beginning of the path where all Dojo resources can be found.
These include items such as source files to be imported, images for widgets, style sheets,
and so on. In this case, we have Dojo installed in js/dojo, so that is the appropriate value
for this attribute.

• isDebug determines if Dojo should output error messages.

A number of other options are available in djConfig (a few minutes with Google will reveal
them), but for our purposes here, only these two are important.

Following that block is the import of the main part of Dojo itself. Immediately following
that is a section with a series of dojo.require() function calls. Dojo is organized in a package
structure, just as we built in Chapter 3. Dojo also implements the idea of importing small
portions of it as required, and even offers wildcard (.*) import capabilities. What’s more, if you
import something that requires something else that you haven’t imported, Dojo will import the
dependencies for you.

Following the Dojo imports are four more plain JavaScript imports, which bring in the code
that makes up the Contact Manager application. We will be looking at each in detail shortly.

Adding Bootstrap Code

At the end of the <head> section is a <script> block that contains what is essentially bootstrap
code to get the application going. This code is shown in Listing 6-4.

Listing 6-4. Bootstrap JavaScript in <head> of index.htm

 <script>

 // Shorthand function to get a reference to a DOM element.
 function $(inID) {
 return document.getElementById(inID);
 } // End $().

 // The contactManager instance that is the core of this application.
 var contactManager = new ContactManager();

 // Connect init() function in ContactManager to onLoad event.
 dojo.event.connect(window, "onload", contactManager.init);

 </script>

Zammetti-816-4C06.fm Page 200 Tuesday, March 6, 2007 8:18 AM

C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I S T E N C E 201

The first thing you see is a function named $, which you’ve also seen in the projects
in previous chapters. As you know by now, this is a function that wraps the ubiquitous
document.getElementById() function call. This saves us some typing as we develop and makes
for slightly cleaner looking code.

Following that is the instantiation of the ContactManager class, which is basically the core
code of the application (you’ll see this in just a bit).

Finally, we find the line:

 dojo.event.connect(window, "onload", contactManager.init);

One thing that bites new Dojo developers (including me) is the fact that Dojo takes over
the onLoad event and overwrites anything you may have put there yourself. This means that we
can’t simply call some function onLoad to initialize the application as we otherwise would. Instead,
we use the dojo.event package, which is an aspect-oriented programming (AOP) implementa-
tion that allows you to hook up JavaScript to various events. This sounds simple, but dojo.event is
an amazingly powerful package. You can hook up not only the usual UI events, such as onLoad,
onClick, onMouseOver, and so on, but also hook up an event to any function call. So, if you want
to have function A execute any time function B is called, for instance, without function B having to
explicitly call function A (to avoid them having to know about each other), you can do so with
the dojo.event package.

Here, we are saying that we want the function init() on the contactManager object to be
called whenever the onLoad event of the window object fires. This gives us the same functionality
as the usual use of onLoad, but using the Dojo event system.

In keeping with the idea of unobtrusive JavaScript, you’ll notice there is precious little on
the page so far. Some would argue that even what I have here should be in external .js files, but
I think you can take that exercise a little too far sometimes. I don’t feel it necessary to exter-
nalize every last bit of script, but certainly it should be kept to a minimum, and I think you’ll
agree that is the case here.

Initializing the Application

Now we come to the <body> of the page, which begins like this:

 <div id="divInitializing" class="cssInitializing">

 <center>...Initializing Contact Manager, please wait...</center>
 </div>

When the page is first loaded, we don’t want the user to be able to fire UI events before the
UI has fully loaded (for example, clicking the save button before the persisted contacts have
been fully restored might not be such a good thing). So, to start out, the user sees a message
saying the application is initializing. Once everything is set to go, this <div> is hidden, and the
main content is shown.

Adding the Fisheye List

Now we come to some UI fun. One of the things Dojo does really well—what it’s probably most
famous for—is widgets. One of the singularly most impressive widgets it contains (the most
impressive for my money) is the fisheye list. Have you ever seen the launch bar in Mac OS?

Zammetti-816-4C06.fm Page 201 Tuesday, March 6, 2007 8:18 AM

202 C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I ST E N C E

Do you like how the icons expand and shrink as you mouse over them? Well, Dojo’s fisheye list lets
you have the same feature in your own web applications, as you can see in Figure 6-9. Of course,
seeing it statically in print doesn’t quite do it justice, so fire up the application and just mouse
over the icons a bit. I think you’ll have fun doing nothing but that for a few minutes.

Figure 6-9. The Dojo fisheye widget coolness—’nough said

So is it difficult to make use of that widget? Heck no! Dojo allows you to define most, if not
all, of its widgets with nothing but HTML. Listing 6-5 shows the markup responsible for the
fisheye list in this application.

Listing 6-5. The Fisheye Definition Markup

 <div class="outerbar">
 <div class="dojo-FisheyeList"
 dojo:itemWidth="64" dojo:itemHeight="64"
 dojo:itemMaxWidth="128" dojo:itemMaxHeight="128"
 dojo:orientation="horizontal" dojo:effectUnits="1"
 dojo:itemPadding="10" dojo:attachEdge="top"
 dojo:labelEdge="bottom" dojo:enableCrappySvgSupport="false">
 <div class="dojo-FisheyeListItem"
 onClick="contactManager.doNewContact();"
 dojo:iconsrc="img/icon_new.gif" caption="New Contact">
 </div>

Zammetti-816-4C06.fm Page 202 Tuesday, March 6, 2007 8:18 AM

C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I S T E N C E 203

 <div class="dojo-FisheyeListItem"
 dojo:iconsrc="img/transPix.gif" caption="">
 </div>
 <div class="dojo-FisheyeListItem"
 onClick="contactManager.doSaveContact();"
 dojo:iconsrc="img/icon_save.gif" caption="Save Contact">
 </div>
 <div class="dojo-FisheyeListItem"
 dojo:iconsrc="img/transPix.gif" caption="">
 </div>
 <div class="dojo-FisheyeListItem"
 onClick="contactManager.doDeleteContact()"
 dojo:iconsrc="img/icon_delete.gif" caption="Delete Contact">
 </div>
 <div class="dojo-FisheyeListItem"
 dojo:iconsrc="img/transPix.gif" caption="">
 </div>
 <div class="dojo-FisheyeListItem"
 onClick="contactManager.doClearContacts()"
 dojo:iconsrc="img/icon_clear.gif" caption="Clear Contacts">
 </div>
 <div class="dojo-FisheyeListItem"
 dojo:iconsrc="img/transPix.gif" caption="">
 </div>
 <div class="dojo-FisheyeListItem"
 onClick="contactManager.doExit();"
 dojo:iconsrc="img/icon_exit.gif" caption="Exit Contact Manager">
 </div>
 </div>
 </div>

When the page loads, Dojo will parse it, looking for tags that it recognizes as defining
widgets. It then replaces them with the appropriate markup to form the widget. In this case,
setting the class of a <div> to dojo-FisheyeList gets the job done. You’ll notice that this <div>
also contains a number of custom attributes. This is also a hallmark of Dojo and how you
configure options for the widgets. Each of the icons is simply another <div>, this time with a
class of dojo-FisheyeListItem. Notice that we put essentially blank icons between each real
icon. There may be another way that I am unaware of, but this is how I was able to space the
icons out a bit; otherwise, they looked a little cramped to me.

Feel free to play around with the attributes on the second <div>. By manipulating them,
you can alter the fisheye list, such as making the expanded icons bigger, changing how far away
from an icon you need to be to activate, and so on. Experimentation is a great way to learn Dojo
(in fact, it’s often the only way to really figure things out). Dojo is frequently worth the effort, so
I certainly encourage you to put a little time into fiddling with it, and messing with the fisheye
attributes is a good, gentle start.

Continuing on, for each icon, we define an onClick handler to do whatever it is the icon
represents. This is again a situation where strict unobtrusive JavaScript practice would be to
not put the event handlers in-line. I’d like to make two points here:

Zammetti-816-4C06.fm Page 203 Tuesday, March 6, 2007 8:18 AM

204 C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I ST E N C E

• If the event handler is just a call to some JavaScript function that does the actual work,
I see no real problem having the handlers in-line. In fact, I think it makes more sense for
them to be there, as they are attributes of the element and therefore should probably be
defined with the element. Also, this will aid performance since no script has to process
to hook up the event handlers.

• Because Dojo is generating markup in place of these <div> elements, trying to hook up
the events after the fact would have been a bit more difficult than usual. The dojo.event
package may have helped, but it would still not have been straightforward.

So, I won’t lose any sleep tonight because of in-line event handlers.
As always, don’t blindly follow any guideline, no matter how reasonable it generally seems.

Instead, think about each situation and make an appropriate choice.
OK, putting philosophy aside and getting back to concrete code, let’s move to the contact

list section.

Adding the Contact List

Following the fisheye markup is a chunk of markup that defines the selector tabs on the left. In
the interest of brevity, let’s just look at the first one and note that the rest are virtually identical:

 <img src="img/sel_xx_over.gif" id="sel_XX" class="cssTab"
 onClick="contactManager.eventHandlers.stClick(this);"
 onMouseOver="contactManager.eventHandlers.stOver(this);"
 onMouseOut="contactManager.eventHandlers.stOut(this);">

This is the All tab, meaning it shows all contacts. The ID of the tab is used to determine the
image it should have, based on its current state (that is, if it’s the selected tab or if it’s being
hovered over). For instance, in this case, the ID is sel_XX, and as you can see, that is the begin-
ning of the name of the image that is the initial source for this tab. When we look at the event
handlers (which are again called from in-line handlers here), I think you’ll find that this all
makes more sense. As I mentioned, all the tabs that follow are the same, except that the ID is
different. For instance, the next tab’s ID is sel_09 because it is the tab for showing contacts
beginning with any character from 0 to 9.

Following this section of markup is a very small bit:

 <td width="200" valign="top">
 <div class="cssContactList" id="contactList">
 </div>
 </td>

The <div> contactList is, not surprisingly, where our list of contacts will be inserted. The
list is filtered by the selector tabs, and this <div>‘s contents will be rewritten any time a new tab
is selected, or when a contact is added or deleted.

Following this is the remainder of the markup for the data-entry boxes where we fill in the
information for our contacts. This is a big bit of markup that all looks pretty similar really, so
let’s just review a representative snippet of it. The section for entering contact identity (both
personal and business) is shown in Listing 6-6.

Zammetti-816-4C06.fm Page 204 Tuesday, March 6, 2007 8:18 AM

C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I S T E N C E 205

Listing 6-6. Section of the Data-Entry Markup

 <tr>
 <!-- Contact Identity -->
 <td width="49%" valign="top">
 <div class="cssDataBox">
 <table border="0" cellpadding="1" cellspacing="1"
 width="100%">
 <tr>
 <td colspan="2" class="cssDataBoxHeader">
 Contact Identity
 </td>
 </tr>
 <tr>
 <td width="50%" valign="middle">Title:</td>
 <td width="50%" valign="middle">
 <input type="text" id="title"
 maxlength="3" size="4" class="cssTextbox">
 </td>
 </tr>
 <tr>
 <td valign="middle">First Name:</td>
 <td valign="middle">
 <input type="text" id="firstName"
 maxlength="15" size="15" class="cssTextbox">
 </td>
 </tr>
 <tr>
 <td valign="middle">Middle Name:</td>
 <td valign="middle">
 <input type="text" id="middleName"
 maxlength="15" size="15" class="cssTextbox">
 </td>
 </tr>
 <tr>
 <td valign="middle">Last Name:</td>
 <td valign="middle">
 <input type="text" id="lastName"
 maxlength="20" size="15" class="cssTextbox">
 </td>
 </tr>
 <tr>
 <td valign="middle">Suffix:</td>
 <td valign="middle">
 <input type="text" id="suffix"
 maxlength="3" size="4" class="cssTextbox">
 </td>
 </tr>

Zammetti-816-4C06.fm Page 205 Tuesday, March 6, 2007 8:18 AM

206 C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I ST E N C E

 </table>
 </div>
 </td>
 <!-- Divider -->
 <td width="2%"> </td>
 <!-- Work Identity -->
 <td width="49%" valign="top">
 <div class="cssDataBox">
 <table border="0" cellpadding="1" cellspacing="1"
 width="100%">
 <tr>
 <td colspan="2" class="cssDataBoxHeader">
 Work Identity
 </td>
 </tr>
 <tr>
 <td width="50%" valign="middle">Job Title:</td>
 <td width="50%" valign="middle">
 <input type="text" id="jobTitle"
 maxlength="24" size="15" class="cssTextbox">
 </td>
 </tr>
 <tr>
 <td valign="middle">Company:</td>
 <td valign="middle">
 <input type="text" id="company"
 maxlength="25" size="15" class="cssTextbox">
 </td>
 </tr>
 <tr>
 <td valign="middle">Department:</td>
 <td valign="middle">
 <input type="text" id="department"
 maxlength="25" size="15" class="cssTextbox">
 </td>
 </tr>
 <tr>
 <td valign="middle">Manager's Name:</td>
 <td valign="middle">
 <input type="text" id="managerName"
 maxlength="30" size="15" class="cssTextbox">
 </td>
 </tr>

Zammetti-816-4C06.fm Page 206 Tuesday, March 6, 2007 8:18 AM

C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I S T E N C E 207

 <tr>
 <td valign="middle">Assistant's Name:</td>
 <td valign="middle">
 <input type="text" id="assistantName"
 maxlength="30" size="15" class="cssTextbox">
 </td>
 </tr>
 </table>
 </div>
 </td>
 </tr>

This is perfectly typical HTML. Note that the sizes of the fields have been limited such that
each contact takes up just a hair under 1024 bytes. This is done so that if you wanted to modify
the code to store contacts with plain-old cookies instead (hint, hint), you could do so and fit
four contacts per cookie (remember that each cookie is limited to 4kb).

Also note the cssTextbox style class being applied. This is to deal with a situation where the
border can change to inset when the field gets the focus, but not change back. This appears to
have been a browser quirk, but specifically setting the border to what we want in the cssTextbox
class takes care of it.

And with that, we have only one bit of markup left to look at, and that’s the goodbye.htm page.

Writing goodbye.htm
There isn’t a whole lot to the goodbye.htm file, as Listing 6-7 clearly indicates.

Listing 6-7. The goodbye.htm File (Not Much to See Here)

<html>

 <head>

 <title>Contact Manager</title>

 </head>

 <body>
 Thanks for using the contact manager... goodbye!
 </body>

</html>

Zammetti-816-4C06.fm Page 207 Tuesday, March 6, 2007 8:18 AM

208 C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I ST E N C E

This is a simple landing page that you see when you click the Exit icon. It’s just always good
form to end on a polite, “thanks for stopping by” kind of note.

Let’s begin our review of the JavaScript files with the EventHandlers class, since this is
something of a stand-alone piece of code.

Writing EventHandlers.js
In index.htm, you saw that the selector tabs called event-handler functions in this class. Also, as
you shall soon see, all of the input fields actually do the same thing (“Huh?” you’re thinking,
I don’t remember seeing any event handlers on the input fields,” and you’re right). Also, the
contact list you see on the left side of the screen makes use of some functions here as well, but
these are all simply UI-related functions. In other words, if you took these functions out, things
would still basically work, although the UI wouldn’t be as reactive as it is: the selectors wouldn’t
turn red when you hovered over them, the input fields wouldn’t be highlighted when they gained
focus, and the contact list wouldn’t have a hover effect at all. All of these reactions are within
the EventHandlers class, the class diagram of which is shown in Figure 6-10.

Figure 6-10. UML diagram of the EventHandlers class

First, the EventHandlers class is instantiated in the ContactManager class, which we will
look at later, and the reference to it is one of the fields on ContactManager (the reason all the
event handlers in index.htm are in the form contactManager.xxxx()).

The first item in the EventHandlers class is the selectorImages field, which is an array that
will hold references to the preloaded images for the selector tabs. Next is another array field,
imageIDs. This is a list of the selector tab IDs. The filenames of the graphics for each tab can be
formed using these IDs, and so can the ID of the elements on the page, and we’ll need both.

As I mentioned, ContactManager will instantiate EventHandlers and also initialize it by
calling init() on EventHandlers. This init() function is as follows:

Zammetti-816-4C06.fm Page 208 Tuesday, March 6, 2007 8:18 AM

C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I S T E N C E 209

 this.init = function() {

 this.selectorImages = new Array();

 // Load images from the above array and store them in selectorImages.
 for (var i = 0; i < this.imageIDs.length; i++) {
 var sid = this.imageIDs[i];
 this.selectorImages[sid] = new Image();
 this.selectorImages[sid].src = "img/" +
 sid + ".gif";
 this.selectorImages[sid + "_over"] = new Image();
 this.selectorImages[sid + "_over"].src = "img/" +
 sid + "_over.gif";
 }

 // Get all input fields and attach onFocus and onBlur handlers.
 var inputFields = document.getElementsByTagName("input");
 for (i = 0; i < inputFields.length; i++) {
 inputFields[i].onfocus = this.ifFocus;
 inputFields[i].onblur = this.ifBlur;
 }

 } // End init().

The first task this function performs is preloading the images for the selector tabs. To do
so, it iterates over the elements of the imageIDs array. For each, it instantiates an Image object
and sets its src attribute to the filename of the image. Two images for each tab are loaded: one
in its nonhover state and the other in its hover state. These images are added to the array, keyed
by the ID taken from the imageIDs array.

What we wind up with is an associative array selectorImages, which contains all the preloaded
images for the two states for each tab, and we can get at each image by using the ID as the key
(for the hover images, it’s the ID plus the string _over appended). This all saves us from writing
explicit code to load each image. If we want to add more tabs later, as long as they follow the
same naming scheme, we will need to add only the ID to the imageIDs array.

The next task this function performs is hooking up the event handlers to the input fields.
Ah yes, there we go—that’s how it works. We get the collection of <input> fields on the page
using the handy-dandy document.getElementsByTagName() function. Then, for each of them,
we attach onFocus and onBlur events, pointing to the ifFocus() and ifBlur() functions of the
EventHandlers class. Nice to not need to specify these handlers on each input element, huh?

The idea of attaching event handlers to plain-old markup is another tenet of unobtrusive-
ness. While I’m not sure I like the idea of doing so for every event handler on a page, in cases
like this, where a rather large number of elements need the same event handlers attached, this
strikes me as better than having to put the handlers in-line with each element in the markup.

Zammetti-816-4C06.fm Page 209 Tuesday, March 6, 2007 8:18 AM

210 C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I ST E N C E

I suppose we should look at those ifFocus() and ifBlur() functions, shouldn’t we? Well,
here you go:

 // ********** Input Field focus.
 this.ifFocus = function() {

 this.style.backgroundColor = "#ffffa0";

 } // End ifFocus();

 // ********** Input Field blur.
 this.ifBlur = function() {

 this.style.backgroundColor = "#ffffff";

 } // End ifBlur().

Certainly, these are nothing special. They just change the background color of the input
field: yellow when it has focus or white when it loses focus. Highlighting the current field is
something that goes over well with most users, so it’s a good thing to implement.

In the ifFocus() and ifBlur() functions, note the use of the keyword this, which can be a
bit confusing. Recall that these functions are attached as event handlers to elements on the
page. When they are called, the keyword this in the line with this.style.backgroundColor
refers to the element firing the event because, at runtime, the keyword this is always evaluated
in the context in which it executes. Contrast this to the usage of this in the line with this.ifBlur.
In that case, this refers to the EventHandlers class because it is defined within that class. You
can view this as static vs. dynamic interpretation of the this keyword; static being the usage
to attach the method to the EventHandler class, and dynamic being the usage with the event
handler. This is commonly referred to as early binding vs. late binding. Late binding occurs at
runtime, while early binding occurs at compile time. Of course, there is no compile time with
JavaScript, but it still means before the code actually runs.

Following those functions are three that deal with the selector tabs:

 // ********** Selector Tab mouseOver.
 this.stOver = function(inTab) {

 inTab.src = this.selectorImages[inTab.id + "_over"].src;

 } // End stOver().

 // ********** Selector Tab mouseOut.
 this.stOut = function(inTab) {

Zammetti-816-4C06.fm Page 210 Tuesday, March 6, 2007 8:18 AM

C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I S T E N C E 211

 // Only switch state if not the current tab.
 if (contactManager.currentTab != inTab.id.substr(4, 2)) {
 inTab.src = this.selectorImages[inTab.id].src;
 }

 } // End stOut().

 // ********** Selector Tab click.
 this.stClick = function(inTab) {

 // Reset all tabs before setting the current one.
 for (var i = 0; i < this.imageIDs.length; i++) {
 var sid = this.imageIDs[i];
 $(sid).src = this.selectorImages[sid].src;
 }

 inTab.src = this.selectorImages[inTab.id + "_over"].src;

 // Record the current tab, and redisplay the contact list.
 contactManager.currentTab = inTab.id.substr(4, 2);
 contactManager.displayContactList();

 } // End stClick().

stOver() and stOut() handle the onMouseOver and onMouseOut events, respectively. They
make use of the preloaded images stored in the selectorImages array discussed previously. It’s
a simple matter of changing the src attribute on the tab firing the event to the src of the appro-
priate image in the array. Of course, if a user hovers over the current selected tab and then mouses
off it, we don’t want to reset it to the nonhover state, hence the check in stOut() to be sure the
tab that fired the event isn’t the currently selected tab.

stClick() is just a little more interesting. When the user clicks a tab, it becomes the current
tab, which means it remains in the hover state until another one is clicked. To accomplish this,
we first have to reset the currently selected tab to its nonhover state. I decided to do this by
resetting all the tabs, and then setting up the new current tab.3 After the tabs are taken care of,
we call displayContactList() on the ContactManager object to update the contact list to corre-
spond to only those contacts that should show up on the new current tab.

Last up in the EventHandler class are the two functions that deal with mouse events on the
items in the contact list on the left side of the screen:

3. I could have just as easily reset only the current tab, rather than all of them. You can view it as simply
seeing an alternative approach in action.

Zammetti-816-4C06.fm Page 211 Tuesday, March 6, 2007 8:18 AM

212 C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I ST E N C E

 // ********** Contact List mouseOver.
 this.clOver = function(inContact) {

 inContact.className = "cssContactListOver";

 } // End clOver().

 // ********** Contact List mouseOut.
 this.clOut = function(inContact) {

 if (inContact.getAttribute("altRow") == "true") {
 inContact.className = "cssContactListAlternate";
 } else {
 inContact.className = "cssContactListNormal";
 }

 } // End clOut().

For the sake of demonstrating a slightly different technique, I decided that, unlike the handlers
for the input fields, which access style attributes of the target element directly, here I would set
the style class for the target element as appropriate. It is generally better I think to do it this
way, since the styles are abstracted out into style sheets as they probably should be, but now
you’ve seen that you can go the other way, too, if you feel it is more appropriate.

Here, the only real complexity is in the clOut() function. The style to switch the element to
when the mouse leaves it can be one of two because the contacts in the contact list are displayed
with alternate row striping, typical of many display lists. In order to determine which should
be set, we interrogate the custom altRow attribute that each contact in the list carries. When
that attribute is set to true, we know it is an element with a gray background (meaning the
cssContactListAlternate style selector); otherwise, it is a white background (using the
cssContactListNormal selector). Other than that, the clOut() function is pretty straightforward.

Writing Contact.js
If you are familiar with the concept of a Data Transfer Object (DTO) or Value Object (VO), the
Contact.js source will be nothing at all special to you. That’s because it simply defines a DTO
representing a contact. Its class diagram is shown in Figure 6-11.

Zammetti-816-4C06.fm Page 212 Tuesday, March 6, 2007 8:18 AM

C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I S T E N C E 213

Figure 6-11. UML diagram of the Contact class

Zammetti-816-4C06.fm Page 213 Tuesday, March 6, 2007 8:18 AM

214 C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I ST E N C E

First up is a list of properties that represents a contact:

 this.title = "";
 this.firstName = "";
 this.middleName = "";
 this.lastName = "";
 this.suffix = "";
 this.jobTitle = "";
 this.company = "";
 this.department = "";
 this.managerName = "";
 this.assistantName = "";
 this.homePhone = "";
 this.homeCellPhone = "";
 this.homeFAX = "";
 this.homePager = "";
 this.workPhone = "";
 this.workCellPhone = "";
 this.workFAX = "";
 this.workPager = "";
 this.homeEMail = "";
 this.homeWebSite = "";
 this.homeIMNickname = "";
 this.workEMail = "";
 this.workWebSite = "";
 this.workIMNickname = "";
 this.spouseName = "";
 this.childrenName = "";
 this.anniversary = "";
 this.birthday = "";
 this.highSchoolInfo = "";
 this.collegeInfo = "";
 this.custom1 = "";
 this.custom2 = "";
 this.homeAddressLine1 = "";
 this.homeAddressLine2 = "";
 this.homeCity = "";
 this.homeState = "";
 this.homeZipCode = "";
 this.workAddressLine1 = "";
 this.workAddressLine2 = "";
 this.workCity = "";
 this.workState = "";
 this.workZipCode = "";

 this.arrayIndex = -1;

Zammetti-816-4C06.fm Page 214 Tuesday, March 6, 2007 8:18 AM

C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I S T E N C E 215

Notice that straggler at the end, arrayIndex. This is a field that you can essentially think of
as transient and is the index into the array of contacts stored in the DataManager where this
contact is stored. This value will change as contacts are deleted, and will be dynamically calcu-
lated when contacts are restored at application initialization. Note that it does not appear in the
fieldsArray we will discuss next, which is essentially the reason it is transient (the reason it
isn’t in the list should become apparent as we discuss fieldsArray).

After this, we find an interesting bit of code that certainly requires some explanation. It is
the fieldsArray variable, which is an array containing the names of all the fields of this class,
like so:

 this.fieldsArray = [
 "title", "firstName", "middleName", "lastName", "suffix", "jobTitle",
 "company", "department", "managerName", "assistantName", "homePhone",
 "homeCellPhone", "homeFAX", "homePager", "workPhone", "workCellPhone",
 "workFAX", "workPager", "homeEMail", "homeWebSite", "homeIMNickname",
 "workEMail", "workWebSite", "workIMNickname", "spouseName", "childrenName",
 "anniversary", "birthday", "highSchoolInfo", "collegeInfo", "custom1",
 "custom2", "homeAddressLine1", "homeAddressLine2", "homeCity", "homeState",
 "homeZipCode", "workAddressLine1", "workAddressLine2", "workCity",
 "workState", "workZipCode"
];

If you look at these data fields, and then examine index.htm and look at the IDs of the input
fields, you’ll see that they match. This should be a clue as to what this array is for, but don’t
worry, we’re about to figure it out together!

At various points in the application, we will need to populate an instance of the Contact
class from the input fields, or populate the screen from the data fields within the Contact
instance. One could certainly imagine writing code along these lines:

this.firstName = $("firstName").value;
this.lastName = $("lastName").value;

One could also imagine jumping off the Brooklyn Bridge on a hot day, surviving, and being
cooled off. But just like jumping off the bridge, writing code like that isn’t the best way to achieve
the desired goal. Instead, it would be great if we could write some generic code to populate the
object, or the input fields, without that code actually knowing precisely which fields are avail-
able. This is all the better when we want to add elements to a contact. That’s exactly the kind of
code that is present in the Contact class—for instance, in the populateContact() function:

 this.populateContact = function() {

 for (var i = 0; i < this.fieldsArray.length; i++) {
 var fieldValue = $(this.fieldsArray[i]).value;
 this[this.fieldsArray[i]] = fieldValue;
 }

 } // End populateContact();

Zammetti-816-4C06.fm Page 215 Tuesday, March 6, 2007 8:18 AM

216 C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I ST E N C E

Now the purpose of that fieldsArray member is probably starting to make sense. We
iterate over the array, and because the members of the Contact class instance to populate are
the same as the IDs of the input fields, we can use the values of the array to access both, thereby
making this code agnostic about which fields are actually present in the class and on the screen. If
we want to add a field to record a contact’s blood type, we could do that by simply adding it to
the fieldsArray member, and none of the population code would need to change.

Populating the screen is even simpler, but uses precisely the same concept:

 this.populateScreen = function() {

 for (var i = 0; i < this.fieldsArray.length; i++) {
 $(this.fieldsArray[i]).value = this[this.fieldsArray[i]];
 }

 } // End populateScreen().

The next function we come to is toString(). Recall that, as in Java, all JavaScript objects
implement a toString() function. The basic version inherited from the base Object class
(which, again as in Java, all objects in JavaScript inherit from) may or may not be very useful.
However, we can override it simply and provide some output that is more useful. In this case,
the output is JSON representing the contact. Here’s the toString() function:

 this.toString = function() {

 var json = "";
 json += "{ ";
 // For each field in the fieldsArray, get the value and add it to the JSON.
 for (var i = 0; i < this.fieldsArray.length; i++) {
 if (json != "{ ") {
 json += ", ";
 }
 json += "\"" + this.fieldsArray[i] + "\":\"" +
 this[this.fieldsArray[i]] + "\"";
 }
 json += " }";
 return json;

 } // End toString().

You may be wondering why I didn’t instead have something like a toJSON() function. That
would have worked perfectly well, except that overriding toString() instead makes the code to
get the contact as JSON just a hair cleaner, as you’ll see later in the DataManager class. Also, it
makes debugging a little better because, if you want to display a given Contact instance—for
example, in an alert() pop-up—you’ll get something that is a bit more helpful than the default
toString() provides. And that’s always a good thing.

The last function found in the Contact class is restoreFromJSON():

Zammetti-816-4C06.fm Page 216 Tuesday, March 6, 2007 8:18 AM

C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I S T E N C E 217

 this.restoreFromJSON = function(inJSON) {

 eval("json = (" + inJSON + ")");
 for (var i = 0; i < this.fieldsArray.length; i++) {
 this[this.fieldsArray[i]] = json[this.fieldsArray[i]];
 }

 } // End restoreFromJSON().

The name says it all. This function populates the Contact class instance it is executed on
from an incoming string of JSON. I think the beauty of storing the contact as JSON should be
pretty apparent here: this code is amazingly simple and compact. We simply iterate over that
handy fieldsArray again, and for each element, we set the appropriate field in the class from
the parsed JSON object. It’s very simple, which is also always a good thing.

By the way, remember the arrayIndex field that I mentioned was transient? Do you see
now why that is? By virtue of not being listed in fieldsArray, it is neither included in the JSON
generated by toString() nor is it reconstituted by restoreFromJSON().

Writing ContactManager.js
The ContactManager class, defined in the ContactManager.js file, is the main code behind this
application. Its class diagram is shown in Figure 6-12.

Figure 6-12. UML diagram of the ContactManager class

This class starts off with five data fields:

• eventHandlers: A reference to an instance of the EventHandlers class

• dataManager: A reference to an instance of the DataManager class

Zammetti-816-4C06.fm Page 217 Tuesday, March 6, 2007 8:18 AM

218 C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I ST E N C E

• currentTab: The ID of the currently selected tab

• currentContactIndex: The index into the array of contacts (stored in the DataManager
class) of the contact currently being edited (or –1 if creating a new contact)

• initTimer: A reference to the timer used during application initialization

Initializing

Recall that in index.htm, we use the Dojo event system to hook up an onLoad event that calls the
init() function of the ContactManager class. Well, now it’s time to see what’s in that function:

 this.init = function() {

 contactManager.eventHandlers = new EventHandlers();
 contactManager.eventHandlers.init();
 contactManager.dataManager = new DataManager();
 this.initTimer = setTimeout("contactManager.initStorage()", 500);

 } // End init().

First, the EventHandlers class is instantiated and the reference to it stored in the
eventHandlers field. Next, init() is called on that class.

Then we do the same thing for the DataManager class, but we don’t call init() on it right
away, as we do with the EventHandlers instance. Instead, we start a timer that every 500 milli-
seconds calls the initStorage() function of the ContactManager. That function is as follows:

 this.initStorage = function() {

 if (dojo.storage.manager.isInitialized()) {
 clearTimeout(this.initTimer);
 contactManager.dataManager.init();
 contactManager.displayContactList();
 $("divInitializing").style.display = "none";
 this.initTimer = null;
 } else {
 this.initTimer = setTimeout("contactManager.initStorage()", 500);
 }

 } // End initStorage().

What’s this all about you ask? Simply, Bad Things™ will happen if you try to use Dojo’s
functions for working with shared objects before the storage system has properly initialized.
When we look at the DataManager class, you’ll see that one of the things done in its init() function
is to restore saved contacts from persistent storage (read local shared objects). Therefore, we
can’t call that function immediately as we did with the EventHandlers instance. In fact, we can’t
call it until the storage system has fully initialized. And that’s the reason for the timer. Every 500
milliseconds, we check with Dojo to see if the storage system has initialized yet. If not, we just
keep firing the timer until it does.

Zammetti-816-4C06.fm Page 218 Tuesday, March 6, 2007 8:18 AM

C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I S T E N C E 219

As soon as the storage system initializes, we stop the timer and call init() on the DataManager
instance. At that point, we also display the contact list so that any restored contacts will be
available to the user, and finally we hide the initializing message discussed earlier. Once the
DataManager has been initialized, the application is then ready for user interaction.

Generating the Contacts

Recall that the list of contacts restored from persistent storage is displayed during this initial-
ization cycle. Here is the code that generates the list of contacts:

 this.displayContactList = function() {

 // Get a list of contacts for the current tab.
 var contacts = this.dataManager.listContacts(this.currentTab);

 // Generate the markup for the list.
 var html = "";
 var alt = false;
 for (var i = 0; i < contacts.length; i++) {
 html += "<div indexNum=\"" + contacts[i].arrayIndex + "\" ";
 html += "onMouseOver=\"contactManager.eventHandlers.clOver(this);\" ";
 html += "onMouseOut=\"contactManager.eventHandlers.clOut(this);\" ";
 html += "onClick=\"contactManager.doEditContact(" +
 "this.getAttribute('indexNum'));\" ";
 if (alt) {
 html += "class=\"cssContactListAlternate\" altRow=\"true\">";
 alt = false;
 } else {
 html += "class=\"cssContactListNormal\" altRow=\"false\">";
 alt = true;
 }
 html += contacts[i].lastName + ", " + contacts[i].firstName;
 html += "</div>";
 }

 // Display it.
 $("contactList").innerHTML = html;

 } // End displayContactList().

First, the list of contacts is retrieved from the DataManager. We pass the listContacts()
function of the DataManager class the currently selected tab so that the list can be filtered
accordingly. Next, we cycle through the returned contacts (each element of the returned array
is a Contact object) and construct the appropriate markup for the list. Each element in the list
has mouse events attached to highlight the contact when the user hovers over it. And each
element also contains an onClick handler that calls doEditContact() in the ContactManager
class, which loads the contact into the input fields on the screen for editing. Once the markup
is fully constructed, it is inserted into the contactList <div>, which shows it to the user.

Zammetti-816-4C06.fm Page 219 Tuesday, March 6, 2007 8:18 AM

220 C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I ST E N C E

Editing Contacts

Speaking of the doEditContact() function, let’s see that now, shall we?

 this.doEditContact = function(inIndex) {

 // Record contact index, retrieve contact and populate screen.
 this.currentContactIndex = inIndex;
 var contact = this.dataManager.getContact(inIndex);
 contact.populateScreen();

 }

Wow, really, that’s it? Yes indeed. Note in the displayContactList() function that each
contact listed has an indexNum custom attribute attached to it. This value corresponds to the
value of the arrayIndex member of the Contact class. Since we are viewing a subset of the
contacts array when a particular tab is set, using this value ensures that a contact’s indexNum
attribute is the correct index into the array. This way, when the user clicks a contact to edit it,
we pull the correct data to display.

For instance, if you click the A-C tab, and you see three of ten stored contacts, the array
returned by listContacts() in the DataManager class will simply return an array with three
elements. But the index in that array (0, 1, or 2) may not match the index into the contacts array
for a given contact. In other words, the first contact returned by listContacts() is index 0 in
that returned array, but may actually be the contact at index 9 in the main contacts array.
Therefore, if we used the index number of the returned array as the value for indexNum, we
wouldn’t go after the correct element in the contacts array (in this example, 0 instead of 9).
We instead need the arrayIndex field of the Contact object.

Adding Button Functions

The ContactManager class contains five more functions, and each corresponds to one of the five
buttons at the top of the page. First up is doNewContact():

 this.doNewContact = function() {

 if (this.initTimer == null) {

 if (confirm("Create New Contact\n\nYou will lose any unsaved changes. " +
 "Are you sure?")) {
 document.forms[0].reset();
 this.currentContactIndex = -1;
 }

 }

 } // End doNewContact().

Not really much going on here, I admit. One thing you’ll notice in this and the next functions
is the check of initTimer being null. When the application starts, initTimer has a value of –1.
When the initialization cycle completes, it is set to null. Since we don’t want the user to be able

Zammetti-816-4C06.fm Page 220 Tuesday, March 6, 2007 8:18 AM

C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I S T E N C E 221

to do anything until the application initializes fully, and since Dojo produces the fisheye icons
before initialization completes, we need to ensure initialization is finished before we process
any user events. That’s why we need the check that allows the code to execute only after initTimer
is null, meaning everything is ready to go.

Once that is the case, we simply make sure the user wants to create a new contact, because
if she had any edits on the page, they would be lost. Then we reset the form, which clears all our
input fields, and set the currentContactIndex to –1, which indicates to the rest of the code that
a new contact is being created.

Next up is the function called when the save icon is clicked, appropriately named
doSaveContact():

 this.doSaveContact = function() {

 if (this.initTimer == null) {

 // Make sure required fields are filled in.
 if ($("firstName").value == "" || $("lastName").value == "") {
 alert("First Name and Last Name are required fields");
 return false;
 }

 // Create a new contact and populate it from the entry fields.
 var contact = new Contact();
 contact.arrayIndex = this.currentContactIndex;
 contact.populateContact();

 // Save the contact.
 this.dataManager.saveContact(contact, this.currentContactIndex);

 // Redisplay the updated contact list.
 this.displayContactList();

 // Reset the entry fields and currentContactIndex.
 document.forms[0].reset();
 this.currentContactIndex = -1;

 }

 } // End doSaveContact().

This function handles two different save situations: saving a new contact or saving edits to
an existing contact. So, after our check of initTimer as in doNewContact(), we first do a quick
edit check to ensure a first name and last name have been entered. These two fields are the only
required fields for a contact because they are used to generate the contact list, and this is true
whether it is a new contact or an existing one.

Once that is done, we instantiate a new Contact object and tell it to populate itself from the
input fields by calling its populateContact() function. We also set the arrayIndex field based on

Zammetti-816-4C06.fm Page 221 Tuesday, March 6, 2007 8:18 AM

222 C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I ST E N C E

the currentContactIndex value, which will be –1, as set in doNewContact() if this is a new contact, or
to the appropriate array index if editing an existing contact.

Next, we call saveContact() on the DataManager, passing it the contact and the index (we’ll
be looking at that code shortly). After that, we regenerate the contact list and show it because
we may have just added a contact that should be immediately visible (we’re on the tab the
contact would appear on naturally or on the All tab). Lastly, we reset the input fields and the
currentContactIndex value (which is actually a little redundant, but does no harm), and that’s
how a contact is saved.

The next function to look at is doDeleteContact(), and I’ll give you just one guess what it does:

 this.doDeleteContact = function() {

 if (this.initTimer == null) {

 if (this.currentContactIndex != -1 &&
 confirm("Are you sure you want to delete this contact?")) {

 // Ask the data manager to do the deletion.
 this.dataManager.deleteContact(this.currentContactIndex);

 // Redisplay the updated contact list.
 this.displayContactList();

 // Reset the entry fields and currentContactIndex.
 document.forms[0].reset();
 this.currentContactIndex = -1;

 }

 }

 } // End doDeleteContact().

After the usual check of initTimer, and a confirmation that the user really wants to delete
the current contact (which includes a check to be sure there is a contact selected to be deleted),
we ask the DataManager to do the deletion for us, passing it the index of the contact to delete.
Once again, we regenerate and display the contact list, and reset the input fields and the
currentContactIndex value (and yes, it’s still a bit redundant here, but it still does no harm, and
I prefer variables that aren’t based on user input being in known states at any given time because
they make for easier debugging sessions).

The next function is doClearContacts(), which is a giant, shiny “push to destroy the universe”
button. Well, maybe not quite, but it does delete all contacts from persistent storage, so it isn’t
something that you want the user clicking willy-nilly. For that reason, there is a double verifi-
cation required, as you can plainly see:

Zammetti-816-4C06.fm Page 222 Tuesday, March 6, 2007 8:18 AM

C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I S T E N C E 223

 this.doClearContacts = function() {

 if (this.initTimer == null) {

 if (confirm("This will PERMANENTLY delete ALL contacts from " +
 "persistent storage\n\nAre you sure??")) {
 if (confirm("Sorry to be a nudge, but are you REALLY, REALLY SURE " +
 "you want to lose ALL your contacts FOREVER??")) {
 this.dataManager.clearContacts();
 // Redisplay now empty contact list.
 this.displayContactList();
 // Reset form for good measure.
 document.forms[0].reset();
 this.currentContactIndex = -1;
 alert("Ok, it's done. Don't come cryin' to me later.");
 }
 }

 }

 } // End doClearContacts().

Only one function remains, doExit(), and it’s a pretty trivial piece of code:

 this.doExit = function() {

 if (this.initTimer == null) {

 if (confirm("Exit Contact Manager\n\nAre you sure?")) {
 window.location = "goodbye.htm";
 }

 }

 } // End doExit().

Nothing fancy here—just a quick confirmation, and then the browser is redirected to the
goodbye.htm page we looked at earlier.

Writing DataManager.js
Throughout the ContactManager code, you saw a number of calls to the DataManager. Now we
come to the point in our show where we need to take a look at that class and see what’s going
on under the covers there. Its class diagram is shown in Figure 6-13.

Zammetti-816-4C06.fm Page 223 Tuesday, March 6, 2007 8:18 AM

224 C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I ST E N C E

Figure 6-13. UML diagram of the DataManager class

I wrote the DataManager class with the idea in mind that you could swap it out for another
implementation, perhaps one that made use of some ActiveX control (as evil as those are) to
persist the contacts and deal with the underlying storage mechanism. As such, its public API is
pretty generic and conducive to such a swap.

The first item in the DataManager class is the contacts array. This is, not surprisingly, the
array in which our contacts are stored. This array is loaded from shared objects when the appli-
cation initializes, and until the user exits the application, the array is essentially kept synchronized
with the persistent store. In other words, when we add a contact, it is added to this array, and
then the array is persisted to shared objects. When we delete a contact, it is deleted from the
array, and then the array is persisted to shared objects. When we edit an existing contact, it
is updated in the array, and then the array is persisted to shared objects. Are you seeing a
pattern here?

When the ContactManager class is instantiated during application initialization, it instanti-
ates the instance of DataManager and keeps a reference to it, as you saw earlier. Also as you saw
earlier, it initialized the DataManager by calling its init() function, which we can now look at:

 this.init = function() {

 // Read in existing contacts from the applicable storage mechanism.
 this.contacts = new Array();
 this.restoreContacts();

 } // End init().

Once the contacts array is initialized, we ask the DataManager to restore any contacts from
persistent storage by calling the restoreContacts() function, which is the following:

Zammetti-816-4C06.fm Page 224 Tuesday, March 6, 2007 8:18 AM

C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I S T E N C E 225

 this.restoreContacts = function() {

 // Retrieve stored contacts.
 var storedContacts = dojo.storage.get("js_contact_manager_contacts");

 // Only do work if there actually were any contacts stored.
 if (storedContacts) {
 // Tokenize the string that was stored.
 var splitContacts = storedContacts.split("~>!<~");
 // Each element in splitContacts is a contact.
 for (var i = 0; i < splitContacts.length; i++) {
 // Instantiate a new Contact instance and populate it.
 var contact = new Contact();
 contact.restoreFromJSON(splitContacts[i]);
 contact.arrayIndex = i;
 // Add it to the array of contacts.
 this.contacts.push(contact);
 }
 }

 } // End restoreContacts().

Restoring contacts is a pretty simple process. First, we ask Dojo to get our contacts from
local shared objects. The contacts are stored under the name js_contact_manager_contacts.
The code then checks to be sure we actually got something back. If this is the first time the
application is run on this machine, for instance, there will be no object under that name, and
hence no contacts to restore.

Assuming there are contacts, what we get back from the dojo.storage.get() call is basically a
giant string consisting of contacts in JSON form separated by a sequence of characters: ~>!<~.
We can’t just use a single character, such as a comma, because it could appear naturally in the
data entered by the user, and therefore we would not tokenize the string properly. So we need
a delimiter to separate contacts that isn’t likely to be entered by the user. The ~>!<~ sequence
is a reasonably safe combination, in that it isn’t likely to naturally occur in real user input. However,
entering it in any field for a contact will, in fact, break the code.4

After the string is tokenized, we start iterating over the tokens, which I remind you are each
a contact in JSON form. For each, all we need to do is instantiate a new Contact object, and then
pass the JSON string to the restoreFromJSON() function of the Contact, which we looked at
earlier. It uses the evaluated JSON and populates the Contact instance, effectively restoring it.

Only two things remain to do: set the arrayIndex field of the contact and add it to the
contacts array. Once all the tokens (contacts) have been processed in this way,
restoreContacts() has completed its work, and we now have a contacts array that is identical
to how it was when it was last persisted.

The next function we encounter in our exploration of the DataManager class is the
saveContact() function, which is used to rotate the ad banner at the top of the page.

4. To be really bullet proof, the application should check all inputs to be sure this sequence doesn’t appear.
But it seems pretty unlikely that it would be entered except by someone deliberately trying to break the
program, so I can live with the risk.

Zammetti-816-4C06.fm Page 225 Tuesday, March 6, 2007 8:18 AM

226 C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I ST E N C E

You were paying attention there I hope and noticed something amiss? Obviously, the
saveContact() function, in fact, is called to save a contact, and it looks like this:

 this.saveContact = function(inContact, inIndex) {

 // Save new contact.
 if (inIndex == -1) {
 inContact.arrayIndex = this.contacts.length;
 this.contacts.push(inContact);
 } else {
 // Update existing contact.
 this.contacts[inIndex] = inContact;
 }
 this.persistContacts();

 } // End saveContact().

We first do some simple branching based on whether we are saving a new contact
(inIndex == -1) or updating an existing one (inIndex != -1). In the case of adding a new
index, all we really need to do is set the arrayIndex field of the inContact object, and push
it onto the contacts array. When we are updating a contact, we just set the appropriate
element of the contacts array to the inContact object. After one of those things happens, we
call persistContacts() to save the contacts array to shared objects.

So, what of this persistContacts() function? Let’s get to that now. Actually, with
persistContacts() goes saveHandler(), which works hand in hand with persistContacts()
to do the job of saving to shared objects:

 this.persistContacts = function() {

 // First, construct a giant string from our contact list, where each
 // contact is separated by ~>!<~ (that delimiter isn't too likely to
 // naturally appear in our data I figure!)
 var contactsString = "";
 for (var i = 0; i < this.contacts.length; i++) {
 if (contactsString != "") {
 contactsString += "~>!<~";
 }
 contactsString += this.contacts[i];
 }

 try {
 dojo.storage.put("js_contact_manager_contacts", contactsString,
 this.saveHandler);
 } catch(e) {
 alert(e);
 }

 } // End persistContacts().

Zammetti-816-4C06.fm Page 226 Tuesday, March 6, 2007 8:18 AM

C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I S T E N C E 227

 // ********** Callback function for Flash storage system save.
 this.saveHandler = function(status, keyName){

 if (status == dojo.storage.FAILED) {
 alert("A failure occurred saving contact to Flash storage");
 }

 } // End saveHandler().

First, we construct that giant string from the contacts array that I talked about earlier
when discussing the restoreContacts() function. To do so, we simply iterate over the contacts
array and add each contact to a string, which fires its toString() function as described earlier
when we looked at the Contact class.

We then append our special delimiter character sequence, and continue that until the
whole contacts array has been processed into this string. Once that’s done, we pass this string
to the dojo.storage.put() function, telling it to store the string under the name
js_contact_manager_contacts. We also pass it a reference to the saveHandler() function. This
function is a callback that will be called by Dojo when the operation completes. We can examine
the outcome of the operation and act accordingly. Here, all we really care about is a failure; in
which case, we alert the user. There isn’t a whole lot to be done if a failure occurs, so that’s the
end of things. We could also alert users if the operation succeeds, but I think they can surmise
that if no error message is shown.

The getContact() function comes next, and it’s definitely a trivial piece of code. In fact, it’s
so trivial that I’m not even going to show it. All it does is take in an index number and return
that element from the contacts array. A single line of code, that’s it.

Following getContact() is deleteContact(), which has a little more meat to it (although
I admit, not a lot of meat):

 // ********** Delete a contact.
 this.deleteContact = function(inIndex) {

 // Delete from contacts array.
 this.contacts.splice(inIndex, 1);

 // Store the updated contact list.
 this.persistContacts();

 // Finally, renumber all the remaining contacts.
 for (var i = 0; i < this.contacts.length; i++) {
 this.contacts[i].arrayIndex = i;
 }

 } // End deleteContact().

JavaScript arrays expose the splice() method, which allows us to remove elements from
an array easily. We simply specify from which index to start removing elements, and then specify
how many elements to remove.

Zammetti-816-4C06.fm Page 227 Tuesday, March 6, 2007 8:18 AM

228 C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I ST E N C E

Once the contact has been removed, we ask the DataManager to persist our contacts, effec-
tively updating the shared objects.

One last bit of work remains at this point, and that is to renumber the contacts. Recall that
the arrayIndex field, which is not persisted with the contact, is the element in the contacts array
where the contact is located. It is important that this be accurate, because if the user clicks a
selector tab and we return only a subset of the contacts array, each contact needs to know what
index it’s at so we can edit and/or delete the appropriate contact if the user requests it.

However, let’s say we have three contacts in the contacts array, and we delete the second
one. Now, the first contact has an arrayIndex value of 0, and the second one has a value of 3,
because that’s where it was previously (we’re assuming they were numbered correctly to begin
with). So, if the user clicks that second contact to edit, we’ll get an error as we try to access index 3
of the array, which no longer exists. As you can see, the arrayIndex values need to be updated
when we delete a contact. Fortunately, this is a simple procedure: we just need to iterate over
the array and set the arrayIndex for each contact as we do so. This will remove any gaps in the
order left by a deletion, and everything will be set up properly again.

Following deleteContact() is listContacts(), which is called to get some subset of the
contacts array (or the entire array in the case of the All tab). While it serves an important purpose,
there isn’t really much to it:

 this.listContacts = function(inCurrentTab) {

 if (inCurrentTab == "XX") {
 // ALL tab selected, return ALL contact.
 return this.contacts;
 } else {
 // Filter contacts based on current tab.
 var retArray = new Array();
 var start = inCurrentTab.substr(0, 1).toUpperCase();
 var end = inCurrentTab.substr(1, 1).toUpperCase();
 for (var i = 0; i < this.contacts.length; i++) {
 var firstLetter = this.contacts[i].lastName.substr(0, 1).toUpperCase();
 if (firstLetter >= start && firstLetter <= end) {
 retArray.push(this.contacts[i]);
 }
 }
 return retArray;
 }

 } // End listContacts().

First, we check to see if the inCurrentTab value is XX, which indicates the All tab has been
selected. In that case, we just return the contacts array, and that’s that. For any other tab, we
have a little more work to do. First, we create a new array to hold the subset of contacts we’ll be
returning. Next, we take the first character of inCurrentTab, converted to uppercase, which is
the start of the range of characters for which we want to return contacts. We do the same for the
second character, which is the end of the range.

So, let’s say the inCurrentTab value is AC. In that case, we want to return any contact whose
last name begins with A, B, or C. So, we iterate over the contacts and, for each, we grab the first

Zammetti-816-4C06.fm Page 228 Tuesday, March 6, 2007 8:18 AM

C H A P T E R 6 ■ D O N ’ T J U S T L I V E I N T H E M O M E N T : C L I E N T - S I D E P E R S I S T E N C E 229

letter of the last name. After converting it to uppercase, we see if it falls within the range defined
by start and end, and if so, we add it to the array. Once we go through all the contacts, we return
the array, which is now some subset of the contacts appropriate for the currently selected tab.

We’re just about finished with the DataManager class now. Here’s the final function left
to examine:

 this.clearContacts = function() {

 dojo.storage.clear();
 this.contacts = new Array();

 } // End clearContacts().

If the user becomes depressed and wants to cut off all contact with the outside world, he
may decide he no longer wants any contacts, and he may click the Clear Contacts icon. In that
case, the clearContacts) function is called. Two things need to occur to clear contacts. First,
we need to clear our persistent storage. Dojo provides the dojo.storage.clear() function for
this. After that, we have to clear the contacts array in DataManager, which is a simple matter of
setting it to a new, empty array. After this, the user can go seek professional psychiatric help to
deal with his problems.

Suggested Exercises
While the primary goal of this chapter is to highlight the persistence aspect of the project, that’s
no reason not to make suggestions that tackle other areas as well. Here are just a few ideas you
could explore that would certainly prove to be good learning exercises:

• Allow for searching on any field. For bonus points, use some Dojo transition effects to
have a search panel slide into view.

• Allow for sending email by clicking a contact’s email address. I purposely left this out
because I wanted to make this relatively simple suggestion here. This addition shouldn’t
take much effort.

• Sort the contacts listed on a given tab.

• Implement persistence to cookies. I purposely limited the maximum size that a single
contact could take up to just a hair under 1024 bytes. This should allow you to store
4 contacts per cookie, so with the limit of 20 cookies per domain you can store 80 contacts.

Summary
In this chapter, we looked at a couple different mechanisms for storing data in a persistent
manner on the client. We focused on using the local shared objects mechanism provided by
Adobe’s Flash plug-in. You saw how the Dojo library helps make all of this a bit easier by taking
care of most of the details for us. We built a small Contact Manager application to demonstrate
these techniques, and in the process saw some Dojo widget magic as well.

Zammetti-816-4C06.fm Page 229 Tuesday, March 6, 2007 8:18 AM

231

■ ■ ■

C H A P T E R 7

JSDigester: Taking the Pain
Out of Client-Side XML

I’ll just come out and say it: parsing XML in a browser is not a particularly pleasant experience.
Actually, if you think about it, parsing XML anywhere can be a bit of a hassle. However, one
library that does make it a bearable experience is the Jakarta Commons Digester component
(http://jakarta.apache.org/commons/digester). Digester allows you to specify a series of rules
that will be triggered by various elements in an XML document. These rules may handle the
parsing in a number of ways, including creating and populating objects from the XML. Wouldn’t
it be great if we could do the same thing in JavaScript? Well, we’re going to make that dream a
reality in this chapter, and in the process, make working with XML on the client a much less
painful experience.

Parsing XML in JavaScript
Parsing XML on the client is about as much fun as a gum scraping is for most people. Believe
me, I don’t make the dental analogy lightly (well, while I’ve never had my gums scraped, I am
married with children, so I figure I know what it would feel like). If you’ve ever done much in
the way of parsing XML in JavaScript, then the code shown in Listing 7-1 will probably look
both familiar and painful.

Listing 7-1. Parsing XML in JavaScript in a Browser

<html>

 <head>

 <link rel="StyleSheet" href="styles.css" type="text/css">

 <title>Simple JavaScript XML Parsing Example</title>

 <script>

 function doParsing() {

Zammetti-816-4C07.fm Page 231 Friday, March 2, 2007 8:39 AM

232 C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F C L I E N T - S I D E X M L

 // This is the XML we will parse.
 var xml = "<messages>";
 xml += "<msg poster=\"Frank\">Hello!</msg>";
 xml += "<msg poster=\"Traci\">I hope all is well with you!</msg>";
 xml += "<msg poster=\"Andrew\">Well, I guess that's it.</msg>";
 xml += "<msg poster=\"Ashley\">Have a good day!</msg>";
 xml += "</messages>";

 // Instantiate an XML parser (or DOM, depending on browser).
 var xmlDoc = null;
 if (window.XMLHttpRequest){
 var parser = new DOMParser();
 xmlDoc = parser.parseFromString(xml, "application/xml");
 } else {
 xmlDoc = new ActiveXObject("Microsoft.XMLDOM");
 xmlDoc.async = false;
 xmlDoc.loadXML(xml);
 }

 // Now iterate over the DOM created above, and construct an output
 // string to display.
 var strOut = "Root node = " + xmlDoc.documentElement.nodeName + "
";
 for (var i = 0; i < xmlDoc.documentElement.childNodes.length; i++) {
 strOut += "nodeName = " +
 xmlDoc.documentElement.childNodes[i].nodeName + ", poster = " +
 xmlDoc.documentElement.childNodes[i].getAttribute("poster") +
 ", text = " +
 xmlDoc.documentElement.childNodes[i].firstChild.nodeValue + "
";
 }
 document.getElementById("divOut").innerHTML = strOut;

 }

 </script>

 </head>

 <body class="cssBody">

 <div class="cssTitle">JavaScript XML Parsing Example</div>

 <input type="button" value="Click me to parse XML"
 onClick="doParsing();" class="cssBody">

 Info will appear here:

Zammetti-816-4C07.fm Page 232 Friday, March 2, 2007 8:39 AM

C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F CL I E N T -S I D E X M L 233

 <div id="divOut" class="cssLog"></div>

 </body>

</html>

While I have to admit it probably isn’t much to look at, Figure 7-1 shows the output of the
code in Listing 7-1.

Figure 7-1. The result of the simple parsing example

Keep in mind that this is a very trivial example. Also keep in mind that there is more than
one way to write XML parsing code in JavaScript. However, I think it’s safe to say that all
approaches suffer from the same flaw: they are simply too much work. Not only that, but did
you notice that the code is aware of the form and structure of the XML it is parsing? This isn’t
always a bad thing, of course, and is often outright necessary. But it’s still something to try to
limit as much as possible, so that our code is flexible and reusable. In this case, referencing
specific element names probably isn’t ideal.

Another important consideration is the question of what you are actually trying to do with
the XML you are parsing. Are you simply scanning through it and acting on each element,
perhaps displaying it? Or is your goal to populate some objects from the XML—something of
an object-to-XML mapping? If the former is the goal, then code like that in Listing 7-1 maybe is
not so bad, and could ultimately be more efficient. If the goal is object creation and population,
however, then you’ll need to write far more code to make that happen.

Zammetti-816-4C07.fm Page 233 Friday, March 2, 2007 8:39 AM

234 C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F C L I E N T - S I D E X M L

JSDigester Requirements and Goals
The aim of this chapter’s project is to make our lives a lot simpler. We will take a cue from the
Apache Jakarta Commons Digester project and build ourselves a JavaScript implementation of
Digester that we’ll call JSDigester.

Here are our goals and requirements:

• Rather than try to implement the entire breadth of Digester’s capabilities, we’ll include
just a bare minimum to get us by. However, like Digester, JSDigester should be exten-
sible, so that if we need other rules down the road, we can implement them and use
them without any trouble.

• In short, we should be able to create an instance of JSDigester, configure some rules on
it, and pass it some XML to parse. The result should be an object that presumably
contains other objects populated from the parsed XML.

• JSDigester should look and work as much like its big brother Digester as possible, with
the understanding that there will be some things that just don’t translate very well to
JavaScript or are outright not possible, and hence will not be attempted here.

• Naturally, JSDigester should be fully cross browser–compatible.

With those goals in mind, let’s get down to business and try to extricate ourselves from the
relative masochistic experience of parsing XML in JavaScript.

How Digester Works
To try to duplicate Commons Digester, we need look at that project itself. Although Digester is
a Java library, I think a basic example will be understandable to most any developer with expe-
rience in a C-like language.

The Digester home page does a good job of describing what Digester is (and it had better,
right?):

Basically, the Digester package lets you configure an XML -> Java object mapping
module, which triggers certain actions called rules whenever a particular pattern of
nested XML elements is recognized. A rich set of predefined rules is available for your
use, or you can also create your own. Advanced features of Digester include:

• Ability to plug in your own pattern matching engine, if the standard one is not
sufficient for your requirements.

• Optional namespace-aware processing, so that you can define rules that are
relevant only to a particular XML namespace.

• Encapsulation of Rules into RuleSets that can be easily and conveniently reused in
more than one application that requires the same type of processing.

Zammetti-816-4C07.fm Page 234 Friday, March 2, 2007 8:39 AM

C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F CL I E N T -S I D E X M L 235

The basic idea behind Digester is that you can map certain XML elements to rules that
define how they will be treated. Then, as an XML document is parsed and Digester encounters
the mapped elements, it creates objects for these elements, sets properties of a given object, or
calls methods of a given object—all according to the rules you define. When the XML document
is completely parsed, you wind up with an object graph containing new objects that represent
various elements in the XML document.

Digester can seem a bit overwhelming at first, but once you get the hang of it, you won’t
want to use anything else! Let’s look at a simple example now.

Imagine we are writing a simple shopping cart web application, as seen on virtually any
e-commerce web site like Amazon.com. Suppose that our application has the two classes shown in
Listings 7-2 and 7-3, which represent the shopping cart and any items in the shopping cart.

Listing 7-2. The ShoppingCart Class

package myApp;
public class ShoppingCart {
 public void addItem(Item item);
 public item getItem(int id);
 public Iterator getItems();
 public String getShopperName();
 public void setShopperName(String shopperName);
 }

Listing 7-3. The Item Class

 package myApp;
 public class Item {
 public int getId();
 public void setId(int id);
 public String getDescription();
 public void setDescription(String description);
 }

Now let’s assume that we have previously had a user who started shopping, maybe buying
Christmas presents for his friends, dropped some items in his cart, and then left. Let’s further
assume that we wanted the user to have a good shopping experience, so we saved the state of
his shopping cart for later. Lastly, let’s assume that we saved that state in the form of the XML
document shown in Listing 7-4.

Listing 7-4. The Saved XML Document Representing the User’s Shopping Cart

<ShoppingCart shopperName="Rick Wakeman">
 <Item id="10" description="Child's bike (boys)" />
 <Item id="11" description="Red Blouse" />
 <Item id="12" description="Reciprocating Saw" />
</ShoppingCart>

Zammetti-816-4C07.fm Page 235 Friday, March 2, 2007 8:39 AM

236 C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F C L I E N T - S I D E X M L

Now, when the user comes back to our site, we want to read in this XML document and
create a ShoppingCart object that contains three Item objects, all with their properties set
appropriately to match the data in the XML document. We could do so with the following
Digester code:

 Digester digester = new Digester();
 digester.setValidating(false);
 digester.addObjectCreate("ShoppingCart", "myApp.ShoppingCart");
 digester.addSetProperties("ShoppingCart");
 digester.addObjectCreate("ShoppingCart/Item", "myApp.Item");
 digester.addSetProperties("ShoppingCart/Item");
 digester.addSetNext("ShoppingCart/Item", "addItem", "myApp.Item");
 ShoppingCart shoppingCart = (ShoppingCart)digester.parse();

Let’s break this down and look at each line of code. The first line instantiates a Digester
object. The second line of code tells Digester that we do not want the XML document validated
against a Document Type Definition (DTD).

After that comes a series of addXXX() method calls, which each adds a particular rule to
Digester. A number of built-in rules are available, and you can write your own as required.

All of the rules share the first method call parameter in common: the path to the element
for which the rule will fire. Recall that an XML document is a hierarchical tree structure, so to
get to any particular element in the document, you form a path to it that starts at the document
root and proceeds through all the ancestors of the element. In other words, looking at the
<Item> elements, the parent of all of the <Item> elements is the <ShoppingCart> element. There-
fore, the full path to any of the <Item> elements is ShoppingCart/Item. In the same way, if the
<Item> element had an element nested beneath it, say <Price>, then the path to that element
would be ShoppingCart/Item/Price.

A Digester rule is attached to a given path and will fire any time an element with that path
is encountered. You can have multiple rules attached to a given path, and multiple rules can
fire for any given path.

In this example, our first rule—an ObjectCreate rule—is defined to fire for the path
ShoppingCart. This means that when the <ShoppingCart> element is encountered, an instance
of the class myApp.ShoppingCart will be created.

Digester uses a stack implementation to deal with the objects it creates. For instance,
when the ObjectCreate rule fires and instantiates that ShoppingCart object, it is pushed onto
the stack. All subsequent rules will work against that object, until it is popped off the stack
(either explicitly, as a result of another rule, or because parsing is completed). So, when the
next rule—the SetProperties rule—fires, it will set all the properties of the object on the top of
the stack—in this case, our ShoppingCart object—using the attributes of the <ShoppingCart>
element in the document.

Zammetti-816-4C07.fm Page 236 Friday, March 2, 2007 8:39 AM

C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F CL I E N T -S I D E X M L 237

Next comes another ObjectCreate rule set up for the <Item> elements, and also another
SetProperties rule for that same element. So, when the first <Item> element is encountered,
the object is created and pushed onto the stack, meaning it is now on top of the ShoppingCart
object.

The last rule is the SetNext rule. This rule calls a given method—addItem() in this case—on
the next object on the stack, which would be the ShoppingCart object, passing it the object on the
top of the stack, which is the Item object. At the end of this, the Item object on the top of the stack
is popped off, revealing the ShoppingCart object, which is again the top object on the stack. This
process repeats three times for each <Item> element.

At the end, the object on the top of the stack, which would be our ShoppingCart object at
that point, is popped off and returned by Digester. We catch that return into the shoppingCart
variable, and we now have a reconstituted shopping cart in the same state the user left it.

Interestingly, Digester uses Simple API for XML (SAX) under the covers. SAX is a Java-based,
event-driven API for parsing XML, like Digester (which stands to reason!), but functions at a
lower level and tends to be quite a bit more work than Digester to use. Since this book strives to
be language-neutral as much as possible (with the exception of JavaScript, of course!), I won’t
go into an example of using SAX directly. However, it is important to know that with SAX, as an
XML document is parsed, various events occur. Some of the events are when the document
begins or ends, when a new tag is encountered, when text that a tag pair wraps is parsed, and
when a tag is closed—to name a few. As the developer, you write what is called a document
handler class, which is the class that will be called when these events occur. Digester is essen-
tially a document handler class. It builds on the SAX parsing events, extending them in a sense.

While it would certainly be feasible to build our own JavaScript implementation of SAX,
why bother when someone else has already done so? JSLib from the Mozilla Foundation
(http://jslib.mozdev.org) provides such an implementation. JSLib, as the name suggests, is a
library of JavaScript functions covering a range of needs, one of which is SAX, because, of course,
everyone needs a little SAX every now and again (come on, how could I possibly not make that
joke at some point in this chapter?).

You will shortly see how the SAX component of JSLib is used as we dissect JSDigester. In
fact, why put it off any longer?

Dissecting the JSDigester Solution
Let’s begin by executing the test code to see what JSDigester actually does. Figure 7-2 shows the
screen that you will see when you load the test page in a browser and click the button to initiate
the test.

Before we look at the code of JSDigester itself, it would, naturally enough, be useful to look
at the code that will test JSDigester.

Zammetti-816-4C07.fm Page 237 Friday, March 2, 2007 8:39 AM

238 C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F C L I E N T - S I D E X M L

Figure 7-2. The result of testing JSDigester

Writing the Test Code
The JSDigesterTest.htm file is where the tests begin, and it is this file that you will load in your
browser. I’m not going to show this code here in the interest of saving space, but do take a look.
It is really just some straightforward HTML with some JavaScript imports. The real interesting
stuff happens in the JavaScript files.

The first import, sax.js, is the SAX parser from JSLib. I will not be going into the details of
how this code works because it is not code I wrote. I do recommend going through it on your
own though, and getting a feel for it. Generally, it is not terribly difficult to understand, and at
just over 200 lines of code, it isn’t anything too overwhelming. Still, it is a library we are making
use of, and as is usually the case with libraries, we’re less concerned with what goes on inside it
and how it works its magic than we are with how we use it in our own code, so that will be our
focus here.

Zammetti-816-4C07.fm Page 238 Friday, March 2, 2007 8:39 AM

C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F CL I E N T -S I D E X M L 239

However, one detail to be aware of however is that when you use JSLib, you provide something
called a DocumentHandler callback. This is essentially an object that will react to well-defined life-
cycle events, which are encountered as an XML stream is parsed. This object must adhere to a
known interface; that is, must implement a number of functions. You’ll see how this interface
is implemented in short order, but as far as using JSLib goes, this is about the extent of the
knowledge you need.

Getting on with the code, take a look at Listing 7-5. It shows three JavaScript classes: one
class represents a collection of movies, another represents an individual movie, and the third
represents an actor. This code is found in the testClasses.js file. These classes are what JSDigester
will instantiate and populate as it does its work.

Listing 7-5. Three JavaScript Classes JSDigester Will Create and Populate

// This class represents an Actor in a Movie.
function Actor() {
 this.gender = null;
 this.name = null;
}
Actor.prototype.setGender = function(inGender) {
 this.gender = inGender;
}
Actor.prototype.getGender = function() {
 return this.gender;
}
Actor.prototype.setName = function(inName) {
 this.name = inName;
}
Actor.prototype.getName = function() {
 return this.name;
}
Actor.prototype.toString = function() {
 return "Actor=[name=" + this.name + ",gender=" + this.gender + "]";
}

// This class represents a Movie.
function Movie() {
 this.title = null;
 this.actors = new Array();
}

Zammetti-816-4C07.fm Page 239 Friday, March 2, 2007 8:39 AM

240 C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F C L I E N T - S I D E X M L

Movie.prototype.setTitle = function(inTitle) {
 this.title = inTitle;
}
Movie.prototype.getTitle = function() {
 return this.title;
}
Movie.prototype.addActor = function(inActor) {
 this.actors.push(inActor);
}
Movie.prototype.getActors = function() {
 return this.actors;
}
Movie.prototype.toString = function() {
 return "Movie=[title=" + this.title + ",actors={" + this.actors + "}]";
}

// This class stores a collection of Movies.
function Movies() {
 this.movieList = new Array();
 this.numMovies = null;
}
Movies.prototype.setNumMovies = function(inNumMovies) {
 this.numMovies = inNumMovies;
}
Movies.prototype.getNumMovies = function() {
 return this.numMovies;
}
Movies.prototype.addMovie = function(inMovie) {
 this.movieList.push(inMovie);
}
Movies.prototype.getMovieList = function() {
 return this.movieList;
}
Movies.prototype.toString = function() {
 return "Movies=[numMovies=" + this.numMovies + ",movieList={" +
 this.movieList + "}]";
}

Figure 7-3 shows a quick bit of UML so you can visualize this small class hierarchy.

Zammetti-816-4C07.fm Page 240 Friday, March 2, 2007 8:39 AM

C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F CL I E N T -S I D E X M L 241

Figure 7-3. The test class hierarchy in UML

Zammetti-816-4C07.fm Page 241 Friday, March 2, 2007 8:39 AM

242 C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F C L I E N T - S I D E X M L

These three classes don’t have much in the way of behaviors; they are more or less just
containers in which to store data.

The Actor class has two attributes: gender and name, along with the associated getter and
setter methods for each (this is typical of JavaBeans, if you are familiar with Java). The Actor
class also provides an overridden toString() method, which is a method every object in
JavaScript has by default. This version renders a slightly more meaningful string representa-
tion of the Actor object.

The Movie class has the two attributes title and actors. actors is an array of Actor objects
associated with the Movie. This class also has an overridden toString() method.

Lastly, the Movies class also has two attributes: movieList and numMovies. movieList is an
array of Movie objects, and numMovies is the number of movies contained in that array. While it
is true that this information is intrinsic in the array, within the length property, I did it this way
to demonstrate some of the parsing capabilities of JSDigester (so don’t think too hard on it,
because it isn’t meant to be the best implementation). Just like the Actor and Movie classes,
Movies has its own toString() method, the output of which you will see when you fire up the
test code.

Now, let’s look at the test code that will exercise JSDigester. This code is shown in Listing 7-6
and is found in the testScript.js file.

Listing 7-6. JavaScript Code That Tests JSDigester

function testJSDigester() {

 // Create a string of test XML to have JSDigester parse.
 var sampleXML = "";
 sampleXML += "<movies numMovies=\"2\">\n";
 sampleXML += " <movie>\n";
 sampleXML += " <title>Star Wars</title>\n";
 sampleXML += " <actor gender=\"male\">Harrison Ford</actor>\n";
 sampleXML += " <actor gender=\"female\">Carrie Fisher</actor>\n";
 sampleXML += " </movie>\n";
 sampleXML += " <movie>\n";
 sampleXML += " <title>Real Genius</title>\n";
 sampleXML += " <actor gender=\"male\">Val Kilmer</actor>\n";
 sampleXML += " </movie>\n";
 sampleXML += "</movies>";

 // Create a logger for JSDigester to use, and set its level to TRACE, and tell
 // it where to log to.
 var log = new jscript.debug.DivLogger();
 log.setLevel(log.LEVEL_TRACE);
 log.setTargetDiv(document.getElementById("divLog"));

 // Instantiate a JSDigester instance and set up the rules, and logger.
 var jsDigester = new JSDigester();
 jsDigester.setLogger(log);
 jsDigester.addObjectCreate("movies", "Movies");

Zammetti-816-4C07.fm Page 242 Friday, March 2, 2007 8:39 AM

C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F CL I E N T -S I D E X M L 243

 jsDigester.addSetProperties("movies");
 jsDigester.addObjectCreate("movies/movie", "Movie");
 jsDigester.addBeanPropertySetter("movies/movie/title", "setTitle");
 jsDigester.addObjectCreate("movies/movie/actor", "Actor");
 jsDigester.addSetProperties("movies/movie/actor");
 jsDigester.addBeanPropertySetter("movies/movie/actor", "setName");
 jsDigester.addSetNext("movies/movie/actor", "addActor");
 jsDigester.addSetNext("movies/movie", "addMovie");

 // Parse the XML, resulting in an instance of the Movies class.
 var myMovies = jsDigester.parse(sampleXML);

 // Construct result string.
 var outStr = "JSDigester processed the specified XML." +
 "\n\nIt created an object graph consisting of a Movies object, " +
 "with a numMovies property, and containing a collection of " +
 "Movie objects." +
 "\n\nEach Movie object has a title property, and " +
 "contains a collection of Actor objects.\n\n" +
 "Each Actor object has two fields, name and gender.\n\n" +
 "Here's the final Movies object JSDigester returned: \n\n" +
 myMovies;

 // Display results.
 alert(outStr);

}

The onClick event of the button in JSDigesterTest.htm calls the testJSDigester() func-
tion seen here. The first thing it does is build up a string that is the XML JSDigester will parse for
us. I believe that is pretty self-explanatory.

After that comes the instantiation and configuration of a DivLogger instance (DivLogger
was introduced in Chapter 3). We set the logging level to trace, so that we can see absolutely
everything JSDigester does, and we also give it a reference to the <div> where our log output
will go.

Next, we instantiate JSDigester itself, and pass it the logger we just configured. Note that if
you do not pass a logger to JSDigester, it will still work. In fact, this is exactly what I recommend
you do in a production environment. As you will see when you actually try out the test page, the
logging slows JSDigester significantly. Therefore, you should generally pass a logger instance in
only when you are debugging and can accept the delay logging causes. JSDigester actually
performs pretty well when logging is not enabled, as long as the input XML isn’t too large. With
logging on, it definitely doesn’t perform as well, to say the least.

After that comes the part that really makes JSDigester work: the rules. The first rule config-
ured is an ObjectCreateRule that will fire when the <movies> element is encountered in the
XML. This will result, not surprisingly, in an instance of the Movies class being created. Related
to that is the next rule, the SetProperties rule. This will call setter methods on that newly created
Movies object for each attribute of the <movies> tag—in this case, just numMovies.

Zammetti-816-4C07.fm Page 243 Friday, March 2, 2007 8:39 AM

244 C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F C L I E N T - S I D E X M L

Next, we find another ObjectCreateRule, this time mapped to the path movies/movie. This
will create an instance of the Movie class when any <movie> element that is a child of the <movies>
element is encountered. Working in tandem with that is the BeanPropertySetter rule that
follows. This fires when the movies/movie/title path, which correlates to a <title> element as
a child of a <movie>, is encountered. It will call the setTitle() method of the Movie object just
created, passing it the value of the <title> element.

After that comes a group of three rules that handles the <actor> elements. First, as you’ve
probably come to expect by now, is an ObjectCreateRule. After that is a SetPropertiesRule. So
at this point, JSDigester knows how and when to create instances of the Actor class, and it also
knows to take any of the <actor> elements’ attributes and call the corresponding setter methods for
each to set those properties.

Lastly, we have another BeanPropertySetter rule mapped to the path movies/movie/actor.
The text contained between the opening and closing <actor> tags is the actor’s name. So, this
rule will take that text and call the setName() method on the Actor instance, as the rule specifies.

By this point, JSDigester has enough information to create objects for us and populate
them from the XML. The last step then is to let JSDigester know about the hierarchy of objects;
that is, how to assign Actor objects to Movie objects and how to add Movie objects to the Movies
object, which is ultimately the object that will be returned to the caller.

Whoa, hold up—let’s not gloss over that. Why exactly is it that JSDigester, at the end of its
processing, will return the Movies instance to us? Let’s take a look at the overall flow to see how
that happens.

Understanding the Overall JSDigester Flow
Recall earlier in the discussion of Digester when I mentioned that it uses a stack implementa-
tion to do its work? Well, this is how we end up getting the Movies instance at the end of the test.
Every time Digester creates a new object, it pushes it onto the stack. It’s a first in, last out (FILO)
stack, so as objects are created and pushed on, the first object created will always be on the
bottom. Therefore, as objects are popped off the stack, which is what happens as the XML is
parsed, the last object will ultimately be uncovered, which is the very first object created, and
this is what JSDigester returns.

Remember the first rule we configured? It was mapped to the <movies> element, which
happens to be the root of the XML document. It kind of makes sense that the last object returned
would be the root object, doesn’t it? All the other objects get rolled up into the root after all, just
as the structure of the XML document dictates.

So, how exactly does an Actor object get added to a Movie object, and a Movie object get
added to the Movies object? Both of those things happen as a result of the SetNext rules, which
are the last two rules added to JSDigester. A SetNext rule uses the nature of the stack to its
advantage by calling a specified setter method on the next object on the stack. To understand
this, let’s walk through the sequence of events when parsing our test XML. Figure 7-4 shows the
sequence of events in flowchart form.

Zammetti-816-4C07.fm Page 244 Friday, March 2, 2007 8:39 AM

C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F CL I E N T -S I D E X M L 245

Figure 7-4. JSDigester parsing sequence of events

Zammetti-816-4C07.fm Page 245 Friday, March 2, 2007 8:39 AM

246 C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F C L I E N T - S I D E X M L

At this point, you should have a pretty good idea of how JSDigester works and an insight
into the test code that makes sure it works. Only one small, minor, tiny detail remains: exploring
JSDigester itself.

Writing the JSDigester Code
JSDigester checks in at about 678 lines of code,1 so I won’t be listing it here in its entirety. I will
be calling out the parts of interest as we proceed, so you’ll find it helpful to have the full listing
in front of you.

Ready (Preparing to Parse) . . .

The first 15 or so lines of actual code in the JSDigester.js file, which is where the JSDigester
class (and rules classes as well) is found, is a batch of class members. The first three are some
constants that are used internally to determine which event is occurring for a given element in the
incoming XML: the start of the element (EVENT_BEGIN), the body text of the element (EVENT_BODY), or
the closing of an element (EVENT_END). The word constant is, of course, a bit of a misnomer in
JavaScript because there are no true constants; code can come along and change these values
as desired. Still, conceptually, this is what they are and how they are treated throughout.

After that is a variable that appears rather often: currentPath. Recall that as we parse
through our XML, each element can be referenced by a path, like movies/movie/actor in our
previous example, to reference an <actor> element below a <movie> element, which is itself a
child of the root <movies> element. currentPath is how JSDigester keeps track of where it is as
the XML is parsed.

Next up we find an array named rules. This is simply a collection of all the rules that are
added to this JSDigester instance to process.

After that is our objectStack, which will, of course, be at the center of all the JSDigester
activity.

rootObject is the next item we encounter, and it is a reference to the root object on the
stack. This is done so that it is easy to return the root object when the time comes. This will
change as the XML is processed. As objects are popped from the stack, each one essentially
becomes the root object, at least temporarily. By the end though, the true root object will be
referenced, and it’s a simple matter of returning that object.

Following rootObject is the variable log. This, as I’m sure you expect, is a reference to the
logger instance that JSDigester is to use during its processing. As mentioned during our discus-
sion of the test code, logging is a very expensive operation, primarily in this implementation
because of the constant rewrites of the innerHTML property of some <div> elements. Therefore,
by default, log is set to null, which means no logging will occur. Therefore, by default, a
JSDigester instance is properly configured for maximum performance.

The next class member encountered is saxParser, which is a reference to the SAX parser
instance from JSLib that will process the XML for us. Notice that a new instance is instantiated
and assigned to this variable right then and there—no sense putting it off. However, you should
see an obvious flaw with that: if we wanted to use another SAX parser, there’s no ready way to
do it. The code using JSDigester could cheat and set saxParser to another object with the same

1. Interestingly, less than half of that number, 316 to be precise, is the executable code. The rest is whitespace
and comments—not all that much for what it does, I think.

Zammetti-816-4C07.fm Page 246 Friday, March 2, 2007 8:39 AM

C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F CL I E N T -S I D E X M L 247

interface as SAXParser, but that’s not the best answer. Just like the first appearance of the Shadows,2
you should have a sense of what is to come: you’ll see this as a suggested exercise later.

Following all these class variable declarations and initializations comes the last line of
code in the JSDigester constructor function: a call to init(). The init() function itself is very
simple but also very important:

JSDigester.prototype.init = function() {

 // Tell the SAX parser that this instance of JSDigester is the document
 // handler.
 this.saxParser.setDocumentHandler(this);

} // End init().

In JavaScript, one way to construct a class is to use the prototype. Every object, of which a
function is one kind, has a prototype associated with it. By assigning a field—init in this case—
to the prototype of the existing JSDigester function and giving it the value of a function (I know
that sounds weird), we are essentially adding a function named init() to JSDigester. But because
we are adding it to the prototype of JSDigester, that means that every time you instantiate a
new JSDigester object, it will contain that init member, which happens to be a function. This
is a common approach for creating objects and then extending them in JavaScript.

What’s more bizarre here though is that even before you instantiate a JSDigester object,
you have one already, by virtue of the function definition—the one containing all the member
variables. However, if you were to examine it before the preceding code executes, you would
find that it does not contain the init() function. Only JSDigester objects instantiated after this
code executes will have that function. Remember that JavaScript is a very dynamic language,
and somewhat unusual situations like this occur frequently.

Moving right along, recall that the SAX parser is responsible for actually parsing the XML.
However, what happens as each element is encountered is still our responsibility. In SAX
parlance, you need to tell the parser what class will act as the document handler. That class will
receive callbacks throughout the parsing process when various events occur, such as an element
first being encountered, text between two tags being encountered, or a closing tag being
encountered. JSDigester itself is the document handler here because it will be dealing with
those events to work its magic, so we pass the implicit this reference to setDocumentHandler()
of the saxParser instance. That’s about all the initialization required for JSDigester.

After the init() method comes the setLogger() method. This is a typical property setter
method that accepts a reference to a logger instance for JSDigester to use.

Set (Kicking Off the Main Process) . . .

Next up we have the parse() method, the main entry point to JSDigester for all intents and
purposes. Let’s have a look at it, shall we? Listing 7-7 shows that code.

2. The Shadows were the ancient, technologically advanced race that was the main antagonist on the
television series Babylon 5. In the first season episode “Signs and Portents,” we got our first glimpse of
the Shadows, and saw just how powerful they were. This was the episode that truly hooked many fans,
yours truly included. It was a great hint of things to come, very true to its title. Have a look: http://
www.imdb.com/title/tt0517690.

Zammetti-816-4C07.fm Page 247 Friday, March 2, 2007 8:39 AM

248 C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F C L I E N T - S I D E X M L

Listing 7-7. Where All the Action in JSDigester Begins: The parse() Method

JSDigester.prototype.parse = function(inXMLString) {

 if (this.log) {
 this.log.trace("JSDigester.parse()...");
 this.log.debug("inXMLString = " + inXMLString);
 }
 // Remove all items from the object stack, just in case this isn't the
 // first parse this instance of JSDigester has performed.
 this.objectStack.splice(0);
 // Clear current path and root object.
 this.currentPath = "";
 this.rootObject = null;
 // Ask the SAX parser to parse the incoming XML.
 if (this.log) {
 this.log.debug("Calling SAX parser...");
 }
 this.saxParser.parse(inXMLString);
 if (this.log) {
 this.log.debug("SAX parser returned");
 }
 // Return the root object on the stack.
 if (this.log) {
 this.log.debug("Returning root object: " + this.rootObject);
 }
 return this.rootObject;

} // End parse().

The first line is something you will see repeated throughout the code. Remember that I
said that JSDigester would continue to work, and in fact would work optimally, when no logger
is supplied? This line is what makes that statement true. This is akin to a code guard in Java,
where you check if a certain log level is enabled before attempting to log a message, usually one
that is expensive, which generally means involving string concatenations. This avoids overhead in
the logging call, and the same is true here. Aside from making it efficient, it obviously avoids
errors, too. If no logger instance were passed in, we would get an error trying to reference a null
object—the this.log reference variable in this case.

After the opening salvo of logging messages, we find the line:

this.objectStack.splice(0);

The splice() method is used to remove elements from an array. The special case of passing a
zero to it results in the array being cleared. We do this here because if this JSDigester instance
is being reused, the stack needs to be clear before we begin. In the same vein, the next two lines
reset the currentPath field and the rootObject reference to their initial states. Reusing a JSDigester
instance can save a bit of overhead, if the rules are the same, so we definitely want to allow for
it, and these three lines take care of that.

Zammetti-816-4C07.fm Page 248 Friday, March 2, 2007 8:39 AM

C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F CL I E N T -S I D E X M L 249

The next line is what kicks off the actual work: the call to the SAX parser’s parse() method.
The XML to be parsed is passed in, and the parser goes to work. From that point on, JSDigester
will be called back to handle various events, as you’ll soon see. The last line in parse() (JSDigester’s
parse() that is, not the SAX parser’s parse()) returns the root element, just as we expect from
looking at the test code.

Two quick utility functions follow: pop() and push(). These are the methods that handle
pushing objects onto and popping objects off the stack. Every array in JavaScript supplies a
push() and pop() method, so we can therefore treat any array as a stack. Wrapping these methods
in our own methods in JSDigester allows us to handle any extra requirements around these
operations, such as logging. And, aside from pop(), which always sets the rootObject field to
point to the object last popped off the stack, that’s about all these do.

After those functions, we find the startDocument() method. This is the callback that the
SAX parser will call on when the XML document begins to be parsed. There isn’t anything for
JSDigester to do for this event, so there is just a log message to say the event fired. This method
must be present, however, for JSDigester to fulfill the DocumentHandler callback contract.

The startElement() method, shown in Listing 7-8, is where some real work begins to occur.

Listing 7-8. The startElement() Method of JSDigester

JSDigester.prototype.startElement = function(inName, inAttributes) {

 if (this.log) {
 this.log.trace("startElement()");
 }
 // If this is not the first element encountered, start by adding a forward
 // slash (the path separator).
 if (this.currentPath != "") {
 this.currentPath += "/";
 }
 if (this.log) {
 this.log.debug("currentPath = " + this.currentPath);
 }
 // Build up the path of the current element.
 this.currentPath += inName;
 if (this.log) {
 this.log.debug("New value for currentPath = " + this.currentPath);
 }
 // Fire all the rules associated with this element.
 this.fireRules(this.EVENT_BEGIN, inName, inAttributes, null);

} // End startElement().

First, after the typical log message, we determine if this is the first element—the root element—
of the XML document. If it isn’t, then we need to add a forward slash to the current path, which
allows us to build up the path. So, with our sample XML, currentPath begins blank, of course.
The first element encountered will be <movies>, so currentPath would be set to movies. When the
first <movie> element is encountered, since currentPath is no longer blank when startElement() is
called, it will append a forward slash, so currentPath would be movies/. After that, the name of

Zammetti-816-4C07.fm Page 249 Friday, March 2, 2007 8:39 AM

250 C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F C L I E N T - S I D E X M L

the element that has begun, which is passed in to startElement(), is appended, so that currentPath
would at that point be movies/movie. This building up of currentPath continues any time
startElement() is called (and as you’ll see later, it is cut down, so to speak, when endElement()
is called).

The last line of startElement() is the most important. It calls the fireRules() method of
JSDigester. It passes fireRules() the constant EVENT_BEGIN, since, of course, startElement() is
called when an element begins. It also passes it the name of the element and the collection of
attributes that element contains, as an associative array. Hold that thought for just a moment;
we’ll be looking at fireRules() in detail shortly.

In the same vein as startElement() is the next method, characters(). This is called when
the text contained between two tags is parsed. So, for example, <title>Star Wars</title>
would result in a call to characters() with the inText parameter having the value "Star Wars".
It too calls fireRules(), but this time passing the constant EVENT_BODY, and just the text that
was passed in to startElement().

Following characters() comes the endElement() function, as alluded to earlier. Its job,
firstly, is to call fireRules(), this time passing the EVENT_END constant to indicate that the rules
applicable to the closing of the tag should now be executed. Its next task is to remove the last
element from currentPath, which corresponds to the element that just ended (remember that
the elements form a hierarchy, so the closing of one element will always happen before the
close of its parent). Here’s the code that literally removes the element from currentPath:

 var i = this.currentPath.lastIndexOf("/");
 this.currentPath = this.currentPath.substr(0, i);

It simply finds the last occurrence of the forward slash character, which will always
precede the current element’s name, and then sets currentPath to the substring of currentPath
right up to, but not including, that forward slash. It’s neat and clean.

After that we find the endDocument() method which, just like startDocument(), is required
by the SAX parser’s DocumentHandler interface contract, but serves no real purpose as far as
JSDigester goes. So, enough said.

Go (the Real Bulk of the Work)!

Now we finally come to fireRules(). But before that can be discussed, I need to point out
something about rules, even though I’d be willing to bet you’ve figured it out already.

Some rules do something when an element begins; ObjectCreateRule is a good example of
this. Other rules do something when text is encountered; BeanPropertySetter is one example.
Still other rules do something only when an element ends; SetNextRule, for example, works
that way. However, all of the rules are called three times per element: once when it starts, once
when its body text, if any, is encountered, and once when it closes. We’ll be taking a look at
rules when we’re finished with JSDigester, but as a preview, you will find that every rule has
three methods corresponding to these events: begin(), body(), and end(). You will also find
that in general, two of the three will do nothing (there’s nothing to stop a rule from doing some-
thing in response to more than one event, but none of the existing rules do). This information
will be important to understanding fireRules(). Speaking of which, you can see fireRules()
in Listing 7-9.

Zammetti-816-4C07.fm Page 250 Friday, March 2, 2007 8:39 AM

C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F CL I E N T -S I D E X M L 251

Listing 7-9. The True Core of JSDigester: The fireRules() Method

JSDigester.prototype.fireRules = function(inEvent, inName, inAttributes,
 inText) {

 if (this.log) {
 this.log.trace("fireRules() for currentPath=" + this.currentPath);
 }
 var ruleIndex = 0;
 if (inEvent != this.EVENT_BEGIN) {
 ruleIndex = this.rules.length - 1;
 }
 if (this.log) {
 this.log.debug("ruleIndex = " + ruleIndex);
 }
 for (var ruleCounter = 0; ruleCounter < this.rules.length; ruleCounter++) {
 var rule = this.rules[ruleIndex];
 if (this.log) {
 this.log.debug("Checking rule " + rule.getRuleType() +
 " for path " + rule.getPath());
 }
 if (rule.getPath() == this.currentPath) {
 switch (inEvent) {
 case this.EVENT_BEGIN:
 if (this.log) {
 this.log.trace("Calling rule BEGIN");
 }
 rule.begin(inAttributes);
 break;
 case this.EVENT_BODY:
 if (this.log) {
 this.log.trace("Calling rule BODY");
 }
 rule.body(inText);
 break;
 case this.EVENT_END:
 if (this.log) {
 this.log.trace("Calling rule END");
 }
 rule.end(inName);
 break;
 }
 } else {
 if (this.log) {
 this.log.debug("Rule not applicable to this path, so not firing");
 }
 }

Zammetti-816-4C07.fm Page 251 Friday, March 2, 2007 8:39 AM

252 C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F C L I E N T - S I D E X M L

 if (inEvent == this.EVENT_BEGIN) {
 ruleIndex++;
 } else {
 ruleIndex--;
 }
 }

} // End fireRules().

So, what’s going on here? Well, first we check to see what kind of event it is. We have a vari-
able named ruleIndex, which is the index into our array of rules. If the event isn’t for an element
opening, then we need to go through the rules in reverse order to ensure that they fire in the
order they should, so we set ruleIndex to point to the last rule in the array. For an event corre-
sponding to the start of an element, we need to run through the rules in forward order, so ruleIndex
is zero in that case. The reason for this reversal of order is that the rules must fire against the
order the objects they would work against appear on the stack. So, executing a SetNext rule
should work against the next object in the stack, and this wouldn’t be the case going through
the stack in forward order. For the opening of a tag, however, the stack needs to be built up
initially, and going through them in forward order is what accomplishes that.

Then we begin a loop, a single iteration per rule in our array of rules. We first pull out the
next rule during the iteration, using ruleIndex to get the appropriate next rule. We then check
to see if the rule’s path corresponds to the current path of the element being processed. If it
does, we check what type of event we’re processing, and call the appropriate method of the
rule: begin(), passing it the attributes of the current element; body(), passing it the text the
current element contains; or end(), passing it the name of the element.

Lastly, we either increment or decrement ruleIndex as appropriate. We increment it if the
event is a begin event, or decrement it for any other event.

As simple as it seems, and it is pretty simple, this is the method that really makes JSDigester go,
as stated previously. I never said JSDigester was technically all that impressive, but like the
wheel, it really makes life quite a bit better (well, “life” as defined by a developer, that is).

The last four methods in JSDigester are all pretty similar, so I will cover them together.
addObjectCreate(), addSetProperties(), addBeanPropertySetter(), and addSetNext() are the
methods that a user of JSDigester calls to add a processing rule, as you saw in the sample code
in Listing 7-6. Each one has a different set of parameters, since each rule requires different
information. They all share inPath in common though, and this is the path to the element in
the XML to process. The addObjectCreate() rule also needs the name of the class to instantiate,
and is provided that with the inClassName parameter. The addSetProperties() method requires
only the path. addBeanPropertySetter(), in addition to the path, requires the name of the property
to call on the object whose property is being set, and inMethod provides that. Lastly, addSetNext()
requires inMethod, the name of the method to call on the next object on the stack, in addition
to the path.

Each of these methods instantiates an object of the appropriate rule class—ObjectCreateRule,
SetPropertiesRule, BeanPropertySetterRule, or SetNextRule—and passes in the pertinent
information upon construction. It then pushes this new rule instance into the array of rules
configured for this instance of JSDigester. Aside from some log output, that’s the full extent of
what these methods do.

Zammetti-816-4C07.fm Page 252 Friday, March 2, 2007 8:39 AM

C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F CL I E N T -S I D E X M L 253

And with that, we’ve seen everything JSDigester has to offer in the way of code. Only one
thing remains, and that’s to look at the four rule classes themselves. I think you’ll be surprised
how little code is actually involved in them, much like JSDigester itself.

Writing the Rules Classes Code
Each of the four existing JSDigester rule classes share the same basic structure, so in the
interest of brevity, I will show a full one here, and after that show only where the other three
differ. For no real reason other than random chance, I’ve chosen ObjectCreateRule as our
example. Its code is shown in Listing 7-10.

Listing 7-10. The JSDigester ObjectCreateRule Class

function ObjectCreateRule(inPath, inClassName, inJSDigester) {

 // Set rule type and path to fire for.
 this.ruleType = "ObjectCreateRule";
 this.path = inPath;
 // Set the JavaScript class to instantiate.
 this.className = inClassName;
 // Record the JSDigester instance that the instance of this class belongs to.
 this.jsDigester = inJSDigester;

} // End ObjectCreateRule().

/**
 * Return the ruleType.
 */
ObjectCreateRule.prototype.getRuleType = function() {

 return this.ruleType;

} // End getRuleType().

/**
 * Return the path.
 */
ObjectCreateRule.prototype.getPath = function() {

 return this.path;

} // End getPath().

Zammetti-816-4C07.fm Page 253 Friday, March 2, 2007 8:39 AM

254 C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F C L I E N T - S I D E X M L

/**
 * Begin an element.
 */
ObjectCreateRule.prototype.begin = function(inAttributes) {

 if (this.jsDigester.log) {
 this.jsDigester.log.debug("ObjectCreateRule.begin(): " + inAttributes);
 }
 var protoObj = eval(this.className);
 this.jsDigester.push(new protoObj());

} // End begin().

/**
 * Process body text.
 */
ObjectCreateRule.prototype.body = function(inText) {

 if (this.jsDigester.log) {
 this.jsDigester.log.debug("ObjectCreateRule.body(): " + inText);
 }

}

/**
 * Process closing tag.
 */
ObjectCreateRule.prototype.end = function(inName) {

 if (this.jsDigester.log) {
 this.jsDigester.log.debug("ObjectCreateRule.end(): " + inName);
 }
 this.jsDigester.pop();

} // End end().

A JSDigester rule always contains three fields:

• ruleType: The name of the rule. The only real use of this value is in logging.

• path: The path in the XML structure for which this rule should fire.

• jsDigester: The instance of JSDigester, which is passed in to the constructor when the
rule is instantiated.

All rule classes always provide a getRuleType() method, which just returns the ruleType
value, and getPath(),which returns the path value.

Zammetti-816-4C07.fm Page 254 Friday, March 2, 2007 8:39 AM

C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F CL I E N T -S I D E X M L 255

After those fields come three methods: begin(), body(), and end(). As described when we
looked at JSDigester’s fireRules() method, the begin() method is called when an element is
first encountered; that is, the opening tag. body() is called when the text between two tags is
fully parsed. end() is called when a closing tag is encountered.

Recall that a rule, generally speaking (and specifically for the four existing rules), handles
only one of these three events. ObjectCreateRule does work only in response to the begin
event. Well, I suppose that isn’t technically accurate. It also pops the created object off the stack
when the end event occurs, but that’s a relatively minor thing. Still, I suppose in the interest of
complete accuracy, it should be stated that ObjectCreateRule does actually process two events,
even if one is a minor thing.

If you look in the other three rules (ObjectCreateRule is the exception), you will see that
two of the three methods are nothing but log statements. The remaining one does some actual
work though. In the case of ObjectCreateRule, it’s pretty simple: instantiate a new instance of
the class named and push it on the stack. The instantiation is done by simply eval()’ing the
className value, which results in a new instance of that class being created.

But how did it know the class to create? By its className, obviously. But where did that
come from? Well, remember that there are three fields that all rules share in common: ruleType,
path, and jsDigester. While those fields are sufficient for some rules, such as the
SetPropertiesRule, other ones, including our ObjectCreateRule example, need more fields.
This is not a problem. We simply add the field and add it to the list of parameters for the
constructor, and the problem is solved. In the case of ObjectCreateRule, we find a className
field, and we see that it is the second parameter passed in to the constructor, inClassName.

For the SetPropertiesRule class, the work is done in the begin() method, and it’s a fair bit
more substantial than the ObjectCreateRule:

SetPropertiesRule.prototype.begin = function(inAttributes) {

 if (this.jsDigester.log) {
 this.jsDigester.log.debug("SetPropertiesRule.begin(): " + inAttributes);
 }
 var obj = this.jsDigester.pop();
 for (var i = 0; i < inAttributes.length; i++) {
 var nextAttribute = inAttributes[i];
 var keyVal = nextAttribute.split("=");
 var key = keyVal[0];
 var val = keyVal[1];
 key = "set" + key.substring(0, 1).toUpperCase() + key.substring(1);
 if (this.jsDigester.log) {
 this.jsDigester.log.debug("SetPropertiesRule.begin() - key=" + key +
 "val=" + val);
 }
 obj[key](val);
 }
 this.jsDigester.push(obj);

} // End begin().

Zammetti-816-4C07.fm Page 255 Friday, March 2, 2007 8:39 AM

256 C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F C L I E N T - S I D E X M L

So, what this code accomplishes is taking in an array representing the attributes of the
element being parsed in the form of name=value pairs, and setting each property on the object
on the top of the stack. To do this, it first pops the object off the top of the stack. It then iterates
over the array of attributes passed in. For each, it splits the array contents on the equal sign
character. The first element of the array resulting from the call to nextAttribute.split() is
what was on the left of the equal sign, which is the name of the attribute, and the second element
is what was on the right, which is the value of the attribute. We then see this line of code:

 key = "set" + key.substring(0, 1).toUpperCase() + key.substring(1);

Its job is to construct the name of the method to call, using standard JavaBean format,
which is getXXXX, where XXXX is the name of the property to set (the first character is capitalized,
and the rest are in whatever case they are in the property’s name). So, for the element <actor>,
which has a gender attribute, the name of the method formed would be setGender(). Once the
method name is formed, it is executed with this line:

 obj[key](val);

This is actually a really nifty feature of JavaScript. You see, you can treat any JavaScript
object like an associative array, where the names of the elements in the array are the members
of the object. So, let’s say obj is a reference to an Actor object. If we then do obj["setGender"],
that gets us a reference to the member setGender() function of that Actor object. Again, we are
treating the Actor object like an associative array, and setGender is the name of the element to
which we want a reference. If we then append (val) to that, we are creating a function call
dynamically. We can use a variable in place of that hard-coded setGender value, which is precisely
what the code in the rule class does. Think about how tricky that would be in something like
Java, using all sorts of introspection and reflection to do the equivalent of that one simple line
of code, and then tell me JavaScript isn’t cool.

After all the properties have been set, the object is pushed back onto the stack, returning it
to the state it was in before this rule fired, and at that point, the rule has finished its work.

Moving right along to the BeanPropertySetter rule, we find another additional field is
needed: the setMethod field, which names the method to call to set the value on the object. In
this rule, it’s in the body() method where the action happens, and again we see something very
similar to the dynamic method call technique used in the SetPropertiesRule class. The object
on the top of the stack is again popped off, and virtually the same single line of code sets the
property:

 obj[this.setMethod](inText);

In this case, just a single property is being set, and its name is stored in the setMethod field.
So, there is no loop as in BeanPropertySetter, and no incoming associative array to rip apart.
There is just one simple call, passing it the text that was passed to the body() method, and we’re
finished, simple as that.

The last rule to look at is the SetNextRule. Just like BeanPropertySetter, it requires the name of
the method to call, so we see a setMethod field here as well, and the corresponding constructor
parameter inMethod. In this case, the work is done in the end() method, and it’s actually a little
bit tricky (well, interesting is probably the better description).

Zammetti-816-4C07.fm Page 256 Friday, March 2, 2007 8:39 AM

C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F CL I E N T -S I D E X M L 257

SetNextRule.prototype.end = function(inName) {

 if (this.jsDigester.log) {
 this.jsDigester.log.debug("SetNextRule.end(): " + inName);
 }
 var childObj = this.jsDigester.pop();
 var parentObj = this.jsDigester.pop();
 if (this.jsDigester.log) {
 this.jsDigester.log.debug("SetNextRule.end() - childObj=" + childObj +
 "parentObj=" + parentObj);
 }
 parentObj[this.setMethod](childObj);
 this.jsDigester.push(parentObj);
 this.jsDigester.push(childObj);

} // End end().

So, after a bit of logging, we pop two objects off the stack: the first is the child object, and
the second is the parent object. Think about this for a minute: the SetNextRule is used to set a
property of the next object on the stack, passing it the object on the top of the stack. This is used
to create a hierarchy of objects, where one object is the parent of another. The object on the top
of the stack is always the child because of the structure of XML:

<movies>
 <movie>
 <actor></actor>
 </movie>
</movies>

Let’s pretend this is all there is to the XML being parsed, and let’s pretend we have config-
ured only an ObjectCreateRule for each. At the point the <actor> element is encountered (but
not yet closed), what does the object stack in JSDigester look like? They say a picture is worth a
thousand words, so take a gander at Figure 7-5.

Figure 7-5. The state of the JSDigester stack when the <actor> element begins

Zammetti-816-4C07.fm Page 257 Friday, March 2, 2007 8:39 AM

258 C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F C L I E N T - S I D E X M L

Now, what if we have a SetNextRule configured for the path movies/movie/actor using the
method setActor()? Well, the first object popped off the stack is the top object, the Actor object.
That’s the child. The next object popped off is again the top object, at this point, the Movie
object. This is the parent. The setActor() method of the Movie object, since it is the parent, is
then called, with this line:

 parentObj[this.setMethod](childObj);

And voilà, we’ve created a parent-child hierarchical relationship. The Movie object now
contains the Actor object, just as we wanted. There is only one last step to perform, and that is
to push both of those objects back on the stack, because there still could be other rules yet to
fire for them. But remember that to ensure the order of the stack is unchanged after this, we
need to push them on in the opposite order they were popped off, so that the Actor object is on
top of the Movie object, and you can see that done in the last two lines of the end() method.

See, wasn’t that an interesting bit of code?
Well, that was fun, and it didn’t take that long. As I’ve said a few times, JSDigester and its

associated rules classes really aren’t much to look at in terms of code length. In fact, you could
go so far as to call them paltry. But simplicity that provides this much power is a beautiful
thing, and it is a testament to the original creators of the Commons Digester that it makes
parsing XML almost a fun experience. I hope you find JSDigester useful in your day-to-day
work, as I have.

Suggested Exercises
Here are a few suggested exercises that you could pursue to make JSDigester that much more
useful:

Implement more rules. Digester has a boatload of rules that could be implemented
in JSDigester. Some may well not be possible, but others almost certainly are. Since
JSDigester is written to be extensible, this would be a great exercise to become even more
familiar with it.

Add validation capabilities. Digester can validate XML against a DTD, and this would be a
very nice additional capability to give to JSDigester.

Allow for an alternate SAX parser. Provide a setSAXParser() function so that an alternate
SAX parser could be used by JSDigester. As an added bonus, go write one yourself.

Optimize the code. I purposely left one bad design decision in the code specifically so I
could make this suggestion. Did you notice that each of the rule classes has a different
constructor signature? Surely, this can’t be optimal, and, in fact, it isn’t. I therefore suggest
correcting that. There is more than one way you could do it, but I suggest passing in a
single associative array as an argument, and use the values it contains to set the fields.
However you choose to do it though, the goal is to normalize the method signature of the
rule classes.

Improve the logging capabilities. This may actually wind up being a suggestion of some-
thing to add to the JavaScript library (introduced in Chapter 3), rather than JSDigester. It
might be nice if you had a logger implementation that could log messages in a more effi-

Zammetti-816-4C07.fm Page 258 Friday, March 2, 2007 8:39 AM

C H A P T E R 7 ■ J S D I G E S T E R : T A K I N G T H E P A I N O U T O F CL I E N T -S I D E X M L 259

cient manner so that having logging enabled isn’t the performance-killer it is with DivLogger.
The obvious problem is how to do that in such a way that logging will still always work (for
example, if you try to cache all messages until some flush() method was called on the logger,
you run the risk of losing all the messages if a hard error occurs). One suggestion, if you
develop in Firefox frequently, is to log messages to the Firebug extension, which I would
expect to work much more efficiently than constantly writing to a <div>’s innerHTML property.

Summary
In this chapter, we looked very briefly at how XML is typically parsed in JavaScript without the
aid of any library or toolkit. We then built ourselves a piece of code modeled after the Jakarta
Commons Digester project that should make our lives a lot easier when we need to parse XML
in a browser. In the process, you became aware of the SAX parser created by the Mozilla project,
which wound up as the basis for JSDigester.

Zammetti-816-4C07.fm Page 259 Friday, March 2, 2007 8:39 AM

261

■ ■ ■

C H A P T E R 8

Get It Right, Bub: A JavaScript
Validation Framework

When you hear the word validation in the context of a web application, you generally think
of validating user input on a form. This usually evokes thoughts of writing event-handler code
to perform various checks on form input before submitting it. All of this can quickly become
rather messy. No matter how well you externalize your scripts and set up basic event-handler
code that just calls functions, the simple fact is that these validations are scattered throughout
your code—it’s just a question of to what degree that’s true.

Wouldn’t it be great if we could truly externalize those validation checks to the point where
we don’t have to write any code at all? Wouldn’t it be great if we could write a simple configu-
ration file, say in XML, that defines what validations we want performed on each field and
when? This is precisely the goal of the project in this chapter!

JSValidator Requirements and Goals
Building a JavaScript form validation framework isn’t really that complex an undertaking, but
making it truly useful requires a bit of forethought. To that end, let’s lay out some of the goals
we want to accomplish for our project, which we’ll call JSValidator:

• The framework should be driven by an external configuration file written in XML. This
will define what validations occur for which field, the parameters a given validation may
need, and what to do if the validation fails.

• The framework should be extensible. We should be able to add validators—that is, classes
that perform a given validation function—any time we want. We should be able to do
this without modifying code, just the configuration file.

• We should create a couple of common validator types and cook them into the frame-
work, so developers know they can always use these types without doing anything extra.

• This framework should be unobtrusive, meaning we shouldn’t need to sprinkle code all
over the place. Moreover, the form on which validations are defined should still work if
JavaScript is turned off.

Zammetti-816-4C08.fm Page 261 Tuesday, March 6, 2007 11:50 AM

262 C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J AV A S C R I P T V A L I D A T I O N F R AM E W O R K

• Using the framework should be about as simple as can be for developers, requiring only
a single JavaScript import, some minimal configuration parameters, and the external
configuration file.

• The framework should offer error reporting in three ways: alert() messages, messages
inserted into a specified <div>, and highlighting of fields (with developer-defined styles).
Moreover, the messages should allow for reuse by understanding a token system, where
the tokens can be replaced with values defined in the configuration file when a valida-
tion failure occurs.

If that sounds like a lot of work, I think you’ll be surprised to see that it isn’t quite as much
as you might think. You’ll also find that the end result is something useful and expandable that can
be applied in your projects immediately. But I’ve left the door open for a couple of enhancements
that will make it even more useful, and applying them will give you some valuable exercises to
work through in order to expand your JavaScript chops.

With our goals and requirements set, let’s see how we’ll make it work!

How We Will Pull It Off
As mentioned in the requirements, we want JSValidator to use an external configuration file to
define all the validations that will be performed for a given HTML form. More specifically, we
want this configuration file to be in the form of XML.

There are always choices to be made when deciding on a format for a configuration file, but
I feel that while XML isn’t perfect for everything, for configuration files, it probably is. That is
because it tends to be self-describing (unless the developer does a bad job laying it out). Also,
size and parse time don’t generally matter, because you tend to parse them once at startup and
not frequently after that. You can take a slight performance hit at startup usually, which also
means you don’t care so much how large or verbose the file is. In fact, the more verbose, the
better, most likely, as long as that verbosity adds to the clearness of the configuration.

So, having decided XML is the way to go for JSValidator, on to the next question: how are
we going to deal with parsing it? If you’ve ever done XML parsing in JavaScript, you know that
it isn’t necessarily a pleasant experience. I discussed this a bit in Chapter 7, so no need to rehash
the pain. In Chapter 7, we also find the answer to making it a bearable situation: JSDigester.
With JSValidator, you’ll see a real-world usage of JSDigester. You’ll see how it allows you to take
a somewhat complex XML document, describe it with a few simple rules, and have it parsed
into JavaScript object quickly and easily. (If you skipped the details on JSDigester in Chapter 7,
I suggest going back and reading that now.)

Now that you know how we’re going to parse the configuration file, let’s answer another
important question: how are we going to load it? Remember one of the other goals for JSValidator
is to make it as simple and unobtrusive for a developer to use as possible. As a matter of fact,
here’s all the developer has to do on any given page to use the framework:

 <script>
 var JSVConfig = {
 pathPrefix : "jsvalidator/",
 configFile : "jsv_config.xml",
 manualInit : false
 };

Zammetti-816-4C08.fm Page 262 Tuesday, March 6, 2007 11:50 AM

C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J A V A S C R I P T V AL I D A T I O N F R A M E W O R K 263

 </script>
 <script src="jsvalidator/JSValidator.js"></script>

All that is required is a single JavaScript file to import, and some configuration parameters
defined before that. Beyond that, the developer just has to write the configuration file. That’s it!
No mucking around with the form fields, no special attributes to attach to anything, and no
code to write! Better still, if JavaScript is disabled, the page won’t break—the form will still be
workable (assuming it’s not broken in some other way, of course), and the user won’t know the
difference. Of course, the validations won’t occur, but that’s as expected.

Speaking of that configuration file, how exactly does it get loaded? We can see in the preceding
example that the file is named in the parameters, but that doesn’t explain how it is loaded. The
answer lies in a JavaScript library that serves as the foundation for a number of other libraries,
including Rico (which we used in Chapter 4) and script.aculo.us (which we used in Chapter 5).
In those chapters, I didn’t go into detail about Prototype, but the time has come to do exactly that.

The Prototype Library
Prototype has gained a great deal of popularity because it is simple, lightweight, clean, and
generally very helpful. It basically provides extensions to JavaScript that, once you use them,
seem like they should have been there from the start. Prototype adds new methods to basic
JavaScript objects, as well as provides new functions for things like Ajax, DOM manipulations,
and looping constructs.

One of the simplest and yet most useful things Prototype offers is the $() function. As you’ve
seen in previous chapters, this is essentially shorthand for writing document.getElementById().
The $() function allows for referencing a single object or a batch at once, like so:

$("id1", "id2", "id3");

This example will actually retrieve references to three elements and return an array of
those references. That’s much better than three separate calls to document.getElementById()!

Prototype also provides some simple Ajax support. When I say “simple,” I don’t mean that
as a negative at all. On the contrary, it is very easy to understand and use, which to me is a good
thing. The first item Prototype offers in the realm of Ajax is this:

Ajax.Request(url, { method: 'get', parameters: pars, onComplete: showResponse });

Yes, that’s all it takes to make an Ajax request with Prototype! Just supply the URL, set the
method to use, pass in any parameters you want to send with the request, and tell Prototype
which JavaScript function to call when the response returns.

But wait, there’s more!
Probably the most common Ajax function is inserting some markup returned by the server

into a <div> or other element. Prototype makes this very simple:

new Ajax.Updater("targetID", url, { method: 'get', parameters: pars });

This looks very much like the previous line of code, except that now we’re passing in the ID
of the element to update, and leaving off the callback, because Prototype handles the callback
functionality for us.

Zammetti-816-4C08.fm Page 263 Tuesday, March 6, 2007 11:50 AM

264 C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J AV A S C R I P T V A L I D A T I O N F R AM E W O R K

As I mentioned earlier, Prototype also extends some basic JavaScript objects. For example,
Prototype adds some of the methods to the objects shown in Table 8-1.

■Note As I mentioned in Chapter 2, some people view Prototype’s extension of intrinsic JavaScript objects
as a bad thing. There have been instances where these extensions didn’t “play nice” with other JavaScript
code. I have personally never been burned by these types of problems, but some people have, so this is some-
thing to keep in mind when using Prototype (and by extension, any library that is built on top of Prototype).
While my feeling is that it shouldn’t dissuade you from using Prototype, or other libraries built on it, you should
be aware of the issue.

As you can see, Prototype makes life a little simpler, and I’ve just scratched the surface
here! I suggest taking a longer look at Prototype yourself. Also, in terms of documentation, have
a look at the “unofficial” guide to Prototype at http://www.sergiopereira.com/articles/
prototype.js.html.

Table 8-1. Some of the Methods Prototype Adds to Intrinsic JavaScript Objects

Method Object Description

extend Object Provides a way to implement inheritance by
copying all properties and methods from source to
destination.

bind Function Returns an instance of the function previously
bound to the function(=method) owner object.
The returned function will have the same argu-
ments as the original one.

stripTags String Returns the string with any HTML or XML
tags removed.

escapeHTML String Returns the string with any HTML markup
characters properly escaped.

toArray String Splits the string into an array of its characters.

clear Array Empties the array and returns itself.

flatten Array Returns a flat, one-dimensional version of the
array. This flattening happens by finding each
of the array’s elements that are also arrays and
including their elements in the returned array,
recursively.

getElementsByClassName document Returns all the elements that are associated with
the given CSS class name. If no parent element ID
is given, the entire document body will be searched.

element Event Returns the element that originated the event.

pointerX/pointerY Event Returns the x/y coordinate of the mouse pointer on
the page.

Zammetti-816-4C08.fm Page 264 Tuesday, March 6, 2007 11:50 AM

C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J A V A S C R I P T V AL I D A T I O N F R A M E W O R K 265

Why do I feel as though I’ve forgotten something? Oh yes, how about a look at JSValidator?

A Preview of JSValidator
Because JSValidator is really a nonvisual tool, there isn’t going to be a whole lot to look at, but
that didn’t stop me from adding some screenshots here. What you’re actually looking at is the
demonstration application that shows JSValidator in use.

Figure 8-1 shows the demo application when you first start it up. It describes what valida-
tions have been applied to the five form fields.

Figure 8-1. The JSValidator framework test application

Figure 8-2 shows one way a validation failure can be presented to the user: an alert message.
Here, when users tab or click away from the First Name field without having entered something (it
is configured to be a required field), they get an alert() message. Note that the message is
configurable and reusable, including allowing for tokens in it to be replaced.

Zammetti-816-4C08.fm Page 265 Tuesday, March 6, 2007 11:50 AM

266 C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J AV A S C R I P T V A L I D A T I O N F R AM E W O R K

Figure 8-2. Showing a validation error via an alert message

Figure 8-3 demonstrates another way to show a validation error. The Last Name field is
configured to be highlighted when an error occurs. This field is highlighted in red (which may
be nearly impossible to see in a black-and-white version, but it’s obvious when you try the
application), indicating that it is marked as invalid. In fact, you can configure any element on
the page to have a particular style applied to it. If you prefer to change the background color of
the text box itself to red, you can do that. Or if you want to make a big “ERROR” appear over the
page, you could do that, too!

Zammetti-816-4C08.fm Page 266 Tuesday, March 6, 2007 11:50 AM

C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J A V A S C R I P T V AL I D A T I O N F R A M E W O R K 267

Figure 8-3. Showing a validation error via field highlighting

Figure 8-4 shows a third way a validation error can be reported: by inserting a message into
an element on the page, usually a <div>. The message is constructed the same way as the
alert() display, but in this case, the innerHTML attribute of some page element is updated with
the message.

Clicking the Submit button brings up a new page, which is nothing more than a message
to indicate the submission was OK. We aren’t actually submitting to a server obviously, so this
page is something of a faux server. I didn’t see much sense in showing that page here, but you’ll
see it when you try out the application, so I wanted to be sure to mention it.

Now that the formalities are out of the way, we can move on to examining this solution!

Zammetti-816-4C08.fm Page 267 Tuesday, March 6, 2007 11:50 AM

268 C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J AV A S C R I P T V A L I D A T I O N F R AM E W O R K

Figure 8-4. Showing a validation error via a message inserted into a <div> element

Dissecting the JSValidator Solution
What we are about to dissect is a combination of the JSValidator framework and a test applica-
tion for it. To begin, let’s see how this all lays out on our hard drives, as shown in Figure 8-5.

Zammetti-816-4C08.fm Page 268 Tuesday, March 6, 2007 11:50 AM

C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J A V A S C R I P T V AL I D A T I O N F R A M E W O R K 269

Figure 8-5. The directory structure of the JSValidator test application

Writing index.htm
index.htm is easily the most boring of files to look at in this project because it is, quite literally,
nothing but run-of-the-mill HTML. It’s just some text, a very vanilla HTML form, a style sheet
import, and a sprinkle of JavaScript. In light of this, it won’t be listed here, and we won’t be
going over it in any real detail. However, you should probably take the five seconds you’ll need
to fully review it.

The JavaScript is the only thing worth mentioning, and you’ve actually seen it already. But
let’s look at it one more time and go into a little more detail this time:

 <script>
 var JSVConfig = {
 pathPrefix : "jsvalidator/",
 configFile : "jsv_config.xml",
 manualInit : false
 };
 </script>
 <script src="jsvalidator/JSValidator.js"></script>

First, you see the definition of the JSVConfig structure. This is just an associative array that
has three elements in it, which happen to be the only ones JSValidator currently understands.

The pathPrefix member specifies the beginning of all the paths that JSValidator will need
to construct to load validators and rule files. Here, we are saying that all those dynamically
created paths will begin with jsvalidator/, which makes sense if you look back at the directory
structure (Figure 8-5). Any reference to any JSValidator resource should be relative to the root
of the web application, hence this value.

The second member, configFile, should be obvious. It’s the name of the XML configura-
tion file JSValidator will use.

Finally, manualInit tells JSValidator whether it should initialize itself automatically or the
developer is taking responsibility for doing so. As you will see, initializing JSValidator amounts
to nothing more than a call to jsValidator.init(). Normally, this happens automatically when
JSValidator loads. However, in order for that to work, JSValidator needs to overwrite the onLoad
event handler for the page. Since this is often utilized by developers for their own purposes,
simply overwriting the existing handler wouldn’t be a great idea. Setting manualInit to true

Zammetti-816-4C08.fm Page 269 Tuesday, March 6, 2007 11:50 AM

270 C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J AV A S C R I P T V A L I D A T I O N F R AM E W O R K

means that the developers will make the call to init() themselves, and the onLoad handler will
not be overwritten.

Writing styles.css
styles.css, like index.htm, is rather mundane. However, let’s have a look at it in its entirety, in
Listing 8-1.

Listing 8-1. The styles.css File (Blink and You’ll Miss It!)

/* Style for labels on fields that have a validation error. */
.cssErrorField {
 color : #ff0000;
 background-color : #d0ffd0;
 font-weight : bold;
}

/* Style for labels on fields that pass validations. */
.cssOKField {
 color : #000000;
 background-color : #d0ffd0;
 font-weight : bold;
}

/* Background for the table cells with the entry fields. */
.cssEntryCell {
 background-color : #f0f0f0;
}

/* Style for the table row with the reset and submit buttons. */
.cssButtons {
 background-color : #ffd0d0;
}

As you saw in Figure 8-3, one of the ways JSValidator can report a validation error is to
highlight a given field. It can highlight any element on the page. Actually, it doesn’t have to
“highlight” anything!

All that really happens is that when a validation error occurs, the element with a given ID
has its class attribute changed to the style class configured. So really, you could do any wacky
thing you wanted with this. Want to show an image that is in a hidden <div>? No problem.
Want to make some text blink for anyone using old Netscape browsers? Check. Anything you
can accomplish by applying a style class, you can do with the “highlighting” capability. All of
this is a roundabout way of explaining that the cssErrorField class seen here is the class that
will be applied to highlight a field’s label in red in the sample application.

Going hand in hand with cssErrorField is the cssOKField class, which will be applied to
the label for a field that passes its validations. This means that JSValidator will take care of
setting the style to indicate no error in addition to indicting an error. For example, with the Last
Name field validation, which checks for a minimum length every time a key is pressed and

Zammetti-816-4C08.fm Page 270 Tuesday, March 6, 2007 11:50 AM

C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J A V A S C R I P T V AL I D A T I O N F R A M E W O R K 271

released, you get the automatic valid/invalid highlighting as you type. There is no extra work for
you to do—just point the framework at those two classes, and it’s handled for you automatically.

The cssEntryCell class just makes the background behind the entry boxes a light gray.
Finally, cssButton is applied to the row where the Reset and Submit buttons are located.

Writing jsv_config.xml
jsv_config.xml is what actually drives this whole thing, so we definitely want to understand it.
Figure 8-6 shows a graphical representation of it, which may help to make all the relationships
crystal clear in your mind.

Figure 8-6. A visual grid representation of the jsv_config.xml file

And if Figure 8-6 didn’t quite do it for you, Listing 8-2 shows the configuration file in all its
textual glory!

Listing 8-2. The JSValidator Configuration File in Plain Text Form

<JSValidatorConfig>

 <validator id="dateValidator" src="jsvalidator/DateValidator.js" ➥

class="DateValidator"/>

Zammetti-816-4C08.fm Page 271 Tuesday, March 6, 2007 11:50 AM

272 C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J AV A S C R I P T V A L I D A T I O N F R AM E W O R K

 <message id="requiredFieldError" text="#{fieldName}# is a required field"/>
 <message id="fieldFormatError" ➥

text="#{fieldName}# must be in the form #{format}#"/>

 <form name="testForm" ➥

noSubmitMessage="There are problems with the form that need to be corrected first.">
 <validation field="firstName" startInvalid="true" event="onblur" ➥

type="required" failAction="alert">
 <param name="message" value="requiredFieldError"/>
 <param name="fieldName" value="First Name"/>
 </validation>
 <validation field="middleName" startInvalid="true" event="onblur" ➥

type="required" failAction="insert">
 <param name="idToInsertInto" value="divErrors"/>
 <param name="message" value="requiredFieldError"/>
 <param name="fieldName" value="Middle Name"/>
 </validation>
 <validation field="lastName" startInvalid="true" event="onkeyup" ➥

type="minLength" failAction="highlight">
 <param name="minLength" value="5"/>
 <param name="idToHighlight" value="lastNameLabel"/>
 <param name="errorStyleClass" value="cssErrorField"/>
 <param name="okStyleClass" value="cssOKField"/>
 </validation>
 <validation field="dateOfBirth" startInvalid="false" event="onblur" ➥

type="dateValidator" failAction="insert">
 <param name="idToInsertInto" value="divErrors"/>
 <param name="message" value="fieldFormatError"/>
 <param name="fieldName" value="Date Of Birth"/>
 <param name="format" value="MM/DD/YYYY"/>
 </validation>
 <validation field="eMailAddress" startInvalid="false" event="onblur" ➥

type="regex" failAction="alert">
 <param name="regex" value="^.+@[^\.].*\.[a-z]{2,}$"/>
 <param name="message" value="fieldFormatError"/>
 <param name="fieldName" value="eMail Address"/>
 <param name="format" value="user@domain.com"/>
 </validation>
 </form>

</JSValidatorConfig>

Let’s dissect this file in detail and go over each element and attribute. First, everything is
nested under the root JSValidatorConfig element, to make it valid XML.

Zammetti-816-4C08.fm Page 272 Tuesday, March 6, 2007 11:50 AM

C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J A V A S C R I P T V AL I D A T I O N F R A M E W O R K 273

Defining Validators

After the root element are any number of validator elements (and there could be none). These
define any validator (class that performs some validation logic) that you add. There are a couple
of built-in validators, as you’ll see shortly, but any others you add will need to be defined with
a validator element. The validator element has three required attributes:

• id: How you will reference the validator for a given field validation.

• src: The JavaScript source file where the class that implements the validator is found. It
can be absolute or relative—basically any value that would be valid for a <script> tag’s
src attribute.

• class: The name of the JavaScript class that implements the validator logic.

Defining Messages

Direct children of JSValidatorConfig are the message elements. Like the validator elements,
these are completely optional and you can define as many as you wish. Even though they are
technically optional, you will likely always have at least one, because any validator that displays
a message in response to a validation failure will reference one of these elements.

The message elements have two required attributes: id, which serves the same purpose as
on the validator element, and text, which is the text of the message. This text can contain any
number of replacement tokens. These tokens are in the form #{xxx}#, where xxx is any string.
These tokens will be replaced by the values present for a given field validation. So, if you had
the text “#{fieldName}# is a required field,” as seen in the first message element in Listing 8-2,
assuming a particular field validation defines a fieldName parameter, the value of that parameter
will be inserted for #{fieldname}# when the message is shown.

Defining Forms

Next up is the form element. This corresponds to a single physical HTML form on the page.
It has two attributes: name and noSubmitMessage. The name attribute needs to match exactly
the name attribute of the <form> tag on the page to which the validations apply. The
noSubmitMessage attribute is the message that will be displayed to users when they try to submit the
form and any of the fields are currently invalid.

Defining Field Validations

The form element has as its children any number of validation elements, and this is where the
real action occurs. The validation element has five required attributes:

• field: The name of the element on the form to which this validation applies. It must
match exactly the name attribute of the form element.

• startInvalid: The value true or false. When set to true, the field will initially be marked
as invalid, and if it is configured to report its error via highlighting, at startup it will be
highlighted. This is useful for something like the Last Name field, which is configured to
require a minimum length, and which starts out empty, so is clearly not going to meet
the minimum length initially!

Zammetti-816-4C08.fm Page 273 Tuesday, March 6, 2007 12:51 PM

274 C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J AV A S C R I P T V A L I D A T I O N F R AM E W O R K

• event: The event on which the field will be validated. It can be any of the usual DOM
events, but onblur will likely be the most usual.

• type: The ID of a validator, either one you configure yourself or one of the built-in basic
validators.

• failAction: The action that will be performed when the field fails validation. This can be
one of three values: alert, which means a message will be shown to the user via an
alert() pop-up; insert, which means a message will be inserted into a specified page
element via its innerHTML property; or highlight, which means a specified field will be
highlighted.

Defining Validation Parameters

Nested beneath a validation element are the param elements. Each param element has two
attributes: name, which is simply the name under which this parameter will be stored, and
value, which is the actual value of the parameter.

The param elements are a flexible mechanism by which information can be passed to the
validator configured for a given element, and to JSValidator to use during a failure action.
Because of this flexibility, the parameters can really have any meaning you wish, and each vali-
dator and failure action can require anything they need.

For example, the built-in MinLengthValidator, which validates that a field has a specified
minimum length, gets what the minimum length for the field is by looking for a parameter with
the name minLength. Similarly, the RegexValidator, which allows a field to be validated against
an arbitrary regular expression, gets that expression via a parameter named regex.

For both the alert and insert failure actions, the ID of the message element to use is
found via the message parameter. If there are any replacement tokens in the string—fieldName
for instance, as seen in the messages in Listing 8-2—they are also found in the parameter list
here. For the insert failure action, the ID of the element to highlight is in a parameter named
idToHighlight, and the style classes for valid and invalid entries are found in errorStyleClass
and okStyleClass, respectively.

As mentioned, when you write your own validators, you can require any parameters you
need—there are no real limitations. However, one thing to note is that replacement tokens are
used only to replace tokens in message strings during processing of the alert or insert failure
actions. You can, however, use the same replaceTokens() function in JSValidator that these
use, as you’ll see shortly. For example, if you wanted a parameter that could have a value inserted
into it dynamically, you could do so using the same token mechanism as the messages.

Writing JSValidatorObjects.js
The JSValidatorObjects.js file contains the class definitions for seven different classes. All but
one are objects that are populated when the configuration file is parsed. These seven classes do
not provide any functionality per se. They are basically just Value Objects (VOs) that store some
data and provide a public interface for getting at that data. As such, I’m sure you will find them
to be quick and easy to understand. Nonetheless, you need to know their purposes, so we’ll
look at each in turn, and then at the end see the big picture of how they all fit together.

Zammetti-816-4C08.fm Page 274 Tuesday, March 6, 2007 11:50 AM

C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J A V A S C R I P T V AL I D A T I O N F R A M E W O R K 275

The JSValidatorValidatorImpl Class

To begin with, take a look at Figure 8-7, which shows the UML diagram for the only one of the
seven classes that doesn’t represent configuration information. The JSValidatorValidatorImpl
class is the base class for all validator implementation classes. A validator will generally need to
inherit only from this class and override the validate() method to become a validator that the
framework can use.

Figure 8-7. UML diagram of the JSValidatorValidatorImpl class

The five fields in this class are populated by the framework (using the corresponding setter
methods) before the validator is asked to validate the field:

• The jsValidatorConfig field holds a reference to the JSValidatorConfig instance that is
the parent of all the configuration data parsed from the configuration file.

• The formConfig field holds a reference to the JSValidatorForm object that represents the
<form> element in the configuration file of which the element firing the validation is a part.

• The fieldConfig field holds a reference to a JSValidatorFormValidation object, which is
the JavaScript representation of a <validation> element from the configuration file. This
object describes the validation to be performed on a given field.

• The validatorConfig field holds a reference to a JSValidatorValidatorConfig object,
which is the JavaScript representation of a <validator> element from the configuration
file. This object describes the validation that will be used to validate a given field.

• Finally, the field field, if you’ll excuse the alliteration, is a reference to the form field
itself that fired the validation.

Zammetti-816-4C08.fm Page 275 Tuesday, March 6, 2007 11:50 AM

276 C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J AV A S C R I P T V A L I D A T I O N F R AM E W O R K

As mentioned, a validator will typically just supply its own implementation of validate()
and call it a day. This method returns true if the field passes validation; false if not. Of course,
there is nothing that says there can’t be other methods and fields as necessary, but strictly
speaking, this is all that’s required.1

Just to prove that I’m not imagining all this, here is the code for the JSValidatorValidatorImpl
class. As you can see, it really is empty, and yet is itself a complete implementation of a validator,
albeit a rather pointless one!

function JSValidatorValidatorImpl() {

 this.jsValidatorConfig = null;
 this.formConfig = null;
 this.fieldConfig = null;
 this.validatorConfig = null;
 this.field = null;

 this.setJsValidatorConfig = function(inJsValidatorConfig) {
 this.jsValidatorConfig = inJsValidatorConfig;
 }
 this.getJsValidatorConfig = function() {
 return this.jsValidatorConfig;
 }

 this.setFormConfig = function(inFormConfig) {
 this.formConfig = inFormConfig;
 }
 this.getFormConfig = function() {
 return this.formConfig;
 }

 this.setFieldConfig = function(inFieldConfig) {
 this.fieldConfig = inFieldConfig;
 }
 this.getFieldConfig = function() {
 return this.fieldConfig;
 }

 this.setValidatorConfig = function(inValidatorConfig) {
 this.validatorConfig = inValidatorConfig;
 }
 this.getValidatorConfig = function() {
 return this.validatorConfig;
 }

1. In fact, there are empty implementations of all methods in the JSValidatorValidatorImpl class. So even if
you wrote an empty class that extends JSValidatorValidatorImpl, it wouldn’t break JSValidator—it just
wouldn’t do much of anything.

Zammetti-816-4C08.fm Page 276 Tuesday, March 6, 2007 11:50 AM

C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J A V A S C R I P T V AL I D A T I O N F R A M E W O R K 277

 this.setField = function(inField) {
 this.field = inField;
 }
 this.getField = function() {
 return this.field;
 }

 this.validate = function() { }

} // End JSValidatorValidatorImpl class.

The JSValidatorConfig Class

The JSValidatorConfig class, shown in Figure 8-8, is the top of the object entity relationship
hierarchy in which the configuration information parsed from the configuration file is found.
The three fields represent the three elements that can be immediate children of the
<JSValidatorConfig> element in the configuration file: the <validator>, <message>, and <form>
elements. Each is a collection of all the corresponding elements parsed from the configuration file.

Figure 8-8. UML diagram of the JSValidatorConfig class

Note that the toString() method has been overridden in order to display a more mean-
ingful representation of this class for debugging purposes. This is true of all the remaining
configuration file objects, so I won’t mention it again.

Let’s have a look at the actual code now, shall we?

function JSValidatorConfig() {

 var validators = new Object();
 var messages = new Object();
 var forms = new Object();

Zammetti-816-4C08.fm Page 277 Tuesday, March 6, 2007 11:50 AM

278 C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J AV A S C R I P T V A L I D A T I O N F R AM E W O R K

 this.addValidator = function(inValidatorConfig) {
 validators[inValidatorConfig.getId()] = inValidatorConfig;
 }
 this.getValidators = function() {
 return validators;
 }
 this.getValidator = function(inID) {
 return validators[inID];
 }

 this.addMessage = function(inMessage) {
 messages[inMessage.getId()] = inMessage;
 }
 this.getMessages = function() {
 return messages;
 }
 this.getMessage = function(inID) {
 return messages[inID];
 }

 this.addForm = function(inForm) {
 forms[inForm.getName()] = inForm;
 }
 this.getForms = function() {
 return forms;
 }
 this.getForm = function(inName) {
 return forms[inName];
 }

 this.toString = function() {
 return "JSValidatorConfig=[" +
 "validators=" + validators + "," +
 "messages=" + messages + "," +
 "forms=" + forms + "]";
 }

} // End JSValidatorConfig class.

Aside from the three fields and toString(), all this class contains are getters and setters for
each field, as well as an addXXX() method for each of the collections. These methods are used
by JSDigester to add JSValidatorForm, JSValidatorMessage, and JSValidatorValidatorConfig
instances to the corresponding collection. Note that in addition to getters to get any one of the
collections, there is a getter for each to get a specific element from the collection by ID or name,
depending on which element we’re going after (ID for validators and messages; name for forms).

Zammetti-816-4C08.fm Page 278 Tuesday, March 6, 2007 11:50 AM

C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J A V A S C R I P T V AL I D A T I O N F R A M E W O R K 279

The JSValidatorValidatorConfig Class

Figure 8-9 shows the JSValidatorValidatorConfig class, which is implemented with the
following code:

function JSValidatorValidatorConfig() {

 var id = null;
 var src = null;
 var clazz = null;

 this.getId = function() {
 return id;
 }
 this.setId = function(inID) {
 id = inID;
 }

 this.getSrc = function() {
 return src;
 }
 this.setSrc = function(inSRC) {
 src = inSRC;
 }

 this.getClass = function() {
 return clazz;
 }
 this.setClass = function(inClass) {
 clazz = inClass;
 }

 this.toString = function() {
 return "JSValidatorValidatorConfig=[" +
 "id=" + id + "," +
 "src=" + src + "," +
 "clazz=" + clazz + "]";
 }

} // End JSValidatorValidatorConfig class.

An instance of this class will be created and populated for each <validator> element
encountered in the configuration file. This information is necessary for JSValidator to be able
to work with a validator you define. The meaning of the fields should be obvious at this point,
based on our dissection of the configuration file.

Zammetti-816-4C08.fm Page 279 Tuesday, March 6, 2007 11:50 AM

280 C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J AV A S C R I P T V A L I D A T I O N F R AM E W O R K

Figure 8-9. UML diagram of the JSValidatorValidatorConfig class

You probably noticed the use of clazz as opposed to class. IE doesn’t take too kindly to
using class, which seems to be a reserved word to it. (Surprisingly, Firefox does not seem to
have a problem with class!) This actually mimics Java, as you may know, where class is a
reserved word. It is typical in Java code, especially Java code dealing with reflection, to use
clazz in place of class to get around this, and that’s the case here as well. So, while it’s not
exactly a big deal, I wanted to make you aware that I didn’t just make a silly typo—there’s a
reason for it!

The JSValidatorMessage Class

Continuing our Napoleonic march through these configuration classes, we next encounter the
class shown in Figure 8-10: JSValidatorMessage. This class represents the <message> elements
from the configuration file. Once again, I think the fields are pretty obvious, as they simply
echo the attributes of the <message> element, and the methods are nothing but accessors and
mutators for said fields. But, in the interest of completeness, let’s have a look at the code for
this class now, and then move on.

function JSValidatorMessage() {

 var id = null;
 var text = null;

 this.getId = function() {
 return id;
 }
 this.setId = function(inID) {
 id = inID;
 }

 this.getText = function() {
 return text;
 }

Zammetti-816-4C08.fm Page 280 Tuesday, March 6, 2007 11:50 AM

C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J A V A S C R I P T V AL I D A T I O N F R A M E W O R K 281

 this.setText = function(inText) {
 text = inText;
 }

 this.toString = function() {
 return "JSValidatorMessage=[" +
 "id=" + id + "," +
 "text=" + text + "]";
 }

} // End JSValidatorMessage class.

Figure 8-10. UML diagram of the JSValidatorMessage class

The JSValidatorForm Class

In Figure 8-11, we meet up with the JSValidatorForm class. Here’s the code that matches up
with that UML diagram:

function JSValidatorForm() {

 var name = null;
 var noSubmitMessage = null;
 var validations = new Object;

 this.getName = function() {
 return name;
 }
 this.setName = function(inName) {
 name = inName;
 }

 this.getNoSubmitMessage = function() {
 return noSubmitMessage;
 }
 this.setNoSubmitMessage = function(inNoSubmitMessage) {
 noSubmitMessage = inNoSubmitMessage;
 }

Zammetti-816-4C08.fm Page 281 Tuesday, March 6, 2007 11:50 AM

282 C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J AV A S C R I P T V A L I D A T I O N F R AM E W O R K

 this.addValidation = function(inValidation) {
 validations[inValidation.getField()] = inValidation;
 }
 this.getValidations = function() {
 return validations;
 }
 this.getValidation = function(inField) {
 return validations[inField];
 }

 this.toString = function() {
 return "JSValidatorForm=[" +
 "name=" + name + ", " +
 "validations=" + validations + "]";
 }

} // End JSValidatorForm class.

Figure 8-11. UML diagram of the JSValidatorForm class

Yes, again, this class simply matches up and represents the <form> element in the configu-
ration file, and yes, what the fields are should probably be pretty obvious from the earlier
discussion. However, we do have a couple interesting things to talk about.

One interesting point is the fact that the validations field is not an array. In fact, if you go
back and look at the JSValidatorConfig class, you’ll notice that the three collections there
are not arrays either. Why is this interesting? Well, because a “collection” in most languages,
assuming you aren’t using some additional library, generally means an array to most people.
So why would I use an Object here instead?

You may have heard that objects in JavaScript are essentially associative arrays? “Aha!” I
can hear you say, “that’s the answer right there!” I am, in fact, using an array; it’s just not an
outright Array object as you may have expected. Using an object allows you to reference the
elements of the array by name, which happens to be exactly what we need throughout JSValidator.
For instance, a <form> element can have any number of <validation> elements nested under it.

Zammetti-816-4C08.fm Page 282 Tuesday, March 6, 2007 11:50 AM

C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J A V A S C R I P T V AL I D A T I O N F R A M E W O R K 283

We want to be able to pull them up by name, and making them members of an Object allows
for that. We can still iterate over them, as you’ll see when we examine the code in JSValidator.js,
but pulling up by name is the primary reason.

The other point to bring to your attention is that with only a few exceptions, all the fields
in all these classes are private. That’s the reason there are getters and setters for them (if they
were public, those methods would be redundant). This is just good, everyday object-oriented
design, but it’s a somewhat unknown concept to a great many JavaScript programmers (and if
I’m being honest, there was a time that I was doing object-oriented JavaScript and didn’t know
it either!).

The JSValidatorFormValidation Class

With the UML diagram in Figure 8-12, we come to the single most important class in terms of
the information it provides. JSValidatorFormValidation is the class from which we create
objects that describe a validation to occur for a given field and what happens when a validation
failure occurs. The code for the JSValidatorFormValidation class is as follows:

function JSValidatorFormValidation() {

 var field = null;
 var event = null;
 var type = null;
 var failAction = null;
 var startInvalid = null;
 var params = new Object();

 this.getField = function() {
 return field;
 }
 this.setField = function(inField) {
 field = inField;
 }

 this.getEvent = function() {
 return event;
 }
 this.setEvent = function(inEvent) {
 event = inEvent;
 }

 this.getType = function() {
 return type;
 }
 this.setType = function(inType) {
 type = inType;
 }

Zammetti-816-4C08.fm Page 283 Tuesday, March 6, 2007 11:50 AM

284 C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J AV A S C R I P T V A L I D A T I O N F R AM E W O R K

 this.getFailAction = function() {
 return failAction;
 }
 this.setFailAction = function(inFailAction) {
 failAction = inFailAction;
 }

 this.getStartInvalid = function() {
 return startInvalid;
 }
 this.setStartInvalid = function(inStartInvalid) {
 startInvalid = inStartInvalid;
 }

 this.addParam = function(inParam) {
 params[inParam.getName()] = inParam;
 }
 this.getParams = function() {
 return params;
 }
 this.getParam = function(inName) {
 return params[inName];
 }

 this.toString = function() {
 return "JSValidatorFormValidation=[" +
 "field=" + field + "," +
 "event=" + event + "," +
 "type=" + type + "," +
 "failAction=" + failAction + "," +
 "startInvalid=" + startInvalid + "," +
 "params=" + params + "]";
 }

} // End JSValidatorFormValidation class.

Once again, the JSValidatorForm is nothing but a unit of storage for the corresponding
configuration information. Any number of JSValidatorForm objects can be nested within a
JSValidatorForm object, and by extension, the next class, JSValidatorFormValidationParam,
can be nested within a JSValidatorForm object via the params field.

Zammetti-816-4C08.fm Page 284 Tuesday, March 6, 2007 11:50 AM

C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J A V A S C R I P T V AL I D A T I O N F R A M E W O R K 285

Figure 8-12. UML diagram of the JSValidatorFormValidation class

The JSValidatorFormValidationParam Class

Figure 8-13 shows the UML diagram for the JSValidatorFormValidationParam class. As you
would expect, the code for this class is simple:

function JSValidatorFormValidationParam() {

 var name = null;
 var value = null;

 this.getName = function() {
 return name;
 }
 this.setName = function(inName) {
 name = inName;
 }

 this.getValue = function() {
 return value;
 }

Zammetti-816-4C08.fm Page 285 Tuesday, March 6, 2007 11:50 AM

286 C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J AV A S C R I P T V A L I D A T I O N F R AM E W O R K

 this.setValue = function(inValue) {
 value = inValue;
 }

 this.toString = function() {
 return "JSValidatorFormValidation=[" +
 "name=" + name + "," +
 "value=" + value + "]";
 }

} // End JSValidatorFormValidationParam class.

Figure 8-13. UML diagram of the JSValidatorFormValidationParam class

How the Classes Fit Together

Now that you’ve seen the UML diagram and code for each of the JSValidatorObjects.js classes,
and also how they relate to the elements in the XML configuration file, the next step is to under-
stand how they all fit together. I’ve more or less described the relationships textually as we
walked through these classes, and the relationships mimic what is seen in the configuration
file, but I would like to show you a graphical representation as well. An entity relationship
diagram should do the trick nicely, and that’s what’s shown in Figure 8-14.

Figure 8-14. Entity relationship hierarchy diagram showing how all the JSValidatorObject classes
fit together

Zammetti-816-4C08.fm Page 286 Tuesday, March 6, 2007 11:50 AM

C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J A V A S C R I P T V AL I D A T I O N F R A M E W O R K 287

Writing JSValidator.js
Now we come to the portion of our show where we examine what can rightly be called the
JSValidator framework itself, and coincidence of coincidences, it’s found in the file JSValidator.js!

Before we review the code itself, let’s take a look at the UML diagram for this class. I think
you’ll be surprised when you look at Figure 8-15 just how little there really is to it.

Figure 8-15. UML diagram of the JSValidator class

Because there is more code to this class than all the others we have looked at (by a good
margin), I won’t be listing the whole thing, but we’ll be looking at the pieces we need to as we
go along.

The first thing we see is a single field defined: config. The config field is a reference to a
single JSValidatorConfig object, which as we saw earlier, is the object that holds all the config-
uration information parsed from the configuration file.

Let’s skip ahead a bit, over all the methods in this class, and instead look at the bit of code
that we find in this file after the definition of JSValidator:

// Include dependencies.
document.write('<script src="' + JSVConfig.pathPrefix +
 'prototype.js"></script>');
document.write('<script src="' + JSVConfig.pathPrefix +
 'sax.js"></script>');
document.write('<script src="' + JSVConfig.pathPrefix +
 'JSDigester.js"></script>');
document.write('<script src="' + JSVConfig.pathPrefix +
 'JSValidatorObjects.js"></script>');
document.write('<script src="' + JSVConfig.pathPrefix +
 'JSValidatorBasicValidators.js"></script>');

// Instantiate JSValidator.
jsValidator = new JSValidator();

// Set onload event to configure JSValidator, unless told not to.
if (!JSVConfig.manualInit) {
 window.onload = function() {
 jsValidator.init();
 };
}

Zammetti-816-4C08.fm Page 287 Tuesday, March 6, 2007 11:50 AM

288 C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J AV A S C R I P T V A L I D A T I O N F R AM E W O R K

The five document.write() calls can be thought of as imports of the elements required for
JSValidator to function. Notice that they use the pathPrefix element defined in JSVConfig to
construct the URL to the imported script file. Here are the imports:

• We need the Prototype library, of course, so we see that first.

• We know that JSDigester is built on top of the SAX parser from the Mozilla project, so
that import is next.

• Next follows JSDigester itself.

• Next comes the import of the JSValidatorObjects.js file, which contains all of the
configuration classes that we looked at a short while ago.

• Last is an import of the basic, built-in validators that JSValidator provides, which we will
be looking at after JSValidator itself.

These five statements are executed at page load, and so writing <script> tags into the page
dynamically like this will cause the browser to download those resources as well. This is how it
is possible for a developer to import only a single .js file in order to use JSValidator. The rest
are includes in JSValidator.js itself and are therefore “automatic,” as far as the developer is
concerned.

JavaScript files importing others like this is a very handy technique that allows you to keep
code separate but still easily get everything you need. The alternative is to merge all these
JavaScript files into one, which might be better from the perspective of not having to make
extra calls to the server. But the concept of keeping all these components in separate files, and
therefore allowing them to easily be updated separately, is a powerful one, and frankly one
taken for granted in more full-featured languages. So, I am of the opinion that unless you know
you have an issue due to these extra requests, keeping things clean and separated is more useful.

After those five statements is the one statement that gives us the instance of the JSValidator
class that we’ll be using throughout the rest of the code. Immediately following that is where
JSValidator is initialized automatically, if configured to do so. Remember that the developer
can set the manualInit element in JSVConfig to false and take control of initializing the frame-
work. This is done by setting the onLoad event handler for the page to point to the init() method of
the JSValidator class. Note that this is necessary, as opposed to simply calling init() right
there, because the page has to actually be fully loaded; otherwise, the code that executes and
accesses the DOM can fail because the script can execute before the page fully loads.

The init() Method

And what does this init() method look like? Well, that’s our next stop. Here it is:

 this.init = function() {

 // Use Prototype to load the configuration file.
 new Ajax.Request(
 JSVConfig.pathPrefix + JSVConfig.configFile,
 { method: "get", onComplete: this.initCallback }
);

 } // End init().

Zammetti-816-4C08.fm Page 288 Tuesday, March 6, 2007 11:50 AM

C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J A V A S C R I P T V AL I D A T I O N F R A M E W O R K 289

Was it all you had hoped it would be? Yeah, me neither! All that’s being done here is the config-
uration file specified in the JSVConfig structure is being loaded via Prototype’s Ajax support. We are
declaring that when the response is received from the server—that is, the configuration file
itself—the initCallback() method of the JSValidator class should be called. So, as you might
expect, that method is what we’ll look at now.

The initCallback() Method

Because the initCallback() method is somewhat long, we’ll look at it in a couple of pieces to
better comprehend each task it performs. These chunks will be described in the order they
appear, so putting the following chunks together gives you the complete method.

Configuring the JSDigester Rules

Let’s begin with this bit of code:

 var jsDigester = new JSDigester();

 // Create new object when JSValidatorConfig tag encountered.
 jsDigester.addObjectCreate("JSValidatorConfig",
 "JSValidatorConfig");

 // Create new object when JSValidatorConfig/validator tag encountered,
 // populate its properties and add it to the JSValidatorConfig object
 // on the top of the stack.
 jsDigester.addObjectCreate("JSValidatorConfig/validator",
 "JSValidatorValidatorConfig");
 jsDigester.addSetProperties("JSValidatorConfig/validator");
 jsDigester.addSetNext("JSValidatorConfig/validator", "addValidator");

 // Create new object when JSValidatorConfig/message tag encountered,
 // populate its properties and add it to the JSValidatorConfig object
 // on the top of the stack.
 jsDigester.addObjectCreate("JSValidatorConfig/message",
 "JSValidatorMessage");
 jsDigester.addSetProperties("JSValidatorConfig/message");
 jsDigester.addSetNext("JSValidatorConfig/message", "addMessage");

 // Create new object when JSValidatorConfig/form tag encountered,
 // populate its properties and add it to the JSValidatorConfig object
 // on the top of the stack.
 jsDigester.addObjectCreate("JSValidatorConfig/form",
 "JSValidatorForm");
 jsDigester.addSetProperties("JSValidatorConfig/form");
 jsDigester.addSetNext("JSValidatorConfig/form", "addForm");

Zammetti-816-4C08.fm Page 289 Tuesday, March 6, 2007 11:50 AM

290 C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J AV A S C R I P T V A L I D A T I O N F R AM E W O R K

 // Create new object when JSValidatorConfig/form/validation tag encountered,
 // populate its properties and add it to the JSValidatorForm object
 // on the top of the stack.
 jsDigester.addObjectCreate("JSValidatorConfig/form/validation",
 "JSValidatorFormValidation");
 jsDigester.addSetProperties("JSValidatorConfig/form/validation");
 jsDigester.addSetNext("JSValidatorConfig/form/validation", "addValidation");

 // Create new object when JSValidatorConfig/form/validation/param tag
 // encountered, populate its properties and add it to the
 // JSValidatorFormValidation object on the top of the stack.
 jsDigester.addObjectCreate("JSValidatorConfig/form/validation/param",
 "JSValidatorFormValidationParam");
 jsDigester.addSetProperties("JSValidatorConfig/form/validation/param");
 jsDigester.addSetNext("JSValidatorConfig/form/validation/param",
 "addParam");

 // Parse config.
 config = jsDigester.parse(inRequest.responseText);

All of this, in a nutshell, is the configuration of the JSDigester rules that correspond to the
JSValidator configuration file. Because JSDigester was already covered (in the previous chapter),
going over all the rules in detail would be a bit of a waste. However, if any of this code doesn’t
make sense to you, I highly recommend rereading Chapter 7.

The outcome of these rules being executed on the configuration file is that the config field
in the JSValidator class is an instance of JSValidatorConfig, with all its children populated
from the configuration information. This code exists in the initCallback() function, which is
passed the request object by Prototype for the Ajax request made to retrieve the configuration
file. Therefore, the XML to be parsed can be accessed via the responseText attribute of the
inRequest object, as you can see in the call to jsDigester.parser().

Adding the Built-in Validators

Once the configuration file has been parsed, the next task we need to perform is to add in the
basic built-in validators: the Required, Regex, and MinLength validators. The code that accom-
plishes this is as follows:

 // Add in the basic validators.
 var requiredValidatorConfig = new JSValidatorValidatorConfig();
 requiredValidatorConfig.setId("required");
 requiredValidatorConfig.setSrc("");
 requiredValidatorConfig.setClass("RequiredValidator");
 config.addValidator(requiredValidatorConfig);
 var regexValidatorConfig = new JSValidatorValidatorConfig();
 regexValidatorConfig.setId("regex");
 regexValidatorConfig.setSrc("");

Zammetti-816-4C08.fm Page 290 Tuesday, March 6, 2007 11:50 AM

C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J A V A S C R I P T V AL I D A T I O N F R A M E W O R K 291

 regexValidatorConfig.setClass("RegexValidator");
 config.addValidator(regexValidatorConfig);
 var minLengthValidatorConfig = new JSValidatorValidatorConfig();
 minLengthValidatorConfig.setId("minLength");
 minLengthValidatorConfig.setSrc("");
 minLengthValidatorConfig.setClass("MinLengthValidator");
 config.addValidator(minLengthValidatorConfig);

For each of those three validators, the code instantiates a new
JSValidatorValidatorConfig object. We then populate the three attributes it contains: id, src,
and class. Note that the src attribute is set to an empty string because there is no file to import.
As you will recall, the code for these validators was imported already as part of the global code
executed when this .js file was loaded. In fact, there is no real reason to set the src attribute at
all for these validators, but I prefer code to be as deterministic as possible, even when it doesn’t
really have to be.

Loading Custom Validators

We still have some work to do for validators. We now need to import the JavaScript files that
may have been named for any custom add-on validators, such as the DateValidator. When this
code executes, the page is already loaded, so we can’t simply use the document.write() trick as
we did earlier. Instead, we need to get just slightly fancier:

 // Add includes for external validators.
 var configuredValidators = config.getValidators();
 for (var validatorID in configuredValidators) {
 var nextValidatorConfig = configuredValidators[validatorID];
 // Only non-basic validators will have a src value specified.
 if (nextValidatorConfig.getSrc() != "") {
 var scriptTag = document.createElement("script");
 scriptTag.src = nextValidatorConfig.getSrc();
 var headTag = document.getElementsByTagName("head").item(0);
 headTag.appendChild(scriptTag);
 }
 }

First, we get the collection of validators that were parsed from the configuration file and
iterate over that collection. For each, we get the appropriate JSValidatorValidatorConfig
object, and we see if its src attribute has a value (because, as you’ll remember, we just added
the basic validators, which all had the src attribute set to an empty string—see, it’s good to be
deterministic!). Once we have the src attribute value, we use the DOM createElement()
method to create a new <script> tag. We set the src attribute of that tag to the value specified
for the validator. Then a reference to the <head> of the document is retrieved, and the new
<script> tag is appended. The browser will then immediately load the source JavaScript file
and evaluate it. We now have available to the rest of the code the class for the validator
configured.

Zammetti-816-4C08.fm Page 291 Tuesday, March 6, 2007 11:50 AM

292 C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J AV A S C R I P T V A L I D A T I O N F R AM E W O R K

Attaching Event Handlers

The next and final step to complete initialization is to actually hook up the configured events
to the form fields that were configured to have validations attached to them. That is accom-
plished with the next bit of code, which may look a bit daunting, but really if you were to trim
out the comments, you would find it’s a bit simpler than you might first perceive.

 // Attach event handlers to fields as defined in config file.
 var configuredForms = config.getForms();
 // Iterate over forms configured.
 for (var formName in configuredForms) {
 var nextFormConfig = configuredForms[formName];
 // Get reference to form being configured.
 var targetForm = document.forms[nextFormConfig.getName()];
 // Attach an onSubmit handler to check if it can submit or not.
 targetForm.onsubmit = jsValidator.processSubmit;
 // Get reference for all validations configured for this form.
 var formValidations = nextFormConfig.getValidations();
 // Iterate over validations defined for this form.
 for (var fieldName in formValidations) {
 // Get the field validation being hooked.
 var nextValidationConfig = formValidations[fieldName];
 // Get the validator definition.
 var validator = config.getValidator(nextValidationConfig.getType());
 // Get the field to hook event to.
 var targetField = targetForm[nextValidationConfig.getField()];
 // Set attribute if this field is initially invalid. and if the field
 // is configured for the highlight action, then highlight it.
 if (nextValidationConfig.getStartInvalid() &&
 nextValidationConfig.getStartInvalid() == "true") {
 targetField.setAttribute("JSValidator_INVALID", "true");
 if (nextValidationConfig.getFailAction() == "highlight") {
 var idToHighlight =
 nextValidationConfig.getParam("idToHighlight").getValue();
 var errorStyleClass =
 nextValidationConfig.getParam("errorStyleClass").getValue();
 $(idToHighlight).className = errorStyleClass;
 }
 }
 // Set event handler.
 targetField[nextValidationConfig.getEvent()] = jsValidator.processEvent;
 }
 }

First, the collection of forms configured is retrieved. The code then begins to iterate over
that collection. For each, we get a reference to the HTML for it via the document.forms[] collection.
An onSubmit event handler is attached to the form. This event handler is the processSubmit()
function in the JSValidator object, as will be discussed shortly.

Zammetti-816-4C08.fm Page 292 Tuesday, March 6, 2007 11:50 AM

C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J A V A S C R I P T V AL I D A T I O N F R A M E W O R K 293

After that, the collection of validations for that form is retrieved from the JSValidatorConfig
object, and we begin to iterate over it. For each, we get a reference to the field in the HTML
form. Next, we see if either the startInvalid attribute was not specified at all or if it was spec-
ified with the value true. If either condition is true, we add an attribute to the field named
JSValidator_INVALID with a value of true (the value is actually irrelevant; just the presence or
absence of the attribute determines if the field is invalid). We also see if the failAction for that
field is highlight. If so, we go ahead and get the ID of the page element to highlight and the
style class used for highlighting, and we apply it using Prototype’s $() shorthand for document.
getElementById().

Finally, we set the appropriate event handler for the field to point to the processEvent()
method of the JSValidator class.

All of this is really a long-winded way of saying that for every field configured to have a vali-
dation applied to it in the configuration file, we’re setting the appropriate event handler(s) on
the field and setting each field’s initial state. In this way, if JavaScript is turned off, the form will
still work because it isn’t dependent on JSValidator at all; the framework is strictly an add-on
capability. This is good, nonintrusive coding.

With init() and initCallback() out of the way, we now turn our attention to the method
that is called in response to an event on a field that triggers a validation.

The processEvent() Method

Recall that for each field that has a validation assigned to it, in initCallback(), we attached the
appropriate event handler, as described in the configuration file, but it always calls processEvent()
in the JSValidator class. This allows the framework to handle all these events in a common
way. Let’s now see exactly what this event-handler function does:

 this.processEvent = function() {

 // Get reference to form, field and validator config objects for the
 // form element that fired the event that called this callback.
 var formConfig = config.getForm(this.form.name);
 var fieldConfig = formConfig.getValidation(this.name);
 var validatorConfig = config.getValidator(fieldConfig.getType());

 // Get a reference to the class that implements the validator defined
 // for this field. Then, get a new instance of it and call its validate()
 // method.
 var clazz = eval(validatorConfig.getClass());
 clazz = new clazz;
 clazz.setJsValidatorConfig(config);
 clazz.setFieldConfig(fieldConfig);
 clazz.setValidatorConfig(validatorConfig);
 clazz.setField(this);
 // Perform the appropriate action for pass and fail.
 var isValid = clazz.validate();
 if (isValid) {
 // When field was valid, might be some cleanup to do in some cases.
 this.removeAttribute("JSValidator_INVALID");

Zammetti-816-4C08.fm Page 293 Tuesday, March 6, 2007 11:50 AM

294 C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J AV A S C R I P T V A L I D A T I O N F R AM E W O R K

 if (fieldConfig.getFailAction() == "highlight") {
 var idToHighlight = fieldConfig.getParam("idToHighlight").getValue();
 var okStyleClass =
 fieldConfig.getParam("okStyleClass").getValue();
 $(idToHighlight).className = okStyleClass;
 }
 if (fieldConfig.getFailAction() == "insert") {
 var targetID = fieldConfig.getParam("idToInsertInto").getValue();
 $(targetID).innerHTML = "";
 }
 } else {
 // Field NOT valid, so act according to config.
 this.setAttribute("JSValidator_INVALID", "true");
 switch (fieldConfig.getFailAction()) {
 case "alert":
 var whatMessage = fieldConfig.getParam("message");
 var messageConfig =
 jsValidator.getConfig().getMessage(whatMessage.getValue());
 var message = messageConfig.getText();
 message = jsValidator.replaceTokens(message, fieldConfig.getParams());
 alert(message);
 break;
 case "highlight":
 var idToHighlight = fieldConfig.getParam("idToHighlight").getValue();
 var errorStyleClass =
 fieldConfig.getParam("errorStyleClass").getValue();
 $(idToHighlight).className = errorStyleClass;
 break;
 case "insert":
 var whatMessage = fieldConfig.getParam("message");
 var targetID = fieldConfig.getParam("idToInsertInto").getValue();
 var messageConfig =
 jsValidator.getConfig().getMessage(whatMessage.getValue());
 var message = messageConfig.getText();
 message = jsValidator.replaceTokens(message, fieldConfig.getParams());
 $(targetID).innerHTML = message;
 break;
 }
 }

 return isValid;

 } // End processEvent().

First, we get a reference to the config objects for the form, field, and validator the field
uses. Next, the specified validator is instantiated. This is done by first eval()’ing the name of
the class returned by the call to validatorConfig.getClass(), which gives us a reference to
the class, then creating a new instance of it by using the new keyword. We set on that validator

Zammetti-816-4C08.fm Page 294 Tuesday, March 6, 2007 11:50 AM

C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J A V A S C R I P T V AL I D A T I O N F R A M E W O R K 295

instance the JSValidatorConfig instance by passing it to setJsValidatorConfig(), the
JSValidatorFormValidation for the field by passing it to setFieldConfig(), and the
JSValidatorValidatorConfig by passing it to setValidatorConfig(). We also pass the field
itself that triggered the event by passing it to setField().

The validator should now have access to all the pieces of information it might need, so we
then call validate() on the validator. validate() returns true if the field passes validation;
false if not. If validate() returns true, we essentially need to undo any failure indications that
the field might have had. That means that first we need to remove that JSValidator_INVALID
indicator, if it was present, and if the failAction for the field is highlight, we need to unhigh-
light the target element.

Lastly, if the failAction for the field is insert, then we want to clear the innerHTML prop-
erty of the target element. You can see all this in action with the Last Name field. That field
starts out invalid, and as you type and enter five characters or more, the field label reverts to
a valid entry condition. This is due to this code in this block.

What if the field fails validation? Well, then we find ourselves in the else clause seen in this
code. In that case, we examine the failAction value, and then switch on it. For action alert, we
get the message referenced in the configuration, and then call replaceTokens() to do token
replacement. Finally, we display the resultant message via alert().

For highlight, we just need to get the ID of the element to highlight, as well as the style class to
use. Then we set the className attribute accordingly, again using Prototype’s $() shortcut.

Finally, for the insert action, we do essentially the same thing as for alert, but updating
the innerHTML property of the target element instead of calling alert() at the end.

The processSubmit() Method

Another function that is of concern to us is the onSubmit event for the form itself. Quite obvi-
ously, if any of the fields on the form are invalid, we should not allow the form to submit. But
how do we determine whether the form should submit or not? What are the actual mechanics
behind it? The answer to that is found in the processSubmit() method of JSValidator, shown here:

 this.processSubmit = function() {

 var formValidity = true;
 // If any element of the form has the JSValidator_INVALID attribute, then
 // the form cannot be submitted.
 for (var i = 0; i < this.elements.length; i++) {
 if (this.elements[i].getAttribute("JSValidator_INVALID")) {
 formValidity = false;
 }
 }
 if (!formValidity) {
 // Can't be submitted, show configured message.
 var config = jsValidator.getConfig();
 var formConfig = config.getForm(this.name);
 alert(formConfig.getNoSubmitMessage());
 }
 return formValidity;

 } // End processSubmit().

Zammetti-816-4C08.fm Page 295 Tuesday, March 6, 2007 11:50 AM

296 C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J AV A S C R I P T V A L I D A T I O N F R AM E W O R K

As you can see, all we really need to do is iterate over all the elements in the form and check
if any have the JSValidator_INVALID attribute. If not, then the form is OK and submission can
continue. If any elements have that attribute, then we get the value of the noSubmitMessage
attribute for the form and display it via alert() to indicate an error is present on the form.

Note here the use of the this reference (you’ll also note that the same thing is used in the
processEvent() method). You may find this interesting because you may expect that this points
to the JSValidator instance, since these methods are part of that instance. But recall that these
two methods were attached to elements on the page: the form and the form elements. When
they are called, it is in the context of those elements, and thus the this keyword actually points
to those elements. Remember that the this reference always refers to the object the method is
attached to at run time, not necessarily design time. It’s easy to get confused by this, and it will
most likely burn you once or twice at late hours of the night!

The replaceTokens() Method

The last bit of functionality provided by JSValidator is the replaceTokens() method, which is
used when generating the messages the user sees when a field fails validation, if configured to
do so. Let’s have a look at that method now, shall we?

 this.replaceTokens = function(inString, inParams) {

 // We're going to scan the text looking for tokens, all the while
 // constructing a new string in a StringBuffer from it, with the
 // data replacing the tokens.
 var finalText = "";
 var i = 0;
 while (i < inString.length) {
 // See if the next character is a hash sign, and if the next
 // character after that is an opening brace, as long as
 // that check doesn't put us beyond the end of the string, then we've
 // found the start of a token.
 if (inString.charAt(i) == '#' && inString.charAt(i + 1) == '{') {
 // Now we get the location of the closing token delimiter. Note that
 // if the developer forgot to close the token, this will probably
 // blow up with a JS error, and at best it just won't work as
 // expected. We're going to live with that!
 var lIndex = inString.indexOf("}#", i);
 // Now it's a simple matter to get the token name.
 var tokenName = inString.substring(i + 2, lIndex);
 // Look up the replacement value with that name from inParams.
 var tokenValue = "";
 var param = inParams[tokenName];
 if (param) {
 tokenValue = param.getValue();
 }

Zammetti-816-4C08.fm Page 296 Tuesday, March 6, 2007 11:50 AM

C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J A V A S C R I P T V AL I D A T I O N F R A M E W O R K 297

 finalText += tokenValue;
 // Set i to take us just past the closing token delimiter, and
 // we're done with this token
 i = lIndex + 1;
 } else {
 // The current character being checked was NOT part of a token
 // opening delimiter, so just append the character
 finalText += inString.charAt(i);
 }
 i++;
 }
 return finalText;

 } // End replaceTokens().

replaceTokens() is a fairly straightforward bit of string manipulation. It begins by iterating
over each character in the input string, which will be one of the message strings, possibly
containing replacement tokens in the form #{xxx}#.

For each character, we see if it’s a hash mark (#). If it is, we then see if the next character is
a brace ({). If either of these conditions is false, the code in the else block executes, and the
character is simply added to a string we began constructing at the start. However, if both conditions
are true, we’ve identified a replacement token. Now we need to find the location of the closing
delimiter (}#). Once we have that, we can get the name of the token easily enough by using the
substring() method of the String object.

With the token name in hand, we can look it up in the collection of parameters passed in.
Note that in this instance, collection of parameters actually refers to the Object to which all the
configured parameters for the validation being processed are attached. We can then do a simple
lookup for the token. That’s because, as you’ll remember, the whole point of using Object rather
than Array was so that we could easily look up these values using the [] paradigm. Once we
find the value, we simply append the value of the parameter to the output string, and move the
iteration index past the closing token delimiter. Once the iteration completes, we return the
constructed string, and voilà, a string with all tokens replaced with the appropriate param-
eter values!

And with that, we’ve seen the guts of JSValidator in detail! Only two last bits of code
remain to be examined, and those are the validator implementation classes—both the basic
built-in ones and the one add-on validator.

Writing JSValidatorBasicValidators.js
The JSValidatorBasicValidators.js file, as the name clearly implies, is where you’ll find
the three basic built-in validators that JSValidator always makes available automatically:
RequiredValidator, RegexValidator, and MinLengthValidator.

The RequiredValidator Class

RequiredValidator, shown in Figure 8-16, is just about as simple as a validator can get, as you
can see here:

Zammetti-816-4C08.fm Page 297 Tuesday, March 6, 2007 11:50 AM

298 C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J AV A S C R I P T V A L I D A T I O N F R AM E W O R K

function RequiredValidator() {

 this.validate = function() {

 var retVal = true;
 if (this.field.value == "") {
 retVal = false;
 }
 return retVal;

 } // End validate().

} // End RequiredValidator().

// RequiredValidator extends JSValidatorValidatorImpl.
RequiredValidator.prototype = new JSValidatorValidatorImpl;

Figure 8-16. UML diagram of the RequiredValidator class

This class contains just a quick check of the value of the field that fired the validation to
make sure something was entered, and nothing more. Note the setting of the prototype of the
validator at the end. This is where the inheritance from the JSValidatorValidatorImpl class
happens, and you’ll see this same basic line of code for each validator. Likewise, for your own
validator, you would need to include that line of code.

Zammetti-816-4C08.fm Page 298 Tuesday, March 6, 2007 11:50 AM

C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J A V A S C R I P T V AL I D A T I O N F R A M E W O R K 299

The RegexValidator Class

Next up is RegexValidator, which isn’t much more complex at all. First, have a look at Figure 8-17,
the UML diagram for the RegexValidator class.

Figure 8-17. UML diagram of the RegexValidator class

Moving on to the code, we see that, in this case, we need to get the regular expression from
the parameters defined for this validation. To do so, we call getParam() on the fieldConfig
object for this validation, and subsequently we call getValue() on the object returned from that
call, since it is a JSValidatorFormValidationParam, not the value itself. With that done, we have
only to use the typical JavaScript regular expression match() function to determine if the field’s
value is valid.

function RegexValidator() {

 this.validate = function() {

 var retVal = true;
 var parm = this.fieldConfig.getParam("regex");
 var regx = parm.getValue();
 if (!this.field.value.match(regx)) {
 retVal = false;
 }
 return retVal;

 } // End validate().

} // End RegexValidator().

Zammetti-816-4C08.fm Page 299 Tuesday, March 6, 2007 11:50 AM

300 C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J AV A S C R I P T V A L I D A T I O N F R AM E W O R K

// RegexValidator extends JSValidatorValidatorImpl.
RegexValidator.prototype = new JSValidatorValidatorImpl;

RegexValidator is one of those cases where something seemingly simple masks a great
deal of power. You have the full capability of the JavaScript regular expression engine at your
fingertips, without writing a single bit of code.

The MinLengthValidator Class

The last basic validator to look at is MinLengthValidator, which is another very simple bit of
code. As Figure 8-18 indicates, this is again just a typical validator class.

Figure 8-18. UML diagram of the MinLengthValidator class

Take a look at the code:

function MinLengthValidator() {

 this.validate = function() {

 var retVal = true;
 if (this.field.value.length <
 this.fieldConfig.getParam("minLength").getValue()) {
 retVal = false;
 }
 return retVal;

 } // End validate().

Zammetti-816-4C08.fm Page 300 Tuesday, March 6, 2007 11:50 AM

C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J A V A S C R I P T V AL I D A T I O N F R A M E W O R K 301

} // End MinLengthValidator().

// MinLengthValidator extends JSValidatorValidatorImpl.
MinLengthValidator.prototype = new JSValidatorValidatorImpl;

As you can see, as with RegexValidator, all we’re doing is grabbing the minimum allowed
length for the field from the parameters for the validation, comparing the value of the field to
it, and returning the appropriate Boolean outcome.

Writing DateValidator.js
Only one piece of code stands between us and a complete examination of this application, and
that’s the DateValidator class, as shown in Figure 8-19.

Figure 8-19. UML diagram of the DateValidator class

Let’s get the code out of the way, and then see what makes it tick.

function DateValidator() {

 this.validate = function() {

 // Get the configured format of the field.
 var format = this.fieldConfig.getParam("format").getValue();

Zammetti-816-4C08.fm Page 301 Tuesday, March 6, 2007 11:50 AM

302 C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J AV A S C R I P T V A L I D A T I O N F R AM E W O R K

 // Make sure the value is the same length as the format.
 if (this.field.value.length != format.length) {
 return false;
 }

 // Now iterate over the value. If any character doesn't match the format,
 // it's a reject. Note that M, D and Y characters in the format
 // correlate to any numeric character.
 for (var i = 0; i < format.length; i++) {
 if (format.charAt(i).toUpperCase() == "M" ||
 format.charAt(i).toUpperCase() == "D" ||
 format.charAt(i).toUpperCase() == "Y") {
 // Character at this position should be a numeric.
 if (this.field.value.charAt(i) < '0' ||
 this.field.value.charAt(i) > '9') {
 return false;
 }
 } else {
 // Format doesn't specify a numeric value at this position, so just
 // be sure the character matches exactly.
 if (format.charAt(i) != this.field.value.charAt(i)) {
 return false;
 }
 }
 }

 return true;

 } // End validate().

} // End DateValidator().

// DateValidator extends JSValidatorValidatorImpl.
DateValidator.prototype = new JSValidatorValidatorImpl;

The first thing we see in the validate() method is grabbing the format to use from the
configuration. We then see a trivial rejection: if the value of the field doesn’t exactly match that
of the format string, we know the field is invalid.

Assuming it passes that little test though, we then iterate over the value of the field. For
each character, we compare it to what is expected in that position in the format string. Any M,
D, or Y character in the format string corresponds to any digit 0 through 9. If the character in the
format string is something else, typically a slash or dash, then we make sure the character in the
value matches exactly. If we ever hit a situation where the character in the input string doesn’t
match that in the format string, then the field fails validation and we return false.

And that’s that—another application in the books, so to speak!

Zammetti-816-4C08.fm Page 302 Tuesday, March 6, 2007 11:50 AM

C H A P T E R 8 ■ G E T I T R I G H T , B U B : A J A V A S C R I P T V AL I D A T I O N F R A M E W O R K 303

Suggested Exercises
I’ve left the door open for a number of enhancements for you to do that should very much help
further your understanding of JSValidator and, of course, JavaScript in general. Here are just a
few suggestions:

• A fairly simple one first: when a validation failure occurs, the field that had the error
should get focus automatically. This is definitely an obvious one, and one I left for you to
start with because it shouldn’t take very long or be very difficult, so it’s a good way to get
your feet wet.

• Another obvious one is to implement more validators. How about one that validates
credit card numbers? How about one to check that an entered date falls within a given
range? How about one that does greater-than or less-than comparisons of two fields
(which would require you to modify the framework to allow a validation configuration to
name a second field to operate on)? Whatever your imagination can come up with, go for it!

• Allow for multiple validations on a single field. This may not be quite as simple as it
sounds, but would definitely be a worthy goal.

• Add internationalization (I18n) support. This could be accomplished a number of ways.
One way might be to add a locale identifier to the <message> element—maybe it has en
for English, de for German, and so on. Then just get the appropriate message based on
the locale of the client.

• Allow for adding error messages as pop-up tooltips to highlighted error fields. That way,
when a field is highlighted to show an error, the user can hover over it to see what’s wrong.

Summary
In this chapter, we developed an extensible framework that can completely externalize our
form validations, requiring virtually no code be added to our pages. You saw how you can add
reusable validators to your framework that you can find uses for in other applications. And you
can accomplish all this in a nice, neat, object-oriented way that lends itself to extension.

In this chapter’s project, you saw how the JSDigester project from the previous chapter
helps us deal with XML easily. You also got a glimpse of the Prototype library in action a bit, and
had another brush with Ajax, albeit just a quick one. We’ll get to a project that specifically deals
with Ajax specifically in Chapter 12.

Zammetti-816-4C08.fm Page 303 Tuesday, March 6, 2007 11:50 AM

305

■ ■ ■

C H A P T E R 9

Widget Mania: Using a
GUI Widget Framework

In web development, widgets are all the rage these days. No longer are we content with regular
form fields, buttons, drop-down lists, and such. Just plain-old tables aren’t sufficient for many
developers! But this trend isn’t just due to a desire to create cooler interfaces. There are UI
metaphors in a modern operating system that don’t have an analogy in the web world, at least
not intrinsically.

Take the tree view as an example. I’m sure you’ve seen a tree view before. Indeed, if you
work in Windows, you can barely avoid it (it’s the list of folders on the left in Windows Explorer).
Have you seen one on the Web? Chances are you have, but unless it was relatively recently, the
web developer likely wrote it himself, or else lifted some code from somewhere else. What it
wasn’t though, in all likelihood, was a piece of code that was self-contained and part of a larger
framework of UI components, which is what a UI widget is.

Widgets make adding this “advanced” functionality to your web application very easy, and
more important, consistent. You’ll see how this works as we build a handy little application for
posting notes to ourselves. In this project, we’ll use a lot of widgets supplied by a library that is
rapidly growing in popularity: the Yahoo! User Interface (YUI) Library.

JSNotes Requirements and Goals
For this chapter’s project, which we’ll call JSNotes from here on out, we’re going to build some-
thing along the lines of that pad of sticky yellow notes you very possibly having sitting around
your desk somewhere. In this case though, it will be a web-based application that allows us to
post digital notes to ourselves. The main purpose of this application, aside from being useful in
helping to keep us from losing little pieces of information we obtain throughout the day, is
meant to demonstrate the use of the YUI Library.

So, what specifically is JSNotes going to do? Let’s spell it out now:

• JSNotes will allow us to create notes, including a subject for each, and add a date and
time (generally, the current date and time, but you never know!). We’ll also be able to
categorize each note as either personal or business.

• The notes will be presented in a Windows Explorer-like view, with a tree view on the left
and note details on the right. The two primary branches in the tree will be our two cate-
gories: Personal and Business.

Zammetti-816-4C09.fm Page 305 Sunday, March 18, 2007 6:51 PM

306 C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K

• For each note, we’ll store the note text, a subject, and a date and time, as well as the
note’s category.

• We’ll be able to delete a note, and we’ll also be able to “export” a note, which really just
means put it in a form suitable for copying and pasting into another program.

• When adding a note, we want to present it in a pop-up dialog box.

• We’ll also have Help and About boxes, but they will be done in a different style than the
add note pop-up. These will appear as an overlay over the main JSNotes display.

The best part is, with the YUI Library in the mix, all of this becomes a relatively trivial exercise!

The YUI Library
The YUI Library includes a set of UI widgets, as well as a number of utility-type classes for Ajax,
drag-and-drop, DOM manipulation, and more. YUI is one of the best documented libraries I’ve
seen recently and also one of the best demonstrated. You can find a good example of virtually
every part of the library, usually along with a number of variations for guidance.

Let’s talk about the widgets, since they are primarily what we’ll be working with in this
application, and we’ll be using quite a few of them. YUI provides a number of widgets, including
AutoComplete, Calendar, Container (including Module, Overlay, Panel, Tooltip, Dialog, and
SimpleDialog), Logger, Menu, Slider, TabView, and TreeView. Because the widgets are designed
around a common framework, they all present a fairly consistent programming interface.

Using YUI is as simple as importing some JavaScript files, and in many cases, some CSS
files as well. Generally speaking, each widget is a single JavaScript file, but there also may be
some dependencies on other files, and those need to be manually imported, too. Once that’s
done, you’re ready to rock and roll.

For instance, let’s say you want to create a menu. All you need to do is define your menu in
the form of some simple markup, like so:

<div id="basicmenu" class="yuimenu">
 <div class="bd">
 <ul class="first-of-type">
 <li class="yuimenuitem">Page1
 <li class="yuimenuitem">Page2

 </div>
</div>

This provides the basic structure of the menu. The last step is to tell YUI to create the menu
for you, based on this markup. To do so is as simple as this:

var oMenu = new YAHOO.widget.Menu("basicmenu");
oMenu.render();

Zammetti-816-4C09.fm Page 306 Sunday, March 18, 2007 6:51 PM

C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K 307

YUI will find the element on the page with the ID basicmenu. It will then parse the contents,
specifically looking for a list, and will use it to generate the menu. The markup will be replaced
with the markup for the menu itself, and the menu will be all set. The first line of code instan-
tiates the menu and stores a reference to it in oMenu, but it only renders it in memory. To actually
get it on the screen is the job of the call to its render() method.

You’ll find that most widgets follow the same general pattern: instantiate an instance of
the widget, give it a reference to some markup, and then make a call to its render() method to
put it on the screen. Some widgets support options passed into the constructor as well, as you’ll
see in the application code. A few of them are created a little differently, and you’ll see that as
well when we build the application.

You can also programmatically create the widgets from scratch. For instance, to create a
menu strictly with code, you could do this:

var oMenu = new YAHOO.widget.Menu("basicmenu");
oMenu.addItem(new YAHOO.widget.MenuItem("Page1", { url : "page1.htm" }));
oMenu.addItem(new YAHOO.widget.MenuItem("Page2", { url : "page2.htm" }));
oMenu.render(document.body);

In this case, presuming an element with the ID basicmenu is not already on the page, the
DOM structure of the menu will be created and appended under that ID to the document’s
body element.

As I mentioned, YUI also provides some utility-type functions. Here’s one we’ll use in the
JSNotes application:

var obj = YAHOO.util.Dom.get("xxx");

This is equivalent to the following ubiquitous function:

var obj = document.getElementById("xxx");

You may wonder how these functions differ. The answer is that the YUI version accepts
either a single ID or an array of IDs, and will return a reference either to a single element or an
array of elements. If nothing else, that will save you a lot of typing and lines of code if you need
to get a reference to more than one element at a time.

The YUI Library has gained quite a following, and for good reason. It works very well in all
the major browsers, is well designed, and is fantastically documented. I wholeheartedly
recommend its use, and I encourage you to check it out in more detail at http://developer.
yahoo.com/yui. Although we’ll use quite a few of the widgets, we won’t touch much of the rest
of the library. I encourage you to check it out in more detail at http://developer.yahoo.com/
yui. Spend five minutes clicking around the examples on the site, and you’ll have a good feel
for what is has to offer.

A Preview of JSNotes
If you haven’t yet fired up JSNotes, I suggest you do so now. Let’s take a quick look at it. Figure 9-1
shows the application as it is at startup, and already you can see two YUI widgets: the menu and
the tree view.

Zammetti-816-4C09.fm Page 307 Sunday, March 18, 2007 6:51 PM

308 C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K

Figure 9-1. JSNotes at startup

When you want to add a note, you click the Add Note option on the File menu. This brings
up a dialog box, where you can enter the note. The dialog box demonstrates another bunch of
widgets, including the dialog box itself, the calendar, and the slider, as you can see in Figure 9-2.

Zammetti-816-4C09.fm Page 308 Sunday, March 18, 2007 6:51 PM

C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K 309

Figure 9-2. JSNotes when adding a note

In Figure 9-3, you can see one more widget: the overlay. Admittedly, it doesn’t look like
anything special. In fact, you really can’t even tell that you’re looking at a widget.

You’ll see one or two other screenshots as we progress through the dissection of the appli-
cation. See, now you have something to look forward to! And with that little tease, let’s get on
with the show.

Zammetti-816-4C09.fm Page 309 Sunday, March 18, 2007 6:51 PM

310 C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K

Figure 9-3. The Using JSNotes overlay

Dissecting the JSNotes Solution
Let’s begin, as we always do, by looking at the general file layout of the application. If you’ve
read the previous chapters, the structure shown in Figure 9-4 should be familiar by now.

Figure 9-4. JSNotes directory structure

Zammetti-816-4C09.fm Page 310 Sunday, March 18, 2007 6:51 PM

C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K 311

In the root directory resides a single file, index.htm, which is the starting point for the
application. Below the root are the following four subdirectories:

• css: As usual, the css directory contains styles.css, which is the style sheet for the
application.

• img: The img directory holds the three files horizBgHH.png, horizBgMM.png, and
horizSlider.png. The first two are the background for the hours and minutes sliders,
respectively, in the Add Note dialog box. They are the tick marks you see. The
horizSlider.png file contains the slider handle that you drag and slide.

• js: In the js directory, you’ll find three files. jscript.dom.js is the DOM package from
Chapter 3. JSNotes.js is the main JavaScript code for the application. Note.js is the Note
class, which contains the data of a note created by the user.

• yui: The yui directory is where the Yahoo library is housed. Within it, you’ll find a
number of directories, each corresponding to a part of YUI functionality. It also includes
any resources YUI needs, such as style sheets and images.

Not a lot of files are involved (unless you count YUI itself, but for the purposes of this book,
we won’t). So, let’s dive right in and check it out!

Writing index.htm
index.htm is the file you load to bring up the application, and it is what brings form to the func-
tion, so to speak. It is a fairly large file, so we will just look at some important pieces of it here.

At the top, in the <head> of the document, we first see a batch of style sheet imports:

 <link rel="stylesheet" type="text/css" href="css/styles.css">
 <link rel="stylesheet" type="text/css" href="yui/logger/assets/logger.css">
 <link rel="stylesheet" type="text/css" href="yui/fonts/fonts.css">
 <link rel="stylesheet" type="text/css" href="yui/reset/reset.css">
 <link rel="stylesheet" type="text/css" href="yui/menu/assets/menu.css">
 <link rel="stylesheet" type="text/css"
 href="yui/container/assets/container.css">
 <link rel="stylesheet" type="text/css"
 href="yui/calendar/assets/calendar.css" />
 <link rel="stylesheet" type="text/css"
 href="yui/treeview/assets/tree.css" />

Except for the first, which is the style sheet for the application itself, all of these are needed
for YUI widgets. (Feel free to tear them apart if you’re interested.)

Following that is a batch of JavaScript source file imports:

 <script type="text/javascript" src="js/jscript.dom.js"></script>
 <script type="text/javascript" src="js/JSNotes.js"></script>
 <script type="text/javascript" src="js/Note.js"></script>
 <script type="text/javascript" src="yui/yahoo/yahoo.js"></script>
 <script type="text/javascript" src="yui/event/event.js"></script>
 <script type="text/javascript" src="yui/dom/dom.js"></script>
 <script type="text/javascript" src="yui/dragdrop/dragdrop.js" ></script>

Zammetti-816-4C09.fm Page 311 Sunday, March 18, 2007 6:51 PM

312 C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K

 <script type="text/javascript" src="yui/connection/connection.js" ></script>
 <script type="text/javascript" src="yui/logger/logger.js"></script>
 <script type="text/javascript" src="yui/container/container.js"></script>
 <script type="text/javascript" src="yui/menu/menu.js"></script>
 <script type="text/javascript" src="yui/animation/animation.js"></script>
 <script type="text/javascript" src="yui/calendar/calendar.js"></script>
 <script type="text/javascript" src="yui/slider/slider.js"></script>
 <script type="text/javascript" src="yui/treeview/treeview.js"></script>

Once again, except for the first three, which are part of JSNotes itself, the rest are parts of
YUI. Generally speaking, each widget is encapsulated in a .js file named for the widget, and
may also require some supporting files, such as event.js and dom.js.

Following that is the instantiation of the JSNotes object, which is the real code behind the
application. The instantiated object is referenced by the variable jsNotes, which you’ll be
seeing plenty of later.

After that, the <body> begins, starting with the <div> named divMain. This is the container that
is centered on the page. Everything else, except the Add Note dialog box, is a child of this container.

Next up is some markup that makes up our menu bar. This is also our first YUI widget—
well, sort of! As you’ll see, the menu bar will be generated programmatically, but it does so
based on the unordered list in this markup. Basically, we’ll be feeding YUI the ID of the <div>
containing an ordered list—divMainMenu in this case. YUI will then parse the list and generate
the menu based on it. The classes you see are the default style classes that should be applied to
the top-level menu items, as well as the submenu items. Each menu item is a link, but we don’t
want to navigate anywhere, which is the purpose of the javascript:void(0) as the href value.
The onClick event handler takes care of the real functionality behind each menu item.

■Tip You can have nested lists, which will be properly rendered as nested menu items. So, if you wanted
a menu item on the File menu to itself be a submenu, you simply start a new list under the item under
the File . Neat!

Next is a <div> with the ID divContent. This is a fairly mundane affair: two elements
(instead of <div> elements, to avoid the line break between them), one floating left and one
floating right (as per the style classes, as you’ll see). The one on the left is for the tree view, and
the one on the right is for the details of the currently selected note. On the right, we have a
series of <td> elements with IDs essentially matching the fields stored for each note. It’s pretty
straightforward markup.

After that, we find a <div> where our logging console appears. YUI will take care of creating
the content of this <div>, so no need to put anything there to start.

Then we get to three <div> elements that look quite similar. Each one is the content for a
YUI overlay, which is very similar to a <div> actually, but exposes some handy extra features,
such as methods for centering, custom event monitoring, and a built-in solution for the common
problem of <select> elements in IE bleeding through elements with a higher Z index.1 Since all
these <div>‘s look very similar, let’s take a peek at just one to get the idea:

1. Basically, the YUI solution puts an iFrame behind the overlay, preventing the <select> from showing
through.

Zammetti-816-4C09.fm Page 312 Sunday, March 18, 2007 6:51 PM

C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K 313

 <div id="divAbout" class="cssOverlay">
 <table border="0" cellpadding="0" cellspacing="0" class="cssOverlayTable">
 <tr>
 <td align="center" valign="middle" class="cssPadded">
 JSNotes 1.0

 Frank W. Zammetti

 From the book "Practical JavaScript Projects"

 Published by Apress in 2007

 Ok
 </td>
 </tr>
 </table>
 </div>

There are no restrictions on what you can place in an overlay (even other YUI widgets!),
and you can style it any way you wish. Here, we have the simpler About display, and as you can
see, it’s pretty typical markup. But when you feed the ID to YUI in the correct way, you get an
overlay.

The final piece of index.htm to look at is the markup for the Add Note dialog box. You may
have been expecting to see something special, based on playing with the application a little
and seeing a nice floating dialog box. Well, surprise, it’s just more boring markup! What we
have is a simple HTML form, set up within a table for alignment purposes. In this case, we won’t
actually be submitting the form anywhere, so there’s no method or action attributes, and for
onSubmit, we actually return false to be sure no submit occurs. One interesting point is that no
submit or cancel buttons are defined here. That’s because YUI will create these for us when we
create the dialog box. As with overlays and the menu, we’ll feed the ID of the containing <div>
to YUI, and it will do the rest.

The dialog box is a good example of how you can have YUI widgets inside other widgets.
We have (or, more precisely, will have) a calendar and two sliders in this dialog box. You can
see what are essentially the placeholders for these items here: the addNoteCalendar <div>, the
divHHSliderBG <div>, and the divMMSliderBG <div>.

As you may have guessed, we aren’t simply telling YUI, “Hey, make a menu out of this ID,”
or “Turn the contents of this <div> into a dialog box for me.” A bit more work is involved, but
not that much! You’ll see that when we get to examining JSNotes.js. But before we get there,
we have one or two stops to make along the way, so let’s pull the train out of this station and
move on.

Writing styles.css
The style sheet for JSNotes is really fairly vanilla. The highlights are the cssContentLeft,
cssContentRight, and cssOverlay classes. Nonetheless, I’ll briefly describe what each class is
for and point out any attributes of particular interest. So let’s start with the style sheet itself,
shown in Listing 9-1.

Zammetti-816-4C09.fm Page 313 Sunday, March 18, 2007 6:51 PM

314 C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K

Listing 9-1. The styles.css File

/* Style for the main DIV. */
.cssMain {
 position : absolute;
 border : 2px solid #000000;
 width : 500px;
 background-color : #ffffff;
}

/* Style for the content container DIV. */
.cssContent {
 background-color : #ffffff;
 width : 100%;
 height : 460px;
}

/* Style for the left-hand side content. */
.cssContentLeft {
 width : 50%;
 height : 100%;
 float : left;
 overflow : scroll;
}

/* Style for the right-hand side content. */
.cssContentRight {
 width : 50%;
 height : 100%;
 float : right;
 overflow : scroll;
}

/* Style for elements that have padding (overlay contents, etc). */
.cssPadded {
 padding : 6px;
}

Zammetti-816-4C09.fm Page 314 Sunday, March 18, 2007 6:51 PM

C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K 315

/* Style for the tables that contain overlay contents. */
.cssOverlayTable {
 width : 100%;
 height : 100%;
}

/* Style for the background of the hour slider. */
.cssSliderBGHH {
 position : relative;
 left : 0px;
 top : 0px;
 background : url(../img/horizBgHH.png) no-repeat;
 height : 26px;
 width : 160px;
 zindex : 5
}

/* Style for the background of the minutes slider. */
.cssSliderBGMM {
 position : relative;
 left : 0px;
 top : 0px;
 background : url(../img/horizBgMM.png) no-repeat;
 height : 26px;
 width : 196px;
 zindex : 5
}

/* Style for the sliders' handles. */
.cssSliderHandle {
 position : absolute;
 left : 0px;
 top : 8px;
 cursor : default;
 width : 18px;
 height : 18px;
}

/* Style for cells of the table containing the fields of the new note form. */
.cssTDNewNote {
 padding : 2px;
}

Zammetti-816-4C09.fm Page 315 Sunday, March 18, 2007 6:51 PM

316 C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K

/* Style for overlays. */
.cssOverlay {
 border : 2px solid #000000;
 position : relative;
 left : 0px;
 _left : -2px; /* IE */
 background-color : #f7f7ef;
 width : 100%;
 height : 460px;
}

/* Style for the elements where hour and minutes are displayed. */
.cssTimeSpan {
 width : 30px;
}

cssMain is the class applied to the <div> that surrounds all the contents on the page. It is
positioned absolutely so that it can be centered. Its width determines the width of the JSNotes
display, but note that its height is not set, as this will be determined by its content.

Speaking of its content, the cssContent class is applied to the <div> that encapsulates the
content below the menu bar, namely the tree view and note details. This is where the height is
determined. The height here, and the width in cssMain, are both specified so that JSNotes should
fit on a 640-by-480 screen, and will definitely fit on an 800-by-600 screen.

Following cssContent are the cssContentLeft and cssContentRight classes. These are the
two halves of the content area: cssContentLeft for the tree view and cssContentRight for the
note details. Each is specified to fill half of the horizontal area taken up by the <div> with the
cssContent style, and its entire height.

The float attributes of the cssContentLeft and cssContentRight classes allow you to specify
that an element should float to the left or right of its surrounding text. The float attribute was
initially meant to allow images to float to either side of a paragraph of text, but it isn’t limited to
that role. What’s interesting is how these two elements work when they are side by side. Any
element with a float value of left or right is treated as a block-level element, meaning its
display attribute will be ignored. You can also use this to have two paragraphs side by side on
a page, for example.

Perhaps most important for us here is the fact that an element following a floating element
will render in relation to the first floating element. This just means, as you can see in JSNotes,
that two elements with float:left and float:right correspondingly will be right next
to each other. The two floating elements are pushed left or right until they reach the border of
the containing element or margin of another block-level element (that is, each gets
pushed left or right until it meets the edges of the containing <div>). Note that I used a
to avoid the inherent line break with a <div>, which would break the layout. Note, too, that
<div> and elements must have a width set for them to render when the float attribute
is used, as do these.

Zammetti-816-4C09.fm Page 316 Sunday, March 18, 2007 6:51 PM

C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K 317

Moving on, cssPadded is a simple class applied to a <div> inside the overlays so that there
is a little bit of padding around the edges.

The cssOverlayTable class is applied to the table used to lay out the overlays. This is done
to ensure the browser honors the 100% height for the table we want, since some will not honor
the height attribute of the <table> tag.

The cssSliderBGMM and cssSliderBGHH classes define the “ticker markers” for the minute
and hour sliders, respectively, in the Add Note dialog box. You can see that the image itself is
loaded as the background image, so this style will be applied to the <div> elements where the
sliders will appear. They must be positioned relatively in order for YUI to work with them properly.
In this case, we want them to render where they naturally would anyway, hence the 0px values
for both left and top.

The cssSliderHandle is shared by both of the slider knobs, or handles, and must be posi-
tioned absolutely in order for YUI to work with them. The left attribute will be altered, but the
top will not, so it’s safe to set the top to 8px to offset it from the tick marks properly.

cssTDNewNote is the style class applied to the cells of the table used to lay out the Add Note
dialog box. Because of some mucking around YUI does with the markup, setting cellpadding
and/or cellspacing on the <table> tag gets ignored, but doing essentially the same thing through
CSS works, hence this class.

The cssOverlay class is the style applied to the overlay containers. One interesting point
here is the use of a browser-specific hack, which you’ll recall I said is something to avoid. But,
sometimes you just have to do it to get around some browser peculiarity, and such is the case
here. The left attribute with the value 0px will be used for all non-IE browsers, but for IE, the
value -2px in the second left attribute beginning with the underscore character will override
the previous value and be used. This is needed so that the overlay lines up properly on the
display and we don’t get a double-border glitch (remove that _left attribute and fire up IE to
see what happens).

cssTimeSpan, last but not least, is the style applied to the where the hour and minute
values are shown next to the corresponding slider. This needs to take up a known amount of
space, regardless of the current value, in order for everything to line up properly, and that’s the
sole purpose of this class.

With the CSS and markup in index.htm out of the way, let’s move on to what we’re all here
for: JavaScript!

Writing Note.js
The Note.js file contains the Note class, which is nothing more than a Value Object (VO), or
struct if you’re more familiar with C, which contains the data describing a note the user entered.
It just contains some private fields and getter/setter methods for each. Before we look at the
code, take a gander at the UML diagram for the class in Figure 9-5.

I’ve chosen not to list the entire class here because it is, by and large, boring! It is little more
than a series of getters and setters for the fields it contains. In fact, that’s precisely what it is.
And besides, in general, the comments themselves should tell you all you really need to know,
so if you glance at it quickly on your own, you’ll pretty well have the full picture in no time.

Zammetti-816-4C09.fm Page 317 Sunday, March 18, 2007 6:51 PM

318 C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K

Figure 9-5. UML diagram for the Notes class

The toString() method overrides the default toString() that we get from the base Object
class, and it outputs our note in a more meaningful way to aid in debugging.

Take note of the arrayIndex and treeNode fields and the comments accompanying them.
These two fields are used when the user clicks a note in the tree view, but until that point, their
values are meaningless. Once clicked, they are filled in and available for other actions that require
them, such as deletions.

Other than that, it’s an absolutely simple and straightforward piece of code. Now, if you
want to see something just a little bit juicier, it’s coming right up.

Writing JSNotes.js
JSNotes.js contains the JSNotes class, which is the heart and soul of the application. It’s where
all the functionality lives, and it’s a fairly sizable piece of code. But as you’ll see, a lot of it is
pretty simple, and much of it is arguably boilerplate; the actual functionality doesn’t require as
much as you might think.

Before we get to that though, let’s take a high-level look by examining the UML diagram in
Figure 9-6.

Zammetti-816-4C09.fm Page 318 Sunday, March 18, 2007 6:51 PM

C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K 319

Figure 9-6. UML diagram for the JSNotes class

Listing 9-2 is the entire code listing, which is fairly lengthy. It checks in at a hair under 600
lines, and while a lot of it is comments and whitespace, there’s plenty of meat on them bones!

Listing 9-2. The JSNotes Class

/**
 * The JSNotes class is the main class constituting the application.
 */
function JSNotes() {

 /**
 * Flag: Is the logging div currently visible?
 */
 var loggingVisible = false;

Zammetti-816-4C09.fm Page 319 Sunday, March 18, 2007 6:51 PM

320 C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K

 /**
 * Flag: Is an overlay or dialog currently visible?
 */
 var overlayOrDialogVisible = false;

 /**
 * Reference to the menubar object.
 */
 var oMenuBar = null;

 /**
 * Reference to the add notes dialog object.
 */
 var oAddNoteDialog = null;

 /**
 * Reference to the Export overlay object.
 */
 var oExportOverlay = null;

 /**
 * Reference to the About overlay object.
 */
 var oAboutOverlay = null;

 /**
 * Reference to the Using overlay object.
 */
 var oUsingOverlay = null;

 /**
 * Reference to the date calendar for adding a new note.
 */
 var oAddNoteCalendar = null;

 /**
 * Reference to the hour slider for adding a new note.
 */
 var oAddNoteHHSlider = null;

Zammetti-816-4C09.fm Page 320 Sunday, March 18, 2007 6:51 PM

C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K 321

 /**
 * Reference to the minutes slider for adding a new note.
 */
 var oAddNoteMMSlider = null;

 /**
 * Reference to the treeview for listing categories/notes.
 */
 var oTreeview = null;

 /**
 * Reference to the treeview Personal Notes category node.
 */
 var oTreeviewPersonal = null;

 /**
 * Reference to the treeview Business Notes category node.
 */
 var oTreeviewBusiness = null;

 /**
 * The collection of Personal notes.
 */
 var personalNotes = new Array();

 /**
 * The collection of Business notes.
 */
 var businessNotes = new Array();

 /**
 * This is a reference to the Note object currently being viewed.
 */
 var currentNote = null;

 /**
 * Call on page load to initialize the application.
 */
 this.init = function() {

Zammetti-816-4C09.fm Page 321 Sunday, March 18, 2007 6:51 PM

322 C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K

 // Start logging, show logging div if flag set to do so initially.
 new YAHOO.widget.LogReader(YAHOO.util.Dom.get("divLog"));
 YAHOO.log("init()");
 if (loggingVisible) {
 YAHOO.util.Dom.get("divLog").style.display = "block";
 }

 // Start by centering the main DIV.
 jscript.dom.layerCenterH(YAHOO.util.Dom.get("divMain"));
 jscript.dom.layerCenterV(YAHOO.util.Dom.get("divMain"));

 // Create menubar.
 oMenuBar = new YAHOO.widget.MenuBar("divMainMenu");
 oMenuBar.render();

 // Create About overlay.
 oAboutOverlay = new YAHOO.widget.Overlay("aboutOverlay",
 {
 context : ["divContent", "tl", "tl"],
 width : "500px", height : "456px", visible : false
 }
);
 oAboutOverlay.setBody(YAHOO.util.Dom.get("divAbout"));
 oAboutOverlay.render(document.body);

 // Create Export overlay.
 oExportOverlay = new YAHOO.widget.Overlay("exportOverlay",
 {
 context : ["divContent", "tl", "tl"],
 width : "500px", height : "456px", visible : false
 }
);
 oExportOverlay.setBody(YAHOO.util.Dom.get("divExport"));
 oExportOverlay.render(document.body);

 // Create Using overlay.
 oUsingOverlay = new YAHOO.widget.Overlay("usingOverlay",
 {
 context : ["divContent", "tl", "tl"],
 width : "500px", height : "456px", visible : false
 }
);
 oUsingOverlay.setBody(YAHOO.util.Dom.get("divUsing"));
 oUsingOverlay.render(document.body);

Zammetti-816-4C09.fm Page 322 Sunday, March 18, 2007 6:51 PM

C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K 323

 // Create Add Note dialog.
 oAddNoteDialog = new YAHOO.widget.Dialog("divAddNote",
 {
 close : false,
 width : "320px",
 height : "460px",
 visible : false,
 constraintoviewport : true,
 buttons : [
 {
 text : "Submit",
 handler : jsNotes.handleAddNoteSubmit,
 isDefault : true
 },
 { text : "Cancel", handler : jsNotes.hideAddNote }
]
 }
);
 oAddNoteDialog.render(document.body);

 // Create Add Note calendar.
 oAddNoteCalendar = new YAHOO.widget.Calendar("cal1", "addNoteCalendar");
 oAddNoteCalendar.render();

 // Create Add Note hour slider.
 var bgHH = "divHHSliderBG";
 var thumbHH = "divHHSliderThumb";
 oAddNoteHHSlider = YAHOO.widget.Slider.getHorizSlider(
 bgHH, thumbHH, 0, 150, 13);
 oAddNoteHHSlider.subscribe("change",
 function() {
 YAHOO.util.Dom.get("divHHValue").innerHTML =
 Math.round(oAddNoteHHSlider.getValue() / 13) + 1;
 }
);

 // Create Add Note minutes slider.
 var bgMM = "divMMSliderBG";
 var thumbMM = "divMMSliderThumb";
 oAddNoteMMSlider = YAHOO.widget.Slider.getHorizSlider(
 bgMM, thumbMM, 0, 178, 3);
 oAddNoteMMSlider.subscribe("change",
 function() {
 var minute = Math.round(oAddNoteMMSlider.getValue() / 3);
 var s = "";

Zammetti-816-4C09.fm Page 323 Sunday, March 18, 2007 6:51 PM

324 C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K

 if (minute < 10) {
 s += "0";
 }
 s += minute;
 YAHOO.util.Dom.get("divMMValue").innerHTML = s;
 }
);

 // Create treeview for category/note listing.
 oTreeview = new YAHOO.widget.TreeView("divTreeview");
 var oRoot = oTreeview.getRoot();
 oTreeviewPersonal = new YAHOO.widget.TextNode("Personal",
 oRoot, false);
 oTreeviewBusiness = new YAHOO.widget.TextNode("Business",
 oRoot, false);
 oTreeview.subscribe("labelClick",
 function(node) {
 var noteSubject = node.data.subject;
 // Only do something when a note is clicked, not a category (only a
 // note would have a subject attribute).
 if (noteSubject) {
 var noteCategory = node.parent.data;
 currentNote = jsNotes.getNote(noteCategory, noteSubject);
 var noteDate = currentNote.getNoteDate();
 YAHOO.util.Dom.get("currentNoteDate").innerHTML =
 noteDate.getMonth() + "/" +
 noteDate.getDate() + "/" +
 noteDate.getFullYear();
 YAHOO.util.Dom.get("currentNoteTime").innerHTML =
 currentNote.getNoteTime();
 YAHOO.util.Dom.get("currentNoteSubject").innerHTML =
 currentNote.getNoteSubject();
 YAHOO.util.Dom.get("currentNoteText").innerHTML =
 currentNote.getNoteText();
 }
 }
);
 oTreeview.draw();

 YAHOO.log("init() done");

 } // End init().

Zammetti-816-4C09.fm Page 324 Sunday, March 18, 2007 6:51 PM

C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K 325

 /**
 * Returns a Note object based on requested category and subject.
 *
 * @param inCategory The category the note belongs to.
 * @param inSubject The subject of the note to retrieve.
 */
 this.getNote = function(inCategory, inSubject) {

 var note = null;

 // Determine which array to search based on current category.
 var arrayToSearch = null;
 if (inCategory == "Personal") {
 arrayToSearch = personalNotes;
 } else {
 arrayToSearch = businessNotes;
 }

 // Search the array and find the match, if any, and return it.
 for (var i = 0; i < arrayToSearch.length; i++) {
 var n = arrayToSearch[i];
 if (n.getNoteSubject() == inSubject) {
 note = n;
 note.setArrayIndex(i);
 break;
 }
 }

 // Now find the note in the treeview for the note.
 note.setTreeNode(oTreeview.getNodeByProperty("subject",
 note.getNoteSubject()));

 // Not found.
 return note;

 } // End getNote();

 /**
 * Show the dialog for adding a note.
 */
 this.showAddNote = function() {

 YAHOO.log("showAddNote()");

Zammetti-816-4C09.fm Page 325 Sunday, March 18, 2007 6:51 PM

326 C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K

 if (overlayOrDialogVisible) { return; }
 oMenuBar.clearActiveItem();

 overlayOrDialogVisible = true;

 // Reset all form fields.
 var now = new Date();
 var hours = now.getHours();
 var minutes = now.getMinutes();
 YAHOO.util.Dom.get("frmNewNote").reset();
 oAddNoteCalendar.clear();
 oAddNoteCalendar.select(now);
 oAddNoteCalendar.render();
 oAddNoteHHSlider.setValue((hours * 13) - 13, true, true);
 oAddNoteMMSlider.setValue(minutes * 3, true, true);
 YAHOO.util.Dom.get("divHHValue").innerHTML = hours;
 if (minutes < 10) {
 minutes = "0" + minutes;
 }
 YAHOO.util.Dom.get("divMMValue").innerHTML = minutes;
 YAHOO.util.Dom.get("newNotePM").checked = true;

 // Show the dialog amd center it.
 oAddNoteDialog.center();
 oAddNoteDialog.show();

 YAHOO.log("showAddNote() done");

 } // End showAddNote().

 /**
 * Hide the dialog for adding a note.
 */
 this.hideAddNote = function() {

 YAHOO.log("hideAddNote()");

 oAddNoteDialog.hide();
 overlayOrDialogVisible = false;

 YAHOO.log("hideAddNote() done");

 } // End hideAddNote().

Zammetti-816-4C09.fm Page 326 Sunday, March 18, 2007 6:51 PM

C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K 327

 /**
 * Handle submit of the add new note form.
 */
 this.handleAddNoteSubmit = function() {

 YAHOO.log("handleAddNoteSubmit()");

 // Get entered values.
 var noteCategory = YAHOO.util.Dom.get("newNoteCategorySelect").value;
 var noteDate = oAddNoteCalendar.getSelectedDates()[0];
 var noteHour = YAHOO.util.Dom.get("divHHValue").innerHTML;
 var noteMinute = YAHOO.util.Dom.get("divMMValue").innerHTML;
 var noteMeridian = null;
 if (YAHOO.util.Dom.get("newNoteAM").checked) {
 noteMeridian = "am";
 } else {
 noteMeridian = "pm";
 }
 var noteSubject = YAHOO.util.Dom.get("newNoteSubject").value;
 var noteText = YAHOO.util.Dom.get("newNoteText").value;

 // Now some simple validations.
 if (noteSubject == "") {
 alert("Please enter a subject for this note");
 YAHOO.util.Dom.get("newNoteSubject").focus();
 return false;
 }
 if (noteText == "") {
 alert("Please enter some text for this note");
 YAHOO.util.Dom.get("newNoteText").focus();
 return false;
 }

 // Instantiate a Note object and populate it.
 var note = new Note();
 note.setNoteCategory(noteCategory);
 note.setNoteDate(noteDate);
 note.setNoteTime(noteHour + ":" + noteMinute + noteMeridian);
 note.setNoteSubject(noteSubject);
 note.setNoteText(noteText);

 // Add the note to the appropriate treeview category and storage array.
 if (noteCategory == "Personal") {
 personalNotes.push(note);
 new YAHOO.widget.TextNode({label:noteSubject,subject:noteSubject},
 oTreeviewPersonal, false);

Zammetti-816-4C09.fm Page 327 Sunday, March 18, 2007 6:51 PM

328 C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K

 } else {
 businessNotes.push(note);
 new YAHOO.widget.TextNode({label:noteSubject,subject:noteSubject},
 oTreeviewBusiness, false);
 }

 // Redraw treeview so it'll show up.
 oTreeview.draw();

 // Hide dialog and we're done!
 jsNotes.hideAddNote();
 YAHOO.log("handleAddNoteSubmit() done");
 return true;

 } // End handleAddNoteSubmit().

 /**
 * Delete the note currently being viewed.
 */
 this.deleteNote = function() {

 YAHOO.log("deleteNote()");

 if (overlayOrDialogVisible) { return; }
 oMenuBar.clearActiveItem();

 if (currentNote &&
 confirm("Are you sure you want to delete the current note?")) {
 // Delete from storage array.
 if (currentNote.getNoteCategory() == "Personal") {
 personalNotes.splice(currentNote.getArrayIndex(), 1);
 } else {
 businessNotes.splice(currentNote.getArrayIndex(), 1);
 }
 // Delete from treeview and redraw.
 oTreeview.removeNode(currentNote.getTreeNode());
 oTreeview.draw();
 // Clear display fields.
 YAHOO.util.Dom.get("currentNoteDate").innerHTML = "";
 YAHOO.util.Dom.get("currentNoteTime").innerHTML = "";
 YAHOO.util.Dom.get("currentNoteSubject").innerHTML = "";
 YAHOO.util.Dom.get("currentNoteText").innerHTML = "";
 // Finally, no more current note.
 currentNote = null;
 }

Zammetti-816-4C09.fm Page 328 Sunday, March 18, 2007 6:51 PM

C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K 329

 YAHOO.log("deleteNote() done");

 } // End deleteNote().

 /**
 * Show the overlay for exporting the current note.
 */
 this.showExportNote = function() {

 YAHOO.log("showExportNote()");

 if (overlayOrDialogVisible) { return; }
 oMenuBar.clearActiveItem();

 if (currentNote) {
 var s = "";
 var noteDate = currentNote.getNoteDate();
 s += "Category: " + currentNote.getNoteCategory() + "\n";
 s += "Date: " + noteDate.getMonth() + "/" +
 noteDate.getDate() + "/" +
 noteDate.getFullYear() + "\n";
 s += "Time: " + currentNote.getNoteTime() + "\n";
 s += "Subject: " + currentNote.getNoteSubject() + "\n";
 s += "Note: " + currentNote.getNoteText();
 YAHOO.util.Dom.get("taExport").value = s;
 YAHOO.util.Dom.get("taExport").select();
 overlayOrDialogVisible = true;
 oExportOverlay.show();
 }

 YAHOO.log("showExportNote() done");

 } // End showExportNote().

 /**
 * Hide the Export Note overlay.
 */
 this.hideExportNote = function() {

 YAHOO.log("hideExportNote()");
 oMenuBar.clearActiveItem();

 oExportOverlay.hide();
 overlayOrDialogVisible = false;

Zammetti-816-4C09.fm Page 329 Sunday, March 18, 2007 6:51 PM

330 C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K

 YAHOO.log("hideExportNote() done");

 } // End hideExportNote().

 /**
 * Exit the application
 */
 this.exit = function() {

 YAHOO.log("exit()");
 if (overlayOrDialogVisible) { return; }

 if (confirm(
 "All notes will be lost! Are you sure you want to exit?")) {
 window.close();
 }

 } // End exit().

 /**
 * Toggle the logging div on and off.
 */
 this.toggleLogging = function() {

 YAHOO.log("toggleLogging()");
 if (overlayOrDialogVisible) { return; }

 oMenuBar.clearActiveItem();
 if (loggingVisible) {
 YAHOO.util.Dom.get("divLog").style.display = "none";
 loggingVisible = false;
 } else {
 YAHOO.util.Dom.get("divLog").style.display = "block";
 loggingVisible = true;
 }

 YAHOO.log("toggleLogging() done");

 } // End toggleLogging().

 /**
 * Show the Using (help) overlay.
 */
 this.showUsing = function() {

Zammetti-816-4C09.fm Page 330 Sunday, March 18, 2007 6:51 PM

C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K 331

 YAHOO.log("showUsing()");
 if (overlayOrDialogVisible) { return; }
 oMenuBar.clearActiveItem();

 overlayOrDialogVisible = true;
 oUsingOverlay.show();

 YAHOO.log("showUsing() done");

 } // End showUsing().

 /**
 * Hide the Using (help) overlay.
 */
 this.hideUsing = function() {

 YAHOO.log("showUsing()");
 oMenuBar.clearActiveItem();

 oUsingOverlay.hide();
 overlayOrDialogVisible = false;

 YAHOO.log("showUsing() done");

 } // End hideUsing().

 /**
 * Show the About overlay.
 */
 this.showAbout = function() {

 YAHOO.log("showAbout()");
 if (overlayOrDialogVisible) { return; }

 oMenuBar.clearActiveItem();
 overlayOrDialogVisible = true;
 oAboutOverlay.show();

 YAHOO.log("showAbout() done");

 } // End showAbout().

Zammetti-816-4C09.fm Page 331 Sunday, March 18, 2007 6:51 PM

332 C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K

 /**
 * Hide the About overlay.
 */
 this.hideAbout = function() {

 YAHOO.log("hideAbout()");

 oAboutOverlay.hide();
 overlayOrDialogVisible = false;

 YAHOO.log("hideAbout() done");

 } // End hideAbout().

} // End JSNotes class.

As you can see, we have a number of data members and a batch of methods. Let’s look at
the data fields first:

• loggingVisible: A Boolean that determines whether the logging console is currently
visible. It starts out invisible, until and unless the user turns it on via the Toggle Logging
option under the Help menu.

• overlayOrDialogVisible: When any of the overlays or the Add Note dialog box are visible,
the menus should not do anything. This flag determines when they shouldn’t do anything
(when this field is true).

• oMenuBar: A reference to the menu bar object as created by YUI. Later on, when a menu
item is clicked, we need to clear the selected item, and to do that, we need a reference to
the menu bar. It’s better to cache the reference than incur the overhead of getting it
each time.

• oAddNoteDialog: A reference to the Add Note dialog box as created by YUI. We’ll again
need this in various places, so keeping the reference is a good idea. In fact, the next few
fields all serve the same purpose, which is to avoid object lookup overhead, so I’ll skip
repeating that fact from here on out!

• oExportOverlay: A reference to the Export Note overlay as created by YUI. I’m also going
to stop saying “ . . . as created by YUI” from now on, if you don’t mind! It, too, applies to
the next few items.

• oAbourOverlay: A reference to the About JSNotes overlay (are you starting to sense a
pattern here?).

• oUsingOverlay: Yep, you guessed it—a reference to the Using JSNotes overlay.

• oAddNoteCalendar: Ah, something slightly different. Still a reference, but this time to the
calendar in the Add Note dialog box.

Zammetti-816-4C09.fm Page 332 Sunday, March 18, 2007 6:51 PM

C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K 333

• oAddNoteMMSlider: Reference. Minutes slider. Check.

• oTreeView: Oh tree view, oh tree view, where for art thou, tree view? Sorry, couldn’t resist.
Yes, another object reference, this time to the tree view listing the notes on the left side
of the display.

• oTreeviewPersonal: A reference to the personal notes node object in the tree view.

• oTreeviewBusiness: I’ll give you just one guess what this is! Now we’re finished with the
object references.

• personalNotes: An array containing all the Note objects categorized as personal notes.

• businessNotes: An array of all the Note objects in the business category.

• currentNote: Last but not least, a reference to the Note object the user is currently viewing.

OK, wise guy mode disengaged! Now that we’ve gotten through all the fields, let’s see how
they are used in the code, starting with the init() method.

The init() Method

The init() method is easily the lengthiest (about one-quarter of the total code size) and the
most complex method in JSNotes. Even so, it’s not all that monstrous! It is called on page load
of index.htm, as you saw earlier. Its primary task is to construct the UI using YUI components.

Creating the Logging Console

To begin with, init() creates the logging console with this code:

 // Start logging, show logging div if flag set to do so initially.
 new YAHOO.widget.LogReader(YAHOO.util.Dom.get("divLog"));
 YAHOO.log("init()");
 if (loggingVisible) {
 YAHOO.util.Dom.get("divLog").style.display = "block";
 }

All we need to do is instantiate YAHOO.widget.LogReader, passing it a reference to the DOM
object that will house it. We get that reference using YAHOO.util.Dom.get(), which is basically
a wrapper around document.getElementById(). We then quickly write out a message to the log
with the line YAHOO.log("init()");, just to show where we are.

Recall from our look at index.htm that the logging <div>, divLog, is hidden to begin with.
That’s the reason for the if check that follows. If you were to change the default value of
loggingVisible to true, then the console would be shown at this point.

When the logging console is visible, the display looks like what you see in Figure 9-7.
After that, the main <div> that houses what constitutes the display of JSNotes needs to be

centered. To do that, we use two functions from the DOM package described in Chapter 3:

 jscript.dom.layerCenterH(YAHOO.util.Dom.get("divMain"));
 jscript.dom.layerCenterV(YAHOO.util.Dom.get("divMain"));

Zammetti-816-4C09.fm Page 333 Sunday, March 18, 2007 6:51 PM

334 C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K

Figure 9-7. The logging console

Creating the Menu Bar

The next task is the creation of the menu bar, and it truly couldn’t be easier:

 oMenuBar = new YAHOO.widget.MenuBar("divMainMenu");
 oMenuBar.render();

You already saw the markup contained in divMainMenu. YUI uses that to generate the menu
you see on the screen. However, the first line simply creates the DOM snippet representing the
menu in memory. To actually put it on the screen requires a call to its render() method, as you
see in the second line. When both lines complete, the menu is visible and ready to be used.

Creating the Overlays

After that comes the creation of the three overlays: Export Note, Using JSNotes, and About
JSNotes. They are virtually identical, so we’ll pick just one of them, the Export Note overlay:

 oExportOverlay = new YAHOO.widget.Overlay("exportOverlay",
 {
 context : ["divContent", "tl", "tl"],
 width : "500px", height : "456px", visible : false
 }
);
 oExportOverlay.setBody(YAHOO.util.Dom.get("divExport"));
 oExportOverlay.render(document.body);

The YAHOO.widget.overlay is the class we need to instantiate. The first argument to the
constructor is the name the overlay will be known by—exportOverlay in this case. The next
argument is an object containing a series of options. The first option you see, context, is used

Zammetti-816-4C09.fm Page 334 Sunday, March 18, 2007 6:51 PM

C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K 335

to align the overlay to some other page element. In this case, we are aligning it to the
divContent <div>, so that it will appear where that <div> does, directly below the menu. We also
specify that the top-left corner of the overlay should align with the top-left corner of that <div>.
You can align it other ways, such as the top-right corner of the overlay to the bottom-left corner
of the <div> by passing context : ["divContent", "tr", "bl"].

The width and height options should be self-explanatory. They are literally the width and
height of the overlay. The visible option too is self-evident. When false, the overlay is initially
not shown; when true, it is shown.

The next step is to fill in the content of the overlay. We do that by calling setBody() and
handing it a reference to some existing element—in this case, the divExport <div> you saw in
index.htm. Lastly, as with the menu, we need to render the overlay. We pass the render() method
the object under which the overlay will be nested in the DOM, which is simply the document’s
body in this case.

The Export Note overlay is shown in Figure 9-8. The other two overlays look similar (see
Figure 9-3 for a screenshot of the Using JSNotes overlay).

Figure 9-8. Exporting a note from JSNotes

Zammetti-816-4C09.fm Page 335 Sunday, March 18, 2007 6:51 PM

336 C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K

Creating the Add Note Dialog Box

Next up is the creation of the Add Note dialog box. This is different from an overlay, but not a
whole lot. A dialog box is generally meant to house a form to be filled out and submitted to the
server. In our case, however, we won’t be submitting it, but I’m getting ahead of myself. Let’s
see how the dialog box is created first:

 oAddNoteDialog = new YAHOO.widget.Dialog("divAddNote",
 {
 close : false,
 width : "320px",
 height : "460px",
 visible : false,
 constraintoviewport : true,
 buttons : [
 {
 text : "Submit",
 handler : jsNotes.handleAddNoteSubmit,
 isDefault : true
 },
 { text : "Cancel", handler : jsNotes.hideAddNote }
]
 }
);
 oAddNoteDialog.render(document.body);

This time, YAHOO.widget.Dialog is the class we need, and the first argument is the element
containing the content for the dialog box—the divAddNote <div> here. The second argument
is, as with the overlay, an object containing a series of options. Let’s examine them one by one:

• close: This option indicates whether we want a close button, like the X button on a
typical window. Here, we don’t want that, so we set it to false.

• width, height, and visible: These options are exactly what you think they are, just as
with the overlay widget.

• constraintoviewport: This option indicates whether the dialog box can be dragged off
the page. We don’t want that to be possible here, because we want it to stop at the edges,
so true is the setting to use.

• button: This option is actually an array where each element describes a single button.
Each element of the array is an object containing the options for each button.

• text: This option is what is displayed on the button—Submit and Cancel in this case.

• handler: This option defines which JavaScript function will be called when the button is
clicked. Here, these are the handlerAddNoteSubmit() and hideAddNote() methods of the
JSNotes class, respectively, pointed to by the reference jsNotes.

• isDefault: This option, on the Submit button, defines whether pressing Enter will acti-
vate that button, which is the case here.

Zammetti-816-4C09.fm Page 336 Sunday, March 18, 2007 6:51 PM

C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K 337

Just as with the overlay widget, we need to tell the dialog box which element to render as a
child of, and once again, the body of the document is the answer.

Next, we create the widgets that are in the Add Note dialog box. Note that there is no problem
nesting widgets like this—YUI can handle it!

To begin with, we need to create the calendar used to select the note date, and it is accom-
plished via the following code:

 oAddNoteCalendar = new YAHOO.widget.Calendar("cal1", "addNoteCalendar");
 oAddNoteCalendar.render();

The first argument is the name the calendar will go by, and the second is the element that
will be the parent of the calendar when it is rendered by the second line of code.

After the calendar, we need to render the two sliders, starting with the hour slider:

 var bgHH = "divHHSliderBG";
 var thumbHH = "divHHSliderThumb";
 oAddNoteHHSlider = YAHOO.widget.Slider.getHorizSlider(
 bgHH, thumbHH, 0, 150, 13);
 oAddNoteHHSlider.subscribe("change",
 function() {
 YAHOO.util.Dom.get("divHHValue").innerHTML =
 Math.round(oAddNoteHHSlider.getValue() / 13) + 1;
 }
);
 YAHOO.util.Event.on(bgHH, "keydown",
 function(e) {
 console.log("keydown (HH)");
 }
);
 YAHOO.util.Event.on(bgHH, "keypress", YAHOO.util.Event.preventDefault);

Well, there certainly is a little more going on here! First, we set up some variables we’ll
need. We start with bgHH, which names the <div> containing the background image. Next is the
name of the element containing the slider handle, divHHSliderThumb, stored in the variable
thumbHH.

Once that’s done, we instantiate a YAHOO.widget.Slider object, but we do so using the
getHorizSlider() method, which takes as arguments the names of the background element
and handle element, as well as three numbers. The first number is how many pixels to the left
the handle can be moved, the second is how many to the right (which basically defines a maximum
and minimum number of pixels the handle can move), and the third is the number of pixels to
move for each tick mark.

It’s a little tricky to set up the slider because you need to create a background image suit-
able for the range you want to allow. For instance, for the hours, we have 12 tick marks, one for
each hour. The tick marks are 1 pixel wide, and separated by 12 pixels, so each tick movement
is 13 pixels (the third number in the getHorizSlider() method). Multiplying 12 by 13 gives us
156, but we actually use 150 as the second number in getHorizSlider(). That’s because the tick
marks are essentially zero-based in terms of their positions; that is, the first tick mark repre-
senting hour 1 is at pixel location 0 (well, the tick mark is actually a few pixels from the edge, but
for the handle to line up, the handle must be at pixel position 0). Therefore, we never want

Zammetti-816-4C09.fm Page 337 Sunday, March 18, 2007 6:51 PM

338 C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K

the handle to make it to that 156 pixels position. So, we use the value of 150, which essentially
constrains it to the last tick mark.

Perhaps the best way to understand this is to take the background image and the handle
image and bring them into your favorite paint program (Photoshop, Paint Shop Pro, GIMP, or
whatever you prefer). Enlarge the canvas of the background image so you have some room to
play, then copy the handle image into it as a floating layer so you can move it around. Line it up
with the first tick mark and note the X location. It should be zero. Now move it to the next tick
mark. Note that it moved 13 pixels. Continue on until the last tick mark, where you should see
the location is less than 150. If you were to move it to the next increment of 13, 156, it would be
beyond the background tick marks, proving you need a value less than that to constrain it.

As soon as your brain stops hurting (and mine, too!), we can look at how we hook up some
events to the slider. First, we want to update the hour value when the slider changes (is dragged).
We do this by calling the subscribe() method on the slider. The first method is the event we
want to subscribe to—change in this case. The second argument is the function to execute
when the event fires, and here we’ve used an in-line function. When the value changes, we first
need to get the new value of the slider. The value is basically the pixel location, which isn’t by
itself of any real use to us. So, we first need to divide that by 13, which gives us a value from 0 to 11.
So, add one, and you now have the hour value corresponding to the pixel location. We get a
reference to the <div> where the hour number is displayed, and we set its innerHTML attribute
to that calculated value. The effect is the hour number changing as we drag the slider—sweet!

Creating the minutes slider is the same, except that since there are more tick marks, the
upper constraint value is different—178 in this case. And the tick marks are closer together, so
the increment value now is 3. Also, some minor differences are present in the handler for the
change event:

 oAddNoteMMSlider.subscribe("change",
 function() {
 var minute = Math.round(oAddNoteMMSlider.getValue() / 3);
 var s = "";
 if (minute < 10) {
 s += "0";
 }
 s += minute;
 YAHOO.util.Dom.get("divMMValue").innerHTML = s;
 }
);

This is very similar to the hour slider, but here the divisor in the calculation is 3, since that’s
the increment value. Also, there’s no need to add one at the end, since the range here is zero-
based (0 to 59 for minutes). Lastly, when the value is less than 10—that is, only a single digit—
it should be displayed with a leading zero, so we see some logic to deal with that. Other than
those differences, the minutes slider is more or less the same as the hour slider conceptually.

Creating the Tree View

The last piece of the init() method is the creation of the tree view that will list the notes the
user creates. The code that accomplishes this is as follows:

Zammetti-816-4C09.fm Page 338 Sunday, March 18, 2007 6:51 PM

C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K 339

 oTreeview = new YAHOO.widget.TreeView("divTreeview");
 var oRoot = oTreeview.getRoot();
 oTreeviewPersonal = new YAHOO.widget.TextNode("Personal",
 oRoot, false);
 oTreeviewBusiness = new YAHOO.widget.TextNode("Business",
 oRoot, false);
 oTreeview.subscribe("labelClick",
 function(node) {
 var noteSubject = node.data.subject;
 // Only do something when a note is clicked, not a category (only a
 // note would have a subject attribute).
 if (noteSubject) {
 var noteCategory = node.parent.data;
 currentNote = jsNotes.getNote(noteCategory, noteSubject);
 var noteDate = currentNote.getNoteDate();
 YAHOO.util.Dom.get("currentNoteDate").innerHTML =
 noteDate.getMonth() + "/" +
 noteDate.getDate() + "/" +
 noteDate.getFullYear();
 YAHOO.util.Dom.get("currentNoteTime").innerHTML =
 currentNote.getNoteTime();
 YAHOO.util.Dom.get("currentNoteSubject").innerHTML =
 currentNote.getNoteSubject();
 YAHOO.util.Dom.get("currentNoteText").innerHTML =
 currentNote.getNoteText();
 }
 }
);
 oTreeview.draw();

Well, there’s quite a bit here, so let’s break it down, shall we?
First, we have a typical widget instantiation line. We feed it the <div> that is to host the tree

view. After that, we get a reference to the root node of the tree, which is created automatically
when the widget is instantiated. Once we have that, we append two nodes to it: one for personal
notes and one for business notes. After that, we have another event subscription line, requesting
that we be notified when any label is clicked, which is the same as saying when any node is clicked.

YUI will take care of expanding and collapsing any node that has children, which will be
only the two nodes we just created. However, we need to take care of what happens beyond
that. In this case, that means showing the detail of a note that is clicked.

So, when we request the event subscription, we pass it a reference to a function to act as
the callback for the event—in this case, an in-line anonymous function. The first thing done in
this callback is to get the subject of the node. This will become clearer when you see how notes
are added to the tree. For now, just be aware that when you add a node to the tree, you can
attach to it arbitrary pieces of information, in addition to its text label. Here, we will be adding
a subject attribute to it.

If you’ve played with the application, you will probably realize that the label of the note is
the subject, so you may be asking, “Isn’t it redundant to add the subject as well?” The answer is
no, and the reason is the next line of code. You see, when any node is clicked, including our two

Zammetti-816-4C09.fm Page 339 Sunday, March 18, 2007 6:51 PM

340 C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K

category nodes, this callback will be called. However, we need to do something only if the clicked
node was not one of the category nodes. How do we determine that? Well, we could examine
the label directly, but if we ever changed or added to the categories, that would mean one more
thing we would need to change. Instead, for nodes representing actual notes only, the subject
attribute is attached. Therefore, we can simply check if that attribute is defined for the clicked
node. If it isn’t, it was one of the category nodes and the callback should do nothing.

Otherwise, we find ourselves inside the if block. In that situation, we need to get the cate-
gory of the note. To do this, we use the node.parent reference, node being a reference to the
clicked node. Through that, we can get the label of the node, which is the data attribute by default.

Once we have the category and the subject, we can call the getNote() function, which you’ll
see in a bit. This will return a reference to the Note object for the clicked note. From there, it’s a
simple matter of populating the four data display elements on the page from the fields in the
Note object. We again use the YAHOO.util.Dom.get() function to get references to those fields.
The date is the only interesting field here. We have a JavaScript Date object, but we want to
display the note’s date in MM/DD/YYYY format, so we need to get the individual components
of the date and construct the string ourselves.

Whew, that was a fair amount of code! The rest of this class will seem pretty paltry by
comparison.

The getNote() Method

Next is the getNote() that I just mentioned:

 this.getNote = function(inCategory, inSubject) {

 var note = null;

 // Determine which array to search based on current category.
 var arrayToSearch = null;
 if (inCategory == "Personal") {
 arrayToSearch = personalNotes;
 } else {
 arrayToSearch = businessNotes;
 }

 // Search the array and find the match, if any, and return it.
 for (var i = 0; i < arrayToSearch.length; i++) {
 var n = arrayToSearch[i];
 if (n.getNoteSubject() == inSubject) {
 note = n;
 note.setArrayIndex(i);
 break;
 }
 }

Zammetti-816-4C09.fm Page 340 Sunday, March 18, 2007 6:51 PM

C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K 341

 // Now find the note in the treeview for the note.
 note.setTreeNode(oTreeview.getNodeByProperty("subject",
 note.getNoteSubject()));

 // Not found.
 return note;

 } // End getNote();

First, we need to determine which array we’re searching, businessNotes or personalNotes,
based on the category passed in. After that, it’s a simple matter of checking each Note object in
the array and seeing if its subject matches the subject passed in.

One last item of work remains, and that’s to get a reference to the node in the tree view
corresponding to the note, and set that reference on the Note object. (Remember the comments
about the treeNode field? If not, go back and look, because they are now very relevant.) The tree
view widget provides a couple of different ways to get a reference to a node, one of which is the
getNodeByProperty() method. Recall that I mentioned that when a note is added, we add a
custom property named subject to it. Well, that’s exactly the property we specify to search
here! After that, the reference to the note is returned, or null is returned if no match was found,
and that’s that.

The showAddNote() Method

The next method to check out is what is called when the user clicks the Add Note menu item,
and it is responsible for showing the dialog box and setting up for user data entry:

 this.showAddNote = function() {

 YAHOO.log("showAddNote()");

 if (overlayOrDialogVisible) { return; }
 oMenuBar.clearActiveItem();

 overlayOrDialogVisible = true;

 // Reset all form fields.
 var now = new Date();
 var hours = now.getHours();
 var minutes = now.getMinutes();
 YAHOO.util.Dom.get("frmNewNote").reset();
 oAddNoteCalendar.clear();
 oAddNoteCalendar.select(now);
 oAddNoteCalendar.render();
 oAddNoteHHSlider.setValue((hours * 13) - 13, true, true);
 oAddNoteMMSlider.setValue(minutes * 3, true, true);
 YAHOO.util.Dom.get("divHHValue").innerHTML = hours;

Zammetti-816-4C09.fm Page 341 Sunday, March 18, 2007 6:51 PM

342 C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K

 if (minutes < 10) {
 minutes = "0" + minutes;
 }
 YAHOO.util.Dom.get("divMMValue").innerHTML = minutes;
 YAHOO.util.Dom.get("newNotePM").checked = true;

 // Show the dialog and center it.
 oAddNoteDialog.center();
 oAddNoteDialog.show();

 YAHOO.log("showAddNote() done");

 } // End showAddNote().

As you can see, there’s not a whole lot to it. Note the YAHOO.log() call as the first statement.
This is the way you output a log message to the logging console. You’ll see this in most of the
methods in this class, so I won’t mention it again.

You’ll also see the next two statements in most methods. Recall that I previously mentioned
that when a dialog box or overlay is showing, the menu shouldn’t do anything. This is accom-
plished by a check of the overlayOrDialogVisible variable. When it’s true, we simply return
immediately. However, if it’s not true, the first thing we need to do is dismiss the submenu,
which is accomplished by a call to the clearActiveItem() method of the menu bar widget.
These three lines of code won’t be mentioned again, so don’t be surprised when they pop up
all over the place!

Once that’s done, the overlayOrDialogVisible variable is immediately set so that the menu
will not do anything until further notice. After that, it’s time to clear the form fields in the Add
Note dialog box. Before even that though, we get a reference to the current time, since we’ll
need that later. To begin the actual clearing, we start with a call to the reset() method of the
form, which takes care of the category, subject, and note text fields.

Next, we deal with the calendar, first by clearing the current selection via the call to clear() on
it, and then by calling select(), passing it the Date object we instantiated earlier, and then
calling render() on it. This has the effect of setting the calendar to the current month and year
and selecting the current date, which is the reasonable default value.

Then we handle the hour and minutes sliders. To do this, we call the setValue() method
on them. Recall that the values of the sliders are actually pixel values. To translate the current
time to pixel values, we need to multiple the hours by 13 (recall that’s the pixel increment per
tick mark for the hours) and 3 for the minutes (the tick mark increment for the minutes). We
also set the textual representation of the hour and minutes by updating the innerHTML of the
two <div> elements, making sure to append a leading zero to minute values less than 10.

Finally, we have only to center the dialog box by calling its center() method, and showing
it via the call to its show() method. And now we have a pristine dialog box, ready for the user to
create a new note! We add a quick log message to indicate the method completed, and it’s a wrap!

The hideAddNote() Method

After that, we find the hideAddNote() method, which as its name implies, hides the dialog box
after the user clicks Submit. It’s a trivial piece of code:

Zammetti-816-4C09.fm Page 342 Sunday, March 18, 2007 6:51 PM

C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K 343

 this.hideAddNote = function() {

 YAHOO.log("hideAddNote()");

 oAddNoteDialog.hide();
 overlayOrDialogVisible = false;

 YAHOO.log("hideAddNote() done");

 } // End hideAddNote().

I’m going to go out on a limb here and assume you don’t need me to explain how it works!
Besides, much bigger things loom just over the horizon.

The handleAddNoteSubmit() Method

The next method we find is handleAddNoteSubmit(). As you will recall, when the Add Note
dialog box was created in init(), we passed a reference to this function into the constructor
indicating it should be the callback when the Submit button is clicked. Its job is simply to save
the note the user entered, or alternatively reject it if it doesn’t pass some simple validation
checks. Here is the code for this all-important method:

 this.handleAddNoteSubmit = function() {

 YAHOO.log("handleAddNoteSubmit()");

 // Get entered values.
 var noteCategory = YAHOO.util.Dom.get("newNoteCategorySelect").value;
 var noteDate = oAddNoteCalendar.getSelectedDates()[0];
 var noteHour = YAHOO.util.Dom.get("divHHValue").innerHTML;
 var noteMinute = YAHOO.util.Dom.get("divMMValue").innerHTML;
 var noteMeridian = null;
 if (YAHOO.util.Dom.get("newNoteAM").checked) {
 noteMeridian = "am";
 } else {
 noteMeridian = "pm";
 }
 var noteSubject = YAHOO.util.Dom.get("newNoteSubject").value;
 var noteText = YAHOO.util.Dom.get("newNoteText").value;

 // Now some simple validations.
 if (noteSubject == "") {
 alert("Please enter a subject for this note");
 YAHOO.util.Dom.get("newNoteSubject").focus();
 return false;
 }

Zammetti-816-4C09.fm Page 343 Sunday, March 18, 2007 6:51 PM

344 C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K

 if (noteText == "") {
 alert("Please enter some text for this note");
 YAHOO.util.Dom.get("newNoteText").focus();
 return false;
 }

 // Instantiate a Note object and populate it.
 var note = new Note();
 note.setNoteCategory(noteCategory);
 note.setNoteDate(noteDate);
 note.setNoteTime(noteHour + ":" + noteMinute + noteMeridian);
 note.setNoteSubject(noteSubject);
 note.setNoteText(noteText);

 // Add the note to the appropriate treeview category and storage array.
 if (noteCategory == "Personal") {
 personalNotes.push(note);
 new YAHOO.widget.TextNode({label:noteSubject,subject:noteSubject},
 oTreeviewPersonal, false);
 } else {
 businessNotes.push(note);
 new YAHOO.widget.TextNode({label:noteSubject,subject:noteSubject},
 oTreeviewBusiness, false);
 }

 // Redraw treeview so it'll show up.
 oTreeview.draw();

 // Hide dialog and we're done!
 jsNotes.hideAddNote();
 YAHOO.log("handleAddNoteSubmit() done");
 return true;

 } // End handleAddNoteSubmit().

First, we need to get the values entered by the user:

• For the category, subject, and note fields, we just grab their value attributes.

• For the date, we need to call the calendar’s getSelectedDates() method. This method
returns an array of Date objects, but in this case, we only care about the first element in
the array, hence the [0] subscript. Note that, by default, the calendar will allow only a
single date to be selected, but getSelectedDates() still returns an array, so it doesn’t
change the way we get the value.

Zammetti-816-4C09.fm Page 344 Sunday, March 18, 2007 6:51 PM

C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K 345

• For the time’s hour and minutes components, we get the innerHTML value of the <div>
displaying the value (no sense messing with the pixel-to-real-value conversion we’ve
seen before, since we already have the final value in the <div>s). For the time meridian,
we see if the AM radio button is checked, and if so, then the meridian is AM; otherwise,
it is PM.

Once all the values have been captured, we do some simple validations. These validations
amount to nothing more than ensuring the user entered both a subject and some note text, and
if not, we set the focus to the offending field and return immediately.

Once validations have been passed, it’s time to save the note. The first step is to instantiate
a Note object and populate each of the fields. The only interesting thing here is the time, which,
as you can see, is stored in a format ready to be displayed in the details section when the user
clicks it. Otherwise, this is just a series of setter calls.

The next step is to add the note to both the correct storage array and the tree view. First, a
logic branch occurs based on the category of the note. Once we know whether it’s a personal
note or a business note, we push() it onto the appropriate array. To add it to the tree view
requires that we instantiate a new TextNode widget, just as we did when creating the nodes for
the categories. This takes the following three arguments:

• The first argument to the constructor of the widget is an object containing data elements.
The label attribute is what you see in the tree view, and the subject is obviously the
subject of the note. This completes the puzzle we began seeing earlier. Remember how
we got the subject of the note when the user clicked on it so that we could look it up in
the arrays for display? Well, here is where that value gets set on the node.

• The second argument is the node in the tree that this new node will be a child of: either
the personal notes node or the business notes node.

• The last argument determines whether the node is expanded (true) or not (false) initially.
There really is no meaning to expanding a note node though, since there will never be
any children. Just the same, passing false is the safer bet.

Only a few relatively minor steps remain in this method. First, somewhat important is to
update the tree view. This is done by calling draw() on it, which results in it being repainted,
including the new note. Finally, we hide the Add Note dialog box, write a log message, and
return—and that’s adding a new note.

The deleteNote() Method

The method that follows handlerAddNoteSubmit() is deleteNote(). There isn’t much to deleting
a note, as you can see:

 this.deleteNote = function() {

 YAHOO.log("deleteNote()");

 if (overlayOrDialogVisible) { return; }
 oMenuBar.clearActiveItem();

Zammetti-816-4C09.fm Page 345 Sunday, March 18, 2007 6:51 PM

346 C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K

 if (currentNote &&
 confirm("Are you sure you want to delete the current note?")) {
 // Delete from storage array.
 if (currentNote.getNoteCategory() == "Personal") {
 personalNotes.splice(currentNote.getArrayIndex(), 1);
 } else {
 businessNotes.splice(currentNote.getArrayIndex(), 1);
 }
 // Delete from treeview and redraw.
 oTreeview.removeNode(currentNote.getTreeNode());
 oTreeview.draw();
 // Clear display fields.
 YAHOO.util.Dom.get("currentNoteDate").innerHTML = "";
 YAHOO.util.Dom.get("currentNoteTime").innerHTML = "";
 YAHOO.util.Dom.get("currentNoteSubject").innerHTML = "";
 YAHOO.util.Dom.get("currentNoteText").innerHTML = "";
 // Finally, no more current note.
 currentNote = null;
 }

 YAHOO.log("deleteNote() done");

 } // End deleteNote().

The first step is to ensure a note is currently being displayed by seeing if the currentNote
field is null. If no note is being displayed, we obviously don’t need to do anything, so that effec-
tively ends the method.

Assuming a note is displayed though, we first confirm the user wants to delete it (especially
since there is no persistence per se in JSNotes, this is a nice thing to do!). Once it’s confirmed,
we determine which category the note belongs to, so that we know from which array to remove
it. Once we know that, we use the standard splice() method on the array, which JavaScript
provides to remove elements from the array. The first argument is the array index to begin
deletion—in this case, it’s the value stored in the arrayIndex field of the note. The second argu-
ment is how many elements to delete, which is just one in this case.

That takes care of deleting the note from the data array, but now we need to delete it from
the tree view as well. To do that, we simply call the removeNode() method, passing it a reference
to the node to remove, which you’ll recall we stored in the treeNode field in the Note object
when the note was clicked to display. So all that remains is to call draw() to refresh the tree
view, and we’re set.

Lastly, we are sure to clear the display fields, since what’s there is obviously no longer
valid, and set the currentNote field to null since there is no longer a note being displayed. Now
the note is officially, completely, and utterly gone!

The showExportNote() Method

The next bit of functionality to check out is displaying the Export Note overlay. Here is the
method that accomplishes that:

Zammetti-816-4C09.fm Page 346 Sunday, March 18, 2007 6:51 PM

C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K 347

 this.showExportNote = function() {

 YAHOO.log("showExportNote()");

 if (overlayOrDialogVisible) { return; }
 oMenuBar.clearActiveItem();

 if (currentNote) {
 var s = "";
 var noteDate = currentNote.getNoteDate();
 s += "Category: " + currentNote.getNoteCategory() + "\n";
 s += "Date: " + noteDate.getMonth() + "/" +
 noteDate.getDate() + "/" +
 noteDate.getFullYear() + "\n";
 s += "Time: " + currentNote.getNoteTime() + "\n";
 s += "Subject: " + currentNote.getNoteSubject() + "\n";
 s += "Note: " + currentNote.getNoteText();
 YAHOO.util.Dom.get("taExport").value = s;
 YAHOO.util.Dom.get("taExport").select();
 overlayOrDialogVisible = true;
 oExportOverlay.show();
 }

 YAHOO.log("showExportNote() done");

 } // End showExportNote().

Assuming a note is currently being displayed, a string is constructed. This string more or
less mimics the details display you see when a note is clicked, but does so in plain text. The
string is then inserted into the <textarea> that is a part of the overlay, and the text is selected
via a call to the select() method of the text area. Then the overlay is shown via the call to its
show() method, and that’s really all there is to it.

The hideExportNote() Method

Once the user clicks OK in the Export Notes overlay, it is dismissed via a call to
hideExportNote(), shown here:

 this.hideExportNote = function() {

 YAHOO.log("hideExportNote()");
 oMenuBar.clearActiveItem();

 oExportOverlay.hide();
 overlayOrDialogVisible = false;

 YAHOO.log("hideExportNote() done");

 } // End hideExportNote().

Zammetti-816-4C09.fm Page 347 Sunday, March 18, 2007 6:51 PM

348 C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K

This method has nothing more than a call to its hide() method, and setting
overlayOrDialogVisible to false so that our menu works again. And that’s it.

The exit() Method

We’re nearing the end! The next method to look at is called when the Exit option is clicked on
the File menu:

 this.exit = function() {

 YAHOO.log("exit()");
 if (overlayOrDialogVisible) { return; }

 if (confirm(
 "All notes will be lost! Are you sure you want to exit?")) {
 window.close();
 }

 } // End exit().

There’s nothing fancy here. Just a confirmation to be sure users want to leave, since all
their notes will be gone at that point, and a call to the window object’s close() method are all
it takes.

The toggleLogging() Method

The toggleLogging() method is next, and here it is:

 this.toggleLogging = function() {

 YAHOO.log("toggleLogging()");
 if (overlayOrDialogVisible) { return; }

 oMenuBar.clearActiveItem();
 if (loggingVisible) {
 YAHOO.util.Dom.get("divLog").style.display = "none";
 loggingVisible = false;
 } else {
 YAHOO.util.Dom.get("divLog").style.display = "block";
 loggingVisible = true;
 }

 YAHOO.log("toggleLogging() done");

 } // End toggleLogging().

This boils down to nothing more than showing divLog if loggingVisible is false, and then
reversing loggingVisible to true, or hiding divLog if loggingVisible if true, and then reversing
loggingVisible to false.

Zammetti-816-4C09.fm Page 348 Sunday, March 18, 2007 6:51 PM

C H A P T E R 9 ■ W I D G E T M A N I A : U S I N G A G U I W I D G E T F R A M E W O R K 349

The Rest

Only four methods remain, but they are really so simple that I don’t see much point in showing
them here. As I’m sure you can guess, showUsing(), hideUsing(), showAbout(), and hdeAbout()
deal with showing and hiding the Using JSNotes and About JSNotes overlays. You’ve already
seen the basic code in the showExportNote() method. The showXXX() methods just set
overlayOrDialogVisible to true and call show() on the appropriate overlay object. For the
hideXXX() methods, overlayOrDialogVisible is set to false, and the hide() method is called.
There quite literally is nothing more to these methods!

And with that last little bit, we’ve reached the end of our journey! I hope you’ll agree that
with YUI in the mix, the volume of code is not very great, and it’s pretty simple code to boot.

Suggested Exercises
When you look at that stack of sticky notes, not a whole lot of possible enhancements come to
mind, aside from perhaps different colors and more writing surface. Similarly, with such a
simple application as JSNotes, there’s not a whole lot of really advanced functionality to add.
Of course, I wouldn’t leave you without any exercises, so here are a few that should extend your
knowledge of YUI, and, of course, JavaScript in general:

• Add the ability to clean an entire category at once. Likewise, add the ability to export an
entire category.

• Present the interface in a tabbed fashion. YUI provides a tabbed dialog widget, and it
should be possible to see two tabs, Personal and Business, with just a straight list of notes
on the left. I was actually going to do this in the example, but I decided it would be an
excellent exercise to help familiarize you with YUI.

• For the tabbed interface, add a View menu with two options: Tabbed View and Tree
View, so you can switch between the two tabs. I suggest creating two layers in index.htm:
one that contains what you see now, and one that includes the tab view. That should
make it very easy to switch between the two.

• Add some effects. YUI provides other effects that you can probably add without too
much trouble. How about the Using and About overlays expanding into view perhaps?

Summary
In this chapter, we put together a handy little note-taking application. In the process, you were
introduced to a top-notch JavaScript library, YUI. You saw how it makes creating usable user
interfaces with custom widgets a breeze, and you also saw some of the utility functionality it
provides. Examining the application revealed how, with just a relatively small amount of code,
you can create a decent amount of functionality with the help of this excellent library.

Zammetti-816-4C09.fm Page 349 Sunday, March 18, 2007 6:51 PM

351

■ ■ ■

C H A P T E R 1 0

Shopping in Style:
A Drag-and-Drop
Shopping Cart

Most people who have shopped on the Internet are familiar with the shopping cart metaphor.
You see a list of items for sale, you click some button, and some quantity of the item is added to
your shopping cart. You then check out, and your order is processed based on the content of
your cart. This is all well and good, but we can do a little better than that, can’t we?

In this chapter, we will build a shopping cart that lets you drag items into it, rather than
needing to click a button to add to your cart. We will use some special effects to make this look
cooler than it might sound. At the same time though, we will respect the fact that some people
may not have JavaScript available. For them, we will ensure our shopping cart degrades grace-
fully and still works, even under those “arcane” conditions.

We’ll use a new library, MochiKit, for the drag-and-drop action. Also, you’ll see a new tech-
nique that can come in very handy: a mock server, to handle your server needs without having
to write actual server code.

So, break out your wallet and credits cards, and let’s go shopping!

Shopping Cart Requirements and Goals
A shopping cart is a well-known paradigm used on most e-commerce web sites. Sites such as
Amazon (http://www.amazon.com), Best Buy (http://www.bestbuy.com), Newegg (http://www.
newegg.com), CD Now (http://www.cdnow.com), and TigerDirect (http://www.tigerdirect.com)—
to name just a few—use a shopping cart to allow their users to purchase their products. It’s concep-
tually not a difficult beast, but with a little added pizzazz, it can actually be more fun to use, and
certainly a bit more Web 2.0-ish. Let’s enumerate our goals for our Shopping Cart application:

• Users should be able to select an item, select a quantity of that item, and have it added
to their cart. They should be able to do this by dragging items into the cart, or in a more
typical manual fashion (part of graceful degradation, as you’ll see shortly).

• Users should be able to view the contents of their cart at any time, including the current
dollar total, and also be able to modify it from that view: add and remove items, as well
as change quantities.

Zammetti-816-4C10.fm Page 351 Friday, March 9, 2007 9:10 AM

352 C H A P T E R 1 0 ■ SH O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T

• Users should be able to check out; that is, complete their purchase. However, since this
is a book focused on JavaScript and the client in general, we’re not going to actually write
that part.1 Moreover, we’re going to write a “mock” server on the client. It would be a
simple exercise to replace this mock server with the real McCoy.

• The shopping cart should degrade gracefully; that is, work whether or not JavaScript is
enabled. When it is enabled, the full drag-and-drop experience is available. When it is
disabled, the cart still functions just fine, but in a more manual fashion, typical of most
shopping carts. Because we’re faking the server side though, we can’t literally disable
JavaScript, because we need it to do that fakery. Therefore, we’ll provide a switch to turn
JavaScript on and off in a fake way, so we can see how things react in either
circumstance.

• We’ll use a JavaScript library to help us with the more complex pieces, specifically the
drag-and-drop functionality. That library is MochiKit.

With this application, we will have three primary concerns. First, we want the user to have
the ability to drag items onto the cart, so we’ll need to deal with the code to enable drag-and-
drop. This isn’t the most difficult thing to implement in a web application, but it involves a fair
number of details, so we’ll be using the MochiKit library to handle the complexity for us.

Second, we want the application to degrade gracefully, so it will still work when JavaScript
is disabled. This book, being about JavaScript, hasn’t focused on how this can be accomplished,
so this will be a good chance to demonstrate how to do it. As you can imagine, a drag-and-drop
shopping cart just isn’t viable without JavaScript, so it truly will be a degraded experience, if
one considers the drag-and-drop version to be the pinnacle. Still, we can continue to provide a
perfectly usable shopping experience, even without JavaScript.

The third consideration is that we aren’t going to mess with the server side of the equation
here, yet we will need a server in the mix to do it right. How can we accomplish that? We can
pull off this trick by utilizing a technique I like to call a mock server.2

Let’s start with how we will pull off that graceful degradation.

Graceful Degradation, or Working
in the Stone Age
These days, writing a web application without JavaScript is tantamount to trying to start a fire
by rubbing two sticks together. There’s no question it can be done that way, but why would you
want to, when you can grab a BIC from Wal-Mart and do it with the flick of a finger?

In years gone by, JavaScript had a very poor reputation on a number of fronts: security,
performance, annoyance (which is really a failing of those using it), and so on. In those days,
people often would disable JavaScript entirely to make their browsing experience more enjoyable.
Some people still do that today, even though it’s far less common. Also, we should consider

1. You will be seeing some server-side code in the chapter on Ajax (Chapter 12), but that’s because there isn’t
a particularly good way to fake it in a purely client-side manner. Here, we can do that with a mock server.

2. While I won’t claim to have made up the term, I can honestly say I’ve never heard it referred to as
such anywhere else, so, if you use it, send the royalty check to my publisher for forwarding along
to me. Just kidding!

Zammetti-816-4C10.fm Page 352 Friday, March 9, 2007 9:10 AM

C H A P T E R 1 0 ■ S H O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T 353

alternate browsing devices and limited devices like cell phone-based browsers, which often do
not provide JavaScript capabilities. Therefore, making an application that can operate just as
well (or nearly as well) in the absence of JavaScript as it does with it is a very good thing indeed.

How do we actually do it though? It can be boiled down to this: write the application to
work without JavaScript, and then add the script that “enables” the features that can be present
only when JavaScript is.

As a simple example, let’s say we want to have a form like this:

<html>
 <head></head>
 <body>
 <form name="myForm" method="post" action="someAction.do">
 Your name: <input type="text" name="yourName" size="20">

 <input type="submit" value="Submit">
 </form>
 </body>
</html>

Clearly, that will work just fine whether or not JavaScript is enabled. Now, let’s think of a
problem we might encounter: what if the user doesn’t enter a name? Will the server we submit
this to blow up and return some error? It very well may. So, we’re going to have to check for that
on the server. But for this simple check, why do we even need to involve the server? With JavaScript,
we can do this instead:

<html>
 <head>
 <script>
 function validate(inForm) {
 if (inForm.yourName.value == "") {
 alert("Please enter your name");
 } else {
 inForm.submit();
 }
 </script>
 </head>
 <body>
 <form name="myForm" method="post" action="someAction.do">
 Your name: <input type="text" name="yourName" size="20">

 <input type="button" value="Submit" onClick="validate(this.form);">
 </form>
 </body>
</html>

Now, when JavaScript is enabled, the server won’t be involved to perform this simple
check, cutting down on server utilization and network utilization. And this also makes for a
better user experience, because there won’t be even a little delay between clicking Submit and
seeing the error message.

Zammetti-816-4C10.fm Page 353 Friday, March 9, 2007 9:10 AM

354 C H A P T E R 1 0 ■ SH O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T

The trick now is to make it work in both cases of JavaScript enabled and disabled. First, we
need to define what exactly work means in this context. When JavaScript is enabled, work obvi-
ously means do the check on the client, pop up the error message if required, and cancel the
form submission. When JavaScript is disabled, work means the form should still submit to the
server, but without the benefit of the client-side check. Now, you may argue that this example
is flawed because if the button were a type="submit", and the check were done onSubmit of the
form instead, we would have what we want, and you would be correct. This is an example to
illustrate a point, however, so bear with me a bit.

Aside from that solution, how else could we make this work in both cases? Take a look at this:

<html>
 <head>
 <script>
 function setup() {
 document.getElementById("btnSubmit").style.display = "none";
 document.getElementById("btnButton").style.display = "block";
 }
 function validate(inForm) {
 if (inForm.yourName.value == "") {
 alert("Please enter your name");
 } else {
 inForm.submit();
 }
 </script>
 </head>
 <body onLoad="setup();">
 <form name="myForm" method="post" action="someAction.do">
 Your name: <input type="text" name="yourName" size="20">

 <input type="submit" value="Submit" id="btnSubmit">
 <input type="button" value="Submit" id="btnButton"
 onClick="validate(this.form);">
 </form>
 </body>
</html>

Here, we have the best of both worlds. When JavaScript is disabled, the only button that is
visible is the Submit button. Yes, it’s true we don’t get the client-side check, but that’s why this
is degraded rather than broken; it will still work, just in a degraded way. When JavaScript is
enabled, the Submit button it hidden in favor of the regular button, which includes the client-
side check.

We’ll be doing a very similar thing in this chapter’s application. At some point before
reading too much further, you should play with it a little bit. In main.js, you’ll find a variable
javaScriptEnabled. I’ll discuss this later when we dissect the application, but for now, you can
simply set this to true to see the application in JavaScript-enabled mode, and set it to false to
simulate JavaScript being disabled. When you set this variable to false, notice that you have
Description links below the items you can purchase. But when JavaScript is enabled, the links
are not present. By default, these links are there, and they will be removed by JavaScript later to

Zammetti-816-4C10.fm Page 354 Friday, March 9, 2007 9:10 AM

C H A P T E R 1 0 ■ S H O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T 355

give a more rich experience (hovering over the items gives you the descriptions that the links
otherwise would).

The MochiKit Library
Now let’s turn our attention to MochiKit (http://www.mochikit.com). Although I mentioned it
in Chapter 2, MochiKit’s slogan certainly deserves repeating:

MochiKit makes JavaScript suck less

Gold, I tell ya—pure comedy gold!
Seriously though, I’m not sure I would say that JavaScript “sucks” anyway (one would

certainly hope not, based on the fact that I’m here writing this book!), but the sentiment is still
valid. MochiKit definitely makes many things much more pleasant.

Take drag-and-drop, for instance. When you’re developing a fat client—be it Java Swing,
Windows, Linux, or whatever—drag-and-drop is pretty simple, usually requiring nothing more
than setting some attributes and implementing some minor code. In a browser though, it’s a
fair bit more work:

• Track when the mouse button is pressed down, and see if it was pressed down on an
element that is draggable (as determined by your own criteria, by the way).

• Track the mouse movement and move the draggable object accordingly.

• Recognize when the mouse button is lifted and determine which object the draggable
object was on when the button was released. Was it an object where the dragged item
can be dropped?

• If the drop target is valid for the dragged item, process that event. And deal with what
happens to the draggable object—does it get cloned perhaps, or just return to its starting
point (which you remembered to record, right?).

• Along the way, deal with the differences in browser event models, CSS differences, and
so on.

• And how about the possibility of some effects, to make the whole deal look a bit cooler?

It’s not that this can’t be done; of course, it can. In fact, I’ve seen some rather elegant
implementations3 that don’t make my head hurt all that much—at least as far as the dragging
part goes. However, those implementations don’t deal with the dropping part, other than liter-
ally ending the process of dragging. Determining if the object was dropped on something else
is out of scope.

Since drag-and-drop isn’t exactly a trivial exercise in the browser, it behooves us to find a
good implementation that can save us that time, effort, and trouble. MochiKit provides just
such a beast.

3. Check out http://www.javascriptkit.com/howto/drag.shtml, which is a pretty simple browser drag-
and-drop implementation.

Zammetti-816-4C10.fm Page 355 Friday, March 9, 2007 9:10 AM

356 C H A P T E R 1 0 ■ SH O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T

With MochiKit, making something draggable is as simple as this:

new MochiKit.DragAndDrop.Draggable("myObject", { revert : resetIt});

With this line of code, the object on the page with the ID myObject is now able to be dragged all
over the place! When the user releases the mouse button, the resetIt() function will be called.
And in that function, we can do whatever we want. Can it get any easier?

“What about dropping?” you ask. That’s just as drop-dead easy (pun intended):

new MochiKit.DragAndDrop.Droppable("dropHere", { ondrop : doOnDrop });

We’ve now made it so that the object on the page with the ID dropHere can have other
objects dropped onto it, and when that happens, the doOnDrop() function will be called. Once
again, can you imagine it being any simpler?

MochiKit offers a slew of options to go along with this, such as the ability to have the dragged
object return to its starting point, having a “ghost” of the object created so that you’re dragging
a clone, and so on. It also offers effects, such as having the dragged object fade out slightly
when being dragged. And that option to have the object return to its starting point, well, it
doesn’t have to just jump back there; it can actually glide back gracefully!

MochiKit’s drag-and-drop support is excellent in my opinion, and is one of the simplest
and quickest to get up and running. You’ll see it in action as we dissect the Shopping Cart
application, but I hope you are already salivating with the possibilities it offers!

Another area of interest in MochiKit for this application is its Signal package. Signals are
basically events, but the neat thing about them is they aren’t necessarily user events; they can
be virtually anything. For example, if you would like to call a function when some object on the
page is clicked, you can do this:

connect('myID', 'onclick', myClicked);

When the object with the ID myID is clicked, myClicked() will be called.
What else does MochiKit have to offer? Oh, just a little bit—let Table 10-1 tell the story!

Table 10-1. Some of the Many MochiKit Packages

Package Description

MochiKit.Async Management of asynchronous tasks

MochiKit.Base Functional programming and useful comparisons

MochiKit.DOM Painless DOM manipulation functions

MochiKit.Color Color abstraction with CSS3 support

MochiKit.DateTime Time-related functions

MochiKit.Format String formatting functions

MochiKit.Iter Iterations

MochiKit.Logging More robust logging capabilities than simple alerts

MochiKit.LoggingPane Interactive logging pane

MochiKit.Selector Element selection by CSS selector syntax

Zammetti-816-4C10.fm Page 356 Friday, March 9, 2007 9:10 AM

C H A P T E R 1 0 ■ S H O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T 357

As is true with most of the libraries covered in this book, MochiKit has a lot more to offer
than we can cover here, and your best bet is to spend some time on the MochiKit web site.
Check out the documentation, try the examples, and get a feel for what it offers. It is quite well
documented with some useful examples to play with, and I know you won’t be disappointed.

■Note The drag-and-drop features used in this application are not available in the most currently released
version of MochiKit as of this writing, which is version 1.3.1. This is a fact I discovered rather painfully,
because the documentation on the web site is for unreleased version 1.4 (although it might possibly be
released by the time you read this). Therefore, in order to build this application. I had to get that unreleased
version from source control, which uses the Subversion source control system. The URL for this code is
http://svn.mochikit.com/mochikit/trunk/. You can find further information at the MochiKit web
site’s download page. This includes suggestions for Subversion clients (if you’re using Windows as I generally
do, I echo the suggestion of TortoiseSVN). Of course, when you download the source for this application from
the Apress site, which I hope you’ve done already, you’ll get the 1.4 version of MochiKit, all ready to go.

The Mock Server Technique
Well, calling the mock server approach a technique might be a tad grandiose, but it is a handy
way to develop nonetheless.

When you write full-blown server code, more effort tends to go into it. You obviously need
a server, plus a web and/or application server running. You may also need extensions installed,
such as PHP, if that’s your technology of choice. In some cases, such as Java and C#, aside from
JSPs and ASPs that is, a compiler step is involved, which more times than not means you need
to restart some server component for the changes to take effect. That’s not even counting any
additional development tools you may need, such as IDEs and the like.

Wouldn’t it be nice it you could do this all on the server? Now, you’re probably thinking
“Hey, I have Tomcat or IIS or something running on my laptop, so I can do that.” And indeed
you can. I certainly do! But there is still more involved—compiling, restarting, and all that.
What I’m talking about is truly serverless development, with nothing but client code involved.

Yes, you can do this! You can, in fact, have HTML and JavaScript playing the part of the
server if you do things just right. This can increase your development speed quite a bit by elim-
inating the additional server code development steps. It can remove some potential points of
failure, like network latencies and such. It also tends to simplify things because you don’t have

MochiKit.Signal Simple universal event handling support

MochiKit.Style Painless CSS manipulation functions

MochiKit.Sortable A sortable object to make drag-and-drop lists easy

MochiKit.Visual Visual effects

Table 10-1. Some of the Many MochiKit Packages

Package Description

Zammetti-816-4C10.fm Page 357 Friday, March 9, 2007 9:10 AM

358 C H A P T E R 1 0 ■ SH O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T

to worry about getting server configurations right, dealing with operating system permissions,
and so on. I hope you’re convinced this might be a useful trick to know.

But how does one actually accomplish this feat of superhuman coding? It’s amazingly
simple. In pseudo-code, it looks like this:

<html>
 <head>
 <script>
 function process() {
 var function = get_request_parameter;
 switch (function) {
 case "some_operation":
 some_function();
 break;
 }
 }
 </script>
 </head>
 <body onLoad="process();"></body>
</html>

This is the mock server itself. It is nothing but an HTML page (you literally save it with an
.htm or .html extension). Let’s say you name it mockServer.htm. Then any time you have a form
on another page, you do this:

<form name="myForm" method="get" action="mockServer.htm">
 Your Name: <input type="text" name="yourName">
 <input type="submit" value="Submit">
</form>

One important note is that the method must be GET, because that’s the only way you’ll be
able to get access to the request parameters. You won’t be able to access any parameters passed
via POST.

You’ll also see in the mockServer.htm file that I have get_request_parameter. This is a pseudo-
code representation of some JavaScript that gets a request parameter for you. The function
we’re actually going to be using is jscript.page.getParameter() from Chapter 3, but we’ll get
to that in due course. The point here is that you get some parameter value, and then switch on
that value to determine what code to execute. This is akin to the server reacting to some path
and doing something different for each. The functions called can do anything you like, including
render content or forward to another page. Again, you’ll see this in action when we dissect the
application. It’s the basic concept that I’m hoping to get across right now.

I’ve already pointed out the benefits of this technique, but, of course, there are some nega-
tives, too. Since this isn’t a real server, you lose all the capabilities the server offers. You also
need to be careful you don’t do anything that you can’t actually do on a real server. Still, even
with the negatives, the simplicity and speed you gain are usually worth it, in my experience.

With those preliminaries out of the way, let’s have a look at the application. If you haven’t
already done so, I suggest grabbing the code from the Apress web site and playing with it a bit.

Zammetti-816-4C10.fm Page 358 Friday, March 9, 2007 9:10 AM

C H A P T E R 1 0 ■ S H O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T 359

A Preview of the Shopping Cart Application
Let’s take a quick look at this chapter’s project. First up, in Figure 10-1, you can see the appli-
cation as it looks in the beginning. This is how it appears in non-JavaScript mode. I’ve added a
few items to the cart already, as you can see down by the cart graphic.

Figure 10-1. The catalog view page when JavaScript is disabled

Contrast Figure 10-1 with Figure 10-2, which is the catalog view when JavaScript is enabled. As
you can see, the real difference is just the removal of the Description link. The description of
the item is now seen when the user hovers the mouse over the item. In addition, there is no
need to go to the description page you see when the Description link is clicked, because you
can purchase from here as well, by simply dragging an item into the cart.

Zammetti-816-4C10.fm Page 359 Friday, March 9, 2007 9:10 AM

360 C H A P T E R 1 0 ■ SH O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T

Figure 10-2. The catalog view page when JavaScript is enabled

In Figure 10-3, you can see the description pop-up. It will pop up at the current mouse
location when you hover over an item. It will go away when you mouse off the image or if you
start dragging the item.

Zammetti-816-4C10.fm Page 360 Friday, March 9, 2007 9:10 AM

C H A P T E R 1 0 ■ S H O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T 361

Figure 10-3. The description pop-up seen when JavaScript is enabled and the user hovers the
mouse over the item

Although it’s really hard to see unless you actually play with the application, I’ve tried to
get a snapshot of an item being dragged in Figure 10-4. Notice that MochiKit is nice enough to
fade out the image a little to give a nice effect to indicate it is being dragged.

Zammetti-816-4C10.fm Page 361 Friday, March 9, 2007 9:10 AM

362 C H A P T E R 1 0 ■ SH O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T

Figure 10-4. An example of dragging an item (you really have to see it in action though)

When you drag the item to the shopping cart, the next step is specify how many of the item
you want. To accomplish this, a simple JavaScript prompt() gets the value, as shown in Figure 10-5.

A few other screens show up in the application, but I want to keep the anticipation going a
bit longer!

Now we’re ready to jump in and see what makes this application tick.

Zammetti-816-4C10.fm Page 362 Friday, March 9, 2007 9:10 AM

C H A P T E R 1 0 ■ S H O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T 363

Figure 10-5. The pop-up the user gets after dragging an item into the cart

Dissecting the Shopping Cart Solution
As usual, we’ll begin the dissection by taking a look at the layout of the application—the files
that are part of it and all that. We begin this look with Figure 10-6, which shows the directory
structure and file list.

Zammetti-816-4C10.fm Page 363 Friday, March 9, 2007 9:10 AM

364 C H A P T E R 1 0 ■ SH O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T

Figure 10-6. Directory layout of the Shopping Cart application

This is the typical structure you’ve seen in most of the projects in this book, but we’ll go
over it anyway to be sure there are no surprises.

• css: This directory contains our single style sheet file, styles.css, which encapsulates all
our style information.

• img: Here, we have all our image resources. In this case, the directory contains eight
images: one for each of our purchasable items, and one for the shopping cart.

• descs: This directory contains the pages that show the item description and allow for
purchasing an item when in non-JavaScript mode.

• js: This directory contains all (well, almost all, as you’ll see) of the JavaScript for the
application, including the MochiKit files in, not surprisingly, the MochiKit subdirectory.

Zammetti-816-4C10.fm Page 364 Friday, March 9, 2007 9:10 AM

C H A P T E R 1 0 ■ S H O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T 365

• Finally, in the root are four HTML files:

• index.htm is the catalog of items to purchase (which I refer to as the catalog view page).

• mockServer.htm is, well, our mock server.

• viewCart.htm is seen when viewing the contents of our shopping cart (which I refer to
as the cart view page).

• checkout.htm is what appears when the user tries to check out (which isn’t much in
this case!).

Let’s not delay any longer. It’s time to get to some code!

Writing styles.css
The first file we’re going to explore is the style sheet for the application, styles.css. It’s a pretty
mundane style sheet frankly, but we should still have a look, if just a brief one. You can see the
entire file in Listing 10-1.

Listing 10-1. The styles.css File

/* Style applied to all elements. */
* {
 font-family : arial;
 font-size : 10pt;
 font-weight : bold;
}

/* Style for bodies of pages. */
.cssBody {
 background-color : #d0d0ff;
}

/* Style for instructions, and any other static text display areas. */
.cssInstructionsTable {
 background-color : #ffffff;
}

/* Style for the table used to display the catalog items. */
.cssCatalogTable {
 background-color : #ffffff;
 border : 0px none #d0d0ff;
}

Zammetti-816-4C10.fm Page 365 Friday, March 9, 2007 9:10 AM

366 C H A P T E R 1 0 ■ SH O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T

/* Style for the text on the checkout page. */
.cssCheckoutText {
 font-size : 12pt;
}

/* Style for the header and footer of the view cart page. */
.cssHeaderFooter {
 background-color : #ffd0d0;
}

/* Row for the alternate row on the view cart page. */
.cssStripRow {
 background-color : #efefef;
}

/* Style for description in cart view. */
.cssSmallDescription {
 font-size : 8pt;
 font-weight : normal;
}

As you can see, there is really nothing of any note here. The first style, as you’ve seen in
other applications in this book, is a kind of catchall style that will effectively apply to everything
on the page. The other styles work as follows:

• The cssBody class is applied to the <body> of all pages.

• The cssInstructionsTable class is for the instructions at the top of the page, and some
other areas that need to be a white square, like the fake checkout page.

• The cssCatalogTable class is applied to the table that lays out the catalog. Primarily, its
job is to remove the border from the table while leaving the cell borders, which isn’t
possible without CSS.

• The cssCheckoutText class is used to style the fake checkout page, to make that text a
bit bigger.

• The cssHeaderFooter class is the red top and bottom you see on the view cart page.

• The cssStripRow class is used for the alternate gray rows on the view cart page, to make
it easier to differentiate the rows of items.

• The cssSmallDescription class is used to style the description of the item on the view
cart page.

Now let’s move on to something just a littler meatier.

Zammetti-816-4C10.fm Page 366 Friday, March 9, 2007 9:10 AM

C H A P T E R 1 0 ■ S H O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T 367

Writing index.htm
The index.htm file is the starting point of the application, and is what I call the catalog view. It
is just some simple markup, with some JavaScript that may or may not actually do anything.
First, let’s see the code, as shown in Listing 10-2.

Listing 10-2. The index.htm File

<html>

 <head>

 <title>Shopping Cart</title>

 <link rel="StyleSheet" href="css/styles.css" type="text/css">

 <script type="text/javascript" src="js/MochiKit/MochiKit.js"></script>
 <script type="text/javascript" src="js/MochiKit/DragAndDrop.js"></script>

 <script type="text/javascript" src="js/jscript.page.js"></script>
 <script type="text/javascript" src="js/jscript.storage.js"></script>
 <script type="text/javascript" src="js/CatalogItem.js"></script>
 <script type="text/javascript" src="js/Catalog.js"></script>
 <script type="text/javascript" src="js/CartItem.js"></script>
 <script type="text/javascript" src="js/Cart.js"></script>
 <script type="text/javascript" src="js/main.js"></script>

 </head>

 <body class="cssBody" onLoad="init();">

 <div id="divMain">

 <table cellpadding="6" cellspacing="0" width="600" border="0"
 align="center" class="cssInstructionsTable">
 <tr>
 <td align="center" valign="middle">
 If JavaScript is enabled, drag an item you wish to purchase
 to the shopping cart. You will be able to select quantity at that
 time. To see the description, hover over the item.

 If JavaScript is disabled, click the Description link to see the
 description and purchase.

 In either case, click the shopping cart to view the cart's contents
 and modify it.
 </tr>
 </td>
 </table>

Zammetti-816-4C10.fm Page 367 Friday, March 9, 2007 9:10 AM

368 C H A P T E R 1 0 ■ SH O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T

 <table cellpadding="6" cellspacing="0" width="600" border="1"
 align="center" class="cssCatalogTable">

 <tr>

 <td align="center" valign="middle">
 <table border="0" cellpadding="0" cellspacing="0" width="100%">
 <tr><td height="40" align="center" valign="top">
 Duo Diamond Ring
 </td></tr>
 <tr><td height="100" align="center" valign="top" id="td_img_1">

 </td></tr>
 <tr><td height="25" align="center" valign="top">
 299.09
 </td></tr>
 <tr id="desc1"><td height="25" align="center" valign="top">

 Description

 </td></tr>
 </table>
 </td>

.... MARKUP FOR THREE OTHER ITEMS REMOVED

 </tr>

 <tr>

 <td align="center" valign="middle">
 <table border="0" cellpadding="0" cellspacing="0" width="100%">
 <tr><td height="40" align="center" valign="top">
 Practical Ajax Projects
 </td></tr>
 <tr><td height="100" align="center" valign="top" id="td_img_5">

 </td></tr>
 <tr><td height="25" align="center" valign="top">
 32.99
 </td></tr>
 <tr id="desc5"><td height="25" align="center" valign="top">

 Description

Zammetti-816-4C10.fm Page 368 Friday, March 9, 2007 9:10 AM

C H A P T E R 1 0 ■ S H O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T 369

 </td></tr>
 </table>
 </td>

 MARKUP FOR THREE OTHER ITEMS REMOVED

 </tr>

 </table>

 <center>

 <img
 src="img/shoppingCart.gif" border="0"
 id="shoppingCart" hspace="6" alt="Click to view cart">

 </center>

 </div>

 </body>

</html>

Note that two large chunks of HTML have been removed because they are very similar to
the previous sections. The sections I refer to are a particular item. For example, the first item
you can see in Listing 10-2 is this markup:

 <td align="center" valign="middle">
 <table border="0" cellpadding="0" cellspacing="0" width="100%">
 <tr><td height="40" align="center" valign="top">
 Duo Diamond Ring
 </td></tr>
 <tr><td height="100" align="center" valign="top" id="td_img_1">

 </td></tr>
 <tr><td height="25" align="center" valign="top">
 299.09
 </td></tr>
 <tr id="desc1"><td height="25" align="center" valign="top">

 Description

 </td></tr>
 </table>
 </td>

Zammetti-816-4C10.fm Page 369 Friday, March 9, 2007 9:10 AM

370 C H A P T E R 1 0 ■ SH O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T

As you can see, it’s just straight HTML. Note the link for the description, which targets the
mockServer.htm file. This is again what will take the place of a real server, and we’ll get to that
soon. Another fact that you need to be aware of is that the table row this markup is in has an ID
defined. This matters quite a bit!

Let’s back up a step though. Notice that most of our JavaScript files are imported onto this
page, and also notice the call to init() onLoad of the document. This function is found in main.js,
which we’ll look at next. For now, the important thing to know is that when init() executes, if
the application is running in non-JavaScript mode, it will do nothing. This also means that the
fact that the table rows have IDs won’t really matter in that mode.

However, the story is different when in JavaScript mode. In that case, the links in these
rows are disabled, and that’s why the rows have IDs—we need to be able to address them
directly to remove their contents.

This page also has the shopping cart icon, which you can drag items onto when in JavaScript
mode, and you can always click it to view the contents of the cart. Surrounding the graphic are
some elements, where the item count and cart total amount appear. Note that they are
 elements, rather than <div> elements, so that they can be right next to the cart. Remember
that <div> elements have a line break following them, so they would not appear next to the cart.
 elements are not followed by a line break automatically, so they work well in this case.

OK, I’ve done a bit of foreshadowing, and now it’s time to reveal the main.js file.

Writing main.js
As you just saw, main.js is imported into index.htm, and it contains the init() function that is
called onLoad of the index.htm page. The content of main.js is shown in Listing 10-3.

Listing 10-3. The main.js File

/**
 * Set this to true to see the fancy version, false for the plain-jane version.
 */
var javaScriptEnabled = false;

/**
 * Called when the index.htm page loads.
 */
function init() {

 if (javaScriptEnabled) {

 // For each item...
 for (var i = 1; i < 9; i++) {

 // Remove the description link.
 document.getElementById("desc" + i).style.display = "none";

 // Hook up the description hover to it.
 var imgObject = document.getElementById("img_" + i)

Zammetti-816-4C10.fm Page 370 Friday, March 9, 2007 9:10 AM

C H A P T E R 1 0 ■ S H O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T 371

 imgObject.onmouseover = cart.hoverDescriptionShow;
 imgObject.onmouseout = cart.hoverDescriptionHide;

 // Make the image draggable.
 new MochiKit.DragAndDrop.Draggable("img_" + i, { revert : true });

 // Event handler from drag starting (hides description popups).
 connect(Draggables, 'start', cart.onDragStart);

 // Create a description popup for the item.
 var descPopup = document.createElement("div");
 descPopup.setAttribute("id", "desc_" + i);
 descPopup.innerHTML =
 catalog.getItem(i).getItemDescription();
 descPopup.style.width = "300px";
 descPopup.style.height = "200px";
 descPopup.style.position = "absolute";
 descPopup.style.display = "none";
 descPopup.style.border = "2px solid #ff0000";
 descPopup.style.padding = "4px";
 descPopup.style.backgroundColor = "#efefef";
 document.getElementById("divMain").appendChild(descPopup);

 }

 // Make the shopping cart a drop target.
 new MochiKit.DragAndDrop.Droppable("shoppingCart",
 { ondrop : cart.doOnDrop }
);

 }

 // Show the cart item count and dollar total. This only really matters
 // if the user goes to the view cart or checkout pages and then goes back to
 // the catalog... when the cart is empty this basically has no effect.
 // Also note that what this function renders would be done by a server-side
 // component if JavaScript was disabled, but we're faking it here.
 cart.updateCartStats();

} // End init().

First, let’s talk about the javaScriptEnabled variable. This global variable is the key to the
concept of JavaScript-enabled and JavaScript-disabled mode. When set to true, the applica-
tion is in JavaScript-enabled mode. This means it is acting as if JavaScript were available in the
browser. When set to false, this is the equivalent to the user having disabled JavaScript. Of
course, we need JavaScript to be enabled for real, because it is emulating the server. But this
simple variable allows us to do the equivalent of turning JavaScript on and off.

Zammetti-816-4C10.fm Page 371 Friday, March 9, 2007 9:10 AM

372 C H A P T E R 1 0 ■ SH O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T

What would happen if JavaScript were disabled for real? Well, init() would never be
called onLoad of the document. If you look at the init() function, the first thing you see is this:

 if (javaScriptEnabled) {

If javaScriptEnabled is set to false, then init() won’t execute either. So, it truly is equiv-
alent, and allows you to see the application in both situations just by changing the value of this
variable, which is something I encourage you to do now.

Moving on, the next thing in init() is an iteration. The idea here is that we’re going to
modify all eight of the items in the catalog in some way. First, it gets a reference to the <tr> with
the ID I mentioned previously and hides it. That’s all there is to “removing” the Description
link, which we don’t need when JavaScript is enabled. Next, we need to enable the ability to
hover over an item and see the description, and all that takes is this:

 var imgObject = document.getElementById("img_" + i)
 imgObject.onmouseover = cart.hoverDescriptionShow;
 imgObject.onmouseout = cart.hoverDescriptionHide;

After we get a reference to the appropriate image, we set the onMouseOver and onMouseOut
handlers to point to the appropriate methods in the cart object, which is an instance of the
Cart class that you’ll see later. In short, this is the shopping cart itself, and all the functionality
it encapsulates.

After that comes the step of making the image draggable, which is what MochiKit does for
us. It’s very simple:

 new MochiKit.DragAndDrop.Draggable("img_" + i, { revert : true });
 connect(Draggables, 'start', cart.onDragStart);

We are instantiating a MochiKit.DragAndDrop.Draggable object and giving it a reference to
the image of the item. We are also passing in some options; well, one option to be precise. The
revert option can be an effect, a function, or a simple true/false value—in this case, it is the
latter. This tells MochiKit that when the draggable object is dropped, whether or not it’s dropped
on the shopping cart (a droppable object), we want the object to revert back to its starting posi-
tion. MochiKit does this with some flair by default, using a Move effect to have the object—our
item’s image in this case—fly back to its starting position. You can use this in conjunction with
the reverteffect attribute, which is another option you can pass here, to determine which
effect to use, but in this case, the default does rather nicely.

The second line that begins with connect(), is part of the MochiKit event system. It allows
you to attach handlers to numerous and varied events on the page. In this case, we are saying
that any Draggable object, which is what Draggables means because all Draggable objects are
contained in the Draggables collection, should trigger execution of the onDragStart() method
of the cart object whenever dragging starts. This is needed so that we can hide the pop-up
description when dragging begins.

The next thing init() does is creates the pop-up descriptions for our items, and adds them
to the DOM (because they aren’t there initially). This is pretty typical DOM manipulation code:
create an instance of <div>, populate its attributes, give it some content via setting innerHTML,
and append it to the DOM as a child of some element—in this case, the divMain <div>, which
surrounds all the contents on the page.

The last step of init() is to make the shopping cart something an image can be dropped
on. We do this with a single line of code:

Zammetti-816-4C10.fm Page 372 Friday, March 9, 2007 9:10 AM

C H A P T E R 1 0 ■ S H O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T 373

 new MochiKit.DragAndDrop.Droppable("shoppingCart",
 { ondrop : cart.doOnDrop }
);

The MochiKit.DragAndDrop.Droppable class is the complement to its Draggable class, and
its call signature is very similar. Here, we are giving it the ID of our shopping cart image, and
again passing some options—in this case, just the function to call when something is dropped
on the object. You’ll see this function very soon, but as you can imagine, it is responsible for
actually adding the dropped item to the cart.

Writing idX.htm
When the application is in non-JavaScript mode, the user clicks the Description link under-
neath an item to both view the description and purchase it. The page that the user sees at this
point is shown in Figure 10-7.

Figure 10-7. An example of the description/purchase page in the non-JavaScript version

Zammetti-816-4C10.fm Page 373 Friday, March 9, 2007 9:10 AM

374 C H A P T E R 1 0 ■ SH O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T

Each of the items has its own HTML document, named idX.htm, where X is the ID number
of the item (1 through 8). These files are found in the /descs directory. Because they are all
identical except for the information about the item, I’ve shown the listing for only one here, in
Listing 10-4.

Listing 10-4. The id1.htm File (Other Files in /descs Are Virtually Identical)

<html>
 <head>
 <title>id1</title>

 <link rel="StyleSheet" href="../css/styles.css" type="text/css">

 <script>
 </script>

 </head>

 <body style="background-color:#a0a0ff;">
 <table border="0" cellpadding="10" cellspacing="0" width="600"
 align="center" style="background-color:#ffffff;"><tr><td>
 <center>
 <div style="font-size:14pt;">Duo Diamond Ring</div>

 </center>

 <div style="font-size:12pt;">
 This 10K gold Duo ring features two round diamonds in prong settings with
 round diamond accents. Duo Jewelry is designed to celebrate a couple's
 love.
 </div>

 299.09 per unit

 <form name="purchase" method="get" action="../mockServer.htm">
 <input type="hidden" name="function" value="purchase">
 <input type="hidden" name="itemID" value="1">
 Quantity:
 <input type="text" size="3" maxlength="2" name="quantity" value="1">
 <input type="submit" value="Add To Cart">
 </form>
 </tr></tr>
 <tr><td align="right">
 Back To The Catalog
 </td></tr></table>

Zammetti-816-4C10.fm Page 374 Friday, March 9, 2007 9:10 AM

C H A P T E R 1 0 ■ S H O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T 375

 </body>

</html>

As you can see, it is perfectly straightforward HTML; no JavaScript to speak of. In fact, I
dare say the only items of interest here are the target of the form submission and the Back To
The Catalog link. Notice that both of them target the mockServer.htm file, which we’ll be looking
at in detail shortly. The important point now is that, conceptually, this document takes the
place of a real server. Notice the function parameter is passed as part of the query string in the
link (also notice that the method of the form is GET) and as a form field in the form submission.
The mockServer.htm file uses the getParameter() function in the jscript.page package from
Chapter 3 to get the parameters passed to it. For this to work, however, the parameters must
have been passed as a query string, Parameters passed through POST cannot be read, and
that’s the reason for the form’s method.

The mockServer.htm file will look for that function parameter and use it to determine
which operation it should perform. That’s a good enough description of it for now; as I said,
you’ll see it in more detail later in the chapter.

Writing CatalogItem.js
The CatalogItem class represents a single item in the catalog that the user can purchase. It has
a handful of data elements to describe it, and the class also has the typical getters and setters to
access it in a good object-oriented way. Figure 10-8 shows the UML diagram of the class.

Figure 10-8. UML diagram for the CatalogItem class

Zammetti-816-4C10.fm Page 375 Friday, March 9, 2007 9:10 AM

376 C H A P T E R 1 0 ■ SH O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T

The CatalogItem class has the following five fields:

• itemID: The ID of the item. For this application, I chose to make it just a simple number,
1–8. There’s nothing that says it has to be. I just figured KISS: Keep It Simple, Stupid!

• itemTitle: The short title of the item as seen on the catalog view page.

• itemDescription: The lengthier description you see when you hover over the image in
JavaScript mode, or when you click the Description link in non-JavaScript mode.

• itemImageURL: Stores the URL to the item’s image.

• itemPrice: The price of the item.

All of the methods in the class are simple getters and setters for the various fields. There is
also an overridden toString() method, so we can get a more meaningful representation of an
instance of this class, which is especially good when trying to debug the application.

Even though this is a simple class—really just a Data Transfer Object (DTO)—we should
still look at the code, which is shown in Listing 10-5.

Listing 10-5. The CatalogItem Class in CatalogItem.js

/**
 * This class represents one item in the catalog.
 */
function CatalogItem() {

 /**
 * The ID of the item.
 */
 var itemID = "";

 /**
 * The title of the item.
 */
 var itemTitle = "";

 /**
 * The description of the item.
 */
 var itemDescription = "";

Zammetti-816-4C10.fm Page 376 Friday, March 9, 2007 9:10 AM

C H A P T E R 1 0 ■ S H O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T 377

 /**
 * The URL to the image of the item.
 */
 var itemImageURL = "";

 /**
 * The price for one of the items.
 */
 var itemPrice = 0;

 /**
 * Setter.
 *
 * @param inItemID New value.
 */
 this.setItemID = function(inItemID) {

 itemID = inItemID;

 } // End setItemID().

 /**
 * Getter.
 *
 * @return The current value of the field.
 */
 this.getItemID = function() {

 return itemID;

 } // End getItemID().

 /**
 * Setter.
 *
 * @param inItemTitle New value.
 */
 this.setItemTitle = function(inItemTitle) {

 itemTitle = inItemTitle;

 } // End setItemTitle().

Zammetti-816-4C10.fm Page 377 Friday, March 9, 2007 9:10 AM

378 C H A P T E R 1 0 ■ SH O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T

 /**
 * Getter.
 *
 * @return The current value of the field.
 */
 this.getItemTitle = function() {

 return itemTitle;

 } // End getItemTitle().

 /**
 * Setter.
 *
 * @param inItemDescription New value.
 */
 this.setItemDescription = function(inItemDescription) {

 itemDescription = inItemDescription;

 } // End setItemDescription().

 /**
 * Getter.
 *
 * @return The current value of the field.
 */
 this.getItemDescription = function() {

 return itemDescription;

 } // End getItemDescription().

 /**
 * Setter.
 *
 * @param inItemImageURL New value.
 */
 this.setItemImageURL = function(inItemImageURL) {

 itemImageURL = inItemImageURL;

 } // End setItemImageURL().

Zammetti-816-4C10.fm Page 378 Friday, March 9, 2007 9:10 AM

C H A P T E R 1 0 ■ S H O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T 379

 /**
 * Getter.
 *
 * @return The current value of the field.
 */
 this.getItemImageURL = function() {

 return itemImageURL;

 } // End getItemImageURL().

 /**
 * Setter.
 *
 * @param inItemPrice New value.
 */
 this.setItemPrice = function(inItemPrice) {

 itemPrice = inItemPrice;

 } // End setItemPrice().

 /**
 * Getter.
 *
 * @return The current value of the field.
 */
 this.getItemPrice = function() {

 return itemPrice;

 } // End getItemPrice().

 /**
 * Overriden toString() method.
 *
 * @return A meaningful string representation of the object.
 */
 this.toString = function() {

Zammetti-816-4C10.fm Page 379 Friday, March 9, 2007 9:10 AM

380 C H A P T E R 1 0 ■ SH O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T

 return "CatalogItem : [" +
 "itemID='" + itemID + "', " +
 "itemTitle='" + itemTitle + "', " +
 "itemDescription='" + itemDescription + "', " +
 "itemImageURL='" + itemImageURL + "', " +
 "itemPrice='" + itemPrice + "']";

 } // End toString().

} // End CatalogItem class.

It’s not going to win any awards as a complex piece of coding, but it gets the job done.
Now, of course, a CatalogItem instance wouldn’t be a ton of good on its own; it must be part of
a catalog that knows how to deal with it. Such a beast exists, and it is not surprisingly the
Catalog class!

Writing Catalog.js
The Catalog class is where all the CatalogItem instances that are part of the catalog of items the
user can purchase are stored. This is a very simple class, as you can see in its UML diagram in
Figure 10-9.

Figure 10-9. UML diagram of the Catalog class

The catalogItems field is the collection of CatalogItems, one for each item the user can
purchase. The getItem() method will return a given item if you pass it the item’s ID. This is
used in a number of places, as you might imagine.

Wait, didn’t I skip something? Oh yes, those itemX fields, where X is 1 through 8. I wonder
what’s going on there? Let’s take a look at the code and see, as shown in Listing 10-6.

Zammetti-816-4C10.fm Page 380 Friday, March 9, 2007 9:10 AM

C H A P T E R 1 0 ■ S H O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T 381

Listing 10-6. The Code Behind the Catalog Class, in Catalog.js

/**
 * This class represents a catalog of items.
 */
function Catalog() {

 /**
 * The collection of items for sale in the catalog.
 */
 var catalogItems = new Object;

 /**
 * Load some items so the user can play, assuming JavaScript is enabled.
 */
 var item1 = new CatalogItem();
 item1.setItemID("1");
 item1.setItemTitle("Duo Diamond Ring");
 item1.setItemDescription("This 10K gold Duo ring features two round diamonds in ➥

prong settings with round diamond accents. Duo Jewelry is designed ➥

to celebrate a couple's love.");
 item1.setItemImageURL("img/item1.gif");
 item1.setItemPrice(299.09);
 catalogItems[item1.getItemID()] = item1;

.... CODE FOR SEVEN OTHER ITEMS REMOVED

 /**
 * Returns a CatalogItem by ID.
 *
 * @param inItemID The ID of the item to return.
 * @return The corresponding item, or null if not found.
 */
 this.getItem = function(inItemID) {

 return catalogItems[inItemID];

 } // End getItem().

} // End Catalog class.

// The one and only instance of the items catalog.
var catalog = new Catalog();

Zammetti-816-4C10.fm Page 381 Friday, March 9, 2007 9:10 AM

382 C H A P T E R 1 0 ■ SH O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T

Well, I did cut it down a bit for print!
Notice the CODE FOR SEVEN OTHER ITEMS REMOVED? As it says, there are seven

other blocks of code very similar to the block right before that notation, namely this one:

 var item1 = new CatalogItem();
 item1.setItemID("1");
 item1.setItemTitle("Duo Diamond Ring");
 item1.setItemDescription("This 10K gold Duo ring features two round diamonds in ➥

prong settings with round diamond accents. Duo Jewelry is designed ➥

to celebrate a couple's love.");
 item1.setItemImageURL("img/item1.gif");
 item1.setItemPrice(299.09);
 catalogItems[item1.getItemID()] = item1;

Here, we’re creating a CatalogItem instance, populating it for a particular item, and adding
it to the catalogItems collection. This is where the items in our catalog come from. Although
I’ve listed the itemX fields in the UML diagram, in practice, they are used during construction
of the Catalog object, and never again. Still, they should be listed for completeness. Note that
these eight blocks of code are not within a method of the Catalog class; hence, they will be
executed when Catalog is instantiated. They are in the constructor, in other words, and this is
precisely what we want. There is no need to make the user of this class call some setup method
explicitly.

Now that we know about the item catalog, let’s talk about the shopping cart and the items
that go into it.

Writing CartItem.js
The CartItem class represents a single item in the shopping cart. Figure 10-10 shows the UML
diagram of this small class.

Figure 10-10. UML diagram of the CartItem class

A CartItem has only two important pieces of information stored within it: the itemID field,
which matches the itemID field of a particular CatalogItem instance, and quantity, which is
obviously the quantity of this particular item in the cart. You see the usual getters and setters
for these two fields, as well as an overridden toString(), as in the CatalogItem class.

Zammetti-816-4C10.fm Page 382 Friday, March 9, 2007 9:10 AM

C H A P T E R 1 0 ■ S H O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T 383

You also see a serialize() method. To make a long story short, we are going to be storing
the contents of the cart in a cookie, and to do so, we need to have a string representation of
each CartItem in the cart. The serialize() method returns this representation. It is nothing
but the itemID and quantity, separated by a tilde (~) character.

Let’s now look at Listing 10-7, which is the complete listing of the CartItem class.

Listing 10-7. The CartItem Class in CartItem.js

/**
 * This class represents one item in the shopping cart.
 */
function CartItem() {

 /**
 * The ID of the item.
 */
 var itemID = "";

 /**
 * The quantity of the item in the cart.
 */
 var quantity = 0;

 /**
 * Setter.
 *
 * @param inItemID New value.
 */
 this.setItemID = function(inItemID) {

 itemID = inItemID;

 } // End setItemID().

 /**
 * Getter.
 *
 * @return The current value of the field.
 */
 this.getItemID = function() {

 return itemID;

Zammetti-816-4C10.fm Page 383 Friday, March 9, 2007 9:10 AM

384 C H A P T E R 1 0 ■ SH O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T

 } // End getItemID().

 /**
 * Setter.
 *
 * @param inQuantity New value.
 */
 this.setQuantity = function(inQuantity) {

 quantity = inQuantity;

 } // End setQuantity().

 /**
 * Getter.
 *
 * @return The current value of the field.
 */
 this.getQuantity = function() {

 return quantity;

 } // End getQuantity().

 /**
 * Returns a serialized version of the item suitable for writing out to the
 * cookie.
 */
 this.serialize = function() {

 return itemID + "~" + quantity;

 } // End serialize().

 /**
 * Overriden toString() method.
 *
 * @return A meaningful string representation of the object.
 */
 this.toString = function() {

Zammetti-816-4C10.fm Page 384 Friday, March 9, 2007 9:10 AM

C H A P T E R 1 0 ■ S H O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T 385

 return "CartItem : [" +
 "itemID='" + itemID + "', " +
 "quantity='" + quantity + "']";

 } // End toString().

} // End CartItem class.

There shouldn’t be any surprises here at all. It’s pretty boring code, to put it bluntly! Still,
without it, none of this would work, so it’s an important piece of boring code!

Next, we come to some code that is decidedly less boring: the Cart class.

Writing Cart.js
The Cart class, contained in the Cart.js source file, is truly where most of the application
resides—where all the real functionality behind it is. As you saw when we looked at main.js, all
the functions that handle the various events, such as dragging and dropping images, can be
found in this class. Let’s first take a look at its UML diagram, shown in Figure 10-11.

Figure 10-11. UML diagram of the Cart class

Because Cart.js is a fairly lengthy file, I won’t list all of it here, but will show sections of it
as required. First, we should look at the three fields it contains: cartItems, isIE, and cartCookie.

The cartItems field is an array that contains CartItem instances. These are the items that
are currently in the cart.

Zammetti-816-4C10.fm Page 385 Friday, March 9, 2007 9:10 AM

386 C H A P T E R 1 0 ■ SH O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T

The isIE field is needed later to deal with mouse events. Let’s take a quick look at this:

 var isIE = window.ActiveXObject ? true : false;

Since IE is the only browser that supports ActiveX controls (ignoring plug-ins that may
exist for other browsers), it is the only browser that will return true when we check for the
ActiveXObject attribute of the window object. Hence, it’s an easy way to check if we’re running
in IE.

The cartCookie field is needed only temporarily, but I listed it anyway for completeness. It
is a string that is the value of the cookie used to store the cart’s contents.

Restoring the Cart’s Contents

After the fields is some code that will execute when the class is instantiated. The job of this code
is to read the value of the cookie where the cart’s contents are stored, create CartItem objects
from it, and store them in the cartItems field. Here is the code that accomplishes all that:

 var cartCookie = jscript.storage.getCookie("js_shopping_cart");
 if (cartCookie) {
 var itemsInCart = cartCookie.split("~~");
 for (var i = 0; i < itemsInCart.length; i++) {
 var nextItem = itemsInCart[i];
 var nextItemID = nextItem.split("~")[0];
 var nextItemQuantity = nextItem.split("~")[1];
 var cartItem = new CartItem();
 cartItem.setItemID(nextItemID);
 cartItem.setQuantity(nextItemQuantity);
 cartItems.push(cartItem);
 }
 }

As you can see, the jscript.storage.getCookie() function that we built in Chapter 3 is
used to get the value of the cookie, which is named js_shopping_cart. Assuming the cookie is
found (which it wouldn’t be the first time the user uses the application, of course), we then
need to parse it.

The way the cart is stored is in the form AA~BB~~CC~DD. AA and CC are item IDs; BB and DD are
the quantity of that item. As you can see, the ID and quantity are separated by a single tilde (~)
character, and items are separated by two tildes. This makes it very easy to parse. We just need
to use the split() method of the JavaScript String class to split on the double-tilde sequence,
which gives us an array of items. Then we iterate over that array, and for each item, we use
split() again, this time on the single tilde. The first element of the resultant array is the ID, and
the second is the quantity. It’s very easy!

All we need to do then is instantiate a CartItem object and fill in its details, and finally
push() it onto the cartItems array. When we’re finished going through all the items in the first
array, the cartItems field contains a CartItem object for each item in the cart.

The first method you find in the source is getCartItems(). This simply returns the
cartItems field—nothing more. This will be needed by our mock server code, as you’ll see later.

Zammetti-816-4C10.fm Page 386 Friday, March 9, 2007 9:10 AM

C H A P T E R 1 0 ■ S H O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T 387

Adding and Removing Cart Items

Next up is the addItem() method:

 this.addItem = function(inItemToAdd) {

 cartItems.push(inItemToAdd);
 saveCart();

 } // End getCartItems().

Obviously, this is called to add an item to the cart. It takes as an argument an instance of
the CartItem class, which is presumed to be populated correctly. All addItem() does is push the
incoming CartItem into the cartItems array, and then calls the saveCart() method, which is
responsible for actually saving the cart as a cookie. We’ll get to that method in just a bit.

Before that though, we find the deleteItem() method:

 this.deleteItem = function(inItemIndex) {

 cartItems.splice(inItemIndex, 1);
 saveCart();

 } // End deleteItem().

This method is equally as simple as addItem(). All it does it use the splice() method of the
cartItems array to delete the item and the index that is passed in, and then calls saveCart() as
well, so that the cookie is updated.

Updating Item Quantities in the Cart

The next method, updateQuantity(), is called from the view cart page to change the quantity of
a given item in the cart:

 this.updateQuantity = function(inItemIndex, inNewQuantity) {

 var cartItem = cartItems[inItemIndex];
 cartItem.setQuantity(inNewQuantity);
 saveCart();

 } // End updateQuantity().

It first gets a reference to the CartItem object corresponding to the index passed into it.
It then calls the setQuantity() method of that object, passing it the new quantity passed into
updateQuantity(). Finally, it calls saveCart().

After updateQuantity() is the getCartItemCount() method, which is only marginally more
complex:

Zammetti-816-4C10.fm Page 387 Friday, March 9, 2007 9:10 AM

388 C H A P T E R 1 0 ■ SH O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T

 this.getCartItemCount = function() {

 var cartItemCount = 0;
 for (var i = 0; i < cartItems.length; i++) {
 cartItemCount += parseInt(cartItems[i].getQuantity());
 }
 return cartItemCount;

 } // End getCartItemCount().

This is a simple iteration over the cartItems array. For each element in the array, which is
a CartItem object, we call the getQuantity() method on it, and accumulate this value. Remember
that we want the total number of items in the cart to be purchased, which can be different from
the total number of CartItems in the cart. Once the iteration is complete, the final tally is
returned.

getCartTotal() is the next method here:

 this.getCartTotal = function() {

 var cartTotal = 0;
 for (var i = 0; i < cartItems.length; i++) {
 var nextItem = cartItems[i];
 var nextItemQuantity = nextItem.getQuantity();
 var nextItemID = nextItem.getItemID();
 var catalogItem = catalog.getItem(nextItemID);
 cartTotal += nextItemQuantity * catalogItem.getItemPrice();
 }
 return cartTotal;

 } // End getCartTotal().

This isn’t too much different from getCartItemCount(). We again are iterating over the
cartItems array. For each CartItem we find, we get the quantity of it, as well as its ID via a call
to getIemID(). With this ID in hand, we then call the getItem() method of the catalog object,
which returns the CatalogItem corresponding to the item being purchased. From that, we can
get the price for one unit. It’s a simple matter to multiply that price by the quantity of the item
in the cart retrieved earlier. We keep a running total of this calculated value, and at the end, we
have the total dollar amount for the cart.4

4. For the demo, I’ve simplified things and didn’t concern myself with tax, shipping charges, and so on.
Shh, don’t tell the federal government, UPS, or FedEx!

Zammetti-816-4C10.fm Page 388 Friday, March 9, 2007 9:10 AM

C H A P T E R 1 0 ■ S H O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T 389

Saving the Cart

Finally, we come to the saveCart() method, which I’ve mentioned a bunch of times:

 var saveCart = function() {

 // Construct shopping cart string for cookie and store it.
 var shoppingCart = "";
 for (var i = 0; i < cartItems.length; i++) {
 nextItem = cartItems[i];
 if (shoppingCart != "") {
 shoppingCart += "~~";
 }
 shoppingCart += nextItem.serialize();
 }
 var expireDate = new Date();
 expireDate.setDate(expireDate.getDate()+7)
 jscript.storage.setCookie("js_shopping_cart", shoppingCart, expireDate);
 } // End saveCart().

I bet you thought there would be more to it. Nope, that’s it! Like the other methods, saveCart()
iterates over the cartItems array. For each element, we simply call the serialiaze() method on
the CartItem, which returns a string in the form X~Y, where X is the item ID and Y is the quantity.
We are ultimately building up a string in the form X~Y~~X~Y. After we have that string constructed,
we just need to use the jscript.storage.setCookie() function from Chapter 3, and the shopping
cart is then saved as a cookie.

Notice that the expiration date of the cookie is set seven days in the future. So if you leave
the shopping cart and come back, for up to seven days, your content will still be present. That’s
obviously longer than you would use on a real shopping site, but it demonstrates the point
well here.

Updating Stats

After the saveCart() method comes the updateCartStats() method. This is used to display the
number of items and total dollar amount of the cart next to the shopping cart graphic at the
bottom. It is called when an item is dropped on to the cart:

 this.updateCartStats = function() {

 // Put the total item count and dollar amount of the cart on the screen,
 // if and only if there are items in the cart already.
 var spnCartCountValue = "";
 var spnCartTotalValue = "";
 var cartItemCount = cart.getCartItemCount();
 if (cartItemCount != 0) {
 spnCartCountValue = cartItemCount + " item(s)";
 spnCartTotalValue = cart.getCartTotal();

Zammetti-816-4C10.fm Page 389 Friday, March 9, 2007 9:10 AM

390 C H A P T E R 1 0 ■ SH O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T

 // Now some math: the total dollar amount has to be rounded for proper
 // display. The basic logic harkens back to pre-algebra:
 // * Multiply the number by 10^x
 // * Apply Math.round() to the result
 // * Divide the result by 10^x
 spnCartTotalValue = Math.round(spnCartTotalValue * 100) / 100;
 }
 document.getElementById("spnItemCount").innerHTML = spnCartCountValue;
 document.getElementById("spnCartTotal").innerHTML = spnCartTotalValue;

 } // End updateCartStats().

It begins by creating two variables, spnCartCountValue and spnCartTotalValue. The first is
the number of items in the cart, and the second is the total dollar amount of the cart. Note that
these are string values, which might seem a little odd, since we know conceptually these are
numeric values. But these will be inserted as the innerHTML of some tags, so it’s more
logical that they be strings. (And, in fact, if we have some variable with a value of zero as a number,
and try to insert it into the , it will be converted to a string. But do we really want to
show a zero, or do we want to show nothing at all—that is, an empty string?) It then calls the
getCartItemCount() method of the cart object to get the total number of items. If this value is
anything other than zero, we take the value and append the string " item(s)" to it, turning it
back into a string. We also call the getCartTotal() method on the cart object to get the dollar
amount.

After that comes inserting these values into the appropriate tags that you saw in
index.htm. There is some funkiness here to be performed because the dollar value can have
decimal points, but because it is truly a numeric value, the number of decimal points could be
rather large. For a dollar amount, however, we want only two decimal places, so we need to do
some rounding. The comments describe the basic algorithm of this rounding, which is just
some basic math.

One final check is then performed to give us an empty string if the value is zero (which is
what you would get the first time through when there are no items in the cart). Then innerHTML
of the elements is set, and we have updated statistics next to the shopping cart!

Handling Dropped Items

The doOnDrop() method, as you’ll recall from looking at the code in main.js, is called when an
item is dropped onto the shopping cart:

 this.doOnDrop = function(element) {

 // Get the ID of the item dropped in the cart.
 var itemID = element.id.split("_")[1];

Zammetti-816-4C10.fm Page 390 Friday, March 9, 2007 9:10 AM

C H A P T E R 1 0 ■ S H O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T 391

 // Find out how many the user wants.
 var quantity =
 parseInt(prompt("How many would you like to add to your cart?"));
 if (!isNaN(quantity) && quantity != 0) {
 // Create a cart item and add it to the cart.
 var cartItem = new CartItem();
 cartItem.setItemID(itemID);
 cartItem.setQuantity(quantity);
 cart.addItem(cartItem);
 }

 // Show the cart item count and dollar total.
 cart.updateCartStats();

 } // End doOnDrop().

First, we get the itemID of the item, as in previous methods. After that, we pop up a prompt
for users using the JavaScript prompt() function, so they can enter the quantity they want. The
return value from this call could be something other than a number, or it could be zero, both of
which would abort adding the item to the cart, so we have a check for both of those conditions.
Assuming a number was entered, however, we go ahead and instantiate a new CartItem object,
populate its attributes, which are just itemID and quantity, and send it to the addItem() method
of the cart object. Lastly, we call updateCartStats() so the newly added item is reflected in the
statistics next to the shopping cart.

Showing and Hiding the Hover Description

Next are two functions that are used when showing the hover description of the item: getMouseX()
and getMouseY(). As their names imply, they get the X and Y location of a given mouse event.
Because IE and Firefox (as well as other browsers) provide this information in different ways,
this is where we need that isIE field that you saw earlier. Because these methods are very
similar, I’ll just show one for brevity:

 this.getMouseX = function(inEvent) {

 var x;
 if (isIE) {
 x = (parseInt(event.clientX) +
 parseInt(document.body.scrollLeft));
 } else {
 x = parseInt(inEvent.pageX);
 }
 return x;

 } // End getMouseX().

Zammetti-816-4C10.fm Page 391 Friday, March 9, 2007 9:10 AM

392 C H A P T E R 1 0 ■ SH O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T

When running in IE, the event object is provided at page scope, which has as one of its
members the clientX attribute. When we take this value and add the document.body.srollLeft
attribute, we get the absolute X coordinate of the mouse event.

When running in Firefox, or other browsers, the inEvent object is passed to this method,
which contains the pageX attribute. This is the X coordinate of the mouse event. Notice that we
don’t have to take into consideration how far the page is scrolled horizontally, as we do in IE,
because the pageX value already has that taken into account. This is what accounts for the
difference in the branches of this code, aside from the difference in which attribute we go after
and to which object it belongs. The getMouseY() method is again identical, with a few exceptions:
instead of clientX, it’s clientY; it’s scrollTop instead of scrollLeft; and it’s pageY instead of pageX.

And now we can see the code that makes use of those two functions, namely
hoverDescriptionShow():

 this.hoverDescriptionShow = function(inEvent) {

 var itemID = this.id.split("_")[1];
 var mouseX = cart.getMouseX(inEvent);
 var mouseY = cart.getMouseY(inEvent);
 var descObj = document.getElementById("desc_" + itemID);
 descObj.style.left = mouseX;
 descObj.style.top = mouseY;
 descObj.style.display = "block";

 } // End hoverDescriptionShow().

Note the use of the this keyword. In the context of this method, which as you’ll remember
is attached to a given item’s image, the this keyword is a reference to the image. That should
explain why we do this.id to get the itemID: it’s the DOM ID of the element. We again
split() this to get the second element of the resultant array, which is the itemID we want. We
then call those mouse methods to get the current coordinates of the mouse on the page. Once
we have that, we get a reference to the <div> that contains the description of the item being
hovered over. We then set the left and top style attributes of this <div> to the mouse coordinates
we just got, and finally show the <div> by setting its display style attribute to block. The description
is then visible to the user at the place where the mouse cursor hovered over the image.

The last method in the Cart class is the hoverDescriptionHide() method. It just gets the
itemID in the same way as in hoverDescriptionShow() (because this method is the event handler
attached to the onMouseOut event of the image) and sets its display style attribute to none.
That’s it.

Now, let’s look at the page that shows the contents of our shopping cart, viewCart.htm (if
you can believe it!).

Writing viewCart.htm
The viewCart.htm file takes a bit of a leap of faith. We have some JavaScript in it that is emulating
what the server would do. There is no JavaScript that would actually run on the client if this
were a full-blown e-commerce site.

Before we get too far into that though, let’s have a look at this page, shown in Figure 10-12.

Zammetti-816-4C10.fm Page 392 Friday, March 9, 2007 9:10 AM

C H A P T E R 1 0 ■ S H O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T 393

Figure 10-12. Viewing the contents of the cart as rendered by the viewCart.htm page

I’ll call out bits of the code as needed here. As you take a look at the full source, you’ll first
see the style sheet import and the JavaScript imports you’ve seen elsewhere.

Showing the Cart’s Contents

Next is some JavaScript encapsulated in a single page-scope function: viewCart(). This func-
tion is called onLoad of the page and it is where that leap of faith I mentioned comes into play.
You need to pretend that this isn’t really here as you conceptualize this code. This function is
actually something that would be done server side, but since we have no server to work with,
it’s here.

This function is responsible for rendering the markup based on the contents of the cart.
Although it’s a fair volume of code, it’s also fairly simple, consisting of just a series of string
concatenations by and large.

viewCart() begins with a call to getCartItems() on the cart object. Remember that this
returns the collection of CartItems in the cart. It then checks to be sure this array has a length
other than zero. If it doesn’t, it just renders a quick little message:

Zammetti-816-4C10.fm Page 393 Friday, March 9, 2007 9:10 AM

394 C H A P T E R 1 0 ■ SH O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T

 // No items in cart, that's easy!
 document.getElementById("divCartContents").innerHTML =
 "<center>
Your cart is empty
</center>";

As you can see, this message is inserted into the divCartContents <div>, and that’s all the
user sees in this case.

If the cart isn’t empty, then viewCart() begins to construct the markup for the cart
contents display:

 var htmlOut = "<table width=\"100%\" border=\"0\" ";
 htmlOut += "cellpadding=\"6\" cellspacing=\"2\"";
 htmlOut += "<tr class=\"cssHeaderFooter\">";
 htmlOut += "<td align=\"center\"> </td>";
 htmlOut += "<td align=\"center\">Quantity</td>";
 htmlOut += "<td>Description</td>";
 htmlOut += "<td align=\"right\">Total Price</td></tr>";
 var rowStrip = false;
 var cartTotal = 0;

Also notice the two variables at the end: rowStrip and cartTotal. rowStrip is used to have
alternate rows in the table a different color, giving the striped effect that is common in tabular
displays. cartTotal is the accumulation of the dollar amount of all the items in the cart.

Constructing the Markup That Displays the Cart Contents

Next, we begin to iterate over the array of CartItem objects. For each, we get its itemID and
quantity. We then get the corresponding CartItem for it via a call to catalog.getItem(nextItemID),
where nextItemID is the itemID of the CartItem. With those two objects in hand, it’s a simple
matter of constructing some HTML:

 htmlOut += "<tr";
 // If this row should be striped, apply the appropriate class.
 if (rowStrip) {
 htmlOut += " class=\"cssStripRow\"";
 }
 rowStrip = !rowStrip;
 htmlOut += ">";
 // Now just generate some straightforward markup.
 htmlOut += "<td align=\"center\">";
 htmlOut += "<a href=\"mockServer.htm?function=delete&" +
 "itemIndex=" + i + "\">Delete";
 htmlOut += "</td>";
 htmlOut += "<td align=\"center\">";
 htmlOut += "<form name=\"updateQuantity\" method=\"get\" " +
 "action=\"mockServer.htm\">";
 htmlOut += "<input type=\"hidden\" name=\"function\" " +
 "value=\"updateQuantity\">";
 htmlOut += "<input type=\"hidden\" name=\"itemIndex\" value=\"" +
 i + "\">";

Zammetti-816-4C10.fm Page 394 Friday, March 9, 2007 9:10 AM

C H A P T E R 1 0 ■ S H O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T 395

 htmlOut += "<input type=\"text\" size=\"3\" maxlength=\"2\" " +
 "name=\"quantity\" value=\"" + nextItemQuantity + "\">";
 htmlOut += "<input type=\"submit\" value=\"Update\">";
 htmlOut += "</form>";
 htmlOut += "</td>";
 htmlOut += "<td>" + catalogItem.getItemTitle() + "
";
 htmlOut += "<div class=\"cssSmallDescription\">";
 htmlOut += catalogItem.getItemDescription() + "</div></td>";
 // Now some math: the total dollar amount has to be rounded for
 // proper display. The basic logic harkens back to pre-algebra:
 // * Multiply the number by 10^x
 // * Apply Math.round() to the result
 // * Divide the result by 10^x
 var itemTotalAmount = nextItemQuantity * catalogItem.getItemPrice();
 itemTotalAmount = Math.round(itemTotalAmount * 100) / 100;
 htmlOut += "<td align=\"right\">" + itemTotalAmount + "</td>";
 htmlOut += "</tr>";
 // Add cart amount to cart total.
 cartTotal += nextItemQuantity * catalogItem.getItemPrice();

You can see the usage of the rowStrip variable here. Its value is inverted with each itera-
tion, to alternate the style class applied to each row. The other interesting thing here is the
calculation of the dollar amount for each item. This is just some simple multiplication: the
quantity of the item times the price per unit. However, we need to do the same rounding you
saw in the Cart class; otherwise, we might have a wild number of decimal places! You can also
see where the value is added to cartTotal at the end.

Showing the Cart Total

Speaking of cartTotal, once this loop completes, we have one thing left to do, and that is to
render the footer of the table where we can see the total of the cart:

 htmlOut += "<tr class=\"cssHeaderFooter\">";
 // Now some math: the total dollar amount has to be rounded for proper
 // display. The basic logic harkens back to pre-algebra:
 // * Multiply the number by 10^x
 // * Apply Math.round() to the result
 // * Divide the result by 10^x
 cartTotal = Math.round(cartTotal * 100) / 100;
 htmlOut += "<td align=\"right\" colspan=\"4\">Total Of Cart: " +
 " " + cartTotal + "</td>";
 htmlOut += "</tr>";
 htmlOut += "</table>";
 document.getElementById("divCartContents").innerHTML = htmlOut;

Once again we have that math, which is becoming far too familiar. (Hint: wouldn’t it be
nice to have an external function you could call to round a number to a specified number of
decimal places? A natural fit for jscript.math, don’t you think?)

Zammetti-816-4C10.fm Page 395 Friday, March 9, 2007 9:10 AM

396 C H A P T E R 1 0 ■ SH O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T

We have only to insert the htmlOut string’s value into the divCartContents <div>, and we’ve
constructed the markup for the page—lock, stock, and barrel.

As I said, it’s pretty straightforward code, but again, you have to pretend it isn’t really here,
even though it is. It’s sort of not here, since it would be done by the server, but there it is, and
you should understand it, even though you have to pretend it isn’t there sort of . . . sorry, too
much coffee today.

Writing checkout.htm
I’m almost embarrassed to be dissecting this particular file, because it is an absolutely trivial bit
of code. Still, I like completeness, so it shall be done anyway. In Figure 10-13, you can see the
result of the checkout.htm file.

Figure 10-13. The checkout page (not much to see I admit, but presented for the sake of completeness)

The checkout.htm file is basically supposed to represent the final purchase step of the shop-
ping cart experience. When the user clicks the Check Out link on the view cart page, the server

Zammetti-816-4C10.fm Page 396 Friday, March 9, 2007 9:10 AM

C H A P T E R 1 0 ■ S H O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T 397

would be accessed and the purchase would complete, probably by getting things like credit
card information, shipping instructions, and so forth from the user. Since we’re not dealing
with the server side, in its place, we have this page. It’s nothing but my lame attempt at humor
and a placeholder for a full-blown server process.

The code for this page is shown in Listing 10-8.

Listing 10-8. The checkout.htm File—To Say It’s Not Rocket Science Would Be an Understatement!

<html>

 <head>

 <title>Shopping Cart</title>

 <link rel="StyleSheet" href="css/styles.css" type="text/css">

 </head>

 <body class="cssBody">

 <table border="0" cellpadding="6" cellspacing="0" width="600"
 align="center" class="cssInstructionsTable">
 <tr><td colspan="2">
 <div class="cssCheckoutText">
 This is where checkout would occur in a full-blown shopping cart.
 Well, assuming the cart wasn't empty of course. In real life,
 checking out would require a server, and we don't have one here, so
 this "fake" response constitutes an obligation on your part to
 purchase whatever you've put in your cart... now go to the store and
 hand the nice man or woman at the counter your money... better yet,
 just send it to me (just kidding! ... unless you were writing out the
 check already, because I naturally wouldn't want you to waste one!)
 </div>
 </td></tr>
 <tr>
 <td>
 View Cart
 </td>
 <td align="right">
 Back To The Catalog
 </td>
 </tr>
 </table>

 </body>

</html>

Zammetti-816-4C10.fm Page 397 Friday, March 9, 2007 9:10 AM

398 C H A P T E R 1 0 ■ SH O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T

It is quite literally nothing but straight HTML. At the bottom, you see two links that refer-
ence the mock server: one to return to the view cart page and one to return to the catalog view
page. Aside from those links, there’s nothing special about this page.

Only one part of the application remains to explore, but it is a key piece: our mock server.
Don’t change the channel now!

Writing mockServer.htm
After our long journey, we finally arrive at the final piece of the puzzle: our mock server, contained
in mockServer.htm. As mentioned earlier, the idea of a mock server is to have a simple HTML
page that all your application’s requests target, and have this page pretend to be a server. You
saw a simple example of how to accomplish this, and in reality, the full-blown mockServer.htm
doesn’t do a whole lot more.

After some initial JavaScript imports, we hit upon the key to making it all work, which is the
process() function:

 function process() {

 var func = jscript.page.getParameter("function");
 if (func) {
 func = "process" + func.substr(0, 1).toUpperCase() + func.substr(1);
 if (eval("window." + func)) {
 eval(func + "();");
 } else {
 alert("Unimplemented function received")
 }
 }

 } // End process().

This function is called onLoad of the page. It is what drives everything, and you can view
this as you would the component on the server that decides which operation to perform (a
FrontServlet in Java parlance, for instance, or a switching ASP page in the Microsoft world). It
grabs the function request parameter and switches on it, calling the appropriate function to
service the function that was requested by the call. It just takes in the name of the function via
the "function" request parameter, and then forms the function name to call by prepending the
string "process" to the function, with the first letter of the function converted to uppercase. So,
for the function viewDescription, for instance, we would wind up with processViewDescription,
which as you’re about to see, is one of the functions present on this page. Once we have the
name of the function, we check to see if it exists as a child of the window object, and if so, we use
the eval() function to execute it. If an unknown function is received, we just pop up an alert
saying so. It’s not the most robust mechanism imaginable to be sure, but sufficient for our
purposes.

The functions that process() calls serve to process a particular service request, beginning
with processViewDescription(). This is called when the Description link is clicked when in
non-JavaScript mode. It does a simple redirect to the appropriate page in /descs:

Zammetti-816-4C10.fm Page 398 Friday, March 9, 2007 9:10 AM

C H A P T E R 1 0 ■ S H O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T 399

 function processViewDescription() {

 var itemID = jscript.page.getParameter("itemID");
 window.location = "descs/id" + itemID + ".htm";

 } // End processViewDescription().

In this case, the called function would have passed an itemID parameter as well, which
jscript.page.getParameter() pleasantly gets for us with no fuss. Since the pages in /descs are
named idX.htm, where X is the itemID, it’s a simple matter to construct the appropriate URL
and redirect to it via setting window.location.

Next up is processPurchase(), which is only marginally more complex and is what is
called when the user clicks the Add To Cart button on the item description page when in
non-JavaScript mode:

 function processPurchase() {

 // Add new item.
 var newItemID = jscript.page.getParameter("itemID");
 var newItemQuantity = jscript.page.getParameter("quantity");
 var itemToAdd = new CartItem();
 itemToAdd.setItemID(newItemID);
 itemToAdd.setQuantity(parseInt(newItemQuantity));
 cart.addItem(itemToAdd);

 window.location = "viewCart.htm";

 } // End processPurchase().

Once again, we get the itemID parameter, and also the quantity parameter in this case. We
then instantiate a new CartItem object and set the itemID and quantity on it. Then it’s a simple
matter of calling cart.addItem() and passing it the CartItem. That takes care of rewriting the cookie
as well. Then we redirect back to viewCart.htm so the added item will be reflected to the user.

processUpdateQuanitity() is found next, and it is used when the user updates the quantity
of an item from the view cart page while in non-JavaScript mode:

 function processUpdateQuantity() {

 var itemIndex = jscript.page.getParameter("itemIndex");
 var newQuantity = jscript.page.getParameter("quantity");
 if (newQuantity == 0) {
 processDelete();
 } else if (newQuantity > 0) {
 cart.updateQuantity(itemIndex, newQuantity);
 }

 window.location = "viewCart.htm";

 } // End processUpdateQuantity().

Zammetti-816-4C10.fm Page 399 Friday, March 9, 2007 9:10 AM

400 C H A P T E R 1 0 ■ SH O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T

It begins similarly to processPurchaseItem(), but then gets a little different. First, it checks
if the user entered zero for the quantity. If so, processDelete() is called to remove the item from the
cart. If the value is greater than zero though, all we need to do is call the updateQuantity() method
of the cart object, passing it the index of the item in the cartItems array (which is one of the
hidden form fields rendered in the viewPage.htm file) and the new quantity requested, and
we’re all set. Note that if the user enters a nonnumeric value, the quantity will not be updated,
but no error will occur either. Entering something like 12A is a little more interesting: it will
register as 12, which is better than an error!

Speaking of processDelete():

 function processDelete() {

 var itemIndex = jscript.page.getParameter("itemIndex");
 cart.deleteItem(itemIndex);

 window.location = "viewCart.htm";

 } // End processDelete().

All we need here is the itemIndex parameter, and we hand that off to cart.deleteItem(),
and thy will be done! A quick redirect to viewCart.htm, and we’re finished.

Only three functions remain, and they are basically the same, so I will discuss them as one
here. These three functions—processViewCart(), processViewCatalog(), and processCheckout()—
are nothing but simple redirects to HTML pages, like so:

 function processViewCart() {

 window.location = "viewCart.htm";

 } // End processViewCart().

The reason these exit, rather than simply directing to the final HTML pages, is that again,
this is all meant to emulate a server. If we wanted to view the contents of the cart, we may be
able to jump directly to some page—JSP, ASP, PHP, and so on. But many times, we need to hit
some server component first, because JSP, ASP, and PHP are view components, and there is
typically more to a modern web application. For example, the application will have Control
and Model layers if it uses the Model-View-Controller architecture.5 So, if we’re going to play
the part of the server, we need to do it fully. That means that, even though its just a simple redi-
rect, the server would be doing more, such as rendering the contents of the page in the case of
viewCart.htm.

Whew, that’s it. We’ve finished! I hope you’ve enjoyed the ride. I think the whole mock
server technique is something really valuable that can save you a lot of time and headaches

5. The Model-View-Controller (MVC) architecture is a way to implement an application where there is a
separation, or decoupling, of the components that render the view a user sees (the View layer) and the
data it uses (the Model layer), and also the business logic that operates on it (typically, part of the Model as
well). This is accomplished by the view never directly interacting with the model, instead going through an
intermediary (Control) layer. The goal is to allow changing any of these components without necessarily
affecting the others.

Zammetti-816-4C10.fm Page 400 Friday, March 9, 2007 9:10 AM

C H A P T E R 1 0 ■ S H O P P I N G I N S T Y L E : A D R A G - A N D -D R O P S H O P P I N G C A R T 401

during development. I hope you’ve also enjoyed seeing just a little of MochiKit and how truly
easy it can make things.

And by the way, you have a useful little shopping cart to boot! Implement the final
checkout stage, and you should be good to go.

Suggested Exercises
The application presented in this chapter isn’t likely to be the subject of anyone’s doctoral
thesis any time soon, since it’s just not all that complex, but it does most of the things a shop-
ping cart should. That being said, here are a few improvements you could make to gain some
more experience:

Round those corners: MochiKit offers an effect that rounds the corners of elements, and it
would be great to apply this to all the square boxes (the white areas) on all the pages. I
purposely left this for you as a suggestion, so you would need to delve into the MochiKit
docs a bit. I will tell you that it isn’t quite as easy as it seems and may require further
changes to the application to implement. (Hint: does that effect work on tables, I wonder?).

Implement the server side: Yes, this book is focused on the client side, and yes, this partic-
ular application goes out of its way to avoid the server part of the equation. But it couldn’t
hurt to set up the server side in your technology of choice.

Add some effects: This is again a good way to get more familiar with MochiKit. How about
the item you drop on the cart shrinking into it? How about when you delete an item from
your cart, it first fades out of view and collapses the table before submitting to the server?

I’m sure you can think of plenty more, but those should give you a good start. Have fun!

Summary
In this chapter, you got your first taste of MochiKit, a very nice little JavaScript library. You saw
how its drag-and-drop support is very powerful but yet still very simple to use and allows you
to have very little code that does quite a bit. You also saw how to create a mock server that
allows you to do all your development strictly in the browser while not having to change your
methodology or code from what you would do with a server in the mix. Finally, you also saw
how you can take a fairly mundane application like a shopping cart and spiff it up just a bit for
those who want the next-generation web experience.

Zammetti-816-4C10.fm Page 401 Friday, March 9, 2007 9:10 AM

403

■ ■ ■

C H A P T E R 1 1

Time for a Break:
A JavaScript Game

In the first book I ever had published (Practical Ajax Projects with Java Technology, Apress, 2006),
the final project—the apex of the book—was an adventure game named Ajax Warrior. It may
well be the start of a trend, where every book I write includes a game, because that’s precisely
what we’re going to build in this chapter! No, it won’t be Ajax Warrior again. It will be a more
arcade-style game, since there is no network latency to bother us.

You’ll see many neat tricks here, a lot of JavaScript and DOM scripting, and even some
basic game theory along the way. At the end, you’ll have something that you can use to slack off
at work any time you wish, or anywhere else you have a browser, for that matter! We all know
the saying . . . all work and no play makes Homer . . . something . . . something,1 so let’s stop the
axe from falling, shall we?

K&G Arcade Requirements and Goals
The game we’ll build is a port of a PocketPC game that I wrote entitled K&G Arcade. The K&G
stands for Krelmac and Gentoo, who are two wisecracking aliens bent on the destruction of
the Earth. Unfortunately, they are like idiot teenagers, who just happen to have quantum
destructo beams!

In K&G Arcade, which you can see at http://www.omnytex.com/kgarcade, you play the part
of Henry, a mild-mannered farmer from jolly-old seventeenth-century England. Krelmac and
Gentoo abduct you one night, and force you to try to escape their spaceship, which consists of
five maze-like levels inhabited by teleporting robots that kill on contact. On each of those five
levels, you find five mini-games each, which you need to play and beat (by achieving a given
score in 60 seconds) in order to escape. You also meet up with other abductees, who you talk
to and try to gain their trust so that they will give you clues about certain mini-games that are
impossible to beat without a particular trick.

The full-blown version of K&G Arcade features cinematic cut scenes with Krelmac and
Gentoo cracking wise and generally making pests of themselves. It includes an all-original
soundtrack and hand-drawn cartoon graphics. K&G Arcade is actually the second game featuring

1. If you are a Simpsons fan, you almost certainly know the reference and are laughing right now. If you
aren’t, it’s a line from the episode “Treehouse of Horror V” in the segment entitled “The Shinning,”
a parody of The Shining. I suggest grabbing a copy—it’s a riot!

Zammetti-816-4C11.fm Page 403 Wednesday, March 14, 2007 11:27 AM

404 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

these characters, the first being Invasion: Trivia! (http://www.omnytex.com/products_
invasion_info.shtml). Going to that site will also lead you to a Flash cartoon introducing these
characters.

Now, our goal isn’t to port the entire full-blown K&G Arcade to JavaScript. Indeed, that
would be considerably more difficult, if possible at all, and would take up a book this size on its
own! Instead, we’ll scale it back quite a bit and implement just the mini-game portion. In fact,
we’ll build only 3 of the 25 mini-games. Let’s get into some details:

• We’ll implement three mini-games—Cosmic Squirrel, which is similar conceptually
to the classic Frogger; Deathtrap, which is inspired by the Indiana Jones movies; and
Refluxive, which is similar to Arkanoid, Breakout, and games in that mold (but without
actually breaking anything, as you’ll see!).

• We’ll implement a mini-game selection screen that includes a screenshot of the
mini-game.

• We should reuse existing code wherever possible. However, we will not be using any
libraries for this game. That’s because in writing games, you frequently want to be “as
close to the metal” as possible, and that’s the case here as well.

• Each mini-game should be its own class, and should inherit common code from a
base class.

• Extensibility should be a priority so that more mini-games can be added later with
little difficulty.

• In general, we want to keep global scope as clean as possible, and use good object-
oriented design techniques throughout.

When doing game programming, you often try to get as low-level as you can—as close to
the hardware as you can. The reason for this is simple: performance. In a game, a lot has to
happen in very short time periods, so there can’t be a lot of superfluous code executing or extra
work being done. One of the best ways to ensure this is to not entrust things to libraries. Now,
this isn’t an absolute. It is often true that you can get better performance with a well-written
library than without. It’s also true that in the modern era, you typically don’t get as low-level as
you used to in general, with or without a library. In the past, it wasn’t unusual to write important
portions of a game in assembly language so that it could be as optimized and tight as possible.
These days, that isn’t as prevalent (it’s still done, but not as often). So, in this particular appli-
cation, we won’t be using any libraries. We’ll be doing all “naked” JavaScript.

Programming a game in JavaScript isn’t fundamentally different from programming a
game in any other environment. Some of the details are different, of course, but the overall
concept is roughly the same. Rather than espouse those concepts here in one place, I’ll talk
about them as we progress through the code.

And with that statement, let’s begin our exploration of K&G Arcade by taking a look at the
game itself.

Zammetti-816-4C11.fm Page 404 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 405

A Preview of the K&G Arcade
Figure 11-1 shows the game title screen, which is what you see when you first load K&G Arcade
into your browser. The original K&G Arcade was a joint production of Omnytex Technologies,
which is my own little PocketPC software company, and Crackhead Creations (http://www.
planetvolpe.com/crackhead), which is the company of Anthony Volpe, the artist responsible
for the illustrations in this book,2 hence the logos on this screen. Anthony is also the artist who
did the graphics for K&G Arcade, as well as Invasion: Trivia!.

Figure 11-1. K&G Arcade title screen

The game selection screen, shown in Figure 11-2 is what you see after the title screen. It is
where you can select a mini-game to play. It also presents a few instructions, as well as a preview of
the mini-game and a brief description of it.

Cosmic Squirrel, shown in Figure 11-3, is one of the mini-games available in K&G Arcade.
This game is inspired by the classic Frogger, but with a twist: you play the part of a giant space
squirrel trying to get an intergalactic acorn (not that I know what an “intergalactic acorn” actually
is!). The player needs to avoid aliens, asteroids, spaceships, and comets to get the acorn.

2. If you would like to see some more of Anthony Volpe’s work, and some other things I have done with
him with Krelmac and Gentoo, as well as some other characters, have a look at the Downtown Uptown
site: http://www.planetvolpe.com/du. There, you’ll find some more adventures of Krelmac and Gentoo
in the form of a Flash cartoon and some comics, as well as a host of other characters from this universe.
Don’t let the strangeness of it all scare you away! Embrace the weirdness!

Zammetti-816-4C11.fm Page 405 Wednesday, March 14, 2007 11:27 AM

406 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

Figure 11-2. Game selection screen

Figure 11-3. Cosmic Squirrel

Zammetti-816-4C11.fm Page 406 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 407

Figure 11-4 shows the mini-game Deathtrap, which is inspired by Indiana Jones movies.
Your goal is to get to the door on the top of the screen by hopping from tile to tile. The problem
is that some of the tiles are electrified, and you will get zapped if you pick the wrong one.

Figure 11-4. Deathtrap

Finally, in Figure 11-5, you see the third mini-game, Refluxive. This is similar in concept to
Arkanoid or Breakout, but without the element of actually breaking through anything! Actually,
come to think of it, this game is much more like the movie Speed. Remember that Sandra Bullock
and Keanu Reeves mess, where they couldn’t let the bus go below a certain speed lest it be
blown to kingdom come? Well, this is similar. Someone told you to keep these bouncy things
going, and you do it—no questions asked!

Now that you’re familiar with what the game looks like, let’s get into seeing what makes it
tick. Buckle up, because it’s going to be quite a ride!

Zammetti-816-4C11.fm Page 407 Wednesday, March 14, 2007 11:27 AM

408 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

Figure 11-5. Refluxive

Dissecting the K&G Arcade Solution
As usual, we begin our exploration of this project by looking at its directory structure, shown in
Figure 11-6.

Beginning with the root directory, we find the index.htm file, which is the page loaded to
start the application. It contains the basic markup for the screen that the player sees, as well as
all the JavaScript imports required.

The img directory contains images not specific to any one mini-game, such as the graphics
for the title screen, game selection screen, and game console.

The js directory contains all our JavaScript source files, 11 of them in all. Two of them—
jscript.math.js and jscript.dom.js—are packages we created in Chapter 3. Four of them—
MiniGame.js, Title.js, GameSelection.js, and GameState.js—define classes that will be used.
The remaining five—main.js, keyHandlers.js, globals.js, gameFuncs.js, and
consoleFuncs.js—contain the code that makes use of those classes.

Each of our mini-games is stored in its own subdirectory, which has the same name as the
mini-game itself. Within each of those subdirectories is a single .js file, such as
CosmicSquirrel.js, with the code for that particular mini-game. Each of those subdirectories
also contains an img subdirectory, which houses the images specific to that mini-game.

Now, let’s get to looking at that code, shall we?

Zammetti-816-4C11.fm Page 408 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 409

Figure 11-6. K&G Arcade directory structure

Writing index.htm
index.htm is the first page loaded when we access the game, and it defines the overall layout of
things. It also “imports” all the other resources we need throughout the game. Let’s begin by
looking at the <head> of the page:

 <head>

 <title>K&G Arcade - The JavaScript version!</title>

 <link rel="StyleSheet" href="css/styles.css" type="text/css">

 <script src="js/jscript.dom.js"></script>
 <script src="js/jscript.math.js"></script>
 <script src="js/gameFuncs.js"></script>
 <script src="js/consoleFuncs.js"></script>
 <script src="js/keyHandlers.js"></script>
 <script src="js/globals.js"></script>
 <script src="js/GameState.js"></script>
 <script src="js/MiniGame.js"></script>
 <script src="js/Title.js"></script>
 <script src="js/GameSelection.js"></script>
 <script src="js/main.js"></script>
 <script src="cosmicSquirrel/CosmicSquirrel.js"></script>
 <script src="deathtrap/deathtrap.js"></script>
 <script src="refluxive/refluxive.js"></script>

 </head>

Zammetti-816-4C11.fm Page 409 Wednesday, March 14, 2007 11:27 AM

410 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

You see that first our style sheet (we’ll look at that next) is linked in. After that comes a
whole batch of JavaScript references. Since the process of dissecting this application will lead
us to explore each of these in turn, it would be a bit redundant to state what each is at this juncture.
Suffice it to say they are required to make everything work.

The body of the document then begins, and onLoad we see a call to a JavaScript function
named init(). This will initialize the application and get everything set up for us to play. This
function can be found in main.js, so we’ll get to that shortly.

After the opening <body> tag is the following section of markup:

 <!-- The div the title screen is contained in. -->
 <div id="divTitle" class="cssTitle">
 <table border="0" cellpadding="0" cellspacing="0" width="98%"
 height="100%" align="center">
 <tr>
 <td align="center" valign="middle">

 The JavaScript Version, v1.0

 Ported from the original PocketPC version, presented by:

 Press Any Key To Play
 </td>
 </tr>
 </table>
 </div>

This is pretty much straightforward HTML markup, which renders the title screen shown
earlier in Figure 11-1. The divTitle <div> will be hidden once the user presses a key to move
on to the game selection screen, which brings us to the block of markup that comes next:

 <!-- The div the game selection screen is contained in. -->
 <div id="divGameSelection" class="cssTitleGameSelection">
 <table border="0" cellpadding="0" cellspacing="0" width="98%"
 height="100%" align="center">
 <tr>
 <td align="center" valign="middle">
 Press the LEFT and RIGHT arrow keys to cycle through the
 available games, then press SPACE to play the one you want.
 Once playing a game, press the ENTER key to return here.

 <img src="img/ssCosmicSquirrel.gif" id="ssCosmicSquirrel"
 style="display:none;">
 <img src="img/ssDeathtrap.gif" id="ssDeathtrap"
 style="display:none;">
 <img src="img/ssRefluxive.gif" id="ssRefluxive"

Zammetti-816-4C11.fm Page 410 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 411

 style="display:none;">

 <div id="mgsDesc"></div>

 To check out the full PocketPC version of K&G Arcade,
 visit the Omnytex Technologies
 web site.
 </td>
 </tr>
 </table>
 </div>

Once again, this is simple, almost boring HTML. Note the screenshot images in the middle,
which are initially hidden. When the user is cycling through the screenshots to pick a game,
these images will be made visible with each arrow keypress. The mgsDesc <div> is where the
description of the game will be shown.

When the init() function I mentioned earlier fires, one of the things it does is to center
both the divTitle <div> and the divGameSelection <div>. It also centers the <div> that contains
the actual mini-games, which is named divMiniGame, and can be seen here:

 <!-- The div the game is contained in. -->
 <div id="divMiniGame" class="cssMiniGame">

 <div id="divGameArea" class="cssGameArea">
 </div>

 <div id="divStatusArea" class="cssStatusArea">
 Score: 0
 </div>

 <!-- Game frame -->
 <img src="img/gameFrame.gif" id="imgGameFrame"
 class="cssConsoleImage">

 <!-- Console left, middle and right -->
 <img src="img/consoleLeft.gif" id="imgConsoleLeft"
 class="cssConsoleImage">
 <img src="img/consoleMiddle.gif" id="imgConsoleMiddle"
 class="cssConsoleImage">
 <img src="img/consoleRight.gif" id="imgConsoleRight"
 class="cssConsoleImage">

 <!-- Left hand images -->
 <img src="img/leftHandNormal.gif" id="imgLeftHandNormal"
 class="cssConsoleImage">
 <img src="img/leftHandUp.gif" id="imgLeftHandUp"
 class="cssConsoleImage">

Zammetti-816-4C11.fm Page 411 Wednesday, March 14, 2007 11:27 AM

412 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

 <img src="img/leftHandDown.gif" id="imgLeftHandDown"
 class="cssConsoleImage">
 <img src="img/leftHandLeft.gif" id="imgLeftHandLeft"
 class="cssConsoleImage">
 <img src="img/leftHandRight.gif" id="imgLeftHandRight"
 class="cssConsoleImage">
 <img src="img/leftHandDL.gif" id="imgLeftHandDL"
 class="cssConsoleImage">
 <img src="img/leftHandDR.gif" id="imgLeftHandDR"
 class="cssConsoleImage">
 <img src="img/leftHandUL.gif" id="imgLeftHandUL"
 class="cssConsoleImage">
 <img src="img/leftHandUR.gif" id="imgLeftHandUR"
 class="cssConsoleImage">

 <!-- Right hand images -->
 <img src="img/rightHandUp.gif" id="imgRightHandUp"
 class="cssConsoleImage">
 <img src="img/rightHandDown.gif" id="imgRightHandDown"
 class="cssConsoleImage">

 <!-- Console light images -->
 <img src="img/gameFrameLeftLight1.gif" id="imgGameFrameLeftLight1"
 class="cssConsoleImage">
 <img src="img/gameFrameLeftLight2.gif" id="imgGameFrameLeftLight2"
 class="cssConsoleImage">
 <img src="img/gameFrameLeftLight3.gif" id="imgGameFrameLeftLight3"
 class="cssConsoleImage">
 <img src="img/gameFrameLeftLight4.gif" id="imgGameFrameLeftLight4"
 class="cssConsoleImage">
 <img src="img/gameFrameLeftLight5.gif" id="imgGameFrameLeftLight5"
 class="cssConsoleImage">
 <img src="img/gameFrameRightLight1.gif" id="imgGameFrameRightLight1"
 class="cssConsoleImage">
 <img src="img/gameFrameRightLight2.gif" id="imgGameFrameRightLight2"
 class="cssConsoleImage">
 <img src="img/gameFrameRightLight3.gif" id="imgGameFrameRightLight3"
 class="cssConsoleImage">
 <img src="img/gameFrameRightLight4.gif" id="imgGameFrameRightLight4"
 class="cssConsoleImage">
 <img src="img/gameFrameRightLight5.gif" id="imgGameFrameRightLight5"
 class="cssConsoleImage">

 </div>

Zammetti-816-4C11.fm Page 412 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 413

Perhaps the most important element here is divGameArea. This is the screen portion of the
game console where the mini-games take place. A bit of explanation may help here.

All of these images are the ones that make up the game console—the joystick, frame around
the mini-game, lights, and so on. These images do not change from mini-game to mini-game,
and that’s why they are static here. When the player moves while playing a mini-game, the left
hand on the joystick moves accordingly. When the user clicks the action button, the right hand
presses the button, too. Every half second, the lights on the frame randomly change. All this
animation is accomplished by hiding the images that change, and then showing the appropriate
new image.

For instance, let’s talk about the action button. When we start, the image of the button
not being pushed—the one with the ID imgRightHandUp—is showing, and the image of the
button being pushed—the one with the ID imgRightHandDown—is not. When the user clicks
the button, imgRightHandUp is first hidden, and then imgRightHandDown is shown. This is a simple
case, but it is how all the mini-games work as well, as you will see.

Writing styles.css
All of the markup in index.htm wouldn’t amount to a hill of beans without the style sheet in
styles.css to back it up, so let’s get familiar with that. The complete file is shown in Listing 11-1.

Listing 11-1. The styles.css File—The Main Style Sheet for the Game

/* Generic style applied to all elements. */
* {
 color : #ffffff;
 font-family : arial;
 font-size : 8pt;
 font-weight : bold;
}

/* Entire page (body element). */
.cssPage {
 background-color : #000000;
}

/* Style for div the title screen and game selection screens are */
/* contained in. */
.cssTitleGameSelection {
 border : 1px solid #ffffff;
 position : absolute;
 width : 240px;
 height : 320px;
}

Zammetti-816-4C11.fm Page 413 Wednesday, March 14, 2007 11:27 AM

414 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

/* Style for div the mini-games are contained in. */
.cssMiniGame {
 border : 1px solid #000000;
 position : absolute;
 width : 240px;
 height : 320px;
}

/* Style for the area where a mini-game takes place. */
.cssGameArea {
 position : absolute;
 left : 20px;
 top : 20px;
 width : 200px;
 height : 200px;
 overflow : hidden;
}

/* Style for the status area below the game console. */
.cssStatusArea {
 position : absolute;
 left : 0px;
 top : 302px;
 width : 240px;
 height : 20px;
 text-align : center;
}

/* Style applied to all game console images. */
.cssConsoleImage {
 position : absolute;
 display : none;
}

There isn’t really much to this style sheet when you get right down to it. First, you see that
generic “cover everything” selector that you’ve encountered in the previous projects. It deals
with just font styles, but it’s nice to cover everything in one clean move.

After that is cssPage, whose only purpose in life is to give the page a black background.
The next style, cssTitleGameSelection, is applied to the title screen div (divTitle) and the

game selection screen div (divGameSelection). While the name of the selector is perhaps a little
long, it pretty clearly describes what it’s for, no? It ensures that these <div> elements can be
centered by virtue of the position attribute being set to absolute. It also draws a border around
the <div> elements. Lastly, it sets the size. Note that the size 240-by-320 pixels is not arbitrary;

Zammetti-816-4C11.fm Page 414 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 415

this is Quarter VGA (QVGA) resolution, which was, at the time the full-blown version of K&G
Arcade was written, the default resolution of most PocketPC devices. Since all the graphics
were scaled for that resolution, that’s the resolution used in the JavaScript version here as well.

The cssMiniGame style is applied to the divMiniGame <div> element. Notice it is identical to
the cssTitleGameSelection style, except for the border color. Setting the border color to black
means it will be invisible on the black page background, so, in effect, the game console won’t
have the white border, but everything will take up the same amount of space, thereby avoiding
the game console seeming to move, or jump, relative to the game selection screen.

The cssGameArea style is probably the most important. One of the things the mini-games
need to be able to do, as can be seen in the Cosmic Squirrel mini-game, is clip. In other words,
when an object moves to the edges, it should appear to move off screen, not overlap the frame
or anything. To accomplish this, we set the overflow attribute to hidden. This means that any
content that is positioned out of the bounds of the <div> will be hidden, or clipped, precisely as
we want. As you can see, the actual game area is 200-by-200 pixels, and is positioned 20 pixels
from the left and top, placing it inside the frame, as expected, completing the illusion of clip-
ping when objects move out of its bounds.

After that is the cssStatusArea style. I’m sure you can guess this is applied to the
divStatusArea <div> element, which is where you see the score below the game console. All
text is horizontally centered within this <div> by setting the text-align attribute to center.

Lastly, you see the cssConsoleImage style, which is applied to all of the images that make
up the game console. Its main purpose is again to ensure that the image it is applied to can be
positioned absolutely and that it initially is hidden. The point about absolute positioning will
become clear when we look at the blit() function later on.

Writing GameState.js
You will see the GameState class used quite a bit throughout the code, so it makes sense to look
at it first. Its purpose is . . . wait for it . . . to store information about the current state of the game.
Figure 11-7 shows the UML diagram of this class.

Figure 11-7. UML diagram of the GameState class

Zammetti-816-4C11.fm Page 415 Wednesday, March 14, 2007 11:27 AM

416 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

The GameState class includes the following fields:

• gameTimer: A reference to the JavaScript timer used as the “heartbeat” of the game.

• lightChangeCounter: Used to determine when it’s time to update the lights on the game
console frame.

• currentGame: A reference to the current mini-game object (as well as the title screen and
game selection screens, which are essentially mini-games as far as the rest of the code is
concerned).

• score: This field’s purpose is abundantly obvious, I think!

• currentMode: Determines if a mini-game is in play.

• playerDirectionXXX: Five fields—playerDirectionUp, playerDirectionDown,
playerDirectionLeft, playerDirectionRight, and playerAction—used to determine in
which direction the player is currently moving, and if the action button is clicked.

Listing 11-2 shows this class in its entirety.

Listing 11-2. The GameState Class

function GameState() {

 // The main timer, 24 frames a second.
 this.gameTimer = null;

 // Count of how many frames have elapsed since the lights last changed.
 this.lightChangeCounter = null;

 // This is essentially a pointer to the current game. Note that the term
 // "game" is a little loose here because the title screen and the game
 // selection screen are also "games" as far as the code is concerned.
 this.currentGame = new Title();
 this.score = 0;

 // Mode the game is currently in: "title", "gameSelection" or "miniGame".
 this.currentMode = null;

 // Flag variables for player movement.
 this.playerDirectionUp = false;
 this.playerDirectionDown = false;
 this.playerDirectionRight = false;
 this.playerDirectionLeft = false;
 this.playerAction = false;

} // End GameState class.

Zammetti-816-4C11.fm Page 416 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 417

Writing globals.js
In keeping with the theme throughout this book of not polluting the global namespace, you’ll
see just a small handful of values in the globals.js file, shown in Listing 11-3.

Listing 11-3. Not a Whole Lot of Globals in This Application, But They Count!

// Counter, reset to 0 to start each frame, used to set the z-index of
// each element blit()'d to the screen.
var frameZIndexCounter = 0;

// Key code constants.
var KEY_UP = 38;
var KEY_DOWN = 40;
var KEY_LEFT = 37;
var KEY_RIGHT = 39;
var KEY_SPACE = 32;
var KEY_ENTER = 13;

// Structure that stores all game state-related variables.
var gameState = null;

// This is an associative collection of all the images in the game.
// This saves us from having to go to the DOM every time to update one.
var consoleImages = new Object();

The frameZIndexCounter variable is used to ensure proper z-ordering when images are
blit()’d, which will be discussed in the next section. Next you see a batch of pseudo-constants
(remember that there are no real constants in JavaScript), which define various keys that can
be pressed. We also find the gameState variable, which will be the reference to the one and only
GameState object used throughout the code. Lastly, the consoleImages array will store refer-
ences to the images making up the game console, which also will be discussed shortly.

Writing main.js
main.js is essentially the heart and soul of K&G Arcade. You will find that it makes use of func-
tions found in the other JavaScript files, so you’ll read “we’ll get to this soon” fairly often. Rest
assured, I’m not lying—we will get to those things soon! But understanding the basic core is
what looking at main.js is all about, so let’s get to it.

The init() Function

As you will recall from looking at index.htm, when the page loads, in response to the onLoad
event, the init() function is called. Now it’s time to see what that function is all about:

Zammetti-816-4C11.fm Page 417 Wednesday, March 14, 2007 11:27 AM

418 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

function init() {

 gameState = new GameState();

 // Get references to all existing images. This is mainly for the console
 // images so that we don't have to go against the DOM to manipulate them.
 var imgs = document.getElementsByTagName("img");
 for (var i = 0; i < imgs.length; i++){
 consoleImages[imgs[i].id] = imgs[i];
 }

 // Center the three main layers.
 jscript.dom.layerCenterH(document.getElementById("divTitle"));
 jscript.dom.layerCenterV(document.getElementById("divTitle"));
 jscript.dom.layerCenterH(document.getElementById("divGameSelection"));
 jscript.dom.layerCenterV(document.getElementById("divGameSelection"));
 jscript.dom.layerCenterH(document.getElementById("divMiniGame"));
 jscript.dom.layerCenterV(document.getElementById("divMiniGame"));

 // Now hide what we don't need.
 document.getElementById("divGameSelection").style.display = "none";
 document.getElementById("divMiniGame").style.display = "none";

 // Hook event handlers.
 document.onkeydown = keyDownHandler;
 if (document.layers) {
 document.captureEvents(Event.KEYDOWN);
 }
 document.onkeyup = keyUpHandler;
 if (document.layers) {
 document.captureEvents(Event.KEYUP);
 }

 gameState.currentGame.init();

 gameState.gameTimer = setTimeout("mainGameLoop()", 42);

} // End init().

First you see a new GameState object being instantiated. Next is a hook that, as the comments
state, gets a reference to all the tags, those present in index.htm. We store a reference to
each in the consoleImages arrays. This is because, when you do game programming, it is espe-
cially important (most of the time) to write code that is as efficient as possible.

Zammetti-816-4C11.fm Page 418 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 419

KEEPING UP THE FRAMES-PER-SECOND (FPS) RATE

As you will see, a game usually (and certainly here) consists of a continuous loop. This loop calls on some code
to update the display some number of times per second. Each of these redraws is called a frame, as in frame
of animation. As I’m sure you know, there are 1000 milliseconds in one second. Game loops are usually
measured in frames per second (fps); that is, how many times per second the display is updated. For smooth
animation and game play, you want the frames per second to be as high as possible. Generally, you want it to
be no lower than around 24 fps, which is the approximate speed at which the human eye cannot easily discern
each frame. In other words, if you update the display ten times a second, your eye can rather easily track each
frame, and the animation will appear slow and choppy. At 24 fps and higher, your eye is fooled into thinking
there is continuous motion, which makes things look considerably smoother. The higher the better, but 24 fps
is kind of the magic number.

So, let’s do some simple math. If there are 1000 milliseconds in a second, and realizing that each frame
will take some amount of time to process and draw, we can determine how many milliseconds each frame can
take for a target frames per second. For 24 fps, we divide 1000 by 24, and we discover that each frame can take no
more than about 42 milliseconds to fully process. If a frame takes longer to deal with, then our frames per
second drop, and our game gets choppy and not visually pleasing. So, it becomes of paramount importance to
not exceed 42 milliseconds, and that’s why we have to think about optimization.

One of the killers, not just in game programming but in any browser-based DOM scripting, is accessing
elements in the DOM. It takes time to traverse the DOM tree, find the element requested, and return a refer-
ence to it. If you do this too many times per frame in a game application, you’ll quickly drop your frames-per-
second rate. One of the best ways to optimize here is simply to get references to any images (or other elements)
that you will need to access that you can up front and store those references. Getting an element in an array
that happens to be a reference to a DOM element is considerably faster than getting the DOM element directly.
A simple test can prove this:

<html>

 <head>

 <title>DOM/Array Access Test</title>

 <script>

 function testit() {

 // Time 1000 direct DOM accesses
 var timeStart = new Date();
 for (var i = 0; i < 5000; i++) {
 var elem = document.getElementById("myDiv");
 elem.innerHTML = i;
 }
 var directDOMTime = new Date() - timeStart;

Zammetti-816-4C11.fm Page 419 Wednesday, March 14, 2007 11:27 AM

420 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

 // Time 1000 accesses via array lookup
 var a = new Array();
 a[0] = document.getElementById("myDiv");
 timeStart = new Date();
 for (var i = 0; i < 5000; i++) {
 var elem = a[0];
 elem.innerHTML = i;
 }
 var arrayTime = new Date() - timeStart;

 // Display results
 document.getElementById("myDiv").innerHTML =
 "Time for direct DOM access: " + directDOMTime + "
" +
 "Time for array access: " + arrayTime;

 }

 </script>

 </head>

 <body>

 <input type="button" onClick="testit();" value="Test">

 <div id="myDiv"></div>

 </body>

</html>

Running this test, you’ll find that the array access method is always faster than the direct DOM access,
although I was surprised to find the difference isn’t as drastic as I had expected. Still, it was generally in the
200 to 300 millisecond range each time I ran it, which is a pretty significant amount for game programming,
as the math we went through earlier indicates.

Moving right along in our review of init(), we find six lines used to center the three main
<div> elements: divTitle, divGameSelection, and divMiniGame, corresponding to the title
screen, game selection screen, and the actual mini-games. To do this, we use the jscript.dom.
layerCenterH() and jscript.dom.layerCenterV() functions that we built in Chapter 3. See,
that code comes in handy, doesn’t it? Immediately after they are centered, the game selection
<div> and the mini-game <div> are hidden. This may seem a little bizarre. Why not just set
display:none in the style applied to those <div> elements? The answer is that the centering will
not work properly if the elements are hidden, because certain values those functions need are
not set by the browser if the element is hidden.

Zammetti-816-4C11.fm Page 420 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 421

Next are four lines of code that hook the keyDown and keyUp events so that our custom
handlers will fire. Note the need to have two statements per event handler because of the
difference in the event handling model of IE vs. Mozilla-based browsers. Just setting document.
keydown and document.keyup is sufficient in IE. But in Firefox and its ilk, this requires the addi-
tional captureEvents() call. By checking if document.layers is defined, which it would be only
in a non-IE browser, we can call captureEvents() only on browsers where it is applicable. As
mentioned in previous chapters, using object-existence checks to conditionally execute code
based on browser type is preferable to browser-sniffing code.

Finally, we have a call to gameState.currentGame.init(). This asks whatever the current
mini-game is to initialize itself. Interestingly, the title screen and game selection screens are
treated just like mini-games, even though they really aren’t. The very last thing done in init()
is to set a timeout to fire 42 milliseconds later (again, corresponding to our desired 24 fps) and
set to call the mainGameLoop() function when it does. And with that statement, let’s pause a
moment to discuss the overall structure of K&G Arcade.

The Main Game Loop Flow

Figure 11-8 shows a flow diagram that depicts how it all works in terms of the main game flow,
and also keyUp and keyDown event handling.

As you can see, the timeout set in init() fires 42 milliseconds later, calling mainGameLoop().
mainGameLoop() then updates the lights on the game console frame, as well as the hands, if a
mini-game is in progress. Then it calls processFrame() on the object pointed to by
gameState.currentGame. Once the mini-game’s processFrame() function returns, the timeout is
set again and this entire process repeats itself.

All of the mini-games, as well as the title and game selection screens, implement an inter-
face by virtue of “extending” the MiniGame class. A mini-game can override five functions:
init(), processFrame(), keyDownHandler(), keyUpHandler(), and destroy(). These represent
the life cycle of a mini-game. In addition, three fields are present: gameName, gameImages, and
fullKeyControl.

The init() function is called when the user decides to play that mini-game. Its job is to set
up the mini-game, which primarily involves loading graphics, but can be other tasks as well.

The processFrame() function is called once per frame for the game to do its work. It is
responsible for handling any game logic, as well as updating the screen.

keyDownHandler() and keyUpHandler() are called to deal with keypress and key release events.
destroy() is called when the user presses Enter to exit the mini-game. Its main job is to

delete the images loaded in init(), but it can do other tasks as well.
The gameName field must match the directory in which the mini-game resources are found

(each mini-game is presumed to be in its own directory off the root of the web application).
The gameImages is an associative array of images loaded in init(). This serves the same purpose
as the consoleImages array we briefly touched on earlier, namely to avoid direct DOM access
where possible. Lastly, the fullKeyControl, when set to true, means that the mini-game is in
full control of key events and will need to deal with everything.

All of these functions are implemented, but empty, in the base MiniGame class. Therefore, a
mini-game needs to override only those it is interested in. Likewise, except for the gameName
field, which must be set in init(), the fields have default values as well (fullKeyControl defaults to
false, and gameImages is an empty array).

Zammetti-816-4C11.fm Page 421 Wednesday, March 14, 2007 11:27 AM

422 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

Figure 11-8. Basic flow diagram of how K&G Arcade works, at a high level

Zammetti-816-4C11.fm Page 422 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 423

Starting a Mini-Game

Back in main.js, we find the startMiniGame() function:

function startMiniGame(inName) {

 // Reset generic game-related variables.
 gameState.playerDirectionUp = false;
 gameState.playerDirectionDown = false;
 gameState.playerDirectionRight = false;
 gameState.playerDirectionLeft = false;
 gameState.playerAction = false;
 gameState.score = 0;
 document.getElementById("divStatusArea").innerHTML = "Score: " +
 gameState.score;

 // Instantiate mini-game.
 if (inName == "cosmicSquirrel") {
 gameState.currentGame = new CosmicSquirrel();
 gameState.currentGame.init();
 } else if (inName == "deathtrap") {
 gameState.currentGame = new Deathtrap();
 gameState.currentGame.init();
 } else if (inName == "refluxive") {
 gameState.currentGame = new Refluxive();
 gameState.currentGame.init();
 }

 // Show the game and hide the game selection screen. Set the mode to indicate
 // mini-game in progress, and draw the console.
 gameState.currentMode = "miniGame";
 drawConsole();
 document.getElementById("divGameSelection").style.display = "none";
 document.getElementById("divMiniGame").style.display = "block";

} // End startMiniGame().

startMiniGame() is called when the user presses the spacebar at the game selection screen
to start the selected mini-game. It begins by resetting the five fields in gameState that indicate
in which direction the player is currently moving, and the one that indicates whether the action
button is pressed. It also resets the score to zero and updates it on the screen. Next, based on
the mini-game name that was passed in, it instantiates the class for that game and calls init()
on it.

Lastly, this function sets the current mode to indicate a mini-game is in progress, draws
the console, hides the game selection screen, and shows the mini-game. Remember that the
game loop is constantly firing at this point, so the very next iteration will result in the mini-
game beginning.

Zammetti-816-4C11.fm Page 423 Wednesday, March 14, 2007 11:27 AM

424 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

The blit() Function—Putting Stuff on the Screen

The very last function in main.js is the ubiquitous blit() function:

function blit(inImage, inX, inY) {

 inImage.style.left = inX + "px";
 inImage.style.top = inY + "px";
 inImage.style.zIndex = frameZIndexCounter;
 inImage.style.display = "block";
 frameZIndexCounter++;

} // End blit().

blit() is used to place an image on the screen at some specified coordinates. The first
argument to this function is a reference to the image object to place. Setting the left and top
style properties of this element places the image where it needs to be. The zIndex property is
set, and the frameZIndexCounter variable is reset at the start of every frame and incremented
every time an image is placed. This has the effect that each subsequent blit() is on top of
anything blit()’d before. This is generally how blit works. When the display property is set to
block, the image is actually shown on the screen, and the image is now visible where it was
specified to be.

■Note The term blit is a common one in graphics and game programming. Without getting into too much
detail, blit usually refers to drawing an image on the screen. In the case of a browser-based game, you won’t
be literally drawing an image; instead, you’ll be placing one somewhere, as is the case here (the difference
being that a blit in the classic sense draws the image pixel by pixel, whereas placing it in this case doesn’t).

 Writing consoleFuncs.js
consoleFuncs.js contains the code that deals with the game console, including the border with
lights around a mini-game, the hands below it, and the status area. It contains a whopping
three functions.

Zammetti-816-4C11.fm Page 424 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 425

The drawConsole() Function

The first function in consoleFuncs.js is drawConsole():

function drawConsole() {

 // These are the parts of the game console that do not need to be redrawn
 // with each frame.
 blit(consoleImages["imgGameFrame"], 0, 0);
 blit(consoleImages["imgConsoleLeft"], 0, 240);
 blit(consoleImages["imgConsoleMiddle"], 108, 240);
 blit(consoleImages["imgConsoleRight"], 215, 240);

} // End drawConsole().

As you can see by the comments, these four images are the ones that never change, unlike
the hands and lights, for instance, which do. Therefore, drawConsole() doesn’t need to be called
every frame, as the code for the mini-games does. If you are completely new to game design,
talking about drawing something every frame may be a bit foreign to you, but please bear with
me! When we look at main.js, I’ll explain further. For now, we need to keep going through what
you’ll see are essentially support functions for the main processing code, which is what this file
(and some other files) contains. So let’s keep chugging along here.

The updateLights() Function

The next function we come to is updateLights(), which in a nutshell is responsible for making
the lights flash around the game console frame. Here is its code:

function updateLights() {

 // Every half a second we are going to light some lights and restore others
 gameState.lightChangeCounter++;

 if (gameState.lightChangeCounter > 12) {

 gameState.lightChangeCounter = 0;

 // Hide the frame and lights so we start fresh.
 consoleImages["imgGameFrame"].style.display = "none";
 consoleImages["imgGameFrameLeftLight1"].style.display = "none";
 consoleImages["imgGameFrameLeftLight2"].style.display = "none";
 consoleImages["imgGameFrameLeftLight3"].style.display = "none";
 consoleImages["imgGameFrameLeftLight4"].style.display = "none";
 consoleImages["imgGameFrameLeftLight5"].style.display = "none";
 consoleImages["imgGameFrameRightLight1"].style.display = "none";
 consoleImages["imgGameFrameRightLight2"].style.display = "none";
 consoleImages["imgGameFrameRightLight3"].style.display = "none";
 consoleImages["imgGameFrameRightLight4"].style.display = "none";
 consoleImages["imgGameFrameRightLight5"].style.display = "none";

Zammetti-816-4C11.fm Page 425 Wednesday, March 14, 2007 11:27 AM

426 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

 // Draw mini-game area frame
 blit(consoleImages["imgGameFrame"], 0, 0);

 // Turn each light on or off randomly.
 if (jscript.math.genRandomNumber(0, 1) == 1) {
 blit(consoleImages["imgGameFrameLeftLight1"], 0, 22);
 }
 if (jscript.math.genRandomNumber(0, 1) == 1) {
 blit(consoleImages["imgGameFrameLeftLight2"], 0, 64);
 }
 if (jscript.math.genRandomNumber(0, 1) == 1) {
 blit(consoleImages["imgGameFrameLeftLight3"], 0, 107);
 }
 if (jscript.math.genRandomNumber(0, 1) == 1) {
 blit(consoleImages["imgGameFrameLeftLight4"], 0, 150);
 }
 if (jscript.math.genRandomNumber(0, 1) == 1) {
 blit(consoleImages["imgGameFrameLeftLight5"], 0, 193);
 }
 if (jscript.math.genRandomNumber(0, 1) == 1) {
 blit(consoleImages["imgGameFrameRightLight1"], 220, 20);
 }
 if (jscript.math.genRandomNumber(0, 1) == 1) {
 blit(consoleImages["imgGameFrameRightLight2"], 220, 62);
 }
 if (jscript.math.genRandomNumber(0, 1) == 1) {
 blit(consoleImages["imgGameFrameRightLight3"], 220, 107);
 }
 if (jscript.math.genRandomNumber(0, 1) == 1) {
 blit(consoleImages["imgGameFrameRightLight4"], 220, 150);
 }
 if (jscript.math.genRandomNumber(0, 1) == 1) {
 blit(consoleImages["imgGameFrameRightLight5"], 220, 193);
 }
 }

} // End updateLights().

First of all, lest we cause seizures in small children,3 we don’t want the lights to flash too
wildly; every half-second seems reasonable. Since we know we get 24 fps, we want to update
the lights only every twelfth frame, hence gameState.lightChangeCounter.

3. In December 1997, there were a few hundred incidents of Japanese children being thrown into seizures
while watching the popular cartoon Pokemon. Further details can be found at http://www.cnn.com/
WORLD/9712/17/video.seizures.update.

Zammetti-816-4C11.fm Page 426 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 427

Once we determine it’s safe (!) to change the lights, we begin by hiding all of them. Usually,
when you write a game, you begin each frame by clearing the screen. Since we aren’t dealing
with a big grid of pixels, we can’t really clear anything. But the equivalent operation is to hide
the images. Again, for optimization reasons, it isn’t really necessary to hide images that either
don’t change or can never have other images placed over them. However, in the case of the
lights, they need to be cleared, as does the frame; otherwise, you would see the lights turn on
but never turn off.

Once everything is cleared, we decide whether each of the ten lights is lit. To do this, we
use the jscript.math.genRandomNumber() function we developed in Chapter 3. Then, for whichever
lights are on, we blit them, and we’re finished.

The updateHands() Function

Only one function remains now, and that’s updateHands(), shown here:

function updateHands() {

 // Clear all images to prepare for proper display.
 consoleImages["imgLeftHandUp"].style.display = "none";
 consoleImages["imgLeftHandDown"].style.display = "none";
 consoleImages["imgLeftHandLeft"].style.display = "none";
 consoleImages["imgLeftHandRight"].style.display = "none";
 consoleImages["imgLeftHandUL"].style.display = "none";
 consoleImages["imgLeftHandUR"].style.display = "none";
 consoleImages["imgLeftHandDL"].style.display = "none";
 consoleImages["imgLeftHandDR"].style.display = "none";
 consoleImages["imgRightHandDown"].style.display = "none";

 // Display appropriate left-hand image.
 if (gameState.playerDirectionUp && !gameState.playerDirectionDown &&
 !gameState.playerDirectionLeft && !gameState.playerDirectionRight) {
 blit(consoleImages["imgLeftHandUp"], 29, 240);
 } else if (!gameState.playerDirectionUp && gameState.playerDirectionDown &&
 !gameState.playerDirectionLeft && !gameState.playerDirectionRight) {
 blit(consoleImages["imgLeftHandDown"], 29, 240);
 } else if (!gameState.playerDirectionUp && !gameState.playerDirectionDown &&
 gameState.playerDirectionLeft && !gameState.playerDirectionRight) {
 blit(consoleImages["imgLeftHandLeft"], 29, 240);
 } else if (!gameState.playerDirectionUp && !gameState.playerDirectionDown &&
 !gameState.playerDirectionLeft && gameState.playerDirectionRight) {
 blit(consoleImages["imgLeftHandRight"], 29, 240);
 } else if (gameState.playerDirectionUp && !gameState.playerDirectionDown &&
 gameState.playerDirectionLeft && !gameState.playerDirectionRight) {
 blit(consoleImages["imgLeftHandUL"], 29, 240);

Zammetti-816-4C11.fm Page 427 Wednesday, March 14, 2007 11:27 AM

428 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

 } else if (gameState.playerDirectionUp && !gameState.playerDirectionDown &&
 !gameState.playerDirectionLeft && gameState.playerDirectionRight) {
 blit(consoleImages["imgLeftHandUR"], 29, 240);
 } else if (!gameState.playerDirectionUp && gameState.playerDirectionDown &&
 gameState.playerDirectionLeft && !gameState.playerDirectionRight) {
 blit(consoleImages["imgLeftHandDL"], 29, 240);
 } else if (!gameState.playerDirectionUp && gameState.playerDirectionDown &&
 !gameState.playerDirectionLeft && gameState.playerDirectionRight) {
 blit(consoleImages["imgLeftHandDR"], 29, 240);
 } else {
 blit(consoleImages["imgLeftHandNormal"], 29, 240);
 }

 // Display appropriate left-hand image.
 if (gameState.playerAction) {
 blit(consoleImages["imgRightHandDown"], 145, 240);
 } else {
 blit(consoleImages["imgRightHandUp"], 145, 240);
 }

} // End updateHands().

Just as in the updateLights() function, we begin by hiding all the images for both hands.
Then we enter a giant if . . . else block to determine which left hand image should be
shown. Four variables help us make this determination, and those are the player direction
fields in GameState: playerDirectionUp, playerDirectionDown, playerDirectionLeft, and
playerDirectionRight. You’ll note that we need to cover eight cases: four cardinal directions
plus the four combinatorial directions (up/left, up/right, down/left, and down/right). The else
block handles when the player isn’t currently moving.

The same decision is made about the right hand image, but since there are only two states
there—either the button is pressed or it isn’t—the situation, and the code, is much more compact.

This is all it takes to make the hands on the bottom work. Well, this and the setting of the
four fields in the key handlers, as discussed next.

Writing keyHandlers.js
You’ve already met the two functions contained in the keyHandlers.js file in a sense, because
they are the functions that are called whenever a key is pressed or released: keyDownHandler()
and keyUpHandler(). Listing 11-4 shows the keyHandlers.js file.

Zammetti-816-4C11.fm Page 428 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 429

Listing 11-4. The keyHandlers.js File

/**
 * ==
 * Return the keycode of the key firing an event.
 * ==
 */
function getKeyCode(e) {

 var ev = (e) ? e : (window.event) ? window.event : null;
 if (ev) {
 return (ev.charCode) ? ev.charCode:
 ((ev.keyCode) ? ev.keyCode : ((ev.which) ? ev.which : null));
 }

} // End getKeyCode().

/**
 * ==
 * Handle key down events.
 * ==
 */
function keyDownHandler(e) {

 var keyCode = getKeyCode(e);

 if (!gameState.currentGame.fullKeyControl) {
 switch (keyCode) {
 case KEY_SPACE:
 gameState.playerAction = true;
 break;
 case KEY_UP:
 gameState.playerDirectionUp = true;
 break;
 case KEY_DOWN:
 gameState.playerDirectionDown = true;
 break;

Zammetti-816-4C11.fm Page 429 Wednesday, March 14, 2007 11:27 AM

430 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

 case KEY_LEFT:
 gameState.playerDirectionLeft = true;
 break;
 case KEY_RIGHT:
 gameState.playerDirectionRight = true;
 break;
 }
 }

 gameState.currentGame.keyDownHandler(keyCode);

} // End keyDownHandler().

/**
 * ==
 * Handle key up events.
 * ==
 */
function keyUpHandler(e) {

 var keyCode = getKeyCode(e);

 // Always handle exiting a mini-game, even if the mini-game has full control
 // over key events.
 if (keyCode == 13) {
 if (gameState.currentMode == "miniGame") {
 gameState.currentGame.destroy();
 gameState.currentGame = null;
 document.getElementById("divMiniGame").style.display = "none";
 gameState.currentGame = new GameSelection();
 gameState.currentGame.init();
 }
 }

 if (!gameState.currentGame.fullKeyControl) {
 switch (keyCode) {
 case KEY_SPACE:
 gameState.playerAction = false;
 break;
 case KEY_UP:
 gameState.playerDirectionUp = false;
 break;
 case KEY_DOWN:
 gameState.playerDirectionDown = false;
 break;

Zammetti-816-4C11.fm Page 430 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 431

 case KEY_LEFT:
 gameState.playerDirectionLeft = false;
 break;
 case KEY_RIGHT:
 gameState.playerDirectionRight = false;
 break;
 }
 }

 gameState.currentGame.keyUpHandler(keyCode);

} // End keyUpHandler().

Whenever a key is pressed, keyDownHandler() is called. This, in turn, calls they getKeyCode()
function. The reason for this is that the way you get the code for the key that was pressed is
different in IE than it is in other browsers, because their event model is fundamentally different. IE
works by having a page-scoped event object generated for the event, while Firefox and other
browsers pass that object directly to the handler function. So, in order to abstract away these
differences, getKeyCode() deals with it, while the two handler functions do not. Essentially, all
this function does is get the key code that was pressed. The first line contains some logic, the
end result of which is that the variable ev contains the relevant event object, regardless of in
which browser the application is running.

The line inside the if block looks a bit complex (and I usually frown on trinary logic state-
ments like this, especially strung together as this is, but it was actually cleaner to write it this
way than as a series of nested if statements), but it boils down to the fact that the browser in
use determines which property of the event object you need to go after to get the key code. In
some, it is charCode; in others, is it keyCode; and in still others, it is which. In any case, the rele-
vant key code is returned and the event handler itself continues.

Once the key code is determined, it’s a simple matter of a switch block to determine which
key was pressed, and then the appropriate flag is set in gameState. However, this switch block
will be hit only if the mini-game in play doesn’t have full control over key events. Some mini-
games will need this, as is the case with Deathtrap.

Lastly, the keyDownHandler() of the current mini-game is called so that it can do whatever
work needs to be done specific to that game (which may be none, as is the case with Cosmic
Squirrel).

The onKeyUp() handler is only slightly more complex. There, we first check if Enter is pressed.
If it is, we need to exit the current mini-game, which means calling destroy() on the current
mini-game class, hiding the divMiniGame <div>, and setting the game selection screen as the
current screen. Beyond that, it’s essentially the same as onKeyDown(), except that the player
direction flags get unset (set to false, in other words).

Zammetti-816-4C11.fm Page 431 Wednesday, March 14, 2007 11:27 AM

432 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

Writing gameFuncs.js
The gameFuncs.js file contains a couple of functions that are essentially “helper” functions for
mini-games. The first one we encounter is loadGameImage():

function loadGameImage(inName) {

 // Create an img object and set the relevant properties on it.
 var img = document.createElement("img");
 img.src = gameState.currentGame.gameName + "/img/" + inName + ".gif";
 img.style.position = "absolute";
 img.style.display = "none";

 // Add it to the array of images for the current game to avoid DOM access
 // later, and append it to the game area.
 gameState.currentGame.gameImages[inName] = img;
 document.getElementById("divGameArea").appendChild(img);

} // End loadGameImage().

Recall that each mini-game class, by virtue of extending the MiniGame base class (which
we’ll look at next) has a gameImages array that stores references to the images the mini-game
uses. This array gets populated by calls to the loadGameImage() function. It creates a new
element, sets its src attribute to the specified image (which loads it into memory), and sets it
up to be positional (position:absolute). It then appends it to the DOM as a child of the
divGameArea <div> element, which again is the viewport inside the game console frame where
the mini-games take place. This function also adds the reference to the gameImages array of the
current mini-game class.

As a corollary to the loadGameImage() function, there is the destroyGameImage() function:

function destroyGameImage(inName) {

 // Remove it from the DOM.
 var gameArea = document.getElementById("divGameArea");
 gameArea.removeChild(gameState.currentGame.gameImages[inName]);

 // Set element in array in null to complete the destruction.
 gameState.currentGame.gameImages[inName] = null;

} // End destroyGameImage().

When a mini-game’s destroy() function is called, it is expected to use the destroyGameImage()
function to destroy any images it loaded in init(). Not doing so would cause a memory leak,
since every time the game was started, the images would be created as new, but the previous
copies would still remain, unused. To destroy an image, we need to first remove it from the
DOM, and then set the reference in the array to null. The JavaScript engine’s garbage collector
will take care of the rest.

Zammetti-816-4C11.fm Page 432 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 433

The next function in the gameFuncs.js file is detectCollision():

function detectCollision(inObj1, inObj2) {

 var left1 = inObj1.x;
 var left2 = inObj2.x;
 var right1 = left1 + inObj1.width;
 var right2 = left2 + inObj2.width;
 var top1 = inObj1.y;
 var top2 = inObj2.y;
 var bottom1 = top1 + inObj1.height;
 var bottom2 = top2 + inObj2.height;

 if (bottom1 < top2) {
 return false;
 }
 if (top1 > bottom2) {
 return false;
 }
 if (right1 < left2) {
 return false;
 }
 if (left1 > right2) {
 return false;
 }

 return true;

} // End detectCollision().

Most video games, such as Cosmic Squirrel, require the ability to detect when two images—
two objects in the game (usually termed sprites)—collide. For instance, we need to know when
our player’s squirrel is squished by an asteroid. There are numerous collision-detection algo-
rithms, but many of them are not available to us in a browser setting. For instance, checking
each pixel of one image against each pixel of another, while giving 100% accurate detection,
isn’t possible in a browser. The method used here is called bounding boxes. It is a very simple
method that basically just checks the four corners of the objects. If the corner of one object is
within the bounds of the other, a collision has occurred.

As illustrated in the example in Figure 11-9, each sprite has a square (or rectangular) area
around it, called its bounding box, which defines the boundaries of the area the sprite occupies.
Note in the diagram how the upper-left corner of object 1’s bounding box is within the bounding
box of object 2. This represents a collision. We can detect a collision by running through a
series of tests comparing the bounds of each object. If any of the conditions are untrue, then a
collision cannot possibly have occurred. For instance, if the bottom of object 1 is above the top
of object 2, there’s no way a collision could have occurred. In fact, since we’re dealing with a
square or rectangular object, we have only four conditions to check, any one of which being
false precludes the possibility of a collision.

Zammetti-816-4C11.fm Page 433 Wednesday, March 14, 2007 11:27 AM

434 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

This algorithm does not yield perfect results. For example, in Cosmic Squirrel, you will
sometimes see the squirrel hitting an object when they clearly did not touch. This is because
the bounding boxes can collide without the object itself actually colliding. This could only be
fixed with pixel-level detection, which again, is not available to us. But the bounding boxes
approach gives an approximation that yields “good enough” results, so all is right with the world.

The last two functions, addToScore() and subtractFromScore() are pretty self-explanatory.
Note that subtractFromScore() must do a check to be sure the score doesn’t go below zero.
Some games will actually go into negative scores, but I saw no need to inflict more psycholog-
ical damage on the player! Zero is embarrassing enough, I figure. Both of them simply update
the score field in gameState, and update the status area as well.

Figure 11-9. An example of a basic bounding box collision detection algorithm

Zammetti-816-4C11.fm Page 434 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 435

Writing MiniGame.js
The MiniGame class is the base class for all mini-games, as well as the title screen and the game
selection screen. Figure 11-10 shows the UML diagram for this class. It contains no real executable
code, but it defines, in a sense, the interface that all mini-games must implement. The mini-
games, title screen, and game selection screen essentially extend this class, overriding the
default implementations of the methods it provides. Any that aren’t needed don’t have to be
overridden; the default do-nothing version of the method will be used.

Figure 11-10. UML diagram of the MiniGame class

In addition to the methods that are members of the MiniGame class, three fields are present:

• gameName: This field must be set by the subclass during initialization, and it must match
the directory in which the mini-game exists. This value is used to construct URLs for
images that a mini-game may load. The default value in the MiniGame class is null.

• gameImages: This array is initialized to an empty array in MiniGame, so no errors will occur
later if the mini-game doesn’t load any images. A mini-game without images would be
pretty pointless, however, so this array won’t stay empty for long.

• fullKeyControl: This field is essentially a flag that determines whether the mini-game is
in complete control of keyboard events, and none of the default behavior for these events
occurs (as seen in keyHandlers.js previously). The default value here is false, so the
default events will occur if the mini-game class does not override this value.

Writing Title.js
I did not put a UML diagram here for Title.js because it would look exactly like that of the
MiniGame class, since the Title class extends the MiniGame class.

How does a class extend another in JavaScript exactly? By using the prototype, of course!
As you saw in Chapter 1, every object in JavaScript has a prototype associated with it. This is
essentially a prototype for the structure of the class. When you set the prototype of class B to
class A, for instance, it means that class B will look like class A, plus whatever additional things
class B defines.

Zammetti-816-4C11.fm Page 435 Wednesday, March 14, 2007 11:27 AM

436 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

In the case of the Title class, we find this line of code at the end of Title.js:

Title.prototype = new MiniGame;

That is, conceptually, the same thing as saying the Title class extends the MiniGame class.
Let’s say the definition of the Title class was nothing but this:

function Title() { }

If you were to do this:

var t = new Title();

you would find that the object referenced by the variable t had five methods: init(), destroy(),
processFrame(), keyUpHandler(), and keyDownHandler(). You would also find that it had three
properties: gameName, gameImages, and fullKeyControl. This is by virtue of it extending the
MiniGame class, where those members are defined. Now, if the Title class contains an init()
method itself (which it does, in this case), then the object pointed to by the variable t would
have an init() method as defined in the Title class, not the empty version of that function
found in the MiniGame class. And if the Title class defines a function named doSomething(),
then the object pointed to by the variable t would contain a function doSomething(), even
though the MiniGame class does not. None of this is unusual in terms of class inheritance and
is what we would expect to be the case.

The Title class, shown in Listing 11-5, overrides three of the MiniGame class methods:
init(), destroy(), and keyUpHandler().

Listing 11-5. The Title Class

function Title() {

 /**
 * ==
 * Game initialization.
 * ==
 */
 this.init = function() {

 document.getElementById("divTitle").style.display = "block";

 } // End init().

 /**
 * ==
 * Handle key up events.
 * ==
 */
 this.keyUpHandler = function(e) {

Zammetti-816-4C11.fm Page 436 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 437

 gameState.currentGame.destroy();
 gameState.currentGame = null;
 gameState.currentGame = new GameSelection();
 gameState.currentGame.init();

 } // End keyUpHandler().

 /**
 * ==
 * Destroy resources.
 * ==
 */
 this.destroy = function() {

 document.getElementById("divTitle").style.display = "none";

 } // End destroy().

} // End Title class.

// Title class "inherits" from MiniGame class (even though, strictly speaking,
// it isn't a mini-game).
Title.prototype = new MiniGame;

Recall that I said that the Title class, while obviously not actually a mini-game, is treated
like one just the same. As such, when the application starts, it begins by instantiating a Title
class, and then calling init() on it. Here, the only job init() has is to make visible the <div>
containing the markup for the title screen. Then, when a key is pressed and released,
keyUpHandler() is called. It calls the destroy() method of the object pointed to by the gameState.
currentGame field, which is itself! destroy() simply hides the <div> for the title screen again.
Control then returns to keyUpHandler(), which instantiates a new instance of the GameSelection
class, sets gameState.currentGame to point to it, and calls init() on it. Remember that all this time,
the main game loop is firing via timeout. So, when the next iteration occurs, it will be calling
processFrame() on the GameSelection instance, hence essentially switching to that screen.

Note that the Title class does not override the processFrame() function. It has no work to
do there, so there’s no need to include that function. The default do-nothing implementation
in the MiniGame class will be fired once per frame, so no problem there.

Writing GameSelection.js
The GameSelection class is the class that deals with the game selection screen, not surprisingly!
It is again, like the Title screen class, treated just like a mini-game. Figure 11-11 shows its UML
diagram.

Zammetti-816-4C11.fm Page 437 Wednesday, March 14, 2007 11:27 AM

438 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

Figure 11-11. UML diagram of the GameSelection class

As in the Title class, when the user presses and releases a key from the game selection
screen, the GameSelection class is instantiated, and init() is called. There isn’t much to do
there, but let’s see it anyway:

 this.init = function() {

 gameState.currentMode = null;
 document.getElementById("divGameSelection").style.display = "block";

 } // End init().

First, we set gameState.currentMode to null, indicating a mini-game is not currently in
progress. Remember that when the user exits a mini-game, a new GameSelection instance will
be created, and init() will be called on it, hence it is a good place to set that value. After that,
it’s just a simple matter of showing the game selection <div>, and we’re all set.

For each frame, GameSelection has some work to do:

 this.processFrame = function() {

 document.getElementById("ssCosmicSquirrel").style.display = "none";
 document.getElementById("ssDeathtrap").style.display = "none";
 switch (this.showingGame) {
 case 1:
 document.getElementById("ssCosmicSquirrel").style.display = "block";
 document.getElementById("mgsDesc").innerHTML =
 "In space, no one can hear a giant space squirrel buy it";
 break;
 case 2:
 document.getElementById("ssDeathtrap").style.display = "block";
 document.getElementById("mgsDesc").innerHTML =
 "Hop on the tiles to escape the chasm without getting cooked";
 break;
 }

 } // End processFrame().

Zammetti-816-4C11.fm Page 438 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 439

It begins with hiding the screenshot preview images for our mini-games. Since there aren’t
too many here, and speed isn’t really of the essence as it is in a mini-game, we don’t load refer-
ences to these images into an array to avoid the DOM lookups as previously discussed. Instead,
we get a reference to the images each time through. After they are hidden, we determine which
mini-game preview is currently showing, and we show that appropriate image object, and also
display the appropriate description. That’s all there is to it.

The keyUpHandler() is where the majority of the work for the GameSelection class actually
is, as you can see for yourself:

 this.keyUpHandler = function(e) {

 switch (e) {
 case KEY_LEFT:
 this.showingGame--;
 if (this.showingGame < 1) {
 this.showingGame = this.numGames;
 }
 break;
 case KEY_RIGHT:
 this.showingGame++;
 if (this.showingGame > this.numGames) {
 this.showingGame = 1;
 }
 break;
 case KEY_SPACE:
 gameState.currentGame.destroy();
 gameState.currentGame = null;
 switch (this.showingGame) {
 case 1:
 startMiniGame("cosmicSquirrel");
 break;
 case 2:
 startMiniGame("deathtrap");
 break;
 case 3:
 startMiniGame("refluxive");
 break;
 }
 break;
 }

 } // End keyUpHandler().

When the user presses the left or right arrow key, we decrement or increment the value
of the showingGame field correspondingly. When decrementing, when we get below 1 (which
represents the first mini-game), we jump to the number of mini-games as defined by the
numGames field. Likewise, when we get above the number of mini-games, we jump back to 1.
This makes it so that no matter how many mini-games we have, the list will cycle back to the

Zammetti-816-4C11.fm Page 439 Wednesday, March 14, 2007 11:27 AM

440 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

other end when the bounds are reached on either end. When the user presses the spacebar, it’s
time to begin the currently selected mini-game. To do so, we call the startMiniGame() function,
passing the name of the game to start. That function takes care of all the details of starting a
game, as you saw earlier.

Finally, the destroy() function is very simple:

 this.destroy = function() {

 document.getElementById("divGameSelection").style.display = "none";

 } // End destroy().

We just hide the <div> containing the game selection screen, and our work here is done!

Writing CosmicSquirrel.js
OK, now we get to the really good stuff! We’ve gone through all the code that, in effect, makes
up the plumbing of K&G Arcade. At the end of the day though, it’s all about the mini-games!
This is where the bulk of the action is, and also where the nongeneric code is found. Before we
check out the code though, let’s get the lay of the land, so to speak.

In Figure 11-12, you see the CosmicSquirrel class itself. You will by now notice that it
extends the MiniGame class, and because of that, it exposes a known interface with our five by
now well-known methods, as well as our three common attributes. As you can also see, it
contains several unique fields: ObstacleDesc, PlayerDesc, AcornDesc, player, acorn, and obstacles.
The first three of these are themselves classes that are defined inside the CosmicSquirrel class.
This is akin to an inner class in Java. They could just as easily have been defined outside the
CosmicSquirrel class, but I felt that since they are used by only that class, it made sense to
define them inside, to make the relationship somewhat more explicit. The other three fields are
instances of those inner classes (well, player and acorn are; obstacles is actually an array of
ObstacleDesc objects).

Figure 11-12. UML diagram of the CosmicSquirrel class

Zammetti-816-4C11.fm Page 440 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 441

Setting Up the Obstacle, the Player, and the Acorn

Figure 11-13 shows the UML diagram of the ObstacleDesc class. This class, whose name is short
for Obstacle Descriptor, is used to represent an obstacle on the screen, which could be an alien,
spaceship, asteroid, or comet. Each of these objects defines the ID of the object, its X/Y loca-
tion, the width and height of the image that represents it on the screen, the direction it is currently
moving in, and its speed.

Figure 11-13. UML diagram of the ObstacleDesc class

The code for the ObstacleDesc class is as follows:

 function ObstacleDesc(inID, inX, inY, inDir, inSpeed, inWidth, inHeight) {
 this.id = inID;
 this.x = inX;
 this.y = inY;
 this.width = inWidth;
 this.height = inHeight;
 this.dir = inDir;
 this.speed = inSpeed;
 } // End ObstacleDesc class.

It is, in effect, just a simple data structure. Note that its argument list, which is its constructor
(since that’s in effect what any function defining a class is in JavaScript), allows you to set all the
parameters for the obstacle when the instance is constructed. You will see this in action very
shortly.

The PlayerDesc class, whose UML diagram can be seen in Figure 11-14, describes the
player—that is, the cosmic squirrel. It contains the current X/Y location of the player, and the
width and height of the image of the squirrel. It also defines a method that is called whenever
the player dies or reaches the acorn, to reset it to its starting position.

Zammetti-816-4C11.fm Page 441 Wednesday, March 14, 2007 11:27 AM

442 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

Figure 11-14. UML diagram of the PlayerDesc class

The code for the PlayerDesc class is just about as simple as the ObstacleDesc class, with the
addition of the reset() method:

 function PlayerDesc() {
 this.x = null;
 this.y = null;
 this.width = 18;
 this.height = 18;
 this.reset = function() {
 this.x = 91;
 this.y = 180;
 }
 this.reset();
 } // End PlayerDesc class.

To reset the player is a simple matter of setting his initial starting location. Note the call to
reset() at the very end. This is what will execute when the class is instantiated, setting it up initially.

Moving right along, take a look at the AcornDesc class, shown in Figure 11-15. This class
describes the acorn, of course.

Figure 11-15. UML diagram of the AcornDesc class

Notice that AcornDesc has the same structure as the PlayerDesc class, and also defines that
same reset() method, which randomly places the acorn on the screen when it is reached by
the player using the jscript.math.genRandomNumber() function, as seen here:

Zammetti-816-4C11.fm Page 442 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 443

 function AcornDesc() {
 this.x = null;
 this.y = null;
 this.width = 18;
 this.height = 18;
 this.reset = function() {
 this.x = jscript.math.genRandomNumber(1, 180)
 this.y = 2;
 }
 this.reset();
 } // End AcornDesc class.

Following these three classes in the CosmicSquirrel class are these three lines:

 this.player = new PlayerDesc();
 this.acorn = new AcornDesc();
 this.obstacles = new Array();

Since there are only one player and one acorn, we have them as soon as the CosmicSquirrel
class is instantiated. We also have an empty array of obstacles to populate, which is done when
init() is called on the CosmicSquirrel instance.

Starting the Game

Let’s see init() now:

 this.init = function() {

 // Configure base game parameters.
 this.gameName = "cosmicSquirrel";

 // Load all the images required for this game.
 loadGameImage("background");
 loadGameImage("acorn");
 loadGameImage("squirrelUp");
 loadGameImage("squirrelDown");
 loadGameImage("squirrelLeft");
 loadGameImage("squirrelRight");
 loadGameImage("squirrelStill");
 loadGameImage("alien1");
 loadGameImage("alien2");
 loadGameImage("ship1");
 loadGameImage("ship2");
 loadGameImage("asteroid1");
 loadGameImage("asteroid2");
 loadGameImage("comet1");
 loadGameImage("comet2");

Zammetti-816-4C11.fm Page 443 Wednesday, March 14, 2007 11:27 AM

444 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

 // Create obstacle descriptors and add to array.
 this.obstacles.push(new ObstacleDesc("alien1", 170, 30, "R", 5, 24, 24));
 this.obstacles.push(new ObstacleDesc("alien2", 80, 30, "R", 5, 24, 24));
 this.obstacles.push(new ObstacleDesc("ship1", 110, 60, "L", 2, 32, 24));
 this.obstacles.push(new ObstacleDesc("ship2", 10, 60, "L", 2, 32, 24));
 this.obstacles.push(new ObstacleDesc("asteroid1", 80, 90, "R", 4, 32, 32));
 this.obstacles.push(new ObstacleDesc("asteroid2", 140, 90, "R", 4, 32, 32));
 this.obstacles.push(new ObstacleDesc("comet1", 240, 130, "L", 3, 64, 14));
 this.obstacles.push(new ObstacleDesc("comet2", 70, 130, "L", 3, 64, 14));

 } // End init().

First, the gameName field is set, which must be done in all mini-games. Notice that the value
set there, "cosmicSquirrel", matches the directory where this code is. This is no coincidence;
when the loadGameImage() function is called, it will use that value to construct the URL to the
image being loaded.

Speaking of loadGameImage(), next are a batch of those calls. Each one, as you saw previ-
ously, creates an tag, loads it with the image named, and adds it to the gameImages array,
which is found in the MiniGame base class.

Lastly, we have a series of eight lines of code that are responsible for creating the obstacles
the player must avoid. Each one is an ObstacleDesc instance, and here you can see where the
constructor parameters I mentioned earlier come into play. We simply instantiate an ObstacleDesc
instance, passing into it the appropriate parameters, and push that object onto the obstacles
array. Nothing more to it!

Processing a Single Frame of Action

Now we get into the processFrame() function, which I remind you will be called 24 times a
second, once per frame. The first thing we see happening there is to hide all the images used in
this mini-game:

 for (img in this.gameImages) {
 this.gameImages[img].style.display = "none";
 }

You can see here the use of the gameImages array, rather than direct DOM access. This is
good for speed!

Following that are two lines of code:

 // Blit background.
 blit(this.gameImages["background"], 0, 0);

 // Blit acorn.
 blit(this.gameImages["acorn"], this.acorn.x, this.acorn.y);

Recall that the blit() function serves to put an image on the screen at a specified location.
Here, we’re first placing the background image onto the game area, effectively filling the entire
game area with the background. Next, we place the acorn at its current location, using the
values stored in the AcornDesc instance referenced by the acorn variable.

Zammetti-816-4C11.fm Page 444 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 445

After that, it’s time to do the same with the obstacles. However, since the ObstacleDesc
objects are in an array, we need to iterate over that array and blit() each, like so:

 for (i = 0; i < this.obstacles.length; i++) {
 var obstacle = this.obstacles[i];
 blit(this.gameImages[obstacle.id], obstacle.x, obstacle.y);
 }

So, at this point, the only thing left to do is show the squirrel; otherwise, the game would
be pretty boring (I mean, watching the obstacles move around is kind of neat, I suppose, but
not much of a game!). So, let’s throw the squirrel on the screen:

 if (gameState.playerDirectionUp) {
 blit(this.gameImages["squirrelUp"], this.player.x, this.player.y);
 } else if (gameState.playerDirectionDown) {
 blit(this.gameImages["squirrelDown"], this.player.x, this.player.y);
 } else if (gameState.playerDirectionLeft) {
 blit(this.gameImages["squirrelLeft"], this.player.x, this.player.y);
 } else if (gameState.playerDirectionRight) {
 blit(this.gameImages["squirrelRight"], this.player.x, this.player.y);
 } else {
 blit(this.gameImages["squirrelStill"], this.player.x, this.player.y);
 }

There is just a little more work to do here because which way the player is moving determines
which version of the squirrel we show. So, we have a series of if statements that interrogate the
four flags in the GameState object that tell us which way the squirrel is moving, and we blit()
the appropriate image. If the player isn’t moving at all, we show the squirrel facing up as the
default image.

Now that everything is actually drawn on the screen, we need to process the logic of the
game for this frame. The first step is to move the obstacles. Since this movement continues
unabated, regardless of what the player does, there are no conditions that need to be checked.
We simply update their positions, and those changes will be reflected in the next frame drawing.
Here is the code that does the movement:

 for (i = 0; i < this.obstacles.length; i++) {
 var obstacle = this.obstacles[i];
 if (obstacle.dir == "L") {
 obstacle.x = obstacle.x - obstacle.speed;
 }
 if (obstacle.dir == "R") {
 obstacle.x = obstacle.x + obstacle.speed;
 }
 // Bounds checks (comets handled differently because of their size).
 if (obstacle.id.indexOf("comet") != -1) {
 if (obstacle.x < -40) {
 obstacle.x = 240;
 }

Zammetti-816-4C11.fm Page 445 Wednesday, March 14, 2007 11:27 AM

446 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

 } else {
 if (obstacle.x < -70) {
 obstacle.x = 240;
 }
 }
 if (obstacle.x > 240) {
 obstacle.x = -40;
 }
 }

For each object, we check the value of the dir attribute of the ObstacleDesc object associated
with the obstacle to see which direction it is moving in, and we update its x location accordingly,
using the speed attribute as the change value. Next, we do some checks so that when an obstacle
moves completely off the screen in either direction, we reset its x location so it reappears on the
other side of the screen. Note that because the comets are longer than the other obstacles, we
need to check for different values than we do for all the other obstacles, hence the branching logic.

The next piece of business to attend to is moving the player.

 if (gameState.playerDirectionUp) {
 this.player.y = this.player.y - 2;
 if (this.player.y < 2) {
 this.player.y = 2;
 }
 }
 if (gameState.playerDirectionDown) {
 this.player.y = this.player.y + 2;
 if (this.player.y > 180) {
 this.player.y = 180;
 }
 }
 if (gameState.playerDirectionRight) {
 this.player.x = this.player.x + 2;
 if (this.player.x > 180) {
 this.player.x = 180;
 }
 }
 if (gameState.playerDirectionLeft) {
 this.player.x = this.player.x - 2;
 if (this.player.x < 2) {
 this.player.x = 2;
 }
 }

Depending on which way the player is currently moving, we increment or decrement
either the x or y location by 2. We then apply some bounds checking to make sure the player
can’t move off the mini-game screen in any direction. Note that with this logic, the player can
move in the four cardinal directions, as well as the four combinatorial directions. For example,
if gameState.playerDirectionUp and gameState.playerDirectionRight were true, then two of

Zammetti-816-4C11.fm Page 446 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 447

the four if statements here would execute, causing the squirrel to move diagonally. This is
perfectly acceptable, and works to makes the game far less frustrating than it would be if the
player could move in only the four cardinal directions.

We’re almost finished with game play, believe it or not! Only two tasks remain in
processFrame(). First, we need to determine if the player has gotten the acorn, and we do that
with this code:

 if (detectCollision(this.player, this.acorn)){
 this.player.reset();
 this.acorn.reset();
 addToScore(50);
 }

We already looked at the detectCollision() function, so we don’t need to go over that
again. If that call returns true, then we call reset() on the PlayerDesc instance referenced by
the player field, which returns the player to his starting position. We then do the same for the
acorn, which randomly places it somewhere at the top of the screen. Finally, we add 50 points
to the player’s score.

In the same vein, we need to check for collisions with the eight obstacles, and the code is
very nearly identical:

 for (i = 0; i < this.obstacles.length; i++) {
 if (detectCollision(this.player, this.obstacles[i])){
 this.player.reset();
 this.acorn.reset();
 subtractFromScore(25);
 }
 }

We call detectCollision() for each of the eight obstacles. If a collision is detected, we do
the same resets as with a collision with the acorn, but this time subtract 25 from the score.
Subtracting less than the player earns for getting the acorn is just a nice thing to do (it would be
a bit sadistic if it were reversed!). I would bet you’ve played games that score in a seemingly
unfair way, and I know I’ve certainly been frustrated by that, so I wanted to be just a bit nicer in
this game!

Cleaning Up

With processFrame() now out of the way, only one task remains to complete Cosmic Squirrel,
and that is to clean up when the game ends. This is achieved by implementing the destroy()
function, like so:

 this.destroy = function() {

 destroyGameImage("background");
 destroyGameImage("acorn");
 destroyGameImage("squirrelUp");
 destroyGameImage("squirrelDown");
 destroyGameImage("squirrelLeft");

Zammetti-816-4C11.fm Page 447 Wednesday, March 14, 2007 11:27 AM

448 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

 destroyGameImage("squirrelRight");
 destroyGameImage("squirrelStill");
 destroyGameImage("alien1");
 destroyGameImage("alien2");
 destroyGameImage("ship1");
 destroyGameImage("ship2");
 destroyGameImage("asteroid1");
 destroyGameImage("asteroid2");
 destroyGameImage("comet1");
 destroyGameImage("comet2");

 } // End destroy().

Each call to loadGameImage() in the init() method is matched with a corresponding call to
destroyGameImage() in the destroy() method. These calls remove the element from the
DOM and set the element in the array that holds a reference to that element to null, which
effectively marks the image object for deletion by the garbage collector. Nothing else really
needs to be done to clean up, so it’s a short and sweet method.

Inheriting the Basics

At the very end of CosmicSquirrel.js, you see that one magical line that makes the inheritance
work. This line of code allows the CosmicSquirrel class to have implementations of functions it
doesn’t explicitly need to alter, but which the rest of the game code expects to be implemented,
such as keyUpHandler() and keyDownHandler(). That line of code is as follows:

CosmicSquirrel.prototype = new MiniGame;

With that single line of code, we ensure that the “plumbing” code that we’ve previously
looked at—the code that calls the methods of the current mini-game class when the various life
cycle events occur—will work, because it ensures that the CosmicSquirrel class (assuming no
one has broken it, of course!) meets the interface requirements that plumbing code expects.

And, believe it or not, that is all the code behind this mini-game!

Writing Deathtrap.js
The Deathtrap game is only slightly more complicated than Cosmic Squirrel. It has about twice
as much code, but a fair bit of it is very mundane, repetitive stuff. I won’t be listing all that out
here, but I’ll certainly show you enough of it to get the feel for what’s going on.

First, let’s again look at the UML diagram of the Deathtrap class itself, as shown in Figure 11-16.

Zammetti-816-4C11.fm Page 448 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 449

Figure 11-16. UML diagram of the Deathtrap class

Setting Up the Player

As in Cosmic Squirrel, we again find a PlayerDesc class, which is used to describe the charac-
teristics of the player. As you can see in the UML diagram shown in Figure 11-17, the version
here has a bit more to it. We still have the X/Y location of the player, but this time we also store
the previous X/Y location, and you’ll see why in a moment. We also have another X/Y location,
defining which tile the player is on. This differs from the literal X/Y location on the screen, and
both pieces of information are required to make the game work correctly. Lastly, we store the
current state of the player: whether he is alive, dead, or has won the game.

Figure 11-17. UML diagram of the PlayerDesc class

Zammetti-816-4C11.fm Page 449 Wednesday, March 14, 2007 11:27 AM

450 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

We also again have a reset() method exposed by the PlayerDesc class, and this serves
much the same purpose as it did in CosmicSquirrel. It will be called, as in that case, when the
player dies or wins. Here is the code for the PlayerDesc class for this mini-game:

 function PlayerDesc() {
 this.x = null;
 this.y = null;
 this.prevX = null;
 this.prevY = null;
 this.tileX = null;
 this.tileY = null;
 // State: A=Alive, D=Dead, W=Won
 this.state = null;
 this.reset = function() {
 this.x = 10;
 this.y = 152;
 this.prevX = 0;
 this.prevY = 0;
 this.tileX = 1;
 this.tileY = 8;
 this.state = "A";
 }
 this.reset();
 } // End PlayerDesc class.

Following that inner class definition are four fields of the Deathtrap class:

 this.player = new PlayerDesc();
 this.deadCounter = null;
 this.vertMoveCount = null;
 this.correctPath = null;
 this.regenPath = true;

These fields work as follows:

• player: The PlayerDesc instance describing the player.

• deadCounter: Used when the player dies to determine how long he should get zapped.

• vertMoveCount: Used when moving the player from tile to tile.

• correctPath: Defines which of the ten possible correct paths through the tiles is valid.

• regenPath: A flag that determines whether a new correctPath will be chosen when
reset() is called.

Constructing the Death Matrix

The next piece of the code is the deathMatrix. The deathMatrix is a multidimensional array
(10-by-2-by-2) that represents the grid of tiles the player must navigate. For each of the first
dimensions, we have a 2-by-2 array, so ten arrays essentially. Each of those ten arrays defines

Zammetti-816-4C11.fm Page 450 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 451

one possible correct path through the tiles. Each element in the 2-by-2 array is either a zero or
one, one being a safe tile.

When the reset() method of the Deathtrap class is called, if the regenPath flag is set to
true, the jscript.math.genRandomNumber() function is used to pick one of the ten possible
paths. Therefore, every time the game starts, or when the player wins, a new correctPath will
be chosen. When the player dies, this will not happen. This is again for fair game play. It would
be really frustrating if the path were reset every time the player died, because he would not be
able to work out the path through trial and error, so it would just be dumb luck each time, and
that wouldn’t be much fun!

Just for the sake of completeness, here is an example of how the deathMatrix is defined
(these are the first two elements):

 this.deathMatrix = new Array(10);
 this.deathMatrix[0] = new Array(
 [1, 1, 1, 1, 1, 0, 0, 0, 0],
 [1, 0, 0, 0, 0, 0, 0, 0, 0],
 [1, 1, 1, 1, 1, 1, 0, 0, 0],
 [1, 1, 0, 0, 0, 1, 0, 0, 0],
 [1, 1, 0, 0, 0, 1, 0, 0, 0],
 [1, 1, 0, 1, 1, 1, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0, 0, 0, 0, 0]
);
 this.deathMatrix[1] = [
 [0, 0, 0, 0, 1, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0, 0, 0],
 [1, 1, 1, 1, 1, 1, 0, 0, 0],
 [1, 0, 0, 0, 1, 1, 0, 0, 0],
 [1, 0, 0, 0, 1, 0, 0, 0, 0],
 [1, 1, 1, 0, 1, 0, 0, 0, 0],
 [0, 0, 1, 0, 1, 1, 0, 0, 0],
 [0, 1, 1, 0, 0, 0, 0, 0, 0],
 [0, 1, 1, 0, 0, 0, 0, 0, 0]
];

Constructing the Move Matrix

One more member of the Deathtrap class that needs to be discussed is the moveMatrix. The
moveMatrix is another multidimensional array, 10-by-10 in size, where each element repre-
sents a tile. The purpose of this array is to determine which directions the player can move
from any given tile. Note that on the screen some of the tiles are not complete. This is necessary
because of the angular drawing of the room. Those partial tiles should not be valid destinations
for player movement. For each element in this array, a string value is present. The string contains
one or more of U, D, L, and R. For instance, if a particular tile has a value of "ULR", that means the
player can move up, left, or right from that tile, but not down. A tile can also have a value of a
string with none of those letters but just a space, which means it can never be reached and
therefore no moves are valid from it.

Zammetti-816-4C11.fm Page 451 Wednesday, March 14, 2007 11:27 AM

452 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

Here is the code that defines the moveMatrix:

 this.moveMatrix = new Array(10);
 this.moveMatrix[0] = ["RD", "RDL", "RDL", "RDL", "UDL",
 " ", " ", " ", " "];
 this.moveMatrix[1] = ["URD", "URDL", "URDL", "URDL", "UDL",
 " ", " ", " ", " "];
 this.moveMatrix[2] = ["URD", "URDL", "URDL", "URDL", "URDL",
 "DL", " ", " ", " "];
 this.moveMatrix[3] = ["URD", "URDL", "URDL", "URDL", "URDL",
 "UDL", " ", " ", " "];
 this.moveMatrix[4] = ["URD", "URDL", "URDL", "URDL", "URDL",
 "URDL", "DL", " ", " "];
 this.moveMatrix[5] = ["URD", "URDL", "URDL", "URDL", "URDL",
 "URDL", "UDL", " ", " "];
 this.moveMatrix[6] = ["UR", "URDL", "URDL", "URDL", "URDL",
 "URDL", "UDL", " ", " "];
 this.moveMatrix[7] = [" ", "URD", "URDL", "URDL", "URDL",
 "URDL", "URDL", "DL", " "];
 this.moveMatrix[8] = [" ", "UR", "URL", "URL", "URL",
 "URL", "URL", "UL", " "];

Starting the Game

Next up is the init() method:

 this.init = function() {

 // Configure base game parameters.
 this.gameName = "deathtrap";
 this.fullKeyControl = true;

 // Reset the game state.
 this.reset();

 // Load all the images required for this game.
 loadGameImage("background");
 loadGameImage("playerDieing");
 loadGameImage("playerJumping");
 loadGameImage("playerStanding");

} // End init().

After the setting of the mini-game name, note the setting of fullKeyControl to true. In the
case of Deathtrap, we need to deal with keyboard events a little differently than we did with
Cosmic Squirrel, and it turns out the default handling we saw previously in keyHandlers.js
interferes with what has to happen here. Therefore, this mini-game needs to deal with keyboard
events itself and not leave it to the default code.

Zammetti-816-4C11.fm Page 452 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 453

After that is a call to reset(), followed by a series of loadGameImage() calls (notice how few
graphics are actually needed for this game!). The reset() method doesn’t really have a whole
lot to do:

 this.reset = function() {

 this.player.reset();
 this.deadCounter = 0;
 this.vertMoveCount = 0;
 if (this.regenPath) {
 this.correctPath = jscript.math.genRandomNumber(0, 9)
 }
 this.regenPath = false;
 } // End reset().

The player is first reset to his starting position with a call to player.reset(). Next, the
deadCounter and vertMoveCount fields are reset to zero. We then check to see if regenPath is
true, and if so, we pick a new correct path through the tile field. Lastly, regenPath is then set to
false, so that the next time reset() is called, unless it is a result of the player winning, we won’t
choose a new correct path through the tile field.

Handling the Player State: Winner, Dead, or Active

Moving on to the processFrame() method, we first encounter the same type of screen-clearing
loop we saw in Cosmic Squirrel, which hides all the images in the gameImages array. After that
is a blit() of the background.

Next is a largish switch block. This switch is on the state of the player. The first case is if the
player has won:

 case "W":
 addToScore(1000);
 this.regenPath = true;
 this.reset();
 break;

It’s a simple matter of adding 1000 to the score (I was in a generous mood!), setting the
regenPath to true so that a new correct path through the tiles will be chosen, and calling
reset() to get the player back to the starting position, and that’s that.

The next case is if the player has died:

 case "D":
 blit(this.gameImages["playerDieing"], this.player.x, this.player.y);
 this.deadCounter++;
 if (this.deadCounter > 48) {
 this.reset();
 }
 break;

In this case, we blit() the player death graphic at the player’s current location. That image
is an animated GIF of the player being electrocuted. We want that to be shown in two seconds,

Zammetti-816-4C11.fm Page 453 Wednesday, March 14, 2007 11:27 AM

454 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

which is 48 frames (24 fps). That’s where the deadCounter variable comes in. It’s used to keep
track of how many frames have elapsed. When we exceed 48, we just call reset(). Note that
regenPath will be set to false at this point, so the same correct path is still in effect.

Now we come to the case where the player is alive. This is where the bulk of the work is
done. First things first though—let’s get the player on the screen!

 if (gameState.playerDirectionUp || gameState.playerDirectionDown ||
 gameState.playerDirectionLeft || gameState.playerDirectionRight) {
 blit(this.gameImages["playerJumping"], this.player.x, this.player.y);
 } else {
 blit(this.gameImages["playerStanding"], this.player.x, this.player.y);
 }

A different image is needed when the player is jumping vs. when he is just standing still.
Next are four if blocks: one for each possible direction of movement. They are all pretty

similar, so let’s just review the first one, which is the case of the player moving up:

 if (gameState.playerDirectionUp) {
 // If movement is done, finish up
 if (this.player.y <= (this.player.prevY - 16)) {
 this.vertMoveCount = 0;
 this.player.x = this.player.prevX + 10;
 this.player.y = this.player.prevY - 16;
 gameState.playerDirectionUp = false;
 if (this.isDeathTile()) {
 this.player.state = "D";
 }
 } else { // Otherwise, move the player
 this.player.y = this.player.y - 3;
 this.vertMoveCount++;
 if (this.vertMoveCount > 1) {
 this.vertMoveCount = 0;
 this.player.x = this.player.x + 3;
 }
 }
 }

This case (and the case of moving down) is actually a little more complicated than left and
right, because both vertical and horizontal movement are involved. This is due to the fact that
the tiles are organized diagonally from each other. So, first we determine if the player has already
moved far enough from the previous position, which is where he was when he started the move.
If not (the else clause), the player is moved three pixels horizontally and three pixels vertically
for every six pixels horizontally (that is, the player moves every other frame vertically, while he
moves horizontally every frame). When the player finally has moved far enough (the if clause),
the current position is set to the previous position plus the proper amount horizontally and
vertically. This is because the essentially diagonal movements would require fractional moves
to be precise, and there is always a slight error when using integers. So to make the player wind
up at the proper location in the end, the final values are based on the previous values.

Zammetti-816-4C11.fm Page 454 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 455

Finally, a call to isDeathTile() is made. This function determines whether the tile the
player is currently on is an electrified one. Here is the code for isDeathTile():

 this.isDeathTile = function() {

 if (
 this.deathMatrix[this.correctPath][this.player.tileY][this.player.tileX]
 == 0) {
 return true;
 } else {
 return false;
 }

 } // End isDeathTile().

A lookup into the deathMatrix is done, using the correctPath value as the first dimension,
and the player’s X/Y location as the second and third dimensions. When the value is zero, it’s
an electrified tile; in which case, the player’s state value is changed to "D" to signify he is dead.

Please do have a look at the other three cases for the other directions of movement. As I
said, you’ll find them all similar to the one for moving up, but it’s certainly a good idea to check
them out for yourself.

Handling Player Keyboard Events

Next up is the keyDownHandler() function:

 this.keyDownHandler = function(inKeyCode) {

 // Although the right hand action button does nothing in this game,
 // it looks like things are broken if it doesn't press, so let's let
 // it be pressed, just to keep up appearances!
 if (inKeyCode == KEY_SPACE) {
 gameState.playerAction = true;
 }

 } // End keyDownHandler().

Recall that this mini-game has full control over the key events, so nothing happens auto-
matically. In this case, it means that although the action button, which is the right handle on
the game console, does nothing in this game, it wouldn’t even react when the user clicks space.
This makes it look like something isn’t working, since the button should probably be pressable,
regardless of whether it serves a purpose. So, the keyDownHandler() function needs to deal with
that. It’s a simple matter of setting the playerAction flag to true.

The keyUpHandler() has a little more meat to it though. First, we check to be sure the player
isn’t currently moving and is alive:

 if (!gameState.playerDirectionUp && !gameState.playerDirectionDown &&
 !gameState.playerDirectionLeft && !gameState.playerDirectionRight &&
 this.player.state == "A") {

Zammetti-816-4C11.fm Page 455 Wednesday, March 14, 2007 11:27 AM

456 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

This is to avoid the situation where the player starts a move, then releases the key before
the on-screen action has completed the jump to the new tile. If we were to allow this code to
fire in that case, the player movement flag would be reset prematurely, causing the jump to
terminate in the middle. That wouldn’t be good! So, once we determine it’s OK to proceed, we
first check to see if it’s the spacebar that is being released; in which case, it’s just a matter of
setting playerAction to false.

Once again, we encounter four cases corresponding to each of our cardinal directions.
And also again, we’ll just take a look at the first one here because the rest are substantially the same.

 case KEY_UP:
 if (this.moveMatrix[tileY][tileX].indexOf("U") != -1) {
 if (tileY == 0 && tileX == 4) {
 this.player.state = "W";
 } else {
 this.player.tileY--;
 this.player.prevX = this.player.x;
 this.player.prevY = this.player.y;
 gameState.playerDirectionUp = true;
 gameState.playerDirectionRight = false;
 gameState.playerDirectionDown = false;
 gameState.playerDirectionLeft = false;
 }
 }
 break;

First, we do a lookup into the moveMatrix for the tile the player is currently on. We see if the
string value for that tile contains the letter U, indicating the player can move up from that tile.
If he can, we need to see if the player is standing on the tile directly in front of the door. In that
case, we change the player state to "W" to indicate a win. If the player hasn’t won yet, then we
decrement tileY to indicate the tile he will wind up on. Then we just set the movement flags
accordingly, and we’re finished.

The last piece of the puzzle is the destroy() method, which just cleans up the images
created in init(). And, of course, there is also the prototype line, as in Cosmic Squirrel, to
make sure the Deathtrap class extends the MiniGame class.

Writing Refluxive.js
Only one more game left to review now, and that’s Refluxive. As before, let’s begin by looking
at the UML diagram of the Refluxive class itself, shown in Figure 11-18.

Zammetti-816-4C11.fm Page 456 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 457

Figure 11-18. UML diagram of the Refluxive class

By now, this is all pretty much old hat for you. This game is again the typical MiniGame-
derived class, with a few game-specific fields.

Setting Up the Bouncies and Paddle

First is another inner class, this time named BouncyDesc, as shown in Figure 11-19. The X/Y
coordinates of a bouncy, which is the thing you need to keep bouncing in the air, is defined
here, as is its width and height, both of which are needed for collision detection. We also define
which direction the bouncy is moving. A flag field tells whether the bouncy is still on the screen.
When all three bouncies have their onScreen fields set to false, the game is over. Unlike the
other two games, Refluxive can actually end!

Figure 11-19. UML diagram of the BouncyDesc class

The next inner class is the PaddleDesc class, shown in Figure 11-20. The PaddleDesc class
describes the paddle—in other words, the player. It’s a simple matter of X/Y location plus
width and height for collision detection.

Zammetti-816-4C11.fm Page 457 Wednesday, March 14, 2007 11:27 AM

458 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

Figure 11-20. UML diagram of the PaddleDesc class

After that are two fields: paddle, which is a pointer to an instance of PaddleDesc, and
bouncies, which is an array of BouncyDesc objects.

Starting the Game

Next, we come to some code, starting with the init() method:

 this.init = function() {

 // Configure base game parameters.
 this.gameName = "refluxive";

 // Load all the images required for this game.
 loadGameImage("background");
 loadGameImage("bouncy1");
 loadGameImage("bouncy2");
 loadGameImage("bouncy3");
 loadGameImage("paddle");
 loadGameImage("gameOver");

 // Initial bouncy positions.
 this.bouncies.push(
 new BouncyDesc(jscript.math.genRandomNumber(1, 180), 10, "SE"));
 this.bouncies.push(
 new BouncyDesc(jscript.math.genRandomNumber(1, 180), 70, "SW"));
 this.bouncies.push(
 new BouncyDesc(jscript.math.genRandomNumber(1, 180), 140, "NE"));

 } // End init().

This is pretty much just like all the other init() methods you’ve seen thus far. We set the
game name, load the images needed by the game, and in this case, construct three BouncyDesc
objects and push each into the bouncies array. Their horizontal location is set randomly, and
the vertical location is static. Their initial direction of movement is static as well. These last two
items are static to help ensure they start out in reasonable positions, are moving in sufficiently
different ways, and are separated enough to make the game challenging.

One interesting thing to note is that each of the bouncies is its own image, even though
they are all the same underlying GIF. This is necessary because each needs to be individually
addressable. This is a bit inefficient, because we are loading the same GIF into memory three

Zammetti-816-4C11.fm Page 458 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 459

times. The browser and/or operating system might share it somehow, but we can’t count on
that. In such a limited game, this is hardly a major concern. For something more substantial,
this is a shortcoming you would want to address somehow. One way to do this might be to
modify the way the code works so that a game element is abstracted from its image or images.
Maybe you have some sort of ImageManager class that contains all the images, and that deals
with ensuring only a single instance of any given image exists, and the game elements would
reference their images through that class.

Playing the Game

processFrame() is next, and it begins how the other two did: by clearing all the images off the
screen. We then see a blit() of the background, just as in the other two games. After that
comes a bit of code unique to this game:

 if (!this.bouncies[0].onScreen && !this.bouncies[1].onScreen &&
 !this.bouncies[2].onScreen) {
 blit(this.gameImages["gameOver"], 10, 40);
 return;
 }

As I mentioned earlier, Refluxive is the only one of the three games that can end before the
user decides to quit. It ends when all three of the bouncies are off the screen. So, here we check
for that condition, and if it is met, we display the “Game Over” message. Since the rest of
processFrame() doesn’t apply in this case, we simply return, and the frame is complete.

If the game is still going, however, we begin by blit()’ing the paddle and then the three
bouncies:

 if (this.bouncies[0].onScreen) {
 blit(this.gameImages["bouncy1"], this.bouncies[0].x, this.bouncies[0].y);
 }
 if (this.bouncies[1].onScreen) {
 blit(this.gameImages["bouncy2"], this.bouncies[1].x, this.bouncies[1].y);
 }
 if (this.bouncies[2].onScreen) {
 blit(this.gameImages["bouncy3"], this.bouncies[2].x, this.bouncies[2].y);
 }

For each bouncy, we check if it’s on the screen. There wouldn’t be much sense in blit()’ing
something the player can’t see!

Next, we deal with player movements:

 if (gameState.playerDirectionRight) {
 this.paddle.x = this.paddle.x + 4;
 // Stop at edge of screen
 if (this.paddle.x > 174) {
 this.paddle.x = 174;
 }
 }

Zammetti-816-4C11.fm Page 459 Wednesday, March 14, 2007 11:27 AM

460 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

 if (gameState.playerDirectionLeft) {
 this.paddle.x = this.paddle.x - 4;
 // Stop at edge of screen
 if (this.paddle.x < 1) {
 this.paddle.x = 1;
 }
 }

Some simple bounds checking ensures that the player can’t move the paddle off either
edge of the screen. Since the player can move only left and right in this game, that’s all there is
to it! Note that this game doesn’t need to implement keyDownHandler() or keyUpHandler(), as
the default implementations do the job just fine, as was the case with Cosmic Squirrel. It’s nice
to keep the code size down this way!

Next up is bouncy movement. To do that, we loop through the bouncies array, and for each
bouncy, we first check if it is on the screen. If not, we just continue the loop. If it is on the screen,
we start by moving it based on its current dir value:

 if (this.bouncies[i].dir == "NE") {
 this.bouncies[i].x = this.bouncies[i].x + 3;
 this.bouncies[i].y = this.bouncies[i].y - 3;
 }
 if (this.bouncies[i].dir == "NW") {
 this.bouncies[i].x = this.bouncies[i].x - 3;
 this.bouncies[i].y = this.bouncies[i].y - 3;
 }
 if (this.bouncies[i].dir == "SE") {
 this.bouncies[i].x = this.bouncies[i].x + 3;
 this.bouncies[i].y = this.bouncies[i].y + 3;
 }
 if (this.bouncies[i].dir == "SW") {
 this.bouncies[i].x = this.bouncies[i].x - 3;
 this.bouncies[i].y = this.bouncies[i].y + 3;
 }

"NE", as I’m sure you can guess, stands for northeast. Correspondingly, "NW" is northwest,
"SE" is southeast, and "SW" is southwest. These are the four possible directions a bouncy can
move. For each, we adjust the X and Y coordinates as appropriate.

After that’s done, we need to deal with the situation where the bouncies bounce off the
sides and top of the screen. To do that, we use this code:

 // Bounce off the frame edges (horizontal).
 if (this.bouncies[i].x < 1) {
 if (this.bouncies[i].dir == "NW") {
 this.bouncies[i].dir = "NE";
 } else if (this.bouncies[i].dir == "SW") {
 this.bouncies[i].dir = "SE";
 }
 }
 if (this.bouncies[i].x > 182) {

Zammetti-816-4C11.fm Page 460 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 461

 if (this.bouncies[i].dir == "NE") {
 this.bouncies[i].dir = "NW";
 } else if (this.bouncies[i].dir == "SE") {
 this.bouncies[i].dir = "SW";
 }
 }
 // Bounce off the frame edges (vertical).
 if (this.bouncies[i].y < 1) {
 if (this.bouncies[i].dir == "NE") {
 this.bouncies[i].dir = "SE";
 } else if (this.bouncies[i].dir == "NW") {
 this.bouncies[i].dir = "SW";
 }
 }

When the X coordinate of the bouncy is less than one, it means it has collided with the left
edge of the screen. In that case, we basically reverse the direction of travel. So, if it is moving
northwest, we reverse it to northeast, and southwest becomes southeast. Likewise, for the right
side of the screen (coordinate 182, because the bouncy is 18 pixels wide, so the right edge is at
182+18=200 at that point), we again reverse the directions. The same basic logic is applied for
the top of the screen.

Note that there is no check for the bottom of the screen here, at least, not like these, because
that’s the one case where the bouncy doesn’t bounce. It just exits the bottom of the screen if
the player misses it. The last check needed here is that case precisely: when the bouncy leaves
the screen:

 if (this.bouncies[i].y > 200) {
 this.bouncies[i].onScreen = false;
 subtractFromScore(50);
 }

When the player misses a bouncy, it becomes dead, so to speak, by setting its onScreen
property to false. This also costs the player some points—50 in this case.

Only one thing remains to make this a complete game. Can you guess what that is?
We need to make it possible for the player to bounce the bouncies! The code to accomplish

that is as follows:

 if (detectCollision(this.bouncies[i], this.paddle)) {
 // Reverse bouncy direction.
 if (this.bouncies[i].dir == "SE" &&
 this.bouncies[i].x + 9 < this.paddle.x + 12) {
 this.bouncies[i].dir = "NW";
 addToScore(10);
 }
 if (this.bouncies[i].dir == "SE" &&
 this.bouncies[i].x + 9 > this.paddle.x + 12) {
 this.bouncies[i].dir = "NE";
 addToScore(10);
 }

Zammetti-816-4C11.fm Page 461 Wednesday, March 14, 2007 11:27 AM

462 C H A P T E R 1 1 ■ T I M E F O R A B R E A K : A JA V A S C R I P T G A M E

 if (this.bouncies[i].dir == "SW" &&
 this.bouncies[i].x + 9 < this.paddle.x + 12) {
 this.bouncies[i].dir = "NW";
 addToScore(10);
 }
 if (this.bouncies[i].dir == "SW" &&
 this.bouncies[i].x + 9 > this.paddle.x + 12) {
 this.bouncies[i].dir = "NE";
 addToScore(10);
 }
 } // End collision detected.

This is still inside the for loop, so we’re working with one specific bouncy. We call the
detectCollision() function, and if it returns true, we do the same sort of direction reversal as
you saw earlier. One difference here is that the direction depends on which side of the paddle
hit the bouncy. If the bouncy was moving southeast, and the player hits it with the left side of
the paddle, the direction changes to northwest. If it hits the right side of the paddle, it changes
to northeast. For southwest on the left side, it switches to northwest, and for southwest on the
right side, it becomes northeast.

And that, dear friends, concludes the actual game logic behind Refluxive! The only code
left is the usual destroy() method, which calls destroyGameImage() for each image loaded in
init(), and, again, the prototype specification stating the Refluxive class extends MiniGame.

And that’s a wrap folks! I hope you’ll agree that this application had a lot to offer in terms
of how to do object-oriented programming with JavaScript. More important though, I hope
you had as much fun checking this game out as I had writing it! Try not to waste too much time
at the office playing it!

Suggested Exercises
I’m sure you don’t need me to tell you, but my main suggestion is to write some more mini-
games! It is my hope that, as time allows, I will port some of the other mini-games from the full-
blown K&G Arcade to JavaScript. I will post them to the Apress download site along with the
other code for this book. Adding them should be a simple matter of dropping the appropriate
directory in with the resources for the games and updating the GameSelection class. And you
can do the same!

Come up with one or two simple game ideas, and try to implement them. If you’ve never
written a game before, I suspect you’ll get a great deal of pleasure out of it and will learn a lot
along the way. You probably won’t be able to pull off Final Fantasy, Halo, or anything like those
games, so don’t think too big. Just aim big enough that it’s challenging and yet still fun at the
same time. After all, that’s what video games are all about . . . or at least should be!

One other suggestion is to save high scores for each mini-game in cookies, and create a
Hall of Fame screen to display them. This should give you a good feel for how a screen in the
game is developed, and also some practice with cookies. I would suggest this exercise as a first
task, just to get your feet wet.

Zammetti-816-4C11.fm Page 462 Wednesday, March 14, 2007 11:27 AM

CH A P T E R 1 1 ■ T I M E F O R A B R E A K : A J A V AS C R I P T G A M E 463

Summary
You might not think it at first, but programming a game is one of the best exercises in any
language on any platform to exercise your skills and learn. Games touch a variety of areas of
expertise and often require you to stretch your abilities a good bit, and I believe this chapter
has shown that.

In this chapter, you saw an object-oriented approach to JavaScript that leads to clean, flex-
ible code. The project demonstrated how inheritance can be achieved in JavaScript. You saw
some tricks for maximizing performance, including avoiding superfluous DOM element
accesses and speeding up the overall application. You even picked up a tidbit or two on basic
game theory! And I believe that we built a game that is actually fun to play!

Zammetti-816-4C11.fm Page 463 Wednesday, March 14, 2007 11:27 AM

465

■ ■ ■

C H A P T E R 1 2

Ajax: Where the Client
and Server Collide

Ajax is all the rage today. It seems that you can’t even be a web developer these days without
knowing at least something about Ajax!

In this chapter, you will learn a bit about Ajax and put it to use building a one-on-one
support chat application, as you can see at the sites of many companies that provide live chat
support for their products and services. This will be the one project in this book that uses a server
component as well, so you’ll see how that all fits together. Additionally, you’ll be introduced to
a new library, Mootools, and see what it has to offer.

Chat System Requirements and Goals
Let’s make believe for a bit. Say we’re a new company on the block. We’ll call ourselves Metacusoft
Systems, for no other reason than the domain name is available and Googling for it returns no
results, so I can be reasonably sure I’m not infringing on anyone. The first reader to register the
domain name and start a company gets a prize! (No, you really don’t, but feel free to take the name.)

Anyway, we sell widgets. Yes, the typical, mundane widget product. It’s wonderful, it’s
amazing, and no one can live without it, and yet we can’t come up with a more descriptive
name. And, as great a product as it obviously is, it’s not always a completely smooth ride for our
customers. Sometimes, the widget doesn’t, um, widgetate, as it should. Sometimes, although
we would never admit this in a financial filing, customers need some assistance to effectively
change their lives for the better with our amazing widgets. So, we need to offer some support
for them.

We’ll have a couple of people available via phone (over in India, of course, where there’s
apparently no shortage of folks named Bill, Mike, Tom, Sam, and Dave). We’ll also offer some-
thing for the online crowd, those people who, like the Morlocks,1 shun human contact. We’ll
offer a live one-on-one chat system where customers can communicate with human beings in
real time, without needing to really talk to them and risk an actual conversation.

1. Morlock is the name of an invented species, offshoots of the human race, created by the famous author
H.G. Wells in the novel The Time Machine, who exist many, many, many years in the future (the Morlocks,
not H.G. Wells). The Morlocks live underground and are at that point almost not even identifiable as
humans (formerly so anyway). Oh yeah, the Morlocks eat a species known as the Eloi, who are also
descendants of the human race. Nice, huh?

Zammetti-816-4C12.fm Page 465 Wednesday, March 14, 2007 11:29 AM

466 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

It’s a relatively simple application—one person types, the other sees it, and that’s about
the extent of it. Still, we’ll try to jazz it up just a bit.

• The application should look halfway decent. After all, this is the public face of our company
for those having difficulties with our product. They’re probably already a little ticked at
us, and we don’t want to annoy them further with an ugly web site!

• Let’s allow customers the ability to copy a transcript of their chat to their clipboard for
pasting in another application. This way, they can have a record of their conversation in
case they need to call and yell at us later for something. Let’s also give them the ability to
print the transcript directly from the application, so that when they sue, they have the docu-
mentation they need to win (perhaps we’re being a little too good to our customers?).

• The application should of course be Ajax-based and should use the Mootools library to
provide that functionality (along with anything else we may need that it offers). It’s pretty
tough to do a one-on-one chat in HTML and JavaScript without a server component, so
we’ll need a server in the mix here. We’ll code the back-end in Java and Microsoft tech-
nologies (ASP specifically), so that at least a majority of developers reading this should
be covered.

With those really pretty limited set of requirements in tow, let’s get a move on and see how
we’ll put this thing together, shall we? Well, in fact, let’s first look at how we won’t be doing
things and why.

The “Classic” Web Model
In the beginning, there was the Web. And it was good. All manner of catchy new words, phrases,
and terms entered the lexicon, and we felt all the more cooler saying them. (Come on, admit it,
you felt like Spock the first couple of times you used the word “hypertext” in conversation, didn’t
you?) Webapps, as our work came to be known, were born. These applications were, in a sense,
a throwback to years gone by when applications were hosted on “big iron” and were accessed
in a time-share fashion, since no processing was done locally on the machine where the user
was interacting with the application. They also were in no way, shape, or form as “flashy” as the
Visual Basic, PowerBuilder, Delphi, and C++ “fat clients” that followed them (which are still
used today, although less so with the advent of webapps).

The webapps that have been built for many years now—indeed are still built today on a
daily basis—have one big problem: they are, by and large, redrawing the entire screen each
time some event occurs. They are intrinsically server-centric to a large extent. When the user
does something (beyond some trivial things that can occur client side such as mouse-over
effects and such), a server must get involved. It has to do some processing, and then redraw
what the user sees to incorporate the applicable updated data elements. This is, as I’m sure you
have guessed, highly inefficient.

Zammetti-816-4C12.fm Page 466 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 467

This model of application development is what I refer to as the “classic” web design pattern,
or model (I haven’t heard anyone else use the term in this sense before, but I still can’t imagine
I’m the first!). The classic web model to me means the paradigm where the server, for nearly
every user event, redraws the entire screen. This is how webapps have been built for about 15 years
now, since the Web first began to be known in a broad sense. Conversely, the term “modern”
web model refers to the new mode of developing webapps, where the client is asked to share
the load a bit and play a more prominent role in the functioning of the application.

You may be asking yourself, “If we’ve been doing the classic web thing for so long, and
even still do it today, what’s wrong with it?” In many ways, absolutely nothing! In fact, there is
still a great deal of value to that way of designing webapps. The classic web model is great for
largely linear application flows, and it is also a wonderful medium for delivering information in
an accessible way. That model makes it is easy for most people to publish information and to
even create rudimentary applications with basic user interactions. The classic web model is
simple, ubiquitous, and accessible to most people.

It is not, however, an ideal environment for developing complex applications with a lot of
user interaction. The fact that people have been able to do so to this point is a testament to the
ingenuity of engineers, rather than an endorsement of the Web as an application distribution
medium!

It makes sense to differentiate now between a webapp and a web site, as summarized in
Table 12-1. There are really two different purposes served by the Web at large. One is to deliver
information. In this scenario, it is very important that the information be delivered in a manner
that is readily accessible to the widest possible audience. This means not only people with
disabilities who are using screen readers and such devices, but also those using more limited
capability devices like cell phones, PocketPCs, and kiosk terminals. In such situations, there
tends to be no user interaction, aside from jumping from static document to static document,
or at most very little interaction via simple forms. This mode of operation for the Web can be
classified as web sites.

Table 12-1. Summary Comparison of Webapps vs. Web Sites

Webapp Web Site

Designed with much greater user interaction
in mind

Very little user interaction, aside from
navigation from document to document

Main purpose is to perform some function
or functions, usually in real time, based on
user inputs

Main purpose is to deliver information, period

Uses techniques that require a lot more of the
clients accessing them

Tends to be created for the lowest common
denominator in terms of client capabilities

Accessibility tends to take a back seat to
functionality out of necessity and the simple
fact that it’s hard to do complex and yet
accessible webapps

Accessibility is usually considered and
implemented to allow for the widest
possible audience

Tends to be more event-based and nonlinear Tends to be somewhat linear with a path the
user is generally expected to follow, with only
minor deviations

Zammetti-816-4C12.fm Page 467 Wednesday, March 14, 2007 11:29 AM

468 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

Webapps, on the other hand, have a wholly different focus. They are not concerned with
simply presenting information, but in performing some function based on what the user does
and what data the user provides. The user can be another automated system in many cases,
but usually we are talking about a flesh-and-blood human being. Webapps tend to be more
complex and much more demanding of the clients that access them. In this case, clients refer
to web browsers.

This is another problem with the classic model: in order to maintain accessibility for the
widest possible audience, you generally need to design to the lowest common denominator,
which severely limits what you can do. Let’s think a moment about what the lowest common
denominator means in this context. Consider what you could and could not use to reach the
absolute widest possible audience out there today. Here is a list of what comes to mind:

Client-side scripting: No, you couldn’t use this because many mobile devices do not yet
have scripting support, or are severely limited. This does not even consider those people
on full-blown PCs who simply choose to disable scripting for security or other reasons.

CSS: You could use style sheets, but you would have to be very careful to use an older CSS
specification to ensure most browsers would render styles properly—none of the fancier
CSS 2.0 capabilities, for instance.

Frames: No, frames are not universally supported, especially on many portable devices.
Even when they are supported, you need to be careful because a frame is essentially like
having another browser instance in terms of memory (and in some cases, it very literally is
another browser instance), and this can be a major factor in mobile devices.

Graphics: Graphics can be tricky in terms of accessibility because they tend to convey
more information than an alt attribute can. So, some of the meaning of the graphic can
easily be lost for those with disabilities, no matter how vigilant you are to help them.

Newer HTML specs: Many people out there are still using older browsers that may not even
support HTML 4.01, so to be safe, you will probably want to code to HTML 3.0. Obviously,
you will lose some capabilities in doing so.

Probably the most important element here, certainly for our purposes in this book, is the
lack of client-side scripting. Without client-side scripting, many possibilities are not available
to you as a developer. Most important is the fact that you have virtually no choice but to have
the server handle every single user interaction and to respond with a completely redrawn view.
You may be able to get away with some meta refreshes in frames in some cases, or perhaps other
tricks of the trade, but frames may not be supported, so you might not even have that option!

You may be wondering, “What is the problem with the server rendering entire pages?”
Certainly, that approach has benefits, and the inherent security of being in complete control of
the runtime state of the application (the user can’t hack the code) is a big one. Not having to
incur the delay of downloading the code to the client is another. However, there are indeed
some problems that in many cases overshadow the benefits. Perhaps the most obvious is the
load on the server. Asking a server to do all this work on behalf of the client many times over
across a number of simultaneous requests means that the server needs to be more robust and

Zammetti-816-4C12.fm Page 468 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 469

capable than otherwise might be required. This all translates to dollars and cents in the long
run, because you’ll need to purchase more server power to handle the load.

Now, many people have the “just throw more hardware at it” mentality, and we are indeed
in an age where that works most of the time. But that is much like saying that because we can
throw bigger and bigger engines in cars to make them go faster, then that’s exactly what we
should always do when we need or want more speed. In fact, we can make cars go faster by
making a smaller engine more efficient in design and execution, which in many ways is much
more desirable—that is, if you like clean, fresh air to breathe! Perhaps an even better metaphor
would be to say it is like taking a midsized car and continually adding seats tied to it around the
outside to allow for more people to ride “in” the car, rather than trying to find a more efficient
way for them to get where they are going. While this duct-tape solution might work for a while,
eventually someone is going to fall off and get crushed by the 18-wheeler driving behind us!

Another problem with the server-does-it-all approach is that of network traffic. Network
technology continues to grow in leaps and bounds at a fantastic rate. Many of us now have
broadband connections, which we could not fully saturate if we tried (and I for one have tried!).
However, that does not mean we should have applications that are sending far more informa-
tion per request than necessary. We should still strive for thriftiness, should we not?

The other big problem with the classic approach is simply how the user perceives the
application. When the server needs to redraw the entire screen, it generally results in a longer
wait time to see the results, not to mention the visual redrawing that many times occurs in
webapps, flickering, and things of that nature that users universally dislike in a big way. Users
also do not like losing everything they entered when something goes wrong, which is another
common failing of the classic model.

At the end of the day, the classic model still works well on a small scale, and for delivering
mostly static information, but it doesn’t scale very well and it doesn’t deal with the dynamic
nature of the Web today nearly as well. In this context, scale refers to added functionality in the
application, not simultaneous request handling capability (although it is quite possible that is
in play, too). If things do not work as smoothly, or if breakages result in too much loss, or if
perceived speed is diminished, then the approach didn’t scale well.

The classic model will continue to serve us well for some time to come in the realm of web
sites, but in the realm of webapps—the realm you are likely interested in if you are reading this
book—its demise is at hand, and its slayer is the hero of our tale: Ajax!

Ajax
Ajax came to life, so to speak, at the hands of one Jesse James Garrett of Adaptive Path (http://
www.adaptivepath.com). I am fighting my natural urge to make the obvious outlaw jokes here!
Mr. Garrett wrote an essay in February of 2005 (you can see it at http://www.adaptivepath.com/
publications/essays/archives/000385.php), in which he coined the term Ajax.

Ajax, as I’d be willing to bet my dog you know already (I don’t have a dog, but I will buy one
and give it to you if you don’t know what Ajax stands for—OK, not really) stands for Asynchro-
nous JavaScript and XML. The interesting thing about Ajax, though, is that it doesn’t have to be
asynchronous (but virtually always is), doesn’t have to involve JavaScript (but virtually always
does), and does not need to use XML at all (but probably does half the time). In fact, one of the

Zammetti-816-4C12.fm Page 469 Wednesday, March 14, 2007 11:29 AM

470 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

most famous Ajax examples, Google Suggest (http://www.google.com/webhp?complete=1&hl=en),
doesn’t pass back XML at all! The fact is that it does not even pass back data per se; it passes
back JavaScript that contains data (which, if you’ve read Chapter 5 already, is actually some-
thing you’ve seen: the Yahoo and Google web services used there returned data wrapped in a
JavaScript function call).

Ajax to the rescue! (Now you’ll always know what code/architecture would look like personified
as a superhero.)

The Ajax Frame of Mind
Ajax has, at its core, an exceedingly simple, and by no stretch of the imagination original, concept:
it is not necessary to refresh the entire contents of a web page for each user interaction, or each
“event,” if you will. When the user clicks a button, it is no longer necessary to ask the server to
render an entirely new page, as is the case with the classic web model. Instead, you can define
regions on the page to be updated, and have much more fine-grained control over user events
as well. No longer are you limited to simply submitting a form or navigating to a new page
when a link is clicked. You can now do something in direct response to a non-submit button
being clicked, a key being pressed in a text box—in fact, to any event happening!

The server is no longer completely responsible for rendering what the user sees; some of
this logic is now performed in the user’s browser. In fact, in a great many cases, it is consider-
ably better to simply return a set of data and not a bunch of markup for the browser to display.
As we traced along my admittedly rough history of application development, you saw that the
classic model of web development is, in a sense, an aberration to the extent that we actually
had it right before then!

Zammetti-816-4C12.fm Page 470 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 471

Ajax is, most important, a way of thinking, an approach to application development, and a
mind-set, not a specific technology. The interesting thing about Ajax is that it is in no way, shape,
or form new; only the term used to describe it is. I was reminded of this fact at the Philadelphia
Java Users Group. A speaker by the name of Steve Banfield was talking about Ajax, and he said
(paraphrasing from memory), “You can always tell someone who has actually done Ajax because
they are pissed that it is all of a sudden popular.” This could not be truer! I was one of those
people doing Ajax years and years ago. I just never thought what I was doing was anything
special and hence did not give it a “proper” name. Mr. Garrett holds that distinction. It also
would not be Ajax in a form we recognize today, but that’s because the technological approach
may have changed, but the underlying mind-set hasn’t, and that’s the key point in my opinion.

When you get into the Ajax frame of mind, which is what we are really talking about, you
are no longer bound by the rules of the classic web model. You can now take back at least some
of the power the fat clients offered, while still keeping the benefits of the Web. Those benefits
begin, most important perhaps, with the ubiquity of the web browser.

Have you ever been at work and needed to give a demo of your new fat client app (for
example, a Visual Basic app) on a machine you never touched before? Ever had to do it in the
boardroom in front of top company executives? Ever had that demo fail miserably because of
some DLL conflict you couldn’t possibly anticipate? You are a developer, so the answer to all of
those questions is likely yes (unless you work in the public sector, and then you probably don’t
present to corporate executives, but you get the point). If you have never done Windows devel-
opment, you may not have had these experiences. You will have to take my word for it when I
say that such situations were, for a long time, much more common than any of us would have
liked. With a web-based application, this is generally not a concern. Ensure the PC has the
current browser and version, and off you go 98% of the time.

We’ve all been there. Live demos and engineers do not mix!

Zammetti-816-4C12.fm Page 471 Wednesday, March 14, 2007 11:29 AM

472 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

The other major benefit of a webapp is distribution. No longer do you need a three-month
shakedown period to ensure your new application does not conflict with the existing suite of
corporate applications. An app running in a web browser, security issues aside, will not affect,
or be affected by, any other application on the PC (and I am sure we all have war stories about
exceptions to that, but they are just that: exceptions).

Of course, you probably knew those benefits already, or you wouldn’t be interested in web
development in the first place.

Sounding good so far, huh? It’s not all roses in Ajax land, however. Ajax is not without its
problems. Some of them are arguably only perceived problems, but others are concrete.

Accessibility and Similar Concerns
First and foremost, in my mind at least, is the issue of accessibility. You will lose at least some
accessibility in your work by using Ajax because devices like screen readers are designed to
read an entire page, and since you will no longer be sending back entire pages, screen readers
will have trouble. My understanding is that some screen readers can deal with Ajax to some
degree, largely depending on how Ajax is used (if the content is literally inserted into the DOM,
it makes a big difference). In any case, extreme caution should be used if you know people with
disabilities are a target audience for your application, and you will seriously want to consider
(and test!) whether Ajax will work in your situation. I am certain this problem will be addressed
better as time goes on, but for now, it is definitely a concern. In the meantime, here are some
things you can do to improve accessibility:

Let users know about the dynamic updates. Put a note at the top of the page that says the
page will be updated dynamically. This will give users the knowledge that they may need
to periodically request a reread of the page from the screen reader to hear the dynamic
updates.

Use alert() pop-ups. Depending on the nature of the Ajax you are using on a page, use
alert() pop-ups when possible, as these are read by a screen reader. This is a reasonable
enough suggestion for things like Ajax-based form submission that will not be happening
too frequently, but obviously if you have a timed, repeating Ajax event, this suggestion
would not be a good one.

Add visual cues. Remember that it is not only the blind who have accessibility needs; it can
be sighted people as well. For them, try to use visual cues whenever possible. For instance,
briefly highlighting items that have changed can be a big help. Some people call this the
“yellow fade effect”, which I talked about back in Chapter 1 as one kind of effect that actu-
ally enhances the user experience. The idea is to highlight the changed item in yellow, and
then slowly fade it back to the nonhighlighted state. Of course, it does not have to be yellow,
and it does not have to fade, but the underlying concept is the same: highlight changed
information to provide a visual cue that something has happened. Remember that changes
caused by Ajax can sometimes be very subtle, so anything you can do to help people notice
them will be appreciated.

Zammetti-816-4C12.fm Page 472 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 473

Another disadvantage of Ajax to many people is added complexity. Many shops do not
have in-house the client-side coding expertise Ajax requires (the use of toolkits that make it
easier notwithstanding). The fact is, errors that occur on the client side are still, by and large,
harder to track down than server-side problems, and Ajax does not make this any simpler. For
example, View Source does not reflect changes made to the DOM.

Another issue is that Ajax applications will many times do away with some time-honored
web concepts, most specifically back and forward buttons and bookmarking. Since there are
no longer entire pages, but instead fragments of pages being returned, the browser cannot
bookmark things in many cases. Moreover, the back and forward buttons cease to have the
same meanings because they still refer to the last URL that was requested, and Ajax requests
almost never are included (requests made through the XMLHttpRequest are not added to history,
for example, because the URL generally does not change, especially when the method used
is POST).

Ajax: A Paradigm Shift for Many
Ajax does, in fact, represent a paradigm shift for some people (even most people, given what
most webapps are today) because it can fundamentally change the way you develop a webapp.
More important perhaps is that it represents a paradigm shift for the users, and, in fact, it is the
users who will drive the adoption of Ajax. Believe me, you will not long be able to ignore Ajax as
a weapon in your arsenal.

Put a non-Ajax webapp in front of some users, and then put that same app using Ajax tech-
niques in front of them, and guess which one they are going to want to use all day, nine times
out of ten? The Ajax version!

Users can immediately see the increased responsiveness of an Ajax application, and will notice
that they no longer need to wait for a response from the server while they stare at a spinning
browser logo, wondering if anything is actually happening. They will see that the application alerts
them on the fly of error conditions they would have to wait for the server to tell them about in
the non-Ajax webapp. They will see functionality like type-ahead suggestions, instantly sortable
tables, and master/detail displays that update in real time—things that they would not see in a
non-Ajax webapp. They will see maps that they can drag around as they can in the full-blown
mapping applications they spent $80 on in the past. All of these things will be obvious advan-
tages to the user. Users have become accustomed to the classic webapp model, but when
confronted with something that harkens back to those fat-client days in terms of user-friendliness
and responsiveness, there is almost an instantaneous realization that the Web as they knew it
is dead, or at least should be!

If you think about many of the big technologies to come down the pipe in recent years, it
should occur to you that we technology folks, rather than the users, were driving many of them.
Do you think a user ever asked for an Enterprise JavaBean (EJB)–based application? No, we just
all thought it was a good idea (how wrong we were there!). What about web services?
Remember when they were going to fundamentally change the way the world of application
construction worked? Sure, we are using them today, but are they, by and large, much more
than an interface between cooperating systems? Not usually. Whatever happened to Universal
Description, Discovery, and Integration (UDDI) directories and giving an application the ability
to find, dynamically link to, and use a registered service on the fly? How good did that sound?
To us geeks, it was the next coming, but it didn’t even register with users.

Zammetti-816-4C12.fm Page 473 Wednesday, March 14, 2007 11:29 AM

474 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

Ajax is different, though. Users can see the benefits. The advantages are very real and very
tangible to them. In fact, we as technology people, especially those of us doing Java web devel-
opment, may even recoil at Ajax at first, because more is being done on the client, which is contrary
to what we have been drilling into our brains all these years. After all, we all believe scriptlets in
JavaServer Pages (JSPs) are bad, eschewing them in favor of custom tags. The users do not care
about elegant architectures, separation of concerns, and abstractions allowing for code reuse.
Users just want to be able to drag the map around in Google Maps (http://maps.google.com)
and have it happen in real time, without waiting for the whole page to refresh.

The difference is clear. Users want it, and they want it now (come now, we’re adults here!)

RICH INTERNET APPLICATIONS (RIAS)

Ajax is not the only new term floating around these days that essentially refers to the same thing. You may
have also heard of Web 2.0 and rich Internet applications (RIAs). RIA is a term I particularly like. Although there
is no formal definition with which I am familiar, most people get the gist of its meaning without having to
Google for it.

In short, the goal of an RIA is to create a “rich” application that is web-based. The application runs in a
web browser but looks, feels, and functions more like a typical fat-client application than a typical web site.
Things like partial-page updates are taken for granted, and hence Ajax is always involved in RIAs (although
what form of Ajax is involved can vary; indeed, you may not find the XMLHttpRequest object, the prototypical
Ajax solution, lurking about at all!). These types of applications are always more user-friendly and better received
by the user community they serve. In fact, your goal in building RIAs should be for users to say, “I didn’t even
know it was a webapp!”

Gmail (http://gmail.google.com) is a good example of an RIA, although it isn’t perfect. While it has
definite advantages over a typical web site, it still looks and feels very much like a web page. By the way,
Google developers have probably done more to bring Ajax to the forefront of people’s minds than anyone else.
They were not the first to do it, or even the best necessarily, but they certainly have created some of the most
visible examples, and have really shown people what possibilities Ajax opens up.

The “Hello World” of Ajax Examples
So, enough theoretical musings. What does Ajax look like in the flesh? Figure 12-1 shows a very
simple sample application on the screen (don’t expect much here, folks!).

Zammetti-816-4C12.fm Page 474 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 475

Figure 12-1. Note that there is no content in the second drop-down list because nothing has been
selected yet in the first one.

As you can see, there is no content in the second drop-down list initially. This list will be
dynamically populated once a selection is made in the first drop-down list, as shown in Figure 12-2.

Figure 12-2 shows that when a selection is made in the first drop-down list, the contents of
the second are dynamically updated. In this case, you see characters from the greatest televi-
sion show ever, Babylon 5. (Don’t bother arguing, you know I’m right. And besides, you’ll get
your chance to put in your favorites later!) Now let’s see how this “magic” is accomplished.

Zammetti-816-4C12.fm Page 475 Wednesday, March 14, 2007 11:29 AM

476 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

Figure 12-2. A selection has been made in the first drop-down list, and the contents of the second
have been dynamically created from what was returned by the “server.”

Listing 12-1 shows the first page of our simple Ajax example, which performs a fairly
typical Ajax-type function: populate one <select> box based on the selection made in another.
This comes up all the time in web development, and the “classic” way of doing it is to submit a
form—whether as a result of the user clicking a button or by a JavaScript event handler—to the
server and let it render the page anew with the updated contents for the second <select>. With
Ajax, none of that is necessary.

Listing 12-1. Our First Real Ajax Application

<html>

 <head>

 <title>Simple Non-Server AJAX Example</title>

 <script>

 // This is a reference to an XMLHttpRequest object.
 xhr = null;

Zammetti-816-4C12.fm Page 476 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 477

 // This function is called any time a selection is made in the first
 // <select> element.
 function updateCharacters() {
 // Instantiate an XMLHttpRequest object.
 if (window.XMLHttpRequest) {
 // Non-IE.
 xhr = new XMLHttpRequest();
 } else {
 // IE.
 xhr = new ActiveXObject("Microsoft.XMLHTTP");
 }
 xhr.onreadystatechange = callbackHandler;
 url = document.getElementById("selShow").value + ".htm";
 xhr.open("post", url, true);
 xhr.send(null);
 }

 // This is the function that will repeatedly be called by our
 // XMLHttpRequest object during the life cycle of the request.
 function callbackHandler() {
 if (xhr.readyState == 4) {
 document.getElementById("divCharacters").innerHTML =
 xhr.responseText;
 }
 }

 </script>

 </head>

 <body>

 Our first simple AJAX example

 Make a selection here:

 <select onChange="updateCharacters();" id="selShow">
 <option value=""></option>
 <option value="b5">Babylon 5</option>
 <option value="bsg">Battlestar Galactica</option>
 <option value="sg1">Stargate SG-1</option>
 <option value="sttng">Star Trek The Next Generation</option>
 </select>

Zammetti-816-4C12.fm Page 477 Wednesday, March 14, 2007 11:29 AM

478 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

 In response, a list of characters will appear here:

 <div id="divCharacters">
 <select></select>
 </div>

 </body>
</html>

Let’s walk through the code and see what’s going on. Note that this is not meant to be a
robust, production-quality piece of code. It’s meant to give you an understanding of basic Ajax
techniques, nothing more. There’s no need to write me about all the flaws you find!

First things first: the markup itself. In our <body>, we have little more than some text and
two <select> elements. Notice that they are not part of a <form>. You’ll find that forms tend to
have less meaning in the world of Ajax. Many times, you’ll begin to treat all your form UI elements
as top-level objects along with all the other elements on your page (in the <body> anyway).

The first <select> element is given the ID selShow. This becomes a node in the DOM of the
page. You’ll notice the JavaScript event handler attached to this element. Any time the value of
the <select> changes, we’ll be calling the JavaScript function named updateCharacters(). This
is where all the “magic” will happen. The rest of the element is nothing unusual. I have simply
created an <option> for some of my favorite shows.

After that is another <select> element—well, sort of. It’s actually an empty <select> element,
but wrapped in a <div>. You’ll find that probably the most commonly performed Ajax function
is to replace the contents of some <div>. That is exactly what we’ll be doing here. In this case,
what will be returned by the “server” (more on that in a minute) is the markup for our <select>
element, complete with <option> elements listing characters from the selected television show.
So, when you make a show selection, the list of characters will be appropriately populated, and
in true Ajax form, the whole page will not be redrawn, but only the portion that has changed—
the second <select> element in this case (or more precisely, the <div> that wraps it).

Let’s quickly look at our mock server. Each of the shows in the first <select> has its own
HTML file that, in essence, represents a server process. You have to take a leap of faith here and
pretend a server was rendering the response that is those HTML pages. They all look virtually
the same, so I’ll show only one as an example. Take a look at Listing 12-2.

Listing 12-2. Sample Response Listing Characters from the Greatest Show Ever (Babylon 5)

<select>
 <option>Delenn</option>
 <option>Dr. Stephen Franklin</option>
 <option>G'Kar</option>
 <option>John Sheridan</option>
 <option>Kosh</option>
 <option>Lita Alexander</option>
 <option>Londo Mollari</option>
 <option>Marcus Cole</option>
 <option>Michael Garibaldi</option>
 <option>Mr. Morden</option>
</select>

Zammetti-816-4C12.fm Page 478 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 479

As expected, it really is nothing but the markup for our second <select> element.
So, now we come to the part that does all the work here: our JavaScript function(s). First is

the updateCharacters() function. This basic code will very soon be imprinted on the insides of
your eyelids if you work with Ajax for any length of time, because it’s the prototypical Ajax function.
Let’s tear it apart, shall we?

The first thing we need, as one would expect, is an XMLHttpRequest object, which is the
object at the core of Ajax as most people know it. This object, a creation of Microsoft (believe it
or not!), is nothing more than a proxy to a socket. It has a few (very few) methods and proper-
ties, but that is one of the benefits. It really is a very simple beast.

Notice the branching logic here. It turns out that getting an instance of the XMLHttpRequest
object is different in IE than in any other browser. Now, before you get your knickers in a knot
and get your anti-Microsoft ire up, note that Microsoft invented this object, and it was the rest
of the world that followed. So, while it would be nice if Microsoft developers updated their API
to match everyone else’s, it isn’t their fault we need this branching logic! The others could just
as easily have duplicated what Microsoft did exactly, too, so let’s not throw stones here—we’re
all in glass houses on this one.

Late-breaking news: IE7 implements XMLHttpRequest as a native object that can even work
when ActiveX is disabled! This means that the branching code I’m talking about here, theoret-
ically, isn’t necessary. However, I’ve been reading quite a lot about problems with this, and
questions about whether the IE team really implemented a native version or just cleverly wrapped
the ActiveX version in a JavaScript façade. There is also talk of performance issues that accom-
panies this. So, at the end of the day, I suggest sticking with the tried-and-true method for a
while longer. Really though, you’ll likely be using some sort of library for your Ajax function-
ality most of the time anyway, so you’ll largely be insulated from these concerns and won’t so
much care whether it’s truly native or not. Still, this certainly is information worth noting.

This is probably a good time to point out that XMLHttpRequest is pretty much a de facto
standard. It is also being made a true W3C standard as well, but for now it is not. It is safe to
assume that any “modern” browser—that is, a desktop web browser that is no more than a few
versions old—will have this object available. More limited devices—such as PocketPCs, cell
phones, and the like—may not have it. But by and large, XMLHttpRequest is a pretty ubiquitous
little piece of code.

Continuing on in our code review, once we have an XMLHttpRequest object instance, we
assign the reference to it to the variable xhr in the global page scope. Think about this for just a
minute. What happens if more than one onChange event fires at close to the same time? Essen-
tially, the first will be lost because a new XMLHttpRequest object is spawned, and xhr will point
to it. Worse still, because of the asynchronous nature of XMLHttpRequest, a situation can arise
where the callback function for the first request is executing when the reference is nulled, which
means that callback would throw errors due to trying to reference a null object. If that were not
bad enough, this will be the case only in some browsers, but not all (although my research indi-
cates most would throw errors), so it might not even be a consistent problem. Remember that
I said this was not robust, production-quality code! This is a good example of why. That being
said, it is actually many times perfectly acceptable to simply instantiate a new instance and
start a new request.

Think about a fat client that you use frequently. Can you spot instances where you can kick
off an event that, in essence, cancels a previous event that was in the process of executing? For
example, in your web browser, can you click the Home button while a page is loading, thereby
causing the page load to be prematurely ended and the new page to begin loading? Yes, you

Zammetti-816-4C12.fm Page 479 Wednesday, March 14, 2007 11:29 AM

480 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

can, and that is essentially what happens by starting a new Ajax request using the same refer-
ence variable. It is not an unusual way for an application to work, and sometimes it is
downright desirable.

The next step we need to accomplish is telling the XMLHttpRequest instance what callback
handler function to use. Ajax requests have a well-defined and specific life cycle, just like any
HTTP request (and remember that is all an Ajax request is at the end of the day!). This cycle is
defined as the transitions between ready states (hence the property name, onreadystatechange).
At specific intervals in this life cycle, the JavaScript function you name as the callback handler
will be called. For instance, when the request begins, your function will be called. As the request
is chunked back to the browser, in most browsers at least (IE being the unfortunate exception),
you will get a call for each chunk returned (think about those cool status bars you can finally
do with no complex queuing and callback code on the server!). Most important for us in this
case, the function will be called when the request completes. We will see this function in just
a moment.

The next step is probably pretty obvious: we need to tell the object which URL we want to
call. We do this by calling the open() method of the object. This method takes three parameters:
the HTTP method to perform, the URL to contact, and whether we want the call to be performed
asynchronously (true) or not (false). Because this is a simple example, each television show
gets its own HTML file pretending to be the server. The name of the HTML file is simply the
value from the <select> element with .htm appended to the end. So, for each selection the user
makes, a different URL is called. This is obviously not how a real solution would work. The real
thing would likely call the same URL with some sort of parameter to specify the selected show.
But some sacrifices were necessary to keep the example simple and to not need anything on
the server side of things.

The HTTP method can be any of the standard HTTP methods: GET POST, HEAD, and so
on. Most of the time, you will be passing GET or POST. The URL is self-explanatory, except for
one detail: if you are doing a GET, you must construct the query string yourself and append it
to the URL. That is one of the drawbacks of XMLHttpRequest. You take full responsibility for
marshalling and unmarshalling data sent and received. Remember that it is in essence just a
very thin wrapper around a socket. This is where any of the numerous Ajax toolkits can come
in quite handy, as you’ll see when we use the Mootools library for this chapter’s chat application.

Once we have the callback registered with the object and we have told it what we’re going
to connect to and how, we simply call the send() method. In this case, we are not actually sending
anything, so we pass null. One thing to be aware of is that you can call send() with no arguments in
IE, and it will work, but it won’t work in Firefox (at least this was the case with my tests). Null
works in both browsers, though, so null it is.

Of course, if you actually had some content to send, you would do so here. You can pass a
string of data into this method, and the data will be sent in the body of the HTTP request. Many
times, you will want to send actual parameters, and you do so by constructing essentially a
query string in the typical form var1=val1&var1=val1 and so forth, but without the leading
question mark. Alternatively, you can pass in an XML DOM object, and it will be serialized to a
string and sent. Lastly, you could send any arbitrary data you want. If a comma-separated list
does the trick, you can send that. Anything other than a parameter string will require you to
deal with it; the parameter string will result in request parameters as expected.

So far, I’ve described how a request is sent. It is pretty trivial, right? Well, the next part is
what can be even more trivial, or it can be much more complex. In our example, it is the former.
I am referring to the callback handler function. Our callback handler function does very little.

Zammetti-816-4C12.fm Page 480 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 481

First, it checks the readystate of the XMLHttpRequest object. Remember I said this callback will
be called multiple times during the life cycle of the request? Well, the readystate code you will
see will vary with each life cycle event. For the purposes of this example, we are interested in
code 4, which indicates the request has completed. Notice that I didn’t say completely success-
fully! Regardless of the response from the server, the readystate will be 4. Since this is a simple
example, we don’t care what the server returns. If an HTTP 404 error (page not found) is received,
we don’t care in this case. If an HTTP 500 error (server processing error) occurs, we still do not
care. The function will do its thing in any of these cases. I repeat my refrain: this is not an industrial-
strength example!

When the callback is called as a result of the request completing, we simply set the innerHTML
property of the <div> on the page with the ID divCharacters to the text that was returned. In
this case, the text returned is the markup for the populated <select>, and the end result is the
second <select> is populated by characters from the selected show.

Now, that wasn’t so bad, was it?

■Tip For a fun little exercise, and just to convince yourself of what is really going on, I suggest adding one
or two of your own favorite shows in the first <select>, and creating the appropriately named HTML file to
render the markup for the second <select>.

One other point I should make is that in previous chapters, such as in Chapter 5, you saw
what I said was essentially Ajax. However, after seeing this simple application, you may be
confused. Let me clear up that confusion right now. Remember that I’ve been trying to enforce
the idea that Ajax is more about approach than it is implementation. Just because XMLHttpRequest
isn’t in the equation doesn’t mean what you see isn’t Ajax. The dynamic <script> tag technique
is, in my opinion, as much Ajax as anything you see in this chapter. The idea of the client doing
more work and of the server not rendering full views any more is what matters. So, while this
chapter isn’t necessarily the first exposure to Ajax you’ve had in this book, it’s the first example
of what most people mean when they say Ajax. It’s a bit of conceptual/semantical banter I
suppose, but a point I believe is worth making.

If all of this seemed like an attempt to brainwash you about what Ajax is and why it’s good,
that is because, in a sense, it was! Ajax can seem to some people like a really bad idea, but those
people tend to see only the problems and completely ignore the benefits. Because of my belief
that Ajax is more about philosophy and thought process than it is about specific technologies,
it is important to sell you on the ideas underlying it. It is not enough to simply show you some
code and hope you agree! Ajax opens up the Web to fulfilling a lot more of the promise so many
people hold for it, and I feel that web developers should understand why it’s important and put
the underlying concepts to good use.

JSON
Recall when I said that Ajax doesn’t require XML be returned or passed to the server at all? As it
turns out, XML isn’t really even the most common data format. That distinction most likely
goes to something called JSON, or JavaScript Object Notation, which I introduced in Chapter 2.

Zammetti-816-4C12.fm Page 481 Wednesday, March 14, 2007 11:29 AM

482 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

The acronym JSON is, I feel, a bit of a misnomer because, while it can represent an object,
it often does not, but that is really just a name thing. The basic idea is that it is a way to structure
data that is returned to a caller.

JSON is billed as being a lightweight, system-independent data interchange format that is
easy for humans to read, easy for computers to parse, and easy for computers to generate. It
uses a syntax that will be immediately familiar to most programmers that have any experience
with a C-family language (including Java and JavaScript). It is built on two basic concepts that
are pretty much universal in programming: a collection of name/value pairs (maps, keyed lists,
associative arrays, and so on) and an order list of values (lists or arrays).

Well, enough CompSci gobbledygook! Let’s see what JSON looks like.

{"firstName":"Frank","lastName":"Zammetti","age":"34"}

Really? Is that all there is to it? I wish I could try to impress you with my advanced knowl-
edge and say there is more to JSON than that, but no, that actually is all there is to it! As you can
see, it looks similar to an array in Java, but not quite, because two elements are defined between
each delimiter. The item to the left of the colon is the key, and the value to the right is the value.
Each pair is separated by a comma, and the whole thing is wrapper in curly braces. It’s simple!

Where it gets really pretty cool though is when you want to handle a JSON response in
JavaScript. All you have to do is this:

var json = eval("(" + myJSONString + ")");

The result of this, assuming myJSONString contained some valid JSON in the form discussed a
few sentences ago, is that a new variable, json, will be available to your script. From then on, if
you want to get the first name in the response, you simply do this:

alert(json.firstName);

Really, that’s it! What actually happened is the eval() call created the json variable, giving
it the value of the response. The json variable is an associative array in JavaScript, so you can
access the members in the same way you would access members of any other associative array.
Neat, isn’t it?

Although this chapter’s project does not do it, you can send JSON to the server as well. If
you go to http://www.json.org, you will find some libraries for a number of different languages
that help you generate and parse JSON. Of course, we’re only talking about generating and
parsing a string here. Ultimately, it certainly is not rocket science, as you will see when we get
to that code later. However, do keep in mind that even though JSON is quite simple at its core,
because you can nest elements within one another, and have arrays of elements, it can actually
become a bit of a pain to generate manually in some cases. Think of serializing an entire object
graph to JSON, for instance. While the JSON itself may not be terribly challenging to understand,
the fact is that writing the code to generate it could be a bit more of a challenge. In such situations,
you would be wise to look for help in the form of libraries and existing code to make your job a
bit easier.

I should mention that JSON is a general-purpose messaging format, and as such, you can
use it quite effectively outside Ajax work. Many people have actually taken to it much more
than XML, because it is less verbose but tends to be similarly human-readable. I am sure we
have all seen “bad” XML that is difficult to comprehend. Likewise, you can make JSON difficult
to understand if you try. For example, in my previous book on Ajax, I showed an Ajax-based
game that would return a chunk of JSON like the following:

Zammetti-816-4C12.fm Page 482 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 483

{"dm":"false","pn":"Aragorn The Weak","ht":"100","hp":"1","gp":"10","iu":"true",
"vu":"true","di":"false","wn":"false","ec":"false","mo":"o","es":"false","md":"g
ggggggssss[[ggggggggggggggggggg([[[[[[[[[[gggggggg[ggggggggGgg[[[[gggggggggg[[[[
[(gggggg[[[[[[[[[[[[[[[[[[[[g^gggggg[[[[ggggggggg[[gggggggggggfggggggggggggfgggg
gggggggg"}

That does not look terribly readable to me! The names of the elements are obviously not
meant for human consumption. Although you can probably guess quite a few of the elements
just by knowing a little about the game (do feel free to buy that book, Practical Ajax Projects
with Java Technology, ISBN: 1-59059-695-1, if you are interested), you may not be able to guess
all of them. The reason this is the case here is that, for a game, you generally want things to
happen as quickly as possible. Therefore, the choice was to make the JSON messages readable
to a human, who would likely never have to read them except perhaps for debugging purposes,
or make them as small and efficient as possible so as to (a) not take too long to generate or
parse and (b) not take too long to transmit across the wire.

Most applications tend not to be quite as time-sensitive as a game though, so I would
absolutely suggest always making your JSON (or XML for that matter!) as human-readable as
possible. Using displayMessage instead of dm and playerName instead of pn, for example, is what
I would suggest in such a case.

At this point though, you are ready to use JSON, believe it or not! Go forth and be fruitful
with your new knowledge!

Mootools
Now that you have a good foundation on which to build with regard to Ajax in general, let’s see
how the very fine Mootools library (http://mootools.net) makes it so much easier and cleaner,
and less error-prone than what you saw in the little sample application in Listing 12-1.

With a name like Mootools, you would think it invites all sorts of ridicule, but that would
be far from what it deserves! Mootools is a lightweight, modular JavaScript framework that
covers most of the bases a modern JavaScript developer would need. Mootools is constructed
of a number of modules, including the Core module (the base Mootools module), the Native
module (where you can find basic JavaScript extensions and utilities), the Remote module
(where things like Ajax lives), and the Effects modules (where UI FX and such are found).

One of the coolest things about Mootools is its download page. When you go to it, you will
be presented with a list of the available modules and add-ons. You simply check off the ones
you want, and the package you selected will then download is a customized version with only
those modules you selected, nicely compressed and ready to go. This is incredibly handy and
ensures that you get only the code you are really interested in, which gives new meaning to the
term lightweight! What’s more, as you select modules to include, any other modules that it
depends on will automatically be selected. Heck, even if you don’t want to download Mootools,
the download page is great fun!

■Note The mootools.js file in this project includes everything available as of this writing (Mootools v1.0).
So, if there’s something you want to play with, you don’t have to go build your own download if you don’t want
to—just grab this file in the downloadable source and start playing.

Zammetti-816-4C12.fm Page 483 Wednesday, March 14, 2007 11:29 AM

484 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

There is obviously a lot to Mootools, and unfortunately, the chat application won’t do
much more than scratch the surface. So, let’s get to scratching right now.

To fire off an Ajax request with Mootools, this is all you have to do:

new Ajax("<URL>", {
 postBody :
 Object.toQueryString(
 { "parm1" : $("someID1").value, "parm2" : $("someID2").value }
),
 onComplete : function(inResponse) {
 // Do something.
 }
}).request();

That’s it! Instantiate a new Ajax object, passing some parameters to its constructor, and
you are off to the races. The first parameter is the URL to call. The next parameter, postBody, is
the contents that will be POSTed to the URL. You’ll notice that Mootools extends some JavaScript
classes—Object in this case—to offer us the toQueryString() method. With this, we can feed it
a list of parameters and their values, and a proper query string will be constructed for us. You’ll
notice, too, the use of the $() operator, which you’ve seen in other chapters. That operator
gives us a references to a DOM object whose ID we pass in. Well, Mootools offers an implemen-
tation of this function as well, and you can see here it being used to get the value of what is
presumably a text field (we guess this because we’re going after the value attribute).

The last parameter, onComplete, is a JavaScript function that will be executed when the
request successfully returns. You can do anything you want here, and it does not have to be
specified in-line as I show here. You can just reference a function that exists elsewhere. Either
way, that’s all there is to an Ajax call with Mootools!

Other available options include evalScripts, which will evaluate any JavaScript in the
response upon its return; update, which will automatically insert the response into the named
page element; and evalResponse, which evaluates the entire response. These are some very
handy functions to have available, and it’s really nice to not have to write the code yourself!

You should most definitely go rummage through the Mootools documentation (which is
pretty good, by the way) and see what’s available. It hasn’t been around as long as some other
libraries, but it definitely has benefited from seeing the mistakes of others, because it gets a
great deal right.

Now that we’ve taken care of the preliminaries, it’s time for . . . drum roll please . . . the chat
application!

A Preview of the Chat Application
To begin, let’s take a peek at the application. Figure 12-3 shows the initial logon screen. The
application actually has two different logon screens—one for customers and one for support
personnel—but they look very similar (only differing in the text that appears).

Zammetti-816-4C12.fm Page 484 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 485

Figure 12-3. The logon screen for the chat system

Once you have logged in, you will see the main chat screen, as shown in Figure 12-4. This
screen contains several elements. First, we have a greeting near the top, giving a bit of the
personal touch. Just to the left of that is a little green talking head, just to give some levity to the
customer. Below that is the chat area, where the text of the conversation will appear. To the left
of that is the menu of operations the chatter can perform, such as copying the transcript of the
chat or exiting the chat session. At the bottom is a constantly updating display of the current
date and time. You know how long people can sometimes wait on help lines, and a chat system
probably isn’t any different, so it’s nice to help them keep track of time (although, in this partic-
ular implementation, the customer can’t log in unless someone is immediately available, but
we’ll ignore that fact for the sake of the previous sentence making sense).

These two illustrations pretty well cover what the application is all about. There’s not much to
it, as I said earlier. However, what’s behind it is a bit meatier, so let’s jump right into that.

Zammetti-816-4C12.fm Page 485 Wednesday, March 14, 2007 11:29 AM

486 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

Figure 12-4. The main chat window where all the “action” (ahem) occurs

Dissecting the Chat Solution
By now, you undoubtedly know the routine: we start with a look at the directory structure of
the application, shown in Figure 12-5, to get a feel for what pieces are involved. However, this
final application is, in fact, a bit atypical compared to the rest.

If you’re a Java web developer, this will look pretty normal. For those of you who are not in
the Java world, let me explain that the WEB-INF directory means that this is a Java web applica-
tion. The single file in there, web.xml, defines the application. However, this application is good
for the Microsoft folks out there, too.

Since the primary focus of this book is the client side of things, I didn’t want to get very far
at all into the server side of it. I needed to make the server side as simple and easy as possible,
and that means eliminating “extra” steps like compiling code or deploying applications. With
that goal in mind, this application is easy to get running. If you’re a Java developer, simply copy
the entire directory to where applications are deployed in your favorite app server. For instance, if
you’re using Tomcat (which I very much suggest, by the way), copy it into the /webapps direc-
tory. Start your server, and you’ll be able to access the application immediately (its URL will be
something like http://localhost:8080/chat, assuming you copied the chat directory over, and
assuming your installation is listening on port 8080).

If you’re a Microsoft technology developer, you’re probably familiar with Internet Infor-
mation Services (IIS). If so, to get this application running there, simply copy the directory into
INetpub/wwwroot, and you’re all set.

Zammetti-816-4C12.fm Page 486 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 487

Figure 12-5. Directory structure of the Chat application

There actually is one additional configuration step involved in both versions, but it is
trivial. It involves specifying which version you’re using—ASP or JSP—and pointing to the
database file. I’m getting ahead of myself though; we’ll get to all that in a bit.

Whether we’re talking about the Java version or the Microsoft version, the server side is
implemented as a single JSP file or ASP file. This means that there is nothing to compile, no
class paths to worry about, or anything like that. Now, before you start throwing things at me
from a distance, I’ll be the first to admit this probably isn’t the way you would implement such
an application in an ideal world. It doesn’t follow best practices in terms of separation of concerns
and the like. However, it does mean that you should be up and running in a matter of seconds
and there’s little chance of anything going wrong. So, please bear with me in terms of overall
application architecture, I admit this isn’t going to win any prizes! It does, however, have the
benefit of working and being pretty easy to understand, so it serves its purpose well. There’s no
reason you couldn’t use this application for real—you just wouldn’t want to write your Computer
Science thesis on it!

Anyway, thinly veiled apology aside, let’s move on. The JSP and ASP files that make up the
server component of the application are found in the server subdirectory. In the css directory
is a single styles.css file, as you’ve seen in virtually every application in this book.

Zammetti-816-4C12.fm Page 487 Wednesday, March 14, 2007 11:29 AM

488 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

In the database directory, you’ll find an Access database file named chatDB.mdb. This is
another of those choices you probably wouldn’t make in an ideal world, but for the sake of a
project in a book, it’s a good choice. Using an Access database file, and referencing it directly
as you’ll see when we get to the code, means there is no data source setup to worry about,
which again should serve to make getting it running easier.

In the img directory are the image resources for the application. In the js directory are all
the JavaScript files, including Mootools and some classes that the application uses. You’ll
also find two of the packages from Chapter 3 that we’ll use: the jscript.dom package and the
jscript.page package.

Lastly, in the root directory are four HTML documents. chat.htm is the main portion of
the application. index.htm is the page you first access (as a customer) to enter a chat session.
index_support.htm is the entry point for support personnel. goodbye.htm is a simple page seen
when you exit the chat.

OK, I did some foreshadowing there, so let’s dive right in and get to all the details. Although
I’ve typically started with the style and HTML files in other projects, this time, I’m going to
jump right in to the JavaScript. It will help you understand some of the hints I dropped previously
about specifying which version is in use.

Writing SupportChat.js
The SupportChat class, contained in the SupportChat.js file, is the main client-side class that
represents the bulk of the application. As shown in the UML diagram in Figure 12-6, it contains
four fields, one to determine the version and three that are transient in nature (contain values
used during execution of the application):

• serverType: The value that determines whether we’re running the ASP or the JSP version.
The value is literally either asp or jsp. This is used to create a reference to the appropriate
page in the server directory. So, if you want to drop the application into IIS and run it,
you need to change the value here to asp. To run it under Tomcat or another servlet
container, make sure the value is jsp. That’s all there is to changing between the two
versions.

• chattype: Determines whether the chatter is a customer or a support personnel. customer
and support are the two possible values.

• chatname: The name the chatter is logged in as.

• lastMessageTime: Holds the last time when the application requested new messages
from the server. We’ll get to the mechanics of that in a moment, but suffice it to say this
is required for it to work.

A number of methods exist in this class, and we’ll now look at them one by one.

Zammetti-816-4C12.fm Page 488 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 489

Figure 12-6. UML diagram for the SupportChat class

The init() Method: Starting Things Up

The init() method is called when the main page, chat.htm, loads into the browser:

 this.init = function() {

 // Get the chatter type
 this.chattype = jscript.page.getParameter("chattype");

 // Get the chatter's name
 this.chatname = jscript.page.getParameter("chatname");

 // Insert greeting.
 $("spnChatname").innerHTML = this.chatname;

 // Set a timer to fire to update the time at the bottom.
 setTimeout(updateDateTime, 0);

 // Set a timer to look for new messages on the server
 // (once every 2 seconds).
 setTimeout(getMessages, 2000);

 } // End init().

First, this method gets the type of chatter this is by using the getParameter() method of the
jscript.page object, which we built in Chapter 3. The name of the chatter is retrieved the same
way. Once that is done, we insert the chatter’s name into the spnChatname , which gives
us the greeting you see at the top.

Zammetti-816-4C12.fm Page 489 Wednesday, March 14, 2007 11:29 AM

490 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

After that, two timeouts are set. The first is used to update the time at the bottom of the
page. Note that the interval is set to zero, meaning this will fire immediately, which is what we
want.2 Otherwise, we would wait a second for the time to initially be displayed at the bottom.
The second timeout is used to periodically request new messages from the server.

The updateDateTime() Method: Running the Clock

The first timeout calls the updateDateTime() method, so let’s look at that.

 var updateDateTime = function() {

 $("pDateTime").innerHTML = new Date();
 setTimeout(updateDateTime, 1000);

 } // End updateDateTime().

This is about what you would expect. We insert the string representation of a Date object
into the pDateTime element, and set the timeout again to elapse one second later. It’s a piece
of cake!

The getMessages() Method: Talking to the Server

The second timeout calls the getMessages() method, and there’s a little more to see there for sure.

 var getMessages = function() {

 new Ajax("server/chatServer." + chat.serverType, {
 postBody :
 Object.toQueryString(
 { "func" : "getMessages", "chatname" : chat.chatname,
 "lastMessageTime" : chat.lastMessageTime }
),
 onComplete : function(inResponse) {
 // Parse JSON response.
 var messageJSON = eval("(" + inResponse.trim() + ")");
 chat.lastMessageTime = messageJSON.lastMessageTime;
 var lines = new Array();
 // Iterate over messages received.
 for (var i = 0; i < messageJSON.messages.length; i++) {
 var nextMessage = messageJSON.messages[i];
 // Construct a new ChatMessage and add to array.
 var chatMessage = new ChatMessage();
 chatMessage.setTimestamp(nextMessage.timestamp);
 chatMessage.setChatname(nextMessage.chatname);

2. You may be wondering why not just call the function directly and then set up the timeout. My answer is
that this is simply another way to do it. Either way would work just fine. This seems slightly cleaner to
me since it’s one line of code rather than two, and the mechanism that fires the function repeatedly is
the same one that fires it initially. There’s no right or wrong though; it’s just one alternative vs. another.

Zammetti-816-4C12.fm Page 490 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 491

 chatMessage.setMessage(nextMessage.message);
 lines.push(chatMessage);
 }
 // Display new message lines.
 addLines(lines);
 }
 }).request();

 // Kick off the timer again.
 setTimeout(getMessages, 2000);

 } // End getMessages().

Here, we have our first actual Ajax and the first usage of Mootools. As you can see, the URL
is constructed using the value of the serverType field, as previously described. We then use the
Object.toQueryString() method to construct the contents of the POST body. Those contents
consist of the parameter func, which tells the server which function is being performed;
chatname, which again is the name of the chatter posting the message as stored in the chatname
field of the SupportChat class; and lastMessageTime, which is the time that the last request for
messages was made. Any message from the chatter or chat partner in the conversation that is
posted subsequent to this lastMessageTime will be returned. Since we’re checking only for
messages every three seconds, it’s possible that a number of messages were posted during that
time, so we want to get them all in one burst to catch up, so to speak.

We also define in-line a function to execute when the response returns. This callback first
parses the JSON being returned, and then iterates over the messages received (which could be
none, of course, but this code doesn’t break in that situation). For each message present, we
construct a ChatMessage object, which is basically a Data Transfer Object (DTO) representing
a message. You’ll see that class shortly, but it’s really nothing but a storage container for the
attributes of a message, which are its timestamp (when it was posted), the name of the chatter
who posted it (chatname), and the message itself.

After the ChatMessage object is created and populated, it is pushed onto the lines array,
which was created before the iteration over the messages began. After the iteration completes,
we pass this array to the addLines() method, which is responsible for actually displaying all the
messages in the array.

The addLines() Method: Showing Some Messages

Speaking of the addLines() method, let’s see that right now.

 var addLines = function(inLines) {

 for (var i = 0; i < inLines.length; i++) {
 var message = inLines[i];
 var styleClass = "cssChatterText";
 if (message.getChatname() != chat.chatname) {
 styleClass = "cssSupportText";
 }

Zammetti-816-4C12.fm Page 491 Wednesday, March 14, 2007 11:29 AM

492 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

 htmlOut = "<div class=\"" + styleClass + "\">" +
 message.getChatname() + " : " +
 message.getMessage() +
 "</div>";
 $("divChat").innerHTML = $("divChat").innerHTML + htmlOut;
 }

 } // End addLines().

This is a pretty straightforward piece of code. It begins to iterate over the array of ChatMessage
objects passed in, as part of the inLines array. For each element in the array, it first determines
if the message was posted by the chatter or the chat partner. The styleClass variable stores the
CSS class name that applies in either case, so we can have our messages in one color and our
chat partner’s messages in another color. Then, for each message, a <div> is constructed, and
the name of the chatter and the message are inserted as its contents. Finally, the <div> is appended
to the existing markup in the divChat <div>, and the message is then seen on the screen.

The postMessage() Method: Say It to the World!

You’ve now seen how messages are retrieved from the server and displayed. The other half of
the equation is posting messages, and that is accomplished through the postMessage()
method.

 this.postMessage = function(inLines) {

 new Ajax("server/chatServer." + chat.serverType, {
 postBody :
 Object.toQueryString(
 { "func" : "postMessage", "chatname" : chat.chatname,
 "messagetext" : $("postMessage").value }
)
 }).request();
 $("postMessage").value = "";

 } // End addPostMessage().

Time for a bit more Ajax! Here, we’re doing basically the same thing as you saw in
getMessages(), but this time the func parameter has the value "postMessage", which makes
sense I think! Here, we are providing a messagetext parameter, passing it the value of the
postMessage text box. At the very end, we clear that text box so that the chatter can begin typing
a new one. That’s all there is to it.

The astute reader may be wondering how the chatters see their own messages. There’s
certainly nothing that handles that display here. The answer is that the message will be displayed
as part of the next getMessage() cycle. Yes, that means there could be up to a three-second
delay between the time chatters post the message and the time they see it on their own screen.
This is probably OK to do, although it might be better to put it on the screen immediately
(hint, hint).

The only things remaining in this class are the functions to deal with the three menu items,
and the one to exit, so let’s get to them right now.

Zammetti-816-4C12.fm Page 492 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 493

The getChatTranscript() Method: For Posterity

First up is getChatTranscript(). This is a method used internally by the copyTranscript()
and printTranscript() methods, which are called by the corresponding menu items.
getChatTranscript() is responsible for literally grabbing the text of the chat session and
returning it to the caller.

 var getChatTranscript = function() {

 // Get the text of the chat.
 var chatTranscript = $("divChat").innerHTML;

 // Now we need to go through the text and remove the HTML components so
 // we are left with nothing but text. Then, for each line, we make sure
 // there's no trailing or leading whitespace, and we build up a string
 // containing all the lines, separated by linebreaks.
 var transcriptLines = chatTranscript.split(">");
 chatTranscript = "";
 for (var i = 0; i < transcriptLines.length; i++) {
 if (transcriptLines[i].toLowerCase().indexOf("</div") != -1) {
 transcriptLines[i] = transcriptLines[i].replace("</div", "");
 transcriptLines[i] = transcriptLines[i].replace("</DIV", "");
 chatTranscript += transcriptLines[i].trim() + "\r\n";
 }
 }

 return chatTranscript;

 } // End getChatTranscript().

It begins by getting either the innerHTML of the divChat <div>. This is all the text you see
while chatting. Next, the text is split, using the String class’s split() method, on the greater-
than sign or the closing of an HTML tag. This results in an array where each element is a single
message from the chat, plus lines consisting of just the opening markup of the <div> that wraps
each line.

A loop then begins to iterate over this array. For each element, we see if the element
contains the string "</div". This is only true of elements representing lines of text from the
chat; all other elements are the markup of the opening <div> only. Note that we need to
compare against a lowercase version of the string. This is because in IE, </div is present as </DIV,
so we wouldn’t get a match back from indexOf() in that case. Once we find a match, we remove
the "</div" string by replacing it with nothing. Then we add the element to the chatTranscript
string variable, being sure to trim(), and adding a carriage return/line feed sequence after it.
The trim() function is added to the String class by Mootools, and it simply trims all whitespace
from both ends of the string.

The final result of all this is that the variable chatTranscript contains a text-only version of
the chat transcript with each message on its own line, without any blank lines or whitespace on
the ends of any lines. This string is returned, and this method’s work is done.

Zammetti-816-4C12.fm Page 493 Wednesday, March 14, 2007 11:29 AM

494 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

The printTranscript() Method: Hurting the Earth to Keep Your Memories

As noted, the getChatTranscript() method is used by the printTranscript() method, which
looks like this:

 this.printTranscript = function() {

 // Get the transcript of the chat.
 var chatTranscript = getChatTranscript();

 // Open a new window for it.
 var newWindow = window.open();
 newWindow.document.open();
 newWindow.document.write("<pre>" + chatTranscript + "<pre>");
 newWindow.document.close();
 newWindow.print();

 } // End printTranscript().

There’s not much to it. First comes a call to getChatTranscript(). Then we just open a new
window, write the string we got from getChatTranscript() inside a <pre> tag, and call the
print() method on the window. The browser and operating system take it from there, and
that’s that.

The copyTranscript Method: Direct to Your Operating System

The last method, copyTranscript(), is the one that copies the transcript to the operating
system’s clipboard. There is definitely more involved to this than you might think at first.

 this.copyTranscript = function() {

 // Get the transcript of the chat.
 var textToCopy = getChatTranscript();

 // Branch based on browser capabilities...
 if (window.clipboardData) {

 // Internet Explorer is easy!
 window.clipboardData.setData("Text", textToCopy);

 // Let the chatter know we're done.
 alert("Chat transcript has been copied to the clipboard");

 } else if (window.netscape) {

 // Netscape/Firefox is hard! First, ask it for permission to do this.
 try {
 netscape.security.PrivilegeManager.enablePrivilege('UniversalXPConnect');
 } catch (exception) {

Zammetti-816-4C12.fm Page 494 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 495

 alert(exception);
 return;
 }

 // Instantiate a clipboard object.
 var clip =
 Components.classes['@mozilla.org/widget/clipboard;1'].createInstance(
 Components.interfaces.nsIClipboard);
 // Instantiate a transferrable object and set it's "flavor."
 var trans =
 Components.classes['@mozilla.org/widget/transferable;1'].createInstance(
 Components.interfaces.nsITransferable);
 trans.addDataFlavor('text/unicode');
 // Instantiate a string object and set its value.
 var str =
 Components.classes["@mozilla.org/supports-string;1"].createInstance(
 Components.interfaces.nsISupportsString);
 str.data = textToCopy;
 // Set the value of the transferrable using the string.
 trans.setTransferData("text/unicode", str, textToCopy.length * 2);
 // Finally, put the text onto the clipboard.
 clip.setData(trans, null,
 Components.interfaces.nsIClipboard.kGlobalClipboard);

 // Let the chatter know we're done.
 alert("Chat transcript has been copied to the clipboard");

 } else {

 // Unsupported browser.
 alert("Unable to copy chat transcript to clipboard.\n\nOnly Internet " +
 "Explorer and Netscape-based browsers (including Firefox) " +
 "are supported.");

 }

 } // End copyTranscript().

As you would expect by now, we begin with a call to getChatTranscript() to get the text of
the chat session. Next, we check for the existence of the clipboardData attribute of the window
object. If it is present, we’re running in IE, and it’s a piece of cake: a quick call to window.
clipboardData.setData(), passing it the string returned by getChatTranscript(), and we’re
good to go.

Now, the situation is a lot more interesting if the browser is Netscape-based. If the window
object has a netscape attribute, the first thing we need to do is ask for permission to copy data
to the clipboard. That’s the call to netscape.security.PrivilegeManager.enablePrivilege()
you see. This results in a query to the user, as shown in Figure 12-7.

Zammetti-816-4C12.fm Page 495 Wednesday, March 14, 2007 11:29 AM

496 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

Figure 12-7. Firefox security privilege query dialog box

Simply answer Allow, and optionally check the box to remember the setting, and the
contents will then be allowed onto the clipboard.

Note that if the Internet Security dialog box does not appear, and instead, you get an alert
like the one shown in Figure 12-8, this means you need to go to the advanced configuration
options. In the address bar, enter about:config and press Enter. You will see a long list of options.
The one you are looking for is signed.applets.codebase_principal_support. Be sure this is set
to true. After that setting is adjusted, you should get the dialog box shown in Figure 12-7.

Figure 12-8. If signed.applets.codebase_principal_support is set to false, you’ll see this

Once we have permission, or have alerted the user that permission is denied, we can move
on. The first thing we need to do is create a clipboard object. That’s the purpose of the line
where the clip variable is defined.

Note that the slightly funky syntax you see here, and in the next few object instantiations,
is the Netscape style of instantiating native browser objects. It amounts to basically naming the
class you want an instance of, then asking the Components object to give you an instance. After
that, you work with them as you would most any other object.

Next up is creation of a transferrable object, referenced by the trans variable. We also have
to tell this object that its “flavor” is Unicode, so we are sure to get everything from the chat
session properly.

Next, we instantiate a String object and store a reference to it in the str variable, and set
its value to the text of the transcript text we retrieved earlier. Then we pass the String along to
the transferrable object via a call to setTransferData(). Lastly, we copy that object to the clip-
board via a call to the setData() method of the clipboard object.

We also have an else block at the end, covering the case where the browser isn’t a supported
type. I’m not sure which browsers this might occur in, since I don’t have all of them to test with,
but IE and Firefox are certainly supported, so the majority of users would have no problem.

Zammetti-816-4C12.fm Page 496 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 497

The exitChat() Method: Outta Here, I Say!

Last is the exitChat() method. This is a simple confirmation pop-up. If the user agrees to exit,
window.location is set to request from the mock server the exit page, which is just a page saying
good-bye to the user.

So, that’s the bulk of the client-side code of the application. The next thing to look at is that
ChatMessage class I mentioned earlier. That won’t take long, trust me!

Writing ChatMessage.js
The UML diagram for the simple ChatMessage class is shown in Figure 12-9. As previously
mentioned, this is just a DTO for storing a single posted message that is part of the transcript
of the current chat session.

Figure 12-9. UML diagram of the ChatMessage class

Its code is very simple, as you can see in Listing 12-3.

Listing 12-3. The ChatMessage Class

function ChatMessage() {

 /**
 * The time this message was posted.
 */
 var timestamp = "";

 /**
 * The chatname of the chatter who posted it.
 */
 var chatname = "";

Zammetti-816-4C12.fm Page 497 Wednesday, March 14, 2007 11:29 AM

498 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

 /**
 * The text of the message
 */
 var message = "";

 /**
 * Mutator.
 *
 * @param inTime The new field value.
 */
 this.setTimestamp = function(inTimestamp) {

 timestamp = inTimestamp;

 } // End setTimestamp().

 /**
 * Accessor
 *
 * @return The value of the time field.
 */
 this.getTimestamp = function() {

 return timestamp;

 } // End getTimestamp().

 /**
 * Mutator.
 *
 * @param inChatname The new field value.
 */
 this.setChatname = function(inChatname) {

 chatname = inChatname;

 } // End setChatname().

 /**
 * Accessor
 *
 * @return The value of the chatname field.
 */

Zammetti-816-4C12.fm Page 498 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 499

 this.getChatname = function() {

 return chatname;

 } // End getChatname().

 /**
 * Mutator.
 *
 * @param inMessage The new field value.
 */
 this.setMessage = function(inMessage) {

 message = inMessage;

 } // End setMessage().

 /**
 * Accessor
 *
 * @return The value of the message field.
 */
 this.getMessage = function() {

 return message;

 } // End getMessage().

 /**
 * Overriden toString() method.
 *
 * @return A meaningful string representation of the object.
 */
 this.toString = function() {

 return "ChatMessage : [" +
 "timestamp='" + timestamp + "', " +
 "chatname='" + chatname + "', " +
 "message='" + message + "']";

 } // End toString().

} // End ChatMessage class.

Zammetti-816-4C12.fm Page 499 Wednesday, March 14, 2007 11:29 AM

500 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

See, I wasn’t kidding! Just the three fields—timestamp, chatname, and message—which
cover all the data we store about a given message, and the applicable accessor and mutator for
each. Also, we have an overridden toString(), as you’ve seen other times throughout this book.
This allows us to display a given instance of this class in a meaningful way, which is a practice
I highly suggest getting into, because it makes debugging a lot easier.

Writing styles.css
At this point in the book, you’ve seen a number of style sheets in the other projects, so you
probably don’t need this one torn apart. I can tell you that there is nothing tricky in it whatso-
ever, and the comments for each class pretty much give you the complete story of what the
styles are.

The one thing I will point out, because it is the first time I’ve done this in any project so far,
is the idea of styling specific HTML elements. The style sheets in other projects have usually
taken this form:

.cssHeader {
 color : #ff0000;
}

You know that this declares a CSS style class named cssHeader. You can apply this to any
arbitrary element on the page by setting the element’s class attribute. However, what if we
wanted to style all the <h1> elements on the page a certain way, and moreover, do so without
setting a specific style class on each? You can do that with the following declaration:

h1 {
 color : #ff0000;
}

Now, any <h1> element on the page will be in red. In the style sheet for this project, that is
done for a couple of elements, as you can see:

/* Style applied to tables. */
table {
 font-size : 9pt;
 font-family : arial;
}

/* Style applied to links. */
a:link {
 color : #6a78a7;
}

Zammetti-816-4C12.fm Page 500 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 501

/* Style applied to visited links. */
a:visited {
 color : #6a78a7;
}

/* Style applied to links that are being hovered over. */
a:link:hover {
 color : #33305b;
 background-color : #f0f0f0;
 font-weight : bold;
}

/* Style applied to h1 elements. */
h1 {
 font-size : 20pt;
 color : #000000;
 font-weight : bold;
}

/* Style applied to h2 elements. */
h2 {
 font-size : 15pt;
 color : #8c9cd5;
 margin-top : 0px;
 margin-left : 20px;
 margin-bottom : 0px;
 font-weight : bold;
}

One other thing to mention is how links are styled. For links (and some other elements),
you can select what are essentially versions of the element. For instance, if you want to make
all links that have not been clicked appear in red, you can set the color attribute of the a:link
selector. If you want to make those links that have been visited show up in blue, you can set the
color attribute of the a:visited selector. Finally, if you want all links to turn green when hovered
over, set the color attribute of the a:linkhover selector. You can see this in the style sheet to
give the hover effect on the menu items, which are links.

Other than those points, this style sheet is self-explanatory, so please do have a look at it to
be sure you know what it’s all about. Now, let’s move on.

Writing index.htm and index_support.htm
index.htm is the entry point into the application for customers, and index_support.htm is where
support personnel should go to in order to log in. I’ll just show index.htm here, in Listing 12-4.
index_support.htm is basically the same thing, with some changed text.

Zammetti-816-4C12.fm Page 501 Wednesday, March 14, 2007 11:29 AM

502 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

Listing 12-4. The index.htm File (Also, More or Less, index_support.htm)

<html>

 <head>

 <title>AJAX-Based One-On-One Support Chat</title>

 <link rel="StyleSheet" href="css/styles.css" type="text/css">

 <script src="js/mootools.js" type="text/javascript"></script>
 <script src="js/jscript.dom.js" type="text/javascript"></script>
 <script src="js/SupportChat.js" type="text/javascript"></script>

 <script>

 /**
 * Called on page load to do some setup.
 */
 function init() {

 var divObj = $('divOuter');
 jscript.dom.layerCenterH(divObj);
 jscript.dom.layerCenterV(divObj);
 $("logonForm").action = "server/chatServer." + chat.serverType;

 } // End init().

 </script>

 </head>

 <body onLoad="init();">

 <div id="divOuter" class="cssDivOuter">

 <div class="cssDivInner">
 Hello and welcome to our AJAX-based one-on-one support chat system!

 To begin, please tell us who you are, and click the Begin button to
 get some help.

 <form id="logonForm">
 <input type="hidden" name="func" value="logon">
 <input type="hidden" name="chattype" value="customer">
 Your name: <input type="text" name="chatname" size="20">
 <input type="submit" value="Begin" class="cssButton">
 </form>

Zammetti-816-4C12.fm Page 502 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 503

 </div>
 </div>

 </body>

</html>

This starts out, as most HTML documents do, with a style sheet import and a couple of
JavaScript imports. Mootools is imported so the $() function can be used. jscript.dom.js is
imported so we can use the layerCenterH() and layerCenterV() functions. Lastly, SupportChat.js
is imported so we have access to the serverType field that was discussed earlier.

In the <head> is a single JavaScript function, init(). This is called when the page is loaded.
Its job is twofold. First, it is used to center the contents of the page, which are contained in the
divOuter <div>, using the layerCenterH() and layerCenterV() functions. It also sets the action
of the form on the page to point to the appropriate chatServer version, JSP or ASP.

The markup of the page follows. This consists of a single <div> with the ID divOuter, which
is the <div> that is actually centered in init(). This contains some text and an HTML form. This
form accepts the name the chatter wants to use. It also contains a hidden field named func,
which has the value "logon". This tells our server component what to do with the parameters
submitted. There is also a chattype parameter, which in index.htm is set to "customer". In
index_support.htm, it’s set to "support" to tell the server what type of chatter is logging on.

Writing chat.htm
Now we come to chat.htm, which contains the actual page layout. You can see the complete
listing of this file in Listing 12-5.

Listing 12-5. The chat.htm File

<html>

 <head>

 <title>AJAX-Based One-On-One Support Chat</title>

 <link rel="StyleSheet" href="css/styles.css" type="text/css">

 <script src="js/mootools.js" type="text/javascript"></script>
 <script src="js/jscript.page.js" type="text/javascript"></script>
 <script src="js/ChatMessage.js" type="text/javascript"></script>
 <script src="js/SupportChat.js" type="text/javascript"></script>

 </head>

 <body onLoad="chat.init();">

Zammetti-816-4C12.fm Page 503 Wednesday, March 14, 2007 11:29 AM

504 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

 <table width="100%" cellspacing="0" cellpadding="0"><tr><td>

 <table width="98%" align="center" cellpadding="0" cellspacing="0">

 <tr>
 <td>
 <table width="100%" cellspacing="0" cellpadding="0">
 <tr>
 <td width="46"></td>
 <td width="64"></td>
 <td align="center" class="cssTopText"
 background="img/headerFooter.gif">
 AJAX-Based One-on-One Support Chat
 </td>
 <td width="55"></td>
 </tr>
 </table>
 </td>
 </tr>

 <tr>
 <td>
 <table width="100%" cellspacing="0" cellpadding="0">
 <tr>
 <td class="cssLeftColumn">
 <div align="center"></div>
 </td>
 <td class="cssRightColumn">
 <table width="100%" border="0" cellspacing="0"
 cellpadding="0">
 <tr>
 <td class="toptext" align="center">
 Welcome, !
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td width="220" valign="top" class="cssLeftColumn">
 <div style="width:220px;height:300px;overflow:hidden;"

 <h2>Main Menu</h2>

 <div class="cssDividers"></div>

Zammetti-816-4C12.fm Page 504 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 505

 * <a href="javascript:void(0);"
 onClick="chat.copyTranscript();">
 Copy Transcript To Clipboard

 * <a href="javascript:void(0);"
 onClick="chat.printTranscript();">
 Print Transcript

 *
 Exit Chat

 <div class="cssDividers"></div>
 </div>
 </td>
 <td class="cssRightColumn">
 <table width="100%" cellspacing="0" cellpadding="0">
 <tr>
 <td class="cssRightColumn">
 <table width="90%" align="center" cellpadding="0"
 cellspacing="0">
 <tr>
 <td>
 <table width="100%" cellpadding="0"
 cellspacing="0">
 <tr>
 <td class="cssLeftColumn">
 <div></div>
 </td>
 <td></td>
 <td width="100%" class="cssHeaderFooter"></td>
 <td class="cssRightColumn"></td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td class="cssRightColumn">
 <table width="100%" cellspacing="0"
 cellpadding="0">
 <tr>
 <td class="cssLeftColumn"> </td>
 <td>

Zammetti-816-4C12.fm Page 505 Wednesday, March 14, 2007 11:29 AM

506 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

 <div class="cssChatDiv" id="divChat"></div>

 <table border="0" cellpadding="0"
 cellspacing="0" width="100%"><tr>
 <td valign="middle" class="cssEntry"
 align="center">
 <input type="text" size="62"
 id="postMessage">
 <input type="button" value="Say It"
 class="cssButton"
 onClick="chat.postMessage();">
 </td>
 </tr></table>

 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td>
 <table width="100%" cellspacing="0"
 cellpadding="0">
 <tr>
 <td width="55">

 </td>
 <td class="cssBoxBottom"> </td>
 <td width="55">

 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>

 </td>
 </tr>
 </table>
 </td>
 </tr>

Zammetti-816-4C12.fm Page 506 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 507

 <tr>
 <td>
 <table width="100%" cellspacing="0" cellpadding="0">
 <tr>
 <td width="55"></td>
 <td class="cssBoxBottom">
 <table width="100%" cellspacing="0" cellpadding="0">
 <tr>
 <td width="23"></td>
 <td valign="middle" class="cssHeaderFooter">
 <div align="center">
 <div class="cssDividers" id="pDateTime"></div>
 </div>
 </td>
 <td></td>
 </tr>
 </table>
 </td>
 <td width="55"></td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td> </td>
 </tr>
 </table>

 </td></tr></table>

 </body>

</html>

I will largely leave this as an exercise for you to review, because it’s nothing but typical
HTML. After the style sheet and JavaScript imports, you can see that we call chat.init() on
page load. The variable chat is defined in SupportChat.js, and it is the one and only instance of
the SupportChat class. After that call, it really is just straight markup.

The menu items use a handy trick. The href of the link is the JavaScript statement
javascript:void(0);, which results in the link not performing its usual hyperlink function
when clicked. Instead, we handle the onClick event and call the appropriate method in
ChatSupport.

About two-thirds of the way through, directly below the postMessage text box, is a button
that calls chat.postMessage() when clicked. This is how messages from the chatter are posted,
of course.

Please spend just a few minutes reviewing the code in Listing 12-5, if for no other reason
than to convince yourself there’s not much going on there. But this is actually a good thing. The
presentation is almost entirely separate from the functionality behind it, which is exactly what

Zammetti-816-4C12.fm Page 507 Wednesday, March 14, 2007 11:29 AM

508 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

we want. So while it may seem like a bit of a cop-out to not go over this in detail, we’re focusing
on JavaScript and Ajax in particular, and going over a bunch of pretty simple HTML wouldn’t
really serve that purpose, would it?

Writing goodbye.htm
One last bit of markup is left, and that’s the goodbye.htm file. This is literally nothing but a
straight HTML page that says good-bye to chatters when they log off. Have a look at the code,
but if you linger more than about 30 seconds, please go guzzle some coffee and come back
when you are more awake!

Creating the Database
Now we come to something just a tad more interesting, and that’s the database structure. As
previously described, I went with a simple Access database file for the sake of simplicity. This
means that this application will run only on a Windows system. This is because for the JSP
version, the JDBC:ODBC driver is used (the ODBC driver should come with any recent version
of Windows), and the ASP version uses ADO, which again uses the ODBC driver (although no
data source is required for either, as direct access to the MDB file is used).

The structure within the database is also very simple, consisting of a grand total of two
tables, without any real linkage between them (there is conceptually a linkage, but no foreign
key relationships or anything like that). Figure 12-10 is a diagram of the two tables.

Figure 12-10. If this database schema scares you, a new career may be in order!

The chatters table stores the list of current chatters. The chatname field is the name the
chatter gave upon logon. The logon field stores the date/time the chatter logged on. The type
field is either customer or support, depending on which index HTML file the chatter came
through. Finally, chatwith is the name of the chatter’s chat partner.

The messages table holds the messages posted by chatters. The messagetime field is the
time the message was posted. This is used to determine which messages to return as a response
to the periodic Ajax request for messages. The chatname field is the name of the chatter who
posted the message. This maps to the chatname field of the chatters table (again, there is no
true key relationship here; it is merely a conceptual linkage). Finally, the messagetext field is
the text of the message itself.

It’s a simple database to be sure, but not much more is needed. Note that because of
the frequency of change, I saw no point in indexing either of these tables. I don’t believe any
performance gain would be had by doing so. I also didn’t put any constraints on any of the

Zammetti-816-4C12.fm Page 508 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 509

fields—no required fields and such. These rules are enforced, to the extent they matter frankly,
in the server-side code that deals with the database.

One issue to point out is related to using the ASP version of the application. In that case,
you will need to ensure that the user account that IIS runs with has full rights to the directory
where the MDB file is located, and that the directory has read/write access in IIS itself. If you
are toying with the IIS version, you probably knew this already, but it’s worth mentioning.
Should you try the application and get ADO error number 0x80004005, or any other for that
matter but that one specifically, please check those permissions right away, because they are
the likely culprit.

Now let’s get into the server-side code, which is swaggering to the plate now!

Writing the Server Code
This is going to be a little tricky, because we have both a JSP file and an ASP file to review. However,
they are structurally and logically identical, only differing in syntax and some other minor
items. In order to get through this in a reasonable way, I will present each file in pieces, and
describe what it does conceptually, without getting into all the finer details. My belief is that
you will be able to understand one version or the other with little difficulty. I’ll point out details
where that makes sense, but we’ll be going through this with a bird’s eye view.

Starting Up

To start, both versions begin with a variable declaration.

Asp

filename = "C:\Inetpub\wwwroot\Code\database/chatDB.mdb"

Jsp

String filename = "K:/tomcat5029/webapps/Code/database/chatDB.mdb";

The filename variable points to the Access database. You will need to update this variable
in order to run the application, as previously described.

Next is some code to open a connection to the database.

Asp

 ' variables needed for database work.
 Set conn = Server.CreateObject("ADODB.Connection")

 ' Open connection to database.
 conn.Open "DRIVER={Microsoft Access Driver (*.mdb)}; DBQ=" & filename
 Set rs = Server.CreateObject("ADODB.Recordset")
 rs.CursorLocation = 3
 rs.CursorType = 3
 rs.LockType = 4

Zammetti-816-4C12.fm Page 509 Wednesday, March 14, 2007 11:29 AM

510 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

Jsp

 // variables needed for database work.
 Connection conn = null;
 Statement stmt = null;

 // Load JDBC driver.
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 String database = "jdbc:odbc:Driver={Microsoft Access Driver " +
 "(*.mdb)};DBQ=" + filename + ";DriverID=22;READONLY=false}";
 conn = DriverManager.getConnection(database ,"","");
 stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE);

Both versions are pretty typical code for the respective technologies (ADO for the ASP
version and JDBC for the JSP version) to get a connection to a database. In the ASP version, we
also get a RecordSet object, which we’ll reuse throughout the page. In the JSP version, we get a
Statement object, which again will be reused throughout.

Recall that these pages are the targets of all our Ajax calls, as well as form submissions. Also
recall that all of those provide a func parameter to tell the server which function is being requested.
So, as you might expect, we next get the value of that parameter.

Asp

Func = trim(Request("func"))

Jsp

String func = request.getParameter("func").trim();

Next, we need to construct a string that is a timestamp representing the time this request
came in. This will be needed for a number of purposes later. The format of this string is HHMMSSLLL,
where HH is the hours (00–23), MM is the minutes (00–59), SS is the seconds (00–59), and LLL is the
milliseconds (000–999). We do some string manipulations along the way to ensure that values
less than 10 (and less than 100 in the case of milliseconds) are padded with leading zeros so
that we always wind up with a nine-character string in the end.

Asp

 hh = CStr(Hour(Now()))
 If Len(hh) = 1 Then hh = "0" & hh End If
 mm = CStr(Minute(Now()))
 If Len(mm) = 1 Then mm = "0" & mm End If
 ss = CStr(Second(Now()))
 If Len(ss) = 1 Then ss = "0" & ss End If
 ms = "000"
 timeStamp = hh + mm + ss + ms

Zammetti-816-4C12.fm Page 510 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 511

Jsp

 gregoriancalendar calendar = new GregorianCalendar();
 String hh = Integer.toString(calendar.get(Calendar.HOUR_OF_DAY));
 if (hh.length() == 1) { hh = "0" + hh; }
 String mm = Integer.toString(calendar.get(Calendar.MINUTE));
 if (mm.length() == 1) { mm = "0" + mm; }
 String ss = Integer.toString(calendar.get(Calendar.SECOND));
 if (ss.length() == 1) { ss = "0" + ss; }
 String ms = Integer.toString(calendar.get(Calendar.MILLISECOND));
 if (ms.length() == 1) { ms = "0" + ms; }
 if (ms.length() == 2) { ms = "0" + ms; }
 String timeStamp = hh + mm + ss + ms;

Once that’s done, we then do a check of the func parameter we got. If it’s null, or blank—
meaning it wasn’t passed in (or possibly was spelled wrong)—we send back an HTML response
to indicate an unknown function was requested (which might mean a hacking attempt, so we
accuse the chatter of being naughty, just for kicks).

Once we see that func was found as a request parameter, we determine which function
was requested. This is nothing but a series of if checks.

Logging On

The first possible function is logging on, indicated by a func value of "logon". This is the longest
and most complex of the functions, but it boils down to a few logical steps. Let’s first look at the
code, and then discuss those steps.

Asp

 if func = "logon" Then

 ' Processing a logon.
 chatType = Trim(Request("chattype"))

 If chatType = "customer" Then

 ' It's a customer logon. See if the name is already in use.
 customerChatName = Trim(Request("chatname"))
 rs.Open "select chatname from chatters where " & _
 "chatname='" & customerChatName & "'", conn
 If rs.RecordCount <> 0 Then
 ' Name is already in use, have the chatter select a new one.
 rs.Close
 %>
 <html><head><title>Name already in use</title></head><body>
 I'm sorry but that name is already in use. Please click
 HERE and select a new name.
 </body></html>
 <%

Zammetti-816-4C12.fm Page 511 Wednesday, March 14, 2007 11:29 AM

512 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

 Else
 ' Name is available, so now we have to see if there are any available
 ' support personnel to chat with.
 rs.Close
 rs.Open ("select chatname from chatters " & _
 "where type='support' and chatwith='none'")
 If rs.RecordCount <> 0 Then
 ' Ok, we got someone. Now log the chatter into the database and
 ' send them to the chat page.
 supportChatName = rs("chatname")
 rs.Close
 conn.Execute "insert into chatters (chatname, logon, type, " & _
 "chatwith) values (" & _
 "'" & customerChatName & "', " & _
 "'" & timeStamp & "', " & _
 "'customer', '" & supportChatName & "')"
 ' We also need to mark the support person as chatting with this
 ' chatter.
 conn.Execute "update chatters set chatwith='" & _
 customerChatName & "' where chatname='" & supportChatName & "'"
 // Lastly, add a message to the messages table so both chatters see
 // who they are chatting with.
 conn.Execute "insert into messages (messagetime, chatname, " & _
 "messagetext) values ('" & timeStamp & "', '" & _
 supportChatName & "', 'Hello, " & customerChatName & "! " & _
 supportChatName & " is here to help you!')"
 %>
 <html><head><title>Starting chat</title><script>
 function startChat() {
 window.location =
 "../chat.htm?func=startChat&" +
 "chatname=<%=customerChatName%>&chattype=customer&" +
 "chatwith=<%=supportChatName%>"
 }
 </script></head>
 <body onLoad="startChat();">Starting chat...</body>
 </html>
 <%
 Else
 ' No support personnel available. Give the chatter the bad news.
 rs.Close
 %>
 <html><head>
 <title>No support personnel available</title>
 </head><body>
 There are currently no support personnel available. Please click
 <a href="<%=request.ServerVariables("URL")%>?func= ➥

logon&chattype=customer&chatname=<%=customerChatName%>">HERE

Zammetti-816-4C12.fm Page 512 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 513

 to check for someone again.
 </body></html>
 <%
 End If
 End If

 Else

 ' It's a support personnel logon. See if the name is already in use.
 supportChatName = Trim(Request("chatname"))
 rs.Open "select chatname from chatters where " & _
 "chatname='" & supportChatName & "'", conn
 If rs.RecordCount <> 0 Then
 ' Name is already in use, have the chatter select a new one.
 rs.Close
 %>
 <html><head><title>Name already in use</title></head><body>
 I'm sorry but that name is already in use. Please click
 HERE and select a new name.
 </body></html>
 <%
 Else
 ' Name is available, so now log the chatter in.
 rs.Close
 conn.Execute "insert into chatters (chatname, logon, type, " & _
 "chatwith) values (" & _
 "'" & supportChatName & "', " & _
 "'" & timeStamp & "', " & _
 "'support', 'none')"
 %>
 <html>
 <head>
 <title>Starting chat</title>
 <script>
 function startChat() {
 window.location =
 "../chat.htm?func=startChat&" +
 "chatname=<%=supportChatName%>&chattype=support";
 }
 </script>
 </head>
 <body onLoad="startChat();">Starting chat...</body>
 </html>
 <%
 End If
 End If

 End If ' End "logon" function handling.

Zammetti-816-4C12.fm Page 513 Wednesday, March 14, 2007 11:29 AM

514 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

Jsp

 if (func.equalsIgnoreCase("logon")) {

 // Processing a logon.
 String chatType = request.getParameter("chattype");

 if (chatType.equalsIgnoreCase("customer")) {

 // It's a customer logon. See if the name is already in use.
 String customerChatName = request.getParameter("chatname");
 ResultSet rs = stmt.executeQuery(
 "select chatname from chatters where " +
 "chatname='" + customerChatName + "'");
 if (rs.first()) {
 // Name is already in use, have the chatter select a new one.
 rs.close();
 %>
 <html><head><title>Name already in use</title></head><body>
 I'm sorry but that name is already in use. Please click
 HERE and select a new name.
 </body></html>
 <%
 } else {
 // Name is available, so now we have to see if there are any available
 // support personnel to chat with.
 rs.close();
 rs = stmt.executeQuery("select chatname from chatters " +
 "where type='support' and chatwith='none'");
 if (rs.first()) {
 // Ok, we got someone. Now log the chatter into the database and
 // send them to the chat page.
 String supportChatName = rs.getString(1);
 rs.close();
 stmt.executeUpdate("insert into chatters (chatname, logon, type, " +
 "chatwith) values (" +
 "'" + customerChatName + "', " +
 "'" + timeStamp + "', " +
 "'customer', '" + supportChatName + "')");
 // We also need to mark the support person as chatting with this
 // chatter.
 stmt.executeUpdate("update chatters set chatwith='" +
 customerChatName + "' where chatname='" + supportChatName + "'");
 // Lastly, add a message to the messages table so both chatters see
 // who they are chatting with.
 stmt.executeUpdate("insert into messages (messagetime, chatname, " +
 "messagetext) values ('" + timeStamp + "', '" + supportChatName +
 "', 'Hello, " + customerChatName + "! " + supportChatName +
 " is here to help you!')");

Zammetti-816-4C12.fm Page 514 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 515

 %>
 <html><head><title>Starting chat</title><script>
 function startChat() {
 window.location =
 "../chat.htm?func=startChat&" +
 "chatname=<%=customerChatName%>&chattype=customer&" +
 "chatwith=<%=supportChatName%>";
 }
 </script></head>
 <body onLoad="startChat();">Starting chat...</body>
 </html>
 <%
 } else {
 // No support personnel available. Give the chatter the bad news.
 rs.close();
 %>
 <html><head>
 <title>No support personnel available</title>
 </head><body>
 There are currently no support personnel available. Please click
 <a href="chatServer.jsp?func=logon&chattype=customer&chatname= ➥

<%=customerChatName%>">HERE
 to check for someone again.
 </body></html>
 <%
 }
 }

 } else {

 // It's a support personnel logon. See if the name is already in use.
 String supportChatName = request.getParameter("chatname");
 ResultSet rs = stmt.executeQuery(
 "select chatname from chatters where " +
 "chatname='" + supportChatName + "'");
 if (rs.first()) {
 // Name is already in use, have the chatter select a new one.
 rs.close();
 %>
 <html><head><title>Name already in use</title></head><body>
 I'm sorry but that name is already in use. Please click
 HERE and select a new name.
 </body></html>
 <%
 } else {
 // Name is available, so now log the chatter in.
 rs.close();

Zammetti-816-4C12.fm Page 515 Wednesday, March 14, 2007 11:29 AM

516 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

 stmt.executeUpdate("insert into chatters (chatname, logon, type, " +
 "chatwith) values (" +
 "'" + supportChatName + "', " +
 "'" + timeStamp + "', " +
 "'support', 'none')");
 %>
 <html>
 <head>
 <title>Starting chat</title>
 <script>
 function startChat() {
 window.location =
 "../chat.htm?func=startChat&" +
 "chatname=<%=supportChatName%>&chattype=support";
 }
 </script>
 </head>
 <body onLoad="startChat();">Starting chat...</body>
 </html>
 <%
 }
 }

 } // End "logon" function handling.

The function begins by getting the value of the chattype parameter. It then branches on
the value of that parameter. The first branch is if it’s a customer logging on. In that case, we
begin by getting the chatname parameter. We then do a query to determine if that name is already
in use. If it is, we return a page that indicates this and provides a link back to the logon page, so
the chatter can try a different name.

If the name is not already in use, we then do a query to see if there are any support
personnel available. This is indicated by finding any chatter in the chatters table that has a
type of support, and also that has a value in the chatwith field of none. If we find someone, we
then update the chatters table. First, we insert the new chatter into the table. Next, we update
the record for the available support person to indicate he is chatting with this new chatter.
Lastly, we add a record to the messages table that is a quick greeting for both chatters.

After that, we render a response that is a simple HTML page, which upon loading will
redirect to chat.htm, passing along the necessary information as request parameters.

If no support personnel were available, we return markup indicating this to the chatter,
and provide a link the chatter can click to check if anyone is yet available. The chatter can
continue to click this link as much as she wants until a support person becomes available, at
which point she will be logged on (yes, this isn’t the most efficient scheme, and that’s why it’s
the target of one of the suggested exercises at the end of this chapter!).

We next encounter an else branch, which is where we deal with logons by support
personnel. We again perform a check to see if the name the support chatter provided is avail-
able, and do the same things with either outcome (name is available or name is not available)
as we did for the customer chatter. If the name is available, we have only a single update to do,

Zammetti-816-4C12.fm Page 516 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 517

and that’s inserting this chatter into the chatters table. And that’s the end of this particular
function!

Getting Posted Messages

The next function in the server code is to handle the periodic Ajax request that gets messages
posted since the last check.

Asp

 if func = "getMessages" Then

 chatname = Trim(Request("chatname"))
 lastMessageTime = Trim(Request("lastMessageTime"))
 ' First, find out who this chatter is chatting with.
 rs.Open "select chatwith from chatters where " & _
 "chatname='" & chatname & "'", conn
 chatwith = rs("chatwith")
 rs.Close
 ' Now, get all messages posted by this chatter, or by who they were
 ' chatting with, since the time of the last message passed in.
 rs.Open "select messagetime, chatname, messagetext from messages " & _
 "where (chatname='" & chatname & "' or " & "chatname='" & chatwith & _
 "') and messagetime >= " & lastMessageTime, conn
 firstMessage = true
 %>
 { "lastMessageTime" : "<%=timeStamp%>",
 "messages" : [
 <% Do While Not rs.EOF
 If firstMessage = true Then
 firstMessage = false
 Else
 response.write ", "
 End If
 %>
 { "timestamp" : "<%=rs("messagetime")%>",
 "chatname" : "<%=rs("chatname")%>",
 "message" : "<%=rs("messagetext")%>"
 }
 <%
 rs.MoveNext
 Loop
 %>
] }
 <%
 rs.close()

 End If ' End "getMessage" function handling.

Zammetti-816-4C12.fm Page 517 Wednesday, March 14, 2007 11:29 AM

518 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

Jsp

 if (func.equalsIgnoreCase("getMessages")) {

 String chatname = request.getParameter("chatname");
 String lastMessageTime = request.getParameter("lastMessageTime");
 // First, find out who this chatter is chatting with.
 ResultSet rs = stmt.executeQuery(
 "select chatwith from chatters where " +
 "chatname='" + chatname + "'");
 rs.first();
 String chatwith = rs.getString(1);
 rs.close();
 // Now, get all messages posted by this chatter, or by who they were
 // chatting with, since the time of the last message passed in.
 rs = stmt.executeQuery(
 "select messagetime, chatname, messagetext from messages where " +
 "(chatname='" + chatname + "' or " + "chatname='" + chatwith +
 "') and messagetime >= " + lastMessageTime);
 boolean firstMessage = true;
 %>
 { "lastMessageTime" : "<%=timeStamp%>",
 "messages" : [
 <% while (rs.next()) {
 if (firstMessage) {
 firstMessage = false;
 } else {
 out.print(", ");
 }
 %>
 { "timestamp" : "<%=rs.getString(1)%>",
 "chatname" : "<%=rs.getString(2)%>",
 "message" : "<%=rs.getString(3)%>"
 }
 <% } %>
] }
 <%
 rs.close();

 } // End "getMessage" function handling.

This function begins by getting two incoming request parameters: chatname and
lastMessageTime. The chatname parameter is the name of the chatter requesting messages,
and lastMessageTime is the timestamp when the last such request was made.

The next thing that needs to be done is to find out who this chatter is chatting with (note
that this code doesn’t care whether the chatter making this request is a customer or a support
person, since it works the same either way). We do this because we need to get messages from
both sides of the conversation, but the parameters give us only half the information we need.

Zammetti-816-4C12.fm Page 518 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 519

So, once we have the name of both chatters, we then do a query to find any messages posted by
either chatter subsequent to the value of lastMessageTime. This results in a collection of records
representing all the messages posted by either user since the last time this check was performed,
if any.

Then, assuming at least one record was found, it begins to iterate over that collection.
Along the way, it constructs a string of JSON, which contains an array of message data elements,
namely the time the message was posted (timestamp), who posted it (chatname), and the message
text itself (message). This JSON also includes the new value for lastMessageTime, which is the
value of that timestamp string you saw constructed earlier. This value will be stored on the client for
the next request to getMessages. Finally, the JSON is written out to the response (that techni-
cally happens as it’s being formed, but you get the picture) and that’s that. You saw earlier in
our look at SupportChat.js how this JSON is consumed. Now you know how it’s constructed!

Posting Messages

The next function to look at is posting messages, and it’s surprisingly compact.

Asp

 if func = "postMessage" Then

 chatname = Trim(Request("chatname"))
 messagetext = Trim(Request("messagetext"))
 messagetext = Replace(messagetext, "'", "''")
 conn.Execute "insert into messages (messagetime, chatname, " & _
 "messagetext) values (" & _
 timeStamp & ", " & _
 "'" & chatname & "', " & _
 "'" & messagetext & "')"

 End If ' End "postMessage" function handling.

Jsp

 if (func.equalsIgnoreCase("postMessage")) {

 String chatname = request.getParameter("chatname");
 String messagetext = request.getParameter("messagetext");
 messagetext = messagetext.replace('\'', '`');
 stmt.executeUpdate("insert into messages (messagetime, chatname, " +
 "messagetext) values (" +
 timeStamp + ", " +
 "'" + chatname + "', " +
 "'" + messagetext + "')");

 } // End "postMessage" function handling.

Zammetti-816-4C12.fm Page 519 Wednesday, March 14, 2007 11:29 AM

520 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

There isn’t really much to getting a message posted. First, we get the value of the incoming
request parameters chatname, which is who posted the message, and messagetext, which is the
message itself. Then we need to do a quick scan of the string and replace any occurrences of the
single apostrophe character with a double apostrophe. This is done so as to not break the
constructed SQL statement that you can see next, which is used to insert the message into the
messages table. That’s literally all there is to it.

Logging Off

Only a single function remains, and that’s the function that handles logoff. There is perhaps a
little more to this than you might imagine, but not too much!

Asp

 if func = "exitChat" Then

 chatname = Trim(Request("chatname"))
 ' First, find out who this chatter is chatting with.
 rs.Open "select chatwith from chatters where " & _
 "chatname='" & chatname & "'", conn
 chatwith = rs("chatwith")
 rs.Close
 ' Now, delete all messages the chatter posted, as well as messages
 ' posted by who they were chatting with. After this query, the
 ' "conversation" is effectively deleted from the database.
 conn.Execute "delete from messages where chatname='" & chatname & _
 "' or chatname='" & chatwith & "'"
 ' Next, delete the chatter from the chatters table.
 conn.Execute "delete from chatters where chatname='" & chatname & "'"
 ' Finally, if we find any records in the chatters table where this
 ' chatter is the value of the chatwith field, update that field of
 ' that record to "none". This covers when the chatter logging off is a
 ' customer, it makes the support personnel available again. If it's
 ' a support personnel logging off, it does no harm to the chatter,
 ' although the chatter is effectively "orphaned", i.e., their messages
 ' will not be seen by a support personnel, and they will see messages
 ' from no support personnel.
 conn.Execute "update chatters set chatwith='none' where " & _
 "chatwith='" & chatname & "'"
 ' Finally, say goodbye to the chatter.
 %>
 <html>
 <head>
 <title>Exiting chat</title>
 <script>
 function exitChat() {
 window.location = "../goodbye.htm";
 }

Zammetti-816-4C12.fm Page 520 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 521

 </script>
 </head>
 <body onLoad="exitChat();">Exiting chat...</body>
 </html>
 <%

 End If ' End "exitChat" function handling.

 End If ' End function handling section.

Jsp

 if (func.equalsIgnoreCase("exitChat")) {

 String chatname = request.getParameter("chatname");
 // First, find out who this chatter is chatting with.
 ResultSet rs = stmt.executeQuery(
 "select chatwith from chatters where " +
 "chatname='" + chatname + "'");
 rs.first();
 String chatwith = rs.getString(1);
 // Now, delete all messages the chatter posted, as well as messages
 // posted by who they were chatting with. After this query, the
 // "conversation" is effectively deleted from the database.
 stmt.executeUpdate("delete from messages where chatname='" + chatname +
 "' or chatname='" + chatwith + "'");
 // Next, delete the chatter from the chatters table.
 stmt.executeUpdate("delete from chatters where chatname='" + chatname +
 "'");
 // Finally, if we find any records in the chatters table where this
 // chatter is the value of the chatwith field, update that field of
 // that record to "none". This covers when the chatter logging off is a
 // customer, it makes the support personnel available again. If it's
 // a support personnel logging off, it does no harm to the chatter,
 // although the user is effectively "orphaned", i.e., their messages
 // will be seen no support personnel, and they will see messages from no
 // support personnel.
 stmt.executeUpdate("update chatters set chatwith='none' where " +
 "chatwith='" + chatname + "'");
 // Finally, say goodbye to the chatter.
 %>
 <html>
 <head>
 <title>Exiting chat</title>
 <script>
 function exitChat() {

Zammetti-816-4C12.fm Page 521 Wednesday, March 14, 2007 11:29 AM

522 C H A P T E R 1 2 ■ AJ A X : W H E R E T H E C L I E N T AN D S E R V E R C O L L I D E

 window.location = "../goodbye.htm";
 }
 </script>
 </head>
 <body onLoad="exitChat();">Exiting chat...</body>
 </html>
 <%

 } // End "exitChat" function handling.

 } // End function handling section.

First, we get the name of the chatter who is logging off via the incoming chatname request
parameter. Then we query the chatters table to find out who they are chatting with. Next, we
delete any record from the messages table posted by this chatter, or with the chatter they are
chatting with. This is just a bit of cleanup so that the conversation doesn’t linger, taking up
space unnecessarily. After that, we delete the chatter from the chatters table. Finally, we update
the chatters table for any record we find where the chatwith field is equal to the chatname
received here. This has the effect of making the support personnel this chatter was chatting
with available again. If it’s a support person logging off, then the customer is essentially orphaned,
which is a shortcoming we’ll live with for the time being (feel free to add code to check for this
in getMessage so that you can tell users they are no longer chatting with someone, and perhaps
redirecting them to some other page).

The last step is simply to return a page that will immediately redirect the chatter to the
goodbye.htm page you saw earlier, and the user is officially logged off at that point.

Cleaning Up

The last task in both server files is cleaning up of the database connection.

Asp

Set conn = Nothing

Jsp

 if (stmt != null) {
 stmt.close();
 }
 if (conn != null) {
 conn.close();
 }

In any case, the RecordSet object would have been closed already, and that’s why you
don’t see mention of that here in either version.

And with that, we’ve completed our look at this application! I hope it’s been a good expo-
sure to Ajax, JSON, and Mootools, and that it has shown how the client and server can interact
in the Ajax world. This is frankly one of the applications in this book where I purposely left a

Zammetti-816-4C12.fm Page 522 Wednesday, March 14, 2007 11:29 AM

C H A P T E R 1 2 ■ A JA X : W H E R E T H E C L I E N T A N D S E R V E R CO L L I D E 523

number of items, some you might call shortcomings, specifically to give you some good sugges-
tions to reinforce this new knowledge into your cerebellum. So, let’s talk about some of those
suggestions.

Suggested Exercises
A few items could easily be added to this application to make it better, and to get you a bit more
familiar with Ajax and Mootools in the process:

• How about a PHP version? It should just be a matter of converting the code from the Java
version to PHP, which probably isn’t too tough a translation if you are familiar with PHP.

• It would be nice if a new chatter could be logged in and await an available support person
to join her.

• Add tooltips to any element on the page you think makes sense. Mootools has a tips
plug-in, which provides this functionality.

• Use some Mootools effects. For instance, perhaps collapse the page when the chatter
exits, or if you implement the suggestion to allow a chatter to log in and wait, have some
sort of fade-in when a support person joins.

• As hinted at earlier, put the chatters’ messages on the screen immediately when they
post a message so there’s no delay while waiting for the next getMessage() cycle to fire.

• Adding a timestamp to each posted message on the screen would be a useful little
improvement.

That’s the short list. I’m quite sure you can come up with any number of things on your
own, but these should serve as a nice start.

Summary
In this, the final leg (er, chapter) of our journey, you’ve been introduced to what is probably the
most famous buzzword of the last two years in web development: Ajax. You’ve seen it in action,
witnessing how it makes a certain class of applications possible, or at least better. You also
observed how the server component in the Ajax equation can work. Additionally, you learned
how the very fine Mootools JavaScript library can aid you in your Ajax work, as well as other
respects. And in the process, you’ve created a little chat application that can actually be put to
use if you so choose to support your customers in this way.

Zammetti-816-4C12.fm Page 523 Wednesday, March 14, 2007 11:29 AM

525

Index

■Special Characters
(hash mark), 297

$() function, 61, 121, 172, 293, 503

$F() function, 61

{ (brace), 297

}# (closing delimiter), 297

~ (tilde) character, 383

+ operator, 13

>!< sequence, 225

■A
absolute attribute, 414

accessibility concerns, JavaScript, 42–43

Accordion behavior, Rico, 111

acorn variable, 444

AcornDesc class, 442, 444

ActiveXObject attribute, window object, 386

Actor object, 242, 244, 256, 258

actors attribute, Movie class, 242

Add Note dialog box, 313, 336–338

Add Note option, File menu, 308

addBeanPropertySetter()method, 252

addItem() method, 237, 387, 391

addLines() method, 491–492

addObjectCreate() method, 252

Add-ons, Firefox, 49

addSetNext() method, 252

addSetProperties() method, 252

addToScore() function, 434

addXXX() method, 236, 278

Adobe Flash plug-in, 190

afterFinish callback, Script.aculo.us
effect, 157

afterUpdate callback, Script.aculo.us
effect, 157

Ajax

accessibility and similar concerns,
472–473

examples, 474–481

overview, 469–472

AjaxParts Taglib (APT), 64

Ajax.Updater object, Prototype, 61

alert() box, 125

alert() function, 46, 48, 216, 262, 265, 472

algebra functions, 146

a:linkhover selector, 501

alt parameter, 155

altRow attribute, 212

animation support, YUI Library, 65

answer variable, 24–25

AOP (aspect-oriented programming)
implementation, 201

Apache Jakarta Commons Digester, 234

API (Application Programming Interface), 147

Appear effect, 156

appID field, 174

appid parameter HTTP request, 153

appid value, YahooDemo, 153

Application Programming Interface
(API), 147

ApplicationState class, ApplicationState.js
file, 162, 168

ApplicationState object, 167

ApplicationState.js, 168–169

APT (AjaxParts Taglib), 64

Array object, 13, 62, 282

arrayIndex field, 215, 225, 228, 318, 346

arrayIndex field, inContact object, 226

arrayIndex member, Contact class, 220

aspect-oriented programming (AOP)
implementation, 201

Zammetti-816-4INDEX.fm Page 525 Tuesday, March 20, 2007 12:42 PM

526 ■I N D E X

attrs parameter, 15

a:visited selector, 501

■B
Backspace command button, 142

badFunction() function, 41

Banfield, Steve, 471

baseArray array, 141

baseArray field, 145

BaseCalc class, 108, 126, 140–145

baseScriptUri option, djConfig variable, 200

BeanPropertySetter rule, 244, 250, 256

beforeStart callback, Script.aculo.us
effect, 157

beforeUpdate callback, Script.aculo.us
effect, 157

begin() method, 252, 255

behaviors, Rico, 111

bind method, 264

BlindDown effect, script.aculo.us, 158

BlindUp effect, 158, 172

blit() function, 415, 424, 444, 459

body() method, 255–256

<body> element, 307, 410, 478

bouncies array, 458, 460

BouncyDesc class, 457

bounding boxes, 433

bq parameter, 154

brace ({), 297

browsers

avoiding browser-sniffing routines, 39

avoiding browser-specific or
dialect-specific JavaScript, 40

extensions for

DevArt extension for Maxthon, 59–60

Firefox, 49–54

Internet Explorer, 54–59

overview, 49

and history of JavaScript, 6–9, 22–24

browser-sniffing code, 8

Builder object, 64

businessNotes data field, 333

button method, 134

button option, divAddNote <div>
argument, 336

button0_5() method, 136

buttonBG.gif image, img directory, 161

■C
CalcTron 3000 (JavaScript calculator)

BaseCalc.json and BaseCalc.js, 140–145

calctron.htm, 113–116

calctron.js, 118–122

classloader.htm, 122–126

mode.js, 127–131

overview, 107, 112–113

preview of, 108–109

project requirements and goals, 107–108

Rico library, 110–112

Standard.json and Standard.js, 131–140

styles.css, 116–118

CalcTron class, 113

calcTron.currentMode.init() method,
133, 142

calctron.htm file, 112–116

calctron.js, 118–122

CallbackFuncs.js file, 162, 176–178

caption attribute, JSON, 133

captureEvents() function, 23, 421

Cart class, 385, 395

cart object, 390

cart.addItem() function, 399

cartCookie field, Cart.js class, 386

cart.deleteItem() function, 400

CartItem object, 386–387, 394, 399

cartitem.js, 382–385

cartItems array, 387–388

cartItems field, Cart.js class, 385

cart.js

adding and removing cart items, 387

handling dropped items, 390–391

overview, 385–386

restoring cart's contents, 386

saving cart, 389

showing and hiding hover description,
391–392

Zammetti-816-4INDEX.fm Page 526 Tuesday, March 20, 2007 12:42 PM

527■I N D E X

Find it faster at http://superindex.apress.com

updating item quantities in cart, 387–388

updating stats, 389–390

Cascading Style Sheets (CSS), 35

Catalog link, 375

Catalog object, 382

CatalogItem instance, 380

catalogitem.js, 375–380

catalogItems field, 380

catalog.js, 380–382

catch block, 46

center() method, 342

chain of responsibility (CoR) pattern,
Mootools, 67

change event, 338

changeModePopup() method, CalcTron, 120

characters() method, 250

charCode property, 23

chat application

chat.htm, 503–508

ChatMessage.js, 497–500

creating database, 508–509

goodbye.htm, 508

index.htm and index_support.htm,
501–503

overview, 486–488

preview of, 484–485

server code

cleaning up, 522–523

getting posted messages, 517–519

logging off, 520–522

logging on, 511–517

overview, 509

posting messages, 519–520

starting up, 509–511

styles.css, 500–501

SupportChat.js

addLines() method, 491–492

copyTranscript method, 494–496

exitChat() method, 497

getChatTranscript() method, 493

getMessages() method, 490–491

init() method, 489–490

overview, 488

postMessage() method, 492

printTranscript() method, 494

updateDateTime() method, 490

ChatMessage class, 491, 497

chatname field, 488, 491, 500, 508

chatname parameter, 516, 518

chat.postMessage() function, 507

ChatSupport method, 507

chatters table, 508, 522

chatTranscript variable, 493

chattype field, SupportChat.js file, 488

chattype parameter, 503

chatwith field, 522

checkLastPressed() method, 136

checkout.htm, 365, 396–398

cinematics department, Rico, 66

Classloader class, 113, 133, 146

classLoader field, CalcTron class, 118

Classloader instance, 122

classloader.htm, 122–126

className attribute, 295

clear() method, 342

Clear command button, 142

clear method, 264

clearActiveItem() method, 342

clients, 468

client-side persistence

Contact Manager

Contact.js, 212–217

ContactManager.js, 217–223

DataManager.js, 223–229

dojoStyles.css, 199

EventHandlers.js, 208–212

goodbye.htm, 207–208

index.htm, 199–207

overview, 194–196

preview of, 192–194

requirements and goals, 185–186

styles.css, 196–198

Find it faster at http://superindex.apress.com

Zammetti-816-4INDEX.fm Page 527 Tuesday, March 20, 2007 12:42 PM

528 ■I N D E X

Dojo toolkit

and cookies, 188–189

overview, 186–188

storage system, and local shared objects,
190–192

widgets and event system, 189–190

overview, 185

client-side scripting, 468

clientWidth attribute, document.body
object, 119

clientX attribute, 392

clip variable, 496

clipboardData attribute, 495

clips, 415

close option, divAddNote <div>
argument, 336

closing delimiter (}#), 297

clOut() function, 212

color attribute, 501

Color blindness, 43

combination effects, Script.aculo.us, 64

command buttons, mode layout, 130

commandButton method, 134

commandButton0() method, JSON, 134

commandButton1() method, JSON, 134

commandButton2() method, JSON, 134

commandButton3() method, JSON, 134

commandButtons elements, 133

Components object, 496

config field, 287

configFile member, 269

connect() function, 372

ConnectionManager object, YUI Library, 65

console object, 48

Console tab, Firebug, 50

consoleFuncs.js

drawConsole() function, 425

overview, 424

updateHands() function, 427–428

updateLights() function, 425–427

consoleImages array, 417–418, 421

constraintoviewport option, divAddNote
<div> argument, 336

Contact class, 215

Contact Manager

Contact.js, 212–217

ContactManager.js

adding button functions, 220–223

editing contacts, 220

generating contacts, 219

initializing, 218–219

overview, 217–218

DataManager.js, 223–229

dojoStyles.css, 199

EventHandlers.js, 208–212

goodbye.htm, 207–208

index.htm

adding bootstrap code, 200–201

adding contact list, 204–207

adding fisheye list, 201–204

initializing application, 201

overview, 199–200

overview, 194–196

preview of, 192–194

requirements and goals, 185–186

styles.css, 196–198

Contact object, 221

Contact.js, 196, 212, 214–217

ContactManager class, 201, 208, 211

ContactManager.js, 196

adding button functions, 220–223

editing contacts, 220

generating contacts, 219

initializing, 218–219

overview, 217–218

contacts array, 220, 224, 228

controls, Script.aculo.us, 64

conversion capabilities, 146

convert() method, 141–144

convertToBase() method, 141, 145

copyTranscript() method, 493–496

CoR (chain of responsibility) pattern,
Mootools, 67

core effects, Script.aculo.us, 64

correctPath field, Deathtrap class, 450

Zammetti-816-4INDEX.fm Page 528 Tuesday, March 20, 2007 12:42 PM

529■I N D E X

Find it faster at http://superindex.apress.com

correctPath value, 455

CosmicSquirrel.js

cleaning up, 447–448

inheriting basics, 448

overview, 440

processing single frame of action, 444–447

setting up obstacle, player, and acorn,
441–443

starting game, 443–444

Crackhead Creations, 405

Crawford, Christina, 5

createElement() method, 291

CSS (Cascading Style Sheets), 35

css directory, 112, 161, 311, 364

cssBody class, 164, 366

cssButton class, 164

cssButtonOver class, 164

cssCatalogTable class, 366

cssCheckoutText class, 366

cssConsoleImage style, 415

cssContent class, 316

cssContentLeft class, 313

cssContentLeftclass, 316

cssContentRight class, 313, 316

cssErrorField class, 270

cssGameArea style, 415

cssHeader style class, 500

cssHeaderFooter class, 366

cssInstructionsTable class, 366

cssMain class, 316

cssMiniGame style, 415

cssOKField class, 270

cssOverlay class, 313, 317

cssOverlayTable class, 317

cssPadded class, 317

cssPage style, 414

cssSearchResults class, 164

cssSectionBorder class, 164

cssSliderBGHH class, 317

cssSliderBGMM class, 317

cssSliderHandle class, 317

cssSmallDescription class, 366

cssStatusArea style, 415

cssStripRow class, 366

cssTDNewNote class, 317

cssTextbox style class, 207

cssTimeSpan class, 317

cssTitleGameSelection style, 414–415

currentBase field, 141

currentContactIndex data field,
ContactManager class, 218

currentDisplayedIndex field, 182

currentGame field, GameState class, 416

currentlyDisplayedIndex field, 169

currentlyDisplayedIndex variable, 172

currentMode field

CalcTron class, 118

GameState class, 416

currentMode property, calcTron
instance, 133

currentNote data field, 333

currentNote field, 346

currentOperation field, 135, 137

currentPath field, 248–249

currentPath variable, 246

currentTab data field, ContactManager
class, 218

■D
Data Access Object (DAO), 192

Data Transfer Object (DTO), 212, 376, 491

database directory, 488

DataManager class, 215, 218, 229

dataManager data field, ContactManager
class, 217

DataManager.js, 196, 223–229

Date object, 9, 340, 342

DateValidator.js, 301–302

days parameter, setCookie() function, 189

deadCounter field, 450, 453

deadCounter variable, 454

deathMatrix multidimensional array, 450

Zammetti-816-4INDEX.fm Page 529 Tuesday, March 20, 2007 12:42 PM

530 ■I N D E X

Deathtrap.js

constructing death Matrix, 450–451

constructing move Matrix, 451–452

handling player keyboard events, 455–456

handling player state, 453–455

overview, 448

setting up player, 449–450

starting game, 452–453

debugging techniques, JavaScript, 46–49

deleteContact() function, 227–228

deleteCookie(name) function, 189

deleteItem() method, 387

deleteNote() method, 345–346

Demos link, Rico, 111

Description link, 354, 359, 373

descs directory, 364, 374

destroy() function, 421, 431, 436, 447,
456, 462

destroyGameImage() function, 432, 448, 462

detectCollision() function, 432, 447, 462

DevArt extension for Maxthon, 59–60

developers, and history of JavaScript, 14–16

DHTML (Dynamic HTML), 16–18

Digester object, 236

Digg site, 148

dir value, 460

direction option, Script.aculo.us effect, 157

display attribute, 316

display property, 424

display style attribute, 167

displayContactList() function,
ContactManager class, 211, 220

<div> element, 66, 167, 203, 312, 370, 372,
420, 503

divAddNote <div> argument, 336

divGameArea element, 413, 432

divGameSelection, <div> elements, 420

divHeight variable, calcTron object, 121

DivLogger instance, 243, 259

divMainMenu class, 334

divMiniGame, <div> elements, 420

divStatusArea <div> element, 415

divTitle, <div> elements, 420

divWidth variable, calcTron object, 121

djConfig variable, 200

DLL (dynamic link library), 8

doClearContacts() function, DataManager
class, 222

Document Object Model (DOM), 4

Document Type Definition (DTD), 236

document.body.srollLeft attribute, 392

document.getElementById() function, 40,
61, 121, 172, 201, 333

document.getElementsByTagName()
function, 209

DocumentHandler callback, 239

document.write() method, 288, 291

doDeleteContact() function, DataManager
class, 222

doEditContact() function, ContactManager
class, 219

doExit() function, DataManager class, 223

dojo subdirectory, js directory, 196

Dojo toolkit

and cookies, 188–189

overview, 186–188

storage system, and local shared objects,
190–192

widgets and event system, 189–190

dojo.Collections package, 187

dojo.crypto package, 187

dojo.event package, 201

dojo-FisheyeList class, <div> element, 203

dojo-FisheyeListItem class, <div>
element, 203

dojo.io.cookie package, 189

dojo.lang package, 187

dojo.logging package, 187

dojo.profile package, 187

dojo.require() function, 200

dojo.storage package, 187, 190

dojo.storage.clear() function, 229

dojo.storage.get() function, 225

dojo.storage.put() function, 227

dojo.string package, 187

Zammetti-816-4INDEX.fm Page 530 Tuesday, March 20, 2007 12:42 PM

531■I N D E X

Find it faster at http://superindex.apress.com

dojoStyles.css, 195, 199

dojo.validate package, 187

dojo.widget package, 187

DOM (Document Object Model), 4

DOM tree, IEDocMon, 56

domain parameter, setCookie()
function, 189

doNewContact() function, ContactManager
class, 220

doOnDrop() function, 356, 390

doRequest() function, Masher object,
173, 175

doSaveContact() function, ContactManager
class, 221

doSomething() function, 436

drag-and-drop shopping cart

cartitem.js, 382–385

cart.js

adding and removing cart items, 387

handling dropped items, 390–391

overview, 385–386

restoring cart's contents, 386

saving cart, 389

showing and hiding hover description,
391–392

updating item quantities in cart,
387–388

updating stats, 389–390

catalogitem.js, 375–380

catalog.js, 380–382

checkout.htm, 396–398

idx.htm, 373–375

index.htm, 367–370

main.js, 370–373

MochiKit library, 355–357

mock server technique, 357–358

mockserver.htm, 398–401

overview, 351

preview of, 359–360, 362

requirements and goals, 351–352

styles.css, 365–366

viewcart.htm

constructing markup that displays cart
contents, 394–395

overview, 392–393

showing cart total, 395–396

showing cart's contents, 393–394

drag-and-drop utility, YUI Library, 65

Draggable class, 372–373

draw() method, 345

drawConsole() function, 425

DTD (Document Type Definition), 236

DTO (Data Transfer Object), 212, 376, 491

duration option, Script.aculo.us effect, 157

Dynamic HTML (DHTML), 16–18

dynamic link library (DLL), 8

dynamic updates, 472

■E
early binding, 210

ECMA (European Computer Manufacturers
Association), 4

ECMAScript, 4, 22

Edit Locations box, 194

Effect.Appear object, 156

effects, Mootools, 67

Eich, Brendan, 4

EJB (Enterprise JavaBean)-based
application, 473

element method, 264

else block, 496

else clause , Mode class, 129

enabled attribute, JSON, 133

end() method, 255

endDocument() method, 250

endElement() function, 250

Enterprise JavaBean (EJB)-based
application, 473

Enumerable interface, Prototype, 62

error handling, 26, 43–46

escapeHTML method, 264

European Computer Manufacturers
Association (ECMA), 4

Zammetti-816-4INDEX.fm Page 531 Tuesday, March 20, 2007 12:42 PM

532 ■I N D E X

eval() function, 294, 398, 482

evalScripts option, 484

event attribute, validation element, 274

Event component, YUI Library, 65

event object, 23, 392, 431

event property, window object, 23

EVENT_BEGIN constant, 250

EventHandlers class, 208

eventHandlers data field, ContactManager
class, 217

EventHandlers.js, 196, 208–212

exit() method, JSNotes.js, 348

exitChat() method, 497

extend object, 264

extensions for browsers, Javascript

for Firefox

Firebug, 50–52

overview, 49

Page Info, 52–53

Venkman, 49

Web Developer, 54

for Internet Explorer

HttpWatch, 54–55

IEDocMon, 56

Microsoft Internet Explorer Developer
toolbar, 58–59

Microsoft Script Debugger, 58

overview, 54

Visual Studio Script Debugger, 57–58

Web Accessibility Toolbar, 55–56

for Maxthon browser, 59–60

■F
failAction attribute, validation element, 274

fauxConstant object, 41

feed.entry array, 177

feed.openSearch$itemsPerPage.$t attribute,
JSON object, 177

field attribute, validation element, 273

field field, JSValidatorValidatorImpl
class, 275

fieldConfig field, JSValidatorValidatorImpl
class, 275

fieldName parameter, 273

fieldsArray variable, 215

filename variable, 509

Firefox browser, 47

extensions for

Firebug, 50–52

overview, 49

Page Info, 52–53

Venkman, 49

Web Developer, 54

fireRules() method, 250, 255

firstName String object, 35

Fisheye widget, Dojo, 62

flatten method, 264

float attribute, 316

floating elements, 316

flush() method, 259

fontSize style attribute, 181

form submission, 354

<form> element, 273, 277, 282, 478

formConfig field, JSValidatorValidatorImpl
class, 275

fourth-generation languages (4GLs), 46

fps option, Script.aculo.us effect, 157

frames, 468

framework, 261

frameZIndexCounter variable, 417, 424

from option, Script.aculo.us effect, 157

fullKeyControl field, MiniGame class,
435, 452

func parameter, 491–492, 510

functions

of JavaScript, 26

of Mootools, 67

■G
gameFuncs.js, 432–434

gameImages array, 432, 444, 453

gameImages field, MiniGame class, 435

gameName field, 435, 444

GameSelection class, 437

GameSelection.js, 437–440

GameState class, 416–418, 445

Zammetti-816-4INDEX.fm Page 532 Tuesday, March 20, 2007 12:42 PM

533■I N D E X

Find it faster at http://superindex.apress.com

gameState variable, 417

GameState.js, 415–416

gameTimer field, GameState class, 416

Garrett, Jesse James, 469

gender attribute, 242, 256

getCartItemCount() method, 387, 390

getCartItems() method, 387, 393

getCartTotal() method, 388, 390

getChatTranscript() method, 493–495

getContact() function, 227

getCookie(name) function, 189

getElementsByClassName method, 264

getHorizSlider() method, 337

getIemID() method, 388

getItem() method, 380

getKeyCode() function, 431

getMap() function, 178, 180–181

getMessages() method, 490–492

getMouseX() method, 391

getMouseY() method, 391

getNodeByProperty() method, 341

getNote() method, 340–341

getObjectCookie() function, 189

getParam() function, 299

getParameter() method, jscript.page object,
375, 489

getPath() method, 254

getQuantity() method, 388

getRuleType() method, 254

getSelectedDates() method, 344

getValue() function, 299

global variables, 24

globals.js, 417

goodbye.htm, 195, 207–208, 508

goodFunction() function, 41

Google Application Programming Interfaces
(APIs), 153–155

Google Base, 153

Google Maps, 474

googleCallback(), CallbackFuncs.js, 176

graceful degradation and unobtrusive
JavaScript, 35–42

graphics, 468

Grow effect, 158, 182

GUI widget framework

JSNotes

index.htm, 311–313

Note.js, 317–318

overview, 310–311

preview of, 307, 309

requirements and goals, 305–306

styles.css, 313–317

overview, 305

Yahoo! User Interface (YUI) Library,
306–307

GUI widgets, 61

■H
<h1> elements, 500

handler option, divAddNote <div> argument,
336

handlerAddNote() method, JSNotes.js,
343–345

handlerAddNoteSubmit() method, 343, 345

hash mark (#), 297

<head> element, 126, 199, 409

height attribute, <table> tag, 317

height option, divAddNote <div>
argument, 336

height parameter, 152, 180

hidden attribute, 415

hideAddNote() method, JSNotes.js, 342–343

hideExportNote() method, JSNotes.js,
347–348

hideXXX() method, 349

highlightZoomButton() function, 181

history of JavaScript

browsers, 6–9, 22–24

developers, 14–16

Dynamic HTML (DHTML), 16–18

object-oriented JavaScript, 24–25

overview, 3–6

performance and memory issues, 9–13

usability, 18–21

Hotel.js, 162, 169–170

Zammetti-816-4INDEX.fm Page 533 Tuesday, March 20, 2007 12:42 PM

534 ■I N D E X

hotels array, 169, 178

hoverDescriptionHide() method, Cart
class, 393

hoverDescriptionShow() method, Cart
class, 392

href value, 312

.htm extension, 358

.html extension, 358

HTML specs, 468

htmlOut string, 396

HTTP method, 480

HttpWatch extension, for Internet Explorer,
54–55

■I
id attribute, validator element, 273

ID basicmenu, 307

ID imgRightHandDown action button, 413

ID imgRightHandUp action button, 413

id property, Mode class, 128

IDE (integrated development
environment), 5

idx.htm, 373–375

IEDocMon extension, for Internet
Explorer, 56

if block, 130, 340, 431

ifBlur() function, 209

ifFocus() function, 209

IIS (Internet Information Services), 486

Image object, 209

imageIDs array field, 208

ImageManager class, 459

img directory, 112, 161, 195, 311, 364,
408, 488

 element, 168, 392, 418, 432

inClassName parameter, 252

inCurrentTab value, 228

index.htm

adding bootstrap code, 200–201

adding contact list, 204–207

adding fisheye list, 201–204

drag-and-drop shopping cart, 367–370

initializing application, 201

JSNotes, 311–313

JSValidator, 269–270

Krelmac and Gentoo (K&G) Arcade,
409–413

overview, 199–200

indexOf() function, 95, 493

init() method

CalcTron class, 113, 119

DataManager class, 224

JSNotes.js

creating Add Note dialog box, 336–338

creating logging console, 333

creating menu bar, 334

creating overlays, 334–335

creating Tree View, 338–340

overview, 333

JSValidator class, 288

MiniGame class, 436

Mode class, 133

Mode object, 126, 142

Title class, 436

init() onLoad function, 370

initCallback() method

adding built-in validators, 290–291

attaching event handlers, 292–293

configuring JSDigester rules, 289–290

loading custom validators, 291

overview, 289

initCallback() method, JSValidator class, 289

Initech, 71

initStorage() function, ContactManager
class, 218

initTimer data field, ContactManager
class, 218

inJustFind parameter, 90

inLines array, 492

inLocation argument, 180

inMin value, 92

innerHTML attribute, 267, 338

innerHTML function, Rico, 110

Zammetti-816-4INDEX.fm Page 534 Tuesday, March 20, 2007 12:42 PM

535■I N D E X

Find it faster at http://superindex.apress.com

innerHTML object, 39

innerHTML property, 114, 259, 295, 481

innerWidth attribute, window object, 119

innerWidth property, 84

inObj object, 39

inOverride parameter, 91

inParamName, 93

<input> fields, 209

Inspector facility, Firebug, 52

inSrcArray element, 76

inSrcObj property, 91

inString input string, 99

inStripOrAllow parameter, 98

integrated development environment (IDE), 5

Internet Explorer (IE), extensions for

HttpWatch, 54–55

IEDocMon, 56

Microsoft Internet Explorer Developer
toolbar, 58–59

Microsoft Script Debugger, 58

overview, 54

Visual Studio Script Debugger, 57–58

Web Accessibility Toolbar, 55–56

Internet Information Services (IIS), 486

inValue element, 77

inZoom argument, 180

isDeathTile() function, 455

isDebug option, djConfig variable, 200

isDefault option, divAddNote <div>
argument, 336

isIE field, Cart.js class, 386

isLeapYear() function, 79

<Item> elements, 236

itemDescription field, CatalogItem class, 376

itemID field, CatalogItem class, 376

itemID parameter, 399

itemImageURL field, CatalogItem class, 376

itemIndex parameter, 400

itemPrice field, CatalogItem class, 376

itemTitle field, CatalogItem class, 376

itemX fields, 380

■J
Jakarta Commons Digester component, 231

JavaScript

accessibility concerns, 42–43

browser extensions

DevArt extension for Maxthon, 59–60

Firefox, 49–54

Internet Explorer, 54–59

overview, 49

debugging techniques, 46–49

error handling, 43–46

graceful degradation and unobtrusive
JavaScript, 35–42

history of

browsers, 6–9, 22–24

developers, 14–16

Dynamic HTML (DHTML), 16–18

object-oriented JavaScript, 24–25

overview, 3–6

performance and memory issues, 9–13

usability, 18–21

libraries

Dojo, 62–63

Java Web Parts, 64

MochiKit, 65–66

Mootools, 66–67

overview, 60–61

Prototype, 61–62

Rico, 66

Script.aculo.us, 64–65

Yahoo! User Interface (YUI) Library, 65

object-oriented

benefits of, 34–35

class definition, 32–33

deciding on approach, 33–34

object creation with JavaScript Object
Notation (JSON), 31–32

overview, 30

prototypes, 33

simple object creation, 30–31

overview, 29

Zammetti-816-4INDEX.fm Page 535 Tuesday, March 20, 2007 12:42 PM

536 ■I N D E X

JavaScript library, building

creating packages

jscript.array package, 76–77

jscript.browser package, 78

jscript.datetime package, 78–80

jscript.debug package, 80–83

jscript.dom package, 83–87

jscript.form package, 87–91

jscript.lang package, 91

jscript.math package, 91–92

jscript.page package, 92–94

jscript.storage package, 94–96

jscript.string package, 96–103

overview, 76

overall code organization, 72–76

overview, 71

testing all pieces, 103–104

JavaScript Object Notation (JSON), 31,
481–483

object creation with, 31–32

JavaScript validation framework. See also
JSValidator

overview, 261

Prototype library, 263–265

javaScriptEnabled variable, 371

javascript:void(0); statement, 507

JavaServer Pages (JSPs), 474

JDBC:ODBC driver, 508

join() method, Array class, 11

js directory, 112, 161, 196, 311, 364, 408, 488

.js file, 20, 36, 135, 312

js_shopping_cart value, 386

JScript, 7

JScript DLL, 8

jscript object, 75

jscript package, 80

jscript parent object, 73

jscript.array package, 76–77

jscript.browser package, 78

jscript.datetime package, 78–80

jscript.debug package, 80–83

jscript.dom package, 83–87, 488

jscript.dom.js package, 408

jscript.dom.layerCenterH() function, 420

jscript.dom.layerCenterV() function, 420

jscript.form package, 87–91

jscript.lang package, 91

jscript.math package, 91–92, 113

jscript.math.genRandomNumber()
function, 427, 442, 451

jscript.math.genRandomNumber()
function, calcTron object, 121

jscript.math.js package, 408

jscript.page object, 489

jscript.page package, 92–94

jscript.page.getParameter() function,
358, 399

jscript.storage package, 94–96, 188

jscript.storage.getCookie() function, 386

jscript.storage.setCookie() function, 389

jscript.string package, 75, 96–103

jscript.string.format package, 75

jscript.string.format.js file, 75

jscript.ui.alerts package, 74

JSDigester

how works, 234–237

overall flow, 244, 246

overview, 231

parsing XML in JavaScript, 231–233

requirements and goals, 234

writing code

bulk of the work, 250–253

kicking off main process, 247–250

overview, 246

preparing to parse, 246–247

writing rules classes code, 253–258

writing test code, 238–244

jsDigester field, 254

JSDigester function, 64

JSDigester.js file, 246

JSDigesterTest.htm file, 238

JSLib, 237

Zammetti-816-4INDEX.fm Page 536 Tuesday, March 20, 2007 12:42 PM

537■I N D E X

Find it faster at http://superindex.apress.com

JSNotes

index.htm, 311–313

JSNotes.js

deleteNote() method, 345–346

exit() method, 348

getNote() method, 340–341

handlerAddNote() method, 343–345

hideAddNote() method, 342–343

hideExportNote() method, 347–348

init() method, 333–340

overview, 318–333

showAddNote() method, 341–342

showExportNote() method, 346–347

toggleLogging() method, 348

Note.js, 317–318

overview, 310–311

preview of, 307, 309

requirements and goals, 305–306

styles.css, 313–317

jsNotes variable, 312

JSON (JavaScript Object Notation), 31–32,
481–483

.json files, 135

json variable, 482

json-in-script value, alt parameter, 155

JSPs (JavaServer Pages), 474

JSTags, 64

jsv_config.xml

defining field validations, 273–274

defining forms, 273

defining messages, 273

defining validation parameters, 274

defining validators, 273

overview, 271–272

JSValidator

DateValidator.js, 301–302

index.htm, 269–270

jsv_config.xml

defining field validations, 273–274

defining forms, 273

defining messages, 273

defining validation parameters, 274

defining validators, 273

overview, 271–272

JSValidatorBasicValidators.js

MinLengthValidator class, 300–301

overview, 297

RegexValidator class, 299–300

RequiredValidator class, 297–298

JSValidator.js

init() method, 288–289

initCallback() method, 289–293

overview, 287–288

processEvent() method, 293–295

processSubmit() method, 295–296

replaceTokens() method, 296–297

JSValidatorObjects.js

how classes fit together, 286

JSValidatorConfig class, 277–278

JSValidatorForm class, 281–283

JSValidatorFormValidation class,
283–284

JSValidatorFormValidationParam class,
285–286

JSValidatorMessage class, 280–281

JSValidatorValidatorConfig class,
279–280

JSValidatorValidatorImpl class, 275–277

overview, 274

overview, 268

preview of, 265, 267

requirements and goals, 261–262

styles.css, 270–271

JSValidator_INVALID field, 293, 295

JSValidatorBasicValidators.js

MinLengthValidator class, 300–301

overview, 297

RegexValidator class, 299–300

RequiredValidator class, 297–298

JSValidatorConfig class, 277–278

jsValidatorConfig field,
JSValidatorValidatorImpl class, 275

JSValidatorConfig object, 287, 295

<JSValidatorConfig> element, 277

JSValidatorForm class, 281–284

Zammetti-816-4INDEX.fm Page 537 Tuesday, March 20, 2007 12:42 PM

538 ■I N D E X

JSValidatorFormValidation class, 283–284

JSValidatorFormValidationParam class,
285–286

jsValidator.init() method, 269

JSValidator.js

init() method, 288–289

initCallback() method

adding built-in validators, 290–291

attaching event handlers, 292–293

configuring JSDigester rules, 289–290

loading custom validators, 291

overview, 289

overview, 287–288

processEvent() method, 293–295

processSubmit() method, 295–296

replaceTokens() method, 296–297

JSValidatorMessage class, 280–281

JSValidatorObjects.js

how classes fit together, 286

JSValidatorConfig class, 277–278

JSValidatorForm class, 281–283

JSValidatorFormValidation class, 283–284

JSValidatorFormValidationParam class,
285–286

JSValidatorMessage class, 280–281

JSValidatorValidatorConfig class, 279–280

JSValidatorValidatorImpl class, 275–277

overview, 274

JSValidatorValidatorConfig class, 279–280, 291

JSValidatorValidatorImpl class, 275–277, 298

JSVConfig structure, 269

■K
keyCode property, 23

keyDown() function, 23

keyDown event, 22, 421

keyDownHandler() function, 421, 428, 431,
448, 455, 460

keyHandlers.js, 428–431

keyUp event, 421

keyUpHandler() function, 421, 428, 439, 448,
455, 460

keyUpHandler() method, MiniGame class,
436–437

Krelmac and Gentoo (K&G) Arcade

consoleFuncs.js

drawConsole() function, 425

overview, 424

updateHands() function, 427–428

updateLights() function, 425–427

CosmicSquirrel.js

cleaning up, 447–448

inheriting basics, 448

overview, 440

processing single frame of action,
444–447

setting up obstacle, player, and acorn,
441–443

starting game, 443–444

Deathtrap.js

constructing death Matrix, 450–451

constructing move Matrix, 451–452

handling player keyboard events,
455–456

handling player state, 453–455

overview, 448

setting up player, 449–450

starting game, 452–453

gameFuncs.js, 432–434

GameSelection.js, 437–440

GameState.js, 415–416

globals.js, 417

index.htm, 409–413

keyHandlers.js, 428–431

main.js

blit() function-putting stuff on
screen, 424

init() function, 417–421

main game loop flow, 421

overview, 417

starting mini-game, 423

MiniGame.js, 435

overview, 403

preview of, 405–407

Zammetti-816-4INDEX.fm Page 538 Tuesday, March 20, 2007 12:42 PM

539■I N D E X

Find it faster at http://superindex.apress.com

Refluxive.js

overview, 456–457

playing game, 459–462

setting up bouncies and paddle,
457–458

starting game, 458–459

requirements and goals, 403–404

styles.css, 413–415

Title.js, 435–437

■L
label attribute, 345

lastKeyPressed() method, BaseCalc, 142

lastKeyPressed field, 135, 137

lastMessageTime field, SupportChat.js file,
488

lastMessageTime parameter, 518

late binding, 210

layerCenterH() function, 503

layerCenterV() function, 503

layers attribute, document object, 23

_left attribute, 198

left attribute, 317

left style property, 84

left variable, calcTron object, 121

leftTrim() method, 100–101

length property, 242

 item, 312

libraries, Dojo, 63

lightChangeCounter field, GameState
class, 416

limitInteger parameter, 9

listContacts() function, 219–220, 228

LiveGrid behavior, Rico, 111

LiveScript, 4

LiveWire, 4

load() method, Classloader, 124, 126

loadGameImage() function, 432, 444,
448, 453

loadJSON() property, Mode class, 129

local shared objects, 185

location parameter, 151, 155

log variable, 246

loggingVisible data field, 332

logon field, 508

log.setLevel() function, 83

■M
mainGameLoop() function, 421

mainHeight property, JSON, 130

main.js

drag-and-drop shopping cart, 370–373

Krelmac and Gentoo (K&G) Arcade

blit() function, 424

init() function, 417–421

main game loop flow, 421

overview, 417

starting mini-game, 423

mainWidth property, JSON, 130

makeRequest() function, 150

manualInit element, 288

manualInit member, 269

map tag, Please Wait image, 180

mapFiller, 168

MapFuncs.js, 178–181

mapShowing field, 169

mapShowing flag, 178

Masher class, 153, 167, 180

Masher.js, 162, 173–176

mashup.htm, 164–168

mashups

Google Application Programming
Interfaces (APIs), 153–155

Monster Mash(up) application

ApplicationState.js, 168–169

CallbackFuncs.js, 176–178

Hotel.js, 169–170

MapFuncs.js, 178–181

Masher.js, 173–176

mashup.htm, 164–168

MiscFuncs.js, 181–182

overview, 161–162

preview of, 159–160

SearchFuncs.js, 170–173

styles.css, 162–164

Zammetti-816-4INDEX.fm Page 539 Tuesday, March 20, 2007 12:42 PM

540 ■I N D E X

overview, 147–148

requirements and goals, 148

Script.aculo.us effects, 155–159

Yahoo Application Programming
Interfaces (APIs)

overview, 148–151

Yahoo Maps Map Image Service,
151–152

Yahoo registration, 153

match() function, 299

math package, 113

max-results parameter, 154

Maxthon browser, 12, 59–60

memory functions, 146

memory issues, and history of JavaScript,
9–13

message field, 500

message parameter, 274

<message> element, 277, 280, 303

MessageDisplayer class, 74

messages table, 516, 522

messagetext field, 508

messagetext parameter, 492

messagetime field, 508

mgsDesc <div> element, 411

Microsoft Internet Explorer Developer
toolbar extension, 58–59

Microsoft Script Debugger extension, for
Internet Explorer, 58

MiniGame base class, 432, 444

mini-game selection screen, 404

MiniGame.js, 435

MinLengthValidator class, 300–301

MinLengthValidator element, 274

MiscFuncs.js, 162, 181–182

MochiKit library, 111, 351–352, 355–357

MochiKit.Async package, MochiKit, 356

MochiKit.Base package, MochiKit, 356

MochiKit.Color package, MochiKit, 356

MochiKit.DateTime package, MochiKit, 356

MochiKit.DOM package, MochiKit, 356

MochiKit.DragAndDrop.Droppable class,
372–373

MochiKit.Format package, MochiKit, 356

MochiKit.Iter package, MochiKit, 356

MochiKit.Logging package, MochiKit, 356

MochiKit.LoggingPane package,
MochiKit, 356

MochiKit.Selector package, MochiKit, 356

MochiKit.Signal package, MochiKit, 357

MochiKit.Sortable package, MochiKit, 357

MochiKit.Style package, MochiKit, 357

MochiKit.Visual package, MochiKit, 357

mock server, 352, 358

mockserver.htm, 398–401

mockServer.htm file, 358, 365, 370, 375

Mode button, 109

Mode class, 113, 131, 134, 139

mode.js, 127–131

modes directory, CalcTron project, 112

modes subdirectory, 124, 130

Monster Mash(up) application

ApplicationState.js, 168–169

CallbackFuncs.js, 176–178

Hotel.js, 169–170

MapFuncs.js, 178–181

Masher.js, 173–176

mashup.htm, 164–168

MiscFuncs.js, 181–182

overview, 161–162

preview of, 159–160

SearchFuncs.js, 170–173

styles.css, 162–164

Mootools, 483–484

mootools.js file, 483

motor dysfunctions, 42

mouse button, 355

mouse events, 41–42

Move effect, 372

moveMatrix class, 451

Movie class, 242, 244, 258

movieList attribute, Movies class, 242

Movies class, 242

myCallback() function, 151–152

myClicked() function, 356

Zammetti-816-4INDEX.fm Page 540 Tuesday, March 20, 2007 12:42 PM

541■I N D E X

Find it faster at http://superindex.apress.com

■N
name attribute, 242, 273

Navigator browser, 3

navigator.appName() function, 78

navigator.appVersion() function, 78

nc1.sayName() function, 33

nc2.sayName() function, 33

nc.sayName() function, 33

netscape attribute, 495

netscape.security.PrivilegeManager.
enablePrivilege() method, 495

newClass class, 32

newObject variable, 30

nextAttribute.split() method, 256

node.parent reference, 340

noSubmitMessage attribute, 273, 296

Note class, 317, 340, 345

Note.js, JSNotes, 317–318

NumberFunctions class, 25

numGames field, 439

numMovies attribute, Movies class, 242

■O
oAbourOverlay data field, 332

oAddNoteCalendar data field, 332

oAddNoteDialog data field, 332

oAddNoteMMSlider data field, 333

Object class, 216, 318

ObjectCreate rule, 236

ObjectCreateRule rule, 243, 250, 255

object-oriented JavaScript

benefits of, 34–35

class definition, 32–33

deciding on approach, 33–34

and history of JavaScript, 24–25

object creation with JSON, 31–32

overview, 30

prototypes, 33

simple object creation, 30–31

Object.toQueryString() method, 491

ObstacleDesc class, 441–445

obstacles array, 444

ODBC driver, 508

oExportOverlay data field, 332

oMenuBar data field, 332

Omnytex Technologies, 405

onBlur event, 209

onChange event, 41, 479

onClick event, 243, 507

onClick event handler, 115, 130, 134, 168,
178, 203, 312

onComplete parameter, 484

onDragStart() method, 372

onFocus event, 209

onKeyUp() handler, 431

onLoad event, 113, 201, 417

onLoad event handler, 269, 288

onLoad function, 398

onLoad page event, 20

onMouseOut event, 211

onMouseOut event handler, 168, 372

onMouseOver event, 211

onMouseOver event handler, 168, 372

onSubmit attribute, 313

onSubmit event, 37, 295

onSubmit event handler, 292

open() method, 480

OpenSymphony, 186

<option> element, 478

oTreeView data field, 333

oTreeviewBusiness data field, 333

oTreeviewPersonal data field, 333

oUsingOverlay data field, 332

outXML string, 88

overflow attribute, 415

overlayOrDialogVisible data field, 332

overlayOrDialogVisible variable, 342

overlays, 334–335

■P
packages, JavaScript

jscript.array package, 76–77

jscript.browser package, 78

jscript.datetime package, 78–80

jscript.debug package, 80–83

jscript.dom package, 83–87

Zammetti-816-4INDEX.fm Page 541 Tuesday, March 20, 2007 12:42 PM

542 ■I N D E X

jscript.form package, 87–91

jscript.lang package, 91

jscript.math package, 91–92

jscript.page package, 92–94

jscript.storage package, 94–96

jscript.string package, 96–103

overview, 76

PaddleDesc class, 457

Page Info extension, for Firefox, 52–53

pageX attribute, 392

pageXOffset property, 84

param element, 274

parse() method, 247

parseFloat() function, 138

parseInt() function, 145

parsing XML in JavaScript, 231–233

path field, 254

path parameter, setCookie() function, 189

pathPrefix element, 288

pDateTime element, 490

performance issues, and history of
JavaScript, 9–13

PeriodicalExecuter object, Prototype, 62

persistContacts() function, contacts
array, 226

personalNotes data field, 333

pixel_of_destiny.gif image, img directory, 161

player field, 447, 450

PlayerDesc class, 441, 447, 449

playerDirectionXXX field, GameState
class, 416

pointerX method, 264

pointerY method, 264

pop() function, 249

populateContact() function, 215, 221

position attribute, 414

postMessage() method, 492

postMessage text box, 492

<pre> tag, 494

printTranscript() method, 493–494

process() function, 398

processDelete() method, 400

processEvent() method, 293–295

processFrame() function, 421, 437, 444, 447,
453, 459

processPurchase() function, 399

processPurchaseItem() function, 400

processSubmit() method, 292, 295–296

processUpdateQuanitity() function, 399

processViewDescription() function, 398

prompt() function, 362, 391

Prototype library, 263–265

prototype property, 33

prototype.js file import, 167

prototypes, 33

Puff effect, script.aculo.us, 158, 173

push() method, 11, 249

put() method, 192

■Q
quantity parameter, 399

Quarter VGA (QVGA) resolution, 415

queue option, Script.aculo.us effect, 157

QVGA (Quarter VGA) resolution, 415

■R
radio fields, 88

readystate code, 481

RecordSet object, 510, 522

Refluxive class, 456, 462

Refluxive.js

overview, 456–457

playing game, 459–462

setting up bouncies and paddle, 457–458

starting game, 458–459

regenPath array, 453

regenPath field, Deathtrap class, 450

RegexValidator class, 274, 299–300

removeNode() method, 346

removeOldScriptTag() method, 174–175

render() method, 307, 334, 342

replace() method, 99

replaceTokens() method, 274, 295–297

request parameters, 358

RequiredValidator class, 297–298

Zammetti-816-4INDEX.fm Page 542 Tuesday, March 20, 2007 12:42 PM

543■I N D E X

Find it faster at http://superindex.apress.com

reset() method, 442, 450–451, 453

resetIt() function, 356

resetZoomButtons() function, 181

responseText attribute, inRequest object, 290

restoreContacts() function, DataManager
class, 224–225, 227

restoreFromJSON() function, Contact class,
216, 225

resultsCurrent field, 130, 136

resultsCurrentNegated field, 130

resultsCurrentNegated flag, 138

resultsPrevious field, 136

retrieving_map.gif image, img directory, 161

return statement, 92

revert option, 372

reverteffect attribute, 372

RIAs (rich Internet applications), 38

rich Internet applications (RIAs), 38

Rico library, 109–112

Rico.Effect.Round object, 119

Rico.Effect.SizeAndPosition object, 121

rightTrim() method, 100–101

root directory, 161, 311, 408

rootObject reference, 248

rootObject variable, 246

Round() element, Rico.Effect.Round
object, 119

rowStrip variable, 395

ruleIndex variable, 252

rules array, 246

ruleType field, 254

■S
sampleFunction function, 75

saveCart() method, 387, 389

saveContact() function, 222, 225

saveHandler() function, 227

SAX (Simple API for XML), 237

saxParser class, 246

SAXParser class, 247

sayLoudly() function, 31

sayName() function, 30, 33

scale, 469

score field, GameState class, 416

scrHeight field, CalcTron class, 118

scrHeight variable, calcTron object, 121

<script> element, 20, 85–86, 104, 130, 133,
149–150, 156, 175, 200, 288, 291, 312,
476, 478, 481

Script.aculo.us effects, 155–159

scriptaculous.js file import, 167

ScriptEngineMajorVersion() function, 8

ScriptEngineMinorVersion() function, 8

scrollLeft property, 84

scrWidth field, CalcTron class, 118

scrWidth variable, calcTron object, 121

search() function, 170, 173

SearchFuncs.js, 162, 170–173, 175

searchPart2() function, 172–173

searchResultsShowing field, 169

secure parameter, setCookie() function, 189

select() method, 342, 347

<select> field, 89

selectorImages array, 211

selectUnselectAll() function, 90

send() method, 480

sequence, 225

serialize() method, 383

server subdirectory, 487

serverType field, 488, 491

setActor() method, 258

setBody() method, 335

setCookie() function, 96, 189

setData() method, 496

setDocumentHandler() method, saxParser
instance, 247

setField() method, 295

setFieldConfig() method, 295

setGender() function, 256

setJsValidatorConfig() method, 294

setLogger() method, 247

setMode() method, 114, 121–122

SetNext rule, 237, 252

SetNextRule rule, 250, 256

setObjectCookie() function, 189

Zammetti-816-4INDEX.fm Page 543 Tuesday, March 20, 2007 12:42 PM

544 ■I N D E X

SetProperties rule, 236, 243

SetPropertiesRule class, 255

setQuantity() method, 387

setSAXParser() function, 258

setTargetDiv() function, 83

setTransferData() function, 496

setValidatorConfig() method, 295

setValue() method, 342

ShoppingCart object, 236

show() method, 167, 342, 347

showAddNote() method, JSNotes.js, 341–342

showErrorAlert object, 73

showExportNote() method, 346–347, 349

showInfo() function, 178, 181

showingGame field, 439

showPerson() function, 15

showURLs() method, 126

showXXX() method, 349

Shrink effect, 158, 182

Simple API for XML (SAX), 237

slideshow widget, Dojo, 63

 element, 312, 316, 370, 390

speed attribute, 446

splice() method, 227, 248, 346, 387

split() method, 9, 93, 97, 386, 493

spnCartCountValue variable, 390

spnCartTotalValue variable, 390

sqrt() function, Math package, 139

src attribute, 126, 130, 149, 209, 273, 291, 432

Standard class, 134, 141

Standard.json and Standard.js, 131, 133–140

startDocument() method, 249

startElement() method, 249

startInvalid attribute, validation element,
273, 293

startMiniGame() function, 423

Statement object, 510

StorageProvider class, 192

stOut() function, 211

stOver() function, 211

str variable, 496

String object, 97, 99, 496

stripChars() function, 98

stripTags method, 264

styleClass variable, 492

styles.css

chat solution, 500–501

drag-and-drop shopping cart, 365–366

JSNotes, 313–317

JSValidator, 270–271

Krelmac and Gentoo (K&G) Arcade,
413–415

subject attribute, 339

Submit button, 354

subscribe() method, 338

substring() function, 9, 100, 297

subtractFromScore() function, 434

Subversion source control system, 357

SupportChat.js

addLines() method, 491–492

copyTranscript method, 494–496

exitChat() method, 497

getChatTranscript() method, 493

getMessages() method, 490–491

init() method, 489–490

overview, 488

postMessage() method, 492

printTranscript() method, 494

updateDateTime() method, 490

switch block, 431, 453

sync option, Script.aculo.us effect, 157

■T
targetDiv package, 83

<td> element, 312

test() function, 45

testClasses.js file, 239

testIt() box, 126

testJSDigester() function, 243

text option, divAddNote <div> argument, 336

text-align attribute, 415

this keyword, 31, 33, 210, 296, 392

this reference points, 142

this.log reference variable, 248

thumbHH variable, 337

Zammetti-816-4INDEX.fm Page 544 Tuesday, March 20, 2007 12:42 PM

545■I N D E X

Find it faster at http://superindex.apress.com

tilde (~) character, 383

timestamp field, 500

timestamp string, 519

title attribute, Movie class, 242

Title class, 435

title.gif image, img directory, 161

Title.js, 435–437

to option, Script.aculo.us effect, 157

toArray method, 264

toggleLogging() method, JSNotes.js, 348

toGMTString() method, 95

toJSON() function, 216

toLowerCase() function, 45

Tools menu, Firefox, 49

top variable, calcTron object, 121

toQueryString() method, 484

toString() method, 9, 34, 74, 216, 227, 242,
277, 318, 376

toUC() property, 35

toUpperCase() function, 31, 34

trace() method, 83

trans variable, 496

transition option, Script.aculo.us effect, 157

Tree View, 307, 338–340

tree widget, Dojo, 62

treeNode field, 318, 346

try . . . catch blocks, 43, 45

try block, 46

type attribute, validation element, 274

typeof operator, 9

■U
UDDI (Universal Description, Discovery, and

Integration) directories, 473

UI (user interface), 38

ui function, 73

UI widgets, 65, 189, 306

unescape() function, 96

Universal Description, Discovery, and
Integration (UDDI) directories, 473

unobtrusive JavaScript, 26

updateCartStats() method, 389, 391

updateCharacters() function, 478

updateDateTime() method, 490

updateHands() function, 427–428

updateLights() function, 425–428

updateQuantity() method, 387, 400

updateResults() method, 130, 136, 138

usability, and history of JavaScript, 18–21

user interface (UI), 38

using YAHOO.util.Dom.get() method, 333

utility functions, YUI Library, 65

■V
validate() method, 295, 302

validation element, 273

validation framework. See JavaScript
validation framework

<validation> element, 282

validations field, 282

<validator> element, 277, 279

validatorConfig field,
JSValidatorValidatorImpl class, 275

validatorConfig.getClass() method, 294

value attributes, 344, 484

Value Objects (VOs), 212, 274, 317

var keyword, 41

var nc = new newClass() function, 32

variables, 15, 40–41

Venkman extension, for Firefox, 49

verify() method, Classloader.js file, 126

vertMoveCount field, 450, 453

viewCart() function, 393

viewcart.htm, 365

constructing markup that displays cart
contents, 394–395

overview, 392–393

showing cart total, 395–396

showing cart's contents, 393–394

viewDescription function, 398

visible option, divAddNote <div>
argument, 336

vision impairment, 42

visual cues, 472

Visual Studio Script Debugger extension, for
Internet Explorer, 57–58

Zammetti-816-4INDEX.fm Page 545 Tuesday, March 20, 2007 12:42 PM

546 ■I N D E X

VOs (Value Objects), 212, 274, 317

■W
Weather behavior, Rico, 111

Web Accessibility Toolbar extension, for
Internet Explorer, 55–56

Web Developer extension, for Firefox, 54

web services, 147

/webapps directory, 466–467, 486

WEB-INF directory, 486

widgets, 62, 465

width option, divAddNote <div>
argument, 336

width parameter, 152, 180

window object, 201, 495

window.event, 23

window.print() function, 92

■X
xhr variable, 479

XML, parsing in JavaScript, 231–233

XMLHttpRequest object, 39, 149, 474, 479

■Y
Yahoo Application Programming

Interfaces (APIs)

overview, 148–151

Yahoo Maps Map Image Service, 151–152

Yahoo registration, 153

Yahoo Maps Map Image API, 151

Yahoo Maps Map Image Service, 151–152

Yahoo registration, 153

Yahoo! User Interface (YUI) Library, 305–307

yahooCallback() function, 176, 178, 181

YAHOO.log() method, 333, 342

yahooURL field, 174

YAHOO.util.Dom.get() function, 340

YAHOO.widget.Dialog class, 336

YAHOO.widget.LogReader, 333

YAHOO.widget.overlay class, 334

YAHOO.widget.Slider class, 337

yellow fade effect, 17

YUI (Yahoo! User Interface) Library, 305–307

yui directory, 311

YUI widgets, 307

■Z
zIndex property, 424

zoom buttons, 160

zoom parameter, 152, 180

zoomMap() function, 168, 181

Zammetti-816-4INDEX.fm Page 546 Tuesday, March 20, 2007 12:42 PM

