
www.allitebooks.com

http://www.allitebooks.org

Plone 3 Intranets

Design, build, and deploy a reliable, full-featured,
and secure Plone-based enterprise intranet easily
from scratch

Víctor Fernández de Alba

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Plone 3 Intranets

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either expressed or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2010

Production Reference: 1220710

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847199-08-9

www.packtpub.com

Cover Image by Faiz Fattohi (faizfattohi@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Víctor Fernández de Alba

Reviewers
Ramon Navarro Bosch

Enzo Cesanelli

Leonardo J. Caballero G.

Matthew Wilkes

Acquisition Editor
Rashmi Phadnis

Development Editor
Ved Prakash Jha

Technical Editors
Madhumita Singh

Arani Roy

Conrad Sardinha

Indexer
Rekha Nair

Editorial Team Leader
Mithun Sehgal

Project Team Leader
Priya Mukherji

Project Coordinator
Prasad Rai

Proofreader
Cathy Cumberlidge

Graphics
Geetanjali Sawant

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Víctor Fernández de Alba has been an IT architect at UPCnet, the Barcelona
Tech University (UPC) IT company since 2001. He has been leading the design
and technical architecture of more than 100 projects undertaken by the UPCnet
Plone Team since its inception in 2004. He has been teaching Plone to non-technical
end users at the university for some time now. This allowed him to use this close
experience with users for improved usability of web projects developed by its team.
He also writes manuals about Plone targeted to end users.

The flagship project of UPCnet Plone Team is Genweb UPC. This project allows a
fully featured, customized, and end-user ready intranets and public websites to be
deployed in few short steps. It has helped to launch more than 200 Plone-powered
sites at the university, including departmental web and intranets, university services,
faculties, and other entities. In December 2009, the UPCnet Plone Team finished one
of its most ambitious projects, and the main website of the Barcelona Tech University
became a reality. It was developed focusing on scalability, high performance, and
usability, using Plone.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

I would like to thank my wife, Agata. This book wouldn't have been possible without
her stubbornness, motivation, endless support, and unconditional love.

I want to specially thank my beloved mother, father, and brothers who have
encouraged me throughout the years to better myself. I am who I am, thanks
to them.

I would like to thank Javier Otero who has been a guiding light in my professional
life, point of reference, endless source of knowledge, and above all, a friend. Thanks
to Ramon Navarro who showed me the path to the Plone core and shared with me
his dark magic. Thanks to both of them, who helped me review the book.

Finally, I want to remember those people at UPCnet who introduced Plone to me,
and gave me the chance to work with it. This is a precious gift from the people
who have, in one way or another, contributed to make this book a reality: the Plone
community, the UPC Plone team, Vilabobo's team, the Packt Publishing team,
specially to Rashmi, Ved, Prasad, and Madhumita, and my official book reviewers.
Thanks a lot.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ramon Navarro Bosch has been a computer science engineer since 2002 and
is currently pursuing his PhD in Low Power embedded software. He has worked
in the Universitat Politècnica de Catalunya (UPC) as System Administrator and
Software Analyst from 1998 to 2006. During this period of time he has been involved
in Samba, OLSR networks, C#-Mono, OpenWRT, Debian, LDAP, and Plone. He
wrote a book about Mono development in C# using GTK for the Universitat Oberta
de Catalunya. After working for a period of eighteen months for a Plone company
called Headnet in Aarhus (Denmark), he returned to Spain with good knowledge
and community contacts to start a Plone business. During the last three years he has
been involved in some community projects (multilingual, bug solving, and local
talks) and worked on some big projects for the UPC, such as the main page and the
nearly 300 Plones infrastructure. He is also a teacher of software development at the
UPC (using Python).

I thank my family for the support and for buying an Amstrad CPC
when I was 10 years old.

Enzo Cesanelli has over nine years of experience in designing and testing web
solutions. His humanist education, along with endless passion for new technologies,
led him to focus on information architecture and user experience design.

Along his path, Enzo met Plone, which quickly became his engine of choice
for most of his developed projects, namely, corporate websites, intranets, and
web applications. A digital nomad, Enzo has just moved to London to broaden
his personal and professional horizons, and to find new projects for Noiza, his
communication agency based in Trieste, Italy.

www.allitebooks.com

http://www.allitebooks.org

T.S.U. Esp. Leonardo J. Caballero G. is a native from Maracaibo, Venezuela.
He is a graduate of the "Academia de Software Libre" of Fundacite Mérida as
"Especialista en Desarrollo en Software Libre" and also a graduate of the Colegio
Universitario "Dr. Rafael Belloso Chacín" as "Técnico Superior Universitario en
Informática". Currently he is a member of the CENDITEL Foundation community,
where he serves as a Developer of Free Technology. He is an advisor to the
Venezuelan government agencies regarding issues of community collaboration
and free software development. He has experience in using Free Software since
2002. He has participated as a collaborator in the Internationalization process and
Spanish localization in many Open Source and Free Software projects. He is an
active contributor in Venezuelan projects, such as CANAIMA GNU/Linux, SAID,
and others. Since 2006 he has been in charge of testing tools that facilitate the
process of structuring and publishing content. He also contributes to the continuous
improvement of source code in several third-party products of Plone CMS,
OpenCore Software (used in the CoActivate.org website), and recently Django. He
is a collaborator to PloneGov communities such as CommunesPlone (Belgiun) and
Open eGov (USA). He is a founding member of the Venezuelan Plone community.
He has recently reviewed a book for Packt Publishing: Plone Intranet.

I want to thank God, all saints Ifa/Orisha, my family, Syra Lacruz,
and Francisco Palm for their help and patience. I also want to
thank CENDITEL foundation for learning and working with Plone,
the members of all the communities including, "Pythonistas de
Venezuela", "Plone Venezuela", "Plone ConoSur", and Plone for their
comments, advice and patience.

Matthew Wilkes has been working with Plone since 2005, originally at Team
Rubber, and as a freelance consultant under the name "Circular Triangle". During
that time he was involved in every aspect of intranet site creation, from the initial
planning stages to optimizing deployed sites to improve performance. He is also
an active Plone community foundation member, serving the Plone 4 Framework
Team and foundation membership committee, as well as performing documentation
reviews and assisting the management of Plone.org itself.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Per a tu Àgata,

la meva nena bonica.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Introduction to Plone	 7

What does Plone give me over other CMS solutions?	 8
First surprise: not PHP, Python	 12
Second surprise: not RDBMS, the mighty ZODB	 13
The Plone community	 14
Public websites, intranets, extranets, and the thin line between them	 15
Summary	 16

Chapter 2: Getting Started	 17
Plone versions	 18
Installing Plone	 18

zc.buildout requirements	 19
Quick start for the impatient	 20
Plone unified installers	 24

Windows	 24
Linux	 25
Mac OS X	 27

Buildout	 27
Distribute, setuptools, and eggs	 28
PasteScript and ZopeSkel	 29
Running buildout	 30
Buildout directory structure	 31
Setting up buildout.cfg	 32

The buildout section	 33
The zope2 section	 34
The instance section	 35
The zopepy section	 36

Launching Zope	 36
Summary	 39

Table of Contents

[ii]

Chapter 3: Managing our Content	 41
Plone visual layout structure	 41

Header	 43
Columns	 44
Content	 44
Footer	 44

Anonymous versus logged in	 45
Content management tabs	 45

Content structure	 46
Adding content	 47

Standard Plone content types	 49
Content metadata	 50
Content settings	 50

Managing content 	 51
Displaying views	 52
Managing portlets	 53
Summary	 54

Chapter 4: Configuring our Site	 55
Plone control panel	 56

Mail control panel	 57
Site	 57
Users and groups	 58
Security	 59
Types	 59
Add-on products	 60
Content rules	 60
Maintenance	 61
Errors	 62
HTML filtering	 62
Language	 63
Markup	 63

Wiki formatting	 64
Navigation	 64
Search	 65
Theme	 65

Zope Management Interface	 65
Control panel	 66

Database management	 67
Product management	 68
Placeless translation service	 68

Plone site—ZMI point of view	 68

Table of Contents

[iii]

Installing new add-on products	 71
As an egg via buildout	 71
As a Zope 2 add-on product	 75

Summary	 75
Chapter 5: Managing Users, Groups, Roles, and Permissions	 77

One vision	 77
Security entities	 78

Roles	 79
Global and local roles	 80

Permissions	 80
Global Zope user accounts	 80
User self-registration	 80

Managing users and groups	 81
The user registration form	 82
Managing users	 84
Managing groups	 85
Recovering user password	 86

More control: managing ZMI	 86
Administering users via ZMI	 87
Administering groups via ZMI	 88
Administering roles via ZMI	 88

The sharing tab	 89
Local role inheritance	 90

Summary	 91
Chapter 6: Managing Workflows	 93

Workflow entities	 94
States	 94
Transitions	 94
Guards	 95
Permissions	 96
Assigning local roles to groups	 96
Scripts	 96

ZMI workflow management	 96
Out-of-the-box workflows	 98

Simple publication workflow	 99
Community workflow	 100
Community workflow for folders	 100
One state workflow	 101
Intranet workflow	 102
Intranet workflows for folders	 103

Table of Contents

[iv]

Workflow diving	 103
States	 104
Transitions	 106
Variables	 107
Worklists	 108
Scripts	 108
No workflow and multiple workflow use cases	 108

Some useful workflow tools	 109
DCWorkflowGraph	 109
collective.wtf	 110
collective.workflowed	 111
Placeful workflow	 113

Best practices	 114
Make an initial blueprint first	 114
Avoid developing on production servers	 114
Start from an existing workflow copy	 114
Use the tools shown for debugging	 114
Test our workflow	 114

Summary	 115
Chapter 7: Securing our Intranet	 117

Global or local roles?	 118
Using global roles	 119
Using local roles	 119

Designing a sustainable role policy	 119
A policy example	 120
Restricting the use of the Manager role	 120
Creating system administrator users for the Zope instance	 121
Creating additional manager users of the Plone site	 121
Granting other role permissions restricted to Managers	 122
Local role delegation	 122
Allowing non-managers to administer local roles	 123

Choosing a workflow for our intranet	 123
Restricting access to authenticated users	 123
Building an example intranet workflow	 124

Private state	 125
Draft state	 126
Intranet state	 126
Transitions	 127

Managing private content	 129
Creating private sections	 130
Workgroup areas	 131

Table of Contents

[v]

Third-party add-on products	 131
Adding roles to the Plone UI	 131

Using a custom product	 132
Using collective.sharingroles	 133

Summary	 134
Chapter 8: Using Content Type Effectively	 135

Designing our intranet information architecture	 136
Using collections	 138

Creating a collection	 139
Table of contents	 141
Next/previous navigation	 142
Presentation mode	 142

Enabling the presentation mode	 143
Formatting a slide	 144

Third-party content types—best practices	 145
A few golden rules	 145
Ordering the "Add new" content type menu	 146
Content type superseding	 147
Mantaining usability	 149
Upgrades	 149

Summary	 149
Chapter 9: Intranet Add-on Products	 151

Calendaring and extended events	 152
Plone4ArtistsCalendar	 152

Installation	 152
Features	 152

vs.event	 154
Installation	 154
Features	 155

Form generators	 157
PloneFormGen	 157

Installation	 157
Dependencies	 158
How it works	 158
Field types	 159
Action adapters	 160
Other content types in a form folder	 160
Extensibility and third-party products for PFG	 161
Captcha integration	 161

Blogs	 162
Quills	 162

Installation	 163
Features	 163

Table of Contents

[vi]

Quills portlets	 164
Configuring the blog	 165

Scrawl	 165
Installation	 166
Features	 166

Discussion board	 166
PloneBoard	 167

Installation	 167
How it works	 168
Adjusting permissions on Ploneboard for intranet use	 168

Polls and surveys	 170
PlonePopoll	 170

Installation	 170
How it works	 170

Plone Survey	 172
Installation	 172
How it works	 172

Document files management	 174
ARFilePreview and AROfficeTransforms	 174

Installation	 174
Features	 174
Additional software required	 175

OpenXML	 175
Installation	 175
Dependencies	 176

Summary	 176
Chapter 10: Basic Product Development	 177

Building our own product	 178
Naming our product	 178
Creating the egg	 179
Anatomy of a Plone product egg	 180

Egg documentation files	 180
Egg setup files	 181
Main product content	 182

ZCML configuration files	 183
Making the product installable	 183
The power of GenericSetup	 185

Snapshots	 186
Importing and exporting a particular product profile	 188
Comparing snapshots and product profiles	 188

Importing GenericSetup profiles from a product	 189
Cloning content types via GenericSetup	 190
Using a product to configure security	 193

Table of Contents

[vii]

Defining role map assignment to permissions	 193
Creating new workflows or modifying existing ones	 194

Dexterity	 196
Summary	 197

Chapter 11: Content Rules, Syndication, and Advanced Features	 199
Content rules	 200

Adding a new rule	 201
Assigning rules to folderish objects	 204
Making any content type rule aware	 204

Syndication	 205
Enabling folder syndication	 205
Accessing a secure RSS feed	 206

Versioning	 207
Changing versioning policy	 208

WebDAV	 209
Managing WebDAV access permissions	 211

External editing	 211
Installing the External Editor	 212

Windows	 212
Linux	 212
MacOSX	 213

Enabling external editing	 213
Modifying helper software	 213

Summary	 214
Chapter 12: Theming our Intranet	 215

Diving into Plone's page rendering	 216
Acquisition from parents	 217
Plone skins tool	 218
Skins and layers	 218
Acquisition in skin layers	 221
Zope page templates	 221

TAL	 221
METAL	 222

Viewlets	 222
Managing viewlets	 224
Composing a Plone page	 225

Rendering the main_template.pt page template	 225
Resource registries	 227

CSS resource registry	 227
JavaScript resource registry	 228

Theming using third-party add-on products	 228
GloWorm—add-on product for viewlet customization	 228

Table of Contents

[viii]

Installation	 228
Using GloWorm	 229

CSSManager—add-on product for CSS and basic
properties customization	 230

Installation	 230
Using CSSManager	 231
CSS customization with base_properties sheet	 232
Changing the logged-in tabs' attributes	 232

Custom theme add-on products	 233
Building our own theme add-on product	 233

Installing the product	 234
Customizing Plone skin layer resources	 236
Enabling CSS debug mode	 236
Customizing the site logo	 236

Customizing the logo image and adding a new one	 236
Customizing the plone.logo viewlet	 237

Customizing Plone CSS	 238
Resetting Plone CSS	 239

More about customizing viewlets	 240
Using Generic Setup to customize a theme	 241

Theming—best practices	 241
Summary	 242

Chapter 13: Deploying our Intranet	 243
Deployment buildouts	 244

Buildout base configuration	 245
Adding a versions file	 245
Caching extended configuration	 246
Using the newest directive	 246
Adding ports and hosts names sections	 247
Adding process owners section	 247
Changing the ownership of buildout folder	 248

Common administration tasks	 248
Backing up and restoring database	 249
Database packing	 250
Rotating the log files	 250
Scheduling	 252

Virtual hosting	 252
VirtualHostMonster	 252
Virtual hosting a root domain	 253
Virtual hosting a domain subdirectory	 254

Small intranet deployments	 255
Monolithic Zope	 255

Performance	 256

Table of Contents

[ix]

Scalability	 256
Buildout for small deployments	 256
Small deployments layer diagram	 256

Medium intranet deployments	 257
ZEO (Zope Enterprise Objects)	 257

Adding a ZEO server to our buildout	 257
ZEO clients	 258

Scalability	 258
Performance	 258
Adding ZEO clients to our buildout	 258

Load balancer	 260
Supervisor to rule them all	 263

Using Supervisor	 264
Modifying the web server settings	 265
Medium deployments layer diagram	 265

Large intranet deployments	 265
Adding cache to our deployment	 266
Products.CacheSetup add-on product	 266
Cache server	 268

Building and configuring Varnish	 269
Default VCL configuration template file	 270

Modifying the web server settings	 272
Spanning services in separate servers	 273
Increasing the ZEO client instances	 273
Updating balancer configuration	 274
Setting LDAP as an external user database	 274
Large deployments service layer diagram	 277

Summary	 278
Index	 279

www.allitebooks.com

http://www.allitebooks.org

Preface
Plone is a highly extensible Content Management System built on Zope application
server, which is written in Python. Plone is very suitable for building intranets. No
matter what size, or purpose, it offers a solution to the most common intranet needs,
and more. Although it shows its real power in medium and large-scale corporate
intranets, we can take advantage of Plone even in small-scale scenarios, such as small
work groups, software projects, or research teams.

If you've never built an intranet before, you don't even have programming skills, or
you don't have any experience with CMS, don't worry! This is the most suitable book
for you.

This book will give you a complete overview of how to build and design your
intranet, focusing on security and usability. It will guide you through the initial
setup, Plone basics, security, and workflow-related topics, and ends with the most
common deployment techniques.

Learn how to make effective use of content type for your intranet. Know how to
manage the life cycle of your documents and content in general, using workflows.
Manage security and access your content granularly. Learn how to choose the right
add-on products for your site, and how to use it in your intranet efficiently. And at
the end, know how to deploy your intranet and make your site live.

This book is targeted at people with no previous experience in Plone. There is no
need for any programming experience or CMS knowledge.

Preface

[2]

What this book covers
Chapter 1, Introduction to Plone, introduces readers to Plone, what it is, for what
it's used, its main features, and why it is one of the best CMSs to build
an intranet.

Chapter 2, Getting Started, teaches us how to download the software requisites, install
them, and run our own instance of Plone, no matter which software platform we
may have.

Chapter 3, Managing our Content, talks about the basics of Plone. Before we advance to
building our Plone intranet site, we should know how to manage content, as well as
the basics of Plone. This section only outlines the basics of Plone and does not go in
depth. However, it gives us sufficient information to have a broad knowledge of Plone.

Chapter 4, Configuring our Site, covers the most important topics about the advanced
configuration of our Plone intranet and other advanced topics. It shows us how to
manage our Plone site. We will learn to be confident in managing our site using the
Zope Management Interface (ZMI).

Chapter 5, Managing Users, Groups, Roles, and Permissions, discusses security, and how
to deal with it, which is one of the most important topics when building an intranet.
In this chapter, readers will learn how security works in Plone, how to manage local
users (CRUD operations), and the mechanisms that Plone makes available to users
in order to manage their data, such as profile data and passwords. We will also learn
about groups and roles, and the basics of Plone security.

Chapter 6, Managing Workflows, is a detailed chapter dedicated exclusively to
workflows, best practices, and how to manage, create, and modify them.

Chapter 7, Securing our Intranet, covers topics based on the experience earned whilst
working with intranet users and common basic intranet needs.

Chapter 8, Using Content Type Effectively, covers common intranet use cases and shows
us how to deal with them in Plone. We have to be very careful about the content
type that we make available to our users. Failing to do so will lead to really difficult
migrations, product conflicts, and user confusion.

Chapter 9, Intranet Add-on Products, covers a suitable stack of products addressed
to intranets. It shows the most reliable and fully-featured set of Plone's third-party
add-on products. It covers internal blogs, group discussions, wikis, and knowledge
bases form generators, surveys and polls, creation of shared calendars, document file
helper applications, and so on.

Preface

[3]

Chapter 10, Basic Product Development, is a brief introduction to product development.
It does not give an in-depth knowledge, but it aims to introduce the reader to the
basics, and to the right resources to learn more about the topic.

Chapter 11, Content Rules, Syndication, and Advanced Features, talks about advanced
content features such WebDAV, access to bulk upload and download content,
content rules, and syndication, amongst others.

Chapter 12, Theming our Intranet, lists the best practices for theming an intranet,
focusing on performance. However, an in-depth chapter about theming is out of the
scope of this book. It also talks about basic information with reference to resources
where the reader will learn more about this subject.

Chapter 13, Deploying our Intranet, covers how to deploy our intranet, based on its
capacity, its needs, the number of intranet users, and its size.

What you need for this book
You will need a Python-enabled environment, which is very easy to set up under
Linux and MAc OS X. Windows users should make sure that they install all the
prerequisites in order to have a fully functional Python command-line interpreter,
such as Linux and MAc OS X users have.

All code and examples shown should run on any platform. You will need internet
access to download all the software and dependencies required to run Plone.

All prerequisites are described in depth in Chapter 2, Getting Started.

Who this book is for
This book is for anyone who needs to build an intranet with no limits on capabilities
or features. Even if you don't have previous CMS experience or programming skills,
this book is for you. Targeted at beginners with no previous experience with Plone,
this book will teach you step-by-step, and at the end you should have a full-featured,
reliable, and secure intranet.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[4]

Code words in text are shown as follows: "The name of this database is
Data.fs.pack."

A block of code is set as follows:

[zeoserver]
recipe = plone.recipe.zope2zeoserver
zope2-location = ${zope2:location}
zeo-var = ${buildout:directory}/var
zeo-address = ${ports:zeo-server}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 lang="en"
 metal:use-macro="here/main_template/macros/master"
 i18n:domain="plone">

Any command-line input or output is written as follows:

$ paster create -t plone3_buildout deployment.buildout

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "In the
Groups tab we can find a similar functionality as the User tab.".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this book. If you find any errata, please report them by visiting http://www.
packtpub.com/support, selecting your book, clicking on the let us know link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.PacktPub.com/support

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Introduction to Plone
Plone rocks!

If we have this book in our hands, we probably already know it, or have heard
about its excellence. First things first, we can't write a book about Plone without
introducing it to you properly. Plone has become a huge phenomenon in the last
few years. I would like to show you its history, some facts, and who is who in the
Plone world.

Plone is a mature open source Web Content Management System (WCM, WCMS,
or Web CMS). Alexander Limi, Alan Runyan, and Vidar Andersen began the Plone
project in 1999. It was conceived as a usability layer on top of the Zope Content
Management Framework (CMF). It has been released under the GNU General
Public License (GPL), and today is one of the most active open source projects
in the world driven by more than two thousand developers and collaborators. In
order to ensure that Plone will always remain as an open source project, the Plone
Foundation was created in 2004. As a non-profit organization, it exists to protect
Plone's intellectual property and trademarks, and is in charge of taking the leadership,
making all of the important decisions about its design, features, and philosophy.

Nowadays, a lot of organizations, enterprises, NGOs, universities, and many others
have trusted in Plone to host their websites or intranets. To mention some of them:
NASA Science, Novell, Nokia, Amnesty International, the Brazilian government, the
Nordic Council, and so on.

Plone is built on usability; thus, the learning curve needed to use it is very low
steeped because of its unique design at various levels. It makes the user experience
very pleasant for a non-technical user, making web publishing an easy process.
This goal is achieved, thanks to a well-designed user interface and the site building
process based on a folder tree hierarchy.

Introduction to Plone

[8]

Plone is built on top of Zope and benefits from all its features. Zope is written
primarily in the Python programming language and had the honor to be the first
open source web application server. One of Zope's most important features is
the Zope Object Database (ZODB), its object oriented database. This and many
other features make Plone a highly extensible, scalable, multiplatform Content
Management System.

Plone is really easy to learn, use, install, and extend. It comes with simplified
installers for Windows, Mac OS, and Linux, along with other operating systems.
There are more than 1000 add-ons created by the Plone community available on
the web, extending Plone in every way imaginable, from authentication plugins to
collaborative tools, through (almost) every functionality or feature we may need for
our website. It is available in over 40 languages and provides a multilingual content
engine (via another add-on) in order to manage the translations of our site.

Plone is really suitable for building intranets. No matter how large or for what
purpose, it offers solutions to the most common intranet needs, and more. Due to its
object orientation, we can define fine-grained permissions to users or groups, and
build complex security structures inside our intranet. On top of that, it provides us
with an easy user interface to manage security and permissions. At the same time,
due to its large amount of add-ons our intranet will be able to provide the most
popular collaboration tools and the most useful productivity tools available.

Additionally, Plone is based on technology standards, such as XHTML, CSS, or
Dublin Core. It integrates well with other standards such as LDAP, Web Services,
SQL, Active Directory, and so on. In the accessibility aspect, it meets or exceeds US
Government 508 and World Wide Web Consortium's (W3C's) WAI-AA standards.

With regards to security, Zope and Plone have a technological edge that has
helped it attain the best security track record of any major CMS (source: CVE
http://cve.mitre.org).

What does Plone give me over other CMS
solutions?
As we already know, CMS stands for Content Management System, but this
definition is very broad and is applied to a large set of solutions. Many authors
tend to split them in several categories, the most important are: Web or Portal
Management Systems (WMS) and Enterprise Management Systems (EMS).

Chapter 1

[9]

Drupal, Joomla, Plone, dotNetNuke, to mention a few of them are WMS. There are
others targeted to specific use cases of content production, such as Wordpress or
Zine, which are aimed exclusively at blog publishing. Although it is common to
call them WMS, there are some authors that treat them as a special case.

WMS software is a web application for creating and managing large, dynamic
collections of web material (HTML documents and their associated resources).
Usually they provide authoring (and other) tools and rich user interfaces designed
to allow users with little or no knowledge of programming or markup languages
to create and manage content with relative ease of use. A database is used to store
content, metadata, and in some cases other types of artifacts as code or templates.
Usually, a presentation layer displays the content based on a set of templates.

One of the most distinctive features of the WMS market is the way the users manage
content. In fact, there are two approaches:

•	 Backend
•	 In-place editing

In the backend approach, the system makes available to the user a special interface for
managing the content resources, as well as administering the system. In the in-place
editing, the user can manage the object directly through the frontend user interface,
using special widgets the system provides for that purpose.

Another important feature is how we store and choose to show content on our site.
Most CMS rely on taxonomy, tagging each document with an ID, which is used
to specify where we want to position it on our site. This is the approach chosen by
Drupal, Joomla, and so on. They also use the concept of asset library, a place to put
resources for a later use on our site.

There are a lot of WMS that are backend driven, and although some of them allow
some kind of in-place editing, the experience is not always as pleasant as we would
desire. Some of them rely on taxonomy to build the site structure. Taxonomy is the
practice of classifying objects according to natural relationships. This method fits
into the brains of technical users, but it's not easy to understand for non-technical
users due to the complexity of the concept and, often, due to a poor and
non-usable interface.

www.allitebooks.com

http://www.allitebooks.org

Introduction to Plone

[10]

We can find these features and more in any modern WMS. However, what are the
differences between WMS and EMS? The boundaries between WMS and EMS are
becoming more blurred in recent times. Enterprise Management Systems are targeted
to capture, manage, store, preserve, and deliver large amounts of documents, and
treat them as individual entities. Often these documents are stored in XML, which
provides easy integration and interoperability with other systems. They are focused
on the management of the life cycle of a document and they often integrate powerful
business process management (BPM) tools. They can also provide archiving and
Public Key Infrastructure integration. To name a few: EMC|Documentum, FileNet,
or OpenText.

Although we can find some of these features in a WMS, or we could just implement
them, we have to keep our needs in mind. We have to decide what kind of tool is
the most suitable for our requirements and meets our needs. Not all needs end with
the choice of a general WMS, for example, if we need a simple website with the
brochure of our business, maybe we will choose a WMS like Joomla or Drupal. If
our organization is related to the government or it's a big enterprise where we need
integrated document management, with the highest audit and control requirements,
and we are not interested in publishing our site, then we probably need an EMS.

From a broad point of view, an intranet is an access-controlled site along with
optional external publishing capabilities, which has the following key features:

•	 Usability
•	 Security
•	 Collaboration tools
•	 Productivity
•	 Content life cycle

Plone excels in all of them. Let me show you how.

For non-technical users, it is essential to provide the simplest and a highly usable
user interface, relying on concepts that they already know and they will be able to
easily extrapolate to our use case. Here is where in-place editing and a tree-based
hierarchy come into play.

Chapter 1

[11]

A tree-based hierarchy is a repeating concept every user has to learn when dealing
with computers because of the structure of file systems. It is easy for users to apply
this concept when it comes to managing content. Plone uses a tree-based hierarchy
for organizing its content and transparently storing it as objects, provided by the
ZODB, the Zope's object oriented database. From the user's point of view every
Plone site has a root folder, which is a real physical place where they could place
content, and eventually folders that would be physical containers of more content.
First-level folders would become the website's sections. In my experience, users are
very confident in that scenario, and they learn the concept almost immediately. They
can even do the same basic operations over content such as cut, copy, and paste as
they used to do with files in a file system environment.

Another key aspect people can expect from an intranet is security. I'm not talking
about restricting access to our site to authenticated users only. It's about being able
to define authorization over content objects by specifying a complex permission
structure on them too. Plone provides a granular and highly configurable security
engine. Permissions are defined at the object level, assigning specific permissions to
every single object. The Plone pluggable authentication service (Plone PAS) takes
care of the connection to the most common authentication methods (Local, Active
Directory, NTLM, LDAP, SQL, Novell, and so on) and its pluggable architecture can
be extended to support others.

Enabling workgroups and collaboration is a must in an intranet. We have a
constant need to share our daily work and we often need a centralized place to do
so. A few years ago, the initial purpose of intranets was to be mere information
containers. Today, we are constantly asked to improve their capabilities and we
are continuously making them more powerful. Forums, blogs, form and survey
generators, contact management, resource bookings, travel expenses; all of these
could be nice features to add to our intranet. Intranets must provide us with a way
to make our daily work more easy and reusable. Plone has a long list of add-ons
that can help us in this matter. In short, probably the most used topic in IT in the
beginning of the 21st century—Web 2.0!

Productivity is not a joke for any enterprise or organization. We are living in a world
that demands the highest standards. We must work efficiently and achieve the
highest quality results by spending the least amount of money possible. Having the
right tools to accomplish this is not an option, but a must. Again, there are a lot of
add-on products that provide these kind of tools. Many of the applications that we
mentioned earlier in this chapter could help us achieve that.

Introduction to Plone

[12]

A very useful feature that is able to define the life cycle of content is called workflow.
Workflow is composed of states and the transitions between them. The states
define a set of permissions and visibility of the content, and the transitions define
the actions to be taken when content's state change is triggered. Plone provides a
highly customizable workflow engine, and the most common ready-to-use OOTB
workflows. The right use of workflows is the key to a successful intranet.

First surprise: not PHP, Python
As we have seen, nowadays, there are a lot of successful WMS applications and the
most popular ones are PHP based. Joomla and Drupal are good examples; we could
even mention some extremely successful websites such as Facebook, which are PHP
based. The popularity of PHP is not a surprise; good documentation, a shallow
learning curve, its similarities in terms of keywords and language syntax with other
popular languages such as C, its web oriented architecture, and a long career in the
IT world are its credentials.

The first thing we notice about Plone is that it is, in fact, a Zope application.
To be more exact, it's a Zope product. And because of that, against all odds,
it's Python based.

I'm a Python lover, and this romance has its reasons. Having reached this point, I
could just begin another little war between PHP and Python, but I won't. There are
a lot of discussion boards on the Internet about this subject, and we can find them
easily. Instead of opening Pandora's box, I will talk about the excellences of Python,
and why it excels in doing its job.

Python is a dynamic object-oriented programming language that can be used for
all kinds of software development. Guido van Rossum, former employee of Zope
Corporation and now working for Google, created it in the early 1990s at Stichting
Mathematisch Centrum in the Netherlands. As we may already know, Google has
made a strong bet on Python, and is using it in Google Apps Engine and presumably
in the core of its most popular services.

It offers integration with other softwares and tools, and comes with extensive
standard libraries. It features a very intuitive and easy syntax and can be learned
in few days. Following are some of its key features:

•	 Very clear, readable syntax
•	 Strong introspection capabilities
•	 Intuitive object orientation
•	 Natural expression of procedural code

Chapter 1

[13]

•	 Full modularity, supporting hierarchical packages
•	 Exception-based error handling
•	 Very high level dynamic data types
•	 Extensive standard libraries and third party modules for virtually every task
•	 Extensions and modules easily written in C, C++ (or Java for Jython, or .NET

languages for IronPython)
•	 Embeddable within applications as a scripting interface

Having reached this point, don't panic! There is no need to have
a good level of Python knowledge to follow this book, as we will
not enter deeply into development matters. If you are a proficient
PHP or other language programmer, then welcome! Don't feel
overwhelmed about having to learn a new language. As we
said, Python is easy to learn and has all the standard features we
would expect from a modern programming language.

Second surprise: not RDBMS, the mighty
ZODB
Yet another surprise? Yep, I will tell you just one thing: you can forget all you know
about relational databases, SQL query languages, tables, fields, and stuff like that.
Let me introduce you to the mighty ZODB! If you don't know anything about it,
don't worry.

The ZODB is an object-oriented database for storing Python objects transparently
and persistently. It is included as part of Zope, but can also be used independently
out of Zope. The reason for not using a relational database management system
(RDBMS) is easy to understand. It is more natural for a Content Management
System to store data in objects than to rely on an abstraction layer that converts the
document object we are storing to fields in a table (or fields across several tables),
and again when we retrieve the data from the object. In all aspects, it is easier to
store the object directly and transparently in the database as an object.

Introduction to Plone

[14]

Plone stores the site content, components, templates, and code needed in the ZODB.
The content is saved in the database following a tree-based hierarchal structure
from the root of the Plone site. Every item of content is an object, and the associated
metadata (title, description, body, and so on) are its attributes. As we said before,
for some applications like CMS, it is more efficient to store content in this more
natural way, as the type of entities we are managing is most of the time structured
hierarchically. ZODB users don't have to know where and how all this is stored,
because the entire persistence layer is transparent to them.

Following are its main features:

•	 Transactions
•	 History/undo
•	 Transparently pluggable storage
•	 Built-in caching
•	 Multiversion concurrency control (MVCC)
•	 Scalability across a network (using ZEO)

On Zope, every transaction is stored and is not written in the database until it is
committed. This means that if an operation fails while it is running, the database
remains unchanged, as no data is committed to the database until the end of
the operation.

As every transaction is stored, we can see the history of all operations for a container.
We can undo the transaction and revert to the state before that transaction was made.
So, if something goes wrong, or if someone deletes a folder by mistake we can simply
recover it by undoing the transaction.

Believe me, these two features have protected us from a lot of nasty headaches.

The Plone community
Now it's time to introduce you to the Plone community. You will find that it is
an exquisite cocktail and its recipe follows like this: lot of highly-talented people
immersed in an exciting and continuously challenging project, along with some
crazy geeks and high level third-party add-ons contributors, two spoons of wisdom
provided by the Plone Foundation, and finally shaken, not stirred, with a high
amount of friendship.

Chapter 1

[15]

This community has the key to all our questions about Plone. There are a lot of
people eager to help those who ask for it. We can reach them via mailing lists or chat
room (visit http://plone.org/support). It is also the entry point to discuss every
aspect of Plone, its design, features, and future. You may take a look at what is said
in the planet of blogs (http://planet.plone.org), what is being planned for future
releases of Plone, what is happening in the community (http://plone.org/news
and http://plone.org/events), and you can be a part of it.

There are lots of ways to support and promote the community; one of them is
attending periodical events such as conference, symposia, and sprints. There are
many others, such as organizing local meetings about Plone; just a little digging is
needed to find out if there's one in our city, and if there is none, then create one!

The Plone Conference is the most important event inside the Plone world. It is held
every year since 2003, and it is organized by the local community of a designated
city. Attending a Plone Conference is the best chance one has to meet the Plone
community in pure state. Having firsthand experience in how it is designed, how it is
made, how it works, and the possibility to take part in the development of new Plone
features is invaluable.

One of the key points behind Plone being one of the most active open source projects
is not any accident—it's the Plone community without any doubt.

Public websites, intranets, extranets, and
the thin line between them
There was a time when public websites, extranets, and intranets were separated
by well-known and defined borders. These borders were defined by file system
permissions set at the OS level, and were statically defined and not accessible
by users.

Nowadays, the difference between them in most cases is a thin line, often defined by
object properties (such as a state or user security permissions) that determines the
visibility and the access rights for each object of our site. As we said earlier, Plone
allows us to set up a property called "state" at object level. This state will have a set
of permissions associated with it that will define the access to the object itself. These
permissions are part of a bigger set of security-related properties that allows us to
manage object security more accurately and helps us to have high granular
security management.

Introduction to Plone

[16]

As we can determine the visibility of each object, we can have public access objects
living in the same folder, along with others with restricted access rights.

This leads us to the paradox of having a public site that could easily have an intranet
section protected with access rights, or a big intranet where it is permitted to publish
certain content or expose public sections to anonymous users.

Changing states of content in the Plone UI is only two clicks away. A state is the
main entity of a workflow and, among other things, it defines the user permissions
of the object. Each content type can participate in a workflow (or none if we don't
want to) and Plone provides us with a way to define and manage them. Plone is
shipped out-of-the-box with some common use workflows, but we can define and
manage them to fit our needs.

Summary
In this chapter, we have learned all the basic concepts of Plone, along with its
features, a few of which were actually surprising for newcomers. We also
introduced the Plone community and why Plone is a good option to build
out intranet using Plone.

In the next chapter, we will cover the installation and first steps with Plone.

Getting Started
Now, let's get our hands dirty. In this chapter, we will learn how to install and
run Plone. We will also learn what software prerequisites are needed and which
are the most useful tools. Our main goal will be to get acquainted with the correct
way to install Plone and feel comfortable with it. We will also introduce the Zope
Management Interface as the main Zope administration tool.

This chapter presents the following topics:

•	 Software prerequisites and their versions
•	 Quick start
•	 Unified installers
•	 Using buildout
•	 Running our first instance of Plone

From now on, all examples and exercises are intended for implementing on a
development server or on a test computer. Although the settings shown in the
following chapter could be used on production servers, it is recommended to
follow strict guidelines, procedures, and consider good practices when installing a
production server. In Chapter 13, Deploying our Intranet, we will learn all the insights
on how to set up a production server.

Keep in mind that Plone, Zope, and Python are multiplatform software, so we have
no special limitation as to hardware or operating system. Today Python is available
for any major operating system, and by extension so are Zope and Plone.

Getting Started

[18]

From now on in the examples and console code shown in this book
we will show a Bash interpreter shell, though we will cover Windows
syntax when it differs significantly. Bear in mind that path separators
on Windows are backslashes (\) and the command prompt will be a >
sign, while other environments use forward slashes (/) and command
prompts will be a $ sign.

Plone versions
At the time of writing this book, Plone's latest published version was 3.3. Throughout
the book this version will be used as a reference, regardless of the minor revisions
that might be published in the future, which are not expected to represent any major
changes in functionality or interface.

Plone 4 is scheduled to debut at some point in summer 2010 and it will include some
very interesting features as follows:

•	 Global better performance (due to use of Python 2.6 and Zope 2.12)
•	 Added TinyMCE for editing
•	 Use blobs file type as part of the core
•	 Unify folder implementations
•	 And, many other enhancements

Plone 4.0 is a new major feature release, which builds on the Plone 3 release series. Its
focus is on updates on the base technologies, better support for large data volumes,
and a variety of end-user features. In most cases, all the concepts covered in this
book are valid for both versions 3 and 4.

Installing Plone
Basically, in order to install Plone we need a full installation of Python, a Zope server
instance, and of course, all Plone's module dependencies.

It is worth noting that each version of Plone requires us to install a specific major
Python version on our machine (minor revisions are usually safe). For example,
Plone 3 requires version 2.4 of Python, whereas Plone 4 needs 2.6. For now,
Plone is not expected to use the recently released Python 3.0.

As to what relates to Zope, we'll need at least version 2.10.6 for Plone 3, whereas
Plone 4 requires Zope 2.12.1.

Chapter 2

[19]

The following table summarizes the versions needed for each version of Plone:

Plone version Zope version Python version
Plone 3 Zope 2.10 Python 2.4
Plone 4 Zope 2.12 Python 2.6

We can install Python and Zope and set up a Zope instance, and then install Plone
and its dependencies in the Zope instance. Doing it by hand is complex and tedious.
However, there are easier and more efficient ways to install Plone, and we will discuss
them shortly; all of them provide us with some interesting advantages. We will focus
specially on one of them, zc.buildout, as it proves to be the more useful one.

zc.buildout requirements
In order to use zc.buildout to install Plone we must have the following tools and
libraries at hand:

•	 A complete Python installation, with the development libraries installed:
A full Windows installation will suffice and in a Debian/Ubuntu Linux
the -dev package of the corresponding Python will suffice (for example,
python2.4-dev).

•	 A C compiler: If we are in a windows platform, we may want to install
mingw32 (http://www.mingw.org) and the Python Win32 extensions
(http://downloads.sourceforge.net/pywin32/pywin32-210.win32-
py2.4.exe?modtime=1159009237&big_mirror=0). For Linux/Unix
platforms we may probably have it already installed, otherwise just refer to
your OS software installation system. In Mac OS X we must install Xcode; we
can either find it in our installation Mac OS X DVD or download it from the
Apple website.

•	 Distribute: An extension of "distutils", Python's built-in packaging system.
More information on the best way to install it is available in the next section.

•	 ElementTree: An XML processing library. Most operating systems have
packages for this library but it can also be downloaded from http://
effbot.org/zone/element-index.htm or installed through easy_install
distribute script.

•	 The Python Imaging Library (http://www.pythonware.com/products/
pil): This must be installed for the Python version we are going to use.

•	 A command line or interpreter: Like Bash in Linux/Unix environments or
cmd in Windows boxes. Remember to set up the PATH environment variable
of our operating system to point to the Python and C compiler binaries to
access them from any path in our system.

Getting Started

[20]

Quick start for the impatient
If we have already checked out all the requirements, let's make a quick setup. We
will find that setting up a Plone instance is a matter of minutes.

Open our command interpreter, and type the following commands:

$ wget http://python-distribute.org/distribute_setup.py

$ sudo python2.4 distribute_setup.py

These commands will install setuptools in our system along with its support
script easy_install. They provide the functionality to install any Python module
packaged in .egg format in our system. We will install setuptools by downloading
a script (distribute_setup.py) that will install it. To do this we can use wget, as
shown in the example, or we can download it using our favorite web browser. Then
we must execute it with the correct Python version: as we are installing Plone 3.3 we
must use Python 2.4.

Maybe we have already installed the setuptools package,
especially when it comes to any Linux distribution. In this case,
it is recommended to upgrade to the latest setuptools version by
running the command lines exposed, as it's common that it will
have an outdated version of the package.

In the next step, we will install the elementtree module using easy_install script
(if we have not installed it before) and ZopeSkel.

$ sudo easy_install-2.4 elementtree

$ sudo easy_install-2.4 ZopeSkel

$ paster create -t plone3_buildout myplonebuildout

It is a collection of skeleton templates for the PasteScript, a very powerful Python
developer tool. Amongst other features, PasteScript can generate skeletons of source
files and folders for our software applications. They are configured via a wizard. We
will use PasteScript's script paster to create a skeleton for our buildout instance of
Plone. The create command consists of the name of the template (plone3_buildout)
and the name of the buildout directory we are creating. The script will ask us a few
questions about our resultant buildout instance:

Enter plone_version (Which Plone version to install) ['3.3.4']:
Enter zope2_install (Path to Zope 2 installation; leave blank to fetch
one) ['']:
Enter plone_products_install (Path to directory containing Plone
products; leave blank to fetch one) ['']:
Enter zope_user (Zope root admin user) ['admin']:

Chapter 2

[21]

Enter zope_password (Zope root admin password) ['']: admin
Enter http_port (HTTP port) [8080]:
Enter debug_mode (Should debug mode be "on" or "off"?) ['off']:
Enter verbose_security (Should verbose security be "on" or "off"?)
['off']:
Creating template plone3_buildout
[...]

We will only have to inform the desired Plone's version we want to install. It is
advisable to set the latest stable version available (in the previous example, we are
setting up 3.3.4). In the case of Zope root admin user's password, the convention is to
use admin. We will answer the remaining questions with the default option.

$ cd myplonebuildout

$ python2.4 bootstrap.py

Once we have generated our buildout structure, we will move to our recently created
directory buildout, and run the script bootstrap.py with the proper Python
version. This will generate some additional directories and installation specific
scripts that we will use later. After that, we must run the buildout script:

$./bin/buildout

Once we are done, we can launch the Zope server process with the next
command line:

$./bin/instance fg

We will wait until we see the following message:

INFO Zope Ready to handle requests

Getting Started

[22]

Then open any web browser and point to the URL: http://localhost:8080.
We should see Zope's splash screen by default, which looks like the
following screenshot:

Chapter 2

[23]

We will reach the Zope Management Interface (ZMI) through the following URL:
http://localhost:8080/manage . The browser will ask us to enter the username
and password that we have previously configured during the buildout creation (for
example, the user can be admin and password also admin) to access it. Once logged
in, within the ZMI, select Plone Site from the Add new... drop-down menu near the
top right to add a Plone site. Once finished, if we were to call it mysite, it would be
accessible from http://localhost:8080/mysite.

Getting Started

[24]

Congratulations! We have just created our first Plone site! It's a good moment to take
some time to familiarize ourselves with the surroundings, and have our first hand
experience with Plone.

We have just learnt (the express way) how to install Plone via zc.buildout. We
will cover two ways of installing Plone, via zc.buildout and via Plone's Unified
Installer (PUI). Plone 3.3 Unified Installer is based on buildout, hence, when we use
PUI we will be using zc.buildout. PUI incorporates some automatic procedures
that are useful for beginners. We can start with PUI, but as we gain experience,
sometimes it's more flexible and efficient to use a standard Plone buildout as we
have seen a moment ago.

Plone unified installers
Along with each published Plone version, a Unified Installer is released for the most
popular operating systems. In fact, it is a kit that will help us install Plone easily,
featuring a small installation wizard. This wizard installs all the prerequisites
needed for Zope and Plone to work properly, and a set of scripts and programs
for assistance to start and stop services related to the application. We can find it
at http://plone.org/products/plone.

The unified installer is ideal for beginners to Plone, to take their first step and begin
learning how it works. Regardless of the installation platform we choose, it's very
simple to use and requires virtually no knowledge or no additional configuration.

We will show how PUI works in Windows, Linux, and MACOS X, as each one
contains a number of features worth mentioning. Because of the fact that they are all
based on zc.buildout, we will not discuss any advanced aspect about how buildout
works until the next section, when it will be discussed in depth.

Windows
Once downloaded, run the installer Plone-3.3.x.exe . The setup wizard will ask us
only two things:

•	 The location of files on the local machine (by default, on
C:\Program Files\Plone)

•	 The username and password of the Zope administrator user account

The program will install a preconfigured version of Python, a precompiled Zope
server, and all the modules required to run Plone and its dependencies. The wizard
will locate the files in the chosen directory.

Chapter 2

[25]

It installs a service on the machine that starts the Zope server when we boot the
machine. We can control the state of the server from a small application called Plone
Controller, which is installed in the Windows programs menu.

This application has shortcuts to access directly our Plone Site and the Zope
Management Interface.

Linux
Download the installer package file in our local machine. It's packaged in a .tgz file,
so we will have to decompress it in our desired location:

$ tar xvfz Plone-3.3.5-UnifiedInstaller.tgz

This kit includes the source code of both Plone and its dependencies. Unlike the
Windows installer that bundles precompiled versions, this kit will compile from source
Python, Zope, and Plone. The Python installation is done in such a way that it does not
interfere with any Python installation that is already installed in the machine.

The kit also includes an installation script (install.sh) with which we can choose
from several installation options available. These options are mainly related to security
and deployment. To be more specific, they focus on how the Zope process is going to
be launched and how to configure a cluster of Zope Server. As they have a lot to do
with the deployment process, we will discuss them in depth in a separate chapter.

Getting Started

[26]

So, we will run the installation script with the option standalone:

$ cd Plone-3.3.5-UnifiedInstaller

$./install.sh standalone

This action will automatically perform the following tasks:

•	 Compile Python, and install it in a way that it doesn't interfere with the main
system Python interpreter

•	 Compile and install the required libraries if necessary (zlib, libjpeg, PIL,
and so on)

•	 Create a main directory Plone under the home of the current user (that is,
/home/victor/Plone)

•	 Install setuptools and zc.buildout
•	 Compile and install Zope server
•	 Install a Zope instance in Plone/zinstance
•	 Configure and install some management scripts in Plone/zinstance/bin
•	 Add a Plone site in the Zope ZODB root called Plone
•	 Set up Zope administrator user account and a random password that shows

in the console messages during the setup

Once the installation is done, we can start the Zope server by executing the
following script:

$ ~/Plone/zinstance/bin/plonectl start

To stop the server, execute the following script:

$ ~/Plone/zinstance/bin/plonectl stop

To check its status, execute the following script

$ ~/Plone/zinstance/bin/plonectl status

For more details and other relevant configuration options, see Installing Plone
3 with the Unified Installer at http://plone.org/documentation/tutorial/
installing-plone-3-with-the-unified-installer in the Plone site
Documentation section.

Chapter 2

[27]

Mac OS X
There is also a unified installer for Leopard and Snow Leopard. The installation
process is very straightforward and is very similar to the Linux one, but with
a graphical user interface assistant. The installer creates a base installation in
Applications/Plone, although we can choose other target directories. It includes a
Mac version of the Plone controller, available at Applications/Plone/zinstance.

It's also possible to install Plone in Mac OS X with the Linux unified installer too, but
it's recommended to use the one which is platform specific.

Buildout
The module zc.buildout (or Buildout—refer to http://www.buildout.org and
http://pypi.python.org/pypi/zc.buildout for more details) has become one of
the most extended tools in development environments, production environments,
and projects based on Python. As we noted before, from Plone 3.3, all unified
installers are based on the software package zc.buildout.

Getting Started

[28]

Written in Python by Jim Fulton, buildout is an application deployment system
that makes heavy use of Python eggs. This tool can build a complete environment,
isolated from the rest of the system, with the help of information provided by a
configuration file that will comprise the definition of our whole application. In this
configuration file (buildout.cfg), all components, elements and parts needed
by our application, and its related settings, are defined. These parts range from
installation of additional software needed by the project and its configuration, to
the installation of required modules and their configurations along with the overall
configuration and customization of our application.

Thus, we only need zc.buildout module (which is a Python egg itself) and the
buildout configuration file. Once launched, the buildout script mounts the entire
environment, downloading everything needed, installing, and configuring it as
defined in the configuration file.

Although we will not develop software, the buildout approach is the easiest way to
install Plone in a robust, methodical, and repeatable way. It is also very easy to install
new Plone products through the buildout configuration file.

Distribute, setuptools, and eggs
Distribute extends the capabilities of distutils, Python's built-in packaging system. It
provides, among other things, the ability to download and install a Python module
and all its dependencies, and supports egg packaging format. It includes a powerful
script utility called easy_install that manages all the eggs installed in the system or
current self-contained environments (such as buildout or virtualenv). It also takes care
of the latest versions installed, maintains a local cache, and is able to download eggs
from online resources or repositories such as the Python Cheese Shop, also known as
the Python Package Index, or PyPI (http://pypi.python.org).

Distribute is a fork of the setuptools project. It is intended to replace setuptools as
the standard method for working with Python module distributions. Distribute has
full backwards compatibility with Setuptools, the code is actively maintained and it
offers Python 3 support.

A Python egg is a specific binary distribution format based on ZIP files. An egg also
provides project-wide metadata, package specific data, additional Python code, and
keeps track of all dependencies the project or module may need.

Chapter 2

[29]

As someone said, "Eggs are to Python as Jars are to Java". Nowadays, a lot of
Python software projects have migrated or they are currently in the process of being
eggified. For example, Plone ended its migration to a fully eggified version since
Plone 3.2. Zope migrated to a completely eggified version in Zope 2.12. Thanks to
distribute, we can find resolve dependencies (and install them too, if needed), build
and install eggs by specifying the package name and version, and download them
directly from online repositories.

Buildout uses Distribute to setup the full environment needed to run Plone and
Zope, defining it in a few lines of code.

PasteScript and ZopeSkel
PasteScript is a library for creating Python project templates that ZopeSkel heavily
relies on. All skeletons are available as PasteScript templates and can be used via the
paster command-line tool. ZopeSkel is a collection of skeletons for quick starting
Zope projects. It adds to the list of available PasteScript templates a few skeletons
that are useful for starting Zope projects quickly. One of them is the plone3_
buildout template, and is the best way to create our Plone buildout skeleton.
This is the command line:

$ paster create -t plone3_buildout [name_of_my_buildout]

Then, the paster command will ask us some questions:

Enter plone_version (Which Plone version to install) ['3.3.4']:

We must tell it which Plone version we want to use. To have a look at the latest Plone
version released visit http://plone.org/products/Plone.

Enter zope2_install (Path to Zope 2 installation; leave blank to fetch
one) ['']:

In case we have to manage a lot of Plone buildouts, we can specify a path to a single
Zope 2 installation, in order to have only one Zope shared through several buildout
installations and save hard disk space. However, nowadays space is not a problem,
and is advisable to have one Zope installation for each buildout installed. Leave this
option blank to let buildout fetch one for you.

Enter plone_products_install (Path to directory containing Plone
products; leave blank to fetch one) ['']:

www.allitebooks.com

http://www.allitebooks.org

Getting Started

[30]

This is relevant only for older Plone versions and in case we are using old-style Plone
add-on products. The purpose of this option is to define a centralized old-style add-
on products folder for our environment. Leave this option blank.

Enter zope_user (Zope root admin user) ['admin']:
Enter zope_password (Zope root admin password) ['']:

The previous code shows the default Zope root administrator user account and
its password. The convention in development or testing environments is to
use the admin/admin pair. However, we can use whatever we like and its
associated password.

The following code defines the Zope server port:

Enter http_port (HTTP port) [8080]:

There are two Zope server running modes, the first one is related to enabling a debug
mode where all possible information and error messages are logged, and the second
one is related to security where all unauthorized access to any object is logged.

Enter debug_mode (Should debug mode be "on" or "off"?) ['off']:
Enter verbose_security (Should verbose security be "on" or "off"?)
['off']:

After these brief questions, paster will configure the buildout configuration file
buildout.cfg with the corresponding parameters. We can modify these parameters
later to reconfigure the behavior of the buildout configuration.

Running buildout
At this moment we can build our buildout. The first step is telling buildout what
version of Python we are going to use in our enclosed environment. This is a
very important step as it will determine the default interpreter and all the related
modules. We will define it in running the bootstrap.py script with the desired
Python version:

$ python2.4 bootstrap.py

We are assuming that a more recent Python version is installed in our system, and
that it takes the python (with no modifiers) command name, so we have to call
the right version with the command name python2.4. This will create some new
directories and create the buildout script. The next step is to run it:

$./bin/buildout -v

Chapter 2

[31]

Now we are adding the -v (verbose) modifier in order to make buildout show all
outputs possible. In this log, we can check how buildout builds our environment. It
uses the default buildout.cfg as a configuration file, although it can be changed
through the modifier -c (for example, ./bin/buildout -c deployment.cfg).
It's useful to manage different configuration files depending on the task we are
performing, for example, we could have a development buildout and use them
when needed.

Following are the other useful buildout script command modifiers:

Modifier Description
-o Run in off-line mode.
-n Run in the newest mode. With this setting, which is the default, buildout

will try to find the latest versions of distributions available that satisfy its
requirements.

-N Run in non-newest mode. With this setting, buildout will not seek new
distributions if installed distributions satisfy its requirements.

Buildout directory structure
Following are the most relevant directories and their contents that we may find
inside the buildout directory:

Folder/File Description
bin The location of the process control and management scripts.
bin/buildout The buildout script, used to build the buildout environment.
bin/instance In a default buildout template, the script used to control the Zope

service instance process.
bin/repozo A script that performs backups and restores our ZODB database.
bin/zopepy A Python interpreter that has all the eggs and packages that Zope

would have during startup. This can be useful for testing purposes.
buildout.cfg The buildout configuration file.
downloads If buildout needs to download a file from a network location, it is

stored here.
eggs Buildout downloads all the required eggs inside this directory.
parts This directory is completely managed by buildout. It contains the

installations of Zope server and its instances along with all the
additional programs, servers, and libraries managed by buildout. It is
overwritten each time buildout is built.

products Location of the Zope2-style products. If we have to install some of
these products, all we have to do is place them here.

Getting Started

[32]

Folder/File Description
src Directory location of the development eggs we may have in our

environment.
var Default location of the Zope Database, logs, and other data

directories.
var/
filestorage

Location of the ZODB database and its index and other related files.

var/
filestorage/
Data.fs

The most important file here, the container of the ZODB.

var/log/
instance.log

The default name of the Zope application message log.

var/log/
instance-Z2.
log

The default name of the Zope http (ZServer) access log.

Setting up buildout.cfg
This file is the director of all the buildout processes. It defines what is going to be
done, how is it going to be done and, most importantly, which configuration must be
set up in all its components.

To complete the description of the buildout process we must introduce one more
element, the buildout recipes. Recipes are the plugin mechanism provided by
buildout to add new functionalities to our environment building. A buildout part
(the elements inside the parts directory) is created by each recipe we use. Recipes are
always installed as Python eggs. They can be downloaded from a package server,
such as the Python Package Index (PyPI), or manually.

We generally define in buildout.cfg as many parts as we need and each part is
controlled by recipes. For example, there is a recipe to download and install Zope,
and another to set up a Zope instance.

We can now study a simple buildout.cfg configuration. We will cover it step by
step. If we wish, we can open the buildout.cfg file supplied with the code bundle
for this chapter.

Chapter 2

[33]

The buildout section
This file has a ini file structure as it divides its sections by the [] delimiters. We will
explain it bit by bit:

[buildout]
parts =
 zope2
 productdistros
 instance
 zopepy
Change the number here to change the version of Plone being used
extends = http://dist.plone.org/release/3.3.5/versions.cfg
versions = versions

First, we define the main [buildout] section and then start defining the parts we
want to configure. Buildout will search these parts as sections in the configuration
file, executing the directives of its corresponding recipes. If it fails to find one of
them, buildout will raise an error. Sections not specified in the parts definition
will not be executed.

The extends directive
The extends directive specifies another file or URL that contains extra configuration
directives. In this case, we extend it with a list of the correct egg versions required
to run Plone. In the next directive, we tell buildout to use this new section as the
versions source. This is an excerpt of the versions.cfg file:

[versions]
Buildout infrastructure
plone.recipe.zope2install = 3.2
plone.recipe.zope2instance = 3.6
plone.recipe.zope2zeoserver = 1.4
setuptools = 0.6c11
zc.buildout = 1.4.3
zc.recipe.egg = 1.2.2
Zope
zope2-url = http://www.zope.org/Products/Zope/2.10.11/Zope-2.10.11-
final.tgz
[...]

In this case, it downloads the file from the URL defined in the code and uses the
[versions] section to extend buildout.cfg. We can also see that it specifies the
download URL for Zope, in this case, the 2.10.11 version. It will be used ahead in
the configuration file.

Getting Started

[34]

The find-links directive
The next directive of the [buildout] section is find-links.

Add additional egg download sources here. dist.plone.org contains
archives of Plone packages.
find-links =
 http://dist.plone.org/release/3.3.5
 http://download.zope.org/ppix/
 http://download.zope.org/distribution/
 http://effbot.org/downloads
Add additional eggs here
eggs =
Reference any eggs you are developing here, one per line
e.g.: develop = src/my.package
develop =

Here we define the URLs of the online repositories from where we can find and
download all the required Python eggs. The Python Package Index (PyPI) URL
is implicit and we don't need to define it here. In the next directive, we specify
the eggs needed by our application environment. They will be downloaded from
the Python Package Index (PyPI) or from the additional find-links URLs. The
develop directive is used during the module development process to declare all the
development Python eggs we use in our environment.

The zope2 section
Once the [buildout] section is over, we can find the zope2 section.

[zope2]
recipe = plone.recipe.zope2install
url = ${versions:zope2-url}

Here we can see in action the first buildout recipe, plone.recipe.zope2install.
It will download and install Zope server, and all its libraries and sources in the
zope2 part inside the parts directory. Please note the URL directive that points
to the [versions] section, zope2-url directive. This is a common notation in the
configuration file and it's used to refer to other sections directives and configurations.

[productdistros]
recipe = plone.recipe.distros
urls =
nested-packages =
version-suffix-packages =

Chapter 2

[35]

Although this is rarely used now, the plone.recipe.distros recipe is used to
install Zope2-style products in our Plone instance. We can declare several download
URLs of the products we may want to install in the urls directive, and the recipe
will download, extract, and place them in the productdistros part folder inside the
parts directory. We can also use nested packages (compound packages including
several packages such as the old PloneLDAP). This method of installing packages is
deprecated as we can find almost all Plone or Zope products in an eggified form. We
can install them as eggs from the eggs directive of the buildout section. Needless
to say, the parts' productdistros folder will become a part of Zope's environment
software path. Otherwise Zope cannot find and recognize them as installable products.

The instance section
Finally the instance section.

[instance]
recipe = plone.recipe.zope2instance
zope2-location = ${zope2:location}
user = admin:admin
http-address = 8080
#debug-mode = on
#verbose-security = on

This section will benefit from the plone.recipe.zope2instance that will install and
configure a Zope server instance. As we can see, it contains several vital directives,
such as the default Zope administrator user password (only used the first time we
launch Zope, at which time it is stored in the ZODB), the http port address, and the
two commented lines corresponding to the two special modes available when we
run a Zope instance.

eggs =
 Plone
 ${buildout:eggs}

zcml =
products =
 ${buildout:directory}/products
 ${productdistros:location}

Following is another eggs directive. As we can see, it includes the previous
[buildout] eggs directive. We can add additional eggs here, but it is a general
practice to specify them all at the top.

Getting Started

[36]

The zcml directive is used to make available to Zope, eggs that otherwise Zope
wouldn't be able to see by itself. Zope is aware of the eggs with the namespace
Products, such as Products.PloneFormGen, but if this is not the case, we must
add a zcml directive for that additional egg. This forces Zope to read the
configure.zcml inside the egg or eggs specified, making it available for its use.
We usually call them "slugs".

The products directive just tells the recipe where Zope must search for
Zope2-style products.

The zopepy section
The last part is used to configure a Python interpreter called zopepy.

[zopepy]
recipe = zc.recipe.egg
eggs = ${instance:eggs}
interpreter = zopepy
extra-paths = ${zope2:location}/lib/python
scripts = zopepy

It is a command line interpreter with all the Python path and Zope modules
available. It's useful for developing purposes.

There are plenty of more configuration options and directives available for
zc.buildout. We can find a complete reference in the PyPi's zc.buildout web page
at http://pypi.python.org/pypi/zc.buildout.

We can also find more recipes at PyPi. The following URL may help us find them,
although note that not all are Zope or Plone related:

http://pypi.python.org/pypi?:action=browse&show=all&c=512.

Launching Zope
Finally, the only thing that remains is to launch our freshly installed Zope instance.
We make it so by running the bin/instance script:

$./bin/instance fg

The fg modifier will launch Zope in debug mode, and will show its console in
foreground mode. The bin/instance script has several modifiers, but for now we
will only focus on three of them—start, stop, and fg. In fact, it has a complete
command line interpreter with a complete help system; we can try it by executing
the script alone.

Chapter 2

[37]

$./bin/instance fg
/Users/victor/dev/myplonebuildout/parts/instance/bin/runzope -X debug-
mode=on
2009-10-06 19:28:06 INFO ZServer HTTP server started at Tue Oct 6
19:28:06 2009
 Hostname: 0.0.0.0
 Port: 8080
/Users/victor/dev/myplonebuildout/parts/zope2/lib/python/zope/
configuration/xmlconfig.py:323: DeprecationWarning: zope.app.
annotation has moved to zope.annotation. Import of zope.app.annotation
will become unsupported in Zope 3.5
 __import__(arguments[0])
2009-10-06 19:28:14 INFO Zope Ready to handle requests

To access the Zope server simply open our favorite browser and type the URL
http://localhost:8080.

To access the Zope Management Interface (ZMI) we must go to http://
localhost:8080/manage and log in with the Zope administrator user credentials
provided in the buildout creation process. Following is the main ZMI page:

Getting Started

[38]

The ZMI is divided into three frames, the top frame containing the headers and a
login/logout control, the left column is purely for navigation purposes, and the
main frame shows the current element we are inspecting. The default page shown
when we access ZMI is the Root Folder. All the elements inside the root folder are
hierarchically ordered, and as a result Zope Root Folder is the parent of all elements
in the ZMI. As in a file system, some of them are folderish (this means they can
contain other elements) and we can navigate through them. We will learn to use
ZMI in depth later in the next chapters. Now is a good moment to play a bit with the
environment and make us comfortable with it.

The next thing to do is create a Plone site in the Zope root folder. We manage to do
so by selecting Plone Site in the drop-down menu at the top right-hand side of the
main frame. A brief form is shown where basically we have to set up the name of the
new Plone site, and then click on Add Plone Site.

We can access our Plone site using the URL http://localhost:8080/mysite.

Chapter 2

[39]

Summary
In this chapter, we have learned how to download, install, and run our own instance
of Plone, independent of the platform we may have. We have covered the
following topics:

•	 Prerequisites of Plone
•	 Python and setuptools
•	 Unified installers
•	 Buildouts and what they are used for
•	 Installing Plone using buildout in depth
•	 Running your first instance of Plone
•	 First contact with ZMI

In the next chapter, we will take our first steps with Plone from the user's point
of view.

Managing our Content
Before we advance to building our Plone intranet site, we must first know about Plone,
the application. We have divided this topic into two chapters: basics and advanced. We
will cover Plone basics in this chapter. If one is already familiar with the common use of
Plone and its user interface, one can advance to the next chapter. In this chapter, we will
learn the key concepts of content management with Plone, and our objective will be to
get confident with its interface. We will cover the following topics:

•	 Plone visual layout structure
•	 Basic content management
•	 Content structure
•	 Content adding and managing
•	 Default content views
•	 Managing portlets

In our path to build a complete Plone based intranet, we will begin by
referring to our Plone site as "intranet". For this purpose, we will create a site
named intranet; its URL will be http://localhost:8080/intranet,
and all screenshots and examples will be based on this assumption.

We will continue from where we left off in the last chapter. We will assume that we
have our Plone instance up and running, and we can access it via our favorite
web browser.

Plone visual layout structure
It will be a good start if we begin by describing the default Plone layout structure,
explaining the locations of every element we will encounter in each page and start
calling them by their names.

Managing our Content

[42]

Since the first versions of Plone, it has shipped with the same old
venerable default skin. Although it may seem outdated and old-style
design, it's as functional and usable as the first day. In the past few years,
there have been many discussions about which default theme should
ship with Plone. In the end, it was decided it was time for renovation.
Plone 4 will ship with a brand new theme called Sunburst. However, we
will use the Plone 3 default theme in the following examples.

A standard Plone site layout is divided into five well-defined regions as follows:

•	 Header
•	 Left column
•	 Content
•	 Right column
•	 Footer

Chapter 3

[43]

Header
The header is the upper most section, and following the common guidelines of a
well-designed website, it contains the following elements:

•	 Logo: The logo is a customizable image placed to the left of the header. We
will learn how to customize it in Chapter 12, Theming our Intranet.

•	 Site actions: The site actions are a collection of links leading to special pages
in the site. There are some actions only visible to users with special roles,
such as the Site Setup action, which can only be accessed by users with the
global role Manager. The site actions link list is customizable too.

•	 Portal tabs: Portal navigation is automatically built using the top or root level
folders and non-folder content. Usually they represent the main sections
of our site. Portal tabs are an important navigation tool by themselves and
for this reason they are shown in this relevant layout area. By default, all
published content located in the root folder is shown as a portal tab.

•	 Search box: The search box is probably one of the most powerful and useful
tools available in Plone. It provides a fast and reliable site-wide content
search, making navigation in our site more efficient. It is sensitive to the
rights owned by the current user. This means that an anonymous user will
only receive results about published content, and a logged-in user can only
search over the set of content he is allowed to access. The search box also
provides a search-ahead with our typing tool called LiveSearch.

•	 Personal bar: The personal bar shows information about the current
logged-in user, the access to some user tools like the dashboard, the
location of the user's personal folder, or the logout action.

•	 Breadcrumbs: The breadcrumbs area shows the path to the current object.
This path is formed by the links from the root folder to the current object of
the parent folder of an object.

Managing our Content

[44]

Columns
Located at each side of the content region, they are exclusively reserved for the site
portlets. A portlet is a portion of information generated for a particular purpose from
the existing content in the site, such as to show the last published news or show all
the published site events in a calendar view. Sometimes, there are portlets that are
not bound to any site content, but they have a special functionality, such as the login
portlet or the search portlet.

Content
Content is the most important region of the layout because this is the location where
the content of the object we are accessing is shown. The arrangement of the content
itself is determined depending on the kind of content type we are accessing, but it
usually follows some conventions, at least in Plone's default content types.

Following are the elements you will find in this section:

•	 Title of the content
•	 Description (if any)
•	 Main object's information
•	 Document actions
•	 Related content

If we are logged in, we might see some other elements, depending on the roles
owned by the current user. From the editing and content management point
of view, the most important element in content region is the Plone's content
management tabs.

Footer
The footer area is located at the bottom of the page, and is the usual place to show
general information about our site or organization.

By default, it shows general information about Plone, its license type, the standards it
meets, and the Plone Foundation.

Chapter 3

[45]

Anonymous versus logged in
The previous screenshot showed the default Plone front page, as an anonymous
user would see it. If logged in as a Zope administrator, we may have seen some
differences. Depending on the rights assigned to our user, we will notice some user
interface differences, such as some additional links (for example, site setup link in the
site actions) or Plone's content management tabs.

Content management tabs
One of Plone's more powerful features is the in-site editing; in other words, the user
interface for viewing and editing content are the same. This is a very important
feature in an intranet site, because we always have the same interface even if we
are just reading content as consumers, or we are creating or editing new content as
authors. In an intranet, we constantly perform both these things simultaneously.

The Plone content management tabs will help us perform all the possible tasks over
the site content. If we are logged in as administrator, we will have full power to do
everything and we will also see the tabs located over the content region as follows:

This element contains several tabs and drop-down menus that allow us to perform
several actions over our content, and switch between several useful views. Sometimes,
people from the Plone world refer to them as content actions and content views.

By default, we can see five content tabs corresponding to five content views,
as follows:

•	 View: The default view of the selected content.
•	 Contents: If the selected content is folderish (it can contain other content

objects), then the Contents tab shows a view with all the elements that it
contains. The contained contents are showed in a list format that can be
useful to make bulk actions (such as to rename, copy, change status, among
others) on them.

•	 Edit: The content edit form.
•	 Rules: The content rules configuration form. Content rules are predefined

actions that apply to the content inside a folder when a specific event is
triggered. For example, we can send an e-mail each time a new content is
added to a folder using content rules. More on this can be learnt in Chapter 11,
Content Rules, Syndication, and Advanced Features.

Managing our Content

[46]

•	 Sharing: This is a form that allows us to manage the selected content
permissions. We have the ability to define fine-grained permissions for a user,
or group of users, to allow them to interact with our content from this form.

Following are the content actions by default:

•	 Display: Allows us to choose the selected content default view
•	 Add new…: A drop-down menu for creating new content inside this folder
•	 State: Let us change the current content state

Due to Zope's fine-grained permissions, we will be able to define which users have
the rights to perform each action or have access to these views.

Content structure
As we already pointed out, Zope's object structure is hierarchical, which means
that a typical Zope site is composed of objects that contain other objects (such as,
ad infinitum). URLs map naturally to objects in the hierarchical Zope environment
based on their names. Mapping URLs to objects isn't a new idea; web servers such
as Apache and Microsoft's IIS do the same thing. They translate URLs to files and
directories in a filesystem. Zope similarly maps URLs onto objects inside the ZODB.
A Zope object's URL is based on its path. It is composed of the IDs of its containing
folders and the object's ID, separated by slash characters.

The Plone site's root, which is the Plone site object itself, is mapped to the site's
root URL (for example, http://servername/mysite). We can see the default page
assigned for the Plone site's root. This is because we can assign an object as a default
view of any folderish object, such as folders or the Plone site. In the Plone site's root,
if we click on the Contents tab, we will see all the objects it contains, as shown in the
following screenshot:

Chapter 3

[47]

At the time of creation, a Plone site contains a few objects by default, such as:

•	 Users: A special folder that can contain a user's personal content and a form
for searching site members. Since Plone 3.3, the user's personal folder is not
activated by default; we have to manually enable this feature from Plone's
control panel.

•	 Welcome to Plone: The default site main page (note the bold font used for
displaying it).

•	 News and Events: These are the folders containing news and event content
types and the views to display them.

From here, we can navigate thorough the site objects as if it was a filesystem. Note
how every object is mapped uniquely with its own URL, and how the path is formed
depending on the object's hierarchy.

Adding content
Now, it's time to add some new content to our intranet. Folders are normally used to
organize information in our Plone site. First, we must go to the folder where we want
to create the new content, for example the root intranet folder. Then from the drop-
down Add new... menu select Folder.

Managing our Content

[48]

In the example, as shown in the previous screenshot, we are creating the folder that
will contain the IT staff intranet information. In this simple form, we will assign a
Title and a Description for this folder. Now click on Save and let's see the results.
We have created the desired folder in the intranet's root folder, and we can notice the
following three important things:

•	 A portal tab is created automatically each time we create some content in the
root folder, and we have rights to access it.

•	 Our content default state is private, so anonymous users can't access this
object until we change its state and publish it.

•	 The new content's URL is composed of the intranet root URL and the ID of
the new object which is the normalized version of the Title assigned to the
object on creation (http://localhost:8080/intranet/it-staff).

Next, let's add some content to our brand new folder. Be sure that we are in the
folder IT Staff and select Page from the Add new... drop-down menu.

Chapter 3

[49]

The form asks us to enter the new page's Title and Description, and two more fields
as follows:

•	 Body Text: A rich text field powered by Kupu, which is a basic rich
text editor

•	 Change note: Helps users to keep track of the changes made to the content

The page content type features a rich text editor widget called Kupu. It enables the
most basic text editing features, such as text formatting or applying predefined
styles. It also has a feature that allows us to edit the resultant HTML directly for
more advanced editing.

Plone 4 will switch to a more modern rich text editor called
TinyMCE due to its modular structure, small core, large user
base, and because it is actively developed and easily themed.

Standard Plone content types
Plone ships out-of-the-box with eight standard content types, all of them feature
the Title and Description fields, as they are part of the Dublin Core metadata set of
fields. Following is a brief explanation of each of them:

Content types Description
Folder A folderish item, it can contain other content types. Used to organize and

group content.
Page The standard rich text page content type.
Event Holds information about an event, such as its location, start and end

date, details, attendees, and online presence. If published, they will show
up in the calendar and event portlet.

File Creates an object that holds a file.
Image Creates an object that holds an image with the engine to show it

properly.
Link An object that points out to a link (internal or external).
News item Holds information about a news item, such as its details and an

additional embedded image that will show up in some site's views. If
published, they will show up in the news portlet.

Collection A powerful content type, it features the ability to show the results of a
user-defined query to the database. This query can be of the type: Show
me all pages created by user X last month, or show me the news with the
keyword Y published during this year.

Managing our Content

[50]

Content metadata
The Dublin Core metadata element set is a standard for cross-domain information
resource description. It defines conventions for describing things online in ways that
make them easy to find. Dublin Core is widely used to describe digital materials
such as video, sound, image, text, and composite media such as web pages.

Plone's standard content types are Dublin Core compliant, as they have all the
needed metadata attributes defined in the standard. We can access them while
editing content via the metadata tabs.

The following tabs allow us to set and modify the content's metadata:

•	 Categorization: Here we can define keywords (tags or labels), location, and
content's language

•	 Dates: The content's publishing date and the content's expiration date
•	 Ownership: Author related metadata

Content settings
Content stores information about its functional properties too. These properties are
located in the Settings tab. It's also used to set some important behavior about content
items. In the case of folder contents, we can allow comments, or enable a special next/
previous navigation on content items contained in that folder. A very useful setting
would be the ability to exclude the item from the standard site navigation (portal tabs
and the navigation portlet).

The Exclude from navigation setting
This is a useful setting under the Settings tab. When we have a folder
to contain support images for a page, probably, we wouldn't have to
show it in the navigation portlet. Use this setting to avoid displaying
it on the site's navigation portlet. For published elements in the root
folder, use it if we don't want Plone to show them automatically in the
portal tabs.

Chapter 3

[51]

Managing content
There will be times when we will need to take some management actions on our
content, such as moving, copying, or renaming it. We can achieve this by using the
controls located at the Contents view.

These controls provide basic control over content location, such as copy, move, and
paste. It also allows us to delete contents and change its state.

We can rename elements as well from here; in this case a rename element form will
show up allowing us to change the ID of the element and its Title. We must be careful
when renaming IDs, because they should contain only ASCII characters and should
not have any space, as it will become a part of the object's URL. For example, "it staff"
as ID is not acceptable, as it contains a space. A correct ID would be "it-staff". Notice
the checkboxes on the left side of each object, which provide multiple object selection.

We can also define the position of the object in the folder, by using the column
Order. We can drag and drop the elements (drag them from the :: symbol) until they
are positioned as we wish.

These controls are also available for each object from the Actions drop-down menu.
In this case, the action is related to the current object.

Managing our Content

[52]

Displaying views
Folders have the ability to display a default view every time we access it. From the
drop-down menu Display, we can choose between four standard views or select an
existing content item as the default folder view. For example, Plone's default main
page is a page that lives in the root folder, configured as the default view of the Plone
site object.

Following are the standard views of Plone's folder:

•	 Standard view: The default folder view
•	 Summary view: Displays the contained elements Title and Description and

a Read More link, such as in a blog view
•	 Tabular view: Shows the contents of that folder in a table, such as in the

Contents view
•	 Thumbnail view: If we have an images folder, this view will show the

thumbnails of the images in a gallery-like view

Needless to say, assigning a default view to a folder is always more elegant than
leaving it at its default view, if it is a structural folder or a first level folder.

Chapter 3

[53]

Managing portlets
We can manage portlets by accessing the portlet manage form. The Manage portlets
link is located at the bottom of an existing portlet or at the bottom of the content region.

Plone's portlet engine features the assignment of a portlet to any object of the site.
The assignment is inherited, which means if we assign a portlet to the root folder,
then all its children objects will have it assigned. However, this inheritance can be
cancelled. Following is the list of portlets available by default:

Portlets Description
Calendar The default calendar view, shows the published portal events in it
Classic For compatibility reasons, it is also possible to define an old-style

Plone 2.x portlet
Collection Shows a predefined result from a previously created collection object
Events Shows the published events in a list
Login The standard login portlet, it provides the authentication form
Navigation Shows the position of the current item in folder hierarchy along with the

other items in the same level
News Shows the published news in a list

Managing our Content

[54]

Portlets Description
RSS Feed Allows us to configure an RSS feed and shows the contents of the feed in it
Recent items Shows the recently modified items in the site
Review list Shows a list of elements that haven't yet been reviewed (state pending) by

the current user
Search Shows the search form inside a portlet
Static text Shows user-defined static rich text within a portlet

We can add them in each column region from the drop-down menu Add portlet....
We can see the already assigned portlets and the inherited portlets as well. We have
the option to block the parent portlets, and do the same with the group portlets or
the content-type portlets.

The parent portlets are the inherited portlets from the parent folder. Another
portlet engine feature is to assign portlets depending on the current user group
membership. We can also assign portlets to a content type, so each time this content
is created the assigned portlets will show automatically.

We can order them too, via the arrow icons located at the right-hand side of each
portlet. We can also unassign them using the red cross icon.

Summary
We have learned Plone's basic content structure, creation, and administration. This
chapter has covered the following topics:

•	 Plone visual layout structure
•	 Basic content management
•	 Content structure
•	 Content adding and managing
•	 Default content views
•	 Managing portlets

There are more things we should know about, such as Sharing view or Rules view,
but we will cover them in the next chapters. This section outlines only the basics and
is not to convey in-depth information about Plone, but gives sufficient information to
have a broad knowledge about Plone's content management.

In the next chapter, we will learn about Plone's configuration and advanced setup,
and how to install third party products.

Configuring our Site
This is the moment to move on and learn some more advanced subjects on Plone.
Maybe you are thinking that, probably, there are lot of more Plone basic stuff we
didn't cover, but don't worry; we will cover them sooner or later as we unfold
different topics in the book.

We have covered how to add content, how to structure it in our intranet, and
perform basic operations on it. We also learnt that all contents can have state, and
that state controls a user's rights, depending on his roles and permissions. State also
allows us to define the content's life with more or less complexity. We already know
how to assign portlets to content and how to define default views to it.

Now it's time to learn how to configure our site and the tools we have available in
order to succeed in this task. We will make our first stop at Plone control panel, then
we will learn about Zope Management Interface (ZMI), and at the end of the chapter
we will know how to install third party Plone products via zc.buildout. This chapter
could also be considered as a reference manual for Plone control panel and ZMI.

This chapter will cover the following topics:

•	 Plone control panel
•	 Zope Management Interface (ZMI)
•	 Zope control panel
•	 Database management
•	 Products management
•	 Plone site from ZMI point of view
•	 Installing add-on products

Configuring our Site

[56]

Plone control panel
Plone provides a complete configuration tool through its UI, the Plone control
panel. It is composed of small configuration elements called configlets, each of them
focussing on one Plone feature. Users can access it if they have the Manage portal
permission. We will take special care of those configlets that will help us maximize
our site as an intranet.

We can have access to the control panel thorough the Site Setup action, or by adding
plone_control_panel to the root URL address of our site. This is what it shows:

The Plone control panel is divided into the following three parts:

•	 Plone Configuration on the top
•	 Add-on Configuration items in the middle
•	 Version information summary about Plone and its dependencies at the bottom.

Chapter 4

[57]

The configlets are usually a form or set of forms that help us configure one aspect of
Plone or a Plone add-on product.

The first thing we will notice is the warning message that informs us that no mail
host is configured for this site. For this reason the features involving mail sending,
such as contact forms, email notifications, and password resets will not work until
we correct this. Let's start by fixing it.

Mail control panel
We must configure the essential data to provide mail sending capabilities to our
intranet. If we host our own mail service or use an external provider, we can use our
SMTP configuration to set up Plone mail. This form has SMTP server, SMTP port,
site 'From' name, and site 'From' address as required fields. In case our SMTP server
requires authentication, we can also specify Extended SMTP (ESMTP) username
and password.

The site 'From' name and site 'From' address fields are used as the name and
address of the sender of the generated mail. The site 'From' address is also used as
the destination address on the site-wide contact form.

Check the setting by opening the site's contact form (we can access it from the
contact link located at the site's header) and send a comment to the administrator.

Site
This is an important configlet, as here we can define some special attributes of our
intranet. They are important because of their visibility, such as the site's title and
description. They also enable special features such as optimizing how search engines
crawl our site. Following are the most relevant attributes:

Attribute Description
Site title The title of the site that shows up in the title bar of browsers,

syndication feeds, and so on.
Site description It's not normally visible to users but it's available in syndicated

content, and search engines index it.
Show 'Short Name' on
content?

Allows users to edit the 'short name' content identifiers, which
forms the URL part of item's address. It's easier for users to
change this attribute from the rename content action.

Enable link integrity
checks

Determines if users should get warnings when they delete or
move content that is linked from inside the site.

Configuring our Site

[58]

Attribute Description
Enable External Editor
feature

Determines whether the external editor feature is enabled. This
feature requires a special client-side application installed. The
users also have to enable this in their preferences.

Expose sitemap.xml.gz
in the portal root

Exposes our content as a file according to the sitemaps.org
standard. We can submit this to compliant search engines such
as Google, Yahoo, and Microsoft. It allows these search engines
to crawl your site more intelligently.

JavaScript for web
statistics support

For enabling web statistics support from external providers
(for example, Google Analytics). Paste in this text field the code
snippets provided. It will be included in the rendered HTML as
entered near the end of every page the site generates.

As we can see, some of them have to be carefully configured. The site title and
description are used in almost every aspect of the process of publishing our
site to the world.

Nowadays it is common to rely on external providers (for example, Google
Analytics) to add advanced web statistics to a site or intranet, and it often involves
the use of a JavaScript snippet inserted in every page of the site. As the snippet runs
each time a page is viewed, it will track site statistics even if it's an intranet. Plone
allows us to include the tracking snippet without modifying the templates.
We only have to paste the snippet code in the text box.

The link integrity check is a Plone feature that keeps track of all internal links we
insert in our pages. If we move or delete some content, Plone checks whether this
action will break any link to that moved or deleted content. If it does, then Plone
shows us a warning message and the list of items containing a potential broken link.
We can edit these items and remove the references first.

Users and groups
This is another important configlet in which we find three forms for managing
users and groups of our intranet, and for managing global settings related to users
and groups. We can create new users or groups, assign roles to them, and delete
them. These roles are global; it means that they are valid for the entire intranet. In
case we have a lot of users, a search form is also available. The Settings tab has two
configurations destined to optimize the handling of a large installment of users and
groups in our intranet.

We will cover in depth users, groups, roles, and all related
settings located in this configlet in Chapter 5, Managing users,
Groups, Roles, and Permissions.

Chapter 4

[59]

Security
This allows us to configure some security aspects of the intranet. Some of them
enable relevant features to an intranet. Let's see them:

•	 Enable self-registration: Allows users to register themselves on the site.
If not selected, only site managers can add new users.

•	 Let users select their own passwords: If this is not selected, passwords will
be automatically generated and mailed to users, which verifies that they have
entered a valid e-mail address. If this and the previous setting are selected,
managers cannot assign passwords directly and they get mailed to users
too. However, there is a time limit within which the user has to confirm the
mailed password.

•	 Enable User Folders: If selected home folders are created for the first time,
the user can log in and create content in these folders.

Plone has the capability of allowing new users to register themselves using a
registration form and follow a predefined registration process. This is the first
moment where we have to decide what kind of intranet we want:

•	 An intranet where only managers can add and manage users
•	 An intranet that allows anonymous users to register as intranet members

and participate in our intranet if we allow them to do so (forums, forms,
and so on).

Another great feature of Plone is the users' folders. These are considered as a
personal place where users can create and manage content according to their will.
It can be used as a personal content container, the place of the user blog, or even as
a temporary container before placing content in its final destination (for example,
private content). For security reasons, this feature is disabled by default.

Types
From this configlet we can choose workflow, versioning, and visibility settings of
content types used in our intranet. In an out-of-the-box Plone site, all content types
have the default workflow applied, except for files and images, which don't have any
workflow by default. If not set, the default workflow setting is applied to any content
type in the site, although some third party products may define and use their own
workflow. Simple Publication Workflow is the default workflow. We can define
the default workflow of all content types assigned to the default setting by changing
it using the drop-down box New workflow. We can override the use of the default
setting for a particular content type by selecting it from the main drop-down box and
changing the workflow for it.

Configuring our Site

[60]

If we select a content type, we can change other type-related behavior, such as:

•	 Globally addable: Enabled by default for all types. If we don't want the type
to appear in the Add new... drop-down box, then uncheck it.

•	 Allow comments: If enabled, comments will be allowed for the selected
content type.

•	 Visible in searches: The type will not be shown in searches.
•	 Versioning policy: To enable or disable the versioning feature.

We should be aware that changing the default workflow for a type could take a
while, and may slow down the site significantly while the content is being updated
to the new setting, so use it carefully in production.

Add-on products
This configlet lists all the available add-on products for the intranet. Since we didn't
install any additional add-on products, we can see the available products in the list
that Plone can install in the site. The most significant ones are:

•	 OpenID authentication support: Users can log into the site with its OpenID
username and password

•	 Workflow policy support: Allows us to define workflow policies that define
content type to workflow mappings that can be applied to any sub folder of
our site

•	 Working copy support: Adds the capability of staging content (modifying an
item while the original one is in place)

We can install any product by selecting it and clicking on the Install button. Then a
list of already installed products will be shown below the available ones.

At the end of this chapter we will learn how to
install new products via buildout.

Content rules
Since Plone 3, we can define a set of rules that apply a certain action to content when
an event is triggered. By default, only users with the manager role can add and
modify these rules. Content rules can be defined over containers and the rule applies
to its contents.

Chapter 4

[61]

It's possible to enable or disable this feature globally and manage all the rules
defined in our intranet from this form.

We will cover content rules in depth in Chapter 11,
Content Rules, Syndication, and Advanced Features.

Maintenance
The ZODB is a transactional database, this means that it stores every change made
in the database as a transaction. This enables some useful features, such as the undo
action. In Plone, we can undo an undesired action by reverting the content back to its
original state, prior to the action.

This feature is disabled by default in the Plone UI as it only works
under certain conditions. For example, in the case that the change
we are requesting to undo has been overwritten by a more recent
change, it's not possible to undo that change. However, it's a very
useful feature and there is a high chance of success when executing
this action. For this reason, having it available on our intranet is
always recommended. We can enable it via ZMI as follows: go to
portal_actions, click on user section, and then click on undo. Then,
enable this action in the Visible? box. More information on the Zope
Management Interface will be available later in this chapter.

Although it's a nice feature, this also means that the database grows, and grows not
only with the real data, but also with all the transactions made. Sometimes we must
perform some special maintenance action, such as packing over the ZODB. In this
configlet, we can find the form that will help us pack a site database. In this form, the
current database size is shown along with a field containing the days of history that
we want to preserve. This number indicates how many days of undo history we want
to keep in the database. The recommended value for a production site is seven days.
Packing the database preserving zero days is suitable only for development and non-
live sites. Packing leaves a copy of the old database on the server in case the packing
process goes wrong. The name of this database is Data.fs.pack. So, when we pack
our site's database we need free disk space at least the size of our database. We should
pack our database regularly to avoid the database growing uncontrollably.

Obviously, the consequence of packing is the removal of all transactions until the
day specified, resulting in our inability to undo transactions beyond that date. It is
unrelated to versioning, so even if we pack the database, the history of the content
changes will be kept.

Configuring our Site

[62]

The configlet also holds the control to restart or stop the Zope server process
via the Web.

Errors
This page lists the exceptions and errors that have occurred in the site recently. We
can configure how many exceptions should be kept and whether these exceptions
should be copied to Zope's event log file(s). We can also refresh, clear displayed
entries, or show all entries. We can configure the number of exceptions to keep, and
select the exception types as well. If we have problems in our site, it is good practice
to find out what is happening and troubleshoot to find possible solutions.

HTML filtering
By default, Plone filters from all rich text fields, HTML tags that are considered
to be security risks. It also removes any tags not defined in XHTML specification.
However, we can override these settings by removing the filters from this page. The
filtered tags are called nasty tags, and are listed at the top of the form. There are
other tags that are stripped only when saving or rendering, but the
content is preserved.

Adding flash to our site's content
It's a common use case to have the need of inserting FLV or shockwave
Flash content into our content. In order to allow it, we must remove the
tags param and object from the list of stripped tags, otherwise our
flash content will not be shown. Enable it only if you trust your intranet
contributor users, as doing this is a bad idea if untrusted users can create
content. This limitation is about to change, after the introduction of the
new HTML5 tag <video>, which will help to standardize the display of
video snippets on the Web.

Notice that there are three tabs—one for tags, one for attributes, and one for styles.
We can also define custom tags, add a combination of attributes, or add filtered
classes if we wish.

Chapter 4

[63]

Filtering tags, attributes, and styles have another important purpose:
to maintain the style and keep the look and feel consistent across
the content of our site. Setting the filters properly prevents us from
having ugly content such as purple text, weird table sizes, and
blinking yellow phosphorescent text inside intranet text contents.
Believe me, we don't want this on our intranet; keep our intranet
elegant by keeping it neat and clean.

Language
We can define from here the default language used in our intranet. Although it is not
common, we might need to support more than one language. In this case, we should
install a third-party add-on—LinguaPlone. It provides an engine for multilingual
content creation and support.

We can speed up Plone's startup time and reduce RAM usage
by disabling languages we aren't using by adding one line in the
instance section of our buildout.cfg file.

[instance]
 recipe = plone.recipe.zope2instance
 ...
 environment-vars =
 PTS_LANGUAGES en, es, ca

Plone is translated into more than 40 languages, thanks to the Placeless
Translation Service (PTS). When starting up, all of these translation
files are loaded and information about them is stored in the ZODB. This
takes time and memory. By setting the PTS_LANGUAGES environment
variable with the languages that our site will use, we will load only
those languages and hence save startup time and resources.

Markup
In this configlet, we can choose the default input text format for newly created
content objects. The default setting is text/html, but we can choose between other
input formats such as reStructuredText; however, the WYSIWYG editor won't work
then. We can also choose which formats will be available for users as an alternative
to the default setting.

Configuring our Site

[64]

Wiki formatting
We can also enable wiki behavior on the primary text area of the content types that
currently support this feature: Page, Event, and News item. Enabling it will provide
usable wiki-like linking and content creation for the supported content types. All links
are specified by enclosing content text in double parentheses: ((This is a link)).

A link specified as a wiki link will point out to a content object in the rendering
process following one of these conditions:

•	 A matching ID within the same folder
•	 A matching title within the same folder
•	 A matching ID somewhere else in the site
•	 A matching title somewhere else in the site

An unresolved link will generate an add link in the form of a plus sign + after the
link text. Clicking on this link will create a new piece of content of the same type as
the document being viewed, in the same folder.

Navigation
This configlet holds several important settings, all related to navigation and how
navigation is constructed in our intranet.

•	 Automatically generate tabs: The first level navigation items (global section
items) are automatically added from the content items created at root site
level. This setting enables or disables this feature. We can turn this off if we
prefer to construct this part manually via ZMI portal_actions.

•	 Generate tabs for items other than folders: By default, any root folder item
will be displayed as a global section; if we turn this off, only folder items will
be shown.

•	 Displayed content types: The content items to be displayed in the navigation
tree and site map.

•	 Filter on workflow state: Only the items with these workflow states
will be shown.

Chapter 4

[65]

Search
For refining the search settings on our intranet, the following configurations
are available:

•	 Enable LiveSearch: Enables the LiveSearch feature, which shows live results
as we type, if the browser supports JavaScript.

•	 Define the types to be shown in the site and searched: Defines the content
types that should be searched and be available in the user interface of
the site.

Theme
Related to site theme and skin we can find some interesting controls, such as
the following:

•	 Default theme: A control that enables us to change the theme of our site,
provided that we have previously installed at least one theme package. For
example, NuPlone theme, shipped out-of-the-box with Plone 3. Plone 4 ships
with Sunburst and Classic themes.

•	 Mark external links: If enabled, all external links will be marked with link
type-specific icons. If disabled, the next setting will have no effect.

•	 External links open in new window: If enabled, all external links in the text
content region will open in a new window.

•	 Show content type icons: If disabled, the content icons in folder listings and
portlets won't be visible.

Zope Management Interface
We've just learnt the most relevant configlets of the Plone control panel, but to
continue completing our Plone understanding we will have to leave the comfort of
Plone UI and discover what is behind the scene. To see what is happening under the
hood we need to switch to the Zope point of view through its management tool, the
Zope Management Interface or ZMI.

We have already had a first experience with ZMI, as it's necessary to access it if we
want to create a new Plone site. This is going to change, since Plone 4 provides a
special UI to create our first Plone site out-of-the-box.

Configuring our Site

[66]

To access the ZMI we only have to go to the following URL:
http://localhost:8080/manage

This is the root of Zope where we can find all the content objects stored in the ZODB,
and all the tools and other objects needed by Zope. We will cover the most relevant
ones in the next few lines.

Notice that we can access ZMI from any content object in our intranet if we
append/manage to the full URL of that particular object. It will show the ZMI
point of view of that object, for example, it will suffice to point to this URL
http://localhost:8080/intranet/manage in order to access the ZMI
point of view of our intranet directly.

Control panel
The ZMI provides access to system and Zope's information and management
functions, such as database and products management. We will also find version
information and relevant information about Zope's features and installation. There is
a control to restart or shutdown the Zope server.

Chapter 4

[67]

Database management
We should find information about Zope's database(s) that are currently attached
to it. By default, there's only one ZODB attached to our Zope server, but we can
attach several databases to it. Although we can see two databases attached, main
and temporary, the latter is a database stored in memory used for storing objects
temporarily (for example, session information). If we follow the main database link,
we will get access to the database management view which holds several tabs where
we can find database information, such as its registered activity; we can manage its
cache or flush it, and there are other actions that will empty all the database cache.

Several ZODB attached to one Zope (or ZEO) server
The scenario in which we need to connect several databases to the same
Zope (or ZEO) server is not uncommon at all. What will be its purpose?
Easy, as Julius Caesar said: Divide et vinces, divide and conquer. It's
easier to maintain several small databases than one large database.
If we have several big sites or intranets and we still want to use the
same Zope (or ZEO) server, then it's better to assign each of them to
one attached database rather than having one large database. Another
case would be having a single big site and span several sections across
several databases. Having medium sized databases is always better
than a single big one; it's easier to manipulate them, to make backups,
and restore them. More information about deployment is available in
Chapter 13, Deploying our Intranet.

From the default view of this section, we can access the maintenance parameters of
the database:

We have already noticed that Plone provides a control panel
UI to access these controls. Obviously, Plone exposes through
its control panel UI settings, tools and attributes that already
exist in the ZMI. Plone eases the access to all these objects that
otherwise would be available only via the ZMI.

Configuring our Site

[68]

Product management
Every time we start Zope server, it does an inventory of all the Zope Products and
modules that Zope sees in its software path. Then, this inventory is stored in the
ZODB and we can access it in this section. From here, we can't install products in
Zope or in Plone. All we can see is the list of products, its versions, and its general
information available at the start. We can install new products from the Plone control
panel configlet Add-on Products or from the portal_quickinstaller ZMI tool.

If we delete a product or module of the Zope's software path it's
possible to see a warning message in the error log in the server start
process. This issue can be solved by deleting the ZODB entry in this
section via the controls at the bottom of this section. This is no longer
necessary for Zope 2.12 and Plone 4.

Placeless translation service
Zope provides a very good translation service. This service works with gettext
standard files (.po files) that are processed and compiled (in gettext .mo files stored
in the filesystem) in the server start process. The result of this compilation is saved
in a catalog in the ZODB and appears in this section. Here we can manage each i18n
record, and the most important, we can force its reload in case we change some
translation in them.

We can reload them by following the link of the desired record
and then pressing the Reload button. If we want to reload all the
i18n records, then we must delete all of them using the bottom
controls and then restart Zope.

Plone site—ZMI point of view
When accessing the Plone site from the ZMI point of view we can see a lot of objects,
such as content objects, tools, configuration objects, and basic services used by
the Plone site. All of them are important for the site health. We have to be careful
while using ZMI so that no action is performed that would cause any malfunction
to the site, such as renaming or deleting it. Even adding new content from ZMI is
discouraged because Plone will, at best, ignore it.

Chapter 4

[69]

Following is the ZMI view of a Plone site:

As we've already noticed, the left frame of the ZMI screen is reserved for a tree view
containing the more important objects inside the current object. We can click on
Refresh at the bottom of the frame to reload it. The right frame holds information
about the current object (in this case, the Plone site). As the Plone site itself is a
container object, this view also lists all the objects that it contains. The objects are
sorted by name, by default, and we can also customize this view and sort them by
date or by content type.

We can access the current object attributes, methods, functionality, and properties via
the tabs located at the top of the right frame. By default, we always access the Contents
tab unless we are accessing a non-folderish object. Other relevant tabs are as follows:

•	 Security: Which we can access to manage the permissions for the
current object

•	 Properties: Here object properties and attributes are stored
•	 Workflows: Here we can access the information about the current workflow

used by the object.

www.allitebooks.com

http://www.allitebooks.org

Configuring our Site

[70]

Next, we will mention the most important objects stored in the Plone site root and
give a brief explanation of their purpose and functionality.

Object Description
Mailhost Tool that stores the settings and methods used by the mail feature.

The mail control panel alter ego.
Members Special Plone folder where personal user folders are stored. It is

a special content type optimized for holding a large number of
objects (Large Plone Folder).

acl_users One of Plone's most important tools. This tool manages system
users, groups, and roles. In the next chapter, we will cover it in
depth.

error_log This is Plone's error control panel ZMI view.
portal_actionicons Stores the records that keep the association of each site action with

its corresponding icon. It no longer exists in Plone 4.
portal_actions This tool stores the Plone site actions, such as site map, print screen,

or the content views. If we disable Automatically generate tabs in
Navigation configlet, we should configure global navigation in its
portal_tabs item.

portal_catalog Another important tool that performs and stores the content
indexing information used for all content searches inside the site. It
also has methods to manage and maintain this information.

portal_css An element of the resource registry tool. It stores which CSS
(Cascading Style Sheets) files are used in the site and its load
preference, or other attributes as well, such as merging and
minification.

portal_factory Responsible for the creation of content objects, it is the place where
content lives when the user is adding the content for the first time,
so that it can be excluded from search and navigation.

portal_javascript An element of the resource registry tool. It stores which JavaScript
files are used in the site and its load preference, or other attributes
as well.

portal_languages Stores which languages are available in our site along with its
related methods and functionality.

portal_memberdata Holds the default member preference settings.
portal_membership Saves user policies.
portal_migration The portal migration tool is used for performing site version

upgrades. Plone 4 includes a special UI for migrations.
portal_properties A container of properties sheets, objects that store a set of attributes

for a particular feature, tool, or product.
portal_
quickinstaller

This tool takes care of the management of Plone add-on products.
The Add-on Products control panel alter ego.

Chapter 4

[71]

Object Description
portal_setup The tool of one of the more powerful features of Plone:

GenericSetup. Provides XML import and export information along
with the configuration of our site and the products installed. These
XML files are called profiles, which are used to configure our site
and the add-on products.

portal_skins This tool stores UI and skin resources from Plone and add-on
products, and determines which ones are used for a given skin. It's
also the alter ego for the Themes configlet.

portal_transforms Handles data conversion between MIME types.
portal_types Controls the available content types in the portal and its properties.
portal_workflow This tool holds the Plone workflow engine and stores the

information about all workflows installed. From here we can
also define new workflows, and manage and assign them to
content types.

Installing new add-on products
The most common activity when setting up a Plone site is the installation of third
party products and new modules. We can achieve this in two ways—via buildout
installing the product egg or installing the product as a legacy Zope 2 product.

As an egg via buildout
To illustrate this we will cover some useful cases, the first will be the installation of a
new rich text editor—TinyMCE.

Using zc.buildout is the best way to accomplish our mission, since it is the easiest
way to manage the download and its subsequent installation. There is only one
requirement: the product has to be packaged as a Python package. TinyMCE has
been published as a Python package by its author and uploaded to the Python
Package Index (PyPI), so zc.buildout can download it from PyPI automatically. Its
name is Products.TinyMCE, and we need to add this line to the buildout.cfg file
inside the buildout or instance section.

[buildout]
...
eggs=
...
 Products.TinyMCE

Configuring our Site

[72]

Next, we must run our buildout. From the buildout's folder we must execute the
following:

$./bin/buildout

...

Getting distribution for 'Products.TinyMCE'.

Got Products.TinyMCE 1.1rc10.

...

zc.buildout will notice that we want to add this new egg to the installation. It will
download the egg from PyPI and add it to the Zope's software path. When it ends,
we should stop and start our instance to apply changes:

$./bin/instance fg

From now on in the book examples, we will always launch the instance
in foreground (or debug) mode. To restart our instance, we must stop
it by pressing COMMAND + C in a MACOSX box, or Ctrl+C in a Linux
or a Windows box and run it again in foreground mode.

Our product should be shown in the Plone control panel. The Add-on Products are
ready to be installed, as shown in the following screenshot:

Chapter 4

[73]

Now that we have installed a new rich text editor, we would choose it as our default
text editor for our intranet user from the user menu preferences.

The Products namespace
All the packages with the Products namespace are seen automatically
by Zope for historical reasons, so they don't need a slug for Zope
(often called zcml slug) to be able to be aware of them. A slug is a Zope
configuration snippet that allows the product to be seen and configured
by Zope. We will learn how to create zcml slugs next in this chapter.

In case the product we are installing doesn't belong to the Products namespace, then
we have to add an additional line to the buildout file. For example, let's suppose
another practical case: collective.flowplayer. This product installs Plone support
for this popular open source Flash video player.

We should append these lines to the buildout.cfg file in the section instance:

[instance]
...
eggs=
...
collective.flowplayer
zcml =
...
collective.flowplayer

The highlighted line will tell zc.buildout to install a slug in the Zope configuration
for allowing the product egg to be seen and configured by Zope. Then, run the
buildout again:

$./bin/buildout

...

Getting distribution for 'collective.flowplayer'.

Got collective.flowplayer 3.0b7.

Getting distribution for 'plone.app.jquerytools'.

Got plone.app.jquerytools 1.0rc1.

...

Configuring our Site

[74]

In this case, collective.flowplayer has a dependency on the egg plone.app.
jquerytools resolved by buildout. If we restart Zope, we can see that collective.
flowplayer is installed:

The installation of Flowplayer also triggers the installation of its dependency, Plone's
JQuery Tools Integration.

If we are using the Plone unified installer, we will have to find
out the location of our buildout directory. It is in a folder called
zinstance inside the installation folder. If we've used the defaults,
it's in ~/Plone/zinstance. Then follow the same instructions to
add a new add-on product as shown in this section.

Chapter 4

[75]

As a Zope 2 add-on product
If we have downloaded our product as a tar.gz from plone.org or another source,
then we can install it as a Zope 2 add-on product. In our buildout folder, go to the
Products folder. Download the tar.gz and uncompress it in this folder:

$ cd Products

$ wget http://plone.org/products/mylegacyproduct/releases/1.2/
mylegacyproduct-1.2.tar.gz

$ tar xvfz mylegacyproduct-1.2.tar.gz

Then restart the instance and we will have your product available on the Plone
control panel.

We can also use the buildout plone.recipe.distros recipe
as seen in Chapter 2, Getting Started.

Summary
In this chapter, we have covered the most important topics about advanced
configuration of our Plone intranet's advanced topics (basically about managing
our Plone site):

•	 Plone control panel
•	 Zope Management Interface (ZMI)
•	 Installing new products
•	 Use case: installing other rich text editor
•	 Use case: installing a non Products namespace package

We have also learnt what is behind the Plone scene and showed who is who in the
ZMI view. The next chapter will cover user and group management.

Managing Users, Groups,
Roles, and Permissions

Security, and how to deal with it, is one of the most important topics when building
an intranet.

Plone stores users, groups, and security information in the ZODB, but it can also
be plugged to almost any existing user database repository, such as LDAP, Active
Directory, or SQL-based databases thanks to the Pluggable Authentication Service
(PAS) included within Plone. This will allow us to use the users stored in that
database as Plone users seamlessly.

In this chapter, we will learn the following:

•	 How security works in Plone
•	 How to manage local users (basic create/modify/delete operations)
•	 The mechanisms that Plone makes available to the users to manage their

personal data, such as profile data and passwords
•	 Groups and roles
•	 The entities of the Plone security

One vision
For the first time in the book I want you to do something: Envision your future
intranet. Take your time; I'm sure you will have a lot of requirements, given by your
boss, your client or yourself. Try to order the requirements by their relevance. Take
the first item; I bet that it will be a security-related requirement, and in many cases
all the first requirements have the same subject—security.

Managing Users, Groups, Roles, and Permissions

[78]

Let's begin with the important issue about security—users and groups. How many
users are going to access the intranet we've just envisioned? Depending on the
potential number of intranet users, we should choose the backend of the user's
database to be used in our intranet.

In case we are going to have few users in our intranet, meaning less than fifty users,
then the most basic (and common) use case approach will be to use Plone's (and
Zope's) built-in local users stored in the ZODB.

Usually an intranet has an implicitly high volume of user's administration tasks (for
example, create, edit roles and permissions, delete, and so on). Dealing with more
than fifty users increases the administration overhead exponentially and becomes
trickier as this number grows. Although Plone is able to handle any number of users,
if we are going to administer more than fifty intranet users, then we might have to
start thinking about using an external user repository database.

Another important reason to use an external user database is the existence of
an already centralized identity manager. This is very common in mid-sized
organizations or companies, where it is usual to find a LDAP-based directory such
as Active Directory or OpenLDAP. It's always a good practice to not spawn an
independent user repository and to try to plug the Plone PAS into this directory,
and instead use the already existent users and groups.

Although this scenario may be very common, it will require
some additional Plone skills and we will cover it extensively
in Chapter 13, Deploying our Intranet. Let's first concentrate on
small issues before we begin with the big user use case.

Do we want an intranet where anonymous users could join themselves as members?
This is also a possible use case for an intranet, and Plone is very good in handling
this special use case as it has a completely automatic join member engine.

Whatever solution we need, we first need to learn about the Plone security entities as
they apply to any deployment scenario.

Security entities
First things first, let's call everything by its name and show where they live in our
Plone intranet. Users, groups, and roles live inside the Plone PAS object, which is a
replacement of the concept known as user folder in Zope's jargon.

Chapter 5

[79]

PAS does a lot more than storing users in the ZODB. It is able to store group objects
and manage its users' membership and role objects, and its assignments as well. But
the main feature of PAS lies in the word Pluggable. We can extend its functionality
via plugins to connect it to other user (and group) repositories.

Now, we will introduce the most important topics in Plone (and Zope) security.

Roles
I'm sure that you already know what a user or group is, but it's worth taking a detailed
look at roles. Roles are tags assigned to our user or group. These tags have a direct
security meaning over the rights and permissions of the user or group. Since Plone 3,
the names of the default roles are not exposed directly to the user interface for usability
reasons. However, we can find their real names in the ZMI and in other Plone UI
places, such as the Users and Groups configlet in Plone control panel. Following are
the roles exposed in the Plone user interface along with their real names:

Role real name Role UI name Role default rights
Contributor Can add Can add new content to the site
Editor Can edit Can edit site content
Reader Can view Can read site content
Reviewer Can view Can publish site content

However, there are roles that are not exposed to the Plone UI, but are
very important:

•	 Manager: Has the maximum rights on the site.
•	 Member: All users by default have this role. It enables the minimum rights

every user must have.
•	 Authenticated: A meta-group that includes users authenticated by Zope or

another authentication method supported by PAS (for example, OpenID), but
not members of the Plone site.

•	 Owner: A special role given automatically to the creator of particular content.
•	 Anonymous: Another special role given to all non-authenticated requests

to the site.
The permissions specified by roles are additive except for the Manager role which
has absolute power. This means that the rights specified by one role are not included
in the more permissive role or in any other one. For example, having the Editor
role does not imply that one will have the right to read the content too, for this one
should have the Reader role.

Managing Users, Groups, Roles, and Permissions

[80]

Global and local roles
There are two ways to assign roles to a user or group: globally to the entire site or
locally to a specific container or content. All the roles assigned via the Users and
Groups configlet are global, whereas we can assign local roles via the Sharing tab
located in each Plone content object. The resultant set of roles for a specific user is
the sum of both globally and locally specified ones, and in consequence, the resultant
rights for that user.

Permissions
Another important entity is the permission. The permission is a specific right
to perform one security-related thing over an object feature. The permission
allows roles to have (or not) the right specified by it. For example, the permission
ATContentTypes: Add Folder controls which roles can add folders in the specified
context. Permissions are hard coded inside every object and have parent to
child inheritance.

It's very uncommon to directly customize permissions over a specific
context. As we will learn shortly in next chapters, it's more usual to
modify them by customizing a content workflow as they are overwritten
by workflow change. For this reason we won't cover it now. However, if
you are curious, you can view the default permissions for any object via
the Security tab in the ZMI view of every site's object.

Global Zope user accounts
Zope itself has an instance of PAS that contains the default Zope users. We can
find it in the acl_users object of the ZMI root. Here is where the default Zope
administration user is stored, and where we can manage it if needed. This user has
full power to manage all objects in Zope. We can add other global users here, such
as other Zope administrators, although it is recommended to keep this user folder
only for Zope administrator users. More information on this subject and users'
administration via ZMI will be available at the end of this chapter.

User self-registration
Plone provides a powerful self-registration engine that enables anonymous users
to become registered intranet users using few steps defined by two forms. We can
enable it in the Security configlet, using the Enable self-registration option. Once
enabled, all intranet anonymous users will see the Register link besides the Log in
link. This link leads to the user registration form.

Chapter 5

[81]

All self-registered users will have no roles once created but one:
Member. There are only a few things a member user can do, such as
manage their own profile data and see other users' profiles, or manage
his/her dashboard. Probably we may want to allow the Member role
to do more things, such as add new posts in a forum board.

Following are two flavors of the registration form:

•	 By default, the user is not allowed to choose his password in this step; a
URL will be generated and e-mailed to the user. The user must follow the
link in the mail to reach a page where the user can change his password
and complete the registration process. The user is not active until the whole
registration process is complete.

•	 The other flavor is shown when the option Let users select their own
passwords is enabled in the Security configlet. If enabled, the registration
form lets the user specify a password, and if selected, the form can send the
password to the user's e-mail address. The user is active immediately.

Managing users and groups
As we have seen in the last chapter, there is a configlet in Plone site setup called
Users and Groups. From this place, we can access the more important user-related
actions and management screens.

Managing Users, Groups, Roles, and Permissions

[82]

This configlet provides a convenient user interface for managing users and groups in
an easy way.

We can also manage users, groups, and roles directly from the ZMI.
Although it is much harder to use UI, in some cases it's more useful
for site administrators. If we use an external user database (for
example, LDAP) then, probably, we would need to access ZMI for
a more quick and accurate control. We are not encouraging the use
of ZMI above the Plone UI configlet, but are showing the possible
ways to manage users, groups, and roles in Plone. We are going to
cover security ZMI management at the end of this chapter.

The user registration form
The Users tab holds the control for creating a new user, and for searching and
managing site users. The registration form (with its two possible flavors) is the same
for self-registration as well as for creating a new user manually by an administrator.
Now, let's create a new intranet user. Click on the Add New User button. The user
registration form is as follows:

Two fields are required: User Name and E-mail. The other field, Full Name, is
optional and is used as the display name for identifying the user in the intranet.

Chapter 5

[83]

Following is an example of the mail the user receives:

To complete registration, the user must click on the URL sent along with the mail
within a week (168 hours). In this final step, the user is prompted to choose his
password. Once done, the user becomes active and can be authenticated in
our intranet.

Usernames and passwords have some restrictions: Usernames must contain
only alphanumeric characters and no spaces, whereas passwords must have
at least five characters.

Managing Users, Groups, Roles, and Permissions

[84]

Managing users
We can manage the users that are already created by searching them using the search
controls in the Users tab configlet, or simply by clicking on Show all, to view all
registered users.

Notice that now, if we click on the Show all button, the Zope
administrator user will not be seen. Remember that this user
is stored in a different user folder, and here we can only
manage the users inside the current Plone instance.

Following is the user's overview form once we've clicked on the Show all button:

We can see there are two users created at the moment in the screenshot example.
Both have the role Member, and we can easily assign new roles to them by checking
the desired role and clicking on Apply Changes. We can reset the user password,
and a new password will be sent to the specified e-mail address. It's also possible to
modify the user's e-mail address. To remove a user, select the Remove user control
and apply changes. We can send a mail to the user by clicking on the envelope icon
as well.

Chapter 5

[85]

All the roles given here are global roles, so they are valid unconditionally
throughout the intranet.

Managing groups
In the Groups tab, we can find a similar functionality to the User tab. We can either
add a new group or manage them. Let's add a new group, for example, the IT staff
department group. The create group form is shown with four fields. The Name of the
group is required whereas the Title, Description, and E-mail are optional.

Assigning a role to a group is as easy as in the user use case. The role is assigned to
all the members of that group. Notice that a special group exists—the Authenticated
Users. It's a virtual group that includes all authenticated users in our site. Remember
its existence, because it's very handy in some security situations.

If we want to add new members to a particular group we must follow the link
with the name of the group. A form with three additional tabs is shown in the next
screenshot. The first tab is used to add new members to the selected group:

Managing Users, Groups, Roles, and Permissions

[86]

The Group Properties tab form allows us to modify the group attributes (for
example, Title, Description, and so on). The Group Portlets allows us to set portlets
for all the members of the group. Note that group portlets are normally rendered
below context portlets. It's a nice feature if we want to show a specific portlet or set
of portlets to a list of users and hide them from the rest.

Recovering user password
Plone also provides a way to recover a password in case the user forgets or loses it.
This feature is available from the login form or the login portlet. This leads to a form
where the user is prompted for their username. For security reasons, the password
is not sent to the user, instead, a password reset process is triggered, and an e-mail
with a special URL is sent to the e-mail address of the user.

More control: managing ZMI
If we need more control, we can access the Plone PAS ZMI object directly. There's
a probability that we may find it more useful and quicker than the Plone configlet.
Although it has a hard UI, we will cover it because it's another tool available for
intranet managers and is worth having a look.

The Plone PAS object is called acl_users and is located in the root of the Plone site in
the ZMI. This is what it looks like:

Chapter 5

[87]

One of the important features of Plone PAS is that it contains a standard user folder,
and in addition, we can add plugins to this user folder to extend it. We can extend
it with users and groups existent in another user repository such as LDAP or
Active Directory.

Do not confuse the Plone PAS with Zope's main PAS acl_users object,
located in the ZMI root folder. This object holds the global user folder
used in the entire Zope instance. The default Zope administrator user
created by buildout is stored here the first time we run it.

The Plone PAS itself is composed of the following main objects:

•	 source_users: A user objects manager
•	 source_groups: A group objects manager
•	 portal_role_manager: A role objects manager
•	 plugins: Stores all the available plugins, lists them, and shows which

are active

The other objects that Plone PAS contains are plugins in use or other support objects
to help Plone PAS work correctly.

Administering users via ZMI
We can create a user in a few steps using the source_users object. We can easily add
a user by clicking on the (Add a user) link and then completing the form. All fields
are required: User ID, Login Name, and Password. Once created, we can manage
all users with the simple controls provided. The Password link will lead us to a reset
password form for the selected user. We can also remove the selected user from this
form. Following is the source_users form for the user created previously:

Managing Users, Groups, Roles, and Permissions

[88]

Administering groups via ZMI
The source_groups object works very similarly to the previous one, but additionally
manages the user membership to the site groups. We can create a new group by
clicking on the (Add a group) link, and completing the form. Group ID is required,
while Title and Description are optional. In the example, we have created a new
group called HResources, and we plan to add all the human resources users
as members.

We can add a member to the group by clicking on the ? character. The opened form
will allow us to search users in the user folder and assign them to the current group
using the controls provided.

Administering roles via ZMI
The portal_role_manager object is the place where we can manage roles and role
assignments for users and groups. The interface is the same for users and groups, so
we can basically add a new role by following the (Add a role) link, and manage role
assignments using the form located in the ? link.

We will never need to add an additional role unless we want to
customize security and workflows heavily.

Chapter 5

[89]

Following is the portal_role_manager view:

The sharing tab
All we have learnt so far applies to global security. When we assign a role to a
user or group in the Users and Groups configlet or in the ZMI acl_users, these
assignments are global to the entire Plone intranet. This means that the user or user
members will always have these roles, unconditionally, throughout the site.

So this brings us to the first most common security-related use case: As an
administrator, I want to have more control over given roles than I have with
a unique set of global roles. The mighty Sharing tab (and local roles) come to
the rescue!

Managing Users, Groups, Roles, and Permissions

[90]

All content in our site (including the Plone site object itself) can store local role
assignments for users and groups. These roles are added to the global ones and
results in the total role set for a user or group. We can manage the local roles of every
object using the Sharing tab. Click on it to access the sharing form shown in the next
screenshot:

The sharing form's highlight is its simplicity: a field for searching the desired user
or group to assign new local roles, and a table for selecting the role. As we said
before, for usability reasons, the real names of the roles are not exposed in the Plone
UI. Only a more meaningful description is given. As can be seen in the previous
screenshot, the virtual group Logged-in users is shown in case we need it, but with
no local roles set by default.

Local role inheritance
An important feature of local roles is their inheritance. Local roles inherit from parent
to child objects. However, this behavior can be overridden by an existent control in
the sharing form—Inherit permissions from higher levels. If we disable this, only
explicitly defined permissions will be applied to this object and in consequence to all
its children objects.

Chapter 5

[91]

This leads us to another common security use case: As a user, I want to be able to set
up a folder where only some other person(s) and me have read and edit rights. This
is the moment when the ability to cut inherited permissions is very useful.

Of course, we can always re-enable inheritance for a container to regain the rights
from the parent object.

Summary
At this moment, we already know the tools Plone provides to deal with security.

In this chapter, we have learnt about the following key topics:

•	 The Plone Pluggable Authentication Service
•	 Users
•	 Groups
•	 Roles
•	 Zope permissions
•	 The Sharing tab

These concepts, along with workflows, is all we need to know to manage security
effectively in a Plone based intranet. In the next chapter, we will cover workflows
in depth. By the end of the next chapter, we will be ready to put in practice all these
learned topics.

Managing Workflows
Now, we are facing our last step to learn and understand Plone security completely.
Workflows are an important security tool and also a powerful content life cycle
engine. Plone provides a set of preconfigured workflows covering the most common
life cycle use cases. The workflow engine allows us to create a customized workflow
and modify the existing ones too.

Workflows provide the following features:

•	 Defining a state per content object
•	 For that state, defining the object's current security
•	 Defining possible transitions to other states and the events responsible for

these transitions
•	 Defining approval points for each state

Unfortunately, Plone doesn't provide any graphical user interface for managing
workflows, and, hence we will have to use ZMI or rely on some third-party tools. We
will cover some of these tools, such as workflow diagram drawers, that will help us
see graphically the state diagram of our customized workflow.

Some time ago, Martin Aspeli wrote about a very useful product for managing
workflows—collective.wtf. It features import/export to/from a CSV file and
some other interesting workflow-related tools. Carlos de la Guardia made another
useful product called collective.workflowed. It provides a graphical workflow
editor with drag and drop capabilities.

Managing Workflows

[94]

This chapter will cover the following topics:

•	 Elements of a workflow
•	 Out-of-the-box workflows state diagrams
•	 Modifying an existing workflow
•	 Must have tools: DCWorkflowGraph, collective.wtf, and

collective.workflowed

•	 Workflows best practices

Workflow entities
Typically, a workflow is composed of two major entities—states and transitions.
However, there are other entities responsible for the other, not-so-well-known,
capabilities of the Plone workflow engine.

States
As we all know, all content types in Plone are eligible to have a workflow assigned,
and in consequence, to have a life cycle and a current state. However, a content
type may not have a workflow assigned. This only means that they hold no state
information and inherit permissions from their parent. By default, images and files
are not assigned to any state.

Basically, a content state determines the security permissions for any content object
in that state. When the workflow enters a state, then it is given a chance to update
permissions on the object.

Transitions
All workflows start in a particular state called the initial state and then move on
to other states via transitions. They are actions that define the destination state and
other attributes such as transition guards, scripts to be executed (before and after
changing state), and the way the transition is displayed in the action box in Plone UI.

Chapter 6

[95]

Each state defines which exit transitions are available for that state, and the transition
that controls the destination state after the transition is complete. This destination
state is unique. Transitions are user-triggered by default, but may be automatic.
Automatic transitions only happen at the same time as other transitions if the
assigned guard (see the next section) evaluates to true. It is also possible to define
the transition to stay in the current state. This can be useful if we want to execute
one action over the object and take record of it, but not trigger a state change (and in
consequence permissions) for that object.

Guards
Usually, a change of state cannot be triggered by anyone, and for that reason there
exists an attribute called transition guards for all transitions. This attribute evaluates
true or false against the current user security rights and can be any of these:

•	 A particular permission, for example Review portal content
•	 A role or list of roles
•	 A group or list of groups
•	 A Template Attribute Language Expression Syntax (TALES) expression

Guard conditions ensure that only those users with the required permission, role,
group membership, or other criteria, can move the object to the new state via the
TALES expression.

The TALES describes expressions that may be used to supply Template
Attribute Language (TAL) and Macro Expansion Template Attribute
Language (METAL) with data. It's the standard attribute language
used in Zope to create dynamic templates. To learn more about
them visit http://www.zope.org/Documentation/Books/
ZopeBook/2_6Edition/AppendixC.stx.

An automatic transition triggers immediately, following another transition, provided
its guard conditions pass.

Managing Workflows

[96]

Permissions
Each workflow manages a set of permissions to be applied each time a state change
is triggered. Plone assigns a default set of permissions, based on the default installed
workflow. These permissions will vary depending on the type of workflow we assign
to our content, but by default they are some core content management permissions
such as View, Modify portal content, and so on. However, we can also assign more
permissions to be applied by that state. We must choose which permissions the
workflow will manage, and then define them individually for each state.

Assigning local roles to groups
This is like assigning roles to groups on Plone's Sharing tab; but the mapping of
roles to groups happens on each state change, much like the mapping of roles to
permissions. Combining these with the role to permission mapping is very powerful.

Scripts
Attached to any transition, it is possible to define scripts to be executed before
and after the state change occurs. These are created through the Web as External
Methods. We can customize these scripts to do certain actions over content or other
kinds of things, for example, sending mail.

ZMI workflow management
All workflow managing tasks have to be done using ZMI, except assigning already
existing workflows to content types and actions that can be done through Plone's
Types configlet, located in the site setup.

Chapter 6

[97]

The portal_workflow is the ZMI object that contains all workflow related objects
and tools. We can access it from the ZMI view of our Plone site. The following
screenshot is its default view:

Managing Workflows

[98]

We will first see the workflow view in this object. In this view, we can find the
workflow assignation to all content types available in the site. This information is the
ZMI reflection of its Plone UI configlet alter ego: Types. We can change the default
assigned workflow of a particular type either from here or from the configlet.

We can perform the change by modifying the name of the workflow in the fields
next to any content type name. (Default) means the content type has assigned the
default workflow defined at the bottom of the view. It is assigned by default to the
simple_publication_workflow. As we can see, one must specify the ID of the object
corresponding to the desired workflow to be assigned. We can find out the IDs of the
created workflows available in the portal_workflow tool in the Contents tab.

If we change one or more workflows from this view, then we must execute the action
triggered by the button located at the bottom of the view, Update security settings.
It causes an update of all the existent objects of that specific content type to the new
workflow specified. If we don't execute it, then the change will be applied only to
those objects created from the moment we changed the workflow settings for that
kind of content type.

However, it is always recommended to perform this action using the Types
configlet. It allows us to specify additional actions that we can perform on the
affected objects. The most important one is the mapping of states from the original
workflow to the destination one. This is important because the most probable
scenario is that the original workflow doesn't have exactly the same state as the
destination one. The configlet allows us to determine the destination state for all
the original states. Because of this, no object is left with an undetermined workflow.
Depending on the number of objects we may already have on our site, the update to
security settings may last a few minutes.

Out-of-the-box workflows
Now it's time to show the predefined workflows that Plone provides. These
workflows are intended to cover the most usual use cases. They are extensible and
customizable, like any other existent Plone workflow. We can find them in the
Contents tab of the portal_workflow object.

Chapter 6

[99]

Simple publication workflow
Simple publication workflow is the default workflow assigned to all content types.
Following is the state diagram of a simple publication workflow:

Content types assigned to this workflow will start out as private, and can either be
submitted for review, or published directly. The creator of a content item can edit the
item even after it is published. Following is a more detailed overview of each state:

•	 Private: Content can't be accessed by anonymous users, and only editors,
managers, and owners can modify it.

•	 Pending: Content can't be accessed anonymously. Contributors, readers, and
editors can access content, and only reviewers and managers can edit and
publish the content.

•	 Published: Content can be accessed by everyone, but only editors, managers,
and owners can modify it.

Managing Workflows

[100]

Community workflow
Community workflow is also known as "Plone workflow", as it was the default
workflow for Plone 3 previously. It allows users to create content that is immediately,
publicly accessible. Following is the state diagram of community workflow:

Content types assigned to this workflow will start out as public draft and will be
visible to anonymous users. The content's creator, or a user with the Manager role,
can submit content for publication. Owners and editors can make content private,
but this workflow indicates that it's not published to anonymous users. Reviewers
can publish or reject content, whereas content owners can retract their submissions.
While the content is awaiting review, it is readable by anyone. If content is
published, only a manager can retract it. Following is the detailed state overview:

•	 Draft: Anyone can access content in this state. Editors, managers, and owners
can modify it.

•	 Private: Anonymous access is forbidden. Contributors and readers can access
it, but only editors, managers, and owners can edit the content.

•	 Pending: Anonymous access is allowed. Only managers and reviewers can
modify the content.

•	 Published: Content is accessible anonymously, but only managers can edit it.

Community workflow for folders
Community workflow for folders is normally used in conjunction with the
community workflow and assigned to the folder content type. It has no pending
state, as it is not needed for a folder. It allows the owner to publish the folder without
approval. Following is the state diagram for
this workflow:

Chapter 6

[101]

Like in community workflow, content types assigned to this workflow will start out
as public draft and will be visible to anonymous users. In more detail:

•	 Draft: Anonymous users have access. Contributors, members, and readers
can list folder contents, and editors, managers, and owners can modify it.

•	 Private: Content can't be accessed anonymously. Portal users can access
content and list its contents, while editors, managers, and owners can
modify it.

•	 Published: Anyone can access the content and list its contents, but only
editors, managers, and owners can change it.

One state workflow
One state workflow is essentially a workflow with no transitions, and it only has a
unique state—published. The published state is chosen for this workflow because
there are portlets and applications that expect this state to exist in order to work
properly. Content in this state can be accessed anonymously, and editors, managers,
and owners can modify it.

Managing Workflows

[102]

Intranet workflow
In intranet workflow content is accessible only if we are logged in. Basic states are:
Internal draft, Pending review, Internally published, and Private. An additional state
is also available: Externally visible. It allows us to make selected content available to
people outside the intranet.

Following is a detailed overview of the states of this workflow:

•	 Internal draft: Only editors, managers, and owners can modify the content,
while it can be accessed by any portal member.

•	 Private: Only editors, managers, and owners can modify the content, while
contributors and readers can access it.

•	 Internally published: Any portal member can access it, but only managers
can modify it.

•	 Pending review: Any portal member can access it, but only managers and
reviewers can modify it.

•	 Externally visible: It can be accessed anonymously and modified only
by managers.

Chapter 6

[103]

Intranet workflows for folders
This workflow is used for complementing the intranet/extranet workflow and
it's typically assigned to folderish types. They only have two states: Private and
Internal draft.

This simple workflow for intranet folders has the following state overview:

•	 Private: Contributors and readers can access contents and list folder contents,
whereas editors, managers, and owners can modify it.

•	 Internal draft: Portal members can access and list its contents, and editors,
managers, and owners can modify it.

Workflow diving
Let's take a deep breath and dive into the contents of a workflow. We've already
shown its most important entities and now is the time to show them in action. Let's
take the standard Plone workflow. We will use the simple publication workflow as
an example for this section. Just click on it in the Contents tab. The default view of
a workflow object is the Properties tab. It holds some interesting attributes of the
object, such as:

•	 Title
•	 Description
•	 "Manager" role bypasses guards. If checked, then all users with the Manager

role will be able to access all available transitions, regardless of the
guards defined.

Managing Workflows

[104]

States
The States tab shows all defined states for the current workflow and the controls
needed to manage them and create new ones. Following are the states of the simple
publication workflow:

We can see that, for each state, there are some associated possible transitions. Later,
we can access the properties of these transitions by clicking on them. At the bottom
of the view we can see the controls for managing states. We can rename, delete, and
set the default initial state for all content objects assigned with the current object. A *
besides the ID of the state means that it is the initial state for this workflow. To add a
new state, a text field is provided.

We can access the attributes of any state by clicking on its ID. By doing this, we
are accessing a new view where we can find the following, distributed across
different tabs:

•	 ID: Unique and assigned to a state on creation.
•	 Title: The display name of the current state. It's i18n aware.
•	 Description: Only for information purposes.

Chapter 6

[105]

•	 Possible transitions: A list of possible transitions from a state to
another state.

•	 Permissions: The CMF permission set to be applied when the content object
is assigned to a state.

•	 Groups: To be added in the list of local roles of the content object.
•	 Variables: The variables to be added.

We can probably find the most important setting of a state under the Permissions
tab, which is the managed permissions to be applied on content state change. It will
help us configure these managed permissions:

Remember that the role of permission mappings for an object in this workflow
depends on its state. The default permissions to be managed by this workflow are
the most basic CMF permissions:

•	 Access contents information
•	 Change portal events
•	 List folder contents
•	 Modify portal content
•	 View

For each permission in the list, we may define which roles are allowed. These
settings will be applied to the already existing permissions in the content object,
overwriting them at the moment of state change.

Managing Workflows

[106]

All changes that we may perform in a state does not get applied to content
objects immediately; they only apply to all content from the moment we
made the change. If we want to apply the change to all existing content,
we must execute an update workflow action, located in the portal_
workflow tool object view. This action is the Update security settings
button that triggers a workflow update to all the objects of the site.

It is possible to add more managed permissions in the permissions managed by this
workflow link, located in the description of this view. The link leads us to another
view where we may set more permissions that will be later managed by this
workflow. We can either select more or remove the existing ones.

Transitions
We can access the attributes of any transition either from the states main view or
from the Transitions tab.

Chapter 6

[107]

Like in the state's view, we can access an extended transition properties view by
clicking on each transition ID. However, this view also shows some of the most
important attributes as a resume. Controls for managing and creating new transitions
are also available.

A transition has the following properties:

•	 ID: Unique and assigned to the transition on creation.
•	 Title: The display name of the transition and i18n aware.
•	 Description: The extended description available as the title attribute of the

corresponding link for that transition in the Plone UI and i18n aware.
•	 Destination: State.
•	 Trigger type: Can be automatic or initiated by user action.
•	 Scripts: To be executed before and after the transition is completed.
•	 Guard: A set of checks against a permission, a role, a group, or a TALES

expression that determines whether a transition should be shown to the
current user or not. If it evaluates true, the transition will be available. If not,
the user will not be able to trigger the transition.

•	 Display in actions box: These are some attributes related to the Plone UI and
determine how to show the transition. They also determine the i18n string
ID for that transition in the Name (formatted) field.

Variables
Every time a user triggers a state change it results in a number of variables being
recorded, such as the actor (the user that invoked the transition), the action (the ID of
the transition), the date and time, and so on. Each workflow can define any number
of variables linked to TALES expressions that are invoked to calculate the current
value of the variable at the point of transition. We can find them in the Variables tab
for every site workflow. From this view, we can modify existing variables, and create
new ones.

Managing Workflows

[108]

In addition, the state is exposed as a special type of workflow variable called the
state variable. Most workflows in Plone use the name review_state as the state
variable. This is hard coded for the existing workflows and we must set it explicitly
in the State variable name if we are adding a new workflow from scratch.

Worklists
A worklist is a stored query executed against the database that returns a list of
objects that are in a particular state. We can either modify or create new worklists
using the Worklists tab.

For example, worklists are used in Plone's review portlet. Plone's review portlet
shows all current worklists from all installed workflows. The use of worklists means
that we can display all the items that are together in all the worklists, which apply to
the current user in a single portlet. Most Plone workflows have a single worklist that
matches with the review_state variable, for example, the pending state.

Scripts
Workflow scripts are usually created through the Web, using a script (Python)
object or an External Method. We can add one of them via the drop-down box, which
is new to the Add button, and then link them from any transition.

No workflow and multiple workflow use cases
There are two special situations we haven't discussed yet. The no workflow
assigned case is used when we don't need to apply any particular workflow at all
to a content type. By default, Plone has two content types that are not assigned to
any workflow—images and files. The reason for this is that it's more comfortable to
publish a page that contains these kinds of types, because we don't have to publish
each image or file contained in the page in order to make it available. These two
content types will inherit permissions from their parent.

Chapter 6

[109]

Adding multiple workflows to a single content type
A content type can be assigned to several workflows.We can list multiple
workflows by separating their names with commas. This is called a
workflow chain. Multiple workflows can be very useful when we have
concurrent processes. Multiple workflows applied in a single chain always
co-exist in time. Plone will show all available transitions from all workflows
in the current object's chain in the state drop-down box. However, this is an
advanced feature and should be used with care. We can face issues, such as
variable collisions, if we assign two of the default Plone workflows.

Some useful workflow tools
Although Plone has one of the most powerful workflow engines out there, it lacks
the convenience of some sort of graphical management tool. However, there are
some tools out there to help us overcome this and other workflow matters.

DCWorkflowGraph
Although Products.DCWorkflowGraph is an old, well-known Plone add-on, it
continues to be as useful as the first day. It analyzes a particular workflow and
generates a graphical state and transition diagram. It's always invaluable to have
a graphical representation whenever dealing with a complex workflow, especially
while creating or modifying it.

To install it, we must add it to the buildout.cfg file in the eggs attribute of the
buildout section:

[buildout]
...
eggs = Products.DCWorkflowGraph

Then, remount buildout:

$./bin/buildout

$./bin/instance fg

DCWorkflowGraph has one dependency—we must install GraphViz
(http://www.graphviz.org/) in our system. There are install packages
for all platforms.

Managing Workflows

[110]

Once installed, we will have a new tab called graph available in each workflow object:

We can see the states represented in orange squares, and the respective transitions
represented by arrows indicating the direction of the transition.

collective.wtf
This add-on product written by Martin Aspeli is a GenericSetup importer/exporter
tool that instead of using XML, uses a CSV file. It also provides a number of
debugging aids around workflows. For example, we can easily get a CSV view of a
currently installed workflow to sanity-check permissions, and there is a view that
runs some heuristics on our installed workflows to check against Plone conventions
and best practices.

To install it, we must add it to the buildout.cfg file in the eggs attribute of the
buildout section:

[buildout]
...
eggs = collective.wtf

Chapter 6

[111]

Also, add it to the zcml attribute of the instance section:

[instance]
...
zcml = collective.wtf

Then, remount buildout:

$./bin/buildout

$./bin/instance fg

For exporting a CSV file containing the definition of our workflow, type a URL such
as the following in the browser:

http://localhost:8080/intranet/portal_workflow/my_workflow/@@to-csv

To invoke the sanity checker, type a URL such as the following into the browser:

http://localhost:8080/intranet/portal_workflow/my_workflow/@@sanity-
check

In both cases, intranet is the name of our Plone site, and my_workflow is the ID of
the workflow we desire to dump.

Another great tool that this product provides is the ability to view the current roles
of a given user in a given context. Type the following URL into the browser when
logged in as a manager user:

http://localhost:8080/intranet/context/@@display-roles-in-
context?user=<user>

Again, intranet is the name of the Plone instance and context could be any object. The
<user> string should be replaced by the login name/ID of the user we want to fetch
roles for. The output will be shown in the browser window in plain text.

We can find more information about collective.wtf in the following
URL: http://pypi.python.org/pypi/collective.wtf.

collective.workflowed
This is another very useful add-on created by Carlos de la Guardia. Essentially,
it is a graphical workflow editor for Plone. It is also a wrapper of the features of
collective.wtf and exposes some workflow editing, such as permissions to
the Plone UI. We might find this add-on useful if we missed a graphical utility to
manage workflows for Plone.

Managing Workflows

[112]

To install it, we must add it to the buildout.cfg file in the eggs attribute of the
buildout section:

[buildout]
...
eggs = collective.workflowed

Also, add it to the zcml attribute of the instance section:

[instance]
...
zcml = collective.workflowed

Then, remount buildout:

$./bin/buildout

$./bin/instance fg

We must install the product from the Add-on products configlet. It will install a new
application configlet called Workflow Editor, as shown in the following screenshot:

Chapter 6

[113]

The most distinctive part of this product is its active zone with full drag and
drop support, based on the powerful Draw2D library from the Openjacob project
(http://draw2d.org/draw2d/). In this zone, we can see a graphical representation
of the state diagram of the workflow. We can modify the current selected workflow
by using the provided controls, add new states and transitions, and edit state
managed permissions. It's possible to add an entirely new workflow as well.

We can find more information about collective.workflowed
in the following URL: http://plone.org/products/
collective-workflowed.

Placeful workflow
Shipped with Plone since 3.0, it is a very useful tool. It allows us to configure an
alternative workflow for one or more content types in or below a particular folder,
overriding the global workflow setting. This setting is called a workflow policy.
To apply a policy, we will have to add a local workflow policy configuration to the
desired folder using the policy item in the state drop-down menu of any folder.

To install it, we must go to the Add-on Products configlet and install the Workflow
Policy Support (CMFPlacefulWorkflow). Once done, we have new configlet
available—Workflow Policies. This configlet will allow us to create and configure
our workflow policies. They consist of the following components:

•	 ID: A unique name for the policy
•	 Description: For information purposes
•	 Default workflow: The initial workflow type assigned to the content types of

the folder where the policy is applied
•	 Workflows by type: Here we can specify a particular workflow by

content type

Placeful workflow will help us if we need some special workflow configuration for
a specific branch of folders of our intranet. However, it must be used with care
and one needs to inform the users about the change of behavior of the workflow
whenever it occurs.

Managing Workflows

[114]

Best practices
Understanding the complexity of the Plone workflow engine is a big deal. Here are
some ideas to leverage the learning process. Otherwise, we will find that the best
way is to play around and have some fun workflowing.

Make an initial blueprint first
Make a state diagram that defines our desired workflow. Not a very detailed one, but
enough to accommodate states, transitions, and actions that they may trigger. Take
as reference the ones included in this chapter.

Avoid developing on production servers
A classic; do not develop anything on production servers. Do it in a controlled
development environment.

Start from an existing workflow copy
One of the best pieces of advice is not to begin a new workflow from scratch. If we
want to create our own workflow, it is recommended to begin from a copy of anyone
of Plone's out-of-the-box workflows. Start from a workflow that matches most of
our desired specifications. Then go to the Contents tab in the portal_workflow
view and use the controls to copy and paste the selected workflow. Rename it to a
convenient name and try to describe what it will do in the description. It's always
good practice to document all the things that we customize in the best way possible.

This will give us an exact copy of the original workflow and now we can begin to
customize it as desired.

Use the tools shown for debugging
Use generated graphs or export the result of our workflow to CSV to debug
problems and check the consistency of the whole permission map. Use the sanity
check of collective.wtf to make sure the workflow is usable and that it doesn't
have any significant flaws.

Test our workflow
Try to develop a battery of use cases in which our workflow may be used and test it
against our intranet. It's easy to make a mistake related to roles and permissions, so
be careful before deploying the workflow to production.

Chapter 6

[115]

Summary
This chapter has been exclusively dedicated to workflows, best practices, and how to
create, manage, and modify them.

Now, we should know:

•	 All of the things necessary to manage workflows in Plone
•	 How to create and modify workflows
•	 How to use some key applications related to workflows

In the next chapter, we will learn how to put all Plone's security-related subjects
into practice.

Securing our Intranet
Now we have all the required knowledge to build a good security policy on our
Plone intranet. We've already learnt about the following key concepts:

•	 Users and groups
•	 Global and local roles
•	 Permissions
•	 Workflows

This chapter will show us how to glue them together and make them work for our
intranet. A good combination of all of these will allow or deny the access of content
for our intranet users. Learning how to apply security effectively is essential to have
full control over our intranet. Security is a shared responsibility among intranet
administrators, information creators and consumers, and the content privacy
managers. Any actor of our intranet has to be involved with it and should have a
good knowledge on how to manage security in the intranet.

We will learn about the following topics:

•	 How to design a security policy
•	 The use of global roles and local roles
•	 How to manage the private content
•	 The private sections
•	 How to set up project areas for workgroups

This chapter will cover all the key concepts to build a good security policy for our
intranet. This policy should be robust, usable, and reliable, and the most important:
it should meet our requirements. However, the combinations and the use cases are
infinite. Take the examples and best practices described here as a starting point.

Securing our Intranet

[118]

Remember, in Chapter 5, Managing Users, Groups, Roles, and Permissions, I asked you
to envisage your future intranet, especially, the security requirements it should have.
Keep these thoughts in mind during the entire chapter.

Global or local roles?
The first challenge we will have to face is the types of roles we will give to our users.
Let's review the properties of both of them.

Global roles are valid throughout the intranet and cannot be overridden by any
means. We can manage them using the Users and Groups control panel configlet.

Local roles are valid only in the context they are defined in. This context could be
any content type, but it's usually used to apply the type to folders, as the children
objects inherit all the features of the local roles defined. We can disable the inheritance
by deselecting the checkbox Inherit permissions from higher levels located in the
Sharing tab. Otherwise, we can't assign some roles from the Sharing tab, by default.
As we've already learnt, we can only assign the following roles:

•	 Can read (Reader role)
•	 Can edit (Editor role)
•	 Can add (Contributor role)
•	 Can review (Reviewer role)

The rest of the roles (Member, Manager, Anonymous, Owner, Authenticated) can
only be assigned globally, by default. Otherwise, to make them useful, we could
modify the Plone source to make them visible in the Sharing tab; however, it's not
recommended. We will cover that at the end of this chapter.

Anonymous, Owner, and Authenticated are functional roles. Although
they can be assigned to users or groups, this will make no sense.

The exclusive use of one type of role is not advisable even on the more simple, low
security profile intranet. It would only be suitable in a less crowded intranet where
there is no place for confidential or private sections, and all content is accessible by
all users.

Chapter 7

[119]

The answer to the question, "global or local roles?" is that we can use both of them.
Using the advantages of both will be the beginning of a robust security policy.

Using global roles
Use global roles to assign structural roles that would be valid for the entire site.
For example, assign the Manager role globally to only those users who will be site
administrators or site developers, and assign the Editor role to those users who may
need its functionality unconditionally throughout the site. Although Plone does this
for us, we need all intranet users to have the Member role, thus this role must be
assigned to all the users globally. Some important settings and features assume all
intranet users should have this role, for example the access to the user's dashboard.

The user registration form will automatically assign the Member role to
all new users, but we should assign it manually if we use users or groups
from an external repository, such as LDAP or Active Directory. We can
usually configure the PAS plugin for these kinds of repositories to assign
the role automatically. More information on how to configure a LDAP-
based user database is available in Chapter 13, Deploying our Intranet.

Using local roles
Use local roles to grant access and edit permissions to site contents. The roles are
additive, so play with all possible combinations to extend a user's or group of users,
permission to achieve the required security policy for them.

For example, if a user is assigned the Contributor role and the Reader role on a
folder, the user will be able to add content and have full rights over the content he
may create. This is because by being the creator of the content, the user acquires
the Owner role automatically, and, in consequence, gains full access rights on the
content. Otherwise, the user will have no rights on the content that is not created by
him. The user will only be able to read other content if he is granted the Reader role
on the parent folder.

Designing a sustainable role policy
In this section, we will propose a concrete security policy. This does not mean that
this policy is the best approach to an intranet. We will have to build our own security
policy based on our own intranet requirements. Consider the following example.

Securing our Intranet

[120]

A policy example
Now we have the tools to design a good role policy. The policy will account for the
following requirements:

•	 As Managers of the site, we need to have unlimited access to the site in any
case and situation.

•	 As system administrators of the Zope instance, we must have unlimited
managerial access.

•	 As a user, the maximum level of permission will be determined by the rights
granted, by having the four possible roles that can be locally assigned and
shared: Contributor, Editor, Reader, and Reviewer. Thus, a user assigned
with the four roles in a particular context will reach the maximum rights in
that context.

•	 As an Editor, we must have access rights to some special permission that
grants access to some Plone features only reserved for Manager users. For
example, access to manage portlets.

•	 As an Editor, we can add more editors to the local roles of that context.
•	 As an Editor and a Contributor, we can add more contributors to

that context.
•	 As an Owner of a particular context, we must be able to see the roles

assigned to that context and be able to add or modify them.
•	 As an anonymous user, we will have no access to the intranet. Thus, all

possible access will be authenticated.

Restricting the use of the Manager role
The introduction of a new role schema since Plone 3 opened a unified (and sustainable)
way to assign roles to our users. Before Plone 3, the quickest way to add edit
permissions to a user was by assigning him the Manager role in the desired context.
This policy is not recommendable and in most times is overkill. The Manager role has
a lot of power, even if assigned as a local role. We can't assign the Manager role using
Plone UI by default, but we can do so via the Security tab in the ZMI view of any
folder. It would allow access to ZMI (restricted, if it is assigned in a particular context).
But if we assign it as a local role in the Plone site root, then the user becomes manager
of the site with full access to ZMI and Plone control panel.

Chapter 7

[121]

Use this rule of thumb
Give the users only the rights they need. Of course, we can still use
the all-editors-are-managers policy and give all editor users the manager
role if we find it useful and if it fulfils our requirements, but this is
definitely not advisable as it would allow the user to override parts of
Plone with its own malicious code.

We can play with the permissions granted to existing roles for our security policy.
Otherwise, if we still need to grant users some permission restricted to the Manager
role, then we can create an additional role and grant these desired permissions
(for example, Power User role).

We have covered how to create a new role in
Chapter 5, Managing Users, Groups, Roles, and
Permissions in the Administering roles via ZMI section.

Other approach is to grant these additional permissions to some other existing role.
We can grant them the Editor role which has more power only after the Manager role.
However, only do this if this role still represents editors. Create as many roles as we
need to describe functionality, but manage their combinations using groups.

Creating system administrator users for the
Zope instance
Let's implement the first requirement of the proposed security policy. By default,
we have the admin user created when we set up our instance for the first time. This
user lives in the acl_users tool of the ZMI root and it's already assigned to the
Manager role. If we need more than one Zope instance system administrator, then
we will have to create them in the acl_users tool of the ZMI root and assign them
to the Manager role. These users will have unlimited access to the Zope instance, and
among other things, will have access to all Plone instances inside the Zope instance.

Creating additional manager users of the
Plone site
Create users, if needed, and assign them the Manager role in the Users and Groups
control panel configlet. The manager users will have unlimited access inside the
Plone site only, and would not be able to manage the Zope instance or other Plone
sites inside the same Zope instance.

Securing our Intranet

[122]

Separating the two concepts of system administrators and manager
users of a Plone site is usually useful as we can have these two kinds
of roles in our organization.

Granting other role permissions restricted
to Managers
The idea of the next requirement is give the Editor role, or other roles, some additional
permissions normally owned by the Manager role. Let's add permissions to allow
editors to manage portlets. Go to the ZMI Plone site root and click on Security and
search for the permission Portlets: Manage portlets:

Select the checkbox of the Editor role. We can do the same for other permissions to
extend the rights of the users who have the Editor role in our security policy.

We can do this programmatically and in a more reusable fashion
using Generic Setup tool, by setting up a rolemap.xml profile. More
information on this is available in Chapter 10, Basic Product Development.

Local role delegation
Users can manage local roles by delegation. By default, a user who is assigned the
Editor role for a context can access the sharing form and assign more editors and
readers. This user will be able to assign the Contributor role if the user has this role
in that context. The same applies to Reviewer role. By default, content owners can
define the local role assignments for all the content they have created in the site.

Chapter 7

[123]

Allowing non-managers to administer
local roles
If required, we can delegate the management of local roles granularly (one by one
or all of them at the same time). This is the case of Sharing page: Delegate roles
permission. We can delegate this behaviour to other roles (for example, the Editor
role) using the ZMI Security tab in the desired context. We only have to enable any
of the following permissions to the desired role.

•	 Sharing page: Delegate roles
•	 Sharing page: Delegate Contributor role
•	 Sharing page: Delegate Reader role
•	 Sharing page: Delegate Reviewer role

Be very careful with this setting and watch out for all implications
and use cases it may have.

Choosing a workflow for our intranet
Once our role policy is in place, we should choose a suitable workflow for our intranet.
Maybe one of the out-of-the-box workflows supplied with Plone may fit our needs,
but mostly the probability is that they don't. It is recommended that we build our own
workflow following the requirements of our intranet. There is a probability that we
may need more than one workflow for different parts of our intranet. Follow the best
practices shown in Chapter 6, Managing Workflows to build them.

Restricting access to authenticated users
No matter what workflow we choose for our intranet, we must make sure that access
to anonymous users is not allowed. We can do that by modifying the workflow and
restricting the Anonymous role from any permission definition from each state in
the workflow.

For example: let's assume that we choose the simple publication workflow for
our intranet. Access the portal_workflow tool in the ZMI, and then access the
simple_publication_workflow definition in the Contents tab. Then we access
the published state and click on the Permissions tab. We must deselect all the
checkboxes for the Anonymous role. This workflow doesn't allow the content to be
accessed anonymously by any other state, but if we choose another workflow, we
must make sure that no state has enabled anonymous access for any permission.

Securing our Intranet

[124]

Then, a last step is required. We must apply the changes to the existing content in
our site by clicking on the button Update security settings, located at the bottom of
the portal_workflow tool. Otherwise, permissions over existing content will not be
updated accordingly to new workflow definition.

Building an example intranet workflow
The first thing to do is draw the state diagram of the desired workflow. It has to be
simple but it should include states and its transitions. Following is the state
diagram of our example workflow:

As we can see in the diagram, we are designing a very simple workflow with three
states: Private, Public draft, and Intranet. Following are the requirements for
each state:

•	 Private content can only be accessed by the owner of the content. Only
owners can change the state of an object to the private state.

•	 Public draft is the initial state of this workflow. All content assigned to it will
be created initially in this state. Draft content can be accessed by owners,
editors, and managers in the context of the object. Other intranet users can't
access content in this state.

•	 Intranet is the state where any intranet user can see it, whereas the
anonymous users can't access it.

Since this is our first workflow, let's start by copying one of the existing workflows
and make the modifications needed to reach our specifications.

Chapter 7

[125]

Start by copying the community workflow for folders, since it's the closer out-of-
the-box workflow that meets the requirements. Go to portal_workflow | Contents
tab and select folder_workflow (Community Workflow for Folders) and then select
Copy, and then select Paste. A new workflow will appear with the name
copy_of_folder_workflow (Community Workflow for Folders).

Rename it by selecting it and clicking on Rename. Let's call it myintranet_workflow.
Then click on it to start modifying its properties. Redefine the Title and Description
as required. For example, use My example intranet workflow for the Title and set
Description to A workflow having three states: private, draft and intranet,
and then save the changes.

We will redefine states as shown in the state diagram and also redefine the permissions
defined by them. Then, if needed, we will proceed to adjust its transitions.

Private state
Go to the States tab and start redefining its original states. Let's start with private
state. We will keep reusing its basic properties, but we will have to redefine its
permissions. Click on the private state and go to the Permissions tab. Modify
them so that only owners and managers can access and modify content in this
state. Remove the other roles assigned to the permissions:

We must save the changes once we have finished. Remember that we can always
add new permissions managed by this workflow using the Permissions tab of the
workflow or by following the link permissions managed by this workflow on this
page. However, it is not necessary to fulfill the requirements of this workflow example.

Securing our Intranet

[126]

Draft state
The original ID for this state in the original workflow is visible. We can either change
it or leave it, as its title (used as the state display name in Plone UI is draft). We will
reuse its default properties, but we should modify its permissions. Click on it and go
to the Permissions tab. Modify them to let editors, owners, and managers view and
modify content in this state. Remove the other existing roles:

We must save the changes once we have finished.

Intranet state
We cannot reuse the published state in our example workflow but we can use it as a
template. We must also disable it and delete it when we finish. We should create a new
state called "intranet". This state allows all intranet users to access content assigned
to it. Use the form at the bottom of the States tab to create a new state. Once created,
access it and change its properties, such as Title and Description. Then we should
change its permissions as well. Click on it to access its properties. Add a title to it
because it will be used as the state display name in Plone UI. Add a description too,
if you like.

Chapter 7

[127]

Access the Permissions tab and uncheck the Acquire permission settings? checkboxes
for all the managed permissions. Then allow readers to access the content and allow
editors, managers, and owners to modify them too.

We must save the changes once we have finished.

Transitions
We should add some transitions to our recently created state. Go to the Transitions
tab and add a new transition called publishtointranet. Click on the new transition
and modify its properties, as shown in the following screenshot:

•	 Title: Publish to intranet
•	 Description: Publish this content to make it available to all intranet users.
•	 Destination state: intranet
•	 Guard

°° Permission: Modify portal content

Securing our Intranet

[128]

•	 Display in actions box
°° Name: Published to intranet
°° URL: %(content_url)s/content_status_modify?workflow_

action=publishtointranet
°° Category: workflow

Assign the proper transitions to the intranet state by accessing the state properties
and select the retract transition. This will allow users to change the state from
intranet to draft. Save changes to apply it.

Access visible (draft) state and remove the publish transition, as it is no longer
required, and add publishtointranet to allow users to change the state of content
from draft to intranet. Leave the hide transition to allow users to change the state
of content from draft to private.

Chapter 7

[129]

Access private state and remove the publish transition too. Leave the show
transition to allow users to change the state from private to draft.

Delete the published state if you find it's no longer useful. We are not going to use it
in this example any more.

This workflow definition is included in the support code for this chapter.
It's defined with a Generic Setup profile. Install the add-on product
included to apply the profile to our site. After this, the workflow should
be available to be used in our site.

Defining permissions, roles, and workflows with Generic Setup
Plone provides a way to define permissions, roles, and workflows, and
makes them available to be reused when setting up Plone sites. It's done
via two Generic Setup profiles: rolemap.xml and workflows.xml.
We will cover the features of Generic Setup and other useful profiles in
Chapter 10, Basic Product Development.

Managing private content
There are two ways of managing private content in our intranet. Both of them are
valid, we may choose the one that fits better to our requirements.

The first one is, of course, workflow related. We've already noticed that most of
Plone's out-of-the-box workflows come with a private state. But user's access to
content in this state is not always the same. For example, in the simple publication
workflow either contributors, editors, readers, owners, and managers can view and
access the content in this state.

If we want to control the access to private content thorough the private workflow
state, we should adjust permissions for making sure only the desired roles can
access the content in this state.

The more common setting is to allow only the Owner role to access the private state.
But our requirements may also allow other kinds of roles to access the private role.
For example, we might also want to allow the Editor role to access private content.

www.allitebooks.com

http://www.allitebooks.org

Securing our Intranet

[130]

Attention!
One must be careful. Don't forget to add the Manager role to the
permission for private content. Otherwise, as an intranet manager, we
will loose all privileges over the content in the private state. (However,
we can regain access to the content by modifying the workflow and
updating workflow settings.)

The other alternative is to disable local roles inheritance in the content we want to
make private. Although it is not the best alternative, we can do it this way too. Use
the checkbox Inherit permissions from higher levels to reset local permissions on
the desired content and redefine permissions for it.

Disabling local roles inheritance will only be effective if roles are not
applied globally in the site. A user assigned the Editor role globally will
have this role unconditionally throughout the site. Disabling inheritance
over content will have no effect over this user, who will continue having
the Editor role despite it.

Creating private sections
We can create private sections or an entire branch of folders and develop the content
of our site, similar to the way we create private content. But we must have one
thing in mind; changing the state of a folder to a private state will not mean that
all its contents will also be private. We should change its entire children object to
the private state too. Otherwise, users will not be able to access the parent folder
(because its permissions do not allow it), but they will be able to access the content
contained by that folder. So any user could access the content inside the private
folder if he/she knew the URL of that content. The content will be private as long as
the URL will remain unknown, which is not very trustful. Maintaining all contents
of a complete private branch in private is not a sustainable policy unless the private
state will be our workflow initial state.

In this case, the disable local roles alternative is more powerful, because we will only
set up the security of the folder once.

Only the owner of a folder (or a content) can disable local role inheritance.
Otherwise, we will receive an unauthorized error, or lose all rights over
that content.

Chapter 7

[131]

Workgroup areas
If we need more control and we want to give more power to our users
over our intranet private sections, we should use a local workflow policy
(CMFPlacefulWorkflow). Analyze the workgroup requirements and apply a suitable
workflow that meets the workgroup requirements. If there's an existing workflow,
modify it or create a brand new one. Try to use different transition and state names
than the workflow used in other parts of our intranet, so that our users don't get
confused, and mark these special workgroup areas properly.

We covered Placeful workflow in Chapter 6, Managing Workflows. We will
find the other aspects of its features and behavior in the chapter.

For work areas with more simple requirements, we can set up a workgroup folder by
resetting the permissions and applying the required permissions on it. For example, we
can create a private area for our company management team, where only the members
of this team will be able to access its contents. Resetting the permissions by disabling
local roles inheritance and giving access and edit permissions to the management
group on that folder will hide it from all users except the management members.

Third-party add-on products
Sometimes third party add-ons are not "Plone 3-role-schema ready". This means that
the default permissions set by these products do not take care of the new roles and
give the rights to create and manage content to Managers. This can happen upon the
creation of new content, and the product can add it in the workflow (or workflows)
as well. The products that add new content types are more affected by them.

When we install a product, we must make sure it sets the correct permissions to the
roles we use. We should check the add permission the new content type may use and
modify it if necessary. We should also check whether the workflows the product may
install are correct and meet our security requirements. Modify them if necessary.

Adding roles to the Plone UI
By default, the Plone UI exposes to the users only four roles. These roles are meant to
be applied locally thorough the sharing form. In case we find these roles insufficient,
we can add other roles, such as Manager or Owner (or any other custom role, which
we might create). If we want to add a new custom role, we will have to create it first.

Securing our Intranet

[132]

Consider this a hack and don't use it even if your requirements push you
to do so. Almost any security policy can be implemented without using
these roles as local roles.

Using a custom product
We can achieve this programmatically by using a custom add-on product.
Let's assume that we have previously created a custom add-on product named
my.firstproduct.

We cover basic add-on product development and how to create a
new product extensively in Chapter 10, Basic Product Development.

We must add a module named sharing.py to the product with the following contents:

from zope.interface import implements
from plone.app.workflow.interfaces import ISharingPageRole
from Products.CMFPlone import PloneMessageFactory as _
class ManagerRole(object):
 implements(ISharingPageRole)
 title = _(u"title_can_manage", default=u"Can manage")
 required_permission = 'Manage portal content'

The title is the name to be displayed under the Sharing tab. The user must have
required_permission to be allowed to manage a particular role.

Add this line to the configure.zcml file for declaring the new component:

<utility name="Manager" factory=".sharing.ManagerRole"/>

We will have to add this product to our buildout to apply changes.

We can find this custom add-on product in the support code
for this chapter.

Chapter 7

[133]

Using collective.sharingroles
This is an add-on product that allows us to define a Generic Setup profile in a custom
add-on product that handles the roles shown in the Sharing tab. To install it, we
must add it to the buildout.cfg file in the eggs attribute of the buildout section:

[buildout]
...
eggs = collective.sharingroles

Also, add it to the zcml attribute of the instance section:

[instance]
...
zcml = collective.sharingroles

Then, run buildout:

$./bin/buildout

$./bin/instance fg

The Generic Setup profile file name should be sharing.xml and must be placed
in the profiles/default folder of our custom add-on product. It should have the
following format:

<sharing xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 i18n:domain="plone">
 <role
 id="CanDelegateRoles"
 title="Can delegate roles"
 permission="Manage portal"
 i18n:attributes="title"/>
</sharing>

The id must match an existing role and the title is the name to be shown on
the Sharing tab. The permission is optional. If assigned, the user must have the
permission to be allowed to manage the particular role.

We should install our custom add-on product for the GS profile to be
applied. We can also find this example in the support code for this chapter.

Securing our Intranet

[134]

Summary
We have covered a best practice section, explaining things based on experience with
users and basic intranet needs. We have learnt the following topics:

•	 How to design a security policy
•	 The use of global roles and local roles
•	 How to manage the private content
•	 The private sections
•	 How to set up project areas for workgroups

At the end of this section, we will be able to consistently apply all the knowledge about
security that we have covered in previous chapters. Next, we will cover how to use
Plone's content types and views effectively in an intranet.

Using Content Type
Effectively

Building a successful intranet is not an easy job. When we are asked to build an
intranet there is always an implicit requirement that doesn't show in any requirement
list. This requirement is easy in concept, but hard to achieve: the intranet must be
a success in terms of usability and use. We will want our users to love using our
intranet and have a positive valuation of the service it offers. The last thing we will
want is that it ends up being one of those web services that people barely use.

Building a successful intranet is not an easy job, but we can make it so if we want to.
In this chapter, we will cover the key factors for the success of an intranet and the
effective use of the content types.

As we already know, a content type is not only an information container; it also
defines the way the information is shown to the consumer via the content view.
We will learn to use the right content type and its right view for the right job.

Another crucial factor is to extend wisely our default content type set via third-party
add-on products. We will learn how to choose and use them correctly.

This chapter will cover the following topics:

•	 Navigation and taxonomy
•	 Collections
•	 Table of contents
•	 Next/previous folder
•	 Presentation mode
•	 Best practices for third-party content types

Using Content Type Effectively

[136]

Designing our intranet information
architecture
No one uses a knowledge system (such as our intranet) if the information stored in
it is hard to find or consume. We will have to specially emphasize on thinking about
not only a good navigation schema, but also a successful one for our intranet. The
definition of success is different for every interested group, organization, enterprise,
or any kind of entity our intranet will serve. There are a lot of navigation schemas we
may want to implement, but it is our task to find out what will be more suitable for
our organization.

To achieve this, we will have to use both hierarchy and metadata taxonomy wisely.
Obviously, the use of folders and collections will help achieve this endeavor. The
first-level folders or sections are very important and we will have to keep an eye
on them when designing our intranet. Also, we should not forget the next levels of
folders, because they have a key role in a success navigation schema.

The use of metadata, and specifically categorization of content, will also play an
important role in our intranet. The continuous content cataloging is crucial to achieve
a good content search and the users should be made aware of it. An intranet where
the search of content is inefficient and difficult is an unsuccessful intranet, and with
time, the users will abandon it.

At this point, we should analyze the navigation needs of our intranet. Think about
how the people will use it, how will they contribute contents to it, and how will they
find things stored in it. In this analysis, it is very important to think about security.
Navigation and security are closely related because most probably we define security
by containers.

There are some standard schemas: by organization structure, by process, by product,
and so on. By organization is the most usual case. Everybody has a very clear idea
of the organizational schema of an enterprise or organization, and this factor makes
it easier to implement this type of schema. In this kind of schema, the first-level
sections are divided into departments, teams, or main groups of interest.

If our intranet is small and dedicated to one or few points of interest, then these must
take precedence over the first level section folders.

Chapter 8

[137]

Keep the following things in mind:

•	 Our intranet will be more usable if we can keep our intranet sections clean
and clear

•	 Fight against those people who believe that his (or her) department is more
important than others and want to assault our intranet sections

•	 Let them know that maintaining a good intranet structure will be more
useful and will help contribute to its success

Second levels are also very important. They should be perdurable in time, interesting
to users of all sections, and they should divide information and contents clearly. Two
subsections shouldn't contain elements of the same subject or kind. For example,
these might be a typical second level:

•	 Documentation
•	 Meetings
•	 Events
•	 News
•	 Forums, tracker, or some application specific to the current section

All of these are very commonly seen in an intranet. It is a good practice to create
these second-level sections in advance, so that people can adapt to them.

Teach people to categorize content. This will help intranet searches incredibly and
will help create collections and manage contents more effectively. If needed, make a
well-known set of categories publicly available for people to use. This would prevent
the repetition of categories and the rational use of them.

Notice that there can be several types of categories:

•	 Subject: Terms that describe the subject of the content
•	 Process: Terms that identify the content with the organizational process
•	 Flags: Flags such as Strongly Recommended
•	 Products: Terms from the products, standards, and technology names that

describe the subject matter of the resource
•	 Labels: Terms used to ensure that the resource is listed under the

appropriate label
•	 Keywords: Terms used to describe the resource
•	 Events: Terms used to identify events which are recurrent with the content

Using Content Type Effectively

[138]

There are other metadata also which influence the improvement of the navigation
and search abilities of the intranet such as:

•	 Title
•	 Description
•	 URL, the ID of each content

Don't forget to teach your users about content
contribution best practices before deploying the intranet.
We and our intranet users will appreciate it a lot.

Once we have settled down on some practices which are best for information
architecture, we should know how to use some interesting Plone features that will
help us build navigation and sort the information on our intranet.

Using collections
The collection is one of the most powerful content types available in Plone. It's
probably the most misused of all Plone's default content types because it is more
complex and difficult to understand for non-technical or non-experienced users.

A collection is a real-time query for the ZODB (for the Plone portal catalog, to be
more precise), and its contents are the results of this query. The query is defined by
the user, who can also define how to display the results in the collection view. The
query is executed with the rights and context of the current user, and the results
are consistent with the user's rights over content. This means that a collection could
return different results depending on the current user. Additionally, a collection
is a content type, and, like any content type, has permissions and is assigned to a
workflow. Thus, a collection can be for both public or restricted use.

We can use them to store recurrent queries in the database, for example, the News
and Events, Plone's default view, is implemented using a collection. In both cases, we
have a recurrent task of displaying all published news or events. The collection will
collect all news or events objects published at that precise moment and will display
them. In addition, the events collection will provide an additional filter for omitting
all events that occurred in the past.

I can bet you can think of other useful use cases, such as a collection, that returns all
the content authored by yourself to keep track of it easily. Or maybe a collection that
returns all content contributed by the members of a team or workgroup in the last
month (or year). The possibilities are infinite, of course. It's in your hands to find the
right use case suitable for your need.

Chapter 8

[139]

Use collections every time you need a non-hierarchal display of content and access
the information in a direct and grouped way.

Creating a collection
A collection is as easy to create as any other content type, but there are some
concepts on fields and configuration that are worth elaborating. There are two places
where we can configure a collection: in the edit mode and in the Criteria tab.

The edit mode holds all the common content type default fields along with
the following:

•	 Number of items: The number of items to be shown in the results. Related to
the "Limit Search results" setting.

•	 Limit Search Results: If this is selected, the results will be restricted to the
number defined in the Number of items field

•	 Table Columns: Defines the columns to be displayed in the tabular view
•	 Display as Table: Displays the results in tabular way, with the columns

defined in the Table columns field

But the most important setting of a collection is the Criteria tab. Here, we define the
query on the database based on the fields or attributes of the target objects and its
values. The criteria form is divided into two sections: the Add New Search Criteria
and the Set Sort Order.

In the first one, we define the criteria. In order to do so, we need to inform what would
be the object's field or attribute to search for and the value that we want to match the
criteria with. This is usually done in two steps. First, define the field and the criteria
type. For example, in Field name select Categories, and in Criteria type, select one
of the three options that will determine how we will define the criteria: select it from
a compiled list from all the available categories in the site (Select values from list),
type a single category into a text box (Text), or type a list of categories separated by a
carriage return (List of values).

Using Content Type Effectively

[140]

Once we select one of them, the form will change to add the new criteria. The second
step will consist of defining the category (or categories) that the criteria will match
with. Almost all the criteria have this two step process. We can add as many criteria
as we need. Don't forget to save any change made to the criteria settings.

The second part of the form is related to the ordering of the results. This order can
be set against a field name and can be specified to be in the reverse order, if desired.
Reverse order is useful when ordering according to dates, the most recent on the top
of the collection's results.

Chapter 8

[141]

Table of contents
This is a useful feature of the page content type. We can enable it through the
Settings tab in the Edit mode. It adds a handy table of contents menu to the top
right of the default view of the current page content type. It's formatted using the
headings of the contents of the page, and is created and updated automatically. It
also features relative links to the headings of the page. It's very useful on very large
pages, where we want to keep access to contents clear and quick. We can see the
result in the following screenshot:

Using Content Type Effectively

[142]

Next/previous navigation
We can enable horizontal navigation thorough all elements of a folder via this
feature. It's useful in case we have a lot of information to show on a single page. We
can divide this content into smaller pieces in order to make it more usable, clear,
and searchable. Put each section into different pages inside a thematic folder on the
subject we are writing (name it conveniently), and check the Enable next previous
navigation checkbox in the folder's Settings tab in Edit mode, as shown in the
following screenshot:

When we access any content in the folder, we will be able see the additional controls
to navigate to the next or previous item in the folder. It works with any content type
existing in the folder. The title of the next or previous item will also appear on the
next/previous controls.

Presentation mode
Meet one of the most unknown features of Plone 3 and one of the more appreciated
features by management staff. This feature enables any page content type to make
available a special view called Presentation mode. This view powered by the S5
JavaScript library shows each section of the page in a presentation-like slide. So
we can easily create a content page both for documenting and for easily showing
its content in a projected presentation, all in the same place as all the information
lives in the same piece of content.

Chapter 8

[143]

The sections are delimited by the heading styles included in a page, so we don't need
to create a page for each slide. In fact, the heading style in Kupu or TinyMCE will be
transformed to a h2 HTML tag that will be used by S5 to format the presentation. All
content between h2 tags will be formatted as slides. The content of the h2 tag will be
the slide's title and the content located between a h2 tag definition. The next one will
be the slide's content.

A leading slide will be added automatically with the title, description, and author of
the page. The S5 engine will also render basic controls over the presentation itself for
navigating around the presentation's slides. Then it will close the presentation mode
and return to the normal visualization mode.

Enabling the presentation mode
We can enable presentation mode by editing any page content type and then clicking
on the Settings tab. The Presentation mode checkbox is available there. Once
checked, a link will appear in the view of the page for a user to view the page in
Presentation mode.

Using Content Type Effectively

[144]

Formatting a slide
Following the most popular practices on how to construct a presentation slide, the
presentation mode will not render text chunks or paragraph text. Slides are meant
to display concepts, ideas, and summary information. For this reason, if we want to
display content in the Presentation mode, we must format it with a style other than
the Normal paragraph style. For example:

•	 Subheading
•	 Definition list
•	 Bulleted list
•	 Numbered list
•	 Literal
•	 Pull quote
•	 Highlight (if not inside a paragraph)

We can add images too, if they are not inside a paragraph tag. It's possible that we
may want to hack the HTML code in order to achieve the best results if we want to
format a complex presentation. We can do this by triggering the Kupu's HTML view
button. Remember that all content inside a <p> tag will not be rendered. If you want
to make some previously created content presentation mode ready, it would possibly
require some minor adjustments before it will show properly.

We can use this feature to add additional support information to the
presentation in our page that will not be rendered in Presentation
mode. By doing this, with smart usage of page formatting, we can
write a page with two purposes: holding the detailed documentation
of a particular subject, along with the presentation that consists of the
summary and highlights of the subject.

We can take the default Welcome to Plone page as an example on how to proceed
with Presentation mode. The following screenshot is the third slide of Plone's default
page in Presentation mode view:

Chapter 8

[145]

Third-party content types—best practices
We've already learnt about how to use Plone's default content types wisely. Now is the
time to talk about third-party content types provided by third-party add-on products.

Sooner or later, we will find ourselves browsing the downloads section on the Plone
site and will be tempted to try a lot of products that promise wonderful features and
incredible content types. We recommend you to follow some rules when dealing
with third-party content types—firstly, don't rush into it and be careful.

A few golden rules
We should observe some golden rules before a third-party product is put in
production. They are valid for all types of third-party products and not only for
those that provide a new content type, of course. They are very simple and can
save us from trouble:

•	 Find out who's the author (or authors) of the product, and how many other
contributions they have made to the community

•	 Check out if the product is uploaded to the SVN collective repository
(http://svn.plone.org/svn/collective), to make sure that all the
members of the community can contribute and improve it

•	 Check how long the life cycle of the product is and if it's a final release

Using Content Type Effectively

[146]

•	 The product must have decent documentation that would lead us to a better
understanding of what the product does (and what it doesn't do)

•	 Check if the product has enough test coverage
•	 Always test the product in a development environment, and if possible test it

with real data

Ordering the "Add new" content type menu
By default, all installed content types are shown in the Add new... menu, ordered
alphabetically, but we can restrict the types of content that can be added. This menu
has two configurable levels. The first level is the menu that unfolds when we click on
the Add new... tab and shows the allowed types. The secondary one is a view that
can be accessed from the item More... of the first level drop-down menu:

This allows us to seperate the most used or preferred content types from the least
used or less popular ones. Thus, simplifying the allowed content types drop-down
menu and making it more usable at the same time.

Believe it or not, this simplification usually provides a better user experience. If we
make a proper selection of the more used content types (or those which we think
are more appropriate for the user to use), the users will have more possibilities to
find the right content type quickly. If we give them many possibilities, the chances
of choosing the wrong content type is high. The user's confidence in the intranet will
drop due to not finding a suitable content type for the job they require at first glance.
In the end, this simplification provides a better user experience. If the user can't find
the right content type from the first selection, the user will access the extended one in
the secondary types view and continue with the creation of content.

Chapter 8

[147]

The item More... will be displayed when we tell Plone which content types we want
to show as primary types and which as secondary types. All users with the Manager
role on a folder (except on the site root) will be able to access the item Restrictions....
It will be located in the new content type drop-down menu. This item will lead us to
the restriction policy form. In this form, we can choose between Allow the standard
types to be added or Specify types manually. The former is the default option;
whereas the latter will open an additional form where we can specify which will be
the allowed types and which will be the secondary ones. Specify the allowed (and
primary) types in the upper part of the form and the secondary (the ones that will
appear in the More... view) types in the lower part of the form.

Content type superseding
To avoid user confusion it is recommended to not maintain two (or more) content
types with similar purposes. This includes content types that have similar fields,
functionalities, or views. It's a good thing that all intranet users choose the same
content type to perform the same kind of job.

If we still want to add the new type to our allowed content types, it's recommended
to hide the creation option of the superseded type. Of course, all the content already
created with the old type will be preserved, but the user will not be able to create
more content using it.

Using Content Type Effectively

[148]

We can use the portal_types ZMI tool to hide the old content type. To access it, click
on the content type we want to hide. Inside the type form, the Implicitly addable?
property controls the visibility of the content type item in the drop-down menu
Add new.... Once we uncheck it, the content type will not be available to add.

Chapter 8

[149]

It's also a good practice to inform the intranet users about the change, along with the
new features of the content type and any significant information they might want
to know.

Mantaining usability
Maintaining the intranet usability is a goal we have to continuously keep in mind.
Making a lot of complex content types available in our intranet types, which are hard
to create and consume, will lead to an intranet which will be hardly used. Even the
more experienced techie users will end up not using it. Think about the interests of
the non-technical users and you have a lot gained.

Upgrades
If we choose the right third-party products for our intranet, it will be easier for us if
we want to upgrade the product itself or Plone. If a product has heavy community
support, there is a probability that it will have good upgrade options between the
versions as the product evolves. The same thing happens with Plone's upgrades.
The product will be ported more easily if the product is well supported.

Summary
We have to be very careful about the content types we make available for our
users. Failing to do so will lead to really hard upgrades, product conflicts, and
user confusion.

In this chapter, we've covered the following topics:

•	 How to organize information on our intranet
•	 How to get the maximum out of Plone features, such as collections,

previous/next navigation, and so on

In the next chapter, we will go through a selection of the more interesting third-party
products available in the Plone community. We will also cover the ones which are
specially relevant to the intranet. All of them meet the golden rules of the third party
products and are ready for production.

Intranet Add-on Products
This chapter covers the most useful tools that are used in an intranet. We will
show the most reliable, tested, and fully featured set of Plone's third-party, add-on
products. Some of them focus on improving user experience, whereas others focus
on extending collaboration capabilities and daily work in a corporate environment.
We will cover several product categories, such as:

•	 Internal blogs
•	 Group discussions
•	 Form generators
•	 Surveys and polls
•	 Calendaring and events
•	 Other useful intranet products

We intend to compile an initial stack of products for our intranet to complete and
extend the out-of-the-box functionality of Plone. Of course, it's our decision whether
to install them or not. Otherwise, we can complete this stack of products with
something that meets our requirements by visiting http://plone.org/products or
the Cheeseshop site at http://pypi.python.org.

Some of the product features explained here may change or may be
modified as part of the product evolution. If you have any question
about any product shown in this page, please refer to the product's
project owner displayed on the plone.org or PyPI site.

Intranet Add-on Products

[152]

Calendaring and extended events
One of the most requested features on an intranet is to provide the intranet users
with a usable calendaring system. Plone's default event, and related views, and
portlets are limited in some aspects. The products exposed in this section extend
Plone's default capabilities on calendaring.

Plone4ArtistsCalendar
Although this product doesn't fall under the maintained category, it's worthy to talk
about it as its features are very useful in an intranet environment. Also known as
p4a.plonecalendar, it allows us to turn any normal Plone folder or collection into a
calendar. The calendar provides a default month, event list, and event archive view.

Installation
Insert these additional lines in the specified sections of our buildout.cfg file:

[buildout]
...
eggs = p4a.plonecalendar
...
[instance]
...
zcml = p4a.plonecalendar

Then, rerun buildout:
$./bin/buildout

$./bin/instance fg

This package has dependencies over other Python and P4A (PHP For Applications)
modules. The buildout will download and make them available to the environment.

Go to the Add-on Products control panel configlet and install it.

Features
The Plone4ArtistsCalendar product does not install any content types, but it
provides the following features:

•	 Calendar support: Any folder or collection can be calendar activated. Once
activated, they will show a new default view displaying a calendar with
an overview of the events contained by the folder or the collection. We can
activate it using the drop-down menu subtypes located in the content actions
bar. We can deactivate it using the same drop-down menu to return the folder
to its default behavior.

Chapter 9

[153]

•	 Monthly, weekly, and daily view: Any calendar activated folder can have
several default views, including a daily, weekly, and monthly view. We can
assign any of these default views to the folder.

•	 Chronological event view: The events gathered together by the activated
calendar can be displayed using a chronological event listing.

•	 Past events view: Events that have already occurred are grouped into a past
events listing page.

•	 iCal and hCal support: Exporting events in iCal format and importing iCal
and hCal. Publishing a calendar from Apple iCal or Mozilla Sunbird to our
Plone site.

This is a calendar activated folder:

Intranet Add-on Products

[154]

Take advantage of local security and collections
Don't hesitate to take advantage of other Plone features at any time. We can use local
role security to set up the user's rights over events in a folder or group of folders.
We can control the visibility of an item by granting permissions granularly on the
hierarchy of folders.

Think about this scenario: we want to set up a calendar view for three groups of
users in our intranet. We want to show the user the events depending on the user's
group membership. If the user is member of group A, he will only be able to see the
events related to group A in the calendar view, and so on.

We will have to set up a main folder that should contain as many folders as the
number of groups we want to add. Let's assume we have three groups: group A,
group B, and group C. This folder will also contain a collection that will query the
database for all events inside the main folder, including all subfolders it may contain.
Then, activate the calendar view on this collection and make this collection the
default view of the main folder.

Then, we must set up the permissions on each event group folder. We should do it
by granting permissions to the corresponding group of users in each folder.

Now users will only be able to access those events for which they have view
permissions on the calendar view.

For more information, refer the project page, on the PyPI website:
http://pypi.python.org/pypi/p4a.plonecalendar.

vs.event
This extends the default event content type. It adds a new content type called
VSEvent. It's basically an extension of the default event content type. It provides full
integration with P4ACalendar.

Installation
Insert these additional lines in the specified sections of our buildout.cfg file:

[buildout]
...
eggs = vs.event
...
[versions]
Products.DataGridField = 1.6

Chapter 9

[155]

...
[instance]
...
zcml = vs.event

Then, rerun buildout:

$./bin/buildout

$./bin/instance fg

This product depends on Products.DataGridField add-on product, which
provides a field to store the event attendants. We have to pin the version of this
product to ensure that buildout downloads the Plone 3 compatible version. Go to the
Add-on Products control panel configlet and install it.

Features
It provides:

•	 Recurring events support
•	 All day events support
•	 Attendees and attachments
•	 iCal and vCal export
•	 Supplementary events

We can find the recurring form under the Recurrence tab in the VSEvent content
type edit mode. We can set the interval for which the event should repeat as follows:

•	 By weekdays
•	 By occurrence within the selected weekdays
•	 We can define exceptions, if any
•	 The frequency with which it should repeat
•	 The maximum count for which an event repeats
•	 The date until it will repeat

Intranet Add-on Products

[156]

Following is the recurring event form:

Chapter 9

[157]

We can restrict the default event content type from being added by the users and leave
only the new VSEvent content type as the site-wide default event type. We can do
so by using the Restrictions... menu in the Add new... drop-down and removing the
event content type from the available addable types. More information about hiding
a content type from users is available in Chapter 8, Using Content Type Effectively.

For more information, refer to the project page on the plone.org
website http://plone.org/products/vs.event and on the
PyPI website http://pypi.python.org/pypi/vs.event.

Form generators
Eventually, we'll need the ability to create a custom form and make it available
to our intranet users. It's a very common use case; a custom form is useful to ask
people things, gather user data, and so on. When we talk about form generators we
are referring to a tool that allows us to create complex forms with different actions
involved when the user submits the form. In this category, there is only one product
that excels over any other—PloneFormGen.

PloneFormGen
This product provides a generic Plone form generator. The forms are built using
Plone content types that PloneFormgen provides. It's very useful to build simple web
forms that save or mail form input.

Installation
Insert these additional lines in the specified sections of our buildout.cfg file:

[buildout]
...
eggs = Products.PloneFormGen

Then, rerun buildout:

$./bin/buildout

$./bin/instance fg

Go to the Add-on Products control panel configlet and install it.

Intranet Add-on Products

[158]

Dependencies
PloneFormGen depends on the Scriptable fields package bundle that provides these
additional modules:

•	 Products.TALESField
•	 Products.TemplateFields
•	 Products.PythonField

They are installed automatically as the Products.PloneFormGen egg depends on it.
The buildout process will download and install them for us.

How it works
To build a web form, create a form folder, and then add form fields as contents. We
can add three types of objects:

•	 Field types
•	 Actions (also named as adapters)
•	 Other content types

The form folder creates a form from all the contained field types content objects. The
action objects inside the form folder define the behavior of the form. The form folder
can also contain other types of objects that complement the form and may act as
support elements, such as images or pages.

To make it easy to get started, newly created form folders are pre-populated to act as
a simple e-mail response form.

Chapter 9

[159]

Field types
Following is a list of all field types available in PloneFormGen:

Field type Description
Checkbox Field A true/false field, which will be rendered as a checkbox widget.
Date/Time Field A field to store date/time values. Will render with the standard

Plone date/time widget.
Decimal Number
Field

Use this when we want a numeric response that might include a
decimal point.

File Field Allows the user to upload a file. Files will be e-mailed as
attachments to a previously specified mail address by the mail
adapter.

Label Field A simple label and help text with no data-entry field.
Lines Field A field that allows the user to submit multiple lines of text. The

save-data adapter will separate lines with newline codes.
Multi-Select Field A field that allows the user to choose one or more values from a

list. Can render using a multi-select box or as a list of checkboxes.
Password Field A field that displays the * character when the user types. It's good

for submitting passwords or other sensitive data.
Rich Label Field A field with no input, just a HTML-formatted label. Useful for

adding descriptive text to our form.
Rich Text Field A field that renders the default rich text editor widget to insert

rich HTML formatted data.
Selection Field A field that lets a user choose a single value from a list. Can render

as a selection list, a drop-down menu, or as a list of radio buttons.
String Field A field that lets a user input a single line of text. This is the

standard general-purpose text field.
Text Field A field that lets a user submit a longer chunk of text. Renders as a

multi-line text box.
Whole Number Field A field for storing a normal integer. This is the best field to use for

simple numerical responses.

Intranet Add-on Products

[160]

Action adapters
The following list shows the action adapters available:

Action name Description
Custom Script Adapter Allows us to write python scripts for simple form actions

without having to use the Zope Management Interface.
Mailer Adapter An adapter that e-mails form submissions to one or more

users. It can optionally encrypt the e-mails using GNU
Privacy Guard (GPG) encryption, if it is installed on our
system. We can find more information about how to use GPG
at http://www.gnupg.org/.

Save Data Adapter An adapter that saves form submissions inside the form. Let
us view the results on screen, and download as tab- space or
comma-delimited text.

Other content types in a form folder
A form folder can also contain these other content types:

Content type name Description
Fieldset Folder Lets us render sets of fields on our form. It's a folderish object

into which we can place fields. Each Fieldset Folder will
render as an HTML <fieldset> in the form. This is useful for
giving our forms different sections and structure.

Image A normal Plone image, which we may want to refer to in our
form, perhaps in a Rich Label Field, a Page, or a Thanks Page.

Page A normal Plone page. We may use these as "thanks" pages if
we don't need to display input.

Thanks Page A page, which will be displayed to the user after they submit
the form. We can create multiple Thanks Pages and use logic to
choose which one the user receives.

Chapter 9

[161]

Extensibility and third-party products for PFG
PloneFormGen is designed to be highly extensible. Although for an intranet use case,
in the vast majority of cases the default field types will suffice, we can program new
field types or action adapters very easily.

There are also third-party products that extend PloneFormGen, for example
Salesforce PFG Adapter, a product to integrate Plone with Salesforce.com
CRM database.

Captcha integration
It's possible to integrate a CAPTCHA (test used in computing to ensure that the
response is not generated by a computer) field with the products collective.
captcha and collective.recaptcha. Just make sure that these products are
installed and available for Plone when we install PFG and the installation process of
PFG will enable the integration with them. Install these two products as usual, for
collective.recaptcha.

Intranet Add-on Products

[162]

Insert these additional lines in the specified sections of our buildout.cfg file:

[buildout]
...
eggs = collective.recaptcha
...
[instance]
...
zcml = collective.recaptcha

Then, rerun buildout:

$./bin/buildout

$./bin/instance fg

collective.recaptcha uses the Carnegie Mellon University's recaptcha.net service.
We will need to register an account on http://recaptcha.net and get a public/
private keypair. Registering an account for recaptcha is free. Set the keypair in the
PFG configlet in the site control panel.

For more information, refer to the project page, on plone.org:
http://plone.org/products/ploneformgen and
http://plone.org/products/ploneformgen/documentation.

Blogs
There are a lot of good products that enable adding blogs in our Plone site. Although
one may think that a blog is not a common application inside an intranet, it is a
very usual use case. A blog is an inestimable sharing and collaboration tool. It
is very valuable for communication between teams or departments inside a
corporate intranet.

For example, nowadays it's common to see a corporate blog display the news
announcements or product updates of the company (or a team or group). The
research information generated by a specific team or the IT team updates of the
company systems are also eligible to be a blog.

Here we are going to cover two options; one simple and one fully featured.

Quills
Quills is basically the blog Plone product with more history. It is designed to provide
specialized features for a multi-blog, multi-user environment. It's probably the more
complete blog product, but also the more complex one to use.

Chapter 9

[163]

Installation
Insert these additional lines in the specified sections of our buildout.cfg file:

[buildout]
...
eggs = Products.QuillsEnabled

Then, rerun buildout:

$./bin/buildout

$./bin/instance fg

Go to the Add-on Products control panel configlet and install it.

Features
To create a blog, we can simply add a new folder and select Activate Blog from the
Actions menu. Existing folders can be turned into a blog in the same way.

Quills have the following main features:

•	 Uses Plone folders, documents, and news items as blog entries
•	 Uses Plone's machinery for comments
•	 Archival entry paths, access blog archives via standard paths, such as

http://example.com/myblog/archive/2004/04/06/

•	 Topics with descriptions and images
•	 BloggerAPI support for remote posting
•	 Trackback pings
•	 Site-wide blog aggregator
•	 Blog planets for groups
•	 Multiple topics and advanced topic searching with simple URLs, such as

http://example.com/myblog/topics/work/project/

•	 Include all the post body in the RSS feed
•	 Custom Quills portlets

Intranet Add-on Products

[164]

The following screenshot shows the main view of a Quills blog:

Quills portlets
The product provides some bloggish-like portlets. As any portlet, they can be
reordered, removed, and assigned to any portlet column. We can manage them
through the Manage portlets link. Following are the Quills portlets:

•	 Tag Cloud: A list formed from the keywords assigned to each post. It has the
typical visually weighted design according to the number of appearances of
the keyword assigned to content.

•	 Weblog Archive: A chronological list of all the posts

Chapter 9

[165]

•	 Weblog Admin: A collection of links leading to special forms and actions,
such as the Configure Blog form.

•	 Recent Entries: The list of the most recent entries.
•	 Recent Comments: The list of the most recent comments.
•	 Weblog Authors: A list of the blog contributors.

Configuring the blog
Quills have a special form to set up some aspects and behavior of the product:

•	 Only excerpt in weblog view: When enabled, shows only the title and
excerpt in the main weblog view. If an entry has no excerpt, only its
title will be displayed.

•	 Group by dates: When enabled, entries will be grouped under a header
showing the date. Otherwise, the entries will be just shown under each other.

•	 Entries per page: Selects the number of weblog entries we would like to
display on the front page and any other batched pages.

•	 Show topic images in weblog view: This controls the display of topic images
in the weblog view.

•	 Enable the receiving of trackback pings: This controls whether trackback is
enabled in the weblog.

•	 Archive URL prefix: Allows (optionally) injecting a segment into archive
URLs after the weblog segment.

•	 Show 'About' info: If selected, the item creator and modification date
will be shown.

•	 Published workflow states: Workflow states will be treated as published.
•	 Draft workflow states: Workflow states will be treated as draft.

We can find more information in the PyPI website:
http://pypi.python.org/pypi/Products.
QuillsEnabled.

Scrawl
Scrawl is a lightweight bloggish product for Plone. Compared to other Plone blog
products, it is deliberately very minimalistic.

Intranet Add-on Products

[166]

Installation
Insert these additional lines in the specified sections of our buildout.cfg file:

[buildout]
...
eggs = Products.Scrawl

Then, remount buildout:

$./bin/buildout

$./bin/instance fg

Go to the Add-on Products control panel configlet and install it.

Features
It uses a cloned News Item content type to be used as a blog entry. It also uses
a slightly tweaked view template and adds an alternative view to the collection
content type called blog_view, available in the Display menu. This view either
shows the description of each contained blog entry (if it exists) or the entire body in
it. So it's up to the user to limit those results in collection settings, otherwise the page
may take too long to load.

With these elements, plus Plone's built-in features, it is easy to quickly construct a
simple, powerful blog.

We can find more information about Scrawl on plone.org:
http://plone.org/products/scrawl or the PyPI website:
http://pypi.python.org/pypi/Products.Scrawl. More
information on how to set up a blog with Scrawl is available at:
http://plone.org/products/scrawl/documentation/
how-to/creating-a-blog-with-scrawl.

Discussion board
An old-fashioned discussion board is always appreciated. It's true that it may be
replaced by other forms of web applications used for communication, such as blogs,
but in some cases, a discussion board is irreplaceable.

We are going to cover the most popular board in Plone's community—PloneBoard.

Chapter 9

[167]

PloneBoard
PloneBoard takes advantage of Plone's machinery to work. There are other alternatives
that use external relational databases, but PloneBoard stores its information in content
types. It doesn't pretend to be a fully-featured message board, but will stay minimal in
the sense that it's living inside an existing content management system.

Installation
Nowadays this product is under development, being revamped and adapted to Plone 4.
In order to make it work for Plone 3, we should pin the version of this product to 2.0.1.
Insert these additional lines in the specified sections of our buildout.cfg file:

[buildout]
...
eggs = Products.Ploneboard
...
[versions]
Products.Ploneboard = 2.0.1
Products.SimpleAttachment = 3.3

Then, rerun buildout:

$./bin/buildout

$./bin/instance fg

Go to the Add-on Products control panel configlet and install it. It has a dependency
on Products.SimpleAttachment, but the buildout process will download and
install it for us.

Intranet Add-on Products

[168]

How it works
Ploneboard has three content types:

•	 Message board
•	 Forum
•	 Conversation

The message board content type is a folderish type that contains forums. Forums in
turn contain conversations which can be replied to.

Message board is the type that contains all the board information. We can set up
the name of the board and the categories that the contents of the board may be
assigned. From the main board view, we can configure the RSS feeds associated to
the board and the moderation view, which shows all the conversations pending to
be approved. It also has two kinds of default views—Global forum listing view and
Local forum listing view. Two additional links to special views are also available on
the top right corner: Show recent activity and Show all unanswered.

Forums are intended to be used as main generic topics on the board. We can
configure the RSS feeds associated as well.

Adjusting permissions on Ploneboard for
intranet use
Ploneboard defines several custom workflows assigned to its content types but they
do not use the Plone 3 role schema, although we can use them as a template to create
our own set of workflows suitable for our intranet.

We can find an example set of workflows for Ploneboard in the support code of this
chapter. We can install them by installing a custom add-on product called packt.
p3intranets9 in our buildout, or use the supplied one. Add these additional lines
in the specified sections of our buildout.cfg file:

[buildout]
...
eggs = packt.p3intranets9
...
[instance]
...
zcml = packt.p3intranets9

Chapter 9

[169]

Then, rerun buildout:

$./bin/buildout

$./bin/instance fg

Go to the Add-on Products control panel configlet and install it. A new set of
workflows will be assigned to the PloneBoard content types. We can check it
out on the portal_workflow tool in the ZMI.

For the Message Board content type, we can choose from the following states:

•	 Open: Contributors can add Forums, and editors and managers can
manage them

•	 Private: Only editors and managers can access them

For the Forum content type, we can choose from the following states:

•	 Require be contributor to post: Contributors can add conversations and
comments, whereas editors and managers can edit and manage them

•	 Moderated forum: Contributors can add conversations and comments, but
they are moderated by users with the Reviewer role

•	 Private to members only: Only editors can add conversations and comments
whereas users with other roles have no access

Conversations also have the following workflow states to control their behavior:

•	 Active: Depending on the forum workflow, the comment will be visible to
users, and owner can modify them

•	 Locked: Only editors and managers can modify them
•	 Pending: Only owner can modify them
•	 Rejected: Can be modified by editors and managers, whereas only owner

can view them

We can find more information about Ploneboard on the PyPI website:
http://pypi.python.org/pypi/Products.Ploneboard.

Intranet Add-on Products

[170]

Polls and surveys
There are several use cases in which we need to ask a single question or a very
specific format of form. They might have statistics and support views (such as
portlets), and display the results in a fashionable way. Although a form generator
such as PloneFormGen could do the job of gathering and storing data, the results are
not formatted and ready for publication.

There are some products that do the right work when publishing the results,
but do not have as many features as PloneFormGen. We will cover two of them:
PlonePopoll and PloneSurvey. Although there was not much activity on the
development of these products, they are still very useful.

PlonePopoll
This is a very simple tool to make available a single question with a set of predefined
choices. The poll is meant to be displayed on a Plone portlet. We can place the
PlonePopoll portlet anywhere on the site, as any other portlet. The results are
displayed as a bar chart on the same portlet or in the view of the content object.

Installation
Insert these additional lines in the specified sections of our buildout.cfg file:

[buildout]
...
eggs = Products.PlonePopoll

Then, rerun buildout:

$./bin/buildout

$./bin/instance fg

Go to the Add-on Products control panel configlet and install it.

How it works
PlonePopoll has only one custom content type—Poll. This content type can be added
anywhere in our site. We should define how the results should be shown. There are
two options—before the user answers the question, or only after it.

While adding the portlet in a folder, we should configure how the portlet will show
the available polls. There are some choices:

•	 Hidden: The portlet remains hidden from all users

Chapter 9

[171]

•	 Newest poll: The portlet shows all the polls in the site, reverse ordered
by date

•	 First poll in branch: When branch is meant to be the current folder
•	 First poll in branch and sub branches: It displays the results of the first poll it

finds in a folder branch and its sub branches.
•	 By specifying a concrete poll: It displays the result of a poll selected

by the user.

We can configure the number of polls to be shown in the portlet as well.

The vote gets registered and tied to the user name. Although we can vote again, our
vote will replace the former one. In case of an anonymous vote, PlonePopoll registers
the vote using cookies.

Adjusting default permissions for polls
We will need to adjust default permissions for polls in order to make them compatible
with Plone 3 role schema. Following are the permissions that need to be adjusted:

•	 Popoll: Add polls: Adds Contributor and Manager
•	 Popoll: Edit polls: Adds Editor, Manager, and Owner
•	 Popoll: Vote: Adds Contributor, Editor, Manager, and Owner

These role mappings will be installed if we install the product packt.p3intranets9
included in the support code of this chapter. We can find the complete Generic
Setup rolemap.xml profile in the profiles/default folder of this product.
More information on Generic Setup profiles is available in Chapter 10,
Basic Product Development.

Taking advantage of local roles with polls
We can use local roles to show polls only to a selected number of users, based on
their rights. Take advantage of these roles to create private polls.

We can find more information about PlonePopoll on the PyPI website:
http://pypi.python.org/pypi/Products.PlonePopoll.

Intranet Add-on Products

[172]

Plone Survey
Plone Survey is a powerful product written to collect data from people, such as
feedback on a course, simple data collection, and so on. It has support for multiple
choice and free answer questions. It also provides several views for displaying the
results in several formats such as HTML, CSV, bar charts, and so on. It's also possible
to configure the survey behavior by defining branches depending on the user input.

Installation
Insert these additional lines in the specified sections of our buildout.cfg file:

[buildout]
...
eggs = Products.PloneSurvey

Then, rerun buildout:

$./bin/buildout

$./bin/instance fg

Go to the Add-on Products control panel configlet and install it.

How it works
PloneSurvey provides the following content types:

•	 Survey: A folderish object that may contain survey fields.
•	 Survey matrix: Useful when we have several questions that share the same

possible answers.
•	 Survey select question: A single question with several possible answers

displayed as a selection widget.
•	 Survey text question: A single question with a single question for which the

answer should be in the form of text.
•	 Sub survey: We can define a sub survey which in turn can contain more

survey fields. Each sub survey, will be shown as a different page with a next/
previous control.

Chapter 9

[173]

Once the survey content type is created, it's empty, and we can add survey fields to
it. A logged in user can complete the survey or save it for completing it later. We can
specify several attributes of the survey as well, such as:

•	 Thank you message text: Shown when the user submits the results
•	 Saved message text: Shown if the user saves the results for later completion

of the survey
•	 Exit URL: If we want the user to be redirected to a specific URL

on completion
•	 Confidential: Marks the results as confidential; the user remains hidden
•	 Allow anonymous: Allows unauthenticated users to answer the survey
•	 Allow save: It allows logged in users to save the survey for finishing it later
•	 Survey notification e-mail address: It will send a notification each time a

survey is completed
•	 Survey notification method: Brings about survey notification

Adjusting default permissions for surveys
We will need to adjust default permissions for surveys in order to make them
compatible with Plone 3 role schema. These are the permissions that need to
be adjusted:

•	 PloneSurvey: Reset Own Responses: Adds Contributor, Editor, Manager,
and Owner

•	 PloneSurvey: View Survey Results: Adds Editor, Manager, and Owner

These role mappings will be installed if we install the product packt.p3intranets9
included in the support code of this chapter. We can find the complete Generic
Setup rolemap.xml profile in the profiles/default folder of this product.
More information on Generic Setup profiles is available in Chapter 10, Basic
Product Development.

We can find more information about PloneSurvey on the PyPI website:
http://pypi.python.org/pypi/Products.PloneSurvey.

Intranet Add-on Products

[174]

Document files management
Eventually, our intranet will contain a lot of files. Hence, we should have the right
tools to ease the management and consumption of files for our users. A very valuable
feature that Plone provides out-of-the-box is indexing of PDF and MS Word files if a
suitable support application is installed on the production server. The tools that we
cover in this section are intended not only to index more file types, such as MS Office
and OpenOffice file formats, but also to preview them on our Plone site without
having to download and open them with a suitable desktop application.

ARFilePreview and AROfficeTransforms
These two products take care of providing the ability to index and preview a variety
of file formats. These include:

•	 MS Office formats (DOC, XLS, PPT)
•	 OpenOffice formats (SXW, SXC, SXI, ODT, ODS, ODP)
•	 PDF
•	 ZIP

Installation
Insert these additional lines in the specified sections of our buildout.cfg file:

[buildout]
...
eggs = Products.ARFilePreview
 Products.AROfficeTransforms

Then, rerun buildout:

$./bin/buildout

$./bin/instance fg

Go to the Add-on Products control panel configlet and install both of them.

Features
ARFilePreview adapts the existing file content type. It provides a built-in HTML
preview of the file and full text indexing without the need of any other tool.
ARFilePreview uses standard Plone tools in order to do the trick. ARFilePreview is
fully compliant with WebDAV, External Editor, FTP, and any third-party mass loader.

Chapter 9

[175]

Additional software required
AROfficeTransforms contain new transforms and need additional software to be
installed on the server. GNU/Linux-based servers need the following binaries:

•	 ppthtml

•	 xlhtml

•	 wv

•	 xsltproc

•	 unzip

•	 pdftohtml

For a UBUNTU-based server, we should install the packages containing these
binaries, executing the following command line:

$ sudo apt-get install ppthtml xlhtml wv xsltproc unzip poppler-utils

We can find more information about these products on the PyPI
website: http://pypi.python.org/pypi/Products.
ARFilePreview and http://pypi.python.org/pypi/
Products.AROfficeTransforms.

OpenXML
This product provides indexing and a set of icons for MS Office 2007
OpenXML-based documents.

Installation
Insert these additional lines in the specified sections of our buildout.cfg file:

[buildout]
...
eggs = Products.OpenXML

Then, remount buildout:

$./bin/buildout

$./bin/instance fg

Go to the Add-on Products control panel configlet and install both of them.

Intranet Add-on Products

[176]

Dependencies
OpenXML has the following requirements:

•	 openxmllib 1.0.0 for Python (http://code.google.com/p/openxmllib/)
•	 lxml

However, the buildout process will take care of the dependencies and will download
and install them.

We can find more information about this product on the PyPI website:
http://pypi.python.org/pypi/Products.OpenXml.

Summary
We have exposed a suitable stack of products addressed to intranets. We have
covered the most reliable, maintained, and fully-featured set of Plone's third-party
add-on products.

•	 Calendaring and events management
•	 Blogs: Quills and Scrawl
•	 Discussion board: PloneBoard
•	 Form generator: PloneFormGen
•	 Surveys and polls: PloneSurvey and PlonePopoll
•	 Document management

In the next chapter, we will introduce how to create our own add-on product for our
intranet and how to use the power of Generic Setup to do the initial setup.

Basic Product Development
We've discussed a lot about third-party products; how to install them, how to choose
them, and we've even made a recompilation of the most interesting products for an
intranet. Now it's time to cover how a product is made. This chapter is also meant to
serve as a guide to know where to find things in any Plone product.

But first of all, let's begin by making things clear: this chapter is merely introductory,
and its intention is to introduce the reader to the basics of Plone product
development, its jargon, the technologies implied, and its entities. We will learn
more about GenericSetup, a core Plone component, and it will help us accomplish
simple tasks, but with valuable results.

For more complicated use cases and in-depth learning of Plone product development,
I strongly recommend the Bible of Plone developers: Martin Aspeli's, Professional Plone
Development published by Packt.

This chapter will cover the following topics:

•	 Making a product with PasteScript templates
•	 GenericSetup (GS)
•	 Cloning a content type via GS
•	 Using GS to configure security
•	 Dexterity: A new compelling way to create content types

Basic Product Development

[178]

Later on in this chapter, we will cover a new compelling way of building new
content type—Dexterity. This new technology allows us to create a content
type using the web content types, and choose how they will behave, and
their functionality.

For all examples in this chapter, it is assumed that we have installed all
the software explained in Chapter 2, Getting Started. If not, we will have
to install PasteScript and ZopeSkel, as instructed in Chapter 2.

Building our own product
Building our own custom product for Plone is not a big deal. PasteScript will help us
generate all the boilerplate needed to build a Plone product egg.

In a buildout, there is a special folder called src. This folder is reserved for the
products eggs in development. The development eggs should be declared in our
buildout.cfg file in order to instruct the buildout to load them each time the buildout
process is launched. Hence, we will proceed to create our new product in this reserved
folder. But first, we will have to decide the name and the namespace for our package.

Naming our product
Eggs can share a single top-level namespace; this makes possible the distribution
of multiple packages that share the same top-level namespace. This is in fact a
feature of setuptools. For example, the packages plone.theme and plone.portlets
both share the top-level "plone" namespace, but they are distributed as separate
eggs. When installed, each egg's source code has its own directory (or possibly a
compressed archive of that directory).

Namespaces are useful to avoid collisions and logically group related functionality,
both in packages and as a general programming principle. They can be used
for description, ownership, categorization, and branding. However, there are
some conventions on namespaces as well in the community. For example, use
plonetheme.* for theme eggs. There are opinions for all likings, but we will only
say one thing: don't abuse the use of namespaces and use common sense.

Chapter 10

[179]

We can do double nesting of the namespace of an egg, but it should be avoided
unless there's a good reason. For example, the namespace plone.app.* is meant to
refer to an egg that contains the code for specific functionality only reusable in Plone,
while plone.* refers to eggs that contain core coding, and probably reusable outside
the Plone world.

The use of the Products.* namespace can be avoided since Plone 3.3 because it
includes the z3c.autoinclude package. It's only used for old-style products that
have been eggified or upgraded to Plone 3. We can add some lines of code to our
egg that makes the use of ZCML slugs unnecessary.

We can learn more about how to name our products in this
entry of Martin Aspeli's blog: http://www.martinaspeli.
net/articles/the-naming-of-things-package-
names-and-namespaces.

So, for all the following examples we are going to name our product firstproduct
and we will include it in my namespace.

Creating the egg
Inside our buildout folder, change the current folder to the src folder:

$ cd src

Let's generate our egg by typing the following command line:

$ paster create -t plone my.firstproduct

This will instruct paster to create a new Plone product egg called my.firstproduct
using the plone template, included in ZopeSkel package.

ZopeSkel asks to use the question mode during the generation of the package.
The easy mode is very suitable if we don't want an advanced customization of the
package. If we've already supplied the name and namespace of the package, the easy
mode will create the egg correctly using the namespace specified.

Basic Product Development

[180]

Anatomy of a Plone product egg
There are some conventions and best practices in Plone (or Zope) product
development. The reason is to keep products standardized and homogeneous.
Following is the schema of the folders and files generated by ZopeSkel.

Egg documentation files
The egg contains three documentation files: HISTORY.txt, INSTALL.txt, and
README.txt. The first two are present in the docs folder and the last file in the root
of the package.

The aim of file HISTORY.txt is to contain all the changes made to the package
throughout its life cycle. The file, INSTALL.txt, is used to contain the instructions for
installing the package successfully.

The file README.txt is intended to contain all the relevant documentation information
about the package. Don't forget to document your product well! This will help us and
others understand the purpose, functionality, and features of our product.

LICENSE.GPL and LICENSE.txt provide the standard GNU Public
License information.

Chapter 10

[181]

Egg setup files
There are two configuration files in the root of the package: setup.py and setup.
cfg. They are used to contain some important egg metadata and attributes. This is
the default content of the setup.py file:

from setuptools import setup, find_packages
import os
version = '1.0'
setup(name='my.firstproduct2',
 version=version,
 description="",
 long_description=open("README.txt").read() + "\n" +
 open(os.path.join("docs", "HISTORY.txt")).
read(),
 # Get more strings from
 # http://pypi.python.org/pypi?%3Aaction=list_classifiers
 classifiers=[
 "Framework :: Plone",
 "Programming Language :: Python",
],
 keywords='',
 author='',
 author_email='',
 url='http://svn.plone.org/svn/collective/',
 license='GPL',
 packages=find_packages(exclude=['ez_setup']),
 namespace_packages=['my'],
 include_package_data=True,
 zip_safe=False,
 install_requires=[
 'setuptools',
 # -*- Extra requirements: -*-
],
 entry_points="""
 # -*- Entry points: -*-
 [z3c.autoinclude.plugin]
 target = plone
 """,
 setup_requires=["PasteScript"],
 paster_plugins=["ZopeSkel"],
)

Basic Product Development

[182]

Here we can set up the package version, description, keywords, author, URL,
dependencies (install_requires), entry points, and other package metadata. We
should fill these values carefully in case we want to release the package, for example
to PyPI. We will notice that the long_description will be compiled by joining the
README.txt and HISTORY.txt files. For these reasons, it is very important to keep
these files up to date.

For more information on how to release a package to Python
Package Index (PyPI), visit http://wiki.python.org/
moin/CheeseShopTutorial.

Main product content
Under the hierarchy of folders formed by the namespace and name of our package,
we will find the contents of the product. They will be a collection of code (*.py),
Zope's configuration files (*.zcml), page templates (*.pt, *.cpt), browser views,
skin layers, GenericSetup profiles, and so on. The location of all these types of files,
that is composed of a Plone product, is set by convention in designated folders inside
the egg package:

Type Location folder Description
Browser views and
templates

browser All the Zope browser views and the templates
associated to them are stored in this folder.
We also store the ZCML file with the
configuration of these views here.

Zope resources browser/stylesheets
browser/images

Folders used to store Zope resources in the
browser folder, separated by type.

Content types content This folder will hold all the code and
definition of any new content type.

GenericSetup
profiles

profile/default Here we store the GS profiles that set up
diverse aspects and initial configuration of
our site.

Zope Skin layers skin/* Inside this folder, we can find Zope skin
layers containing support resources for our
product, if any. They may contain page
templates, CSS files, and images.

Internationalization
files

i18n or locales The .po files containing the locales for our
package.

Portlets definition portlets This folder will contain the configuration,
templates, and code for portlets defined in the
package.

Test files tests Contains the test code for the package.

Chapter 10

[183]

As we've already noticed, ZopeSkel only generates the folder structure of the
package and the first configure.zcml file. Now we have all the boilerplate in place,
it's time to make it work.

ZCML configuration files
Zope Configuration Markup Language (ZCML) is used by products and modules
in the Zope Component Architecture (ZCA) to declare components and make them
available for Zope. Usually this process is called wiring, because it wires Python
classes and page templates with names, interfaces, and layers, and gives them
particular access permissions.

Although the ZCA was conceived initially for Zope 3, the Five module makes the
ZCA available for Zope 2. Recently, due to the overloading of the Zope 3 term, the
collection of libraries shared by Zope 2 and 3, along with some new additions to the
ZCA were replaced by a more generic name—the Zope Toolkit.

For more information on ZCA, Zope 3, and ZCML we can
go to Philipp von Weitershausen's WorldCookery.com:
http://worldcookery.com. For more information on the
Zope Toolkit go to: http://docs.zope.org/zopetoolkit/.

Initially, we will only have one configuration file. This file resides in the main
package folder, in our case in my/firstproduct, and is called configure.zcml.
It is almost empty by default with only a few lines of boilerplate, but ready for
us to complete it.

Making the product installable
Our package is innocuous for our buildout and does nothing special. Even if we
declare it in our buildout, the result will be unnoticeable. Before we tell our buildout
about it, let's make it available for Plone to install. We will accomplish this by adding
a few lines of code to configure.zcml:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:genericsetup="http://namespaces.zope.org/genericsetup"
 i18n_domain="my.firstproduct">
<five:registerPackage package="." initialize=".initialize" />
<!-- Register an extension profile to make the product installable ->
 <genericsetup:registerProfile
 name="default"

Basic Product Development

[184]

 title="My first Plone product"
 description="Here goes the description of my product"
 directory="profiles/default"
 provides="Products.GenericSetup.interfaces.EXTENSION"/>
</configure>

All ZCML files have XML markup format and the entire declarations are inside the
configure directive. We just have to add the genericsetup:registerProfile
directive provided by the namespace, genericsetup. This will instruct GenericSetup
to make portal_quickinstaller aware of our product.

If we don't want to define an i18n folder, we can delete the line (if it exists):

<i18n:registerTranslations directory="locales" />

Now, it's time to tell the buildout about our new product. In the buildout.cfg we
must add these lines:

[buildout]
...
develop = src/my.firstproduct
...
[instance]
...
eggs = my.firstproduct

Notice we should tell buildout that our product is under
development and we should treat it as a source egg. We do this by
including the egg path (relative to the buildout directory) in the
develop attribute declaration. We can add as many packages as
we want. It is not necessary to inform the buildout about including
a ZCML slug, because we have previously instructed our package
to use the z3c.autoinclude plugin in setup.py.

Next, just rerun our buildout again, and restart our instance:

$./bin/buildout

$./bin/instance fg

Chapter 10

[185]

Our product will be available for installation in control panel
Add-on products configlet:

We can install it as any other add-on product for Plone. The only thing is that our
product does nothing, yet.

The power of GenericSetup
Before continuing, we will have to take a short break to learn more about
GenericSetup. We've only mentioned it once or twice in the book, and explained it
very briefly, but in fact, it is an important component of Plone. So it's time to take
care of it. It basically features import and export information from our Plone site's
configuration. It uses profiles to achieve this. A profile is a collection of XML files,
which are mainly used to provide initial settings and configuration to our site and
some GenericSetup enabled add-on products.

Basic Product Development

[186]

It resides in the portal_setup tool in the ZMI. GenericSetup also features other
interesting functionalities, such as the ability to perform snapshots of the current
configuration of our site. We can save these snapshots to keep track of all the changes
we've made to our site throughout its life cycle. We can compare two snapshots, and
of course, export this information to XML files to replicate the same configuration in
other sites.

The Plone site creation process itself uses GenericSetup to provide all initial
configuration and settings to our new site. Products can also use this to configure
a site or to configure some aspect of the current site. This configuration is triggered
only when the product is installed.

Snapshots
If we access the portal_setup tool in the ZMI site root, we will see the default
view, which doesn't hold many interesting things but the log registries of the last
portal_setup transactions. The interesting part comes in the other tabs. Access the
Snapshots tab, and click on the button Create a Snapshot:

It will create a dump of all the relevant information about our site and it will store
it in the ZODB. We can access this information via the link created under Available
Snapshots. In the background following this link, we will find the view showing all
the XML files from the snapshot. Some of them are organized in folders grouped by
type or functionality, for example the workflow definition folder.

Each file refers to a particular functionality, tool, or site configuration. If we click on
any of them, the XML for that aspect of the site is shown. The following table is a
short list with an explanation of the most important GenericSetup XML files:

Chapter 10

[187]

Name of the XML file Description
actions.xml Describes all the actions stored in the portal_

actions tool. An action is an element that performs
some kind of task over a particular aspect of Plone.
Some of these actions are document actions (such as
print, send to, and so on), buttons, and folder options
(such as cut, copy, and so on). Portal tabs are also
actions.

catalog.xml Defines the site catalog indexes and metadata.
contentrules.xml The content rules defined in the site are described

here.
controlpanel.xml Holds the information about the configlets available

in the site.
cssregistry.xml,
jsregistry.xml

Defines the information about the site's CSS and
JavaScript resource registry.

factorytool.xml Describes which content types will use the factory
tool.

mailhost.xml Describes the site's mail setup.
memberdata_properties.xml Several default properties associated to any site user

are defined here.
portal_languages.xml The languages supported by the site are defined here.
portlets.xml Defines the portal portlets and initial assignments.
properties.xml Holds the main properties and attributes of the site,

such as the site's title, encoding, and so on.
propertiestool.xml It describes the site's properties sheets stored in the

portal_properties tool.
rolemap.xml Defines the root folder security permissions.
skins.xml We can find here the definition of the site's skin

layers.
types and types.xml The folder contains the definition of the site's types

and the file declares them.
viewlets.xml We can find the definition of the visibility of existing

viewlets, its position, and declarations for new
viewlets.

workflows and workflows.xml The folder contains the definition of each site's
defined workflow and the file enumerates them.

Basic Product Development

[188]

This dump defines the state of our site at the moment we take the snapshot. We
can use the information contained here to build our own GenericSetup profiles for
importing the configuration defined in them into the site. As a matter of fact, we can
use a snapshot as a template for our own definition profiles. More information on
this is available later in the chapter.

Importing and exporting a particular product
profile
We will find import and export under their respective tabs in portal_setup. We can
export the entire current site configuration to a tgz file that will contain the same
XML files and content, as shown in a portal_setup snapshot.

We can eventually import a particular configuration from a single file or another tgz
bundle containing GenericSetup information. However, it's easier to do it through a
custom product, as we will show in the next section.

Comparing snapshots and product profiles
A comparison between snapshots and product profiles is also available. It is intended
for easily detecting the differences between two configuration definitions. Let's see it
in action.

Provided we've already done an initial snapshot following the previous section's
examples, let's change the site title. Go to your Plone's instance ZMI root and access
the Properties tab. Change the title's property. Then, return to the portal_setup tool
and take another snapshot. Go to the Comparison tab and perform a comparison
between the previous snapshot and the latter one. The following screenshot is the
result; can you see the value I've set in my site title?

Chapter 10

[189]

Importing GenericSetup profiles from a
product
After this short introduction to GS, it's time to show how to work with it and get
the most out of our custom product. It's very easy to use it in our products, and it
gives immediate results and great value. It can help us in configuring and deploying
instances repeatedly.

We can put our custom GS profiles in the folder profiles/default of the main
product content, inside our custom product egg package. All these profiles will be
loaded into the site each time the product is installed.

Basic Product Development

[190]

We must follow the same names and folder hierarchy shown in a
portal_setup snapshot. It's recommended to take a snapshot
and use it as a template of the XML profiles we want to use.

Cloning content types via GenericSetup
This is a very useful feature, making use of GS profiles to define a new portal content
type by cloning an existing one, without writing any line of code.

Suppose we want to clone the default file content type and clone it into a more
specific content type; for example, to store all spreadsheets documents.

Particularizing content types
The example shown is a smart move in order to improve the search
for different kinds of content in our site. If our users are searching
for a specific type of file, it's easier to implement a custom search
for a more specific type of file than searching over a general content
type. It's a very commonly used practice in types management. We
can split a generalist content type, such as file into more specific
ones, for example spreadsheet, word processor, or PDF files. Other
content types can be split as well, such as news or events into press
releases or meetings. Users find this very useful and it helps us
build a more humane CMS.

The method is very simple. Generally, using snapshot information as a template for
our product profiles is a good practice. We should create a folder called profiles in
the main product folder and another one called default inside it.

$ cd src

$ cd my.firstproduct/my/firstproduct

$ mkdir profiles

$ cd profiles

$ mkdir default

$ cd default

In order to define a new content type, we must provide a types.xml file containing
the declaration of the new content type; and a folder called types, inside which you
should create a file with the name of the new content type. Let's say that the new
content type name will be spreadsheet. Then the file must be called spreadsheet.
xml. Use our favorite text editor to edit the types.xml file:

$ vi types.xml

Chapter 10

[191]

The types.xml file will contain this code, where we declare the existence of the new
content type:

<?xml version="1.0"?>
<object name="portal_types" meta_type="Plone Types Tool">
 <object name="Spreadsheet"
 meta_type="Factory-based Type Information with dynamic views"/>
</object>

Then create the folder:

$ mkdir types

$ cd types

And edit the spreadsheet.xml file:

$ vi spreadsheet.xml

The spreadsheet.xml will contain this code, where we define the attributes of the
new content type.

<?xml version="1.0"?>
<object name="Spreadsheet"
 meta_type="Factory-based Type Information with dynamic views"
 i18n:domain="plone" xmlns:i18n="http://xml.zope.org/namespaces/
i18n">
 <property name="title" i18n:translate="">Spreadsheet</property>
 <property name="description"
 i18n:translate="">An external spreadsheet file uploaded to the
site.</property>
 <property name="content_icon">file_icon.gif</property>
 <property name="content_meta_type">ATFile</property>
 <property name="product">ATContentTypes</property>
 <property name="factory">addATFile</property>
 <property name="immediate_view">file_view</property>
 <property name="global_allow">True</property>
 <property name="filter_content_types">True</property>
 <property name="allowed_content_types"/>
 <property name="allow_discussion">False</property>
 <property name="default_view">file_view</property>
 <property name="view_methods">
 <element value="file_view"/>
 </property>
 <property name="default_view_fallback">False</property>
 <alias from="(Default)" to="index_html"/>
 <alias from="edit" to="atct_edit"/>

Basic Product Development

[192]

 <alias from="sharing" to="@@sharing"/>
 <alias from="view" to="(selected layout)"/>
 <action title="View" action_id="view" category="object" condition_
expr=""
 url_expr="string:${object_url}/view" visible="True">
 <permission value="View"/>
 </action>
 <action title="Edit" action_id="edit" category="object"
 condition_expr="not:object/@@plone_lock_info/is_locked_for_
current_user|python:True"
 url_expr="string:${object_url}/edit" visible="True">
 <permission value="Modify portal content"/>
 </action>
 <action title="References" action_id="references" category="object"
 condition_expr="object/archetype_tool/has_graphviz"
 url_expr="string:${object_url}/reference_graph" visible="True">
 <permission value="Modify portal content"/>
 <permission value="Review portal content"/>
 </action>
 <action title="Download" action_id="download" category="object"
 condition_expr="member" url_expr="string:${object_url}/download"
 visible="False">
 <permission value="View"/>
 </action>
 <action title="External Edit" action_id="external_edit"
category="object"
 condition_expr="object/externalEditorEnabled"
 url_expr="string:${object_url}/external_edit" visible="False">
 <permission value="Modify portal content"/>
 </action>
</object>

This is the same code used to define a file content type, but with the slightest
difference indicated by the highlighted code, where you should customize these
properties with the cloned type ones. We can also modify other properties, such as
the content_icon file that will define the icon used in the Add new... menu.

We must reinstall the product in the Plone control panel, under the Add-on products
configlet to apply the changes. Now, we should see the new content type available to
use in the Add new... menu.

Chapter 10

[193]

We can make the new content type factory tool aware. This tool enables a temporary
stage for a content type at the moment of its creation. If the creation of the content
type is not completed, then the object is discarded. We can enable the factory tool for
our new content type by declaring it in the factorytool.xml file:

<?xml version="1.0"?>
<object name="portal_factory" meta_type="Plone Factory Tool">
 <factorytypes>
 <type portal_type="Spreadsheet"/>
 </factorytypes>
</object>

Using a product to configure security
As pointed out in Chapter 6, Managing Workflows, we can use GS to configure two
security aspects of our intranet: default role map assignment to permissions and
configure existing workflows or define new ones.

Defining role map assignment to permissions
We can define role map assignment to permissions and define new roles as well with
a GS profile. The file used to do this task is called rolemap.xml. This is an example of
a rolemap.xml file, if we need to define new roles for our site:

<?xml version="1.0"?>
<rolemap>
 <roles>
 <role name="CanDelegateRoles"/>
 </roles>
...

To map this new role, we've just created a permission:

...
 <permissions>
 <permission name="Sharing page: Delegate roles"
 acquire="True">
 <role name="CanDelegateRoles"/>
 </permission>
 </permissions>
</rolemap>

Basic Product Development

[194]

Use the role definition inside the roles directive to define new roles for our site.
We can add as many roles as we want, but as a rule of thumb, just create those roles
which are really needed and try to make them as descriptive as possible.

Creating new workflows or modifying
existing ones
Creating new workflows via GS is also possible. We can modify existing ones as
well. There are several files and folders involved with workflows inside a GS profile,
such as the workflows.xml file and the workflows folder.

The file, workflows.xml, defines which workflows will be managed by this GS
profile. Let's use the myintranet_workflow created in Chapter 7, Securing our Intranet
as an example. We can find it in the support code of Chapter 7. We can define it in
the file workflows.xml in the following way:

<?xml version="1.0"?>
<object name="portal_workflow" meta_type="Plone Workflow Tool">
 <object name="myintranet_workflow" meta_type="Workflow"/>
</object>

Notice that in this file we should only declare which workflows will manage this GS
profile. The actual definition for each of the declared workflows should be stored
inside a folder with the same name of the workflow located inside the GS profile
workflows folder. The file containing the workflow information should be stored in
a file named definition.xml. For the myintranet_workflow example, we will find
a myintranet_workflow folder inside the GS profile workflows folder containing the
file definition.xml with the following contents:

<?xml version="1.0"?>
<dc-workflow workflow_id="myintranet_workflow"
 title="My example intranet workflow"
 description="A workflow having three states: private,
draft and intranet."
 state_variable="review_state"
 initial_state="visible">
 <permission>Access contents information</permission>
 <permission>List folder contents</permission>

Chapter 10

[195]

 <permission>Modify portal content</permission>
 <permission>View</permission>
 <state state_id="intranet" title="Intranet">
 <description>Intranet state.</description>
 <exit-transition transition_id="retract"/>
 </state>
 <state state_id="private" title="Private">
 <description>Can only be seen and edited by the owner.
</description>
...

The contents of this file have been cropped because it's very
extensive to cover it in this book. However, we can find it in the
folder my.firstproduct/my/firstproduct/profiles/
default/workflows/myintranet_workflow/definition.
xml in the support code of Chapter 7, Securing our Intranet.

The structure of this file is complex and large because of the number of elements
and variables involved in a workflow: states, transitions, scripts, variables, and so
on, should be defined and configured. Although we can modify it directly, it's more
common to use the tools provided by Plone to define or modify a workflow and
then export it.

We can take advantage of GS snapshot and export features to build
our own GS workflow definition for our custom product. Just
create and adjust our custom workflow with the tools and methods
provided in Chapter 6, Managing Workflows and then export it.
Then add the definitions to our custom product. Once done, we
will have our custom workflow ready to use in any of our sites by
installing our custom product in them.

We can modify an existing workflow as well by redefining it using GS, in the same
way we create a new workflow.

Basic Product Development

[196]

Dexterity
This is another word to add to the already long list of Plone's jargon. But what an
awesome and extraordinary one! Dexterity is a content type framework for CMF
applications. Dexterity is said to be the successor of Archetypes, the current content
type framework used by Plone, as it is more lightweight and modular. Following are
the Dexterity key features:

•	 We can create a content type entirely through the Web without any previous
programming knowledge

•	 We can create content types easily and quickly using filesystem code
•	 We can assign general behaviors to a content type, such as title to ID

naming, support for locking and versioning, add sets of metadata and add
multilingual extensions

•	 We can augment content types designed through the Web or filesystem with
adapters, event handlers, and other Python code written on the filesystem

•	 We can easily package and distribute content types designed through the
Web, filesystem, or a combination of the two

Based on Zope Toolkit technologies, Dexterity is designed to be small, and easy to
learn. As it reuses existing concepts, it doesn't rely on generated code, and tries to
avoid things that happen automagically.

An intranet can gain a lot of profit from a tool like this. Imagine people that need
a particular content type to store some information. The normal process would be
to ask you or your IT department for a new content type. With Dexterity, it would
be very easy for a non-technical user to build an entirely new content type, add the
fields and behaviors he or she may need, and make it available to all intranet users.

However, at this point, Dexterity is still in alpha stage, and is not ready for
production, although we can use it at our own risk. It's expected that the first beta
version would be available when Plone 4 is ready.

We can find an excellent tutorial written by Martin Aspeli on plone.org.
He is leading the Dexterity project, so it guarantees solid code and good
work. We can find it at http://plone.org/products/dexterity/
documentation and http://plone.org/products/dexterity/
documentation/manual/developer-manual.

Chapter 10

[197]

Summary
This chapter is a brief introduction to product development. It gives an in-depth
knowledge, aims at introducing the reader to the basics, and addresses him to the
right places and texts to learn more about the matter.

It covers the following topics:

•	 Making a product with PasteScript templates
•	 GenericSetup (GS)
•	 Cloning a content type via GS
•	 Using GS to configure security
•	 Dexterity: a new, compelling way to create content types

By now, we should be used to development jargon, the technologies implied, and
also how an add-on product is structured. We've learnt how to take advantage of
GenericSetup and use it to configure our site security. We should also know where to
get more information about this subject.

In the next chapter, we will learn about how to theme our intranet.

Content Rules, Syndication,
and Advanced Features

Some of Plone's advanced features at user level are worth having their own section. All
of them have a direct impact on how our users use the intranet, and most importantly,
they are the catalyst to an alive and more dynamic intranet. A dynamic intranet is
in constant change and users update its contents frequently. In this chapter, we will
cover the following topics:

•	 Content rules: They will allow us to define a set of actions and tasks
triggered when some event happens in our site, or in a folder tree. Both the
actions and events are user configurable and help us make our site dynamic.

•	 Syndication: This is often very important in order to keep our users posted
when something changes in our intranet. Not only collections are syndication
aware, we can also make any folder in our site export the objects it contains
as an RSS feed.

•	 Versioning: This is another notable Plone feature and very useful in an
intranet scenario. In few words, our users will love it.

•	 WebDAV access: WebDAV access to content, along with external editing,
will enable communication between our user's desktop and the intranet,
taking our user's productivity to its maximum.

•	 External editing: This feature will allow us to edit any file content type with
the suitable desktop application and save it on the fly.

Content Rules, Syndication, and Advanced Features

[200]

Content rules
Plone features a usability layer around Zope's event system, allowing plain users to
create rules tied to the most used event handlers. These rules are composed of tasks
that get triggered when an event is raised in our site. Content rules are defined
site-wide in the Content rules configlet, and they are available for use in any
folderish object in our site. Once the rule is created, it can be locally assigned
to any folder object in the site.

Rules play a very important role in intranets. We can use them as a mechanism for
notification, and they also help in adding dynamism to our intranet. One of the most
demanded features in an intranet is the ability to be aware when content is added,
changed, or even deleted. The notification of this change to the users can be achieved
via content rules assigned strategically, or by user demand in any folder or intranet
application, such as forums or in a blog.

We can use content types to help us model some of our corporate processes or daily
tasks. Move or copy objects to other folders (done by users), just in case some of our
processes require this kind of an action. We can find other interesting uses of content
rules in our intranet, such as executing an action when a state transition is triggered.

All these actions can be carried out programmatically, but the power of content rules
lie in that they can be executed thorough the Plone UI and by any experienced user.

We can access the manage rules form via the Rules tab in any folder. If we don't
have any rules created, the form will address us to create them in the content rules
configlet. This control panel configlet will aid us to create and manage content rules
of our site:

Chapter 11

[201]

The form is divided into two parts. The first is dedicated to global settings applied
to all rules. In this version, there is only one setting in this category to enable and
disable the rules in the whole site. If deselected, the whole rule system is disabled
and no rules will be executed in the site.

The other part of the form is reserved for the rule management interface. Here
we can find the already created rules, manage them, and create new ones. We can
display them by type using the selector on the right.

Adding a new rule
Click on the Add content rule button. It will open a new form with the
following fields:

•	 Title: Title of the rule.
•	 Description: Summary of the rule.
•	 Triggering event: Starts the execution of the rule.
•	 Enabled: Whether or not this rule is enabled.
•	 Stop executing rules: Defines if the engine should continue the execution

of other rules. It is useful if we assign several rules to a container and the
execution of a particular rule excludes any other rule execution.

Content Rules, Syndication, and Advanced Features

[202]

By default, these are the available events:

•	 Object added to this container
•	 Object modified
•	 Object removed from this container
•	 Workflow state changed

After creating one rule at least, the configlet will let us manage the existing rules,
allowing us to perform the standard edit, delete, enable, and disable actions. But this
is only the first step. We've created the rule and assigned an event to it. Now it's
time to configure the task, which the rule will perform. There are two items to
configure—conditions and actions.

Chapter 11

[203]

We can add as many conditions as we want to, and modify the order in which they
can be applied. We can add the following types of conditions:

•	 Content type: Apply the rule only if an object of this type has triggered
the event

•	 File extension: Execute the action only if a file content type that has this
extension has triggered the event

•	 Workflow state: Apply only if a content type in the workflow state specified
has triggered the event

•	 User's group: Execute only if a user member of a specific group triggers
the event

•	 User's role: Same as User's group, but by a user having a specific role in
that context

The actions that a rule can execute are limited but they cover the most useful
use cases:

•	 Logger: Output a message to the message system log
•	 Notify user: Notify the user via a status message
•	 Copy to folder: The object that triggers the event is copied to the

specified folder
•	 Move to folder: The object that triggers the event is moved to the

specified folder
•	 Delete object: The object that triggers the event is deleted
•	 Transition workflow state: An attempt to change workflow of the object that

triggers the event via the specified transition
•	 Send e-mail: Send e-mail to a specific user

By default, only managers can define and apply new content
rules, but we can allow more user roles to access their creation.

Content Rules, Syndication, and Advanced Features

[204]

Assigning rules to folderish objects
Once the rule is created, we can assign them to any of Plone's folderish content types.
Just go to any folderish object and click on the Rules tab.

Just use the drop-down box Assign rule here to choose from the available rules and
click on Add. We can review what rules are assigned in this container and manage
them as well. We can enable, disable, and choose whether to apply them to
subfolders or only to current folders, and of course, unassign them.

Making any content type rule aware
All folderish default content types of Plone are content rule aware. However, not all
third-party content types are content rule aware. This is because either they are old
or simply do not enable this feature in the content type declaration.

In the case of third-party content types, which are not content rule aware, we can
enable their awareness by following these instructions: Add an object of the desired
content type anywhere in our site, if we haven't created it yet. Find it in the ZMI
and access the Interfaces tab. Once there, find the interface plone.contentrules.
engine.interfaces.IRuleAssignable in the Available marker interfaces fieldset.
Select it and click on the Add button. By doing so, we are assigning an additional
marker interface to that content type, which will enable (mark) this instance of the
content type (that is, make it aware of the content rule). From this moment onwards,
the selected object will have available the Rules tab, and in consequence, we can
assign rules to it.

Chapter 11

[205]

Syndication
Plone has always paid special attention to syndication, making its folderish
content types syndicable. As we have seen in Chapter 8, Using Content Type Effectively,
collections export their contents automatically in a view that all collections have—RSS
view. But we can also enable syndication for single folders on our site.

Using RSS feeds in our intranet is the recommended approach for keeping our
users posted about the changes in syndicated folders, if they are collections or
plain folders.

Enabling folder syndication
For enabling syndication for a particular folder, we need to access the view,
synPropertiesForm, from the folder we want to be syndicable. For example,
if we want to access this view in the ITStaff folder, we should browse the URL:
http://localhost:8080/intranet/ITStaff/synPropertiesForm

This view is hidden by default, although we can make it visible in
order to allow users to enable folder syndication by themselves. We
can make it visible by accessing the portal_actions tool in the
ZMI. Go to the object action category and choose syndication. Then
just make this action visible by enabling the Visible attribute and
choose who will be able to access this view by selecting the item
permissions in the Permissions selection box.

Once in the synPropertiesForm form, we should click on the Enable syndication
button. Then another form is shown to allow us to configure how the publication of
the feed will be performed. Following are the syndication details available:

•	 Update period: How often the feed will be updated
•	 Update frequency: How many times the update will occur inside the period

specified in the previous field

Content Rules, Syndication, and Advanced Features

[206]

•	 Update base: When the update will take place
•	 Maximum items: How many items the feed will show

Accessing a secure RSS feed
Syndication was conceived to access information from public resources. Inside an
intranet, it will be very common that the folder we want to enable for syndication
will be not published, and in consequence, the feed associated will be private. The
problem is that there are few feed readers that support feed authentication and
even using them. We will have to enable HTTP authentication in our site's PAS
configuration, which is not recommended. So we propose two workarounds.

We can use a feed enabled browser to browse our intranet and our feeds as well.
With this approach, if we are logged in, then we will have access to authenticated
feeds. Firefox and Internet Explorer already have this feature.

Chapter 11

[207]

The second approach is to have a special workflow state for the syndicated folders
inside our site for being accessible without authentication as anonymous users.
Obviously this workaround will make the folder content visible to anonymous users,
and it's not an option when privacy of the contained information is a must.

Versioning
Versioning has been around since Plone 3. It keeps track of all the changes made to
an object by saving them as revisions. These changes can be compared; we can undo
the changes made for a specific version and switch any previous version with the
current one.

Nowadays it's hard to conceive a CMS without a version system. Versioning is more
a requirement than a feature.

This feature used to live on an object tab called History, but since Plone 3.3 it was
moved to the History collapsible menu at the bottom of the standard view. This is
how it looks; a page with several changes and the History menu expanded:

Content Rules, Syndication, and Advanced Features

[208]

The Change note field of any content type is a part of the versioning system and
allows us to add a comment to any version before we submit the changes to the
server, creating a new version. This comment is stored with the version and is useful
as a description of the changes made to the object.

We can view what the page looks like in each version using the View this revision
link. We can compare each of the previous versions with the current one, and
comparison can be made between the previous versions as well. We can also revert
to the version we desire by clicking on the corresponding button.

The comparisons are made using a form that shows us the differences between
versions inline or as HTML code. We can also change the version number using the
Versions selector. The differences of the object's metadata can be seen as well.

Changing versioning policy
We can change versioning policy by using Plone's control panel Types configlet. If
we select one particular content type, we will find the Versioning policy drop-down
box. There are three settings: automatic, manual, and no versioning.

There are several ZMI tools implied in the versioning system as well. It's
interesting to show the functionality of two of them: portal_historiesstorage
and portal_purgepolicy.

Inside the first one, we can find information about storage statistics from current
versions in our site. We can check the following:

•	 Number of histories
•	 Number of versions
•	 Average versions per history

We can see the most versioned objects and their location too.

The number of versions stored is infinite by default. However, we can change the
behavior of versioning from portal_purgepolicy by changing the default infinite
value (-1) of the maximum number of versions to keep in the storage attribute to
the desired value.

Chapter 11

[209]

Recommended number of stored versions
It's expected to have a high profile of changes and modifications in
a moderately crowded intranet. It's advisable to keep the number
of versions to a sustainable value because it's related to the space
occupied by the object in the database. Every version we create of
any object is stored in the database and it never gets purged. Usually
keeping ten versions for all objects is a good practice and enough for
almost any use case.

WebDAV
Web-based Distributed Authoring and Versioning, or WebDAV, is a set of
extensions to the Hypertext Transfer Protocol (HTTP) that allows computer-users to
edit and manage files collaboratively on remote World Wide Web servers. RFC 4918
defines the extensions. It allows users to create, change, and move documents on a
remote server (typically a web server or "web share"). WebDAV allows us to interact
with our web content, as it was files and folders on our computer. We can literally
mount a WebDAV folder as a folder on our computer's filesystem.

Nowadays, every major operating system has a client implementation of WebDAV
and there are many third-party clients we can use. Windows Explorer, Nautilus, and
Konqueror for Linux, and Finder for Mac OS X have a WebDAV client built in.

The implementation of WebDAV clients is not homogeneous out
there. Every vendor has their own implementation and may slightly
differ from others. These few differences can cause the interaction
with our information to fail, so be careful about it. A test with our
preferred client on the most common activities when dealing with
WebDAV (copy, move, delete, rename) is highly recommended.

Any default, out-of-the-box Plone object is WebDAV aware and is accessible using its
URL. The idea is that we can mount a WebDAV resource from any of these clients by
using the object URL.

This is the complete set of instructions for Mac OS X:

1.	 Open Finder, select Go menu, and then Connect to server... or press
Command + K.

2.	 Specify the URL of the resource in the Server address field, for example, our
site's root: http://localhost:8080/intranet and then click on Connect.
We should be prompted for authentication.

Content Rules, Syndication, and Advanced Features

[210]

After a few seconds, we will be able to see the entire site's structure as filesystem
resources, via WebDAV:

Chapter 11

[211]

We can perform the same operations on displayed items as they were files or folders in
our filesystem. Copy, move, rename, and so on. If we have logged in as a manager, we
should be able to see the content and site's tools as well. If logged in as a plain user, we
will see the objects we are allowed to see depending on our permission rights.

The advantage in an intranet scenario is obvious. Having desktop client interaction
with our intranet is a valuable companion and an inestimable feature. Our users can
do massive file uploads, move and rename content, and even copy entire folders
from the site right to their desktops.

Managing WebDAV access permissions
There are some permissions involved with WebDAV operations:

•	 WebDAV access
•	 Manage WebDAV Locks
•	 WebDAV Lock items
•	 WebDAV Unlock items

Use them to restrict or allow WebDAV access to our intranet resources. By default,
only managers can access via WebDAV.

We can assign the desired roles to these permissions with a custom workflow, or
set them globally by setting the proper role mapping in the rolemap.xml file of a
GenericSetup profile in a custom add-on product.

External editing
When our users upload files to the intranet, eventually our users may want to
modify these files. The standard procedure will be simple but tedious: download it,
modify it locally with the associated software (let's say OpenOffice), save it locally,
and upload again (modifying the original file object type), and save it.

Plone features the external edition to overcome all that. With the help of an external
desktop application (External Editor), we can modify and save the file on the fly. This
little Python application (of course) does all the dirty work for us. It opens the file via
WebDAV, and launches the associated application in our computer with it. We can
modify it, and when we save the file, automatically save it via WebDAV, modifying
the original file on the server.

Content Rules, Syndication, and Advanced Features

[212]

External Editor also manages a WebDAV lock, so nobody else could modify the
object while we are editing it. When we close the application, the file is saved via
WebDAV and the lock is released.

Since External Editor is Python-based, it is multiplatform, and can be run on any
major platform. We can find the script (zopeedit.py) and a Windows packaged
version in: http://plone.org/products/zope-externaleditor-client.

Installing the External Editor
Getting this tool installed in our computer involves two things: installing a Python
script that takes care of the edition process, and the bindings with our default browser
that instructs it to launch the script for a special MIME type (application/x-zope-edit).

Windows
Installing it in Windows is very straightforward: just run the .exe provided and
External Editor will install it in our computer and will configure our default
browser bindings.

Linux
Installing it in a Linux machine is more manual because the packages included in
the official distros tend to be outdated. In case of UBUNTU, we can try this recipe as
there is a .deb software package in the UBUNTU repositories, but it's not updated.
However, we are going to use it as a base, as it will configure our browser's MIME
types correctly:

$ sudo apt-get install zopeedit

Download the updated zopeedit.py file from the URL:

$ wget http://plone.org/products/zope-externaleditor-client/
releases/0.9.11/zopeedit.py

Overwrite the original one installed by the .deb package by copying the updated
version we've just downloaded from our download folder to this path:

$ sudo cp zopeedit.py /usr/bin/zopeedit

After this, we will have the script updated and a ready-to-use External Editor when
we enable it on our profile.

Chapter 11

[213]

We should probably check out plone.org for the latest version of External
Editor. At the time of writing, 0.9.11 was the last version available.

Mac OS X
We need to download the External Editor packaging for OSX from plone.org:
http://plone.org/products/zopeeditmanager/releases/0.9.7/osx-installer.
It's a Cocoa-based application for Mac OS X that implements an External Editor called
ZopeEditManager.

Unzip the downloaded file (osx-installer.zip) and copy the application,
ZopeEditManager, to our /Applications folder. Launch it like any other
application. By default, it shows a window with the list of all the files being edited.
ZopeEditManager provides a GUI Preferences panel. Just choose Preferences... from
the ZopeEditManager menu. In this panel, we can adjust the helper applications,
WebDAV properties, and other configuration.

Enabling external editing
Any user can enable external editing in his site profile. We can access it by clicking
on our name's link on the personal toolbar and then clicking on Personal profile, or
accessing the personalize_form view.

Mark the Enable external editing checkbox to enable external editing for our user
and then save. When checked, a pencil icon will be visible on each page that allows
us to edit content using an External Editor. When clicked, External Editor will launch
the defined helper application with the specified file.

Modifying helper software
There are a number of MIME types associated with External Editor. However, we can
change it and specify our preferred application to use with external edition. There is
a configuration file located in our home called .zope-external-edit, in case of a
Linux box, or in our Documents folder, in case of a Windows computer. We can adjust
helper applications using the Preferences... panel in ZopeEditManager for Mac OS X.

Content Rules, Syndication, and Advanced Features

[214]

Summary
In this chapter, we've learnt about the following advanced content features and how
to take advantage of them.

•	 Content rules
•	 Syndication
•	 Versioning
•	 WebDAV access
•	 External edition

Don't hesitate to teach our intranet users about them; they will benefit a lot from it.
The content in an intranet is not meant to be static; it should be dynamic as our users
work with it and share information with each other. These tools will help them be
more productive and efficient in this task.

The next chapter will cover how to theme our intranet.

Theming our Intranet
Theming—what a huge subject in Plone!

Eventually, we will need to customize the look and feel of our intranet by branding
our site, such as customizing the logo, or doing some styling to match our company's
design style-guide.

There are a lot of technologies, techniques, and tools involved in Plone theming:
HTML, CSS, JavaScript, Zope's page Template Attribute Language (TAL), Plone
skin layers, Zope3-style viewlets and views, resource registries, and so on.

Don't worry if you are not familiar with any of these. Although it is totally out of the
scope of this chapter to cover all these subjects, we will try to synthesize them all and
cover the most important ones, focusing on those things that will provide immediate
value for us and our intranet. In this chapter, we will learn:

•	 How Plone renders the site
•	 Key Plone theming technologies
•	 Helper tools to implement theming easily
•	 Useful examples and recipes

For some sections of this chapter, a basic knowledge
of HTML and CSS will be necessary.

Theming our Intranet

[216]

Diving into Plone's page rendering
Plone combines the power of two types of resources into its core—the old-school
Plone's skin layers and Zope3-style resources, such as views and viewlets. Plone uses
them to add functionality, presentation, and theming (usually known as skinning) to
its sites. Let's see what happens when Plone renders a content object. We will come
across key theming concepts where we will make a break to explain these properly.

Let's assume a browser requests a URL from our site. Let's say this URL points out
to a content object, or a page to be more precise. Consider we have a page in a folder,
for example, http://localhost:8080/intranet/a-folder/a-page.

Following is a diagram of the workflow when Plone renders the page:

Chapter 12

[217]

Each time Plone receives a request for rendering a content object, it determines the
default view for that object. This value is stored as an attribute in the object and is
set (if several views for a content type are defined, for example in a folder) in the
display drop-down menu. The default view is in fact a Zope page template object,
represented by a .pt file. This file is usually stored in a Plone skin layer and, in
the case of page content type, it's called document_view.pt. It's located in the
plone_content skin layer.

Plone processes the document_view.pt template and determines that it contains
a whole page macro that should be processed as well. This macro is in main_
template.pt, located in plone_templates skin layer. Plone composes the resultant
page by processing both templates in parallel. Both templates contain references to
macros and viewlets that should be expanded and rendered. They will provide the
pieces of code that will compose our resultant Plone page.

Before we can continue with the workflow, we need to know more about Plone
skin layers, Zope page templates, viewlets, and a fundamental key concept in
Zope—acquisition.

Acquisition from parents
This is a key concept in Zope and it's a part of its very core. Any Zope object can
acquire any object or property from any of its parents. Let's say we have a folder
called a-folder that contains another folder called a-subfolder. A document called
a-page exists in our intranet site root:

A URL pointing to http://localhost:8080/intranet/a-folder/a-subfolder/
a-page would work even if a subfolder was empty. This happens because Zope
starts to look for the page where we pointed it out in the first place. If it doesn't
find the page, it goes back up to its parent where it's finally found and is
returned correctly.

Theming our Intranet

[218]

The complete explanation about acquisition is far more complex. We can
find out more about acquisition in the Zope documentation at this URL:
http://docs.zope.org/zope2/zope2book/Acquisition.html.

Plone skins tool
This tool, located at the root level of our Plone site, controls most of Plone's skin
engine, if not all. It extends the user interface of Zope's Content Management
Framework (CMF) by providing configurable and layered name lookup to Zope
resources, which may be any element involved with theming (templates, images,
scripts, and so on) made available to the content on the site in a controlled fashion.

CMF is an add-on product for Zope to build Content Management
Systems. It provides some basic tools for handling metadata,
members, and so on, but is not a CMS itself. Plone is an example
of a sophisticated CMS built using the CMF.

Skins and layers
Let's take a look at the Plone skins tool. Open our site ZMI and access the portal_
skins tool. The default tab is Contents. In this view, we should see all the layers
available to the site. They appear to us as Zope folders although they, in fact,
represent real filesystem folders from Zope and Plone products. As mentioned
before, they contain Zope2-style resources such as page templates, CSS files, images,
Python scripts, and other support resources. These resources are needed either to
add functionality to a Zope/Plone add-on product (and of course, Plone itself) or
they are directly involved in the theming of our site.

Chapter 12

[219]

Plone tends to organize its layers by categorization (plone_content), by the
types of elements they contain (plone_images), or grouped by add-on products
(CMFEditions). They may be a part of the Plone core (as in these examples) or not.
Third party add-on products usually add layers in order to contain the resources
they may need.

Theming our Intranet

[220]

A skin is a named group of layers in a specific order of precedence. We can see the
definition of all the available skins in the site in the Properties tab:

Obviously, Plone ships with a default skin called Plone Default. The most interesting
part of this view is the upper part. Here, we can see all the skins installed in the site
and the layers associated to each of them. The higher the layer in the list, the higher
the precedence of that layer. We could change the precedence or make a specific layer
available or unavailable by modifying this list.

Chapter 12

[221]

Acquisition in skin layers
The resources contained in the active layers of the current skin are available on
our site from our browser regardless of the level of the folder we may be accessing
in the hierarchy. It's like they were located in the root site folder. Let's assume we
have a CSS file in one layer and it's called style.css. It will be available from any
folder in our site, thanks to the magic of acquisition. Back to the example used in the
acquisition section, style.css will be available from:

•	 http://localhost:8080/intranet/a-folder/a-subfolder/style.css

•	 http://localhost:8080/intranet/a-folder/style.css

•	 http://localhost:8080/intranet/style.css

Zope page templates
Zope page templates are objects that allow us to define dynamic presentation for
a website. The HTML in our template is made dynamic by inserting special XML
namespace elements into our HTML code, which define the dynamic behavior for
that page. Zope executes ZPT commands on the server, and the results are sent to
our web browser in plain HTML.

A common problem arises with many languages designed for creating dynamic HTML
content—they don't allow proper separation of presentation and logic. For example,
some scripting languages, such as JSP, PHP, or SSI, embed special tags into HTML that
can confuse or disorient graphic designers who don't know much about creating an
application around the design they are generating. These tags can sometimes cause the
HTML to become invalid for the design tools they commonly use.

TAL
ZPT uses an attribute-based presentation language that tries to allow round-tripping
of templates between programmers and non-technical designers. This language is
called TAL.

TAL consists of a set of special tag attributes, whose name starts with tal:, and the
values associated with them. The values of a TAL statement are shown inside quotes.
For example, this code snippet will render the title attribute of the context using the
tal:content tag:

<p>
 The title of the current content object is
 <b tal:content="context/Title">the title
</p>

Theming our Intranet

[222]

If the title of the context is A page, this snippet will render:

The title of the current content object is A page.

These are some of the available TAL tags:

•	 tal:content and tal:replace: For inserting text and structure
•	 tal:define: For defining variables inside the templates
•	 tal:repeat: For looping through data structures, such as lists
•	 tal:condition: Used to control the display of a block
•	 tal:attributes: For dynamically setting tag attributes

METAL
ZPT also allows defining macros with tags; attributes similar to TAL statements.
They are called Macro Expansion Tag Attribute Language (METAL). Macros
provide a way to define a chunk of presentation structure in one template, and
share it in another. It can be a section of a page or an entire page.

Macros lets us define some parts that can be overridden when we use them.
We can do this by defining slots in the macro that we can fill in later from
another template.

Insights about TAL, METAL, and ZPT are out of the scope of this chapter.
They are huge subjects; here we will cover only the simplest aspects and
how to get started with these through some examples in the next sections.
However, you can find a complete manual about ZPT online in the Zope
book documentation at http://docs.zope.org/zope2/zope2book/
ZPT.html, and a complete reference manual for TAL expressions at
http://docs.zope.org/zope2/zope2book/AppendixC.html.

Viewlets
Viewlets are grouped in Viewlet Managers, and use a Zope3 concept called content
provider, which renders a collection of viewlets that are registered for it. Content
providers are small pieces of HTML code generated by an auxiliary template (in
this case, a Zope3 view). They can be called from a ZPT template or from another
view. This substitutes the old Zope2 approach of using macros to include in main_
template pieces of HTML generated by other templates. Following is the list of the
most interesting viewlets:

1.	 plone.siteactions

2.	 plone.searchbox

Chapter 12

[223]

3.	 plone.logo

4.	 plone.global_sections

5.	 plone.personal_bar

6.	 plone.path_bar

7.	 plone.contentviews

8.	 plone.contentactions

9.	 plone.belowcontenttitle.documentbyline

10.	 plone.abovecontenttitle.documentactions
11.	 plone.footer
12.	 plone.colophon

Their locations in a Plone site are shown in the following screenshot:

Theming our Intranet

[224]

Managing viewlets
Plone organizes viewlets in viewlets managers. Viewlets in Plone can live only
inside viewlet managers. This approach gives us the advantage to organize different
regions of a Plone page without having to modify the code in main_template.pt.

Plone has a managing facility that allows site managers to perform some actions over
viewlets. We can access this special view for managing viewlets by accessing the
following URL: http://localhost:8080/intranet/@@manage-viewlets.

We can perform some interesting actions over viewlets from this view. We can
move the position of any viewlet up or down, though only within the limits of
its own viewlet manager. We can do so by using the arrow links beside the
viewlet name.

We can also choose to hide or show any viewlet using the hide/show link beside the
position arrows. The following screenshot shows how it looks:

Chapter 12

[225]

Composing a Plone page
Now, we have enough background to return to the initial example and learn how
Plone renders a page. Following the workflow diagram shown at the beginning of
this section, once Plone knows the default view of a content object, it processes it. In
the example, it processes the document_view.pt, located in the plone_content skin
layer. Search for it in the portal_skins tool inside the plone_content layer.

If we open it, we will see that it begins like this:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 xmlns:i18n="http://xml.zope.org/namespaces/i18n"
 lang="en"
 metal:use-macro="here/main_template/macros/master"
 i18n:domain="plone">

At the beginning of the template, we declare all the namespaces needed in the
template. After doing this, the other external tools we may use to edit this resource
(such as developer or designer tools) will not complain about unrecognized XML
tags. We do all this in the html tag.

The most important attribute in this piece of code is the metal statement. It tells
Plone that this template uses a whole page macro. This macro is located in the main_
template.pt macro called master. As main_template.pt is in the acquisition chain,
document_view.pt can refer to it as here/main_template.

The rendering of the page continues processing the master macro in the main_
template.pt page template.

Rendering the main_template.pt page template
This template defines the whole basic structure of any Plone page. It will:

•	 Render all the needed headers
•	 Pull the CSS and JavaScript needed to render the page
•	 Call several viewlet managers to make them render the viewlets

assigned to them
•	 Render the existing portlets for the current context
•	 Return the render process to the template that has called it previously

(document_view.pt in our example) to render the main slot
•	 Close the page with the footers

Theming our Intranet

[226]

It will use ZPT macros and viewlets to do all these tasks.

The most important slot defined by main_template.pt is main slot. This slot is
reserved for including the information of the object being rendered. This slot is filled
by information defined by the template that had previously called main_template.
pt, depending on the content type or view we are requesting to Plone. For example,
if we are requesting a page content type, main_template.pt will render all the
common elements to that object and then call the default view of the page content
type to render the contents of that page.

We will find it in the plone_templates skin layer; let's open it and have a look.
Following is a snippet of its contents:

<metal:bodytext metal:define-slot="main" tal:content="nothing">
 Page body text
</metal:bodytext>

This will define the main slot in main_template.pt. Going back to document_view.
pt, this is the code corresponding to this macro:

<metal:main fill-slot="main">
 <tal:main-macro metal:define-macro="main"
 tal:define="kssClassesView context/@@kss_field_decorator_view;
 getKssClasses nocall:kssClassesView/getKssClassesInlineEditable;
 templateId template/getId;
 text here/getText;">

This will define the fill slot and other attributes and variables needed for the
template to work. This will call the plone.abovecontenttitle viewlet manager:

<div tal:replace="structure provider:plone.abovecontenttitle" />

This other piece of the template calls the title of the content being viewed. It uses an
<h1> tag and a macro to retrieve the correct structure for this content field:

<h1 class="documentFirstHeading">
 <metal:field use-macro="python:here.widget('title', mode='view')">
 Title
 </metal:field>
</h1>

After some other content field definitions, we reach the end of the template:

[...]
 <div metal:use-macro=
 "here/document_relateditems/macros/relatedItems">
 show related items if they exist

Chapter 12

[227]

 </div>
 <div tal:replace="structure provider:plone.belowcontentbody" />
 </tal:main-macro>
</metal:main>

Again, it calls a macro to render the related items of the content object and then calls
the viewlet manager plone.belowcontentbody.

Now, we know how Plone renders a page content type. Plone deals with other kinds
of resources, such as templates not bound to content, (for example, sitemap.pt) but
they are generated in pretty much the same manner as content-bound templates.

There are other types of resources such as CSS and JavaScript files that require
special treatment in Plone. They are managed via Resource registries.

Resource registries
Plone provides a facility called resource registry. It's used in different contexts to
effectively manage different kinds of resources, such as CSS and JavaScript files.
They provide caching, conditional enable/disable, merging, and maintain a list of
order of precedence for the resources. It is usual to find these resources as Plone skin
layer resources in portal_skins, but it's also possible to find these as Zope3-style
resources too, living in the Zope3 machinery.

When Plone renders any object, it calls the resource registries to retrieve the CSS and
JavaScript registered for the site. Then, resource registries will, if applicable, merge
and cache them.

CSS resource registry
These are located in the portal_css tool in the ZMI site root. Here, we can find
all the CSS registered in our site. The inclusion of these resources in the final page
rendered is being determined by the conditional expressions, if any. This tool
provides merging of CSS files and caching capabilities, as well as an improved page
rendering performance.

This tool also provides order for the inclusion of these CSS files in the resultant
HTML. Remember that in the case of CSS files, they are applied in cascade, and the
last declared one takes precedence over the first ones. So styles declared in the last
positions of this list of CSS files will take more precedence over other styles.

Theming our Intranet

[228]

JavaScript resource registry
This registry is located in the portal_javascript tool in the ZMI site root. Here we
will find all the JavaScript files registered for the site. The behavior of this registry is
similar to the CSS resource registry.

Theming using third-party add-on
products
Now we have all the background needed to begin customizing our intranet. We
know how Plone renders any object, the elements involved in the rendering, and the
different kind of resources Plone uses.

We will cover several approaches: using third-party applications and using a custom
theme add-on product.

GloWorm—add-on product for viewlet
customization
Customizing viewlets is a complex thing and it's mainly done by programming.
However, there are some tools that ease the process. Of course, there are some
advanced things we can't do on the web and need more advanced knowledge.
However, basic customizing covers a lot of use cases, so let's get started.

There is a splendid tool for theming our site and making changes to viewlets and
other elements called Products.Gloworm. Written by Eric Steele, the release manager
of Plone 4, it's aimed to ease the development of Plone sites.

Installation
We can install it by including these lines in the specified sections of our
buildout.cfg file:

[buildout]
...
eggs = Products.Gloworm

Then, rerun buildout.cfg:

$./bin/buildout

$./bin/instance fg

Now, go to the Add-on Products control panel configlet and install it.

Chapter 12

[229]

Using GloWorm
GloWorm requires running our Zope instance in debug mode to work correctly. It's
enough if we've started our instance in foreground (fg) mode. GloWorm is intended to
be a development tool and is best left uninstalled on our production machine.

An Inspect this page link will appear in the Object Actions section of content objects
on our site. In a typical Plone installation, this is at the bottom of the page content,
besides the Print this link. We may also access this view by appending @@inspect to
the current page's URL.

If we click on this link, then the GloWorm Inspector Panel is shown at the bottom
of the page. In the inspector view, clicking on any element of the current page will
bring up a list of information about that page element, including TAL statements and
the name of the viewlet or portlet in which it is contained:

Theming our Intranet

[230]

In the previous screenshot, the plone.path_bar viewlet is selected. We can see
information about its manager (plone.portaltop) and the current visibility of this
viewlet. We can customize it from the inspector by clicking on the Customize button.

GloWorm's template customization feature utilizes Plone's portal_view_
customizations utility to manage viewlet templates. To find our customized
templates in the ZMI, go to the portal_view_customizations tool within our Plone
site and select the Contents tab.

Inspecting the viewlet managers will also show us an interface for reordering
viewlets contained by this manager and show/hide controls as well. Clicking the up
and down arrows performs viewlet reordering. Clicking the name of a viewlet will
take us to the viewlet inspection view for that viewlet.

Click the red close icon in the upper-right corner of the GloWorm panel to browse
the site normally.

CSSManager—add-on product for CSS and
basic properties customization
This product provides a UI for changing some basic properties of our site, such
as colors, borders, and other visual attributes. No other special knowledge of
CSS is needed.

Installation
We can install it by including these lines in the specified sections of our
buildout.cfg file:

[buildout]
..
eggs = Products.CSSManager

And then, rerun buildout.cfg:

$./bin/buildout

$./bin/instance fg

Now, go to the Add-on Products control panel configlet and install it.

Chapter 12

[231]

Using CSSManager
CSSManager installs an additional configlet in the Plone control panel. We should
turn on customization before we make any change. Just click on the Turn on
customization button.

We should also enable CSS debug mode to see changes immediately. We can change
this setting using the CSSManager configlet, since it exposes a UI for this feature
located in the CSS resource registry ZMI. For more information, see the Enabling CSS
debug mode section later in the chapter.

However, remember to disable it when we finish our customization; otherwise, the
site performance will be slower. The product configlet looks like this:

Theming our Intranet

[232]

These are some of the basic theming properties that can be managed with
CSSManager:

•	 Default text color
•	 Default text size
•	 Main font
•	 Page background
•	 Default border color
•	 Default border width
•	 Logged-in tabs border color

CSS customization with base_properties sheet
CSSManager takes advantage of the fact that Plone exposes its CSS resources
as Document Template Markup Language (DTML) files. DTML is a dynamic
template language and is the precursor of ZPT. By using these kind of files to render
out-of-the-box CSS files, Plone made dynamic CSS possible on its sites. This has
the advantage of allowing us to modify the basic aspects of our site without the
modification of any resources. This is done using a special properties sheet called
base_properties located in the portal_skins tool, inside the plone_styles layer.

As CSS are DTML files, these properties are hardcoded as DTML variables. DTML
will look up these variables in base_properties and generate the resultant CSS file
with the base_properties values included.

CSSManager exposes a UI only for the customization of this resource and other
attributes like the CSS debug mode. We could customize this resource by hand, but
it's more easy to use CSSManager to manage it.

Changing the logged-in tabs' attributes
We can easily change the logged-in tabs' look and feel by modifying three attributes
in CSSManager. Just modify the values of these attributes:

•	 Logged-in tabs border color: #999999
•	 Logged-in tabs background color: #EDEDED
•	 Logged-in tabs text color: #999999

Apply the changes and we will get rid of that ugly green color.

Chapter 12

[233]

Unfortunately, the use of DTML has been deprecated and
Plone 4 doesn't use it anymore to define CSS files. For this
reason, CSSManager will work only with Plone 3.

Custom theme add-on products
There are lots of custom Plone theme add-on products listed in plone.org. We can
always choose one of them to theme our site. Yet, if there are things we want to
customize, it's always a good idea to begin with one of them.

A theme add-on product is installed as any other third-party product. Just search
on http://plone.org/products for a suitable one. We can narrow our search by
selecting Themes in the category drop-down box.

Building our own theme add-on product
We can build our own theme add-on product from scratch. It can be done easily with
PasteScript. Just type this on our command line from the root of our buildout:

$ cd src

$ paster create -t plone3_theme plonetheme.myintranet

Answer all the questions with the default option except for:

•	 Skin Name: A human facing name for the theme, added to portal_skins,
for example, MyIntranetTheme.

•	 Skin Base: Name of the theme from which this is copied. By default, it is
Plone Default. Answer the default option here.

•	 Empty Styles?: If true, it will override default public stylesheets with empty
ones. Answer False.

•	 Include documentation?: If true, the generated theme will include auto-
explanatory documentation, desirable for beginners.

The resultant theme add-on product will be generated in the src buildout folder.
This add-on is completely usable right now, but it's innocuous. Once installed,
it will replace the original Plone default theme with the one in this package.

Theming our Intranet

[234]

Installing the product
Just proceed as any other add-on product. However, since we are developing
the product, we should specify it in our buildout by filling the develop directive
in the buildout section and the eggs directive in the instance section in our
buildout.cfg file:

[buildout]
...
develop = src/plonetheme.myintranet
...
[instance]
...
eggs = plonetheme.myintranet

Go to the package folder, src/plonetheme.myintranet/plonetheme/myintranet,
and edit the configure.zcml file. As we don't want to define an i18n folder, delete
the following line if it exists:

<i18n:registerTranslations directory="locales" />

And then, rerun buildout.cfg:

$./bin/buildout

$./bin/instance fg

Now, go to the Add-on Products control panel configlet and install it.

If we browse our site, we will notice that nothing has changed, because we've chosen
to inherit the default theme in our new one. But, now the theme defined in our theme
add-on product is in use in our site. Check it out in portal_skins:

Chapter 12

[235]

Notice three things in the previous screenshot: the Default skin is our recently
created skin and three additional Plone skin layers have been added to the top of the
layer's precedence order list. These three layers will contain the resources we may
need for our new theme. These layers represent three folders inside our package
structure; to be more precise, those inside skins folder:

Name of the layer/folder Description
plonetheme_myintranet_custom_images It will contain our theme images.
plonetheme_myintranet_custom_
templates

It will contain our theme custom
templates.

plonetheme_myintranet_styles It will contain our theme styles.

In fact, this layer organization is merely for convenience, as all the layers can contain
any type of resources.

Theming our Intranet

[236]

Customizing Plone skin layer resources
As our theme product is positioning the new layers on the top of the precedence
order, the elements we place in these folders will override those in layers with
less precedence. Just place our custom resource in any of the layers defined by our
product and name it as the original one. Our custom resource will override the
default one. We can also place other resources we may use, such as our custom
templates, images, and styles as well.

Enabling CSS debug mode
By default, the changes made to our product will not be available until we restart our
instance. For the changes to take effect immediately, we should enable CSS debug
mode in CSS resource registry. We will find this setting at the top of the portal_css
ZMI view.

In debug/development mode, stylesheets are not merged to composites, and caching
and compression of CSS is disabled. The registry also sends HTTP headers to prevent
browsers from caching the stylesheets. It's recommended to enable this mode
during CSS-related development. Remember to turn it off again when we finish CSS
modifications, as debug mode affects site performance.

Customizing the site logo
Plone renders the site logo combining two kinds of resources—the viewlet plone.
logo provides the HTML structure needed and a Plone skin layer image. Let's
say we want to change the site logo and add an additional logo of our company
containing a link to the corporate web besides it. We need to customize the original
logo with the logo of our intranet and add the required HTML structure to add the
new company logo besides the original one. We will need to customize the original
logo and the plone.logo viewlet. Later, we will need to add our company logo as a
new Plone skin layer image.

Customizing the logo image and adding a new one
We should override the original logo image with our customized one. In order to
accomplish this, we should rename the image we've chosen to use as our site logo
with the same name as the original one. The original logo image is called logo.jpg
and it is located in the plone_images skin layer. We override it by simply placing
our customized image inside skins/plonetheme_myintranet_custom_images and
naming it exactly the same as the original one. Place the image for the second logo
here too, and name it as company-logo.png.

Chapter 12

[237]

Customizing the plone.logo viewlet
Customizing a viewlet is a little trickier than overriding skin layer resources. We
will need to tell Zope that we want to override the original viewlet declaration
by creating an overrides.zcml file in the plonetheme/myintranet folder of our
custom add-on product, and add the attribute that tells Zope where to find the new
template associated to this viewlet:

<configure
 xmlns="http://namespaces.zope.org/zope"
 xmlns:browser="http://namespaces.zope.org/browser"
 xmlns:i18n="http://namespaces.zope.org/i18n"
 i18n_domain="plonetheme.myintranet">
 <!-- The new logo viewlet declaration -->
 <browser:viewlet
 name="plone.logo"
 manager="plone.app.layout.viewlets.interfaces.IPortalHeader"
 class="plone.app.layout.viewlets.common.LogoViewlet"
 template="browser/newlogo.pt"
 permission="zope2.View" />
</configure>

Then place this Zope page template called newlogo.pt in the browser folder of our
add-on product:

<a id="portal-logo-company"
 tal:attributes="href string:http://www.mycompany.com/">
 <img src="company-logo.png"
 alt="Company.com logo"
 title="Company.com logo"/>
<a metal:define-macro="portal_logo"
 id="portal-logo"
 accesskey="1"
 tal:attributes="href view/navigation_root_url"
 i18n:domain="plone">
 <img src="logo.jpg" alt=""
 tal:replace="structure view/logo_tag" />

We leave the original logo template at the end of the file and add a new link tag
with the structure for the new logo and the reference to the new Plone skin layer
image (company-logo.png).

Restart our instance to see the changes applied. This is needed because we have
overridden a viewlet defining an additional ZCML file.

Theming our Intranet

[238]

Customizing Plone CSS
If you followed the previous example, you've probably noticed that the recently
added new logo is somehow displaced. If we want to adjust its position, we will
need to customize some CSS files. In this case, we need to define a style for the
new ID (portal-logo-company) introduced by the structure of the company
logo. We can do it in an empty CSS file provided by the PasteScript template,
already available in our theme product. It's called main.css and it's located in the
plonetheme/myintranet/browser/stylesheets/ folder.

Open it and add these lines:

#portal-logo-company img {
 border:0 none;
 margin:1em 0 1em 2em;
 padding:0;
}

We can also adjust some other CSS declarations by adding them to this file. As
main.css is located at the bottom of the CSS chain, the definitions in it will be the
last being applied. For this reason, we can override any previous CSS definitions by
redefining them in this file.

For example, let's adjust the space between both logos by reducing the margin
defined by the portal-logo ID. Add these lines to main.css file:

#portal-logo img {
 margin:1em 0 1em 1em;
}

If you want to know more about Plone CSS and the resources involved in Plone
styling, you should check the CSS files located in the plone_styles layer. They are
organized by importance, styled elements, or purpose. The following table gives a
little summary about them:

Name of the CSS resource Description
member.css.dtml Plone member specific CSS, such as styling for the colors

assigned to workflow states in the state drop-down box.
base.css.dtml Plone basic elements CSS, such as styling for basic tag

elements (a, body, and so on)
public.css.dtml Plone public facing elements CSS, such as style for the

content headers (h1, h2, and so on).
columns.css.dtml Plone table-based layout CSS.
authoring.css.dtml Plone authoring/editing environment CSS.

Chapter 12

[239]

Name of the CSS resource Description
portlets.css.dtml Plone portlets CSS.
controlpanel.css.dtml Plone control panel CSS.
print.css.dtml Plone print CSS applied when printing some site

element.
deprecated.css.dtml Deprecated Plone CSS elements that will disappear in

the next version.
navtree.css.dtml Plone navigation tree CSS.
invisibles.css.dtml Plone invisible elements and accessibility elements CSS.
forms.css.dtml Plone forms CSS.
RTL.css.dtml Plone right-to-left CSS (for Arabic and Hebrew).
ploneCustom.css.dtml Blank CSS file ready for quick style customization.

Since Plone 4 no longer uses DTML files to define CSS,
if we want to customize them , we should just remove
the .dtml extension from the previous files.

Resetting Plone CSS
If we want to reset the CSS defined by Plone completely, we should include these
empty files in our product skin layer folder plonetheme/myintranet/skins/
plonetheme_myintranet_styles:

•	 base.css.dtml

•	 public.css.dtml

•	 portlets.css.dtml

By doing this, we are overriding the original files with empty files, so the defined
styles by these CSS are not applied. Once reset, we can freely redefine all the Plone
styles without inheriting any of them.

How to customize CSS effectively
It's recommended to use some kind of helper application when dealing
with CSS, for example, Firebug (http://getfirebug.com/). This tool
will help us to identify the correct CSS file used by any element of the site
and preview the results of any change to the CSS on the fly. Don't forget
to enable debug/development mode in your portal_css resource
registry!

Theming our Intranet

[240]

We will find this product along with the code in this example in the code bundle for
this chapter.

More about customizing viewlets
All the default viewlets are defined in a Plone egg called plone.app.layout. We can
find it by browsing the eggs folder inside our buildout.cfg folder. We can override
any of them following these steps:

1.	 Use the manage-viewlets view to identify the viewlet we want to customize.
2.	 Search the viewlet declaration in the configure.zcml file inside the plone.

app.layout-1.2.5-py2.4.egg/plone/app/layout/viewlets folder. For
example, if we want to customize the portal breadcrumbs located in the
plone.path_bar viewlet, find the snippet of code referring to this viewlet. It
should look like this:
<!-- The breadcrumbs -->

<browser:viewlet

 name="plone.path_bar"

 manager=".interfaces.IPortalTop"

 class=".common.PathBarViewlet"

 permission="zope2.View" />

3.	 Copy these lines to the overrides.zcml file and modify them to look like:
<!-- The new site breadcrumbs declaration -->

<browser:viewlet

 name="plone.path_bar"

 manager="plone.app.layout.viewlets.interfaces.IPortalTop"

 class="plone.app.layout.viewlets.common.PathBarViewlet"

 template="browser/newpathbar.pt"

 permission="zope2.View" />

4.	 As we are overriding a viewlet located in another egg product, we should
complete the prefix in the manager attribute with the full path to the plone.
app.layout egg. Do the same for the class attribute.

5.	 Add a line with a template attribute defining where the new template for
this viewlet is located. Its location is relative to our product folder. In the
example, we are defining a new template for the viewlet called newpathbar.
pt located in the browser folder. It's recommended that we copy the default
template defined by plone.app.layout and customize it. We will find it in
the plone.app.layout-1.2.5-py2.4.egg/plone/app/layout/viewlets
folder; it's called path_bar.pt.

Chapter 12

[241]

Using Generic Setup to customize a theme
Once more, Generic Setup (GS) has some configuration files that help us to customize
some theming aspects of our site. We can add the following GS definition files to the
default profile of our product:

Generic Setup file Description
cssregistry.xml It configures the CSS resource registry (portal_css). We can

add more CSS resources and configure them. By default, Paster
defines the main.css file and places it at the bottom of the CSS
chain.

jsregistry.xml It defines the JavaScript resource registry (portal_
javascript).

viewlets.xml It configures the position and the visibility of the site viewlets.
Basically we can perform all the tasks provided by manage-
viewlets view.

skins.xml This file holds the setup configuration for the portal_skins
tool. We can enable new layers and position and order them in
the layer precedence list.

Theming—best practices
Whilst theming for an intranet, it is important to keep one thing in mind: try to keep
it as clean and simple as possible for one thing only—performance. Most of the time,
our intranet will be used by authenticated members. This means that all the security
calculations, template generating, and the JavaScript needed in the edit mode will
be at work.

Try to minimize their effects by not bloating our intranet theme. It will be always
well-received by our users and their subjective sense about how our site performs.
Think that an intranet usually doesn't have to sell anything, as a public site
would do. Probably the only thing we have to sell to our intranet users is value,
productivity, elegance, efficiency, and a corporate look and feel. So, try to deliver all
of these to them!

This doesn't mean that our intranet has to be austere, ugly, or boring. On the
contrary, it's just a matter of finding the correct balance and applying it.

Theming our Intranet

[242]

Summary
This chapter has covered:

•	 How Plone performs theming and the technologies involved in the process
•	 The best practices on theming an intranet
•	 Useful examples and recipes to give immediate value

The next chapter will cover how to deploy our intranet in our production servers.

If you want to learn more about Plone theming, there is an
outstanding Packt Publishing book "Plone 3 Theming" (2009),
Veda Williams, covering it in detail.

Deploying our Intranet
Time for the final stage for our intranet. We've built it, chosen its functionality, and
designed its structure and security model. After we have reached this point, the only
thing left to do before our intranet goes live is to execute the deployment of our site
onto our production server.

Deployment must be thoughtful and well executed. It is not an easy step, on the
contrary, this is probably the most important part of the intranet build process and
the one which would require more care from us. It's not a single action; it's more of a
continuous process. We should monitor our site in case we have to change our type of
deployment, because our site requirements may change through its life cycle.

The keys for a successful deployment are:

•	 Potential user access estimation
•	 Potential peak concurrent users estimation
•	 Potential data sizing estimation
•	 Continuous monitoring
•	 Foresee potential capacity problems and be proactive

Getting the initial estimations right are fundamental to planning the hardware
needed and choosing the type of deployment to be used. Whether we are
administering the production server or not, it's important that the system
administrators, responsible for our service, monitor the service once the intranet
is deployed. Knowing in advance that our site load and traffic are increasing and
reacting proactively for solving and improving our service is the key to success for
our deployment.

Deploying our Intranet

[244]

Basically, we are going to differentiate between the three types of implementations:

•	 Small site type: It has a few users (1 to 50), small data stored, and little
access load

•	 Medium site type: It is for mid-sized requirements with 50 to 100 intranet
users and medium access load

•	 Large site type: It is a site with a lot of traffic, high performance
requirements, and 100 to N users

In this chapter, we will cover:

•	 All these types of deployments with examples for each one of them
•	 Different types of technologies that will be at work to accomplish each type

of requirement like VirtualHostMonster
•	 ZEO servers
•	 Load balancers
•	 Cache servers and Plone cache
•	 Using external user databases like LDAP directories

Deployment buildouts
Once again, we are going to delegate our environment building process to buildout.
Through this chapter, we will use a default deployment buildout configuration and
we will increase its complexity as we introduce you to each type of deployment,
along with the different technologies and server applications types.

The buildout structure and configuration type used in this chapter are
built following some ideas taken from Martin Aspeli's Über-buildout. The
approach used in Über-buildout is to provide an ordered, clear, multi-
platform, and multi-purpose oriented buildout. However, some of its
features make it a little bit complex to use and it can be an overkill for
some use cases for newcomers—besides that, Martin has done a great
job. You are encouraged to take a look at it, as you will be able to extend
your knowledge about buildout design. You can find more information
about here: http://www.martinaspeli.net/articles/an-uber-
buildout-for-a-production-plone-server.

Chapter 13

[245]

Buildout base configuration
All deployment types covered in this chapter will share a common buildout base
configuration. This base is very similar to the one that we've been using throughout
the book. We will use the configuration generated by PasteScript create command
as a base template. However, we are going to introduce some changes in order to
improve it and make it production ready.

Let's begin by creating a generic buildout:

$ paster create -t plone3_buildout deployment.buildout

Just answer the default values for all questions except for the admin password.
Now, let's improve this buildout configuration.

Adding a versions file
It's always recommended to add a separate file for keeping track and setting the eggs
and module versions used in buildout. Buildout will try to download the newest
version of each package, egg, and module managed by it, so we must be as explicit as
we can in this section and try to include all versions from the eggs we may use. This
task is usually referred to as pin the egg versions. For example, we should add all the
third party add-on product versions we may be using in our intranet. Failing to do so
may lead to future version incompatibilities and conflicts.

In times where the transition to Plone 4 is taking place, it's normal
to find some eggs and third party modules that implement
explicit dependencies on Plone 4. This means that if you add them
to your Plone 3 buildout, they will force the installation of Plone
4 (along with its own dependencies, for example Zope 2.12) when
your buildout is run. If this happens, your buildout will fail due
to versions conflicts and other issues. So take care to pin all your
products, eggs, and modules versions to avoid this issue.

We can easily add a versions file (versions.cfg) by following these steps:

1.	 Create a file called versions.cfg in the buildout root folder:
$ cd deployment.buildout
$ vi versions.cfg

2.	 Add the versions section and the following lines to this file:
[versions]

Add here the versions of eggs, modules and add-on products used
in your buildout

Buildout infrastructure

Deploying our Intranet

[246]

plone.recipe.zope2install = 3.2

plone.recipe.zope2instance = 3.6

Add-on products

modules

3.	 Then add the following line to our buildout.cfg file to the
extends directive:
extends =

 http://dist.plone.org/release/3.3.4/versions.cfg

 versions.cfg

versions = versions

From now on, our buildout will merge the two versions definitions defined in the
extends directive:

•	 The one defined by the URL http://dist.plone.org/release/3.3.4/
versions.cfg

•	 The one defined in the versions.cfg file

The latter will have more precedence than the former one.

Caching extended configuration
Just in case we have to work in the offline mode, we can use a directive to tell
buildout to cache the downloaded configuration. Add the following directive:

extends-cache = cache

The directory structure cache/extends should already exist before we run
the buildout.

Using the newest directive
There is an interesting directive from the buildout section called newest. It will help
us to force buildout not to download the latest version of an egg. Once our buildout
is stable, the directive is recommended to set to false. Just add this line to the
buildout.cfg file:

[buildout]
...
newest = false

Chapter 13

[247]

Adding ports and hosts names sections
In order to quickly access host names and ports used by our server processes, it is a
good practice to group them in their own sections. Of course, we will have to rewrite
some parts of the buildout to accommodate them.

Add these two sections:

[hosts]
instance = localhost

[ports]
instance = 8301

Now, modify this line to use these new section settings in the rest of the sections:

[instance]
...
http-address = ${hosts:instance}:${ports:instance}

Now, we can access and change host names and ports centrally from these new
sections without having to search the entire buildout for them.

Adding process owners section
The idea is the same as the previous case. We can add a section to declare the user
owners of each server process we will use in our deployment. As a rule of thumb,
it's always advisable not to run your server processes as root user. You should
always try to use a user without root privileges.

Our policy will be to change the owner of all the server processes that use the same
user. To keep it simple, we are going to use the same user to run all processes. We
should create this user on our server, or use an existing one of our choice. For example,
in the case of using a Linux box, we can do it by using this command:

$ adduser plone

Answer all the questions with the default option and set the password for this user.
Of course, we can use the username we desire. Just make the necessary changes to
the following examples accordingly.

Once we've created this new user, we will then add the following new section to our
buildout.cfg:

[users]
zope = plone

Deploying our Intranet

[248]

And modify the instance section to use this user to launch the Zope process:

[instance]
...
effective-user = ${users:zope}

Changing the ownership of buildout folder
When we launch our server processes with a non-root user, we should ensure that
this user would have full access to the file structure of the buildout. For the vast
majority of cases, it's recommended that this user will be the owner of the files and
folders of our buildout file structure.

We can force this automatically each time the buildout is run. We are going to use a
buildout recipe that runs system commands when buildout is run.

[chown]
recipe = collective.recipe.cmd
on_install = true
on_update = true
cmds = echo "Changing buildout owner to plone user"
 chown -R plone.plone ${buildout:directory}

And add this line to the parts directive in the buildout section:

[buildout]
parts = ...
 chown
 ...

We can use this recipe to execute our own OS commands too if we
need to do so. Just add our desired commands in the cmds directive.

Common administration tasks
We should add some elements to our basic deployment buildout that will help us
with the most common system administration tasks. They should be taken into
account and implemented by any systems administrator in any deployment.

These tasks have to be scheduled and executed on a regular basis. We can use our
operating system task schedule facilities to do so. More on that later in this section.

We have to take care of three necessary tasks: database backup (and restore), log
rotation and database pack.

Chapter 13

[249]

Backing up and restoring database
Backing up our database is probably the most important thing to do whilst doing
system administration and back office tasks. Zope provides a single tool for
managing backups and restores of the ZODB database. Zope also allows us to
perform hot backups of its ZODB databases. This means that we don't have to stop
the Zope server to do a ZODB backup. This tool is a Python script called repozo.py.
Buildout will leave a copy of it in the bin folder of our buildout structure.

There is a very convenient buildout recipe for managing backups and restores. It
basically installs several wrapper scripts for the repozo.py script. We should add
these lines at the end of our buildout.cfg file:

[backup]
recipe = collective.recipe.backup
location = /path/to/your/designated/backupfolder
snapshotlocation = /path/to/your/designated/snapshotbackupfolder

And add these lines to the parts directive in the buildout section:

[buildout]
parts = ...
 backup
 ...

Substitute the location directive with the folder in which we want to store our
instance backups. The recipe will generate these scripts:

Script Description
./bin/backup It will perform a backup of our database and will store it

in the folder defined by the location directive.
./bin/restore It will recover the latest backup stored in the backup

folder. We can also restore the backup of a certain date.
Just pass a date argument. The format is yyyy-mm-dd[-
hh[-mm[-ss]]].

./bin/snapshotbackup It is for quickly grabbing the current state of a production
database in case we want to try something with real data
and later download it to our development server or laptop.
It will perform a full backup, but without interfering with
the regular backup regime. It will be stored in the folder
defined by the snapshotlocation directive.

./bin/snapshotrestore It will recover the latest snapshotbackup stored in the
snapshotbackup folder.

Deploying our Intranet

[250]

Normally, a full backup is done the first time we back up our database. The backup
is stored in one single file with the .fsz extension (the z indicates it's also zipped).
Another .dat file is also stored with information about the backup and the files
involved in it. The next time we perform a backup, an incremental backup will be
stored in the same location with the extension .deltafsz.

Performing a recovery is an easy operation, but we must provide all the required
files for a successful restore. This is the first full backup available previous to the date
to which we want to restore the database, and all the incremental files from the day
of the full backup to the desired date of recovery.

It's recommended to perform a daily backup, and force a full backup once a week.
Forcing a full backup is easy since it's done each time the database is packed.

Database packing
ZODB database is a transaction driven database. This means that every database
modification is stored as a transaction and, in theory, can be undone. This is good
because we have undo capabilities, but is also bad, because our database will grow
with each transaction made. Database packing will consolidate transaction changes
into the database, freeing it from all the transactions. This means that we won't
be able to undo any transaction, but the size of the current database will shrink
considerably depending on the number of transactions stored.

For that reason it is advisable to pack the database from time to time. Doing it once
a week is a good practice. Each time the database is packed, a full backup will be
triggered when we perform a backup.

Rotating the log files
Another thing that is highly recommended is to truncate log files by days. It's also
known as log rotation. Letting the server processes handle small log files can increase
server performance. Keeping them small is also good for system administration and
debugging problems. On Linux systems, it's something easy to setup through standard
logrotate daemon. We can generate a logrotate configuration file from a buildout
template recipe. This is the section we should add to our buildout.cfg file.

[logrotate.conf]
recipe = collective.recipe.template
input = ${buildout:directory}/templates/logrotate.conf.template
output = ${buildout:directory}/production/logrotate.conf

Chapter 13

[251]

And add this section to the parts directive in the buildout section:

[buildout]
parts = ...
 logrotate.conf
 ...

As we can see in the logrotate.conf section, we will need a logrotate template
file. We will need more of this kind of template for configuring other server processes
shown in this chapter. For that reason, and to keep it grouped, we will set up a folder
for all of them in the templates buildout folder. The output file will be stored in a
different special buildout folder that we will also create called production.

The following is the contents of the logrotate.conf.template file:

rotate 7
weekly
create
compress
delaycompress
create 644 plone plone

${buildout:directory}/var/log/instance.log {
 postrotate
 ${buildout:directory}/bin/instance logreopen
 endscript
}

Buildout will process it, fill the buildout variables in it, and will generate a
logrotate.conf file ready to be consumed by the logrotate system daemon. This
logrotate configuration will keep seven days of logs and will rotate them weekly.

The only thing left to do now is to set up logrotate to execute this configuration.
It will suffice to place a soft link in the /etc/logrotate.d folder pointing to
logrotate.conf generated file:

$ cd /etc/logrotate.d

$ ln -s /path/to/your/buildout/deployment.buildout/production/logrotate.
conf

To make sure that the configuration is in place and well configured, we can execute
the logrotate daemon in debug mode:

$ logrotate -d /etc/logrotate.d/logrotate.conf

Deploying our Intranet

[252]

Scheduling
Each operating system has its own task schedule facilities. For example, in Linux
systems we can use cron to schedule tasks. As we said in previous sections, it's a
good practice to schedule database backup every day. So we will setup a cron job
in the /etc/cron.daily folder. It's enough to make a soft link to the backup script
located in the bin buildout folder:

$ cd /etc/cron.daily

$ ln -s /path/to/your/buildout/deployment.buildout/bin/backup

This will trigger backup to be executed once a day.

Virtual hosting
Only under rare circumstances Zope is deployed without a reliable web server in
front of it. For several reasons: flexibility and robustness are the most important.
Flexibility because we can host several Zope servers in the same machine and do
virtual hosting to access them, as long as we provide the other web resources and
applications access from the front-end of the web server. Robustness, because it's
better to have a reliable web server facing the exterior than Zope itself. Zope isn't
security hardened against malicious users and its easier to attack it (for example a
Deny Of Service attack) than Apache, for example. Therefore, it's recommended not
to expose it directly to the exterior.

There are a lot of reliable web servers out there, and all of them are configured
the same way to do virtual hosting to a Zope server. I will recommend, Apache
(http://httpd.apache.org/), although I had very successful experiences with
Nginx (http://wiki.nginx.org/) lately.

Virtual hosting in Zope is done by rewriting (via the web server rewrite and proxy
module) the incoming requests and passing them to the Zope server in proxy mode.
We will have to enable these two modules in our web server. They are commonly used
by web servers, and in some of them (such as Nginx) they are enabled by default.

VirtualHostMonster
This is a special Zope module used to ease the virtual hosting process. It's used to
define Zope, how it has to rewrite all internal links to match the virtual host name
used by the front-end web server. If this rewrite is not configured correctly, then
all links published by Zope will be broken when we do virtual hosting. We have to
specify how VirtualHostMonster has to do the link rewriting by defining it in the
web server rewrite rule for that site.

Chapter 13

[253]

Virtual hosting a root domain
This is an example of a virtual hosting from an Apache web server to a Zope server
located in the same machine (localhost), listening to the 8301 port:

<VirtualHost *:80>
 ServerAdmin administrator@myplonesite.com
 ServerName myplonesite.com

 <Directory />
 Options FollowSymLinks
 AllowOverride None
 </Directory>

 ErrorLog /var/log/apache2/error.log
 RewriteLog /var/log/apache2/rewrite.log

 LogLevel warn

 CustomLog /var/log/apache2/access.log combined

 RewriteEngine on
 RewriteOptions inherit

 RewriteRule ^/(.*) \
 http://localhost:8301/VirtualHostBase/\
 http/myplonesite.com:80/intranet/VirtualHostRoot/$1 \
 [P,L]

 ProxyVia On

</VirtualHost>

The highlighted line does the whole job. Notice the scaped newlines, it should be
a single line directive. It defines a rewrite rule for the current example virtual host
domain (myplonesite.com). All requests made to this domain will be rewritten:

RewriteRule ^/(.*)

They will be rewritten following the rest of the line convention. The request will
arrive to Zope and VirtualHostMonster will interpret them and do the link rewriting.
Let's dissect this line:

http://localhost:8301/

Deploying our Intranet

[254]

This part will tell Apache where to send the (proxyed) request:

VirtualHostBase/http/myplonesite.com:80/intranet/

This part is for VirtualHostMonster. It defines the base URL of the link rewriting.
Defined here also is the name of the Plone site (intranet):

VirtualHostRoot/$1 [P,L]

This last part tells VirtualHostMonster which is the root of the site relative to the
base URL. The $1 will tell the web server where to append what's remaining of the
requested URL from the first / that appeared. This is issued by the previous (.*)
regular expression. The modificators at the end of the RewriteRule definition are
to indicate that this rewrite has to be done in proxy mode and that the execution of
rewrite rules must be stopped if matched.

Virtual hosting a domain subdirectory
Another common virtual hosting use case. Let's look at this example:

<VirtualHost *:80>
 ServerAdmin administrator@myplonesite.com
 ServerName myplonesite.com

 <Directory />
 Options FollowSymLinks
 AllowOverride None
 </Directory>

 ErrorLog /var/log/apache2/error.log
 RewriteLog /var/log/apache2/rewrite.log

 LogLevel warn

 CustomLog /var/log/apache2/access.log combined

 RewriteEngine on
 RewriteOptions inherit

 RewriteRule ^/intranet($|/.*) \
http://localhost:8301/VirtualHostBase/\
http/myplonesite.com:80/intranet/VirtualHostRoot/\
_vh_intranet$1 [P,L]

 ProxyVia On

</VirtualHost>

Chapter 13

[255]

Again, it should be a single line directive. In this use case, the first part of the rewrite
rule is slightly different to accommodate the desired subdirectory for our site. It will
be available under this URL: http://myplonesite.com/intranet. The subdirectory
name appears here, and, as rule of thumb, it has to match the last part of the line:

VirtualHostRoot/_vh_intranet$1 [P,L]

This will tell VirtualHostMonster to know that we are using a subdirectory of the
base site URL. Notice that the _vh_ prefix is needed for VirtualHostMonster to
process the subdirectory.

RewriteRule witch
There is an online help application called RewriteRule
Witch (http://betabug.ch/zope/witch). It
provides an easy to fill form that will help to mount your
VirtualHostMonster rewrite rule. In case of doubt, or as
reference you can always ask the witch!!

Small intranet deployments
This is the simplest scenario possible. A site without great traffic requirements and
a small number of potential users. For small deployments, the best approach is
to go for a monolithic Zope. It requires less attention and work from the systems
administrator point of view and it's the easiest to deploy.

Monolithic Zope
This is the simplest way to configure Zope; we have been using it since Chapter 2.
It includes in a single server process:

•	 ZPublisher, the HTTP deliver engine with FTP, WebDAV, and
XML-RPC capabilities

•	 ZServer, the core of Zope Application server
•	 ZODB database access server layer

Deploying our Intranet

[256]

These components are packed in what is called the Zope server or a monolithic Zope.
From the operating system point of view, there is only a process involved in running
Zope, and from the network application layer there is only one port listening.

Performance
This configuration is good enough for testing and developing purposes, and low
requirements scenarios. The performance usually accomplished by a monolithic
Zope is about five to six pages per second. This would allow up to four concurrent
users at peak loads.

Scalability
If the requirements of our intranet increases with the time, we can always change
the type of deployment to accommodate the new ones. Switching between different
kinds of deployments is not a complex procedure and often involves a simple
reconfiguration of our buildout.

Buildout for small deployments
The buildout needed to build this type of deployment will be the buildout base
configuration introduced in the previous section. It will provide us a monolithic
Zope server, backup, log rotation and other basic capabilities.

Small deployments layer diagram
This is the resultant server layers diagram for small deployments:

Chapter 13

[257]

Medium intranet deployments
This is the most common scenario. An intranet with mid-sized traffic and load
requirements and an average number of intranet users. In this kind of deployment,
you have to introduce cluster capabilities. We should use ZEO server as our database
backend and a number of ZEO clients as frontend. The number of the ZEO clients
will be determined by the requirements of our intranet.

ZEO (Zope Enterprise Objects)
ZEO is the load-balancing system used with Zope. ZEO server is a storage server that
allows multiple Zope instances, called ZEO clients, to connect to a single database. In
this scenario, all the database operations are delegated to ZEO, becoming the central
database server for our deployment. ZEO clients will assume HTTP services, script
and code execution and templates rendering.

Adding a ZEO server to our buildout
We are going to modify the basic buildout shown in the previous sections to
accommodate a ZEO server. We should add this section to our buildout.cfg file:

[zeoserver]
recipe = plone.recipe.zope2zeoserver
zope2-location = ${zope2:location}
zeo-var = ${buildout:directory}/var
zeo-address = ${ports:zeo-server}

This buildout recipe will add a ZEO server in our deployment. We should, in
consequence, modify the ports section too:

[ports]
...
zeo-server = 8100

And add this section to the parts directive in the buildout section:

[buildout]
parts = ...
 zeoserver
 ...

Deploying our Intranet

[258]

ZEO clients
We can have as many ZEO clients as our deployment would need. If we use more
than one ZEO client to access our ZEO server, it will provide us service redundancy.
If something ever happens to one of our ZEO clients, then the others will continue to
respond to requests.

However, this will add some complexity to our deployment, because we will need an
engine to distribute the load between all the ZEO clients we were using.

Scalability
Virtually, we can connect as many ZEO clients as we like to a ZEO server. The
number will be driven by our site's requirements. ZEO clients and ZEO server are
connected via the TCP protocol, so we can place them in different physical servers as
long as a reliable network connects them.

For this reason, our deployment has a potential for infinite horizontal scalability,
limited only by the hardware we might use. We can begin with one physical machine
to accommodate both the ZEO servers and clients. If we need better performance,
we can always increase it by growing horizontally by deploying more ZEO clients.
These ZEO clients can be deployed in the same machine, or separate them in several
machines to maximize performance.

Performance
Each ZEO client will give us approximately the same performance as a monolithic
Zope server (2-4 page requests per second). So, it will depend on the number of ZEO
clients deployed.

Adding ZEO clients to our buildout
We will use two recipes to declare them in buildout.cfg. We should add the
following section:

[instance-settings]
eggs =
 Plone
 ${buildout:eggs}
zcml =
products = ${buildout:directory}/products
user = admin:admin
zodb-cache-size = 5000
zeo-client-cache-size = 300MB

Chapter 13

[259]

debug-mode = off
zope2-location = ${zope2:location}
zeo-client = true
zeo-address = ${ports:zeo-server}
effective-user = ${users:zope}

For each ZEO client that we want to add to our deployment, we should add a
section, as the following, changing the name of the section and ports used by the
ZEO client.

[instance1]
recipe = collective.recipe.zope2cluster
instance-clone = instance-settings
http-address = ${ports:instance1}
zope-conf-additional =
environment-vars =
 PYTHON_EGG_CACHE ${buildout:directory}/var/.python-eggs

Let's assume we are adding two ZEO clients to the deployment. Then, we have to
adjust the hosts and ports sections accordingly:

[hosts]
...
instance1 = localhost
instance2 = localhost

[ports]
...
instance1 = 8301
instance2 = 8302

And add this section to the parts directive in the buildout section:

[buildout]
parts = ...
 instance1
 instance2
 ...

Finally, we should delete the existing monolithic Zope instance, by deleting the
instance section and the line referring to this section in the parts directive of the
buildout section.

Deploying our Intranet

[260]

Load balancer
We can use several techniques to achieve load balancing. We can use hardware load
balancers (an expensive, but a very reliable option), or we can use load-balancing
capabilities of our favorite web server (Apache and Nginx have this capability). You
can use the one you are more familiar with.

However, we are going to cover how to realize this task with a dedicated software load
balancer server called HAproxy. It's is a free, very fast, and reliable solution offering
high availability, load balancing, and proxying for TCP and HTTP-based applications.

For adding it to our deployment buildout, we should add these lines to our
buildout.cfg file:

[haproxy-build]
recipe = plone.recipe.haproxy
url = ${downloads:haproxy}
cpu = ${build:cpu}
target = ${build:target}

This recipe will download and build HAproxy. As we've already noticed, this section
relies on other buildout sections that we haven't set up yet. Let's do so by adding this
section. Modify it according to our machine specifications, if applicable:

[build]
cpu = i686
target = linux26

Then add the downloads section. This will serve for grouping URL downloads for
later use in other buildout sections:

[downloads]
haproxy = http://haproxy.1wt.eu/download/1.4/src/haproxy-1.4.0.tar.gz

Once HAproxy is built, then we should specify how to configure it. We can do it by
adding this new section:

[haproxy-config]
recipe = collective.recipe.template
input = ${buildout:directory}/templates/balancer.conf.template
output = ${buildout:directory}/production/balancer.conf
group = plone
maxconn = 24000

Chapter 13

[261]

This section will use the buildout template recipe for generating a configuration file
for HAproxy from the template file called balancer.conf.template located in the
templates folder. The resultant configuration file (balancer.conf) will be placed
in the production folder. This file will configure the most important aspects of the
balancer settings:

global
 log 127.0.0.1 local6
 user ${users:balancer}
 group ${haproxy-config:group}
 maxconn ${haproxy-config:maxconn}
 ulimit-n 65536
 daemon
 nbproc 1

defaults
 mode http
 option httpclose
 option abortonclose
 retries 3
 option redispatch
 monitor-uri /haproxy-ping

 timeout connect 7s
 timeout queue 300s
 timeout client 300s
 timeout server 300s

 stats enable
 stats uri /haproxy-status
 stats refresh 5s
 stats realm Haproxy\ statistics

frontend myIntranet-Balancer
 bind ${hosts:balancer}:${ports:balancer}
 default_backend myIntranetBackend

 capture cookie __ac len 10
 option httplog
 log 127.0.0.1 local6

Load balancing over the zope instances

backend myIntranetBackend

Deploying our Intranet

[262]

 appsession __ac len 32 timeout 1d
 balance roundrobin
 cookie serverid insert nocache indirect
 option httpchk GET /

 server zope8301 ${hosts:instance1}:${ports:instance1} cookie z8301
check maxconn 1 maxqueue 2 rise 1
 server zope8302 ${hosts:instance2}:${ports:instance2} cookie z8302
check maxconn 1 maxqueue 2 rise 1

The highlighted lines are the most important of this file. They define the port for the
balancer and the backends it will use. All requests made to the balancer port (8310)
will be balanced between the two zope instance ports (8301 and 8302).

We have to add balancer to the hosts, ports, and users sections:

[hosts]
...
balancer = localhost

[ports]
...
balancer = 8310

[users]
...
balancer = plone

Finally, add haproxy-build and haproxy-config to the parts directive section, as
shown next:

[buildout]
parts = ...
 haproxy-build
 haproxy-config
 ...

Chapter 13

[263]

When HAproxy is running, we can access a status page from the URL:
http://localhost:8310/haproxy-status

For more information on HAproxy configuration settings and
advanced features: http://www.haproxy.org/.

Supervisor to rule them all
Now that we have so many servers, clients, and helper processes, we need a little
help to control all of them from one central location. We are going to introduce
a very useful tool called Supervisor (http://supervisord.org/). Supervisor is
a client/server system that allows its users to monitor and control a number of
processes on UNIX-like operating systems. Setting it up in buildout is easy with
the appropriate recipe. Just add this section to your buildout.cfg file:

[supervisor]
recipe = collective.recipe.supervisor
port = ${ports:supervisor}
user = admin
password = admin
serverurl = http://${hosts:supervisor}:${ports:supervisor}
programs =
 10 zeo ${zeo:location}/bin/runzeo true plone
 20 instance1 ${buildout:directory}/parts/instance1/bin/runzope true
${users:zope}
 20 instance2 ${buildout:directory}/parts/instance2/bin/runzope true
${users:zope}
 40 haproxy ${buildout:directory}/bin/haproxy [-f
${buildout:directory}/production/balancer.conf -db]

The programs directive will tell Supervisor what processes it should take care of.
Here we should declare all the processes to be launched by this buildout. Since
Supervisor uses a port and a hostname, we should add these to hosts and
ports sections:

[hosts]
...
supervisor = localhost

[ports]
...
supervisor = 9001

Deploying our Intranet

[264]

Finally, add supervisor to the parts directive buildout section.

[buildout]
parts = ...
 supervisor
 ...

Using Supervisor
Supervisor is very easy to use. All we have to do is launch the supervisor daemon,
and it will launch all managed processes. We can launch Supervisor by executing
this command line:

$./bin/supervisord

By default, once Supervisor is launched, it will launch all managed processes. We can
see the status of all of them by executing:

$./bin/supervisorctl status

Or directly access to the interactive prompt:

$./bin/supervisorctl

The command line has these main commands:

•	 stop [process]

•	 start [process]

•	 restart [process]

•	 status: It shows the status of all processes and the running time of each
of them

•	 tail [process]: It shows the default stdout of the process
•	 fg [process]: Connects to a process in foreground mode

We can access the rest of the commands by executing the help command.

Chapter 13

[265]

Modifying the web server settings
Now we should close the circle by setting up our web server. We should modify the
port of the rewrite rule to point to the balancer:

RewriteRule ^/intranet($|/.*) http://localhost:8310/VirtualHostBase/
http/myplonesite.com:80/intranet/VirtualHostRoot/_vh_intranet$1 [P,L]

We still need the full VirtualHostMonster formatted rewrite rule, of course. Now,
instead of the port of the previous single instance, we will send all requests to the
port 8310 where the balancer is listening.

Medium deployments layer diagram
Again, here is the updated service layer diagram for medium deployments:

Large intranet deployments
Finally, we move onto the serious issues. Large intranet scenarios will require us
to deploy the best available artillery. High traffic loads, high number of concurrent
users, and more than a hundred users will require us to tweak and improve each
component of our system architecture. Different problems may arise in this scenario,
like managing lots of users, outage of hardware resources (usually memory),
saturation of ZEO clients, and so on. If we experiment with some of this, we are in
front of a large scenario.

Deploying our Intranet

[266]

Adding cache to our deployment
This is the first countermeasure in order to decrease the saturation of ZEO clients.
The purpose of a cache server is to capture as many requests as possible before
they reach the backend servers. It consists of two parts: the inclusion of a helper
application in Plone called CacheSetup, and using a cache server.

Products.CacheSetup add-on product
Formerly known as CacheFu, it speeds up Plone sites transparently using a
combination of memory, proxy, and browser caching. Although it can be used as
standalone, the best results are accomplished coupling it with a cache server such as
Apache, Squid, or Varnish.

The purpose of CacheSetup is to add an intelligent layer between the client browser,
or the cache server, and the Plone site. Its task is to inform the client browser or the
cache server if a particular page requested must be refreshed from the cache. This
action is called purging. It will add the necessary HTTP headers to do the job.

Install CacheSetup as any other add-on product:

[buildout]
...
eggs = ...
 Products.CacheSetup

Then install it from Plone's control panel, Add-on products configlet. A new configlet
will be available called Cache Configuration Tool in the control panel. The configlet
is composed of several configuration forms and folders containing special objects.
These objects represent cache policies and rules for our site.

CacheSetup is disabled by default; we have to enable it and fill the form in located in
main tab:

Chapter 13

[267]

Deploying our Intranet

[268]

The following is a the summary of the available options:

•	 Active Cache Policy: It is used to define if a cache server is used or not
•	 Proxy Cache Purge Configuration: If we are using a cache server, indicate

here the type
•	 Site Domains: It lists the domains used by the site
•	 Proxy Cache Domains: A list of domains for any purgeable cache. We should

indicate here the host names and the ports for our cache server instances.

CacheSetup is configured out-of-the-box with the optimal settings for use in the
most common scenarios. However, we can modify the cache rules to tweak the cache
settings to satisfy our requirements. There are specific rules for each content type
use-case and others for special cases like RSS or DTML files. Setting up CacheSetup is
very important because it's the glue part for using a cache system correctly.

Cache server
A cache server, also known as a reverse proxy, dispatches in-bound requests to a
backend server (or set of servers) featuring backend response caching and HTTP
accelerator capabilities. The idea is to free ZEO client backends from repetitive
requests: non-dynamic content, dynamic but little modified content, or theme
elements such as CSS files, images, and JavaScripts.

We can find several cache server products out there. We are going to choose
Varnish (http://varnish-cache.org/) for the job. Varnish is a state-of-the-art,
high-performance HTTP accelerator. It uses some advanced features in Linux 2.6,
FreeBSD 6/7 and Solaris 10 to achieve its high performance.

Varnish has its own configuration language called VCL. The VCL language is a
small domain-specific language designed to be used to define request handling and
document caching policies for Varnish.

Cache servers are complex pieces of software. Because of that,
configuring them is not trivial. However, we are going to cover
how to install Varnish using buildout and how to configure it
for a standard Zope/Plone use case. If you want to tweak this
configuration, feel free to read more about Varnish and the
VCL language at: http://varnish-cache.org/wiki/VCL.

Chapter 13

[269]

Building and configuring Varnish
Add this new section to our buildout.cfg file:

[varnish-build]
recipe = hexagonit.recipe.cmmi
url = ${downloads:varnish}

This will build Varnish from sources. We will have to add this new line referring to
the Varnish download URL to the downloads section:

[downloads]
...
varnish = http://sourceforge.net/projects/varnish/files/varnish/2.0.6/
varnish-2.0.6.tar.gz/download

We will use a recipe to configure it, and another to compile a configuration
template file:

[varnish]
recipe = plone.recipe.varnish
daemon = ${buildout:directory}/parts/varnish-build/sbin/varnishd
mode = foreground
bind = ${hosts:cache}:${ports:cache}
cache-size = 1G
user = ${users:cache}
config = ${buildout:directory}/production/cache.conf
telnet = ${hosts:cache}:${ports:cache-telnet}

[varnish-config]
recipe = collective.recipe.template
input = ${buildout:directory}/templates/cache.conf.template
output = ${buildout:directory}/production/cache.conf

Varnish process binds to the port specified by the bind directive. Here we configure
cache size, owner user, and the telnet port. We set the cache size to 1GB, although we
can adjust it depending on how much memory we have in our machine. Varnish has
a Telnet-like managing console. We can connect to it by using any Telnet compatible
program against the specified port. The rest of the configuration is done using an
external configuration file generated by a buildout template.

Deploying our Intranet

[270]

We should modify users, hosts, and ports sections to set up the new process:

[hosts]
...
cache = localhost

[ports]
...
cache = 8001
cache-telnet = 9002

[users]
...
cache = plone

We should add these lines to the parts directive of the buildout section too, in
order to make the modifications effective:

[buildout]
parts = ...
 varnish-build
 varnish
 varnish-config
 ...

Finally, add Varnish to be controlled by Supervisor. Add this line to the
supervisor section:

[supervisor]
 50 varnish ${buildout:directory}/bin/varnish true ${users:cache}

Default VCL configuration template file
It's time for a brief review of the VCL configuration file included in the available
support code for this chapter. However, it's a long file, so we are going to show only
the most interesting parts of it. The file, varnish.conf.template, is located in the
templates folder.

The first two lines will define the backend. We are going to place the cache server
between the web server and the balancer, so the cache server backend should be
the balancer:

/* Configure balancer server as back end */
backend balancer {
 .host = "${hosts:balancer}";
 .port = "${ports:balancer}";
}

Chapter 13

[271]

This will allow only to perform a cache purge from the localhost:

/* Only allow PURGE from localhost */
acl purge {
 "localhost";
}

VCL defines a workflow for handling incoming requests. Each request follows this
workflow from the beginning until it's processed, and the response is sent to the
client. The requests flow through the workflow states (subroutines in VCL jargon).
These subroutines can be extended from VCL to tweak its default functionality.

On arrival, the vcl_recv subroutine will be executed. In this subroutine, we will
define the backend:

sub vcl_recv {

 /* Send to backend upon receive */

 set req.grace = 120s;
 set req.backend = balancer;

Finally, it will lookup in the existing cache:

 lookup;
}

If the requested URL is found in the cache, then the vcl_hit subroutine is processed:

sub vcl_hit {
 if (req.request == "PURGE") {
 purge_url(req.url);
 error 200 "Purged";
 }

 if (!obj.cacheable) {
 pass;
 }
}

If the requested URL is not found, then vcl_miss subroutine is processed:

sub vcl_miss {
 if (req.request == "PURGE") {
 error 404 "Not in cache";
 }

}

Deploying our Intranet

[272]

And the object is fetched from the backend and stored in the cache. The subroutine
vcl_fetch is responsible for this. Somehow, we will add some actions to
this subroutine:

sub vcl_fetch {
 set obj.grace = 120s;

 if (!obj.cacheable) {
 pass;
 }
 if (obj.http.Set-Cookie) {
 pass;
 }
 if (obj.http.Cache-Control ~ "(private|no-cache|no-store)") {
 pass;
 }
 if (req.http.Authorization && !obj.http.Cache-Control ~ "public")
{
 pass;
 }

}

For more information about the VCL workflow refer to:
http://varnish-cache.org/wiki/VCLExampleDefault

Modifying the web server settings
Once we have the cache server in place, we should update our web server
configuration. We should modify the port of the rewrite rule to point to the
cache server:

RewriteRule ^/intranet($|/.*) http://localhost:8001/VirtualHostBase/
http/myplonesite.com:80/intranet/VirtualHostRoot/_vh_intranet$1 [P,L]

Instead of the port of the previous single instance, now we will send all the requests
to the 8001 port where the cache server is listening.

Chapter 13

[273]

Spanning services in separate servers
Horizontal scaling is the best option if we have squeezed out all the computing
resources of our server. We can separate our system processes, each one in dedicated
hardware. For example, separate the pure backend ZEO server from the frontend
part composed by the ZEO clients, web server, and balancer. If necessary, we can
also split the frontend processes again to gain more performance.

However, monitoring our server resources before investing in new hardware is a
good idea. Just make sure that our resources are being used at their best, and then
make the decision.

Increasing the ZEO client instances
Either on the same hardware or on separate ones, increasing ZEO clients will
increase our site's performance. We just have to modify our buildout accordingly.
Simply copy any instance section, and modify the name of the section and the http-
address directive. For example, following are the instances 3 and 4:

[instance3]
recipe = collective.recipe.zope2cluster
instance-clone = instance-settings
http-address = ${ports:instance3}
zope-conf-additional =
environment-vars =
 PYTHON_EGG_CACHE ${buildout:directory}/var/.python-eggs

[instance4]
recipe = collective.recipe.zope2cluster
instance-clone = instance-settings
http-address = ${ports:instance4}
zope-conf-additional =
environment-vars =
 PYTHON_EGG_CACHE ${buildout:directory}/var/.python-eggs

Update the ports section:

[ports]
...
instance3 = 8303
instance4 = 8304

Deploying our Intranet

[274]

Also update the parts directive:

[buildout]
...
parts = ...
 instance3
 instance4
 ...

Updating balancer configuration
If we add more ZEO clients, we have to update our balancer configuration in order
to set up the new backends:

server zope8303 ${hosts:instance3}:${ports:instance3} cookie z8303
check maxconn 1 maxqueue 2 rise 1
 server zope8304 ${hosts:instance4}:${ports:instance4} cookie z8304
check maxconn 1 maxqueue 2 rise 1

Setting LDAP as an external user database
In order to manage a very large database of users, it's always advisable to use an
external and probably already existing user repository, such as an LDAP directory
compatible server. LDAP (Lightweight Directory Access Protocol) is a standard
application protocol for querying and modifying data using directory services running
over TCP/IP. If you are in a large organization or company, it is probable that you
already have an LDAP compatible directory. For example, Microsoft Active Directory,
Novell, Sun One, and others are LDAP compatible. Maybe you are already using the
Open Source implementation (OpenLDAP) to authenticate your applications.

We can use our existing LDAP compatible directory as source for our intranet users.
By doing this, we will give access to the intranet with the username and password
of the LDAP directory. We can even use LDAP stored groups to manage the
site's security.

There is a great add-on product called plone.app.ldap that will help us to configure
the connection. It consists of a helper application and the Python modules required.

We can install plone.app.ldap, as any other add-on product:

[buildout]
...
eggs = ...
 plone.app.ldap

Chapter 13

[275]

[instance]
...
zcml = ...
 plone.app.ldap

Pin the version of plone.app.ldap to 1.1. We can do this by using the versions.
cfg file, as shown previously in this chapter:

[versions]
...
plone.app.ldap = 1.1

Install it from the add-on products configlet. It will install a new configlet called
LDAP configuration in the control panel.

Connecting our intranet to an LDAP compatible server is not a big deal. We only
need to know some information regarding our LDAP server and fill in some other
relevant data:

•	 LDAP server type: This will let us choose if our directory server is Active
Directory or LDAP based.

•	 rDN attribute: This attribute is used to uniquely identify our directory users.
It is used to build the distinguished name (DN) for users that are being
created in our LDAP directory. This is commonly either the users full name
(cn property) or the userid (uid property).

•	 user id attribute: This attribute is used as the userid inside Plone for LDAP
users. It has to be unique for all users.

•	 login name attribute: This attribute is used as the login name for the LDAP
users logging into our site. In most cases, this should be the same as the user
id attribute.

•	 LDAP object classes: Each of the objects in the LDAP database have a
structural object class, and optionally several supplemental object classes.
These classes define the required and optional properties that can be present
on an object. Classes can be entered in a comma separated list. For LDAP
servers, user classes are derived from the top and person classes. Specify them
separated by colons.

•	 Bind DN: This the DN of a manager account in the LDAP directory. This
must be allowed to access all user and group information, as well as be
able to update and create users and groups. Please note that Plone only
supports simple binds. SASL is not supported. This user shouldn't be an
LDAP manager.

•	 Bind password: This is the password to use when binding to the
LDAP server.

Deploying our Intranet

[276]

•	 Base DN for users: This is the location in our LDAP directory where all the
users are stored.

•	 Search scope for users: The search scope determines where the LDAP server
will search for users. With BASE, it will only look for users who are directly
in the user base location. SUBTREE will allow the server to also look in
subfolders of the user base location.

•	 Base DN for groups: This is the location in your LDAP directory where all
the groups are stored.

Don't be overwhelmed by the number of settings to be configured!
If you don't know some of them, or you are not familiar with them,
you may ask your systems administrator about them.

We have to add a server in the LDAP server tab. Click the Add LDAP server button
to access the server configuration form:

Chapter 13

[277]

Specify the required settings:

•	 LDAP server: The address or host name of our server.
•	 LDAP connection type: Choose between simple LDAP, LDAP over SSL, or

LDAP over IPC.
•	 Connection timeout: The timeout in seconds to wait for a connection to the

LDAP server to be established.
•	 Operation timeout: The timeout in seconds to wait for an operation, such

as a search or an update to complete. It's recommended to configure it to a
value since the default is infinite.

Once we have configured all these settings, our LDAP directory users should be able
to log into our intranet. Our local users should be able to login too.

Large deployments service layer diagram
This is the updated service layer diagram:

Deploying our Intranet

[278]

Summary
This chapter covered how to deploy our intranet, based on its capacity needs. We
have learned how to use clustering in Zope, via ZEO servers and clients. You also
know about how to configure:

•	 Backups, restores, log rotation, and ZODB packing
•	 Virtual hosting in Zope with VirtualHostMonster
•	 Rewriting in Apache
•	 ZEO and ZEO clients
•	 A load balancer (HAproxy)
•	 A cache server (Varnish)
•	 LDAP authentication

I hope you have enjoyed this book as much as I did writing it, and that it has helped
you to build a well designed, useful and successful intranet. However, this is only
the beginning, there's a lot of things that Plone can do for you. They are waiting for
you to explore them.

Index
Symbols
./bin/backup script 249
./bin/restore script 249
./bin/snapshotbackup script 249
./bin/snapshotrestore script 249
.tgz file 25

A
acl_users 86
acl_users tool 121
administration tasks

about 248
database, backing up 249
database packing 250
database, restoring 249
log files, rotating 250, 251
scheduling 252

Apache
URL 252

ARFilePreview
features 174
installation 174

AROfficeTransforms
additional softwares 175
installation 174

asset library 9

B
blogs

about 162
configuring 165
Quills 162
Scrawl 165

buildout. See zc.buildout
buildout base configuration

buildout folder ownership, modifying 248
extended configuration, caching 246
newest directive, using 246
ports name sections, adding 247
process owners section, adding 247
versions file, adding 245, 246

buildout.cfg file 71
buildout.cfg, setting up

about 32
buildout section 33
extends directive 33
instance section 35
zope2 section 34, 35
zopepy section 36

buildout deployment
about 244
base configuration 245

buildout file 73
buildout section, buildout.cfg

about 33
extends directive 33
find-links directive 34
versions.cfg file 33

C
cache server

default VCL configuration file 270-272
Varnish 268
Varnish, building 269, 270
Varnish, configuring 269

CMF 7
CMS 8

[280]

collection
about 138
configuring, in edit mode 139
creating 139, 140
criteria, adding 140
results, ordering 140
using 138

collective.workflowed 93
community workflow

draft 100
for folders 100
pending 100
private 100
published 100
state diagram 100

community workflow, for folders
draft 101
private 101
published 101
state diagram 100

configlets 56
content

folder, adding 47, 48
managing 51
metadata, setting 50
page, adding 49
settings 50
standard Plone content types 49

content_icon file 192
Content Management System. See CMS
content management tabs, Plone

about 45
content actions 45
content tabs 45
content views 45
default content actions 46

content rules
about 199
accessing 200
actions, executing 203
assigning, to folderish content types 204
awareness, enabling 204
defining 200
events 202
managing 200
new rule, adding 201, 202

content structure
about 46
Plone site, default objects 47

control panel, ZMI
about 66
database management 67
product management 68
translation service 68

create command 20
CSSManager

basic theming properties 232
CSS customization, base_properties

used 232
installing 230
logged-in tab' look, changing 232
using 231

cssregistry.xml file 241
CSS resource

authoring.css.dtml 238
base.css.dtml 238
columns.css.dtml 238
controlpanel.css.dtml 239
deprecated.css.dtml 239
forms.css.dtml 239
invisibles.css.dtml 239
member.css.dtml 238
navtree.css.dtml 239
ploneCustom.css.dtml 239
portlets.css.dtml 239
print.css.dtml 239
public.css.dtml 238
RTL.css.dtml 239

D
default views

displaying 52
Dexterity

about 196
key features 196

directory structure, zc.buildout
bin 31
bin/buildout 31
bin/instance 31
bin/repozo 31
bin/zopepy 31
buildout.cfg 31

[281]

buildout.cfg, setting up 32
downloads 31
eggs 31
parts 31
products 31
src 32
var 32
var/filestorage 32
var/filestorage/Data.fs 32
var/log/instance.log 32
var/log/instance-Z2.log 32

discussion board
PloneBoard 167

distinguished name. See DN
DN 275
document files, managing

about 174
ARFilePreview 174
AROfficeTransforms 174
OpenXML 175

Document Template Markup Language.
See DTML

DTML 232
dynamic intranet 199

E
EMS

about 8
WMS, differentiating 10

Enable External Editor feature attribute 58
Enable link integrity checks attribute 57
Enterprise Management Systems. See EMS
ESMTP 57
example intranet workflow, building

draft state 126
intranet state 126, 127
private state 125
state diagram 124
state, requirements 124
transitions, adding 127-129

Exclude from navigation setting 50
Expansion Template Attribute Language.

See METAL
Expose sitemap.xml.gz in the portal root

attribute 58
Extended SMTP. See ESMTP

external edition
about 211, 212
enabling 213
helper software, modifying 213
installing 212

external edition installation
in Linux 212
in Mac OS X 213
in Windows 212

extranets 15

F
factorytool.xml file 193
fg [process] command 264
field types, PloneFormGen

Checkbox 159
Date/Time 159
Decimal Number 159
File 159
Label 159
Lines 159
Multi-Select 159
Password 159
Rich Label 159
Rich Text 159
Selection 159
String 159
Text 159
Whole Number 159

Flash
adding, to site's content 62

form generators
about 157
PloneFormGen 157

G
GenericSetup

about 185, 186
content types, closing 190-192
importing, from product 189
particular product profile, exporting 188
particular product profile, importing 188
snapshots 186
snapshots and product profiles,

comparing 188

[282]

using, for theme customization 241
XML files 186

Generic Setup, files
cssregistry.xml 241
jsregistry.xml 241
skins.xml 241
viewlets.xml 241

global roles
about 118
using 119

GloWorm
installing 228
using 229, 230

GloWorm Inspector Panel 229
GNU General Public License. See GPL
GNU Privacy Guard. See GPG
GPG 160
GPL 7
groups

administering, ZMI used 88
Group Properties tab 85
managing 85

H
HAproxy 260
header, layout structure

breadcrumbs, elements 43
logo, elements 43
personal bar, elements 43
portal tabs, elements 43
search box, elements 43
site action, elements 43

I
installation script, running

tasks 26
installing

CSSManager 230
external edition 212
GloWorm 228
installingPlone 18
OpenXML 175
Plone4ArtistsCalendar 152
PlonePopoll 170
PloneSurvey 172
vs.event 154, 155

intranet
calendering events 152
intranetcontent, adding 47
intranetfeatures 10
intranetprivate content, managing 129
intranetworkflow, choosing 123
intranetworkgroups, enabling 11

intranet deployments
administration tasks 248
buildouts deployment 244
large deployments 265
medium deployments 257
small deployments 255
virtual hosting 252

intranet information architecture, designing
category, types 137, 138
content, categorizing 137
important points 137
second levels 137

intranet workflow
about 102
externally visible state 102
for folders 103
internal draft state 102
internally published state 102
pending review state 102
private state 102

intranet workflow, for folders
internal draft state 103
private state 103

J
JavaScript for web statistics support

attribute 58
jsregistry.xml file 241

K
keywords, category type 137
Kupu's HTML view button 144

L
large deployment

balancer configuration, updating 274
cache configuration tool, options 268
cache server 268

[283]

CacheSetup, adding 266
LDAP setup, as external user

database 274-277
Products.CacheSetup add-on product 266
service layer diagram 277
services, spanning in separate services 273
web server settings, modifying 272
ZEO client instances, increasing 273

layout structure, Plone
columns 44
contents 44
contents, elements 44
footer 44
header 43
regions 42

LDAP 274
Lightweight Directory Access Protocol. See

LDAP
LinguaPlone 63
Linux

about 25
external edition, installing 212

LiveSearch 43
local roles

about 118
using 119

logrotate daemon 250

M
Mac OS X

about 27
external edition, installing 213

Macro Expansion Tag Attribute Language .
See METAL

medium deployments
layer diagram 265
load balancer 260-262
service layer diagram 265
Supervisor 263
Supervisor, using 264
web server settings, modifying 265
ZEO 257

METAL 95, 222

mingw32
URL 19

monolithic Zope
about 255
performance 256
scalability 256

N
nasty tags 62
new add-on products, installing

via buildout 71-74
Zope 2 add-on product 75

next previous navigation
enabling 142

Nginx
URL 252

O
OpenXML

installing 175
requirements 176

out-of-box workflows
about 98
community workflow 100
intranet workflow 102
one state workflow 101
simple publication workflow 99

own custom product, building
about 178
egg, creating 179
naming 178
Plone product egg, anatomy 180
ZCML configuration files 183

own theme add-on product, building
CSS debug mode, enabling 236
CSS files, customizing 238
CSS files, resetting 239
logo image, customizing 236
new logo image, adding 236
plone.logo viewlet, customizing 237
product, installing 234, 235
site logo, customizing 236
skin layer resources, customizing 236
steps 233

[284]

P
P4A 152
page rendering, Plone

about 217
folder 217
main_template.pt page template,

rendering 225-227
page, composing 225
skins layers 221
skins tool 218, 220
sub folder 217
workflow diagram 216, 217
Zope page templates 221

PAS
about 77
components 87
feature 87

paster command-line tool 29
PasteScript 29
path separators, Windows

backslashes (\) 18
command prompt(>) sign 18
forward slashes (/) 18

PHP For Applications. See P4A
Placeless Translation Service. See PTS
Plone

about 12
benefits 8, 10
blogs 162
building 8
collection 138
comparing, with CMS solutions 8-11
content management tabs 45
control panel 56
feature 58, 59
front page view,anonymous users 45
front page view, logged in users 45
GenericSetup 185
installing 18
layout structure 41
page rendering 216
PAS 87
Plone 4, features 18
resource registries 227
security entities 78
setting up 20-24

Sharing tab 96
site accessing, URL 38
standard folder views 52
syndication 205
tree-based hierarchy 11
unified installer 24
versions, Plone 3 18
versions, Plone 4 18

Plone 4
features 18

Plone4ArtistsCalendar
about 152
calendar activated folder 153
features 152, 153
installing 152

PloneBoard, discussion board
about 166
forums, content type 168
installing 167
message board content type 168
permission adjustments, for intranet

users 168, 169
working 168

Plone community
about 14
blogs 15
chatrooms 15
Plone Conference 15

Plone Controller 25
Plone control panel

about 56
accessing, Site Setup action 56
add-on products 60
components, add-on configuration 56
components, Plone configuration 56
configlets 56
content rules 61
content types 59
default language 63
errors 62
groups 58
HTML filtering 62
mail control panel 57
maintenance 61
markup 63
navigation 64
search settings, refining 65

[285]

security aspects, configuring 59
site 57
site, attributes 58
theme 65
users 58
wiki formatting 64

PloneFormGen, form generators
action adapters 160
CAPTCHA, integrating 161, 162
content types 160
dependencies 158
extensibility 161
field types 159
installing 157
third-party products 161
working 158

Plone, installing
versions, requiring 19
zc.buildout, requirements 19

Plone pluggable authentication service. See
Plone PAS

PlonePopoll
about 170
default permissions, adjusting 171
installing 170
local roles, using 171
working 170

Plone product egg, anatomy
egg documentation files 180
egg setup files 181, 182
main content products 182, 183

Plone site
new add-on products, installing 71
root objects 70
ZMI view 69

Plone site, root objects
acl_users 70
error_log 70
mailhost 70
members 70
portal_actionicons 70
portal_actions 70
portal_catalog 70
portal_css 70
portal_factory 70
portal_javascript 70

portal_languages 70
portal_memberdata 70
portal_membership 70
portal_migration 70
portal_properties 70
portal_quickinstaller 70
portal_setup 71
portal_skins 71
portal_transforms 71
portal_types 71
portal_workflow 71

Plone's Unified Installer. See PUI
PloneSurvey

about 172
default permissions, adjusting 173
installing 172
working 172

Plone UI
roles, adding to 131

Pluggable Authentication Service. See PAS
portal_javascript tool 228
portal_setup tool 188
portal_view_customizations tool 230
portal_workflow tool 123
portlets

default portlets 53, 54
managing 53

presentation mode
about 142
enabling 143
heading styles 143
leading slide 143
slide, formatting 144

private content
managing 129, 130

private sections
creating 130

product
add-on product install section 185
buildout 184
using, for security configuration 193

Products.DCWorkflowGraph
about 109, 110
installing 109

product, using for security configuration
existing workflow, modifying 194, 195

[286]

role map assignment to permissions,
defining 193

workflow, creating 194, 195
PTS 63
public websites 15
publishtointranet 127
PUI 24
PyPI

accessing, URL 28
Python

about 12
eggs 28
features 12
version 19
Win32 extensions 19

Python Imaging Library
URL 19

Python Package Index. See PyPI

Q
Quills, blogs

about 162
features 163
installing 163
main view 164
portlets 164

R
RDBMS 13
Relational Database Management System.

See RDBMS
resource registries

about 227
CSS resource registry 227
JavaScript resource registry 228

restart [process] command 264
reverse proxy. See cache server
RewriteRule witch 255
role policy

additional manager users, creating 121
administrator users, creating for Zope

instance 121
local roles, delegating 122
Manager restricted role permissions,

granting 122
Manager role use, restricting 120, 121

non-managers administer local roles,
allowing 123

requirements 120
roles

about 79
administering, ZMI used 88
anonymous 79
authenticated 79
contributor 79
editor 79
global roles 80
local roles 80
manager 79
member 79
owner 79
reader 79
reviewer 79
rolesabout 118
rolesassigning 118
roleslocal roles 118
rolesuser roles 118

roles, adding to Plone UI
collective.sharingroles, using 133
custom product, using 132

S
S5 JavaScript library 142
Scrawl, blogs

features 166
installation 166

security
external user database, using 78
users 78

security entities, Plone
about 79
Global Zope user accounts 80
permissions 80
roles 79
user self registration 80

Sharing tab
accessing 90
local roles inheritance 90

Show 'Short Name' on content attribute 57
simple publication workflow

multiple workflows, adding to single
content type 109

[287]

pending state 99
private state 99
published state 99
scripts 108
state diagram 99
states tab 104-106
Transitions tab 106
Transitions tab, properties 107
variables 108
worklist tab 108

site description attribute 57
site title attribute 57
skins.xml file 241
slug, Zope 73
small deployments

buildouts 256
layer diagram 256
monolithic Zope 255

standard Plone content types
collection 49
event 49
file 49
folder 49
image 49
link 49
news item 49
page 49

start [process] command 264
status command 264
stop [process] command 264
syndication

about 199
folder syndication, enabling 205
RSS feed, accessing 206

T
table of contents

about 141
enabling 141

tail [process] command 264
TAL 95, 215
TALES 95
Taxonomy 9
Template Attribute Language. See TAL
Template Attribute Language Expression

Syntax. See TALES

theming
best practices 241
Generic Setup, using 241
third party add-on products, using 228

third party add-on products
creating 131
CSSManager 230
custom Plone themes 233
GloWorm 228

third party content types, best practices
add new content type menu, ordering 146
content type, superseding 147, 149
intranet usability, maintaining 149
rules 145
upgrades 149

TinyMCE 71

U
unified installer, Plone

Linux 25
Mac OS X 27
Windows 24, 25

users
administering, ZMI used 87
managing 82, 84
password, recovering 86
password, setting 83
registration form 82

V
Varnish

about 268, 270
building 269, 270
configuring 269

versioning
about 199, 207, 208
Change note field 208
policy, modifying 208

viewlet
about 222
customizing 240
list 222
location 223
managing 224

viewlets.xml file 241

[288]

virtual hosting
about 252
domain subdirectory 254
from Apache web server, to Zope

server 253
VirtualHostMonster 252

vs.event
about 154
features 155
installation 154, 155

W
W3C's 8
WCM 7
WCMS. See WCM
Web CMS. See WCM
Web-based Distributed Authoring and

Versioning. See WebDAV
Web Content Management System. See

WCM
WebDAV

about 199, 209
access permissions, managing 211
Mac OS X, instructions 209
site structure, viewing as filesystem 210, 211

weblog. See blog
Web or Portal Management Systems . See

WMS
wget 20
Windows

about 24
external edition, installing 212

WMS
about 8
EMS, differentiating 10
feature 9

work
out-of-box workflows 98

workflow
best practices 114
collective.wtf 93
contents 103
entities 94
features 93
tools 109
workflowstates 12

workflowtransitions 12
workflow, best practices

debugging tools, using 114
initial blueprint, making 114
production servers deployment,

avoiding 114
testing 114

workflow entities
guards 95
local roles, assigning to groups 96
permissions 96
scripts 96
states 94
transitions 94

workflow, intranet
authenticated users access, restricting 123
choosing 123
example, building 124

workflow, tools
collective.workflowed 111-113
collective.wtf 110, 111
placeful workflow 113
Products.DCWorkflowGraph 109
workflow policy 113

workgroup areas
creating 131

World Wide Web Consortium. See W3C's

X
XML files, GenericSetup

actions.xml 187
catalog.xml 187
contentrules.xml 187
controlpanel.xml 187
cssregistry.xml, jsregistry.xml 187
factorytool.xml 187
mailhost.xml 187
memberdata_properties.xml 187
portal_languages.xml 187
portlets.xml 187
propertiestool.xml 187
properties.xml 187
rolemap.xml 187
skins.xml 187
types 187
types.xml 187

[289]

viewlets.xml 187
workflows 187
workflows.xml 187

Z
ZCA 183
zc.buildout

about 28
directory structure 31
distribute 28
eggs 28
PasteScript 29
running 30, 31
script command modifiers 31
setup tools 28
URL 27
 Zope, launching 36-38
ZopeSkel 29, 30

ZCML 183
ZEO 257
ZEO, medium deployments

clients 258
clients, adding to buildout 258, 259
clients, performance 258
clients, scalability 258
server, adding to buildout 257

ZMI
about 65, 66, 87
accessing, URL 37
control panel 66

groups, administering 88
portal_workflow 97
URL 23, 66
users, administering 87
view, of Plone site 68-71
workflow management 96, 98

ZODB
about 8, 13
features 14

Zope
several ZODB, attaching to 67
user folder 78
version 19
virtual hosting 252

Zope Component Architecture. See ZCA
Zope Configuration Markup Language.

See ZCML
Zope Content Management Framework.

See CMF
Zope Enterprise Objects. See ZEO
Zope Management Interface. See ZMI
Zope Object Database. See ZODB
Zope page templates

about 221
METAL 222
TAL 221
TAL, tags 222

Zope server
accessing, URL 37

ZopeSkel 29, 30
Zope Toolkit 183

Thank you for buying
Plone 3 Intranets

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Professional Plone Development
ISBN: 978-1-847191-98-4 Paperback: 420 pages

Building robust, content-centric web applications
with Plone 3, an open source Content Management
System

1.	 Plone development fundamentals

2.	 Customizing Plone

3.	 Developing new functionality

4.	 Real-world deployments

Plone 3 Theming
ISBN: 978-1-847193-87-2 Paperback: 324 pages

Create flexible, powerful, and professional themes for
your web site with Plone and basic CSS

1.	 Best practices for creating a flexible and
powerful Plone themes

2.	 Build new templates and refactor existing ones
by using Plone's templating system, Zope Page
Templates (ZPT) system, Template Attribute
Language (TAL) tricks and tips for skinning
your Plone site

3.	 Create a fully functional theme to ensure
proper understanding of all the concepts

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Introduction to Plone
	What does Plone give me over other CMS solutions?
	First surprise: Not PHP, Python
	Second surprise: Not RDBMS, the mighty ZODB
	The Plone community
	Public websites, intranets, extranets, and the thin line between them
	Summary

	Chapter 2: Getting Started
	Plone versions
	Installing Plone
	zc.buildout requirements

	Quick start for the impatient
	Plone unified installers
	Windows
	Linux
	Mac OS X

	Buildout
	Distribute, setuptools, and eggs
	PasteScript and ZopeSkel
	Running buildout
	Buildout directory structure
	Setting up buildout.cfg
	The buildout section
	The zope2 section
	The instance section
	The zopepy section

	Launching Zope

	Summary

	Chapter 3: Managing our Content
	Plone visual layout structure
	Header
	Columns
	Content
	Footer

	Anonymous versus logged in
	Content management tabs

	Content structure
	Adding content
	Standard Plone content types
	Content metadata
	Content settings

	Managing content
	Displaying views
	Managing portlets
	Summary

	Chapter 4: Configuring our Site
	Plone control panel
	Mail control panel
	Site
	Users and groups
	Security
	Types
	Add-on products
	Content rules
	Maintenance
	Errors
	HTML filtering
	Language
	Markup
	Wiki formatting

	Navigation
	Search
	Theme

	Zope Management Interface
	Control panel
	Database management
	Product management
	Placeless translation service

	Plone site—ZMI point of view

	Installing new add-on products
	As an egg via buildout
	As a Zope 2 add-on product

	Summary

	Chapter 5: Managing Users, Groups, Roles, and Permissions
	One vision
	Security entities
	Roles
	Global and local roles

	Permissions
	Global Zope user accounts
	User self-registration

	Managing users and groups
	The user registration form
	Managing users
	Managing groups
	Recovering user password

	More control: managing ZMI
	Administering users via ZMI
	Administering groups via ZMI
	Administering roles via ZMI

	The sharing tab
	Local role inheritance

	Summary

	Chapter 6: Managing Workflows
	Workflow entities
	States
	Transitions
	Guards
	Permissions
	Assigning local roles to groups
	Scripts

	ZMI workflow management
	Out-of-the-box workflows
	Simple publication workflow
	Community workflow
	Community workflow for folders
	One state workflow
	Intranet workflow
	Intranet workflows for folders

	Workflow diving
	States
	Transitions
	Variables
	Worklists
	Scripts
	No workflow and multiple workflow use cases

	Some useful workflow tools
	DCWorkflowGraph
	collective.wtf
	collective.workflowed
	Placeful workflow

	Best practices
	Make an initial blueprint first
	Avoid developing on production servers
	Start from an existing workflow copy
	Use the tools shown for debugging
	Test our workflow

	Summary

	Chapter 7: Securing our Intranet
	Global or local roles?
	Using global roles
	Using local roles

	Designing a sustainable role policy
	A policy example
	Restricting the use of the Manager role
	Creating system administrator users for the Zope instance
	Creating additional manager users of the Plone site
	Granting other role permissions restricted
to Managers
	Local role delegation
	Allowing non-managers to administer
local roles

	Choosing a workflow for our intranet
	Restricting access to authenticated users
	Building an example intranet workflow
	Private state
	Draft state
	Intranet state
	Transitions

	Managing private content
	Creating private sections
	Workgroup areas
	Third-party add-on products
	Adding roles to the Plone UI
	Using a custom product
	Using collective.sharingroles

	Summary

	Chapter 8: Using Content Type Effectively
	Designing our intranet information architecture
	Using collections
	Creating a collection

	Table of contents
	Next/previous navigation
	Presentation mode
	Enabling the presentation mode
	Formatting a slide

	Third-party content types—best practices
	A few golden rules
	Ordering the "Add new" content type menu
	Content type superseding
	Mantaining usability
	Upgrades

	Summary

	Chapter 9: Intranet Add-on Products
	Calendaring and extended events
	Plone4ArtistsCalendar
	Installation
	Features

	vs.event
	Installation
	Features

	Form generators
	PloneFormGen
	Installation
	Dependencies
	How it works
	Field types
	Action adapters
	Other content types in a form folder
	Extensibility and third-party products for PFG
	Captcha integration

	Blogs
	Quills
	Installation
	Features
	Quills portlets
	Configuring the blog

	Scrawl
	Installation
	Features

	Discussion board
	PloneBoard
	Installation
	How it works
	Adjusting permissions on Ploneboard for
intranet use

	Polls and surveys
	PlonePopoll
	Installation
	How it works

	Plone Survey
	Installation
	How it works

	Document files management
	ARFilePreview and AROfficeTransforms
	Installation
	Features
	Additional software required

	OpenXML
	Installation
	Dependencies

	Summary

	Chapter 10: Basic Product Development
	Building our own product
	Naming our product
	Creating the egg
	Anatomy of a Plone product egg
	Egg documentation files
	Egg setup files
	Main product content

	ZCML configuration files

	Making the product installable
	The power of GenericSetup
	Snapshots
	Importing and exporting a particular product profile
	Comparing snapshots and product profiles

	Importing GenericSetup profiles from a product
	Cloning content types via GenericSetup
	Using a product to configure security
	Defining role map assignment to permissions
	Creating new workflows or modifying
existing ones

	Dexterity
	Summary

	Chapter 11: Content Rules, Syndication, and Advanced Features
	Content rules
	Adding a new rule
	Assigning rules to folderish objects
	Making any content type rule aware

	Syndication
	Enabling folder syndication
	Accessing a secure RSS feed

	Versioning
	Changing versioning policy

	WebDAV
	Managing WebDAV access permissions

	External editing
	Installing the external edition
	Windows
	Linux
	MacOSX

	Enabling external edition
	Modifying helper software

	Summary

	Chapter 12: Theming our Intranet
	Diving into Plone's page rendering
	Acquisition from parents
	Plone skins tool
	Skins and layers
	Acquisition in skin layers
	Zope page templates
	TAL
	METAL

	Viewlets
	Managing viewlets
	Composing a Plone page
	Rendering the main_template.pt page template

	Resource registries
	CSS resource registry
	JavaScript resource registry

	Theming using third party add-on products
	GloWorm—add-on product for viewlet customization
	Installation
	Using GloWorm

	CSSManager—add-on product for CSS and basic properties customization
	Installation
	Using CSSManager
	CSS customization with base_properties sheet
	Changing the logged-in tabs' attributes

	Custom theme add-on products

	Building our own theme add-on product
	Installing the product
	Customizing Plone skin layer resources
	Enabling CSS debug mode
	Customizing the site logo
	Customizing the logo image and adding a new one
	Customizing the plone.logo viewlet

	Customizing Plone CSS
	Resetting Plone CSS

	More about customizing viewlets
	Using Generic Setup to customize a theme

	Theming—best practices
	Summary

	Chapter 13: Deploying Our Intranet
	Deployment buildouts
	Buildout base configuration
	Adding a versions file
	Caching extended configuration
	Using the newest directive
	Adding ports and hosts names sections
	Adding process owners section
	Changing the ownership of buildout folder

	Common administration tasks
	Backing up and restoring database
	Database packing
	Rotating the log files
	Scheduling

	Virtual hosting
	VirtualHostMonster
	Virtual hosting a root domain
	Virtual hosting a domain subdirectory

	Small intranet deployments
	Monolithic Zope
	Performance
	Scalability

	Buildout for small deployments
	Small deployments layer diagram

	Medium intranet deployments
	ZEO (Zope Enterprise Objects)
	Adding a ZEO server to our buildout

	ZEO clients
	Scalability
	Performance
	Adding ZEO clients to our buildout

	Load balancer
	Supervisor to rule them all
	Using Supervisor

	Modifying the web server settings
	Medium deployments layer diagram

	Large intranet deployments
	Adding cache to our deployment
	Products.CacheSetup add-on product
	Cache server
	Building and configuring Varnish
	Default VCL configuration template file

	Modifying the web server settings
	Spanning services in separate servers
	Increasing the ZEO client instances
	Updating balancer configuration
	Setting LDAP as an external user database
	Large deployments service layer diagram

	Summary

	Index

